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Abstract
This work addresses the metal nanocluster growth process on prepatterned substrates, the devel-
opment of atomistic simulation method with respect to an acceleration of the atomistic transition
states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation
mechanism.

Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned
amorphous SiO2 surfaces by oblique angle physical vapor deposition at room temperature. Despite
the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced,
reproducible and well-separated. The first topic is the investigation of this growth process with
a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster
growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC)
method using a combination of a simplified inter-atomic potential and experimental transition
barriers taken from the literature. An effective transition event classification method is introduced
which allows a boost factor of several thousand compared to a traditional KMC approach, thus
allowing experimental time scales to be modeled. The simulation predicts a low sticking probability
for the arriving atoms, millisecond order lifetimes for single Ag monomers and ≈1 nm square
surface migration ranges of Ag monomers. The simulations give excellent reproduction of the
experimentally observed nanocluster growth patterns.

The second topic specifies the acceleration scheme utilized in the metallic cluster growth model.
Concerning the atomistic movements, a classical harmonic transition state theory is considered
and applied in discrete lattice cells with hierarchical transition levels. The model results in an
effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels
for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are
considered as local transition events constrained in potential energy wells over certain local time
periods. These processes are represented by Markov chains of multi-dimensional Boolean valued
functions in three dimensional lattice space. Consequently, the fluctuating system evolution process
is implemented as a Markov chain of equivalence class objects. It is shown that the process can
be characterized by the acceptance of metastable local transitions. The method is applied to a
problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of
a morphology dependent transition time limit from a local metastable to stable state for subsequent
cluster growth by accretion.

The third topic is the formation of ripple structures on ion bombarded semiconductor surfaces
treated in the first topic as the prepatterned substrate of the metallic deposition. This intrigu-
ing phenomenon has been known since the 1960’s and various theoretical approaches have been
explored. These previous models are discussed and a new non-linear model is formulated, based
on the local atomic flow and associated density change in the near surface region. Within this
framework ripple structures are shown to form without the necessity to invoke surface diffusion
or large sputtering as important mechanisms. The model can also be extended to the case where
sputtering is important and it is shown that in this case, certain ‘magic’ angles can occur at which
the ripple patterns are most clearly defined. The results including some analytic solutions of the
nonlinear equation of motions are in very good agreement with experimental observation.
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Chapter 1

Introduction: Atomistic Models

“Imagination is more important than knowledge.”
Albert Einstein, Physicist, 1879-1955.

Atomistic modeling of the growth of thin films, self assembled monolayers or surface pattern
formations on the nano-scale has attracted much attention over recent years due to the large
number of technological applications in the field of nanotechnology [30, 68, 104, 130, 137, 142].
The aim of this work is to propose some innovative atomistic models connecting elemental scale
complexity to experimental observation. The author hopes that these methods contribute to the
further development of basic research as well as industrial application of nano physics.

There are three main topics in this thesis. The first topic is an atomistic level understanding of
the silver crystal growth mechanism observed in the experiments of Ag physical vapor deposition
(PVD) on ripple like pre-patterned vitreous silica substrates described in chapter 2. An overview of
the cluster growth mechanism on substrates and the experimental motivation are introduced. Then
the behavior of adsorbed monomers on a ripple like pre-patterned substrate and the topography
dependent local flux variation are discussed. Simple nucleation simulations are performed with the
Monte Carlo (MC) method in order to explore the crucial binding energy between metal atoms
and substrates. Concerning some problems about the simulation time scale the model is further
extended and this modified model reproduces the cluster formation observed in experiment quite
successfully. The second topic relates to this extended model discussed in chapter 3. A mathe-
matical model describing the atomistic transition states is proposed and the acceleration of the
simulation is considered in the framework of this abstract model. The concept is examined using
a PVD model with some metals as well as a simple one-dimensional (1D) diffusion model. The
modification of the fundamental algorithm is discussed in terms of the convergence limit of the
probability distribution of atomic states. The third topic is the surface pattern formation induced
by ion beams, especially ripple pattern formation. It is known that by ion beam irradiation some
self-organized nano scale pattern formations appear on the surface of semiconductors such as Si, Ge,
GaSb and that the pattern type is dependent on a large number of experimental parameters. There
are long discussions about the main driving force of these intriguing phenomena in the literature. In
chapter 4, a short overview of some recent theoretical discussions is given first. Then a fundamental
observation of Si surface modification induced by low energy ion impact molecular dynamics (MD)
simulations as well as some surface modification models performed by Kinetic Monte Carlo (KMC)
simulations are introduced. From these considerations, a new kind of surface modification theory
describing atomic flow induced by ion beam irradiation is proposed.

In the rest of this introductory chapter, three different scales of atomistic modeling approaches
relating to this work, mainly the binding energy calculation, MD, and KMC, are introduced for the

1



fundamental overview of whole content of this thesis. The finest level approach is a self-consistent
quantum theoretical model treating the electronic structure of small number of atoms. The second
level approach allows to treat up to ∼ 107 atoms and nanosecond order dynamics of systems by
utilizing the classical Newton’s theory with appropriate inter-atomic potential functions. The third
level approach is the statistical approach for the dynamic evolution of systems. This approach is
one of the main methods used in this thesis and discussed in more depth. Here, the time range can
be up to some milliseconds. By adopting the basic algorithm to certain types of simulation, these
atomistic models are able to treat systems over experimental timescales.

1.1 Density Functional Theory

Consideration of the electronic structure of small atomic systems is the starting point of the whole
approach. In this section, an overview of density functional theory (DFT) is given in order to
understand the basic concept of this approach appearing in some parts of this work. The details
of the theory can be found in the review papers of Segall et al [200], Ziegler [260] and references
therein.

1.1.1 Schrödinger equation

Wave-particle dualism

When a metal is exposed to incident light with short wavelength, electrons, called the photoelec-
trons, are emitted. This phenomenon is known as the photoelectric effect, or Hertz effect after the
German physicist firstly reported it in 1887 [103]. In 1905, Einstein postulated that this effect is
due to the particle character of light (photon). On the other hand, de Broglie considered a wave
description in 1924 [56], i.e. the particle has the wave character in this case. The kinetic energy E
and the momentum ~p of photon is then given by

E = ~ω =
|~p|2
2m

, ~p = ~~k, (1.1)

where ~ is the Planck constant with factor 1/2π, m is the mass of the particle, ω is the angular
frequency of the light, and ~k is the wave vector with |~k| being the angular wavenumber. From the
equation (1.1), one obtains the dispersion relation for the matter with the wave-particle dualism

ω =
~

2m
|~k|2, (1.2)

Due to the duality, this relation should hold for free particles. The relation (1.2) is generalized for
the particle with the potential energy V (~r) at position ~r. The dispersion relation in the energy
dimension is then

~ω =
~
2

2m
|~k|2 + V (~r), (1.3)

It is known that the special solution of the wave equation can be represented by the function being
proportional to the complex traveling wave

ψ(t, ~r) := ei(
~k·~r−ωt). (1.4)

The simplest linear partial differential equation (PDE) describing the dispersion relation (1.3) for
the wave function (1.4) may be

i~
∂

∂t
ψ(t, ~r) =

[

− ~
2

2m

∂2

∂~r2
+ V (~r)

]

ψ(t, ~r). (1.5)
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This equation is called the time-dependent Schrödinger equation. Another implementation of this
equation will be discussed in chapter 1.3.4, the last section of this chapter.

Time-dependent Schrödinger equation

In 1926, Schrödinger proposed eq. (1.5) for the description of the probability distribution of matter
with wave duality [197]. A solution ψ of eq. (1.5) is called a wave function and ψ∗ψ describes the
quantum state of a particle. Note that ψ is a complex valued function. As is shown above, the
dispersion relation (1.3) is essential for the equation. For a N -body system, the right hand side of
eq. (1.3) can be generalized to the Hamiltonian H, i.e. the mean total energy of the system. The
Hamilton operator Ĥ is defined as the operator possessing H as the eigenvalue of the corresponding
wave function Ψ of the system, i.e.,

Ĥψ = Hψ.
Then this wave function Ψ of N particles satisfies

i~
∂

∂t
Ψ(t,x) = ĤΨ(t,x), (1.6)

where x = (~r1, ..., ~rN ) = (x1, ..., x3N ) is the position vector of N particles. The modulus square
of the wave function |Ψ|2 = Ψ∗Ψ indicates the probability distribution of particle and a physical
quantity measured corresponds to the expectation value given by the consistent integration called
the probability amplitude. For example, the total energy of system is given by

< Ψ|ĤΨ >:=

∫

Ψ∗ĤΨdx.

It can be shown that these wave functions construct a Hilbert space with the inner product < · >.
DFT provides the interaction field between target atoms through the inter-atomic potential

calculation based on the electronic structure obeying this Schrödinger equation (1.6). The usual
formation is a single-particle expression for the most energetically stable (static) configuration called
the ground state and the Schrödinger equation of interest is generally time-independent.

Time-independent Schrödinger equation

In a usual electronic structure calculation, the external potential V is assumed as being static since
the nuclei of the related system are much heavier than electrons (the Born-Oppenheimer approxi-
mation). For such a stationary system with N electrons, the wave-function Ψ(x) = Ψ(x1, ..., x3N ) =
Φ(~r1, ..., ~rN ) satisfies the time-independent Schrödinger equation

HΨ ≡ [T̂ + V̂ + Û ]Ψ = EΨ, (1.7)

where T̂ ,V̂ and Û are the kinetic, potential, and the electron-electron interaction energy, respec-
tively, and E is the total energy of the system. They are represented as [105]

T̂Ψ ≡ 1
2

∫

∇Ψ(x)∗∇Ψ(x)dx, (1.8)

V̂Ψ ≡
∫

V (x)Ψ(x)∗Ψ(x)dx, (1.9)

ÛΨ ≡ 1
2

∫

1
|x−x′|Ψ(x)∗Ψ(x′)∗Ψ(x′)Ψ(x)dxdx′, (1.10)

with atomic units. The principle of least action may hold in the system and thus the static wave
function corresponds to the ground state with the minimum energy. Thus such minimum energy as
well as the ground state electron structure providing the configuration energy is to be investigated.
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1.1.2 Density functional theory

Thomas-Fermi-Dirac theory

In order to avoid a complex many-body problem, Thomas and Fermi developed individually a
statistical model to describe the electron density distribution n(~r) depending only on the space
parameter ~r in an atom [77, 229]. The basic concept of DFT is the same as this approach, namely,
to calculate the energy E = E[n0] as a functional of the ground state electron density n0(~r) of the
system. In the Thomas-Fermi (TF) model, electrons are uniformly distributed in phase space with
the density 2/h3 where h is the Planck constant. Because of the lack of accurate mathematical
expressions of the exchange energy and exclusion of the electron correlation, the kinetic energy
functional of the TF theory for most applications is rather inaccurate even with the exchange
energy functional correction by Dirac (Thomas-Fermi-Dirac theory) [60, 61]. Particularly, it was
shown that the bond energy can not be described by this approach [227].

Hohenberg-Kohn equation

Hohenberg and Kohn showed in 1964 [105] the existence of a universal functional Fu[n] independent
from the external potential V with the property that the ground state energy E0 can be represented
as

E0 = E[n0] ≡
∫

V (~r)n0(~r)dr
3 + Fu[n0]. (1.11)

Consequently, the external potential V is uniquely determined by n within a constant. Since the
wave function Ψ(x) is also determined uniquely from (1.7)-(1.10) with V , the full many particle
ground state is a functional of the ground state electron density n0. This is a drastic extension of the
TF theory and the theory was further developed by Kohn and Sham [125, 126]. They represented
the electron density by a set of non-interacting single particle wave functions ψi obeying single
particle Schrödinger equations (the Kohn-Sham equations)

n(~r) =
N
∑

i=1

|ψi(~r)|2,

{−1

2
∇2 + [φ(~r) + µxc(n(~r))]}ψi(~r) = ǫiψi(~r), (1.12)

where ǫi is the orbital energy, φ(~r) is the (external- and Coulomb) potential term given by

φ(~r) = V (~r) +

∫

n(~r′)
|~r − ~r′|dr

′3, (1.13)

and µxc(n) is the exchange and correlation functional. The equations have to be solved self-
consistently. I.e., one assumes an initial density state n1(~r), then φ1 is obtained from eq. (1.13)
and consequently n2 is found from µxc(n

1) and the Kohn-Sham equations (1.12). Denote this
process as a mapping ΓKS : n1 7→ n2 from the set of density functions to itself, then the self-
consistency implies that there exists a limit density which is invariant with the mapping ΓKS . Due
to the non-interacting condition there exists an error in the kinetic energy term of (1.12). This
error is usually included as a correction term in the exchange-correlation term. Thus the accuracy
of the DFT calculation depends on the exchange-correlation term µxc together with the potential
φ.
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The total electronic energy functional E[n] is represented by [14]

E[n] = T [n] +

∫

V (~r)n(~r)dr3 +
1

2

∫

n(~r′)n(~r)

|~r − ~r′| dr
′3dr3 + Exc[n]. (1.14)

A common ansatz for µxc is the local density approximation (LDA). In this method, the exchange-
correlation energy ELDAxc [n] is approximated by the value of Eex calculated for a homogeneous
electron gas of the same density as the one at the local coordinate ~r, where the functional is
evaluated. For slowly varying spin-densities n ↑, n ↓ with n = n ↑ +n ↓, the LDA is extended as
the local spin-density approximation (LSDA)

ELSDAxc [n ↑, n ↓] =

∫

(n ↑, n ↓)ǫunifxc (n ↑, n ↓)dr3,

where ǫunifxc is the exchange-correlation energy per particle of a uniform electron gas. LSDA gives
excellent molecular geometries, vibrational frequencies, and single-particle properties, but bond
energies are seriously overestimated.

Basis set superposition error

The error in the bond energy resulting from the superposition of the basis sets of two joined frag-
ments is a well-known error in DFT calculations. A basis set is a set of functions of electrons
describing the molecular orbitals. A certain linear combination of these functions provides a reli-
able representation of the electron density distribution n(~r) of the system. Typical wave functions
for orbitals are Slater orbitals, decaying exponentially with the distance from the nuclei [206].
Boys showed that this type of orbitals could be approximated by a linear combination of Gaus-
sian functions (Gaussian orbitals) [25]. An advantage of these Gaussian-type orbitals is saving
computation time due to the simplicity of the integral calculation. Pople developed an effective
simulation package for the electronic structure calculation using basis sets of the Gaussian orbitals
called GAUSSIAN1 in 1970 (GAUSSIAN70).

In a large system, the whole density state is sometimes described by the combination of multiple
basis sets used for different molecule geometries. An overestimation of the electron density can be
caused by the overlapping of small basis sets. The counterpoise method correcting the basis set
superposition error (BSSE) proposed by Boys and Bernardi [26] is particularly suited for systems
which do not undergo a strong geometrical relaxation after bond formation [143]. In some cases, the
difference of the bond energies calculated with, and without BSSE correction are so large that a quite
different interaction is expected. In chapter 2.2.3, such a case will be discussed. When the geometry
of two interacting fragments changes due to the relaxation process, the BSSE is determined for the
optimal final structure and added to the interaction energy calculated with respect to the separated
fragments in their equilibrium geometry. In some cases, however, the geometry relaxation is so large
that the counterpoise procedure does not provide a realistic estimation of the BSSE but only an
upper bound [143]. Xantheas pointed out the importance of the fragment relaxation for the BEES
correction [246]. The details of the counterpoise technique can be found in the review paper of
Cha lasiński [38] and references therein.

B3LYP exchange-correlation energy

In 1986, Becke introduced the spin-density gradient ∇n ↑↓ to correct bond energy calculations [12]
and Ziegler and co-workers further developed the method [260] known as the generalized gradient

1www.gaussian.com
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approximation (GGA). The exchange-correlation energy is approximated as a functional of the local
spin-densities and their gradient distributions, i.e.

EGGAxc [n ↑, n ↓]] =

∫

f(n ↑, n ↓,∇n ↑,∇n ↓)dr3,

where f is the representation of GGA to be determined in various models.
Another approach utilizing the Hartree-Fock (HF) theory, in which the wave function is assumed

to be a Slater-determinant (HF approximation), provides the exact exchange energy calculation
EHFx in terms of this approximation. Lee, Yang and Parr proposed a correlation energy formula
stemming from the correlation energy density expression of Colle and Salvetti [51], derived from
the electron density and a Laplacian of the second-order HF density matrix ELY Pc . There are
also many alternative methods to determine the exchange and correlation energy. A widely used
approach is the hybrid functional method mixing these functionals with three compound parameters
determined by an appropriate fit to experimental data, introduced by Becke in 1993 [16, 17]. This
B3LYP (Becke, three parameters, Lee-Yang-Parr) exchange-correlation energy is proposed by Becke
[16, 216] as

EB3LY P
xc = ELSDAxc + a0(E

HF
x − ELSDAx ) + ax∆EB88

x + ac∆E
GGA
c , (1.15)

where a0, ax, ac are semiempirical coefficients, ∆EB88
x and ∆EGGAc = ∆EPW91

c are Becke’s gradient
correction to the LSDA for exchange [13] and the Perdew-Wang (PW) 1991 gradient correction
[180] respectively. Here a0 = 0.20, ax = 0.72 and ac = 0.81 are suggested by Becke based on
fitting to heats of formation of small molecules [17]. The leading term ELSDAxc is assumed as
separable, i.e., ELSDAxc = ELSDAx + ELSDAc , and the correlation component ELSDAc is the electron
gas parametrization ELY Pc [179]. The model was modified by Stephens [216] due to the difficulty of
local separability of ELY Pc and suggested as ∆EGGAc = ELY Pc −EVWN

c as well as ELSDAc = EVWN
c

where EVWN
c is the local correlation functional of Vosko, Wilk and Nusair [238].

Calculation example: Ag/MgO

Figure 1.1 shows an example of DFT calculations from the reference of Zhukovskii et al [256]. The
differential electron density distribution for a silver adatom adsorbed on a regular O2− surface ion of
MgO(100) is illustrated. Atomic and electronic structures are calculated by the HF approximation
(ab initio HF computer code CRYSTAL95 [64]) together with PW GGA a posteriori electron
correlation corrections to the total energy [179]. Three basis sets used for Mg, O, and Ag are
all-electron 8-61G, 8-51G, and a small core Hay-Wadt pseudopotential with a 311-31G for the
4s24p64d105s1 electrons, respectively. The adsorption energy of the Ag adatom is calculated as

E
Ag/MgO
ad = 0.23 eV (over O2−) as well as 0.22 eV (over Mg2+).

1.2 Molecular Dynamics Simulation

As the second level approach, classical MD simulation is a well established method in order to
investigate the dynamic interaction of atoms utilizing inter-atomic potentials often fitted to DFT
calculations or empirical observations. The evolution of systems is performed through solving
Newton’s equations of motion describing atomistic dynamics induced through the exchange of the
inter-atomic potential and kinetic energy. Alder and Wainwright proposed the method first in
1959 [2]. Their MD simulations could handle up to five hundred molecules with the best available
computers at that time. Today, massively parallelized supercomputing enables us to simulate a
system with millions of atoms [10, 124].
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Figure 1.1: The differential electron density map (the total density minus superposition of atomic
densities) for the cross section perpendicular to the MgO(100) surface plane for Ag monomer
adsorption over a regular O2− surface ion [256].

1.2.1 Lagrangian mechanics

A potential function represents the configuration energy induced by the formation energy of the
electron density between atoms. Generally, the inter-atomic potential energy of the system Epot
with N atoms is represented as

Epot =
∑

i

V1(~ri) +
∑

i<j

V2(~ri, ~rj) +
∑

i<j<k

V3(~ri, ~rj , ~rk) + ..., (1.16)

where the indices i, j, k, ... range over all N particles, Vm,m = 1, 2, 3, ... are m-body potential as
functions of the position ~rn of the nth particle. The one-body potential V1 may correspond to an
external potential, such as the gravity, electro-magnetic field, etc. The second term represents a
pair potential energy which plays for many cases a crucial role in the interaction of the system.
Especially, if the system favors having a close-packed structure, the simplest possible model can
be constructed by the pair potential. The three body potential terms exhibit the formation energy
often dependent on the angle subtended at one atom by two of the near neighbors located within
the cutoff radius. In this work, the effect of the external potential is excluded and the models
consider the pair potential term or at most the tree body potential terms. The Hamiltonian H of
the simulation system, in physical sense2, is defined as the total energy of the system

H(q,p) = Epot(q) + Ekin(p),

2 In the mathematical sense, a Hamiltonian system is a system of differential equations that satisfy a special form
ṗ = − ∂H

∂q
; q̇ = ∂H

∂p
, known as Hamilton’s equations. These equations also hold for the Hamiltonian H defined above

in the physical sense.
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where q(t) = {~r1(t), ..., ~rN (t)} is the atomic position vector, p(t) = {~p1(t), ..., ~pN (t)} is the momen-
tum vector, and Ekin is the total kinetic energy of all atoms. This is simply

Ekin =
N
∑

i=1

~p 2
i

2mi
,

where ~pi and mi are the momentum and the mass of atom i, respectively. The positions and
momenta of all atoms are represented as a time dependent 6N-dimensional vector (q,p) for the
three-dimensional system. In the Hamiltonian, the kinetic energy and the potential energy are the
functions of two variables q and p separately. Such a Hamiltonian is called a separable Hamiltonian.

The correlation between these two energies follows the well-known Newton’s law of motion

~Fi(t) = mi~ai(t) = ∇E(i)
pot, (1.17)

~pi(t) =

∫ t

0

~Fi(t
′)dt′, (1.18)

~ri(t) =

∫ t

0

~pi(t
′)

mi
dt′, (1.19)

where ~ai is the acceleration, ~Fi is the force and E
(i)
pot is the potential energy with respect to the

atom i. This E
(i)
pot is a function of positions of atoms within the potential cutoff radius of the atom

i. The time evolution of the system is determined by the iterative integration of these equations of
motion.

These equations can be formalized with a functional with respect to the trajectory q(t) of
particles, called the Lagrangian. In classical mechanics, the Lagrangian L is defined as the difference
between the potential energy and the kinetic energy of the system, i.e.

L(q, q̇, t) = Ekin(q̇(t)) − Epot(q(t)).

Then the action of the particles q(t′) in the system during the time interval [0, t] is given by the
definite integral

S[q] :=

∫ t

0
L(q(t′), q̇(t′), t′)dt′. (1.20)

In nature, this action is minimized. This is known as the principle of least action, or the variational
principle. In other words, the functional S is a minimum with the natural trajectory q0(t

′) for
0 < t′ < t. This implies the functional derivative of S is 0 at q0(t

′). Hence for any test function
δq(t′) ∈ (C∞

c [(0, t)])3N , it follows that

0 =
d

dǫ
S[q0 + ǫδq]ǫi=0 = lim

ǫ→0

S[q0 + ǫδq] − S[q0]

ǫ
. (1.21)

However,

S[q0 + ǫδq] − S[q0] =

∫ t

0

[

L(q0 + ǫδq, q̇0 + ǫδq̇0, t
′) − L(q0, q̇0, t

′)
]

dt′ (1.22)

=

∫ t

0

[

3N
∑

i=1

{

∂L

∂qi
ǫδqi +

∂L

∂q̇i
ǫδq̇i

}

+O(ǫ2)

]

dt′

. =

∫ t

0

[

3N
∑

i=1

{

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)}

ǫδqi +O(ǫ2)

]

dt′.
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The derivation from the second line to the third line is due to integration by parts and the com-
pactness of the test function. Dividing by ǫ and eq. (1.21) yields the Euler-Lagrange equations
3

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

= 0

for i = 1, ..., 3N . These equations are essentially as same as eq. (1.17). The symmetry of the action,
i.e. the invariance of the action (1.20) with respect to some transformation, is a quite important
property of the Lagrangian since the equations of motion derived by the variation principle are also
essentially conserved.

1.2.2 MD algorithms

In a potential based MD simulation, the time evolution of positions and momenta is calculated
with these equations (1.17)-(1.19) step by step. The time integral is discretized using the time step
δt which should be small enough to integrate the equations accurately. This δt can be a variable
when the model considers an energetic, fast event such as an ion recoil process [166]. For an
equilibrated system, this is usually a constant and order of 1 fs while the lattice vibrational period
is ∼ 10−13 s in most cases. MD algorithms provide effective, i.e. fast and accurate, numerical
calculation of the equation of motion. Basically, the methods aim for an effective representation
of a Taylor expansion with respect to the time step δt for the position at the next time step. The
Verlet algorithm [231, 232] and its extensions are well known methods. The algorithm computes
the position of particle at the k + 1-th time step ~rk+1 from the current state ~rk, the previous state
~rk−1 and the acceleration for the current position ~ak as

~rk+1 = 2~rk − ~rk−1 + ~akδt
2.

For t := kδt, this form is obtained by subtracting the Taylor expansions of ~r(t + δt) and ~r(t − δt)
with the notation of ~r(t − δt) = ~rk−1 and ignoring the terms of O(δt4). This implies that the
position at time t + δt is predicted by the discretized data at time t and t − δt whereas the real
position is determined by the continuous accumulation of data during time range [t, t+ δt] as

~r(t+ δt) = ~r(t) +

∫ t+δt

t
~v(t)dt.

This local discretization error of O(δt4) can lead to a larger global error due to the cumulative
mismatch with the exact solution. Indeed, if the magnitude of the error term at each step is
assumed to be homogeneous, then the cumulative error at t+ 2δt is

~rk+2 = 2~rk+1 − ~rk + ~ak+1δt
2 +O(δt4)

= 3~rk − 2~rk−1 + (2~ak + ~ak+1)δt
2 + 3O(δt4).

Inductively it is shown easily that the cumulative error term from k-th iteration step to k + k′-th
step is

k′(k′ + 1)

2
O(δt4).

3 The definition of a Lagrangian L = L(φ, ∂φ, x) can be generalized as a functional of the n-dimensional field
with m variables φ(x) = (φ1(x), ..., φn(x)), x = (x1, ..., xm) satisfying the correspondent Euler-Lagrange equations,

i.e. ∂L

∂φ(i) −
∑m
j=1

∂
∂xj

∂L

∂φ
(i)
j

= 0 with φ
(i)
j = ∂φ(i)

∂xj
for i = 1, ..., n in this case.

9



Thus for the cumulative global error for tmax := k′δt is

(

t2max
2δt2

+
tmax
2δt

)

O(δt4) ∼ O(t2maxδt
2).

Hence the global error is at least order of O(δt2).

A more commonly used algorithm reducing the error is the Velocity Verlet algorithm [225]
incorporating the velocity term ~vk+1 as

~rk+1 = ~rk + ~vkδt+
1

2
~akδt

2,

~vk+1 = ~vk +
~ak + ~ak+1

2
δt.

The mathematical accuracy of this method is as same as the Verlet algorithm, but it is superior on
a computer of finite precision [54, 225]. For the reduction of the computation step, there is another
type of approach called a moving atom approximation [95]. The equations of motion are integrated
only for atoms that are moving or have had a sufficient force exerted on them by other atoms and
thus the number of calculations is reduced significantly [212]. This type of approximation is useful
if the system evolution is mainly resulting from an external event such as from ion bombardment,
and thermal fluctuation does not play an important role.

In contrast, the Gear’s predictor-corrector algorithm is mathematically more accurate but com-
putationally expensive [88, 89]4. The iteration step is as follows: the predicted position ~rpred,k+1 is
calculated up to the third order from the current data, i.e. the polynomial function of δt with the
coefficients ~rk, ~vk,~ak,~bk as

~rpred,k+1(δt) = ~rk + ~vkδt+
1

2
~akδt

2 +
1

6
~bkδt

3.

and the other predicted values are simply set as the derivatives ~vpred,k+1(δt) = d
dδt~rpred,k+1(δt), and

~apred,k+1(δt) = d
dδt~vpred,k+1(δt). Then this acceleration ~apred,k+1(δt) is compared with the analytical

solution ~aan,k+1 obtained by the potential (1.17) for the predicted position ~rpred,k+1. The variation

∆~ak+1 := ~apred,k+1 − ~aan,k+1

is the correction parameter and the corrected values are set by

~rcorr,k+1 := ~rpred,k+1 + c0∆~ak+1,

~vcorr,k+1 := ~vpred,k+1 + c1∆~ak+1,

~acorr,k+1 := ~apred,k+1 + c2∆~ak+1,

~bcorr,k+1 := ~bpred,k+1 + c3∆~ak+1,

where c0, c1, c2, c3 are the fitting constant chosen to optimize the stability and accuracy of the
trajectories [89]. The accuracy of the corrected trajectories allows to use a relatively large simulation
time step δt.

The Hamiltonian of a simulation system is sometimes not conservative under the assumption
that the system is contacting an ideal huge reservoir. For example, a well-known method controlling
the temperature of the system is the Berendsen heat bath method [19] in which the Hamiltonian

4This method is sometimes not favored since it is not symplectic and this leads to enegy drift.
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of the system is generally non conservative due to the stochastic coupling to an external bath. The
damping force from the reservoir is accomplished by the responsible Langevin equation

mi~̇vi = ~Fi −miγi~vi + ~Ri(t),

where γi is the damping (friction) constant and ~Ri(t) is a Gaussian stochastic variable with zero

mean with intensity
∫

R
(l)
i (t)R

(l)
j (t + τ)dt = 2miγikBδ0τδij for each component l = x, y, z. For a

fixed reference external temperature T0 and assuming homogeneous damping constant γ, the time
derivation of the system temperature T is then [19]

dT

dt
= 2γ(T0 − T ),

and the consistent equation of motion is given by

mi~̇vi = ~Fi +miγ

(

T0
T

− 1

)

~vi.

This corresponds to the velocity change ~vi → λ~vi at each time step with

λ =

√

1 +
δt

τ

(

T0
T

− 1

)

,

where τ is the noncritical time constant of the coupling chosen typically of the same order as the
vibrational period of the atoms [88]. Similarly, the hydrostatic pressure P of the system with the
length of simulation system lx, ly, lz is also controlled by the modified equation of motion

~̇ri = ~vi −
β(P0 − P )

3τ
~ri,

where β is the isothermal compressibility which may not be accurately known, and P is the pressure
given by

P =
2

3lxlylz
(Ekin − Ξ)

with the internal virial

Ξ = −1

2

∑

i<j

(~ri − ~rj) · ~Fij .

Here ~Fij is the force on particle i due to particle j. The atomic position, or the length lx, ly, lz is
changed to µlx, µly, µlz, i.e. the volume is multiplied by µ3, at each time step with

µ =

[

1 − δt

τ
(P0 − P )

]1/3

.

This method is useful in order to avoid undesired temperature or pressure evolution of the small
simulation system due to a relatively large external modification process as well as crystallization
of amorphous materials, e.g. an ion impact [167, 224], and the annealing simulation such as solid
phase recrystallization processes [187]. Figure 1.2 is an example of an MD simulation for the
Ge recrystallization process from Ref. [187]. The model uses a three body Stillinger-Weber type
potential [218] with parameters for germanium taken from Ding et al [59], Gear’s predictor-corrector
algorithm with the time step δt ∼= 1fs [88] was used. The temperature and pressure are controlled
by a Berendsen heat bath and the barostat method respectively. Under zero pressure, a single Ge
crystalline amorphized at 2700 K for 100 ps is cooled down to 300 K at a cooling rate of 0.1 K ps−1

and equilibrated at 300 K for 100 ps. Then the system is annealed at 800 K for 5 ns.

11



Figure 1.2: Recrystallization process of an amorphous Ge layer containing 3000 atoms. The atoms
belonging to deformed sites are shown by red color [187].

1.3 Lattice Monte Carlo simulation

A third level atomistic approach discussed here is the lattice MC method. Instead of the continuum
vector space, the atomic states are projected in lattice space based on the crystalline structure, or
the system of interest. For example, the Einstein model considers that each atom in the crystalline
lattice position is an independent 3D quantum harmonic oscillator and possesses the same frequency.
The Debye Model is also a lattice approximation assuming the phonon contribution to the lattice
vibration in contrast to the Einstein model [57].

By assuming thermo-dynamical equilibration of the system, the transition of the discrete atomic
states can be performed with the MC method. The MC method is utilizing random numbers because
the system propagates. In statistical physics, this method is a most important class of numerical
solver. Metropolis proposed a calculation scheme of the thermo-dynamically equilibrated states of
a physical system in 1953 [150]. The application of the MC method in statistical physics mainly
results from such calculation algorithms integrating the equilibrated system.

This long section is laid out as follows. First, some important thermodynamic variables are
introduced in section 1.3.1. In section 1.3.2, a limit theorem related to the Metropolis algorithm
calculating the thermo-dynamic equilibration of the system is briefly described to see how such
algorithms work. These topics will be also discussed in details for the acceleration of the simulation
algorithm in chapter 3. KMC method and its application to an abstract particle diffusion in lattice
systems are discussed in section 1.3.3. Section 1.3.4 describes another approach to the Schrödinger
equation utilizing the MC method and an alternative interpretation of the dynamics of particles
mentioned in the first section of this chapter is discussed.
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1.3.1 Thermodynamic variables

Assume that the system is in thermal equilibrium with a reservoir at temperature T . In 1902, Gibbs
showed that the probability Π(Ω) of the state Ω in such system is proportional to the Boltzmann
factor of the Hamiltonian [90], i.e.,

Π(Ω) ∝ exp(−H(Ω)/kBT ). (1.23)

Set
Z :=

∑

Ω

exp(−H(Ω)/kBT ). (1.24)

the sum of all these factors. The sum ranges over all possible atomic states Ω and we assume the
summability, i.e. Z <∞. From eq.(1.23) and (1.24), the probability distribution is

Π(Ω) =
exp(−H(Ω)/kBT )

Z
. (1.25)

This distribution is called the Boltzmann distribution, or the canonical distribution, or sometimes
the Gibbs field as a measure of the probability space on the degenerate atomic states of the system.
Since the temperature is constant, the kinetic energy of the Hamiltonian can be ignored in eq.
(1.25). The sum Z is called the partition function which is a quite important quantity describing
the statistical properties, such as the internal energy U , the specific heat C, the entropy S, and the
Helmholtz free energy F .

Internal energy

The internal energy U is defined as the expectation value of the Hamiltonian H of the system.
Thus

U :=< H(Ω) >=
1

Z

∑

Ω

H(Ω)e−H(Ω)/kBT = −∂ logZ

∂β
, (1.26)

with β := 1/kBT .

Specific heat

The specific heat C is the variation of the internal energy U with respect to the temperature T .
From eq. (1.26), C is represented as

C :=
∂U

∂T
= kBβ

2∂
2 logZ

∂β2
. (1.27)

Entropy

The concept entropy S was defined first by Clausius during the study of reversible thermodynamic
system (Carnot cycle). Clausius and Kelvin derived that the maximal work W efficiency of a Carnot
cycle consisting of a hot reservoir A with temperature T1 and a cold reservoir B with T2 is given
by

W =

(

1 − T2
T1

)

Q1, (1.28)

where Q1 is the heat adsorbed isothermally from A. For the heat Q2 given up isothermally to B,
the work is W = Q1 −Q2. Thus

Q1

T1
=
Q2

T2
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from eq. (1.28). Clausius called this conserved quantity entropy in his work in 1865. If the system
is irreversible, the work W of eq. (1.28) is smaller than the maximal efficiency (Clausius inequality).
Consequently, the entropy S increases (S(A) := Q1/T1 < S(B) := Q2/T2) during the process. This
fact is known as the second law of thermodynamics.

Gibbs entropy

The entropy S of statistical physics is defined as follows

S := kB < − log Π(Ω) >= −kB
∑

Ω

Π(Ω) log Π(Ω) = kB logZ − 1

T

∂ logZ

∂β
. (1.29)

This is the expectation value of logarithmic number of inverse probabilities with respect to all
states. This entropy is often called the Gibbs entropy introduced by Gibbs in 1878 after the earlier
work by Boltzmann. This quantity is consistent with the entropy of information theory, known as
the Shannon entropy, associated with the Gibbs field and with the logarithmic base e except for
the Boltzmann constant factor. The Shannon entropy S in this case is given by

S = −
∑

Ω

Π(Ω) log Π(Ω).

From eq. (1.26) and (1.27), one can see the relation

C = T
∂S

∂T
. (1.30)

Boltzmann’s entropy

If it is assumed that all major states possess the same magnitude of Hamiltonian H and that the
other minor states with small contribution to the partition function Z can be ignored, then Z is
approximately Z ≈ |[Ω̃]|e−H/kBT with [Ω̃] being the set of all such major states. In this case, the
Gibbs entropy is simplified as

S ≈ −kB
∑

Ω∈[Ω̃]

e−H/kBT

|[Ω̃]|e−H/kBT
log

e−H/kBT

|[Ω̃]|e−H/kBT
= kB log |[Ω̃]|. (1.31)

This coarse grained entropy is called Boltzmann’s entropy. In 1872, Boltzmann derived this rela-
tion which was also formulated by Planck later [39]. This entropy will be again discussed in the
equivalence class of the atomistic transition states in chapter 3.4.1.

Thermal fluctuation and canonical ensemble

The set of all degenerate states with the same energy H, the same number of atoms, and the
same volume are said to form a microcanonical ensemble. Because of the conservation of these
quantities, this situation describes an isolated system. Generally, if the system is in contact with a
huge thermal reservoir and thermally equilibrates, the energy of the system is fluctuating while the
average energy is fixed. This thermal fluctuation plays an important role for the classification of
the atomistic transition levels discussed in chapter 3.3. The set of all microstates belonging to some
microcanonical ensemble within this fluctuation range is called a canonical ensemble in which the
probability distribution of states follows the canonical distribution (1.25). The mean fluctuation
range is relating to the specific heat, which will be shown below.
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The Helmholtz free energy F of the canonical ensemble is defined as

F := U − TS. (1.32)

From the relations (1.26) and (1.29), it follows

F = −kBT logZ. (1.33)

The chemical potential µ
(i)
c of the component atom i is defined as

µ(i)c =

(

∂F

∂Ni

)

. (1.34)

Specific heat and thermal fluctuation

From the definition (1.26) and (1.27), the specific heat C and the internal energy U satisfy the
relation

C = kBβ
2∂

2 logZ

∂β2
= −kBβ2

∂U

∂β
. (1.35)

On the other hand, the partial derivative of U with respect to β is

∂U

∂β
= − 1

Z2

∂Z

∂β

∑

Ω

H(Ω)e−H(Ω)β − 1

Z

2
∑

Ω

e−H(Ω)β

=
1

Z2

(

∑

Ω

H(Ω)e−H(Ω)β

)2

− < H(Ω)2 >

= < H(Ω) >2 − < H(Ω)2 > .

Hence the specific heat C is proportional to the second moment of the Hamiltonian. This implies
that C can be measured by the mean fluctuation of the canonical ensemble. In other words,
the fluctuation range expected from the specific heat C is the usual fluctuation of the system.
Such a relation is known as the fluctuation-dissipation theorem connecting the linear response
relaxation of a system from a prepared non-equilibrium state to its statistical fluctuation properties
in equilibrium.

Once the specific heat C is known, then the entropy S and the free energy F can be derived by
integration of eq. (1.30) and by the definition (1.32), respectively. Since the specific heat can be
measured experimentally, this quantity is useful for the quantitative, or qualitative comparison of
simulations with experiments.

1.3.2 Metropolis Algorithm and limit theorem

In 1953, Metropolis and his co-workers introduced a novel algorithm for the computation of the
canonical distribution of the system from the random sequence of microstates [150].

Let L be an equilibrated system and denote O(L) the set of all possible microstates in L.
From an arbitrary initial microstate Ω0 ∈ O(L), the Metropolis algorithm constructs a sequence of
microstates as follows:
(1) chose a microstate Ω ∈ O(L) randomly as a candidate of the next state Ω1,
(2) accept the state Ω as the next state Ω1 with the probability

P (Ω0,Ω) =

{

1 ( H(Ω0) > H(Ω))
exp[−(H(Ω) −H(Ω0))/kBT ] ( otherwise).

(1.36)
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Here H(Ω0) > H(Ω) implies that the initial state Ω0 is energetically more unstable than Ω. If Ω is
rejected, then the current state Ω0 remains as the next state Ω1.
Iteration of these steps (1) and (2) yields a sequence of microstates. Since the successive state is only
determined by the precursory state, this process is a Markov process. For a long enough sequence
constructed by this algorithm, the probability that the state Ω ∈ O(L) appears at an arbitrary t-th
step follows the Boltzmann distribution Π(Ω). During a finite computation time, this probability
distribution converges uniformly from any distribution of initial states. The ergodicity of the system
is a postulation that all possible microstates are realized along the Boltzmann distribution during
an enough long period. A MC simulation of canonical ensemble performing with the Metropolis
algorithm exhibits this ergodicity due to the detailed balance of the transition probability and
microstates. In order to see this situation more precisely, the limit theorem [244] is briefly introduced
here.

For the simplicity of the convergence argument of every summation, microstates of a finitely
discretized system L are considered whereas the argument is essentially similar in the case of infinite
with an appropriate measure, e.g. Lebesgue measure in the probability space. Let φ denote an
arbitrary probability distribution of O(L) represented by a vector with the dimension of |O(L)|. The
transitions of states with certain acceptance probabilities affect this distribution and let φk be the
distribution after k-th transition step. Now consider the sequence φ = φ0, φ1, φ2, ... of distributions
from the initial distribution φ with respect to the transition steps. This sequence is a Markov chain
(Markovian), i.e., a random sequence with the property that the probability appearing an arbitrary
state Ω ∈ O(L) at k + 1-th step φk+1(Ω) is only depending on the precursor state distribution
φk. Denote the array representation of these distributions φk with the same symbols. Then the
Markovian satisfies the relation [48]

φk = φTk, (1.37)

where T is the transition probability matrix from O(L) to itself after one simulation time step.
This relation is called the Chapman-Kolmogorov equation and the transition matrix T is called
the Markov kernel on O(L). Each component of T represents the transition probability of cor-
responding microstates Ω to Ω′. This transition probability is denoted by T(Ω′,Ω). Then clearly
0 ≤ T(Ω′,Ω) ≤ 1 and

∑

Ω′∈O(L)

T(Ω′,Ω) = 1 for all Ω ∈ O(L). (1.38)

A Markov kernel is primitive when there exist an integer k′ such that Tk′(Ω′,Ω) > 0 for all
Ω,Ω′ ∈ O(L). A Markov kernel T and a distribution φ′ fulfill the detailed balance equation if

T(Ω,Ω′)φ′(Ω′) = T(Ω′,Ω)φ′(Ω) for all Ω,Ω′ ∈ O(L). (1.39)

In this case T is called reversible with respect to φ′. An important property of such a Markov
kernel is formulated as follows:

Limit theorem. If the Markov kernel T is primitive and reversible with respect to φ′, then the
sequence of probability distributions from any initial distribution φ converges to φ′ uniformly, i.e.

φTk → φ′ as k → ∞,

where, the convergence is with the total variation norm, i.e., ||φ−ψ|| for two probability distributions
φ, ψ ∈ O(L) is given by

||φ− ψ|| :=
∑

Ω∈O(L)

|φ(Ω) − ψ(Ω)|. (1.40)

16



Proof. The proof is briefly introduced with some important lemmas and relevant notations. The
most important quantity is the contraction coefficient c(T) of a Markov kernel T which is defined
as

c(T) = (1/2) max
Ω,Ω′∈O(L)

||T(Ω, ·) −T(Ω′, ·)||. (1.41)

Note that from (1.38), the contraction coefficient is always c(T) ≤ 1. Two fundamental properties
of the contraction coefficient are necessary.

Lemma 1. Let ψ, ψ′ be probability distributions and S,S′ be Markov kernels on O(L). Then

||ψS− ψ′S|| ≤ c(S)||ψ − ψ′||, and c(SS′) ≤ c(S)c(S′). (1.42)

Lemma 2. If T is primitive with Tk′(Ω′,Ω) > 0 for all Ω,Ω′ ∈ O(L), then c(Tk′) < 1.

The following lemma is essential for the limit theorem and thus for the validity of the Metropolis
Monte Carlo simulation applying to a canonical ensemble.

Lemma 3. If T is reversible with respect to φ′, then φ′T = φ′.

The proofs of these lemmas are omitted. For the reference, see e.g. [244], p.81-p.87. Now, it is
easy to see the uniformly convergence as follows

||φk − φ′|| = ||φTk − φ′Tk|| ≤ ||φ− φ′||c(Tk) ≤ 2 · c(Tk′)l,

where l is the maximum integer with k′l ≤ k. The first and the second relations follow from lemma
3 and lemma 1, respectively. From lemma 2 it follows c(Tk′)l → 0 for l → ∞.

The uniqueness of the limit distribution for each Markov kernel follows from this theorem. For
the Metropolis algorithm the limit distribution is clearly the Boltzmann distribution due to the
detailed balance equation (1.39). The uniform convergence follows essentially from the fact that
φ′ is the left eigenvector of T with the eigenvalue 1. The ergodicity of the simulation system is
exhibited through a certain number of iterations. In other words, iterations should continue until
the probability distribution converges close enough to the limit distribution of the specified Markov
kernel so that a steady state of the system is obtained.

The property can be extended to a quite general form with some additional assumptions.

Law of large number. Let Tk, k = 1, 2, ... be the Markov kernels on O(L). Assume that each
Markov kernel Ti is reversible with respect to φk with the conditions

∞
∑

k=1

||φk − φk+1|| <∞, and lim
j→∞

c(Tj ...Tj+K(j)) = 0

for some sequence K(j) > 0 with limj→∞
K(j)
j = 0. Then there exists the limit distribution φ∞ =

limk→∞ φk and for every arbitrary function f on O(L), every initial distribution ψ on O(L), every
sequence Ω0,Ω1, ... of the microstates in O(L) constructed by ψ and Tk

5, the means in time of
f(Ωk) converges to the φ∞- expectation value of f , i.e.

1

k

k
∑

j=0

f(Ωj) →
∑

Ω∈O(L)

f(Ω)φ∞(Ω) (1.43)

5In the sequence, the probability of Ωk = Ω is ψ̂T1...Tk(Ω) for all Ω ∈ O(L) and k = 0, 1, 2, ..., where T0 ≡ 1.
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for i → ∞ with L2(Pψ) norm. Here, for two probability distributions φ, φ′ ∈ O(L), L2(Pψ) norm
||φ− φ′||L2(Pψ) is given by

||φ− φ′||L2(Pψ) :=
∑

Ω∈O(L)

ψ(Ω)[φ(Ω) − φ′(Ω)]2.

The proof is omitted (see Ref.[244], p.106-p.109). Note that if all Markov kernels are the same,
then Tk = Tk and φk = φ∞ = φ′ in the limit theorem and the mean of any physical value of
microstates in time converges to the expectation value with respect to the canonical distribution
as mentioned in section 1.3.1.

Such Markov chains and Markov kernels appearing in the theorem are called inhomogeneous
Markov chains and kernels. The theorem guarantees the convergence of a system with time depen-
dent transition probability such as an annealing process with temperature control under certain
condition for the sequence of the responsible inhomogeneous Markov kernels.

Remarkably, the convergence of the system depends on the proper contraction coefficient of the
Markov kernel resulting in the transitivity from any state to any state (lemma 2). By using such an
algorithm, the probability distribution of the microstates converges to the limit distribution such
that the Markov kernel is reversible with respect to it. Since every Markov kernel representing
a probabilistic transition process possesses the right eigenvalue 1 with the right eigenvector 1, it
possesses the left eigenvector consistent with the eigenvalue 1. This implies that every such Markov
kernel possesses the unique limit distribution. The question is the stability of the system in the
sense of the vicinity from the original evolution process under the modified transition probability
which is discussed in chapter 3.

1.3.3 Kinetic Monte Carlo Simulation

Instead of the random choice of successive microstates, the candidates of possible transitions can
be restricted on the kinetic pathways of the system evolution. The method considers local events
randomly chosen and the accumulative evolution process of the target thermodynamical system.
An important example is the evolution of the magnetism induced by the accumulation of spin-flips
influenced by the local configuration. This system is known as the Ising spin system [110]. Bortz,
Kalos and Lebowitz introduced the time scale into the MC simulation in order to investigate the
equilibrium properties and the time evolution of the Ising spin system [24]. The Hamiltonian of
this system is given by

H = −J
∑

<i,j>

sisj −B
∑

i

si,

where J and B are the constants relating to the material and external magnetic field respectively
and the summation i as well as < i, j > range over all lattice sites as well as all nearest neighbor
spin pairs respectively. The model considers the iteration of simulation steps as follows [169]:
(0) Set the time t = 0.
(1) Form a list of all possible transitions, say N types of transitions (spin-flips), as well as the
rate ri with respect to the nearest neighbor configuration of each spin and calculate the cumulative
function Rj =

∑j
i=1 ri for j = 1, ..., , N . Denote R = RN .

(2) Get a uniform random number u ∈ [0, 1].
(3) Find j such that Rj−1 < uR < Rj and carry out the event j.
(4) Get a new uniform random number u′ ∈ [0, 1] and update the time with t = t+ ∆t where:

∆t = − log u′

R
.
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(5) If the list should be reformed due to the transition, return to step (1). Otherwise return to step
(2).
This algorithm is called the N -fold way, or the Bortz-Kalos-Lebowitz (BKL) algorithm, or the KMC
algorithm, or residence-time algorithm. The time progression of step (4) implies that the transitions
are Poisson processes. For a long time simulation with constant R, however, it is same as adding
1/R since the expectation rate is −

∫ 1
0 log udu = 1 if the system has no periodical correlation with

time step. From step (3), the attempt frequency of transitions is inhomogeneous and depends on
the type of event. Moreover, the cumulative time R determined by step (1) is system dependent.
In the original work, they considered a 10-fold way. All 6400 spins in the two-dimensional square
lattice with periodic boundary conditions (PBC) are classified into 10 transition types (two spin
types × 0-4 spin up NNs) with

R10 =
10
∑

i=1

niPi,

where ni and Pi are the total number and the flip probability of spin with type i configuration.
The probability Pi is determined by the Boltzmann factor with respect to the difference of the
Hamiltonian ∆E before and after spin flip as Pi = min{1, e−∆E/kBT }.

There are also various application examples of KMC. In addition to the spin model, atomic
diffusion models including vacancy migration and epitaxy growth are also important applications
of the KMC simulation. In each case, the attempt frequency and the acceptance ratio are crucial
parameters for the simulation.

In this work, the KMC simulations have been performed for the surface diffusion of Ag/SiO2

(chapter 2) and molecular beam epitaxy growth of Au/SiO2 as well as Ag/SiO2 (chapter 2, 3). The
transition states are modelled by individual atomic hopping between the discrete lattice sites. The
transition types are therefore restricted to movements in the underlying lattice structure. A typical
algorithm employed in these models is as follows:
(0’) Set the time t = 0 and form the list of all acceptance probabilities {Pi} of jump events with
respect to the possible nearest neighbor configurations.
(1’) Set R = Nr, where N is the number of atoms listed as {1, ..., N} and r is the number of jump
directions depending on the responsible lattice structure.
(2’) Get a uniform random integer u ∈ [1, R].
(3’) Find atom i such that i = ⌊u/r⌋ and carry out the jump event with the direction r∗ = u mod r
with the probability Pi∗ corresponding to the local configuration of atom i.
(4’) Update the time with t = t+ ∆t where:

∆t =
1

N
.

(5’) If another type of event is carried out, e.g. deposition, and the number of atoms N is changed,
return to step (1’). Otherwise return to step (2’).
The list formed in step (0’) is called the look up table. The total number of atoms is conserved
during the jump attempt in step (3’). Such an algorithm is called the Kawasaki type algorithm
after the exchange spin flip model of Kawasaki [115, 116, 117]. A significant difference between
the BKL algorithm and the algorithm described above is that the acceptance probability does not
contribute to the simulation time. An advantage of this method is that the simulation time unit
proceeds constantly, i.e. simply proportional to the real time. From the harmonic transition states
theory of Vineyard [237], the transition frequency Γ can be represented as

Γ = ω∗e
−Ea/kBT , (1.44)
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where ω∗ is the pre-factor relating to the lattice frequency of system and Ea is the activation energy
of the transition. Thus by assuming the constant pre-factor (overall frequency), the transition rate
follows the Arrhenius temperature dependence with respect to the activation barrier Ea. Hence if
the probability P is chosen as

P = e−Ea/kBT , (1.45)

then one iteration step of all atoms corresponds to one overall frequency which is usually in THz
range (1012 − 1013 s−1). Together with the algorithm proceeding with the simulation time pro-
portional to the real time, one can use the simulation time to determine real time. This will be
discussed in chapter 3.

A disadvantage is that the acceptance ratio (1.45) is normally quite small at low temperature and
many jump attempts are wasted. In order to reduce the computation time, a minimum activation
barrier Emin of the system is subtracted from Ea, i.e.,

P = e−(Ea−Emin)/kBT . (1.46)

In this case, the correspondence between one simulation time unit (tu) and the real time is

1 [tu] ∼= ω−1
∗ eEmin/kBT [s]. (1.47)

However, if the system is large and complicated, then the minimum barrier can be quite small.
Contrary, if a minimum migration barrier is chosen to be larger than the real minimum barrier,
what happens? The interest of this question is one of the main motivations of this work. One
obtains an acceleration of simulation time whereas the accuracy of the transition probability is
lost. Further discussion about this acceleration approach will be handled in chapter 3.

Concerning the acceleration of simulation system using an MD approach, the temperature
enhancement of the simulation system is known. Voter considered a general method for accelerating
the of infrequent events in solid with a biased potential in 1997 [240, 241]. Another method is
temperature accelerated dynamics (TAD) by Sørensen and Voter in 2000 [214]. In their method,
the events are restricted on the events at original temperature with a kinetic energy basin and
corresponding time is calculated from the transition states theory [8, 41].

Diffusion equation

For some specific atomistic KMC models, the diffusion coefficient of adatoms is to be investigated.
Generally, the probability distribution c(t, x, y, z) of atom in the three dimensional real space R

3

follows the diffusion equation
∂c

∂t
= D∇2c, (1.48)

where D lu2tu−1 represents the diffusion coefficient in lattice sites with lu denoting lattice unit of
R
3. Analytically, this type of linear partial differential equation can be solved by using the Fourier

transformation

F(c(t,x)) = ĉ(t,k) = (2π)−3/2

∫

R3

c(t,x)e−ik·xdx

where i is the imaginary number and x and k represent 3D vectors. This transform is reversible
(the Fourier inversion theorem) and the inverse Fourier transform yields

c(t,x) = F−1(ĉ(t,k)) = (2π)−3/2

∫

R3

ĉ(t,k)eik·xdk. (1.49)
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Set (solution Ansatz)
ck(t,x) := ĉk(t)e−ik·x,

where ĉk(t) is the transformed distribution ĉ(t,k). Then the time derivative is

∂ck
∂t

= e−ik·x
∂ĉk
∂t

,

and the spatial derivative is
∇2ck = −ĉk(t)(k · k)e−ik·x.

Thus if for all k, ck(t,x) satisfies

e−ik·x
[

∂ĉk
∂t

+Dĉk(t)(k · k)

]

= 0, (1.50)

then c(t,x) satisfies the diffusion equation (1.48) from the representation form (1.49). Eq. (1.50)
is reduced to an ordinary differential equation of order one and can be solved as

ĉk(t) = ĉk(0)e−D|k|2t.

Substituting into eq. (1.49), the solution c(t,x) is represented as

c(t,x) = (2π)−3/2

∫

R3

ĉk(0)e−D|k|2t−ik·xdk. (1.51)

For the initial distribution c(0,x), the inverse transformation yields the initial coefficients

ĉk(0) = (2π)−3/2

∫

R3

c(0,x)eik·xdx. (1.52)

Especially, for the initial condition
c(0,x) = δx′x (1.53)

with δx′x being the Dirac delta function, these initial coefficients (1.52) are

ĉk(0) = (2π)−3/2

∫

R3

δx′xe
ik·xdx = (2π)−3/2eik·x

′
. (1.54)

Substituting in (1.51) yields

c(t,x) = (2π)−3

∫

R3

e−D|k|2t−ik·(x−x′)dk

= (2π)−3
3
∏

j=1

∫

R

e−Dk
2
j t−ikj(xj−x′j)dkj

= (2π)−3
3
∏

j=1

∫

R

e−Dt(kj−i(xj−x
′
j)/2Dt)

2−(xj−x′j)2/4Dtdkj

= (4πDt)−3/2e−
|x−x

′|2

4Dt .

This solution is for the special initial condition (1.53). It can be extended to more general cases.
Let G(t,x) be the distribution defined by

G(t,x) := (4πDt)−3/2e−
|x|2

4Dt . (1.55)
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Then for the linear differential operator

L :=
∂

∂t
−D∇2,

G satisfies
{

LG = 0 for (t > 0)
G(0,x− x′) = δx′x for (t = 0).

(1.56)

Now consider an inhomogeneous diffusion equation
{

Lc(t,x) = g(t,x) (t > 0)
c(0,x) = f(x) (t = 0)

(1.57)

for arbitrary measurable functions f ∈ L1(R3), g ∈ L1[(0,∞) × R
3]. Set c(t,x) as

c(t,x) = G(t) ∗ f +

∫ t

0
G(t− s) ∗ g(s)ds

=

∫

R3

G(t,x− x′)f(x′)dx′ +

∫ t

0

∫

R3

G(t− s,x− x′)g(s,x′)dx′ds, (1.58)

where ∗ implies the convolution with respect to the spatial variables. From the fundamental prop-
erty of the convolution, it follows for t > 0

Lc = L(G)(t) ∗ f +

∫ t

0
L[G(t− s,x)] ∗ g(s,x)ds

= 0 +

∫ t

0
δ(t− s,x) ∗ g(s,x)ds = g(t,x)

and
c(0,x) = δx′xf(x′)dx′ + 0 = f(x).

Hence the function (1.58) satisfies the inhomogeneous diffusion equation with a generalized
initial condition (1.57). Such a function G is called the Green’s function or the fundamental solution
for the linear differential operator L. It can be easily seen that the fundamental solution Gn for
n-dimensional diffusion is given by

Gn(t,x) := (4πDt)−n/2e−
|x|2

4Dt . (1.59)

Various relating methods and applications, e.g. to the boundary (Dirichlet) problem, Laplace
equation, and Poisson equation, can be found in any comprehensive text book describing PDE
problems (see e.g. [132]). For a rigorous description of the solution derivation of the inhomogeneous
diffusion equation, Ref. [91] can be referred to.

Diffusion constants

As an example of the solution process of a physical problem using a KMC simulation, consider the
Brownian motion of a single atom in some crystalline lattice gas system. This discrete diffusion
process performed with the KMC algorithm mentioned above with nearest neighbor (NN) jumps
can be described by the diffusion equation.

The diffusion coefficient Dsc for simple cubic (sc) lattice for NN jump diffusion process is
calculated as

Dsc =
1

6
.
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Thus for the initial condition

c(0, x, y, z) = δ0xδ0yδ0z,

the statistics of the site occupation probability csc(t, x, y, z) with sc lattice simulation is expected
as the fundamental solution G3 of the diffusion equation (1.48) with D = 1

6 , i.e.,

csc(t, x, y, z) ≈ 1
√

2πt/3
3 e

−x2+y2+z2

2t/3 .

For a face centered cubic (fcc) lattice grid represented by the linear combination of vectors

~ex ± ~ez =





1
0
±1



 , ~ex ± ~ey =





1
±1
0



 ,±~ey + ~ez =





0
±1
1



 ,

the lattice constant is 2 lu and the number of NN sites is 12. Especially, the distance of two NN
sites dfcc is

dfcc =
√

2 [lu]. (1.60)

The diffusion coefficient is calculated as

Dfcc =
1

3
.

Similarly, the diffusion coefficient for the body centered cubic (bcc) case, and for the diamond
lattice are given by

Dbcc = Ddiam =
1

2
.

Some derivation details are given in appendix A. For crystal structures of bcc, fcc, and sc, this
coefficient is represented as [185]

D∗ =
a2∗
ξ∗
,

where a∗ lu is the lattice constant for the crystal structure spanned by the NN jump directions, 1/ξ∗
tu−1 is the frequency of the atom’s hopping in the specific direction per simulation time unit, and
∗ indicates the type of crystal structure. This representation is however not valid for the diamond
structure.

Figure 1.3 shows the density distribution c(t, r) of the lattice diffusion process simulated by
KMC simulations and theoretical prediction by the diffusion equation. The time proceeding in the
simulation is considered as a Poisson process since the site occupation probability in a diamond
lattice is correlated with the parity of total time steps. From eq. (1.55) and r :=

√

x2 + y2 + z2,
the radial density c(t, r) is

c(t, r) =
√

4πDt
3
e−

r2

4Dt .

The results of KMC simulation (symbols) agree with the theoretical prediction (solid curves) ex-
cellently.

If the diffusion is restricted by an annihilation rate of the particles to a short reaction diffusion
time range, this kind of approximation is not accurate for the local density representation due to
the overlapping area of random walks (see chapter 2.2.3).
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Figure 1.3: Density distribution c(t, r) of free diffusion in fcc, sc, diamond, and bcc lattice cells.
KMC simulation (symbols) and theoretical prediction by eq. (1.55) (solid curves) are shown.

1.3.4 Imaginary time reaction diffusion

Now consider the Schrödinger equation (1.5) again. The diffusion process in the discrete lattice cell
follows the diffusion equation (1.48) as seen above. If one compares these two linear PDEs, there
is some similarity. In fact, if ψ is assumed as a holomorphic function with respect to the complex
time evolution t = tℜ + tℑ, since the complex conjunction of the wave function ψ∗ should satisfy
the Schrödinger eq. (1.5) as well, it follows that

i~
∂

∂tℜ
ψ∗ =

[

− ~
2

2m
∇2 + V (~r)

]

ψ∗

−~
∂

∂tℑ
ψ∗ =

[

− ~
2

2m
∇2 + V (~r)

]

ψ∗

~
∂

∂tℑ
ψ∗ =

[

~
2

2m
∇2 − V (~r)

]

ψ∗. (1.61)

Here, the derivation from the first equation to the second equation is due to the well-known Cauchy-
Riemann equations. The interpretation of eq. (1.61) is that the particle diffuses with the imaginary
time evolution and the potential field V (~r) is the annihilation rate of the particle. Where is the
particle annihilated? It might be going to the next site along the real time axis. The intriguing
aspect of this conversion is that the momentum operator in the real time is simply the gradient in
the imaginary time, i.e.

~̂pℜ =
~

i

∂

∂~r
, ~̂pℑ = ~

∂

∂~r
.

The imaginary time Schrödinger equation is thus

~
∂

∂tℑ
ψ∗ = L̂ψ∗, (1.62)
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where L̂ is the Lagrangian operator. This aspect of quantum mechanics can be easily incorporated
into the path integral formalism of Feynman [82], if the annihilated particle appears at the same
position at the next real time step. The possible pathways are restricted by weighting the range
of imaginary lifetime at each discrete real time step. Since eq. (1.61) is essentially a reaction
diffusion equation, this range is determined by the diffusion coefficient, i.e. the mass, and the
transition probability from the imaginary time evolution to the real time evolution that is the
potential energy. This imaginary diffusion coefficient Dℑ has then the dimension of lu2t−1

ℑ . Since
the diffusion coefficient is represented by

Dℑ =
~
2

2m
,

the dimension of imaginary time has the units of inverse energy. Note that these paths are ho-
motopic relative to their start- and end points so long as the physical quantity is well-defined in
the consistent region of the complex time plane. Hence the physical quantities arising from the
integration with respect to the complex time is determined only by the both endpoints of paths
and independent from the individual pathways in this case.

The method which involves solving the Schrödinger equation in the some way as the reaction
diffusion equation is known as the random-walk method introduced by Anderson in 1975 firstly for
calculating the optimal electron structure of molecules [5, 6, 7]. The real time tℜ is converted as
imaginary time itℜ in his model. This diffusion aspect is often utilized in time dependent quantum
Monte Carlo methods. These methods handle the time evolution of complex quantum-classical
system of different kinds of particles, such as electrons and nuclei, beyond the Born-Oppenheimer
approximation. As a recent application of this method, Christov calculated the time dependent
ionization, correlated ground state energies, and the time dependent dipole moment under external
electromagnetic field of para- and ortho-helium [49]. For the model of N -electron system, a definite
i-th electron trajectory is chosen as the k-th Monte Carlo (random) walker and each trajectory
~r k
i (t) follows the first order de Brogli-Bohm guidance equation

d

dt
~r k
i (t) =

~

m
Im

[∇iΨ
k(x, t)

Ψk(x, t)

]

x=xk

,

where Ψ is an anti-symmetrised product

Ψk(x, t) = A
N
∏

i=1

ψki (~ri, t)

with guide waves ψki (~ri, t), the antisymmetrization operator A including the spin states, and the
position vector xk = xk(t) = (~r k

1 (t), ..., ~r k
N (t)). The guide wave follows the time-dependent

Schrödinger equation for the electron i

i~
∂

∂t
ψ k
i (~ri, t) = Ĥ(~ri, ~r

k
i (t))ψ k

i (~ri, t),

where the Hamiltonian operator Ĥ consists of the operators for the kinetic energy − ~2

2m∇2
i , for the

electron-nuclear interaction Ve−n(~ri) and for the electron-electron interaction

N
∑

j=1,j 6=i
Ve−e(~ri − ~r k

i (t)).

25



From the initial set of guide waves, one obtains the evolution of trajectories and consistent guide
waves through the computation of these equations mentioned above [50]. Especially, the guide waves
relax to the ground state owing to the imaginary time evolution. Finally, from M Monte Carlo
sample walkers, the squared modulus |ψi(~ri, t)|2 of the wave function representing i-th electron is
approximated as the probability distribution of trajectories {~r k

i (t)}k, i.e.,

|ψi(~ri, t)|2 =
1

M

M
∑

k=1

δ~ri~r k
i (t).

There is another application example for a larger system. Amera and co-workers reported
a method for finding the global energy minimum of a many body system using this imaginary
time converted Schrödinger equation evolution [4]. The method finding the global minimum was
originally proposed by Kostrowicki et al as a deformation method of potential hypersurfaces using
diffusion like evolution with respect to some time [127]. They realized that after some time, the
local minima of the initial potential surface disappear and the global minimum remains. Amera et
al pointed out that this time is the imaginary time in the Schrödinger equation. In both models,
each atom is represented as a Gaussian wave packet and whole system is considered as a Hartree
product, i.e. a simple multiplication, of single wave functions. For the inter atomic potential, a
Lennard-Jones type potential is utilized and the global minimum configuration energies for small
clusters are calculated as a function of the imaginary time [4]. A comprehensive review of these
diffusion (quantum) Monte Carlo (DMC) methods can be found in Reference [87], for instance.
Figure 1.4 illustrates an intuitive description of the DMC method taken from [87]. A single particle
is confined by a potential well V (x). The initial walker distribution Ψinit is uniform and converges
towards the ground state Ψ0 as the imaginary-time propagation with tℑ. τ is the single imaginary
time step. The wave function Ψ0 corresponds to the mean imaginary residential time and therefore
this aspect coincides with the statistical quantum interpretation of de Broglie-Bohm theory [22, 23].
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Figure 1.4: A schematic description of the DMC method from Ref. [87] and a cross section of the
3D particle distribution calculated by a lattice KMC simulation. Color indicates the site occupation
probability through the imaginary time particle diffusion.
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Chapter 2

Cluster Growth on Pre-patterned
Surfaces

Functional nanostructures are explored by in both fundamental studies of materials science as well
as in industrial applications. Nanoclusters (NCs) of noble metals have quite intriguing optical
properties such as surface plasmon resonances [122] which can be utilized, e.g., for highly sensitive
protein detection [104]. In particular, well-aligned metallic nanoparticles and nanowires provide
novel electromagnetic, optical properties and are promising candidates for transparent conductive
electrodes in advanced semiconductor devices [130, 137]. Some useful properties of NCs are strongly
influenced by their shape and size [68, 122] and thus an accurate NC growth simulation is an
attractive tool in order to understand the details of growth processes under various conditions.
Traditionally, a fabrication of NCs, or nano colloid particles by chemical treatment is a common
method since Faraday reported the first optical property of an Au nanocolloid in 1847 [75].

As a bottom-up technique for the manufacture of templates for functional metallic nanostruc-
tures, low energy (≤ 1 keV) ion bombardment is a well established method [118, 164, 175], which can
be used to produce adjustable ripple structures with respect to height and wavelength. Oates et al
[175] made self-organized arrays of Ag and Co nanoclusters by utilizing radio frequency magnetron
sputtering on oxidized, rippled Si templates. Camelio et al [33] reported long-range ordered Ag
nanoclusters produced by shadow deposition using ion-beam sputtering on BN (or Si3N4) doped,
rippled Al2O3. Oxidized, amorphous substrates are often utilized as templates for such metal de-
position since their weak interaction promotes Volmer-Weber (VW) type growth of nanoclusters
(NCs) and the weak adsorption (physisorption) of metals on vitreous silica (v-SiO2) results in an
extremely low initial sticking probability [247].

Metals generally possess high adsorption energies at defect sites (chemisorption) [143] and there-
fore trigger heteronucleations which is considered as the dominant mechanism for metal nucleations
on v-SiO2. Energetic metal deposition using sputtering [33, 175] induces scattered heteronucleations
since the energetic process itself can form surface defects. However, Xu and Goodman [247] es-
tablished that the initial sticking probability of Cu by vapor deposition on v-SiO2 depends on the
surface temperature. They explained this observation with the precursor model of Singh-Boparai
et al [204]. The model considers the restricted surface migration due to the difference the migration
barrier to the vicinal physisorbed site and the adsorption energy. It would therefore be expected
that a more accurate control of metal nucleation could be achieved if the surface were kept defect
free so that such physisorbent species would dominate the nucleation process.

Recently, utilizing the electron (e-) beam evaporation instead of sputtering, where the deposition
energy is much lower, Ni nanowire formation on rippled SiO2 surface was reported [184]. With
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even slower e-beam evaporation, (growth rate 2.6×10−4nm/s compared to 0.1 nm/s reported in
Ref.[184]) highly ordered Ag nanorod arrays grown on pre-patterned amorphous SiO2 surfaces were
successfully produced from self-organized Ag NC’s of diameter ∼10 nm by Ranjan et al [190].

Despite of the small undulation of the rippled surface, the stripe-like Ag nanostructures are
very pronounced, reproducible and well-separated. The structures are located on the slopes which
point towards the evaporation source where a relatively high local flux rate is expected. However
a difficulty of the reproduction process due to a sensitivity of setup conditions is reported exper-
imentally1. In order to investigate the understanding at the atomistic level, a computer model of
the growth process has been performed with a lattice-based KMC method using a combination of
a simplified inter-atomic potential and experimental transition barriers taken from the literature.

In this chapter, the initial nucleation process of deposited metals on slightly pre-patterned
substrates is discussed. By controlling the deposition angle, the local flux variation is strongly en-
hanced even by a slightly pre-patterned surface topography. Together with the idea of the precursor
model, initial nucleation process simulations are performed. It is revealed that the sensitivity of
the nucleation probability results from the local flux as well as from the restricted surface lifetime
of metal monomers (2D gas).

2.1 Nanocluster growth

2.1.1 Classical nucleation theory

Classical Becker-Döring nucleation theory [18] describes the condensation of high concentrated gas
materials in the sense of droplet formation. In this theory, a continuity equation for the time
dependent concentration n̄l(t) of l-clusters, that contain l atoms, and the cluster current Jl is
considered as

∂n̄l
∂t

+
∂Jl
∂l

= 0. (2.1)

Here the cluster current Jl is given by

Jl = −Rlnl∇(n̄l(t)/nl), (2.2)

where Rl is the reaction rate (e.g. droplet surface area times impinging rate), nl is the number
density of l-clusters represented as

nl = n1 exp(Fl/kBT ). (2.3)

Fl is the formation energy of an l-cluster which is an important quantity and which is also the
matter of some disputes. Assuming each cluster to be spherical, the number density can be written

nl = n1 exp(∆µl −Bl1−1/d/kBT ), (2.4)

with ∆µ = (µliq − µgas)/kBT , and B = B(T ) a normalized surface tension in d dimension. Here,
µliq and µgas are the chemical potential of the liquid and metastable gas phase respectively. The
nucleation rate J , i.e. the number of macroscopic droplets formed per unit time and volume from
the metastable phase, is given by an Arrhenius formula

J = νa exp(−∆F/kBT ), (2.5)

1Ranjan, M. private communication.
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where νa is the attempt frequency, the energy barrier ∆F is the formation energy of a cluster
with the critical size. The problem of the model is the accuracy of the formation energy which is
represented by an extrapolation based on macroscopic bulk and surface free energy. This approach
is developed by some extended theories, e.g. Lothe and Pound considered the additional degree
of freedom accounting for the rotation and translation of the cluster [144]. The nucleation rate J
changes typically by a factor of 1017 due to this correction because of the exponential dependency
of the formation energy in eq.(2.5). Kiang et al suggested [123] an alternative treatment of the
‘droplet’ which originated from Fisher [83] as

nl = q0l
−(2+1/δ) exp[−∆µl − b(1 − T/Tc)l

1/βδ], (2.6)

where q0, b are constants, β and δ are the critical exponents of the coexistence curve and critical
isotherm [84], and Tc is the critical temperature. By assuming the dense gas as a mixture of
non-interacting droplets, the pressure can be represented as

p = kBT

∞
∑

l=1

nl. (2.7)

It has been assumed that eq. (2.6) holds down to very small l. For example, for temperatures
far below Tc and l = 1, 2, the constants of eq. (2.6) are chosen to fit the measured density and
second virial coefficient of the gas [94]. The models of these classical theory work well while for
many substances. However, a surprising disagreement with nucleation experiments arises in the
region near Tc [96, 108, 109]. The critical nuclei are much larger than predicted. Concerning the
free energy evaluation, the Cahn-Hilliard-Langer thory [31, 32, 133] introduces a coarse-grained
continuous local order parameter (the density ρ) fCG(ρ). A free energy functional associated with
this parameter is

F =

∫

[fCG(ρ(r)) + C(∇ρ(r))2]d3r. (2.8)

The constant C is to be found in order to fit F to the bulk macroscopic surface tension assumed
normally as of a flat surface. The functional fCG(ρ) is called a coarse grained free energy density
determined usually as a polynomial function of ∆ρ = ρ − ρc with ρc being the critical density.
This fCG can be defined in a meaningful way for 0.95 < T/Tc < 1.0 [21] since the coarse graining
is assumed to be done on a scale much larger than molecular distances, but not larger than the
correlation length of density fluctuations. Thus for lower temperatures its accuracy is open to doubt.
However, for the phenomenon near the critical temperature, such as a spinodal decomposition, the
model agrees with the experiment nicely [198]. Further details of nucleation theory can be found
in the comprehensive review of Binder and Stauffer [21], and the thesis of Müller [159] (chapter 2
and 5) in which the KMC simulation of spinodal decomposition is described.

2.1.2 Cluster growth on substrates

The study of crystal growth affected by the environment was firstly reported by Lehovec in 1964
[138] for the description of the band-bending in promoting selective adsorption of supersaturated,
charged impurities at a semiconductor interface. In the late 1960s, Cho and Arthur developed a
method of semiconductor crystal (GaAs) growth on substrates known as Molecular beam epitaxy
[47] which is a quite common technique of thin film growth in vacuum today. E-beam evaporation
is a useful method of providing molecules in MBE, utilizing an electron beam in order to evaporate
the materials to be deposited. Figure 2.1 illustrates a schematic diagram and picture of an e-beam
evaporator a and an example of the intensity of a molecular beam under Mo deposition with a 300
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Figure 2.1: E-beam evaporation technique. Figures are cited from Ref. [191] and modified. a is a
schematic diagram of the e-beam evaporator (left) and an actual evaporator is also shown (right).
b shows a typical profile of thin film growth from a Mo crucible.

mm distance from the target b referenced from the thesis of Ranjan [191]. Note that if the aim of
the evaporator is off, then the intensity of deposits decreases drastically 1. Further details of the
experiments are described in Ref.[191].

Once an evaporated atom arrives on the substrate, various behavior is expected as illustrated in
figure 2.2 a. Especially, the cluster growth mode is categorized into three types with respect to the
relative surface energies [151]. Let γD, γS and γ∗ be the surface energy of the material deposited,
of the substrate and the interfacial energy between them respectively. For the case

γD + γ∗ > γS ,

the energy balance of the system tries to minimize the area covered by the deposited material and
consequently the deposit tends to grow in the form of three dimensional island called Volmer-Weber
growth mode (figure 2.2 b i). Contrary, for

γD + γ∗ < γS ,

two dimensional island growth of the deposited material on the substrate is observed which is known
as Frank-van-der-Merwe, or layer-by-layer growth mode (figure 2.2 b ii). There is another special
case that is the inequality of the surface energies changes during the thin film growth process. This
case happens if the elastic influence of the original substrate imposes a strained n-th layer and
increases the interfacial energy γ∗. Then the cluster growth mode changes from layer-by-layer to
Volmer-Weber. This type is called Stranski-Krastanov growth (figure 2.2 b iii).

1See also the discussion in chapter 3.5.3.

32



Figure 2.2: A schematic description of behavior of deposited atoms and growth modes. a Typical actions and
characteristic energies. b Three cluster growth modes. i: Volmer-Weber growth mode; ii: Frank-van-der-Merwe
(layer-by-layer) growth mode; iii: Stranski-Krastanov growth mode.

When an ad-monomer migrating on a metal surface arrives at the edge of the terrace, it preferen-
tially diffuses backward and not to the down step. Ehrlich and Schböbel reported this phenomenon
independently in 1966 [67, 199]. This downhill migration barrier at the edge is called the step edge
barrier or the Ehrlich-Schwoebel (ES) barrier. For a 3D structure formation by cluster growth,
this barrier plays a crucial role in distinct diffusion mechanisms [134, 151]. This barrier can be
understood as the bond breaking resulting in the intermediate positioning of migration trace to the
down step. Thus if the bond energy is reduced due to the strain field from the original substrate,
this can be also reduced. Other intriguing phenomena that may be responsible for the instability
towards the mound formation in epitaxial growth are ascending steps [3, 255], fast diffusion pro-
cesses [186] at the edge as well as exchange jump processes beyond nearest neighbor (NN) position
jumps (correlated jumps) [79, 121].

2.1.3 Experimental motivation

Our topic is Ag cluster growth on ripple-like pre-patterned vitreous silica substrate. Figure 2.3
shows a typical rippled template fabricated by 500 eV Ar+ beam sputtering of Si(100) at an angle
of 67◦ to the surface normal [118, 119, 190]. The wavelength is ∼ 35 nm and the ripple height is
typically 2-3 nm. Thus the vertical topography variation is much smaller than that of the horizontal
variation. An oxidized layer (vitreous (v-)SiO2) ∼2 nm then forms immediately after exposure to
the natural environment. The ripples are highly ordered and perpendicular to the ion beam. Then
silver was deposited using an e-beam evaporator under ultra high vacuum condition (2.0×10−6

Pa) at room temperature (RT) with the source aligned at various deposition angles. Ag clusters
observed were typically with Volmer-Weber growth mode preferentially aligned along the ripples.
The adsorption energy of Ag and v-SiO2 is thus expected to be smaller than the Ag-Ag interaction.
Figure2.4 shows a typical evolution of Ag clusters by experiment. The number of clusters decreases
with increasing mean cluster size [191]. An example of Ag cluster growth at the deposition angle
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Figure 2.3: An atomic force micrograph image of a rippled, oxide Si surface cited after [172].

−70◦ with respect to the mean surface normal (see also figure 2.8), the counter direction of the ion
beam, is exhibited in figure 2.4. During the deposition the Ag islands grow preferentially along the
ripple structure, especially in the late stage (75 min - 105 min). For the island diameter considered
in the diagram is thus only the length of island along the ripples and the length perpendicular to
the ripples is not taken into account. The number density n =

∑

l nl of clusters (see also eq. 2.7)
in the sample SEM images agrees with the Campbell model [34, 254]

n = n0 exp(−aisln1/30 d̄ 2/3) (2.9)

with the island density n0 at the very beginning, with a constant aisl determined by the shape of
the islands [236], and with the average thickness d̄ (figure2.4). The growth of mean thickness d̄ is
dd̄/dt = 0.1 nm/min and the constant parameters are n0 ∼ 8000 and aisl ∼ 0.036. This indicates
simply that the island density decreases with the growth of the thin film because of coalescence as
shown in figure2.2 b i. The sample area is ∼ 2.8 × 105 nm2 and thus the maximum island density
n0 is calculated to be 2.9 × 1012 cm−2 from eq. (2.9). This is around 10 times higher than the
result of Ag/ZnO(0001) by Zhang et al [254]. This fact suggests that the diffusion length of Ag
on v-SiO2 can be short [34]. I.e., the expected ad-monomer diffusion area can be small which is
allowing a high maximum island density in the initial stage. A special feature of Ranjan’s work
is the manipulation of the island density by variation of the surface topography due to different
sputtering conditions. By optimization of the deposition condition, one yields a well aligned metal
nanowire along the ripples. Figure2.5 shows the scanning electron micrography image after Ag
PVD. The deposition time was 75 minutes and the average Ag accumulation was 5.8 mono-layers
(ML) calibrated by Rutherford Back Scattering. After deposition, silver nanorods with a mean
length 20-120 nm, height and width ∼10 nm as well as small NCs with diameter up to 5 nm were
obtained.

At the incidence angle of 70◦, most of the rippled template was exposed to the incoming Ag
vapor. Despite the non-shadowed deposition, the observed Ag NCs grow preferentially along the
slope whose normal points towards the evaporation source and only a few small NCs in various
growth stages are observed between the connecting Ag alignments. Why there is such a selective
nucleation despite the exposure of the surface? Under oblique angle deposition, the cluster intensity
is strongly influenced by the topographical condition of the amorphized v-SiO2 substrate. In the
following section, this situation is modeled at the atomic level.
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Figure 2.4: Number evolution of Ag islands and the mean island diameter along the ripples with deposition time
cited after [191]. Three SEM images correspond to the growth stage of 45 min. (left), 75 min. (middle), and 105
min. (right).

2.2 Local flux and surface ad-monomer diffusion

The nucleation of the Ag cluster growth observed in the experiment (figure2.5) is highly ordered
despite the small surface topography change. In this section, an ad-monomer diffusion process on
the rippled surface modeling the experimental observation is considered. The local flux consistent
with the topography together with the ad-monomer migration process affecting to inhomogeneous
nucleation is discussed and a discrete reaction-diffusion equation will be derived.

The effect of a patterned substrate on island nucleation is studied by Nurminen et al [174]
with KMC. Utilizing an Ising-like interaction potential the energy between metal-metal as well
as metal-substrate, the thermodynamical behavior of the nucleation process is reported. Their
model is motivated by metal deposition on another metal substrate, e.g. Ag/Pt(111). The deposits
accumulate mainly at the special sites of a step edge (see figure2.2 a). Contrary to their model, the
contribution of special sites are suppressed in the model considered here since the target substrate
is an amorphized material and an averaged homogeneous interaction is to be investigated.

2.2.1 Surface topography and local flux

Figure 2.6 (a) shows a cross-sectional transmission electron microscopy (TEM) image of a ripple
like pre-patterned, oxide Si template [172, 191]. An asymmetrical, saw-like ripple shape is typically
observed on a Si surface bombarded [140, 257].

An analytical surface-height function has been found to fit nicely the observed surface topog-
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Figure 2.5: SEM image of the rippled surface after Ag deposition for 75 minutes at RT cited from [172]. The
average thickness and width of the rods are ∼10 nm estimated from the mean coverage 5.8 ML and Ag area fraction.
The incidence angle is 70◦ from the mean surface normal and perpendicular to the ripples.

raphy (figure 2.6 (b)). The function is parametrically represented by

h(x) = h0 sin p

x(p) = l0(p+ ǫ sin p), (2.10)

where h0 and l0 are typical wave amplitude as well as wavelength, ǫ controls the asymmetric shape
of ripples, and p is an arbitrary parameter. While dx/dp > 0 there exists the inverse function
p(x) and hence the function h(x) is well-defined for |ǫ| < 1. For ǫ = 0 the function is simply
the sinusoidal function and for 0 < ǫ < 1 it exhibits the gentle slope and the steep slope of the
asymmetric ripple.

The parameters used in figure 2.6 (b) are (h0, l0, ǫ) = (1.6, 7.4, 0.7) corresponding to the ripple
with the amplitude h0 =1.6 nm and the wavelength 2πl0 ∼ 47 nm.

The amplitude, or ripple height is relatively small compared to its wavelength2. At an oblique
angle deposition, the variation of the local flux is emphasized by this slightly undulated surface
pattern.

The general form of the local flux floc is formulated as follows. Let S := {(x, y, z) ∈ R
3 : z =

h(x, y)} be a static surface represented by the height function z = h(x, y). Then the local flux
floc(x, y) at a point (x, y, h(x, y)) ∈ S is given by

floc = (~i · ~n)f, (2.11)

where f is the flux of atoms from the evaporation source, ~i and ~n are the unit vectors representing
the reverse direction of incident atoms and the surface normal of S, respectively.

Figure 2.7 shows the correspondence between the local deposition rate and the surface topog-
raphy with the ripple parameters for (h0, l0, ǫ) = (1.0, 5.5, 0.7) in eq. (2.10). The corresponding

2Intriguingly, a similar form of this parametric function satisfies a nonlinear ordinary differential equation derived
by an equation of motion for the atomic flow surface modification model induced by ion beam with the traveling wave
assumption (see chapter4).
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Figure 2.6: (a) A cross-sectional TEM image of a rippled Si surface covered by a thin SiO2 layer.
The surface layers (∼2 nm) are oxidized by exposure to the natural environment [172]. (b) The
analytical fitting function of the surface (a) indicated in nm. The wavelength and the height of the
ripples are 47 nm and 3.2 nm respectively. Red arrows indicate the ion beam direction.

deposition angle θ -80◦ -70◦ -60◦ -50◦ 0◦ 50◦ 60◦ 70◦ 80◦

minimum (%) 0 0 0 16.8 86.3 55.8 40.6 24.1 6.9

maximum (%) 27.7 44.0 58.8 80.0 99.4 94.1 86.9 76.9 64.7

max-min (%) 27.7 44.0 58.8 63.2 13.1 38.3 46.3 52.8 57.8

Table 2.1: List of relative flux rate variation on the sample surface in figure 2.7 with the incident deposition angle

θ.

wavelength and ripple height are 35 nm and 2 nm respectively. The deposition angles shown are
θ = ±80◦,±70◦,±60◦,±50◦, and 0◦ .

The sharp peaks of the local flux variation for positive deposition angles are located on the
slopes of the ripples oriented towards the evaporation source. On the other hand, the local flux
peaks for negative deposition angles gradually varies on the slopes. The variation of the local flux
ranges from 13.1% to 63.2%. For the positive deposition angle, the substrate surface is fully exposed
to the incident flux. If the critical flux fcrit for the nucleation of surface ad-monomers is exceeded
within this variation range, cluster growth is observed only in the high flux region. The variation
increases with increasing deposition angle. In contrast, for the negative deposition angle, the steep
slope located on the opposite side to deposition becomes the shadow region and the deposition is
restricted in the gentle slope region. The local flux in this exposed region is almost homogeneous
and thus relatively homogeneous cluster growth is expected.

2.2.2 Surface gas diffusion under inhomogeneous flux

Let C(t, x, y) and rd be the surface ad-monomer concentration and the desorption rate on the bare
substrate S respectively. The substrate surface obtained experimentally is naturally oxide and
amorphized. Consider the average interaction between amorphous surface and metal monomers
and assume that adatoms diffuse homogeneously. Hence the diffusion coefficient and the adsorption
energy are independent of the local topography of S.

As it is shown in figure 2.3, a pre-patterned surface S is varying approximately in an uniaxial
direction. Thus the height function z = h(x, y) can be simply set as h = h(x). The local flux floc
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Figure 2.7: Example of deposition angle and local flux distribution. Arrows indicate the directions
of depositing atoms. The local flux distributions floc(x, y) on S with the incident angle θ = −80◦

to θ = 80◦ (upper right). are shown.

is now given by

floc = f cos[θ + tan−1(dh/dx)], (2.12)

where θ is the angle between incident atoms and z-axis (see figure 2.8). The arctangent of the
surface gradient is indicated by γ in figure 2.8.

Consider an area conserving mapping Φ from S onto the flat surface S̃ with the coordinate
system (u, v). For instance, such a local mapping Φ is given by

Φ :

(

x
y

)

7→
(

u =
∫ x
x0

√

1 + (dh/dx)2dx

v = y

)

, (2.13)

where x0 is an arbitrary constant. This Φ is an area conservation homeomorphism from the subspace
(x > x0) of S to the subspace (u > 0) of S̃ and even a C∞-diffeomorphism as h(x) is smooth. This
mapping projects the rippled surface S onto an extended flat surface S̃ (see figure 2.9).

Let C̃ be the representation of C on S̃. Then the ad-monomer concentration C̃ may obey the
diffusion equation

∂C̃

∂t
−D ∇2

uv C̃ = f̃loc − rdC̃, (2.14)

where D = D(u, v) is the diffusion coefficient assumed as a constant on the surface S̃.

Now the transform of the partial derivative with respect to the coordinate system is represented
by the Jacobian J with the following form

(

C̃uu
C̃vv

)

= J2

(

Cxx
Cyy

)

. (2.15)

Hence the square of the Jacobian of the mapping is

J2 =

(

(dxdu)2 0
0 1

)

, (2.16)
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Figure 2.8: Schematic description of local angles related to local flux. The angle γ is the arctangent
of the surface gradient and θ is the angle between the incident atoms and the mean surface normal
(z-axis). θ is positive when the incidence is the counter direction to the positive x-axis.

Together with (2.12), (2.14), (2.13), (2.15) and (2.16), the surface concentration I(t, x, y) on S
satisfies

∂C

∂t
−D

( 1

1 + h′2
∂2C

∂x2
+
∂2C

∂y2

)

= f cos[θ + tan−1(dh/dx)] − rdC. (2.17)

With the first order approximation for dh/dx, i.e. (dh/dx)2, (dh/dx)(d2h/dx2), ... ∼ 0, we have
u(x) ∼ x in (2.13) and cos[θ + tan−1(dh/dx)] ∼ cos[θ + dh/dx] therefore the local flux on S̃ is
f̃loc(u, v) ∼ floc(u, v) (see figure 2.9). The average flux f̃ onto S̃ is

f̃ =
fλ cos θ

∫ λ
0

√

1 + h′(s)2ds
∼ f cos θ. (2.18)

Figure 2.9: Schematic description of the coordination mapping Φa (2.13) and the local flux
approximation. The local flux f̃loc of the flat surface S̃ (right) is approximated by the local flux
floc of the original rippled surface S (left).

Now the equation (2.14) is

∂C̃

∂t
−D

(∂2C̃

∂u2
+
∂2C̃

∂v2

)

= f cos(θ + dh/dx) − rdC̃. (2.19)
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The analytical solution of this equation (2.19) for the plane surface initial condition C̃(0, u, v) = 0
is

C̃(t, u, v) =
f

4πD

∫ t

0

∫

R2

1

s

× exp
[

− (u− u′)2 + (v − v′)2

4Ds
− rds

]

cos

(

θ +
dh(u′)
du′

)

du′dv′ds. (2.20)

The detail of the derivation is written in appendix B. The function (2.20) describes the ad-monomer
concentration in the early stages on the flat surface S̃ under inhomogeneous, normal deposition
induced by the oblique angle deposition on the rippled surface S. Obviously, the maximum con-
centration of the gas condensation at the slope region u1 < u < u2 is obtained at the deposition
angle

θ = − tan−1(h′(u))

from eq. (2.12). Since this local flux transformation does not consider the topography change due
to the cluster growth itself, the model is valid as long as the surface is cluster free.

Let λ be the wavelength of ripples. Let m and M be the minimum and the maximum of
cos[θ + h′(x)] for 0 ≤ x ≤ λ. Then the range of the ad-monomer concentration C̃(t, u, v) can be
derived from eq. (2.20) as

mf

rd

(

1 − e−rdt
)

≤ C̃(t, u, v) ≤ Mf

rd

(

1 − e−rdt
)

. (2.21)

Note that this relation holds for a general topography with a small variation when the first or-
der approximation is valid. Since the range converges exponentially with time, the ad-monomer
concentration is simply proportional to the reciprocal of the adsorption frequency which is the
ad-monomer lifetime. Especially for metal deposition onto v-SiO2, a high re-evaporation rate is
expected due to the weak adhesive energy. This fact suggests the possibility of a strong localization
of surface metal monomers concentration by variation of the topography and the deposition angle.
The Campbell theory prediction suggests that the mean initial island density is n0 = 0.029 nm−2,
i.e., one island per 34 nm2 surface area. Accounting for the island intensity fluctuation due to the
local flux variation 0.24-0.77 for θ = 70◦ (table 2.1), the upper limit of the intensity can be deduced
from (2.21) as around one island per 10 nm2.

2.2.3 Surface migration of ad-monomers

The mean migration area during the surface ad-monomer lifetime of monomers deposited on surfaces
is characterized as a function of the energy variation between the adsorption- and migration energy.
This atomistic model is based on the precursor theory of Singh-Boparai et al [204] considering
diffusion and re-evaporation. A simple continuum model describing this reaction diffusion process
is constructed and comparison with the simulation model will be discussed.

Adsorption energy and migration barrier

For the surface migration of deposited atoms, the precursor model [204] considers that each surface
migration jump attempt possesses a risk of re-evaporation with respect to the difference between
migration barrier and surface adsorption energy. This model restricts the mobility and the surface
lifetime of deposited metals. The temperature dependency of initial sticking probability for Cu on v-
SiO2 was established by Xu and Goodman with this surface dynamics [247]. They reported that the
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surface temperature dependent initial sticking probability S0 follows a Fermi-Dirac distribution-like
statistics

S0 =
α

1 + eν̃−∆ECu/SiO2/kBT

with constants α = 0.6 and ν̃ = 4.5 ± 0.5 from the initial sticking probability shown in figure 2.10.
Here ∆E is the variation of the adsorption energy and migration energy of Cu ad-monomer on

Figure 2.10: Initial sticking probability of Cu on SiO2 with surface temperature [247].

v-SiO2, i.e.

∆ECu/SiO2 := E
Cu/SiO2

ad − ECu/SiO2
m ,

and

ν̃ = ln

(

νad
νm

)

with νad and νm being the pre-exponential factors of jump frequency to the gas phase and to a
neighboring physisorption site. The energy variation is ∆ECu/SiO2 = 0.104 ± 0.017 eV.

Lopez et.al.[143] reported the adsorption energy 0.08 eV as the adsorption energy of Cu monomer
on a two-coordinated bridging oxygen (regular site) of the silica surface (figure 2.11) calculated by
DFT (B3LYP) with the full counterpoise BSSE correction. However, without the BSSE correction,
the energy increases to 0.56 eV and such conditions are important when geometry relaxation is
large [143]. Since ∆ECu/SiO2 ∼ 0.1 eV [247], the energy calculation without BSSE correction is
more reliable in this case.

On the other hand, the adsorption energy of silver E
Ag/SiO2

ad seems to be lower than the energy
of copper on SiO2. According to the metal adsorption energy calculation on defect v-SiO2 sites by

Ferullo et al , the metal-oxide interaction follows the sequence E
Cu/SiO2

ad > E
Ag/SiO2

ad [81]. Thus
it is not so unrealistic that this order holds for the regular site. From this reference [81], the
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Figure 2.11: Molecular model of a two-coordinated bridging oxygen a, ≡Si-O-Si≡, on the nondefective SiO2

surface cited by [143]. b is with a metal atom adsorbed on-top of the bridging oxygen.

ratio of adsorption energy between Ag and Cu is approximately 0.71∼0.77:1.0. Thus the range of
∆EAg/SiO2 can be

∆EAg/SiO2 = 0.062 ∼ 0.093. (2.22)

From this observation, the parameter range ∆EAg/SiO2 = 0.06 eV, 0.08 eV and 0.10 eV has been
chosen for our model.

Reaction-diffusion equation

In the discussion of the Campbell model in section 2.1.3, a small diffusion area of Ag ad-monomers
on v-SiO2 surface is expected. Here we consider the average migration-reevaporation behavior of
an ad-monomer deposited on the bare substrate surface without any further deposition. Let rd be
the desorption rate during one simulation time unit. If an ad-monomer is located at the origin at
time t = 0, then the time dependent probability distribution of the ad-monomer C = C(t, u, v)
may follow the reaction-diffusion equation

∂C

∂t
−D

(∂2C

∂u2
+
∂2C

∂v2

)

= −rdC (2.23)

with the initial condition C(0, u, v) = δ(u)δ(v),where δ is the Dirac delta function. Integrating eq.
(2.23) with the initial condition yields the solution

C(t, u, v) =
1

4πDt
exp
(

− u2 + v2

4Dt
− rdt

)

. (2.24)

Clearly,

∫ ∞

0

∫∫

ℜ2

C(t, u, v)dudvdt = r−1
d . (2.25)
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Now consider a discrete, atomistic diffusion model to exhibit this situation. The model considers
the isotropic migration on rippled substrates in order to exclude the influence of surface steps as
mentioned above.

The desorption probability of the adatom rd follows the Boltzmann factor of the energy variation

of the adsorption energy E
Ag/SiO2

ad and the surface migration barrier E
Ag/SiO2
m . For the variation

∆E := E
Ag/SiO2

ad − EAg/SiO2
m (2.26)

the probability rd of one atomic jump attempt on the discrete surface is given by

rd =
wd
wtot

e−∆E/kBT , (2.27)

where wd and wtot are the numbers of jump directions of desorption and total jump directions
respectively, and T is the temperature of the substrate. Note that the number of desorption
directions wd depends on the local configuration of the jumping atom in the discrete cells. Clearly,
the mean adatom lifetime TAL is the inverse of this desorption rate, i.e.

TAL ≡
∞
∑

t=0

t(1 − rd)
t−1rd = r−1

d . (2.28)

The discrete simulation system is now constructed as a fcc lattice network embedded in simple
cubic lattice sites. The lattice unit (lu) of the simulation is the one side length of this simple
cubic lattice. Each unit pathway of this network corresponds to the diagonal of the unit square
constructed by the simple cubic lattice sites. The depositions and migrations of atoms are considered
on the fcc discrete surface oriented by the (100) symmetry.

For this fcc(100) surface network configuration, we have the diffusion coefficient

D = 1/6 [lu2 tu−1],

with the computational topography parameters wtot = 12 and wd = 4. The derivation of the
discrete reaction-diffusion equation for this simulation system including the diffusion coefficient is
written in appendix A. Substituting (2.27) into (2.24) with these parameters yields

C(t, u, v) =
3

2πt
exp
(

− 3(u2 + v2)

2t
− t

3e∆E/kT
)

. (2.29)

Here the simulation time unit t corresponds to the iteration steps of single jump attempts for all
atoms in the system.

Figure 2.12 shows this probability distribution C(t, r) of the existence of a single adatom after
deposition as a function of the distance r from the origin, where C(t, r) represents the distribution
C with plane polar coordinate system

r2 = u2 + v2

in eq. (2.29). The symbols plot indicates statistics of the migration-adsorption simulation by lattice
based KMC with various parameters. The length of a lattice unit is calculated as 0.204 nm (see
below section 2.3.1). The KMC plots agree quite nicely with the analytical solution (2.29) from
the continuum equation (2.23).

The surface migration of adatoms considered here arises from two dimensional random-walks
on the fcc(100) surface. Due to the discrete transition symmetry, the area of the Wigner-Seitz

primitive cell is
√

2
2

= 2 lu2. Consider the mean two-dimensional propagation of adatom

Sprop(t) :=

∫

R2

(u2 + v2)C(t, u, v)dudv
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Figure 2.12: Probability distribution C(t, r) of adatom existence as a function of distance from the origin in lu
and the energy ∆E at 300 K. The analytical solution eq. (2.29) agrees with the KMC simulations at time t = 10,
t = 100, t = 200 and t = 500.

as the second moment of distance from the origin after time step t. Then it follows

Sprop(t) =
2

3
te−rdt. (2.30)

Here e−rdt indicates the average decay of the existence probability of an adatom. Denote the mean
adatom lifetime (AL) by TAL. Then the propagation is given by 2TAL/3e from (2.28). With the
parameters for the simulation model, the size distribution of the mean adatom migration area is
shown in figure 2.13. The orange solid line indicates the propagation function in the simulation
system

A(TAL) = 2Sprop(TAL) + S0 [lu2]. (2.31)

Since the shortest mean adatom lifetime is TAL = 3 for ∆E = 0, the graph indicates 3 ≤ TAL.
The initial propagation is S0 = 2 lu2. The circles are observed mean migration area distribution in
simulations. A(TAL) is an asymptote of the mean migration area of surface random-walks (dotted
circles) with respect to the short-lifetime adatom migrations. However, the mean migration area
is smaller than the propagation significantly with increasing AL since the overlapping area of the
migration trace for a long AL is not negligible. This is because the overlapping area of a migration
trace does not contribute to the enlargement of the migration area itself but to the existence
probability. Therefore the difference between the mean propagation and migration area increases
with increasing adatom lifetime, in which the overlapping migration occurs more frequently. A
mathematical description is given in appendix C. Interestingly, the mean migration area is fitted
by

Afit(TAL) = 2Sprop(TAL)0.9 + S0

with the exponential factor 0.9 nicely in this region (green curve).
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Figure 2.13: Mean area of adatom surface migration as a function of simulation time. The circles (⊙) indicate
observed data in simulations for the mean adatom lifetime TAL = 3-143.6 tu fitted by the green curve. The orange
solid line indicates the second moment of the mean adatom displacement distance from eq. (2.30) and (2.31). The
green curve is the power law of the propagation function with the scaling exponent 0.9 which is fitting the mean
migration area of adatom quite nicely.

2.2.4 Simulation vs. experimental gauge

For the conversion from the simulated diffusion coefficient Dsim lu2tu−1 to the surface diffusion
coefficient of Ag on v-SiO2 surface DAg/SiO2

m2s−1, the evaluation of the simulation time unit and
lattice unit is required. Due to the nucleation process simulation discussed in the following section,
it is convenient to chose the unit length of the fcc pathway as the inter-atomic distance of Ag,
i.e. 1 lu= 0.204 nm. Since Dsim = 1/6 lu2tu−1 for the fcc(100) surface diffusion, 1 tu should be
consistent with

1[tu] ∼= 6.936 × 10−21

DAg/SiO2

[s]. (2.32)

On the other hand, by comparison with experimental observations of the initial nucleation
distribution, the corresponding computational time scale can be estimated as

1[tu] ∼= texp
tsim

[s], (2.33)

where texp is the experimental time duration and tsim is the corresponding total simulation time
steps. From (2.32) and (2.33) the diffusion coefficient DAg/SiO2

is obtained as

DAg/SiO2
∼= tsim × 6.936 × 10−21

texp
[m2s−1], (2.34)

Espiau et al investigated Ag nanocluster nucleation in v-SiO2 under ion beam irradiation [71].
In their work, a high mobility of Ag+ in bulk oxide materials is mentioned referring to the bulk
diffusivity DAg+ ∼ 10−12 m2s−1 in soda lime glass at 773 K reported by Doremus [63]. However,
even in bulk materials the diffusion of a non-ionized Ag monomer is difficult to measure because
of the interference of Ag nanocluster precipitates [71]. Thus the experimental measurement of the
intrinsic diffusion coefficient for the Ag monomer on a v-SiO2 surface might be a quite challenging
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task. For the bulk- and surface rate constants D
(b)
∞ and D

(s)
∞ , the diffusion coefficients D(b), D(s)

are

D(b) = D(b)
∞ e−E

(b)
m /kBT

′
, D(s) = D(s)

∞ e−E
(s)
m /kBT

where E
(b)
m and E

(s)
m are the migration energies of a monomer in the bulk and surface of the target

material respectively. Accounting for the difference between bulk and surface Debye frequencies

D(b) =
√

2D(s) reported by van Delft [230] , T ′ = 773 K and D
(b)
Ag−SiO2

= 10−12 m2s−1, the surface
diffusion coefficient at temperature T may be obtained from

D
(s)
Ag/SiO2

=
10−12

√
2
e

1
kB

(

E
(b)
m

773
−E

(s)
m
T

)

[m2s−1]. (2.35)

In the following section, the initial Ag nucleation process by angular deposition on a pre-
patterned surface is simulated by the KMC method with the consistent local varying flux distribu-
tion. It will be shown that the desorption rate introduced in this section plays a crucial role in the
initial nucleation distribution observed in the angular PVD experiments onto pre-patterned v-SiO2

templates [190].

2.3 Nucleation models: Surface gas condensation

Once the nucleation occurs on the surface, then the sticking probability and the inhomogeneous
flux are no more constant on the surface due to a high cohesive energy of Ag-Ag interaction and
the shadow effect of clusters. For the initial stage, the shadow effect of small clusters can be still
neglected, but the enhancement of the sticking probability due to the Ag island distribution can be
significant if the mean migration area of ad-monomer is sufficiently large. Thus the analytical model
discussed in section 2.2.2 and 2.2.3 describes the further evolution not so accurately. Therefore the
time evolution of deposited silver nucleation and the cluster growth process were studied with a
KMC method based on a three dimensional lattice KMC simulation.

2.3.1 Simulation setup

The KMC simulation code is based on the code of Heinig et al [98], Strobel et al [219, 221], Müller
et al [157], and Röntzsch et al [192]. In the simulation codes, the Ising-like potential model is
utilized for the determination of the Hamiltonian of the system.

In order to exhibit more accurately the Ag cluster growth process, the code is developed by
implementing a relatively simple many body inter-atomic potential, the Rosato-Guillopé-Legrand
(RGL) potential [193]. The RGL potential is widely utilized in molecular dynamics simulations
describing especially well the Ag facet properties [58, 79, 106, 107, 152, 156, 177, 194]. Some
detailed description can be found in appendix D. Together with a look-up table constructed by the
NN configuration and this potential, various migration barriers are estimated quickly. A similar
approach was also reported by Voter in 1986 [239] to determined the migration barrier of rhodium
cluster on Rh(100) using a Lennard-Jones 6-12 pair potential.

The model assumes that depositing and diffusing metal atoms are only allowed to occupy fcc
sites within the perfect cubic overlayer with (100)-symmetry embedded in a simple cubic lattice
of size 512×512×128 with periodic boundary conditions, so grain boundaries are excluded. The
configuration of the substrate region is held fixed during simulations.

The unit length of the fcc grid is consistent with the inter-atomic distance of silver in the perfect
fcc crystal structure, i.e. 1 lu corresponds to 0.204 nm as mentioned above. Various escape paths
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in this fcc grid network and associated transition rate constants are estimated effectively as follows.
The fcc grid is divided into a substrate and vacuum region. Ag atoms in the vacuum region are
allowed to move only on the fcc lattice sites in the simulation cell and the substrate region is filled
with pseudo atoms modeling amorphous SiO2 atoms.

potential energy calculation

For simplicity, Ag and SiO2 atoms are called the type-I and the type-II atoms respectively. The
type-II atoms are held fixed during the simulation. For a type-I atom i, let nIi and nIIi be the
number of type-I, and type-II nearest neighbor (NN) atoms, respectively. The potential energy Ei
can then be written with a simplification of the RGL functional as (see appendix D)

Ei = −ζ
√

nIi +AnIi − EAg−SiO2
i (nIIi ), (2.36)

where the first two terms are determined from the RGL-potential with parameters ζ=1.1663 eV,
A=0.09982 eV [92] and EAg−SiO2

i (nIIi ) is the Ag-SiO2 interaction term which is given by

EAg−SiO2
i (nIIi ) =

{

0 (nIIi = 0)

EAg−SiO2

b (otherwise).
(2.37)

The Hamiltonian H is defined as
H =

∑

i

Ei,

where i ranges all type-I atoms in the vacuum region. This Hamiltonian model can apply to other
deposition materials by choosing appropriate parameters for the RGL potential and the expected
interaction energy with the substrate materials.

The transition states of the simulation system are exhibited by the NN jump attempt of each
type-I atom. The acceptance probability follows the Metropolis algorithm and the activation energy
barrier Ea is simply calculated by the configuration energy difference before and after the jump
attempt. For the transition attempt from the state Ω to Ω′, the acceptance probability P (Ω,Ω′) is
thus

P (Ω,Ω′) =

{

1 (H(Ω) ≥ H(Ω′))
e−[H(Ω′)−H(Ω)]/kBT (H(Ω) < H(Ω′)).

(2.38)

Local configuration approximation

Since the transition event modifies only the local configuration around the jumping atom, the
potential energy change occurs only for the atoms neighboring the initial site and the final site
of the jumping atom. These initial and final positions are surrounded by 18 NN sites and 52
other sites whose potential energy is affected by the transition. Hence the total number of possible
configurations are 370 (70 sites and three possibilities at each site, i.e. empty, type-I atom or type-
II). However for the efficiency of the calculation, only the 18 NN positions surrounding the initial
and the final sites are used to determine the migration energy.

Figure 2.14 shows uini, ufin and the 18 NN positions that are divided into the sets

Ni := {1, 2, 3, 4, 5, 6, 11}, Nc := {7, 9, 10, 12}, and Nf := {8, 13, 14, 15, 16, 17, 18}

with respect to the neighboring uini and ufin. The positions belonging to Ni and Nf are NN sites
of the initial site uini only, and of the final site ufin only, respectively. The positions of Nc are the
common NNs of the both sites. Since the configuration energy of each atom is calculated by (2.36),
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Figure 2.14: The local NN (fcc) configuration of an initial site uini and final site ufin denoted by i and f .

For this system, the NN sets for i and f can be seen to be Ni := {1, 2, 3, 4, 5, 6, 11}, Nc := {7, 9, 10, 12} and

Nf := {8, 13, 14, 15, 16, 17, 18}. The site 0 is occupied by a Type-I atom and other sites are either empty, or occupied

by a type-I, or a type-II atom.

all local transition types are represented with the form (|N I
i |, |N II

i |, |N I
c |, |N II

c |, |N I
f |, |N II

f |), where

|N I,II
∗ | indicates the number of occupied NN sites by type-I, as well as type-II atoms belonging

to the position index set N∗. These configurations account for the migration barrier estimation in
all cases of jumps between unequal energy sites where the variation of the configuration energy is
approximated by

H(Ω) −H(Ω′) ≈ Efin − Eini, (2.39)

where Eini, Efin are the potential energies before and after a jump as determined by the 18 NN
configurations and the expected NN configuration of each neighbor atom. The energy of the initial
state Eini is defined by

Eini =
18
∑

j=0

ǫjE
ini
j ,

here ǫj indicates the occupation of the j-th site by the type-I atom. The configuration energy of
each occupying atom is calculated as

Einij =

{

Eini0 (j = 0)
E(n̄) (otherwise),

(2.40)

where Eini0 is calculated by eq.(2.36) for the initial site 0 and E(n̄) is the mean configuration energy

E(n̄) := −ζ
√
n̄+An̄, (2.41)

for the other atoms. Here, n̄ is the average number of type-I NNs of all occupied sites by the
type-I atoms possessing at least one empty NN site. This factor is influenced by the mean surface
curvature of clusters growing in the system. The local configuration energy of the final state Efin
is defined similarly as

Efin =
18
∑

j=0

ǫjE
fin
j ,
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where the position j = 0 now implies the final site. Now each Efinj is given by:

Efinj =















Efin0 (j = 0)
E(n̄− 1) (j ∈ N I

i )
E(n̄) (j ∈ N I

c )
E(n̄+ 1) (j ∈ N I

f ).

(2.42)

The average NN number n̄ is updated every 12,000 time units.

2.3.2 Simulation parameters

Ag monomers are deposited on the (100)-oriented flat surface with the local flux floc calculated
from the surface topography by eq. (2.11). The consistent surface topography is constructed by the
parametric representation (2.10) with the asymmetric parameter ǫ = 0.7, height, and wavelength
parameters h0 = 4.5 nm, and l0 = 47 nm. The height to be chosen in the model is somewhat
larger than a typical ripple height reported from low energy sputtering experiments in order to
observe a clear difference between high- and low deposition area in the projected flat surface. The
diffusion process and desorption probability are taken independent of the surface topography in this
model. Ag atoms are deposited continuously until the total Ag accumulation reaches 6 ML for each
parameter. The evolution of sticking probability of incident atoms, area fraction and distribution
of modeled atomistic structure have been investigated.

In order to avoid undesired correlation between the adatom migration to the specified direction
resulting from the (100)-symmetry of fcc grid and the local flux variation, the simulation surface is
rotated anticlockwise to tan−1(0.5) without breaking the PBC.

The temperature range was chosen to be consistent with the experiment carried out at room
temperature. Since the surface temperature was not exactly monitored the simulations have been
performed at T = 300 K, 350 K and 400 K. The range of the parameter ∆E has been chosen to be
0.06, 0.08 and 0.10 as mentioned in section 2.2.3.

As shown in section 2.2.3, for Cu/SiO2 the probability reported [247] is around 0.3 in the early
stage (< 1 ML accumulation) of the vapor deposition on flat surface at room temperature (T=300
K). The cohesive energy between Ag and v-SiO2 calculated by the density functional theory is
generally weaker than of Cu [81]. Thus the expected sticking probability of Ag/SiO2 is below 0.3
in the early stage of deposition.

Accounting for this point of low sticking, various preliminary calculations have been performed
with changing the flux parameter. Figure 2.15 shows an Ag cluster distribution being quite similar
to the experiment. The simulation parameter taken as ∆E/kBT = 2.32 refer to the range (2.22)
with the final sticking probability 0.24 reproduces the experimentally observed structure remarkably
well. The total simulation time was tsim = 3.0×107 tu and the effective average flux f̃ = 8.3×10−6

atoms/nm−2tu−1 (see eq. (2.18)) corresponding to 0.0046 ML s−1 calculated by the comparison
with the total experimental deposition time 4500 s. The nucleation point distribution shown with
yellow dots in figure 2.15(a) is quite similar to the expected distribution from the SEM image (b).

2.3.3 Evolution of sticking probability

In the model, the sticking probability of Ag monomer deposited is strongly influenced by the Ag
island fraction on substrates due to a high cohesive energy of Ag-Ag and a high re-evaporation
rate from the bare substrate. For the number of atoms remaining on the surface na and the mean
fluence Fl, two types of sticking probabilities are considered.
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Figure 2.15: Top view of Ag clusters and initial nucleation points in the high flux region (yellow dots). a Simulation
result: θ = 70◦, ∆E = 0.08 eV, 209 nm× 209nm at 400K, total coverage 5 ML, total simulation time step 3.0×107t. b
Experimental result: Silver rods created by 75 min. e-beam deposition with the beam flux 5.0 µA and the deposition
angle θ = 70◦ on rippled SiO2 surface 160 nm × 160 nm at room temperature. The mean Ag coverage is 5.8 ML.

The total sticking probability Stot is simply represented by

Stot =
na
Fl
. (2.43)

Here, Fl is a function of deposition time and the mean flux (2.18), i.e., Fl = tf cos θ. Since the
system evolves with this fluence Fl, all observed values are considered as functions of Fl. The
instantaneous sticking probability Sins is defined as the derivation of na with respect to Fl. I.e.

Sins =
d

dFl
na. (2.44)

Sins indicates the sticking probability of the atom arrived at the surface with the mean fluence Fl.
Then the relation between Stot and Sins is

Sins = Stot + Fl
d

dFl
Stot.

Figure 2.16 shows the results of Ag PVD simulations for the corresponding deposition angle
θ = 70◦. The evolutions of these types of sticking probability, mean Ag coverages and snap shots
of substrates with 5ML Ag mean coverage are shown. Here, the mean coverage implies the total
number of atoms on the substrates divided by the number of monolayer Ag atoms (∼ 12 atoms
nm−2). In each diagram, the total- and instantaneous sticking probabilities Stot(Fl) and Sins(Fl)
are indicated by the blue curve and the red curve respectively. The green curve indicates the
evolution of mean coverage.

The relation between the incoming flux and the accumulative cluster distribution is investigated
in detail.

Figure 2.17 shows the relative incoming flux distribution, Ag cluster distribution, i.e. the
distribution of Ag atoms on the surface, and the projection of these Ag distributions. The color
of the flux distribution and the Ag clusters in the left diagrams indicates the frequency of the
relative flux rate and the height from the substrate, respectively. The flux distribution changes
only uniaxially and the mean Ag cluster distribution has also the same tendency. In order to see
this trend more clearly, the mean fluence- and Ag distributions on the surface are represented as the
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Figure 2.16: Left Evolution of total sticking probability Stot (the blue curves, see eq. (2.43)) and instantaneous
sticking probability Sins (the red curves, see eq. (2.44)) and the mean coverage (the green curves) as functions of
deposition fluence up to ∼ 5 ML mean Ag coverage. The inhomogeneous Ag deposition rate is calculated by eq.
(2.11) for the corresponding rippled surface with ǫ = 0.7, height 9 nm, and wavelength 47 nm. right: Snap shots
of Ag clusters with the mean coverage 5 ML. Size of cells corresponds to 209 nm× 209 nm. Simulation parameters:
∆EAg/SiO2 = 0.06 eV, 0.08 eV and 0.10 eV, T=300K, 350K, and 400K, θ = 70◦.
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Figure 2.17: Schematic description of the projection of mean Ag distribution. The left diagrams show the relative,
spatial distribution of incoming flux (upper) and Ag cluster accumulation with 5 ML mean coverage (lower). These
distributions with one period of ripple and the PBC length are projected onto the surface indicated by the red dotted
rectangle. The right diagram shows this projection. Black lines and green curves indicate total incidence atom
distribution and 5ML Ag atoms on substrates, respectively. The number in the box represents the total incident
fluence arising from the Ag deposition.

uniaxial graphs with respect to the direction of the flux variation in the right diagram. The dotted
red rectangle in the left diagram indicates the corresponding frame of this projection. The length of
the axis is one period of the local flux rate corresponding to the wavelength of the ripples. Totally
31 ML of incident fluence arises from 5 ML Ag mean coverage on the surface. This representation
provides an interesting relation between the flux density and the Ag accumulation. Due to the
small mean migration area, there exists a critical flux density for Ag nucleation. Below the critical
flux density, Ag atoms do not remain on the substrate. This critical density depends also on the
adhesive energy between Ag and the substrate. Figure 2.18 shows the projected distribution of all
simulation models (1a)-(3c) for 5 ML mean coverage. In each diagram, the top view of the cluster
distribution with PBC is shown and one period of simulation system is indicated by a red rectangle.
The solid curves with color indicate 5 ML Ag distribution on the surface and the black curves are
the total incident fluence distribution as shown in figure 2.17. The correlation between mean surface
ad-monomer lifetime TAL = 3e∆E/kBT , the local flux, and the mean cluster growth distributions
can be seen. By a large ∆E/kBT , the cluster growth distribution is almost proportional to the flux
distribution (1a). However, in the case of small ∆E/kBT the growth distribution is significantly
localized in the high flux region. The most efficient concentration range may be found between
(1c), (2c), and (3a). Here, an efficient concentration means a high cluster concentration with a
small re-evaporation rate.

The type of metal accumulation can be classified by the mean ad-monomer lifetime, or adatom
lifetime (AL), on the substrate surface TAL. The sticking probabilities increase depending mainly
on this TAL following the Boltzmann factor of ∆E by eq. (2.27). If AL is sufficiently long, then
nucleation can occur even in the least flux region during a sufficiently long deposition time. This
can be seen e.g. in (1a). In this case, most of all incident atoms remain on the surface at the
final stage of the simulation (Sins(Fl = 7ML) ∼ 0.9). In contrast, for a short AL the nucleation
occurs only in the highest flux region and atoms that arrive on the bare surface of the less flux
region are re-evaporated (3c). Though small clusters might be generated in the initial deposition
stage, they could not remain on the surface due to the high re-evaporation rate. Consequently,
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Figure 2.18: List of the mean cluster distribution of Ag 5 ML coverage defined in figure 2.17 (see also figure 2.16
right). Graphs show the uniaxial distributions of incoming flux as well as mean coverage 5ML Ag clusters. The red
rectangle in each box indicates one period of ripple structure of each model. The corresponding simulation parameter
∆E/kBT

the instantaneous sticking probability Sins is almost same as the effective surface area fraction of
Ag clusters, i.e., the area fraction times the relative local flux density. In any case, the increase
in the Ag area fraction leads to the enhancement of the sticking probability. On the other hand,
the initial nucleation overcoming the critical size can be seen by the spontaneous enhancement of
sticking probability. For example, in figure 2.16 (1c), the first effective cluster growth occurred
after around 1 ML deposition in the high flux region.

Because of the low mobility of clusters, the nucleation process on the substrate is mainly trig-
gered by impingements of ad-monomers during their surface migration. In most cases, dimers are
stable enough on the substrate and grow to be large clusters. Since a concerted motion is excluded
in the simulation model, the detachment of a dimer requires at least two steps of the atomic jump
to a certain direction in the fcc network. In fact, the total number of dimer atoms detaching from
the substrate is less than 0.02 % of the detaching monomers during the growth of 5 ML coverage in
the simulation (3c) of figure 2.16. This is the largest case and numbers of removed dimers in other
cases are even less.

The sticking probabilities are monotonously increasing and exhibit two different phases due to
the cluster growth stage. In the early stage, small clusters in the high deposition region are often
generated due to a sufficiently high adatom concentration (2.21). Once the coalescence of such
clusters is saturated, i.e. the region with a sufficiently high local flux is fully covered by clusters,
then this slows down since the sticking in this region is maximized and 2D islands growth in the
lower flux region is much slower due to the small migration area of ad-monomers deposited. This
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inflection point can be seen in (1a), (1b), (1c), (2a), (2b), (2c) and (3a) of figure2.16). On the other
hand, the increasing of the probabilities of (3b) and (3c) is almost linear. In fact, the evolution of
sticking probability is dominated by the growth of existing clusters and new dimer creation is quite
rare under the condition of (3b) and (3c).

The effect of the temperature dependent cluster formation for the Ag accumulation can be seen
by the comparison between (2c) and (3a) since TAL is same in the both cases. The total sticking
probability Stot in (3a) is slightly higher than in (2c) since the Ag area fraction in (2c) is slightly
smaller than in (3a). This difference results in the shape of the Ag clusters. The higher temperature,
the smaller the surface area of Ag clusters due to the surface free energy minimization. This effect
is however not so significant in these cases.

2.3.4 Evolution of Ag cluster growth

Since the Ag cluster growth is promoted by the direct deposition, nucleation and impingement of ad-
monomers migrating on the surface, the evolution of the Ag area fraction indicates the contribution
of these mechanisms. If the flux variation is critical, i.e. nucleation can occur only in a high flux
region, then the contribution of nucleation and impingement will be disappear when the high flux
region is fully covered.

Ag area fraction

First, consider the evolution of the Ag area fraction with respect to the total coverage. Figure
2.19 shows the area fraction of islands as a function of the total number of atoms on the simulation
surfaces. Since the incoming flux is concentrated in a small region and the cluster growth is Volmer-
Weber due to the small interface energy, two-dimensional growth is not favored in each case even
with a large TAL.

The blue dotted curve in the left diagram is the evolution with T = 300 K ∆E = 0.10 eV and
θ = 0. In this case, the local deposition rate is induced by normal angle deposition onto rippled
surfaces. Since the surface is only slightly patterned, the deposition rate is almost homogeneous
everywhere. The spatial (2D) evolution of area fraction under this homogeneous metal deposition
is much faster than other inhomogeneous deposition models.

The long dotted curve in the same graph shows the experimental result of homogeneous Au
deposition onto TiO2(110) [178]. In this case the evolution of the metal area fraction in the early
stage is more drastic since there seems to be many defect sites on TiO2(110) substrate chemisorbing
Au monomers.

Area fraction vs. total coverage

Let φloc = φloc(χ, u, v) be the local area fraction density in (u, v) for the total coverage χ ML.
In the discrete sense, φloc is the characteristic function for the site occupation by Ag atom, i.e.
φloc(u, v) = 1 for the case that Ag atom is in (u, v) and φloc = 0 otherwise. Figure 2.20 is the
double logarithmic representation of figure 2.19 for the total coverage for 0.01-0.5 ML as well as for
2-5 ML. The total Ag area fraction

φ(χ) :=

∫

S̃
φloc(χ, u, v)dudv

evolves with the exponential factor of the total coverage χ. In the early stage of cluster growth,
this exponential factor is generally larger than in the late stage. This inflection is resulting in the
decay of Ag area fraction growth promoted by nucleation.
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Figure 2.19: The area fraction of Ag islands on surfaces as a function of total Ag coverage for Ag deposition at
8.35 ML during 1.0×106 t at three different temperatures of substrates and adsorption energies ∆E. In left diagram,
the dashed curve is from the experimental data of Au vapor deposition onto TiO2 (110) at θ = 0◦ at T = 293 K [178]
and the dotted curve is the simulation with θ = 0◦, ∆E = 0.10 and T = 300 K. Except these two curves, all curves
labeled by (1a)-(3c) are with the deposition angle θ = 70◦.

With the increasing number of clusters, namely, the cluster concentration, the sticking prob-
ability and area fraction of metal increase drastically since migrating atoms are caught by high
concentrated clusters and enlarge the size of 2D islands. On the other hand, if the lifetime of
adatoms is so short that the encounter with monomers is quite rare, then the cluster growth is only
promoted by attachment of monomers and coalescence of clusters is also very rare due to the low
cluster concentration. Hence, the increasing of area fractions and sticking probabilities are much
slower than the former mechanism. An example of metal accumulation dominated mainly by the
former case is (1a) of figure 2.16. There is much coalescence of small clusters and most of the high
local flux area is covered by metal. In this case, a typical shape of an Ag cluster is rather than
flat. The exponent coefficient for area fraction φ(χ) is β = 0.9 in the early stage and β = 0.6 in
the late stage (see figure 2.20). Since the high deposition region is saturated and only the region
with low deposition rate is exposed, the growth speed of area fraction with total coverage slows
down in the late stage. In contrast to (1a), the exponential factor of (3c) remains constant. Since
the mean migration time is very short, there were only a few small clusters on the spot with the
highest deposition rate at the beginning and they grew with the latter mechanism. The exponential
factor β = 0.7 of (3c) is smallest in the early stage and the largest in the late stage since the region
with the highest deposition rate is still far from the saturation. A typical shape of cluster in this
example is smooth and tall. All other simulation samples are between these two extreme cases and
the mixing rate of the two mechanisms is roughly characterized by TAL. The sequence of Ag area
fraction with total coverage (figure2.20) is exactly same as the sequence of TAL, i.e. mean trace
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Figure 2.20: The area fraction φ of Ag islands on surfaces as a function of total Ag coverage χ. Labels in the upper
right indicate the sequence of the simulation curves in the box.

area of surface random walks of adatoms.

Surface gas condensation

From the spontaneous evolution of Sins as a function of the total Ag coverage at the initial stage,
the condensation of Ag surface gas (ad-monomer) in the high flux region can be characterized. In
order to evaluate the correlation between Sins and the Ag area fraction accurately, φloc should be
weighted by the relative local flux for the effective area fraction φeff . I.e.

φeff (χ) =

∫

S̃
φloc(χ, u, v)

floc(u, v)

f cos θ
dudv. (2.45)

Figure 2.21 shows the difference between the instantaneous sticking probabilities Sins and the
effective surface area fraction

∆S = Sins − φeff .

This is shown in figure2.21 that the contribution of surface migration for the sticking probabilities
has increased over (1c) and is not so significant under (2b). Since TAL expected for (1c) and (2b) are
TAL = 54.6 t and TAL = 42.5 t respectively, the critical mean access area of migrating ad-monomers
is in the range of 19.3-23.4 lu2 corresponding to 0.80-0.97 nm2 in figure 2.13. This critical mean
access area refers to the critical surface Ag gas concentration 1.03-1.25 atom/nm2 ∼ 0.086-0.104
ML in the early stage of metal deposition which gives the phase transition of the surface gas
condensation. The weak adsorption of the v-SiO2 substrate seems to act as a catalyst of selective
metal nucleation resulting in a restricted surface migration of ad-monomers.
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Figure 2.21: Evolution of the difference between the instantaneous sticking probabilities and effec-
tive area fractions with total coverage.

2.3.5 Simulation time and system evolution

Now consider the interpretation of the simulation time step t for Ag atoms on silver clusters and
for Ag adatoms on v-SiO2 substrates. These two types of transition events are essentially different
in the sense of their transition frequencies and minimum migration barriers mentioned in chapter
1.3.3. Let τAg and τad be the corresponding real time for one simulation time unit 1 tu. Then from
eq. (1.47), τAg and τad are given by

τAg = ω−1
Age

EAgmin/kBT , and τAg = ω−1
ad e

Eadmin/kBT ,

where ω∗ and E∗
min are the transition frequency and minimum migration barrier for ∗ = Ag, ad

respectively. The delay rate of real time τAg/τad is

τAg
τad

=
ωad
ωAg

exp(
EAgmin − Eadmin

kT
). (2.46)

Moreover, for Ag atoms on various facets of Ag clusters, this kind of simulation time gap exists due
to the algorithm defined by eq. (2.38) since the minimum migration barriers are different.

The dissimilarity of clusters obtained from the simulation model and the experimental finding
may result from these gaps. In the following section, an extended model concerning this problem
is introduced. The method is proposed in Ref. [172] by Numazawa et al .

2.4 Extended cluster growth model

The extended model is simply motivated by the correction of the different time correspondence
for the events of Ag on Ag clusters and v-SiO2 surface mentioned above. By assuming the overall
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Figure 2.22: A schematic description of the PVD model and local flux. (a) The initial rippled surface and schematic
description of metal deposition. Ag flux f , the incident angle vector ~i, the surface normal vector ~n are shown. The
angle of incidence in the simulations was fixed at 70◦ and perpendicular to the ripple direction. (b) The relative Ag
arrival rate floc/f = ~n ·~i.

frequency, the time gap results in various migration barriers for the events such that the Hamil-
tonian does not change before and after a transition. This concept is formulated as an effective
transition event classification method. The mathematical formulation, detail and an application
sample will be discussed in chapter 3. An advantage of this method is acceleration of computa-
tion time with a boost factor of several thousand compared to a traditional KMC approach, thus
allowing experimental time scales to be modeled. The simulations give excellent reproduction of
the experimentally observed nanocluster growth patterns. The simulation predicts a low sticking
probability for the arriving atoms, millisecond order lifetimes for single Ag adatoms and ≈1 nm
square surface migration ranges of Ag adatoms as discussed above.

2.4.1 Modified setup

The simulation setup is almost same as the previous model introduced in section 2.3.1. The exten-
sion is the following three points:
(1) Ripple like pre-patterned surface is directly introduced with a more suitable configuration for
the consistent experiment.
(2) Migration barriers for Ag on Ag clusters are introduced.
(3) Atoms in unstable configurations can move continuously without the simulation time progres-
sion.
(4) All activation barriers are boosted by the same boost energy.

For (1), the saw-like asymmetric rippled substrate formed in the experiment is modeled by the
fitting function (2.10) with periodicity l0 = 33 nm, height 2.4 nm (h0 = 1.2), and asymmetric
parameter ǫ = 0.5. Figure 2.22 (a) shows the consistent initial surface and schematic description of
ion incidence angle as well as the surface normal vectors introduced. Because of the initial ripple
structure and the 70◦ incidence angle, the local flux floc is a maximum of the slopes whose normals
point toward the evaporation source and minimum on the slopes of the other side (figure 2.22 (b)).
In fact floc ranges from 20% to 75% of the flux f from the evaporator. This strongly localized
relative flux rate results in oblique angle deposition on a saw-like asymmetric rippled substrate.
This topography of substrate region is held fixed during the simulation.

For (2), the migration barriers for transitions which conserve the number of NN’s, migration
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barriers taken from the literature are utilized. For example, the Ag ad-monomer (adatom) migration
barriers on the (111), (100) and in-channel(110) oriented Ag surfaces are estimated as 0.10 eV, 0.38
eV, and 0.28 eV from the calculations in Ref. [69, 79, 177] respectively. For Ag adatom migration

on the bare substrate, the barrier E
Ag/SiO2
m =0.20 eV and the adsorption energy E

Ag/SiO2

ad =0.245-

0.300 eV are employed. The variation of these energies ∆E ≡ E
Ag/SiO2

ad −E
Ag/SiO2
m , together with

the Boltzmann factor e−∆E/kT determines the probability of desorption or adatom jump on the
substrate. The simulation temperature is held fixed at 300 K.

The condition (3) is a small modification to the simulation algorithm, but may bring a significant
difference in the results. The motivation for this correction is that the configuration appearing in
the previous model is sometimes not so easily assumed in the sense of quasi-equilibrium atomic
states in the discrete fcc grid. For example, if an atom hops to the position overcoming an ES
barrier to go down the step, the atom stays in the intermediate position possessing less NNs than
the previous position as well as any neighboring position in the down terrace. Although an atom
in such a position does not stay even over the MD simulation time scale, it remains there until the
next jumping term in the MC iteration. In order to avoid a statistical error accumulation resulting
in such unlikely configurations, the position with less than three NNs are regarded as an unstable
position. Obviously, this modification leads to the error for stable configurations with two NNs in
the fcc grid, but this situation is quite rare.

A particular feature of this extended model is (4). All transition barriers are measured relative

to the migration barrier E
Ag/SiO2
m . Each jump attempt of an Ag atom is accepted with probability

determined from the Boltzmann factor with this renormalized transition barrier. Every transition
event is therefore classified from the level originating from this migration barrier. Each migration
with a barrier under 0.2 eV is assumed as an unstable transition and exhibits free migration without
any appropriation for the simulation time step. Thus, most of the simulation steps distinguish
metastable level transitions with barriers above 0.2 eV. We term this the boost energy. A fuller
description of the migration barrier estimation as well as details of the rate-based optimization
method is presented in chapter3.

In this rate-based (RB) KMC model, the depositing atoms are set in the positions exposed to
the trajectories and only the kinetics of Ag atoms are considered. The atoms detaching from Ag
NCs or the substrate including desorbent ad-dimers are eliminated from the simulation immediately.
Concerted motions, grain boundaries, reflection and surface drifting on impact are excluded. Under
this scenario the migration barrier of Ag adatoms on the substrate is close to the desorption energy
and arriving Ag adatoms are easily released to the vacuum and thus a short AL is expected. The
boost energy 0.2 eV accelerates the simulation speed with a factor of e0.2/kT ∼ 2290. A typical
growth process takes two or three CPU days on a modern single processor machine whereas a
traditional KMC simulation might require some decades of computation time to obtain a similar
surface coverage!

2.4.2 Simulation result

The result of this extended cluster growth simulation which is the most similar to the experimental

observation is obtained with the parameter ∆E = E
Ag/SiO2

ad − E
Ag/SiO2
m = 0.06 eV at T = 300

K. The factor ∆E/kBT for AL is as same as the best fitting cases (3a) and (2c) of the previous
simulation model. The total simulation time is 1.2 × 107 t for 6 ML Ag accumulation. In this
case, Ag atoms equivalent to 17.1 ML of Ag atoms are deposited with 35% remaining on the
surface in total. Comparing the experimental duration of 75 min with the total simulation time
of 1.2 × 107 t yields 1 t = 3.75 × 10−4 s, giving a consistent simulation flux of f =0.0038 ML/s.
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Figure 2.23: Left: The adatom lifetime as a function of the mean migration area of an Ag adatom and the
Ag NC growth modes of three examples are shown (cf. figure 2.13). The circles (◦) indicate data obtained from
the simulations with parameters ∆E =0.045-0.100 eV at 300 K. The insets show typical traces of surface adatom
random-walks with the color scale indicating the sequence of atomistic movements; a, b and c are with parameters
∆E=0.045 eV, 0.060 eV and 0.100 eV respectively. Right: The corresponding Ag surface morphology after a mean
coverage 6 ML with three different viewpoints for each case.

The surface diffusion coefficient D for the (100) oriented surface is D =0.167 lu2/t corresponding
to 1.85×10−17 m2/s. Figure 2.23 left shows again the diagram of the mean area of adatom surface
surface migration with its expected residence time (figure 2.13). The insets in the left diagram of
figure 2.23 show typical migration traces of adatom random-walks and the right diagram shows
three dimensional views of a 6 ML Ag cluster distribution for ∆E = 0.045 eV (a), 0.060 eV (b),
and 0.100 eV (c) respectively.

a is the shortest AL sample with the binding energy EAg−SiO2

b = 0.245 eV. The total sticking
probability is only 18% (i.e. 82% of deposited atoms evaporate). Arriving atoms rarely stick at
first, even in the relatively high local flux regions. Nucleation occurs by Ag atoms depositing
directly onto preformed Ag clusters which remain in the system while atoms deposited onto the
bare substrate are mainly evaporated. The mean AL is 17.1 t∼6.41×10−3 s and the mean migration
area is 0.41 nm2. This shows that a large number of Ag NCs with the VW growth mode is observed
only in high deposition regions and that the NCs tend to grow in the direction of deposition. Ag
accumulation therefore strongly enhances the small surface topography variation. b and c are the
nucleation pattern when EAg−SiO2

b = 0.26 eV and EAg−SiO2

b = 0.30 eV respectively. Although these
variations in binding energy are quite small, the adatom lifetime of metal monomers on the bare
surface is prolonged exponentially with increasing binding energy. In the b diagram, nucleation
occurs constantly in the high flux region of the surface and a coalescence of small Ag clusters is
observed. A few clusters are also observed to grow in the low flux region. In total 35% of Ag atoms
remain in the system. Experimentally observed Ag nanowires are quite close to this type of growth
mode. The parameters corresponding to b give the best fitting to the SEM picture. The mean
AL is 30.6 t∼1.15×10−2 s and the mean migration area is 0.62 nm2. Nucleation occurs frequently
in the peak deposition region and coalescence of NCs is promoted there. In the c diagram, the
sticking probability is 82% and nucleation can occur overall on the substrate surface with the Ag
accumulation following almost as same trend as the local flux distribution of figure 2.22(b). This
is the longest AL sample and here the mean AL and migration area are 143.6 t∼ 5.39×10−2 s and
2.14 nm2 respectively.

These results predict that the type of NC growth can be tuned by controlling the substrate
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Figure 2.24: a Micrograph of the deposited Ag nanorods and NCs. b The simulation result from the Ag PVD
model with a mean coverage of 4 ML. c Atomic scale NC growth process at the simulation time 10% (i), 50% (ii)
and 100% (iii) of the growth stage indicated by the rectangle in b. Arrows in b, c-i exhibit the azimuthal direction
of the incoming Ag flux.

temperature, the incident angle and flux to promote an effective coalescence along the surface
topography due to the AL of metal adatoms. Indeed, for Co, which possesses a much higher
adsorption energy to v-SiO2 than of Ag, we observed selective nucleation of type b after heating
pre-patterned substrates up to 1200 K, while overall nucleations similar to type c were observed at
RT [191]. Under a high flux the tendency of nucleations shifts a → b, b → c and vice versa. From
the graph of figure 2.23, a linear flux dependency of the nucleation pattern is expected for a long
AL while a striking amplification of the underlying surface topography is observed for a short AL.

2.4.3 Comparison with experiment

In the experiment, nucleation is mostly observed in narrow stripe-like regions where the local flux
is highest. Rapidly growing NCs in the high local flux region coalesce and become nanorods. The
more slowly growing NCs located in the lower flux region remain as satellite clusters but there is
some evidence of incomplete nanorod formation close to the well-formed nanorods where the flux
is not quite so high. figure 2.24 (a) and (b) show the direct comparison (top views) between the
magnified SEM image (a) and the model (b). A similar formation of Ag nanorods and satellite

NCs is obtained from the RB-KMC simulations with E
Ag/SiO2

ad =0.26 eV, i.e. ∆E = 0.06 eV. The
simulation result is the same as in figure 2.23 b with a different random number seed. This ∆E
agrees nicely with the value expected by (2.22) and the adsorption energy is also closed to the DFT
calculation of Ag adsorption energy on regular oxygen site 0.23 eV as well as regular Mg site 0.22
eV on MgO(100) [256] introduced in chapter 1.1.2.

Figure 2.24 (c) shows three different growth stages of NCs. In the early stages, nucleation is
concentrated on the slopes facing the incoming atoms. Two small Ag particles with the diameter
2 nm and the height 1.2 nm (6 layers) are observed (i). Less nucleation occurs in low local flux
regions due to a high re-emission rate. Further deposition promotes VW growth preferentially
along the ripple due to NC coalescence (ii). The height is around 4.1 nm, the width and length
are 5 nm and 12 nm respectively. Various growth stages of the Ag NCs can be seen due to the
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time difference between nucleations. As more Ag is deposited, the KMC algorithm minimizes the
surface free energy of the NCs and their shapes attain a form that would be expected from purely
thermodynamic considerations (iii). The top of the NC is 5.4 nm high from the substrate; the
width is 10 nm. A round shape appears typically on the deposition side of the NC whereas the
other side is faceted.

Although ad-dimer desorption occurs in the simulation, this is less than for ad-monomers due
to the model restriction of concerted motions. However, the adhesion energy of an Ag dimer on
SiO2, calculated by DFT, is lower than the Ag monomer even on a defect site [81]. Thus, ∆E can
be a little larger than suggested here due to a high desorption rate of ad-dimers. Desorption of
larger NCs is not observed and in any case a high adhesion energy of trimers is also predicted by
DFT [81].

2.5 Summary

In summary, the Ag cluster growth mechanism on ripple-like pre-patterned v-SiO2 is investigated
by the continuum equation of reaction diffusion on slightly pre-patterned surfaces, the sticking
probability, surface ad-monomer random walks, morphology- and incident angle dependent local
flux rate, Ag area fraction growth, and the cluster formation process. The experimentally observed
Ag NCs grown on rippled templates have been successfully reproduced by the introduction of a
new type of KMC simulation method, the RB-KMC method. The coalescence of NCs is promoted
mainly in high flux regions and less nucleation occurs in low flux regions due to re-evaporation from
the substrate. This theoretical work predicts that millisecond order lifetimes, and ≈1 nm square
surface migration ranges of Ag adatoms can trigger metal nucleations even on defect free surfaces.
The nucleation density is influenced strongly by the AL of metal adatoms on templates as well as
the flux, especially for a short AL and the amplification of the initial pre-patterned surface is highly
enhanced in a certain low flux regime.
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Chapter 3

A Markov chain model of transition
states

In this chapter, a theoretical background for the rate-based KMC simulation scheme introduced
in the previous chapter is more fundamentally discussed. The corresponding classical harmonic
transition state theory applied in discrete lattice cells with hierarchical transition levels is considered
[173].

The scheme used to determine transitions in the lattice-based KMC simulation model leads to
an effective reduction of simulation steps by utilizing a classification scheme of transition levels for
thermally activated atomistic diffusion processes. These atomistic movements are considered as
local transition events constrained in potential energy wells over certain local time periods. These
processes are mathematically formulated and represented by Markov chains of multi-dimensional
Boolean valued functions in three dimensional lattice space. The events controlled by the barriers
under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted
freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain
of equivalence class objects. It is shown that the process can be characterized by the acceptance of
metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on
a rippled surface. The simulation predicts the existence of a morphology dependent transition time
limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent
agreement with observed experimental results is obtained.

3.1 Acceleration of thin film growth simulation

Atomistic modeling of the growth of thin films or self assembled monolayers has attracted much
attention over recent years due to the large number of technological applications in the field of
nanotechnology [30, 124, 142]. Usually these models include a description of the interaction field
between the atoms of the differing species in terms of a potential energy function. The deposition
simulation then proceeds either by the addition of another species onto the surface or as a diffusive
process where atoms rearrange themselves on the surface. Classical MD simulations to model the
growth process have been carried out but usually these involve unrealistically fast deposition rates
because the diffusive processes are dominated by rare events and would therefore require extremely
long computing times beyond the scope of present computers. KMC simulations of the growth
processes have also been performed but in many cases this has required a pre-knowledge of the likely
transitions and their barriers since to calculate these on-the-fly has also been a computationally
expensive process.
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Recently however some progress has been made into the problem. For example Sprague et al
[215] have shown by using TAD [214] that surface growth patterns of Cu deposited on Ag(001) are
completely different than those that would arise without a proper description of surface diffusion.
Henkelman and Jónsson proposed a method finding configuration energy saddle point using two
different replicas of the system [99]. The coordinations of two replicas are slightly displaced by a
fixed distance from each other like “dimer”. The saddle point is explored by moving the dimer uphill
on the potential energy surface from the vicinity of the potential energy minimum of the initial
state up towards a saddle point. Combining this dimer method with KMC simultaneously, the
algorithm calculates a long time scale system evolution on-the-fly, e.g., millisecond order Al(100)
crystal growth [76, 101]. Other authors have also begun to study the growth process by KMC
with calculating the transition barriers on-the-fly [195, 233]. There are however still many unsolved
problems especially when the potential energy surface is such that there are lots of small transition
barriers that only correspond to atomic vibration rather than a transition to a new state. In
addition calculating barriers on-the-fly is computationally expensive.

However even when a traditional KMC process [165] is driven by a look-up table, simulations
can be inordinately long when there are some transitions that are governed by very small energy
barriers but where the main processes that drive the system have much higher barriers. A key aim
of this work is therefore to develop a KMC method that will allow the main escape paths and rate
constants to be determined quickly but at the same time will capture the essential physics.

To develop the methodology, the general concept of atomistic evolution induced by thermally
activated kinetics in a discrete space is considered. A new calculation method including an alter-
native algorithm for a lattice-based KMC simulation is presented and applied to the problem of
nanocluster growth on rippled surfaces. The basic idea of the simulation model is the classification
of various transitions into unstable, metastable and stable (no) transition levels with their transition
probabilities depending on local configurations. Under the assumption that metastable transitions
dominate the entire system evolution, the optimization of their efficiency provides a method to pre-
dict the statistical behavior over an extremely long time. This approach can be represented with an
oriented graph, considered as an extended percolation-model of Fortuin and Kasteleyn [86]. The
transition states of cluster growth evolution induces oriented edges which essentially differ from
atomistic interactions based on their application to the Ashkin-Teller-Potts model [11, 188].

This chapter is laid out as follows. In section 3.2, some terminologies of the mathematical
description of the model utilized in this work are defined. In section 3.3 every transition event is
classified into two types, the first caused by an external factor and the second by a thermal fluctu-
ation. The evolution process induced by the latter type is then localized for the use with the KMC
simulation. Section 3.4 discusses the efficiency of the local transition events to the entire system
evolution by the introduction of the equivalence class of the fluctuation. The implementation of
the modified KMC algorithm is also described. A concrete application to physical vapor deposition
(PVD) experiments is presented in section 3.5, where the basic physical growth mechanisms and
the stability of the formation process are also discussed. Finally, the effect of modified Metropolis
algorithm to the convergence limit distribution of microstates is analyzed in section 3.6.

3.2 Definitions

In this section several basic terminologies are given.

Let L := Znx × Zny × Znz be a 3D lattice space with the spatial periodicity (nx, ny, nz) for
nx, ny, nz ∈ N∪{∞}. We define an object Ω on L as a Boolean-valued function. A q-colored object
Ω is a q + 1-valued function on L, i.e. all mappings of L → {0, 1, ..., q}. The total number of q-
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colored objects is clearly (q+1)ncell , where ncell = nx×ny×nz. The number of colors q corresponds
to the number of materials treated in the target simulation. The set of all objects on L is denoted
by O(L). For Ω ∈ O(L), |Ω| denotes the number of cells occupied by atoms. For the case of q = 1,
O(L) is simply a Boolean representation of the simulation lattice system consistent with the bit
encoding of the system [97].

A functional Φ on O(L) is defined as a mapping from O(L) to the real numbers R, for example,
the total potential energy of the system.

A morphism f of O(L) is a mapping from O(L) to itself. The total number of morphisms of
O(L) is (q + 1)ncell(q+1)ncell . The q′-generator gq′,u and the annihilator au for each point u ∈ L

and q′ = 1, ..., q are morphisms of O(L) defined as

gq′,u ◦ Ω(v) =

{

q′ (v = u ∧ Ω(v) = 0)
Ω(v) (otherwise)

(3.1)

au ◦ Ω(v) =

{

0 (v = u)
Ω(v) (otherwise)

(3.2)

for all v ∈ L and objects Ω ∈ O(L). Let ℘ := {gq′u, au : u ∈ L, q′ = 1, ..., q} be the composition of all
generators and annihilators. Define ℘∗ to be the set of minimal representations of those morphisms
containing the null product as the identity morphism.

For Ω,Ω′ ∈ O(L) an ordered pair (Ω,Ω′) is called a transition event from Ω to Ω′ and denoted
also in the text by Ω → Ω′.

The composition of morphisms fm ◦ fm−1 ◦ ... ◦ f0 ◦Ω on L induces the Markov chain of objects
Ω0 → Ω1 → ...→ Ωm, where Ωm′ = fm′ ◦ ...◦f0◦Ω0 for m′ = 0, ...,m. For a Markov chain of objects
M ≡ Ω0 → ...→ Ωm, |M| denotes the length m of the chain. The Markov chain M together with
the potential energy functional Φp induces the sequence of real numbers Φp(Ω0) → ... → Φp(Ωm)
which indicates the evolution of the system’s potential energy.

3.3 Transition states of Markov chains

3.3.1 Local transition events

In an atomistic simulation of a solid, the system evolves either through a modification induced
by external factors e.g. a deposition event, through internal dynamical processes that occur more
quickly than thermal fluctuations at a constant temperature T or by internal rare events which
occur over longer time scales. It is these internal rare events that will be the focus of the work here,
i.e. every internal transition event (Ωl,Ωl+1) is temporally well separated and each microstate of
objects is regarded as a quasi-equilibrium state at T .

We assume that the transition Ωl → Ωl+1 has the unique decomposition into the elementary
transition states induced by an atomic jump attempt including exchange Ωl = ν0 → ... → νs′ =
Ωl+1. These jump events are assumed to occur locally, i.e. the interaction distance is restricted
so that an atomic jump occurs only to the nearest, or second nearest neighbor position. one
of the morphisms fj(q

′, u, u′) := gq′u′au (jump) including the identity, id and fe(q
′, q′′, u, u′) :=

gq′ugq′′u′au′au (exchange) for certain atomic types q′, q′′ and the positions u, u′ ∈ L. Note that if
u = u′ then fj ≡ id. From the sequence of transition events (ν0, ν

at
1 ), (ν1, ν

at
2 ), ..., (νs′−1, ν

at
s′ ), if an

attempt (νj , ν
at
j+1) is accepted, then νj+1 = νatj+1, otherwise νj+1 = νj . Set

℘∗
loc :=

⋃

u∈L
{fj , fe : |u′ − u|L ≤ r; q′, q′′ = 0, ..., q}.
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The transition events ν → µ of the objects ν, µ ∈ O(L) induced by f ∈ ℘∗
loc will be termed local

transition events and the decomposition of the transition event (Ω,Ω′) into the local transition
event together with the sequence of jump attempts will be called the local decomposition of (Ω,Ω′).

From the quantum physical point of view mentioned in chapter 1.3.4, the local transition events
can be generalized easily into the Markov chain indexed by complex numbers in order to handle the
diffusion of particles with the imaginary time evolution. In this case, ℘∗

loc is simply extended with
the addition of the generator and the annihilator as the transition operators from the current real
time step to the next real time step. The statistics of transition sequence connecting two complex
times with different real time components can indicate all possible transition pathways consistent
with the path integral of Feynman [82].

3.3.2 The Monte-Carlo method

Let Ωl → ... → Ωl′ be a sub-chain of events lying between two external modification events.
Consider its local decomposition Ωl = ν0→ν1→...→νs = Ωl′ and set this Markov chain as M. The
total length of the decomposition is

s =
l′−1
∑

t=l

|Ωt|. (3.3)

Now consider simulating this Markov process M with a Monte-Carlo (MC) method. In order
to follow the process M the algorithm is constructed as follows:
(i) for every object νj choose an arbitrary morphism f j ∈ ℘∗

loc,
(ii) each local transition event (νj , f

j ◦ νj) is considered as a jump attempt and accepted with
probability P (νj , f

j).
(iii) after each local transition event a local time consumption, e.g. for an atom i, τj(i) = 1/|νj | is
added to the MC simulation time. If the atom i jumps to a non-equilibrium state, then the jump
attempt continues until it reaches a position considered as an equilibrium state without adding τj .

The process (iii) implies that every transition is considered as the transition between two equi-
librium states that are not always consistent with the nearest lattice positions. Note that one
iteration of the simulation step (i)-(iii) advances the MC simulation time only τj time units and it
continues for j = 0, ..., s− 1.

Let n be the number of total types of events and for k = 1, ..., n, let αk be the acceptance
number of the type-k local transition event in M. Then the n-events acceptance distribution
(αk) := (α1, ..., αn) models the evolution of the system. Since the local transition probability
P (νj , f

j) is a functional of the object νj and the morphism f j that decide the migration barrier;
P is also a function of the migration barrier and categorized into n-types P1, ..., Pn. Without loss
of generality, it is assumed that P1 ≥ P2 ≥ ... ≥ Pn. Then the length s of the Markov chain M is
approximately

s ≈
n
∑

k=1

αkP
−1
k (3.4)

and the total MC simulation time unit tMMCT is

tMMCT = l′ − l. (3.5)

The process of M corresponds to the experimental evolution time and can be extremely long and
impractical to evaluate within reasonable computation time. In the following section we consider
the effective reduction of this process.
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3.4 Effective transitions of objects

In this section, the relation between the accepted event distribution (αk) defined in 3.3.2 and the
fluctuation of the potential energy sequence is considered. This leads to a method to reduce the
number of simulation steps. The effect of this in terms of the thermal fluctuations is discussed.

3.4.1 Convergence of the local fluctuation

The evolution of the system Ωl → ...→ Ωl′ can be monitored through the potential energy sequence
Φp(Ωl), ...,Φp(Ωl′). Denote by Mι the local decomposition of the sub-chain Ωl → ... → Ωl+ι for
ι = 0, ..., l′ − l and M = Ml′−l as in 3.3.2. and set the variation mapping φ : Mι 7→ R as φ(Mι) =
Φp(Ωl+ι) − Φp(Ωl). Then the potential energy sequence is also given by φ(M0), ..., φ(Ml′−l) =
φ(M). Now consider the sequence of the local decomposition Φp(ν0), ...,Φp(νs). In this case, the
potential energy gain (or lost) for the jump attempt (νi, ν

at
i+1) is Φp(ν

at
i+1) − Φp(νi) and it gives a

weight to the local transition event (νi, ν
at
i+1). If the local transition event (νi, ν

at
i+1) is a proper

event of type-k, then denote Epotk := Φp(ν
at
i+1) − Φp(νi). Consequently, for the partial distributions

(αιk), ι = 0, ..., l′− l of the accepted events distribution in Mι, φ(Mι)−φ(M0) = (αιk) · (E
pot
k ). Now

the union

MΣ :=
l′−l
⋃

ι=1

{Mι},

N
n
0 , and R with three mappings, the potential energy difference φ, the accepted events distributions

g : Mι 7→ (αιk) and the weight sum h : (αιk) 7→ ∑n
k=1 α

ι
kE

pot
k can be written in terms of a

commutative diagram :

MΣ
g→ N

n
0

φ ↓ ւ h (3.6)

R.

Since the n-dimensional vector (Epotk ) is constant, one can observe the temporal fluctuations through

the sequence of (α1
k), ..., (α

l′−l
k ). The fluctuations lower the energy with some irreversible transitions

and the system reaches a quasi-equilibrium state. Consider the behavior of the thermal fluctuations
of the micro-canonical ensemble. Set

∆t := l′ − l (3.7)

the time interval of the external modification which is preset in the model, e.g. from experimental
data so that

∆t = tMexpωeff (3.8)

for an experimental time interval tMexp and the average effective transition frequency ωeff of the

system. Note that the corresponding time interval of every event (Ωι′ ,Ωι′+1) is thus ω−1
eff

. Let (αιk)
be the partial distributions of the accepted events distribution in Mι. If ∆t is long compared to
the recovery time from an unusual fluctuation induced by the last external modification to a usual
fluctuation (quasi-equilibrium state), then the convergence of the acceptance of each event αιk → αk
for ι → ∆t is also to be considered. Let ε be the range of the usual fluctuation of the potential
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energy of the system at a temperature T . Then one finds the minimal value ι0 = ι0(ε) with the
property that

|Φp(Ωι′) − Φp(Ωι′′)| < ε

for all ι′, ι′′ ∈ [ι0,∆t], where Φp(Ω) indicates the potential energy of Ω. Denote

θ(ι) :=
ι

∆t
, (3.9)

the convergence factor of the subchain Ωl → ...→ Ωl′ in the sense of the potential energy transition
within the fluctuation range ε. θ(ι0) =: θ0 is the minimum convergence factor in this sense. The
Boltzmann’s entropy S (see chapter 1.3.1 eq. (1.31)) of the system for this quasi-equilibrium state
is therefore given by

S = kB ln |{Ωι : ι ∈ [ι0,∆t]}|. (3.10)

Now consider the contribution of (αιk), ι = 0, ...,∆t for the entropy calculation. Let (αtk) be the
continuum extension with respect to the time parameter ι of (αιk). Then the dissipation of unusual
fluctuations implies ∂tα

t
k = 0 for t > ι0 and for usual fluctuations the derivation ∂tα

t
k remain.

These types of events compose the thermal fluctuation. The set of microstates consistent with the
fluctuating system is the set of all accessible states with the screened transition types, i.e.

{Ωι : ι ∈ [ι0,∆t]} = [Ωι0 ]

where [Ωι0 ] is the equivalence class of objects connected by the pathways consisting of type-k
transitions with ∂tα

t
k 6= 0 for t > ι0. These transitions are small barriers and the introduction of

an equivalence class for the whole process is the core idea of the modified MC algorithm described
in section 3.4.3. Due to the principle of equal a priori probabilities, every microstate belonging to
the class [Ωι0 ] appears with same probability in the sequence Ωι0 → ... → Ωl′ . Consequently, it is
enough to consider the Markov chain Mι0 to follow the essential system evolution. The convergence
factor (3.9) indicates how the physical process is shortened.

Since the number of transition attempts, i.e. the effective jump frequency, is independent of
the system evolution, the length of the local decomposition Mι is approximately

|Mι| ≈ θ(ι)s =
ιs

tMMCT

. (3.11)

from eq.(3.5), (3.7) and (3.9)

3.4.2 The importance of individual local transitions

The contribution of each local transition event to the entire system evolution is not straightforward.
Clearly, for a high transition probability Pk a large number of αk is expected. However, the number
of accepted jumps also depends on the frequency of occurrence of the configuration. The frequency
of occurrence distribution can be represented as

(βk) := (α1/P1, ..., αn/Pn). (3.12)

The quantity βk is called the attempt frequency of the type-k event. The relation βk < βk′ implies
that the configuration giving the type-k′ transition is more preferred than the type-k transition
event. An excessive acceptance of certain types of event does not always mean a change. For
example, an adatom deposited on a flat crystal surface can diffuse around until it reaches a defect
or a step edge. During diffusion, the correlation between the deposition point and the current
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position is lost and only when the adatom finally reaches a binding site does the system evolution
proceed further. The crucial evolution of the system occurs with a metastable state transition such
as overcoming a step-edge barrier. The model should ensure that the total potential energy does
not change substantially through the reduction in the number of αks that the evolution of system
is misdirected.

The activation energy barrier border between the unstable (usual fluctuations) and metastable
states is defined to be as the boost energy Ebst and all activation energies above Ebst are considered
as effective migration barriers contributing to unusual fluctuations. The boost energy is a pa-
rameter that needs to be carefully set for each simulation so that the dynamics is not distorted by
choice of too high a factor. Let Pn0 be the transition probability induced by the smallest effective
migration barrier. Now consider the identification of transitions with small fluctuations. From the
mathematical point of view, this coarse graining introduces the equivalence relation in the set of
all objects ν, µ ∈ O(L) as follows:

ν ∼ µ⇔ ∃a ∈ N, ∃f1, ..., fa ∈ ℘∗
loc;

µ = fa...f0 ◦ ν
with P (fa′−1...f0 ◦ ν, fa′) > Pn0

for a′ = 1, ..., a.

The corresponding equivalence class of objects is [ν] in O(L). In the worst case, namely for a system
with a high entropy, each equivalence class retains all possible configurations consisting of identical
atoms. However, if high potential barriers separate the states, then this enhances the effect of the
metastable transitions.

The potential energy of the class [Ω] is defined as the following interval of the energy range

inf
Ω̃∈[Ω]

Φp(Ω̃) ≤ Φp(Ω) ≤ sup
Ω̃∈[Ω]

Φp(Ω̃),

which represents the usual fluctuation range of the microstate Ω denoted by Φp([Ω]). The transition
probability P([ν], [µ]) of the equivalence classes [ν] → [µ] may be defined as the expected value of
all transition paths

P([ν], [µ]) =











1 ([ν] = [µ])
∑

ν′
f→µ′

P (ν ′, µ′)
wloc([ν], [µ])

([ν] 6= [µ]), (3.13)

where wloc([ν], [µ]) is the number of all such local transition pathways and the summation ranges
over all local transition events from ν ′ ∈ [ν] to µ′ ∈ [µ] induced by local translation morphisms
f ∈ ℘∗

loc. The Markov chain of the equivalence classes of objects [Ω0] → ... → [Ωl] induces the
sequence of fluctuating potential energies Φp([Ω0]) → ... → Φp([Ωl]). Note that if Ebst is smaller
than the minimum migration barrier, i.e. n0 = 1, then [Ω] = {Ω} and Φp([Ωl]) = {Φp(Ωl)}.

By introducing this classification method the acceptance of the local transition probability with
small barriers is maximized and the time spent to distinguish the local transition events with small
barriers is considerably reduced.

3.4.3 The modified algorithm for effective transition states

The modification P ′
k of the transition probability Pk for the type-k local jump attempt described

in 3.4.2 is implemented as:

P ′
k =

{

1 ( k < n0)
Pk/Pbst ( otherwise)

(3.14)
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for the boost probability Pbst corresponding to the acceptance of the highest barrier Ebst within
the usual fluctuations, The local time consumption τ ′(i) of this type-k transition attempt of atom
i is set as

τ ′(i) =

{

0 ( k < n0)
τ(i) ( otherwise).

(3.15)

So every simulation step which is spent for the transition with barrier less than Ebst does not
advance the time step.

Now consider a KMC simulation with the algorithm mentioned above. Let M′ ≡ Ωl = ν0 →
ν ′1 → ... → ν ′s′ be the Markov chain describing the simulation consisting of the local transition
events with the modified acceptance probability (3.14). Assume M′ reproduces the experimen-
tally observed evolution process and let (α′

k) = (α′
n0
, ..., α′

n) be the corresponding accepted event
distribution. If the system evolution excludes this probability translation, then the number of ac-
cepted events for the effective transitions should be approximately the same as the number of those
transitions in Mι for some ι ≥ ι0, i.e.

αιk ≈ α′
k for k = n0, ..., n. (3.16)

It is important that the system evolution proceeds according to the property (3.16).
The translation mapping (3.14) enhances the acceptance of effective transitions linearly while

one might expect a continuous dynamical evolution would induce a nonlinear enhancement. This
also affects the attempt frequency (3.12) of effective transitions, from preferred local configurations.
If various metastable transition events determine the system evolution, then the relative acceptance
ratio plays a crucial role in the formation of local configurations and a nonlinear translation of (Pk)
would therefore have a high risk of losing the correct evolution of the system since it does not keep
the same relative acceptance ratio.

For the Markov chain Mι, the length is θ(ι)s from eq.(3.11) and can be represented as

θ(ι)s = δbst +

n
∑

k=n0

αιkP
−1
k (3.17)

from the same argument by (3.4), where δbst is the number of simulation steps spent for local tran-
sition events with small barriers ≤ Ebst. Since the translation mapping for the effective transition
events is linear, a reduction in the time required for the Monte Carlo simulation with the boost
factor P−1

bst is expected. The total length of M′, describing the simulation system evolution is

s′ := δ′bst + Pbst

n
∑

k=n0

αιkP
−1
k . (3.18)

Hence, if the Markov chain M′, i.e. the KMC simulation, reproduces the experimentally observed
evolution process with the reduced simulation steps s′, then the reduction expectancy in the number
of simulation steps |M′|/|M|(= s′/s) is given by the relation

s′

s
=
δ′bst
s

+ Pbst

(

θ − δbst
s

)

, (3.19)

from eq.(3.17) and eq.(3.18). Additionally, if the number of total atoms in the system is relatively
stable during the original Markov process M, one can estimate the length |M| as

s ≈ tMexpωeff |Ωl|, (3.20)
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from eq.(3.3) and eq.(3.8). Similarly, since the MC simulation time counts the number of the
effective transitions with (3.15), it follows that

s′ − δ′bst ≈ tM
′

MCT |Ωl| (3.21)

for the MC simulation time tM
′

MCT of M′. Moreover, the maximization of the small barrier transition
acceptance (3.14) implies

δbst
s

< θ(ι)
δ′bst
s′
. (3.22)

Thus one can evaluate the convergence factor θ with eq.(3.19)-(3.22) and the simulation value s′, δ′bst
as

tM
′

MCT

tMexpωeffPbst
< θ(ι) <

tM
′

MCT

tMexpωeffPbst

(

1 − δ′bst
s′

)−1

. (3.23)

The relation (3.23) indicates the stability range in the sense of the evolution speed of the system
which can be reproduced by the consistent modified KMC simulation M′. In other words, a success
of reproduction by M′ guarantees the existence of the convergence factor θ(ι) > θ0 in this range.
For the minimum Markov chain Mι0 and the convergence factor θ0, the minimum KMC time range
required is from (3.23)

tMexpωeffPbstθ0

(

1 − δ′bst
s′

)

< tM
′

MCT < tMexpωeffPbstθ0.

Thus the possible reduction rate of simulation time is from (3.5), (3.7), (3.8) and this argument

tM
′

MCT

tMMCT

∼ Pbstθ0. (3.24)

Note that if Pbst is chosen so small that Ebst exceeds the usual fluctuation range of the system, the
simulation can not follow the evolution process accurately.

3.5 Cluster growth simulation models

Although the method described in the previous sections is general to many lattice-based systems, a
strong motivating factor for its development was an understanding of experimental work of Ranjan
et al [190], concerned with the deposition of Ag clusters on silica surfaces where ripple structures
had been pre-patterned using an ion beam described in the previous chapter. In this section, the
detail of the extended model mentioned in chapter 2.4 together with Au PVD and the application
to this problem are described.

The initial surface is shown in Figure 3.1 with three clearly defined ripple peaks along with the
direction at which the Ag atoms deposit. The ripple shape is an excellent approximation to the
cross-sectional transmission electron microscope image of the SiO2 substrate (figure 2.6 (a)). The
asymmetrical ripple surface shown in figure 3.1 is set as Ω0 and held fixed during the simulations.
This substrate is also chosen to be commensurate with the metal crystal overlayer. Ag atoms
are deposited homogeneously with the incident angle θ = 70◦ to the mean surface normal and
perpendicular to the ripple direction. The local flux,floc, ranges from 20% to 75% of the flux f
from the evaporator due to the surface slope and the deposition angle in this case. SiO2 is regarded
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Figure 3.1: The initial surface of the simulation model, together with the direction of the arriving flux from the
evaporation source (perpendicular to the ripple structures). The asymmetrical ripple shape is fitted to represent the
rippled v-SiO2 surface shown in figure (2.6)(a).

as an homogeneous material and therefore q = 2 in O(L), namely, the metallic atoms are regarded
as the type-I atoms while every SiO2 component is type-II.

The internal modification of the system (local transition morphisms ℘∗
loc) is handled by single

atomistic jumps of type-I atoms to the NN empty positions as the local transition. Concerted
motions are not allowed. The external modification to the system occurs through the deposition
of metal monomers. The depositing atoms are simply set in the positions exposed to the incident
trajectories and neither reflection nor surface drifting on impact is considered. The atoms detaching
from metallic clusters or the substrate are regarded as re-evaporated atoms and eliminated from
the simulation. Thus there is no effect of re-deposition of atoms returning to the gas phase.

The KMC simulation proceeds either by a single deposition event on to the surface or through
the jump of a surface atom. The relative frequency of a deposition event is chosen to match
experimental flux rates but the acceptance or otherwise of a candidate jump event is determined
from energies obtained from the geometrical arrangements and types of the neighboring sites. The
way in which these energies are determined is given in the next section.

3.5.1 The configuration energy and migration barriers

For a type-I atom i, let nIi and nIIi be the number of type-I, and type-II NN atoms, respectively.

The potential energy Ei of i is defined from eq. (2.36) as Ei = −ζ
√

nIi + AnIi − EM−SiO2
i (nIIi ),

with parameters ζ=1.8352 eV (M→Au), 1.1663 eV (M→Ag), A=0.2179 eV (M→Au), 0.09982 eV
(M→Ag) [92] and EM−SiO2

i (nIIi ) is the metal-SiO2 interaction term given by eq. (2.37) for each
metal. The potential functional Φp is defined as

Φp(Ω) =
∑

i

Ei,

where i ranges all type-I atoms in Ω ∈ O(L).
Let ν ∈ O[L] be an object. For two sites uini, ufin ∈ L, let uini be the positions where the atom

i is located and ufin be an empty NN position of uini represented by ν, i.e. |uini−ufin| =
√

2 [l.u.],
ν(uini) = 1 and ν(ufin) = 0. For a local transition morphism f := fj(1, uini, ufin), set ν ′ := f ◦ ν.
Then the migration barrier Em(ν, f) is given by

Em(ν, f) =







0 (Φp(ν) > Φp(ν
′))

Φp(ν
′) − Φp(ν) (Φp(ν) < Φp(ν

′))
Emig(ν, ν

′) (Φp(ν) = Φp(ν
′))

(3.25)
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|N I
i |(=|NNI

f |) 0 1 2 3 4 5 6 7

|N I
c | = 0 0 0 0 E

(111)
mig E

(100)
mig E

(110)
mig 0 0

|N I
c | = 1 0 0 E

(111)
mig E

(100)
mig E

(110)
mig 0 0 0

|N I
c | = 2 0 E

(111)
mig E

(100)
mig E

(110)
mig 0 0 0 0

|N I
c | = 3 E

(111)
mig E

(100)
mig E

(110)
mig 0 0 0 0 0

|N I
c | = 4 E

(100)
mig E

(110)
mig 0 0 0 0 0 0

Table 3.1: Migration energy list Emig(ν, ν
′) for type-I interactions. |N II

∗ | = 0 for every case. The barriers in the

table are estimated from the literature adatom migration barriers on the (111), (100) and in-channel (110) oriented

surfaces with the same neighbor configurations. E
(111)
mig =0.04-0.10, 0.07 eV (Ag [69, 177],Au [69]), E

(100)
mig =0.38,

0.51 eV (Ag [69],Au [69]), E
(110)
mig =0.28, 0.23 eV (Ag [79],Au [69]). The zero barriers correspond to transitions and

configurations which have been tested by numerical experiment to be so unimportant that an accurate determination

is unnecessary.

where Emig is the migration barrier list for potential energy conservative transitions determined
from literature values and described in more detail below. The advantage of this functional (3.25)
is to give a quick estimation of the migration barriers such as the ES barrier (see chapter 2.1.2)
and various surface migration barriers during the atomistic movement along the network of fcc
sites. In the first case of (3.25), the model assumes that the transition barrier is negligible if the
final configuration ν ′ is more stable than the initial configuration ν. Particularly it allows atoms
overcoming the ES barrier to move freely until they reach stable positions. This could cause however
an error if the initial configuration ν is already a quasi-equilibrium state.

For the case of the symmetric configurations due to the NN environment of the initial and the
final states where the RGL potential does not change, the migration barrier list Emig(ν, ν

′) shown in
Table 3.1 is utilized. The cases shown with the zero barriers refer to transitions that are either rare
or whose contribution is negligible. The other cases where the initial, final and common number
of nearest neighbours are the same as in the cases of adatom transitions on surfaces, data from
the literature corresponding to these values are used. The transition barriers for the type-I atoms
are estimated from the adatom migration barriers on (111), (100) and in-channel (110) oriented
surfaces calculated in Ref.[69, 79]. Although these values are the best estimates for the surface
transitions they may be less accurate for some other configurations possessing the same number of
|N I

i |, |N I
f | and |N I

c |. The migration barrier for the case of the symmetric configurations including

type-II atoms is assumed as the constant E
Ag/SiO2
m (see chapter 2.2.3).

Figure 3.2 shows examples of some configuration energies of atoms located in various positions
and a step-edge barrier. Each Ei is calculated by eq.(2.36) and the step-edge barrier Em = 0.39 eV
for the transition indicated is derived for the transition of type (|N I

i |, |N I
c |, |N I

f |) = (2, 1, 1), with
the average NN site occupation n̄ = 8.5 (∗ in figure 3.2).

In figure 3.2, the atom i has been deposited on the part of the surface which appears to be an
island with a (111) surface orientation whereas the atom with Ei = −1.93 eV is located on an island
with a (100) surface. Compared to all other atoms belonging to the (111) island, the configuration
energy of i is quite high. Even for the relatively high energy atom located along the edge of the
island, the reverse migration barrier climbing up to the island top is at least Em = 0.98 eV with
the transition type (3, 2, 0). Such an event is unlikely to happen and thus the adatom i will be
constrained to the island (see also figure 3.6). The migration barrier of i on Ag(111) is 0.04-0.10
eV by Table 3.1. Since this barrier is quite small in any case, following the scheme outlined in the
previous section is regarded as a usual fluctuation.
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Figure 3.2: The atomistic landscape during an Ag PVD simulation: the Ei values indicate the configuration energy

change for an atom depositing at the arrowed site, calculated from eq.(2.36).

The transition probability P for the migration barrier Em(ν, f) is assumed to follow the Arrhe-
nius law with a constant prefactor for all transitions

P (ν, f) = exp{−Em(ν, f)/kBT}, (3.26)

where the local time consumption for atom i is

τ(i) =
1

|ν| .

All the sites possessing at least 3 occupied NN sites are considered as equilibrium configurations
and the atom i continues jumping until it gains such a configuration with local time consumption
1/|ν|.

For the initial nucleation distribution, the optimal values EAg−SiO2

b = 0.26 eV, EAu−SiO2
b = 0.24

eV are found during simulations and it is these energies that are used to determine the lifetime
of metal adatoms on the SiO2 surface by (2.37). A similar adhesion energy range of Ag, 0.23 eV,
on regular oxide site of MgO(100) surface is also predicted by DFT calculation [256] whereas a bit
higher energy is expected for Ag/SiO2. Each transition probability is determined by the primary
local configuration with (3.25) and (3.26).

Sequential evolution of a cellular system determined automatically by the precursory local
configuration is called a cellular automaton [245]. Wolfram classified the cellular automata into
four classes with respect to the type of time evolution. A class 1 object is the type such that
all initial patterns evolve quickly into a stable, homogeneous state. If the system evolves quickly
into a stable or periodically oscillating structure with remaining some initial randomness, it is
categorized as class 2. A class 3 object evolves in a preudo-random or chaotic manner from any
initial patterns. If the randomness and a stable or oscillating structure are outcome for relatively
long time period, it is in class 4. Local changes to the initial pattern may spread indefinitely. Due
to the probabilistic determination1 and the complex transition process along the local topography
with the deterministic potential field, the entire system evolution between the external modification
can be regarded as a class 4 object of a three dimensional (3D)-cellular automaton.

1Usually a cellular automaton is deterministic and not statistical.
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Figure 3.3: The effective migration barriers estimated by the RGL potential with the parameters [92] for Au and

Ag. Totally 4039-types (Au) and 4712-types (Ag) of effective transition events are accepted during a MC simulation

time of 1.2× 107 units.

3.5.2 Transition events

For all positive migration barriers determined by (2.39) let Em1 , ..., Emn be the barriers with Em1 <
... < Emn . Set Pk := exp{−Emk/kBT}. For the both PVD simulations the surface transitions

P ′
k := exp{−ϑ(Emk − Ebst)/kBT} (3.27)

is considered with Ebst = 0.20 eV. In arriving at this number some simulations were carried out at
different Ebst values. With Ebst = 0.30 eV, the simulations ran even quicker but the system evolution
is distorted because of the barriers associated with the dominant processes of the migration of metal
monomers in the in-channel direction on the (110) oriented surface. These are 0.28 eV for Ag and
0.23 eV for Au. For a value of Ebst = 0.10 eV, the nanostructures showed no observable difference
to those formed with Ebst = 0.20 eV. ϑ is the temperature factor which should be close to 1 by the
argument in section 3.4.3. Since the PVD experiments were carried out at the room temperature,
the temperature parameters are set as ϑ = 1 and T = 300K during the simulation.

As a result of the choice of Ebst, all transition events under a barrier 0.20 eV possess the same
acceptance ratio 1. Thus the number of the acceptances for every such event depends only on
the frequency of its configuration occurrence. The boost probability Pbst, defined in 3.4.3, is thus
Pbst = exp(−0.2/kBT ) = 4.37 × 10−4 and the boost factor is P−1

bst = 2.29 × 103. Figure 3.3 shows
the list of accepted migration barrier distribution for type-I atoms interaction. Every activation
barrier is calculated by eq.(3.27) and listed in the look-up table. A total of 4,039 types (Au) and
4,712-types (Ag) local transition events are accepted during 1.2×107 time units corresponding to
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Figure 3.4: The distribution of accepted events, and the attempt frequencies for the Au and Ag growth simulations.
Migrations with barriers lying between 0.2 eV and 0.7 eV are regarded as metastable transition states. The barriers
shown are for the interactions of type-I atoms only. The solid lines in the (βk)-distribution indicate the inverse
probability P−1

k , i.e. the average number of attempts for one acceptance.

3 CPU days calculation on a typical single processor desktop machine. However, most of these
transition barriers rely on the mean configuration energy term (2.41) and by fixing the average
number n̄, the number of accepted event types is reduced to around 100. This implies that most
transition events have a low probability of acceptance and only around 100 events represent the
metastable transitions. Figure 3.4 shows the total accepted effective event distribution and its
attempt frequency (3.12) during the simulation of Au and Ag PVD deposition. The distributions
(αk) and (βk) include all local transition events considered as the internal modification activity.

In the (αk)-distribution, the solitary peaks located at 0.23 eV, 0.51 eV (Au) and 0.28 eV,
0.38 eV (Ag) correspond to adatom migration attempts on the metal (110) in-channel and (100)
surfaces, respectively. The saw-like peaks in the graphs mainly indicate the acceptance of various
types of step-edge barriers due to the mean NN configuration. As an Ag cluster grows, its mean
surface curvature decreases. Thus the mean value of the NN occupied positions increases and
consequently, each local transition event reduces the barrier slowly by decreasing the configuration
energy difference Einij -Efinj for j > 0 from eq. (2.40), eq.(2.41) and eq.(2.42).

In the (βk)-distribution, the attempt frequency for barriers other than the (110) and (100) type
transitions slightly increases with increasing barrier height. This indicates that the acceptance of
small metastable transitions is already saturated and the system is waiting for a rarer transition
with a higher barrier. The solid lines exhibit the average attempt frequency for one acceptance, i.e.
P−1
k , and it can be seen that this average arises from only 1 transition for the high barrier events.

Hence, as the graph of (αk) also shows, the acceptance of such high barrier event is so small as
to have hardly any influence on the system evolution and thus the practical metastable transition
range is anticipated only in the range 0.2-0.6 eV.
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Figure 3.5: A comparison between the experimental results for Au and Ag PVD with the simulation model. SEM
images of the rippled v-SiO2 surfaces after Au and Ag deposition (left) for 30 and 75 minutes respectively. A top
view of the rippled simulation surfaces after Au (EAu−SiO2

b = 0.24 eV) and Ag (EAg−SiO2
b = 0.26 eV) simulations

(middle, right) are shown. The total metal accumulation is equivalent to 6 ML (middle), 12 ML (right) for Au
and 3 ML (middle), 6 ML (right) for Ag. Arrows indicate the direction of incident metal atoms.

3.5.3 Comparison with Experiment

As discussed in the previous chapter, the aggregation of clusters is observed mainly where the local
flux is a maximum, namely on the slopes facing the evaporator in experiment. A similar tendency is
also observed in the simulations. Nucleation occurs when two adatoms migrating on the substrate
come together. Due to the strong binding energy (2.36) the detachment of a dimer from the surface
is unlikely at the simulation temperature of 300 K. However, despite their lower mobility than
monomers, a small proportion of dimers still detach from the substrate. The mobility of trimers
including detachment is almost negligible. Thus the nucleation probability is strongly influenced
by the migration of monomers during the adatom lifetime and the local flux.

Figure 3.5 gives a direct comparison of the simulation results with the SEM images [172]2.
With the chosen binding energy parameters (EAu−SiO2

b = 0.24 eV and EAg−SiO2

b = 0.26 eV),
the simulated metal clusters are very similar to the SEM images. Especially the shape of the
cluster edges and sizes agree nicely with the experimental observations. The adhesion energy of
Au-SiO2 is generally less than of Ag-SiO2 [81]. From the DFT calculation (B3LYP, with BSSE
correction) by Ferullo et al [81] the adhesion energy of Au and Ag monomer on reduced SiO2 site
is -1.90 eV and -2,13 eV respectively. If one applies this rate Au-SiO2/Ag-SiO2 ∼ 0.9 to the Ag
monomer binding energy EAg−SiO2

b = 0.26 on a regular site, then the energy of an Au monomer

is approximately EAu−SiO2
b = 0.23. Thus the simulation results agrees nicely with this estimation

if the surface migration barriers EAu−SiO2
m and EAg−SiO2

m are in same range. The similarity of the
cluster shapes suggests the validity of the chosen parameters for Au and Ag and helps validate
the unusual fluctuation convergence model considered above. The size and coalescence of clusters
result in the nucleation probability on the substrate which is strongly influenced by the adatom
lifetime and local flux.

2STM images are provided by Dr. Mukesh Ranjan (private communication).
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In the early stages of growth, nucleation occurs mainly on the slopes facing the incoming metal
atoms where the local flux is high but some small Ag clusters are also observed in the lower flux
regions where there is also a higher relative detachment rate. Further deposition promotes the
Volmer-Weber growth of Ag as well as Au clusters and their coalescence. The Au cluster shape
observed in the early stage (6ML, figure 3.5 middle) is similar to the Ag PVD simulation with
∆E = 0.245 (figure 2.23 c) but the cluster distribution is more concentrated in the high flux region
than Ag. This fact suggest that under a certainly higher flux, Au clusters can be aligned solely in
the high flux region with a high concentration so that their coalescence leads to a long nanowire
along the ripple slope. Indeed, quite well-defined Au nanowires were obtained experimentally3.

On a (100)-oriented flat substrate, the mean adatom lifetimes of metal monomers TMAL with the
simulation time unit tu is given by eqs. (2.27) and (2.28) as TMAL = 3 exp (EM−SiO2

b − Ebst)/kT tu.

In the simulation model, EAu−SiO2
b = 0.24 eV and EAg−SiO2

b = 0.26 eV are employed and therefore

the mean adatom lifetime of two metals on a flat surface is TAuAL = 14.1 tu and TAgAL = 30.6 tu.

The total MC simulation time and the experimental deposition time are ttot,AuMCT = 2.7 × 107 tu,

ttot,AgMCT = 1.2 × 107 tu and ttot,Auexp = 1800 s, ttot,Agexp = 4500 s respectively. Thus to be consistent with

experiment, the adatom lifetime of metals is TAuAL = 9.40 × 10−4 s and TAgAL = 1.15 × 10−2 s for
Au and Ag respectively. Hence the simulation model predicts an adatom lifetime of Au monomers
which is one tenth that of Ag on the bare surface. The consistent MC simulation time units are
1 tu∼= 6.67 × 10−5 s for Au and 1 tu∼== 3.75 × 10−4 s for Ag, respectively. By assuming the
same reaction rate constant the difference of migration barriers ∆Em = EAg−SiO2

m − EAu−SiO2
m is

estimated as

∆Em = kBT log(
3.75 × 10−4

6.67 × 10−5
) ∼ 0.045 [eV]

with T = 300 K. Thus from the observation of the nucleation point distribution by KMC simu-
lations, one can evaluate the energies relating to the metal-SiO2 interaction as EAg−SiO2

m = 0.20
eV, EAg−SiO2

b = 0.26 eV,EAu−SiO2
m = 0.16 eV, EAu−SiO2

b = 0.20 eV and the effective transition
frequency ωM−SiO2 = 6.1 × 106 s−1. Note that these values are based on the migration barrier
of Ag/SiO2 in the case of fAg =0.0038 ML s−1. These film growth rates, assuming unit sticking
probability, give flux parameters of fAu =0.020 ML s−1 and fAg =0.0038 ML s−1 and are less than
those of Petersen and Mayr [184] by a factor of O(10-102). Taking into account the incident angle
cos(70◦) ∼ 0.34 and allowing for a reflection rate of 0.4 [247], the Ag flux is still low by factor of
O(10). This could be understood by a small deviation from the target of the e-beam4 (see figure
2.1).

3.5.4 Cluster growth stability evaluation

In order to estimate the stability range (3.22) of the evolution speed discussed in section 3.4.3,
recall the simulation- and experimental parameters required. In the simulations shown in figure
3.5, 6 ML Ag nanocluster growth has been obtained after a MC simulation time of 1.2×107 units
with a boost factor of 2.3×103. The experimentally observed Ag nanostructure was grown after 75
minutes of PVD.

The effective transition frequency ωeff depends both on the material and the temperature.
According to Ref.[214], its range is generally in the region of O(1012-1013) s−1. Now assume that the
effective transition frequency is the Debye-frequency ωeff = ωMD of the metal to derive the consistent
convergence factor evaluated in (3.23) and (3.9) with the simulation. The total deposition time

3Unpublished result by Mukesh Ranjan in 2010.
4“That is possible.” by Mukesh Ranjan (private communication).
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Figure 3.6: Schematic description of local flux for Ag deposition on an Ag(111) island. The area of the island is

Smig ∼3.06 nm2. ~n and ~i are as defined in figure 2.22.

of an Ag PVD experiment is ttotexp =4500 s. The total simulation fluence is F =175 atoms nm−2

corresponding to 15 ML of Ag deposition. The total MC simulation time is ttotMCT = 1.2 × 107

tu with 3 % of all the transition events belonging to those described as usual fluctuations. The
Debye-frequency of Ag is ωAgD =2.95×1013 s−1.

Let M,M′ be the original and modified simulation process in a typical interval between two Ag
depositions in a small region, respectively. Let tMexp, t

M′

MCT be the experimental, and MC simulation
time as defined in 3.3.2 and 3.4.1. Assume the uniform reduction

tM
′

MCT

tMexp
≈ ttotMCT

ttotexp
,

then the relation (3.23) is given by

ttotMCT

ttotexpω
Ag
D Pbst

< θ(ι) <
ttotMCT 0.97−1

ttotexpω
Ag
D Pbst

. (3.28)

Thus θ(ι) is in the range 2.07 × 10−7 < θ(ι) < 2.13 × 10−7 and the mean acceleration of the
simulation time is P−1

bst θ(ι)
−1 ∼ 1.09× 1010 from (3.24). To see the situation more clearly, consider

a concrete example. Figure 3.6 shows the deposition of an Ag adatom i on an Ag(111) island with
area Smig nm2. This scene is same as in figure 3.2. For the unit vectors of the incident atoms~i and
the surface normal ~n the local flux is given by

floc = FSmig~i · ~n/ttotexp [atoms/s]. (3.29)

As shown in 3.5.1, most transition events relating to the island are only (i) migration on the (111)
island itself, (ii) a transition over the step edge by the atom i and (iii) a transition along the
island edge by i and i′ since the other transitions are blocked by high potential barriers. The
non-dimensional time interval between two external modifications (Ag deposition) in this region is

∆t = f−1
loc ω

Ag
D . (3.30)
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The consistent numerator of the convergence factor ι for this situation can be estimate from (3.9),
(3.28), (3.29), (3.30) and the local parameters as

5.32 × 10−6

Smig~i · ~n
<

ι

ωAgD
<

5.48 × 10−6

Smig~i · ~n
[s].

The simulation would therefore predict a convergence time for local metastable states of the order
of microseconds for the situation shown in figure 3.6. In other words, the deposited atom i which
might arrive at a neighbor position of the atom i′ would reach a stable local configuration at the
latest 1.80µs for Smig ∼3.06 nm2 after the deposition with a high probability when the surface is
facing the evaporation source (~i · ~n = 1).

For the region, which is not exposed to the largest flux, the surface is barer due to more re-
evaporation occurring before the next deposition event.

3.6 Stability of modified convergence limit

The method discussed in this chapter is tested on some simple 1D diffusion models where a full
KMC simulation without a time boost was also undertaken to confirm that the results of the full
and boosted method were almost equivalent within a certain threshold of the boost factor.

3.6.1 Acceleration of convergence to Gibbs field

First, recall the statistical convergence of microstates probability distribution simulated by Metropo-
lis algorithm due to the limit theorem mentioned in chapter 1.3.2. The sequence of probability
distributions of finite atomistic states from an arbitrary initial distribution φ0, φ1,... under the
Metropolis algorithm after n simulation time step follows the Chapman-Kolmogorov equation

φn = φ0M
n,

where M is the Markov kernel of the specific Metropolis algorithm applying to the simulation sys-
tem. For atomistic states i, j and the corresponding configuration energy Ec(i), Ec(j), the Boltz-
mann constant k, and temperature T , the transition probability is given by

M(i, j) =

{

min{1, exp[(Ec(i) − Ec(j))/kT ])} (i→ j is considerable)
0 (otherwise)

(3.31)

and the Gibbs distribution Π is

Π(i) = exp(−Ec(i)/kT )/Z,

Z =
∑

i

exp(−Ec(i))/kT ). (3.32)

Since Π is the unique invariant of M , the sequence φn converges to the Gibbs distribution Π
uniformly when the Markov kernel is primitive (see chapter 1.3.2, Limit theorem). Hence the
acceleration of the simulation process implies essentially the speed up of this convergence. Here,
the practical convergence speed of the boosted system is investigated with a simple 1D cyclic
diffusion model.

The Markov kernel M ′(i, j) of the boosted system is given by

M ′(i, j) =

{

min{1, eϑ(Ec(i)−Ec(j)−Ebst)/kT )} (j = i± 1 mod 10)
0 (otherwise).

(3.33)
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Here, ϑ is the temperature factor and Ebst is the boost energy. Let φ′0, φ
′
1,... be the sequence of

probability distributions with the translated Markov kernel M ′. In order to evaluate the quality
of the translated system evolution process, the root mean square (RMS) deviation of the difference
between the original Gibbs distribution and the probability distribution (φ′n) observed is employed.
The RMS deviation is given by

R(n) =

√

∑

i

[φ′n(i) − Π(i)]2/N, (3.34)

where N = 10 is the number of states.

Figure 3.7: a Schematic description of the 1D diffusion model. b The distribution of configuration energy at each
position. c The corresponding Gibbs field Π with b describing the occupation probability distribution from (3.32)
with T = 300 K. d The convergence of the probability distribution φn with the simulation time step n. The global
minimum, local minima, and high barriers are indicated in a and b.

3.6.2 Relative convergence speed

In order to verify the acceleration of the convergence speed, a small 1D atomic migration model
is considered. In this model an atom is deposited in a circular system with ten configuration
energies. Figure 3.7 exhibits a schematic description of this model (a), the configuration energy
landscape (b) and the theoretical limit distribution consistent with the Gibbs distribution Π (c).
The configuration energies are randomly chosen between 0.0 and 0.4 eV (b, list in box) and held
fixed during all relevant simulations. Note that the convergence property depends strongly on the
system configuration and thus every convergence speed discussed below is the relative speed with
respect to this fixed system. The atom jumps to the next position in the circle consisting of these
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10 states (a). The minimum positive migration barrier is state 6→ state 5 with 0.09 eV. c shows
the corresponding Gibbs distribution (3.32) with the temperature T = 300 K. Figure 3.8 a exhibits

Figure 3.8: a Migration barriers with respect to the jump direction. b,c The convergence of the RMS deviation
(3.34) for the boosted system. The boost parameter range: b Ebst = 0.01-0.20 eV, T=300 K; c ϑ = 1.0-3.0, Ebst = 0
eV, The enhanced temperature T ′ is given by eq. (3.35) with T = 300 K.

the line charts of configuration energy difference for the jump to NN position with various boost
factors. The barrier Em(i, j) is given by

Em(i, j) =

{

ϑ(Ec(i) − Ec(j) − Ebst)} (j = i± 1 mod 10)
0 (otherwise).

In the case of j = i+1, or j = i−1 mod 10 the atom hops clockwise (left), or anticlockwise (right)
respectively. The black solid line in figure 3.8 a indicates Em = 0 eV. The barriers under the line
are practically zero and those that are above the line determine the transitivity of states due to the
probability (3.31). For simplicity, the translation parameter ϑ is represented by the corresponding
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Figure 3.9: Logarithmic line charts of convergence factor with respect to Ebst (left) and T ′ (right). The orange
line and the green curve in the diagrams indicate the acceleration profile expected from eq. (3.36) and eq. (3.37)
respectively.

temperature enhancement factor T ′ with

T ′ = Tϑ [K]. (3.35)

Some barriers disappear with increasing the boost energy Ebst while every barrier is reduced but
still remains in the cases of the temperature enhancement T ′.

Figure 3.8 b display the evolution of R(n) with the boost parameter range Ebst = 0.0 eV - 0.10
eV (right) and Ebst = 0.10 eV - 0.20 eV (b left). c is with the temperature factor T ′ =300-600 K
(left) and T ′ =630 - 900 K (c right). In the both cases, the blue curves indicate the convergence
of the non boosted system. The evolution profile is investigated through the average evolution of
10,000 samples for each boost parameter. In each sample case, an atom is deposited at a random
position and the occupation probability during 5,000,000 iteration steps noted for various boost
parameters. In each case, R(n) converges to a certain limiting value which indicates the distance
from the probability distribution of the non boosted system, i.e. the Boltzmann distribution. In
this sense, the inaccuracy of the convergence limit R(∞) increases irregularly with the boost energy
due to the loss of migration barriers as displayed in figure 3.8 a and regularly with temperature
enhancement. As shown in chapter 1.3.2, the probability distribution of microstates transited by
the Markov kernel consistent with a modified Metropolis algorithm converges to a certain limit
distribution. This can be seen by the convergence of R(n) to the constant asymptotic line. The
convergence speed is however quite different in the different cases.

Figure 3.9 displays the convergence factor with respect to the boost parameters. The conver-
gence time of the system is determined by the iteration time step nc such that the mean fluctuation
range |R(n) − R(n′)| < 0.01 for nc < n, n′ ≤ nmax with nmax = 5.0 × 106 being the maximal
simulation time step. Each convergence time with a boost parameter is divided by the convergence
time for the non-boosted system n0. The factor for the system with the kinetic energy boost Ebst
is fitted by

nc ∼ n0 exp(−Ebst/kBT ). (3.36)

Since every acceptance probability of positive activation barrier higher than Ebst is boosted by
P−1
bst = eEbst/kBT and other transitions have no waiting time, this is clear from the discussion by eq.
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(3.18). The orange line indicate this relative convergence factor in figure 3.9 left. Note that this
factor does not depend on the system configuration. On the other hand, the convergence factor
for the system with enhanced temperature T ′ is more complicated. Each acceptance ratio for a
jump attempt with positive migration barrier Em is boosted by the factor eEm(1/T−1/T ′)/kB and
therefore it depends on the configuration of the system. In this case, the convergence time for the
temperature enhanced system can be quite nicely fitted by

nc = n0 exp

{

Ēm
kB

(

1

T ′ −
1

T

)}

, (3.37)

where the factor nc/n0 is indicated by the green curve in figure 3.9 right with Ēm = 0.19 eV.
This Ēm is neither the mean migration barrier Ēm 6= 1

10

∑

i[Em(i, i+ 1) + Em(i, i− 1)] ∼ 0.15 nor

the expected migration barrier Ēm 6= 1
Z

∑

i e
−Ec(i)/kBT [Em(i, i + 1) + Em(i, i − 1)]/2 ∼ 0.13. The

expected migration barrier in the boosted system with T ′ varies from 0.130-0.136 eV for T ′=300-600
K, but the curve can not be fitted by any case.

3.6.3 1D Ag models

On the surface of metal clusters described in the previous section, some situations can be approx-
imated by the 1D diffusion model introduced above using the same migration barrier calculation
(3.25). Three typical sample cases describing a single ad-monomer migration on various facets and
certain types of step edge barrier are selected and discussed below. In all cases, the global min-
imum is quite stable and therefore the convergence of the probability distribution implies simply
the probability that the atom is found at the minimum position converges to 1. In order to see this
situation clearly, the weighted root mean square function

Rw(n) =

√

[φ′n(imin) − Π(imin)]2 (3.38)

is considered with the global minimum position imin instead of the regular RMS (3.34). This
indicates approximately the probability that the atom is migrating on the facet and not caught by
the global minimum position until n-th iteration step.

First, consider the situation of an Ag ad-monomer deposited on an Ag(111) island in the sim-
ulation system with the discrete RGL potential field as discussed in the previous section. Since
every atomic movement except this ad-monomer migration is blocked by high activation barriers,
the event expected in this local system is only the surface migration of the ad-monomer until it
hops down to the layer below. This situation is approximated by a 1D diffusion model illustrated
in figure 3.10. The corresponding configuration energies as well as migration barriers are set as
shown in a left. The situation assumed is illustrated in a right. The migration barrier is 0.04
eV and the ES barrier to the B-step terrace is calculated as 0.39 eV with n̄ = 8.5 from eq. (3.25).
The ES barrier for the A-step terrace is 0.87 eV with n̄ = 8.5 and this scale of migration barrier
was rarely observed during the simulation (see figure 3.4). The barrier of the ascending movement
is 0.98 eV and therefore the convergence of the probability distribution is practically determined
by the overcoming of the ES barrier. b shows the evolution of the RMS with respect to the boost
parameters. In this diffusion model, an Ag atom is deposited at position 0 at n = 0 and the occu-
pation probability during 1,000,000 steps is monitored through the evolution of Rw(n). The total
number of samples is 1000 for each boost parameter and the parameter range is the same as in the
random configuration model. In each simulation within the total iteration steps, the influence of
the ascending jump is negligible since the acceptance probabilities with the reduced barrier are at
most e−0.68/kBT ∼ 3.8 × 10−12 for T = 300 K and Ebst = 0.3 eV, and e−0.98/kBT

′ ∼ 3.3 × 10−6 for

84



Figure 3.10: 1D model of Ag/Ag(111) migration. a: Configuration energy landscape modeling the Ag/Ag(111)
migration (left) and the schematic description of the step edge barrier with respect to the jump onto the B-step
terrace (right). In the small rectangle figure (a right) the relevant situation of Ag monomer on Ag(111) in the
cluster growth model is illustrated. A-step and B-step terraces are also shown. Arrows indicate the corresponding
jumps in the 1D model and the illustration. b: The evolution of the RMS deviation (3.34) for the boosted system.
The boost parameter ranges are (Ebst =0.0-0.30 eV at 300K (b left) and T ′ = 300-900 K with Ebst =0 eV (b right).

T ′ = 900 K, respectively. For each case, Rw(n) converges to 0 with various speed and this implies
that the most of atoms can overcome the ES barrier within the simulation process accelerated by
the various boost factors.

The model described in figure 3.11 is for Ag migration on Ag(100) with certain type of down
step jump. If the ad-monomer on the Ag(100) surface falls into the corner of the (100) island (a
right), then the situation of atomistic movement can be approximated by this model. In this case,
the monomer at each position on the (100) island is rather stable due to the high migration barrier
0.38 eV and the barrier of the jump to the down step is even slightly smaller (0.33 eV) than of the
normal diffusion. The convergence speed of the boosted systems shown in b are slightly faster than
the case of Ag(111) since these barriers playing the crucial role are in the same range. The barrier
for the ascending jump is 0.86 eV and this is also a quite high barrier so that almost no reverse
action is expected in each boosted system.

Another example is shown in figure 3.12. In this case, Ag monomer migration along the in-
channel of Ag(110) surface and falling into the corner of the channel is modeled (a left). This
situation is similar to the case of monomer migration along the B-step terrace of the (111) island
and transition to the A-step side. Thus it is an important process for the enlargement of the
(111) island which affects the shape stability [151]. In this case, the migration barrier (0.28 eV)
and the step edge barrier (0.31 eV) are almost identical and the barrier for the ascending jump
is 0.56 eV. This barrier is still high in the energy boosted system (the acceptance probability
e−0.26/kBT ∼ 4.3 × 10−5 for T = 300 K and Ebst = 0.3 eV) but not so high any more in the
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Figure 3.11: Configuration energies modeling Ag/Ag(100) migration and the step edge barrier with respect to the
jump onto the lower (100) layer a. The convergence of the RMS deviation (3.34) for the boosted system (b,c). The
boost parameter range and configuration energy calculation are the same as for Ag(111) (figure 3.10).

Figure 3.12: Configuration energies modeling Ag/Ag(110) migration and the step edge barrier with respect to the
jump onto the in-channel (110) terrace a. The convergence of the RMS deviation (3.34) for the boosted system (b,c).
The boost parameter range is the same as for Ag(111) (figure 3.10)
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maximal temperature enhanced system (the acceptance probability e−0.56/kBT
′ ∼ 7.3 × 10−4 for

T ′ = 900 K). Moreover, the migration barrier remains in every temperature enhanced system
whereas it is reduced significantly in the kinetic energy boosted system, e.g., for Ebst =0.25 eV
the barrier is reduced to 0.03 eV while it is still 0.09 eV for T ′ =900 K. In these cases, the
acceptance ratios of the migration barrier as well as the ascending jump boosted by the boost
energy have the same factor e0.25/kBT ∼ 1.6 × 104 while by the temperature enhancement they are
e0.26(1/T−1−T ′)/kB ∼ 8.2 × 102 and e0.56(1/T−1/T ′)/kB ∼ 1.9 × 106 respectively. Due to this higher
ascending probability and slow mobility on the (110) in-channel region, the convergence limit of
this system in the temperature enhanced system is worse than that of the kinetic energy boosted
system. This fact gives evidence for the risk of misleading results from temperature enhancement
for the system evolution as mentioned in section 3.4.3.

3.6.4 Stability theorem

The eigenvector φ of the Markov kernel M with respect to the eigenvalue 1 is uniquely deter-
mined as mentioned chapter 1.3.2. Thus this correspondence induces a mapping from the set of all
primitive Markov kernels to the vector space affecting to the set of all microstates as probability
distributions. Now consider the variation of the eigenvector with modifying the original Markov
kernel. As observed above, if the magnitude of modification is sufficiently small, then the cor-
responding Boltzmann distribution remains close to the original distribution with respect to the
variation norm. The limit of the probability distribution φ′ for the modified Markov kernel M ′ is
bounded by the norm of two Markov kernels as follows:

Theorem 1. Let φ, φ′ be the limit distribution of the original and translated Markov kernels M
and M ′ respectively. Let M be primitive with c(Mk) < 1 for ∃k ∈ N. Then the norm ||φ − φ′|| is
bounded by

||φ− φ′|| ≤ k

1 − c(Mk)
||M −M ′||∞,

where ||M −M ′||∞ is the maximum norm of linear operators on the probability space defined by

||M −M ′||∞ := sup
||ψ||=1

||ψM − ψM ′||.

Proof. It follows that

||φ− φ′|| = ||φMk − φ′Mk + φ′Mk − φ′M ′k||
≤ c(Mk)||φ− φ′|| + ||φ′Mk − φ′M ′k||. (3.39)

Now the second term of (3.39) is

||φ′Mk − φ′M ′k|| ≤ ||φ′Mk − φ′Mk−1M ′|| + ||φ′Mk−1M ′ − φ′M ′k||
≤ ||M −M ′||∞ + ||φ′Mk−1 − φ′M ′k−1||c(M ′)

≤ ||M −M ′||∞ + ||φ′Mk−1 − φ′M ′k−1||.
Inductively one can see that

||φ′Mk − φ′M ′k|| ≤ k||M −M ′||∞. (3.40)

From (3.39) and (3.40) the variation norm ||φ− φ′|| is bounded as

||φ− φ′|| ≤ k

1 − c(Mk)
||M −M ′||∞.
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This convergence property indicates the stability of the system evolution with respect to the
perturbation of the original algorithm. As shown above, the distance between two limit distributions
depends on the modification size, i.e. the maximum norm of Markov kernels ||M −M ′||∞, and the
contraction property c(Mk) relating to the transitivity of the original system.

3.7 Summary

An atomistic, KMC simulation method has been proposed and successfully applied to metal cluster
growth processes on surfaces with pre-patterned ripple structures. The method consists of two
essential ideas. One is the discretization of the entire process into local transition events and
the other is the classification of the transition levels with respect to the thermal fluctuation of
the system. By allowing free transitions with small barriers to be considered as fluctuations, the
entire system evolves as a Markov chain of ‘equal entropy’ equivalence class objects. The evolution
dynamics of the system is promoted by the metastable level transitions. The effect of parameters
chosen in the method is investigated with 1D atomic diffusion models and the acceleration effect is
verified with the convergence speed of the probability distribution of microstates to the Boltzmann
distribution.

Also, contrary to some previous accelerated dynamics methods [45, 153, 214], where there are
many small migration barriers, an acceleration of the system evolution can still be achieved, when
the system does not require too many transition events to reach the quasi-equilibrium state. In
the metallic PVD example, the model predicts a convergence time of metastable states, after each
metal deposition onto the surface, of < µs-order. The model can also predict the metal cluster
growth patterns accurately with detailed atomistic transition event statistics.

An application limit of the transition level classification method may exist, due to the inability
of the small transition effect to model the physics at high temperatures, but so long as the system
does not require too many transition events to reach the usual fluctuation, the model provides
a relatively fast (3-9 CPU days on a modern single processor machine) estimation of the metal
cluster growth process of 6-12 ML accumulation. Since a typical boost factor is 2290, a traditional
KMC simulation, i.e. without a boost, might require 18-54 CPU years to obtain a similar surface
coverage.

These simulations can be developed further by utilizing more data from experimental mea-
surements together with/or more accurate barrier calculations such as those provided by density
functional theory or improved inter atomic potentials. The method can also be extended to more
complex systems such as multicomponent materials and grain boundaries, provided a good descrip-
tion of the relevant transition barriers is available.

Other modifications could include, for example, use of the nudged elastic band method [36, 100]
to calculate accurate energy barriers together with a systematic storage of data [62], either on-the-
fly or not, a more accurate and complicated event table can be constructed so that local transition
events can be more systematically determined. In addition, the aesthetic algebraical structure of
the Markov chain [20] itself is also a subject of interest to study, especially as an extended class 4
object of a cellular automaton [245]. As shown in the end of chapter 1.3.4, such Markovian process
can be extended for the representation of wave functions through the integration of all pathways
connecting states at two complex times. Since the Hamiltonian is in principle determined by the
inter atomic potential resulting in the electrons and nuclei interactions, such a classification method
can be applicable for describing various levels of physics. The cutoff of small barriers for the long
term evolution process is essentially the renormalization of time scale with respect to the target
phenomenon.
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Chapter 4

Ion beam inducing surface pattern
formation

In this chapter, the mechanism of surface pattern formation induced by ion beam irradiation is
considered. As mentioned in chapter 2, although pattern formation on semiconductor surfaces under
ion beam erosion is an established technique in nanotechnology, the basic formation mechanism is
still under hot discussion. Here a “simple” and “essential” mechanism is explored. Especially, the
importance of surface mass current induced by the ion beam for pattern formation is examined.
Is sputtering of surface materials necessary to obtain the nanostructure? If self-organized surface
nanostructure, such as ripples and dots with nm order periodicity, can be formulated in the absence
of sputtering, then it could lead to the expansion of the application range and be more economical.

The contents are laid out as follows. In section 4.1, an overview of ion-induced surface modifi-
cation is introduced from both the theoretical and experimental point of view in order to illustrate
the development of the subject. In section 4.2, surface as well as bulk modification of Si induced
by single low-energy ion beam is investigated by MD simulation. From the observation of the
results, mainly the surface modification, some simple models are constructed and performed by
KMC simulations. In these models, especially, by accounting for the surface viscosity and short
time temperature enhancement a very clear, self-organized ripple pattern formation is observed. In
section 4.3, a mathematical model based on these observations is constructed. The model considers
the surface modification resulting from infinitesimal atomic flow induced by ion bombardment. The
equation of motion, the basic physical mechanisms, the mathematical derivation process and model
parameters are discussed. A traveling wave solution for the equation of motion with the specific
incident angle is considered and the Lyapunov stability of this solution is shown. A quantitative
comparison with the experiment of Carter and Vishnyakov [35] is presented. The contributions of
thermally activated surface diffusion and sputter effect for the atomic flow based pattern forma-
tions are discussed in section 4.4. With appropriate contributions of these factors depending on the
temperature and ion beam energy range, the periodical pattern formation predicted by this theory
agrees with various experimental observations quite nicely.

4.1 Ion-inducing pattern formation

4.1.1 Bradley-Harper equation

Self-organized semiconductor surface nanostructures induced by ion beam erosion such as corru-
gations and dots have been well known phenomena since the 1960’s [72, 164]. Smith and Walls
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considered the 3D development of surface topography during ion beam erosion in 1980 [209, 211].
For the target surface h = h(t, x, y), the substrate atomic density ρ0, the mean ion flux φ in the
direction of the ion beam, the ion incident angle ϕ with respect to the local surface normal, and
the angular dependent sputtering yield Y0(ϕ), the surface evolution is described as (see also figure
4.7 a and c)

∂h

∂t
= −

√

1 + (∇h)2
φ

ρ0
Y0(ϕ) cosϕ. (4.1)

This non-linear model could also be applied to the case of a spatially and time varying flux φ(x, y, t)
and also the case where the sputtering yield could depend on the azimuthal angle such as in
crystals. The model was applied to show how smooth surfaces could develop edges under erosion
and some example structures evaluated using the method of characteristics. However for typical
experimentally measured sputtering yields the net effect was that surface features were smoothed
out as a result of the erosion process and the formation of ripple structures was not possible.
In 1988, Bradley and Harper proposed a surface evolution model with a curvature dependent ion
energy deposition from Sigmund’s sputter theory [201, 202, 203], and Mullins-Herring diffusion [160],
known as the Bradley-Harper (BH) theory [27]. According to Sigmund’s approach to sputtering,
the ion energy deposition distribution in the bulk follows the Gaussian distribution

FD(x, y, z) =
E

(2π)3/2σpσ2l
exp

(

−z − h0 − a

2σ2p
− x2 + y2

2σ2l

)

, (4.2)

where E is the total energy deposited, a is the mean depth of energy deposition, and σp and σl are
the widths of the distribution parallel and lateral to the ion beam direction which is assumed as the
negative direction of z-axis here. This distribution is independent from the surface configuration
but the effect of energy deposition is dependent on topography since the atomic displacement near
the surface induces the emission of the bulk atoms, i.e. the sputtering. They considered the local
surface erosion velocity vs(ϕ, κ) as a function of the local incident angle θ and local curvature κ.
Under the slow varying surface assumption compared to a, i.e. |aκ| << 1, the first order Taylor
expansion of vs is considered. Together with the smoothening effect resulting in surface diffusion
[160], the equation of motion for the surface height is

∂

∂t
h(t, x, y) ∼= −v0(θ) + v′0(θ)

∂h

∂x
+
φa

ρ0
Y0(θ)

[

Γ1(θ)
∂2h

∂x2
+ Γ2(θ)

∂2h

∂y2

]

−B∇2(∇2h), (4.3)

where θ is the ion incident angle θ with respect to the positive direction of z-axis, v0(θ) is the erosion
velocity of the unperturbed planar surface, Γi(θ) is the angular dependent erosion coefficient (< 0)
with respect to components i = x, y, and B is the coefficient for the curvature dependent diffusion
term. This is the first order Taylor expansion of the curvature- and incident angle dependent surface
erosion velocity. The mean energy deposition depth a is a function of ion energy E and the relevant
species. For the low ion energy region where elastic ion stopping dominates, the mean depth of
the stopped ion from the entering point, which is called the mean projected range Rp, is given in
power-law approximation by [141, 163]

Rp =
1 −m

2m

(

4M1M2

(M1 +M2)2

)m−1 E2m

ρ0Cm

(

1 +
M2

3M1

)−1

, (4.4)

where M1,M2 are the mass of ion and substrate with M1 > M2, m is a numerical constant with
m = 1, 1/2, 1/3, ..., and Cm is another constant relating to the potential energy transfer. The
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fitting parameter m can be chosen either 1/3 or 1/2 depending on the ion energy range E [163]
and consequently the energy dependency of the projected range is approximately given by

Rp ∝
{

E2/3 for Ẽ ≤ 0.2

E for 0.05 < Ẽ < 10,
(4.5)

where Ẽ is the reduced energy relating to the Thomas-Fermi screening function aTF given by

Ẽ =
4πε0aTF
Z1Z2e2

M2

M1 +M2
E

where Z1, Z2 are the atomic numbers of ion and substrate respectively, ε0 is the vacuum permittivity,
and e is the elementary charge. aTF is given by

aTF =
0.4692

√

Z
2/3
1 + Z

2/3
2

[Å].

The accuracy of this approximation is 20-40 %. Especially at very low ion energies, this range is
seriously underestimated [163]. The mean energy deposition depth a has then the same magnitude
as Rp. The angular dependence of the sputter yield Y0(θ) can be fitted by Yamamura formula [249]
given by

Y0(θ) =
Y0(0)

cosf θ
exp

[

−f cos θopt(
1

cos θ
− 1)

]

, (4.6)

where f is an adjustable parameter and θopt is the incident angle at the maximum yield. The fitting
parameter f is given by

f = 1.85

(

1 +
1.25

√

E/Eth − 1

)

, (4.7)

where Eth is the sputtering threshold energy. The curvature dependent surface diffusion term
is derived by Mullins in 1957 [160] from some physical relations concerning the local curvature
dependent chemical potential variation by Herring [102] as well as the average velocity of drifting
surface atoms varying with the change of chemical potential along the arc length (the Nernst-
Einstein relation [112]). The coefficient B is given by

B =
Dsγν

ρ20kBT
.

for the surface diffusion coefficient Ds > 0, surface free energy per unit area γ > 0, and the areal
density of diffusing atom ν > 0. The derivation detail is given below in the context of a relevant
ripple simulation model (section 4.2.2). The driving force for ripple formation is assumed to be the
combination of the energetic sputter process and thermally activated surface smoothing in these
theories. By setting h = h− v0t in eq. (4.3) it is reformulated as

∂

∂t
h(t, x, y) = v′(θ)

∂h

∂x
+ Sx(θ)

∂2h

∂x2
+ Sy(θ)

∂2h

∂y2
−B∇2(∇2h) (4.8)

with consistent coefficients Sx,y := φa
ρ0
Y0Γ1,2. Solving this linear PDE (4.8) by using the Fourier

transformation F((t, x, y)) = ĥk(t, kx, ky) yields

ĥk(t, kx, ky) = ĥk(0, kx, ky) exp[{−Sx(θ)k2x − Sy(θ)k
2
y −B(k2x + k2y)

2}t]e−iv′0t (4.9)

=: ĥk(0, kx, ky) exp[ω(kx, ky)t]e
−iv′0t,
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where ω(kx, ky) indicates the growth (> 0) or decay (< 0) of the amplitude of the Fourier component

ĥk(0, kx, ky) with the periodicity being proportional to (kx, ky) in the 2D frequency domain. The
relation

ω(kx, ky) = −Sx(θ)k2x − Sy(θ)k
2
y −B(k2x + k2y)

2 (4.10)

is the dispersion relation between the growth speed and wave number. Thus the periodic pattern
formation may be dominated by the Fourier component ĥk(0, kx, ky) providing the maximum growth
speed. Since B > 0 the growth rate ω(kx, ky), takes the maximum

Rmax :=
max{S2

x, S
2
y}

4B

with (k2x, k
2
y) = (

√

Rmax/B, 0) for S2
x > S2

y and (k2x, k
2
y) = (0,

√

Rmax/B) for S2
x < S2

y . Linear
instability analysis explains also the angular dependent ripple rotation due to the change of the
inequality involving Sx and Sy. Accounting for φ ∝ Sx, Sy and the temperature dependent diffusion
coefficient B ∝ e−Ed/kBT , the dominating ripple wavelength λ ∝ kx or ky is then predicted as

λ−1 ∝
√

Rmax/B ∝ (φT )1/2eEd/2kBT ,

where Ed is the activation energy of the surface self-diffusion reported as ∼ 1.2 ± 0.1 eV for Si by
Erlebacher et al [70]. These formulations are valid under the assumption of slowly varying surface
topography as mentioned above and thus if the surface roughening reaches a certain level, then this
description is no longer accurate. Moreover this theory predicts the continuous evolution of ripple
amplitude but in reality there is a saturation of the height of ripples [44, 70, 118]. In order to obtain
the pattern evolution and stabilize this roughening process, the positive coefficient, i.e. negative
Sx,y, of the second order term the fourth order term resulting in the erosion and the diffusion are
necessary in (4.10). However, under low energy (≤1 keV) ion bombardment [44, 118], and also at
low temperatures, 100 K [35], 140 K [146], ripple-like nanostructures are observed. Especially for
covalent materials such as Si where amorphization occurs after ion bombardment and where, low
sputter yields and few diffusion processes are expected, a model, different from those considered
previously, would provide more reasonable explanation of ripple formation.

4.1.2 Nonlinear continuum models

In the past two decades, much effort was dedicated to deriving nonlinear extensions of the BH
equation in order to overcome these problems with the sputter-diffusion mechanisms [35, 37, 43,
53, 73, 162]. Cuerno and Barabaśı considered the surface topography evolution due to ion beam
erosion assuming a local curvature dependent energy deposition as [53]

∂

∂t
h(t, x, y) = −vs(ϕ,Rx, Ry)

√

1 + (∇h)2, (4.11)

where vs is the same velocity of height evolution as in the BH model represented as a function of
the local angle ϕ and the radii of surface curvature Rx, Ry. Neglecting the third or higher order
terms of the Taylor expansion and adding a diffusion term and a Gaussian noise term η(t, x, y) with
mean zero and variance proportional to the flux φ yields

∂

∂t
h(t, x, y) = −v0 + v′0

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2
+
λx
2

(

∂h

∂x

)2

+
λy
2

(

∂h

∂y

)2

−B∇2(∇2h) + η, (4.12)

with the coefficients νx,y and λx,y consistent with the expansion of eq. (4.11). This equation is
called a Kuramoto-Sivashinsky type equation which originated in a similar equation derived by
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Kuramoto [131] and Sivashinski [205] for chemical wave and the propagation of disturbed spherical
flame fronts respectively. This nonlinear PDE is further extended e.g. adding a damping term
−αh with a damping coefficient α in order to suppress spatiotemporal chaos [73], reforming the
nonlinear terms accounting for aeolian sand dune like kinetic process with the excavation and
addition of surface atoms [37]. Especially, this “hydrodynamic” description of surface atomic flow
formulated by Castro et al [37] and Muñoz-Garćıa et al [161] reproduces various experimental
observations by numerical calculations [162]. The additional factors, excluding those from the BH
theory, contributing to the coefficients of each term are the redeposition rate of sputtered atoms,
the thickness and the fraction of mobile surface atoms and the diffusion constant with respect to
these mobile atoms, the mean nucleation rate for the flat surface and their curvature dependency
denoted by symbols φ̄, R,Req, D, γ0 and γx,y in original papers [37, 161, 162] respectively. The
factors relating to the nucleation rate are due to the assumption that the mobile atoms aggregate
preferentially in surface protrusions.

4.1.3 Other approaches

Recently, MD simulations showed that a low energy, single ion impact induces a small crater-like
Si surface modification [113, 114, 170]. Kalyanasundaram et al reported that a ripple formation
appears in the numerical calculation of the ion beam inducing surface modification utilizing MD data
[114]. In their calculation, an angular dependent crater formation function fitted by interpolation
to MD data modifies the surface over a region of a few nm2 [113] after each ion impact. Together
with the surface diffusion term, a ripple formation with around 100 nm periodicity was obtained. A
correlation between crater formation and ripple formation obtained by the combination of a binary
collision approximation MD [261] and KMC simulation is investigated in the thesis of Liedke [139].

Other MD simulations [154, 222, 226] and theoretical analysis [149] suggest that the ballistic
phase of a cascade induced by low energy ion bombardment, is over very quickly (a few ps) and
affects the substrate only locally. In particular MD simulation by Süle et al [224] showed that
ripples of a large periodicity (>35 nm) seem to be stable against continuous ion bombardment,
without the contribution of Mullins-Herring diffusion. Concerning the surface property, the crucial
effect of metal contamination for Si surface nanostructure formation is also reported by Macko et
al [145].

Carter and Vishnyakov showed that ripple patterns can be produced at 100K by Xe+ 40 keV
bombardment [35]. They also considered ion bombardment inducing atomistic displacement and
added the gradient of the atomic flux term to the BH model. For the 1+1 dimension system, it is
formulated as

∂

∂t
h(t, x) = −v0(θ) + v′0(θ)

∂h

∂x
+
γ

µ

∣

∣

∣

∣

∂h

∂x

∣

∣

∣

∣

+
φa

ρ0
Y0(θ)

[

Γ1(θ)
∂2h

∂x2

]

+
1

ρ0

∂

∂x
Φ(u)−B∇2(∇2h) + η(x, t),

(4.13)
where µ is the viscosity, Φ(u) is the atomic flux along the local coordinate u, and η is the noise
term. The term γ/µ|∂h/∂x| is due to the viscous relaxation in the frequency space suggested by
Chason et al [43]. The atomic flux Φ is given by

Φ(u) = φ
k(E)ǫ

4Ed
sin 2

[

θ − tan−1

(

∂h

∂x

)]

(4.14)

with the effective energy deposition k(E), the mean displacement distance ǫ, and the displacement
energy Ed. However, in contrast to eqs. (4.13) and (4.14), Keller et al [118, 120] reported that
the ripple pattern does not depend on the ion flux φ but the ion fluence under 300-500 eV Ar+
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irradiation at room temperature whereas the flux dependency is also reported at 800-900 K as
predicted by the BH theory [44, 70].

From these results one could suppose that the main driving force of ripple formation on Si is
likely to be the accumulation of locally affecting spontaneous surface modification induced by ion
irradiation rather than any contribution of the global surface atomic diffusion. Thus, from this
point of view, a MD simulation of low energy ion impact and KMC simulations of several surface
defect creation types are performed in the following section.

4.2 Simulation of surface defects induced by ion beams

4.2.1 MD simulation of single ion impact

Classical constant volume MD simulations utilizing the PARCAS code [166] have been performed
to investigate the statistical behavior of surface defects induced by a single ion impact. The surface
of (001) oriented crystalline Si (c-Si) consisting of 9000 atoms in an 81.45 [Å]×81.45 [Å]×27.15 [Å]
simulation box was bombarded by a single Xe+ ion (500 eV). The incident angle was chosen to
be 67◦ from the surface normal since an instability of surface pattern formation is reported at this
angle in the sense of spontaneous change from parallel to perpendicular mode ripples [118]. For
Si-Si and Xe-Si interactions, the Tersoff potential [228] joined to the Ziegler-Biersack-Littemark
(ZBL)like repulsive potential is employed. Accounting for the weak bonding potential of Si-Xe
calculated by GAUSSIAN (see chapter 1.1.2), the parameters of Tersoff potential are fitted to this
ab initio calculation. The details of fitting method is given in Ref. [223].

The system temperature is 300 K controlled by a Berendsen heat bath [19] at the bottom of
the cells and the simulation time is 5 ps for each impact. The system temperature is sufficiently
cooled down within the simulation time regime and no more significant displacement resulting from
the impact is observed after this time. Generally, under low energy (≤ 1 keV) ion bombardment,
the temperature of impact region decreases immediately after the impact and the thermal spike
takes place over only a few ps [149, 222, 226]. Further simulation details are given in Ref.[224].
Figure 4.1 shows the initial state and an example of the final state for single ion impact. The initial
positions and ion trajectory are illustrated in the left diagrams. a is the lateral view and b is the
top view of the simulation system, respectively. The atoms displaced more than 1 Åfrom their
equilibrium position are shown in the right diagrams. The color of atoms indicates the distance
from their original positions. The range of displacement distance from the initial position and the
final position observed in this case is 1-12 Å. One can see that most are located near the surface
and displaced along the surface to positions not so far from their initial positions except for several
atoms above the mean surface height. Here three types of atomic displacement relating to the
surface modification can be investigated from the ion impact simulation results that are surface
drifting, shifting, and sputtering. Especially for atomic shifting, it can be imagined that atoms
near the surface are molten for a short time and flow along the topography infinitesimally. Such
kind of atomic flow near a surface has also been calculated by MD simulation reported by Norris
et al [171].

Figure 4.2 shows the statistical atomic density variation induced by single ion impact within
the various height ranges where the mean surface height is 12.9 Å(see figure 4.1). The simulation
samples are 489 individual ion impacts. Every starting point and the azimuth angle of the ion
trajectory are chosen arbitrary at each ion impact. The simulation system is shifted and rotated
with respect to these parameters after each impact simulation in order to normalize the starting
point and the impact point. The simulation system near the impact point is divided into 40×40×16
cubes with a volume of 1 Å3 and the statistical atomic density variation for a single ion impact in
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a lateral view

b top view

initial surface height: ~12.9Å

Xe+, 500 eV
adatoms

trajectory

5Å

Figure 4.1: Illustration of an MD simulation for an ion bombarded Si surface. a Lateral view of the initial
positions of the Si atoms and the Xe ion (left) and the final state after single ion impact (right). The trace of the
ion, the initial mean surface height, adatoms generated after the impact are also indicated. b Top view of the initial
and the final states. The mean surface height is 12.9 Åin the simulation system and a scale of 5 nm is shown (see
also figure 4.2). Color indicates the distance 1-12 Åfrom the original position. The red atom is the atom moved the
longest distance (11.7 Å). The atoms with white color are the original positions of atoms displaced more than 1Å.

these unit cells is considered. In order to avoid the deviation of this atomic density resulting in the
crystal (diamond) structure and the representation cells by the computation, the target region is
shifted with an arbitrary distance within the size of the unit cell before the discretization and the
average density of 100 times shifts is computed for each ion impact. The average atomic density
shown in each diagram consists of 40× 40 unit cells. The scale of mean atomic density variation in
the figure is thus atoms/Å3 where the normal density of crystal silicon at T = 300 K is ρ0 = 0.05
atoms/Å3. The atomic density is decreased near the impact point and increased in the small region
above the mean initial surface. This indicate the excavation and the mass redistribution of the
planar surface in the sense of Ref. [37, 161, 162]. In this case, the effective depth from the mean
surface height contributing to the mass current is 4-5 Å. The mean sputtering yield Ysp is 7.6
atoms and the mean number Yad of adatoms, that are displaced above the initial overlayer, is 7.7
atoms. The distributions of these quantities Ysp and Yad can be fitted by the positive part of normal
distributions with the medians µsp = 3.6 Åand µad = 8.6 Åas well as the variances σ2sp = 2.5 Å2 and

σ2ad = 19.2 Å2. The variance of adatom creation is much higher than that of sputtering. This is due
to the surface channeling events along the dimer rows. A higher adatom creation rate is expected
for the ion incident angle parallel to the rows than that of perpendicular to them. On average,
atoms near the surface are displaced preferentially in the direction of ion incidence along the surface
and two symmetrical peaks of adatom creation as well as one peak of vacancy creation have been
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Figure 4.2: 3D defect statistics induced by single ion impact: the color scale indicates the mean atomic density
variation within the height range before and after ion impact. The scale is atom/Å3.

observed. There are no interstitials in bulk Si in the sense of atomic density enhancement. The
shape of the mass current region can be fitted by an ellipsoid (prolate spheroid) with the long axis
being parallel to the surface including the ion incident direction.

4.2.2 Monte-Carlo simulations of surface modification

In the previous MD simulation, an ion induced mass transport has been observed. This event leads
to surface defect generation consisting of vacancies and adatoms. This event is implemented in the
KMC simulations with an Ising-like potential field in fcc lattice system.

Yewande et al [251, 252] reported the sputter induced surface pattern formation by KMC sim-
ulations. In their model, the incident angle θ and the mean energy deposition depth a are fixed
typically at θ =50◦ and a = 6. The appearing ripple modes are investigated with varying mainly
the variances of ion energy deposition rate with respect to the energy distribution σp, and σl in eq.
(4.2). Clear parallel mode ripples are observed for σp < σl. Accounting for the surface diffusion pro-
cess at the effective temperature 1200 K they obtained a clear periodic structure formation whereas
no ripples were observed at room temperature. The temperature enhancement is interpreted as an
ion beam induced thermal spike [149]. Their KMC model is constructed as 2+1 D solid-on-solid
model with sc lattice structure [208] and therefore the atomic mobility is restricted to 6-1 directions
at most where -1 is for the mean surface normal direction. Thus the number of atomic jumps to
find a minimum energy configuration is necessarily larger than of those in the fcc structure where
the possible number of atomic jump directions is 12. Since a bombarded Si surface is amorphized, a
complex mobility of an adatom is expected on the surface. Because the fcc structure has more NN
positions than that of the sc structure, the NN configuration dependency of a single atomic jump
attempt is more complex in the fcc network. This is an advantage to model the responsible situation
of an amorphized Si surface with the fcc structure. Although a diamond structure can better model
this situation, the problems with the complexity of the local configuration dependency utilizing an
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appropriate potential and the number restriction of atoms are still difficult to overcome. Hence we
use the pseudo atoms with the NN interaction in the fcc structure as approximated amorphous Si
atoms in this work. The corresponding inter atomic distance and the cohesive energy are discussed
below.

Here, the sputter effect is one of the three factors observed in the previous MD model. However,
surface mass redistribution suppressing the sputter effect with the full 3D-fcc KMC model has been
performed in order to examine this effect in isolation.

Simulation parameters

The corresponding inter atomic distance and the cohesive energy of the pseudo atoms are calculated
to fit to the energy- as well as atomic density of crystal Si (c-Si). The difference of these properties
between crystal- and amorphous Si is ignored here. Since a silicon atom in a crystal has a cohesive
energy of 4.63 eV 1 and a accounting for the difference of diamond and the fcc lattice structure, one
bond energy Eb is calculated as Eb =0.39 eV in the model. Since an atomic jump with breaking
bonds leads to the bond lost of the jumping atom as well as of the NN atoms, the acceptance
probability Pi→f of this jump attempt is calculated to be

Pi→f = exp(−2nbEb/kBT ), (4.15)

with nb being the number of breaking bonds. The inter atomic distance dfcc of these pseudo atoms
is calculated from the corresponding atomic density of c-Si as

dfcc = dSi × (ρfcc/ρdia)
1/3 ∼ 0.30 [nm]

where ρfcc and ρdia are the atomic density arranged in fcc cells as well as in diamond cells respec-
tively, and dSi = 2.35 Åis the inter atomic distance of Si. Thus the corresponding length of lattice
unit is

1 [lu] ∼= dfcc√
2

∼ 0.21 [nm].

The factor
√

2 is due to the arrangement of atoms in the fcc lattice system. The system size is 512
× 512 × 128 corresponding to 107 nm × 107 nm × 27 nm. All KMC simulations are performed
under the standard condition of 3D lattice KMC [219]. Thus the simulation system is not boosted
and migration barriers for the same NN configuration are assumed to be zero.

Ellipsoid displacement models

The shape of the region where atoms are displaced in the MD simulation is approximately a rugby
ball (prolate spheroid). Thus a simple ballistic surface atom displacement together with the thermal
diffusion process is modeled. The substrate surface is irradiated by artificial ions with no energy
consideration with incident angle 67◦ from the surface normal. The surface atom hit by an ion is
simply displaced within a certain displacement region on the surface. Figure 4.3 shows a schematic
description of two patterns of this model. a is a prolate spheroid model (model A) that is similar
to the MD result. The long axis is 1.02 nm and the short axis is 0.83 nm. The displacement region
is the intersection of this ellipsoid and the surface is indicated by the green color. b is the sphere
model (model B) with the diameter 0.83 nm. The flux φ varies from 0.1-0.001 ions nm−2 tu−1

and the total fluence is 6 × 1018 ions nm−2 in each case. The surface temperature is held fixed
at T = 300 K during the simulation. Figure 4.4 shows the evolution of both models with flux

1This is calculated with the Tersoff potential. Calculating with the Stillinger-Weber potential yields 4.33 eV.
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Figure 4.3: A schematic description of the shape dependent surface mass current model. (A) The surface atom
displacement region is shown by the green color. The tips of the blue arrows represent the impact points and their
direction, that of the ion beam.

Figure 4.4: Simulation results for the displacement shape dependent ripple formation model A and B. Blue arrows
indicate the direction of the ion beam and black arrow indicates < 100 > direction in the fcc lattice. Simulation
parameters for the both cases are T = 300 K, flux 0.1 ions nm−1 tu−1, and t = 500, 2000, 6000, 60000 tu.
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φ =0.1. In the initial stage, the surface is simply roughened (t = 500) and no significant difference
is observed between model A and B. At t = 2000, small structures with slightly different patterns
appear. At t = 6000, the difference between the two surface patterns becomes clear. Finally, clear
ripples with periodicity ∼5 nm appear at t = 60000 in each case. The direction of the periodicity
tends to the perpendicular and parallel direction with respect to the ion azimuth angle for model
A and B respectively. Such a small asymmetry results in the drastic change of pattern with respect
to the correlation direction.

In the both cases, the direction of the ripple periodicity is tilted to < 100 > direction. This is
due to the influence from the surface orientation of the fcc structure since the structure observed is
small in magnitude compared to the discretization of the atomic system modeling the amorphous
structure.

Remarkably, no significant difference is observed by reducing the flux parameter φ by a factor
10-100 (φ = 0.01-0.001). The modification process depends mainly on the fluence. The diffusion
process with bond breaking hardly occurs at room temperature (T = 300 K) since the minimum
barrier for such event is 0.78 eV by eq. (4.15) and the acceptance ratio is only Pi→f = 7.87×10−14.
The mobility of surface atoms are thus restricted to migration to positions possessing the same
number or more NN atoms. Once the surface is roughened, such migration pathways are only
possible over a local region and reach a local minimum energy configuration immediately. Hence,
in this model, the diffusivity, in the sense of long range (≥ λ), plays a minor role and a spontaneous
local condensation as well as the local atomic flow distribution shape may contribute more for the
ripple formation.

Quasi-liquid surface atomic flow model

In contrast to the previous model, the effect of thermal diffusion and ion direction dependent
anisotropic displacement is considered in the absence of the sputter effect and introduction of a
high viscosity of surface atoms. This model is based on model B introduced above. The surface
atom hit by an ion is shifted on the surface within the certain radius centered at the impact point.
The difference from the previous model is that the displacement direction is restricted to the forward
direction with respect to the ion trajectory. The radius of the displacement sphere is chosen to be a
minimum, i.e. the NN distance. The normal and azimuthal incident angles are fixed at 67◦ and 45◦.
Due to the lattice orientation of the fcc simulation system, three NN positions are regarded as the
backward displacement positions. Thus the 9 NN positions of the atom impinged are considered
as the ballistic displacement positions. This anisotropic ballistic displacement leads to a statistical
surface atomic flow along the topography and the flow speed is associated with the local flux.

For the diffusion process, the temperature is enhanced to be T ′ = 15, 269 K which corresponds
to 2Eb/kBT

′ = 1.0. The kinetic energy given is (T ′ − T )kB ∼ 1.3 eV per atom. In order to
avoid evaporation, detachment from the surface is entirely suppressed. The surface atoms possess
consequently a high liquidity. The flux chosen is 0.01 ions nm−2 tu−1. This means atoms in a
surface area with 1 nm2 can move only 100 times at most before the area is bombarded again.
Again, by calculating with the Debye frequency ωSi = 8.45× 1013 s−1, this time range corresponds
to 1.2 picoseconds. A temperature enhancement above 10,000 K for ∼0.1 ps is observed in the MD
simulation of 1 keV Ar+ bombardment on Ti/Pt multilayer [222]. Another MD simulation shows
that liquid Si atoms are observed until ∼1 ps after single 10 keV Si-Si bombardment [168]. Thus
a local temperature enhancement over this time range is practically possible for ion bombardment
with ∼10 keV order around the center of the kinetic energy deposition , i.e. in the bulk region near
the surface. Note that this temperature is induced solely by ion impacts and therefore independent
from the equilibrium surface temperature in the laboratory.
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Figure 4.5: Schematic description of atomistic transition processes with a small curvature intermediate position
(a) and quasi-bulk diffusion process avoiding the significant curvature reduction (b). Numbers indicate the transition
step of atomic jump.

Accounting for the viscosity of surface, the movement with a high local curvature is suppressed.
According to the Nernst-Einstein relation, the velocity vsurf of surface atoms is derived as [112]

vsurf = − Ds

kBT

∂µ
(κ)
c

∂s
, (4.16)

where µ
(κ)
c is the increase of chemical potential per atom at a point of curvature κ on the surface

compared to a flat surface, and s is the arc length measured along the curve. Here, the curvature
κ at a point p on the surface is the reciprocal of the radius of the osculating circle and taken as
positive for a convex bulge of the profile. Moreover, from Herring’s diffusional viscosity theory
[102], this increase of chemical potential associated with the curvature κ is

µ(κ)c =
γ

ρ0
κ. (4.17)

For the surface diffusion atomic density per unit area ν, the surface atomic current Jsurf is calculated
from eq. (4.16) and (4.17) as

Jsurf = vsurfν = − Dsγν

ρ0kBT

∂κ

∂s
. (4.18)

This implies that the atom cannot move in the direction in which the curvature decreases. In a fcc
lattice network system, this situation corresponds to the ES barrier. Figure 4.5 gives a schematic
description of two types of surface atomic movement leading to the same configuration change with
different kinetic pathways. The type a path is a typical process overcoming an ES barrier. The
numbers indicate the transition step. Surface curvature is reduced at the intermediate position
after the step 1 indicated by a red curve. The type b path is a quasi-bulk diffusion process yielding
the same final configuration but avoids the significant local curvature reduction seen in a. By step
1, an atom hops to the next position on the same layer and the atom above this moving atom
goes down by step 2, and so on. Such a migration process is expected by the inward relaxation of
vacancies in Si [9]. In this case, the diffusion is rather complicated and requires more transition
steps resulting in a discrete viscous diffusion process deduced from eq. (4.18). For a, most of the
ES barriers in an fcc system are formed at intermediate positions with NN number 1 or 2. Thus all
transition pathways that go through the position with the NN number smaller than 3 are blocked
in the thermally activated transition process. The jump to such a position is thus only possible by
a ballistic displacement process. Evaporation is also suppressed from this condition.

Under these conditions a KMC simulation has been performed. Figure 4.6 shows the top view
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a b

Figure 4.6: Top view of the simulation surface (a) and the width evolution with total fluence (b). The lines in b

indicate the asymptotic lines with growth exponents: green β =1.35; blue β =0.33; red β =0.05 in eq. (4.20).

of the surface evolution process (a) and the width of the surface height as a function of ion fluence
F (b). A very clear ripple formation process is observed in a with increasing the fluence F . The
interface width W (S, F ) of the simulation surface S with respect to fluence F is defined as the root
mean square of the surface height, i.e.,

W (S, F ) :=

(

1

|S|

∫

S
[h(F ) − h̄(F )]2dxdy

)1/2

, (4.19)

where S is the domain of h in the xy-plane and |S| is the area of S. This describes the fluctuation
of the simulation surface height around the mean height.

The simulation system size is however restricted in a certain area with PBC. When the structure
is still small enough compared to the system size, then the evolution may be independent from the
system periodicity whereas it will be dominated by the PBC in the late stage. From this point of
view, the early- and late stage of the width may be fit by the so-called finite-size scaling expression

W (S, F ) ∝
{

|S|α (|S|α << F β)
F β (F β << |S|α)

(4.20)

for some positive constants α, β > 0. This Ansatz, or scaling assumption, was originally introduced
by Vicsek and Family for the height analysis for cluster growth simulation [74, 234]. In this case, the
power exponent β of the fluence F indicates the behavior of the evolution process in the early stage
independent from the system size. On the other hand, the growth saturates in the late stage and the
width is asymptotically constant determined by |S|α. These constants α, β are called the roughness-
and the growth exponent respectively. System evolution dominated by a similar dynamics that can
be characterized by equations of motion with different scale factors behaves with similar exponents
α, β. Especially, the quantity W (S, F )/|S|α against F/|S|α is a scaling invariant [74].

Concerning the surface roughness evolution W (F ) (figure 4.6 b), the simulation system seems
not yet to have reached a steady state. There are three clear phases observed in this fluence regime.
The turning points are around F = 1.0 × 103-2.0 × 103 ions nm−2 as well as F ∼ 1.0 × 104.

In the first phase, the surface coarsening is rather homogeneous since the surface is still flat and
almost every wave is growing stably due to surface diffusion as shown in the linear stability analysis
of the BH theory. Various small hillocks are constructed because of the homogeneous propagation
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of small waves in the linear regime. The structures have the periodicity ∼10 nm at the end of the
first phase.

Due to the ballistic displacement with respect to the surface topography, i.e. small hillocks, as
well as the consequent local flux variation, waves propagate preferentially in the lateral direction
of the ion beam when the structure grows to a sufficient level. This is because the flow speed
slows down in the low flux region behind the hills. This fact results in the aggregation of small
structures in the lateral direction resulting in the ripple formation observed. This aggregation
further promotes topography change leading to a more significant local flux variation. This is a
nonlinear effect and the BH theory may be not valid any more. During this phase, as shown in the
width evolution (figure 4.6 b), the growth of structures is quite fast due to this synergy effect of
the aggregation and the local flux change. This may be the reason of spontaneous ripple formation
observed in experiment [70]. In contrast to the lateral direction, the prolongation of the wavelength
with respect to the parallel direction of ion beam is slow and no significant growth is observed
during the second phase since the contribution of surface diffusion may be required.

In the third phase, the coalescence of ripples with respect to the lateral direction of the ion
beam are almost saturated and the wavelength starts to extend. The ripple waves are moving
along the ion beam direction with almost same velocity. The surface self-organization process tries
to minimize the number of branches and the extension of the wavelength seems to be from this
action.

Such a transition with the three phases of the width with the time evolution is also observed
qualitatively in the numerical integration of the 3D hydrodynamic model [162] with the form

∂h

∂t
= −hxx + 0.1(−hyy + h2x + h2y) −

∑

i,j=x,y

[hiijj + 0.1r(h2j )ii]

for each parameter r =0.25-100 whereas the third phase is not observed in their 2D model.

4.2.3 Curvature dependent surface diffusion

In the temperature range of the KMC simulation performed above, thermal diffusion may play
an important role. From the surface current equation (4.18), the atomic current depends on the
surface gradient of the curvature κ. In the case of a 2D Cartesian system (x, h(x)), the curvature
κ is given by

κ = − hxx

(1 + h2x)3/2
. (4.21)

In a 3D system, each point p on the surface possesses two orthogonal directions giving the mini-
mum and maximum curvature known as principal directions (Euler, 1760). These minimum- and
maximum curvatures denoted by κm and κM are called the principal curvatures at p.

The evolution of atomic concentration csurf follows Fick’s second law

csurf = − ∂

∂s
Jsurf .

The velocity of surface evolution with respect to the normal direction rn is then given by the
conservation of atomic density as

rn =
csurf
ρ0

= B
∂2κ

∂s2
. (4.22)

In contrast to the derivation by Mullins [160], we avoid the low-corrugation approximation here.
Accounting for the direction of the surface normal by the factor

√

1 + (∇h)2, the evolution of the
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surface height h resulting in the atomic current is

∂h

∂t
=
√

1 + (∇h)2rn = B
√

1 + (∇h)2
∂2κ

∂s2
. (4.23)

In a 3D Cartesian system, the velocity (4.16) is a vector along the gradient with respect to the
principal directions. Consequently, the concentration is given by the divergence with respect to the

direction coordinate. Thus the evolution r
(3D)
n at p is given by

r(3D)
n = B∇2

sκ = B

(

∂2

∂s2m
+

∂2

∂s2M

)

K, (4.24)

where sm, sM are the arc lengths along the curves crossover orthogonally at p and giving the
principal directions with respect to the minimum- and maximum curvature respectively, and K =
κm + κM . Choose the coordinate system (x, y) parallel to the principal directions. Then, for
(i, u) = (m,x), (M, y), the differential 1-forms satisfy the relation dsi = du

√

1 + h2u and therefore
the partial derivatives are

∂

∂si
=
∂u

∂si

∂

∂u
=

1
√

1 + h2u

∂

∂u
, (4.25)

respectively. From eqs. (4.21), (4.24) and (4.25) together with the height direction factor the height
evolution is derived as

∂h

∂t
= B

√

1 + (∇h)2
∑

u=x,y

1
√

1 + h2u

∂

∂u

(

1
√

1 + h2u

∂K

∂u

)

, (4.26)

with

K = − hxx

(1 + h2x)3/2
− hyy

(1 + h2y)
3/2

. (4.27)

By assuming a slow surface variation |hx|, |hy| << 1, and ignoring second and higher degree terms
in eqs. (4.26) and (4.27) yields

∂h

∂t
∼= −B∇2(∇2h),

which gives the diffusion term of the BH equation (4.3). Note that the time scale corresponds to
the scale of the velocity of surface atoms introduced by the Nernst-Einstein relation (4.16). Hence
in the viscous surface KMC model, the time unit is dependent on the quenching time of the local
temperature enhancement of order ∼ 1 ps.

4.3 Continuum model

From the fundamental observation of the MD simulation, it is assumed that defects such as vacancies
and interstitials during ion bombardment are created with some relaxation between impact events.
The KMC simulation models established the atomics current induced ripple formation process
together with quite short temperature enhancement due to the ion energy deposition.

In this section, a mathematical model is considered in which these processes are merged. Assume
that each ion bombardment induces infinitesimal atomic flow as in a pseudo-compressible media.
This temporary density change in the near surface region leads to the surface evolution locally
driven by mass conservation. The mathematical model is essentially independent from the surface
topography changes induced by both of sputtering and surface diffusion.
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First, a nonlinear equation of motion will be derived. Then it will be shown that it possesses a
travelling wave solution for a specific incident angle, which agrees excellently with the experimental
observation [35]. By applying the model to different systems it is anticipated that induced ripple
structure shapes (periodicity and aspect ratio) can be predicted and used to guide experimental
nanostructure fabrication.

4.3.1 Equation of motion

φ

Figure 4.7: A schematic description of single ion impact. a Vectors describing the ion incidence ~i, surface normal
~ew, surface tangent ~eu, surface atomic flow ~f and the ion incidence angle θ are defined. b The local angle dependence
of the flow in the affected region δV . c The (two-dimensional) surface swelling process around the impact point.

Let (u, v, w) be the local coordination system with (u, v) spanning the tangent space of the
surface manifold M := {(x, y, h(t, x, y)) : x, y ∈ R}. Moreover, let ~eu, ~ev, ~ew be the corresponding
unit vectors associated with these directions, i.e. ~ew defines the outward surface normal vector; the
unit vector oriented to the mean direction of incoming ions is denoted by −~i. Here, the directions
of the components u and v of the coordinate system are defined by ~i and the normal vector ~ew as

~eu =
~i× ~ew

|~i× ~ew|
× ~ew, ~ev = ~ew × ~eu. (4.28)
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The flow of atoms in the small region δV around the impact point is now considered. Figure 4.7 a
illustrates this condition for the case when ~i is parallel to the (x, z)-plane.

Let N = N(E, a) be the total number of displaced atoms due to the collision cascade [35, 202,
203] for a effective penetration depth a and ion energy E. Note that this effective penetration
depth a is related to the mobile atom region, considered in the hydrodynamic model [37, 161, 162],
and the penetration depth itself depends on both the energy E and the type of ion [257] (see eq.
(4.4)). Assume that this N is independent from the local angle of incidence so long as the angle is
not too glancing. Now consider an effective flow of atoms displaced in a small region δV near the
impact point. The model assumes an atomic motion induced by ion impact in δV , considered as
a fast Eulerian-like flow. This δV may depend on the local angle of ion incidence due to the flow
invoking the surface modification. It is also assumed that the number of atoms set in an effective
motion depends on the volume of δV and the rate of these atoms flowing is constant. Let N eff

be this rate of atoms contributing to the effective flow in δV . The energy density deposited may
depend on the number of atoms in δV (figure 4.7 b). Set

N eff
loc := N effρ0|δV |, (4.29)

where |δV | indicates the volume of δV . Let ~vi be the flow vector of atoms i = 1, ..., N eff
loc . Let ∆v

be the magnitude of the velocity loss during the effective collision process evoking the flow. Here,
M1 and M2 are the mass of ion and surface atoms as defined in section 4.1, respectively. Then due
to elastic collisions

M1

Neff
loc
∑

i=1

~vi = M2∆v(−~i).

Thus the average velocity ~v of atoms is

~v =
M2∆v

M1N
eff
loc

(−~i). (4.30)

For the effective quenching time tq, let ǫ := |~v|tq be the mean displacement distance. Then from
(4.30) we have

M1(ǫ/tq) =
M2∆v

N eff
loc

. (4.31)

The quenching time tq of the effective flow is effectively the ballistic phase of a collision cascade
predicted as a few ps by MD simulations of low energy ion impact [213]. The displacement distances
ǫu, ǫv and ǫw projected in the direction of (u, v, w) are thus ǫj = ǫ(−~i·~ej), for j = u, v, w respectively.

The local atomic flow vector ~floc is now represented by

~floc = ρ0
∑

j=u,v,w

(ǫj/tq)~ej = −ρ0ǫ
tq
~i. (4.32)

For a typical ion flux φ, the mean time interval between two ion impacts per unit square is much
longer than the quenching time tq. Let

Sf =
|δV |
a~i · ~ew

be the surface area where the atomic flow occurs. Then this time interval td is given by

td =
1

Sfφ
=
a~i · ~ew
|δV |φ . (4.33)
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Denote

rt :=
tq
td

=
tq|δV |φ
a~i · ~ew

(4.34)

the ratio of these two times. Note that the time interval td decreases with increasing flux. From
(4.29), (4.31), (4.32) and (4.33) the global flow function ~f is then given by

~f = (~i · ~ew)rt ~floc = −ρ0u~i,

where

u =
φtqM2∆v

aρ0M1N eff
(4.35)

is a positive constant with the dimension of velocity independent from the local topography.

Now, the mass current ~f and the atomic density ρ satisfy the conservation of mass equation

∫

δv

∂ρ

∂t
dV +

∫

∂δv
~f · ~nsdS = 0. (4.36)

This describes the fast defect creation process. The volume of δV is approximately |δV | ≈ δuδva(~i ·
~ew). The mean height evolution due to the relaxation of defects can be evaluated as (figure 4.7 c)

〈∂h
∂t

〉 ≈ <
√

1 + (∇h)2 >

ρ0δuδv

∫

δv

∂ρ

∂t
dV. (4.37)

In the model, surface swelling, or shrinking is allowed only in the surface normal direction where the
resistance is considered to be least. Thus the volume variation δρ is proportional to the variation
of local surface height relaxation δH (figure 4.7 c).

Figure 4.8: Schematic description of δV with respect to the local coordinate system (u, v, w) and relevant vectors.

Let S±
u , S±

v and S±
w be the surfaces of δV (see figure4.8 a). Since ~f is parallel to ~i by (4.35), it

follows from (4.28)
~f · ~ev ∝~i · ~ev =~i · (~ew × ~eu) = ~eu · (~i× ~ew) = 0.
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Thus from eq.(4.36) (see also figure4.8 b)

−
∫

δV

∂ρ

∂t
dV

=

∫

∂δV

~f · ~nsdS

=

∫

S+
u

~f · ~eudS −
∫

S−
u

~f · ~eudS

+

∫

S+
w

~f · ~ewdS −
∫

S−
w

~f · ~ewdS

=

∫ 0

−a~i·~ew(u0+δu,v0)

∫ v0+δv

v0

~f · ~eu(u0 + δu, v0)dvdw

−
∫ 0

−a~i·~ew(u0,v0)

∫ v0+δv

v0

~f · ~eu(u0, v0)dvdw

+

∫

S+
w

~f · ~ewdS −
∫

S−
w

~f · ~ewdS

= a~i · ~ew(u0 + δu, v0)δv ~f · ~eu(u0 + δu, v0)

−a(~i · ~ew(u0, v0))δv ~f · ~eu(u0, v0)

+

∫

S+
w

~f · ~ewdS −
∫

S−
w

~f · ~ewdS. (4.38)

The third and the fourth term give the flow components oriented to the surface normal. The third
term is negative, since ~i · ~ew > 0 but there are no atoms flowing into the surface from the vacuum
region, hence

∫

S+
w

~f · ~ewdS = 0. (4.39)

The fourth term giving the normal flow into the bulk is offset by the swelling process. It follows
that

∫

S−
w

~f · ~ewdS = 0. (4.40)

Accounting for the recoil flow in the normal direction, we assume a constant sputtering rate Y in
the direction of the w, for the atoms flowing out from S+

w proportional to the energy deposition
∝ |~f · ~ew|. This rate Y may also depend on the surface curvature as well as the incident angle.
Here, however, we ignore these dependencies and simply eliminate atoms from this impact region
corresponding to a loss of material given by

∫

S+
w

Y |~f · ~ew|dS.

For small δu and δv, this term is approximately

∫

S+
w

Y |~f · ~ew|dS ≈ Y δuδv|~f · ~ew|. (4.41)
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Hence, for the macroscopic view, as δu, δv → 0, it follows from eq. (4.36)-(4.41)

∂h

∂t
= lim

δu,δv→0

<
√

1 + (∇h)2 >

ρ0δuδv

∫

δV

∂ρ

∂t
dV

= − lim
δu,δv→0

<
√

1 + (∇h)2 >

ρ0δuδv

×
{∫

S+
u

~f · ~eudS −
∫

S−
u

~f · ~eudS + Y δuδv|~f · ~ew|
}

=

√

1 + (∇h)2

ρ0

{

auρ0
∂

∂u
(~i · ~ew)(~i · ~eu) − uY ρ0(~i · ~ew)

}

= u
√

1 + (∇h)2
(

a
∂

∂u
{(~i · ~ew)(~i · ~eu)} − Y~i · ~ew

)

. (4.42)

The sputtering term of (4.42) is consistent with eq. (4.1) when the beam is incident in the z direction
and Y varies with incidence angle. Here Y is the rate of sputtered atoms flowing perpendicular to
the surface of δV and Y0 is simply the mean number of atoms sputtered by single ion impact. A
more accurate description accounting for the angular dependency of Y will be discussed in section
4.4.2. Similar forms to (4.37) as well as for the derivative along the local coordinates in (4.42) appear
in the calculation of Cuerno and Barabási [53] as well as the model of Carter and Vishnyakov [35],
respectively. Our fluid model differs from these due to the direction of surface elevation resulting in
the pseudo-compressibility of the fluid atoms. Consequently, the derived equation of motion (4.42)
can be thought of as lying somewhere between those in the models of [35] and [53]. The partial
derivative of the inner product with respect to the local coordinate u in eq. (4.42) delivers the
second derivative along the direction parallel to the ion track as well as the surface normal. Thus,
in our model the evolution is influenced by both this second derivative [35] and the gradient [53]
of the surface height. In the initial stage, at least, this equation may require the diffusion term in
order to avoid the instability of surface roughening inherent in the linear dispersion relation of the
BH theory.

4.3.2 A travelling wave solution

Once the total ion fluence reaches a certain level, it has been observed experimentally that surface
roughening is saturated and the ripple periodicity is stable [118]. This fact suggests that there may
exist a travelling wave solution satisfying the continuum equation (4.42). Now assume the surface
height varies only with x (hy ≡ 0) and ignore the y-component as observed in experiments. For
the counter vector ~i of the radiation direction, let θ be the angle between z-axis and ~i (see figure

4.7 a). Then ~i =

(

sin θ
cos θ

)

and the surface tangent vector is ~eu = −1√
1+h2x

(

1
hx

)

. The outward

normal vector is ~ew = 1√
1+h2x

(

−hx
1

)

. After a straightforward calculation the time evolution of

h from (4.42) is

∂h

∂t
= ua

hxx
(1 + h2x)2

{−2hx sin 2θ + (1 − h2x) cos 2θ}

+uY (hx sin θ − cos θ). (4.43)

Thus for the specific incident angle θ = 45◦, eq. (4.43) is simply

∂h

∂t
= u

[

−2a
hxxhx

(1 + h2x)2
+

Y√
2

(hx − 1)

]

. (4.44)
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Set h = h̃− (uY/
√

2)t, then eq. (4.44) is equivalent to

∂h̃

∂t
= u

[

−2a
h̃xxh̃x

(1 + h2x)2
+

Y√
2
h̃x

]

. (4.45)

Set the travelling wave assumption τ ≡ x+ σt for the wave velocity σ. Then (4.45) is

σh̃τ = u

[

−2a
h̃ττ h̃τ

(1 + h̃2τ )2
+

uY√
2
h̃τ

]

. (4.46)

A solution to this equation exists in the form of a parametric representation h̃ = h̃(τ) as

τ = a(p+ sin p), h̃ = a cos p (4.47)

The function h̃(τ) is simply a cycloid function and is differentiable almost everywhere. Calculating
with the chain rule yields

h̃ττ = − 1

4a
(1 + h̃2τ )2. (4.48)

Hence, from (4.46), (4.47) and (4.48), the function

h(t, x) = h̃(x+ σt) − uY√
2
t (4.49)

satisfies the equation of motion (4.44) with the specific wave velocity σ given by

σ = u

(

1

2
+

Y√
2

)

.

The wave moves in the negative x direction and the velocity increases with the sputtering rate.
Thus the direction of wave movement agrees with experimental observations [93] in contrast to
the BH prediction induced by the angular dependent sputtering rate [40]. From eq. (4.35), the
velocity of the ripple wave is proportional to the flux φ, the quenching time tq, the mass of ion M1,
and the velocity loss of ion ∆v during the effective collision process evoking the flow and in inverse
proportion to the effective penetration depth a, the density of substrate ρ0, the mass of target atoms
M2, and the effective number of those atoms flowing in the impact region. The sputtering rate Y
contributes to the acceleration of the wave velocity. One remarkable point is that this wave solution
requires neither sputtering nor diffusion. In addition, the shape of the specific solution given above
is not of small variation since the height and the wavelength can be of the same magnitude so the
linear theory is invalid.

Recently, Macko et al reported ripple formation on an Fe co-deposited Si surface by 2 keV Kr+

irradiation at 140 K - 440 K [146]. A typical incident angle where ripples appeared was around
θloc ≈ 50, close to the angle given in our solution. Note that this solution predicts the final stage
of ripple formation and does not describe the growth of process. In the initial stage, a contribution
from surface diffusion is necessary to stabilise the growth of the structures. This will be discussed
further in section 4.4.1.

4.3.3 Lyapunov stability

Now consider the Lyapunov stability of the solution. Let g(x) ∈ C2
b (R) be an arbitrary disturbance

and g̃ = g+ h be the perturbed solution. Here, Cnb (R) denotes the class of all functions defined on
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the real space R that are n times continuously differentiable and bounded. Then from (4.44)
∣

∣

∣g̃t − u
[

−2a g̃xxg̃x
(1+g̃2x)

2 + Y√
2
(g̃x − 1)

]∣

∣

∣

≤ u
2

∣

∣

∣
h̃τ + 4ag̃xxg̃x

(1+g̃2x)
2

∣

∣

∣
+ uY√

2
|gx| .

Thus the stability of
∣

∣

∣

∣

h̃τ +
4ag̃xxg̃x
(1 + g̃2x)2

∣

∣

∣

∣

(∗)

has to be shown. In fact, (∗) is bounded by a polynomial function of ‖g‖ converging to 0 for
‖g‖ → 0 in C2

b (R). It can be seen, for example, the bound of (∗) is

(∗) ≤ 32

9
(|gx|4 + 5|gx|3 + 6|gx|2 + 10|gx| + 8a|gx||gxx| + 4a|gxx|). (4.50)

Hence the solution satisfies Lyapunov stability. The derivation detail of (4.50) is given in appendix
E. Interestingly, the solution itself is not in C1

b , but the perturbed solution is still bounded. This
stability implies that if the perturbation term of the original solution is small enough, then the
solution perturbed is still stable and does not diverge with the time evolution. Especially, all terms
appearing in (4.50) are derivatives of the disturbance g and therefore, if the disturbance is slow
changing, then the solution perturbed is quite stable.

4.3.4 Comparison with experiment

Figure 4.9 displays a comparison between the analytical solution obtained in (4.49) (a) and the
experimental result for Si [35] (b). a shows the cross-section which has an equivalent aspect ratio as
the experiment (right) and the direct 3 dimensional (3D) visualisation (left) of the travelling wave
solution (4.47) with the original aspect ratio for a = 0.06 µm. b gives the cross-section (left) and
the top view (right) of an atomic force micrograph (AFM) image of a Si surface after 40 keV Xe+

at θ = 45◦, ion fluence 1×1018 ions cm−2 at 100 K. The analytical solution contains singularities in
the valley region and this tendency is also observed in the experimental height profile with the same
trend of a convex, symmetric periodic shape as predicted by the stable travelling wave solution. The
superimposed incidence directions show that the bottoms of the valleys are not directly exposed to
ion irradiation (figure 4.9 a) and therefore the solution is likely to give an inaccurate description
in this region. Certainly the troughs of the ripples in the experiment are exposed to the beam and
seem to be much smoother, (figure 4.9 b,left) possibly also due to ion reflection as well as diffusion.

However the Lyapunov stability shown above should guarantee the stability of the analytical
solution against any small perturbation in the shadowed region (figure 4.9 a,left). The height
profile of the experiment exhibits surface roughening in the initial stage but eventually a ripple
formation converges to the shape predicted by the analytical model. The mean ripple wavelength
from the experiment is [35] λ = 0.4 µm and the solution would then predict a stable wave height
of 2 × λ/2π ∼ 0.13 µm. This agrees also nicely with the average height of the experimental result
0.12 µm (b, left). The effective penetration depth a in this case is thus λ/2π ∼ 0.06 µm which is
consistent with the mean penetration depth Rp of 40 keV Ar+ ions, calculated as 0.05 µm using
the SRIM code [261].

4.3.5 Approximate solutions for other angles

The highest order term of eq. (4.43) is hxxh
2
x. If this term can be ignored, then the equation is

∂h

∂t
≈ ua

hxx
(1 + h2x)2

{−2hx sin 2θ + cos 2θ} + uY (hx sin θ − cos θ). (4.51)
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Figure 4.9: Comparison between the analytical solution and experiment. a The analytical travelling wave solution
h = h(τ), a = 0.06 µm for θ = 45◦ with the consistent aspect ratio (left) and the direct 3D image of the travelling
wave solution (4.47) (right). The bars in the the height profile and the 3D diagram indicate the trace of incident ion
at 45◦. The magnified cross section along the dotted line is shown. b AFM image of rippled Si surface produced by
40 keV Xe+ at θ = 45◦ (courtesy V. Vishnyakov, [35]). The height profile with ion traces (bars) (left) and top view
(right).

This also possesses a travelling wave solution given by

h(t, x) = h̃(x+ σt) − u

(

cos 2θ

4
+ Y cos θ

)

t

with

h̃ = a cos p, x+ σt = a(p+ sin p), and σ = u

(

sin 2θ

2
+ Y sin θ

)

.

Since the height is of order a, this approximation is valid when the effective energy deposition
depth a is relatively small in magnitude compared to other terms. However, the contribution of
other factors, such as thermally activated diffusion and topography dependent sputtering, should
be taken into account for more accuracy.

4.4 Contribution of other effects

4.4.1 Surface diffusion

In the initial stages of ion bombardment, so long as the linear approximation is still valid, the model
described above is unstable for every wave component at θ 6= 45◦ in the linear dispersion relation.
For small structure formation in the initial stage, the periodic structure growth is stabilised by
the contribution of the diffusion term [27]. On the other hand, under an enhanced temperature
environment the correlation length is extended due to the high mobility of atoms. In these cases, the
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contribution of the diffusion term should be taken into account since the surface curvature is large
compared to the size of any surface structure and the range of mobility of the atoms. Incorporating
the diffusion term from eq. (4.8) yields

∂h

∂t
=

√

1 + (∇h)2

×
(

ua
∂

∂u
{(~i · ~ew)(~i · ~eu)} − uY~i · ~ew + B̃∇2

sκ

)

, (4.52)

where B̃ is the temperature dependent diffusion coefficient given by

B̃ =
Dsγν

ρ20kB

(

e−Ed/kBT

T
+ rt

e−Ed/kBT
′

T ′

)

(4.53)

where the substrate temperature is T and the locally enhanced temperature from each ion impact,
T ′. With a high substrate temperature T , the diffusion term is dominated by the first term when
the quenching time is small enough, i.e. if

T ′eEd/kBT
′

TeEd/kBT
>> rt (4.54)

holds. Indeed, for a typical quenching time tq ∼ 10−12 s [168], flux φ ∼ 1 ions nm−2s−1 [118],
migration barrier Ed ∼ 1.2 eV [44], melting temperature of Si T ′ ∼ 1700 K, and surface area of
atomic flow, Sf ∼ 1 nm2 [168], the ratio rt is

rt = tqSfφ = 10−12

from (4.34) and the critical temperature Tc for

T ′eEd/kBT
′

TceEd/kBTc
∼ rt

is Tc ∼ 380 K. Thus in experiments at a temperature of T > 800 K reported by Erlebacher et al and
Chason et al , the substrate temperature based diffusion term plays a crucial role; at low and mod-
erate temperatures diffusion is restricted to the short time local temperature enhancement induced
by the ion impact. Note that this critical temperature is highly dependent on the displacement
barrier Ed.

In the linear regime, ignoring the constant term, eq. (4.52) in a 2D Cartesian system reduces
to

∂h

∂t
∼= ua cos 2θhxx + uY sin θhx − B̃hxxxx.

The height evolution obeying this equation of motion behaves like the BH model for θ > 45◦ due
to the negative sign of the second order derivative term. The incident angle dependence is in
agreement with the smoothing term of the Carter and Vishnyakov model [35]. For θ ≤ 45◦, every
wave component decays with time evolution and the surface is simply eroded since the coefficients
of these terms are positive. This prediction is close to the critical angle ∼ 50◦ reported by the low
energy ion sputtering of pure silicon surface by Madi et al [147]. Since u ∝ φ, the wavelength λ
giving the maximum initial structure growth speed is

λ−1 ∝
√

ua/B̃ ∝ (φT )1/2eEd/2kBT ,
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which is the same prediction of the BH theory with respect to the ripple wavelength of parallel
mode. Moreover, in this case the wavelength follows a negative power law of the ion energy

λ−1 ∝
√

ua ∝ E7/12

since u ∝ ∆v ∝ E1/2 from eq. (4.35) and a ∼ projected range ∝ E2/3 from the Sigmund theory.
This prediction λ ∝ E−0.58 is close to that reported by Brown et al [28] λ ∝ E−0.45 at 930 K found
experimentally. On the other hand, at lower temperatures, the contribution of the diffusion term
for the final configuration is not so significant and the wavelength follows a positive power law
relationship

λ ∝ a ∝ E2/3

as predicted by the travelling wave solution (4.47). Such positive power law dependencies are also
reported by Chini et al [46] λ ∝ E0.45 for Ar+ 50-140 keV, as well as Ziberi et al [257] λ ∝ E0.44

for Ar+ 0.5-2 keV at room temperature.

4.4.2 Surface Sputtering

Now consider a more detailed description of the contribution of sputtering in the case of ion beams
with energies in the range (≤ 5 keV). By assuming a small penetration depth a << κ−1, the erosion
velocity vs depends on the local topography as [27]

vs(ϕ, κ) = v0(ϕ) − vc(ϕ)aκ, (4.55)

for a fixed incident angle θ and a constant ion energy. By accounting for the surface normal factor
[53] as in eq. (4.11), the time evolution of h is given by

∂h
∂t =

√

1 + (∇h)2

×
(

ua
∂

∂u
{(~i · ~ew)(~i · ~eu)} − v0 + vcaκ+ B̃∇2

sκ

)

, (4.56)

where v0 and vc are functions of ϕ where ϕ is given by ϕ = θ−tan−1(hx). Note that the magnitudes
of the wave velocity coefficient u and the erosion velocities v0, vc are considered as of the same
order of magnitude. We can also assume that the magnitude of the diffusion term B̃ is at most as
same as of other coefficients at room temperature. From the corresponding term in eq. (4.43) we
have

√

1 + (∇h)2
∂

∂u
{(~i · ~ew)(~i · ~eu)}

=
hxx{−2hx sin 2θ + (1 − h2x) cos 2θ}

(1 + h2x)2
,

in 2D Cartesian system and the curvature κ is

κ = − hxx

(1 + h2x)3/2
.

Thus eq. (4.56) can be written as

∂h

∂t
= ua

hxx{−2hx sin 2θ + (1 − h2x) cos 2θ}
(1 + h2x)2

− vc(ϕ)a
hxx

1 + h2x
+
√

1 + h2x(−v0(ϕ) + B̃∇2
sκ) (4.57)
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Under the assumption of a small variation [27] in h with a << κ−1 ∼ x, the spacial variation can
be scaled x̃ := εx with a small number ε ∼ a. so that x̃ ≈ O(1). Then eq. (4.57) is

∂h

∂t
= −

√

1 + ε2h2x̃v0(ϕ) +O(ε3, aε2). (4.58)

and the local angle is
ϕ = θ − εhx̃ +O(ε3).

Thus

v0(ϕ) = v0(θ) − v′0(θ)εhx̃ +
v′′0(θ)

2
ε2h2x̃ +O(ε3).

The prefactor of eq. (4.56) in 2D system becomes

√

1 + h2x = 1 +
ε2h2x̃

2
+O(ε4).

By ignoring third order terms i.e. ε3 ∼ aε2 ∼ 0 and rewriting in terms of the original unscaled
variables eq. (4.58) becomes

∂h

∂t
∼= −v0(θ) + v′′0(θ)

2
h2x + v′0(θ)hx − v0(θ). (4.59)

The diffusion term disappears at low and moderate temperatures since it is of 4th order. Here,
we are not considering the local quick recovery process from the damage of every ion impact but
the global surface dynamics with the order of wavelength (∼ κ−1) observed. Furthermore, the
curvature dependence also disappears from the equation. The difference from the sputtering term
in eq. (4.52) is essentially the existence of the nonlinear term h2x.

The surface erosion velocity v0 is proportional to the angular dependent sputter rate Y0(θ), a
good model of which is given by eqs. (4.6) and (4.7), the Yamamura formula [249], i.e.

v0(θ) ∝ Y0(θ). (4.60)

For Ar+ →Si, θopt = 69.5◦ [148, 250] and EArth = 32.8 eV [66]. Figure 4.10 shows the sputtering
yield and its derivative, Y0, Y

′
0 and the function Y0 + Y ′′

0 . a, b, and c are for 1 keV Ar+, and d is
for 2 keV Kr+ irradiation. One can see that for the specific angle θs ∼ 60◦ the coefficient of h2x,
i.e. v0(θs) + v′′0(θs) vanishes. The vanishing angle for 2 keV Kr+ with θopt = 70◦, E = 2 keV and
EKrth = 39.6 eV [66] is almost the same (see d). This angle is agreement with the incident angle at
which the clearest ripples are observed in the experiment of Macko et al [145] (∗ in d) for the same
Kr+ ion beam energy of 2 keV. From the Yamamura formula, the specific angle θs is not especially
sensitive to E and Eth but is highly dependent on θopt.

For the specific angle θs, eq. (4.59) is simply

∂h

∂t
= v′0(θs)hx − v0(θs). (4.61)

This also possesses a periodic travelling wave solution

h(t, x) = c0 cos(x+ v′0(θs)t+ c1) − v0(θs)t,

where c0 and c1 are constants. As before there also exists a cycloid solution for eq. (4.61) given by

h = c0 cos(p+ c1) − v0(θs)t, x+ v′0(θs)t = p+ c2 sin p, (4.62)
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Figure 4.10: The angle dependent sputtering yields and their derivatives. a: The sputtering yield given by eqs.
(4.6) and (4.7) with Y0(0) = 0.93 [253], θopt = 70◦, E = 1000 eV and EArth = 32.8 eV. b: The first derivative of Y0(θ).
The sign of this term is related to the direction of the travelling wave solution. c: The term being proportional to
the coefficient of h2

x in eq. (4.59). d: The same expression as c with different energy parameters E = 2000 eV and
EKrth = 39.6 eV. ∗: STM images of the surface topography of Si after E = 2000 eV Kr ion irradiation at 300 K
(courtesy Sven Macko and Thomas Michely [145]).

where c2 is a constant with |c2| < 1. Indeed, figure 2.6 in chapter 2 gives an evidence that the
cycloid solution describes the experimentally observed surface pattern formation quite nicely. For
c0 = 0.22, c1 = π/2 and c2 = 0.7 with the scale factor 7.4 nm, the cycloid solution fits the
experimental observation extremely well(see figure 2.6 and the discussion there).

It is known experimentally that there exists a “magic angle” where clear pattern formation is
observed. This angular dependence is however strongly influenced by the substrate properties and
various preferential angles are reported e.g. θs =5◦-20◦ [258], θs =60◦-75◦ [145], and θs ∼ 67◦ [119].

These differences can be understood by the vanishing angle of the nonlinear term in eq. (4.59)
which depends on the parameters in eq. (4.6). For example, for θopt = 10◦ and 75◦, the vanishing
angle changes from θs ∼ 26◦ to θs ∼ 67◦. Figure 4.11 gives some examples of the effect of varying
the maximum erosion angle. It can be seen that for θopt = 10◦, there is little increase in sputtering
yield with θ (a) with an almost constant value for θ < 0.6 rad ∼ 34◦. This shape is more or less
similar for 0◦ < θopt < 45◦. Because of this the velocity of the travelling wave as shown in b is
almost zero. The term Y0 + Y ′′

0 for θ < 0.6 is much smaller than that for θopt > 60◦ (c and d,
see also Fig. 4.10 c and d) and almost vanishes for small θ. Note that all terms are proportional
to the normal yield Y0(0) by the relation (4.60) and eq. (4.6). For this situation, the nonlinear
term is small over wide range angles so that a travelling wave solution is possible at these angles
as reported by Ziberi et al [257]. Experimentally, ripple formation at these small angles is more
well-defined than with higher angles (see 1 and 3 in c).

Additionally, in c there also exists a second vanishing angle at θ ∼ 1.1 rad ∼ 63◦. Thus
a reappearance of some periodic pattern formation at this angle is also expected. Indeed, the
prediction of this reappearance agrees with the experimental observations of the ripple formation
at θ = 65◦ by Cornejo et al [52] (c 1,2,3) and the dot formation at θ = 75◦ by Ziberi et al [259]
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Figure 4.11: Examples of varying θopt. a: The sputtering yield given by eqs. (4.6) and (4.7) with θopt = 10◦

and other parameters are same as in Fig. 4.10 a. b: The first derivative of Y0(θ). The sign of this term is entirely
negative and the travelling wave solution moves slightly against the ion beam. c: The coefficient of the non-linear
term term in eq. (4.59). d: The same term as in c but with θopt = 75◦. The corresponding vanishing angle is 1.18
rad ∼ 67.6◦. The insets in c and d are surface patterns on Si with some metal impurity incorporation with Kr+ 2
keV (1,2) and 1.5 keV (3), with Ar+ 1.5 keV (4,5) and 0.5 keV (6) (courtesy Frank Frost (3) [52], (6) [259]), and with
Ar+ 0.5 keV (7) (courtesy Adrian Keller [119]) respectively. All experiments were done at room temperature and all
ripples shown here were with the periodicity being parallel to the ion beam direction.

(c 4,5,6). However the dot formation is so far not explained by this approach. In the case of
the observations of Cornejo et al , the first vanishing angle is lower than 0.5 rad, but the second
vanishing angle is in the same regime of c. In the cases of Ziberi et al , the second vanishing angle is
around 1.2 rad. Without any significant contribution of sputtering suppression, pattern formation
appears preferentially at 60◦-70◦ as reported by Macko et al [145] (Fig. 4.10 d ∗) and by Keller et
al [119] (d 7).

4.5 Summary

Previous models of surface pattern formation under ion bombardment have been examined and a
new kinetic model of surface modification based on the atomic flow induced by an ion beam has
been constructed within a similar framework. In the initial stage of pattern formation, thermal
diffusion is necessary to stabilise the initial evolution of wave components within the linear stability
regime but away from this regime the model gives a cycloid function as a stable travelling wave
solution in Lyapunov sense for a specific incident angle. The atomic flow based pattern formation
can explain ripple formation induced by ion beams at low and moderate temperatures, namely
without a significant contribution of thermally activated surface diffusion. The solution agrees
with the a corresponding experimental observation of Carter and Vishnyakov.

Once the size of periodic patterns exceeds a certain size, the contribution of surface diffusion
disappears because of a 4th order topography dependency. Then the topography converges to the
shape of a travelling wave which appears most clearly at the specific angles where a nonlinear
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term in the approximated equations of motion disappears due to the contribution of the angular
dependency of the sputtering yield Y0(θ) + Y ′′

0 (θ).
From this point of view, the similarity between the hexagonal dot structures of semiconducter

surfaces reported Facsko et al [72] as well as Ziberi et al [259] and the Bérnard cells could be
understood as the local Rayleigh-Bérnard convection induced by the discrete atomic flow process
promoted by the accumulation of the quick atomic flow process under low energy ion beam irradia-
tion. Although surface erosion occurs under ion beam irradiation, this theory predicts that a local
fast flow process due to disordering induced by the irradiation significantly contributes toward the
essential driving force for the surface nanostructuring. Suppressing the sputtering can also promote
well-defined ripple formation. In contrast, where recrystallisation occurs between ion impacts, such
as in most metals under low energy bombardment or where the sputter effect is large enough to
dominate the relaxation process, this type of nanostructure formation is unlikely to occur.
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Chapter 5

Summary

In this thesis, three topics, the metal nanocluster growth mechanism on prepatterned substrates,
the acceleration of the KMC simulation model, and ion-beam inducing surface pattern formation
mechanism have been studied. The main results and the outlook of each topic are summarized here.

Metallic cluster growth model

The Ag cluster growth mechanism on ripple-like pre-patterned v-SiO2 has been investigated by a
reaction diffusion model on slightly pre-patterned surfaces with an weak interaction, the sticking
probability evolution, surface ad-monomer random walks, morphology- and incident angle depen-
dent local flux rate, Ag area fraction growth, and the cluster formation process with atomistic
simulation and continuum theory. For the atomistic simulation model, a lattice-based kinetic
Monte-Carlo (KMC) method was used. In this model, a combination of a simplified inter-atomic
potential and experimental transition barriers taken from the literature was employed. The main
results relating to the metal cluster growth mechanism are as follows:

• The experimentally observed Ag NCs grown on rippled templates were successfully reproduced
by a new type of KMC simulation method with a weak interaction between Ag and v-SiO2

of the bond energy E
Ag/SiO2

b = 0, 26 eV and the migration barrier E
Ag/SiO2
m = 0.20 eV that

are relatively in good agreement with the DFT calculations.

• It was revealed that the observed coalescence of NCs promoted mainly in high flux regions
and less nucleation occurs in low flux regions is due to a high re-evaporation rate from the
substrate.

• It is predicted that millisecond order lifetimes, and ≈1 nm square surface migration ranges
of Ag adatoms can trigger metal nucleations even on defect free surfaces.

• The nucleation density is strongly influenced by the AL of metal adatoms on templates as
well as the flux, especially for a short AL and the amplification of the initial pre-patterned
surface is highly enhanced in a certain low flux regime.

Further development of this work is e.g.

◦ Application of other deposition materials such as Co, CdTe, Si, Ge from experimental- and
industrial importance.
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◦ Development of 3D cluster growth simulation model accounting for some other effects such
as the ballistic detachment-redeposition process, the cohesive energy profile of metal atoms
connecting with the substrate, the annealing process, multicomponent materials and grain
boundaries, a more accurate and complicated event table in order to determined local tran-
sition events more systematically.

Markov chain model

A new type of accelerated KMC simulation method has been developed in order to model a cluster
formation process comparable with experiment. The acceleration method consists of two essential
ideas that are the discretization of the entire process into local transition events and the classification
of the transition levels with respect to the thermal fluctuation of the system. The main results from
this topic are summarized below:

• By allowing free transitions with small barriers to be considered as fluctuations, the entire
system evolves as a Markov chain of ‘equal entropy’ equivalence class objects.

• The evolution dynamics of the system is promoted by the metastable level transitions.

• Contrary to some previous accelerated dynamics methods [214, 153, 45] accounting for many
small migration barriers, an acceleration of the system evolution can still be achieved, when
the system does not require too many transition events to reach the quasi-equilibrium state
and a typical acceleration factor for the metallic PVD example is 2000-3000.

• The model predicts a convergence time of metastable states, after each metal deposition onto
the surface, of < µs-order.

• The model can predict the metal cluster growth patterns accurately with detailed atomistic
transition event statistics.

• The effect of parameters chosen in the method is investigated with 1D atomic diffusion models
and the acceleration effect is verified with the convergence speed of the probability distribution
of microstates to the thermodynamical limit (the Boltzmann distribution).

• The perturbation of the limit distribution of microstates is bounded by the characteristic
number of the original Markov kernel and the maximum norm of this kernel and perturbed
Markov kernel (Theorem 1).

For further development:

◦ A systematical study of the application limit of the transition level classification method with
respect to the inability of the small transition effect of individual simulation system under
various temperatures.

◦ More accurate barrier calculations such as those provided by DFT or improved inter atomic
potentials.

◦ Extension for the representation of wave functions through the integration of all pathways
connecting states at two complex times for describing various levels of physics.
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Ripple formation theory

Surface pattern formation under ion bombardment has been studied by examining previous models
and through the formulation of a new non-linear kinetic model based on the local atomic flow and
associated density change in the near surface region. The main results of this theory are enumerated
below:

• A nonlinear equation of motion describing surface evolution by ion beam inducing atomic
flow was derived and a cycloid function as a stable traveling wave solution in Lyapunov sense
was found for the specific angle.

• Under the slowly varying surface assumption, the same equation possesses a similar traveling
wave solution for any incident angle.

• In the initial stage of pattern formation, thermal diffusion and an incident angle θ > 45◦

are necessary to stabilise the initial evolution of wave components within the linear stability
regime which agrees with the recent report of Madi et al [147].

• Away from the initial regime, the model gives this stable travelling wave solution and the
positive power law ion energy dependency of the wavelength λ ∝ E2/3 predicted, agrees with
the experimental reports by Chini et al [46] λ ∝ E0.45 and Ziberi et al [257] λ ∝ E0.44.

• The atomic flow based pattern formation can explain ripple formation induced by ion beams
at low and moderate temperatures, namely without a significant contribution of thermally
activated surface diffusion.

• The solution agrees with the a corresponding experimental observation of Carter and Vish-
nyakov [35].

• Once the size of periodic patterns exceeds a certain size, the contribution of surface diffusion
disappears because of a 4th order topography dependency.

• In the final stage, the topography converges to the shape of a traveling wave which appears
most clearly at the specific angles where a nonlinear term in the approximated equations of
motion disappears due to the contribution of the angular dependency of the sputtering yield
Y0(θ) + Y ′′

0 (θ).

• This prediction can explain various experimental observations of ripple formation under irra-
diation at ‘magic angles’ reported by Macko et al [145], Cornejo et al [52], Ziberi et al [259]
and Keller et al [119].

This theory predicts that a local fast flow process due to disordering induced by the irradiation
significantly contributes toward the essential driving force for the surface nanostructuring. In
contrast, where recrystallisation occurs between ion impacts, such as in most metals under low
energy bombardment or where the sputter effect is large enough to dominate the relaxation process,
this type of nanostructure formation is unlikely to occur. As outlook, there are some topics to be
investigated in order to extend this atomic flow based pattern formation theory.

◦ A more accurate description of the statistical distribution of atomic flow directions especially
for the sideways motion.
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◦ It is predicted that the change of angular dependency of the sputtering yield results in the rip-
ple formation. Thus an accurate contribution analysis of impurity species for the sputtering
feature should be examine by e.g. combination of MD- and experimental approaches, espe-
cially an appropriate material assisting the clear ripple formation without any disturbance of
the electric property of the semiconductor would be explored if exist.

◦ Further property of the nonlinear solution found in this work and its application to the similar
type of dynamical systems.

◦ The application of the continuum models to cluster growth processes such as metal whiskering.

The consideration of another intriguing ion inducing pattern formation, the hexagonally ordered
dot structures, reported by e.g. Facsko et al [72] as well as Ziberi et al [259] are excluded in this
work. Thus the applicability of the model to this phenomenon is an interesting and challenging
topic. For the industrial application, the second point is quite important. Concerning the third
point, the solution found in this work satisfies a nonlinear PDE essentially due to the multiplication
of another nonlinear term which is 1 under the second order approximation. A further study of
such property could also be an interesting mathematical subject bringing a new light on the general
solution of nonlinear dynamical systems such as the Navier-Stokes equation [91].

The aim of this study was to develop a theoretical understanding of experimentally observed ion-
inducing ripple-like surface pattern formation of semiconductors and its application of the metallic
nanocluster growth by PVD. It is concluded that this aim has been successfully accomplished
through an rigorous reexamination of the previous models and a new, atomic flow based kinetic
model including the full consideration of the nonlinear equations of motion and the discovery of
their analytical solutions, and a new type of atomistic simulation model with an extremely effective
acceleration method respectively.
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Appendices

A The discrete reaction diffusion equation

The reaction-diffusion equation (2.23) for the simulation cell of the fcc structure can be derived
from the second and the third order approximation for time- and space variables respectively. Let
C(t, u, v) be the existence probability of an atom in the discrete lattice site (u, v) on the fcc(100)
surface at time t. There are totally 12 jump directions in the fcc grid and four of them are directions
of detachment where the probability of the detachment is e−∆E/kT . Thus C is represented by

C(t+ 1, u, v) =
1

12

{

C(t, u− 1, v − 1)

+ C(t, u+ 1, v − 1)

+ C(t, u− 1, v + 1)

+ C(t, u+ 1, v + 1)
}

+
1

3

{

1 + (1 − e−∆E/kT )
}

C(t, u, v).

Then,

C(t+ 1, u, v) − C(t, u, v) =
1

12

{

C(t, u− 1, v − 1)

+ C(t, u+ 1, v − 1) + C(t, u− 1, v + 1)

+ C(t, u+ 1, v + 1) − 4C(t, u, v)
}

−e
−∆E/kT

3
C(t, u, v). (A.1)

The formal expansion of eq. (A.1) yields

Ct(t, u, v) =
1

6

{

Cuu(t, u, v) + Cvv(t, u, v)
}

− e−∆E/kT

3
C(t, u, v) +O(∂2t , ∂

3
u,v),

where subscripts imply the partial derivatives with respect to variables. With this approximation
the reaction-diffusion equation models nicely the behavior of adatom random-walks on the fcc(100)
surfaces. Similarly, one can derive the diffusion coefficient D = 1/4 for the adatom migration on
the fcc(111) surface in the same simulation cell. The derivation of other diffusion constants is also
analogous.
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B The derivation of the solution (2.20)

Let I = I(t, u, v) be a solution of the inhomogeneous diffusion equation

∂tI −D ∇2 I = g(t, u, v), (B.1)

with the initial condition

I(0, u, v) ≡ 0. (B.2)

Then the solution is given by the convolutions of 0, g and the 2D Green’s function G2 as mentioned
in chapter 1.3.3, i.e.,

I(t, u, v) ≡ G ∗ 0 +

∫ t

0
G2(t− s) ∗ g(s)ds

=
1

4πD

∫ t

0

∫

R2

1

t− s

× exp
(

− (u− u′)2 + (v − v′)2

4D(t− s)

)

g(s, u′, v′)du′dv′ds. (B.3)

Set I =: g̃(t) · Ĩ(t, u, v) (quasi solution Ansatz). Since I satisfies (B.1), it follows

g̃′Ĩ + g̃∂tĨ − g̃D ∇2 Ĩ = g,

∂tĨ −D ∇2 Ĩ =
g

g̃
− g̃′

g̃
Ĩ . (B.4)

By the comparison of eq. (B.4) with eq. (2.14), g/g̃ and g̃′/g̃ satisfy

g

g̃
= f̃loc,

g̃′

g̃
= rd.

Thus g̃(t) = c0e
rdt with the integral constant c0 and therefore

g(t, u, v) = c0e
rdtf̃loc(u, v) ≈ c0e

rdtfloc(u, v) = c0e
rdt cos

(

θ +
dh

du

)

.

Hence C̃ ≡ g̃−1 · I satisfies eq. (2.14) with the plane surface initial condition (B.2). From (B.3) it
follows that

C̃(t, u, v) ≡ 1

4πD

∫ t

0

∫

R2

1

t− s

× exp

[

−(u− u′)2 + (v − v′)2

4D(t− s)
− rd(t− s)

]

cos

(

θ +
dh(u′)
du′

)

du′dv′ds

=
1

4πD

∫ t

0

∫

R2

1

s′

× exp

[

−(u− u′)2 + (v − v′)2

4Ds
− rds

′
]

cos

(

θ +
dh(u′)
du′

)

du′dv′ds′.
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C Contribution of overlapping migration area

Here, a generalised situation described in section 2.2.1 is discussed. The idea is extended to a general
m-dimensional case for an arbitrary natural number m ∈ N. Now, consider the time dependent
existence probability distribution of an element in m-dimensional lattice space Z

m. The element is
generated at the origin at time t = 0 and migrates with a certain annihilation rate in the discrete
cells. E.g., an adatom on a 2D system is considered as the element in section 2.2.1. For each lattice
point x ∈ Z

m, let C(t,x) be the desired distribution at x. Let Nn(t,x) be the number of occupation
times of the lattice point x at time t in n-th iteration process. Then the existence probability is
obtained by

C(t,x) = lim
n→∞

∑n
j=1Nj(t,x)

n
. (C.1)

Now the migration region, i.e. the number of occupation sites Vn(t) at time t after n-th iteration
process, is defined by

Vn(t) :=
∑

x∈Z
sgn
[

t
∑

i=0

Nn(i,x)
]

. (C.2)

Note that Nn(i,x) is non negative and takes a positive value at most in a finite number of lattice
points x ∈ Z for every iteration step n <∞. This value indicates the proper number of lattice sites
occupied at least once by the migrating element. The mean intermediate migration volume V (t) of
the element until the simulation time t is then defined by

V (t) = lim
n→∞

∑n
j=1 Sj(t)

n
.

Thus, from (C.1) and (C.2)

V (t) =
∑

x∈Z
lim
n→∞

∑n
j=1 sgn

[

∑t
i=0Nj(i,x)

]

n
≤
∑

x∈Z

t
∑

i=0

C(i,x). (C.3)

The maximum simulation time step tmax is effectively the longest lifetime of the element during
the iterations. Thus tmax increases monotonically with increasing the iteration number n. Hence
the limit of the mean migration volume V can be defined as V := lim

n→∞
V (tmax(n)) which satisfies

the relation

V ≤
∑

x∈Z

∞
∑

t=0

C(t,x) = r−1
ann, (C.4)

where rann is the annihilation rate of the element at each transition step. As seen in section 2.2.1,
one can easily see that the rate r−1

ann is the limit of the summation in (C.3) and corresponds to the
mean lifetime of the element in the system. The inequality of (C.3) arises from the sign function.
The difference increases when the sum of the occupation number

∑

j Nj(i,x) is much larger than
1. The rate of overlapping migration occurrence is therefore higher for a long lifetime migration
than for a short lifetime. Nevertheless, when the lifetime is long enough compared to the scale of
discrete sites, the probability of overlapping occupation is ignorable since the most of occupation
number of sites are 1 or 0 as seen in chapter 1.3.3.
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metal cohesive energy repulsive energy lattice parameter

ζ (eV) q A (eV) p a (Å)

Cu 1.2603 2.43 0.09334 10.55 3.61

Ag 1.1663 3.05 0.09982 10.84 4.09

Au 1.8352 4.30 0.2179 10.525 4.08

Table D.1: Parameters for Cu, Ag and Au used in eq. (D.2) and (D.3), given in Ref [92].

D The RGL potential

The RGL potential function describes thermodynamic properties of fcc transition metals proposed
by Rosato, Guillope and Legrand in 1989 [193]. This potential function is a semi-empirical model
introducing the second-moment approximation of the tight-binding scheme [65] for the attractive
energy and a Born-Mayer type pairwise interaction for the repulsive energy. The interaction between
two atoms depends not only on the length of bonds but also on the local environment around the
atom, i.e. the number of neighboring atoms within the cutoff radius. The total cohesive energy Ec
is represented as

Ec = −
∑

i

(Eib + Eir), (D.1)

where i ranges all atoms in the system, Eib is the band energy and Eir is the repulsive energy. Here
the band energy is written with parameters ζ, q and the first neighbor distance r0 as

Eib = −







∑

j

ζ2 exp

[

−2q(
rij
r0

− 1)

]







1/2

, (D.2)

where rij is the bond length between atoms i and j. The parameters ζ and q are an effective
hopping integral and the distance dependence of the hopping integral, respectively. The repulsive
energy Eir is a Born-Mayer type, i.e., ∝ exp−r, pairwise interaction

Eir =
∑

j

A exp

[

−p(rij
r0

− 1)

]

. (D.3)

The parameters A, p, ζ and q are empirically optimized by fitting the cohesive energy, lattice pa-
rameter, bulk modulus and shear elastic constants. The equilibrium condition is also taken into
account. Table D.1 shows the parameters for noble metals. Because of the fcc structure the lattice
parameter a is given by

a =
√

2r0.

It is suggested by the original paper of Rosato et al [193] that the summation j ranges all atoms
located in the first neighbor positions for each atom i. This restriction is extended up to the third
neighbors by Guillope and Legrand [92]. Note that the rate of the first, second and third neighbor
distances of fcc structure is 1 :

√
2 :

√
3. For the fcc grid based KMC simulation system treated

in this work, the inter-atomic distance corresponds to the diagonal length of the square lattice and
the first NN interaction is considered. Thus from eq. (D.1) the cohesive energy Ei of a single atom
i in the lattice KMC simulation system is simply given by

Ei = −ζ
√
n+An,

where n is the number of atoms locating in the NN sites of i. Note that for the potential energy
calculation the sign of the energy changes.
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E Stability of the traveling wave solution

Concerning the nonlinear stability of the solution, it will be shown that the solution (4.49) satisfies
the Lyapunov stability criterion. We define Lyapunov stability in the following sense in this work.

Definition 1. A weak solution h ∈ Cb([0,∞)×R) of the partial differential equation F (∂h∂t ,
∂h
∂x ,

∂2h
∂x2

) ≡
0 satisfies Lyapunov stability if for an arbitrary function g ∈ C2

b (R) and positive number ε > 0,
there exists δ > 0 such that

‖g‖ < δ ⇒
∣

∣

∣

∣

F (
∂h

∂t
,
∂(h+ g)

∂x
,
∂2(h+ g)

∂x2
)

∣

∣

∣

∣

< ε,

where ‖·‖ and | · | is the maximal norm in C2
b (R) and Cb([0,∞) × R) respectively. Here, the weak

solution implies that the solution function is defined in [0,∞) ×R except a null set in the sense of
the Lebesgue measure.

Let g(x) ∈ C2
b (R) be an arbitrary disturbance and g̃ = g + h be the perturbed solution. Then

from (4.44)

(∗) : =

∣

∣

∣

∣

g̃t − u

[

−2a
g̃xxg̃x

(1 + g̃2x)2
+

Y√
2

(g̃x − 1)

]∣

∣

∣

∣

=

∣

∣

∣

∣

ht + u

[

2ag̃xxg̃x
(1 + g̃2x)2

− Y√
2

(gx + hx − 1)

]∣

∣

∣

∣

=

∣

∣

∣

∣

h̃τσ − uY√
2

+ u

[

2ag̃xxg̃x
(1 + g̃2x)2

− Y√
2

(gx + h̃τ − 1)

]∣

∣

∣

∣

=

∣

∣

∣

∣

h̃τu

(

1

2
+

Y√
2

)

− uY√
2

+ u

[

2ag̃xxg̃x
(1 + g̃2x)2

− Y√
2

(gx + h̃τ − 1)

]∣

∣

∣

∣

= u

∣

∣

∣

∣

1

2
h̃τ +

2ag̃xxg̃x
(1 + g̃2x)2

− Y√
2
gx

∣

∣

∣

∣

≤ u

2

∣

∣

∣

∣

h̃τ +
4ag̃xxg̃x
(1 + g̃2x)2

∣

∣

∣

∣

+
uY√

2
|gx| .

Here, | · | implies the maximum norm.

Remark 1. For
∣

∣

∣

∣

h̃τ +
4ag̃xxg̃x
(1 + g̃2x)2

∣

∣

∣

∣

=: (∗∗),

it follows
u

2
(∗∗) − uY√

2
|gx| ≤ (∗) ≤ u

2
(∗∗) +

uY√
2
|gx|.

Thus the stability of (∗) is equivalent to the stability of (∗∗).

Proposition 1. The traveling wave solution (4.49) satisfies Lyapunov stability.

Proof. Since h̃(p) = a cos p, τ = a(p+ sin p),

h̃τ =
dh̃

dp

dp

dτ
= − sin p

1 + cos p
, (E.1)

h̃2τ + 1 =
sin2 p+ (1 + cos p)2

(1 + cos p)2
=

2

1 + cos p
, (E.2)

g̃x = gx + hx = gx + h̃x = gx + h̃τ , (E.3)

g̃xx = gxx + h̃ττ = gxx −
1

a(1 + cos p)2
. (E.4)
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Set α = g2x + 2h̃τgx, β = 1 + cos p , then from (E.1)-(E.4) we have

1 + g̃2x = 1 + (gx + h̃τ )2

= g2x + 2h̃τgx +
2

1 + cos p

= α+
2

β
.

Now (∗∗) is

(∗∗) =

∣

∣

∣

∣

∣

−sin p

β
+

4(agxxβ
2 − 1)(gx − sin p

β )

(αβ + 2)2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

sin p

β

(

1 − 4

(αβ + 2)2

)∣

∣

∣

∣

+ 4

∣

∣

∣

∣

|gx|(a|gxxβ2| + 1) + |agxxβ sin p|
(αβ + 2)2

∣

∣

∣

∣

. (E.5)

We claim that these upper bound terms of (E.5) are bounded by a polynomial function of ‖g‖
converging to 0 for ‖g‖ → 0 in C2

b (R) with the help of the following two arguments.

Claim 1. The ranges of parameters αβ and α sin p are

i. −|gx|2 − 1 ≤ αβ ≤ 2(|gx|2 + |gx|),
ii. α sin p ≤ |gx|2 + 4|gx|.

Proof of claim 1. i: from the definition

αβ = (g2x −
2 sin p

β
gx)β = βg2x − 2gx sin p ≤ |β||g2x| + 2|gx sin p|.

Since 0 ≤ β ≤ 2 and −1 ≤ sin p ≤ 1, the upper bound is clear. The lower bound is

αβ = (1 + cos p)g2x − 2gx sin p

= (gx − sin p)2 + g2x cos p− sin2 p

≥ −|gx|2 − 1.

ii: it follows

α sin p = g2x sin p− 2gx
sin2 p

1 + cos p

≤ |gx|2 + 2|gx|(1 − cos p)

≤ |gx|2 + 4|gx|.

Q.E.D. of claim 1.

From claim 1 and (E.5), it follows

Claim 2. For |gx| ≤ 1/2, (∗∗) is bounded by

32

9
(|gx|4 + 5|gx|3 + 6|gx|2 + 10|gx| + 8a|gx||gxx| + 4a|gxx|).
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Proof of claim 2. By the assumption and prop.1,

−5/4 ≤ αβ ≤ 2(|gx|2 + |gx|).

Thus the first term of (E.5) is

∣

∣

∣

∣

sin p

β

(

1 − 4

(αβ + 2)2

)∣

∣

∣

∣

=

∣

∣

∣

∣

sin p

β

(

(αβ)2 + 4αβ

(αβ + 2)2

)∣

∣

∣

∣

=

∣

∣

∣

∣

(αβ)α sin p+ 4α sin p

(αβ + 2)2

∣

∣

∣

∣

=

∣

∣

∣

∣

(αβ + 4)α sin p

(αβ + 2)2

∣

∣

∣

∣

≤ {2(|gx|2 + |gx|) + 4}(|gx|2 + 4|gx|)
(2 − 5/4)2

=
32

9
(|gx|2 + |gx| + 2)(|gx|2 + 4|gx|) := A.

Similarly, the second term of (E.5) is bounded by

4

∣

∣

∣

∣

|gx|(a|gxxβ2| + 1) + |agxxβ sin p|
(αβ + 2)2

∣

∣

∣

∣

≤ 4

∣

∣

∣

∣

|gx|(a|gxx22| + 1) + |agxx2|
(2 − 5/4)2

∣

∣

∣

∣

=
64

9
{|gx|(4a|gxx| + 1) + 2a|gxx|} := B.

Thus

(∗∗) ≤ = A+B

=
32

9
(|gx|2 + |gx| + 2)(|gx|2 + 4|gx|) +

64

9
{|gx|(4a|gxx| + 1) + 2a|gxx|}

=
32

9
(|gx|4 + 5|gx|3 + 6|gx|2 + 10|gx| + 8a|gx||gxx| + 4a|gxx|).

Q.E.D. of claim 2.

Clearly, the polynomial function bounding (∗∗) converges to 0 for ‖g‖ → 0 in C2
b (R). Hence, from

remark 1 the solution (4.49) satisfies Lyapunov stability.
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IBMM 2010, Montréal, Canada “Ion patterning of Si studied by kinetic Monte Carlo using ion
damage from Molecular Dynamics calculations.”
International workshop: Nanoscale Modification of Surfaces and Thin Films, 2009, Rathen, Ger-
many “Mechanisms of metal self-ordering at grazing PVD on ion-erosion-induced surface pattern.”
International Workshop: Nanoscale Modification of Surfaces and Thin Films, 2009, Rathen, Ger-
many “Prediction of surface pattern formation by surface defect generation”
MRS Fall meeting 2009, Boston, USA “Prediction of surface pattern formation by surface defect
generation and diffusion.”
MRS Fall meeting 2009, Boston, USA “Mechanisms of metal self-ordering at oblique PVD on
nanopatterned surfaces.”
IUMRS-ICA 2008, Nagoya, Japan “Ion bombardment induced self-organization of nanopattern

149



studied by 3D lattice kinetic MC simulations.”

150



Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Be-
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