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Synopsis

Based on the superposition principle, any two states of atguasystem may be coherently
superposed to yield a novel state. Such a simple construidiat the heart of genuinely
guantum phenomena such as interference of massive particlguantum entanglement.
Yet, these superpositions are susceptible to environmiefiteences, eventually leading to a
complete disappearance of the system’s quantum characiainciple, two distinct mech-
anisms responsible for this processdacoherencenay be identified. In @lassical deco-
herencesetting, on the one hand, stochastic fluctuations of claksambient fields are the
relevant source. This approach leads to a formulation mgef stochastic Hamiltonians; the
dynamics isunitary, yet stochasticln aquantum decoherenaxenario, on the other hand,
the system is described in the languag®pén quantum systemslere, the environmental
degrees of freedom are to be treated quantum mechaniaaly, Tthe loss of coherence is
then a direct consequence of growing correlations betwgsters and environment.

The purpose of the present thesis is to clarify the distimchietween classical and quan-
tum decoherence. Itis known that there exist decoheremmegses that are not reconcilable
with the classical approach. We deem it desirable to havmplsj feasible model at hand
of which it is known that it cannot be understood in terms oftikating fields. Indeed, we
find such an example ¢fue quantum decoherenc&he calculation of the norm distance to
the convex set of classical dynamics allows for a quantgatissessment of the results. In
order to incorporate genuine irreversibility, we extengldhiginal toy model by an additional
bath. Here, the fragility of the true quantum nature of theadgics under increasing cou-
pling strength is evident. The geometric character of outifigs offers remarkable insights
into the geometry of the set of non-classical decoherengesmée give a very intuitive geo-
metrical measure—a volume—for th@antumnesef dynamics. This enables us to identify
the decoherence process of maximum guantumness, thaviisghmaximal distance to the
convex set of dynamics consistent with the stochasticsidakapproach. In addition, we
observe a distinct correlation between tiezoherence potentiaff a given dynamics and its
achievable quantumness. In a last step, we study the ndtigmamtum decoherence in the
context of a bipartite system which couples locally to thesystems’ respective environ-
ments. A simple argument shows that in the case of a sepagabi®nment the resulting
dynamics is of classical nature. Based on a realistic exyri, we analyze the impact of
entanglement between the local environments on the natuhe alynamics. Interestingly,
despite the variety of entangled environmental statediszed, no single instance of true
guantum decoherence is encountered. In part, the idetitficaf the classical nature re-
lies on numerical schemes. However, for a large class ofrdigsa we are able to exclude
analytically the true quantum nature.
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1 Introduction

A thorough introduction to quantum theory cannot go withihet discussion of a double slit

experiment involving massive particles. It works best teraplify the seemingly paradox-

ical wave-like interpretation of massive objects firstaatnced by de Broglie in 1924 (see
references in[1]). In the experiment, a beam of neutrorrsgample, is aimed at a screen
with two parallel slits. At a certain distance behind, a setecreen is placed, allowing for
the detection of the transmitted neutrons with spatiallegiem. According to classical me-

chanics, the expected distribution pattern of the neuti®asnply the sum of the patterns of
the individual slits. The experiment, however, reveals itecifferent outcome (Fid._111).
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Figure 1.1: Experimentally obtained interference pattern of neutidiffsacted by a double
slit. The points represent data taken in the actual expatimaile the solid curve displays
the theoretical, quantum mechanical prediction (Pictaken from[2]).

In order to explain the intensity pattern of the incidentrhean the second screen, one
has to account for interferences between the partial wamgslling through either one of
the slits. For larger particles, the manifold interactiovith their surroundings become less
and less controllable. With increasing interaction, thiesacpath of an individual particle
becomes ever more defined. As aresult, the wavelike deiseriptthe propagation has to be
abandoned in favor of a classical, trajectory-based int¢apion. This is part of the reason
why the observation of quantum interference becomes isirgly difficult with growing
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Figure 1.2: (a) In recent experiments, interference effects with lasgganic molecules
are studied([3]. Depicted here is a schematic image of TPPRith a total number of
430 atoms, adding up to a mass of 5310 AMU (atomic mass unitsg. bar in the lower
left corner corresponds to 10 A. (b) The recorded diffraciiattern (black dots) is in line
with the theoretical model (solid line) involving quantumtdrference. Note, that in this
experiment a grating instead of a double slit is used (Risttaken from [3]).

object size (see Fig.1.2).

Mathematically, the ability of a quantum system to intezfisrdescribed by its coherences,
stemming from a coherent superposition of distinct staRrecesses leading to a decrease
of the coherences, thereby destroying the interferenangiat, are usually subsumed under
the namedecoherenceNot only is decoherence responsible for the absence of inése
ference of massive particles, it may also be seen as the masom for the emergence of
classicality on a human scale [4/5, 6]. In general, dampdogylation transfer) is to be dis-
tinguished from decoherence (the loss of phase relatioasertain basis). While damping
necessarily implies decoherence, the converse need naidéot suitable interactions. In
many instances, e.g., the coherences of a quantum systeyaih a rate much larger than
the rate at which energy is transferred to the environmerterins of the time scale defined
by this larger rate, the coherences are then typically gy before the system relaxes into
a stationary staté [7]. Such dynamics are typically retktoeaspure decoherencer phase
damping(also known aslephasing

Yet, even on a microscopic scale, the effect of decohererameaften not be neglected.
This is especially true for attempts to exploit the vast pti&d forecast to applied quantum
information processing, where the information to be preedds encoded in coherent super-
positions of states. The potential applications range fiteeractual realization of a quantum



computer, to quantum cryptography protocols, the telagiort of quantum states, or quan-
tum dense coding [8, 9]. The exponential increase of Hileaice dimension with growing
system size leads to a tremendous superiority of certaintgoaalgorithms over conven-
tional, classical schemes. However, the processing, gdond transmission of quantum
information require very high experimental accuracy. Thditg to avoid or correct po-
tential errors is of great significance for their successis thus indisputable that sound
knowledge of the relevant decoherence mechanisms is needed

At this point, a very important question has to be asked: maméat is the origin of
decoherence? What sort of microscopic models have to beinsedler to account for
the loss of coherences? May the phenomenon be described frathework of quantum
mechanics—that is, from within the theory itself? Or does aped some additional input
to the quantum mechanical description? Put more boldlyyésemergence of classicality a
pure quantum effect?

It may not come as a surprise that the question evades aneswgr It is of course true
that decoherence may be introduced based on the situatierewbth the system of interest
and its environment are treated quantum mechanically [5.ad immediate aftermath of
almost any interaction, system and environment build upetations which induce a loss of
the coherences of the system. Often, yet not necessamlye tborrelations are of quantum
nature [10]; system and environment are then said terttengled This understanding of
decoherence stemming from the coupling to a quantum emmieoh represents the standard
textbook approach. For obvious reasons, we will refer t® soenario agquantum decoher-
ence

However, decoherence may also be introduced without imgp&iquantum environment at
all. In this case, the ways to theoretically approach thesy®f interest and its surroundings
differ substantially. While the system is described in theguage of quantum mechanics,
there is no need to quantize the ambient degrees of freedatheRthe environment may be
treated as classical input into the system’s quantum geixri Its influence is incorporated
as a classical parameter in the system Hamiltonian. As atypmital example, consider a
single spin exposed to an electromagnetic field. In the chaestrong field, the influence
of the spin on the field may be weak enough to disregard. S$ticHaictuations (spatial or
temporal, e.g.) of the ambient field are then a source of d@eolse of the system. The time
evolution may thus be described in terms of a stochastic laman. We refer to this notion
of decoherence adassical decoherence

Classical decoherence scenarios have played an esseitiah the modelling of deco-
herence in a controlled fashion, both in theory and in expenit (see [11] and references in
[6]). They have also been identified the relevant decoherence mechanism in ion trap quan-
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tum computers where fluctuations are present both in the atiadgield of the trap and in the
frequency of the laser addressing the individual ions[[B?, Also, the very often employed
model of Markovian dephasing [14,115,/16], which is desatilreterms of a Lindblad mas-
ter equation, belongs to the classical regime since amasi@int Lindblad operator may be
identified with a white noise term in a suitable Hamiltonian.

Yet, the question may not be side-stepped: How generic sscihssical approach to de-
coherence? May any loss of coherence be explained in thiofés Due to their unitary yet
stochastic character the classical decoherence procasseséten denotedandom unitary
(RU). It is known that for quantum systems of small dimensiaramely, dimension 2 and
3—any phase-damping process may be explained in terms ofyRahucs. For higher di-
mension, however, this ceases to be true([17, 18]. So fae theno known simple criterion
able to decide whether a given dynamics is of RU type. In fdespite the notable atten-
tion the issue has received lately [19] 20, [21,[22, 23], vitthe is known about the nature
of true quantum decoherence, that is, decoherence that may noplzned in terms of a
classically described environment.

This question is also relevant in the context of environraasisted error correction,
where the actual correction procedure is conditional ossital information obtained from
a measurement on the environment. Such a correction scheswgdessful if and only
if the error mayin principle be described in terms of RU dynamic¢s [19]. More recently,
processes of this kind have also been applied to quantunonevi24 [ 25 26], where the
authors study the asymptotic dynamics under repeatedcafiphh of RU channels and find
an attractor space of reasonably low dimensions.

In the present thesis we discuss possible ways to distingui® quantum decoherence
from RU dynamics. The analysis is based on the language aftgrachannels, which
may be regarded as one of the most general approaches tagudyhamics. We deem it
desirable to have a simple, explicit example of quantum lde@nce at hand of which it is
known that it cannot be expressed using stochastic Haridhsn Based on this physically
feasible model, we analyse different measureguEntumnesswhich give an estimate of
how non-classical a certain decoherence process is. Oimdmédllow us to introduce a new,
geometrically motivated measure of quantumness. Due tinitple and intuitive character
we are thus enabled to characterize the set of true quantasegltamping channels, leading
to identification of the channel of maximum distance to thevea set of RU dynamics.

Structure of the Thesis

The thesis is structured as follows. In Chajpier 2 we begih wisummary of the basic the-
oretical concepts used. We formally introduce the notioargéinglement and give accounts



of how it can be measured. The differentiation of decoherdnto classicaland quantum
is discussed in detail. Also, some examples for both notawasshown. For the dynamical
description of quantum systems we choose the language ofuquachannels, allowing for
a very general formulation of time evolution. Further cqutseinclude the Jamiolkowski
isomorphism and certain classes of generalized measuriel will play a significant role
in the characterization of decoherence.

In Chaptef B we lay the formal groundwork for the discrimioatof classical and quan-
tum decoherence. Inits pure form, it is based on extremaility respect to the convex set of
guantum channels. We present a toy model for which we shawittb@nnot be understood
in terms of a classical decoherence process. The resuliangnels are analyzed with respect
to their quantumness, i.e., the norm distance to the coretesf £hannels representing clas-
sical decoherence. The toy model is then extended in ordecdoporate true irreversibility,
which makes the decoherence scenario more realistic. Atjgmuantumness of the result-
ing dynamics is studied and compared to the original, réverscenario.

In Chaptef 4 we introduce an intuitive, geometric measuréi® quantumness of dynam-
ics. It is based on a simple volume related to a representafithe corresponding channel
using vectors in real space. The geometric character ofahdyrintroduced measure per-
mits us to characterize the set of phase-damping channé&gosqubit systems with respect
to their quantumness. In order to validate our findings, wepare it to yet another measure
of quantumness which is based on the channel-state duatityduced by Jamiolkowski
[27]. Using the toy model presented in Chafter 3, we compaeedifferent methods of
guantification.

In Chaptei b we study whether entanglement between locatvaiss may effect the cat-
egory (classical or quantum) to which a channel belongs. dibeussion is based on an
existing experimental setup. On the basis of a model whiciples the two elements of a
bipartite system to their respective local environmeniféerént initial configurations of the
environmental state are analysed.

Finally, in Chaptel 6 we summarize and discuss future petisjes.






2 State of the Art

The present chapter discusses the basic theoretical dsnmoegded for the thesis at hand.
In most applications of quantum information processingaeglement is the core ingredient
responsible for the superior efficiency as compared to cdiveal classical schemes. Based
on this central significance, the chapter commences witled ibtroduction into entangle-
ment theory. Starting with the rather tractable pure stagmario, we hint at difficulties
arising in the context of mixed quantum states. Here, waudistwo different ways of inter-
preting the amount of entanglement contained in a giver.skataddition, we briefly discuss
entanglement in systems described by continuous variaBes relevant antagonist to en-
tanglement, decoherence is presented thereafter. We tiefirthistinction between classical
and guantum decoherence—a distinction that plays a caoimin the present thesis. In
order to shed some more light on the different approachegxpiere several examples.

The language of quantum channels offers a remarkably e#ewcty to describe dynamics
of qguantum systems in a very general manner. Indeed, no asisus about the underlying
processes have to be made; rather, the approach is suibakieuftions where little to noth-
ing is known about the microscopic mechanisms involved eNabwever, that the approach
is limited due to its fundamental assumption of no initialretations between the system of
interest and its environment. As an example of the quantuenrodl formalism we discuss
the class of random unitary (RU) channels, whose elemeatstachastic mixtures of uni-
tary dynamics. These RU channels will be ideally suited tonfdly describe the notion of
classical decoherence.

The Jamiolkowski isomorphism, introducing an intriguingadity between the dynamics
(quantum channels) and states of quantum systems, haspaavseful concept in several
contexts. It also plays a role in the present thesis, andbeiincluded in this chapter. For
completeness, we also briefly discuss the “classical” forth@Birkhoff theorem (see [17],
e.g.). The significance becomes clearer only after beinglaged into its quantum version
in Chapte.B. The present chapter concludes with a brietid&on of positive operator-
valued measures (POVMs), which are a general way to destrdasurements in quantum
mechanics. In particular, the classsyimmetric informationally complef2OVMs will play
arole in the subsequent discourse.



2 State of the Art
2.1 Entangled States

The idea ofentanglemengoes back to the early days of quantum theory. In fact, it was
Schrédinger himself who was the first to speak of the seemipgtadoxical situation that
“the best possible knowledge of the whole does not necésgariude the best knowledge of
all its part" [28] (translation after[[29]). Mathematically, pure-steentanglement follows
from the tensor product structure of Hilbert space desugilmhultipartite systems together
with the superposition principle. Consider, e.g., a bipgguantum system consisting of two
parts.A and B, which is described in terms of the product of the individH#bert spaces,
H=3H,Hs. Apure state is calledeparabldf it can be written as a product of subsystem
states, that is

W) =) @[v), 1) €Halv) € Hsp. (2.1)

As an immediate consequence one may note that a measureenfamted on one subsys-
tem has no direct influence on the state of the other. In cetnfi@r an entangled pure state
one cannot find a similar representation. By means of locel, (acting solely on either

subsystem) unitary transformations, it is however posdibhwrite the state as

N
W)= 3 VAle)@lf), A >0 N<min{Ny N} @2)

where appropriate baség )}, of H4 and{|f;) 'j\'il of Hg are to be found [30]. This is
subject matter of the so-call&sthmidt decompositio@0]. The Schmidt coefficients; are
often combined in th&chmidt vecton. N is usually called th&schmidt rankof the state;

for N = min{N¢,N,} andA; = 1/ /N the state is said to be maximally entangled.

Entropy of Entanglement

Pure state entanglement can be detected rather easily. d Beseahe observation by
Schrédinger, namely that knowledge about a composite dtas not necessarily improve
knowledge about its compounds, one may define a measure afgheinent: the less is
known about the subsystem, the more entangled the full. stégeentropy of entanglement
is a way to formally conceive this approach [31]. For the pstae|W) € Hy @ Hgp, it

estimates the amount of entanglement in terms of the von ldearantropy of the reduced

IThat is, the parameters describing the individual parts beajndeterminate, while the global state is fully
known.
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states

E(W) =S(pa) = S(Ps), (2.3)

whereS(p) = —trplog, p. The reduced states are obtained by tracing out the dedgrées-o
dom of either subsystem, e.guq = tryg,, W) (W] = 3 (fi | ¥Y)(W] fi), where{|f;)} denotes
an arbitrary basis df(3. In terms of the Schmidt coefficients this simply reduce$3j [

E(W) = iiMWML (2.4)

In this form it is obvious that the entanglement entropy obepound is symmetric with
respect to its constituents. The quantiyanges from zero for a product state toJdgfor
a maximally entangled state.

2.1.1 Mixed-State Entanglement

For a physical system in a mixed state it turns out to be mucterdifficult to detect en-

tanglement([32]. Here, separability is not synonymous ®dtate being in product form
(cf. Eq. [2.1)); rather, one has to distinguish betwgaantum correlationgi.e., entangle-

ment) ancclassical correlations A mixed state is called separable (or classically coreelat
if statesa; on H 4 andT; on Hg exist with [33

P:ZMG®E n>QZn:L (2.5)

In general, mixed state entanglement can be detected veithelp of positive maps [34].
A linear mapA is called positive, if it maps positive operators on positdnes, that is if

A(p) >0 forallp>0. (2.6)

The identification of an entangled state relies on the feat ghtrivial extension of such a
positive map/A ® 1, wherel,, is the identity operator in dimensian need not be positive
any more.

In our bipartite situation we may thus define a mfap 1, with A a positive map o 4
and the identity oriH{g. When applied to a separable state,

(Ael)p=73 piA(0)®T, (2.7)
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the result is still a positive operator. In case of an enthgttate, however, the final state
need not be positive any more. By means of an appropriatéi@osiap/\, any entangled
state may be identified in this vein [34]. It is, however, nbtious a priori how to construct
such arentanglement witnesd he transpositiom embodies a prominent example of such
a map, first used in the context of entanglement theory bysH8E]. It is easily verified
that the transposition is positive. Consider, howevergctse of a bipartite quantum system,
H=H,xHg. Applying T to either one of the subsystems while leaving the other ereait
defines thepartial transposition T 1 (or 1 ® T), which is not a positive map anymore.
Let us consider a system of two qubits, for example, whiclm ihée entangled state)) =
(]00) +[11)) / v/2. Applying the magl ® 1 to this state yields

=2 , (2.8)

=

<

I

N |
B O O
©O o o o
© o o o
B O O K

NI
© o o
o r OO
© O r O
P O O O

which has a negative eigenvalue. The partial transposisidhus able to identify the state
as being entangled. For systems of dimension22and 2x 3 it was shown, moreover, that
negativity under the map ® 1 is not only a sufficient but also a necessary criterion for a
state to be non-separable [35].

Entanglement of Formation

In the attempt to evaluate mixed state entanglement the/sigms’'s entropy alone does not
suffice. Moreover, it is even hopeless to completely charat mixed state entanglement
with a single parameter. This is due to the fact that bothsidas and quantum correla-
tions are encountered [14]. Tleatanglement of formatiois one way to give a physically

meaningful definition of an entanglement measure [31]. dk#ofor the minimum amount

of pure state entanglement that is needed in order to recohshe mixed state. It requires
a minimization over all possible decompositions into pustes:

E ‘= min iE(Y) - VWD (W] = 2.9
F(P) @thi)}{Zpl (Y) Izp||‘.U|><(.U|| P} (2.9)
This is the so-calledonvex roof constructionf an entanglement measure. In general, the
task of finding the decomposition optimal in the sense of Ed)(requires a multidimen-
sional optimization procedure. One possible way to contjmurtally approach this problem

is outlined in App[A.1.

10



2.1 Entangled States
Entanglement of Assistance

The entanglement of assistanogay be motivated in a scenario where three partiesR,
and C) share multiple copies of a pure staf#)) [36,37]. One of the three, the so-called
“helper” €, tries to assist by performing measurements in order to miagi the entangle-
ment shared by the other two parties. Any classical infoionait obtains from the mea-
surements it is allowed to transmit. The task is thus to ifietie potentially available
entanglement “hidden” in the stapgs = tre(|W) (W)).

Maybe surprisingly, the hereby defined quantity is an attelof the reduced staj@,5
alone. It may be evaluated via [37]

Ea(pas) = (max, {Z PiE() : Zpi|llli><lﬂi|zpm3}. (2.10)
Note that the entanglement of assistari€g, is in a sense dual to the entanglement of for-
mation: replacing the max in Eq.(2]10) with min yields Eq9]2

Several bounds to the entanglement of assistance have desified, including then-
tropic bound[37,,[3€]. It is given by the minimum of the partial entropies by the parties
A andB,

Ea(pas) < min{S(PA)vs(PB)}7 (2.11)

wherep, andpz denote the states obtained as the partial tragg gfover subsystert® and
A, respectively.

2.1.2 Entanglement with Continuous Variables

A prototypical example of a quantum system described in gesfrcontinuous variables is
a bosonic field mode, described by an infinite dimensionabétil space. The canonical
coordinates of position and momen@nme [39]

1. 1

A st
) b= pa-d) @12

2Note that in the present section we use the common mode afrdisation between quantum operators and
classical variables: the former are equipped wittaa

11
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wherea &' are the bosonic annihilation and creation operators, ofispé. Such a quantum
system with stat@ is uniquely determined by its characteristic functionl [40]

x(n)=tr [f) e”éf‘”*é} , (2.13a)

wheren € C. Besides this symmetrically ordered function one may aéfmd characteristic
functions that are normally and antinormally ordered,

xn(n) =t |pend end| — x(n) e/, (2.13b)
Xa(n) =tr [f) e”*ée”ﬂ = x(n) e ¥/2nP, (2.13¢)

Performing a two-dimensional Fourier transform on theseatteristic functions the corre-
sponding phase space functions are obtained [40],

f(6.P) = F(22) = = [dn x(m) & 2", 214

where the phase-space coordinates are defineq ¥igz+z")/v2,p= (z—z*)/V2i. In
case of symmetric orderind(q, p) is the well-known Wigner function. Commonly, the
following identifications for the characteristic funct®mwith symmetric, normal, and anti-
normal ordering are used

X — Wigner function: f(q, p) =: W(aq, p), (2.15a)
XN — P function: f(q, p) =: P(q, p), (2.15b)
XA — Q function: f(q, p) =: Q(q, p). (2.15¢)

In the following we will consider the Wigner representatiomly.

On basis of the Wigner function of a quantum statthe expectation values of any oper-
atorA may be computed performing the integral

(A = w[pAl
= / dqdp A")(q, p)W(q, p), (2.16)
where the appropriate phase-space representation of énatopis given by

/ / )
AW (q.p) = [dd(a+ 3 IA@ B)la— 3)e M, (2.17)

the so-calledNVeyl-Wigner correspondenél].

12



2.1 Entangled States

Gaussian States

As the name already indicates, Gaussian states stand oub dhe fact that the charac-
teristic function is Gaussian. For a state of N modes withspkepace coordinatd:s:
(Q1, P1, %2, P2, - - -, 0N, Pn) € RN the characteristic function may be expressed as [42]

x(n) =exp{—%nMnT}. (2.18)

where M is the real and symmetric correlation matrix comprised oé thecond
moments([43]

Mij = tr | p(AEAE, +A2,-A$i)/2] :/dz'\'f HEEE. (2.19)

The canonical commutation relations

[&,&)] = /\.,,WIth/\ EB( L ;) (2.20)

lead to the additional constraint for the matkik[43]
M — él_ll\ >0, (2.21)

A prototypical example for an entangled continuous-vdeatate of two modea andb
(with appropriate annihilation operat(maﬁdB, respectively) is the pure two-mode squeezed
state|Wap) = exp{—r (&b — a'b")}|0,0p) [44]. Depending on the amount of squeezing,
measured by the squeezing parametés correlation matrix equates 10 [43]

cosh2r) 0 sinh(2r) 0
M — '0 cosh2r) 0 —sinh(2r) . (2.22)
sinh(2r) 0 cosh2r) 0
0 —sinh(2r) 0 cosh2r)

Performing the Fourier transform on the characteristicfiom yields the Wigner function
of the entangled state,

4 -
W (Ga, Pa; G, Pb) = —eXp{ e % [(Ga+0b)? + (Pa— Pv)?]

—€” [(da— )+ (Pa+ Pp)?] } - (2.23)

As in the finite dimensional case, a possible physical im&tgtion of entanglement in the

13
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two-mode squeezed state relies on the reduced state witmode traced out. At a given
energy, the reduced state (mduraced out) is given by

Weed(Ga; Pa) = / dqb/ d PW(Ga, Pa, O Pb)

2 2(E+ Pd)
M1+ 2sink(r)) eXp{_ (m) } (2.24)

It corresponds to the thermal state of maae With growing squeezing parameterthe
uncertainties in both position and momentum increase. Tikenglement of the total state
may be given in terms of the von Neumann entropy;,

E(p) = cost(r) Iogz<cosﬁ(r)) — sink(r) Iogz(sinhz(r)). (2.25)

It thus depends on the squeezing parameter only. The same ifot the mean number of
photons in the mode, which is given by= sint?r [43].

2.2 Decoherence

The superposition principle states tlatytwo statesys ), |») of a quantum system may be
superposed, yielding the new state) = %(upg + [gr)): “the system can be in two dif-
ferent states at the same time”. Environmental influencgshoaever cause theoherences
|1)(Yn|, |Ye2)(Yn| to decay, thereby eradicating the associated potentiahferference.
Processes of this kind may be subsumed under thedeooherenc¢s).

For many experimental purposes, decoherence is an unwantedisturbing effect, de-
stroying the vast potential of quantum systems. Entangienier example, has been shown
to be fragile under decoherence. It may be lost long befaetiherences are washed out
[45]. Attempts to make use of this non-classical feature essaurce, like quantum com-
putation [46], quantum-enhanced measurements [47], goaetyptography[[48], or the
teleportation of states [49], heavily rely on techniquefight or avoid decoherence. Quan-
tum error-correction attempts to create codes which atetialerant by construction, similar
to redundancy-based classical technigués [8]. In addiigndrome measurements may be
used to identify which type of error has occurred, giving ¢hance to undo it. As yet an-
other Ansatz, the theory of decoherence-free subspadssrethe identification of relevant
symmetries in the global physical description![50]. Thegaemetries may be used to single
out sets of states that are unaffected by the dynamics.

3For simplicity we consider the case of an equal superpasitio general, states of the foraa|yy) + c| ()
with complex numbers;, c; and|c; | + |c;|? = 1 are allowed.
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2.2 Decoherence

In another context, on the other hand, decoherence is a meloconcept in order to ex-
plain the emergence of classicality as experienced in degriife [4,[5,[6]. It is a fruitful
concept to account for the non-existence of macroscopierpogitions of states. Further-
more, some ideas about how to exploit decoherence in thextorit quantum computation
have been introduced recently. By engineering local envirents accordingly, the effects
of decoherence may be used to steer a quantum system towdedsed state [51].

In the following Sections 2.211 aihd 2.2.2, we discuss th@nstof quantum and classical
decoherence in detail. Atfirst, the general microscopichaeisms involved are introduced.
In addition, we discuss several examples elucidating tfierdnt approaches.

2.2.1 Quantum Decoherence

The standard textbook approach to the theory of decoherierizased on the language of
open quantum systemhich treats the effects of an uncontrollable environmamtthe
guantum evolution of the systein [52]. Here, the system efrast is merely seen as a sub-
system of a larger quantum system including the relevarit@mwmental degrees of freedom.
The dynamics of the total (closed) state is then given in $esfra unitary transformatiod.
Initially, system and environment are assumed to be in aymtostate,o ® og. In the pro-
cess of “averaging over all unobserved degrees of freedjitte final state of the system
is eventually obtained by tracing out the environment:

p' =tre[U(p@og)UT]. (2.26)

Clearly, time evolution of the system alone,— p’, is in general non-unitary. Decoher-
ence is then a direct consequence of growing correlatiotvgdam system and environment
[4,[6,(53]. Typically, these correlations are of quantumuratand the interaction leads to
entanglement between system and environment. Howevenri@y not occur. Depending
on the interaction and the respective initial states, tlstesy’'s coherences may decay con-
siderably while the total state is still separalle! [10, 54].

Quantum Decoherence in an Idealized Measurement

The notion of quantum decoherence plays a vital role in theadhical description of the
collapse of the wave functionThe collapse is necessary for the emergence of a classical
outcome in an idealized version of a measurement appaedsiasknown ashe measurement
problem[4,5,[6,53]. Consider the system of interest to be in thestat Ideally, one wishes
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2 State of the Art

a measurement apparatus initially|Ap) to interact with the system according to
) [Ao) = [n) |An). (2.27)

The statgA,) is then called @ointer statesince it corresponds to a specific pointer position
on the measurement apparatus indicating the outcome fsyistetaten”. Since the appa-
ratus shall be assumed to be macroscopic, it strongly icteraith its environmenE. The
results of the measurement are thus rapidly transferrauetetvironment [4]. For the joint
state of system, apparatus plus environment, this implies

) Ao) [Eo) ¥ [M) [An) |En). (2.28)

Decoherence enters the situation when the system of inieristially described by a co-
herent superposition of quantum states, thaFisen|n). From Eq. [(2.2l7) and linearity of
time evolution we know that the compound state evolves diagito

Wo) = (ch|n>|Ao [Eo) = |¥) =3 caln) [An) [En). (2.29)

The key idea is that the pointer statég) are sufficiently robust, so that they are not affected
much by the interaction with the environment. Theseferred statesre singled out in a
process calleénvironment induced superselectifii). As an important effect the environ-
mental states quickly become mutually orthogonal, thatks,| E,) ~ dnn. Since we are
interested in the state of system and apparatus, only, wedisegrd all information about
the environment by performing the trace

e ||90) (el = 5 [enlm) ] An) (Al (2.30)

The resulting state is now given in terms of a classical méxtf the different measurement
outcomeq, with correct probabilities according to standard measerg theory([55].

2.2.2 Classical Decoherence

As another possible source of decoherence, one may idéenifyoral or spatial fluctuations
of ambient classical fields (also called “random externati$ie[56]). This effect plays a
role in situations where, in effect, an ensemble averageeasored. For each individual
representative of the ensemble the time evolution is gimeteims of a Hamiltonian and
hence unitary; the dynamics are thus—at least in principiersible. Formally this may
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Figure 2.1: Decoherence in experiment: The plot shows the decay of ttanglement of
formation in a two-qubit system. The two insets depict thgmnitade of the density matrix
elements at times= 2ms and = 8ms, respectively (Picture taken from [58]).

be written as

p(t) = ((Ug U] (1)) _. (2.31)

where( - )) defines an ensemble average over different parameter \@lies certain space
of events=. For anyé < =, U; is a unitary operator. We will denote dynamics of this sort as
random unitary (RU)the time evolution is unitary, yet stochastic.

To contrast this notion to thguantumversion of decoherence, where the relevant envi-
ronmental degrees of freedom have to be treated quantumamieally (see Se€. 2.2.1), we
choose the termslassicaldecoherence. In the following sections we discuss two sitEna
exemplifying this idea.

Decoherence in an lon Trap Quantum Computer

Experiments in Innsbruck study the implementation of quanalgorithms based on an ar-
chitecture using trapped ions as logical qubits. Theiresystonsists of a string dPCa"
ions confined in a linear Paul trap. Metastable hyperfineestaf the ions are used as the
qubit basis{|0),|1)} [57]. A preparation of entangled states of up to 14 qubits besen
successfully demonstrated [13]. Yet, the system is not imeto environmental influences.
Using the example gi¥) = 71§(|01> +1]10)) (a Bell state) as initial state, Fig. 2.1 shows that
decoherence also precipitates a decay of entanglementin3éts allow for an observation
of the state’s density matrix elements. Taking a closer ltdke qualitative nature of the co-
herence decay, one observes a Gaussian rather than anmexgdrehaviour (cf. Fid. 2.2(R)).
Note that an exponential decay would conform well to a modsEl on a Markovian master
equation, often used as a standard approach to decohefietjce [
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Figure 2.2: (a) Coherence decay of a single qubit. Rather than an expaheuarve, which
would be expected on basis of a Markovian model, a Gaussiae @uoves appropriate to
fit the experimental data. Solid (open) circles: active nedigrfield compensation turned
off (on) (Picture taken froni[59]). (b) Schematic illusicat of the relevant qubit level®)
and|1). The level separatiow(t) depends on a stochastic parametér).

It turns out that the relevant decoherence mechanism mapderstood on basis of tem-
poral fluctuations of the ambient magnetic field. Considéngle qubit, where the relevant
stateg0) and|1) have a field-dependent energy separatiow@) (cf. Fig.[2.2(b)). Random
fluctuations have been included in the description by intatidn of the stochastic parame-
ter A(t), describing the aberration of the magnetic field from its m@g The Hamiltonian
describing the qubit is given by = w(t)/2 o, leading to the unitary time evolution

Up(t) = e 2200 Q(t) :ftdrco(r). (2.32)
0

The initial state shall be described by the 2 density matrixoy. Averaging over the many
realizations performed in an experiment leads to the tinudved state

p(t) = (Uu(t)poUht))

_ <<<é9%1 (&) p“) . (2.33)

) Pa1 P22

A careful examination identified the power line as the raisurce of fluctuations [59].
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2.2 Decoherence

Assuming the noise to be Gaussian one finds [60]
<<eii9<t>>> _ gtilam) 1070, (2.34)

where(Q(t)) is simply given byapt. Comparing the relevant time-scales one can further-
more assume the noise to be perfectly auto-correlated éoddnation of a single measure-
ment. The variance?(t) is thus given by([6/1]

o*(t) = [ [drar’{{(w(n) - (w(0) ) ((t) - (()))))

0
t

t tt
= //drdr’ Mr—1) :/ drdt’ of = gat?. (2.35)
00 00

In the evaluation of Eq[(2.35) the additional assumptios lixeen made that the stochastic
procesw(t) is stationary. With these results at hand we arrive at

P11 e 290 g Tent P12>
)

pt) = (e‘%agtze“*’otpm D2 (2.36)

reproducing the Gaussian decay of coherences observee @xpleriment.

The decoherence mechanism based on stochastically flinctdigids was again affirmed
in recent experiments, where the coherence decay wasdtwitlerespect to the numbét
of qubits involved. The observed scaling factoN3fis in perfect agreement with predictions
based on global fluctuations of the ambient field [13].

Spin Echo—Reversing Decoherence in an Ensemble of Spins

Maybe the most prominent example of a classical decohenmgreohanism was studied by
Erwin Hahn in experiments based puaclear magnetic resonan¢sbMR) in 1950 [62]. The
involved mechanism became known as 8@in Echotechnique. In a prototypical NMR
experiment, the object of interest is a cloud of randomlyritisted molecules immersed in
a liquid. When brought into a homogeneous and static magfieti, B = (0,0,B;), the
magnetic moments of the nuclear spins become aligned. @am$or instance, a molecule
with nuclear spin 12. Here, the corresponding magnetic moment may be orieritieer e
parallel or anti-parallel to the field axis(spin up and spin down, respectively). Due to the
spin quantization, the respective moments may not, howbeeperfectly aligned with the
field, forcing them to precess around thaxis with frequencies differing by the Larmor
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(d) (e) (®

Figure 2.3: (a) All spins are initially prepared parallel to taeaxis. (b) A first(J),-pulse
rotates the Bloch vectors into they-plane. (c) The spins are left to evolve freely over a
durationt. The spatial variation of the magnetic field induces retagiiase shifts between
the individual spins: the Bloch vectors disperse along theator. (d) A second pulse, now
(m)y, flips the spins about the-axis. (e) In a second interval of free precession with the
same duratiomr as before, the spins are allowed to realign. (f) A fi(’@) - pulse moves the
spins back to their initial position.

frequencywy. The size ofay depends linearly on the magnetic field, and the so-called
gyromagnetic ratio of the nucleus. A transition betweendifferent orientations may now
be stimulated using additional pulses in resonance with.#ammor frequencyl [63].

There are, however, several mechanisms leading to a riglaya@ftthe ensemble towards
the equilibrium state. Thiengitudinal (spin-lattice) relaxatiofis responsible for the equili-
bration of the spin populations parallel and antiparalbelne static magnetic field, usually
described with the time constafit. Thetransverse (spin-spin) relaxatiatescribes the co-
herence decay. Careful examination of this process allbesdentification of at least two
relevant sources [63]. Firstly, homogeneous broadenitnigtwis due to fluctuating micro-
scopic magnetic fields and quantified by the time constanSecondly, the spatial variation
of the macroscopic field over the volume of the sample leads iohomogeneous broaden-
ing, quantified by the time constafj. It is this second source of decoherence that may be
reversed in experiment.

The basic idea is best understood in terms of the Bloch reptation of the spin states
(Fig.[2.3, see also App._A.3). Initially, all spins shall bepared in the spin up state, aligned
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2.2 Decoherence

parallel to thez-axis. The first pulsé’—;)x rotates the spins around tkeaxis about an angle

of /2, moving them into the-y-plane. The spatial variation of the stationary magnetic
field makes the single spins precess at different speedinteto a relative phase difference
depending on the duration; the individual Bloch vectors spread out across the equator
Now, a r-pulse is applied, rotating the spins once more aroundxtagis, now about an
angle of 180. A subsequent free evolution of duratiarprompts the spins to refocus, so
that an additiona(5), -pulse re-establishes the initial state.

2.2.3 A Comment on the Terminology

Throughout the thesis we use the prefixéassicaland quantumin order to specify the
microscopic processes leading to a loss of coherences. hibvgever, often argued that the
term decoherence should be reserved for what we refer gquastumdecoherence. It is
then “a distinctly quantum mechanical effect with no cleakanalog” [[6] which is based on
growing correlations between the system and its enviromntgassical decoherence, on the
other hand, is seen merely as a “fake” process with seemaiiffly results.

This distinction is justified in two ways. First, it is argutitht the ensemble-based, clas-
sical decoherence mawg principle be corrected based on sensitive measurements on the
environment. That is because the dynamics of each indivieleanent of the ensemble is
unitary and hence reversible. Note, however, that the paspf correction is not only
present in the classical case. In this context we shouldeefe the result by Gregoratti and
Werner [19] (see also Sdc. 2.8.1). In their paper they shaivghantum decoherence, too,
may be perfectly reversed—provided the dynamics is of Rl@.typ the context of corrigi-
bility, rather than the dispute whether the decoherenctassical or quantum, the question
RU or not RUis important.

The second argument stresses that no information whatssevansferred from system
to environment; a process which is believed to be vital ferghantum-to-classical transition
[6]. In this context it is also often claimed that decoherenalies on growing entanglement
between the system of interest and its surrounding degfdessedom. This may, in fact, be
true if the system starts out in a pure state. It is, howewssible that the system decoheres
completely before becoming entangled with its environnf&@t/54].

In addition, for an experimenter, classical and quantunolkexnce may often not be
distinguishable. What term should he then use in a phendwgioal description, with-
out any knowledge about the actual mechanisms involved? fis point of view it may
seem somewhat pedantic to reserve the name decoherencedesges involving quantum
entanglement. Rather, we suggest to use the term in thextahteemeaning of the word
itself implies: de-coherence, that is, less of coherenceAdditional detailing may then be
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achieved using the expressiatiassicalandquantum In this context, the thesis provides an
enhanced understanding of the differences of the two méshan

2.2.4 Pure Decoherence: Phase Damping

In some decoherence scenarios it is possible to identifyse )} of states that are dy-
namically robust. Transitions between thgseferred statesnight, for example, occur on
a much longer time-scale than the decay of coheremces [#.stlibcess of the Spin Echo
technique (Se€. 2.2.2) relies on this differentiation ofdiscales: a complete reversal of the
spin-spin relaxation described by the time consiBhts only possible ifT; < T, T1 [63].
Such a case of long-lasting populations and relativelyiligagpherences is usually termed
pure decoherencer phase dampingalso known aglephasiny Accordingly, the basis of
preferred states is denotptiase-damping basis

In a quantum model of decoherence (cf. EEQ. (2.26)), the ptasging dynamics may be
described in terms of an overlap of relative states of theé@mment (where relative denotes
relative to the phase-damping basis). The robustness dgbrééferred states allows for a
representation of the joint time evolution of system andiremment in controlled-unitary
form [64],

U =3 [n)(n[@Up, (2.37)

n

where now the unitary operatods, = (n|U|n) act on the environment only. Assuming the
environment is initially described bylp), the time evolution of the system’s staies given

by

P = (mitre [U (0@ |dio) (Wo|)UT] n)
= (o]U10 | wo) Prn
= (Un|PYm) Pmn, (2.38)

where we denote the relative states With) = Uy | o).

In a classical decoherence scenario, the unitaries egtimgrensemble average in Hg. (2.31)
are diagonal matrices of the fortdy = diagonale’®:,€¢z,...,€%), such that the density op-
erator evolves according to

Phn = (&) oo (2.39)
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2.3 Quantum Channels

2.3 Quantum Channels

The present section is an introduction to the languageuahtum channelslt enables a
description of discrete time evolution of quantum systema vvery general way—no con-
sideration of the underlying physical processes has to lemh is thus an adequate tool
for the description of both classical and quantum decolerefhe quantum channel simply
acts as a map, mapping an arbitrary initial stateo its dedicated final statg’. For this
reason it may thus be called a “black-box” approach; the iphlygrocesses involved are
regarded as second rate. The definition of a quantum chagstslon the following [30]:
Definition 2.1 (Quantum Channel)

A guantum channeb a linear mag : p — p’ mapping the set of density oper-
ators onto itself. That is, for any density operaboone finds

(i) p'=(p")? (Hermiticity),
(i) tr[p] =1 (trace preservation)
(i) p>0 (positivity).
Furthermore, the map is required todmmpletely positivethat is,
(iv) E(p®1,) >0 (complete positivity (CP))
wherel,, is the identity in arbitrary dimensiome IN.

In addition, a quantum channel is said tolbetal if it leaves the completely mixed state
1n/N invariant or, equivalently,

& (1n) = 1. (2.40)

Note that in the definition of quantum channetsand p’ do not necessarily have to be
assigned to the same Hilbert space. For the sake of sinypliait will however assume here
and in the following treatment that this is indeed so. In a&gibasis, the set of operators
acting on aN-dimensional Hilbert space may be represented Wiy, the set ofN x N
complex matrices. A quantum channel is then described ape€maly — My.

Complete Positivity

The definition of quantum channels introduces the notioroafiglete positivity, equivalent
to positivity of the map under arbitrary trivial extensiofs 1,. The physical motivation
of this constraint rests on the idea that the quantum systedaruscrutiny may initially be
entangled with a second system (e.g. its environment). Atgoachannel changing only

23
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the state of the system is described &g 1g, with 1g the identity on the environment.
Complete positivity is then able to ensure that the companad is still positive. Recall that
we have previously discussed an example of a positive yatarapletely positive map: the
transpositionT. This feature was in fact used in Sec. 2/1.1 in order to dete@nglement
in a bipartite state.

Kraus Representation

It was shown by Kraus [65] that a quantum channel may alwaysriiten in terms of an
operator sum,

p' = KipK{, (2.42)
|

with so-calledKraus operators K For the map to be trace-preserving one figqlKiTKi =
In. If the channel is unital, the Kraus operators additionalbey 5; KiKiT = 1n. Note
that the Kraus representation is not unique. The matkgesay however be taken linearly
independent, fixing the number of terms in Hg. (2.41). The lmemof Kraus operators
needed in this minimal representation is called kKimaus rank(often also simplyank) of
the channek. Two different representation(s; }$_, and{K;}$_, are related by an isometry,

S
Ki=Y ViKj, (2.42)
=

with V : €5 — C5,V1V = 1. In the case that both representations are linearly indkpen
the matrixV is unitary [17].

Quite surprisingly, despite the rather axiomatic appro@bten in Def. 2.1, the concept
of quantum channels is intimately connected to the standaitéry propagation scheme
in quantum mechanics: it may be attributed to the dynamicsnobpen quantum system.
Following the so-calledtinespring dilation theorepone may arrive at the general form of
a quantum channel by successive exertion of the followiagsst

() Dilation of Hilbert space with an auxiliary system:

P = P& Oaux (2.43)

(ii) Unitary propagation within the enlarged state space:

P ® Oaux— U (P @ Tan) U T, (2.44)
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2.3 Quantum Channels
(iii) Tracing out the auxiliary system:

traux [U (P ® Taux) U T] =p. (2.45)

It turns out that the dimension of the additional quantumesyso,,x in step (i) has to be
no greater than the squared Hilbert space dimension of thierayof interest[[8]. Note
that in step (i) it is commonly assumed that the total statéhefsystem of interest and
the auxiliary part are factorizable (i.g0,® Oaux). This way, the resulting channgl —
p’ is guaranteed to be completely positive|[66]. Only recentlgcessary and sufficient
conditions for complete positivity based gonantum discorchave been identified. Similar
to the concept of entanglement, the quantum discord estghtlag non-classical character of
correlations shared in bipartite systems [67, 68]. Noteydwer, that while vanishing discord
ensures the state to be separable, non-zero discord dagscessarily involve entanglement.
It was shown that the reduced dynamics is completely pesitignd only if the initial state
has zero discord [69].

The linearity in Def. 2.1 allows for a representation of amuan channel in terms of a
linear superoperatab®: in a given basis of the state spa¢f)}, we may define[[30]

pr,nn = Z qjﬁmrs Prs; (2.46)
rs
where

pmn=(mlpjn)  and B = (ME(Ir)(s)n). (2.47)

2.3.1 Random Unitary (RU) Channels

RU channels represent a quite special class of channeldytianics is unitary, yet stochas-
tic. This situation is resembling the one encountered in describing classical de-
coherence, where the uncertainty concerning the ambiassichl field leads to a descrip-
tion based on a stochastic Hamiltonian. After taking theearide average one arrives at a
stochastic, unitary time evolution. Such an RU channel neaytitten in the following form

p'=3 puipy;, (2.48)
|
with probabilities p; and unitaryU;. Comparing Eq.[(2.48) to the Kraus representation,

Eq. (2.41), reveals that the Kraus operators may be chosée ko = ,/pU;: they are
proportional to a unitary matrix.
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These RU channels are quite convenient due to their arallinenability and have been
studied in different contexts. The authors|of|[24),[25, 26j, estudy the asymptotic dynam-
ics under repeated application of RU channels and find aactttr space of relative low
dimension. We ourselves have studied the entanglemenit@olof two qubits under RU
dynamics([70], where we successfully arrived at analy@salressions.

Corrigibility of RU Channels

Perhaps the most important result connected to RU charséiatithey are the only type of
dynamics that may be fully undone [19]. Note that in this eahthe dynamics is due to in-
teraction with aguantumenvironment, as is the case for the notion of quantum deeoher
Sec[2.2.1. The correction scheme is based on suitable reezaots on the quantum envi-
ronment of the system of interest. The authors show thaviged that the environment’s
initial state is pure, to any Kraus representation with af@sK; (resulting from a global
time evolutionU) there exist observabldd; on the environment such that

Kipk" = tre {U (@ |yo) (wol JUT (12 M) }. (2.49)

As before,p denotes the quantum state of the syst@n, is the pure initial state of the
environment. The unitary matrld describes the joint time evolution.

The idea of the correction scheme may now be sketched asvilldJpon measuring
the proper set of observables, such that the correspondiagskepresentation is RU, the
correction is possible by simply applying the inverse ofriepective unitary transformation
(see alsol[71]). Note that in order to reverse the dynamit&mfowledge about the global
Hamiltonian dynamics (described b)) is needed.

2.3.2 Phase-Damping Channels

A phase-damping process stands out due to the existence adis df robust states: the
phase-damping basis (see SJec. 2.2.4). As a consequendgs imasis gohase-damping
channel Dmay be written as a diagonal map

p'= Z DmnOmn| M) (N (2.50)
mn

with a non-negative matB(D. For convenience we may also wrig¢ = D x p wherex is
the so-calledHadamard productthat is, the entry-wise product of matrices of the same size

4Note that with a slight abuse of notation we denote the cHaamits matrix representation with the same
symbolD.
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[72]. For the entries of the matri® in one finds|Dmp| < 1, where the robustness of the
phase-damping basis impli€s, = 1.

The non-negativity oD implies the existence of (generally non-unique) matrigesith
D = AA' [73]. On basis of such a square ro&t it is possible to introduce the concept
of dynamical vectorsa set of complex, normalized vectors describing the paseping
dynamics. Identifying the-th row of A with the vectona,) it is straightforward to see that

Dmn= (AAT)mn: <an’am> (2-51)

As an example, a phase-damping channel of dimension 4attng on a 4-dimensional
guantum system, may be written as

1 (2]a1) (aglar) (aa|au)
o | (alae) 1 (asla) (as]ap) (2.52)
(a]as) (az|as) 1 (a4 ag)

(anlas) (2]as) (ag|au) 1

The Cholesky factorization (Apf._A.2) introduces a meanshifining a square rod in
lower triangular form. Furthermore, it allows the identfiion of dynamical vectors of min-
imal dimension, being equal to the Kraus ranéf the channeD.

Note that an example of these dynamical vectors was alreactyuatered in Se€. 2.2.4.
There, the dynamical vectors are the relative states ofrthieomment obtained in a quantum
model of decoherence. In a classical decoherence scermsaah physical interpretation
seems possible. Based on the dynamical vectors obtairgdfrem the Cholesky factor-
ization, it is however possible to constructménimal quantum modethat is, a model in the
language of open quantum systems. Minimal refers to thelegthaliable dimension of the
environment. Note that the first row of the matéAxis given by(1,0,0,...). Taking this
state as the initial state of the environment, the requirgthty operatordJ, of Eq. (Z.37)
may simply be obtained using the actual dynamical vedtmysas the first column, while
the only constraint for the remaining columns is to presemitarity.

2.3.3 Norm of Complete Boundedness

The same reasoning that is applied in the physical justificabf complete positivity of

a quantum channel is true when introducing a norm on quantuenrels. The system
the channel is acting on may again be seen as being only pariafer compound. A
meaningful definition (i.e., meaningful in a physical s@nsiea norm thus has to take this
additional complexity into account.
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Definition 2.2 (Norm of Complete Boundedness)

A linear mapA is calledcompletely boundei the supremum of the operator
norm over all trivial extensions, sppA ® 14|, is finite. Then,

[[Alleo = sUp||A® Ln| (2.53)
n
is called thenorm of complete boundedness (cb-nofi].

In order to give an example for a map whose trivial extensifierd in norm from the
original map we may again rely on the transposition. On hafsise induced operator norm
Al = sup{|IA(X)]| | X € Mg, ||X|| = 1} it is obvious that the transposition has norm 1: the
norm of a matrix does not change by transposing it. If we alpaik at the example used in
Sec[2.111, this time, however, in reversed order, we knawv th

1 000 1 001
1
00 0 Tl 0 00O (2.54)
0100 0 00O
0 0 01 1 001
From
1 000 1 001
0 010 0 00O
=1 and =2 (2.55)
0100 0 00O
0 001 1 001

it follows immediately thal| T @ 1,|| > 2. In the case of a completely positive, completely
bounded mag one finds[[74]

[[€]lcb = [1ECT)]]- (2.56)

Note that for a unital channel this immediately impligs|c = 1.

2.4 Channel-State Duality—The Jamiolkowski Isomorphism

A very intriguing concept in quantum information theory lie tchannel-state duality intro-
duced by Jamiolkowski in 1972 [27]. To any given quantum ciedi : My — My, the
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2.5 Birkhoff’s Theorem

Jamiolkowski isomorphisintroduces the so-calletamiolkowski stat@® on Mz via

& 1

pe = 8®]la nZ: |[mm(nn|
1 N
53 edmyn) @ mnl (2.57)
mn=1

d

The channel is thus applied to one half of the pure bipartisximally entangled state
SN, Inn)/+/N. Consequently, compared to the initial quantum channel,statep?® is
defined on a Hilbert space of squared dimensivh,

It is of course evident that the Jamiolkowski state does antain any more information
than the channel itself: its matrix representation may kainbd from the superoperator rep-
resentation, Eq[(2.46), by a simple reshuffling of matrengnts[[30]. Using the common
definitions

pr?mrs = <m’ ® <n’p€‘r> ® ‘S> and q)Emrus = <m‘8(’r><s‘)‘n>7 (2-58)
one finds that

Plinrs = Phns: (2.59)

Conceptually, however, the Jamiolkowski isomorphism hasnbwidely used in simplify-
ing proofs [75] or pointing out novel properties [76]. Onelshg feature of the duality
is that complete positivity of the ma is tantamount to positivity of the related staué.
Furthermore, the Kraus rank of a channel is equal to the ramk the number of non-zero
eigenvalues) of the corresponding Jamiolkowski state. [77]

2.5 Birkhoff's Theorem

A magic square consists &% numbers, arranged in an array Mfx N entries, such that
the sum of each column, row, or diagonal gives the same valum addition, the entries
contain all integer numbers from 1 &7, the magic square is calletbrmal People have
been fascinated by such objects for many centuries. Indagtominent example is tHeo
shusquare (cf Fig[_Zl4), dating back to a mythical story toldnniant Chinal[7B]. The name
stands for “Lo River writing”, and the story tells of the mighl King Yu who supposedly
saw the numbers written on the carapace of a sacred turtle.

An object very similar to the magic square is given digubly stochastic matricesA
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2 State of the Art

2 7 6
9 5 1
4 3 8

Figure 2.4: The Lo shusquare, a normal, magic square known since ancient China. Th
values of each row, column, and diagonal sum up to 15.

matrix A = (amn) € RN*N amn > 0, is called doubly stochastic if the elements of each row
and column sum to one, i.e.,

d d
> am= ) am=1 (2.60)
m=1 n=1

Each row may thus be thought of as a discrete probabilityiliigion on a sample space
containingd elements([72]. Perhaps the simplest examples of doubljastic matrices are
given by thepermutation matricessquare matrices which have exactly one entry, 1, in each
row and each column, and 0 elsewhere. A theorem by Garrdth@&fr[[79] identifies these
permutation matrices as the extreme points of the convéxohdbubly stochastic matrices.

Theorem 1. (Birkhoff) A matrix Ac RN*N is doubly stochastic if and only if it is a convex
combination of permutation matrices, i.e., for somecko there are permutation matrices

K
Pi,...,Px € RN*N and probabilitie a,...,ak such that A= 5 aP.
i=1

Since there are exactly! distinct permutation matrices iRN*N, the set of doubly stochas-
tic matrices is a convex set witki! vertices, the so-calleBirkhoff polytope It is contained
within a (N2 — 2N + 1)-dimensional subspace of the space of all NealN matrices([72, 80].
Note that a permutation matrix may easily be inverted viathesposition, that is,

PP’ =1. (2.61)

The inverse of a permutation matrix is another permutati@triy and hence also doubly
stochastic. In general, however, the inverse of a matrik @i60) may no longer be doubly
stochastic.

Swith probabilitieswe denote a set of positive, real numbers that sum to one.
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2.6 Positive Operator-Valued Measure (POVM)

2.6 Positive Operator-Valued Measure (POVM)

Probably the most familiar approach to measurements intgomamechanics goes v@o-
jective measurements. The basic elements are operBtug) := |1) (1|, describing the
projection onto mutually orthogonal statgsg). A projective measurement is described by
anobservable Mhaving spectral decomposition [8]

M = i)\in(a). (2.62)

The A; are the eigenvalues of the observable, corresponding tpdbksible outcomes of
the measurement. If the quantum system under scrutiny @itded by the stat¢y), the
probability of getting resul\; is P(A;) = (¢|M(e)|Y). The post-measurement state of an
outcomel; is given by

Nelly)
ViIne)e)

(2.63)

The attempt to generalize the above concept of orthogorgégiive measurement in
guantum mechanics leads to the idegoéitive operator-valued measufOVvVM) [8]. A
POVM consists of positive operato{Ei}ﬁ':1 with

-iEi =1. (2.64)

Note that here the elemeris are not required to be mutually orthogonal. Given the state
|@), the probability of outcomeis given byP(i) = (Y|E|Y).

A very illustrative example of such a POVM may be given in temhcoherent states [B0].
A coherent statén) is defined as eigenstate of the annihilation operator, $hatd) = a|a)
(a € €). Interms of the Fock basis it may be expressedras- exp{—|a|?/2} 5 ,a"n)/v/n!
[40]. The POVM is then given by the resolution of the identity

d%a
[ Hayal=1, (2.65)

where the additional normalization factoy 7t is present due to over-completeness of the
coherent states.
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2.6.1 Informationally Complete (IC)-POVM

The concept oinformationally completgIC)-POVMs is relevant in the context of state
discrimination [81]. With a quantum system at hand, it is aure question to ask how many
measurements are required in an attempt to learn the ft#l stahe system. Consider, e.g.,
a quantum system with a state space of dimenkioh is quite straightforward to see that a
general mixed state will be specified Ny — 1 real parameters (recall that a density operator
is Hermitian and of trace 1). In an attempt to learn the fuligity matrix representation one
thus has to be able to perform measurements revealing allf@snformation about the
system. A POVM meeting this requirement is thus caltddrmationally complete

As introduced in Se¢. 2.6, a POVM in &irdimensional Hilbert space consists of oper-
atorsE; with 5;Ej = 1n. In order to be informationally complete, the operatBrsrave to
form a (possibly over-complete) operator basis on the Hilppace. Clearly, thus, a mini-
mum ofN? elementsE; are required.

2.6.2 Symmetric Informationally Complete (SIC)-POVM

A symmetric informationally comple{SIC)-POVM is a set oN? operatorsE; = I; /N,
where thef; are rank-one projectorsl; = |;)(ui| on 3 = CN, satisfying [82]

1 -

M) = (| )2
The elements of the SIC-POVM are thus subnormalized prajgecdhat are in a sense sym-
metrically placed in Hilbert space. It is worth a remark ttha requirement in Egl_(2.66) is
already sufficient to guarantee completeness ;& = 1y, as well as informational com-
pleteness of th&; [82]. Despite the very simple definition, little is known atbdhe form or
even the existence of SIC-POVMs in arbitrary dimension. W&nown is that they exist
for N=2,3,4,5 and 8. In addition, humerical evidence suggests existepde dimension
45 [82].

As an example, consider the simplest case of the two-dirmeakHilbert spac&?. This
example will also allow for some geometric intuition. We Hres interested in a SIC-POVM
on the Hilbert space of a single qubit. Here, the projedibrsan be rewritten using the Bloch
representation (App._Al3)

I‘Ii:%(]H—Bi-&), (2.67)

whereb; € R3, |b| = 1, andd = (o, 0y, 7;), the vector of Pauli spin matrices. The defining
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property, Eq.[(2.66), now reads

1 o o
tr[l'lil'lj] = Ztr (]1+bi'0')(]l+bj-0)

1 — —
= 5(1+bi-bj)
= 1/3,  i#]. (2.68)

Hence, the inner product of the Bloch vectors is given by
1 S
bi'bj:—§7 1#]. (2.69)

The anglex = arcco$—%) is also known as theetrahedral anglei.e., the angle between the
four vectors spanning a regular tetrahedron. In Bloch sapr&ation we can thus conclude
that the vectors corresponding to a SIC-POVM are symmédliripéaced inside the Bloch
sphere, such that they span a regular tetrahedron.

As a last point, it is worth noting that the tensor power of £#0VM is no longer a
SIC-POVM. In order to see this, consider the tensor prod{gi$ == i) ® |u;) (i,] =
1,...,N?), where the projectorBl; = |u;) (| on 3 obey [2.66). For these new projectors
ﬁij = mij><ﬁij ’ onH ® H one finds

tr [ M) = [ [fa)® = (L) (g )P
1 i=kandj=I,
— ﬁ eitheri =kor j=1, (2.70)
ﬁ izkandj#]l.

Clearly, these new projectors do not form a SIC-POVM.
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3 Classical vs. Quantum Decoherence

In the introduction of decoherence theory, Secl 2.2, weudsthe fundamental principles
of classical and quantum decoherence and show some itlustexamples. Nothing is said,
however, about ways to discriminate between the two, latealshether such a discrimina-
tion is possible at all. These questions call for the mormfdrapproach taken in the present
chapter: the quantum analogue of Birkhoff’'s theorem, whsctliscussed in Set. 3.1. Itis
based on the quantum channel formalism and studies th@relhaip between unital and RU
dynamics. Not only does it help in refining the distinctionaliso introduces a method of
discrimination which is based on a channel's extremalitthwespect to the convex set of
guantum channels.

In order to arrive at a more physically motivated interptietaof the rather mathematical
results, we successfully construct a feasible toy modetiding some more light on the
notion of true quantum decoherence. The correspondingnettsmare studied with respect to
their quantumness in terms of tBekhoff defectwhich is defined as the norm distance to the
convex set of channels describing classical decoherencesgses. Despite its computational
complexity, the Birkhoff defect enables us to reliably wligtiish true quantumfrom RU
dynamics. In order to reflect the irreversible nature uguadkociated with the phenomenon
of decoherence, we extend the toy model accordingly bydnitimg an additional bath. We
study how the quantumness depends on the strength of théirgptp the bath. It turns
out that the quantum nature of the dynamics is quite vulherabthe disturbance by the
additional environment. This fragility leads to a compldigappearance of the quantumness
for sufficiently strong coupling.

3.1 Birkhoff's Theorem—The Quantum Analogue

In quantum mechanics, one can formulate an analogue to d@ftkttheorem (Sed.215) in
terms of complex matrices [17]. For this, two modifications # be undertaken:

() First, doubly stochastic matrices turn intmital channels(doubly stochastic com-
pletely positive mapsRecall that a channél : My — My is called unital if it leaves
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3 Classical vs. Quantum Decoherence
the completely mixed state invariant, that is
E(ln) = 1n. (3.1)
In terms of the Kraus representation, Eq. (2.41), this isvadent toy; K; KiJr =1y.

(I) Second, the (invertible) unitary maps take the rolehaf {invertible) permutation ma-
trices.

The quantum analogue of Birkhoff’s theorem is thus conamigh the question of whether
or not a given unital channel may be written as a convex sumitdiny transformations (i.e.,

a RU channel, see Sdc. 2]3.1). In physical terms, the questidirectly related to the dis-

crimination of classical and quantum decoherence: we hese that our notion of classical
decoherence was equivalent to a formal description in tefrasRU channel (cf. Seds. 2.2.2
and2.3.11). Note that—without emphasizing the fact—we laready encountered two ex-
amples of unital channels in Chdpg. 2. Clearly, a RU channlenigs to the set of unital

channels, for we have

ZpiUiUiT: Zpi]lN = 1. (3.2)

Trivially, furthermore, a phase-damping channel is unitalthe phase-damping basis, the
completely mixed state is nothing but an equal (incohenartjure of the basis elements—
the robust states—and hence unaffected by definition. Isghi of Birkhoff's theorem we
may thus ask if phase-damping dynamics is always consisiighta description based on
the RU approach.

In 1993 Landau and Streater were able to show that, in ojpos$d the classical case, the
guantum analogue of Birkhoff's theorem fails to be true:r¢hexist unital channels which
may not be written as a convex sum of unitary transformatidhe identification makes use
of a channel’'s extremality with respect to the set of unit@mfum channels, based on the
following theorem by Choi [17].

Theorem 2. (Extremality in the set of channels) A chandelMy — My is extremal with
respect to the set of quantum channels if and only if it may titew in terms of a Kraus
representation{K; }{_;, where

{KiTKj}ir,jzl (3.3)

is a linearly independent set of matrices.

36



3.1 Birkhoff’'s Theorem—The Quantum Analogue

Landau and Streater show that the condition of unitality teabe incorporated in the
following way [17]:

Theorem 3. (Extremality in the set of unital channels) A quantum chadnéVvy — My is
extreme in the set of unital channels if and only if it admitsraus representatioqK; }{_,
with
S KiK' =1y, and {K'Kj & KK/ r 3.4
inig — &N iJ@Jiijfl (3.4)
| S
is a linearly independent set of matrices. (Note that witlve denote the direct sum of linear
spaces. For matrices K € My we have Kb L € Moy.)

How can this result now be utilized in order to answer our tjoe8 What are the implica-
tions on extremality of phase-damping channels? We hagadjrseen that any set of Kraus
operators representing a phase-damping chabrisldiagonal. Hence, all matrices in the
representation trivially commute mutually. It is thus e&sygee that the condition of linear
independence of the direct sum in Hq. (3.4) is equivalenh&al independence in(3.3). For
diagonal maps, extremality in the set of unital channelsefioee implies the usually weaker
condition of extremality with respect to all guantum chdane

From these considerations it is clear that for a phase-dagnghannel to be extremal it
has to meet? < N. This implies the following[[1

 Single qubit or qutritl < 4)
The extremal channels in the set of unital channels aregaigcihe unitary (= 1)
transformations (Fid. 3.1(a)). Any phase-damping chatimes allows for a RU rep-
resentation. Indeed, in case of a single qubit for examplarhitrary phase damping
channel
p' =e'®%(pp+ (1 p)opa;) P (3.5)

may obviously be obtained frotd, = %% with a random variablep with mean
value (@) =: @ and {(coS (g — @))) =: p (Here we assumécos ¢ — @)sin(Q —
®)) = (sin2(¢p— @))/2)) = 0).

INote that the results by Landau and Streater were also fowtependently i [83] and [18].
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N=2 N>4
unital _ gy unital
channels ™ channels :

_.---"""phase damping ----"""phase darhping

(@) (b)

Figure 3.1: (a) In the case of a single qubltl = 2), the unital channels are the convex hull
of unitary channels. Any unital channel acting on the stptee of a single qubit can thus
be represented in terms of a RU channel. (b) For Hilbert sgamensionN > 4 there exist
non-unitary extremal channels in the set of unital chanwgligh are thus not of RU type.

» Two or more qubitsi{ > 4)
Based on the extremality criterion it is possible for nortany (r > 1), extremal
phase-damping channels to exist. In the following we giwerssd examples. It is
thus evident that there are channels that may not be deddritierms of RU dynam-

ics (Fig[3.1(D)).

Recall that a given phase-damping chanDel My — My may be described in terms of
complex, normalized vector§ay), ..., |an)} C C', with r being the rank oD. Linear in-
dependence of the corresponding Kraus operators is eqotved a quality of the vectors
called “full set of vectors” (FSOV) [17], which is attainef] for a complex matrixv € M,
(an|Mlan) = 0V nimpliesM = 0. In other words, the projectofa,)(a,| have to form a (pos-
sibly over-complete) operator basisldf (recall that the projectors are thus said to form an
IC-POVM as defined in SeC. 2.6.1).

Based on the formal criterion of extremality it is rathemagihtforward to come up with
examples of a FSOV in any dimension. In the following list vikegexamples of FSOV for
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r = 2,3, and 4 which represent extremal maps in dimendioa 4,9 and 16, respectively:

o)) () C)

1 1 1 1 1\ /0\ [0\ /O\ /O
(O (1 [ oo 1 1 1 0) ,
0/ \0/ \O 1 i 0 1 [ 1
1\ /1) /1) /1) /1) [1)\ /1) [O)\ (O)\ fO)\ /fO\ /O)\ /O)\ fO)\ fO)\ /O
oOj11 i oftojtofjtoy12y2yf2y2yf{21(o0yf{oyfofjo
oj10jJ10]112 i ofjo0f]0f]1 [ ojfrtoj1a2y121121)10
0/ \0/ \0/ \0/ \0/ \1 i 0/ \0/ \0/ \1 i 0/ \1 i 1

The list may easily be continued to arbitrary dimension.

3.2 Physical Model of Quantum Decoherence

Mathematically, the construction of an extremal and henge quantum decoherence chan-
nel is rather straightforward (Eq._(3.6)). We are, howesksp interested in a more physical
interpretation of the previous results. In order to allow $ome intuitive insight we deem
it interesting to have a physically feasible model at hane. Stdrt with the simplest case: a
system of two qubits. Note that in case of a two-qubit chaeremality implies < 2. For

r = 1 this is just unitary dynamics, so that= 2 gives the only possibility of an extremal,
non-unitary phase damping channel, implying the relativgrenmental vector$a,) to be
two-level states (i.e., qubits). In the quest to constrystiysical model of quantum decoher-
ence we therefore consider a toy model of a system of two gjdbétnd B, interacting with
an “environment” consisting of just a single quit(cf. Fig.[3.2).

The global three-qubit time evolution shall be described bjamiltonian
H = Hg+ Hg+ Hg, (36)

where the interaction of system and reservoir is descrilyed;bwhile their respective free
evolution is governed byls andHy. The desired phase-damping nature of the dynamics
implies all operators acting on the system to be diagonalmafe thus set

Hy = K40 © 07 + kpoy @ 03, (3.7)
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System

Reservoir

Figure 3.2: In the attempt to construct a physically feasible toy mode quantum phase-
damping channel, a system of two quhitsand B is coupled to a simple environment
consisting of a single qubfk.

while free evolution of the reservoir is given by
Hg = T-6% (3.8)

(Note that couplings in the form &i; are present in the context of NMR experiments, where
they are used to describe the internuclear dipole-dipdérantion with transverse coupling
neglected([84]. In addition, they play a vital role in expeeints on ion-trap quantum com-
puters [12].) For simplicity, the system’s free Hamiltamiéds = (Q4/2)03* + (Qz/2)07)

is neglected in the following consideration. For any givenett and assuming the usual
product initial statep ® g, these dynamics lead to a phase-damping channel

p' =trg [e M (p® o). (3.9)

The diagonal character of the coupling allows for the diadjaation of the total Hamiltonian
with respect to the phase-damping basis of the system,

4
H=S |n)n|eHg. (3.10)
n=1

The relative Hamiltonianiﬂggn> are now responsible for the relative dynamics of the single
qubit representing the environment. With the environmlemqtibit initially in state|yp) we
thus arrive at the relative states of the resengir) := exp{—il—~|3(g”>t}\wo>. The dynamics

of the two-qubit system is then fully determined by theseagital vectors. As discussed
in Sec[2.3.R2, time evolution of the individual elements led system’s density matrix is
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3.2 Physical Model of Quantum Decoherence

given in terms of overlaps of these states, thapjs, = (¥n| Ym)pmn In order to identify
extremality of the channel, we have to assess whether théveebtatesys,) form a FSOV.
Using the Bloch representation for these stdgg) — bn, where theb, denote the so-called
Bloch vectors (cf. Apd._Al4), we arrive at the following egalience

1 1 1 1
51526364

The relative stategpn) withn=1,...,4

#0.(3.11)
form a FSOV

<— .=

The FSOV condition is thus equivalent to the determir&aheing non-zero.

Each of the relative environmental Hamiltonia‘ﬂ%ﬁ (Eq. (3.7)) describes time evolution
of a two-state system. Being a Hermitian matrix, it may thasdwritten using the Pauli

— b o

spin matricesti{) = & (V,- ), so that
i) = &2 yo). (3.12)

Itis now obvious that the Hamiltonians define rotations efittitial state of the environment
of

6, = \/r)2(+ r§+(rz+ Ky + Kg)2, 6, = \/F§+F§+(rz+ Kq—Ks)?,

(3.13)
6= T3+ T3+ (Mo katkn)?  Oy= \TE+T3+ (Mo Ka—Kn)?
about the axes given by the normalized vectors
Ix Ix
vl = Qil ry , 92 = Qiz Fy ,
M4+ Kg+ Kp M+ K4 —Kp
(3.14)
Ix Ix
v3 = % ry 5 _‘4 = 9% ry
lz—Ka+Ks [z—Ka—Ks
We may then use the simple relation
i 5 6 .. (8 ~
gt ot — cos(é‘t) 1 +isin <E”t> (Vo 0) (3.15)

to arrive at the relative states at tirheFor the Bloch vectors this results in the following
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0.10—“““““““‘—7

0.05}
" o.oo: /\ A~ /

—0.05- ]

Figure 3.3: Plot of the determinant defined in Eq.[(3.111) for the set of parametexg E
04; kg =12;T = (0.4,0,1.0)]. For any fixed time the discrete time evolution according
to the HamiltoniarH may be interpreted as a channel. At timegth non-zero determinant
the corresponding channel represents an instance of gquatg@coherence.

time-dependence:

whereby represents the initial statey).

We let the initial state of the environment start at the npule of the Bloch sphere, that
is, by = (0,0,1). We find that extremality requires the parameters of our htmeneet
essentially three conditions

() asymmetric coupling: & K4 # Kz # 0,
(i) Tx#0orly+0,and
(i) r,#0.

In Fig.[3.3 we show the determinant from EQg. (3.11) agaimseti for a set of parameters
with all three conditions met. Clearly, the corresponditigage-damping channels are ex-
tremal and hence non-RU at almost any tim&Ve have thus successfully defined channels
describing dynamics of genuine quantum nature. To our kedge this is the first physically
feasible model of quantum decoherence.
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3.2.1 Generalization to Arbitrary Dimension

We have seen that extremality of a phase-damping channeklpe only if the square of
the rankr of the channel is smaller than or equal to the Hilbert spacedsion, i.e.f? < N.
Using the model of an extremal phase-damping channel onbeetlispace of dimension 4
from the last section there are two possible ways to arrivexaitemal channels in higher
dimension.

(I) Let D be an extremal channel of ranlkand dimensioN. The Cholesky factorization
(App.[A.2) may be used to obtain a set of vect@g € C',n=1,...,N, such that
Dmn= (an|am). Augmenting the set of vectors wit¥l arbitrary, normalized vectors
|&k) € C" we arrive at a channel which is still of rankbut now has dimensioN + M.
Since the FSOV condition is not affected by this procedueectiannel is still extremal.

(I An extremal channel of higher rank may be constructetdhim same spirit as the 4-
dimensional prototype of Selc. 8.2. For a ranéxtremal channel, the qubits of our
original toy model have to be replaced bgtate systems (Fif._3.4). Accordingly, the
channel has dimensidd = r2.

In analogy to the two-qubit model, the Hamiltonian may betgdte
H = Hs + Hy + Hg 3.17)
with

Hi=3 (Kﬁ‘dﬁ@dﬁ%—KﬁfG?@GfQ). (3.18)
1]

Here, theg; denote a set of traceless generators of thersUGQ order to invoke a
phase-damping channel on the system, we have to reljgiras well as all operators
o/, g®, to be diagonal. As in the two-qubit model, a diagonalizatid the total
Hamiltonian with respect to the phase-damping basis ofegyst leads to relative
states|y,) of the reservoir. Extremality is again guaranteed for cleésywhere the
relative stateg|yn),...,|y2)} C C" of the reservoir form a FSOV. This may again be
checked utilizing the Bloch representation, now for tHevel system of qudiR (see
App.[A)

The relative state with 2/r 2/r .- 2/r
" ) — ﬁ/ ﬁ/ / £0.  (3.19)
n=1,...,rcformaFSOV by by -+ Dbp
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System

Reservoir

Figure 3.4: An extremal phase-damping channel of arbitrary ramkay be obtained using
r-state systems instead of qubits. Accordingly, the systdfilbert space is of dimension
N =r2.

Note that (I) implies that all extremal channels with< N directly relate to an extremal
channel withr2 = N for someN < N. This is the case because, of thé8loch vectors, only
N can possibly yield a non-zero determindn (8.19). It is ttlear that the interesting cases
are channels withl =r2 (N =4,9,16,...).

3.3 A Measure of Quantumness—The Birkhoff Defect

Up to now, the identification of non-classical decoherengaachics relies on the extremal
character of the corresponding channels. The FSOV cnitedind the constructive test us-
ing the Bloch representation, allow for the constructiom afimple toy model exemplifying
the notion of quantum decoherence. Nothing can be said,J@wiéthe channel is not ex-
tremal. In the present section, we want to overcome thigaiion using a distance measure,
this way also engaging in a more quantitative discussiorseBan our model of quantum
decoherence, we ask hayantumthe corresponding channel is. This quantumness may be
defined in terms of th8irkhoff defectdenoted bydg [85]. It is defined as the norm-distance
of a given channel to the set of RU channels, thus involvirgrtarm of a difference be-
tween two quantum channels. Such a difference is, of costiflea linear map, though not
necessarily completely positive.

As in the original proposal, we may define the Birkhoff defetta quantum channel
& : Mn — My in terms of the cb-norm distance

dg(€) =inf[|€ — Erullco, (3.20)
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3.3 A Measure of Quantumness—The Birkhoff Defect

where the infimum is taken over all RU channéjg;.

3.3.1 The Calculation Scheme

The numerical evaluation of the Birkhoff defect involvesotwmdependent minimization
procedures: (1) Minimization over all RU channdlgy, and (2) Minimization with re-
spect to equivalent generalized Kraus representatiortgeafitannel differencé — Ery (see
App.[AB). In step (1), the set of diagonal RU channels hasetpdrameterized. For this
it is important to note that the number of unitary transfotiores needed to express a given
RU channel depends on the channel’'s rank: in the case ofrrathie number of unitaries
necessary is known not to exce€d]77]. For a system of two qubits we may thus conclude
that the set of diagonal RU channels is fully parameterizetiims of angles,, defining
matrices

U; = diagonale®t, &2 d?s g%:), (3.21)

and probabilitiesy;, i pi = 1 withi =1,...,16. Note that in the operator sum the diagonal
matricesJ; may be brought into the equivalent form

leaving a total number of 63 free parameters in step (1) (48eamand 15 probabilities).
Step (2) requires minimization over the set of 4 positive matricess € My, including a
total number of 19 free parameters (a diagonal matrix of thesitive eigenvalues and 15
parameters involved in the subsequent unitary rotatio}).[86

The global minimization is thus a complex, high-dimenslasatimization procedure. In
order to apply the numerical minimization we use the follogvalgorithm:

(1) Initialization
In order to select the point where additional minimizatitarts, five different sets of
probabilitiesp; and random positive matric&se M4 are drawn. With these values
fixed, minimization with respect to the anglésis performed. The best out of the five
is then selected for further minimization.

(2) Alternating Minimization
The cbh-norm distance is optimized with respect to (one ahalti

— the positive matriceS € My,

— the probabilitiesp;, and
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Figure 3.5: Birkhoff defectds against timet for the dynamics resulting from the two-
qubit toy model. The results allow for a quantitative estiova of quantumness of the
corresponding channels.

— the anglesp/,

whereas the other respective variable sets are left cdnstaese steps are repeated
until no improvement is observed for two complete cycles.

3.3.2 Birkhoff Defect: Results

We evaluate the Birkhoff defect for the channels defined intoy model with the same
parameters as before, i.exy[= 0.4; Ky = 1.2; I = (0.4,0,1.0)]. The results are shown in
Fig.[3.5. The quality of the results is quite satisfactorgr imes where the determinant in
Eq. (3.11) vanishes—giving a channel of RU type—we equaltig the Birkhoff defect to
be zerods = 0. Plus, it shows a rather smooth time-dependence, themoarensiderable
fluctuations which could indicate an instability of the nuios.

Quite interestingly, we observe that the Birkhoff defedtiatly stays close to zero for a
long time. Only aftet ~ 1 a quantumness of appreciable size is assessed. Then,drpivev
stays well above zero for almost all times.

3.4 Adding Irreversibility

The physical model of quantum decoherence introduced infE2avas achieved via cou-
pling of the quantum system to a single environmental qukliie reservoir is thus trivially
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Figure 3.6: In order to arrive at a more realistic decoherence scenagiotiginal toy model
is extended by an additional bath. For a coupling betweeerves qubit and bath with
y # 0 the system’s decoherence is irreversible.

finite-dimensional, making the dynamics fully reversibeldurthermore periodic. Note that
these are features one would clearly refute in the contelteaf” decoherence: rather than
periodic revivals of the coherences, a complete loss of yeem’s quantum nature would
be expected. In order to suppress these coherence reviaistroduce an additional bath,
leading to a deterioration of the correlations shared betmsystem and reservoir. To this
end, the reservoir qubit is coupled to some extra degreaseddm driven by a Markovian

master equation. In addition to the time evolution goverbgdhe three-qubit Hamiltonian

H, the von Neumann equation is extended by a so-called Liddiparatorl [87]:

b = —ilH,pl+£(p). (3.23)

SinceL acts on the reservoir qubit alone and since the Hamiltorsidnock-diagonal in the
phase-damping basis, that is,

A 0
72
H
H= R , 3.24
i 5{3) (3.24)
0 HLY
we may rewrite Eq[{3.23) according to
Pron = —iFR" B+ i1 + £ (Pran)- (3.25)
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3 Classical vs. Quantum Decoherence

Here, we useg = ¥ Pmn|M)(n| With Pn = (Mp|n), with {|n)}#_; denoting the phase-
damping basis of the system’s Hilbert spécg = H 4 @ Hs.

For the coupling of the reservoir qubit to the heat bath wesitar two distinct processes:
(I) relaxation into a heat bath of zero temperature, andpfigse damping. In terms of the
Pauli matricesy, gy ando; and the ladder operatos. := 1/2(oy+i0y), the corresponding
Lindblad operators read [37]

L(I)(ﬁmn) = %(ﬁ‘i' 1) {ZUEQFN)ani2 - Gfaﬁﬁmn— ﬁmnamaf}
+%ﬁ {ZUEﬁmnaf — 0% 0% Pron— f)mnafaf} . (3.26)
and
£(”)(ﬁmn) = %{Gfﬁmnaf—ﬁmn}7 (3.27)

respectively. In both cases, the paramgtelenotes the strength of the coupling between
reservoir qubit and the newly introduced bath (see alsdE®).

The set of differential equations for tifg,, is now solved numerically. As a measure for
the mixedness of a quantum state, ity of the systen® is well suited for measuring the
irreversibility of the dynamics. For a quantum system inesta the purity P is defined as
the trace of the squared density matrix

P(p) =tr [p?]. (3.28)

The maximally possible value is equal to 1, which is attaiifieohd only if the system is in
a pure state (that ig is a projectorp? = p). In dimensiorN it is, furthermore, bound from
below by I/N, corresponding to the completely mixed stafe/N.

In the case of the original toy model, the dynamics are ofgglci nature by construc-
tion. This periodicity may be observed in long-term periodévivals of the purity (see
Fig.[3.7(a)). For increasing coupling,# O, these revivals are more and more suppressed
until a monotonous decay of the purity is observed (see theyca 0.5, Fig.[3.7(d)). In the
case where the additional bath leads to phase damping iresleevoir qubit, the substruc-
ture in the time evolution of the qubit’s purity remains @tlpronounced even for strong
coupling (Fig[3.8(d)). As expected, an increase in the loogigtrength results in a decrease
of the quantumness of the respective channel (Figs. 3. n@iBa8(b)). Still, however, the
Birkhoff defect stays well above zero for a considerable benof channels. This behaviour
can be observed for both processes. flarge enough, the quantumness is zero for almost
all times. That means that the respective channels may theminciple, be decomposed
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Figure 3.7: (a) Purity and (b) Birkhoff defect for the toy model coupledan additional
bath of zero temperature. The blue, solid lines represenotiginal, reversible toy model
(y = 0), the coupling parameters for non-zero couplings arengiveéhe plots. For growing
coupling strengthy, the Birkhoff defect of an average channel decreases datily large
enough, it is zero at almost any time.
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Figure 3.8: (b) Purity and (b) Birkhoff defect for the toy model coupledsin additional bath
via phase damping. As in the case of relaxation, we obseree@ase of quantumness for

growing couplingy. Here, however, the substructure in the purity stays prooed even
for highery.
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3.4 Adding Irreversibility
into a RU decomposition. We thus observe the quantumnessdbrather fragile nature. If

the disturbance by the additional environment becomessgstenough, it is lost for almost
all times.
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4 A Geometric Measure of Quantumness

In Chaptei B the Birkhoff defect was introduced, measurhmgriorm distance of a given
decoherence channel to the convex set of RU channels. Witlyitantitative analysis of the
guantum decoherence channels obtained from the toy moele[32, was possible. It was
also used to identify quantum decoherence in cases wheexttemality criterion was of

no avail. A major drawback of this measure of quantumnessgter, is its computational

complexity: On average, the time effort for the optimizatim yield a result is about 40
minutes per chanl%for a two-qubit system.

In the present chapter, we present a surprisingly simpleimtniive way around this
difficulty. Based on the interpretation of a channel in temfithe Bloch representation
(cf. App.[A.3), we give a new, geometrically motivated measof the quantumness of dy-
namics. The intuitive character of this geometric meastliosva for remarkable ways to
characterize the set of decoherence channels with regpéweit quantumness. This is il-
lustrated for the case of two-qubit phase damping. Here,rev@lale to identify the channel
of maximum quantumnesse., the dynamics with maximum distance to the set of Rlheha
nels. We also find a one-parameter class of channels, mangmize quantumness for a
given purity of the dynamics.

In order to test the validity of our findings, we discuss yettaer approach to such a
measure based on the entanglement of assistance of a chaaneiblkowski state. Despite
some qualitative variations with respect to the previouislsoduced measures, it is equally
suitable to distinguish classical from true quantum dersiee in the model Hamiltonian of
Chap[3B. Due to its greatly reduced complexity, this measnebles a rigorous comparison
with the geometric measure. The insights gained on the basiee geometric measure are
in outstanding agreement with results based on the entaeglemeasure.

1Using the built-in numerical minimization routiféMinimizein Mathematica version.@.1.0 on a usual work-
station CPU with 66 GHz.
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4 A Geometric Measure of Quantumness

4.1 Bloch Volume as a Measure of Quantumness

The Bloch vectors corresponding to the dynamical vectos pifiase-damping channel al-
ready play an important role in the identification of quantdecoherence (see SEcC.]3.2). In
the toy model describing the phase damping of a system of tditsjcoupled to a single
environmental qubit, we saw that extremality of the chanve given as soon as the Bloch
vectors satisfy

1 1 1 1

S0 T #o (4.1)
by B D3 by

Once extremality is assured, the channel represents anassibf quantum decoherence,
which may not be described in terms of RU dynamics. Some elamne matrix algebra
shows that the determinant in Eq. (4.1) is actually equivalaip to a factor—to the 3-
dimensional volume spanned by the Bloch vectors (see [A@). AVe may thus define the
Bloch volumeof the phase-damping chanrigiia

11 1 1
by by b3 bs

1

Vg = VOl(B]_,. .. ,64) = 6

(4.2)

The nature of the dynamics is therefore directly linked teeargetric object: the dynamics
may be written in terms of a RU channel if and only if the respecBloch vectors point
to the same hyperpla@e If, however, they span a non-zero volume, the related djcgam
is of true quantum nature (cf. Fig._4.1). Moreover, the sizéhe volume seems to give a
meaningful measure of the distance to the set of RU chanRiglare[4.2 allows to compare
the Bloch volumevg with the Birkhoff defectdg, which measures the norm distance of a
given channel to the set of RU channels in terms of the cb-rieea Sed._313). Here, we
use the same set of parameters entering the Hamiltoniare abyhmodel, Eq.[(3]7), as be-
fore. Also, the initial environmental state correspondbgte- (0,0,1). The two approaches
show a remarkable agreement. We would like to stress théisarce of the implication:
rather than having to perform a prolonged optimization pdare, the volume involves the
evaluation of the determinant of ax4-matrix.

2Strictly speaking, only the “only if"-part has been showrfao In order to see the “if"-part, first note that for a
channel withby, ..., b pointing to a plane parallel to they-plane RU nature follows immediately, for we can

write the corresponding relative states in the fag) = (,/17 pd#” /P é‘Pém) with the samep for all
n=1,...,4. This results in a Kraus forp/ = (1— p)UspU; + pU,pU, with Uj = diagona(e?,...,e9").
For arbitrary coplanar Bloch vectors a suitable rotatiobath the initial statéyyp) and the relative Hamilto-

niansH"” leaves the phase-damping channel unaltered, whereastieegpanned by the new Bloch vectors
is again parallel to the-y-plane.
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Figure 4.1: The Bloch volume: Phase-damping channels representieggrantum deco-
herence may be characterized in terms of the volume spanngee fzorresponding Bloch
vectors. For values dfg = 0, (left circle and (b), exemplary) the corresponding Bloch
vectors are coplanar, and the phase-damping channel is ®Y¥gFE> 0, (right circle and
(c), exemplary) the dynamical vectang,) form a FSOV, so that the corresponding Bloch
vectors are not coplanar. In this case, the model gives ajtrartum decoherence channel.

Recall that we have seen in SEc]3.1 that extremality is pleskirr? < N only (remember
thatr denotes the rank\ is the dimension of the channel). From this we know that2
is mandatory for two-qubit phase-damping dynamids={ 4) to be extremal. Hence, the
extremal channels in this case are in one-to-one corregpardo vectors in Bloch sphere
spanning a tetrahedron with non-zero volume. Within theceesisting of quadruples of
vectors inR3, the set of coplanar vectors is a null set. We can thus coadhat extremality
is generic for channels with dimension 4 and rank 2.

4.1.1 Direct Calculation of the Bloch Volume

Of course, in order to be able to calculate the Bloch voluma phase-damping channel,
the corresponding Bloch vectors have to be assessed firfiegio with, given an arbitrary
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Figure 4.2: The quantumness of the phase-damping channels resultingtfre toy model
in Sec[3.2 for the set of parameteks; [= 0.4; kg = 1.2; [ = (0.4,0,1.0)]. The agreement
between (b) Bloch volumés and (a) Birkhoff defectlg is quite remarkable.
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4.1 Bloch Wolume as a Measure of Quantumness

phase-damping channBl one has to extract the dynamical vect¢ag), using, e.g., the
Cholesky factorization (App._Al2). Next, these dynamicattors have to be translated into
Bloch vectors (see App._A.3). Arising from the matrix regmesation of the channel, there
are thus two intermediate steps to be completed before tehBiolume may be obtained.

There is, however, a direct and much more elegant way to aethe Bloch volume. It
is based on the so-callégaley-Menger determinarisee ApplB). We find that

0
1

= id — . 4.3

seg| 1 4 (id— Dx D) (4.3)

1

1

Recall thatx denotes the Hadamard product, i.e., the entry-wise praafutiatrices. As a
conseguence, the matrix representation of the idendityis a matrix withall entries equal
to 1.

Generalization to Arbitrary Dimension

How can the above result, Eq._(#.3), be generalized to highmeension? Again, recall
thatr? < N is necessary for a channel to be extremal (witheing the rank andN the
dimension of the channel, respectively). Extremal chanmnéih r2 < N are, furthermore,
directly connected to the casés= N with N < N (see Sed._312). In order to find interesting
instances of extremality, we therefore have to examine mjcgin dimensiorN = r2, that

is N =4,9,16 and so on. For simplicity we may thus assume Mhat r2. In this case, the
calculation of the volume may again be carried out using thieyeMenger determinant (for
details see App.1B). The relation is given by

01 1
, (_1)N 1
VB = NA(N=DH2| © 4(id—D«xD") 0
1

In case the square of the rank is smaller than the channelisrdiion,r2 < N, the direct
calculation of the Caley-Menger determinant will yield agolume at all times. Rather,
one has to check the corresponding determinant forlaflimensional sub-matrices &f
obtained by discardiny — r? rows and columns of the same indices.
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4 A Geometric Measure of Quantumness

4.1.2 The Channel with Maximum Bloch Volume

The Bloch volume seems to give an exceptionally effortleag of determining a channel’s
guantumness. Furthermore, its geometric character ddferery intuitive approach to the
issue of RU vs. non-RU dynamics. How can we exploit this facbrider to gain insights
into the geometry of the set of true quantum decoherenced fitst limit the discussion
to the case of two-qubit dynamics, where the relevant olgésiterest is a volume iR 3.
From geometric considerations it is rather straightfodver arrive at the phase-damping
channel with maximum Bloch volume. It corresponds to theeaskere the Bloch vectors
span a regular tetrahedron inside the Bloch sphere, hanirgge length of\/g and volume
ﬁ@. A possible choice of Bloch vectors leading to this objediv&n by the following four
vectors:

0 sina sina cos?! sinar cos?!
bi=|0]|, bo=| 0 [, bs=]|sinasing |, bs= | —sinasin |, (4.5)
1 cosa cosa cosa

wherea = arccog —3) is the so-called tetrahedral angle. With= /s — \/g ~
0.57735 the corresponding phase-damping channel has thix negiresentation

1 X X X
x 1 iX —ix
Da = (4.6)
X —ix 1 IX
X ix —=ix 1

In terms of the Bloch volum¥g, there exists no channel with greater quantumness.

4.1.3 SIC-POVMs and Quantum Decoherence

What about channels of maximum quantumness in higher dioehdn dimensiorN, the
maximum Bloch volume is achieved for vectors spanning alaeedi — 1)-simplex. Note
that we have encountered this situation before: the prje¢t,)(yn| of the dynamical
vectors compatible with this situation form a SIC-POVM (s&ec[2.6.R). If we conjec-
ture the Bloch volume to be a suitable measure of quantummessan claim the channel
corresponding to a SIC-POVM to be the dynamics which is makinquantum in any di-
mension. Remember that tihedynamical vectors forming a SIC-POVM are distinguished
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4.1 Bloch Wolume as a Measure of Quantumness
by the relatioﬁ

| (W | ) 2 m# n. (4.7)

1
O UN+1
The Bloch volume of such a phase-damping channel may beatedlwsing the Caley-
Menger determinant (see App. B.3). Itis given by

N-1

N (2) ©
Vg = (N—1) (4.8)

Note, however, that we now face the same difficulty mentione8ec[Z.6.R: it is hitherto
unknown whether such an object exists in any dimension.

The construction of both analytical and numerical exampleSIC-POVMs in dimen-
sion N relies on the identification of &iducial state|y), which is mapped onto the final
set by a group of unitary operators. Rdr= 2, for example, one fiducial state is identified
as the Bloch vecto(1,1,1)/ /3. The additional states are obtained after simple rotation
by T about thex, y, and z axis, respectively[[82]. Note that this situation is verysi
lar to our toy model (see Sdc. B.2). Here, too, the environrstmts out in a single pure
state|p), which is subsequently mapped onto the relative stateseoEtivironment via
some unitary transformatidd,. It is thus interesting to note that there are instances evher
the relative environmental Hamiltonians of our model of muan decoherence succeed in
spanning a SIC-POVM. This is the case if, for example, we shabe parameters to be
[Kq = 1.688; kg = 0.918; T = (1,0,0)], the Bloch vector of the initial state points ia
direction, that ispg = (1,0,0). The Bloch volume achieves the maximum possible value
fort =~ 1.35; then, the Bloch vectors of the relative states of therenment span a regular
tetrahedron inside the Bloch sphere (see[Figd. 4.3).

Another interesting idea relating to SIC-POVMs is discdsseseveral papers by Chris
Fuchs and co-workers [388,/89,190]. His idea is to look at impdatations of quantum cryp-
tography protocols. Usually, the security of such scheralissron the fact that any eaves-
dropper reveals himself by disturbing the quantum inforamahe reads. The amount of
disturbance, however, delicately depends on the set @ssiatvhich the information is en-
coded. Just consider the example giveriin [90]: “given a&stp}, the measurement which
projects ontdy) and its orthogonal complement causes no disturbance tdetes.5~or the
purpose of securely transmitting quantum information, ths needs an ensemble of states
that enables the legitimate user to detect an intruder. ddweis formally cast into a measure

3Note that the definition dfl here is different from the one in S€c. 216.2.
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4 A Geometric Measure of Quantumness

Figure 4.3: If the parameters in the model Hamiltonian are chosen apigtefy, the relative
states of the environment form a SIC-POVM. Here, we chosénitial state to point inx-
direction (straight, black vector). Starting from thispipithe relative states (dashed vectors)
evolve along the blue, dotted arcs until they span a regeteattedron, indicated in red.

called “the quantumness of a set of quantum states”, givingvaluation of how difficult it
is for an eavesdropper to remain unnoticed. It turns outahaiptimal choice for encoding
the information is given by a SIC-POVM [39].

4.2 Characterization of Two-Qubit Phase Damping

How can the geometric character of the Bloch volume be usegito further insight into
the set of quantum decoherence channels? We study thisayuiesthe present section with
the help of the example of two-qubit phase-damping dynanhicthe following section, the
purity plays a central role in the characterization of cle@snRecall that the purit? of a
guantum state is simply defined as the trace of the state&tgenatrix squared:

P(p) :=tr[p?]. (4.9)

Itis a very helpful way to categorize quantum states witpeesto their “mixedness”, giving
an estimation of how close the state is to being pure. A pwate $¢ distinguished by its
idempotencep? = p. Its purity is thus equal to 1. The completely mixed stateth@nother
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4.2 Characterization of Two-Qubit Phase Damping

hand, is the most remote to the set of pure states. It is ahdémeat superposition of all basis
states with equal weights. Its purity evaluates tbl,ldepending on the dimensidof the
guantum system scrutinized.

4.2.1 Purity of a Phase-Damping Channel

How can the purity help in the characterization of phasefiagichannels? It is important
to note that purity remains unchanged under unitary (Hamidin) dynamics. A change of
a quantum system’s purity is thus a definite indicator thatuthderlying dynamics is non-
unitary. A damping of the coherences will always result inuaity loss. Looking at the
diminution a channel causes may therefore reveal how stitomgtate is affected by the
decoherence process. But how exactly can the loss of pdtigyto a certain phase-damping
channelD, be measured? Let us consider the situation where the dhisreqgplied to the
initial statep with pmn=1/N for all mn=1,...,N. Certainly, this initial state is pure, that
is, P(p) = 1. The final state, however, has a purity given by

P(Dxp) = tr[(Dxp)?|

A 2 M 2 2
= Z Pnn |dnnl~ | Omnl
n=1 mn=1m#n
1 + LS | A2 (4.10)
= TN mn| - .
N N2 mm:z;m;tn

Note that this is trivially equal to the purity of the Jamiolkski state of the phase-damping
channelD,

D
D — J—
1 1 N
- 4= |dinnf2. (4.11)
N sz,n:Z;m:tn o

We will refer to P(pP) simply as thepurity of the channel D Since all matrix elements of
D are equally weighted in this sum, it may be seen as a way to&eah channel’s effect on
the purity of a stat®n average
Since the Kraus rank of the channel is equal to the rank of dreesponding Jami-

olkowski state[[7]7], we know that the (unital) channel rergs unitary dynamics if and
only if P(pP) = 1. In this case, the dynamics of course cannot change arg/sstatrity.
On the other hand, we see in EQ.(4.11) tR§®) = 1/N is only possible ifdy, = O for
allmn=1...,Nwith m=#n. Then, howeveranyinitial state is mapped onto a state with
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4 A Geometric Measure of Quantumness

diagonal density matrix. We may call this channel tioenpletely decohering chann@&g.
Based on these considerations, a channel’s purity may thusdéd as an indication of the
effect of the channel on any arbitrary initial state. In otherds, it measures thdecoher-
ence potentiabf the dynamics. If it is close to 1, the channel cannot changete’s purity
to a great extent. If it approaches a value gi1however, its impact, in terms of purity, will
perhaps be large.

Figure 4.4: The single-qubit phase-damping chanBesimply contracts the Bloch sphere
towards thez-axis. Here, a parameter ¢f| = 0.6 is used. The dynamics leads to a de-
formation of the sphere into an ellipsoid, causing a deeredithe volume by a factor of
[cl?.

The underlying idea is easily understood at the examplenglesiqubit dynamics. Here, a
phase-damping channel is fully characterized by a singleptex parametet. In order to
estimate the average effect of the dynamics, we considanftuence on the manifold of all
pure qubit states, represented by the Bloch sphere (a siphigPeof radius 1, see App._AL3).
In effect, the channel simply contracts the sphere by therfag towards thez-axis, leaving
intact only the eigenstates of, |0) and|1) (Fig.[4.4, see also App. A.7). The phase-damping
dynamics thus leads to a deformation of the Bloch spherejmgua reduction of the volume.
To estimate the overall effect of the channel, it is insiugcto look at the relative change in
volume which is easily obtained to be (see App.JA.7)

V/

2
— =|C|". 4.12

(Here,V andV’ denote the volume before and after the phase damping, teshes The
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4.2 Characterization of Two-Qubit Phase Damping

purity of the channel, on the other hand, is simply given by

P(pP) = %<1+ \cyz). (4.13)

The connection between the channel’s purity and the volwdeaation is thus obvious. Al-
though this clear-cut geometric interpretation is no langadid in higher dimensions, the
general idea about the purity measuring the decohereneatftshould be clear.

4.2.2 Mixed Channels of Maximum Quantumness (MCMQ)

We may now use the purity together with the Bloch volume ireottd gain some more in-

sights into the geometry of the set of phase-damping chanhethe preceding sections, we
have been acquainted with several extremal examples, Widtave successfully identified
the channel of maximum Bloch volume and, hence, arguably afimum gquantumness.

Note that it has a purity of

P(P™) = 7+35
(4.14)

On the other hand we saw that the pure (unital) channelsspwnel to unitary transforma-
tions, thus trivially belonging to the set of RU channels. aVban be said about channels
with intermediate values of /2 < P(pP) < 1? Certainly, at any given amount of purity,
there must exist channels maximizing the Bloch volume. tteoto find these channels, we
have to maximize the volume for a given value of purity. TheatguP of an arbitrary phase-
damping channel of rank 2 may be expressed in terms of thegmynding Bloch vectors
by € R3. In fact, it is straightforward to arrive at the followingrfo:

P(pP) = = (1+[bg?), (4.15)

NI =

wherebs denotes the barycentre of the Bloch vectors, thaigs; (by + ...+ bs) /4.

We are thus interested in finding the tetrahedron spannexgtiximum volume, while the
distance from its corners’ barycenter to the origin has alfiaue. We find this maximum
numerically: it is achieved for the cases depicted in Ei§l. 4The Bloch vectors may be
defined as in EqL(4l5), yet withr € [0,arcco$—1/3)]. For a = 0 the volume is zero,
the purity equals one and the corresponding channel isrynikor o = arccog—1/3) we
have the case of the channel with maximum volume. The valubstiveen give thenixed
channels with maximum quantumné@k,CMQ). The picture that comes to mind is the act of
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4 A Geometric Measure of Quantumness

€

Figure 4.5: Schematic Plot of the Bloch vectors (black, dashed arrowskesponding to
the channel with maximum volume (big) and to a selection of N (small) spanning
tetrahedra (red lines) of decreasing volume.

closing an umbrella: while one of the Bloch vectors (the @@mbd) remains fixed, the three
remaining ones move towards the first just like the metal &aarrying the fabric.

4.3 Quantumness of Assistance

In this section we discuss yet another option for a quantssimeeasure, enabling us to
rigorously test the validity of all results found so far. hgjor advantage as compared
to the Birkhoff defect is that the calculations involved ugg much less effort. The main
reason is that less optimization procedures are involvelte [asic idea, which relies on
the Jamiolkowski isomorphism, was first presented_in [21¢cdling the definition from
Sec[Z.4, the Jamiolkowski stgté of the channe€ is defined via

e 1

Pt = < e(min) @ m)m (4.16)

That is, the channel is applied to one “half” of the maximadigtangled pure state
Ynlnn)/VN.

For a RU channel it is rather obvious that the correspondamgidlkowski state is a con-
vex mixture of maximally entangled states, since entangtdrs unaffected by local unitary
transformations[[30]. Conversely, the Jamiolkowski sta#g a convex mixture of maxi-
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4.3 Quantumness of Assistance

mally entangled states also implies the channel is RU. BHhisle since maximum entangle-
ment may be attained by pure states only. The pure statesniprime Jamiolkowski state
thus have to be connected to the initial, maximally entathglate via some unitary trans-
formation. The identification of a RU channel may now be agtieusing the entanglement
of assistance. Remember that the entanglement of assistaoives a maximization of the
entanglement over all pure-state decompositions of a nitae:

Ea(p) = max {Z PE(Y) : ZFMWO(WZP}- (4.17)
piLlgn} | 4§ .

Therefore, a quantum channglis RU if and only if its Jamiolkowski state has maximum

entanglement of assistance [21].

In order to arrive at a measure of quantumness, we choosekm some minor yet helpful
modifications. First, the entanglement of assistance getrmalized, such that it is bound
from above and below by 1 and 0, respectively. In the secapivee invert this renormalized
guantity simply by subtracting it from 1. The quantumnessyeasured in terms of the
entanglement of assistance, is thus given by

Ea(p®)

Qa(é)=1- log,N (4.18)

log, N giving the maximum value for the entanglement of assistar\e now have 0O<
Qa < 1 with Qa = 0 if and only if the corresponding channel is RU.

Quantumness of Assistance: First Results

For the calculation of the entanglement of assistdfice/e use the method described[in[[91]
and [92] (see also App._A.1), which was originally formutate the context of entanglement
of formation. For channels of rank 2, the evaluation invehgptimization with respect
to a unitary 4x 4 matrixU € My4. Thus, a total number of 15 parameters is involved—
much less than was the case for the Birkhoff defikct This results in a great reduction
of computational cost: here, the average computation tgrabout 2 minutes, making the
calculation 20 times as fast. In a first step, we compare thateeof this new measure with
the Birkhoff defect and the Bloch volume. The comparisongaia based on the toy model
of Chap[3B. The results are shown in Figs] 4.6[and 4.7. We ebskat the quantumness of
assistance is equally able to identify RU dynamics. Thawisfind Qa = 0 whenever the
other measures are zero as well. Qualitatively, the agneeaidBirkhoff defect and Bloch
volume appears best. A direct comparison reveals that séthe tbcal maxima are shifted
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Figure 4.6: Comparison of (a) Birkhoff defealg, (b) Bloch voluméevg, and (c) the quan-
tumness of assistand®@, for channels arising from the model Hamiltonian of Sec] 3.2.
Here, the same parameters as in Figl 4.2 are usge-[0.4; kg = 1.2; T = (0.4,0,1.0)].
While the quantumness of assistance is clearly able toifgdRit) dynamics, it shows some
qualitative aberrations compared to the previously defimedsures. It may be observed,
for example, that the hierarchy of certain maxima is rev(g&licated with arrows).
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Figure 4.7: Comparison of (a) Birkhoff defealg, (b) Bloch volumevg, and (c) the quan-
tumness of assistand@a for a different set of parameters | = 0.32; kg = 1.35; T =
(0.55,1.14,0.9)]. In addition to a change in the hierarchy of local maximae omay ob-
serve an obvious shift in the location of the third local nmaxim (indicated with an arrow).
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4 A Geometric Measure of Quantumness

guite significantly towards different values of tih¢see the third maximum in Fig. 4.7 (b)
betweert =5 andt = 6, for example).

4.4 Comparison of Bloch Volume and Quantumness of
Assistance

The measures introduced in the present chapter shall nowbdied as to their mutual re-
lation. We start by looking at random samples of two-qubag#rdamping channels. They
are generated according to the prop@ty, = (an | am), where thea,) € C' are normalized
vectors,r giving the rank of the resulting channel. That is, we definas theGram ma-
trix of the complexXa,). We use vectors equally distributed on the unit spher@"inFirst,
only channels of rank 2 are studied. For each channel welatdcBloch volumeé/g and
guantumnes®a as well as the purity?. The result is shown in Fig. 4.8.

0.10, Dp,
0.08

0.06
S I

.0Q
0.0 01 0.2 03 04 05
\:

Figure 4.8: Quantumness vs. Bloch volume of a set of randomly generdtasegpdamping
channels of rank 2. The color coding indicates the purityhefdghannel in the following way:
red (05 < P < 0.6), yellow (06 < P < 0.7), green (07 < P < 0.8), blue (08 <P < 0.9),
black (09 < P < 1). The dashed line corresponds to the one-parameter seEMM The
channel with maximum Bloch volum, (and purity 05) is indicated with a black dot, as
are the MCMQ with purity @5, 0.7, 0.8, and 09 (from right to left). The agreement of the
upper bound of the quantumness for fixédwith the analytically obtained set of MCMQ
is quite remarkable. The vertical black line representsotieparameter class of channels
D, with constant Bloch volume ofg =~ 0.2357.

One can clearly see that, depending on the purity of the aiattere exist certain bounds
to the quantumness as well as to the Bloch volume: the loweepthity, the higher the
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4.4 Comparison of Bloch Volume and Quantumness of Assietanc

Figure 4.9: Schematic Plot of the tetrahedra spanned by the one-paaciass of phase-
damping channels with constant Bloch volume. The black aedrgtetrahedra correspond
to values ofgp = —0.5 and@ = 0.25, respectively. The values in between are indicated with
gray, dashed lines.

accessible quantumness and volume. In[Eid. 4.8 this isiglgkld using a color scheme to
single out specific purity intervals. Certainly, there isame-to-one correspondence between
the two measures; yet, the correlation is evident. Towdrgl€hannels of maximum volume
within a given purity interval both measures seem to coreieMpte that this would strongly
support the validity of the MCMQ in terms of the quantumnegsassistanceQa. Also
shown in the figure is the set of MCMQ (black, dashed line).yTieem an upper bound on
Qa for a fixed Bloch volume. The Black dots on this line represtiet MCMQ of purity
0.5,0.6,...,0.9 (from right to left).

4.4.1 Quantum Channels With Constant Bloch Volume

The comparison of Bloch volume and quantumness revealsaa aberelation which, how-
ever, obviously depends on additional parameters. Thessooedependence on the purity
of the channel is clearly visible in Fig.4.8. How can the aection between Bloch volume
Vg and quantumnes3, in relation to the purity be studied more closely? For this,define

a one-parameter class of phase-damping channels of coBdtei volume yet parameter
dependent quantumness and purity. We let

cosp — COSQ 0 0
b= |-sing|, bo=|-sing|, bs=|-1|, bs=|-sino|. (419
0 0 0 cosf

The volumeVg spanned by these 4 vectors is easily obtained to be
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4 A Geometric Measure of Quantumness

Vg = %cos@coscp(l—sin(p), (4.20)

a value conditional on the two independent andleend ¢. In order to fix the volume to a
certain value we can simply let

6 = arccos Ve _ . (4.21)
cosy (1—sing)

In order to proceed we set the Bloch volume to an arbitraryifisgueVg = v/2/6 ~ 0.2357
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Figure 4.10: Purity P (a) and quantumness of assistari@gge (b) againstg for the one-

parameter class of phase-damping channels of constant Btdaeme. It is clearly visible

that there is no monotonic relation. As the insets reved,nttaxima of the two curves
(indicated with dashed lines) are at different angles, too.

Translating the Bloch vectors into quantum stat?&s»,—> |Wn), we can define (viaD%n =
(Un| Ym)) the phase-damping chann@&$. This way we are able to present a one-parameter
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4.5 Characterization in the Quantumness-Purity-Plane

set of phase-damping chann@&¥, all having the same Bloch volume (see Figl 4.9). Note
that the anglé is defined for values op approximately hedged by 0.5 < ¢ < 0.25.

For the related class of phase-damping channels we anatyagbrity and quantumness
Qa. The guantumness covers a range of roughGAB to 005. In Fig.[4.8 this interval
is depicted as a thick, black line. It covers almost the wtegan of available values at
the specified Bloch volume. In Fig._4]10 it is clearly notickathat there is no monotonic
correlation between quantumness and purity. Both the minirand the maximum of the
respective quantity do not appear at the same valge Glearly, thus, the purity of a channel
alone does not account for the ambiguity in the relation aicBlvolume and quantumness.

4.5 Characterization in the Quantumness-Purity-Plane

All results obtained so far are best visualized in @igantumness-Purity-Plang@ig.[4.11).

It shows the relation between the dynamics’s potential tmbere a quantum state (as mea-
sured by the purity) and the maximum possible quantumndss maximally quantum chan-
nel, denoted wittD,, has a purity of &. The channels corresponding to unitary dynamics,
on the other hand, hav@= 1. In the plot they are represented By. In betweerDa and

Dy we have the MCMQ, which maximize the accessible quantumicessgiven decoher-
ence potential. They are depicted in Hig. 4.11 as a solidkdlae. In order to complete
the picture, we further include the completely decoherihgmmel, which has the matrix
representation

o O O -
o O+ O
O OO
= O O O

It simply annihilates all existing coherences in a quanttatesand may be seen as the fiercest
phase-damping process possible. Itis easy to se®thditelongs to the set of RU channels:
its RU decomposition is given by the diagonal matri¢és 1)/4, (0, ®1)/4,(1 ® 0;)/4,

and (o, ® a;) /4. The channel has a purity B{ pPe) = 0.25.

In order to give an estimation of the validity of the MCMQ asupper bound, we com-
pare it with the quantities obtained for a randomly generatet of channels. This time,
however, we draw channels of rank 2, 3, and 4. The resultihgesacan be observed in
Fig.[4.11. Each random channel is shown by a single point thi¢ color indicating the
respective rank. From Sdc. B.1 we know that channels of ramkh2non-zero quantumness
are extremal with respect to the set of quantum channeld Méteasing rank, the average
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Figure 4.11: Quantumness in terms of Purity for a random set of phase-tgnuhannels.
The color coding indicates the rank of the respective channankr = 2 (red), rankr = 3
(green), and rank = 4 (blue). The solid line represents the MCMQ, yielding anampp
bound to the accessible quantumness in terms of pBrityfo single channel in violation of
this bound is found. Also depicted are the channel of maximquamtumnes<),, and the
completely decohering channBky. TheD, are defined as convex mixture of these two,
while Dy stands for channels representing unitary dynamics.

guantumness is thus expected to decline, as may be obsartrezlplot. For a total number
of 70000 randomly generated channels no single violatiothefupper bound introduced
by the MCMQ is observed. We take this as a strong sign that tGdMK) also maximize
the quantumnes®, in terms of the purity. We deem it quite remarkable that thaitive
character of the Bloch volume is able to give such valuabdights into the geometry of
guantum decoherence processes.

We further observe that below a purity oBahere are only few channels with considerable
guantumness. In order to understand this detail, we lookhanmels that are defined as
convex mixture of the channel with maximum voluni®,, and the completely decohering
channel Dgg:

Dy = (1—A)Da+ADgq. (4.23)

For this one-parameter class of channels we numericaliyata the quantumness. We find
that the channels quantumness rapidly decays to zero farasingA (see the dashed line

in Fig.[4.11). For a parameter af > 0.2, all channels already have zero quantumness and
hence belong to the class of RU channels. Of course, we cataiot this to be an upper
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Figure 4.12: The trajectory of the model Hamiltonian of Séc.13.2 in @e-P-Plane. The
accessible domain is indicated by a gray background. Heggarameters are chosen such
that the dynamics is of maximum quantumness at a certaiarinef time.

bound for quantumness; yet, the consideration helps teratiderstand the small number
of channels with considerable quantumness for purity bé&&w

Toy model in the Quantumness-Purity-Plane

As a closure of the present chapter, we deem it instructiviefict the channels obtained
from the model Hamiltonian of Selc, 3.2 in the Quantumnes#yPRlane (Fig[4.1R). Since
the channels have ranmk< 2 by construction, their purity may not drop belowb0 There-
fore, the accessible domain for channels based on the toyelni®dound not only by
the MCMQ, but also in purity. This accessible region is el with a gray shading.
The example shown here is chosen so that there is a time ahlcchannel achieves
the maximum possible quantumness (see Sec.]4.1.3). Thespording parameters are
[Kq = 1.688; kg = 0.918;T = (1,0,0)]. As an initial state we chose the Bloch vector point-
ing in x-direction, by = (1,0,0). The quantumness reaches its maximumtfer1.35. At
this point, the Bloch vectors of the relative environmerstaltes span a regular tetrahedron

inside the Bloch sphere.
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5 Quantum Decoherence via Entangled
Local Reservoirs?

In Chaptef B we saw that phase-damping dynamics of a singdfi¢ igualways of RU type.
Clearly, thus, the dynamics of a system of qubits, which Iext to phase damping due to
local reservoirs, is of RU type, too. Namely, the global dyies is the sum of the individual
RU terms. Such a situation is quite common in the contexpif chains Here, the model
Hamiltonian usually rests on next-neighbor coupling amtirggqubits, which additionally
couple to their local environmerit [93,194].

How does this situation change when we allow the local enwirents to be quantum
correlated (i.e., entangled)? In the present section, it toatudy this question in a realistic
experimental context. We study a system of two qubits lgdalleracting with a bipartite
environment sharing entanglement of some kind (seelFi§. .he bipartite environment
shall be represented by two electromagnetic field modes oparsonducting cavity. Each
gubit interacts with its designated cavity mode, while apypling to the other mode, as well
as between the modes themselves, is suppressed. We catiffigiemt initial conditions
of the two cavity modes. First, the entanglement manifdstdfiin an uncertainty of the
location of a single photon shared by the two modes. In thergkapproach, the initial state
is given by a squeezed, Gaussian state.

In order not to mislead the reader’s expectations, we wakidtb anticipate that—most
interestingly—the quest for true quantum decoherence niangled reservoirs remains an
open question. That is, despite the various initial coaddiof the environment and despite
the different models of interaction studied, all dynamidlse found to be of RU nature. To
some extent, the identification of the dynamics’ RU charastdone numerically; however,
for a large class of dynamics we are also able to definiteljueecthe true quantum property
analytically. Nonetheless, a general statement is yet fouoed.
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System

—— = ==

Reservoir

= =

Figure 5.1: Can entanglement turn classical decoherence into quantaohdrence? The
two qubits.A andB are coupled to their local environmerits; and Eg, respectively. A
phase-damping channel is thus known to be RU as long as theesgovoirs are separable.
Does entanglement between the local environments (heieated by the red dashed line)
change this?

5.1 Experimental Setup

Let us consider a possible experimental realization of tiev@ mentioned scenario. Our
discussion shall be based on actual experiments that hare realized at the “Labora-
toire Kastler Brossel” at Ecole Normale Supérieure (ENSParis. In the experiments,
single circular Rydberg atoms are used to manipulate arfibpie states of photons which
are trapped in a superconducting cavity|[95]. The atoms ngiadihe following procedure
(cf. Fig.[5.2): A short maser pulse at stage B prepares sitigtalar Rydberg states. The
relevant atomic states are the Rydberg levels with quantumbers 51 (excited statég))
and 50 (ground statég)), having a transition frequency of 31GHz [96]. The atoms’ inter-
nal state may be manipulated using the microwave sourcéd@img to initialize arbitrary
superpositions ofg) and|e). During the time spent inside the cavity C, the atoms interac
with the electromagnetic field. Using a second stage of miave pulses allows the atomic
state to be analyzed right before detection at the stagetsad field-ionization detector D.
The cavity itself consists of two superconducting niobiurnrans facing each other. It
resembles a resonator of ultrahigh finesse at frequesy@mr = 51 GHz. Its field energy
damping timeT, is given by T, =~ 130 ms, leading to a very long lifetime of the infused
electromagnetic field. The corresponding quality factagiven byQ = wT, = 4.2 x 10%9.
The mirrors exhibit a slightly asymmetric architecture:edo a toroidal surface with radii
of curvature of 3% and 406 mm there is a frequency splitting of2LMHz between the
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Figure 5.2: Experimental setup: Velocity-selected rubidium atomg fiess stage B, where
single atoms are excited in circular Rydberg states. Whiksimg cavity C, the atoms are
able to interact with the cavity mode. Finally, the atomsarented by the field-ionization
detector D. At stages;Rand R, microwave fields are used to prepare and analyze the atoms
before and after interaction with the resonator, respelgti{Picture taken fromi [96]).

two TEMggp modes of orthogonal linear polarization near 51 GHz. Thagfiency splitting
ensures that the atoms are effectively coupled to a singtéeroaly. Tuning of the cavity is
performed by four piezoelectric actuators translating afrthe mirrors [95].

5.1.1 Resonant Coupling

For the case of resonant coupling, let us consider the wituathere the atom enters the
empty cavity in the excited state. The combined atom-castye is thus given ag,0)
(for simplicity, only the relevant mode is included in thesdgption). Tuning the cavity to
resonance with the atomic transition then leads to Rablilatohs of the atomic state: the
probability of finding the atom in the excited state at tinig given by [40]

Pe(t) = cof(Qot), (5.1)

where the vacuum Rabi frequency is found tolhg/ 21T = 47 kHz. Likewise, the combined
atom-cavity state oscillates betwegn0) and|g,1). The velocity of the atoms is adjusted
such that the full atom-cavity interaction time at resomaocrresponds to ar2Rabi pulse

[97]. A shorter pulse length may be achieved by suddenlyntyittie cavity out of resonance.
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9) _i
li)

Figure 5.3: Atomic levels utilized in the realization of a QPG.

5.1.2 Conditional Quantum Phase Gate

The resonant interaction of atom and cavity may be used tigrd@sconditional quantum
phase gate (QPG), as has been shown_ih [98]. For a system dajubits described by
|uv) (u,v =0,1) a QPG is defined via

vy S d8udne) ). (5.2)

That is, it adds a phasgto the state if both qubits are in stdfie or else leaves it unaltered.
In order to realize the QPG, a third atomic level is utilizefl Fig[5.3). Itis the Rydberg state
with quantum number 49, denoted Iy. The relevant degrees of freedom for the two-qubit
system are now described by the atomic qubit b&$js|g)} and the zero- and one-photon
state of the cavity{|0),|1)}. An atom in statei) passes the cavity without interaction;
atom and cavity are thus fully decoupled. The same is truéhtoatom in statég) with no
photon in the cavity. The only interaction is thus takingoeldor the combined statg, 1).
With the cavity in resonance to thg) — |€) transition, the atom performs a full Rabi cycle,
transforming [[98]

Now, this is exactly what defines the action of a QPG. Notetth@QPG is a universal two-
qubit quantum gate in the sense that any unitary transféa@man two qubits can be achieved
using a sequence of this gate and additional rotations ohthieidual qubits[[98, 90]. In the
following sections we investigate the dynamics of two galsitandB, which locally couple

to their respective moda andb of the cavity. The local character of the coupling may be
achieved by letting the two qubits pass the cavity one at a.tiduring the interaction time,
the cavity field is tuned such that each qubit may couple toesgpective field mode. We
study two different initial scenarios: First, the modeshw# tavity share one single photon.
Here, the entanglement of the state is due to the uncertaindgtermining which mode
the photon is in. In a second approach the cavity starts oatsqueezed entangled state,

78



5.2 Two Modes Sharing a Single Photon

requiring a formulation in continuous variables.

5.2 Two Modes Sharing a Single Photon

In the first situation there shall be only one photon inside ¢hvity, which is shared by
the two modesa andb. Thus, clearly the modes may be treated as two-state systems
Fock space, where the basis stafgs denote the number of photons (heue= 0,1) in
the respective mode. As a generic Hamiltonian for our piepodescribing the joint time
evolution of both Rydberg atoms and both modes, we may set

H = Q40+ g0Vl + 7@ . 5@

+ Qp0? £ gppotPa® 0. 5o, (5.4)

Q

Here, the free evolution of the qubits and the modes is desgtrivia the parameters
Q4,Q5.T@ andl'®, respectively. (Note that due to the diagonal coupling theren-
mental modes stay within their initially assigned two-statibspace spanned by the Fock
states|0) and|1). The free evolution of the environment may therefore be adedy char-
acterized in terms of the Pauli matrices.) The (diagonaljptiog of qubit.A and3B to the
corresponding mode andb is described in terms of the parametgyg, and gy, respec-
tively.

Rewriting the global Hamiltonian in terms of the two-qubétsiis{|n)}2_, gives the rela-
tive HamiItonianng(z”) of the environment,

4
H = Y InneHAy
n=1
< F() o Ew)
-3 \uv>(uvl®(ha“ @ h ) (5.5)
u,v=0

In the last step we use the standard definition of the comipuatdtbasis for a two-qubit
system, that is{|1) = |00),|2) = |01),|3) = |10),|4) = |11)} H We also define the abbrevi-
ations

ra/m)
A, = +Qun1 + /) .g@/b) (5.6)
re® O4a/3b

1Here and in the following we make use of both notations. Ireotd make clear which one is used, we will
denote indices ranging from 1 to 4 with Latin symbais i), whereas indices ranging from 0 to 1 will be
written in Greek symbolsi(, v).
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and

r@m
Al = — Q1+ r@/®) Lg@/m), (5.7)

b
reve 94a/Bb

Again, we have that the phase-damping channel is deterrbintigk overlap of the relative
states of the environment

Dmn = (Wn’wm>:<4’0‘0mn’4’0> (5-8)

with Umn = é”ﬁzn)te*“q%m)t. Due to the local coupling, the Hamiltonians relative to pihase-
damping basis of the system are of the fdﬁﬁ) — AP @Ry (recall the identification of
(n) with the double indexp, v) in Greek letters). The same is true of course for the unitary
operatorgJ,,. That means we can writd, = fo‘) 0P and, likewise,

Ony = 03, © %) (5.9)
Now, if the environment’s initial state is separable, tisfio) = \(an)> ® \Qéb)>, the corre-
sponding channel based on the Hamiltonian in Eq] (5.4) taicdy RU, for we may write

Do = (Wo|Unii | o)
= (@705 a7) (65 1016

vv/

@
- DHL)I' ’ DV\Z’

= Dpvuv- (5.10)
The channel may thus equally be written in tensor produchfahat is,
D=D®@gD®, (5.11)

The phase-damping channel is thus a product of two singhé-ghase-damping channels,
which are known to be RU (see Chap. 3).

If the initial state|y)) is entangled, however, the answer to the question of wheéltieer
resulting channel is of RU type is not as obvious. In our cadere the two modes share a
single photon, a generic pure state is given as

@) = al0) +B[10), |af>+|BP =1, (5.12)
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5.3 Two Modes in a Gaussian Entangled State

Note that the state is entangled whenewet 0 or a # 1. In the attempt to find a phase-
damping channel representing a quantum decoherence pnoedske different parameters
of Hamiltonian [5.4) and the initial statgp) of the environment, such that (ijJo) is en-
tangled and (ii) the purity of the phase-damping channekrothe whole range between
P(pP) = 0.25 andP(pP) = 1. This second criterion shall prevent the channels to egisid
domains where little or no quantumness is to be expectedS@elel.b). However, as already
indicated in the introduction of the present chapter, trauation of the Birkhoff defect for
these randomly chosen channels yields no single incidequiafitum decoherence.

5.3 Two Modes in a Gaussian Entangled State

In the following attempt, we want to consider the situatidmene the two modes are initially
prepared in an entangled Gaussian state. A standard exantipéepure two-mode squeezed
state (cf. Sed. 2.11.2) with a Wigner function given by

W(Ga, Pa; G o) = % exp{—€? [(Ga+b)?+ (Pa— Pb)?]
—€"% [(da—0p)*+ (Pa+pp)?] } - (5.13)

Recall that the state’s entanglement depends on the sggegeatiameter only. With mode

b traced out, e.g., it measures the uncertainties of bothinémgaguadraturesl; and pa.
Remember that we want to consider the situation where thegteds.A andB couple

locally to the two electromagnetic field modasndb, respectively. We define our global

Hamiltonian as

(A)

H - QAO-Z

A2 A2
+ 05" @ Galla + (% + %)

+ Q50" + 0 @ 9ol + (%ngq—Z%). (5.14)
Note that this kind of coupling is very similar to the (norsslpative)Spin-Boson modegl
which is a regularly employed tool to model decoherence mlevel systems [100]. Here,
however, each qubit couples only to a single mode insteadh déffiite continuum. As
before, diagonalization with respect to the mutual b&gis} of qubits.A andB yields the
relative environmental Hamiltonians

ALY = (Qa+Qp) 1 +R)+AY AP = (Qa— Q)1 +h5" +R))
(5.15)
AP = (—Qa+Qp)1+h +R7 AV = —(Qa+Qp) 1 +R5 +R, 7,
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where we define the relative Hamiltonians of magé as

() o | B
~ a a, A
ha/b = 2 + 2 + Ga/0Ya/b

B2 b N [Gap £ Gap]® %b
2 2 2

(5.16)

In order to arrive at the matrix representation of the phde®ping channel D, we have to
evaluate the following expressions:

Dmn = tr [ﬁéﬁg)te‘iﬁ%m)t}
tr [PUmn(1)]
Jdas [dps fda, [d P (e, pas b o) T (1) (5.17)

Here, we define the unitaridi;m(t) — @M% te 1ALt ith corresponding Wigner representa-
tion

W ' 9 % 5 9 G
O = [dd, [decn+ 21 0+ 2 I0m0)]oa— ) @ oo — 2)

% @ 1(PatatPocty)
= exp{ — 4 (cg‘a”qa + Cpr'Pa+ Cqp G + c’,}l”pb) } (5.18)

The relevant calculations are carried out in the appendpp(EAC.1). As a final result we
arrive at the following form of the phase-damping channel

2 2
Do — exp{_ezr[(cggucggn) (o)’
+-2r mn mn 2 mn mn 2
—€ [(cqa —cqb) + (cpa +cpb> } . (5.19)
The respective coefficients are listed in Tdblé 5.1.

5.3.1 Direct Assessment of the RU Character

The phase-damping channels arrived at in the previousoseatiay actually directly be
shown to be of RU type. For this we have to take a closer lookeatunitary matrices
U,%’) in Wigner representation, Ed._(5]18). They may be rewriittethe form

Ui (1) = exp{i4(®m(f)—®n())}, (5.20)
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mn n Cr[?an C(T)n Cm n

12 0 0 Zosin(@l) 2951 — cog )]
13 2Pasin(wat)  20a[1— coq wit)] 0 0

14 2gssin(wat) 20a[1—cogwat)]  20gpSin(pt) 20p[1 — cog wpt)]
23 asin(wat) 20a[l—cos(wat)] —2gpsin(ant) —20p[1— cog )]
24 205Sin(wst)  20a][1— cog wat)] 0 0

34 0 0 psin(apt)  2gp[1— cog wpt)]

Table 5.1: List of the coefficients appearing in the definition of the gralamping channel

D [Eq. (.19)].

with T := (ga, Pa, 0o, Pp). This may be done by letting
@y (T) i=an T, (5.21)

where the vectorgd,, are defined to be

20aSin(wat) 204 Sin(wat)
Gy — Zga[l—_cos(wdt)] G 20a[1— cog wat)] ’
20p Sin(wpt) 0
20p[1— cogwpt)] 0
(5.22)
0 0
- 0 - 0
T 2gesin(at) | “=1o
29p[1 — cos(ant)] 0

When inserted into EqL(5.17), which gives the matrix elei®mén,, of the phase-damping
channel, we find

D = [t [dpa [da, [d poW(Ga. Pa.db: Po) exp{i4(Pn(F) ~ @u(F)) }. (5:23)

Since the Wigner functiolV(da, pa, b, Pb) Of @ Gaussian state is positive (i.e., a probabil-
ity distribution), we can immediately conclude that theresponding channel is RU (see

Sec[2.24).
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5.4 Entangled State With Negative Wigner Function

The positivity of the Wigner function in EqL(5.R3) is crukcia the identification of the
channel's RU character. Clearly, thus, any positive andnadized distribution in the phase
space of the two modes will lead to dynamics that may be intéed in terms of a RU
channel. But what about a Wigner function that is negativeoime areas? If that is the case,
we may not immediately decide the case. In order to find icgm0f such a situation, we
choose to revisit the case where the two modes initiallyeshdixed numbem) of photons.
The initial state of the modes may thus be described by thewvec

|@) = a|0n)+ B|n0), (5.24)

with a, 8 € C and|a|>+|B|? = 1. The state’s Wigner function may be derived directly from
the characteristic function (see SEC.2.1.2). Withx) denoting the_aguerre polynomials
[101], it is given by (see App._Cl.2)

«\ N
X (Nayno) = Ialan(lnblz)—“B*(nagb)
Amna)” e g g
—Ba = | BPLa(Ina) e F e L (5.25)

In Fig.[5.4 we plot some of the resulting Wigner functionshaf teduced states with mote
traced out. They are given by

2
Wid (Ga,Pa) = 7T(|0!|2—L1(4(q%+ p2)) |BI) e 2(+rd), (5.26a)
2
W (Gapa) = - (lalP+ Lo (4(+ BE)) |BI2) & 2%P2), (5.26b)
and
2
W (G, pa) = ,—T(IGIZ—L3(4(q%+p§))|B|) o 2B +PE), (5.26¢)

respectively (see App._G.2). Clearly, the functions are pusitive everywhere. The re-
spective states are thus good examples of entangled stithea megative Wigner function.
Having acquired the Wigner functiom¥" (da, pa,db, Pb), the respective channels are ob-
tained via Eq.[(5.23). Now, the constructive proof of therstel's RU nature cannot be
used anymore, sino&((ga, pa, b, Pb) < O is possible. The corresponding channels are
thus again numerically scrutinized for quantumness. Despe negativity of the Wigner
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5 Quantum Decoherence via Entangled Local Reservoirs?

functions, we find no single instance where the dynamics imafRU type.

To summarize, in the present chapter we have studied a sweviaere a system of two
qubits couples to their respective, local environmentghdfbipartite environment starts out
in a separable state, the dynamics is trivially of RU natitewever, we consider different
situations involving entanglement between the local reses, where an RU affiliation may
not be easily deduced. Despite this fact, we find no singlame of true quantum (i.e.,
non-RU) dynamics. In case of the (non-dissipative) Spisddomodel with an environment
described by a positive Wigner function, these findings arelg analytical. All other cases
are studied numerically. Of course, it would be very satisfiy to have a definite expla-
nation for the negative results of the present chapter. Meryelespite some mentionable
effort, we have not succeeded yet in finding such an explamalihus, the subject provides
an interesting field for further investigations.
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6 Conclusion and Outlook

Decoherence is seen as the main obstacle preventing tieatiesl of quantum information
processors of relevant size. It leads to a complete losstahglement in quantum systems,
thereby spoiling the main ingredient of many of the propoalggrithms which promise a
significant speed-up over conventional, classical scherreshe attempt to make use of
guantum mechanical properties on larger and larger scaigghus unquestionable that a
thorough knowledge of all processes involved is needed.

A priori, there exist various mechanisms offering a possétplanation for the origin of
decoherence. In perhaps the most prominent attempt, itifhad to growing correlations
between the system of interest and its quantum environmEng constant “monitoring”
of the system by its surroundings and the involved transf@énformation are responsible
for the state to finally become classical [5]. Often, howgedecoherence may as well be
attributed to stochastic fluctuations of classical fieldse o local or temporal variations of
the surrounding electromagnetic fields, the individualstibments of an ensemble may each
accumulate a slightly varying phase during time evolutiéda.soon as an ensemble average
is performed, the relative phases are washed out, caugraptierences to degenerate.

The purpose of the present thesis is to clarify what disisigstrue quantunfrom clas-
sical decoherence. This distinction is of genuine interest ndy fnom an experimental
perspective, where an identification of the processesrigadidecoherence is needed in any
effort to enhance accuracy. As in the case of the Spin Echmigge, a classical decoher-
ence process might allow for a partial reversal of its effecithout the need for additional
measurements. Furthermore, we hope that our studies helpdiolate the true role of en-
tanglement in open quantum system decoherence. Throutifetiiesis, we concentrate on
pure decoherence scenarios where no dissipation is irdjotypically denoted with phase
damping (or dephasing).

Based on a simple model we are able to give a generic exampldeafsible two-qubit
phase-damping channel, of which we show that it does nohgelmthe set of RU channels.
It thus represents a case of true quantum decoherence whighaob be understood in clas-
sical terms. While the actual example gives a channel acting four-dimensional Hilbert
space, we give explicit instructions of how to generalize tibsults to arbitrary dimension.
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6 Conclusion and Outlook

The resulting dynamics is studied with respect to the Bifkthefect which introduces a mea-
sure of a channel’'s norm distance to the set of RU channelsarFextension of the model
using an additional heat bath, thereby introducing veldtafoeversibility, we still observe
genuine quantum decoherence. For most of the channelsjaméugmness remains non-zero
as long as the coupling to the bath is small enough. For ggedupling strength, however,
the quantum character of the dynamics becomes increadiagjyje. If the influence of the
additional environment gets too large, the quantum charégtost for almost all channels.

Remarkably, we observe a strong correlation between thén&firdefect and the volume
of the tetrahedron spanned by the Bloch vectors represggttim relative states of the en-
vironmental qubit. This leads us to introduce a new, gedoadly motivated measure of
guantumness—thBloch volume Rather than demanding lengthy optimization routines as
is the case for the calculation of the norm distance, thelBlamtume requires the evaluation
of a single determinant. We exploit the intuitive charactethe new geometric measure in
order to arrive at a characterization of phase-dampingmyeg The purity of a channel is
shown to give an estimation of itlecoherence potentidle., the severity with which it possi-
bly affects any given quantum state. For two qubits, we olesarstrong correlation between
a channel’s achievable quantumness and its decohererggtipbt Since the evaluation of
a channel’s purity is much less involved, this connectiory ina used to quickly estimate
an upper bound to the quantumness potentially presenthdfarore, based on the geomet-
ric measure, we are able to identify the setiked channels with maximum quantumness
(MCMQ), maximizing the distance to the set of RU channelsaaiven decoherence po-
tential. In addition, it is demonstrated that the toy modéiaduced in Chaptér 3 is capable
of provoking dynamics which is maximally quantum, i.e., efhhas a maximum distance to
the set of RU channels. The respective channel of maximumtgorness is intimately re-
lated to the concept SIC-POVMs, corresponding to a symuoadtyiplaced basis of Hilbert
space operators.

In the last part of the thesis, we study the influence of eléangnt between local reser-
voirs on the RU character of dynamics. The analysis is basdgvo qubits which couple
locally to their respective environment. From the finding<Chaptel B, it is thus evident
that the dynamics belongs to the RU class as long as the oéseave in a separable state.
We examine various situations where the local environmam ot separable but entangled.
Despite the multitude of situations, we find no single instaaf true quantum decoherence.
In the case where the coupling is described by a (non-disa)eSpin-Boson model, our
findings are in part analytical. Here, we are able to confirat kbxcal coupling leads to RU
dynamics whenever the initial state of the environment scdbed by a positive Wigner
function. Therefore, any attempt to construct a true quardecoherence channel with the
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environment in a Gaussian entangled state is doomed toHailever, even in the case of
a negative Wigner function, all channels studied are of Ri¢tySince no analytical results
are found, we rely on a numerical examination of the resmijnantumness of the channels.

For future studies we see many interesting routes of caaim. Since the model of
guantum decoherence is based on a physically feasibldisitua would be very interesting
to actually try an experimental realization. As in our themal investigation, the corre-
sponding channels may then also be studied with respecetfragility of their true quan-
tum nature. Secondly, we note that the Bloch volume suffers tbeing valid in the case of
extremal channels only. Here, the great hope is to find a ghiration of this measure of
guantumness for the case of hon-extremal channels.

In addition, we show that the toy model presented may leaglative environmental states
spanning a SIC-POVM (a symmetrically placed operator hiadiBlbert space). In this con-
text, a rigorous study of the circumstances leading to agdasnping channel with maxi-
mum Bloch volume might help in the construction of SIC-POViMsigher dimension—a
problem yet to be solved.

Not least, the results of Chapfér 5 may indicate that enéanght between local reservoirs
does not change a channel’s RU nature (which trivially fefion the separable case). How-
ever, it remains an open question whether this is so in genéfa deem it worthwhile to
continue with the investigations for a definite criterion.
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A Technical Toolkit

A.1 Convex Roof Construction

Every pure-state decomposition of a density magrixan be obtained via the following
procedure[]91]:

(i) Via diagonalization ofp, a complete set of orthogonal eigenvecters corresponding
to the nonzero eigenvaludsis obtained. These vectors shall be subnormalized, such
that (v | v) is equal to the-th eigenvaluej;.

(i) Every decompositior{|w;)} of p can then be obtained via
r
wi) = > Uijlvi). (A1)
=1

wherer denotes the rank @f. U is anmx munitary matrix withm > r. The new states
|wi) are already subnormalized such tagf|w;) is equal to the probability ofv;) in
the decomposition. In terms of tiw;) the full state is thus given gs= S |w;)(w;|.

The entanglement of formation is then obtained as the mimirofipure state entanglement
(entanglement entropy) needed over all possible decomtpusi

: [wi)
EF(P):TI:?{IZMWWOE (W) ‘P:Z’Wi><Wi’}- (A.2)

In order to obtain the entanglement of assistance, the mimirhas to be replaced by the
maximum. For a density operator of ranka maximum ofr? pure states is needed for the
minimum (maximum) to be achieved [92, 102].

A.2 The Cholesky Factorization

Given the non-negative matrl € My, the Cholesky factorization gives

D =AA" (A.3)
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with A € My a lower triangular matrix, wherA is in general not unique. Theth row of
A may then be identified with a complex vecta) € CN such thatDy, = (an|am). If D
is a positive semi-definite matrix of ramk< N, there exists a uniqu& with columnsr + 1
throughN identical to zero[[103]. That is, the vectdes) may be chosen as elements(t
One possible algorithm for obtaining the Cholesky facttitn is given by

m>n: Apn= (Dmn— k-1 Anidi) /Ann,

m=n: Anm= \/1- 3" |And?.

Starting from the upper left corner of the matrix, the altjori proceeds to compute the
matrix row by row. Note that i, = O for m > n, one has to divide by 1.

(A.4)

A.3 Bloch Representation for N-level Systems

It is a well-known fact that any Hermitian matrigy € My may be written in the form
[30,[104]

1/2 -,
PH:§<N1N+b‘0>, (A.5)

whered = (01,...,0\2_1) is the vector of traceless generators of the I$)Utbeying
2 :
Uin:Ndj]lN‘f‘fiijk‘Hgiijk- (A.6)

The structure constants;j§ (vanishing forN = 2) andg;jx form a totally symmetric and a
totally anti-symmetric tensor, respectiveﬁlis a real vector ilRN’~1. From a given matrix
pH, the vector elements are obtained via

bi = tr[on o). (A7)
A density matrixp is a Hermitian matrix with the additional properties
(Ytrpo=1 and (ii)p>0. (A.8)

In this case, the vectds is usually calledBloch vector and we denote the set of Bloch
vectors With%(]Rszl). It is clear, that condition§i) and(ii) impose additional constraints
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A.4 Identifying a FSOV Using the Bloch representation

0)

Figure A.1: Bloch representation of a two-level system. The north pdlthe sphere is
usually identified with the computational basis vedt@;, its orthogonal counterpafl) is
found at the south-pole. The inside corresponds to the nsedd space.

on the vectob. One can easily deduce thap#r< 1, corresponding to

bl < w =1y (A.9)
ForN = 2, this concept leads to the well-knoifoch spherdcf. Fig.[A), a sphere i3 of
radius 1. Here, each vector on the surface represents atateewhereas the points inside
correspond to the mixed states. Note, however, that in génet every vector with (A]9)
represents an actual quantum state. Rather, it is knowifothisit> 3 the Bloch vector space

B(RNZ—l) is a proper subset of the bd}, (0) with radiusry [104].

A.4 ldentifying a FSOV Using the Bloch representation

In Sec[3.1 we discuss the property of a set of complex veétais, ..., |an)} C C'" called
a “full set of vectors” (FSOV)[[17], which is attained if, f@ complex matrixM € M;,
(anM|ap) =0¥n=1,...,N impliesM = 0.

How can this formal criterion be cast into a constructive nEor this we make use
of the ideas leading to the Bloch representation. It is cteat any linear operator may
be represented using a special operator basis and a congadtor.vAs operator basis we
may choose the identity together with= (01,...,0,2_,), the set of trace-less generators
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of the SU() already introduced in the definition of the Bloch repreagah, App.[A.3.
Rewriting both the projectorB, := |a,) (ay| and operatoM according toP, =: B, (1,,0)
andM =: Q- (1,, ), a simple calculation shows that

tr(MP,] = tr[(@-(]lr,a)) (én‘(ﬂr>6))}
_ 5

osl}
3

(A.10)

Note that theB,, representing the projectoPs correspond tdd, = %(%,Bn), where theb,, are
the Bloch vectors as defined in App. A.3.

The FSOV criterion is now satisfied if
3-B,=0 vn=1..N = Q=0 (A.11)

This is only possible if the vectorB,}N_; span theR', requiringN > r2. ForN = r2 this
may be checked using the determinant

1 2 2 2
— | B, B B. |=| 1 [ T ol#0. A.12
2[’2 1 2 r2 b]_ b2 br2 ( )

In the case thal > r? all subsets ofB,} containingr? elements have to be checked for
linear independence.

A.5 Calculation of the cb-Norm

In this section we want to discuss a suitable method of caliog the cb-norm of a linear
map. The method is presented and described in the articletnstbn, Kribs and Paulsen
[105]. We here give a summary of the relevant steps needdaeimumerical evaluation,
introducing an important modification of the algorithm fargurposes discussing the case
of diagonal maps. For further discussion and proofs pleasdhe original article.

The calculation of the cb-norm of a linear map relies on gkeeeralized Kraus repre-
sentation To a linear map®d : My — My there exist matrice& € My andLj € My,
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1<i<m< N2 such that

m
®p) = 3 Kipl,
i;l |
0 - 0
g p - 0 L1
= (ke o) ] (A.13)
BN
00 - p m

and such that the cb-norm of the map is given|8y(|3, = || i KiK|| | 5 LLi||. Based on
this representation the cb-norm is obtained in the follgniray:

Theorem 4. The cb-norm of a linear mag : My — My is given by
|]lcp = inf {H S KiK{ 1172 zL?LinW}, (A.14)
|

where the infimum is taken over all generalized Kraus repredion of the magb.
The single steps in the calculation of the cb-norm are subdumthe following algorithm

(I) Find a linearly independent generalized Kraus repregem
(I.1) Find a basigXy,...,X} for the span ofKy,...,Kn} and expres&; = 3 ; d;j X;.
(1.2) Insert into [[A.18), obtaining
m o,

®(p) = izl ( > dinj)PLi

= J:]_
| m
— ngjp(iZldijLi)
|
= ZijYj, (A.15)
=1

whereYj =3 di’jLi.

(1.3) Find a basis{Ys,...,Y} for the span of{Y;,...,Y;}. Asin steps (1) and (2),
expressy, = 5 ; dij¥j and insert into[{A.13), yielding

=~

13

®(p) = 5 Xip¥i. (A.16)
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At this point, both setgXy,..., %} and{¥y,..., Y%} are linearly independent,
completing the first part of the algorithm.

(I1) Calculation of cb-Norm
Based on the linearly independent generalized Kraus repia@$on obtained in part
(1), the cb-norm is obtained with the help of a positive iril@e matrixS= (s;j) € Mj
with inverseS™ = (t;; ). Based on this matrix we defit = 3 5;Y; andG; = 3 ; t; X;.
Then

[®lleo = igf{\l 5 G2 |y HIH M2 } (A17)
| |

where the infimum is taken over all invertible matrices

A.5.1 Specifics for Diagonal Maps of Full Rank

In the case of a diagonal map with full rank step (I) of the dthm may be left out com-
pletely. With full rank we denote the case, where the diaborep D : My — My hasN
nonzero eigenvalues, that is, the rows and column® afe linearly independent. In this
case we may introduce the linearly independent generalzads representation with

G = diagona(Dli,...,DNi>, (A.18)
i

H; — diagona(O,...,i,...,O). (A.19)

We may thus circumvent step (1) without further ado.

A.6 Volume Spanned by a FSOV

We show the equivalence of the determinant of the FSOV witexith the volume spanned
by the Bloch vectors for arbitrary dimension. For simplicite consider only the cadé =
r2, the generalization is however straightforward. We thugeh&vectorsB,, € R entering

98



A.7 Phase-Damping of a Single Qubit: Deformation of the BI&phere

the determinant. Based on the definitions in §ecl A.4 we @it [7

’
@) le-ed = |4 T
% % 1 -1 -1
1
1
= 2| (b-B)) (Ba=Br) - (BeBr) |
= Mvm(b’l,...,az)
+ 0, (A.20)

where Vo(Bl,...,Brz) denotes the volume of the parallelogram spanned by therreall
dimensional vectorgby, ..., b;2}.

A.7 Phase-Damping of a Single Qubit: Deformation of the Bloc h
Sphere

In order to estimate the effect of a phase-damping channbleovolume of the Bloch sphere,
recall that a single qubit may be written as (cf. App.JA.3)

1 ~
p = E(11+?-o) (A.21)
_ 1(1+4r, Iy —iry (A.22)
2 \ry4iry 1-r1, )’ '

wherer denotes the Bloch vector. In this representation, the efiethe phase-damping
channelD on the Bloch vectors is straightforward. Applying the chelrgives

1 c\ 1( 21+4r; ry—ir
Dxp — e[ e =iy (A.23)
ct 1) 2\rg+iry 1-r,
_ 1 1+, clé®(rx—iry) (A.24)
2 \ cle71®(ry+iry) 1-r, ’ '

where we made use of the polar decompositiea |c|€?. It is now obvious that; is left
unaltered, while the parts perpendicular to #exis suffer from a decrease by a factor@f
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together with a rotation arourmd Using the cylindrical symmetry properties, we assess the
final volume via

2 1 R(2
V’:/dd)/dz/drr, (A.25)
0 -1 0

whereR(z) = |c| vV1—Z2. As a result we find/ = ‘§‘7T|c|2, so that the relative change with
respect to the initial Bloch sphere & %n) trivially equals

V/
v = |c|%. (A.26)
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B Calculation of the Bloch Volume

B.1 The Caley-Menger Determinant

The volume of a simplex spanned by real vectors in Euclidgaices may be evaluated us-
ing the so-calledCaley-Mengerdeterminant. The following derivation may be found in
[106]. Let us consider the volume of @& — 1) simplex, spanned by the vectoXs =
o X2,y e RN n=1,...,N. Using basic matrix algebra (cf. S&C_A.6), it
is straightforward that the volume is given as

1 1 ... 1
R T T
Voly-1 = N=1) X X3 N (B.1)
N1 ) N

In order to arrive at the Caley-Menger determinant, the imdgraugmented by aN +
1)th row and column, with all new elements zero except forithersecting one which is
equal to one. Note that the determinant is unaltered by fhesation. Multiplying this new
determinant with the one obtained from it by interchangimg first two rows and columns,
followed by a transposition, leads to the equivalence

0 1 1 - 1
1 X% X% - XX
VO|,2\171:—71 1 %% %X -+ %X |. (B.2)
(N—D)?| . . :
1 XX XX 0 XX

The distancesy, = \/(Xm—in) - (Xn—Xn) between the verticesr andn is related to the
scalar product via

(R X+ % %n — Shin) - (B.3)

NI

Xn-Xn =
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B Calculation of the Bloch Volume

After insertion into EgL_B.2, now subtracting from thth row the product of the preceding
row by %(in_l -Xn-1), N=2,...N, one arrives after some additional reductions at

(="

Vol2 | =
(N1

> detAy). (B.4)

Here, we have defined the Caley-Menger Determinant

o 1 1 - 1
1 0 s, o sy

detfAn)=|1 s, 0 o (B.5)
: : ﬁl—m
1 %N %Ifl‘N 0

B.2 Bloch Volume of a Phase-Damping Channel

The Caley-Menger determinant offers a very elegant way recty calculate the volume
spanned by the Bloch vectors corresponding to the dynamécdibrs representing a phase-
damping channdD. To see this, leD be a phase-damping channel of a quantum system of
dimensionN. As introduced in Se€. 2.2.4, its matrix elements may beinbteas overlap of

N dynamical vectors

Dmn:<an|am>a man:l>"'aNa (B6)

which may be identified as relative states of some quanturinagmaent. For a channel of
rankr, the dynamical vectorg,) may be chosen as vectors@h (see App[A.R), allowing
a representation in terms ¢f2 — 1)-dimensional Bloch vectorb,. The mutual distance
between any of these Bloch vectors equates to

$n = [Bin — Bn|? = [bm|* — 2B - By + (B2

— 4<1—%> — 2B b, (8.7
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B.2 Bloch Volume of a Phase-Damping Channel

where the Bloch vectors are defined according to [Eq.l(A.7g mMhatrix element®,, may
be used to extract the distances in the following way.

[Dmnl* = |{@n |am)|* = tr [pn o)

— tr }]1+}B G }]1+}B G
- rr 2n rl’ 2m

= [riz]lr+2—1an-6+2—1er-6+%(Bn-a) (Bm-a)}

= 1+1tl’
r 4

2 .
> bjmbin <_5mn]lr + (fij + lgijk)0k>
mn r

1 1. o
= F—i—ébn'bm. (B'8)

Putting the last two results together we obtain

S = 4 (1— %) —4 <|Dmn|2—%>

= 4(1-|Dmi?), (B.9)
so that we arrive at the equivalence

0 s, - Sy
S 00 : — 4(id— D+D"). (B.10)
5 ﬁl—m
%N Slz\lfl,N 0
Now, in case the Bloch vectors form a simplex, that is, we H\a\xeactoran e RN-1 we
can evaluate the volume via

(="

oI+ = N-1((N—1)1)

5 det(An), (B.11)

where the Caley-Menger determinant is now given as

01 1

1
detAy) = . B.12
S 4(id — D+ D) (12
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B Calculation of the Bloch Volume

B.3 Bloch Volume of a SIC-POVM

As discussed in the preceding section the Caley-Mengerrdetant allows to evaluate the
volume spanned by the dynamical vectéfa,)}\_;. Based on the matrix representation
whereDmn = (an|am), the volume is given by

01 1
—N 1
Ve = ( (B.13)
U2NY((N-DD2] 1 4(d—D«DY)
1
In case the dynamical vectors form a SIC-POVM (see [Sec.)2 \we?have
0 x X
: 0o .
4(id—D+D*) = | * , (B.14)
T ¢
X x 0
with x = 4(1— [(an] am)|?) = 4(45).
In order to calculate the Bloch volume we need the following
Lemma 1. The determinant of
01 1 1
1 0 x X
Av = 1 x 0 . (B.15)
S
1 x x 0
N+1
is given by|Ay| = N (=D)N xN-1,
We give the proof by induction:
(D) Induction basisil = 2):
011
Aol=]1 0 x |=2=2(-1)2x"1, (B.16)
1 x O
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complying with the assumption.

(1) Induction step: LefAy| =N (=1)N xN-1

B.3 Bloch Wolume of a SIC-POVM

Through expansion along the first column with a successmanrgement we find

|AN1]

1 0 0

01 O 0
0 0 1

0

0 0 1

0 O 0

01 1
1 0 x X
1 x O
: .X
1 x 0
1
0 x
(N+1)(-)N ) x 0 (B.17)
X
1 1 1 -+ 1
0 x
X 0
. (B.18)
X X
0 0 x
0 0
0 = Ani1
a 0
0 0 1

Note thatANH is identical toAn. 1 exceptfor the lower left corner (highlighted in
red—O0 and 1, respectively). From expansion along the fidsingo and comparison
with (B:17) it is thus easy to see that the determinantdypf; and Ay 1 are related
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B Calculation of the Bloch Volume

by
1 1
0 x
Ansal = [Anga|+ (DN x O X
X -+ x 0 x
— A _1\N+1 (—1)N+1
= JAvial+ 0N SR
~ 1
= |AN+1‘+N—+1’AN+1’7 (B.19)
leading to
N+1, ~
|Ant1| = N | A1) - (B.20)

In evaluating the determinant of the left-hand side in EQ18B we make use of the
product formula/AB| = |A||B|. The determinant of the first matrix can easily be ob-
tained via expansion along the last column, followed by soaséuffling, giving the
value of —x. For the second matrix it is straightforward to see that @edninant is
identical to|Ay|. Together with Eq(B.20) this gives

N+1, ~
AN+l = N |AN+1‘
N+1
= (Al
= (N+1) (=DM, (B.21)
thus completing the proof.
The volume itself finally equates to
S\
N
VN (2 m+1>
Vg = N (B.22)
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C Calculations in the Wigner
Representation

C.1 The Two-Mode Entangled Channel

In order to arrive at the full form of the phase-damping ctermonsidered in Se€l 5, we
have to evaluate all matrix elements defined as

Din = /doa/dpa/dcb/dpowma,pa,qb,pb>0,$¥,¥><t>, (C.1)

with the Wigner representation of the two-mode squeezeshegied state

W(Ga, Pa; Gb, Po) = % exp{ —e % [(Ga+ )2+ (Pa— Pv)?] (C.2)
" [(da— Gp)* + (Pa+ Pp)?] } -

and the unitary operators

/

Uin (¢ /dcg/dc{) Qa+qa|®<Qb+qb|Umn( t)|a— qa>®Iq ——> (C.3)

% @ 1(PalatPolp)

Remember that the unitaries are givenCa&(t) = e“qén)te‘“qéem)t. Using the expressions
obtained in Eq.[(5.15) for the relative Hamiltoniaﬁé”), the unitary operators needed in
order to calculate all matrix elements of the phase-damgiamnel are

Upt) = e 2stef terift — Gy (1), (C.4a)
Us(t) = e 2atgha tgmife’t — (jz (1), (C.4b)
Ua(t) = e 2Qa+0n) tdfe 'ty te |h<+)tefiﬁf)+)t:ljzl(t)7 (C.4c)
Up(t) — e 2@a0n Jtgife teth |h§+)tefiﬁ§)’>t:0§2(t)7 (C.4d)
Upa(t) = e 2Qatehe tg it — Gz (t), (C.4e)
Usat) = e 2tels terif”t — g ). (C.4f)
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C Calculations in the Wigner Representation

Exemplary we will carry out the evaluation of matrix elemént. The Wigner representa-
tion of Uy(t) is given by

C

) T (4 / o
10— et [ad, [dais-+ 2Ie™ ‘o) (e gy — Ry e (C5)

where an additional resolution of the identity= [dq|q)(q|, has been inserted. The time-
evolution amplitudes now appearing in the evaluation of\Wigner representation may be
assessed with the help of the path integral formulation ahtwm mechanics [107]. For our
case the relevant results are given by

1

271 sin(cwpt) exp{ ~ 2sin(apt)

X ( [(Q— )%+ (Qb + q—zg - gb) 2] cog(wt)

b iR i
(O+ 2| tg) = e

—2(q—0b) (Qb‘F%{)—gb))} (C.6)

and

1

_iRtt _q_{) _ etigg/2 [~ —
@e™ T =50 = & o &P 2 s

g

Multiplication of the two amplitudes yields

cos tpt)

2
/
(Q+0p)? + <Qb - q—zb +gb>

—2(9+0b) <qb—%+gb>> } (C.7)

/

b iR ) i1
(O -+ 2| ) (gl e oy — ) =

'Znsin(wot) ‘eXp{Esin(th)

X ( [4%9&3 —4ap (q%) - Qb>] cog apt) + 2<Q% — 200 — 2%%)) } (C.8)
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C.1 The Two-Mode Entangled Channel

We are now able to carry out the integration in Eq.[C.5).tFasnsider the integration with
respect tay, leading to

. AR ) ,
) = [date+2ieh ayae ™ o)
1 [ 1 o

‘m‘ exp{ - Em (4% (E - gb> cos twpt) —|—4qbgb> }

X /dqexp{ —~ i2n[m (29b(009(wot) -1)- QE)] Q}

= eXp{ - '5 Sin(t,ot) (4% (q—zb - gb> cog(ant) +4qbgb> }

x 3 ch+ 2gp[cos(eant) — 1]). (C.9)

The second integration with respectdfp is then easily obtained, leading to the Wigner
representation of the unitary operatip(t):

0 = [ddbilcple ™
= exp{—iqbgbsin(wot)—ipbgb[cos(wot)—l]}. (C.10)

The result is obviously of the form eXp-i(Cg,db + Cp, Po) } With Cq, = gpSin(wpt) andc,, =
gb[cog wpt) — 1]. In order to generalize the subsequent evaluation we maystiu

Ui (t) = exp{ — i4<cg“a”qa + Cp 'Pa+ Cgp G + c’g‘b”pb> } (C.11)

We may now proceed with the calculation of the final resuk rtfatrix element®,,. Based

on the identity
/'dxexp{—ax2 — (b+ic)x} = \/geXp{ (b :;C)Z } (C.12)
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C Calculations in the Wigner Representation

mn " cp C co

12 0 0 Db Sin(wpt) 20p[1 — cog wpt)]
13 20asin(aat) 2041 — cog wat)] 0 0

14 2g;sin(wat) 20a[l—cogwat)]  20pSin(pt) 20p[1 — cog wpt)]
23 Masin(wst) 20a[1—coswat)] —2gpsin(apt) —20p[1— cogant)]
24 ysin(wat) 20,1 — cog wat)] 0 0

34 0 0 Dpsin(apt)  2gp[1— cog wpt)]

Table C.1: List of the coefficients in the final result, EG.(CL13).

we arrive at
Dmn = %/doa/d pa/dq)/d poeXD{ &2 |(Ga+ @)*+ (Pa— P)?]
—et? [(qa —0b)*+ (Pa+ pb)z} —i 4(03;”% +Cp"Pa + Co g + C’;L”pb> }
= %/doa/dobexp{ — (qﬁZcosl{Zr)+qaqb4sinr(2r)
+022cosh2r) + i4<c[1“a”qa + cg;”qb>> }
X /d pa/d poexp{ — (pﬁZcosf{Zr) — Pappésinh(2r)
+p22cosh{2r) + i4(c’g‘a”pa+ c’g‘b”pb)> }
_ exp{ —e ¥ |:(Cg;n+ c[{Q)”) ’ + (c'g‘a”— c'g:)”) 2]
—et ch“a” — cg“b”) ’ + (c’g‘a”Jr c’g‘b"> 2} } . (C.13)

The relevant results are listed in TablelC.1.

C.2 Wigner Function of Two Modes Sharing 1,2, and 3 Photons

We consider a pure state of two modes contaiminghotons. The entanglement shall rest
on the lack of knowledge which of the two modes is actuallyupded. The initial state thus
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C.2 Wigner Function of Two Modes Sharing 1,2, and 3 Photons

reads
|@) = a|On)ap + BIN0)ab, (C.14)

where|a|? +|B|? = 1. The Wigner function may be obtained as Fourier transfofith@
characteristic function, which is defined as
X(r’a, nb) = tr |:ﬁ) e’]aéf—ﬂgé eﬂbBT_UGB
= (@|Ba(Na)Du(No)|W). (C.15)

Here we made use of the so-calldigplacement operatorsf the formD(n) = exp{naf —
n*a}. These are unitary operators mapping the vacuum state autoesent state, that is,

(M0 =1In) = ‘”Ti\/_\n (C.16)

If we now plug the initial state into Eq.{C.115) we get

X(Na;nb) = |a|? (0[Da(na)|0) {n|Ds(Mb)Im)
+aB* (nDa(1a)[0) (0[Do(11v)[n)
+Ba* (0[Da(1a)[n) (n|Do(1)|0)

+[BI? (n[Da(na)|n) (0|Dp(p)|0). (C.17)
The individual factors in this sum are obtained to be
3 (=n")" m? 5 (m" _m?
0D n) = e 2, and n|D 0) = e 2. C.18
(0ID(n)[n) N (nID(n)0) N (C.18)
Furthermore, using the identiy(n)a" = (&' — n*)D(n), we arrive at
A In[?
@B =e% = Lo(nPe ¥,
@B = [-InP+1le % =Li(nPe ¥,

(C.19)

,.’2

Hine-anP+2le s =Ly(nP)e ¥,

(2ID(n)I2)

In[? In[?

@D(M[3) =g[-Inl+9n*—18n|>+6]e =z =Ls(In|?)e =.
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C Calculations in the Wigner Representation

Here,L(x) denote the so-calleldaguerre Polynomial§l01]. Everything put together gives
the characteristic function

n
« (Nalp
X" (Nan) = [Ialan(lnblz)—aB ( an,b)
UL g _Inpl2
—Ba ( nla) +|B|2|—n(|’7a| )] . . (C.20)
The resulting Wigner functions read
4 . .
WY (G, Pa, Go, o) = —ﬁ[1012L1<4(Q§+p§>>—403*(Qa+lpa)(pb—l%)
— 4Ba’ (da—iPa)(Gb-+ipp) + |BI? L (4(cB+ P2) )|
x @ 2GR+ Pp) (C.21a)

for one photonr = 1),

W (6o, Pt Po) =+ (12 Lo (4(G + B8) ) + 8B (Ga-+ 1Pa)?(Po— )
+ 880" (G —ipa)(cb + o)+ |BI? Lz (4( B+ p2) ) |

« @205 +PA+5+P) (C.21b)

for two photons i = 2), and finally

W(3) (Qaa pa, qb? pb)

64 . |
—— [la?La (4(cB+ PB) ) — - aB"(ca+1Pa)*(Po—igp)°?

B0 (Ga— pa) (@b +ips)*+ 1B Ls (4B + pg))]

« @~ 2G5 +Pa+a5+Pp) (C.21c)

for three photonsn(= 3).

The respective reduced states simply equate to (se€ aljo [40

W (Ga, Pa) = 7—2T(!or!2—L (4(R+ pR)) |BI?) e 2+Pa), (C.22a)

2
W (Gapa) = = (lal+ Lo (4(+ BE)) |BI2) & 2%P2), (C.22b)
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C.2 Wigner Function of Two Modes Sharing 1,2, and 3 Photons
and
2 (2t 2
Wea (0o Pa) =~ (laf* ~ La (4(c+ pb)) IBI?) e 274, (C.22c)

respectively.
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