
Pairwise Classification and Pairwise Support Vector Machines

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Diplommathematiker Carl Brunner

geboren am 13. März 1982 in Bad Dürkheim

Gutachter:
Prof. Dr. Andreas Fischer
Technische Universität Dresden
Institut für Numerische Mathematik

Prof. Dr. Laura Palagi
Sapienza Università di Roma, Dipartimento di Ingegneria Informatica,
Automatica e Gestionale Antonio Ruberti

Eingereicht am: 19. Dezember 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236367367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For Denise & Chiara
Sine quibus non

Preface

The first time I heard about machine learning and Support Vector Machines was
in the end of 2007, when I was talking with Professor Andreas Fischer about a
possible topic for my diploma thesis. While writing this thesis I was asked if I would
be interested in working for a research project between the Technical University of
Dresden and Cognitec Systems GmbH and meanwhile writing my PhD thesis.

In a classification task one wants to classify the members of a given set of examples
into several disjoint classes. For training a set of examples is given and a decision
function is determined which is then tested on another set of examples. Any class
represented by at least one example used for training or testing belongs to the
training classes or test classes, respectivly. The purpose of this dissertation is
to provide a way to extend classification tasks to an arbitrarily large number of
classes while many of the test classes do not belong to the training classes. To
reach that goal the pairwise classification approach is proposed and the extension
of non pairwise classification tasks to pairwise classification tasks is analyzed. It is
shown that the extension of an ordinary data generating process to a pairwise data
generating process is not trivial. However, problems like the needed training time,
the enforcement of certain properties of the decision function, or optimal pairwise
classifiers are successfully addressed. The unique contributions of this thesis is a
in depth analysis of pairwise classification tasks and methods which make pairwise
classification practical. This dissertation may be of interest to anybody in the field
of machine learning, especially to those which are interested in face recognition or
collaborative filtering.

Many of the results presented in this dissertation were found during the research
project. I would like to thank Thorsten Thies, Klaus Luig and Frank Weber for
introducing me to pairwise SVMs and providing me with their first results on this
topic. Additionally, I would like to thank them, Professor Andreas Fischer and Gerd
Langensiepen for many discussions an numerous advice on my research.

This research was supported by Cognitec Systems GmbH.

Carl Brunner
December 2011

Dresden, Germany

Contents

List of Figures III

List of Tables IV

1 Introduction 1

2 Preliminaries 3
2.1 Optimization Theory . 3
2.2 Statistical Learning Theory . 5

2.2.1 Model of the Data Generating Process 5
2.2.2 Empirical Risk Minimization 8
2.2.3 Structural Risk Minimization 14
2.2.4 Learning from Dependent Identically Distributed Data . . . 16

2.3 Support Vector Machines . 19
2.3.1 Reformulated Optimization Problems 21
2.3.2 Nonlinear SVMs . 25

2.4 Bayes’ Rule of Classification . 30
2.5 Quality of a Classifier . 31

3 Pairwise Classification 33
3.1 Properties of a Pairwise Decision Function 35
3.2 Pairwise Data Generating Process 36

3.2.1 Using a Subset of All Existing Pairs 37
3.2.2 Drawing the Pairs Directly 38
3.2.3 A New Pairwise Data Generating Process 42

3.3 Evaluating the Quality of a Pairwise Decision Function 46
3.4 A Heuristic Model Selection Technique 47
3.5 Pairwise Bayes’ Classifiers . 49

3.5.1 Bayes’ DET Curves . 50
3.5.2 Properties of Pairwise Bayes’ Classifiers 56
3.5.3 Examples of Pairwise Bayes’ Classifiers for Interclass Tasks

and Interexample Tasks 57

I

4 Pairwise Support Vector Machines 59
4.1 Decomposing Decision Functions 60

4.1.1 Linear Pairwise SVMs . 60
4.1.2 Nonlinear Pairwise SVMs 64

4.2 Evaluating Pairwise Kernel Function Values 68
4.3 Pairwise Symmetry, Projections, and Information Loss 71
4.4 Symmetric Training Sets . 77
4.5 Connecting Projections and Symmetric Training Sets 79
4.6 Remarks . 84

5 Efficient Implementation and Numerical Results 85
5.1 Implementing Pairwise SVMs Efficiently 85

5.1.1 Caching the Standard Kernel Values 85
5.1.2 Further Implementation Details 87

5.2 Empirical Results . 88
5.2.1 Checker Board Task . 89
5.2.2 Double Interval Task . 91
5.2.3 (Disturbed) Orthant Task 94
5.2.4 Disturbed Single Interval Task 98
5.2.5 LFW Database . 99
5.2.6 Cognitec Databases . 102

List of Symbols 105

List of Abbreviations 106

Index 107

Bibliography 109

II

List of Figures

2.1 Model of Learning from Examples 6
2.2 Consistency of the ERM . 10
2.3 VC Dimension, an example . 13
2.4 Structural Risk Minimization . 16
2.5 Bound of the VC Dimension . 20
2.6 A Non Linearly Separable Dataset 26

3.1 Description of Algorithm 3.3 . 44

5.1 DET Curves for Checker Board Tasks 90
5.2 DET Curves for Double Interval Tasks 92
5.3 DET Curves for Double Interval Task with Examples of Dimension

2000 . 95
5.4 DET Curves for Double Interval Tasks using a Subset of All Training

Pairs . 95
5.5 DET Curves for Orthant Tasks 96
5.6 DET Curves for Disturbed Orthant Task 97
5.7 Bayes’ DET Curves for Disturbed Single Interval Tasks 99
5.8 DET Curves for the LFW Dataset 101
5.9 DET Curves for Cognitec Datasets 104

III

List of Tables

4.1 Training Time of Symmetric Training Sets vs. Training Time of Sym-
metric Kernels . 83

5.1 Training Time With and Without Caching the Standard Kernel Values 87
5.2 Scaling of LIBSVM Using OpenMP 88
5.3 Training Time for Double Interval Tasks using a Subset of All Train-

ing Pairs . 95
5.4 EER and SEM for LFW Database 102
5.5 EPCR and Number of Classes for Cognitec-Train 103

IV

1 Introduction

A recent approach for multiclass classification is the pairwise classification which
relies on two input examples instead of one and predicts whether the two input
examples belong to the same class or to different classes (see [1, 2, 3, 5, 7, 19,
32, 43]). A common pairwise classification task is face recognition. In this area, a
set of images is given for training and another set is given for testing. Often, one
is interested in a good interclass generalization. The latter means that any person
which is represented by an image in the training set is not represented by any image
in the test set.

For a pairwise classifier the order of the two examples should not influence the clas-
sification result. A common approach to enforce this symmetry is the use of selected
kernels. Relations between such kernels and certain projections are provided. It is
shown, that those projections can lead to an information loss. For pairwise SVMs
another approach for enforcing symmetry is the symmetrization of the training sets.
In other words, if the pair (a, b) of examples is a training pair then (b, a) is a training
pair, too. It is proven that both approaches do lead to the same decision function
for selected parameters. Empirical tests show that the approach using selected ker-
nels is three to four times faster. For a good interclass generalization of pairwise
SVMs training sets with several million training pairs are needed. A technique is
presented which further speeds up the training time of pairwise SVMs by a factor of
up to 130 and thus enables the learning of training sets with several million pairs.
Another element affecting time is the need to select several parameters. Even with
the applied speed up techniques a grid search over the set of parameters would be
very expensive. Therefore, a model selection technique is introduced that is much
less computationally expensive.

In machine learning, the training set and the test set are created by using some data
generating process. Several pairwise data generating processes are derived from a
given non pairwise data generating process. Advantages and disadvantages of the
different pairwise data generating processes are evaluated.

1

1 Introduction

Pairwise Bayes’ Classifiers are introduced and their properties are discussed. It is
shown that pairwise Bayes’ Classifiers for interclass generalization tasks can differ
from pairwise Bayes’ Classifiers for interexample generalization tasks. In face recog-
nition the interexample task implies that each person which is represented by an
image in the test set is also represented by at least one image in the training set.
Moreover, the set of images of the training set and the set of images of the test set
are disjoint.

Pairwise SVMs are applied to four synthetic and to two real world datasets. One
of the real world datasets is the Labeled Faces in the Wild (LFW) database while
the other one is provided by Cognitec Systems GmbH. Empirical evidence for the
presented model selection heuristic, the discussion about the loss of information
and the provided speed up techniques is given by the synthetic databases and it is
shown that classifiers of pairwise SVMs lead to a similar quality as pairwise Bayes’
classifiers. Additionally, a pairwise classifier is identified for the LFW database which
leads to an average equal error rate (EER) of 0.0947 with a standard error of the
mean (SEM) of 0.0057. This result is better than the result of the current state
of the art classifier, namely the combined probabilistic linear discriminant analysis
classifier, which leads to an average EER of 0.0993 and a SEM of 0.0051.

This thesis is structured as follows. Chapter 2 presents theoretical background
and literature review of optimization theory and of machine learning. Furthermore,
several proofs are given which have not been presented in literature to the best of
my knowledge. In Chapter 3 pairwise classification is introduced. Several properties
and the quality of pairwise decision functions are discussed. Moreover, optimal
pairwise classifiers and a new model selection technique are introduced and pairwise
data generating processes are analyzed. In Chapter 4 pairwise SVMs and pairwise
kernels are introduced and several methods to enforce the pairwise symmetry of
a pairwise decision function are discussed. Additionally, the evaluation of pairwise
kernel function values is investigated. The efficient implementation of pairwise
SVMs is discussed in Chapter 5, followed by performance measurements for five
synthetic datasets and for two real world datasets. At the end of this thesis you can
find a list of symbols and abbreviations.

2

2 Preliminaries

Here, an overview over selected topics of optimization theory and over machine
learning which are used throughout this dissertation is provided. A more elaborate
presentation can be found in [38, 42, 44].

First, relevant topics of optimization theory are presented in Section 2.1. In Sec-
tion 2.2 an overview about the basic concepts of statistical learning theory is given,
followed by a short introduction to Support Vector Machines (SVMs) in Section 2.3.
Section 2.4 reviews the Bayes’ rule of classification. This is another classification
rule which is optimal in some sense. This chapter is concluded in Section 2.5 by
discussing ways of evaluating the quality of given classifiers.

2.1 Optimization Theory

Several restrained optimization problems occur in this dissertation. Hence, the
optimization theory for these restrained optimization problems is introduced. For
further information the interested reader is referred to [9, 20].

Definition 2.1. Let f : Rn → R be continuously differentiable. Furthermore,
let gi : Rn → R be continuously differentiable for all i ∈ {1, . . . p} and let
hj : Rn → R be continuously differentiable for all j ∈ {1 . . . q} and let G be defined
by

G := {x ∈ Rn | gi(x) ≤ 0 for all i ∈ {1, . . . , p}, hj(x) = 0 for all j ∈ {1, . . . , q}}.

Then, any x∗ ∈ G with f(x∗) ≤ f(x) for all x ∈ G is called solution of the
Constrained Optimization Problem. Note that any constrained optimization
problem can be also written as

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 for all i ∈ {1, . . . , p}
hj(x) = 0 for all j ∈ {1, . . . , q}.

(2.1)

3

2 Preliminaries

If one further assumes that f is a convex function and that G is a convex set then
(2.1) is called Convex Optimization Problem.

Remark 2.2.

• According to the Weierstrass-Theorem the following holds: If G is closed
and bounded, then for any constrained optimization problem there exists a
solution x∗ of (2.1).

• If f is strictly convex and G is convex, closed, and bounded, then a unique
solution exists.

• If f and G are convex and x∗1 and x∗2 are solutions of problem (2.1) then
(γx∗1 + (1− γ)x∗2) is also a solution for all γ ∈ (0, 1).

Now, necessary and sufficient conditions for a point x ∈ G to be a solution are
presented.

Definition 2.3. Let a constrained optimization problem of the form (2.1) be given.
Then, the function L : Rn ×Rp ×Rq → R defined by

L(x, λ, µ) := f(x) +
p∑
i=1

λigi(x) +
q∑
j=1

µjhj(x).

is called Lagrange Function of the constrained optimization problem.

Definition 2.4. Let the constrained optimization problem (2.1) be considered.

• Then, the conditions

∇xL(x, λ, µ) = 0
hj(x) = 0, for all j ∈ {1, . . . , q}
gi(x) ≤ 0, for all i ∈ {1, . . . , p}
λi ≥ 0, for all i ∈ {1, . . . , p}

p∑
i=1

gi(x)λi = 0

are called Karush-Kuhn-Tucker (KKT) Conditions.

• Any point (x∗, λ∗, µ∗) ∈ Rn × Rp × Rq which fulfills the KKT Conditions
is called Karush-Kuhn-Tucker Point associated with the constrained op-
timization problem (2.1). The vectors λ∗ and µ∗ of such a point are called
Lagrange Multipliers.

4

2.2 Statistical Learning Theory

In literature several conditions can be found which imply that for any (local) mini-
mum x∗ of (2.1) there exist Lagrange Multipliers λ∗ and µ∗ such that (x∗, λ∗, µ∗)
is a KKT Point. In this thesis any occurring optimization problem is convex and its
constraints are linear functions. Therefore, only the following results are presented.

Theorem 2.5 (KKT Conditions under Linear Constraints). Let x∗ be a solu-
tion of (2.1). Furthermore, let any gi, i ∈ {1, . . . , p} and any hj, j ∈ {1, . . . , q} be
an affine function. Then, there exist Lagrange Multipliers λ∗ ∈ Rp and µ∗ ∈ Rq

such that (x∗, λ∗, µ∗) is a KKT Point of (2.1).

Proof. A proof is provided by [20].

Theorem 2.6. Let (x∗, λ∗, µ∗) be a KKT Point of a convex optimization problem
of the form (2.1). Then, x∗ is a solution.

Proof. A proof is provided by [20].

Corollary 2.7. Let a convex optimization problem of the form (2.1) be given and
let all of its constraints be affine functions. Then, x∗ is a solution of (2.1) if and
only if there exist Lagrange Multipliers λ∗ ∈ Rp and µ∗ ∈ Rq such that (x∗, λ∗, µ∗)
is a KKT Point of (2.1).

Proof. The proof follows directly by combining Theorems 2.5 and 2.6.

2.2 Statistical Learning Theory

Now, a short overview of Statistical Learning Theory is given. Subsections 2.2.1,
2.2.2 and 2.2.3 follows mainly [42, Sections 1-4], while Subsection 2.2.4 is based
upon [44].

2.2.1 Model of the Data Generating Process

In machine learning one wants to find a functional dependency between some input
space X and some output space Y . Here, only the case X ⊆ Rn is considered and
it is assumed that the underlying learning model can be described in the following
way (see Figure 2.1):

The model contains three elements

5

2 Preliminaries

G S

LM

x

ȳ

y

Figure 2.1: Model of learning from examples (see [42, pp. 19-21]). The generator
G gives an example x to the supervisor S and the learning machine
LM . The supervisor predicts the (correct) y which is given to the LM ,
too. During training the LM observes pairs (xi, yi) (the training set).
After training the machine must return for any x an ȳ which should be
close to y.

1. The generator G of the (input) points.

2. The supervisor.

3. The learning machine.

The generator G creates (input) points x ∈ X according to (unknown) probability
functions Ft(x) with t ∈ Z. Here, t denotes the time and implies the time depen-
dence of the underlying probability function. Another way to describe G is that it
generates the points according to a time discrete stochastic process Z(t), t ∈ Z.
However, it is assumed that Ft = FX for all t ∈ Z. Hence, the drawings are iden-
tically distributed and the stochastic process is strongly stationary. The interested
reader is referred to the paper [39] for a more general setting.

Each created point x ∈ X is input to the supervisor which returns the true output
(label) y ∈ Y to the input x. Note that one needs to assume that this supervisor
exists.

A learning machine works in the following way. Firstly, it observes the training set
or set of training points

(x1, y1), . . . , (xm, ym) ∈ {X × Y }m

which contains the input points xi ∈ X and the answers of the supervisor yi ∈ Y
with i ∈ M := {1, . . . ,m}. Secondly, the learning machine constructs a predictor
that given some x ∈ X gives an answer ȳ which should be similar to the answer y
of the supervisor.

Formally speaking, the generator G creates the points x ∈ X accordingly to a
probability distribution function FX where one additionally assumes that a cor-
responding density pX exists. Then, the supervisor returns the output y on the

6

2.2 Statistical Learning Theory

input x according to a conditional distribution function FY (·|X = x) with density
pY (·|X = x). Hence, the learning machine observes the training set which is drawn
randomly according to a joint distribution FX×Y (·, ·) with corresponding density
pX,Y with pX,Y (x, y) := pX(x)pY (y|X = x). Consequently, the learning machine
constructs an approximation g : X → Y to the answer of the unknown supervisor.
This approximation is called decision function. In other words, the learning ma-
chine chooses the decision function out of a given set of functions. In the following,
it is assumed that the set of decision functions which can be chosen by the learning
machine can be written in parametric form as {gλ : X → Y |λ ∈ Λ}, hence, each
λ ∈ Λ corresponds to a single decision function denoted by gλ.

If Y = {−1, 1}, then sgn(g(x)) is often used as classifier or classification rule.
If not stated otherwise sgn(0) is set to 1. Additionally, if Y = {−1, 1}, then a
training point (xi, yi) is called positive training point if yi = 1 and it is called
negative training point if yi = −1.

Now, a list of remarks is presented.

• The presented setting includes the case when the supervisor is deterministic
and uses some function h : X → Y to return the output. In this dissertation
the more general setting described above is needed. In other words, the
answer of the supervisor might not be unique for any given x ∈ X.

• The presented model is very general. It includes the case of pattern recogni-
tion (the input space Y is a discrete set) and the case of regression estimation
(Y is a continuous set). In this thesis only the case of pattern recognition is
considered.

• In pattern recognition one calls Y the set of classes and each y ∈ Y class.

• As already stated it is assumed in this section that the drawings of the points
x ∈ X are identically distributed. In Subsections 2.2.2 and 2.2.3 it is assumed
that those drawings are independent, too. A more general setting of identically
distributed but dependent drawings is discussed in Subsection 2.2.4.

• In machine learning one wants to find an approximation to the supervisor.
This supervisor classifies according to the distribution FX×Y . If not stated
otherwise, this distribution is unknown. If the distribution FX×Y is known,
then it is possible to use the Bayes’ Classifier (see Section 2.4).

7

2 Preliminaries

2.2.2 Empirical Risk Minimization

Let a decision function g be given. Then, to determine the quality of g one needs
a loss function

l : Y ×R→ R+.

This loss function is used to penalize wrong answers of g. For example:

0-1-loss: l(y, ȳ) :=
{

0 if y = ȳ

1 else
(for Y = {−1, 1}) hinge loss: l(y, ȳ) := (1− y · ȳ)+ := max {1− y · ȳ, 0} .

(2.2)

Here, y can be seen as the correct answer (or the answer of the supervisor) and ȳ
would be the answer of the decision function. Now, one can define the risk R of a
decision function gλ : X → R by

R(λ) :=
∫
X×Y

l(y, gλ(x)) dFX×Y (x, y), (2.3)

where the loss function l(·, gλ(·)) is assumed to be integrable for any gλ with λ ∈ Λ.
Hence, the task of learning is to find a λ∗ with

λ∗ ∈ argmin
λ∈Λ

{R(λ)} . (2.4)

As FX×Y is unknown the risk cannot be minimized directly. The basic idea of the
Empirical Risk Minimization (ERM) method is to choose a decision function
which minimizes the empirical risk

Remp(λ) := 1
m

m∑
i=1

l(yi, gλ(xi)) (2.5)

instead of the risk. Hence, instead of choosing a gλ∗ one chooses a gλm by means
of

λm ∈ argmin
λ∈Λ

{Remp(λ)} . (2.6)

Without further restrictions the approach of minimizing the empirical risk might not
lead to good results. For example, let the 0-1-loss be selected as loss function and

8

2.2 Statistical Learning Theory

let the following decision function

ḡ(x) :=
{
yi if x ∈ {xi}i∈M
1 otherwise

be defined. Obviously, ḡ has zero empirical risk (2.5), whereas its risk (2.3) will not
be optimal in general.

Thus, one is looking for a decision function which minimizes the empirical risk and
has a good generalization ability, in other words for large values of m the difference
between the risk (2.3) and the empirical risk (2.5) is small in some sense. Now, let
(R,Σ, P) denote a probability space. Then, one says that a sequence of random
variables a1, . . . , am, . . . converges to a random variable a0 in probability if

P {|am − a0| > δ} −−−→
m→∞

0

is valid for any δ > 0. From now on,

am
P−−−→

m→∞
a0

denotes the convergence in probability of a1, . . . , am, . . . to a0.

Now, conditions when the ERM method leads to the convergences (in probability)
of Remp(λm) to R(λ∗) and of R(λm) to R(λ∗) for m → ∞ are described (see
Figure 2.2).

Definition 2.8. [42, p. 82] Let

Λ(c) := {λ ∈ Λ : R(λ) ≥ c}

be defined. The ERM method is said to be strictly consistent for the set of
functions {gλ|λ ∈ Λ} and the probability distribution function FX×Y if for any
c > 0 with Λ(c) 6= ∅ the convergence in probability

inf
λ∈Λ(c)

Remp(λ) P−−−→
m→∞

inf
λ∈Λ(c)

R(λ) (2.7)

takes place.

In other words, the ERM method is strictly consistent if convergence (2.7) takes
place for the given set of functions and for all subsets Λ(c) of functions that remain
after the functions with a corresponding risk value smaller than c are excluded from
the set.

9

2 Preliminaries

m

R(λm)

Remp(λ
m)

R(λ∗)

(a) Although R(λm) and Remp(λm) con-
verge to a fixed value they do not con-
verge to each other.

m

R(λm)

Remp(λ
m)

R(λ∗)

(b) R(λm) and Remp(λm) converge to each
other but they do not converge to the
minimal risk.

m

R(λm)

Remp(λ
m)

R(λ∗)

(c) R(λm) and Remp(λm) converge to R(λ∗)
(see (2.4)). In this case the learning pro-
cess is consistent.

Figure 2.2: Here, λm is chosen according to (2.6). The convergence of R(λm) and
Remp(λm) are analyzed for m→∞.

In Definition 2.8 the convergence of the empirical risk to the minimal risk is used,
while the convergence of the risk to the minimal risk is not used. The following
lemma shows that this convergence also holds true for strictly consistent learning
methods.

Lemma 2.9. [42, p. 82] If the ERM method is strictly consistent, then the follow-
ing convergence in probability holds

R(λm) P−−−→
m→∞

inf
λ∈Λ

R(λ).

In [42] several conditions which lead to the (strict) consistency of the ERM method
are given. The main result is the connection between the strict consistency of the
ERM method and uniform one sided convergence of an empirical process which is
presented in Corollary 2.10.

To define uniform one sided convergence, let the probability distribution function

10

2.2 Statistical Learning Theory

FX×Y (·, ·) be defined on Rn×R, and let l(·, gλ(·)) with λ ∈ Λ be a set of integrable
(with respect to this distribution) loss functions. Let

(x1, y1), . . . , (xm, ym), . . .

be a sequence of independent identically distributed (i.i.d.) training points and let
(R,Σ, P) denote a probability space. Now, let the following sequence of random
variables be considered

ηm := sup
λ∈Λ

(∫
X×Y

l(y, gλ(x)) dFX×Y (x, y)− 1
m

m∑
i=1

l(y, gλ(xi))
)

(2.8)

with m ∈ N. Then, one looks at the convergence

P (|ηm| > ε) −−−→
m→∞

0.

If this convergence takes place for any ε > 0, then this is called uniform conver-
gence of the sequence {ηm}. Additionally, if the convergence

P
(
ηm+ > ε

)
−−−→
m→∞

0

takes place for any ε > 0 with

ηm+ := sup
λ∈Λ

(∫
X×Y

l(y, gλ(x)) dFX×Y (x, y)− 1
m

m∑
i=1

l(y, gλ(xi))
)

+

then this convergence is called uniform one sided convergence of the sequence
{ηm+ }. Here, it is assumed that l(·, gλ(·)) is integrable for any λ ∈ Λ.

Corollary 2.10. [42, p. 88] Let l be a loss function. Additionally, let any function
in the set {l(·, gλ(·)), λ ∈ Λ} be integrable for all distribution functions FX×Y ∈ P .
Here, the only condition for P is that any FX×Y ∈ P is a distribution function with
FX×Y : X × Y → R. Moreover, let there be constants a,A ∈ R such that for all
functions in {l(·, gλ(·)), λ ∈ Λ} and all FX×Y ∈ P the inequalities

a ≤
∫
X×Y

l(y, gλ(x)) dFX×Y (x, y) ≤ A

hold true. Then, the following statements are equivalent:

i) For any distribution function in the set P , the ERM method is strictly con-
sistent on the set of functions {l(·, gλ(·)), λ ∈ Λ}.

ii) For any distribution function in the set P , the one sided convergence takes

11

2 Preliminaries

place on the set of functions {l(·, gλ(·)), λ ∈ Λ}.

Note that one can set a = 0, A = 1 if the 0-1-loss function is selected.

The last corollary shows that conditions which lead to uniform one sided convergence
of the ERM method lead to strict consistency. To derive conditions which lead to
uniform one sided convergence some kind of measurement of the entropy of the
set of implementable functions {l(·, gλ(·)), λ ∈ Λ} is needed. To this end, the
Vapnik-Chervonenkis (VC) dimension is defined.

Definition 2.11.

• Let l be the 0-1-loss. The VC dimension of the set

{l(·, gλ(·)), λ ∈ Λ}

is defined as the largest number h of vectors x1, . . . , xh such that for any
ȳ ∈ {−1, 1}h there is a function gλ, λ ∈ Λ with l(ȳi, gλ(xi)) = 0 for all
i ∈ {1, . . . , h} (see [42, p. 147] and Figure 2.3).

• Let l be an arbitrary loss function. Then, the VC dimension of the set

{l(·, gλ(·)), λ ∈ Λ}

is equal to the VC dimension of the following set of indicator functions (or
0-1-loss functions):

{θ (l(·, gλ(·))− β) , λ ∈ Λ, β ∈ B}

with

θ(z) =
{

1 if z > 0
0 else and B :=

(
inf
λ,x,y
{l(y, gλ(x))} , sup

λ,x,y
{l (y, gλ(x))}

)

(see [42, p.191]).

Remark 2.12. For example, the VC dimension of a set of functions

{〈w, x〉+ b, (w, b) ∈ Rn ×R}

is n+ 1 independently of the chosen loss function (see [42, p. 156 and p. 192]).

12

2.2 Statistical Learning Theory

bc

bc

bc

Figure 2.3: The VC dimension of affine linear func-
tions in R2 is 3. One can label the three
points arbitrarily with +1 or -1 and then
separate the positive point(s) from the
negative point(s) by using the provided
functions. This works only if there is
at least one positive and one negative
point. Otherwise, the separation is triv-
ial. For four points such a separation is
not possible with affine linear functions
in R2.

Theorem 2.13. [42, Theorem 3.3] Let l be the 0-1-loss function and ηm be defined
according to (2.8). Then, if the VC dimension of the set {l(·, gλ(·)), λ ∈ Λ} is finite,
the sequence {ηm} convergences uniformly.

Remark 2.14. In [42, Theorem 3.8] the last theorem is extended to the case of
bounded loss functions, in other words |l(y, gλ(x))| < A holds for some A ∈ R and
all (x, y) ∈ X × Y and all λ ∈ Λ. However, many more technical details would be
needed. Section 2.3 introduces Support Vector Machines (SVMs). Often, the hinge
loss is chosen as loss function for SVMs. In general, the hinge loss is unbounded.
However, in [8] the authors proof in Lemma 23 that for SVMs the hinge loss is
bounded if the input data are bounded.

Now, the risk is bounded by means of the empirical risk. The presented bounds
show, that a finite VC dimension implies uniform one sided convergence which again
implies the consistency of the ERM method.

Theorem 2.15. [42, Theorem 5.3] Let 0 ≤ l(y, gλ(x)) ≤ A be valid for all
(x, y) ∈ X × Y and for all λ ∈ Λ and let h be the (finite) VC dimension. Then,
the inequality

P

R(λ)− 1
m

∑m
i=1 l(y, gλ(x))√
R(λ)

> ε

 < 4 exp
(
m

(
h

m

(
ln 2m

h
+ 1

)
− ε2

4A

))
(2.9)

holds for all λ ∈ Λ and all ε > 0.

Note that for large values ofm this bound is nontrivial. For η ∈ (0, 1) the Capacity
Term is defined by

E(m,h, η) := 4
h
(
ln 2m

h
+ 1

)
− ln η

4

m
.

13

2 Preliminaries

Then, by using (2.9) one obtains:

Corollary 2.16. See [42, p. 193]. Let A > 0 with A ∈ R be given and let the
set {l(·, gλ(·)), λ ∈ Λ} with 0 ≤ l(y, gλ(x)) ≤ A for all (x, y) ∈ X × Y , λ ∈ Λ be
given. Additionally, h denotes the corresponding VC dimension.

i) Then, for η ∈ (0, 1) one obtains the following result. With probability of at
least 1− η it holds that

R(λ) ≤ Remp(λ) + AE(m,h, η)
2

1 +

√√√√1 + 4Remp(λ)
AE(m,h, η)

 . (2.10)

ii) Then, for η ∈ (0, 0.5) one obtains the following result. With probability of at
least 1− 2η it holds that

R(λm)−R(λ∗) ≤ A

√− ln η
2m + E(m,h, η)

1 +

√√√√1 + 4Remp(λm)
AE(m,h, η)

 .
(2.11)

2.2.3 Structural Risk Minimization

Now, the bounds presented in Corollary 2.16 are reviewed. Let the 0-1-loss be
selected. Hence, A = 1 can be selected in Corollary 2.16. Here, it is further assumed
that the VC dimension h is finite. Obviously, for any given decision function gλ with
λ ∈ Λ the risk is smaller than 1. Let Remp(λm) be 0 for all m. Then, the right
hand side of (2.10) is E(m,h, η) and the right hand side of (2.11) is larger than
2E(m,h, η). Now, values of selected E(m,h, 0.05) are approximated.

m h 10h 36h 100h 1000h
E(m,h, 0.05) ≈ 24.3 ≈ 3.1 ≈ 1 ≈ 0.4 ≈ 0.05

For m < 36h (2.10) and (2.11) are trivial. In practice h is usually much larger than
1,000. Hence, around 1,000,000 training points are needed to get useful bounds
from (2.10) and (2.11). Often, one has less training points available. Regardless
of this, such a large training set is computationally expensive. Hence, if one is
interested in reasonable bounds for R(λ) and (R(λm)−R(λ∗)) for small training
sets, then another approach is needed. It is known that a smaller VC dimension
leads to smaller bounds. Thus, the Structural Risk Minimization (SRM) method

14

2.2 Statistical Learning Theory

does not only minimize the empirical risk, but also (a bound of) the VC dimension
simultaneously.

It is assumed that there exists a structure within the set S = {l(·, gλ(·))|λ ∈ Λ}.
Let there be a sequence {Λi} with Λi ⊆ Λ for all i ∈ N. Furthermore, let Si :=
{l(·, gλ(·))|λ ∈ Λi} and S∗ := ⋃∞

i=1 Si be defined. This structure should have the
following properties:

1. S1 ⊂ S2 ⊂ . . . ⊂ Sp ⊂ . . .

2. For any i there is Ai > 0 such that 0 ≤ l(y, gλ(x)) ≤ Ai for all λ ∈ Λi,

(x, y) ∈ X × Y .

3. Any set Si has a finite VC dimension denoted by hi.

4. The set S∗ is dense in the set S in the L1(F) metric, that is to say for all
δ > 0 and any l(·, gλ(·)) ∈ S there exists a function l(·, gλ̄(·)) ∈ S∗ such that∫

X×Y
|l(y, gλ̄(x))− l(y, gλ(x))| dFX×Y (x, y) < δ.

Obviously, if such a sequence exists, the following holds:

h1 ≤ h2 ≤ . . . ≤ hp ≤ . . .

A1 ≤ A2 ≤ . . . ≤ Ap ≤ . . .

E(m,h1, η) ≤ E(m,h2, η) ≤ . . . ≤ E(m,hp, η) ≤

Let gλm
p

denote the decision function that minimizes the empirical risk for a given
training set of size m in the set of functions Sp. Then, (2.10) can be rewritten as

R(λmp) ≤ Remp(λmp) + ApE(m,hp, η)
2

1 +

√√√√1 +
4Remp(λmp)
ApE(m,hp, η)

 . (2.12)

Now, for a given set of training points (x1, y1), . . . , (xm, ym) the SRM method
minimizes the right hand side of (2.12) by choosing the element Sp of the structure
for which the smallest right hand side can be achieved and determining a λmp ∈ Λp

with
Remp(λmp) = min

λ∈Λp

Remp(λ).

15

2 Preliminaries

hh1 h
∗

h
n

Minimal empirical risk

Confidence interval

Bound on the risk

Figure 2.4: The right hand side of (2.12) is the sum of the empirical risk and the
structural risk. If the VC dimension h is increased, then the capacity
term increases while the minimal empirical risk decreases (see [42, p.
223]).

In literature the right hand side of (2.12) is decomposed into the Empirical Risk (the
first summand) and the confidence interval or structural risk (the second summand)
(see Figure 2.4).

One can show that the risks of the functions chosen according to the SRM method
converge to the smallest possible risk for the set S with increasing number of
observations. ([42, Subsections 6.3+6.4]).

Remark 2.17. Section 2.3 introduces Support Vector Machines (SVMs). SVMs
implement the SRM principle and the hinge loss is often chosen as loss function
for SVMs. In general, the hinge loss is unbounded and the bound (2.12) would be
trivial. In the [8] the authors proof in Lemma 23 that for SVMs the hinge loss is
bounded if the input data are bounded (see Remark 2.14).

2.2.4 Learning from Dependent Identically Distributed Data

So far i.i.d. data generating processes were considered (see the beginning of this
section). Here the findings of Subsections 2.2.2 and 2.2.3 are extended to a more
general class of processes.

Vidyagasar writes in [44, Section 2.5]: “...independence is a very restrictive concept,
in several ways. First, it is often an assumption, rather than a deduction on the basis
of observations. Second, it is an all or nothing property, in the sense that two random
variables are either independent or they are not - the definition does not permit

16

2.2 Statistical Learning Theory

an intermediate notion of being nearly independent.” Furthermore, it is shown
in this thesis that in a certain learning task dependent identically distributed data
generating process occur. Notions of mixing processes are introduced which enables
the handling of some situations of dependent identically distributed data generating
processes. Additionally, the question could arise whether one can learn from non
identically distributed data. This setting is not analyzed in this dissertation. The
interested reader is referred to [39] as an anchor on this topic.

In literature there are several mixing conditions for stochastic processes. Here, three
of them are considered, namely α-mixing, β-mixing, and φ-mixing. This subsection
follows [44, Section 2.5] and first defines mixing coefficients and provides several
properties of these coefficients. More information on this topic can be found in
[10, 40].

Let Z be a stationary stochastic process, where Z(t), t ∈ Z is X valued. Here, X
is equipped with a σ-algebra Σ of subsets of X. Furthermore, let the underlying
probability space of the stochastic process Z be the canonical space (X∞,Σ∞, P).
Here, X∞ is the Cartesian product Π∞t=−∞X, while Σ∞ is the corresponding prod-
uct σ-algebra and P is a shift invariant probability measure on (X∞,Σ∞). For
each index p, let Σp

−∞ denote the σ-algebra generated by the coordinate random
variables Z(t), t ≤ p, and similarly let Σ∞p denote the σ-algebra generated by the co-
ordinate random variables Z(t), t ≥ p. Furthermore, let ∑p−1

1 denote the σ-algebra
generated by the random variables Z(t), t ≤ 0 as well as Z(t), t ≥ p. Finally, let
P p
−∞ and P∞p+1 denote the marginal probability measures corresponding to Σp

−∞
and Σ∞p+1, respectively. Then, by Kolmogorov Extension Theorem, there is a unique
probability measure on (X∞,Σ∞), denoted by P p

−∞ × P∞p+1, with

1. P (A) =
(
P 0
−∞ × P∞1

)
(A),

2. P (B) =
(
P 0
−∞ × P∞1

)
(B),

3.
(
P 0
−∞ × P∞1

)
(A ∩B) =

(
P 0
−∞ × P∞1

)
(A) ·

(
P 0
−∞ × P∞1

)
(B),

for all A ∈ Σ0
−∞ and B ∈ Σ∞1 .

Definition 2.18. The α-mixing coefficient of the stochastic process Z is defined
as

α(p) := sup
A∈
∑0
−∞, B∈

∑∞
p

|P (A ∩B)− P (A)P (B)| .

17

2 Preliminaries

The β-mixing coefficient of the stochastic process is defined as

β(p) := sup
C∈
∑p−1

1

∣∣∣P (C)−
(
P 0
−∞ × P∞1

)
(C)

∣∣∣ .
The φ-mixing coefficient of the stochastic process is defined as

φ(p) := sup
A∈
∑0
−∞, B∈

∑∞
p

|P (B|A)− P (B)| .

Now, a few remarks are given and several properties of these coefficients are dis-
cussed.

• If P (A) = 0, then one sets the conditional probability P (B|A) = P (B) in
the definition of the φ-mixing coefficient.

• Since Σ∞p+1 ⊂ Σ∞p holds for all p ∈ N, it is obvious that the α-, β-, and
φ-mixing coefficients are all non-increasing. Thus,

α(p+ 1) ≤ α(p), β(p+ 1) ≤ β(p), φ(p+ 1) ≤ φ(p), for all p ∈ N.

• It can be shown that (see [10, 40, 44])

α(p) ≤ β(p) ≤ φ(p), for all p ≥ 1. (2.13)

• The stochastic process Z is i.i.d. if and only if φ(p) = 0 for all p ∈ N.

Definition 2.19. The stochastic process Z is said to be α-mixing if α(p)→ 0 as
p→∞. The stochastic process Z is said to be β-mixing if β(p)→ 0 as p→∞.
Finally, the stochastic process Z is said to be φ-mixing if φ(p)→ 0 as p→∞.

Note that due to (2.13) φ-mixing implies β-mixing and the latter implies α-mixing.

Some of the presented results in Subsections 2.2.2 and 2.2.3 for i.i.d. data generating
processes can be extended to β- and φ-mixing data generating processes. To keep
this introduction short only the following results are stated. Let a learning algorithm
be working for an i.i.d. data generating process. In other words the difference
between the minimal risk and the risk of the decision function returned by the
learning algorithm becomes arbitrary small for a sufficiently large number of training
points. Vidyagasar gives in [44] several conditions under which the same algorithm

18

2.3 Support Vector Machines

works for a β-mixing data generating process. Roughly speaking, one can replace an
i.i.d. by an β-mixing data generating process in a learning algorithm when increasing
numbers of training points improve the performance of this algorithm. This holds
for the ERM principle as the capacity term E(m,h, η) decreases when the number
of training points m increases. However, there are some drawbacks if a mixing
data generating process is used. In [29, 44, 49] several bounds on the risk can be
found for this setting. Many more technical details would be necessary to derive
those bounds. Therefore, those bounds are not presented here. In general, one
gets weaker bounds for a mixing data generating process than for an i.i.d. data
generating process when the same number of training points is used.

2.3 Support Vector Machines

This section presents a learning method which is based on the Structural Risk
Minimization (SRM) principle which was presented in Subsection 2.2.3. The basic
idea of this method is to separate the data using a hyperplane. In this section it is
assumed that Y = {−1, 1}.

Theorem 2.20. [42, Theorem 10.3] Let the set

Λ := {(w, b) ∈ Rn ×R|〈w,w〉 = 1}

be defined. Then, let the set of functions {gw,b : X → R|(w, b) ∈ Λ} be defined
for a given ∆ > 0 by

gw,b(x) :=

1 if 〈w, x〉+ b ≥ ∆
−1 if 〈w, x〉+ b ≤ −∆
0 else.

Now, let X ⊆ Rn hold and for some D > 0 let 〈x, x〉 ≤ D2 hold for all x ∈ X.
Then, the VC dimension h of this set of functions is bounded by

h ≤ min
{
D2

∆2 , n

}
+ 1. (2.14)

In this theorem all points x ∈ X with |gw,b(x)| < ∆ lead to a loss of 1 if the 0-1-loss
is used. Hence, there is a margin between the positive and negative labeled input
points if the empirical risk is zero. The width of this margin is 2∆.

19

2 Preliminaries

bc

bc

bc

D = 1

∆ = 0.9

=
1
.2

{
x
|
〈w

,x
〉
+
b
=

−
1}

{
x
|
〈w

,x
〉
+
b
=

0}

{
x
|
〈w

,x
〉
+
b
=

1}

x1

x2

x3

Figure 2.5: In this example all training points be-
long to the unit ball. According to
Theorem 2.20 one wants to classify
with hyperplanes which have a mar-
gin larger than 2∆ = 1.8. Now,
three points which can be classified
correctly independent of their label
should be found. W.l.o.g. it is as-
sumed that x1 belongs to the positive
class. Then, the maximal distance
between x2 and x3 is 1.2 in this set-
ting. Hence, one cannot label x2 and
x3 arbitrarily. Thus, the VC dimen-
sion is 2 instead of 3.

If one assumes that the set X is bounded by D, then the bound (2.14) on the VC
dimension is minimized when the margin 2∆ between the positive and negative train-
ing points is maximized. Let a set of training points {(xi, yi)}, i ∈M := {1, . . . ,m}
be considered. Then, the following optimization problems are equivalent in some
sense.

max
∆,w,b

∆ s.t. yi (〈w, xi〉+ b) ≥ ∆ for all i ∈M ; 〈w,w〉 = 1; ∆ > 0

max
∆,w,b

∆ s.t. yi
(〈

w

∆ , xi

〉
+ b

∆

)
≥ 1 for all i ∈M ; 〈w,w〉 = 1; ∆ > 0

set w̃ := w

∆; b̃ := b

∆
max
∆,w̃,b̃

∆ s.t. yi
(
〈w̃, xi〉+ b̃

)
≥ 1 for all i ∈M ; ∆2〈w̃, w̃〉 = 1; ∆ > 0

set ∆ :=
√

1
〈w̃, w̃〉

min
w̃,b̃
〈w̃, w̃〉 s.t. yi

(
〈w̃, xi〉+ b̃

)
≥ 1 for all i ∈M

with w, w̃ ∈ Rn and b, b̃ ∈ R. Hence, by minimizing 〈w̃, w̃〉 one maximizes the
margin ∆ and therefore minimizes the VC dimension. Note that w is written for w̃
and b is written for b̃ from now on.

According to the SRM principle one wants to minimize the bound on the risk (2.12)
by minimizing the capacity term E(m,h, η) and the empirical risk Remp(λ) (see
Figure 2.4). In particular, to minimize the capacity term (structural risk) one can
minimize the VC dimension. It was discussed that for a small 〈w,w〉 a small VC

20

2.3 Support Vector Machines

dimension is expected. The empirical risk (and its minimization) is based on some
loss function. The hinge loss (2.2) is often chosen as loss function for SVMs.

Hence, Support Vector Machines (SVMs) are based on the following optimization
problem

min
w,b

1
2 〈w,w〉+ C

m∑
i=1

(1− yi(〈w, xi〉+ b))+ . (2.15)

The parameter C > 0 is called Penalty Parameter. A large C emphasizes the
minimization of the empirical risk while a small C emphasizes the minimization of
the structural risk (capacity term).

Let (w∗, b∗) be a solution of (2.15). Then, an SVM leads to the decision function

g(x) := 〈w∗, x〉+ b∗,

and uses sgn(g(x)) as classification rule. Note that a positive training point (x, y)
with g(x) ∈ [0, 1) would be classified correctly, but already increases the empirical
risk. The same applies for a negative point (x, y) with g(x) ∈ (−1, 0).

2.3.1 Reformulated Optimization Problems

Problem (2.15) is an unconstrained non-differentiable optimization problem. This
motivates the following reformulated optimization problem which is constrained but
differentiable.

min
w,b,ξ

1
2 〈w,w〉+ C

m∑
i=1

ξi

s.t. yi (〈w, xi〉+ b) ≥ 1− ξi for all i ∈M
ξi ≥ 0 for all i ∈M.

(2.16)

It can be shown easily that if (w∗, b∗) is a solution of (2.15) then there exists ξ∗ such
that (w∗, b∗, ξ∗) is a solution of (2.16). Vice versa, if (w∗, b∗, ξ∗) is a solution of
(2.16) then (w∗, b∗) is a solution of (2.15). Problem (2.16) is called linear primal
SVM.

The following assertion can be found in literature. However, to the best of my
knowledge, there does not exist a formal proof for it.

Lemma 2.21. Optimization problem (2.16) always has a solution.

21

2 Preliminaries

Proof. If there are only positive training points or only negative training points,
then (w∗, b∗, ξ∗) = (0, 1, 0) ord (w∗, b∗, ξ∗) = (0,−1, 0) is a solution, respectively.
Thus, it is assumed that there is at least one positive and one negative training
point. Now, the point (w̄, b̄, ξ̄) with w̄ = 0, b̄ = 0, ξ̄i = 1 for all i ∈M is a feasible
point. Therefore, any solution (w∗, b∗, ξ∗) must satisfy

0 ≤ ξ∗i ≤ Cm for all i ∈M and ‖w∗‖ ≤
√

2Cm.

Furthermore, by setting D := maxi∈M{‖xi‖} one obtains

b∗ ≥ 1− ξ∗i − 〈w∗, xi〉 ≥ −Cm−D
√

2Cm for yi = 1
b∗ ≤ ξ∗i − 1− 〈w∗, xi〉 ≤ Cm+D

√
2Cm for yi = −1.

Hence, one can add the following constraints to (2.16) without changing the solution
set.

0 ≤ ξi ≤ Cm for all i ∈M
〈w,w〉 ≤ 2Cm
|b| ≤ Cm+D

√
2Cm

Then, the Weierstrass-Theorem can be applied to (2.16) if those constraints are
added.

According to Corollary 2.7 any (w∗, b∗, ξ∗) is a solution of (2.16) if and only if there
exist Lagrange Multipliers (u∗, v∗) ∈ Rm × Rm such that (w∗, b∗, ξ∗, u∗, v∗) is a
KKT Point of (2.16). The Lagrange Function of (2.16) is

L(w, b, ξ, u, v) = 1
2〈w,w〉+ C

m∑
i=1

ξi −
m∑
i=1

ui (yi (〈w, xi〉+ b)− 1 + ξi)−
m∑
i=1

ξivi.

The KKT Conditions of (2.16) are

w =
m∑
i=1

uiyixi 0 =
m∑
i=1

yiui

C − ui − vi = 0 for all i ∈M ξi ≥ 0 for all i ∈M
1− ξi − yi (〈w, xi〉+ b) ≤ 0 for all i ∈M ui ≥ 0 for all i ∈M

vi ≥ 0 for all i ∈M viξi = 0 for all i ∈M
ui (1− ξi − yi (〈w, xi〉+ b)) = 0 for all i ∈M.

(2.17)

22

2.3 Support Vector Machines

Now, another optimization problem is presented which is connected by duality theory
with problem (2.16).

min
α

1
2

m∑
i,j=1

αiαjyiyj〈xi, xj〉 −
m∑
i=1

αi

s.t. 0 ≤ αi ≤ C for all i ∈M
m∑
i=1

αiyi = 0.

(2.18)

Again, by using Corollary 2.7, α∗ is a solution of (2.18) if and only if there are
Lagrange Multipliers (ζ∗, η∗, θ∗) ∈ Rm × Rm × R such that (α∗, ζ∗, η∗, θ∗) is a
KKT Point.

The Lagrange Function of (2.18) is

L(α, ζ, η, θ) = 1
2

m∑
i,j=1

αiαjyiyj〈xi, xj〉−
m∑
i=1

αi−
m∑
i=1

ζiαi−
m∑
i=1

ηi(C−αi)+θ
m∑
i=1

αiyi.

The corresponding KKT Conditions are

m∑
j=1

αjyiyj〈xi, xj〉 − 1− ζi + ηi + θyi = 0 for all i ∈M

αi ≥ 0 for all i ∈M αi ≤ C for all i ∈M
ζi ≥ 0 for all i ∈M ηi ≥ 0 for all i ∈M

ζiαi = 0 for all i ∈M ηi(C − αi) = 0 for all i ∈M
m∑
i=1

yiαi = 0

(2.19)

The following result is well known. However, the provided proof is new to the best
of my knowledge.

Lemma 2.22. Problem (2.16) has a solution if and only if problem (2.18) has a
solution.

Proof. Let (w∗, b∗, ξ∗) be a solution of (2.16). Then, there are Lagrange Multipliers
u∗, v∗ such that (w∗, b∗, ξ∗, u∗, v∗) is a corresponding KKT Point. Now, one sets

α∗ := u∗ η∗ := ξ∗ θ∗ := b∗ ζ∗i := yi (〈w∗, xi〉+ b∗) + ξ∗i − 1 for all i ∈M.

Now, by using (2.17) one gets that (α∗, ζ∗, η∗, θ∗) solves (2.19). Thus, problem
(2.18) has a solution if (2.16) has a solution.

23

2 Preliminaries

Now, it is assumed that (2.18) has a solution and that (α∗, ζ∗, η∗, θ∗) is a corre-
sponding KKT Point. By setting

u∗ := α∗ ξ∗ := η∗ b∗ := θ∗ w∗ :=
m∑
i=1

α∗i yixi v∗i := C − α∗i for all i ∈M

and using (2.19) one gets that (w∗, b∗, ξ∗, u∗, v∗) solves (2.17). Thus problem (2.16)
has a solution if (2.18) has a solution.

Remark 2.23. Lemmas 2.21 and 2.22 imply that problem (2.18) always has a
solution.

Problem (2.18) is called dual linear SVM. Obviously, problem (2.16) and problem
(2.18) are quadratic programs. Problem (2.16) has n + m + 1 variables and 2m
inequalities where m are box constraints. Problem (2.18) has m variables, 2m box
constraints, and one linear equality. Note that for many algorithms it is easier to
handle box constraints than (general) linear inequalities.

Remark 2.24. Additionally, the last proof provides under certain assumptions a
way to obtain (w∗, b∗) by a solution α∗, in other words one does not need the
Lagrange Multipliers of (2.18) to obtain w∗ and b∗. By using the first equal-
ity of (2.17) one can always obtain w∗. Additionally, using (2.17) one obtains:
0 < α∗i = u∗i < C ⇒ v∗i > 0⇒ ξ∗i = 0 Then, by u∗i > 0 and ξ∗i = 0 it follows that
1 − yi(〈w∗, xi〉 + b∗) = 0. Hence, b∗ = yi − 〈w∗, xi〉. Therefore, for any solution
α∗ with 0 < α∗i < C for some i ∈M one can easily obtain (w∗, b∗).

The following assertion is well known but is sometimes wrongly stated by claiming
that the solution of (2.16) is unique. To the best of my knowledge there does not
exist a proof for this assertion. A similar assertion can be found in [42, Theorem
10.1].

Theorem 2.25. Let (w∗, b∗, ξ∗) and (w∗∗, b∗∗, ξ∗∗) be solutions of (2.16). Then,
w∗ = w∗∗.

Proof. According to Remark 2.2 (w̄, b̄, ξ̄) := 1
2 (w∗, b∗, ξ∗) + 1

2 (w∗∗, b∗∗, ξ∗∗) is also
a feasible point and a solution. Now, it is assumed that w∗ 6= w∗∗. Then,

0 < 〈w∗ − w∗∗, w∗ − w∗∗〉 = 〈w∗, w∗〉+ 〈w∗∗, w∗∗〉 − 2〈w∗, w∗∗〉

implies
2〈w∗, w∗∗〉 < 〈w∗, w∗〉+ 〈w∗∗, w∗∗〉.

24

2.3 Support Vector Machines

Now, one gets

1
2〈w̄, w̄〉+ C

m∑
i=1

ξ̄i =1
8 〈w

∗ + w∗∗, w∗ + w∗∗〉+ C

2

m∑
i=1

(ξ∗i + ξ∗∗i)

=1
8〈w

∗, w∗〉+ 2
8〈w

∗, w∗∗〉+ 1
8〈w

∗∗, w∗∗〉+ C

2

m∑
i=1

(ξ∗i + ξ∗∗i)

<
1
2

(
1
2〈w

∗, w∗〉+ C
m∑
i=1

ξ∗i

)
+ 1

2

(
1
2〈w

∗∗, w∗∗〉+ C
m∑
i=1

ξ∗∗i

)

=1
2〈w

∗, w∗〉+ C
m∑
i=1

ξ∗i

This is a contradiction to the optimality of w∗. Thus, w∗ = w∗∗.

The following example shows that b∗ and ξ∗ may not be unique. Let problem (2.16)
with

m = 4, C = 0.25, y = (−1,−1, 1, 1)>, and
x1 = (0, 1)>, x2 = (1, 0)>, x3 = (1, 2)>, x4 = (2, 1)>

be considered. Then, for any λ ∈ [0, 1]

(w∗, b∗(λ), ξ∗(λ)) =

(

0.5
0.5

)
,−1.5 + λ,

λ

λ

1− λ
1− λ

is a solution.

Note that the solution α∗ of the dual linear SVM might not by unique, although
w∗ is uniquely determined and it holds that

w∗ =
m∑
i=1

α∗i yixi.

2.3.2 Nonlinear SVMs

In the last subsection linear SVMs which separate the training points by a hyperplane
in Rn were introduced. In many cases this will lead to a bad performance of the
classifier since the classes cannot be separated by a hyperplane (see Figure 2.6).

25

2 Preliminaries

Figure 2.6: All positive input points belong to the white squares while all negative
input points belong to the black squares. Obviously, any linear classifier
has a bad performance.

In order to overcome this issue linear SVMs can be extended to nonlinear SVMs by
the following idea. Let ψ be a mapping with ψ : X → H where H is a real Hilbert
space. Now, problem (2.15) is extended to

min
w,b

1
2〈w,w〉+ C

m∑
i=1

(yi (〈w,ψ(xi)〉+ b)− 1)+ (2.20)

with (w, b) ∈ H ×R. Again, this problem is reformulated to

min
w,b,ξ

1
2 〈w,w〉+ C

m∑
i=1

ξi

s.t. yi (〈w,ψ(xi)〉+ b) ≥ 1− ξi for all i ∈M
ξi ≥ 0 for all i ∈M

(2.21)

which is called primal SVM. The difference between problems (2.16) and (2.21) is
that in the latter w is element of an arbitrary real Hilbert space H while in the
first problem w belongs to Rn. Note that one can generalize Theorem 2.25. This
means that any solution of (2.21) has the same w∗ ∈ H. Now, let (w, b) ∈ H×R
be given and let the set

{x ∈ Rn | 〈w,ψ(x)〉+ b = 0}

be considered. This set is a hyperplane in H but it will not be a hyperplane in Rn

in general. Hence, by choosing an appropriate mapping ψ one can obtain other
classifiers than those defined by a hyperplane in Rn.

For the moment it is assumed that H has finite dimension. Then, similar as in

26

2.3 Support Vector Machines

Subsection 2.3.1 one obtains the following optimization problem

min
α

1
2

m∑
i,j=1

αiαjyiyj〈ψ(xi), ψ(xj)〉 −
m∑
i=1

αi

s.t. 0 ≤ αi ≤ C for all i ∈M
m∑
i=1

αiyi = 0.

(2.22)

Now, Lemma 2.22 can be extended to connect (2.21) and (2.22). However, if H
has infinite dimension, then Lemma 2.22 cannot be applied directly.

Theorem 2.26 (Semiparametric Representer Theorem). Let (w∗, b∗) denote
a solution of problem (2.20). Then, there is µ∗ ∈ Rm such that

w∗ =
m∑
i=1

µ∗iψ(xi).

Proof. See [38, Theorem 4.3].

Using this theorem one can reformulate (2.21) to

min
µ,ξ,b

1
2

m∑
i,j=1

µiµj 〈ψ(xi), ψ(xj)〉+ C
m∑
i=1

ξi

s.t. yi

 m∑
j=1

µj 〈ψ(xj), ψ(xi)〉+ b

 ≥ 1− ξi for all i ∈M

ξi ≥ 0 for all i ∈M

(2.23)

Now, by comparing the KKT Systems of (2.22) and (2.23) one can solve (2.22) to
obtain a solution of (2.23) and vice versa. Then, by using Theorem 2.26 a solution
of (2.21) can be obtained.

Often, it is computationally very expensive or even impossible to evaluate the map-
ping ψ explicitly. Therefore, by a closer look of problem (2.22) or (2.23) it follows
that the mapping ψ is used only within scalar products. Thus, one can define
kernels k : X ×X → R as

k(s, t) := 〈ψ(s), ψ(t)〉 for all (s, t) ∈ X ×X. (2.24)

27

2 Preliminaries

Formally speaking, a function k : X × X → R is called kernel function or just
kernel if there exist some Hilbert space H and some mapping ψ : X → H so that
(2.24) holds.

Note that there exist kernels which can be evaluated without explicitly computing
or even knowing the function ψ. For example, by

k(s, t) := 〈s, t〉p , p ∈ N

a kernel function k : X ×X → R is defined for any p ∈ N. The corresponding ψ
can be found in [15, p. 31].

The method of replacing a linear scalar product by a kernel function is often called
kernel trick.

Using kernels, (2.22) can be written as

min
α

1
2

m∑
i,j=1

αiαjyiyjk (xi, xj)−
m∑
i=1

αi

s.t. 0 ≤ αi ≤ C for all i ∈M
m∑
i=1

αiyi = 0.

(2.25)

Problem (2.25) is called dual SVM or just SVM. Furthermore, any xi with αi > 0
is called Support Vector (SV).

Note that the decision function g : X → R obtained by an SVM can be written
as

g(x) :=
m∑
i=1

αiyik(xi, x) + b∗.

Here, b∗ is obtained by a solution of the primal SVM (see also Remark 2.24).

Let the matrix G ∈ Rm×m be defined by Gij := k(xi, xj). Then, G is a Gram
matrix. It is well known that any Gram matrix is positive semidefinite. This yields
that (2.25) has a quadratic target function which is convex. Hence, (2.25) is a
convex optimization problem.

In the following, several possibilities to construct new kernels are presented.

Proposition 2.27. Let k1 : X×X → R and k2 : X×X → R be kernel functions

28

2.3 Support Vector Machines

and let xi, xj ∈ X be given. Then, the functions

k(xi, xj) = k1(xi, xj) + k2(xi, xj)
k(xi, xj) = c · k1(xi, xj) for all c > 0
k(xi, xj) = k1(xi, xj) + c for all c > 0
k(xi, xj) = k1(xi, xj) · k2(xi, xj)
k(xi, xj) = f(xi) · f(xj) for any continuous function f : X → R

are kernel functions, too.

Proof. See [22, Theorem 2.20].

Corollary 2.28. Let k1 : X ×X → R be a kernel function and let xi, xj ∈ X be
given. Then, the functions

k(xi, xj) = (k1(xi, xj) + c)d, c > 0, d ∈ N

k(xi, xj) = exp
(
k1(xi, xj)

σ2

)
for all σ > 0

k(xi, xj) = exp
(
−k1(xi, xi)− 2k1(xi, xj) + k1(xj, xj)

σ2

)
for all σ > 0

k(xi, xj) = k1(xi, xj)√
k1(xi, xi) · k1(xj, xj)

are kernel functions, too.

Proof. See [22, Corollary 2.21].

Remark 2.29. Let xi, xj ∈ X ⊆ Rn be given. Then,

• k(xi, xj) := 〈xi, xj〉 is called linear kernel.

• k(xi, xj) := (〈xi, xj〉+ c)d is called polynomial kernel of degree d. More-
over, if c = 0 then it is called homogeneous polynomial kernel of degree
d.

• k(xi, xj) := exp (−σ2‖xi − xj‖2) for σ > 0 is called radial basis function
(RBF) kernel.

Remark 2.30. Many numerical methods for efficiently solving SVMs have been
proposed. As an anchor to this topic the reader is referred to the papers [17, 27,
31, 33]. The numerical results presented later on are based on a modified version
of the LIBSVM library [13]. Those modifications are presented in Chapter 5. The
LIBSVM library solves the dual SVM to obtain a decision function.

29

2 Preliminaries

2.4 Bayes’ Rule of Classification

Up to now it was assumed that the data generating distribution function FX×Y
is unknown. In this section, it is assumed that it is known and that there is a
corresponding density function pX,Y which is called joint density function of X and
Y . Under those assumptions the Bayes’ Rule of Classification is known and can
be used as decision function. Note that the Bayes’ Rule of Classification is also
called Bayes’ Classifier. In this dissertation, any classifier which leads to the same
risk as the Bayes’ Rule of Classification for a given loss function is also called Bayes’
Classifier.

It is well known that a Bayes’ Classifier is optimal. In other words for a given pattern
recognition problem there is no other classifier with a smaller risk than the Bayes’
Classifier [16]. Often, the Bayes’ Classifier is only derived for a discrete density
function pX . Here, it is provided for a continuous density function pX .

Let pX and pY be the marginal probability density functions of X and Y , respec-
tively. The marginal probability density function of X is

pX(x) :=
∫
Y
pX,Y (x, y) dy,

while the marginal probability density function of Y is

pY (y) :=
∫
X
pX,Y (x, y) dx.

Then, using Bayes’ Theorem for probability densities, one gets the a posterior prob-
ability density function of Y given X = x by

pY (y|X = x) = pX,Y (x, y)
pX(x) = pX (x|Y = y) pY (y)

pX(x) .

Hence, the density pY (y|X = x) can be evaluated for any (x, y) ∈ X × Y . As Y
is discrete, pY is a discrete density function. Thus, ∑y∈Y pY (y|X = x) = 1 for all
x and

P (Y = y|X = x) = pY (y|X = x).

Now, it is shown how the Bayes’ Classifier can be obtained. Firstly, let the 0-1-loss
be selected. Obviously, to minimize the risk, one has to classify any x ∈ X to the
class with largest probability P (y|X = x). For instance, if Y = {−1, 1}, then one

30

2.5 Quality of a Classifier

classifies x to the positive class if and only if

P (Y = 1|X = x) > P (Y = −1|X = x),

which is equivalent to P (Y = 1|X = x) > 0.5.

Secondly, for Y = {−1, 1} a way is presented how to obtain a Bayes’ Classifier
which is based on the weighted loss function

ld(y, ȳ) :=

d if y = 1 and ȳ = −1,
1 if y = −1 and ȳ = 1,
0 else

(2.26)

for some d > 0. Here, y is the correct class while ȳ is the predicted class.

Let x be given input point. Then, the expected loss ld is

• ld(−1, 1)P (Y = −1|X = x) = 1 · P (Y = −1|X = x) if x is classified to 1
• ld(1,−1)P (Y = 1|X = x) = d · P (Y = 1|X = x) otherwise.

Hence, to minimize the loss x is classified to the positive class if an only if

d · P (Y = 1|X = x) > P (Y = −1|X = x).

Remark 2.31. In [28] Lin presents an interesting connection between SVMs and
the Bayes’ Rule in Classification. It is shown, that the classification rules derived
by the decision function of SVMs converge for large numbers of training points to
the Bayes’ Rule of classification if the data generating process is i.i.d.

2.5 Quality of a Classifier

In the last subsections different techniques to obtain a decision function were de-
scribed. Let g1 and g2 be decision functions for a given binary pattern recognition
task. The question arises which of the given functions is more suited for the task, in
other words which one has the smaller risk (2.3). In the last subsections bounds for
the risk were presented. However, those bounds are in many cases computational
expensive, trivial, or weak. Therefore, other techniques to measure the performance
of a classifier will be introduced.

31

2 Preliminaries

Here, let a training set {(xi, yi)} with i ∈ {1, . . . ,m} be given for a given pattern
recognition task. Then, one can split up this training set into two disjoint sets,
where the set {(xi, yi)}m1

i=1 is still called training set and the set {(xi, yi)}mi=m1+1 is
called test set. Let g1 and g2 be obtained by two different learning methods which
use {(xi, yi)}m1

i=1 as training set. Then, g1 is said to be better than g2 if and only
if

1
m−m1

m∑
i=m1+1

l(yi, g1(xi)) <
1

m−m1

m∑
i=m1+1

l(yi, g2(xi))

for a given loss function l. Note that this loss function and the loss function used
by the learning method may be different. Hence, one uses the empirical risk of the
test set as measure for the quality of a decision function.

However, using the method mentioned above could lead to an overfitting on the
given test set. In other words, the selected model leads to very good result for the
given test set, but leads to bad results for other test sets. In order to overcome
this issue one could use cross validation or the leave one out method [38]. Another
possibility would be to split the training set {(xi, yi)} with i ∈ {1, . . . ,m} into
three sets. Then, {(xi, yi)}m1

i=1 is still called training set, while {(xi, yi)}m2
i=m1+1 is

still called test set. Now, {(xi, yi)}mi=m2+1 is called validation set. For training,
only the training set is used. Now, the model selection (for SVMs the selection of
the used kernel k and penalty parameter C) is done by using the training set and
minimizing the empirical risk on the test set. Finally, one says that the decision
function g1 is better than g2 if and only if g1 leads to a smaller empirical risk than
g2 on the validation set.

32

3 Pairwise Classification

Many machine learning algorithms are based on binary classifiers, in other words
they can only be applied if Y = {−1, 1}. To extend binary classifiers to multiclass
classifiers many methods have been suggested, for example the One Against One
technique, the One Against All technique, Directed Acyclic Graphs or Multiclass
SVMs. Further information on this topic can be found in [36].

Now, let Y be a finite subset of N and let a training set {(xi, yi)}m1
i=1 and a test

set {(xi, yi)}mi=m1+1 be given. Additionally, it is assumed that k ∈ {m1 + 1, . . . ,m}
exists such that yk 6= yi for all i ∈ {1, . . . ,m1}. In other words, there is at least
one point in the test set whose class is not represented by any point in the training
set. Under this assumption none of the techniques mentioned above will provide
meaningful results, which means that they either classify xk to any of the classes
represented in the training set, or they may reject the classification of xk.

For instance, the described setting occurs in face recognition. If one wants to
provide an access control base on face recognition it would be very impractical if
one uses any of the techniques mentioned above. For instance, if one person should
be added to the database, then a new training would be necessary.

In this work a learning method which is able to handle classes not represented
in the training set is analyzed. The generalization to never seen classes is called
interclass generalization. In literature, interclass generalization is also called
interclass transfer or learning to learn [4].

In order to handle interclass generalization it is proposed in this dissertation to use
the pairwise classification technique [7, 23, 24, 4, 6, 32, 43]. Note that pairwise
classification is a special case of collaborative filtering [1]. Now, to introduce the
pairwise classification technique let an ordinary training set{(

xi, y
cl
i

)}m
i=1
⊆ X × Ycl (3.1)

be given. If not stated otherwise, it is assumed that c is the number of existing
classes and that Ycl := {1, . . . , c}. Then, instead of using such a training set for

33

3 Pairwise Classification

predicting the class ycl ∈ Ycl for any x ∈ X a pairwise training set is used. In order
to define such a training set, firstly set

yij :=
{

1 if ycli = yclj
−1 otherwise

for any i, j ∈ M := {1, . . . ,m}. In other words, yij is set to 1 if xi and xj belong
to the same class and yij is set to −1 if xi and xj do not belong to the same class.
Secondly, a set of the following form is used as pairwise training set

{((xi, xj), yij)}(i,j)∈I ⊆ (X ×X)× Y (3.2)

with Y = {−1, 1} and I ⊆ M ×M . In pairwise classification u ∈ X is called
example and (u, v) ∈ X×X is called pair of examples or just pair. Furthermore,
(u, v) ∈ X × X is called positive (negative) pair if the corresponding y = 1
(y = −1). Let a set of the form (3.1) be given. Then, the set {xi}mi=1 ⊆ X is
called set of training examples. Additionally, the set {ycli }mi=1 ⊆ Y cl is called set
of training classes. Finally, a pairwise test set, a set of test examples, and
a set of test classes, are defined analogous to a pairwise training set, a set of
training examples, and a set of training classes, respectively.

In pairwise classification one wants to determine a decision function g : X×X → R

which predicts for a pair (u, v) ∈ X ×X whether u belongs to the same class as v
(g(u, v) > 0) or not (g(u, v) < 0). Note that u, v do not need to belong to the set
of training examples and that the classes corresponding to u and v do not need to
belong to the set of training classes.

Remark 3.1. Above, it is assumed that for each example xi its corresponding class
yci is known. However, this assumption can be weakened. It suffices that for any
training pair (xi, xj) it is known whether this pair is positive or negative. Moreover,
it was assumed that Y is a finite subset of N. This assumption can be weakened
by assuming that Y is a finite set.

This chapter is structured as follows. Section 3.1 analyzes pairwise decision func-
tions and discusses certain properties of such functions. Those results were already
presented in my papers [11, 12]. Then, in Section 3.2 several ways to model a
pairwise data generating process are discussed. The presented results are new to
the best of my knowledge. Section 3.3 deals with the quality of pairwise deci-
sion functions. Afterwards, in Section 3.4 a model selection approach is presented.
This approach was also presented in my papers [11, 12]. Section 3.5 concludes

34

3.1 Properties of a Pairwise Decision Function

this chapter by a new discussion about optimal classifiers for pairwise classification
problems.

3.1 Properties of a Pairwise Decision Function

In this section certain properties of a pairwise decision function are analyzed.

A first idea for a pairwise decision function could be the use of a given metric
d : X ×X → R in the following way

gd(u, v) := b− d(u, v)

where b > 0 denotes some threshold parameter. Now, certain properties of gd are
discussed.

At first, gd(u, v) = gd(v, u) holds for all u, v ∈ X. This raises the question whether
a pairwise decision function g : X × X → R should be symmetric in the sense
that

g(u, v) = g(v, u) for all u, v ∈ X.

In the following this property is called pairwise symmetry and seems intrinsic and
desirable for any pairwise decision function.

Secondly, let g be a pairwise decision function. Obviously, for any u ∈ X it
holds that gd(u, u) = b > 0. This leads to the question whether a pairwise decision
function should be reflexive in the sense that

g(u, u) > 0 for all u ∈ X

holds.

At first glance, this property seems desirable for a pairwise decision function. How-
ever, let an example u ∈ X be given. Additionally, is is assumed that u may come
from many different classes which all have the same likelihood. In this case it is
very unlikely that g(u, u) > 0. Therefore, a pairwise decision function may not
be reflexive. Later, in Subsection 3.5.2 a more detailed discussion on this topic is
presented.

35

3 Pairwise Classification

Another property of a metric is the triangle inequality. Let d be the Euclidean
metric, b = 1.1, X = R2, and let u, v, w ∈ R2

u =
(

1
0

)
v =

(
0
0

)
w =

(
0
1

)

be given. This implies

gd(u, v) > 0 gd(v, w) > 0 and gd(u,w) < 0.

In other words gd would not lead to transitivity in the sense that

g(u, v) > 0 and g(v, w) > 0 ⇒ g(u,w) > 0.

Again, transitivity seems desirable at first glance. However, it stays in some tension
with the non reflexivity of the decision function. A more detailed analysis of this
property can be found in Subsection 3.5.2.

Chapter 4 presents several approaches of how a symmetric pairwise decision func-
tion can be obtained by a pairwise Support Vector Machine. However, the described
reflexivity and transitivity will not be enforced as both properties seem not to be
desirable in some cases. The results of Sections 4.1 to 4.3 ensure the symmetry of
a pairwise decision function and can be easily transferred to other pairwise learning
methods.

3.2 Pairwise Data Generating Process

In this section several data generating processes are analyzed which can be used
to model the drawing of a pairwise training set or a pairwise classification task. A
pairwise classification task denotes a learning problem which should generalize to
unknown pairs.

In Subsection 3.2.1 several possibilities to create pairwise training sets out of given
ordinary training sets are introduced and several drawbacks of this approach are
discussed. In this dissertation an ordinary training or test set means a non pairwise
training or test set, respectively. In Subsection 3.2.2 the direct drawing of training
pairs is analyzed, and it is shown that this approach has other drawbacks. Finally,
Subsection 3.2.3 introduces a new data generating process which seems more suited
for pairwise data generating processes.

36

3.2 Pairwise Data Generating Process

3.2.1 Using a Subset of All Existing Pairs

Throughout this subsection it is assumed that there is an i.i.d. data generating
process for an ordinary training set of the form (3.1). Now, some approaches to
obtain a pairwise training set by a given ordinary training set are analyzed.

In order to start the discussion the following technique which generates a pairwise
training set is introduced. At first, one draws an ordinary training set of the form
(3.1) consisting of m ∈ N training points. Then, one creates the set T

T := {((xi, xj), yij)}mi,j=1 ⊆ (X ×X)× Y. (3.3)

In other words, the set T consists of all possible training pairs and corresponding
labels. Finally, one draws the training pairs out of T . Now, the drawing of the
training pairs will be further investigated. To this end, T is equipped with a suitable
σ-algebra Σ and a suitable probability measure P . Hence, (T ,Σ, P) is a probability
space. Now, let an i.i.d. time discrete stochastic process Z be given. Furthermore,
in each step of this process a point is drawn accordingly to (T ,Σ, P).

A first idea would be to use the whole set T as training set. In other words each
point is used once. Then, if m2 points are generated using Z it is very unlikely
that each point is drawn once, independent of the chosen P . Hence, P needs to
be modified after each drawing in such a way that the drawn pair cannot be drawn
another time. This leads to a dependent identically distributed data generating
process. Moreover, the data generating process would be finite in this setting.
Hence, it cannot be a time invariant process and one cannot determine any mixing
coefficient.

A second possibility would be to use Z in the i.i.d. setting. However, for large
numbers of training points the obtained training set will contain a lot of redundancy
as some pairs will be drawn more than once.

Above, two possibilities of how a pairwise training set can be obtained were dis-
cussed. Now, it is shown that the approach of first creating an ordinary training
set and then using a subset of the corresponding set T has another drawback. In
machine learning one assumes that the drawing of the test set is based on the same
data generating process as the drawing of the training set. Now, let an ordinary
training set and an ordinary test set be given and let T be the set consisting of all
possible test pairs and corresponding labels, that is to say T is defined analogous
to (3.3). Moreover, (T ,Σ, P) is defined analogous to (T ,Σ, P), too. Then, the
data generating process of the training set and the data generating process of the

37

3 Pairwise Classification

test set are different unless T = T . In other words, the theory of Section 2.2 can
only be applied if the set of training examples and test examples are the same.
Hence, such a data generating process seems not to be suitable for the interclass
generalization setting.

There exist another approach for drawing a pairwise training set and a pairwise
training set out of T . At first, one selects 1 < m1 < m. At second, one uses the
set {(xi, xj), yij} with i, j ∈ {1, . . . ,m1} as training set. At third, one uses the
set {(xi, xj), yij} with i, j ∈ {m1 + 1, . . . ,m} as test set. However, this approach
suffers from similar problems as presented above.

3.2.2 Drawing the Pairs Directly

This subsection presents another pairwise data generating process which can be
used to apply the results of Section 2.2 to pairwise classification tasks in the in-
terclass setting. However, it is shown that this data generating process has other
drawbacks.

Like in Subsection 2.2.1 it is assumed that an i.i.d. time discrete ordinary data
generating process Z is given. Here, an ordinary data generating process denotes
a non pairwise data generating process. At each time step an example x ∈ X is
generated by Z. Additionally, letX be equipped with a σ-algebra Σ and a probability
measure PX with density pX . Hence, (X,Σ, PX) is a probability space.

Now, let X2 := X×X be defined and let Σ2 denote the σ-algebra on X2 generated
by subsets of the form A × B where A,B ∈ Σ. By P 2

X the product measure is
denoted. Hence, it is defined by

P 2
X(A×B) := PX(A)PX(B)

for all A,B ∈ Σ. Now, one can assume that the pairs are drawn accordingly to a
stochastic process Z̃(t) with t ∈ Z. In each step of this process a pair is drawn
according to (X2,Σ2, P 2

X) with density pX2 . Then, the supervisor returns the output
y for any (u, v) ∈ X ×X according to the distribution function FY (· |X ×X =
(u, v)) with density pY (·|X × X = (u, v)). Like in Subsection 2.2.1 one assumes
that this supervisor exists. Thus, any training point and its corresponding label is
drawn according to FX×X,Y ((·, ·), ·) with density

pX2,Y ((u, v), y) := pX(u)pX(v)pY (y|X ×X = (u, v)).

38

3.2 Pairwise Data Generating Process

Note that Z̃ is i.i.d. as Z is i.i.d.

From a theoretical point of view Z̃ is suitable for pairwise classification tasks and
any result for a non pairwise learning tasks with i.i.d. input data can be transferred
to this setting directly. Furthermore, the training set and the test set come from
the same data generating process in this setting. Now, drawbacks of the described
data generating process are discussed.

Firstly, it is often very expensive to obtain examples or the number of examples
is limited. Now, let a set of m i.i.d. drawn examples be given. Then, one could
obtain m

2 training pairs by using the data generating process Z̃. In other words, the
cardinality of the pairwise training set is halved compared to the cardinality of the
ordinary training set.

Secondly, a training set generated by Z̃ contains less information than a training
set consisting of all possible pairs. Let m be even and let

{((xi, xi+1), yi(i+1))}i∈{1,3,...,m−1} ⊆ (X ×X)× Y

be a pairwise training set generated by Z̃. Now, one tries to determine for any pair
(xi, xj) with i, j ∈ M = {1, . . . ,m} whether it is positive or negative. Unfortu-
nately, by using only the set generated by Z̃ this cannot be correctly determined in
general. In other words, such a training set contains less information than a training
set consisting of all possible pairs with corresponding labels.

In order to analyze this problem further, let a pairwise training set be given. Addi-
tionally, one assumes that the supervisor uses a reflexive, transitive, and symmetric
decision function (see Section 3.1). Now, one tries to construct an ordinary training
set out of the pairwise training set by only using the assumption on the supervisor.
Obviously, the obtained ordinary training set will be unique except a permutation
of the class numbers. Note that Subsection 3.2.1 presents possibilities to construct
a pairwise training set out of an ordinary training set. Here, one is interested in a
way to construct an ordinary training set out of a pairwise training set.

The following lemma shows that one cannot construct such an ordinary training
set from a pairwise training set if the number of training pairs is too small. Before
this lemma is presented, please note that the transitivity of the decision function
implies

g(u, v) > 0 and g(v, w) > 0 ⇒ g(u,w) > 0

39

3 Pairwise Classification

but

g(u, v) < 0 and g(v, w) < 0 ; g(u,w) < 0
g(u, v) < 0 and g(v, w) < 0 ; g(u,w) > 0.

(3.4)

Lemma 3.2. Let the pairwise training set

{(xi, xj), yij}(i,j)∈I ⊆ (X ×X)× Y

with I ⊆ M ×M and xi 6= xj for i 6= j be given. Additionally, let the supervisor
have access to the ordinary training set{(

xi, y
cl
i

)}m
i=1
⊆ X × Ycl

and let it use
yij :=

{
1 if ycli = yclj
−1 otherwise

as classifier. Furthermore, let c be set by

c = |{ycli }mi=1|.

In other words c is the number of different classes in the ordinary training set.
Then, if |I| < m− c+ c(c−1)

2 it is not possible to correctly decide for every i, j ∈M
whether

ycli = yclj

or not, by only using the pairwise training set.

Proof. Note that the supervisor uses a reflexive, transitive, and symmetric decision
function due to the given assumptions.

W.l.o.g. one can assume that the set of training classes Y cl is {1, . . . , c}. Here,
Mk ⊆M denotes all such indices whose corresponding examples belong to class k,
in other words for all k ∈ {1, . . . , c} it holds that ycli = k for all i ∈Mk.

Firstly, it is shown that there must be m − c positive pairs in the training set to
correctly determine whether yij = 1 or not for all i, j ∈M . Additionally, it is shown
that this number is independent of the used negative pairs.

For each class k ∈ {1, . . . , c} the following graph Hk is constructed. The vertices
of Hk are the examples belonging to class k. Hence, Hk consists of |Mk| vertices.
Then, xi and xj with i, j ∈ Mk are connected if and only if ((xi, xj), 1) is part of
the pairwise training set. Obviously, if Hk is connected, then the transitivity implies

40

3.2 Pairwise Data Generating Process

for any i, j ∈ Mk that yij = 1 holds. However, if Hk is disconnected, then there
are at least two connected subgraphs Hk1 and Hk2 . Now, let xi be a vertex of Hk1

and let xj be a vertex of Hk2 . Then, due to (3.4) one cannot determine whether
yij = 1 or yij = −1, independent of the negative pairs in the training set. Hence,
if Hk is disconnected, then there is at least one pair (xi, xj) for which one cannot
correctly determine whether yij = 1 or yij = −1. Any Graph with |Mk| vertices and
less then |Mk| − 1 edges is disconnected. Furthermore, there is always a connected
graph with |Mk| vertices and |Mk| − 1 edges. Hence, one can conclude that there
must be

c∑
k=1

(|Mk| − 1) = m− c

positive pairs in the training set and that this number of positive pairs is sufficient.
Additionally, this number is independent of the used negative pairs.

Secondly, one shows that there must be c(c−1)
2 negative pairs to correctly determine

whether yij = 1 or yij = −1 for i, j ∈ M . Furthermore, one shows that this
number is sufficient.

Let T ⊆ (X ×X)× Y consist of m− c positive pairs such that all corresponding
graphs Hk are connected. For each class k a representing example xck

is selected.
Now, let the following set be added to T

{((xck
, xcl

),−1)|k, l ∈ {1, . . . , c}, k < l}.

Note that the pairwise transitivity and symmetry imply

g(u, v) < 0 and g(v, w) > 0 ⇒ g(u,w) < 0.

Therefore, by T one can correctly determine for any i, j ∈ M whether yij = 1 or
yij = −1. Obviously, T consists of c(c−1)

2 negative pairs. Now, it is shown that this
number of negative pairs is necessary. Therefore, let a training set with less than
c(c−1)

2 negative pairs be used. Then, there are k, l ∈ {1, . . . , c} such that

((xi, xj),−1)

is not part of the training set for all i ∈ Mk, j ∈ Ml. Then, as (3.4) holds one
cannot determine whether yij = −1 or yij = −1 for any i ∈Mk, j ∈Ml.

Hence, there must be at least

m− c+ c(c− 1)
2

41

3 Pairwise Classification

pairs in the training set to correctly determine whether yij = 1 or yij = −1 for all
i, j ∈M . Additionally, it was shown that this number is sufficient.

Note that for m ∈ {2, 4, . . . } it holds that

m

2 ≤ m− c+ c(c− 1)
2 .

This inequality becomes strict for m ≥ 4 and c ∈ {1, . . . ,m}. Hence, the data
generating process Z̃ looses some information if two or more training pairs are
used.

3.2.3 A New Pairwise Data Generating Process

Here, an algorithm is presented which can be used to generate a training set and a
test set which both come from the same data generating process. However, it seems
that the underlying process is not stationary. Nevertheless, it might be possible to
use the block technique presented in [48, Corollary 2.7] and [29, Lemma 3] to show
that the data generating process has some mixing properties.

Before the algorithm is presented the basic idea of Algorithm 3.3 is described. Let
some kind of memory be available. Let this memory consist of a specific number of
drawn examples. In line 1 of Algorithm 3.3 p is selected as the example per class
ratio (EPCR) while t1 is selected as the number of classes in the memory. The
EPCR denotes the (average) number of examples per class. The memory stores
the last t1p drawn examples while older examples are removed. To initialize the
memory it is filled with examples of t1 classes with p examples per class (lines 3–9,
Figure 3.1a). Note that after this step the training set T is still empty. Lines 10–26
can be described in the following way: At first, the algorithm draws p examples
from one new class. At second, all (positive) pairs and corresponding labels from
those p examples are added to the training set T . Additionally, all those pairs
and corresponding labels are added to the training set whose first member belongs
to the newly drawn examples and whose second member belongs to the memory
(Figure 3.1b). At third, the memory is updated by deleting the p oldest examples
and adding the p new examples to the memory (Figure 3.1c). Now, the steps of
lines 10-26 are repeated t times.

In Algorithm 3.3 it is assumed that an i.i.d. generator of the classes is given. Addi-
tionally, for each class k let an i.i.d. generator Gk of examples be given.

42

3.2 Pairwise Data Generating Process

Algorithm 3.3. A new Pairwise Data Generating Process
1: Select p, t1, t ∈ N
2: Set T := ∅, e := 1
3: for i = 1, . . . , t1 do
4: draw class ki
5: for j = 1, . . . , p do
6: draw example xe using Gki

7: Set ycle := ki, e := e+ 1
8: end for
9: end for

10: for i = 1, . . . , t do
11: Set h := e

12: draw class ki
13: for j = 1, . . . , p do
14: draw example xe using Gki

15: Set ycle := ki
16: for t = h− t1p, . . . , h+ j − 1 do
17: if (ycle == yclt) then
18: yet := 1
19: else
20: yet := −1
21: end if
22: T := T ∪ {((xe, xt), yet)}
23: end for
24: Set e := e+ 1
25: end for
26: end for

Obviously, Algorithm 3.3 is well defined. Note that the underlying distribution of the
pairs seems to depend on the time. Hence, the process seems not to be stationary.
For instance, right after the initialization of the memory a number of positive pairs
is added. Afterwards, a number of negative pairs added and so on.

In the following some comments concerning Algorithm 3.3 are given.

• In general, a pairwise training set obtained by the algorithm cannot be used
to determine whether any two examples of the corresponding set of training
examples belong to the same class or not (cf. Lemma 3.2).

43

3 Pairwise Classification

x1

xp

... k1

xp+1

x2p

... k2

xt1p

... kt1

Memory

T = ∅

(a) Initialization

(a) The memory is initialized using
t1 classes with p examples per class.

Memory

T

(N
eg

ati
ve

) Pa
irs

P
ositive

P
airs

New Class

(b) Adding Pairs
A new class and p corresponding examples
are drawn. All positive pairs of those p ex-
amples are added to T . Additionally, all
(negative) pairs are added to T whose first
member belongs to the newly drawn exam-
ples and whose second member belongs to
the current memory.

O
ld

M
em

o
ry

N
ew

M
em

o
ry

(c) Update of the Memory

(c) The oldest class and its corre-
sponding examples are deleted from
the memory. The new class and its
corresponding examples are added to
the memory.

Figure 3.1: Description of Algorithm 3.3

44

3.2 Pairwise Data Generating Process

• Let T denote a training set obtained by Algorithm 3.3. Then, i ≤ j holds for
any ((xi, xj), yij) ∈ T . Chapter 4 shows that it suffices to use such pairwise
training sets in pairwise SVMs.

• Note that this algorithm may draw the same class two times. Therefore,
a training set and a test set obtained by this algorithm might not lead to
the interclass setting which was described in the beginning of this chapter.
However, if the number of existing classes is sufficiently large, then this should
be a rare event.

• In order to conclude that the test set and the training set are generated by
the same process in the interclass setting, let a sufficiently large pairwise
training set be obtained by Algorithm 3.3. Furthermore, let the elements
of the training set be numbered from 1 to m in the ordering obtained by
thealgorithm. Then, the elements {1, . . . ,m1} are used as training set and
the elements {m1 + (p(p+ 1)/2 + p2t1)t1 + 1, . . . ,m} are used as test set for
an appropriate m1. This guarantees that the set of training classes and the
set of test classes do not intersect unless a specific class is drawn two times.

• Note that one implicitly selects the a priory probability of a positive pair of
the obtained training set T by selecting p and t1 if the number of existing
classes is sufficiently large. This raises the question which a priory probability
is reasonable.

• One could modify this algorithm in the following way. For each class a random
number of examples is drawn, in other words p is drawn randomly for each
class.

• This algorithm leads to training sets which are smaller than the approach of
including all existing pairs to the training set. This significantly shortens the
needed training time but may decrease the accuracy. In Subsection 5.2.2 the
impact of using training sets which do not use all possible training pairs is
analyzed.

• Algorithm 3.3 is not used to generate the data in Section 5.2. Instead, two
other data generating processes are used which are now presented. The first
one includes all possible pairs to the training set. The second one includes
all positive pairs to the training set similar as Algorithm 3.3. In contrast to
Algorithm 3.3 the negative pairs are selected randomly out of the existing
negative pairs.

45

3 Pairwise Classification

3.3 Evaluating the Quality of a Pairwise Decision
Function

Section 2.5 discussed how a test set can be used to evaluate the quality of a non
pairwise decision function by means of comparing empirical risks of given test sets.
Now, the empirical risk of two pairwise test sets and certain classifiers are calculated.
Let the first test set consist of all pairs of 1,000 examples. It is assumed that there
are 200 classes in this set and that there is a constant EPCR of 5, in other words
each class consists of 5 examples. If a symmetric pairwise decision function is used,
then there are 2,000 positive points and 498, 500 negative points. Now, let the
second test set consist of 10,000 examples of 2,000 classes. Again, each class has a
constant EPCR of 5. Then, there are 20,000 positive pairs and 49,985,000 negative
pairs. Obviously, the number of positive pairs increases linearly with the number
of classes while the number of negative pairs increases quadratically. Now, let the
decision function g : X ×X → R be defined by g(u, v) := −1 for all u, v ∈ X. In
other words, it always predicts that u and v do not belong to the same class. If the
0-1-loss is used then the second training set leads to a smaller empirical risk (2.5)
than the first training set, as the a priory probability of a positive pair is smaller.
Moreover, the empirical risk would converge to zero if the number of used classes
is further increased. Hence, another method to measure the quality of a pairwise
decision function is needed.

The basic idea of the presented measure (cf. [18]) is to look at the empirical risk
on the positive pairs and the empirical risk on the negative pairs separately. If the
0-1-loss is used, then the empirical risk on the positive pairs is called (empirical)
false non match rate (FNMR) while the empirical risk on the negative pairs is
called (empirical) false match rate (FMR).

Now, let a decision function g : X ×X → R be given and let gb : X ×X → R be
defined by

gb(u, v) := g(u, v) + b (3.5)

with b ∈ R. Any pair (u, v) ∈ X ×X is classified according to sgn(gb(u, v)).

Now, the FMR and the FNMR are regarded as functions depending on b. For
instance, in order to calculate FMR(b) one uses gb and calculates the corresponding
FMR. Note that the function FMR(·) and FNMR(·) are step functions and therefore
do not continuously depend on b. However, the FNMR decreases monotonously with
b and the FMR increases monotonously with b. If there is b̂ with FMR(b̂)=FNMR(b̂)
then this function value is called equal error rate (EER). Due to the discontinuity

46

3.4 A Heuristic Model Selection Technique

of FMR(·) and FNMR(·) this value does not necessarily need to exist. To get
a substitute for the EER one can linearly connect the discontinuities of the FMR
function and of the FNMR function, respectively. Then, one can use any intersection
point of the obtained curves as substitute.

The EER or its substitute seems to be a good indicator for the quality of a pairwise
decision function at a first glance. However, it might be insufficient within real
world applications. For example, in security applications one should use a very low
FMR and therefore has to accept a higher FNMR. Hence, the EER could lead to
wrong conclusions in this setting. For this reason it is proposed to use detection
error trade-off (DET) curves

{(FMR(b),FNMR(b)) | b ∈ R}

to determine the quality of a pairwise decision function (see Section 5.2 for exam-
ples). For a given pairwise test set a pairwise decision function gA is called (strictly)
better than a pairwise decision function gB if the DET curve of gA is (strictly) below
the DET of gB.

There are several other measures which can be used for determining the quality
of a pairwise classifier (see [18]). For example, one could use receiving operating
curves instead. Many of those measures are closely connected to the DET curve.
Furthermore, like the EER there are other measurements for the quality of a decision
function based on scalars like the F-score. However, all such measurements suffer
from the problem that there are specific applications where they would lead to wrong
conclusions.

3.4 A Heuristic Model Selection Technique

Most learning algorithms have a large number of parameters. For instance, in a SVM
one has to select the penalty parameter C or the used kernel. The selection of those
parameters is called model selection. A common way to select such parameters is
a grid search of the set of parameters. In a grid search many models must be
calculated which is often computationally very expensive.

For pairwise classification this problem becomes even worse. For instance, for pair-
wise SVMs (see Chapter 4) one has to select two different kernels instead of one
kernel. Additionally, it may be possible to select the EPCR or the number of classes

47

3 Pairwise Classification

in a pairwise training set. Therefore, a new heuristic model selection technique is
presented which is based on tasks of increasing levels of difficulty.

In this section let an ordinary training set of the form (3.1) with corresponding
pairwise training sets of the form (3.2) be given. Additionally, let an ordinary
test set with a corresponding pairwise test set be given. Now, three tasks which
can be used for model selection are introduced. Firstly, the interclass task is
introduced. In this task the intersection of the set of training classes and the set of
test classes (see beginning of Chapter 3) is empty. For instance, let face recognition
be considered in which the interclass task is to classify pairs of unknown images of
unknown persons. However, if the interclass task is used to measure the quality of
a pairwise decision function, one cannot determine whether a bad result is caused
by badly chosen parameters of the learning machine, or by a bad EPCR, or by an
undersized number of classes in the training set.

In addition to the interclass task it will turn out that the next two tasks can be
used for model selection, too. In the interexample task the intersection of the
set of training examples and the set of test examples is empty while the set of
training classes and the set of test classes are equal. Thus, in face recognition
the interexample task is to classify pairs of unknown images of known persons.
In the pair task, the set of training examples and the set of test examples are
equal while the intersection of the pairwise training set and the pairwise test set is
empty. Therefore, the pairwise training set is a real subset of all pairs of the training
examples for this task. Hence, in face recognition the pair task is to classify unknown
pairs of known images.

Assuming that a pairwise classification task is given. Then, the interclass task
seems harder than the interexample task which again seems harder than the pair
task. Thus, if a bad result on the pair task or interexample task is achieved, then
one cannot expect a good result on the interclass task. Therefore, it is suggested
to use the pair task to find sufficiently good parameters of the learning machine like
the used kernel of the used penalty parameters of a pairwise SVM, the interexample
task to find a sufficient EPCR in the training set, and the interclass task to find a
sufficiently large set of training classes. In other words, the model selection heuristic
is based on the assumption that a bad performance in the pair task leads to a bad
performance in the interexample task which again leads to a bad performance in the
interclass task. However, it is not based on the assumption that a good performance
on the pair task leads to a good performance in the interexample task which again
leads to a good performance in the interclass task. In general, the needed training
time is much shorter in the pair task and interexample task than in the class task

48

3.5 Pairwise Bayes’ Classifiers

as smaller training sets can be used. Empirical evidence for using the described
technique is given in Section 5.2. Moreover, it seems important to specify the used
task for any measurement of the quality of a pairwise classification task.

Above, it was proposed to use the interexample task to find a sufficient large EPCR.
Now, let a training set with an EPCR of e1 and a training set with an EPCR of e2

with e1 < e2 be given. Both training sets should be used in the interexample task.
Then, to minimize side effects, it is proposed that the set of classes is equal for both
training sets. Furthermore, the set of examples and the set of pairs corresponding
to the first training set should be a subset of the set of examples and the set of pairs
corresponding to the second training set, respectively. The same subset relations
should hold for two training sets in the interclass task, where the first training
set consists of fewer classes than the second training set. Additionally, the set of
training classes of the first training set should be a subset of the training classes of
the second training set in the interclass task.

There is a difference between the interclass task and the interexample task by means
of optimal classifiers. Later, in Section 3.5 pairwise Bayes’ Classifiers and Bayes’
DET curves are introduced. Additionally, Section 5.2 shows that the Bayes’ DET
curve of the interexample task and the Bayes’ DET curve of the interclass task may
be different.

3.5 Pairwise Bayes’ Classifiers

For non pairwise classification tasks Bayes’ Classifiers are reviewed in Section 2.4.
It is recalled that Bayes’ Classifiers are optimal, in other words for a given loss
function there does not exist a classifier with a smaller risk than the corresponding
Bayes’ Classifier.

In Section 2.4 it was assumed for non pairwise classification tasks that the data
generating distribution function FX,Y is known. Similarly, it is assumed in this
section that the pairwise data generating distribution function FX×X,Y is known
and that a corresponding density pX×X,Y exists. Then, one can follow the same
procedure as in Section 2.4 to obtain a pairwise Bayes’ Classifier. Now, let a pairwise
Bayes’ Classifier based on the 0-1-loss be given. Then, such a classifier leads to a
specific FMR and a specific FNMR. In Section 3.3 it was discussed that one should
use DET curves of classifiers to measure their quality. Therefore, Bayes’ DET curves
are introduced. A Bayes’ DET curve is a DET curve which is obtained by a set of
Bayes’ Classifiers.

49

3 Pairwise Classification

3.5.1 Bayes’ DET Curves

At first, a way to calculate the FMR and the FNMR for a given classifier is presented.
Let l be the 0-1-loss. Moreover, let f : X×X → Y be an arbitrary pairwise decision
function. Then, the risk of f is

R(f) =
∫
X×X×Y

l(y, f(u, v)) dFX×X,Y ((u, v), y)

=
∫
X×X×Y

l(y, f(u, v))pX×X,Y ((u, v), y) d((u, v), y).

Then, the law of total probability yields

R(f) =
∫

X×X×Y

l(y, f(u, v)) [pX×X(u, v|Y = 1)P (Y = 1)+

pX×X(u, v|Y = −1)P (Y = −1)] d((u, v), y)

=P (Y = 1)
∫
X×X

l(1, f(u, v))pX×X(u, v|Y = 1) d(u, v)

+ P (Y = −1)
∫
X×X

l(−1, f(u, v))pX×X(u, v|Y = −1) d(u, v).

Hence, the FNMR can be obtained by

FNMR(f) :=
∫
X×X

l(1, f(u, v))pX×X(u, v|Y = 1) d(u, v)

while the FMR can be obtained by

FMR(f) :=
∫
X×X

l(−1, f(u, v))pX×X(u, v|Y = −1) d(u, v).

This yields

R(f) = P (Y = 1)FMR(f) + P (Y = −1)FNMR(f). (3.6)

A pairwise Bayes’ Classifier based on the 0-1-loss function, would classify according
to the signum of

g0(u, v) := P (Y = 1|X ×X = (u, v))− P (Y = −1|X ×X = (u, v)) (3.7)

with g0 : X×X → R. Now, one could apply the technique described in Section 3.3
to (3.7) to obtain a Bayes’ DET curve. Similar to (3.5), this yields

gb(u, v) := g0(u, v) + b. (3.8)

50

3.5 Pairwise Bayes’ Classifiers

However, for b 6= 0 it is not obvious that there is a loss function such that sgn(gb) is
a corresponding Bayes’ Classifier. Therefore, another way to obtain a Bayes’ DET
curve is now presented. Later, in Lemma 3.4 it is shown that sgn(gb) is a Bayes’
Classifier for a specific weighted loss function for all b ∈ (0,∞).

Now, let d be an element of (0,∞) and let Bayesd : X × X → Y denote the
pairwise Bayes’ Classifier which uses the weighted loss function ld (2.26), that is
Bayesd classifies the pair (u, v) according to the signum of ĝd : X ×X → R with

ĝd(u, v) := d · P (Y = 1|X ×X = (u, v))− P (Y = −1|X ×X = (u, v)). (3.9)

Then, one can use the curve

D := {(FMR(Bayesd), (FNMR(Bayesd)) | d ∈ (0,∞)} ⊂ [0, 1]2 (3.10)

as Bayes’ DET curve.

Now, the case where d tends to zero is considered. Then,

gmin(u, v) := lim
d→0

sgn(ĝd(u, v)) =
{

1 if P (Y = −1|X ×X = (u, v)) = 0
−1 otherwise.

For d→∞ one obtains

gmax(u, v) = lim
d→∞

sgn(ĝd(u, v)) =
{
−1 if P (Y = 1|X ×X = (u, v)) = 0
1 otherwise.

(3.11)
Hence, in the first (second) case any point (u, v) is classified negative (positive)
unless the probability that (u, v) is negative (positive) is 0. Therefore, one gets
FMR(gmin) = 0 and FNMR(gmax) = 0. Note that for d1 < d2 it holds that
FMR(Bayesd1) ≤ FMR(Bayesd2) and FNMR(Bayesd1) ≥ FNMR(Bayesd2). Hence,
one obtains a maximal FNMR in the first case and a maximal FMR in the second
case. In other words, no Bayes’ Classifier Bayesd has a larger FNMR (FMR) than
the maximal FNMR (FMR).

Above, gb was defined in equation (3.8). In the following lemma it is shown that
sgn(gb) = sgn(ĝd) holds for selected parameters b and d. Here, ĝb is defined as in
(3.9). Moreover, it is shown that for every b there is d such that sgn(gb) = sgn(ĝd)
holds and vice versa.

51

3 Pairwise Classification

Lemma 3.4. Let gb be defined as in (3.8) and ĝd be defined as in (3.9). Then,

1− b = 2
d+ 1

implies
sgn(gb(u, v)) = sgn(ĝd(u, v)) for all u, v ∈ X.

Proof. Note that sgn(gb(u, v)) = 1 if and only if

P (Y = 1|X ×X = (u, v)) ≥ P (Y = −1|X ×X = (u, v))− b
⇔ P (Y = 1|X ×X = (u, v)) ≥ 1− P (Y = 1|X ×X = (u, v))− b

⇔ P (Y = 1|X ×X = (u, v)) ≥ 1− b
2 .

Similarly, sgn(ĝd(u, v)) = 1 if and only if

d · P (Y = 1|X ×X = (u, v)) ≥ P (Y = −1|X ×X = (u, v))
⇔ d · P (Y = 1|X ×X = (u, v)) ≥ 1− P (Y = 1|X ×X = (u, v))

⇔ P (Y = 1|X ×X = (u, v)) ≥ 1
d+ 1 .

Thus, 1− b = 2
d+1 implies sgn(gb(u, v)) = sgn(ĝd(u, v)) for all u, v ∈ X.

In general, the curve D is not connected. Here, a way to resolve any jump point
of D by means of a set of certain classifiers based on the same loss function is
presented. Note that it is is assumed that sgn(0) = 1 holds. Now, let d∗ be a jump
point of D, in other words for any ε > 0 there is some δ > 0 such that∥∥∥∥∥

(
FMR(Bayesd∗)− FMR(Bayesd∗+ε)

FNMR(Bayesd∗)− FNMR(Bayesd∗+ε)

)∥∥∥∥∥ ≥ δ.

Let the subset A of X ×X be defined as

A :=
{

(u, v) ∈ X ×X|gd∗(u, v) = 0
}
. (3.12)

Hence, A consists of all such pairs which are classified positive for d > d∗ and
negative for d < d∗. Now, the expected weighted loss ld (2.26) with d = d∗ for an
arbitrary (u, v) ∈ A is calculated. If (u, v) is classified positive, then

ld∗(−1, 1) · P (Y = −1|X ×X = (u, v)) = 1 · P (Y = −1|X ×X = (u, v)).

52

3.5 Pairwise Bayes’ Classifiers

If (u, v) is classified negative, then the expected loss is

ld∗(1,−1) · P (Y = 1|X ×X = (u, v)) = d∗ · P (Y = 1|X ×X = (u, v)).

By definition (3.12) it follows that

P (Y = −1|X ×X = (u, v)) = d∗ · P (Y = 1|X ×X = (u, v)).

Hence, the risk does not change regardless of the chosen classification rule on the
set A. Note that the corresponding FMR and the FNMR may depend on the chosen
classification rule. For each t ∈ [0, 1] let Bt denote a Bernoulli variable mapping
to {−1, 1} instead of {0, 1} with probability t of drawing 1. Then, one defines
Bayesd∗t : (X ×X)→ R by

Bayesd∗t (u, v) :=
{

Bayesd∗(u, v) if (u, v) /∈ A
Bt if (u, v) ∈ A

Now, one can define the curve

D̂ := D ∪
{

(FMR(Bayesd∗t),FNMR(Bayesd∗t)) | t ∈ (0, 1]
}
.

Note that for any t ∈ [0, 1] Bayesd∗t is an optimal classifier for the weighted loss
function ld∗ . Furthermore, the jump point d∗ of D is resolved in D̂.

In the following, it is shown that Bayes’ DET curves are strictly monotone. Let the
curve D be connected. Then, one defines C ⊂ [0, 1]2 by

C :=
{

(x, y) ∈ [0, 1]2|∃d ∈ (0,∞) : x = FMR(Bayesd), y < FMR(Bayesd)
}
.

The optimality of the Bayes’ Classifiers implies that for any classifier g(
FMR(g)
FNMR(g)

)
/∈ C

holds. In other words, there does not exist a pairwise classifier which has the same
FMR (FNMR) and a smaller FNMR (FMR) as a pairwise Bayes’ Classifier. In
particular, one obtains:

Corollary 3.5. Let d1, d2 ∈ (0,∞) with d1 < d2 be given. Then,(
FMR(Bayesd1) < FMR(Bayesd2)

)
⇔
(
FNMR(Bayesd1) > FNMR(Bayesd2)

)
.

53

3 Pairwise Classification

Proof. Above, it was discussed that

FMR(Bayesd1) ≤ FMR(Bayesd2) and FNMR(Bayesd1) ≥ FNMR(Bayesd2)

holds. Now, it is assumed that

FMR(Bayesd1) < FMR(Bayesd2) and FNMR(Bayesd1) = FNMR(Bayesd2).

holds. Now, the risk with weighted loss function ld2 of Bayesd1 is calculated. Equa-
tion (3.6) yields

R(Bayesd1) = P (Y = 1)FNMR(Bayesd1) + P (Y = −1)d2FMR(Bayesd1)
< P (Y = 1)FNMR(Bayesd2) + P (Y = −1)d2FMR(Bayesd2)
= R(Bayesd2)

Obviously, this inequality is a contradiction to the optimality of R(Bayesd2) with
respect to the loss function ld2 .

Vice versa one assumes that

FMR(Bayesd1) = FMR(Bayesd2) and FNMR(Bayesd1) > FNMR(Bayesd2)

holds. Then, one shows that this is a contradiction by calculating the risk with
weighted loss function ld1 of Bayesd2 .

The following lemma shows that a Bayes’ DET curve is convex in some sense.

Lemma 3.6. Let the curve D be defined as in (3.10) and let it be connected.
Moreover, using (3.11) FMRmax is defined by FMRmax := FMR(gmax) . Additionally,
let FMR1,FMR2 ∈ (0,FMRmax) with FMR1 < FMR2 be selected. Now, for an
arbitrary but fixed λ ∈ (0, 1) one defines FMR3 := λFMR1 + (1− λ)FMR2.

Then, there are d1, d2, d3 ∈ (0,∞) such that

FMR(Bayesd1) = FMR1,FMR(Bayesd2) = FMR2, and FMR(Bayesd3) = FMR3.

Additionally, it holds that

FNMR(Bayesd3) ≤ λFNMR(Bayesd1) + (1− λ)FNMR(Bayesd2).

54

3.5 Pairwise Bayes’ Classifiers

Proof. As D is connected d1, d2, d3 exist. Now, for i = 1, 2, 3 one sets

FNMRi := FNMR(Bayesdi).

Then, Corollary 3.5 yields FNMR1 > FNMR3 > FNMR2. Let the contrary of the
hypothesis be assumed, in other words, it should hold that

FNMR3 > λFNMR1 + (1− λ)FNMR2.

Now, one defines

Ã :=
{

(u, v) ∈ X ×X|Bayesd1(u, v) 6= Bayesd2(u, v)
}
.

Additionally, one defines the classifier f : X ×X → Y by

f(u, v) :=
{

Bayesd1(u, v) if (u, v) /∈ Ã
B1−λ if (u, v) ∈ Ã .

Again, B1−λ denotes a Bernoulli variable which maps to {−1, 1} instead of {0, 1}
with probability (1 − λ) of success. Then, (1 − λ) of the negative pairs of Ã are
classified wrong by f , while λ of the positive pairs of Ã are classified wrong by f .
Therefore,

FMR(f) =FMR1 + (1− λ)(FMR2 − FMR1)
=λFMR1 + (1− λ)FMR2

= FMR3

FNMR(f) =FNMR2 + λ(FNMR1 − FNMR2)
=λFNMR1 + (1− λ)FNMR2

< FNMR3.

Now, the risk (3.6) of f with weighted loss function (2.26) ld3 is calculated.

R(f) = P (Y = 1)FNMR(f) + P (Y = −1)d3FMR(f)
< P (Y = 1)FNMR(Bayesd3) + P (Y = −1)d3FMR(Bayesd3)
= R(Bayesd3).

Hence, f would lead to a smaller risk than the corresponding Bayes’ Classifier
Bayesd3 . This is a contradiction.

55

3 Pairwise Classification

3.5.2 Properties of Pairwise Bayes’ Classifiers

Now, let an non pairwise classification task with Yc = {1, . . . , c} be given. Addi-
tionally, let the non pairwise distribution function FX,Yc be known. Then, for any
(x, y) ∈ X × Yc one can calculate the class probability

P (Yc = y|X = x).

If all classes have the same cost of misclassification, then the Bayes’ Classifier is

g(x) := argmax
y∈Yc

P (Yc = y|X = x).

Now, a way to obtain a pairwise Bayes’ Classifier by the class probabilities is pre-
sented. Obviously, under the i.i.d. assumption of the examples, one can calculate
the probability P (Y = 1|X ×X = (u, v)) that the two examples of the pair (u, v)
belong to the same class by

ḡ(u, v) := P (Y = 1|X ×X = (u, v))

=
c∑
i=1

P (Yc = i|X = u)P (Yc = i|X = v).
(3.13)

Hence, if for each example all class probabilities are known, then one can obtain a
pairwise Bayes’ Classifier based on the 0-1-loss easily by

sgn(ḡ(u, v)− 0.5).

Now, let Yc be equal to {1, 2, 3}. Moreover, let Pi : X → [0, 1] be defined by

Pi(u) := P (Yc = i|X = u).

In other words, Pi(u) denotes the probability that u ∈ X belongs to class i. Now,
let

P1(u) = P2(u) = P3(u) = 1
3

hold. Then,
ḡ(u, u) = 3 1

32 = 1
3 < 0.5

holds. Hence, one should not require the reflexivity of a pairwise decision function
(see Section 3.1).

56

3.5 Pairwise Bayes’ Classifiers

Now, for u, v ∈ X it is assumed that

P1(u) = 0.6, P2(u) = P3(u) = 0.2
and P1(v) = 1, P2(v) = P3(v) = 0.

holds. This implies

ḡ(u, u) = 0.44, ḡ(u, v) = 0.6, ḡ(v, v) = 1.

Note that u is non reflexive. At the same time the pair (u, v) would be classified
positive by sgn(ḡ(·, ·)− 0.5). Moreover, ḡ is symmetric and

ḡ(u, u) < 0.5, while ḡ(u, v) = ḡ(v, u) > 0.5

holds. Therefore, the pairwise transitivity of a decision function is not desirable in
general.

3.5.3 Examples of Pairwise Bayes’ Classifiers for Interclass
Tasks and Interexample Tasks

Now, let the examples a, b, c, and d be given and let Yc be defined by Yc := {1, 2, 3}.
Furthermore, let the probabilities Pi that an example belongs to class i ∈ Yc be

Pi(a) Pi(b) Pi(c) Pi(d)
i = 1 0.8 0.2 0.7 0.7
i = 2 0.15 0.6 0.1 0.3
i = 3 0.05 0.2 0.2 0.0.

Now, it holds that

ḡ(a, b) = 0.26 < 0.5 ḡ(c, d) = 0.52 > 0.5.

Hence, (a, b) would be classified negative by the Bayes’ Classifier based on the
0-1-loss and (c, d) would be classified positive.

Above, the interclass task was considered. In the following, the interexample task
is considered. In the latter task the set of training classes and the set of test
classes are equal. Therefore, a Bayes’ Classifier has information about the existing
classes. Now, it is assumed that class 1 does not belong to the test set. Hence,

57

3 Pairwise Classification

the probabilities Pi can be recalculated by setting the probability of class 1 to zero
and normalizing the other probabilities. One obtains

Pi(a) Pi(b) Pi(c) Pi(d)
i = 1 0.0 0.0 0.0 0.0
i = 2 0.75 0.75 0.33 1.0
i = 3 0.25 0.25 0.67 0.0.

Now, it holds that

ḡ(a, b) = 0.625 > 0.5 ḡ(c, d) = 0.33 < 0.5.

Hence, the classification rule for both pairs is different in the interclass task and
interexample task. Later, Section 5.2 presents pairwise classification task which
lead to different Bayes’ DET curves in the interclass and interexample task.

Remark 3.7. Let two examples u, v ∈ X be given. Then, one could use a non
pairwise deterministic classifier to obtain a pairwise classification rule. Firstly, one
predicts the classes ku, kv of the examples u and v. Secondly, the pair (u, v) is clas-
sified positive if and only if ku = kv. Therefore, such a classifier is always reflexive.
Hence, the approach of using two input examples in pairwise classification has a
significant difference to the naive approach of combining non pairwise classifiers.
This does even hold in the interexample setting.

58

4 Pairwise Support Vector
Machines

Section 2.3 introduced ordinary SVMs. From now on non pairwise SVMs are referred
as ordinary SVMs. A SVM is a binary classifier which implements the Structural
Risk Minimization principle (see Subsection 2.2.3). Chapter 3 dealt with pairwise
classification tasks. In this chapter pairwise SVMs are introduced. A pairwise
SVM is a SVM which can handle pairwise classification tasks.

This chapter is structured as follows. Section 4.1 deals with the extension of ordinary
SVMs to pairwise SVMs by means of certain decompositions of the pairwise decision
function. Note that there are several other papers dealing with this setting, for
instance [1, 2, 3, 5, 7, 19, 32, 43]. However, independently of the other authors
I developed a new approach in [11] by decomposing the decision function into
several distinct functions. This approach offers some new insight from a theoretical
perspective. It is shown that the symmetry of a pairwise decision function can be
enforced by means of certain projections and that the kernel trick can be applied
in two different ways. Note that I introduced another way to derive pairwise SVMs
in [12, Section 2]. This approach may be easier to understand than the approach
presented in Section 4.1. However, the latter approach gives more insight into
pairwise SVMs. Section 4.2 deals with the evaluation of pairwise kernel function
values. Afterwards, in Section 4.3 a discussion about the drawbacks of enforcing
the pairwise symmetry by means of projections is presented. Then, another way
of enforcing the symmetry by means of training sets with a special structure is
introduced in Section 4.4. This result was already claimed in [2, 45]. Here, this
result is proven in a more general context. Additionally, it is shown in Section 4.5
that the new approach yields to the same decision function as the approach by
means of projections for selected parameters. It is shown that for each parameter
set of the approach using selected kernels there exists another parameter set of the
approach using training sets with special structure so that both approaches lead to
the same decision function and the other way around. The results of Sections 4.2

59

4 Pairwise Support Vector Machines

to 4.5 were already stated in my submitted paper [12]. Finally, Section 4.6 concludes
this chapter with some remarks.

Throughout this chapter scalar products on the direct sum of two vector spaces
or the tensor product of two vector spaces are needed. To this end, the following
remark is given.

Remark 4.1. Let W denote an arbitrary real Hilbert space and let a, b, c, d be
elements of W . Then,

〈(a, b), (c, d)〉 := 〈a, c〉+ 〈b, d〉

defines a scalar product on the direct sum W ⊕W . Moreover, the bilinear contin-
uation of

〈a⊗ b, c⊗ d〉 := 〈a, c〉 · 〈b, d〉

defines a scalar product on the tensor product W ⊗W . These scalar products are
called canonical scalar product on W ⊕W or on W ⊗W , respectively.

4.1 Decomposing Decision Functions

Let u, v ∈ X denote two examples. Similar to Chapter 3, one is interested in
a pairwise decision function g : X × X → R with g(u, v) > 0 if and only if
u and v belong to the same class. In this section it is shown how a pairwise
decision function can be obtained by means of the SVM framework. Section 3.1
discussed that any pairwise decision function should be symmetric with respect to
the order of the input examples. Subsection 4.1.1 proposes to decompose g into
several functions. Then, the pairwise symmetry can be enforced by using certain
projections. Subsection 4.1.2 shows two ways of applying the kernel trick. By using
the decomposition of the pairwise decision function presented Subsection 4.1.2, it
is shown that those two ways differ from each other.

4.1.1 Linear Pairwise SVMs

In order to construct a symmetric pairwise decision function one could decompose
the decision function g : X ×X → R into

g = h ◦Q,

60

4.1 Decomposing Decision Functions

where Q : X ×X → D, h : D → R, and ◦ denotes the composition of two func-
tions. In this subsection two possibilities of the mapping Q are analyzed, namely:

• the direct sum mapping Q := QD with QD(a, b) := (a, b) for all a, b ∈ X

and D := X ⊕X,

• and the tensor product mapping Q := QT with QT (a, b) := a ⊗ b for all
a, b ∈ X and D := X ⊗X.

Note that if the operands of ⊗ are vector spaces, then ⊗ denotes the tensor product
space of these operands. Otherwise, if the operands of⊗ are vectors, then⊗ denotes
their tensor product.

Using this decomposition g can be written as g = hD ◦QD with hD : X⊕X → R,
or as g = hT ◦ QT with hT : X ⊗X → R. In Subsection 4.1.2 extensions of this
approach are discussed.

As stated above one wants to construct a symmetric pairwise decision function by
means of certain projections. If QD is used, then it is proposed to use projections
which map any element of X⊕X onto one of two subspaces, namely the symmetric
direct sum space X⊕SX and the asymmetric direct sum space X⊕AX. Similarly,
if QT is used then one should use a projection which maps any element of X ⊗X
onto the symmetric tensor space X ⊗S X, or one should use a projection which
maps onto the asymmetric tensor space X ⊗A X. Now, one defines

X ⊕S X := {(a, a) | a ∈ X} ,
X ⊕A X := {(a,−a) | a ∈ X} ,
X ⊗S X := span {a⊗ b+ b⊗ a | a, b ∈ X} ,
X ⊗A X := span {a⊗ b− b⊗ a | a, b ∈ X} .

Then, X ⊕SX ⊥ X ⊕AX with respect to the canonical scalar product on X ⊕X,
and X ⊗S X ⊥ X ⊗A X with respect to the canonical scalar product on X ⊗X.
Moreover, it holds that

X ⊕X = (X ⊕S X) ⊕̂ (X ⊕A X)
X ⊗X = (X ⊗S X) ⊕̂ (X ⊗A X) .

Note that ⊕ denotes the outer direct sum of two vector spaces, while ⊕̂ denotes
the internal direct sum of two subspaces.

61

4 Pairwise Support Vector Machines

Now, the following projections are defined.

PDS : X ⊕X → X ⊕S X, PDS(a, b) := 1
2(a+ b, b+ a)

PDA : X ⊕X → X ⊕A X, PDA(a, b) := 1
2(a− b, b− a)

PTS : X ⊗X → X ⊗S X, PTS(z) := 1
2(z + z̄)

PTA : X ⊗X → X ⊗A X, PTS(z) := 1
2(z − z̄)

(4.1)

Where z̄ denotes the adjoint of z. For instance, if a, b are elements of X ⊆ Rn,
then ab> is element of X ⊗X ⊆ Rn×n with corresponding adjoint ba>.

Lemma 4.2. For the projections defined in (4.1) it holds that

PDS(a, b) = PDS(b, a),
PDA(a, b) = −PDA(b, a),
PTS(z) = PTS(z̄),
PTA(z) = −PTA(z̄)

for all a, b ∈ X, z ∈ X ⊗X.

Using those projections, one can decompose hD by

hD = eD ◦ PDS or by hD = eD ◦ PDA

with eD : X ⊕X → R. Analogously, one can decompose hT by

hT = eT ◦ PTS or by hT = eT ◦ PTA

with eT : X ⊗X → R. For the sake of readability the indices belonging to e, P,Q
are skipped from now on, unless a particular decomposition should be specified.

All the presented decompositions lead to

g = e ◦ P ◦Q. (4.2)

As stated above one wants to use the SVM framework to obtain a classifier. To
this end, let a pairwise training set (3.2)

{((xi, xj), yij)}(i,j)∈I

62

4.1 Decomposing Decision Functions

with I ⊆M ×M be given.

In the following, this pairwise training set is used for learning. However, instead of
learning g directly it is proposed to select appropriate P and Q and to decompose g
by (4.2). Then, the SVM framework can be used to learn e. Now, let e be defined
by

e(z) := 〈w∗, z〉+ b∗.

Then, the parameters w∗ and b∗ can be obtained from a solution (w∗, b∗, ξ∗) of the
pairwise linear primal SVM (see (2.16))

min
w,b,ξ

1
2 〈w,w〉+ C

∑
(i,j)∈I

ξij

s.t. yij (〈w,P (Q(xi, xj))〉+ b) ≥ 1− ξij for all (i, j) ∈ I
ξij ≥ 0 for all (i, j) ∈ I

(4.3)

with I ⊆ M ×M . Hence, for the pairwise decision function g given by (4.2) one
obtains

g(u, v) = 〈w∗, P (Q(u, v))〉+ b∗. (4.4)

Similar as in Subsection 2.3.1 one can determine a solution of (4.3) by solving the
following pairwise linear dual SVM and by using the KKT Conditions.

min
α

1
2

∑
(i,j),(k,l)∈I

αijαklyijykl 〈P (Q(xi, xj)) , P (Q(xk, xl))〉 −
∑

(i,j)∈I
αij

s.t.
∑

(i,j)∈I
αijyij = 0

0 ≤ αij ≤ C for all (i, j) ∈ I

(4.5)

A straightforward modification of Lemma 2.21 shows that there is always a solution
(w∗, b∗, ξ∗) of (4.3). Moreover, an extension of Theorem 2.25 yields that each
solution leads to the same w∗. Using the KKT Conditions one obtains that

w∗ =
∑

(i,j)∈I
α∗ijyijP (Q(xi, xj)) (4.6)

for every solution α∗ of (4.5). Equation (4.6) provides the following interesting
observation which is connected to the Semiparametric Representer Theorem 2.26.

Lemma 4.3. Assume that (w∗, b∗, ξ∗) is a solution of (4.3). Then, w∗ is an
element of the subspace corresponding to the chosen mapping Q and P . For

63

4 Pairwise Support Vector Machines

instance, w∗ ∈ X ⊗S X if Q = QT and P = PTS.

Due to (4.4) and (4.6) any solution α∗ of (4.5) can be used and one obtains

g(u, v) =
∑

(i,j)∈I
α∗ijyij 〈P (Q(xi, xj)) , P (Q(u, v))〉+ b∗. (4.7)

Again, b∗ can be calculated as in ordinary SVMs (see Remark 2.24).

Lemma 4.4. Assuming that a projection onto a symmetric subspace is used, that
is to say P = PDS or P = PTS. Moreover, let the decision function g be given by
(4.7). Then, g is symmetric with respect to the order of the input examples.

Proof. For any u, v ∈ X Lemma 4.2 gives

PDS(QD(u, v)) = PDS(QD(v, u)).

Hence,

g(u, v) =
∑

(i,j)∈I
α∗ijyij 〈PDS (QD(xi, xj)) , PDS (QD(u, v))〉+ b∗

=
∑

(i,j)∈I
α∗ijyij 〈PDS (QD(xi, xj)) , PDS (QD(v, u))〉+ b∗ = g(v, u)

follows. The same arguments hold for PTS and QT .

Remark 4.5. Since Lemma 4.2 implies

PDA(QD(u, v)) = −PDA(QD(v, u)) and PTA(QT (u, v)) = −PTA(QT (v, v))

Lemma 4.4 does not hold if an asymmetric subspace is used. Therefore, the pro-
posed approach does not lead to a symmetric decision function in those cases.
However, if the approach is modified in such a way that e is replaced by an even
function, in other words e(z) = e(−z) for all z ∈ X ⊕X or z ∈ X ⊗X, then one
gets a symmetric decision function when any of the projections defined in (4.1) is
used. One possible way to construct such an even function e is presented within
the following subsection.

4.1.2 Nonlinear Pairwise SVMs

This subsection extends the approach of Subsection 4.1.1 to the use of kernels (see
Section 2.3).

64

4.1 Decomposing Decision Functions

Above, the decision function g was decomposed by g = e ◦P ◦Q (4.2). A first way
to apply the kernel trick is to modify the functions Q and P . Hence, one would
decompose g into

g = ẽ ◦ P̂ ◦ Q̂

with two possibilities of the mapping Q̂ : X ×X → D, namely:

• Q̂ := Q̂D with Q̂D(a, b) := (ψ(a), ψ(b)) for all a, b ∈ X and D := H⊕H,

• Q̂ := Q̂T with Q̂T (a, b) := ψ(a)⊗ ψ(b) for all a, b ∈ X and D := H⊗H.

Here, ψ : X → H denotes some (ordinary) Hilbert space mapping.

Remark 4.6. If H is a Hilbert space, then H⊕H is a Hilbert space, too. However,
H⊗H is not a Hilbert space in general, but it is a pre-Hilbert space, in other words
the canonical scalar product exists but the space is incomplete. For the kernel trick
it does not matter that H ⊗ H is incomplete. It only matters that there is some
scalar product. Therefore, this dissertation does not distinct between pre-Hilbert
spaces and Hilbert spaces.

Similar to (4.1) one defines

P̂DS : H⊕H → H⊕S H, P̂DS(â, b̂) := 1
2(â+ b̂, b̂+ â)

P̂DA : H⊕H → H⊕A H, P̂DA(â, b̂) := 1
2(â− b̂, b̂− â)

P̂TS : H⊗H → H⊗S H, P̂TS(ẑ) := 1
2(ẑ + ¯̂z)

P̂TA : H⊗H → H⊗A H, P̂TA(ẑ) := 1
2(ẑ − ¯̂z)

(4.8)

with â, b̂ ∈ H and ẑ, ¯̂z ∈ H ⊗H where ¯̂z is the adjoint of ẑ.

Finally, the function ẽD maps H⊕H → R and ẽT maps H⊗H → R. Additionally,
Lemmas 4.2 and 4.4 can be easily extended to the projections presented above.
However, Remark 4.5 would still hold in this case independently of the chosen
mapping ψ. In other words, using a asymmetric subspace would still not lead to
a symmetric pairwise decision function. In order to overcome this issue, one can
decompose the function g another time by

g = ê ◦Ψ ◦ P̂ ◦ Q̂. (4.9)

Here, ΨD : H⊕H → ZD for some Hilbert space ZD and ΨT : H⊗H → ZT for
some Hilbert space ZT . Finally, êD : ZD → R and êT : ZT → R are defined.

65

4 Pairwise Support Vector Machines

Note that the Hilbert space mapping ψ introduced by Q̂ is applied before using some
projection. Moreover, Q̂ maps to the direct sum or tensor product of two Hilbert
spaces. In contrast to this, the Hilbert space mapping Ψ is applied after using some
projection P̂ . Furthermore, Ψ maps to an arbitrary Hilbert space. Hence, there is
a difference between both presented ways of applying the kernel trick.

Similar as in Subsection 4.1.1 let ê be defined by

ê(ẑ) := 〈w∗, ẑ〉+ b∗

where the parameters w∗ ∈ Z and b∗ ∈ R are obtained by a solution (w∗, b∗, ξ∗) of
the following quadratic program

min
w,b,ξ

1
2 〈w,w〉+ C

∑
(i,j)∈I

ξij

s.t. yij
(〈
w,Ψ

(
P̂
(
Q̂(xi, xj)

))〉
+ b

)
≥ 1− ξij for all (i, j) ∈ I

ξij ≥ 0 for all (i, j) ∈ I

(4.10)

with I ⊆ M ×M . Hence, for the pairwise decision function given by (4.9) one
obtains

g(u, v) =
〈
w∗,Ψ

(
P̂ (Q̂(u, v))

)〉
+ b∗. (4.11)

Again, by using the Semiparametric Representer Theorem 2.26 and the KKT theory
one can determine a solution of (4.10) by solving the following pairwise SVM.

min
α

1
2

∑
(i,j),(k,l)∈I

αijαklyijykl
〈
Ψ
(
P̂
(
Q̂(xi, xj)

))
,Ψ

(
P̂
(
Q̂(xk, xl)

))〉
−

∑
(i,j)∈I

αij

s.t.
∑

(i,j)∈I
αijyij = 0

0 ≤ αij ≤ C for all (i, j) ∈ I.
(4.12)

The scalar products in Equations (4.11) and (4.12) motivate to introduce outer
kernels so that the kernel trick can be applied. To this end, it is assumed that
a1, b1 ∈ H ⊕H and a2, b2 ∈ H ⊗H. This yields,

κD : (H⊕H)× (H⊕H) with κD(a1, b1) := 〈ΨD(a1),ΨD(b1)〉 ,
κT : (H⊗H)× (H⊗H) with κT (a2, b2) := 〈ΨT (a2),ΨT (b2)〉 .

By using an outer kernel κ and following similar steps as in Subsection 4.1.1 one

66

4.1 Decomposing Decision Functions

can write g as

g(u, v) :=
∑

(i,j)∈I
α∗ijyijκ

(
P̂
(
Q̂(xi, xj)

)
, P̂

(
Q̂(u, v)

))
+ b∗. (4.13)

Lemma 4.4 can be easily extended to the use of outer kernels. Additionally, similar
as stated in Remark 4.5 a pairwise decision function of the form (4.13) will be not
symmetric in general if P̂DA or P̂TA are used. However, for special choices of the
outer kernel κ one obtains:

Lemma 4.7. Let the outer kernel κ have the property

κ(a, b) = κ(a,−b) (4.14)

for all a, b ∈ H ⊕H (if κ = κD) or for all a, b ∈ H ⊗H (if κ = κT). Then, any
function g defined by (4.13) is symmetric.

Proof. If κ = κD and P = PDS, or if κ = κT and P = PTS the result follows by
a small modification of Lemma 4.4. Now, let κ = κD and P = PDA be chosen.
Then, one obtains

g(u, v) =
∑

(i,j)∈I
α∗ijyijκD

(
P̂DA

(
Q̂D(xi, xj)

)
, P̂DA

(
Q̂D(u, v)

))
+ b∗

=
∑

(i,j)∈I
α∗ijyijκD

(
P̂DA

(
Q̂D(xi, xj)

)
,−P̂DA (ψ(v), ψ(u))

)
+ b∗

and by (4.14) one further obtains

=
∑

(i,j)∈I
α∗ijyijκD

(
P̂DA

(
Q̂D(xi, xj)

)
, P̂DA

(
Q̂D(v, u)

))
+ b∗

= g(v, u).

The case κ = κT and P = PTA follows the same pattern.

Note that condition (4.14) does not hold for an outer linear kernel or for an outer
RBF kernel but it does hold for any outer homogeneous polynomial kernel of even
degree.

67

4 Pairwise Support Vector Machines

4.2 Evaluating Pairwise Kernel Function Values

Throughout this section kernel functions of the form

k : X ×X → R, k(a, b) := 〈ψ(a), ψ(b)〉

for a, b ∈ X are needed. In pairwise classification k is called standard kernel.

In Subsection 4.1.2 several Hilbert space mappings and outer kernels are introduced.
The question arises how an outer kernel function can be evaluated. Here, pairwise
kernel functions K : (X ×X)× (X ×X)→ R are defined and the evaluation of
several pairwise kernel functions which can be obtained by selecting an outer kernel,
a standard kernel and an appropriate projection (see Subsection 4.1.2) is discussed.
In other words, K can be written as

K((a, b), (c, d)) := κ
(
P̂
(
Q̂(a, b)

)
, P̂

(
Q̂(c, d)

))
.

Now, the calculation of pairwise kernels K for three different outer kernels namely,
a linear outer kernel, a polynomial outer kernel, and a RBF outer kernel is discussed.
Let a, b, c, d be elements ofX. This dicussion starts with a linear kernel κ, especially
with κ = κD and P̂ = P̂DS. Then,

K((a, b), (c, d))
=κD

(
P̂DS

(
Q̂D(a, b)

)
, P̂DS

(
Q̂D(c, d)

))
=
〈
Ψ
(
P̂DS

(
Q̂D(a, b)

))
,Ψ

(
P̂DS

(
Q̂D(c, d)

))〉
=
〈
P̂DS (ψ(a), ψ(b)) , P̂DS (ψ(c), ψ(d))

〉
=1

4 〈(ψ(a) + ψ(b), ψ(a) + ψ(b)) , (ψ(c) + ψ(d), ψ(c) + ψ(d))〉

=1
4 〈ψ(a) + ψ(b), ψ(c) + ψ(d)〉+ 1

4 〈ψ(a) + ψ(b), ψ(c) + ψ(d)〉

=1
2 (〈ψ(a), ψ(c)〉+ 〈ψ(b), ψ(d)〉+ 〈ψ(a), ψ(d)〉+ 〈ψ(b), ψ(c)〉)

=1
2 (k(a, c) + k(b, d) + k(a, d) + k(b, c)) .

For example, for a homogeneous polynomial standard kernel of degree p one would
get

K ((a, b), (c, d)) = 1
2 (〈a, c〉p + 〈b, d〉p + 〈a, d〉p + 〈b, c〉p) .

68

4.2 Evaluating Pairwise Kernel Function Values

For a linear outer kernel κT and P̂ = P̂TS one obtains

K((a, b), (c, d))
=κT

(
P̂TS

(
Q̂T (a, b)

)
, P̂TS

(
Q̂T (c, d)

))
=
〈
Ψ
(
P̂TS

(
Q̂T (a, b)

))
,Ψ

(
P̂TS

(
Q̂T (c, d)

))〉
=
〈
P̂TS (ψ(a)⊗ ψ(b)) , P̂TS (ψ(c)⊗ ψ(d))

〉
=1

4 〈(ψ(a)⊗ ψ(b) + ψ(b)⊗ ψ(a)) , (ψ(c)⊗ ψ(d) + ψ(d)⊗ ψ(c))〉

=1
4 (〈ψ(a)⊗ ψ(b), ψ(c)⊗ ψ(d)〉+ 〈ψ(a)⊗ ψ(b), ψ(d)⊗ ψ(c)〉

+ 〈ψ(b)⊗ ψ(a), ψ(c)⊗ ψ(d)〉+ 〈ψ(b)⊗ ψ(a), ψ(d)⊗ ψ(c)〉)

=1
2 (k(a, c)k(b, d) + k(a, d)k(b, c)) .

As P̂DA and P̂TA do not lead to a symmetric decision function for a linear outer
kernel (see Lemma 4.7), these cases are not discussed.

Now, a homogeneous polynomial outer kernel κ of degree s is selected. Here, only
κ = κT and P̂ = P̂TA are discussed. All other possible choices of κ and P̂ follow
the same pattern.

K((a, b), (c, d))
=κT

(
P̂TA

(
Q̂T (a, b)

)
, P̂TA

(
Q̂T (c, d)

))
=
〈
Ψ
(
P̂TA

(
Q̂T (a, b)

))
,Ψ

(
P̂TA

(
Q̂T (c, d)

))〉
=
〈
Ψ
(
P̂TA (ψ(a)⊗ ψ(b))

)
,Ψ

(
P̂TA (ψ(c)⊗ ψ(d))

)〉
=
〈

Ψ
(1

2 (ψ(a)⊗ ψ(b)− ψ(b)⊗ ψ(a))
)
,Ψ

(1
2 (ψ(c)⊗ ψ(d)− ψ(d)⊗ ψ(c))

)〉
= 1

4s 〈(ψ(a)⊗ ψ(b)− ψ(b)⊗ ψ(a)) , (ψ(c)⊗ ψ(d)− ψ(d)⊗ ψ(c))〉s

= 1
2s (k(a, c)k(b, d)− k(a, d)k(b, c))s .

Note that this choice of κ ensures a symmetric decision function if s is even (see
Lemma 4.7).

Finally, an RBF outer kernel is selected and κ = κT , P̂ = P̂TS is discussed. Again,
all other possible choices of κ and P̂ would follow similar patterns. However,
for P̂ = P̂DA or P̂ = P̂TA one would not obtain a symmetric pairwise decision
function.

69

4 Pairwise Support Vector Machines

K((a, b), (c, d))
=κTS

(
P̂TS

(
Q̂T (a, b)

)
, P̂TS

(
Q̂T (c, d)

))
=
〈
Ψ
(
P̂TS

(
Q̂T (a, b)

))
,Ψ

(
P̂TS

(
Q̂T (c, d)

))〉
=
〈
Ψ
(
P̂TS (ψ(a)⊗ ψ(b))

)
,Ψ

(
P̂TS (ψ(c)⊗ ψ(d))

)〉
=
〈

Ψ
(1

2 (ψ(a)⊗ ψ(b) + ψ(b)⊗ ψ(a))
)
,Ψ

(1
2 (ψ(c)⊗ ψ(d) + ψ(d)⊗ ψ(c))

)〉
= exp

(
−σ2

4 ‖ψ(a)⊗ ψ(b) + ψ(b)⊗ ψ(a)− ψ(c)⊗ ψ(d)− ψ(d)⊗ ψ(c)‖2
)

= exp
(
−σ2

2
(
k(a, a)k(b, b) + k(c, c)k(d, d) + k(a, b)2 + k(c, d)2

− 2k(a, c)k(b, d)− 2k(a, d)k(b, c)
))

Note that all the presented calculations of this section are independent of the chosen
standard kernel.

Now, several pairwise kernels which are used throughout the dissertation are defined.

KPD((a, b), (c, d)) := (k(a, c) + k(b, d) + r)p (4.15a)
KPT ((a, b), (c, d)) := (k(a, c) · k(b, d) + r)p (4.15b)

KDS((a, b), (c, d)) := 1
2 (k(a, c) + k(a, d) + k(b, c) + k(b, d)) (4.15c)

KDA((a, b), (c, d)) := 1
4 (k(a, c)− k(a, d)− k(b, c) + k(b, d))2 (4.15d)

KTS((a, b), (c, d)) := 1
2 (k(a, c)k(b, d) + k(a, d)k(b, c)) (4.15e)

KTA((a, b), (c, d)) := 1
4 (k(a, c)k(b, d)− k(a, d)k(b, c))2 (4.15f)

KD((a, b, (c, d)) := KDS((a, b), (c, d)) +KDA((a, b), (c, d)) (4.15g)
KTD((a, b, (c, d)) := KTS((a, b), (c, d)) +KDA((a, b), (c, d)). (4.15h)

In [43] KDA is called metric learning pairwise kernel due to its close connection
to the Euclidean metric, whileKTS is called tensor learning pairwise kernel. This
dissertation calls KDS symmetric direct sum pairwise kernel and the pairwise
kernel KTA asymmetric tensor pairwise kernel. Moreover, this dissertation
calls KD direct sum pairwise kernel and KTD tensor direct asymmetric sum

70

4.3 Pairwise Symmetry, Projections, and Information Loss

pairwise kernel. Finally, this dissertation calls KPD pairwise polynomial direct
sum kernel and KPT pairwise polynomial tensor kernel. Note that KPD and
KPT are neither based on projections nor are they symmetric pairwise kernels.
A pairwise kernel K : (X×X)× (X×X)→ R is called symmetric pairwise kernel
if

K((a, b), (c, d)) = K((a, b), (d, c)) (4.16)

holds for all a, b, c, d ∈ X. Obviously, the addition and multiplication of two pairwise
symmetric kernels lead to a pairwise symmetric kernel (see Proposition 2.27).

In Equations (4.1) and (4.8) several projections are defined. Those projections are
closely connected to the presented pairwise kernels. Obviously, if a linear outer
kernel is used, then KDS is obtained by using P̂DS, while KTS is obtained by using
P̂TS. Similarly, if a homogeneous polynomial of degree 2 is used as outer kernel,
then KDA is obtained by using P̂DA, while KTA is obtained by using P̂TA.

Note that all pairwise kernels are defined for an arbitrary standard kernel. In the
following, K lin

DS denotes the kernel KDS with a linear standard kernel and Kpoly
DS

denotes the kernel KDS with a homogenous polynomial of degree 2 as standard
kernel. Additionally, the kernelsK lin

PD, K
lin
PT , K

lin
DA, K

lin
TS, K

lin
TA, K

lin
D , K lin

TD are defined
analogously to K lin

DS while the kernels Kpoly
PD , K

poly
PT , K

poly
DA , K

poly
TS , K

poly
TA , K

poly
D , Kpoly

TD

are defined analogously to Kpoly
DS .

4.3 Pairwise Symmetry, Projections, and
Information Loss

Section 4.1 showed how the pairwise symmetry of a decision function can be ob-
tained by means of certain projections. It is well known that a projection is not
invertible in general. For instance, let PDS(a, b) be presented instead of (a, b) with
a, b ∈ X ⊆ Rn. Then, it is impossible to obtain the Euclidean distance between a
and b by PDS(a, b) as

PDS(a+ t, b− t) = PDS(a, b) (4.17)

holds for all t ∈ X. Hence, there may be some information loss if any of the
projections presented in (4.1) or (4.8) are used. This section determines which kind
of information is lost. Additionally, it is discussed that this information loss may be
a drawback.

71

4 Pairwise Support Vector Machines

Remark 4.8. This section discusses the information loss of several projections and
it is claimed that this information loss may be a drawback, which leads to inferior
results. However, there is another point of view on this topic. The projections
incorporate invariances into the used learning machine. For instance, if one knows
for a certain learning task that the absolute position of the examples contains no
information at all, then one should use P̂DA to transfer this knowledge to the
learning machine.

At first, let K lin
DS be used. Hence, the projection PDS is applied. Obviously, by

definition, PDS contains only information about the midpoint of a and b. In other
words,

PDS(a, b) = PDS(a+ t, b− t)

holds for all t ∈ X. Below it is shown that this property is a drawback.

Before, K lin
DA is discussed. This yields that the projection PDA is used. It is easy

to verify that PDA contains only information about the relative position of a and b.
Hence,

PDA(a, b) = PDA(a+ t, b+ t)

holds for all t ∈ X.

Now, the application of K lin
DS and K lin

DA to the (synthetic) checker board task is
discussed. In this task the input space is R2. Furthermore, the examples a and b
belong to the same class if and only if bac = bbc where the floor operator b·c is
applied elementwise. Now, let K lin

DS be used. Then, PDS is implicitly used. Due
to (4.17) one would expect a very bad performance since the midpoint of a and
b contains almost no relevant information about the classes. Now, let K lin

DA be
used. Then, PDA is implicitly used. As stated above, one can obtain the Euclidean
distance between a and b by PDA(a, b). For large distances one knows that the
examples belong to different classes. For smaller distances this becomes more
difficult. Nevertheless, one would expect to achieve a better performance by using
K lin
DA than by using K lin

DS. Empirical evidence is given in Subsection 5.2.1. Note that
it is possible to reconstruct (a, b) if PDS(a, b) and PDA(a, b) are known. Hence, it
might be interesting, to use the direct sum pairwise kernel

KD := KDS +KAS.

However, Subsection 5.2.1 will show that KD does not lead to good results for the
checker board task.

72

4.3 Pairwise Symmetry, Projections, and Information Loss

Remark 4.9. Here, an approach of [23] is mentioned. Within this approach it is
proposed to use a representation of (a, b) as(

a+ b

sgn(a1 − b1)(a− b)

)
.

Here, a1, b1 denote the first component of the vector a, b, respectively. Obviously,
a + b is connected to PDS while sgn(a1 − b1)(a − b) is connected to PDA. By
multiplying sgn(a1−b1) the symmetry is enforced and more general pairwise kernels
can be used. For instance,

K̄((a, b), (c, d)) :=
〈(

a+ b

sgn(a1 − b1)(a− b)

)
,

(
c+ d

sgn(c1 − d1)(c− d)

)〉
.

This approach was tested on several datasets. However, first results showed that
this approach of enforcing the symmetry of pairwise decision functions is inferior to
the approach of using projections for pairwise SVMs.

Above, the information loss of projections based on the direct sum of two vector
spaces, namely PDS and PDA, was discussed. Those results can be easily transferred
to P̂DS and P̂DA. Now, the information loss of projections based on the tensor
product of two vector spaces will be discussed. This discussion starts with the
following lemma which shows that the use of tensors leads to a loss of information
even if no projection is applied. Note that only X ⊆ R

n is proven here. The
extension to arbitrary finite dimensional Hilbert spaces is straightforward. The
extension to infinite dimensional Hilbert spaces seems possible. However, such an
extension seems not to provide additional insight, but would be much harder to
understand. Therefore, those results are not presented.

Lemma 4.10. For some x, y ∈ Rn \ {0} and u, v ∈ Rn let B ∈ Rn×n be defined
by B := x⊗y = xy>. Then, uv> = B holds, if and only if there is some λ ∈ R\{0}
so that

(u, v) = (λx, λ−1y).

Proof. Firstly, let (u, v) = (λx, λ−1y) be valid for some λ ∈ R \ {0}. Obviously, it
holds that uv> = xy> = B.

Secondly, it is proofen that no other choice of (u, v) exists. As y 6= 0 there is
k ∈ {1, . . . , n} with yk 6= 0. Hence, the k−th column of B is ykx. Hence, u and
x must be linearly dependent. Similar arguments show the linear dependence of v
and y. Thus, there are λ1, λ2 ∈ R \ {0} so that uv> = λ1x(λ2y)> = B. This is
true if and only if λ1 = λ−1

2 .

73

4 Pairwise Support Vector Machines

In order to discuss the information loss caused by the use of tensors let the examples
u, v ∈ Rn be given. Lemma 4.10 shows that some information about the norm of
the examples is lost if uv> is given instead of (u, v). For instance, if one wants to
decide whether

b‖u‖2c = b‖v‖2c

holds or not, then one cannot answer this question by means of uv>.

Remark 4.11. The information loss on the norm can be reduced if it is known
that each example has the same (Euclidean) norm. In this case Lemma 4.10 implies
that (u, v) = (x, y) or that (u, v) = (−x,−y). Moreover, one could additionally
enforce the first (or any other) index of each vector to be larger (or smaller) than
zero. Then, the lemma implies that (u, v) = (x, y).

Theorem 4.13 will analyze the information loss caused by PTS. Before, a result
which is needed to prove Theorem 4.13 is presented.

Lemma 4.12. Let x, y ∈ Rn be linear independent. Then, the matrices

xx>, yy>, xy>, and yx>

are linear independent, too.

Proof. The linear independence of x and y yields that there are i, j ∈ {1, . . . , n}
such that

γ := xiyj − xjyi 6= 0.

W.o.l.g. let i = 1 and j = 2 be chosen. Now, the linear equation is considered

t1xx
> + t2xy

> + t3yx
> + t4yy

> = 0

with t1, t2, t3, t4 ∈ R. Thus, the four matrices mentioned above are linear indepen-
dent if the following system of linear equations has only the trivial solution

x2

1 x1y1 x1y1 y2
1

x1x2 x1y2 x2y1 y1y2

x1x2 x2y1 x1y2 y1y2

x2
2 x2y2 x2y2 y2

2

t1
t2
t3
t4

 = 0.

74

4.3 Pairwise Symmetry, Projections, and Information Loss

The following determinant gives∣∣∣∣∣∣∣∣∣∣
x2

1 x1y1 x1y1 y2
1

x1x2 x1y2 x2y1 y1y2

x1x2 x2y1 x1y2 y1y2

x2
2 x2y2 x2y2 y2

2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
x2

1 x1y1 x1y1 y2
1

x1x2 x1y2 x2y1 y1y2

0 x2y1 − x1y2 x1y2 − x2y1 0
x2

2 x2y2 x2y2 y2
2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
x2

1 x1y1 2x1y1 y2
1

x1x2 x1y2 x1y2 + x2y1 y1y2

0 γ 0 0
x2

2 x2y2 2x2y2 y2
2

∣∣∣∣∣∣∣∣∣∣
=− γ

∣∣∣∣∣∣∣∣
x2

1 2x1y1 y2
1

x1x2 x1y2 + x2y1 y1y2

x2
2 2x2y2 y2

2

∣∣∣∣∣∣∣∣
=− γ

(
x3

1y
3
2 − 3x2

1y
2
2x2y1 + 3x1y2x

2
2y

2
1 − x3

2y
3
1

)
=− γ4 6= 0.

Hence, the four matrices are linear independent.

Theorem 4.13. For some x, y ∈ Rn \{0} and u, v ∈ Rn let A ∈ Rn×n be defined
as A := x⊗ y + y ⊗ x = xy> + yx>. Then, uv> + vu> = A holds, if and only if
there is some λ ∈ R \ {0} so that

(u, v) = (λx, λ−1y) or (u, v) = (λy, λ−1x).

Proof. Obviously, for (u, v) = (λx, λ−1y) it holds that uv> + vu> = A and for
(u, v) = (λy, λ−1x) it holds that uv> + vu> = A, too. Thus, one needs to prove
that no other choice of (u, v) exists.

Firstly, it is assumed that x does not linearly depend on y. Then, for any w ∈ Rn

with w ⊥ span{x, y} it holds that Aw = 0. Therefore, A must have rank 1 or rank
2. In other words, the image Im(A) of A must have dimension 1 or 2. Now, this
image should be obtained by analyzing the linear independence of

z1 := Ax = 〈x, y〉x+ 〈x, x〉y 6= 0 and z2 := Ay = 〈y, y〉x+ 〈x, y〉y 6= 0.

75

4 Pairwise Support Vector Machines

Therefore, rz1 + sz2 = 0 is considered for unknown r, s ∈ R. This yields

r(〈x, y〉x+ 〈x, x〉y) + s(〈y, y〉x+ 〈x, y〉y) = 0
⇔ (r〈x, y〉+ s〈y, y〉)x+ (r〈x, x〉+ s〈x, y〉)y = 0.

By the linearly independence of x and y this is equivalent to(
〈x, y〉 〈y, y〉
〈x, x〉 〈x, y〉

)(
r

s

)
=
(

0
0

)
. (4.18)

For the determinant of the matrix in (4.18) one obtains by the Cauchy Schwarz
inequality and the linear independence of x and y

〈x, y〉2 − 〈x, x〉〈y, y〉 < 0.

Hence, r = s = 0 is the only solution of (4.18) and z1 is linearly independent of
z2. This yields that the dimension of Im(A) is 2 if x and y are linear independent.
Moreover, one can conclude that Im(A) = span{z1, z2} = span{x, y}. Therefore,
u, v must belong to span{x, y} since otherwise Im

(
uv> + vu>

)
6= Im(A). Thus,

with u = r1x+ s1y and v = r2x+ s2y one obtains

A = xy> + yx> = (r1x+ s1y) (r2x+ s2y)> + (r2x+ s2y) (r1x+ s1y)>

= (2r1r2)xx> + (2s1s2)yy> + (r1s2 + r2s1)xy> + (r2s1 + r1s2)yx>.

Lemma 4.12 shows that the four occurring matrices xx>, yy>, xy>, and yx> are
linearly independent. Hence, by equating the coefficients one obtains the system

2r1r2 = 0 r1s2 + r2s1 = 1 2s1s2 = 0

with the solution set

{(r1, s1, r2, s2) = (λ, 0, 0, λ−1)} ∪ {(r1, s1, r2, s2) = (0, λ, λ−1, 0)}

with λ ∈ R \ {0}. Hence, (u, v) = (λx, λ−1y) or (u, v) = (λy, λ−1x) if x and y are
linear independent.

Secondly, it is assumed that y = δx for some δ ∈ R \ {0}. Then, for any w ∈ Rn

with w ⊥ x it holds that Aw = 0. Hence, A has rank 1 and Im(A) has dimension
1. Due to Ax = 2δ 〈x, x〉x it follows that Im(A) = span{x}. Hence, u and v
depend linearly on x as otherwise Im

(
uv> + vu>

)
6= Im(A). Thus, u = λ1x and

76

4.4 Symmetric Training Sets

v = λ2x for some λ1, λ2 ∈ R \ {0}. From

uv> + vu> = 2λ1λ2xx
> = A = 2δxx>

it follows that λ1 = δ/λ2. Then, one obtains u = λ1x = (δ/λ2)x = λ−1
2 y and

v = λ2x, or u = λ1x and v = λ2x = (δ/λ1)x = λ−1
1 y.

The last theorem shows that if PTS(ab>) is known instead of ab>, then no infor-
mation is lost except the ordering of a and b, in other words ab> is regarded as the
same as ba> (see also Remark 4.11).

Now, it is shown that some additional information might be lost when PTA(ab>) is
used instead of ab>.

Firstly, let a, b ∈ R2 be given and let the rotation matrix be defined by

R(θ) :=
(

cos θ − sin θ
sin θ cos θ

)
for some θ ∈ [0, 2π).

Then, one gets PTA
(
(R(θ)a) (R(θ)b)>

)
= PTA(ab>) for all θ. Hence, by PTA(ab>)

one cannot answer whether a, b belong to the same orthant, in other words whether
a1b1 > 0 and a2b2 > 0.

Secondly, let a, b ∈ Rn be given and be linearly dependent. Then, PTA(ab>) = 0
holds.

Hence, kernels which enforce the symmetry by using an asymmetric tensor subspace
seem to be inferior to pairwise kernels which enforce the symmetry by using a
symmetric tensor subspace. Therefore, the loss of information by PTA is not further
analyzed.

4.4 Symmetric Training Sets

Section 4.1 presented an approach how a symmetric decision function by means
of certain projections can be obtained. For pairwise SVMs another approach for
ensuring a symmetric decision function is known. It is not based on symmetric
pairwise kernels but on specially structured training sets. Obviously, if a symmetric
pairwise kernel (4.16) is used, then one can exclude the pair (b, a) from the training
set if the pair (a, b) is contained. Now, let a symmetric training set for the
training of pairwise SVMs be given, that is if (a, b) is a training pair then (b, a) is

77

4 Pairwise Support Vector Machines

a training pair, too. In this setting, one obtains a symmetric decision function for
more general pairwise kernels (see Lemma 4.14 below and [23, 45]).

Let xi ∈ Rn with i ∈M := {1, . . . ,m} be given and let I ⊆M ×M be given with
(i, j) ∈ I ⇒ (j, i) ∈ I. Obviously, I leads to a symmetric training set. Additionally,
let IR ⊆ I be defined by IR := {(i, i)|(i, i) ∈ I} and IN := I \ IR. Furthermore,
let K : (X ×X)× (X ×X)→ R be a pairwise kernel with

K((a, b), (c, d)) = K((b, a), (d, c)). (4.19)

Note that any kernel can be seen as a real scalar product. For a standard kernel
this yields k(a, b) = k(b, a) for all a, b ∈ X. For a pairwise kernel this yields
K((a, b), (c, d)) = K((c, d), (a, b)) for all a, b, c, d ∈ X. Therefore, (4.19) holds for
any symmetric pairwise kernel. Additionally, (4.19) holds for other pairwise kernels,
for instance for K = KPD (4.15a) or K = KPT (4.15b). Now, let the dual pairwise
SVM be considered

min
α
h(α) := 1

2
∑

(i,j),(k,l)∈I
αijαklyijyklK((xi, xj), (xk, xl))−

∑
(i,j)∈I

αij

s. t. 0 ≤ αij ≤ C for all (i, j) ∈ IN
0 ≤ αii ≤ 2C for all (i, i) ∈ IR∑
(i,j)∈I

yijαij = 0.

(4.20)

Lemma 4.14. Let (4.19) be valid. Then, there is a solution α̂ of (4.20) with
α̂ij = α̂ji for all (i, j) ∈ I. Such a solution symmetric is called symmetric.
Proof. The Weierstrass-Theorem implies that there is a solution α∗ of (4.20). Let
another feasible point α̃ of (4.20) be defined by

α̃ij := α∗ji for all (i, j) ∈ I.

For easier notation let Kij,kl := K((xi, xj), (xk, xl)) be defined. Then,

2h(α̃) =
∑

(i,j),(k,l)∈I
α∗jiα

∗
lkyijyklKij,kl − 2

∑
(i,j)∈I

α∗ji.

Note that yij = yji holds for all (i, j) ∈ I. By (4.19) one further obtains

2h(α̃) =
∑

(i,j),(k,l)∈I
α∗jiα

∗
lkyjiylkKji,lk − 2

∑
(i,j)∈I

α∗ji = 2h(α∗).

78

4.5 Connecting Projections and Symmetric Training Sets

The last equality follows by the symmetry of the set I. Hence, α̃ is also a solution of
(4.20). From SVM theory it is known that problem (4.20) is convex. By Remark 2.2
it follows that

αλ := λα∗ + (1− λ)α̃

solves (4.20) for any λ ∈ (0, 1). Thus, α1/2 is a symmetric solution.

In [45] a similar result for regression is presented. However, they conclude by means
of h(α̃) = h(α∗) that any solution has the described symmetry. This does not hold
in general and there are counterexamples for it.

Theorem 4.15. It is assumed that (4.19) holds. Then, each solution α of the
optimization problem (4.20) leads to a symmetric decision function g : X×X → R.
In other words g(a, b) = g(b, a) holds for any (a, b) ∈ X ×X.

Proof. For any solution α let fα : X ×X → R be defined by

fα(u, v) :=
∑

(i,j)∈I
αijyijK((xi, xj), (u, v)).

Then, the obtained decision function can be written as

gα(u, v) = fα(u, v) + c

for some appropriate c ∈ R. Theorem 2.25 shows that if α1 and α2 are solutions
of (4.20) then fα1 = fα2 . According to Lemma 4.14 there is always a solution
α∗ of (4.20) with α∗ij = α∗ji for all (i, j) ∈ I. Obviously, such a solution leads to
symmetric functions fα∗ and gα∗ . As fα is the same function for all solutions α of
(4.20) one obtains that fα and therefore gα are symmetric for all solutions.

4.5 Connecting Projections and Symmetric
Training Sets

In order to obtain a symmetric decision function it was discussed in Sections 4.1
and 4.3 that if projected pairs are presented to a learning machine, then a loss of
information may occur. Thereafter, in Section 4.4 symmetric training sets are used
in pairwise SVMs to obtain a symmetric decision function. In this approach all the
available information is presented to the learning machine. Now, Theorem 4.16
shows that the same decision function is obtained, regardless whether a symmetric

79

4 Pairwise Support Vector Machines

training set is used or a certain projection is made to enforce symmetry. Hence,
even if a symmetric training set is presented to a pairwise SVM and no projection
is made the same information loss occurs as in the case of projections.

Again, let I be a symmetric training set. Additionally, let J denote a subset of
I ⊆ M ×M with maximal cardinality and with the property (i, j) ∈ J and j 6= i

imply (j, i) /∈ J . Furthermore, JR := IR and JN := J \ JR. Moreover, let K̂ be
defined by K̂ij,kl := 1

2 (Kij,kl +Kji,kl), where K is a pairwise kernel which fulfills
(4.19). For instance, if K = KPD with r = 0, p = 1 (4.15a) then K̂ = KDS

(4.15c) or if K = KPT with r = 0, p = 1 (4.15b) then K̂ = KTS (4.15e). In this
section let the optimization problem be considered

min
β

1
2

∑
(i,j),(k,l)∈J

βijβklyijyklK̂ij,kl −
∑

(i,j)∈J
βij

s. t. 0 ≤ βij ≤ 2C for all (i, j) ∈ J∑
(i,j)∈J

yijβij = 0.

(4.21)

The following theorem shows that both approaches indeed lead to the same decision
function.

Theorem 4.16. Let I and J be defined as above and let the functions fα : Rn ×
R
n → R and hβ : Rn ×Rn → R be defined by

fα(a, b) :=
∑

(i,j)∈I
αijyijK((xi, xj), (a, b)),

hβ(a, b) :=
∑

(i,j)∈J
βijyijK̂((xi, xj), (a, b)),

where α is a feasible point of (4.20) and β is a feasible point of (4.21). Then, for
any solution α∗ of (4.20) and for any solution β∗ of (4.21) it holds that fα∗ = hβ∗ .

Proof. Due to Lemma 4.14 and Theorem 4.15 one can assume that α∗ is a sym-
metric solution of (4.20). Let

ᾱij :=

β∗ij/2 if (i, j) ∈ JN
β∗ij if (i, j) ∈ JR
β∗ji/2 else

and β̄ij :=
{
α∗ij + α∗ji if (i, j) ∈ JN
α∗ij if (i, j) ∈ JR

be defined. Obviously, ᾱ is a feasible point of (4.20) and β̄ is a feasible point of

80

4.5 Connecting Projections and Symmetric Training Sets

(4.21). Then, by α∗ij = α∗ji one obtains for

(i, j) ∈ JN : β̄ijK̂ij,kl = β̄ij
2 (Kij,kl +Kji,kl) =

α∗ij + α∗ji
2 (Kij,kl +Kji,kl)

= α∗ijKij,kl + α∗jiKji,kl

(i, i) ∈ JR : β̄iiK̂ii,kl = β̄ii
2 (Kii,kl +Kii,kl) = α∗iiKii,kl

This implies fα∗ = hβ̄. Additionally, one obtains for

(i, j) ∈ JN : ᾱijKij,kl + ᾱjiKji,kl =
β∗ij
2 (Kij,kl +Kji,kl) = β∗ijK̂ij,kl

(i, i) ∈ JR : ᾱiiKii,kl = β∗ii
2 (Kii,kl +Kii,kl) = β∗iiK̂ii,kl.

Hence, fᾱ = hβ∗ follows.

In a second step it is proven that ᾱ and β̄ are solutions of problem (4.20) and
(4.21), respectively. To this end, note that for any solution of (4.20) or (4.21) a
corresponding Karush-Kuhn-Tucker (KKT) point exists and, vice versa, that each
KKT point corresponds to a solution (see Corollary 2.7). Therefore, the KKT
systems of both problems are compared. The KKT system of (4.20) is∑

(k,l)∈I
yijyklαklKij,kl − 1− uij + vij + wyij = 0 for all (i, j) ∈ I

∑
(i,j)∈I

yijαij = 0

uij ≥ 0 for all (i, j) ∈ I vij ≥ 0 for all (i, j) ∈ I
uijαij = 0 for all (i, j) ∈ I vij(C − αij) = 0 for all (i, j) ∈ IN

vii(2C − αii) = 0 for all (i, i) ∈ IR C ≥ αij ≥ 0 for all (i, j) ∈ IN
2C ≥ αii ≥ 0 for all (i, i) ∈ IR.

Accordingly, the KKT system of problem (4.21) is∑
(k,l)∈I

yijyklβklK̂ij,kl − 1− λij + µij + κyij = 0 for all (i, j) ∈ J
∑

(i,j)∈J
yijβij = 0

λij ≥ 0 for all (i, j) ∈ J µij ≥ 0 for all (i, j) ∈ J
λijβij = 0 for all (i, j) ∈ J µij(2C − βij) = 0 for all (i, j) ∈ J

2C ≥ βij ≥ 0 for all (i, j) ∈ J.

81

4 Pairwise Support Vector Machines

Note that by exchanging the summation index in the definition of fα from (i, j) to
(k, l) one can rewrite the first line of the first KKT system by

yijfα(xi, xj)− 1− uij + vij + wyij = 0 for all (i, j) ∈ I.

Analogously, one obtains for the first line of the second KKT system

yijhβ(xi, xj)− 1− λij + µij + κyij = 0 for all (i, j) ∈ J.

Let (α∗, u∗, v∗, w∗) be a KKT point of problem (4.20) and (β∗, λ∗, µ∗, κ∗) be a
KKT point of problem (4.21). Moreover, one defines

λ̄ij := u∗ij for all (i, j) ∈ J
µ̄ij := v∗ij for all (i, j) ∈ J
κ̄ := w∗

and

ūij :=
{
λ∗ij for all (i, j) ∈ J,
λ∗ji for all (i, j) ∈ I \ J,

ṽij :=
{
µ∗ij for all (i, j) ∈ J,
µ∗ji for all (i, j) ∈ I \ J

w̄ := κ∗.

Then, using hβ̄ = fα∗ it can be verified that (ᾱ, ū, v̄, w̄) is a KKT point of (4.20).
Similarly, it can be shown that (β̄, λ̄, µ̄, κ̄) is a KKT point of (4.21), too. Hence,
ᾱ is a solution of (4.20) and β̄ is a solution of (4.21).

Theorem 2.25 implies that independently of the chosen solution α∗ of (4.20) and
β∗ of (4.21) one obtains the same fα∗ and hβ∗ , respectively. This implies fα∗ =
fᾱ = hβ̄ = hβ∗ .

Note that the proof shows how to construct a solution of (4.20) by means of a
solution of (4.21) and vice versa.

Remark 4.17. In Theorem 4.16 any bias is disregarded. Let (α∗, u∗, v∗, w∗) denote
a KKT point of problem (4.20) and let (β∗, λ∗, µ∗, κ∗) denote a KKT point of
problem (4.21) then w∗ and κ∗ can be used as bias (see Lemma 2.22). Moreover,

82

4.5 Connecting Projections and Symmetric Training Sets

the proof showed that any optimal bias of (4.20) is an optimal bias of (4.21) and
vice versa.

As both approaches lead to the same decision function one should analyze whether
one approach is computationally cheaper than the other. The needed training time
of SMO (empirically) scales quadratically with the number of training points [33].
For symmetric training sets the number of training pairs is nearly doubled compared
to the number in the case of symmetric kernels. Simultaneously, the evaluation of
symmetric kernels is computationally four times more expensive compared to the
corresponding non symmetric kernel (see Section 5.1 and Equation (4.15)). Hence,
by this argumentation one expects that both approaches need the same training
time. However, in Table 4.1 it is demonstrated that the approach of using projec-
tions or symmetric kernels is significantly faster. Therefore, for pairwise SVMs the
approach of using certain projections supersedes the approach of using symmetric
training sets. Note that to generate the results in Table 4.1 the technique of caching
the standard kernel values as described in Chapter 5 is used for both approaches.

Number Symmetric Training Set Symmetric Kernel
of examples (t in hh:mm)

500 0:03 0:01
1000 0:46 0:17
1500 3:26 0:56
2000 9:44 2:58
2500 23:15 6:20

Table 4.1: Training time of symmetric training sets vs. training time of symmetric
kernels. The technique described in Section 5 is also used for those
measurements.

There is another argumentation for the needed training time of a SVM. There, one
assumes that the training time scales cubically with the number of support vectors.
If symmetric training sets are used and α∗ is a symmetric solution, then the number
of support vectors is nearly doubled compared to the use of projections. Using this
argumentation yields that the training time is doubled if a symmetric training set is
used instead of projections.

83

4 Pairwise Support Vector Machines

4.6 Remarks

In this section two remarks concerning pairwise SVMs and extensions of the pre-
sented results are given.

At first, it is discussed whether different penalty parameters for the positive and
negative pairs should be used. In general, pairwise classification tasks are imbalanced
classification problems. See [14, 26] as an anchor to this topic. There are several
advices of how a class imbalance problem can be tackled. A special kind of class
imbalance problem occurs in pairwise classification. This kind is called relative
class imbalance. In other words, there are many positive pairs but the relation
of positive pairs and negative pairs is small. In this case it is proposed to use
different penalty parameters for positive and negative training pairs. In particular,
it is proposed to use a larger penalty parameter for the positive pairs than for the
negative pairs. However, many different combinations of penalty parameters for
positive and negative pairs were tested in Section 5.2. Surprisingly, the obtained
results differed only slightly.

At second, pairwise One Class Support Vector Machines (OCSVM) should be men-
tioned. If a training set consists of only one class and the classification task is to
determine whether a new point belongs to this class or not, then a OCSVM can be
used. There are two different approaches of OCSVMs. One approach tries to find
the minimal sphere around the training points [41]. The other approach tries to
separate the training points from the origin using a hyperplane [38]. An extension
of the latter approach can be found in [37].

The results of Sections 4.1 and 4.3 can be transferred to OCSVMs easily. Addi-
tionally, for OCSVMs which separate the data from the origin one can show that
similar results, which where described in Sections 4.4 and 4.5, hold. In other words,
using a symmetric training set leads to a symmetric decision function. Moreover,
one can connect the use of symmetric training sets and the use of projections. In
order to prove those results one follows exactly the same steps as presented in the
corresponding parts of this work. This does not offer new insights. Therefore, those
results are not presented into detail.

84

5 Efficient Implementation and
Numerical Results

In Section 5.1 several implementation details are presented. Note that the dis-
cussed techniques provide a way to train pairwise SVMs with all pairs of signifi-
cantly more than 1,000 examples within an acceptable time. Afterwards, results of
pairwise SVMs for several synthetic and two real world datasets are presented in
Section 5.2.

5.1 Implementing Pairwise SVMs Efficiently

In Chapter 4 two different approaches how a symmetric pairwise decision function
can be obtained by a SVM are presented. Furthermore, it is shown in Section 4.5
that both approaches lead to the same decision function. Moreover, it is empirically
shown in Section 4.5 that the approach using projections is significantly faster.
Therefore, only the faster approach is considered in this section.

5.1.1 Caching the Standard Kernel Values

Much effort has been put into solving (non pairwise) SVMs efficiently. One of the
most widely used techniques is the sequential minimal optimization (SMO) [34]. A
well known implementation of this technique is LIBSVM [13]. For the moment, it
is assumed that one wants to solve a pairwise SVM with kernel K lin

DA (4.15d). In
order to create a training set which can be used by the LIBSVM one could calculate
PDA(a, b) for all used training pairs (a, b) explicitly and save those projected pairs
in a file for training. However, this approach leads to superfluously large files as all
examples are part of many pairs and therefore are saved repeatedly. For example, to
store all pairs of 10,000 examples of dimension 1,000 in an ASCII file, one needed

85

5 Efficient Implementation and Numerical Results

at least 5GB. This situation becomes even worse for other kernels. Therefore, the
LIBSVM code was modified.

In a first attempt, the examples were stored in RAM and each standard kernel
was calculated on demand. This modification suffered from a bad computational
performance. One reason for this seems the empirically known fact that the SMO
scales quadratically with the number of training points [34]. Note that for pairwise
classification tasks the training points are the training pairs. If all existing pairs
are used for training then the number of training pairs grows quadratically with the
number of training examples. For instance, if one uses all the existing pairs of m
examples, then there are m (m+ 1) /2 pairs. Hence, the runtime of the LIBSVM
scales at least quartically with the number m of used training examples. Using
500 training examples already results in 125,250 training pairs and corresponding
pairwise SVMs would need several hours to be solved. Therefore, a technique to
reduce the needed training time is presented.

Kernel evaluations are crucial for the performance of LIBSVM. If the whole ker-
nel matrix could be cached one would get a huge increase of speed. Today, this
seems impossible for significantly more than 125,250 training pairs as storing the
(symmetric) kernel matrix for this number of pairs in double precision needs ap-
proximately 59GB. A way of drastically reducing the costs of kernel evaluations is
now described. In Section 4.2 several kernels are introduced. For example, let KTS

(4.15e) and an arbitrary standard kernel be selected. For a single evaluation of KTS

the standard kernel has to be evaluated four times with vectors of Rn. Afterwards,
four arithmetic operations are needed. It is easy to see that each standard kernel
value is needed for many different evaluations of KTS. In general, it is possible
to cache the standard kernel values for all pairs of examples in the training set.
For instance, to cache the standard kernel values for 10,000 examples one needs
400MB. Thus, if all standard kernel values are cached, then each kernel evalua-
tion of KTS costs four arithmetic operations. This does not depend on the chosen
standard kernel. Using any other pairwise kernel which is presented in (4.15) is at
most slightly more expensive. Furthermore, one could free memory by deleting the
examples after computing the standard kernel values as the examples are not needed
anymore. Additionally, the dimension of the examples does not influence the costs
of a single pairwise kernel evaluation in any case. Only the time needed to calculate
all standard kernel values depends on the dimension n of the examples. However,
if a linear standard kernel is used, then in case of 10,000 examples of dimension
1,000, one needs about 1011 operations to calculate all such values. This can be
done in less than a minute.

86

5.1 Implementing Pairwise SVMs Efficiently

Tables 5.1a and 5.1b compare the training times with and without the described
technique. For this measurement examples from the Double Interval Task (cf. Sub-
section 5.2.2) are used with a constant EPCR of 5, K lin

TS as pairwise kernel, a cache
size of 100MB, and all pairs are used for training. In each run of Table 5.1a 250
examples are used for different dimensions n. Table 5.1b shows results for different
numbers of examples of dimension n = 500. The speedup factor by the described
technique is up to 130.

Dimension n Standard kernel
of examples not cached cached

(t in mm:ss)
200 2:08 0:07
400 4:31 0:07
600 6:24 0:07
800 9:41 0:08
1000 11:27 0:09

(a) Different dimensions n of examples

Number Standard kernel
of examples not cached cached

(t in mm:ss)
200 0:04 0:00
400 1:05 0:01
600 4:17 0:02
800 12:40 0:06
1000 28:43 0:13

(b) Different numbers of examples

Table 5.1: Training time with and without caching the standard kernel values

5.1.2 Further Implementation Details

Additional to the technique described in Section 5.1 several other modifications are
applied to LIBSVM. Here, selected modifications are described.

Firstly, LIBSVM uses a shrinking technique to shorten the needed training time.
Due to this shrinking technique LIBSVM needs to evaluate the decision function
values for all training pairs to determine whether an optimal point was found or
not. The subroutine reconstruct_gradient calculates all such decision function
values. However, the shrinking technique shuffles the ordering of the training pairs.
This leads to a very low cache hit ratio in the subroutine. Hence, the training
pairs are reordered before calling this subroutine. This significantly speeds up the
subroutine mentioned above and decreases the total training time by 10%−15%.

Secondly, OpenMP is used to parallelize several loops of LIBSVM. Table 5.2 presents
the needed training time and scale factor with respect to the number of used pro-
cessors. There, all pairs of 1,500 examples of the double interval type data of
dimension n = 500 are used for training. The used computer has 2 CPUs, where

87

5 Efficient Implementation and Numerical Results

each CPU consists of 6 cores. The training time decreases with the number of used
cores. However, the scaling is smaller than 0.65 for 5 or more cores.

Cores t in sec. scaling # Cores t in sec. scaling
1 1569 1 7 453 0.494
2 844 0.930 8 417 0.470
3 646 0.810 9 412 0.423
4 536 0.732 10 413 0.380
5 488 0.643 11 406 0.351
6 472 0.554 12 395 0.331

Table 5.2: Scaling of LIBSVM using OpenMP

Thirdly, Section 5.1 shows that the standard kernel matrix should be cached. It
is well known that the standard kernel matrix is symmetric. Using this symmetry
around 50% of the needed memory for caching this matrix could be saved. How-
ever, accessing any element of the matrix becomes more expensive in this setting.
Implementing this technique decreases the performance of LIBSVM by 15%−20%,
while offering to use training sets which consist of around 40% more examples.

Finally, a technique similar as the caching technique described in Section 5.1 is
implemented for evaluating pairwise test sets. Note that for testing, it is often
sufficient to cache the standard kernel values of those pairs whose first example
belongs to the training set and whose second example belongs to the test set.

5.2 Empirical Results

In this section several datasets are introduced and selected results are presented.
Several synthetic datasets are used, namely the checker board task in Subsec-
tion 5.2.1, the double interval task in Subsection 5.2.2, the (disturbed) orthant
task in Subsection 5.2.3, and the disturbed single interval task in Subsection 5.2.4.
Note that the checker board task, the double interval task, and the orthant task
do not contain noise. In other words, any optimal classifier never makes an error
on those datasets. In contrast to this, the disturbed single interval task and the
disturbed orthant task do contain noise. In the disturbed single interval task there
exist only very few classes and any interclass training does not provide meaning-
ful results. Therefore, only Bayes’ DET curves for this dataset are presented and
differences between the interclass task and interexample task by means of Bayes’

88

5.2 Empirical Results

DET curves are shown. For the disturbed orthant type task it is also possible to
calculate Bayes’ DET curves. There, the DET curve of pairwise SVMs to Bayes’
classifiers are compared. Afterwards, two real world datasets are presented. At
first, results for the LFW database are presented in Subsection 5.2.5. This dataset
is freely available. At second, results for confidential face datasets by Cognitec
Systems GmbH are presented in Subsection 5.2.6. Note that many of the results of
Subsections 5.2.1, 5.2.2 and 5.2.5 were already presented in my paper [12].

If not stated otherwise any drawing which is used in this section is uniformly dis-
tributed.

5.2.1 Checker Board Task

As mentioned in Section 4.3 an example x of this task has the following form:

x ∈
(
x1

x2

)
with x1, x2 ∈ [0, s)

and s ∈ N arbitrary but fixed. The class c of an example x is determined by

c(x) := floor(x1)s+ floor(x2).

In other words each square of the checker board is a single class of the s2 classes.

For the measurements s = 25 is selected and the penalty parameter C = 1 is
set. For model selection the technique described in Section 3.4 is used. Many
different training parameters are tested on this task. However, to keep this thesis
short, only selected results are presented. In the pair task a set consisting of 50
classes with a constant EPCR of 5 is created. Using the pair task many kernels are
excluded as they led to bad results in this task. As test set for the interexample and
interclass task the whole set used in the pair task is used and is called Test Set 1.
In the interexample task one trained on newly generated training sets with different
EPCRs (5, 10, 15, 20, 25). It was observed that the EPCR does not significantly
influence the performance for the checker board task. Hence, an EPCR of 5 was
chosen. Furthermore, it was obtained by the interexample task that K lin

DA (4.15d)
and Kpoly

DA have the best performance. Then, different numbers (50, 75, . . . , 200) of
training classes within the interclass task are tested. Again, the results differed only
slightly. Hence, the two models with 50 classes were slected. Figure 5.1a presents
the performance of the models with K lin

DA and Kpoly
DA on Test Set 1. Additionally,

the performance on two newly generated test sets (Test Set 2 and Test Set 3) with

89

5 Efficient Implementation and Numerical Results

the same properties as Test Set 1 (interclass task, 50 classes, EPCR=5) is tested.
This shows the robustness of the model selection technique. In order to complete
the discussion of Section 4.3 the performance for other kernels in the interclass task
is presented in Figure 5.1b.

0

0.1

0.2

0.3

0.4

0.5

0.001 0.01 0.1

F
N

M
R

FMR

K
lin
DA Test Set 1

K
lin
DA Test Set 2

K
lin
DA Test Set 3

K
poly
DA Test Set 1

K
poly
DA Test Set 2

K
poly
DA Test Set 3

(a) Interclass task: robustness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1
F

N
M

R
FMR

K
lin
DA

K
poly
DA
K

lin
DS

K
poly
DS
K

lin
D

K
poly
D

(b) Interclass task: different kernels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0001 0.001 0.01

F
N

M
R

FMR

K
lin

DA
Test Set 1

Bayes Test Set 1

(c) Interclass task: Bayes’ Classifier

Figure 5.1: DET curves for checker board task. In (b) K lin
D and Kpoly

D (4.15g)
provide almost the same curve.

In the beginning of this section it was stated that one can correctly determine for
any pair of this task whether it is positive or not. However, it was shown that
the pairwise kernels K lin

DA works best. Hence, the projection PDA (4.1) is applied.
Section 4.3 discusses that some information is lost if PDA is used. Due to this
information loss it is harder to correctly determine whether a given pair is positive
or not. Therefore, the pairs of Test Set 1 were projected using PDA and then the
Bayes’ DET curve was calculated. Figure 5.1c presents this Bayes’ DET curve and
the DET curve obtained by the pairwise SVM with K lin

DA for Test Set 1. Both
curves are similar. Note that the same comparison for Test Set 2 and Test Set 3

90

5.2 Empirical Results

were done, too. Those comparisons lead to similar results.

5.2.2 Double Interval Task

Now, the double interval task of dimension n are defined. In order to draw an
example x ∈ {−1, 1}n of the double interval task one draws i, j, k, l ∈ N so that
2 ≤ i ≤ j, j + 2 ≤ k ≤ l ≤ n and sets

xt :=
{

1 t ∈ {i, . . . , j} ∪ {k, . . . , l},
−1 otherwise.

The class c of such an example is defined by c(x) := (i, k). Note that (j and l)
do not influence the class. Hence, there are (n − 3)(n − 2)/2 classes. The first
component of any double interval type example is enforced to be negative. This was
done according to Remark 4.11. Measurements showed that if the first component
is not enforced to be negative then the results are not robust.

Obviously, all examples have the same Euclidean norm. For the measurements
n = 500 is selected. In the pair task an initial set consisting of 750 examples out
of 50 classes with a constant EPCR of 15 is created. Then, 75% of all pairs are
used for training and the remaining ones are used for testing. By the pair task
several parameters were selected. Firstly, it turned out that the penalty parameter
C should be set to 1,000 independently of the other parameters. Secondly, the
kernels K lin

DA, K
poly
DA , K lin

TS, K
poly
TS , K lin

TD, and K
poly
TD (4.15) were selected due to their

superior performance. Figure 5.2a presents the performance of those kernels in the
pair task. Afterwards, the whole set of the pair task is used as test set for the
interexample and interclass task and is called Test Set 1. In the interexample task,
different EPCRs (5, 10, 15, 20, 25) are tested. Figure 5.2b shows that increasing the
EPCR leads to better results in the interexample task. This holds for all kernels
selected. Due to space limitations only results for K lin

DA and Kpoly
TD are presented.

Note that as trade-off between performance and needed training time an EPCR of
15 is chosen. Figure 5.2c shows that an increasing number of used classes increases
the performance in the interclass task. Again, this holds for all kernels mentioned
above but only results for K lin

DA and Kpoly
TD are presented. Furthermore, using six

different test sets Figure 5.2d shows that the heuristic model selection technique
leads to robust results for the interclass task.

For a fixed kernel it can be seen by means of Figures 5.2a, 5.2e and 5.2f that
the DET curve of the pair task is below the DET curve of the interexample task,

91

5 Efficient Implementation and Numerical Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 1

F
N

M
R

FMR

K
lin
DA

K
poly
DA
K

lin
TS

K
poly
TS

K
lin
TD

K
poly
TD

(a) Pair task: different kernels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

F
N

M
R

FMR

K
lin
DA EPCR=5

K
lin
DA EPCR=15

K
lin
DA EPCR=25

K
poly
TD EPCR=5

K
poly
TD EPCR=15

K
poly
TD EPCR=25

(b) Interexample task: different EPCRs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

F
N

M
R

FMR

K
lin
DA 50 Classes

K
lin
DA 100 Classes

K
lin
DA 200 Classes

K
poly
TD 50 Classes

K
poly
TD 100 Classes

K
poly
TD 200 Classes

(c) Interclass task: different class numbers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

Test Set 1
Test Set 2
Test Set 3
Test Set 4
Test Set 5
Test Set 6

(d) Interclass task: robustness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 1

F
N

M
R

FMR

K
lin
DA

K
poly
DA
K

lin
TS

K
poly
TS

K
lin
TD

K
poly
TD

(e) Interexample task: different kernels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

F
N

M
R

FMR

K
lin
DA

K
poly
DA
K

lin
TS

K
poly
TS

K
lin
TD

K
poly
TD

(f) Interclass task: different kernels

Figure 5.2: DET curves for double interval tasks

92

5.2 Empirical Results

which again is below the DET curve of the interclass task. In the interexample
task (Figure 5.2e) a training set consisting of 50 classes with a constant EPCR of
15 is used, while a training set consisting of 200 classes with a constant EPCR of
15 is used in the interclass task (Figure 5.2f). One obtains that K lin

DA is the best
kernel in the pair task and the interexample task. However, compared to the other
selected kernels it leads to bad results in the interclass task. At the same time the
performance of Kpoly

TD in the pair task and interexample task is worse than most of
the other used kernels, but Kpoly

TD leads to the best performance in the interclass
task.

Above it was shown that an increasing number of classes increases the performance.
To increase the performance further training sets with up to 16,000 classes were
learned. However, for n = 500 there are 124,250 classes. As 16,000 classes repre-
sent more than 12.5% of the existing classes for n = 500 it was decided to increase
n to 2,000. Then, 1,997,000 classes exist. Figure 5.3a shows that an increasing
number of classes increases the performance of the obtained classifier. Note that
only results for Kpoly

TD are presented as this kernel works best for smaller dimensions.
In Figure 5.3a a test set consisting of 800 examples with a constant EPCR of 8
is used. In other words there are 100 classes in the test set. The training sets
consist of different numbers of classes with a constant EPCR of 8. The size of
those training sets prohibits the use of all pairs of the training examples. Hence,
all positive pairs are used for training and the number of negative training pairs
is set so that the set of training pairs consists of 2.5/5/10/20 million pairs for
2,000/4,000/8,000/16,000 classes.

Above, pairwise SVMs which did not use all possible training pairs are trained.
Figure 5.4a presents DET curves of pairwise SVMs which use 6,000 examples of
750 classes with an constant EPCR of 8 for training. However, different numbers
(2/4/8/18 mio) of training pairs are used. Note that any positive pair always
belongs to the training set. Obviously, the performance increases if more training
pairs are used. In Table 5.3a the needed training time and the obtained EER are
presented. It can be seen that the training time increases significantly but the EER
drops only slightly when more pairs are used for training. Additionally, test sets
with different numbers (250, 500, 750, 1250) of classes with an constant EPCR of
8 are created. Then, 2,001,000 pairs are used for training, independently of the
number of classes. Again, all positive pairs are included into the sets of training
pairs. Figure 5.4b shows that increasing the number of classes while fixing the
number of used pairs increases the performance. However, Table 5.3b shows that
larger sets of training examples increase the needed training time if the number of
training pairs is fixed. Tables 5.3a and 5.3b show that a training set with 8 or 18

93

5 Efficient Implementation and Numerical Results

million pairs of 6,000 examples leads to a comparable performance as a training set
with 2 million pairs of 8,000 or 10,000 examples while the needed training time is
increase by factor three or six, respectivly.

This subsection is concluded by a discussion whether reflexive test pairs should be
used in a test set. In Section 3.1 it was discussed that a pairwise decision function
might not be reflexive. Often, a reflexive pair is positive and is very easy to classify.
In Figure 5.3b DET curves in the interclass and interexample setting are presented.
For training a set consisting of 2,000 classes and Kpoly

TD is used. The interclass test
set consists of 2,000 classes with a constant EPCR of 2, while the interexample
test set consists of 2,000 classes with a constant EPCR of 8. In Figure 5.3b, DET
curves with an without recursive pairs are presented. There, the DET curve of the
interclass task with reflexive pairs is below both DET curves of the interexample
task. At the same time, the DET curve of the interclass task without the reflexive
pairs is above both DET curves of the interexample task. Hence, one might come to
wrong conclusions about the quality of a classifier if reflexive test pairs are used.

5.2.3 (Disturbed) Orthant Task

In this subsection two different tasks which are closely connected are presented.
Firstly, the orthant task is introduced. Again, there exists a pairwise classifier
which never makes an error in this task. Secondly, the disturbed orthant task
is introuduced by modifying the orthant task. If this modification is applied then
there is no classifier which never makes an error, but it is possible to obtain pairwise
Bayes’ Classifiers as all class probabilities for any example x of the disturbed orthant
task can be calculated.

This subsection starts with the orthant task of dimension n. In order to obtain an
example x ∈ [−1, 1]n of the orthant task one firstly draws k ∈ {1} × {−1, 1}n−1

and x̄ ∈ [0, 1]n. In other words, k is of dimension n and its first component is set
to 1. Secondly, one sets

xt := ktx̄t, for all t ∈ {1, . . . , n}.

The class c of x is given by c(x) := k. Hence, there are 2n−1 classes.

Again, the model selection heuristic is used to find sufficiently good parameters.
The test sets always consist of 100 classes. The EPCR was set to 8 for the training
sets and test sets. The measurements showed that the penalty parameter C should
be set to C = 1,000. In Figure 5.5 selected results for this task are presented.

94

5.2 Empirical Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 1

F
N

M
R

FMR

2000 Classes
4000 Classes
8000 Classes

16000 Classes

(a) Class task with many classes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.001 0.01 0.1 1

F
N

M
R

FMR

Example Task recursive
Example Task non-recursive

Class Task recursive
Class Task non-recursive

(b) Recursive pairs in the test set

Figure 5.3: DET curves for double interval task with examples of dimension 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

2 mio pairs
4 mio pairs
8 mio pairs

18 mio pairs

(a) 6,000 examples in the test set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.001 0.01 0.1 1

F
N

M
R

FMR

2000 examples
4000 examples
6000 examples
8000 examples

10000 examples

(b) 2 million pairs in the test set

Figure 5.4: DET curves for double interval tasks in the interclass setting. A subset
of all existing training pairs is used.

pairs t in mm:ss EER in %
2 mio 16:26 4.096
4 mio 31:57 3.810
8 mio 65:03 3.771
18 mio 187:03 3.464

(a) Different numbers of pairs

examples t in mm:ss EER in %
2000 06:30 6.763
4000 12:50 5.355
6000 15:38 4.096
8000 20:13 3.767
10000 24:51 3.303

(b) Different numbers of examples

Table 5.3: Training time for double interval tasks using a subset of all training pairs

95

5 Efficient Implementation and Numerical Results

Figure 5.5a shows DET curves which lead to the best results in the interclass task.
There, the test set is the test set of the interexample task. This test set is called
Test Set 1. Additionally, the robustness of the obtained classifiers is analyzed by
testing them on newly drawn test sets. All classifiers used in Figure 5.5a lead to
robust results. To keep this dissertation short only the performance of the classifier
using K lin

TD which was trained on 200 classes is presented. In Figure 5.5b results of
this classifier on 5 newly drawn test sets are presented.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

K
lin
DA

100 Classes
K

lin
DA

200 Classes
K

lin
TS

100 Classes
K

lin
TS

200 Classes
K

lin
TD

100 Classes
K

lin
TD

200 Classes

(a) Interclass task: different kernels

0

0.05

0.1

0.15

0.2

0.25

0.001 0.01 0.1

F
N

M
R

FMR

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6

(b) Interclass task: robustness

Figure 5.5: DET curves for orthant tasks

Note that all the presented models lead to very good results with EER of 1%−3%.
It is especially interesting that the K lin

TS works well in this database although the
data is not normalized. The reason might be that the (Euclidean) norm of the
examples does not influence the class in this dataset.

Now, the disturbed orthant task of dimension n are introduced. Firstly, let
p1, p2 ∈ [0, 1] with p1 < p2 be given. To obtain an example x ∈ [−1, 1]n of the
orthant task one draws k ∈ {1} × {−1, 1}n−1 and p ∈ [0, 1]. Then, if p < p1 one
draws x̄ ∈ [0, 1]n \ [n

√
0.5, 1]n. Otherwise, if p ≥ p1 one draws x̄ ∈ [0, n

√
0.5]n.

Now, if p < p2 one sets

xt := ktx̄t, for all t ∈ {1, . . . , n}.

If p ≥ p2 one draws k̄ ∈ {1} × {−1, 1}n−1 with k 6= k̄ and sets

xt := k̄tx̄t, for all t ∈ {1, . . . , n}.

Again, the class c of x is given by c(x) := k and there are 2n−1 classes.

Let an example x of this task be given. If max{|xt|} > n
√

0.5 on can correctly

96

5.2 Empirical Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

K
lin
DA

100 Classes
K

lin
DA

200 Classes
K

lin
TS

100 Classes
K

lin
TS

200 Classes
K

lin
TD

100 Classes
K

lin
TD

200 Classes

(a) Interclass task: different kernels

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 1

F
N

M
R

FMR

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6

(b) Interclass task: robustness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 1

F
N

M
R

FMR

SVM Example Task
Bayes Example Task

SVM Class Task
Bayes Class Task

(c) Interclass task: Bayes Classifiers and SVMs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

25 Classes
50 Classes

100 Classes
150 Classes
200 Classes
256 Classes

(d) Interclass task: convergence Bayes Classifiers

Figure 5.6: DET curves for disturbed orthant tasks

determine the class c. Otherwise, this is not possible. However, one can use the
signs of the indices of x to determine some k̃ ∈ {−1, 1}n and can calculate the
class probabilities. For any x with max{|xt|} ≤ n

√
0.5 and corresponding k̃ the

class probabilities are

p(C = c|X = x) =

p2−p1
1−p1

if c = k̃
1−p1+p2

(1−p1)(2n−1−1) otherwise.

Now, results for the disturbed orthant task are presented. For the measurements
p1 = 0.5 and p2 = 0.85 are selected. Again, the model selection heuristic is used to
find good parameters. Similar to the orthant type task, an EPCR of 8 is selected
for the training sets and test sets and the penalty parameter C is set to 1,000. In
the test sets 100 classes are used. The kernels which lead to the best results in
the orthant task lead to the best results in the disturbed orthant task, too (see

97

5 Efficient Implementation and Numerical Results

Figure 5.6a). Figure 5.6b shows that those results are robust. There, the model
using K lin

TD obtained by training 200 classes is used. Test Set 1 denotes the test set
which was already used in the interexample task. In Figure 5.6c Bayes’ DET curves
of Test Set 1 in the interclass and interexample task are presented. The pairwise
Bayes’ Classifier of the interexample task only uses the existing 100 classes. Note
that the Bayes’ DET curve of the interclass task and the Bayes’ DET curve of the
interexample task intersect. Additionally, in Figure 5.6c the DET curves of Test Set
1 of two SVMs are provided. For both SVMs C = 1,000 and K lin

TD is chosen. Both
training sets consist of 100 classes with an EPCR of 8. One training set is created
according to the interexample task, while the other one is created according to the
interclass task. Interestingly, both DET curves approach the Bayes’ DET curve of
the interclass task for sufficiently large FMRs.

Additionally, the convergence of Bayes’ DET curves in the interexample task for
an increasing number of used classes is analyzed. To this end, another test set
consisting of 25 classes with an EPCR of 8 of dimension n = 9 (256 classes) is
created. This test set is always used in Figure 5.6d. There, Bayes’ DET curves
for different numbers of classes are presented. In other words, any Bayes classifier
assumes that the given number of classes exist. However, there are only 25 classes
in the test set. Note that the subset relation discussed in Section 3.4 is valid in
those measurements. Figure 5.6d demonstrates that the Bayes’ DET curves of the
interexample task empirically converge to the Bayes’ DET curve of the interclass
task for an increasing number of classes.

5.2.4 Disturbed Single Interval Task

Now, the disturbed single interval task of dimension n is defined. There, one
sets p0 = 0 and selects pi ∈ [0, 1], i = {1, . . . , 10} with pi ≤ pj for i < j. In
order to draw an example x ∈ {−1, 1}n of the double interval task one firstly draws
k ∈ {1, . . . , n} and p ∈ [0, 1]. Then, one calculates

h := max{z ∈ {0, 1 . . . , 10} | pz < p} − 6

and sets
k̃ := mod((k + h), n) + 1

where mod is the modulo operator. Now, one draws l ∈ {k̃, . . . , n} and sets

xt :=
{

1 if k̃ ≤ t ≤ l,

−1 otherwise .

98

5.2 Empirical Results

Then, the class c of the example x is given by c(x) := k. Obviously, there is a close
connection between the double interval type task and the disturbed single interval
type task. However, there are two differences. Firstly, one positive interval exists in
the disturbed single interval task while there are two positive interval in the double
interval task. Secondly, any starting index may be modified in the disturbed single
interval task while the starting indices are fixed in the double interval task.

In general, it is not possible to uniquely determine the class c of a given example x.
However, one can recover k̃ and l by any given example. This enables to calculate
all class probabilities. Therefore, it is possible to obtain pairwise Bayes’ Classifiers
and to calculate Bayes’ DET curves.

Figure 5.7 presents different Bayes’ DET curve of a test set. In this test set, n = 500
and p is selected according to the following table.

i 0 1 2 3 4 5 6 7 8 9 10
pi 0 .01 .03 .05 .1 .15 .85 .9 .95 .97 .99

The test set consists of 25 classes with a constant EPCR of 8. Interestingly, many
Bayes’ DET curves intersect. Again, the Bayes classifiers of the interexample task
converge empirically to the Bayes classifier of the interclass task. The interclass
Bayes classifier is denoted by Bayes500 in Figure 5.7.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.001 0.01 0.1

F
N

M
R

FMR

Bayes25
Bayes50

Bayes100
Bayes200
Bayes350
Bayes500

Figure 5.7: Bayes’ DET curves for disturbed single interval tasks

5.2.5 LFW Database

The Labeled Faces in the Wild (LFW) dataset [25] consists of 13,233 images of
5,749 persons. Several remarks on this dataset have to be described. Firstly, the

99

5 Efficient Implementation and Numerical Results

dataset is very inhomogeneous. There are only 1,680 persons with two or more
images. Moreover, there are persons with up to 530 images. Secondly, in [25] there
are two standard test procedures suggested for this dataset. Here, the unrestricted
test procedure is used. This test procedure is a fixed tenfold cross validation in the
interclass setting, where each test set consists of 300 positive pairs and 300 negative
pairs. Thirdly, there are several feature vectors available for the LFW dataset. The
presented measurements mainly follow article [35] and use the scale-invariant feature
transform (SIFT)-based feature vectors for the funneled version of LFW which are
described in [21]. In addition, the aligned images presented in [47] are used as well.
Again, following [35], the aligned images are cropped to 80×150 pixels and are
then normalized by passing them through a log function (log(x+ 1)). Afterwards,
the local binary patterns (LBP) (see [30]) and three-patch LBP (TPLBP) (see
[46]) are extracted. In contrast to [35] the pose is neither estimated nor swapped.
Furthermore, no PCA is applied to the data. As the norm of the LBP feature vectors
is not the same for all images those features are scaled to unit norm.

For models selection, the View 1 partition of the LFW database is recommended
[25]. In this partition Kpoly

TD works best independently of the chosen type of fea-
ture vector. Additionally, the model selection technique was applied to the LFW
database. Due to the inhomogeneity of the dataset the model selection technique
is only used to select the pairwise kernel. By the pair task and the interexample
task the same results as by the View 1 partition are obtained. It seems that Kpoly

TD

will work best in this dataset independently of the chosen feature vector.

In addition, using the idea of the model selection technique in Section 3.4 an in-
teresting analysis about the EPCR by means of the SIFT-based feature vectors is
presented. In Figure 5.8a 42 classes are used. There, it is shown that the perfor-
mance in the interexample task increases with an increasing EPCR. In particular,
a constant EPCR of 5 seems to be too small. Hence, this dataset seems to suf-
fers from a small EPCR (2.3 in average). Fortunately, using an EPCR of 5 and
increasing the numbers of classes in the training set increases the performance in
the interexample setting, too (see Figure 5.8b).

Now, the interclass task is analyzed by the tenfold cross validation mentioned above.
The speed up technique presented in Section 5.1 enabled to train with large numbers
of training pairs. However, if all pairs are used for training, then any training set
would consist of approximately 50,000,000 pairs and the training would still need too
much time. Hence, whereas in any training set all positive training pairs are used,
the negative training pairs are randomly selected in such a way that any training
set consist of 2,000,000 pairs. The training of all ten models took less than 24

100

5.2 Empirical Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

EPCR=5
EPCR=10
EPCR=15
EPCR=20

(a) Interexample task: different EPCRs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

42 Classes
62 Classes
96 Classes

158 Classes

(b) Interexample task: different class numbers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.001 0.01 0.1 1

F
N

M
R

FMR

SIFT
LBP

TPLBP
LBP+TPLBP

SIFT+LBP+TPLBP

(c) Interclass task: different feature vectors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1

F
N

M
R

FMR

SIFT+LBP+TPLBP
PLDA Combined

Commercial System

(d) Interclass task: comparison to other classi-
fiers

Figure 5.8: DET curves for the LFW dataset

hours in this case. Figure 5.8c presents the average DET curves for feature vectors
based on SIFT, LBP, and TPLBP. Inspired by [35] the decision function values of
these pairwise SVMs are added and two further DET curves are obtained. This led
to very good results (see Figure 5.8c). Furthermore, the SIFT, LBP, and TPLBP
feature vectors were concatenated. Surprisingly, the training of some of those
models needed longer than a week. Therefore, these results are not presented.

In Table 5.4 the mean equal error rate (EER) and standard error of the mean (SEM)
for several types of feature vectors are provided. Note that many of the presented
results are state of the art or even better. The current state of the art can be found
on the homepage of [25] and in the publication of [35]. If only SIFT-based feature
vectors are used, then the best result is 0.125±0.0040 (EER±SEM). Pairwise SVMs
achieve the same EER but a higher SEM 0.1252± 0.0062. If the decision function
values corresponding to the LBP and TPLBP feature vectors are added, then the

101

5 Efficient Implementation and Numerical Results

result 0.1210± 0.0046 is slightly worse compared to 0.1050± 0.0051. One possible
reason for this fact might be that the pose was not swapped. Finally, for the added
decision function values, the performance 0.0947±0.0057 is significantly better than
0.0993±0.0051. Furthermore, it is worth noting that the SEM of pairwise SVMs are
comparable to the other presented learning algorithms although most of them use a
PCA to reduce noise and dimension of the feature vectors. Only for the SIFT based
feature vectors the SEM of pairwise SVMs is larger. Note that the commercial
system uses outside training data. In other words, the commercial system uses
another test protocol which includes data not part of the LFW database.

SIFT LBP TPLBP L+T S+L+T CS
Pairwise Mean 0.1252 0.1497 0.1452 0.1210 0.0947 -
SVM SEM 0.0062 0.0052 0.0060 0.0046 0.0057 -

State of Mean 0.1250 0.1267 0.1630 0.1050 0.0993 0.0870
the Art SEM 0.0040 0.0055 0.0070 0.0051 0.0051 0.0030

Table 5.4: EER and SEM for LFW database. Abbreviations: S=SIFT, L=LBP,
T=TPLBP, +=adding the decision function values, CS=Commercial
system face.com r2011b

Additionally, in Figure 5.8d the DET curve of the added decision function values of
SIFT, LBP and TPLBP is presented. Moreover, the DET curve of the probabilistic
linear discriminant analysis (PLDA Combined), the current state of the art, and the
DET curve of a commercial system (CS) are presented. The DET of the commercial
system is below the DET curve of the added decision function values which again
is below the DET curve of PLDA Combined.

5.2.6 Cognitec Databases

In this section results on other face datasets are presented. Those datasets and the
used feature vectors were provided by Cognitec Systems GmbH. However, I am only
allowed to present the performance of pairwise SVMs using those feature vectors
but not to provide those feature vectors or databases. Each feature vectors has
dimension 1952 and is normalized. In total, there are three different datasets: the
Cognitec-Train dataset, the Cognitec-Test-B dataset and the Cognitec-Test-
A dataset. The first dataset is used for training, the other two datasets are used for
testing. Please note that the two test sets are created according to the interclass
setting with respect to the training set.

102

5.2 Empirical Results

Now, those datasets are described. The Cognitec-Train dataset consists of 122,052
images of 20,981 persons. This dataset is very inhomogeneous. There are 6,304
persons which are represented by 1 image, while there are persons represented by
up to 191 images. See Table 5.5 for an overview of the EPCRs. In this dataset,
there are 3,077,129 positive pairs. However, 1,000,000 of those pairs belong to 177
persons and 2,000,000 of those pairs belong to 389 persons.

EPCR Classes EPCR Classes
1 6304 7 952
2 7138 8 180
3 1375 9 146
4 629 10 71
5 378 11-100 1306
6 2321 101-191 181

Table 5.5: EPCR and number of classes for CognitecTrain

The Cognitec-Test-A dataset consists of two parts, namely a probe and a gallery.
The probe consists of 3,174 images of 1,347 persons while the gallery consists of
9,302 images of 3,103 persons. Note that there are 13 persons in the probe which
are not represented in the gallery. For this dataset another test setting is used. In
this setting one firstly creates all pairs whose first image belongs to the probe and
whose second image belongs to the gallery. Then, one has to determine whether
those pairs are positive or not. In this setting, there are 19,984 positive pairs and
around 29.5 million negative pairs. The DET curve is represented in Figure 5.9.

The Cognitec-Test-B dataset consists of 2,000 passport-style images of 1,005 per-
sons. Here, 995 persons are presented by 2 images and 10 persons are presented by
1 image. Note that reflexive test pairs are not used in Figure 5.9.

The Cognitec-Train and the Cognitec-Test-A dataset come from many different
sources. For instance, some pictures have been taken in a labor or are passport-like,
while other pictures have been taken in real life with strong expressions, occlusions,
or different poses.

For training all existing classes of Cognitec-Train are used. At the same time, each
person is represented by at most 8 images. Hence, 64,773 examples were used for
training. This yields to a training set consisting of 191,149 positive training pairs
where 126,376 pairs are not reflexive. Additionally, around 23 million negative pairs
are used.

103

5 Efficient Implementation and Numerical Results

It was considered to apply and present other pairwise classification techniques to
those training sets but several problems occurred. Firstly, source codes are some-
times not available. Secondly, many methods are only able to handle up to 10,000
pairs within an acceptable training time. In other words, only 20,000 examples
could be used. Thirdly, many different models for pairwise SVMs and the presented
datasets were calculated. Due to time restrictions it would be impossible to test
as many models for any technique as there were tested for pairwise SVMs. Thus,
any comparison would not be fair. Therefore, only the performance of the angle
classifier is presented. This classifier uses the angle between each pair of examples.
For Cognitec-Test-B the angle classifier leads to bad but acceptable results with
an EER of 18.1%. Surprisingly, the angle classifier leads to very bad results for
Cognitec-Test-A with an EER of 46.5%. In other words this classifier is not much
better than randomly assigning any pair to be positive or negative.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

F
N

M
R

FMR

PSVM Test A
Angle Test A
PSVM Test B
Angle Test B

Figure 5.9: DET curves for Cognitec datasets

104

List of Symbols

C > 0 Penalty Parameter
g decision function
H a real Hilbert space
k(·, ·) standard kernel
K((·, ·), (·, ·)) pairwise Kernel
M {1, 2, . . . ,m}
m number of training points
N {1, 2, . . . }
l loss function
n dimension of the training points
P probability measure
R+ {x ∈ R | x ≥ 0}
X Input Space
Y Output Space
Z A Stochastic Process
κ((·, ·), (·, ·)) Outer Kernel
ψ(·) ψ : X → H
(·)+ max{0, ·}
∇ gradient
∇x gradient with respect to x
‖·‖ norm induced by the scalar product
⊕ Direct Sum
⊗ Tensor Product
× Cartesian product
◦ composition of two functions

105

List of Abbreviations

DET Detection Error Trade-off
EER Equal Error Rate
EPCR Example Per Class Ratio
ERM Empirical Risk Minimization
FMR False Match Rate
FNMR False Non Match Rate
i.i.d. Independent and Identical Distributed
KKT Karush-Kuhn-Tucker
LFW Labeled Faces in the Wild
OCSVM One Class Support Vector Machine
PLDA Probabilistic Linear Discriminant Analysis
RBF Radial Basis Function
SEM Standard Error of the Mean
SRM Structural Risk Minimization
s.t. subject to
SV Support Vector
SVM Support Vector Machine
VC Vapnik-Chervonenkis
w.l.o.g. without loss of generalization

106

Index

α-mixing, 18
β-mixing, 18
φ-mixing, 18

Bayes’ Classifier, 30, 49
Bayes’ DET Curve, 49
Bayes’ Rule of Classification, 30
Bound, Risk, 14

Capacity Term, 13, 20
Class, 7
Classification Rule, 21
Classifier, 7
Consistency, 9
Constant EPCR, 46
Constrained Optimization Problem, 3

Decision Function, 7, 21
DET, 47

Empirical Risk, 8
Emprical Risk Minimization, 106
EPCR, 42
Equal Error Rate, 46
ERM, 8
Example, 34
Examples, 34

FMR, 46
FNMR, 46

Generalization, 9

Hilbert space, 65

Hinge Loss, 8

Input Space, 5, 7
Interclass Generalization, 33
Interclass Task, 48
Interexample Task, 48

Kernel, 27, 66
Kernel Trick, 28
KKT, 4

Label, 6
Lagrange Function, 4
LIBSVM, 29
Linear Kernel, 29
Loss Function, 8

Mixing Coefficient, 17

Optimization Problem, 3
Outer Kernel, 66
Output Space, 5

Pair, 34
Pair Task, 48
Pairwise Classification, 33
Pairwise Kernel, 68
Pairwise SVM, 59
Pairwise Symmetry, 35
Penalty Parameter, 21
Performance, 31
Polynomial Kernel, 29
pre-Hilbert space, 65

107

Index

RBF Kernel, 29
Reflexivity, 35
Risk, 8

Scalar Product, 60
SRM, 14
Standard Kernel, 68
Structural Risk Minimization, 106
Supervisor, 6
Support Vector, 28
Support Vector Machine, 21, 26, 106
SVM, 28, 59, 63
Symmetric Pairwise Kernel, 71
Symmetric Training Sets, 77

Training Set, 6
Transitivity, 36

VC dimension, 12

Weighted Loss Function, 31

108

Bibliography

[1] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A New Approach to Col-
laborative Filtering: Operator Estimation with Spectral Regularization. Journal
of Machine Learning Research, 10:803–826, 3 2009.

[2] A. Bar-Hillel, T. Hertz, and D. Weinshall. Boosting margin based distance
functions for clustering. In In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 393–400, 2004.

[3] A. Bar-Hillel, T. Hertz, and D. Weinshall. Learning distance functions for
image retrieval. volume 2, pages II–570–II–577 Vol.2, June 2004.

[4] A. Bar-Hillel and D. Weinshall. Learning a kernel function for classification
with small training samples. In International Conference on Machine Learning
(ICML, pages 401–408, 2006.

[5] A. Bar-Hillel and D. Weinshall. Learning distance function by coding similarity.
In Proceedings of the 24th international conference on Machine learning, ICML
’07, pages 65–72, New York, NY, USA, 2007. ACM.

[6] A. Bar-Hillel and D. Weinshall. Learning distance function by coding similarity.
In Proceedings of the 24th international conference on Machine learning, ICML
’07, pages 65–72, New York, NY, USA, 2007. ACM.

[7] A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein–protein
interactions. Bioinformatics, 21(suppl 1):38–46, 1 2005.

[8] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, March 2004.

[10] R. C. Bradley. Basic properties of strong mixing conditions. a survery and some
open questions. Probability Surveys, 2:107–144, 2005.

109

Bibliography

[11] C. Brunner, A. Fischer, K. Luig, and T. Thies. Association problems and
association support vector machines. Technical Report MATH-NM-05-2010,
Institute for Numerical Mathematics, TU Dresden, 08 2010.

[12] C. Brunner, A. Fischer, K. Luig, and T. Thies. Pairwise kernels, support
vector machines, and the application to large scale problem. Technical Report
MATH-NM-04-2011, Institute for Numerical Mathematics, TU Dresden, 08
2011.

[13] C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines;
Revised 2007, 2001.

[14] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning
from imbalanced data sets. SIGKDD Explor. Newsl., 6:1–6, June 2004.

[15] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-Based Learning Methods. Cambridge University Press,
Cambridge, UK, March 2000.

[16] P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier
under zero-one loss. Mach. Learn., 29:103–130, November 1997.

[17] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order
information for training support vector machines. Journal of Machine Learning
Research, 6:1889–1918, December 2005.

[18] M. Gamassi, M. Lazzaroni, M. Misino, V. Piuri, D. Sana, and F. Scotti. Ac-
curacy and performance of biometric systems, pages 510 – 515. Institute of
electrical and electronics engineers, Piscataway, 2004.

[19] T. Gao and D. Koller. Multiclass boosting with hinge loss based on output cod-
ing. In Proceedings of International Conference on Machine Learning (ICML),
2011.

[20] C. Geiger and C. Kanzow. Theorie und Numerik restringierter Optimierungsauf-
gaben. Springer, 2002.

[21] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric learning
approaches for face identification. In International Conference on Computer
Vision, pages 498–505, Sep 2009.

[22] R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
Cambridge, MA, USA, 2001.

110

Bibliography

[23] T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based distance
functions for clustering. In Proceedings of the twenty-first international con-
ference on Machine learning, ICML ’04, pages 50–, New York, NY, USA, 2004.
ACM.

[24] T. Hertz, A. Bar-Hillel, and D. Weinshall. Learning distance functions for
image retrieval. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 570–577, 2004.

[25] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[26] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic
study. Intelligent Data Analysis, 6:429–449, October 2002.

[27] T. Joachims. Making large-scale svm learning practical. LS8-Report 24, Uni-
versität Dortmund, LS VIII-Report, 1998.

[28] Y. Lin. Support vector machines and the bayes rule in classification. Data
Mining and Knowledge Discovery, 6:259–275, 2002.

[29] M. Mohri and A. Rostamizadeh. Stability bounds for stationary φ-mixing and
β-mixing processes. J. Mach. Learn. Res., 11:789–814, March 2010.

[30] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24:971–987, July 2002.

[31] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an
application to face detection. pages 130–136, 1997.

[32] P. J. Phillips. Support vector machines applied to face recognition. In Advances
in Neural Information Processing Systems 11, pages 803–809. MIT Press, 1999.

[33] J. C. Platt. Sequential minimal optimization: A fast algorithm for training
support vector machines. Technical report, April 1998.

[34] J. C. Platt. Fast training of support vector machines using sequential minimal
optimization, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[35] S. Prince, P. Li, Y. Fu, U. Mohammed, and J. Elder. Probabilistic models for
inference about identity. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 99(PrePrints), 2011.

111

Bibliography

[36] R. Rifkin and A. Klautau. In defense of one-vs-all classification. J. Mach.
Learn. Res., 5:101–141, December 2004.

[37] B. Schölkopf, J. Platt, and A. Smola. Kernel method for percentile feature
extraction. TR MSR 2000-22, Microsoft Research, Redmond, WA, 2000.

[38] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,
MA, USA, 2001.

[39] I. Steinwart, D. Hush, and C. Scovel. Learning from dependent observations.
Journal of Multivariate Analysis, 100(1):175 – 194, 2009.

[40] D. Tasche. Oszillationsmaße und stark mischende zufällige Folgen. PhD thesis,
TU Berlin, 1996.

[41] D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine
Learning, 54:45–66, January 2004.

[42] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September
1998.

[43] J.-P. Vert, J. Qiu, and W. Noble. A new pairwise kernel for biological network
inference with support vector machines. BMC Bioinformatics, 8:1–10, 2007.

[44] M. Vidyasagar. A Theory of Learning and Generalization. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2nd edition, 2002.

[45] L. Wei, Y. Yang, R. M. Nishikawa, and M. N. Wernick. Learning of perceptual
similarity from expert readers for mammogram retrieval. In ISBI, pages 1356–
1359, 2006.

[46] L. Wolf, T. Hassner, and Y. Taigman. Descriptor based methods in the wild.
In Real-Life Images workshop at the European Conference on Computer Vision
(ECCV), October 2008.

[47] L. Wolf, T. Hassner, and Y. Taigman. Similarity scores based on background
samples. In ACCV (2), pages 88–97, 2009.

[48] B. Yu. Rates of convergence for empirical processes of stationary mixing se-
quences. Ann. Prob. 22, 94-116 (1994)., 1994.

[49] B. Zou, L. Li, and Z. Xu. The generalization performance of erm algorithm
with strongly mixing observations. Machine Learning, 75:275–295, June 2009.

112

Affirmation

Hereby I affirm that I wrote the present thesis without any inadmissible help by a
third party and without using any other means than indicated. Thoughts that were
taken directly or indirectly from other sources are indicated as such. This thesis has
not been presented to any other examination board in this or a similar form, neither
in Germany nor in any other country.

I have written this dissertation at Dresden University of Technology under the sci-
entific supervision of Prof. Dr. rer. nat. habil. Andreas Fischer.

There have been no prior attempts to obtain a PhD at any university.

I accept the requirements for obtaining a PhD (Promotionsordnung) of the Faculty
of Science of the TU Dresden, issued February 23th, 2011.

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in
gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die vorliegende Dissertation habe ich an der Technischen Universität Dresden unter
der wissenschaftlichen Betreuung von Prof. Dr. rer. nat. habil. Andreas Fischer
angefertigt.

Es wurden zuvor keine Promotionsvorhaben unternommen.

Ich erkenne die Promotionsordnung der Fakultät Mathematik und Naturwissen-
schaften der TU Dresden vom 23. Februar 2011 an.

Place, Date Signature

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Optimization Theory
	Statistical Learning Theory
	Model of the Data Generating Process
	Empirical Risk Minimization
	Structural Risk Minimization
	Learning from Dependent Identically Distributed Data

	Support Vector Machines
	Reformulated Optimization Problems
	Nonlinear SVMs

	Bayes' Rule of Classification
	Quality of a Classifier

	Pairwise Classification
	Properties of a Pairwise Decision Function
	Pairwise Data Generating Process
	Using a Subset of All Existing Pairs
	Drawing the Pairs Directly
	A New Pairwise Data Generating Process

	Evaluating the Quality of a Pairwise Decision Function
	A Heuristic Model Selection Technique
	Pairwise Bayes' Classifiers
	Bayes' DET Curves
	Properties of Pairwise Bayes' Classifiers
	Examples of Pairwise Bayes' Classifiers for Interclass Tasks and Interexample Tasks

	Pairwise Support Vector Machines
	Decomposing Decision Functions
	Linear Pairwise SVMs
	Nonlinear Pairwise SVMs

	Evaluating Pairwise Kernel Function Values
	Pairwise Symmetry, Projections, and Information Loss
	Symmetric Training Sets
	Connecting Projections and Symmetric Training Sets
	Remarks

	Efficient Implementation and Numerical Results
	Implementing Pairwise SVMs Efficiently
	Caching the Standard Kernel Values
	Further Implementation Details

	Empirical Results
	Checker Board Task
	Double Interval Task
	(Disturbed) Orthant Task
	Disturbed Single Interval Task
	LFW Database
	Cognitec Databases

	List of Symbols
	List of Abbreviations
	Index
	Bibliography

