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Abstract. Network coding is a promising approach for increasing per-
formance of multicast data transmission and reducing energy costs. Of
course, it is essential to consider security aspects to ensure a reliable data
transmission. Particularly, pollution attacks may have serious impacts in
network coding since a single attacker can jam large parts of the network.
Therefore, various approaches have been introduced to secure network
coding against this type of attack.
However, introducing security increases costs. Even though there are
some performance analysis of secure schemes, to our knowledge there
are no details whether these schemes are worthwhile to replace routing
under the facet of efficiency. Thus, we discuss in this report parame-
ters to assess the efficiency of secure network coding schemes. Using
three network graphs, we evaluate parameters focusing on communica-
tion overhead for selected schemes. Our results show that there are still
benefits in comparison to routing depending on the network topology.
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1 Introduction

The concept of network coding was introduced by Ahlswede et al. [2]. It al-
lows for increasing throughput for multicast transmissions and for saving band-
width. Particularly, it has been shown that the min-cut max-flow capacity can
be achieved in the multicast scenario [2]. The key idea of network coding is that
intermediate nodes compute algebraic combinations from packets they receive,
in contrast to common routing where packets are just forwarded by the nodes.
For an overview on the topic, we refer to [11–13, 27].

While network coding is a promising approach for increasing efficiency of
data transmission, it is vulnerable to various attacks. Thus, introducing secu-
rity mechanisms is a necessity. Within this report, we focus on the question
whether such secure network coding schemes still offer benefits in comparison to
traditional routing, and which approaches for secure network coding should be
preferred depending on the underlying network topology.

Several approaches have been suggested for network coding. The approaches
we evaluate in this report are based on random linear network coding (RLNC),
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where the nodes randomly and independently select linear network coding coef-
ficients [16]. RLNC allows for implementing a decentralized solution since there
is no need for propagating the coefficients to the nodes.

To counteract the vulnerability to attacks, various schemes for secure network
coding have been proposed in the literature (e.g., [5, 9, 17, 18, 23, 26]). Most of
these approaches aim at providing security against pollution attacks which may
have severe impacts on network coding: Even one polluted packet influences all
computations performed by subsequent nodes, hence, may prevent the successful
decoding of many other packets at the recipients.

Usually, introducing security implies additional costs. Security mechanisms
may require additional computations, introduce delays, or increase storage re-
quirements. This fact raises the question whether secure network coding schemes
can still provide benefits regarding throughput and bandwidth as intended by
network coding. These questions not only influence the time needed for transmit-
ting data packets through a network. An increased effort finally increases energy
consumption of the network, a topic that is today of growing importance.

There are two contributions in this report. First, we discuss which parame-
ters are suited for describing the efficiency of secure network coding schemes. To
study the influence of the network topology on these parameters, we use three
network graphs that allow for varying network parameters. As second contribu-
tion, we present first results of the evaluation of selected secure network coding
approaches in comparison to RLNC without security and to routing. These first
results focus on communication overhead. The network graphs help in clarifying
which characteristics of the underlying network increases additional costs. Such
results shall help to assess whether secure network coding can provide benefits
for a given network topology at all, and which approach should be preferred.

The report is organized as follows. Section 2 gives an overview on existing
approaches for network coding schemes secure against pollution attacks and
describes the schemes we selected for our evaluations. Section 3 discusses which
parameters are suited for evaluating efficiency and describes the assumptions
we made for the evaluations. The results of our evaluation are presented and
discussed in Section 4. Finally, Section 5 concludes and gives an outlook.

2 Secure Network Coding

2.1 Random Linear Network Coding

The common notation for describing network coding schemes is based on a di-
rected, acyclic graph G = (V,E) consisting of a set of nodes (also called vertices)
V and a set of edges E. There is a number of sending nodes S ⊂ V, receiving
nodes R ⊂ V, and forwarding nodes F ⊂ V. A forwarding node receives l data
packets xi = (xi,1, xi,2, ..., xi,n), i = 1, 2, ..., l on its l incoming edges. Each data
packet xi consists of n codewords xi,j ∈ Fq. The forwarding node randomly
selects l coefficients αi ∈ Fq and computes linear combinations



3

xj =

l∑
i=1

αixi. (1)

Generally, we assume that it computes different combinations for each out-
going edge. When the receiving nodes got sufficient linear independent packets,
they can decode by solving the corresponding equation system.

A practical system for implementing these ideas – Practical Network Coding
(PNC) – is introduced in [8]. In our evaluation, we refer to this framework.
PNC describes a data format that enables receiving nodes to decode without
knowing the randomly selected coefficients. The sender divides the data to be
sent into portions pi ∈ Fmq of m codewords each. These native data packets are

amended by a global encoding vector (βi,1, βi,2, ..., βi,h) ∈ Fhq that reflects the
linear operations. Packets that can be combined during transmission establish a
generation G. Each Packet is tagged with a unique identifier gid. The size of the
generation depends on the multicast capacity h.

Thus, we can think of a generation as a matrix of data packets. The sending
node produces a generation containing the original, uncombined data P amended
by an h×h identity matrix B that represents the initial global encoding vector:

G =

x1

...
xh

 =

 β1,1 = 1 · · · β1,h = 0 p1,1 p1,2 · · · p1,m
...

. . .
...

...
...

. . .
...

βh,1 = 0 · · · βh,h = 1 ph,1 ph,2 · · · ph,m

 (2)

The rows of this matrix are the data packets of size n = h + m codewords
sent by the source node. During network coding, the data packets are combined
as described by Eq. (1). We refer to combined data packets by

xi = (xi,1, xi,2, ..., xi,n) = (βi,1, βi,2, ..., βi,h, pi,1, pi,2, ..., pi,m). (3)

The coefficients of the global encoding vector reflect the linear combinations
computed by the forwarding nodes.

Successful decoding requires that the sink nodes receive sufficient linear in-
dependent combinations, i.e., the rank of the matrix of received data packets
must be h. The probability for successful decoding in case of RLNC depends on
the field size q; it becomes sufficiently high for a field size of at least q = 28 [16].

2.2 Attacker Model

In order to be practically usable, security aspects of network coding need to
be considered. Confidentiality, integrity, and availability of the messages (i.e.,
the original data) have to be ensured even in case of intended attacks. For
ensuring confidentiality, the attacker must be prevented from getting to know
enough linear independent data packets. For ensuring integrity and availability,
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a sufficient amount of data packets needs to be available to the recipient so
that he can successfully decode the messages. This implies that integrity and
availability of these data packets have to be ensured.

Basically, we have to consider passive as well as active attackers. Passive
attackers only observe the system (eavesdropping) while active attackers perform
specific actions (modification, deletion, or pollution of packets).

Potential threats to network coding are discussed, e.g., in [10, 23]. If no un-
coded packets are sent through the network, an eavesdropper with limited ac-
cess to the links cannot threaten confidentiality [5]. However, we cannot exclude
stronger attacks with certainty. Particularly, if an attacker is able to control a
node he can observe and modify all data packets passing this node.

Nevertheless, confidentiality of messages is not widely discussed in the liter-
ature since it is mostly addressed at the upper layers of the system [10]. One
example for a scheme protecting the confidentiality of messages is SPOC. In that
approach, the originally chosen coefficients are encrypted and only the recipient
owning the appropriate keys can decrypt the data [25].

The majority of secure network coding schemes, however, considers pollution
attacks that must be addressed at the layer of network coding. Therefore, we
also focus on this type of attack. Pollution attacks concern the integrity of data
packets since they imply that a node processes data packets that do not belong
to the subspace spanned by the original data packets. Such attacks are notably
critical because polluted packets influence the result of all subsequent combina-
tions computed by forwarding nodes [10]. Finally, the recipients may not be able
to successfully decode the data.

2.3 Network Coding Schemes Secure against Pollution Attacks

Various approaches for securing network coding against pollution attacks have
been suggested in the literature. An important distinction is the question when
polluted packets can be detected and filtered out: only at the recipient nodes
or at the forwarding nodes. The former does not imply additional operations
performed by the forwarding nodes. However, the latter provides the advantage
that forwarding nodes are able to drop polluted packets so that the influence of
pollution attacks is limited. Therefore, we selected schemes corresponding to the
latter approach for our evaluation.

Network coding schemes that enable forwarding nodes to detect polluted
packets are mainly based on cryptography. That means, we need some secret
information that can be used for verifying the validity of received packets. How-
ever, known cryptographic solutions cannot be directly applied to network cod-
ing. Digital signatures are usual for verifying both the integrity and the source
of a message, but since the data packets are modified by forwarding nodes,
common digital signatures become invalid after the first hop. The same applies
to cryptographic hashes and symmetric authentication. Additionally, symmetric
authentication would require a key exchange between the sender and all for-
warders and recipients.
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To overcome these problems, homomorphic hashes, homomorphic signatures,
and homomorphic MACs (Message Authentication Codes) have been suggested
for securing network coding against pollution attacks. The homomorphic prop-
erty of these approaches enables forwarding nodes to compute valid hashes or
signatures for combined data packets.

Homomorphic hashes were first suggested by Krohn et al. [20] for securing
content distribution. In that paper, the hashes were computed for data blocks
encoded by rateless erasure codes. The hash function is based on the Discrete
Logarithm problem. Gkantsidis and Rodriguez introduced an approach for ap-
plying these homomorphic hashes to network coding [15]. Forwarders as well as
receivers need the hash values computed by the sender for verifying the validity
of the combined data packets. Gennaro et al. present a further approach based
on homomorphic hashes [14]; they suggest a hash function that is computed
modulo a composite, similar to the RSA crypto system.

Charles et al. introduced homomorphic signatures for network coding [7]. The
proposed signatures are based on Weil pairing in elliptic curve cryptography. Kim
at al. also suggest a scheme based on digital signatures [19]; the sender computes
and publishes signatures that are used by the nodes to verify the authenticity
of received data packets. The security of their scheme is based on the Discrete
Logarithm problem. Boneh at al. introduced a scheme that enables forwarding
nodes to compute valid signatures for combined data packets [4]. Similar to
the scheme proposed by Charles at al. [7], the signatures are computed over
elliptic curves using bilinear maps like the Weil pairing. Gennaro et al. suggested
an RSA-like scheme that promises less communication overhead and increased
computational efficiency. Another example for an RSA-like scheme was recently
introduced by Catalano et al. [6]. Boneh and Freeman [3] presented a different
construction for homomorphic signatures that bases on lattices.

Agrewal and Boneh introduced two solutions for homomorphic MACs [1].
Their homomorphic MAC scheme enables the recipients to verify the validity
of data packets while their broadcast homomorphic MAC scheme additionally
enables all forwarding nodes to verify data packets. Yu et al. describe a schemes
that allows for efficient verification of MACs [28]; however, their schemes implies
significantly enlarged bandwidth overhead since all MACs received by forwarding
nodes are appended to the data packets. Generally, symmetric authentication
requires the aforementioned prior exchange of symmetric keys.

Another approach for securing network coding against pollution attacks is
the delayed delivery of information necessary for verifying the validity of received
data packets. This time asymmetry was introduced in the TESLA protocol [24],
a broadcast authentication protocol with delayed key release.

An approach that utilizes time asymmetry was introduced by Dong et al.
[9]. In that scheme, the sender periodically computes checksums for the data
packets sent before; the forwarders and recipients can verify the validity of the
data packets by means of these check sums.

There are also schemes that combine time asymmetry and homomorphic
MACs. These schemes utilize the time asymmetry for exchanging symmetric
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keys. One example is the RIPPLE, introduced by Li et al. [22]. The name stems
from the fact that data packets pause at intermediate nodes for key disclosure
and verification. The TESLA-like scheme introduced by Le et al. [21] aims at
both identification of polluted packets and identification of the attacker in net-
work coding based-P2P systems. However, it still requires key exchange and
additionally the existence of a central authority for identification of attackers.
Wang proposed a further TESLA-like scheme [26]. In that scheme, the number
of MACs depends on the maximum number of hops from sender to recipient.

Generally, schemes based on asymmetric cryptography require more com-
putational effort while TESLA-like schemes increase delay and communication
overhead. However, the actual costs depend on the underlying network graph
and the communication requirements. Hence, the dependence of the additional
costs on parameters describing the network should be known to decide which
approach should be preferred in a concrete communication scenario.

Within this report, we provide first results for the selected secure network
coding schemes described in the following section. To compare the performance of
the different approaches we selected one example for each of them (homomorphic
hashes, homomorphic MACs, time asymmetry, and time asymmetry combined
with homomorphic MACs).

2.4 Schemes selected for Evaluation

In order to achieve a similar presentation, we slightly adapt the description of
the schemes given in the cited articles to the description introduced in Sect. 2.1.

Homomorphic Hashes [15]. The first scheme we selected uses a hash function h to
enable recognizing polluted packets. The hash function includes exponentiation
modulo a prime r of size 1024 bits, hence, the size of the hash values is 1024
bits. The encoding operations are computed in Zq, whereas q is a prime of 256
bit and q|(r − 1). Thus, the size of the code words is about 256 bits.

Given a vector g of m random elements of {u ∈ Zq | <u>= Zq}, a hash value
for a data packet pi can be computed as follows :

h(pi) =

m∏
j=1

g
pi,j
j mod r.

The sender computes for each native data packet pi a hash value h(pi). Since
the hash values are homomorphic, forwarding nodes can verify the validity of
data packets xi = (βi,pi) by comparing the hash of these data packets to the
linear combination of the hashes delivered by the sender:

h(pi)
?
= h(p1)βi,1 · h(p2)βi,2 · ... · h(ph)βi,h mod r.

Hence, the hashes h(pi) must be known to the forwarding nodes. Since the
context of the paper is content distribution, the authors assume that the nodes
download the hash values when they join the system. For our analysis, we as-
sume that the sender broadcasts the hash values before transmission of the data
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packets. To ensure authenticity of the hashes, they need to be digitally signed.
The structure of the data packets does not need to be changed.

DART [9]. As second scheme, we selected the TESLA-like scheme DART that
is based on delayed checksum delivery. The sender periodically computes and
disseminates a signed checksum packet consisting of the checksum chks(G), a
seed s, and a timestamp t for the current generation G = B|P . Given a pre-
determined security parameter c, the sender generates a pseudo-random h × c
matrix Hs using the seed s and a publicly known function f. That matrix is
used for computing the checksum:

chks(G) = PHs.

Each node maintains two buffers: verified set and unverified set. After receiv-
ing a checksum packet, the node first checks its authenticity. If the verification
succeeded, the node re-broadcasts the checksum packet to its neighbors and then
checks packets in unverified set it has received before the checksum was gener-
ated. To verify the data packets, the node also generates Hs using the seed s
that is contained in the checksum packet. Then the node checks if the product
of global encoding vector and checksum equals the product of encoded data and
random matrix:

βichks(G)
?
= piHs.

Invalid packets are discarded; successfully checked packets are transferred to
verified set and will be used for computing linear combinations. Since each node
needs for verification a new checksum packet, the number of checksum packets
the sender has to generate depends on the number of hops to the recipients.

For increasing efficiency, the authors suggest batch verification. Furthermore,
to reduce the introduced delays, pipelining is suggested in which several gener-
ations are sent and processed concurrently. A variant of the basic scheme is
EDART, also introduced in [9]. In EDART, nodes do not always verify packets
but optimistically forward packets to increase throughput. For our evaluations,
we consider the basic scheme.

Scheme according to Wang [26]. The third scheme we selected for evaluating
additional costs utilizes symmetric authentication – homomorphic MACs (Mes-
sage Authentication Codes) – and time asymmetry for delayed key release. The
number of MACs per data packet depends on the number of hops. The MACs
are integrated into the data packets.

Verification of the MACs requires knowledge of the corresponding keys. For
each generation with identifier gid, the sender generates a chain of seed values
bi that are the basis for computing these keys. It first selects a seed s and
then computes bu = h1

u(s, gid) with u = 1, 2, . . . , k + 1 (k: maximum number
of hops to the recipients). By means of these values, the sender generates the
actual keys auj = h2(j, bu) (j = 1, 2, . . . , at maximum n + k values) with au =
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(au1 , a
u
2 , . . . , a

u
n). Here, h1 and h2 are pseudo-random functions with h1

u(·) =
h1(h1(· · · h1(·))).

For each data packet xi of a generation, the sending node computes k MACs
as follows:

MAC1(xi) = a1 · xi,

MACu(xi) = au · xi +

u−1∑
j=1

aun+jMACj(xi).

The final value bk+1 of the chain is necessary for checking the validity of
subsequently sent values bu; therefore, the sender first digitally signs this value
and broadcasts it to the involved nodes at time t = 0. In the next time slot, the
sender sends bk. When the forwarding nodes get this value, they can check its
validity by means of the publicly known function h1. According to the TESLA
scheme, the seed values are distributed to the verifying nodes after the data
packets arrived. To prevent that an attacker can compute upcoming seed values,
the code word length is increased to 128 bits.

Generally, a node r hops away from the sender waits for bt−r+1 and verifies
its validity by checking whether h1

r(bk−r+1) = bk+1. If the test was successful,
the node verifies MACk−r+1 of the received messages by computing these MACs
on its own and comparing the computed MACs to the MACs contained in the
received data packets. Since the node knows bk−r+1, it can compute ak−1+r

j

(with j = 1, 2, . . . , n+ k − r) needed for computing the MACs.
Due to the homomorphic property of the MACs, nodes can compute valid

MACs for the combined packets by combining the received MACs using the
randomly selected coefficients αi. Each node has to compute one MAC less than
received. Consequently, if the path of a data packet from sender to recipient
contains the maximum number of k hops, the data packet includes only one
MAC when it arrives at the recipient.

RSA-based scheme [14] The last scheme we analyzed uses the homomorphic
property of the simple RSA signature scheme. The sender generates a key pair
using the modulus N which is the product of two safe primes. This pair consists
of a public key (N ,e,g1 . . . gm) and a private key d , where ed = 1 mod φ(N)
and each <gi> = QRN . Then the sender generates a signature for each data
packet xi using his private signature key d and a publicly known hash function h
and integrates it into the particular packet. Setting fi = h(i, gid), the signature
is computed by:

Nsig(xi) =

 h∏
j=1

f
βi,j

j

m∏
j=1

g
pi,j
j

d

mod N.

Each node is able to verify signatures with the use of the public test key e
by checking:
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Nsig(xi)
e ?

=

h∏
j=1

f
βi,j

j

m∏
j=1

g
pi,j
j mod N.

Because of the homomorphic property, forwarders can compute valid signa-
tures for a combination of ` verified packets by multiplying the signatures raised
to the power of the local coefficients αi:

Nsig(xj) =
∏̀
i=1

Nsig(xi)
αi mod N.

All operations concerning the signature are done modulo the composite num-
ber N . Hence the size of the signatures is constant, e.g., 1024 bit.

In contrast to the schemes described above, the codewords are arbitrary
integers instead of elements of a finite field. Thus, each xi,j will grow by a certain
amount of bits depending on the number of hops k to the recipient and the
number of ingoing edges ` of each forwarding node involved in the transmission,
e.g. 10 bits per hop with ` = 4. For optimization of communication overhead,
we set m = 1, i.e., we have only one large pi,1 per packet xi. However, this
setting implies higher computational costs. A larger m increases communication
overhead while decreasing computational costs.

3 Assumptions for the Analysis

3.1 Parameters for the Evaluation of the Schemes

The major concern of our comparison is to answer the question whether secure
network coding schemes can still provide benefits in comparison to traditional
routing. On one hand, we can compare the performance of the secure schemes to
the performance of schemes without security mechanisms. On the other hand,
it is reasonable to evaluate additional costs implied by introducing security. It
is necessary to define suitable parameters reflecting performance and additional
costs. Thereby, we are interested in results that describe the dependence of the
selected parameters on the characteristics of the underlying network so that it
is possible to assess

1. whether secure network coding can offer benefits in comparison to routing
for a given data flow, and if this is the case,

2. which approach for secure network coding should be preferred for the given
network.

Consequently, we focus on parameters that can be analyzed on a rather
abstract level without knowing technical details of the system components.

Performance is usually described by parameters like throughput or delay.
To allow for a theoretical analysis, we evaluate the number of ticks (time
slices) necessary to deliver the messages to the intended recipients, a parameter
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that should highly correlate with the real delay and, hence, roughly reflects the
throughput within the network. To simplify matters, we assume that each node
can receive on all incoming edges and send on all outgoing edges at the same
time. Furthermore, we assume that both transmission of a packet via one link
and processing of packets by the nodes need one tick. Thus, the results describe
the minimum introduced delay.

Various parameters can be evaluated to describe additional costs and, finally,
additional energy required for secure data transmission. Describing absolute en-
ergy consumption requires detailed knowledge about the system, e.g., about the
implementation of various operations or about the energy requirements of the
system components. Generally, additional costs can be described by

– additional operations to be performed by the nodes,
– memory overhead, and
– communication overhead.

Additional operations clearly increase energy consumption. Memory over-
head also implies additional operations for accessing the memory. We did not
consider these issues since they strongly depend on technical conditions and
we focus on a theoretical analysis that allows answering the general questions
given above. Additional operations and memory accesses might influence the
time needed by the nodes for processing data. Due to simplicity, we assume that
nodes have enough computing power and memory so that neither additional
operations nor memory accesses introduce additional delays. Within our evalua-
tion, we focused on communication overhead introduced by security mechanisms.
Generally, we assumed a predetermined size per packet for all schemes under in-
vestigation. IP addresses and other header information are not considered since
they are equal for all schemes. We evaluated three parameters describing com-
munication overhead referring to the transmission of a single generation G.

As first parameter, we evaluated the maximum relative payload. This
parameter helps to assess the amount of additional data introduced by secure
network coding schemes to allow authentication of data packets – checksums,
digital signatures, MACs, etc. This additional data needs to be included within
the data packets or has to be sent in extra data packets what reduces the available
payload. Thus, the maximum relative payload allows for coarsely estimating how
many generations are necessary to transmit a given amount of data. Considering
in addition the number of ticks necessary for transmitting one generation allows
roughly assessing the delay for transmitting that amount of data. We want to
point out that the processing of multiple generations needs to be considered for
such an estimation, e.g., applying pipelining as suggested in [9].

However, the actual amount of data packets to be sent by the sending node
may be larger since it depends on the underlying network graph. For example,
all nodes involved in data transmission need the authentication information for
checking the validity of received data packets. Thus, data packets containing
authentication information may be sent several times. Hence, we evaluated as
second parameter the actual relative payload, a value that reflects the actual
network load initiated by the sending node.
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As a third parameter, we determined the send operations necessary for
transmitting all the data packets to the recipients. This parameter gives an im-
pression of the overall effort in the whole network while the parameters referring
to the relative payload just considered the applied load for the sending node. In
case of constant packet size the amount of data sent in the whole network for
the transaction is linearly dependent on the number of send operations. Thus,
this parameter should roughly correspond to the overall network load.

3.2 Network Topology

The parameters introduced above describe the efficiency of the selected schemes
depending on the underlying network topology. Thus, it seems to be reasonable to
use network topologies for the evaluation that are suitable to study the influence
of relevant network properties. Particularly, we considered the number of nodes
involved in a data transmission and the number of hops to the recipients. For
our evaluation we used the network models depicted in Fig. 1.

s

s1 s2 s`−1 s`

f1 f2 f`−1 f`

r1 r2 r`−1 r`

(a) Model 1

s

s1 s2

f12 f22

f1k−1
f2k−1

r1 r2

(b) Model 2

s

s1 s2 s`

f1

r1 r2 r`

f2

(c) Model 3

Fig. 1: Considered network topologies.

According to the definition in Sect. 2.1, sending nodes si are nodes that only
send data but do not compute linear combinations. Generally, we assume that a
large file should be transmitted, so we introduce a virtual source node s that has
the task to distribute data to the sending nodes si. For the analysis we restrict
our focus on one generation G whose size depends on the broadcast capacity h.
All edges are assumed to be equal and to have unit capacity, so h is determined
by the min-cut of G. Furthermore, we assume that all receiving nodes shall get
all messages contained in one generation. Nodes that have the same distance
from the sending nodes are considered to be on the same level.
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Model 1 is intended to study the influence of the number of nodes involved
in transmission. The size of a generation is 2 for this example, thus, the virtual
source node distributes 2 packets alternating to the sending nodes si for 1 ≤ i ≤ `
(` even). Each node has 2 direct connections to nodes on the next level. Thus,
each forwarding node fi for 1 ≤ i ≤ ` should get 2 different packets.

Model 2 allows for evaluating the impact of the number of hops k to the
recipients. The virtual source node distributes 2 different packets to the sending
nodes s1 and s2. Every node can communicate to every node on the next level.
The number of forwarding nodes increases with a growing number of hops k.

Model 3 was originally introduced by Fragouli et al. [12] to demonstrate
possible benefits of network coding. We analyzed how secure network schemes
perform with that graph. In contrast to the scheme introduced in [12], we again
assume that all recipients should get all messages to have comparable conditions.
The virtual source node sends a total of ` packets xi to the sending nodes si for
1 ≤ i ≤ `. Now every receiver ri is interested in getting all original messages pi
for 1 ≤ i ≤ `. There is no direct communication possible between si and rj for
i = j. The only obvious way is to communicate via the two forwarder nodes f1
and f2, the link between these nodes establishes a kind of bypass.

Furthermore, we have to analyze the probability that the receiver is able to
decode all packets. This probability depends on the underlying finite field Fq and
in some cases on the topology of the network. In general the probability is about
(q − 1)/q, which is also true for model 1 and 2. Indeed, it is essential for model
2 that every node sends different packets on its outgoing edges, otherwise the
decoding probability decreases with rising k. In model 3, only node f1 performs
network coding. Hence, it can be assured that all recipients can successfully
decode all packets disregarding transmission errors.

3.3 Packet Format

As far as possible, we used similar conditions for evaluating the schemes consid-
ering the different network graphs. We always assumed a packet size of z = 1400
byte. Furthermore, we determined the selected parameters for transmission of
one generation disregarding the actual payload size. Generations are not relevant
for routing, here we assumed that h data packets should be transmitted to each
receiver.

Figure 2 provides an overview on the packet formats of all selected schemes.
The size of the data fields used for the evaluation is given in bytes.

Since we use PNC as basis for our evaluations, the data packets of all schemes
generally contain a generation number gid, an encoding vector βi, and the vector
pi. The number of coefficients βi contained in the encoding vector depends on
the size h of the generation and is thus conditioned by the network topology
(Sect. 2.1). Additional data fields are given by the particular scheme; the size of
data fields that need to be included in the data packets determines the size of
pi and, hence, the possible payload.

Chou et al. suggest using one or two bytes for the generation identifier gid [8].
We want to point out that they assume a generation size of h = 50. However, the
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PNC (q = 28)
data packets:

gid β1, β2, . . . , βh p1, p2, . . . , pm

8 h z − 8 − h = 1392 − h

Homomorphic Hashes (q ≈ 2256)
data packets:

gid β1, β2, . . . , βh p1, p2, . . . , pm

8 32h z − 8 − 32h = 32(43 − h)

additionally required: hash-packet broadcasted before transmission

gid h(p1), h(p2), . . . , h(ph) sig(h(p1), h(p2), . . . , h(ph))

8 128h 128

DART (q = 28)
data packets: identical to PNC

additionally required: checksum-packets, which are periodically broadcasted

gid chks(G) s t sig(chks(G), s, t)

8 2h 2 4 128

WANG (q = 2128)
data packets:

gid β1, β2, . . . , βh p1, p2, . . . , pm MAC1, . . . ,MACk

8 16h 16(87 − h− k)

z − 8 − 16(h+ k) =

16k

additionally required: k + 1 seed value packets (signature only for bk+1 necessary)

gid bi sig(bi)

8 16 128

RSA-based scheme (all codewords βi and p1 are integers and increases in size)

gid β1, β2, . . . , βh p1 Nsig

8 < hk(1 + ld(h)
8

) < 1264 − hk(1 + ld(h)
8

)

< z − 8 − 128 − hk(1 + ld(h)
8

)

128

Fig. 2: Packet formats and size (in bytes) assuming a packet size of z = 1400
byte.
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network models evaluated in our report have a considerably smaller generation
size what implies that more generations have to be distinguished in the network.
We set the size of gid to 8 bytes to get a real unique identifier. Moreover, unique
identifiers are important for security, e.g., regarding replay attacks. Security was
not explicitly considered in [8]. Of course, security need to be discussed in more
detail, but this is out of scope of this report.

DART includes the security parameter c that controls the size of the random
matrix Hs. According to [9], we used c = 2 in our evaluations. The seed s and
the timestamp t should have a size of 2 respectively 4 bytes. Furthermore, we
assume the size of a digital signature to be 128 bytes for all schemes. Higher
security requirements will imply longer signatures.

Due to the increasing size of the integers in the RSA-based scheme, we cannot
precisely assess the size of the codewords for that scheme. In the evaluation, we
worked with an upper bound since the maximum length need to be considered
by the sender. We like to point out that we used the min-cut h as estimation
for the incoming edges l to get an upper bound independent from the detailed
network graph. This substitution will work for all presented network graphs but
not necessarily for all existing graphs.

4 Evaluation and Results

4.1 Results of our Theoretical Analysis

The diagrams show results for the selected secure network coding schemes com-
pared to network coding without security (PNC) and to routing. For the latter,
we assume that each packet has only one network destination. Hence, a packet
has to be sent several times if there are multiple recipients. The results for the
network models shown in Fig. 1 are discussed in the following.

Model 1. The constant generation size of model 1 implies a constant size of the
encoding vector. Thus, the maximum relative payload is also constant for all
schemes (Fig. 3a). The maximum relative payload of the Wang scheme further
depends on the number of hops since this value determines the number of MACs
to be attached, however, the number of hops is also constant for model 1. Since
routing does not require to include additional data, it achieves a maximum rela-
tive payload of 1.0. PNC implies the introduction of the global encoding vector
and therewith a loss of only h codewords per packet. Hence, it also achieves a
high maximum relative payload of 0.99. Due to the largest field size, Homomor-
phic Hashes achieve the worst maximum relative payload.

The actual relative payload depends on the number of receiving nodes since
more data need to be sent (Fig. 3b). This parameter reflects the advantages of
network coding in comparison to routing. Even if the additional data required
by the secure network coding schemes decrease the actual relative payload, the
schemes are still better than routing.
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(b) Actual relative payload

Fig. 3: Results for model 1: Transmitting two packets.

The number of ticks until all data packets are transmitted to the recipients is
also constant for all schemes (Fig. 4a). PNC shows the benefit of network coding,
but the RSA-based scheme achieves the same good results here. Schemes that
utilize time asymmetry need of course more ticks for the transmission.

The time asymmetry also increases the number of send operations in the
whole network since the data necessary for verifying the data packets need to
be sent to the nodes involved in transmission (Fig. 4b). Schemes without time
asymmetry are much better, in the best case, they require less network load than
routing.
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(b) Send operations

Fig. 4: Results for model 1: Transmitting two packets.

The diagrams only consider the transmission of a single generation. Given
the maximum payload of one generation, it is possible to compute the number
of generations needed for transmitting a given amount of data. For example,
the transmission of a file of 1 GB requires sending 357 143 “generations” (i.e.,
h = 2 data packets) for routing, 359 713 (+0.7%) for PNC and DART each, 363
373 (+1.7%) for Homomorphic Hashes, 381 098 (+6.7%) for Wang, and 396 511
(+11%) for RSA.

Model 2. The generation size for this model is also constant. Thus, the size of
the encoding vector is constant. However, the number of hops increases which
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also implies that the number of forwarding nodes increases. Hence, the relative
payload of schemes that require sending authentication information decreases
with an increasing number of hops (Fig. 5a and 5b). The influence is especially
strong for the Wang scheme since the number of MACs depends on the number
of hops.

The number of ticks equally increases for all schemes without time asymmetry
(Fig. 6a). Again, the influence is significant for the Wang scheme.

The results for the last parameter are similar except that DART yields the
worst results due to the need to broadcast the checksums (Fig. 6b).
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Fig. 5: Results for model 2: Transmitting two packets.
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Fig. 6: Results for model 2: Transmitting two packets.

Model 3. In contrast to the other models, the generation size increases for this
model. Hence, the maximum relative payload of all network coding schemes at
least slightly decreases (Fig. 7a). In case of a larger field size, the influence is
stronger. Contrary to expectations, the maximum relative payload increases for
DART for a small number of nodes. The reason is that the digital signature has
a stronger influence on the relative payload if there are only few packets in a
generation.

Model 3 was introduced in the literature to illustrate the potential benefits
of network coding. This is especially reflected by the actual relative payload
(Fig. 7b). Even the secure network coding scheme that yields the worst parameter
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outperforms routing regarding this parameter. If there is a bottleneck in the
network, we can expect that network coding provides advantages.

Due to the bottleneck in this network graph, even the network coding schemes
based on time asymmetry outperform routing regarding the number of ticks
if there are more than 10 recipients (Fig. 8a). For Homomorphic Hashes, the
number of ticks jumps after a certain increase of the number of recipients. The
reason is the necessity to send the hashes of the original data at the beginning.
Due to the size of the hashes, there can be at maximum 9 hashes plus signature
in a data packet. If the number of packets per generation exceeds this number,
an additional data packet needs to be sent.
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Fig. 7: Results for model 3: Transmitting ` packets.



20

2 8 14 20
receivers

0
1
0

2
0

3
0

4
0

ti
ck
s

Homom. Hashes
Wang
Pract. NC
DART
RSA
Routing

(a) Number of ticks

2 8 14 20
receivers

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

se
n
d
o
p
er
a
ti
o
n
s

Homom. Hashes
Wang
Pract. NC
DART
RSA
Routing

(b) Send operation

Fig. 8: Results for model 3: Transmitting ` packets.

The same reason causes jumps regarding the number of send operations for
Homomorphic Hashes (Fig. 8b). The RSA-based scheme does not imply addi-
tional send operations in comparison to PNC, thus, it outperforms routing for
this model.

4.2 Discussion of the Results

Generally, we can summarize two basic results that confirm our assumptions:
First, network coding (PNC) outperforms routing in terms of throughput (num-
ber of ticks), network load (number of send operations), and actual relative
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payload. Second, introducing security increases costs – secure network coding
schemes yield at best the same results as PNC, but no better results. However,
a closer look at the results reveals that secure network coding schemes may be
still better than routing. As example, consider model 3 with 12 recipients. Best
results for the evaluated secure network coding schemes regarding routing are:
actual relative payload 391 % - 1082 %, number of ticks 28.6 % - 85.7 %, and send
operations 58.7 % (RSA-based scheme).

For the maximum relative payload, routing always delivers the best results
due to the fact that network coding schemes always require to contain some
additional data. However, this parameter is rather theoretical since it does not
take into account the underlying network topology. Thus, we focus on the other
parameters in this concluding discussion.

Schemes that require including additional data in the data packets decrease
the actual relative ratio. This influence is especially strong if the alphabet size
needs to be increased, e.g., in the scheme according to Wang [26]. Regarding
the number of ticks that represents the delay for transmitting messages and the
number of send operations that influences the energy consumption, schemes with
no time asymmetry are clearly better. For schemes with time asymmetry, the
number of nodes involved in data transmission as well as the number of hops
have a significant influence on these parameters.

So far, we got best results for the RSA-based scheme [14] and we expect
that we would get similar results regarding the evaluated parameters for other
schemes that do not utilize time asymmetry. However, we want to point out that
we worked with a setting that reduces the communication overhead (Sect. 2.4).

5 Summary and Outlook

Our results show that secure network coding can still provide benefits regarding
communication overhead in comparison to routing. However, we want to point
out that the results presented in this report are not sufficient to completely
assess the efficiency of secure network coding schemes. Particularly, we solely
focused on parameters describing communication overhead. A comprehensive
comparison of secure network coding schemes regarding their efficiency calls for
considering all efficiency parameters sketched in Sect. 3.

Moreover, answering the question whether secure network coding is beneficial
at all and which approach should be preferred requires to analyze the given net-
work and communication requirements. For example, it is necessary to determine
what requires most energy considering the technical conditions of the network
given – more computations, more sending operations, or whatsoever. Enhanc-
ing the evaluations by considering more parameters as well as dependencies on
technical conditions are topics of future work.

Next steps will also include simulation runs. We are currently working on
a network coding simulator based on the NS3 framework1. This simulator will
allow to consider various communication scenarios and multiple data flows.

1 http://www.nsnam.org/
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