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Chapter 1

Introduction

The LHC poses new challenges to both the experimental and the theoretical community.
It operates at the highest centre-of-mass energies ever reached in a collider experiment and
provides an enormous luminosity, leading to tremendously large event rates. On the ex-
perimental side, the huge phase space in conjunction with the exciting and intricate physics
programme of the LHC, ranging from high-precision flavour physics at comparably low scales
to the discovery of new particles in the TeV range necessitated the development and refine-
ment of triggers and analysis techniques. In addition, from a more technological point of
view, data acquisition, storage and processing therefore required the creation of a world-wide
network satisfying the greatly increased computing needs.
On the theoretical side, on the other hand, demands for higher precision to correctly model
signals of new physics and their backgrounds led to the reorientation of calculation and
simulation paradigms facilitating the inclusion of the newest theoretical developments, thus,
making them accessible to the experiments. These paradigm shifts manifest themselves
in the modular structure of the modern general-purpose event generators, proving to be
indispensable tools in both data analysis and particle level theory predictions. It is thus no
surprise that these new tools have a sizable impact on the understanding of LHC physics.

1.1 Event generators

Figure 1.1 pictorially represents a hadron-collider event, where a tt̄h final state is produced
and evolves by including effects of QCD bremsstrahlung in the initial and final state, the
underlying event, hadronisation and, finally, the decays of unstable hadrons into stable ones.
Event generators usually rely on the factorisation of such events into different well-defined
phases, corresponding to different kinematic regimes. In the description of each of these
phases different approximations are employed. In general the central piece of the event
simulation is provided by the hard process (the dark red blob in the figure), which can
be calculated in fixed order perturbation theory in the coupling constants owing to the
correspondingly high scales. This part of the simulation is handled by computations based
on matrix elements, which are either hard-coded or provided by special programs called
parton-level or matrix-element (ME) generators. The QCD evolution described by parton
showers then connects the hard scale of coloured parton creation with the hadronisation scale
where the transition to the colourless hadrons occurs. The parton showers model multiple
QCD bremsstrahlung in an approximation to exact perturbation theory, which is accurate
to leading logarithmic order. At the hadronisation scale, which is of the order of a few
ΛQCD, QCD partons are transformed into primary hadrons (light green blobs) by applying
purely phenomenological fragmentation models having typically around ten parameters to be
fitted to data. The primary hadrons finally are decayed into particles that can be observed

13
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Figure 1.1: Pictorial representation of a tt̄h event as produced by an event generator
according to the factorisation approach. The hard interaction (big red blob)
is followed by the decay of both top quarks and the Higgs boson (small red
blobs). Additional hard QCD radiation is produced (red) and a secondary
interaction takes place (purple blob) before the final-state partons hadronise
(light green blobs) and hadrons decay (dark green blobs). Photon radiation
occurs at any stage (yellow).

in detectors. In most cases effective theories or simple symmetry arguments are invoked
to describe these decays. Another important feature associated with the decays is QED
bremsstrahlung, which is simulated by techniques that are accurate at leading logarithmic
order and, eventually, supplemented with exact fixed-order results. A particularly difficult
scenario arises in hadronic collisions, where remnants of the incoming hadrons may experience
secondary hard or semi-hard interactions. This underlying event is pictorially represented
by the purple blob in Figure 1.1. Such effects are beyond QCD factorisation theorems and
therefore no complete first-principles theory is available. Instead, phenomenological models
are employed again, with more parameters to be adjusted by using comparisons with data.
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The most prominent examples of event generators [1] are the highly successful, well-estab-
lished programs PYTHIA [2] and HERWIG [3, 4]. They have been constructed over the past
decades alongside with experimental discoveries and most of the features visible in past and
present experiments can be described by them. However, the need for higher precision to
meet the decreasing size of the experimental uncertainties of increasingly complex experi-
mentally accessible signatures of signal and background processes both at the Tevatron and
the LHC necessitates a high level of modularity separating the physics at different scales
in a clean and well defined way. This led to improved re-implementations in form of the
programs PYTHIA8 [5] and HERWIG++ [6] – the successors of the of the programs mentioned
above – and to the construction of the SHERPA event generator [7, 8]. All three programs,
however, model the primary partonic interaction at leading order only.
In conjunction, in the past decade codes for next-to-leading order calculations have been
made available to the public; prominent examples include MCFM [9] and NLOJET++ [10].
Furthermore, methods have been proposed for the consistent matching of next-to-leading
order corrections with parton-shower algorithms [11, 12, 13]. Corresponding methods are
implemented for example in the public programs MC@NLO [14], which was originally based
on HERWIG but has been generalised to HERWIG++ and PYTHIA, in HERWIG++ and in some
more specialised programs collected in the POWHEGBOX [15]. The automated NLO match-
ing implemented in the SHERPA event generator will be subject of this thesis. However,
the full next-to-leading order calculations underlying these new techniques are very complex
and challenging. On the other hand, many important experimental signatures rely on final
states with higher multiplicities. This has triggered substantial activity in perfecting tech-
niques and tools at tree-level accuracy, such that by now several codes are available that
can compute corresponding cross sections and generate events in a fully automated way.
The most prominent examples include ALPGEN [16], CompHEP/CalcHEP [17, 18], HELAC-
PHEGAS [19, 20, 21], MADGRAPH [22, 23], WHIZARD [24], AMEGIC++ [25] and COMIX [26].
Currently only AMEGIC++ and COMIX are part of, and integrated in, a full-fledged event
generator, namely the SHERPA framework. In order to translate the multi-particle parton-
level events, which are provided by these tools at leading order, into hadron-level events,
several algorithms have been developed, all aiming at preserving the logarithmic accuracy of
the parton shower and supplementing it with the exact perturbative leading order result for
given jet multiplicities. In [27] an algorithm achieving this goal in e+e− annihilations into
hadrons has been presented, it has been extended to hadronic collisions in [28] and improved
in [29]. A similar algorithm for the dipole shower has been discussed in [30, 31], whereas
more different ones have been published in [32, 33, 34, 35]. All these approaches have been
compared in [36, 37] and a good agreement has been established.

1.2 The event generator SHERPA

SHERPA [7, 8], acronym for “Simulation of High Energy Reactions of PArticles”, is a complete
event generation framework that has been constructed from scratch and entirely written in
the modern, object oriented programming language C++.

Construction paradigm

The construction of SHERPA has been pursued in a way largely defined by the following three
paradigms:

• Modularity. Different physics aspects are implemented in almost independent modules,
relying on a small number of framework and support modules, like, e.g., the event
record etc.. Modularity allows, for example, to have more than one matrix-element
generator or parton shower in parallel, with the user being in charge of making a
choice. The central module, SHERPA, steers the interplay of all other parts and the
actual generation procedure.

1.2 The event generator SHERPA 15



• Bottom-to-Top. Physics modules are typically developed in their own right, being
tested and validated before they are incorporated into the full event generation frame-
work. This in turn results in a quite flexible, minimal structure underlying the organ-
isation of event generation.

• Separation of interface and implementation. In order to facilitate the two requirements
above, SHERPA relies on a structure where the (nearly independent) physics modules
are accessible only through physics-specific handlers. These handlers assist SHERPA in
generating the event at different stages, each of which is steered through a specific im-
plementation of Event_Phase_Handler, such as Signal_Process or Jet_Evolution.
An example for such an interplay of event phase and physics handler is the Matrix_-
Element_Handler, enabling the generation of parton-level events either by the built-in
hard-coded matrix elements or by the matrix-element generators AMEGIC++ or COMIX.
This is relevant for two event stages, the generation of the signal process and owing to
the multijet merging procedure the evolution of the jets.

This overall structure fully reflects the paradigm of Monte Carlo event generation by fac-
torising the simulation into well-defined, almost independent phases. Accordingly, each
Event_Phase_Handler encapsulates in an abstract way a different aspect of event gener-
ation for high-energy particle reactions. This abstraction is then replaced by real physics
using handlers, which ensure that the overall event generation framework can be blind to the
finer details of the underlying physics and its implementation in form of a physics module.

Physics modules

In the following the main modules currently distributed with SHERPA1 will be listed and
briefly described.

• AMEGIC++ [25].
This is one of SHERPA’s matrix-element generators. It is based on Feynman diagrams,
which are translated to helicity amplitudes using the methods of [38, 39]. AMEGIC++
has been thoroughly tested for multiparticle production in the Standard Model [40].
Its MSSM implementation has been validated in [41], as well as its ADD extension
[42]. Further, AMEGIC++ natively supports various extensions of the Standard Model
(a fourth generation, anomalous top quark couplings, anomalous weak gauge couplings,
U(1) phantom Higgs, a U(1)B Z ′ model, a hidden sector and an axigluon extension),
the Two-Higgs-Doublet Model, and the inclusion of the effective gg → H and γγ → H
vertices in both the Standard Model and the MSSM. AMEGIC++ also allows for a model
definition using FEYNRULES inputs [43, 44].
AMEGIC++ employs the Monte Carlo phase-space integration library PHASIC. For the
evaluation of initial-state (laser backscattering, initial-state radiation) and final-state
integrals, the adaptive multi-channel method of [45, 46] is used by default together
with a Vegas optimisation [47] of the single channels. In addition, final-state integra-
tion accomplished by RAMBO [48] and HAAG [49] is supported. Further, as detailed in
[50], AMEGIC++ includes an automated implementation of the Catani-Seymour dipole
subtraction terms [51, 52]. Together with interfaces to one-loop codes through the
Binoth-Les Houches accord interface [53], dedicated interfaces to BLACKHAT [54] or
MCFM [9] or internally hard-coded one-loop matrix elements it is a key ingredient in
calculating next-to-leading order processes.

1 The list below reflects the status of the package as of version 1.3.0.
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• COMIX [26].
SHERPA’s second matrix element generator is based colour-dressed Behrends-Giele re-
cursion relations [55], basing on [56, 57, 58, 59, 60]. It is therefore best suited for the
calculation of high multiplicity final state [61]. The improved performance in the mul-
tileg regime owes to the usage of colour sampling and dedicated phase space integration
and multi-threading routines.

• CSS [62].
The CSS is a parton shower based on the Catani-Seymour dipole factorisation [51, 52].
The shower evolution is governed by the DGLAP equations and is ordered in the
partons’ relative transverse momentum. Coherence effects are accounted for by the
incorporation of the soft limit into the splitting functions by construction [63]. All fea-
tures needed for a consistent merging with matrix elements [27, 28, 29] are included. It
has been extended to optionally include QED-evolution [64] or Hidden-Valley-evolution
and its kinematics have been optimised.

• POWHEG [65].
The POWHEG module is a variant of the CSS adapted to implementing the POWHEG
and MENLOPS methods. To this end it is limited to a single emission and the possi-
bility for matrix element reweighting is enabled. To this end it is able to calculate the
fixed order parton shower approximation to a real emission matrix element and effect
matrix element corrections.

• AMISIC++ [66].
This module simulates multiple parton interactions according to [67]. In SHERPA the
treatment of multiple interactions has been extended by allowing the simultaneous
evolution of an independent parton shower in each of the subsequent collisions. This
shower evolution is handled by the CSS.

• AHADIC++.
AHADIC++ is SHERPA’s hadronisation package for translating the partons (quarks and
gluons) into primordial hadrons. The algorithm is based on the cluster-fragmentation
ideas presented in [68, 69, 70, 71], which are also implemented in the HERWIG event
generators. It should be noted that AHADIC++, essentially based on [72], indeed differs
from the original versions.

• HADRONS++ [73].
HADRONS++ is the module for simulating hadron and τ -lepton decays. The result-
ing decay products respect full spin correlations (if desired). Several matrix elements
and form-factor models have been implemented, such as the Kühn-Santamaría model
or form-factor parametrisations from Resonance Chiral Theory for the τ -leptons and
form factors from heavy quark effective theory or light-cone sum rules for hadron de-
cays.

• PHOTONS++ [74].
The PHOTONS++ module holds routines to add QED radiation to hadron and τ -lepton
decays based on the YFS algorithm [75]. The structure of PHOTONS++ is designed
such that the formalism can be extended to scattering processes and to a systematic
improvement to higher orders in perturbation theory, cf. [74]. The application of
PHOTONS++ therefore fully accounts for corrections that are usually added by the
application of PHOTOS [76].

1.2 The event generator SHERPA 17



SHERPA itself is the steering module that initialises, controls and evaluates the different
phases during the process of event generation. Furthermore, all routines for the combination
of parton showers and matrix elements, which are independent of the specific parton shower
are found in this module.
In addition to the main modules of SHERPA, there is a set of tools providing basic routines
for event generation, general methods for the evaluation of helicity amplitudes, some generic
matrix elements, etc.. Interfaces to commonly used structures like the LHAPDF package
[77], SLHA [78] or FEYNRULES [43, 44] inputs exist as well as interfaces to most frequently
used output formats like HEPEVT and HEPMC. Similarly, beyond a native analysis package,
SHERPA comprises a direct interface to the RIVET [79, 80] and HZTOOL [81] analysis packages.

1.3 Outline of this thesis

This thesis concerns itself with the consistent combination of fixed order matrix elements and
resummed results and its implementation in the framework of the SHERPA event generator.
Part I details the combination of the Yennie-Frautschi-Suura (YFS) resummation, resum-
ming soft photon logarithms in QED, with fixed-order higher-order matrix elements. First,
the YFS formalism is reviewed in Chapter 2, detailing also the inclusion of fixed-order higher-
order matrix elements. Then its implementation into the physics module PHOTONS++, part
of the SHERPA event generator, is reported in Chapter 3. It, again, pays special attention on
fixed-order hard-emission corrections, both through universal collinear approximations using
the DGLAP formalism (see Part II) and through process-specific fixed-order matrix elements.
Chapter 4 collects selected results of the implementation for selected processes with the Stan-
dard Model where all parts of the calculation can unambiguously be determined from first
principles. Therein, the description of the Z boson lineshape and the radiative decay rates
of µ and τ leptons are compared to descriptions using the DGLAP resummation and experi-
mental data. Chapter 5, on the other hand, reports on an application of the YFS formalism
to semileptonic B meson decays. Their decays currently cannot be described by first prin-
ciples and low-energy effective models have to be employed. Nonetheless, by supplementing
these effective models with QED gauge invariance the YFS formalism can still be employed
and soft photon logarithms can be resummed. The theoretical framework to calculate the
hard emission next-to-leading order corrections to these decays, together with a primitive
matching to high-energy regimes beyond the validity of the low-energy effective models, as
well as structure dependent corrections, stemming from the non-fundamentality of the in-
volved mesons, are discussed. Subsequently results on both the inclusive decay widths and
exclusive particle spectra are reported.
Part II is then devoted to the consistent combination of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) resummation, resumming collinear parton radiation, with fixed-
order higher-order matrix elements. Although being valid for, and actually being first shown
to hold for, QED collinear radiation, this part of this thesis focuses on the application of
the DGLAP resummation on QCD partons. The DGLAP resummation itself (in the QCD
context) is introduced in Chapter 6. Chapter 7 then methodically introduces an abstract and
universal parton shower formulation, focusing on its description of real emission corrections
in the DGLAP-inspired2 (soft-)collinear approximation in the DGLAP-inherent single-leg
language. The obtained parton shower formulation can then straight forwardly be corrected
to the exact expression using corrective weights on each such single leg. With these things at

2 Parton showers essentially implement the DGLAP equation in a unitary algorithm. However, due to the
presence of more terms than just the Altarelli-Parisi splitting kernels, be it due to terms arising because of
momentum conservation for finite k⊥ or explicitly incorporating them, the parton shower splitting kernels,
and thus their effective approximation of the real emission matrix element, are referred to as DGLAP-inspired
here.
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hand, one of the known methods to combine the DGLAP resummation with fixed-order next-
to-leading order matrix elements, is then reinterpreted as a simple matrix-element reweighted
parton shower, supplied with a next-to-leading order weight. The consistency of this rein-
terpreted method is then shown explicitly, leading to the description of any infrared safe
inclusive observable at both next-to-leading order and (next-to-)leading logarithmic accu-
racy. Its implementation in SHERPA is detailed and a wealth of results, examining both
its consistency and its comparison with experimental data, is presented. Chapter 8 then
details the combination of the reformulated POWHEG method with the well-known ME+PS
method of merging tree-level matrix elements of increasing final state parton multiplicities3
into one inclusive sample. The resulting algorithm, dubbed MENLOPS, then produces inclu-
sive event samples describing any infrared safe inclusive observable at the same accuracy as
the POWHEG method and observables, depending on additional jet activity, are described at
leading order accuracy, as with the ME+PS method. The MENLOPS thus offers a simultane-
ous description of arbitrary observables surpassing both the POWHEG and ME+PS methods
individually. Chapter 8 then closes with wealth of consistency checks and comparisons to
experimental data.
A summary can be found in Chapter 8.4

3 Although the ME+PS algorithm was extended to cover QED radiation, i.e. photons, as well, only its
QCD application will be used in the context of Chapter 8.
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Part I

Yennie-Frautschi-Suura resummation and fixed
order calculations
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Introduction

Higher-order QED corrections have important effects on experimentally accessible observables
and need to be accounted for both at low- and high-energy colliders. Their impact has been
studied in detail at SLC and LEP as well as the B-factories
The approach of Yennie, Frautschi and Suura (YFS), discussed in this part of this thesis,
resides on the idea of constructing the infrared limits of both real and virtual corrections
order by order and then resumming the universal expressions corresponding to the leading
soft logarithms. These soft logarithms are independent of the inner process characteristics
and can be calculated from the external particles and their four-momenta only. The big
advantage of the YFS formalism is that in addition it allows for a systematic improvement of
this soft eikonal approximation, order-by-order in the QED coupling constant. This explains
why a good fraction of the most precise tools for the simulation of QED radiation root in
this algorithm [82, 83, 84, 85].
The outline of this part of this thesis is as follows: After briefly reviewing the YFS formalism
in Chapter 2 in the framework of particle decays, the Monte Carlo algorithm adopted here is
detailed in Chapter 3. Special emphasis is put on how hard emission fixed-order corrections
can be effected. Chapter 4 presents results obtained for the description of QED radiation
in Drell-Yan production and compares the prediction for the radiative decay rates in the
leptonic decay channels of muon and tau decays. Finally, in Chapter 5 the algorithm is used
to compute higher order electroweak corrections to semileptonicB-meson decays and presents
results both for the corrected integrated decay rates and exclusive kinematic distributions
of observable leptons, mesons and photons.
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Chapter 2

Yennie-Frautschi-Suura resummation

This part of this thesis is dedicated to a brief review of the Yennie-Frautschi-Suura (YFS)
resummation [75] and its underlying ideas in the context of particle decays. Its derivation
for scattering processes proceeds along the same lines and culminates in the equivalent final
formulae. For a more in depth derivation see the original publication [75] or [86].
The YFS approach constructs an approximative description of real and virtual QED correc-
tions to arbitrary scattering or decay processes, as depicted in Figure 2.1. The virtue of this
formalism is that it can systematically be improved, order by order in the electromagnetic
coupling constant α. The YFS approach bases on the observation that the soft limits for ma-
trix elements with real and/or virtual photons exhibit a universal behaviour, and on the fact
that the corresponding soft divergences can be factorised into universal factors multiplying
leading order matrix elements.
When defining the final state as a configuration of primary decay products with momenta
pf and any number of additional soft photons with momenta k the fully inclusive decay rate
reads

Γ =
1

2M

∞∑
nR=0

1

nR!

∫
dΦp dΦk (2π)4 δ

(∑
pi −

∑
pf −

∑
k
) ∣∣∣∣∣

∞∑
nV =0

MnV + 1
2
nR

nR

∣∣∣∣∣
2

(2.0.1)

where pi is the four-momentum of the decaying particle. Here and in the following nV and
nR are the numbers of additional virtual and real photons, respectively, that show up in
the higher-order matrix element but not in the uncorrected leading order matrix element
(thus labeled by M0

0). Hence, the sub- and superscripts denote the number of additional
final state photons and the relative order in α of the given matrix element. The starting
point of the YFS algorithm is to approximate these dressed matrix elements through the
leading order one times eikonal factors, which depend on the external particles only. This
effectively catches the leading logarithmic QED corrections to the process. The correct result
can then be restored order by order in perturbation theory by supplementing the non-leading,
process-dependent pieces.

2.1 Resummation of virtual photon corrections

In the case of one virtual photon this can be formalised as

M1
0 = αBM0

0 +M1
0 , (2.1.1)
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p′1

p′2

p′nf

p1

p2

pni

Figure 2.1: All order QED corrections to an arbitrary ampli-
tude with ni initial state legs and nf final state
legs.

where M1
0 is the infrared-subtracted matrix element including one virtual photon (with M1

0
finite when k → 0 due to the subtraction). All soft divergences due to this virtual photon
are contained in the process-independent, universal factor B, see [86] for a more thorough
discussion. Here, and in the following, the sub- and superscripts denote the number of real
photons and the order of α, respectively, both for the infrared-subtracted and for the original
matrix elements.
Similar to the one-photon case, YFS showed that the subsequent insertion of further virtual
photons in all possible ways leads to

M0
0 = M0

0

M1
0 = αBM0

0 +M1
0

M2
0 =

(αB)2

2!
M0

0 + αBM1
0 +M2

0 (2.1.2)

and so on. Therefore, for a fixed order in α,

MnV
0 =

nV∑
r=0

MnV −r
0

(αB)r

r!
(2.1.3)

and, summing over all numbers of virtual photons nV ,

∞∑
nV =0

MnV
0 = exp(αB)

∞∑
nV =0

MnV
0 . (2.1.4)

Since photons do not carry any charge and because virtual photons inserted in closed charged
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loops do not produce any additional infrared singularity1, this can be generalised to any
number of real photons, such that∣∣∣∣∣

∞∑
nV =0

MnV + 1
2
nR

nR

∣∣∣∣∣
2

= exp(2αB)

∣∣∣∣∣
∞∑

nV =0

M
nV + 1

2
nR

nR

∣∣∣∣∣
2

. (2.1.5)

Hence, MnV + 1
2
nR

nR is free of soft singularities due to virtual photons but it still may contain
those due to real photons.

2.2 Resummation of real emission corrections

YFS showed in [75] that the factorisation for real photon emission proceeds on the level of
the squared matrix elements rather than on the amplitude level. For a single photon emission
therefore this yields

1

2(2π)3

∣∣∣∣∣
∞∑

nV =0

M
nV + 1

2
1

∣∣∣∣∣
2

= S̃(k)

∣∣∣∣∣
∞∑

nV =0

MnV
0

∣∣∣∣∣
2

+
∞∑

nV =0

β̃nV +1
1 (k) . (2.2.1)

Here, S̃(k) is an eikonal factor containing the soft divergence related to the real photon
emission, see Appendix [86]. Denoting with β̃nV +nR

nR
the complete IR-finite (subtracted)

squared matrix element for the basic process plus the emission of nR photons including nV
virtual photons and using the abbreviation

β̃nR =
∞∑

nV =0

β̃nV +nR
nR

, (2.2.2)

the squared matrix element for nR real emissions, summed over all possible virtual photon
corrections, can be written as(

1

2(2π)3

)nR ∣∣∣∣∣
∞∑

nV =0

M
nV + 1

2
nR

nR

∣∣∣∣∣
2

= β̃0

nR∏
i=1

[
S̃(ki)

]

+

nR∑
i=1

[
β̃1(ki)

S̃(ki)

]
nR∏
j=1

[
S̃(kj)

]

+

nR∑
i,j=1
i 6=j

[
β̃2(ki, kj)

S̃(ki)S̃(kj)

]
nR∏
l=1

[
S̃(kl)

]
+ . . .

1 A similar program cannot directly be translated to QCD, where the emitted gluons act as parts of
antennae emitting further gluons, thus modifying the pattern of possible infrared poles and thus leading
logarithms in each emission.
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+

nR∑
i=1

[
β̃nR−1(k1, . . . , ki−1, ki+1, . . . , knR) S̃(ki)

]
+ β̃nR(k1, . . . , knR) . (2.2.3)

Demanding agreement with the exact result up to O(α), this expression thus contains only
terms with β̃0

0 , β̃1
0 and β̃1

1 . Then(
1

2(2π)3

)nR ∣∣∣∣∣
∞∑

nV =0

M
nV + 1

2
nR

nR

∣∣∣∣∣
2

=

[
β̃0

0 + β̃1
0

] nR∏
i=1

[
S̃(ki)

]
+

nR∑
i=1

[
β̃1

1(ki)

S̃(ki)

]
nR∏
j=1

[
S̃(kj)

]
+O(α2) . (2.2.4)

Inserting this into the expression for the decay rate and expressing the δ-functions ensuring
four-momentum conservation as exponentials yields,

2M · Γ =
∑
nR

1

nR!

∫
dΦpf

 exp [2αB]

∫
dy exp

[
iy
(∑

pi −
∑

pf

)]

×
(∫

d3k

k
S̃(k)e−iyk

)nR (
β̃0

0 + β̃1
0

)
+
∑
nR−1

1

(nR − 1)!

∫
dΦpf

 exp [2αB]

∫
dy

d3K

K
exp

[
iy
(∑

pi −
∑

pf −K
)]

×
(∫

d3k

k
S̃(k)e−iyk

)nR−1

β̃1
1(K)

 + O(α2)

=

∫
d4y

∫
dΦpf

 exp [2αB] exp

[
iy
(∑

pi −
∑

pf

)
+

∫
d3k

k
S̃(k)e−iyk

]

×
[
β̃0

0 + β̃1
0 +

∫
d3K

K
e−iyK β̃1

1(K) + O(α2)

] .

(2.2.5)

As before, all singularities due to virtual photons are contained in B, while all singularities
due to real emissions are incorporated in the integral over S̃(k). To restore the momentum
conserving δ-function the divergences have to be split off this integral. This can be done by
simply subtracting the terms that are divergent for k → 0. To this end, a small “soft” region
Ω is defined together with an infrared-safe function D(Ω) such that∫

d3k

k
S̃(k)e−iyk

=

∫
d3k

k

{
S̃(k)

[(
1−Θ(k, Ω)

)
+ e−iykΘ(k, Ω) +

(
e−iyk − 1

)(
1−Θ(k, Ω)

)]}
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= 2αB̃(Ω) +D(Ω) (2.2.6)

where

D(Ω) =

∫
d3k

k
S̃(k)

[(
e−iyk − 1

)(
1−Θ(k,Ω)

)
+ e−iykΘ(k,Ω)

]
Ω→0−→

∫
d3k

k
S̃(k) e−iyk Θ(k,Ω) (2.2.7)

and

2αB̃(Ω) =

∫
d3k

k
S̃(k) (1−Θ(k,Ω)) =

∫
Ω

d3k

k
S̃(k) . (2.2.8)

The Heaviside function Θ(k,Ω) divides the phase space into two regions. While Ω comprises
the region containing the infrared divergence, (1−Ω) is completely free of those divergences.
Hence, Θ(k,Ω) = 1 if k /∈ Ω and zero otherwise. Thus, D(Ω) is IR save and B̃(Ω) contains
the divergence.

2.3 The Yennie-Frautschi-Suura form factor

Reinserting this into the cross section, executing the y-integration and reexpanding the
exponentiated integral yields

2M Γ =
∑
nR

1

nR!

∫
dΦpfdΦ′k(2π)4δ4

(∑
pi −

∑
pf −

∑
k
)
e2α(B+B̃(Ω))

×
nR∏
i=1

S̃(ki)Θ(ki,Ω)

(
β̃0

0 + β̃1
0 +

nR∑
i=1

β̃1
1(ki)

S̃(ki)
+ O(α2)

)
. (2.3.1)

Wherein the YFS form factor

Y (Ω) = 2α(B + B̃(Ω)) (2.3.2)

can be defined. It is infrared finite by construction through the inclusion of the leading
logarithmic virtual corrections and, thus, constitutes the all-orders resummed contribution
of the integrated unresolved photon region Ω to each cross-section summand.
The infrared subtracted squared matrix elements read, up to O(α),

β̃0
0 = M0

0M
0
0
∗

β̃1
0 = M0

0M
1
0
∗

+ M1
0M

0
0
∗

β̃1
1 =

1

2(2π)3
M

1
2

1 M
1
2

1

∗
− S̃(k) M0

0M
0
0
∗
. (2.3.3)
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Chapter 3

A process independent implementation in
SHERPA

In this part of this thesis the construction of the physics module PHOTONS++ for the SHERPA
framework, as published in [86, 74], is reviewed as a prerequisite for Chapters 4 and 5. It
aims at implementing higher order QED corrections using the framework of the Yennie-
Frautschi-Suura (YFS) resummation [75] reviewed in the previous chapter in the context of
particle decays. Up to the implementation of PHOTONS++, in Monte-Carlo event generators
this has typically been left to the PHOTOS [87, 88] programme. However, there have been
two reasons for replacing PHOTOS: First of all, PHOTOS builds on a parton-shower like
collinear approximation for the simulation of photon emissions, which intrinsically has some
shortcomings when the mass of the decaying particle is not much larger than the masses of
its decay products. This has already been noted in [89, 90] and triggered the development
of the module SOPHTY [89] in the framework of the HERWIG++ event generator. It also
has been realised that the maintenance of interface structures to ancient, although well
tested, additional codes such as PHOTOS becomes an overwhelming burden as modern event
generators are improving.

The present implementation aims to address all decay topologies universally, in particular,
in contrast to other YFS implementations like SOPHTY, no restrictions regarding the number
of decay products are imposed. Further, a special focus is put upon systematic hard emis-
sion corrections. Here, the big advantage of the YFS formalism, allowing for a systematic
improvement of the eikonal approximation, order-by-order in the QED coupling constant, is
used. Therefor, either automatically generated universal collinear hard emission corrections
or corrections effected through dedicated process-specific matrix elements are applied. This
straightforward extension also explains why a good fraction of the most precise tools for the
simulation of QED radiation root in this algorithm [82, 83, 84, 85].

3.1 The Algorithm

The following section presents an algorithm to a posteriori correct leading order processes
for all-order resummed QED corrections in the Yennie-Frautschi-Suura (YFS) resummation
scheme, reviewed in Chapter 2. It is therefore necessary to rearrange the all-orders ex-
pression, factorising the leading order process and accommodating a well defined momenta
mapping from the leading order phase space to the respective multi-photon phase space after
the corrections.
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Γ0

QC

QN

qC

qN

Γ

PC

PN

pC

pN

K

Figure 3.1: The definition of the momenta of an arbitrary scattering or decay process
before (left) and after (right) QED corrections.

3.1.1 The master formula

The basic, undressed matrix element (no additional photons) reads

2M · Γ0 =

∫
dΦq (2π)4δ4(qC + qN −QC −QN) |M|2 (3.1.1)

where the differential phase-space element for the outgoing momenta qi ∈ {QC , QN} is given
by

dΦq =
n∏
i=1

d3qi
(2π3)2q0

i

. (3.1.2)

Here, and in the following, as depicted in Figure 3.1, the initial and final state momenta have
been classified to whether the respective particles are charged or neutral: the sums of all
initial state momenta are labeled by qC and qN for charged and neutral particles, respectively,
while QC and QN denote the sums of all charged or neutral final state momenta. After QED
corrections, the QC and QN will become PC and PN , while the qC and qN become pC and
pN . K is the sum of all additional real, resolved Bremsstrahlungs-photons generated in the
process, whereas photons already present in the core process are included in PN and QN ,
respectively (an example for this seemingly unlikely case would be Z → `+`−γ involving a
resolved photon, or the rare decay B+ → K∗+γ)1.
In the previous section the factorisation of infrared divergent terms and the construction of
infrared-finite expressions for cross sections with all possible numbers of resolved photons
has been discussed. In these expressions the universal, process-independent parts of the QED
corrections have been separated and exponentiated, the residual process dependence and the
effect of particle spins etc. has been absorbed in infrared-finite, subtracted terms β̃, cf. eq.
(2.3.1). With small changes in the notation this form of the cross section thus reads

2M · Γ =
∑
nγ

1

nγ!

∫
dΦ eY (Ω)

nγ∏
i=1

S̃(ki)Θ(ki,Ω) β̃0
0 C . (3.1.3)

1Here lies a potential drawback of the YFS resummation: Photons already present in the basic process
(multiplicity nhard

γ ) and photons added in the soft resummation (fixed order multiplicity nsoft
γ ) to this process

are regarded as being distinguishable. Hence, the symmetry factor associated to every higher order would
read 1/(nhard

γ ! · nsoft
γ !) instead of 1/(nhard

γ + nsoft
γ )!. This, however, can be reconciled by the inclusion of a

symmetry correction factor (nhard
γ ! ·nsoft

γ !)/(nhard
γ +nsoft

γ )! in the exact higher order matrix elements β̃1
1 , etc.
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Here, the phase space has been separated into a phase space element for the particles of the
“core” process and one for the additional nγ resolved real photons,

dΦ = dΦp dΦk (2π)4δ (pC + pN − PC − PN −K) . (3.1.4)

with

dΦp =
n∏
i=1

d3pi
(2π)32p0

i

(3.1.5)

dΦk =

nγ∏
i=1

d3k

k0
. (3.1.6)

Note that the factor 1
2(2π)3

, missing in the photon phase space element, has already been
incorporated in the eikonal factor S̃(k), in accordance with the choice made in [75]. In the
equation above, eq. (3.1.3), the leading order matrix element β̃0

0 has been factored out and
the remainder of the perturbative expansion in α has been combined in the factor C,

C = 1 +
1

β̃0
0

(
β̃1

0 +

nγ∑
i=1

β̃1
1(ki)

S̃(ki)
+O(α2)

)
. (3.1.7)

Furthermore, the YFS-Form-Factor has been introduced

Y (Ω) =
∑
i<j

Yij(Ω) =
∑
i<j

2α
(
Bij + B̃ij(Ω)

)
(3.1.8)

where the sum i < j runs over all pairs of charged particles, taking into account each pair
only once. The infrared factors Bij and B̃ij are defined as

Bij = − i

8π3
ZiZjθiθj

∫
d4k

1

k2

(
2piθi − k

k2 − 2(k · pi)θi
+

2pjθj + k

k2 + 2(k · pj)θj

)2

(3.1.9)

B̃ij(Ω) =
1

4π2
ZiZjθiθj

∫
d4kδ(k2) (1−Θ(k,Ω))

(
pi
pi · k

− pj
pj · k

)2

. (3.1.10)

They are the generalisation of the quantities defined in the last section, cf. eqs. (2.1.1)
and (2.2.8). Both contain the virtual and real infrared divergences, respectively. These
divergences cancel according to the Kinoshita-Lee-Nauenberg theorem [91, 92]. Thus, each
Yij(Ω) is guaranteed to be finite, which is explicitly shown in Appendix A.1. In the terms
above, Zi and Zj are the charges of the particles i and j in terms of the positron charge e,
and the signature factors θ = ±1 for particles in the final or initial state, respectively. The
symbol Θ, already defined at the end of Chapter 2, refers to a phase space constraint with
Ω denoting the soft, unresolvable region of photon radiation. Hence, Θ(k,Ω) = 1 if k /∈ Ω
and zero otherwise. If this division is done by defining an energy cut-off, the definition of
Ω is not Lorentz-invariant and the frame in which this cut-off forms a flat hypersurface also
needs to be specified. The advantage of splitting the photon phase space in that manner
lies in the alleviation of integrating S̃(k) over k. If the cut-off is defined in the frame the
photon generation and momentum reconstruction will be done in2 then the integration over

2 In the algorithm presented here, this will be the rest frame of the multipole, i.e. the combined rest frame
of all charged particles pC + PC .
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the photon energy separates from the angular integration (see Appendix A.2), leading to yet
another simplification of the calculation.

The eikonal factor S̃(k) has already been introduced in the last section. It is defined as

S̃(k) =
∑
i<j

S̃ij(k) =
α

4π2

∑
i<j

ZiZjθiθj

(
pi
pi · k

− pj
pj · k

)2

. (3.1.11)

However, despite all terms being finite in eq. (3.1.3), it cannot be used straight away for
the intended Monte Carlo implementation separating the generation of the leading order
decay Γ0 and applying higher order QED corrections afterwards. This roots in the fact that
eq. (3.1.3) is written in terms of the already corrected final state momenta pi and not the
original undressed momenta qi. The problem here is that the undressed momenta are defined
in an n-body phase space whereas the dressed momenta are part of an (n+ nγ)-body phase
space. This necessitates a bijective phase-space map of the n-body onto the (n + nγ)-body
phase space. In principle, the details of this phase-space map are irrelevant as long as it is
infrared safe, i.e. the addition of an infinitely soft photon leads to the same kinematics as if
this photon was not present. Thus, in this limit the momenta of the original particles in the
(n + nγ)-body phase space have to fall exactly onto those of the (n + nγ − 1)-body phase
space, and, if all photons are infinitely soft, onto those of the n-body phase space.

3.1.2 Phase space transformation

To solve this, consider the rest frame of all charged particles involved in the basic matrix
element

PM = pC + PC . (3.1.12)

These particles form the multipole responsible for the Bremsstrahlung of the additional
photons. In the rest frame of this multipole, a simple form of the phase space map can be
formulated such that the additional photons are accommodated. Such a mapping definition
is clearly not Lorentz-invariant, thus eq. (3.1.4) has to be rewritten explicitly in the rest
frame of the multipole in question. The necessary transformations are detailed in [74, 86],
here it suffices to give the result. It reads

dΦ = dΦp dΦk (2π)4δ (pC + pN − PC − PN −K)

= dΦp dΦk

m3
M,p

M2(P 0
C + P 0

N +K0)
(2π)3 δ3(~PM) (2π) δ

(
P 0
M − P 0

C − p0
C

)
. (3.1.13)

In a similar fashion, the phase space related to the leading order uncorrected cross section
can be transformed to

dΦ0 = (2π)4dΦq δ
4 (qC + qN −QC −QN)

= dΦq

m3
M,q

M2(Q0
C +Q0

N)
(2π)3 δ3( ~QM) (2π) δ

(
Q0
M −Q0

C − q0
C

)
. (3.1.14)

In both cases, mM,p (mM,q) is the invariant mass of the corrected (uncorrected) multipole
and the vector components P 0

C and P 0
N (Q0

C and Q0
N) are taken in the PM (QM) rest frame.

The Jacobian emerging in both cases will ultimately find its way into a correction weight in
the Monte Carlo realisation of the method.
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3.1.3 Mapping of momenta

The mapping procedure still has to be defined in detail to reconstruct the particles’ momenta.
The main issue to be addressed is the distribution of the additional photons’ momenta across
the particles already present in the LO process. This mapping procedure thus has to fulfil
all requirements of infrared safety, i.e. its projection to a lower dimensional phase space has
to be continuous. Thus, as any photon’s momentum ki → 0, the resulting procedure has to
be identical as if this photon were not present. In particular, this leads to the requirement
that for K → 0 the leading order kinematics has to be recovered.
It is further chosen to reconstruct the multipole in its rest frame and distributing the ad-
ditional photons’ momenta as democratically as possible. This paradigm necessitates the
differentiation of two situations: mixed multipoles with charged particles in both the initial
and the final state and pure initial or final state multipoles. Both situations will be addressed
in the following two paragraphs where, after introducing the general case, special emphasis
is put on decay processes as they are relevant for the presented implementation. Formally,
of course, both treatments will yield identical results, since only the soft limit of photon
emission is defined from first principles and because both treatments respect this limit.

Mixed multipoles

Consider an N →M process which is to be corrected for higher order QED effects after the
LO configuration has already been determined. All particle momenta can then be classified
as follows

• qC =
∑
Ci

qCi is the sum of all charged initial states,

• qN =
∑
Ni

qNi is the sum of all neutral initial states,

• QC =
∑
Cf

QCf is the sum of all charged final states and

• QN =
∑
Nf

QNf is the sum of all neutral final states

of the LO configuration. Accordingly,

• pC =
∑
Ci

pCi is the sum of all charged initial states,

• pN =
∑
Ni

pNi is the sum of all neutral initial states,

• PC =
∑
Cf

PCf is the sum of all charged final states,

• PN =
∑
Nf

PNf is the sum of all neutral final states and

• K =
∑
k

Kk is the sum of all radiated photons with energies above the threshold ωmin
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in the QED-corrected configuration. Because of the presence of charged particles in both
the initial and the final state they can be used to compensate for (part of) the photons’
momentum. Hence, this method is then independent of the presence of neutral particles.
Starting from the LO momentum configuration in the multipole rest frame

qC =
(
q0
C , ~qC = − ~QC

)
qN =

(
q0
N , ~qN = ~QN + 2 ~QC

)
QC =

(
Q0
C ,
~QC

)
QN =

(
Q0
N , ~QN

)
,

(3.1.15)

this is mapped upon

pC =

(
p0
C , ~pC =

∑
Ci

(u~qCi +
nCf
nCi

~κ)

)

pN =

(
p0
N , ~pN =

∑
Ni

(u~qNi + ~κ)

)

PC =

P 0
C , ~PC =

∑
Cf

(u~QCf − ~κ)

 (3.1.16)

PN =

P 0
N , ~PN =

∑
Nf

(u~QNf − ~κ)


K =

(
K0, ~K

)
,

wherein u ∈ (0, 1] is a scaling variable and ~κ = 1
2nCf+nNi+nNf

~K. The scaling parameter u is
determined by momentum conservation and all on-shell conditions as the solution of

0 =
∑
Ci

√
m2
Ci

+ (u~qCi +
nCf
nCi

~κ)2 +
∑
Ni

√
m2
Ni

+ (u~qNi + ~κ)2

−
∑
Cf

√
m2
Cf

+ (u~QCf − ~κ)2 −
∑
Nf

√
m2
Nf

+ (u~QNf − ~κ)2 −K0 . (3.1.17)

The indices Ci,f and Ni,f sum over the charged and neutral initial and final state particle
momenta. Of course, for K → 0 the scaling parameter u → 1 and both momentum con-
figurations coincide, as required. Due to the transformation being multiplicative in u and
additive in κ with κ being independent of the LO momenta the results of [86] can easily be
generalised. Thus the phase space element reads

dΦ = (2π)4 dΦq dΦk δ
3
(
~QM

)
δ
(
Q0
M −Q0

C − q0
C

) m2
M,p

M2(P 0
C + P 0

N +K0)
u3n−4

×

∑
Ci

~q2Ci
q0Ci

+
∑
Ni

~q2Ni
q0Ni
−∑

Cf

~Q2
Cf

Q0
Cf

−∑
Nf

~Q2
Nf

Q0
Nf∑

Ci

~pCi~qCi
p0Ci

+
∑
Ni

~pNi~qNi
p0Ni

−∑
Cf

~PCf
~QCf

P 0
Cf

−∑
Nf

~PNf
~QNf

P 0
Nf

∏
Cf

[
Q0
Cf

P 0
Cf

] ∏
Nf

[
Q0
Nf

P 0
Nf

]
.

(3.1.18)

36 Chapter 3 A process independent implementation in SHERPA



Herein, QM and PM are the momenta of the multipole rest frames before and after the
addition of photon radiation, as defined in Section 3.1.2. Likewise mM is its invariant mass.
M = ŝ is the invariant mass of the initial state.

In case of the decay processes this result reduces to the result obtained in [86] and M can
again be identified with the decaying particle’s mass. Then also the simplified version of
eq. (3.1.18) is recovered

dΦ = (2π)4 dΦq dΦk δ
3
(
~QM

)
δ
(
Q0
M −Q0

C − q0
C

) m3
M,p

M2 (P 0
C + P 0

N +K0)
u3n−4

×
~q2C
q0C
−∑C,N

~q2i
q0i

~pC~qC
p0C
−∑C,N

~pi~qi
p0i

n∏
i=1

[
q0
i

p0
i

]
.

(3.1.19)

As above the product of the second line runs over all final state particles, and qC and pC is
the initial state before and after QED corrections.

Pure initial or final state multipoles

In case there are no charged particles in either the initial or the final state the above algorithm
fails since the multipole’s restframe cannot be reproduced. Hence, in this case only the then
necessarily present neutral particles can compensate for the additional photons’ momenta.
Defining the kinematics of the configuration before and after the addition of higher order
corrections as in the previous case, the LO momentum configuration

qC =
(
q0
C , ~qC = − ~QC

)
qN =

(
q0
N , ~qN = ~QN + 2 ~QC

)
QC =

(
Q0
C ,
~QC

)
QN =

(
Q0
N , ~QN

)
(3.1.20)

is mapped upon

pC =

(
p0
C , ~pC =

∑
Ci

u~qCi

)

pN =

(
p0
N , ~pN =

∑
Ni

(u~qNi + ~κ)

)

PC =

P 0
C , ~PC =

∑
Cf

u~QCf


PN =

P 0
N , ~PN =

∑
Nf

(u~QNf − ~κ)


K =

(
K0, ~K

)
,

(3.1.21)
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wherein u ∈ (0, 1] is a scaling variable and ~κ = 1
nNi+nNf

~K. The scaling parameter u is again
determined by momentum conservation and all on-shell conditions as the solution of

0 =
∑
Ci

√
m2
Ci

+ u2~q2
Ci

+
∑
Ni

√
m2
Ni

+ (u~qNi + ~κ)2

−
∑
Cf

√
m2
Cf

+ u2 ~Q2
Cf
−
∑
Nf

√
m2
Nf

+ (u~QNf − ~κ)2 −K0 . (3.1.22)

As above, the phase space element can be determined as

dΦ = (2π)4 dΦq dΦk δ
3
(
~QM

)
δ
(
Q0
M −Q0

C − q0
C

) m2
M,p

M2(P 0
C + P 0

N +K0)
u3n−4

×

∑
Ci

~q2Ci
q0Ci

+
∑
Ni

~q2Ni
q0Ni
−∑

Cf

~Q2
Cf

Q0
Cf

−∑
Nf

~Q2
Nf

Q0
Nf∑

Ci

~pCi~qCi
p0Ci

+
∑
Ni

~pNi~qNi
p0Ni

−∑
Cf

~PCf
~QCf

P 0
Cf

−∑
Nf

~PNf
~QNf

P 0
Nf

∏
Cf

[
Q0
Cf

P 0
Cf

] ∏
Nf

[
Q0
Nf

P 0
Nf

]
.

(3.1.23)

Turning to the present case of particle decays, only one situation can occur: a decaying
neutral particle of mass M where the multipole lies entirely in the final state. Here, again,
the above result simplifies to

dΦ = (2π)4 dΦq dΦk δ
3
(
~QM

)
δ
(
Q0
M −Q0

C

) m3
M,p

M2 (P 0
C + P 0

N +K0)
u3n−4

×
~q2N
q0N
−∑C,N

~q2i
q0i

~pN~qN
p0N
−∑C,N

~pi~qi
p0i

n∏
i=1

[
q0
i

p0
i

]
.

(3.1.24)

wherein, again the simplified notation of [86] is adopted. Again, the product runs over the
complete final state and qN and pN denote the single neutral initial state.

3.1.4 Event generation

Having transformed the phase space integrals allows to write the full decay rate including
real and virtual QED radiation as

2M · Γ =
∑
nγ

1

nγ!

∫
dΦq dΦk(2π)4δ3

(
~QM

)
δ
(
Q0
M −Q0

C − q0
C

)
eY (Ω) β̃0

0 C

×
nγ∏
i=1

[
S̃(ki)Θ(ki,Ω)

]
m3
M,p u

3n−4

M2 (P 0
C + P 0

N +K0)

~q2

q0
−∑C,N

~q2i
q0i

~p ~q
p0
−∑C,N

~pi~qi
p0i

n∏
i=1

[
q0
i

p0
i

]
, (3.1.25)

where q and p now generally stand for the initial state particle. The leading order differential
decay rate dΓ0, which will be generated beforehand and shall be corrected by the present
algorithm a posteriori, can easily be extracted. Employing eq. (3.1.14) the full result then
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reads

Γ =
∑
nγ

1

nγ!

∫
dΓ0 dΦk e

Y (Ω)

nγ∏
i=1

[
S̃(ki)Θ(ki,Ω)

]

× m
3
M,p

m3
M,q

Q0
C +Q0

N

P 0
C + P 0

N +K0
u3n−4

~q2

q0
−∑C,N

~q2i
q0i

~p ~q
p0
−∑C,N

~pi~qi
p0i

n∏
i=1

[
q0
i

p0
i

]
C . (3.1.26)

Up to here no approximations have been made at all. In order to generate the corresponding
distribution with Monte Carlo techniques, however, this form still not fully factorises the
leading order process from the higher order corrections. To simplify eq. (3.1.26) therefor,
hit-or-miss and reweighting techniques are used, demanding upper bounds for the various
pieces:

• All higher orders are neglected, thus setting C to one.

• The maximum of all Jacobians is given for K = 0, coinciding with the leading-order
phase space.

• The dependences on the dressed momenta in the eikonal factors are removed by ap-
proximating these factors by those depending on the undressed variables from the
generation.

The resulting crude distribution reads

Γcr =
∞∑

nγ=0

1

nγ!

∫
dΓ0 dΦk e

Y (ω)

nγ∏
i=1

S̃q(ki)Θ(ki,Ω). (3.1.27)

After executing all k-integrations giving∫ nγ∏
i=1

d3ki
k0
i

S̃q(ki)Θ(ki,Ω) = n̄nγ (3.1.28)

the YFS-Form-Factor is estimated by

Y (Ω) ≈ −n̄ (3.1.29)

for suitable choices of Ω 3. Reinserting this into the crude estimate, the leading order
expression can be separated from the higher order QED corrections, and

Γcr = Γ0

∞∑
nγ=0

[
1

nγ!
e−n̄n̄nγ

]
. (3.1.30)

The result is the undressed leading order process times a Poisson distribution with the aver-
age photon multiplicity n̄. In this factorised state the photon distribution can be separated
from the generation of the basic matrix element. Assuming the latter to be already gener-
ated it can a posteriori be corrected to the leading-logarithmic all-order QED correction by
generating the photon distribution as follows (see Appendix A.2 for details):

3 In this thesis (and in the code), this choice has been to limit the photon energies by setting an infrared
energy cut-off of 1 MeV, unless otherwise stated.
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1. Generate the number of photons according to a Poisson distribution with mean n̄.

2. Generate each photon’s momentum according to S̃q(k). This implies

• that its energy k0 is distributed according to

ρ(k0) ∼ 1

k0
(3.1.31)

• and that the azimuthal and polar angles are distributed according to

ρ(θ, φ) ∼
∑
i<j

(
qi

qi · ek
− qj
qj · ek

)2

, (3.1.32)

where ek is a null vector of unit length,

eµk =
1

k0
kµ with e2

k = 0 . (3.1.33)

It is possible that more than one hard photon is created such that the total energy of
all photons exceeds the decaying system’s energy. Obviously, this has to be avoided to
guarantee energy conservation. A simple way of achieving this is a mere veto on such
situations, accompanied with a repetition of photon generation, starting from step 1.

3. Reconstruct the momenta.

4. Calculate and apply all weights. This yields a total weight, namely

W = Wdipole ×WYFS ×WJ,L ×WJ,M ×WC , (3.1.34)

where the individual weights are given by

Wdipole =

nγ∏
i=1

S̃(pC , PC , ki)

S̃(pC , QC , ki)
(3.1.35)

WYFS = exp (Y (pC , PC ,Ω) + n̄) (3.1.36)

WJ,L =
m3
M,p

m3
M,q

Q0
C +Q0

N

P 0
C + P 0

N +K0
(3.1.37)

WJ,M = u3n−4

~p2

p0
−∑C,N

~q2i
q0i

~p′~p
p′0
−∑C,N

~pi~qi
p0i

n∏
i=1

(
q0
i

p0
i

)
(3.1.38)

WC = C . (3.1.39)

Here,Wdipole corrects the emitting dipoles from the unmapped to the mapped momenta,
WYFS accounts for the exact YFS form factor, WJ,L essentially denotes the Jacobian
due to the Lorentz-transformation, WJ,M is the weight due the momenta-mapping, and
WC incorporates higher-order corrections, where available.
The maximum of the combined weight indeed is smaller than the maximal weight
employed for generating the distribution, W < W (K = 0). Hence application of
the combined weight is just a realisation of a hit-or-miss method. The distribution
obtained is now the exact distribution of (3.1.3) or (3.1.26).
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3.2 Higher Order Corrections

In the last section, the procedure generating the QED corrections to cross sections, following
eq. (2.3.1), has been outlined. By construction, the algorithm yields exact all-orders results,
if all matrix elements are known. This, however, is never the case. On the other hand, the
dominant universal soft photon contributions, real and virtual, are included to all orders
in the YFS form factor, eq. (3.1.8). Thus, if the zeroth order undressed matrix element
only is known, i.e. if C = 1, the photons will be solely generated according to a product of
eikonal factors S̃(ki). Consequently, their distribution will be correct in the soft limit only.
Away from this limit, exact matrix elements at a given order may be mandatory to yield
satisfactory and sufficient accuracy. For most applications on decay matrix elements it will
be sufficient to implement the matrix element correction to the first order in α, i.e. for the
emission of one additional real or virtual photon. Only for very specific processes, where the
highest accuracy is mandatory, i.e. leptonic decays of W and Z bosons second order hard
emission corrections need to be accounted for.
It should be noted here that hard photon emission predominantly occurs in situations where
potential emitters are characterised by a large energy-to-mass ratio and that in any case
hard photon emissions tend to populate regions in phase space that are collinear w.r.t. the
emitters. In contrast, large angle radiation has the tendency to be predominantly soft.

3.2.1 Approximations for real emission matrix elements

As already explained, the vast majority of hard photon emissions deserving an improved
description through corrections to the soft limit underlying the YFS approach occurs in the
collinear region of emission phase space. In this region, the well-known collinear factorisation
can be used to approximate β̃1

1 . This amounts to an inclusion of the leading collinear
logarithms arising in this limit, which are incorporated for instance in the Altarelli-Parisi
evolution equation [93] and corresponding splitting kernels.
Since masses are to be taken fully into account the quasi-collinear limit defined in [94, 95]
replaces the more familiar collinear one. In this limit the matrix element factorises as

∑
λγ

∣∣∣M 1
2
1 (pi, k)

∣∣∣2 ∼= { e2Z2
i g(out)(pi, k) |M0

0(pi + k)|2 if i ∈ F.S.

e2Z2
i g(in)(pi, k) |M0

0(x · pi)|2 if i ∈ I.S..
(3.2.1)

Here the g(in,out)(pi, k) denote massive splitting functions. For instance, for the case of a
fermion emitting a photon they are given by

g(out)(pi, k) =
1

(pi · k)

(
Pff (z)− m2

i

(pi · k)

)
(3.2.2)

g(in)(pi, k) =
1

x(pi · k)

(
Pff (x)− xm2

i

(pi · k)

)
, (3.2.3)

where x =
p0i−k0
p0i

and z =
p0i

p0i+k
0 are the fractions of the fermion energies kept after the emission

of the photon, and where Pff (y) is the well-known Altarelli-Parisi splitting function

Pff (y) =
1 + y2

1− y . (3.2.4)
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The dipole splitting functions of [94] have been generalised further in [52] to incorporate also
polarisation. Thus, in principle they could directly be used in the framework of the YFS
formulation replacing the original eikonal factors. In the framework of this thesis, however,
they are employed as universal correction factors, reweighting explicit photon emission such
that the correct collinear limit is recovered. Since they interpolate smoothly between both
limits they already include the soft limit. Therefore, in the correction weights, these soft
terms have to be subtracted because they are already accounted for in the original YFS
eikonals. In addition, since the dipole splitting kernels refer to an emitter and a spectator
forming the dipole, for each dipole two such terms have to be applied, such that the squared
matrix element with the dipole terms approximating the photon emission reads

∣∣∣M 1
2
1

∣∣∣2 ∼= −e2
∑
i 6=j

[
ZiZjθiθjgij(pi, pj, k)

∣∣M0
0

∣∣2] (3.2.5)

∼= −e2
∑
i<j

[
ZiZjθiθj

(
gij(pi, pj, k) + gji(pj, pi, k)

) ∣∣M0
0

∣∣2] . (3.2.6)

Here, charge conservation in the form
∑
Ziθi = 0 has been used. The second particle in each

massive splitting function gij denotes the spectator of the emission process and accounts for
the recoil, thus ensuring four-momentum conservation. It should also be noted that the sum
in the equations above runs over charged particles only.

In order to subtract the soft terms, it is useful to consider the soft and quasi-collinear limits
of the dipole splitting kernels gij(pi, pj, k):

gij(pi, pj, k)
k→0∼ 1

(pi · k)

(
2(pi · pj)

(pi · k) + (pj · k)
− m2

i

(pi · k)

)
(3.2.7)

gij(pi, pj, k)
p·k→0∼ g(out/in) . (3.2.8)

Because the soft limit is universal and spin-independent, it is a straightforward exercise to
define soft-subtracted dipole splitting kernels

ḡij(pi, pj, k) = gij(pi, pj, k)− g(soft)ij (pi, pj, k)

= gij(pi, pj, k)− 1

(pi · k)

(
2(pi · pj)

(pi · k) + (pj · k)
− m2

i

(pi · k)

)
. (3.2.9)

The soft-subtracted dipole splitting kernels ḡij now have the correct (finite) soft limit while
retaining the original quasi-collinear limit of gij (eq. (3.2.8)). Accordingly, the soft-subtracted
matrix element can be approximated as

β̃1
1
∼= − α

4π2

∑
i<j

ZiZjθiθj
(
ḡij(pi, pj, k) + ḡji(pj, pi, k)

)
β̃0

0 . (3.2.10)

The exact form of the gij(pi, pj, k) for different emitter-spectator configurations will be given
in Appendix A.3.
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3.2.2 Real emission corrections

In order to achieve an even higher precision, the implementation of exact higher-order full
matrix elements becomes mandatory. It should be clear, however, that large differences
with the approximated matrix elements above will occur only in non-singular regions of
comparably hard, wide-angle emissions. Since the module presented in this Chapter of this
thesis, PHOTONS++, is embedded in the SHERPA framework it is easy to implement such
infrared subtracted squared matrix elements, making use of tools and functions already
provided within the framework. In particular, some basic building blocks for the calculation
of helicity amplitudes already used in [25, 42] can be recycled to construct the necessary,
infrared-subtracted one-photon real emission matrix elements, which are then evaluated at
momentum configurations generated by the algorithm of Section 3.1. Exact first-order matrix
elements have so been implemented for a number of relevant matrix elements, cf. Table 3.1.
It is worthwhile to stress that second-order precision could be achieved by employing the
same means, if necessary.
In general, the infrared-subtracted squared matrix element can be written as

β̃1
1 =

1

2(2π)3
M

1
2
1M

1
2
1

∗
− S̃(k)M0

0M0
0
∗
, (3.2.11)

and it is only the amplitudes M that are process-specific and need to be listed for the
different processes. It should be noted that within the SHERPA framework the real emission
matrix elements are straightforward to implement. In contrast, the incorporation of loop
matrix elements is somewhat more involved: in those cases the integral has to be calculated
analytically and the divergences must be cancelled before implementation as a function of
the outer momenta.

3.2.3 Virtual emission corrections

The only virtual corrections occurring to level O(α) are

β̃1
0 = M1

0M
0
0
∗

+ M0
0M

1
0
∗

= M1
0M0

0
∗

+ M0
0M1

0
∗ − 2αBβ̃0

0 . (3.2.12)

For the above case of decays of the type V → FF they read

β̃1
0 = α

π

[
ln
m2
V

m2
F

− A
]
β̃0

0 m2
V � m2

F , (3.2.13)

with

A =

{
1 in on-shell scheme
7
4
in MS scheme (3.2.14)

which agrees with [96, 97]. Effects of potentially different left- and right-handed couplings
cL and cR for different vector bosons only enter in terms suppressed by m2

F

m2
V
and are currently

neglected in PHOTONS++.
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For the process W → `ν, cf. [98], the first order virtual correction reads

β̃1
0 = α

π

[
ln
mW

m`

+ 1
2

]
β̃0

0 m2
W � m2

` . (3.2.15)

process real O(αQED) virtual O(αQED)
V 0 → F+F− 3 3

V 0 → S+S− 3 3

S0 → F+F− 3 3

S0 → S+S− 3 3

W± → `±ν` 3 3

τ± → `±ν`ντ 3 7

S0 → S∓`±ν` 3 3

S0 → V ∓`±ν` 3 7

Table 3.1: List of available generic and spe-
cific infrared subtracted squared real-
emission (β̃1

1) and virtual-correction
(β̃1

0) matrix elements (V - vector, F -
spin-1

2
fermion, S - scalar).
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Chapter 4

The Z lineshape and radiative lepton decays

This section assesses the quality of the algorithm presented in Chapter 3 beyond what has
been presented in [86, 74]. First, the impact of higher order QED corrections on the Z line
shape at the LHC is investigated along with related observables. Then, in Section 4.2, the
prediction of the radiative decay width of heavy leptons, muons and taus, is compared to
experimental data.

4.1 The Z lineshape

The production of a massive weak gauge boson resonance, decaying into pairs of leptons, is
a well known process with little background at hadron colliders, such as the LHC. It can,
therefore, be used as a “standard candle” to calibrate detectors and luminosities. Further,
such processes, occurring in association with multiple jets, are among the most prominent
backgrounds in many new-physics searches with signals of the type multijets plus missing
transverse energy plus leptons. Hence, an in depth understanding of especially the elec-
troweak part of such events is paramount.
To this end, in the following the systematic uncertainties of various approaches to simulate
such higher order QED corrections to the process pp → e+e− + X using different ansatzes
are compared. Beyond the implementation of the YFS-resummation, detailed in the Section
3.1, the CSS parton shower algorithm, implementing a DGLAP-resummation (see Chapter
6) of higher order QED effects [99, 62, 64], is used. While the former rests on a resummation
of large logarithms in the region where the emitted photon turns infinitely soft, the latter
resums the large logarithms associated with collinear photon emission.
The implementation of the YFS-resummation of Section 3.1 for this process, calculating
the higher order corrections to the leading order process qq̄ → e+e− in the full Standard
Model, assumes the presence of an intermediated Z-boson. This assumption is necessitated
by the restriction to particle decays of the YFS-resummation implementation. Thus, an
effective narrow width approximation with a varying intermediate Z mass according to the
invariant mass of the leading order lepton pair is employed. This approximation is expected
to hold only if the region around the Z-peak is considered. Therefore, in all of the following
examples the bare electrons of the leading order process are required to have 65 GeV <
mee < 115 GeV. Further, due to its restriction to particle decays, this implementation of
the YFS-resummation neglects photon radiation off the initial state quarks. As described in
Section 3.2, the YFS resummation can be trivially corrected for the effects of hard photon
radiation using approximated real emission corrections, denoted YFS⊗CS in the following1,

1 The QED variants of the spin-averaged Catani-Seymour splitting functions are used to approximate the
real emission matrix elements.

45



YFS⊗NLO

YFS⊗CS

CSS

METS

no QED

10−1

1

10 1

10 2
Invaraint electron-electron mass

d
σ
/
d
m

e
e
[1
/
G
eV

]

70 80 90 100 110

0.6

0.8

1

1.2

1.4

mee [GeV]

R
a
ti
o

YFS⊗NLO

YFS⊗CS

CSS

METS

no QED

10−1

1

10 1

10 2
Invaraint electron-electron mass

d
σ
/
d
m

e
e
[1
/
G
eV

]

70 80 90 100 110

0.6

0.8

1

1.2

1.4

mee [GeV]

R
a
ti
o

Figure 4.1: The reconstructed Z mass using the bare electrons (left) and the dressed
electrons (right), recombined with all QED radiation in a ∆R = 0.2 cone, for
the various different approaches. The YFS⊗NLO prediction is taken as the
reference.

or exact next-to-leading order matrix elements including virtual one-loop matrix elements,
denoted YFS⊗NLO. The infrared cut-off, defined as minimum photon energy in the e+e−

rest frame, is set to Egencut = 1 MeV. The collinear divergence is regulated by the electron
mass.
The implementation of QED corrections within the CSS parton shower framework is detailed
in [64]. To summarise, the QED versions of the spin-averaged Catani-Seymour dipole terms,
reproducing the DGLAP collinear resummation behaviour, are used to define a Sudakov form
factor for a f → fγ (f = q, `) branching. However, unlike in QCD where the limit Nc →∞ is
taken to single out the leading positive definite contributions, a similar limit cannot be taken
in QED. Thus, to arrive at a positive definite parton shower formulation an overestimate in
the form of only considering oppositely charged dipoles is chosen instead. Nonetheless, this
is only relevant if the number of charged particles is larger than two. The algorithm is run in
three different settings: the pure QED parton shower approximation of the higher order cor-
rections to the process qq̄ → e+e− without any assumption on intermediate particles, labeled
CSS in the following; the QED parton shower approximation of the higher order corrections
to the factorised decay Z → e+e− employing the same varying-mass narrow-width approx-
imation as in the YFS case, labeled CSS-nw; and the matrix element merged results using
the algorithm described in [64] and up to two additional photons in the matrix elements2,
labeled METS. The infrared cut-off, defined as minimum relative transverse momentum, is
set to pgencut⊥ = 1 MeV.

4.1.1 Radiation pattern

Figure 4.1 now presents the invariant mass of the bare electrons (left) and the recon-
structed electrons (right), recombining the bare leptons with all QED radiation in a ∆R =

2 The LO processes qq̄ → e+e−, qq̄ → e+e−γ and qq̄ → e+e−γγ, without any assumption about inter-
mediate particles, are merged with the parton shower result for the same process. Processes with initial
state photons, occurring when an inclusive final state is considered, are expected to give only a very small
contribution and are thus neglected. The merging scale QQED

cut has been set to 1 GeV.
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Figure 4.2: The invariant electron-electron-photon mass using the bare electrons (left)
and the dressed electrons (right), recombined with all QED radiation in a
∆R = 0.2 cone, for the various different approaches. The hardest photon
not part of the reconstructed electron and a minimum energy of 1 GeV is
selected. The YFS⊗NLO prediction is taken as the reference.

√
(∆φ)2 + (∆η)2 = 0.2 cone, for the various different approaches. While the invariant mass

of the bare leptons is sensitive to all types of energy loss, i.e. all photon radiation, the in-
variant mass of the recombined leptons, effectively integrating over the collinear part of the
photon spectrum is sensitive only to wide-angle emission. Thus, examining both quantities
provides details on the quality of the simulation in both the collinear regime, where the bulk
of the radiation occurs, and the wide-angle regime.
In the predictions for the reconstructed Z mass using the bare electron definition the
YFS⊗NLO (red solid line) and YFS⊗CS (red dotted line) predictions differ only slightly,
indicating good agreement in the description of the largest part of the radiation spectrum.
For the reconstructed Z mass using the dressed electron definition, however, both predictions
differ by up to 10% in the low invariant mass region, highlighting the missing (destructive)
interference terms in YFS⊗CS simulation. Equivalent results have been found in [86, 74].
Similarly, both methods using the DGLAP collinear resummation, the CSS (green solid line)
and METS (blue solid line), show good agreement for the bare Z mass while differing for the
dressed Z mass up to 10% in the low mass region. Again, this region reveals the different
level of accuracy in the description of hard wide angle radiation, ascribed again to the missing
destructive interference terms in the collinear approximation.
Finally, both resummation methods deviate from one another by about 10% in the peak
region of the bare Z mass. This originates in the fact that hard collinear photon radiation
is only accounted for up to O(α) in both YFS⊗NLO and YFS⊗CS while it is resummed
to all orders in both CSS and METS. The Z mass reconstructed from the dressed lepton
momenta, however, shows very good agreement in the peak region. This indicates that,
although differing in the description of the radiation in the collinear region, the inclusive
picture is described similarly in both approaches. Most notably, both methods using exact
O(α) real emission matrix elements, YFS⊗NLO and METS, show very good agreement also
in the low mass region, which is most sensitive to a correct description of hard wide angle
radiation. The effects of additional photon radiation from the initial state quarks on these
two observables is negligible.
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Figure 4.3: The invariant electron-photon mass, defined as the invariant mass of the
hardest photon and its nearest electron/positron, using the bare electron
(left) and the dressed electron (right), recombined with all QED radiation in
a ∆R = 0.2 cone, for the various different approaches. The photon must not
be part of the reconstructed electron and must have a minimum energy of 1
GeV is selected. The YFS⊗NLO prediction is taken as the reference.

To exemplify the difference of the description of the real emission corrections further Figure
4.2 displays the invariant mass of both electrons and the hardest photon, using again the
bare leptons on the left plot and the dressed leptons on the right plot. The photon is required
to have an energy of at least 1 GeV and must not be part of the dressed electron. The first
thing to note is that the predicted number of such hard photons, equaling the integral of the
distributions using the bare leptons, differs by about 25% between the YFS resummation
implementations and the DGLAP resummation implementations. Then, after recombining
collinear photons with the electron, all distributions agree nicely in the peak region, and,
again, both methods using exact O(α) real emission matrix elements also agree very well in
the low mass region. As in Figure 4.1, the pure CSS parton shower result overestimates the
amount of hard wide angle radiation. Similarly, this is also overestimated by the YFS⊗CS
simulation.
Another apparent feature is the disagreement of the simulations in the high mass region.
Here, the effect of hard photon radiation off the initial state quarks becomes apparent.
Not stemming from the decaying intermediate boson their invariant electron-electron-photon
mass does not peak at the nominal Z mass. These effects are accounted for in both the CSS
and METS DGLAP-type simulations, but not in the YFS-type simulations. Attributing it
to initial state radiation is confirmed by the CSS-nw prediction.
Likewise, Figure 4.3 displays the invariant mass of the hardest photon and the nearest
electron (in ∆R). Again, the photon is required to have an energy of at least 1 GeV and
must not be part of the electron definition. The electron is defined as the bare electron in
the left hand side plot and as the dressed electron, collecting all QED radiation within a
∆R = 0.2 cone, in the right hand side plot. This variable is most sensitive to the angular
correlations of the photon emission. The same pattern as before is found in the predictions.
The YFS-type resummations predict approximately 25% more radiation with Eγ > 1 GeV
which is predominantly close to the electron, leading to an excess of low invariant mass
electron-photon pairs. After recombining this collinear part of the photon spectrum with the
electron, the agreement is better. Partly, this deviation can be explained by using the spin-
averaged Catani-Seymour splitting functions for the approximated higher order corrections,
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as can be seen from the relatively small difference between the YFS⊗CS and CSS predictions.
The rest can, again, be attributed to additional photon radiation off the initial state quarks.
To make this explicit, a further prediction using the CSS parton shower approximation but
taking only radiation off the final state leptons into account, labeled CSS-nw (green dashed
line), is added to the plots. It deviates only slightly from its YFS-type counterpart YFS⊗CS.
Similarly, lacking these quark irradiated photons CSS-nw does not exhibit the high invariant
mass tail of the CSS and METS predictions, but follows YFS-type predictions also resting
on the varying-mass narrow-width approximation.

4.1.2 Numerical stability

After exploring the impact of different ansatzes to resummed higher order corrections, this
section puts the focus on the performance of the algorithms under variation of the unphysical
infrared cutoff parameters Egencut and pgencut⊥ , respectively.

The YFS resummation implementations

To explore the dependence of the algorithm on the unphysical infrared cut-off parameter
Egencut it is varied over a large range and the impact upon the afore studied observables
and pseudo-observables is examined. Therefor, Figures 4.4-4.6 show the variation of the
reconstructed Z mass, the invariant electron-electron-photon mass and the invariant mass
of the hardest photon and its nearest electron, using both the bare and dressed electron
definitions defined in the previous section. The infrared cutoff is varied from 1 keV to
10 GeV therein and, avoiding redundance, the YFS⊗NLO implementation is used. The
predictions for Egencut = 1 keV are used as the reference in the ratio plots. The results for
the infrared cutoff dependence of the YFS⊗CS are similar.
While the predictions for Egencut = 1 keV and Egencut = 1 MeV coincide for all six observ-
ables it is plainly visible that the other two choices, foremost Egencut = 10 GeV, do not fill
important parts of the phase space. This can be seen in the total number of photons with
Eγ > 1 GeV, as well as in the dips in the distribution for the reconstructed Z mass and the
empty regions in meγ. However, it is reassuring to note that outside these holes in the real
radiation phase space, all four predictions coincide.

The DGLAP resummation implementations

Similarly to the last section, this section explores the dependence on the infrared cutoff
pgencut⊥ of the CSS implementation. Again, the same six observables and pseudo-observables
are studied. Figures 4.7-4.9 show the predictions from the CSS implementation for the
reconstructed Z mass, the invariant electron-electron-photon mass and the invariant mass of
the hardest photon and the nearest electron, again, using both the bare and dressed electron
definitions. The infrared cutoff is varied from 1 keV to 10 GeV. The predictions for pgencut⊥ = 1
keV are used as the reference in the ratio plots. The cutoff dependences of both the CSS-NW
and METS predictions are similar.
In case of the CSS only the observables using dressed leptons stabilise when lowering the cutoff
below 1 MeV. There, agreement on the level of 5% is found. The observables depending on
the bare lepton definitions, however, still show a significant cutoff dependence. The reason
for this behaviour lies in the definition of the cutoff. Although having the advantage of
Lorentz invariance, a cutoff in the relative transverse momentum cuts away a significant
part of the collinear radiation spectrum. In case of radiating off massive electrons in the
considered process this peaks at p⊥ ∼ me [100, 86]. Thus, for a cutoff of pgencut⊥ = 1 MeV
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Figure 4.4: The dependence on the infrared cutoff Egencut of the reconstructed Z mass
using the bare electrons (left) and the dressed electrons (right).
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Figure 4.5: The dependence on the infrared cutoff Egencut of the invariant electron-
electron-photon mass using the bare electrons (left) and the dressed electrons
(right).
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Figure 4.6: The dependence on the infrared cutoff Egencut of the the invariant electron-
photon mass using the bare electron (left) and the dressed electron (right).
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Figure 4.7: The dependence on the infrared cutoff pgencut⊥ of the reconstructed Z mass
using the bare electrons (left) and the dressed electrons (right).
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Figure 4.8: The dependence on the infrared cutoff pgencut⊥ of the invariant electron-
electron-photon mass using the bare electrons (left) and the dressed electrons
(right).
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Figure 4.9: The dependence on the infrared cutoff pgencut⊥ of the the invariant electron-
photon mass using the bare electron (left) and the dressed electron (right).
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or higher missing hard collinear radiation is expected. Nonetheless, when this part of the
spectrum is integrated out by “dressing” the electrons, the resulting spectra should agree.
Similar effects occur for the radiation off the massless initial state quarks where no such
deadcone effect, leading to a stabilisation in hard photon radiation as the cutoff is lowered,
is present, thus flooding the bare observables with hard photons collinear to the incoming
beams. Obviously, these effects are not present for the dressed observables. Along these lines,
for too low cutoffs numerical inaccuracies might occur for the dynamic calculation of the
quarks’ Sudakov form factors. Of course, incorporating the quark masses in the calculation
would cure this deficiency. This, however, would severely complicate the calculation of higher
order QCD corrections not considered here.
Further, as in the case of the YFS resummation implementation, setting this cutoff too high
leads to significant holes in the real radiation phase space influencing also regions beyond
the ∆R = 0.2 cone around the leptons. Differing amounts of radiation off the initial state
quarks also play a role here.

4.2 Radiative lepton decays

The branching fraction of radiative leptonic decays in µ and τ decays (with at least one pho-
ton with Eγ > 10MeV) has been checked against PDG values [101]. Within the calculation,
exact matrix element corrections for the real emission amplitude at O(α) have been used,
while the virtual contributions of O(α) have been approximated in the limit k → 0 within
the Yennie-Frautschi-Suura resummation only. Thus, the ratio of the radiative decay width
Γrad to the inclusive decay width Γincl is expected to be slightly overestimated as compared
to full YFS⊗NLO calculation, truncated at O(α) for readabilities sake:

Γrad

Γincl
=

Γ1
1(Eγ > 10GeV)

Γ0
0 + Γ1

0 + Γ1
1

<
Γ1

1(Eγ > 10GeV)

Γ0
0 + Γ1

0,LL + Γ1
1

. (4.2.1)

Herein the notations of the previous chapters have been adopted, i.e. ΓnV +nR
nR

denotes the
decay rate including exactly nR real and nV virtual photons, such that the superscript signals
the perturbative order in α at which it has been calculated relative to the inclusive decay.
The “<”-relation holds as long as the non-logarithmic corrections Γ1

0 − Γ1
0,LL are positive, a

result found to hold for this process. Higher order corrections, effected through the YFS
resummation, are added as the same terms to both sides of eq. (4.2.1). Hence, although they
change the magnitude of the above ratio, they do not alter the inequality.
Tab. 4.1 then summarises the results and excellent agreement was found.

4.3 Summary and conclusions

In this part of this thesis the quality of the implementation of the YFS resummation and
its supplementation by fixed order matrix elements was examined for processes that can be
computed entirely on the basis of first principles and the gauge theories of the Standard
Model. To this end the processes of Drell-Yan production at hadron colliders and the radia-
tive leptonic decay modes of muons and taus have been chosen. For the case of Drell-Yan
production it has been compared to the predictions of a pure and a matrix element corrected
parton shower event sample, using the ME+PS method for QED evolution for the latter.
In the case of Drell-Yan production the focus rested upon observables related to the Z
lineshape and additional hard photon radiation, examining all observables both for dressed
and bare electron definitions to also assess the description of collinear hard photon radiation.
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Γ(µ → e νe νµ γ)

Γ(µ → e νe νµ, incl.)

Γ(τ → e νe ντ γ)

Γ(τ → e νe ντ , incl.)

Γ(τ → µ νµ ντ γ)

Γ(τ → µ νµ ντ , incl.)

PDG 0.014(4) 0.09(1) 0.021(3)
PHOTONS++ 0.0147(1) 0.0999(3) 0.0233(2)

Table 4.1: A comparison of the branching ratios of the radiative leptonic µ and τ decay
mode (Eγ > 10MeV) in relation to their inclusive leptonic mode calculated
by PHOTONS++ and the PDG world average. The number in brackets reflects
the absolute error on the last digit.

For all observables considered here good agreement was found using the dressed electron
definition. The minor differences found could be fully attributed to the presence of radiation
off the initial state quarks present only in the parton shower description. Larger deviations
were found for observables using the bare electron definition. Thus being highly sensitive to
hard collinear radiation, they emphasise the difference of the descriptions of such emissions.
The findings are consistent with the fact that these hard collinear photons are described by
a fixed-order next-to-leading oder matrix element correction only in the YFS resummation
approach, they are described by the all-orders resummation of the parton shower in the
DGLAP resummation approach. Therefore, considering also the results presented in [86, 74],
the implementation in PHOTONS++ exhibits the desired accuracy.
Finally, the predicted ratios of the radiative leptonic decay widths to the total inclusive
leptonic decay widths were calculated for all such decay modes of taus and muons. This
ration was shown to be very well described by the implementation in PHOTONS++.
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Chapter 5

Electroweak corrections to semileptonic B
decays

In the Standard Model, the Cabibbo-Kobayashi-Maskawa (CKM) matrix [102, 103] governs
the charged current weak interactions between the up- and down-type quarks of the three
fermion generations. The precision determination of its matrix elements and its CP-violating
complex phase in the B meson sector has been the focus of intense research over the past
decade. The combination of various measurements to test the unitarity of the CKM matrix
is considered a strong instrument in the search for physics beyond the Standard Model
[104, 105].
In this chapter of this thesis, a calculation of the electroweak next-to-leading order corrections
in exclusive semileptonic B meson decays into (pseudo)scalar mesons, B → D ` ν`, B →
D∗0 ` ν` and B → π ` ν`, ` denoting either an electron or a muon, is presented. Next-to-
leading order corrections to such decays are an important aspect in the extraction of the
CKM matrix elements |Vcb| and |Vub| at B-factory experiments. Virtual electroweak bosons
running in the loop as well as real photon emissions off all charged particles present in the
decay alter the resulting decay dynamics and enhance the weak decay rate. To correct for
the changed decay dynamics, experimentalists use approximative all-purpose next-to-leading
order algorithms. These exploit universal factorisation theorems in the soft and/or collinear
photon energy limit [106, 75, 93]. In addition, the total hadronic decay rate of semileptonic
decays are corrected by the known leading logarithm of the virtual corrections of the partonic
decay [107, 108].
Experience from exclusive semileptonic K meson decays illustrate the importance of having
a good understanding of such radiative effects: until 2004 the global average of the extracted
value of |Vus| fromK+

l3 andK0
l3 decays implied the violation of CKM unitarity by two standard

deviations [109]. Further measurements proved dissonant with these findings [110, 111, 112,
113], indicating that the achieved experimental precision needed an improved understanding
of electroweak corrections. Since for many decays next-to-leading order calculations do
not exist, experiments often use the approximative all-purpose algorithm PHOTOS [87, 76] to
study the reconstruction efficiency and acceptance. The accuracy of this approach was tested
by the KTeV collaboration, using the measured photon spectra from radiativeK0

l3 decays: the
angular distribution of the simulated photons did not agree well with the predicted spectrum
[114]. This lead to the development of the next-to-leading order Monte Carlo generator KLOR
(see [114]), whose next-to-leading order calculation is based on a phenomenological model.
Its predicted angular photon distribution agreed satisfactorily with the measured spectra.
Although this approach is very precise, it is also the most complicated one to adopt for
an experiment: electroweak next-to-leading order calculations only exist for a few decay
modes, sometimes only valid in a limited region of phase-space. Most of these calculations
are evaluated numerically and rely on customised Monte Carlo generators.
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Over the last 10 years, an increasing amount of data and a better understanding of detector
effects lead to a very accurate picture of physics at the B-factory experiments. This in-
creased precision then lead to the demand of knowledge of next-to-leading order electroweak
effects beyond the precision of approximative all-purpose algorithms. This chapter of this
thesis aims at improving the status quo by providing a prediction for both total decay rates
and differential distributions of a few representative kinematic variables. For the latter
the predictions of a dedicated Monte-Carlo generator, BLOR [115], is compared to two all-
purpose generators, SHERPA/PHOTONS++ [8, 74] and PHOTOS [87, 76]. While the latter is
a -parton-shower Monte Carlo program intended to supplement generic leading logarithmic
corrections to pure leading order decay generators, the former is a full-fledged hadron-level
Monte Carlo generator for collider physics whose internal leading order (hadronic) decays
are supplemented by a universal soft-photon-resummation systematically improved, where
possible, by known exact next-to-leading order matrix elements. While the improved de-
scription of inclusive decay rates directly gives small corrections to the extracted values of
|Vcb| and |Vub| from semileptonic decays, the improved description of the decay kinematics
influence extrapolation to corners of the phase space and, therefore, leads to both direct and
indirect corrections.
The considerations of this chapter proceed as follows: Section 5.1 briefly reviews exclusive
B → X ` ν` decays at tree-level. Thereafter, Section 5.2 develops the next-to-leading order
formalism, reviewing both the partonic short-distance results of [107, 108], the hadronic long-
distance QED-improved effective decay and their matching to one-another, including also a
detailed discussion on non-universal structure-dependent terms in Section 5.2.4. Contribu-
tions generically derivable through first principles are clearly distinguished from (at least
partially unknown) model and decay channel dependent ones. The resulting expressions
are then embedded into the resummation in the soft limit of Yennie, Frautschi and Suura
[75] in Section 5.2.5. Section 5.3 then shortly reviews the basic principles of both BLOR
and SHERPA/PHOTONS++ where the calculations of Section 5.1-5.2 have been implemented,
and of PHOTOS. The total inclusive decay rates obtained are shown in Section 5.4.1 while
differential distributions are shown in Section 5.4.2, also detailing the improvement over the
current estimates. The influence of the structure-dependent terms, where known, on the
results is presented in Section 5.4.3. Section 5.5 finally summarises the results.
Note that the charge-conjugated modes are implied throughout the following chapter.

5.1 Tree-level decay

The phenomenological interaction Lagrangian of the weakB → X ` ν decay to a (pseudo)scalar
final state in Fermi’s theory, with constant form factors of the hadronic current, f±, is given
by

LW =
GF√

2
Vxb
[(
f+ + f−

)
φX ∂

µφB +
(
f+ − f−

)
φB ∂

µφX
]
ψ̄νPRγµψ` + h.c. , (5.1.1)

where ψ` and ψν are the Dirac fields of the lepton and the neutrino, φB and φX are the scalar
fields of the initial and final state mesons, GF the Fermi coupling, Vxb the CKM matrix
element governing the strength of the b→ x transition, and PR = 1 + γ5 is derived from the
right-handed projection operator by absorbing the factor 1

2
into the coupling definition. The

Lagrangian of eq. (5.1.1) leads to the transition matrix element1

M0
0 = −i GF√

2
Vxb Hµ(pB, pX ; t) ūν PRγ

µ v` , (5.1.2)

1Throughout this part of this thesis Mn
m denote a matrix element at O(GF α

n) with m photons in the
final state. The total decay rate at O(GF α

n) is denoted as Γnm.
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νℓ
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x̄

b̄
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Figure 5.1: The tree-level weak B → X̄ `+ ν` decay is
shown both in the phenomenological picture
(left) and, at parton level, in Fermi’s theory
as low energy approximation of the Standard
Model (right). The shaded circle represents
the effective vertex parametrised by form fac-
tors f±, x ∈ {u, c}.

with the hadronic current, generalised to variable form factors,

Hµ(pB, pX ; t) = 〈X|ψ̄xPRγµψb|B〉 =
(
pB + pX

)
µ
f+(t) +

(
pB − pX

)
µ
f−(t) . (5.1.3)

The four-momenta labels in eq. (5.1.2) are introduced in Fig. 5.1. The generalised form
factors f± = f±(t) now describe the phase-space dependent influence of the strong interaction
on the weak decay dynamics and are functions of the squared momentum transfer from the
hadronic to the leptonic system only, given at tree-level by

t =
(
pB − pX

)2
=

(
p` + pν

)2
. (5.1.4)

The tree-level differential decay rate in the B-meson rest frame is then given by

dΓ0
0 =

1

64 π3mB

∣∣M0
0

∣∣2 dEX dE` , (5.1.5)

with EX = p0
X and E` = p0

` . The explicit expressions of the f±(t) as function of the momen-
tum transfer squared for the processes considered in this thesis, B → D ` ν, B → D∗0 ` ν and
B → π ` ν, can be found in Appendix B.1.

5.2 Next-to-leading order corrections

The arising electroweak next-to-leading order corrections can be divided into two energy
regimes: short-distance corrections at parton level, and long-distance corrections within the
phenomenological model. First, Section 5.2.1 will discuss how both descriptions can be
matched and renormalised. Section 5.2.2 then reviews the calculation of the virtual short-
distance corrections of [107, 108]. The long-distance corrections, following from an extension
of the phenomenological model, are then discussed in Section 5.2.3.
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5.2.1 Matching of different energy regimes

The aim of this section is to develop a formalism to calculate the corrections at O(αGF).
The standard approach involves calculating the one-loop graphs for the B → X ` ν` decay in
the effective theory with counterterms and compare it to the renormalised Standard Model
result. Fixing the counterterms results in the desired matching of both results. The effective
theory itself is non-renormalisable, but the Standard Model can be renormalised to measured
quantities, e.g. the Fermi coupling constant of the muon decay, the electron mass, and the
fine-structure constant, in order to produce finite predictions. Such a matching procedure
was carried out in great detail by [116] for semileptonic Kaon decays where the leading order
phenomenological decay is described by a chiral Lagrangian.
In the present case, however, an alternative route is pursued. Consider a general logarithmi-
cally divergent N -point tensor integral of rank p with a single massless photon propagator.
It can be cast in the form

T µ1...µp(p1, . . . , pN−1) ∝
∫

d4k
kµ1 · · · kµp

k2 d1 . . . dN−1

, (5.2.1)

with denominators di = (pi − k)2 −m2
i . The integral can then be split according to

T µ1...µp(p1, . . . , pN−1) ∝
∫

d4k

[
kµ1 · · · kµp

k2 d1 · · · dN−1

− kµ1 · · · kµp
[k2 − Λ2] d1 · · · dN−1

]
+

∫
d4k

kµ1 · · · kµp
[k2 − Λ2] d1 · · · dN−1

. (5.2.2)

This amounts to regulating the ultraviolet behaviour of the first term using an unphysical
photon-like vector field of mass Λ and opposite norm, as proposed by Pauli and Villars in
[117]. Its infrared behaviour is left unchanged, thus, relying on the Kinoshita-Lee-Nauenberg
theorem [91, 92], these divergences are left to be canceled by the real corrections. The second
term of eq. (5.2.2) is the equivalent of eq. (5.2.1), this time only with a massive photon.
Hence, it is infrared finite and possesses the identical ultraviolet behaviour.
Transferring this observation to the present case of semileptonic B meson decays where,
both in the effective theory and in the Standard Model, there is at most one massless photon
propagator in any one-loop diagram, the virtual emission matrix element can be decomposed
as

M1
0 = M1

0,ld(Λ) +M1
0,sd(Λ) . (5.2.3)

The term M1
0,ld is now comprised of the Pauli-Villars regulated exchange of a massless

photon, including its infrared divergence. The specific UV regulator effectively restricts the
virtual photon’s momentum to be smaller than Λ. Hence, it describes long-distance (ld)
interactions only.
The term M1

0,sd, on the other hand, carries the full ultraviolet behaviour of M1
0. It thus

can be used for renormalising all parameters. Consequently, because eq. (5.2.2) is exact,
all parameters inM1

0,ld are then renormalised automatically. Through the photon mass, its
virtual propagator’s momentum is effectively restricted to be larger than Λ. Hence, this term
describes the short-distance (sd) interactions only.
The above is exact as long as the same Lagrangian input is used to calculate both the
short-distance and the long-distance parts. In practice, however, due to the confining, non-
perturbative nature of QCD this is not feasible for the processes at hand. For scales larger
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than the hadron mass, where their partonic content can be resolved, electroweak correc-
tions have to be calculated on the basis of (constituent) quarks. For scales smaller than the
hadron mass, its parton content cannot be resolved, the bound-state hadrons themselves are
the relevant degrees of freedom. Thence, supposing Λ is set such, that it effectively separates
those two regimes, the long-distance QED correctionsM1

0,ld can be calculated using the phe-
nomenological model and for the short-distance corrections M1

0,sd the full Standard Model
has to be invoked. This is justified, in principle, by the assumption, that the phenomeno-
logical model describes the Standard Model and its effective degrees of freedom at these low
scales. This mere fact, however, directly leads to inconsistencies at the matching scale Λ,
where both models should give the same answer. Thus, this matching is only approximate
and the associated systematic uncertainties to this method can be estimated by varying the
matching parameter, cf. Section 5.4.1.
The above reasoning leads to an optimal value for Λ: the smallest hadronic mass in the
decay. Then, only low-energy virtual photons, not able to resolve either of both mesons,
are described by the effective theory, while high-energy virtual photons are described by the
short-distance picture of the full Standard Model, resolving the partonic content of both the
charged and the neutral meson involved. Further, as long as Λ > Emax

γ , the kinematic limit of
the photon energy in single photon emission2, the real emission of photons off these charged
mesons are also correctly described by the phenomenological model (except for structure
dependent terms discussed in Section 5.2.4).
Nonetheless, it has to be noted that there are conceptual problems if both hadronic scales
differ significantly. Then, there is a large intermediate regime, where virtual photons are
able to resolve one meson, but not the other. By the above choice of Λ it is expected to give
the best approximate description in this region. Further, if the third scale Emax

γ exceeds Λ,
real radiation, in the present ansatz always described using the phenomenological model, is
able to resolve the final state meson, be it charged or neutral, as well. However, even if a
considerable fraction is radiated at scales above Λ, this should have only negligible effects
on the total decay rate as the bulk of the radiation is in the region k → 0 and, therefore,
adequately described.

5.2.2 Short-distance next-to-leading order corrections

The well-known Standard Model Lagrangian is used in this study to describe the partonic
b→ x ` ν decay in the short-distance regime. A representative collection of relevant next-to-
leading order corrections to the tree-level decay, involving the exchange of virtual photons,
W and Z bosons as well as Higgs scalars, is depicted in Fig. 5.2. Besides vertex corrections
to the b-x-W and `-ν-W vertices, wave function and propagator corrections, box diagrams
involving the additional exchange of a neutral γ, Z or h bosons between the hadronic and
leptonic systems are present. These next-to-leading order corrections read, calculated in
[107] within the current algebra framework and concentrating on the renormalisation of the
bare Fermi coupling ĜF for this process, to leading logarithmic accuracy

M̂1
0,sd(Λ) =

α ĜF

4π

[
3 ln

mW

Λ
+ 6Q̄ ln

mW

Λ
− 3Q̄ ln

m2
W

m2
Z

+ . . .

]
M̃0

0 , (5.2.4)

with M̂0
0 = ĜFM̃0

0, i.e. the leading order matrix element stripped of the Fermi coupling
constant, and Q̄ being the average charge of the quark line. The ellipsis stands for non-
logarithmic terms. For the photonic contributions an infrared regulator has been introduced

2 The maximum photon energy for single photon radiation in the rest frame of a decaying particle is half
its mass, neglecting all other decay products’ masses. Allowing for massive decay products further reduces
this kinematic limit.
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Figure 5.2: Representative Feynman diagrams of the Standard Model partonic decay
b̄→ x̄ `+ν` are shown. The white circles indicate hadronic contributions
that are neglected in the short-distance expansion.

in the form of a photon mass Λ � mW . Thus, the resulting matrix element has exactly
the form required for the matching outlined in Section 5.2.1. The arising loop corrections
are ultraviolet (UV) divergent and have been regularised in [107] by a UV cutoff set to mW .
Renormalisation of the parameters, again focusing on ĜF, is then achieved by comparison
to the muon decay computed in the same computational framework, yielding the relation

GF = ĜF

[
1 +

3α

8π
ln
m2
W

m2
Z

+ . . .

]
, (5.2.5)

where GF is now the renormalised Fermi decay constant as measured in the muon decay.
This leads to the partonic short-distance virtual matrix element in the renormalised theory

M1
0,sd(Λ) =

αGF

4π

[
3 ln

mW

Λ
+ 6Q̄ ln

mW

Λ
− 3

2

(
1 + 2Q̄

)
ln
m2
W

m2
Z

+ . . .

]
M̃0

0

=
3α

4π

(
1 + 2Q̄

)
ln
mZ

Λ
· M0

0 , (5.2.6)

where GF has been reabsorbed into the leading order matrix element M0
0. In the case of

semileptonic B decays Q̄ = 1
2
|Qb̄ +Qx̄| = 1

6
, x ∈ {u, c}, this gives

M1
0,sd(Λ) =

α

π
ln
mZ

Λ
· M0

0 + . . . . (5.2.7)

The logarithm in eq. (5.2.7) then represents the leading logarithmic corrections to O(αGF)
due to virtual particle exchange with (virtual) photon energies above Λ.
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Figure 5.3: The Feynman diagrams for the next-to-leading order corrections
to B+ → X̄0 `+ ν decays are shown.

5.2.3 Long-distance next-to-leading order corrections

The QED long-distance corrections to the phenomenological hadron decay can be calculated
in an effective model that arises by requiring the phenomenological Lagrangian of the leading
order decay to be invariant under local U(1)em gauge transformations. Assigning the usual
charges the following interaction terms in the Lagrangian arise in addition to eq. (5.1.1)

Lint,QED = − eQ`̄ ψ`γ
µψ`Aµ − ieQφAµ(φ+∂µφ− − φ−∂µφ+) + e2Q2

φAµA
µφ+φ−

+ ie
√

2GFVxyf±(QB ±QX)φBφXAµ ψ̄νPRγ
µψ` + h.c. , (5.2.8)

wherein the summation over φ ∈ {φB, φX} is implied. In addition to the point-like lepton-
photon and meson-photon interactions, a vertex emission term arises. This term is connected
to the bound-state nature of the meson. It is infrared finite and needed for gauge invariance.
Further, in eq. (5.2.8) it is assumed that the meson-photon interaction is sufficiently described
by scalar QED. Additional terms arise when moving away from this assumption, including
intermediate lines of excited hadrons necessitatingX∗ → Xγ vertices as well as contributions
due to off-shell currents. These terms are discussed on general grounds in Section 5.2.4 and
will be largely neglected in this study. This, in most cases, roots in their unavailability or,
where known, in their smallness.
Figs. 5.3 and 5.4 depict the relevant real and virtual diagrams for B+ → X̄0 `+ ν and
B0 → X− `+ ν decays at O(αGF). The real corrections diagrams a, b and c correspond
to the emission of a real photon from either the charged legs of the decay, or the charged
vertex itself. The virtual corrections group into three categories: diagrams d and e concern
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Figure 5.4: The Feynman diagrams for the next-to-leading order corrections
to B0 → X− `+ ν decays are shown.

the wave-function renormalisation of the charged legs while diagram f is the dominant inter-
particle photon exchange. Diagrams g and h are again due to emissions off the charged
effective vertex and are, thus, infrared finite. The corresponding subtleties involving the
vertex emissions are detailed in Appendix B.2.
In the virtual amplitude M1

0,ld the arising ultraviolet divergences are regularised using the
Pauli-Villars prescription [117] by introducing an unphysical heavy photon of mass Λ and
opposite norm. Consequently, the virtual corrections have exactly the form required by the
matching procedure outlined in Section 5.2.1 and all real emission processes are described
in the long-distance picture.
Squaring the phenomenological real and virtual matrix elements results in the real and virtual
next-to-leading order differential rates. In the B meson rest frame they read

dΓ1
1 =

1

(2π)12

d3pX
EX

d3p`
E`

d3pν
Eν

d3k

Ek
δ(4)
(
pB − pX − pl − pν − k

) ∣∣M 1
2
1,ld

∣∣2 ,
dΓ0

0 + dΓ1
0 =

1

64π3mB

(∣∣M0
0

∣∣2 + 2Re
[
M0

0M1∗
0,ld(Λ)

]
+ 2

∣∣M0
0

∣∣2 α
π

ln
mZ

Λ

)
dEX dE` .

(5.2.9)

Integrating eqs. (5.2.9) results in the next-to-leading order total decay rate. Comparing
with the total tree-level decay rate, the integral over phase-space of eq. (5.1.5), yields the
long-distance enhancement factor δld due to next-to-leading order effects. It is

Γ = (1 + δsd + δld) Γ0
0 = Γ0

0 + Γ1
0 + Γ1

1 +O(α2GF) . (5.2.10)
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with δsd = 2α
π

ln mZ
Λ

from eq. (5.2.7). The exact form of the next-to-leading order matrix
elements can be found in Appendix B.2.

5.2.4 Structure dependent terms

This section discusses the arising additional electromagnetic next-to-leading order correc-
tions that cannot be grasped by simply replacing ∂µ → Dµ to arrive at a U(1)em gauge
invariant phenomenological Lagrangian, as was described in the previous section. These
include both deviations arising from the point-like meson-photon interaction assumed above
and additional terms arising in the interaction of an off-shell hadronic current. Nonetheless,
it is clear that in the relevant phase space region for the total inclusive decay rate, namely
the region as k → 0 near the infrared divergence, both the real and virtual next to leading
order matrix elements are completely determined by the leading order decay, and the above
procedure accurately reproduces the full theory in this region [106, 75, 118]. Hence, the real
emission squared amplitude in this limit reads

∣∣M 1
2
1

∣∣2 k→0
= −e2

(
pM
k · pM

− p`
k · p`

)2 ∣∣M0
0

∣∣2 with pM ∈ {pB, pX} , (5.2.11)

depending on whether B orX is charged. Physically this roots in the fact that the wavelength
of an infinitely soft photon is much larger than the size of any strongly bound hadron. It,
thus, cannot resolve its substructure and effectively interacts with its summed, then point-like
charge. Further, such soft photons cannot push the hadronic current significantly off-shell,
such that off-shell current interactions cannot become sizeable.
Introducing non-point-like meson-photon interactions does not only lead to corrections due
to the hadron’s size and its internal charge distribution, it also leads to additional vertices
of the type X → X∗γ, where X∗ is a higher resonance of the X meson. This necessarily
also introduces additional terms in the interaction of the hadronic and the leptonic current,
especially if the resonance differs in its spin. B∗ resonances in the initial state occur in the
unphysical region. Hence, they are only relevant if their width is comparable to, or larger
than, the mass separationm2

B−m2
B∗ to the initial state B meson. In contrast, D∗ resonances,

for example, occurring in a final state line are allowed to be on-shell for a range of photon
energies. Thus, a considerable correction may arise. [119] find the D∗+ → D+γ coupling to
be compatible with zero while the D∗0 → D0γ coupling is small, but considerable. Both are
considered and discussed in detail in Section 5.4.3.
Generally, following the argumentation of [120, 121] the electromagnetic current of the
hadronic system can be split into two components: inner-bremsstrahlung (IB) contributions,
which account for photon radiation from the external charged particles and are completely
determined by the non-radiative process, and structure-dependent (SD) contributions, which
describe intermediate hadronic states and represent new information with respect to the IB
contributions.
The amplitude of a semileptonic B meson decay with full electromagnetic corrections reads

Aν = i e
GF√

2
Vxb ūν PRγ

µ

(
− Hµ

2p` · k
(γν/k + 2p`,ν) + Vµν − Aµν

)
v` , (5.2.12)

with the hadronic current Hµ, as introduced in eq. (5.1.3). The hadronic vector and axial
form factors of the photon-emitting hadronic current, incorporating among others the X →
X∗γ coupling, are given by the unknown non-local operator

Vµν − Aµν =

∫
d4x ei k·x 〈X|T [ĥµ(0) Jem

ν (x)] |B〉 . (5.2.13)
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Jem
ν denotes the electromagnetic current, ĥµ the quark-current in position-space and k is

the photon momentum. The vector and axial-vector operators of eq. (5.2.13) obey the
electromagnetic Ward-identities, obtained by contracting kνAν of eq. (5.2.12),

kν Vµν = Hµ ,

kνAµν = 0 . (5.2.14)

These properties of the individual pieces of the amplitude in conjunction with Low’s theorem
[106, 118] lead to the fact, that the leading terms of next-to-leading order amplitude in powers
of the photon four-momentum k, i.e. the terms proportional to k−1 and k0, are completely
determined by the on-shell form factors of the tree-level decay.
Following [120], corrections beyond O(k0) can be included by separating the non-local op-
erator eq. (5.2.13) into SD and IB contributions. Since the IB and SD describe different
physical mechanisms they are separately gauge invariant. Further, the SD amplitude must
be of O(k) or higher. This, however, does not prevent the IB amplitude from containing
terms of O(k) and higher as well.
Splitting the amplitude under these restrictions allows more terms to be collected in the
IB part, still using only the knowledge of the non-radiative matrix element. This offers the
advantage to obtain more precise predictions for the decay process, without formulating the
(mostly unknown) SD contributions. The splitting of the transition matrix element requires
a corresponding splitting of the non-local operator eq. (5.2.13) into SD and IB parts.
The axial contributions are strictly zero for photons emitted from the B- or X-meson, and
therefore can be considered purely SD. They can be written in the form [122]

Aµν = ASD
µν = − i εµνρσ

[
A1 p

ρ
X k

σ + A2 k
ρ (p` + pν)

σ
]

− i ενλρσ pλX kρ (p` + pν)
σ
[
A3 (p` + pν)µ + A4 pµ

]
. (5.2.15)

Note that the Lorentz-invariant scalars Ai are non-singular in the limit k → 0 by construction
and are functions of the three independent scalar variables that can be built with pB, pX
and k. The decomposition of the vector current reads

Vµν = V IB
µν + V SD

µν , (5.2.16)

where the IB piece is chosen in such a way, that

kν V IB
µν = Hµ

kν V SD
µν = 0 . (5.2.17)

Herein, V IB
µν can be constructed from leading order information only, cf. Appendix B.2. The

SD vector contributions, on the other hand, contain additional information. They can be
written as [123]

V SD
µν = V1

[
kµ pXν − (p · k) gµν

]
+ V2

[
kµ(p` + pν)ν − (k · (p` + pν))gµν

]
+ V3

[
(k · (p` + pν))(p` + pν)µ pXν − (pX · k)(p` + pν)µ(p` + pν)ν

]
+ V4

[
(k · (p` + pν))(pXµ pXν − (pX · k) pXµ(p` + pν)ν

]
, (5.2.18)
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where the Lorentz-invariant scalars Vi are functions of the three independent scalar variables
that can be built with pB, pX and k. All IB and SD contributions are finite as k → 0.
Consequently, as noted in [124, 125], terms of O(k) and higher can be shifted from the IB
into the SD contributions.
The knowledge of the full SD contributions for semileptonic B meson decays is modest:
[124] discusses the matter for B → π ` ν γ decays, using the soft-collinear effective theory
to isolate the expressions for the SD contributions in the soft-pion and hard-photon part of
phase-space. Section 5.4.3 compares their findings with the pure IB result from this study.
The differences are non sizable. The recent work of [121] addresses the real SD corrections
to B → D ` ν γ decays by using lattice results of the D∗ → Dγ coupling to estimate the
dominant SD contributions when the D∗ is on-shell. Section 5.4.3 also compares these SD
contribution with the complete SD+IB picture. Again the differences turn out to be non
sizable. The SD corrections to B → D∗0 ` ν γ are unknown, but given the large widths of the
D∗0 and D∗1 states a non-negligible correction to the pure IB prediction can be expected.

Summarising, the decay amplitude can be separated as

Aν = i e
GF√

2
Vxb ūν PRγ

µ

(
− Hµ

2p` · k
(γρ/k + 2pρ` ) + V IB

µν

)
v`

+ i e
GF√

2
Vxb ūν PRγ

µ
(
V SD
µν − ASD

µν

)
v` . (5.2.19)

Therein, the first line collects all terms that can be derived from the leading order decay
supplemented with local gauge invariance under the QED gauge group (assuming point-like
hadrons). V IB

µν , as outlined in Appendix B.2, then contains the minimal terms to restore
gauge invariance: besides the vertex emission terms of the constant form factor Lagrangian
of eq. 5.2.8 additional terms arise from the generalisation to variable, momentum transfer-
dependent form factors.
In contrast, the structure-dependent terms of the second line cannot be inferred from the
leading order decay and QED gauge invariance. They have to be calculated separately for
every decay mode and are mostly unknown. At the same time they vanish as the external
photon’s momentum k → 0.

5.2.5 Soft-resummation and inclusive exponentiation

This section discusses a systematic improvement of the fixed order results discussed in the
previous section. It briefly summarises the result of Chapter 2. Centring on the exponen-
tiability of soft-radiative corrections and following the approach of Yennie, Frautschi and
Suura [75], the fully inclusive decay rate

Γ =
1

2M

∞∑
nR=0

1

nR!

∫
dΦpfdΦk (2π)4δ4

(
pB − pX − p` − pν −

∑
k
) ∣∣∣∣∣

∞∑
nV =0

MnV + 1
2
nR

nR

∣∣∣∣∣
2

(5.2.20)

can be rewritten as

Γ =
1

2M

∞∑
nR=0

1

nR!

∫
dΦpfdΦ′k (2π)4δ4

(
pB − pX − p` − pν −

∑
k
)

× eY (Ω)

nR∏
i=1

S̃(ki)Θ(ki,Ω)

(
β̃0

0 + β̃1
0 +

nR∑
i=1

β̃1
1(ki)

S̃(ki)
+ O(α2)

)
(5.2.21)

5.2 Next-to-leading order corrections 65



by separating the universal spin-independent infrared divergent terms from the virtual and
real emission amplitudes. dΦpf and dΦk are the leading order and (multiple) extra emission
phase space elements, while nR and nV count the additional real and virtual photons present
in each amplitude. Therefore, using the same convention as before the sub- and superscripts
of the (squared) matrix elementsM,M and β̃ denote their real emission photon multiplicity
and their order of α in the perturbative expansion relative to the leading order.
The separation of infrared divergences proceeds by splitting

M1
0 = αBM0

0 +M1
0 , (5.2.22)

1

2(2π)3

∣∣M 1
2

1

∣∣2 = S̃(k)
∣∣M0

0

∣∣2 + β̃1
1(k) , (5.2.23)

wherein M1
0 and β̃1

1(k) are free of any infrared singularities due to virtual or real photon
emissions. This separation can be continued iteratively, leading to∣∣∣∣∣

∞∑
nV =0

MnV + 1
2
nR

nR

∣∣∣∣∣
2

= exp(2αB)

∣∣∣∣∣
∞∑

nV =0

M
nV + 1

2
nR

nR

∣∣∣∣∣
2

. (5.2.24)

and(
1

2(2π)3

)nR ∣∣∣∣∣
∞∑

nV =0

M
nV + 1

2
nR

nR

∣∣∣∣∣
2

= β̃0

nR∏
i=1

[
S̃(ki)

]
+

nR∑
i=1

[
β̃1(ki)

S̃(ki)

]
nR∏
j=1

[
S̃(kj)

]
+

nR∑
i,j=1
i 6=j

[
β̃2(ki, kj)

S̃(ki)S̃(kj)

]
nR∏
l=1

[
S̃(kl)

]
+ . . .

+

nR∑
i=1

[
β̃nR−1(k1, . . . , ki−1, ki+1, . . . , knR) S̃(ki)

]
+ β̃nR(k1, . . . , knR) , (5.2.25)

with β̃nR =
∑∞

nV =0 β̃
nV +nR
nR

. Note that for a given phase space phase space configuration
{p1, . . . , pn, k1, . . . , knR} the infrared subtracted squared matrix elements β̃1(ki) involve a
projection onto the single emission subspace {Pp1, . . . ,Ppn,Pki}. Of course, momentum
conservation holds for each projected subset. Thus, for every radiated photon the β̃1(ki) are
evaluated as if this photon was the only one in the event. Hence, truncating the perturbative
series in the β̃nR at the next-to-leading order leaves every single photon emission correct at
O(α).

Exponentiating the integral of the eikonal S̃(k) upon insertion of the identity of eq. (5.2.25)
over the unresolved phase space Ω, containing the infrared singularity gives rise to the
Yennie-Frautschi-Suura form factor

Y (Ω) = 2α(B + B̃(Ω)) with 2αB̃(Ω) =

∫
Ω

d3k

k
S̃(k) (5.2.26)

and the residual perturbative series of the infrared-subtracted squared amplitudes β̃nV +nR
nR

in eq. (5.2.21). Hence, photon emissions contained in the unresolved soft region Ω are
assumed to have a negligible effect on differential distributions, but are included in the
overall normalisation. Furthermore, Y (Ω) is UV-finite and, thus, does not interfere with
renormalisation of the β̃nV +nR

nR
.
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5.3 Methods

In this section a short overview over the generators used in this study and their underlying
principles is given.

5.3.1 BLOR

BLOR [115] is a fixed order Monte Carlo Event generator specialised on QED corrections in
semileptonic B meson decays. It separately generates decays for the born (1→ 3) and real
emission (1→ 4) phase space events according to their individual cross sections

dΓ1→3 = dΓ0
0 + dΓ1

0

dΓ1→4 = dΓ1
1 . (5.3.1)

The infrared divergences present in dΓ1
0 and dΓ1

1 are regulated introducing a small but finite
photon mass λ set to 10−7GeV. The expressions of Section 5.2 are altered accordingly.

5.3.2 SHERPA/PHOTONS++

The SHERPA Monte Carlo [8], briefly described in Chapter 1, is a complete event generation
frame work for high energy physics processes. Although its traditional strengths lie in the
perturbative aspects of lepton and hadron colliders it also encompasses several modules
for all non-perturbative aspects. In this work the hadron decay module HADRONS++ [73]
and the universal higher order QED correction tool PHOTONS++ [86, 74] are used. The
implementation of PHOTONS++ was described in detail in Section 3.1 and shall be briefly
revisited here in the present context.
HADRONS++ generates the leading order decay events according to the respective form factor
parametrisations of the involved hadronic and leptonic currents. PHOTONS++ then rewrites
the differential all orders inclusive decay width of eq. (5.2.21) as

Γ = Γ0

∑
nγ

1

nγ!

∫
dΦk JP(k) eY (Ω)

nγ∏
i=1

[
S̃(ki)Θ(ki,Ω)

](
1 +

β̃1
0

β̃0
0

+

nR∑
i=1

β̃1
1(ki)

β̃0
0 · S̃(ki)

+O(α2)

)
,

(5.3.2)

cf. [74]. Hence, the leading order input is corrected both for soft photon effects to all orders
and hard photon emission to an arbitrary order. JP ≤ 1 represents the various Jacobians
occurring when factoring out the leading order term. The perturbative series in the infrared-
subtracted squared matrix elements includes only terms up to O(α) for this study. The QED
real emission squared amplitudes can alternatively be approximated using Catani-Seymour
splitting function [51, 94, 52]

β̃1
1,CS(k) = − α

4π2

∑
i<j

ZiZjθiθj
(
ḡij(pi, pj, k) + ḡji(pj, pi, k)

)
β̃0

0 , (5.3.3)

where in i and j run over all particles in the process. The exact form of the ḡij can be found
in [74]. This approximation is also used if the exact real emission matrix element is not
known.
The infrared cut-off was set to 10−6GeV in the rest frame of the charged dipole, i.e. the
B+− `+ or the X−− `+ system, respectively.
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5.3.3 PHOTOS

The PHOTOS Monte Carlo [87] is an “after-burner” algorithm, which adds approximate brems-
strahlung corrections to leading order events produced by an external code. In this study
it is taken as a reference for the differential distributions since it is widely in use. PHOTOS
bases on the factorisation of the real emission matrix element in the collinear limit∣∣M 1

2
1

∣∣2 =
∑
i

∣∣M0
0

∣∣2 · f(pi, k) . (5.3.4)

The radiation function f(pi, k) is given to leading logarithmic accuracy. It incorporates
the Altarelli-Parisi emission kernel for radiation off the particular final state particle. Its
exact form is spin dependent and can be found in [87, 76]. In its exponentiated mode the
number of photons follows a Poisson distribution, while the individual photon’s kinematics
are determined by applying above equation iteratively. To also recover the soft limit of real
photon emission matrix elements an additional weight was introduced [126]

Wsoft =

nγ∑
i=1

∣∣∣∣∣ nC∑j=1

Qj
pj ·ε∗i
pj ·ki

∣∣∣∣∣
2

nγ∑
i=1

nC∑
j=1

Q2
j

∣∣∣pj ·ε∗ipj ·ki

∣∣∣2 , (5.3.5)

wherein nγ and nC are the photon and the final state charged multiplicity of the process.
To regularise the emission function in the soft limit an energy cut-off is imposed in the rest
frame of the decaying particle. The collinear divergence is regularised by the emitter’s mass.
Initial state radiation is not accounted for as the mass of the decaying particle is the largest
scale in the process and there are no associated collinear divergences or logarithmic enhance-
ments. It could only be accounted for by supplementing PHOTOS with a matrix element
correction. In case of heavy initial states eq. (5.3.5) still approximately recovers the soft
limit.
In this analysis PHOTOS version 2.13 has been used in its exponentiated mode, including
the soft interference terms. The infrared cut-off was set to 10−7mB0,+ , respectively. BLOR
supplemented the leading order decay events.

5.4 Results

In this section the results of the inclusion of the complete next-to-leading order corrections,
both real and virtual short and long distance contributions, for various semileptonic B
decay modes, focusing on the B → D decay channels, are reviewed and examined in detail.
However, also results on the B → D∗0 and B → π are shown.
First, results for the next-to-leading order inclusive decay rates and their effects on the
extraction of |Vcb| from decay measurements will be shown in Section 5.4.1. Albeit not
central to this thesis, the results for the B → D∗0 and B → π decay modes also contain
implications on the extraction of |Vcb| and |Vub|. Then, in Section 5.4.2 the effects on
differential distributions and spectra are investigated and compared against the standard
tool used in many experimental analyses, PHOTOS. The parameters used are detailed in
Table 5.1.
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Parameter Value Parameter Value
mΥ(4S) 10.5794 GeV me 0.0005109989 GeV
ΓΥ(4S) 20.5 MeV mµ 0.10565837 GeV
mB0 5.27950 GeV mνe 0
mB+ 5.27913 GeV mνµ 0
mD0 1.86950 GeV mW 80.419 GeV
mD− 1.86484 GeV α 1/137.035999

GF 1.16637 · 10−5 GeV−2

Table 5.1: Parameters used for all inclusive and differential decay rate calcula-
tions. All particle widths, except the Υ(4S) width, are considered
negligible.

5.4.1 Next-to-leading order corrections to decay rates

One key prediction of this thesis is the process specific correction factor for higher order
electroweak effects. These higher order corrections enter measurements of the CKMmixing
angles Vxb via

Γmeasured = η2
QCD η

2
EW |Vxb|2 Γ̃LO , (5.4.1)

and, thus,

|Vxb| =
1

ηEW
·
√

Γmeasured

η2
QCDΓ̃LO

. (5.4.2)

Γ̃LO is the leading order phenomenological decay rate stripped of the CKMmixing angle. ηQCD
and ηEW incorporate the higher order QCD and electroweak corrections. Both contributions
factorise at the NLO level. The electroweak correction factor is determined in this study
at NLO accuracy in the QED-improved phenomenological long-distance description of the
hadronic decay and at leading logarithmic accuracy in the underlying short-distance partonic
decay in the Standard Model. While the leading logarithm of the short-distance correction
depends only on the matching scale Λ of both descriptions and is, thus, independent of the
actual decay properties, the long-distance corrections, in contrast, are sensitive to exactly
these specifics.
The resulting correction factors,

η2
EW = 1 + δsd + δld = 1 +

Γ1
0 + Γ1

1

Γ0
0

+O(α2) (5.4.3)

are a central outcome of this study. They are presented in Tab. 5.2 for the different semilep-
tonic decay channels of charged and neutral B mesons into D mesons. As is evident, the
long-distance QED corrections break the strong isospin symmetry. This originates in the
different masses of the charged mesons in the strong isospin rotated decays. These masses
both determine the amount of radiation from the meson line and enter the loop integrals. On
the other hand, the difference in the size of the correction between the two leptonic channels
of each decay mode is only very small since both masses are insignificant compared to the
hadronic mass scales.
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η2
EW 1/ηEW

B0 → D− e+ νe (γ) 1.0222(1± 2± 17± 1) 0.9891(1± 1± 4± 1)
B0 → D− µ+ νµ (γ) 1.0222(1± 2± 17± 1) 0.9891(1± 1± 4± 1)
B+ → D̄0 e+ νe (γ) 1.0146(1± 1± 39± 16) 0.9928(1± 1± 10± 4)
B+ → D̄0 µ+ νµ (γ) 1.0147(1± 1± 39± 16) 0.9927(1± 1± 10± 4)

Table 5.2: Predictions for ηEW =
√

1 + δsd + δld for the summed next-to-leading correc-
tions are listed. The uncertainties in the parentheses are the sum of numerical,
next-to-next-to-leading order, matching and missing structure dependent con-
tributions.

η2
EW 1/ηEW

B0 → D− ` ν 1.0222(17) 0.9891(4)
B+ → D0 ` ν 1.0146(43) 0.9928(10)
B → D ` ν 1.0186(29) 0.9909(7)

Table 5.3: Averaged integration results for η2
EW = 1 + δsd + δld and 1/ηEW: The uncertain-

ties in the parentheses are the sum of numerical, next-to-next-to-leading order,
matching and missing structure dependent contributions.

The total uncertainty σtotal of the summed long- and short-distance correction is given by

σ2
total = σ2

numerical + σ2
nnlo + σ2

Λ + σ2
SD . (5.4.4)

The leading uncertainty originates from the matching of the short- and long-distance results.
Here, the mismatch of both theories, the Standard Model for the short-distance corrections
and the QED-enhanced effective theory for the long-distance corrections, at the scale Λ, as
discussed in Section 5.2.1, is the main source. These matching uncertainties are estimated
choosing Λ of the scale of the final state meson’s mass as a central value for Λ and then
taking the difference to the result when using the scale 2Λ. Note that half the charged
final state meson’s mass is not a sensible choice for the matching scale since in this case a
considerable fraction of the real radiation cross section would occur at scales greater than Λ
and being described by the phenomenological model, thus ending up in the wrong picture.
Further, the effect of additional real short-distance contributions is studied by compar-
ing the pure inner-bremsstrahlung calculation with the real emission results of [124] and
[121]. And finally, the electroweak next-to-next-to-leading order effects are estimated as
σnnlo = α (δsd + δld). It is clear that the complete model dependence from the phenomeno-
logical treatment of the long-distance contributions cannot be grasped with the above error
estimation.
Tab. 5.3 presents the same results for B → D ` ν (γ) averaged over the different lepton species
and the isospin rotated decays. The isospin averaged result is corrected for the difference in
the production rate of B0 and B+ mesons, i.e.

δsd + δld =
(
δsd + δ+

ld

)
f+− +

(
δsd + δ0

ld

)
f00 , (5.4.5)

with δ+
ld and δ

0
ld the isospin breaking contributions for charged and uncharged charmed decays

extracted from Tab. 5.2. The latter correction factor is the adequate choice to correct |Vcb|
from measurements demanding isospin.
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Measurement G(1) |Vcb| × 10−3 with G(1) |Vcb| × 10−3 with
sd corrections only sd and ld corrections

BABAR tagged [127] 42.30(2.36) 42.21(2.34)

Table 5.4: The impact of long-distance corrections on the correction factor ηEW is shown.
The measurement estimates real next-to-leading order corrections via PHOTOS
and, thus, uses phase-space cuts and variables that provide a reduced sensitivity
on the modeling of final state radiation. G(1) is the normalisation of the heavy
quark form factor.

The impact of these correction factors on a selected measurement is listed in Tab. 5.4.
Note that the measurement used PHOTOS to estimate the effect on radiative corrections.
Applying the stated factors only corrects the overall normalisation, differences due to changes
in kinematic distributions, see Section 5.4.2, result in another correction for the extracted
value of |Vcb| that cannot be estimated here.

5.4.2 Next-to-leading order corrections to differential rates

In this section the results of both BLOR and SHERPA/PHOTONS++ are presented and com-
pared against PHOTOS. The focus lies on the absolute value of the spatial momentum of the
produced meson and the lepton, i.e. |~pX | and |~p`|. The chosen frame for these observables
is the centre-of-momentum system of the electron and positron beam. Thus, the decaying
B0 and B+ mesons already carry momentum corresponding to the Υ(4S) → B0B̄0 and
Υ(4S) → B+B− decay kinematics. All quantities are shown as bare quantities, i.e. no re-
combination of photon and lepton/meson momenta was used. This is directly applicable if
the charged particle momenta are extracted by measuring their curved tracks in a magnetic
field or in photon-free calorimeters, as is the case in many BABAR and BELLE analyses.
The prediction of each generator is normed to its inclusive decay width and the ratio plots
show the relative difference

∆O =

1
Γtot,i

dΓi
dO
− 1

Γtot,ref

dΓref
dO

1
Γtot,i

dΓi
dO

+ 1
Γtot,ref

dΓref
dO

(5.4.6)

to the PHOTOS prediction for the given observable O in the given bin. Hence, the short-
comings of the approximations inherent in the standard tool currently used by most exper-
iments are plainly visible. Further, due to the choice of normalisation, systematic errors,
shown to be dominant in the previous section, are negligible here. Hence, the error bands
shown are statistical errors only and are of comparable magnitude for all three generators
predictions.

Decays B → D ` ν`

In Fig. 5.5 the predictions of all three generators for the decay B0 → D− e+ νe using a
form factor parametrisation from Heavy Quark Effective Theory, cf. Appendix B.1.1, are
presented. For most of the phase space the agreement of the next-to-leading order shape is
good. However, as can be seen in the absolute lepton momentum plot, SHERPA/PHOTONS++
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Figure 5.5: Lepton and meson momentum spectrum in the e+e− rest frame in the decay
B0 → D− e+ νe. All spectra are normed to the total inclusive decay width pre-
dicted by the respective generator. The ratio plot gives the relative deviation,
bin by bin, of the predicted shapes with PHOTOS as reference. The shaded
yellow area gives the statistical uncertainty of the reference distribution.
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Figure 5.6: Total radiative energy loss, i.e. the sum of all photons radiated, in the decay
B0 → D− e+ νe in the B rest frame. All spectra are normed to the total
inclusive decay width predicted by the respective generator. The left panel
shows the predictions of all three generators and the PHOTOS prediction is
taken as the reference in the ratio plot. The right panel shows the predictions
of SHERPA/PHOTONS++ in its full YFS⊗NLO exponentiated mode (green), a
mode where the exact NLO matrix element of the perturbative expansion is
replaced by universal Catani-Seymour dipole splitting kernels (red) and two
modes where the exact real emission matrix elements are used, but the ex-
pansion in the resolved emission region is truncated at O(α) (blue) and O(α2)
(orange), thus allowing at most one and two photons, respectively. Here, the
full exponentiated SHERPA/PHOTONS++ prediction is taken as reference in
the ratio plot.
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Figure 5.7: Multiplicities of photons with at least 30MeV in in the e+e− rest frame B0 →
D− e+ νe on the right hand side and B0 → D− µ+ νµ on the left hand side. In
the ratio plot PHOTOS was chosen as the reference.

predicts a slightly different shape close to |~p`|, |~pX | = 0. This limit cannot be measured
directly in most experiments. Nonetheless, it influences the extrapolation to the full phase
space, and thus determinations of total decay widths. In [128], for example, uncertainties re-
lated to such an extrapolation constituted up to 50% of the total experimental error. Further,
the slight slope of the order of 1% exhibited in the prediction of SHERPA/PHOTONS++ for
|~pX | is also present in the |~p`| spectrum. Both differences originate in the different modeling
of radiative energy loss between the different programs, as shown in the following.
Fig. 5.6 displays the radiative energy loss, i.e. the sum of the energies of all photons radiated,
in the rest frame of the decaying B0. The predictions of the three different generators are
shown in the left panel. For single photon emission in such a final state dipole there exists a
kinematic limit on the photon’s energy: Emax

γ = mB
2

(
mB

mX+m`
− mX+m`

mB

)
in the dipole’s rest

frame or Emax
γ = 2.3083GeV in the B rest frame. This limit is clearly visible in Fig. 5.6. All

events exceeding it, i.e. radiating more than Emax
γ , must exhibit multi-photon radiation. Here

(at least) two hard photons recoil against each other. Hence, this feature is present in both
the SHERPA/PHOTONS++ and PHOTOS predictions, but not in the fixed order NLO prediction
of BLOR. This tail is an O(α2) effect in the hard radiation and can only be described
approximatively here. In PHOTOS it is described by an iteration of the emission kernels
while SHERPA/PHOTONS++ describes this part of the spectrum by the next-to-leading order
hard emission amplitude β̃1

1 summed over all projections onto the single emission subspaces,
cf. Section 5.2.5 and 5.3.2.
On the other hand, multi-photon radiation also enhances the amount of radiation in the
region Eγ < Emax

γ , if the probability of two relatively hard photons is sufficiently large. As
exemplified in Fig. 5.7, in B0 → D− e+ νe double photon emission is relatively probable and,
hence, leads to such an enhancement, whereas due to the much larger muon mass this feature
is nearly absent in the decay to muons, Fig. 5.9. Of course, this enhancement of the radiative
energy loss is an effect of O(α2) and can therefore only be described approximatively here.
Of equal importance as multi-photon radiation is the presence of the exact real emission
matrix element, as is also shown in the right panel of Figs. 5.6 and 5.9. Approximating
the real emission matrix elements with Catani-Seymour splitting functions, reproducing the

5.4 Results 73



Altarelli-Parisi splitting functions used in PHOTOS in the (quasi-) collinear limit, leads to a
mis-estimation of the radiative energy loss in the regime close to the kinematic boundary.
It seems, however, that in the present cases collinearly approximated multi-photon emission
mimics the exact fixed-order NLO behaviour reasonably well.
Close to the kinematic boundary on single photon emission, Emax, the vertex emission dia-
grams become important, as do the corrections for t 6= t′ (cf. Appendix B.2). These correc-
tions have different sizes for the electron and muon channels due to their different masses and
radiative properties. In principle, here also the structure-dependent corrections of Section
5.2.4 play a role. But, as is investigated in Section 5.4.3 they have negligible impact on the
shape of the differential distributions. Thus, they can be safely neglected here.
Further, both SHERPA/PHOTONS++ and PHOTOS share a common soft limit, showing the
compatibility of the inherent soft resummation of SHERPA/PHOTONS++ and the superim-
posed soft limit correction in PHOTOS. BLOR exhibits an (almost) constant off-set of a few
percent owing to the lack of resummed contributions modeled in SHERPA/PHOTONS++ by
virtue of the YFS form factor.
The lepton and meson spectra for B0 → D− µ+ νµ are shown in Fig. 5.8. Figs. 5.10 and
5.11 show strong isospin rotated processes B+ → D̄0 e+ νe and B+ → D̄0 µ+ νµ, respec-
tively. Thus, the radiating dipole is spanned between the initial state B+ and the lep-
ton. Radiation off the initial state meson is suppressed by its much larger mass, as com-
pared to the D−. Thus, multi-photon emission is also strongly suppressed. In these cases
SHERPA/PHOTONS++ predict slightly smaller radiative corrections in the electron decay chan-
nel than either PHOTOS or BLOR. The differences are of the order of five percent; note that
the scale was enlarged in the reference plot to better highlight the differences. These, to the
largest extent, root in differences in the modeling of emission off the initial state charged
meson.

Decays B → D∗0 ` ν`

The final state lepton and meson momentum spectra in the decays B0,+ → D̄∗−,00 `+ ν`, with
` = e, µ, are shown in Figs 5.12, 5.13, and 5.14, 5.15. The B → D∗0 transition current is
modeled using Leibovich-Ligeti-Stewart-Wise-parametrised form factors, cf. Appendix B.1.3.
Except for differences in the form factor parametrisations due to the D∗0 meson being a scalar
instead of a pseudo-scalar and its higher mass, the effects of higher order corrections are
comparable to the case of Section 5.4.2.

Decays B → π ` ν`

Figs. 5.16, 5.17 and 5.18, 5.19 show the decay channels into charged and neutral pions. The
B → π transition current is modeled using the Ball-Zwicky form factor model described in
Appendix B.1.2. Here, because of the comparably small mass of the charged pion effects
due IB corrections for t 6= t′ become important. The structure-dependent contributions
still have negligible impact on the differential distributions, as is shown in Section 5.4.3.
Again, in the electron channel of the decay into a charged pion the correct treatment of hard
multi-photon radiation, assuming they are sufficiently well described in the QED-enhanced
phenomenological model, leads to comparably large deviations.
Nonetheless, it should be noted, as was also discussed earlier, that the matching procedure
employed in this study runs into conceptual problems when applied to a B → π transition
due to large difference between the hadronic mass scale Λ = mπ and the maximal energy of an
emitted photon, Emax

γ = 2.6379GeV (B0→ π−e+νe). Consequently, a considerable fraction
of the real emission phase space wherein the photon is able to resolve the pion is described by
the effective theory only. Thus, the results obtained here should be considered with caution.
However, they still are an improvement over the leading logarithmic corrections employed in
standard analyses.
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Figure 5.8: Lepton and meson momentum spectrum in the e+e− rest frame in the decay
B0 → D− µ+ νµ. The PHOTOS prediction is taken as the reference in the ratio
plot.
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Figure 5.9: Total radiative energy loss, i.e. the sum of all photons radiated, in the decay
B0 → D− µ+ νµ in the B rest frame. The labels are identical to those in
Fig. 5.6.
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Figure 5.10: Lepton and meson momentum spectrum in the e+e− rest frame in the decay
B+ → D̄0 e+ νe. The PHOTOS prediction is taken as the reference in the ratio
plot.
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Figure 5.11: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B+ → D̄0 µ+ νµ. The PHOTOS prediction is taken as the reference in the
ratio plot.
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Figure 5.12: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B0 → D∗−0 e+ νe. The PHOTOS prediction is taken as the reference in the
ratio plot.
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Figure 5.13: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B0 → D∗−0 µ+ νµ. The PHOTOS prediction is taken as the reference in the
ratio plot.
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Figure 5.14: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B+ → D̄∗ 0

0 e+ νe. The PHOTOS prediction is taken as the reference in the
ratio plot.
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Figure 5.15: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B+ → D̄∗ 0

0 µ+ νµ. The PHOTOS prediction is taken as the reference in the
ratio plot.
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Figure 5.16: Lepton and Meson momentum spectrum in the e+e− rest frame in the de-
cay B0 → π− e+ νe. Both matrix-element-corrected multi-photon radiation
and the IB terms for t 6= t′ exhibit a strong influence here. The PHOTOS
prediction is taken as the reference in the ratio plot.
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Figure 5.17: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B0 → π− µ+ νµ. The IB terms for t 6= t′ exhibit a strong influence here. The
PHOTOS prediction is taken as the reference in the ratio plot.
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Figure 5.18: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B+ → π0 e+ νe. The PHOTOS prediction is taken as the reference in the ratio
plot.
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Figure 5.19: Lepton and Meson momentum spectrum in the e+e− rest frame in the decay
B+ → π0 µ+ νµ. The PHOTOS prediction is taken as the reference in the ratio
plot.
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Figure 5.20: The photon energy spectrum in the decay B0 → π− e+ νe γ (Eγ > 1GeV)
is shown. The complete IB+SD result of [124] (blue) is compared against
the prediction of the IB terms only according to Section 5.2.4 (black) in
the HHχpt form factor model. In the ratio plot the latter is taken as the
reference.

5.4.3 Influence of explicit short-distance terms

In section the influence of explicitly calculated structure dependent terms, as introduced in
Section 5.2.4, is investigated. The analysis is performed for the decay channel B0 → π− e+ νe
with the results of [124] and the decay channels B0,+ → D−,0 e+ νe with the results of [121].
The same conclusions also apply to the muon channels.
For the charged pion channel, [124] employs a form factor model of the heavy-hadron chiral
perturbation theory (HHχpt) [129, 130, 131, 132], valid in the region of Eγ > 1GeV. Despite
the mismatch of the form factor model used in the present study the result depicted in
Fig. 5.20 shows the structure-dependent contributions have little influence on the photon
energy spectrum in this region. Due to their finiteness in the limit k → 0, they are expected
to behave similarly for Eγ < 1GeV. For the Ball-Zwicky form factor model used in this
study, cf. Appendix B.1.2, the IB and SD correction are expected to behave similarly.

δsd + δld(IB) δsd + δld(IB+part.SD) σSD
B0 → D− `+ ν`(γ) 0.02223(6) 0.02225(7) 0.00002
B+ → D0 `+ ν`(γ) 0.01463(5) 0.01627(6) 0.00158

Table 5.5: The effect of including the partial SD terms arising
due to intermediate excited D∗− and D∗0 mesons is
shown. Because of the unknown size of the full SD
contributions this single term, argued to be dominat-
ing, is used as an estimate on the systematic uncer-
tainty σSD associated to the IB-only result of Section
5.4.1.
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Figure 5.21: The photon energy spectra in the decays B0 → D− e+ νe γ on the left and
B+ → D0 e+ νe γ on the right are shown. The result including partial SD
terms arising due to intermediate excited mesons, D∗− and D∗0 [121], and
the associated coupling X∗ → Xγ (grey) is compared against the prediction
of the IB terms only according to Section 5.2.4 (black) in the HQET form
factor model. In the ratio plot the latter is taken as the reference.

In the D meson channels, [121] uses lattice results for the trilinear couplings of an exited D∗
meson to a photon and its ground state: gD∗+D+γ = −0.1(7) and gD∗0D0γ = 2.7(1.2). The
effects manifest themselves as corrections to the total decay widths and are summarized in
Tab. 5.5: they prove minor in the case of D−, and sizable in the case of D0. The case is
similar for the radiative spectra: a slight change in the shape of the radiative energy loss
for the D0 channel on the scale of less than 5%, while no such change occurs in the D−
channel. These particular SD corrections, however, only form a single term in one class of
SD correction. Note that higher order charm resonances, i.e. through D∗∗Dγ processes, do
not contribute to real corrections at NLO of the studied decay modes because of angular
momentum and spin conservation. Therefore, the lowest order are believed to be one of the
dominant terms, they are taken as an estimate for the error associated to neglecting all SD
contributions.
Note, that the samples containing (partial) SD terms have larger statistical uncertainties.

5.5 Summary and conclusions

In this chapter of this thesis, electroweak corrections to semileptonic B decays were studied.
A long-distance calculation in the QED improved effective Lagrangian was matched to the
partonic short-distance result of [107] for (pseudo)scalar final state mesons. Structure depen-
dent terms, e.g. due to non-local photon-charged meson interactions, intermediate resonant
meson propagators or modifications to the effective weak meson decay due to off-shell cur-
rents, were not taken into account for the computed central values. This was done because
they are only known for a very limited set of processes, and there usually only partially.
The results achieved with this method, detailed in Section 5.4, give more reliable predictions
for total and differential decay rates, accompanied by quantifiable errors. The improved
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predictions of the total decay rate were applied on two selected measurements of Vcb [127]
and Vub [133] resulting in small corrections to their respective central values. These exempli-
fications, however, are a mere reweighting of their stated results and correction factors. To
fully assess the impact of the corrections to the leading order decay presented in this chapter
of this thesis the form factors of the phenomenological models will have to be refitted with
the results presented in Section 5.4.2. Here, special attention is again drawn to the large
deviations near the endpoints of the kinematic distributions arising when both fixed-order
next-to-leading order and resummed leading-logarithmic calculations are combined. Finally,
the parts of the analyses relying on Monte Carlo estimates of the radiation pattern need to
be corrected for the improved description presented in this thesis.
It should again be emphasised that the results presented for the decay of a B meson into a
pion should be considered with care. The prescription of matching long- and short-distance
corrections runs into conceptual problems for this particular process. This is due to the large
hierarchy of the scales of the pion mass (the scale where a photon is able to resolve a pion) and
the maximally allowed photon energy (Emax

γ ∼ 2.5 GeV, cf. Section 5.4.2). Consequently, the
prediction for the total decay rate may receive significant corrections when a more elaborate
matching scheme is used. Nonetheless, the differential distributions are unaffected.
Similarly, structure-dependent contributions, where known, have been shown to have negli-
gible influence on the differential distributions while their impact on the total decay rates
can be sizeable. Despite this fact, these structure-dependent contributions were not included
in the predictions of the central values of the total decay rates, but only have been used to
estimate their potential error. This treatment is justified since in all cases considered here
they are only known partially.
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Part II

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
resummation and fixed order calculations
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Introduction

Higher-order QCD corrections by now form an important ingredient to many phenomenolog-
ical studies and experimental analyses at both the Tevatron and the LHC. Their impact has
been similarly important for various studies of HERA and LEP data. Calculations invok-
ing such corrections, typically at next-to leading order in the perturbative expansion in the
strong coupling αs, and in very few cases also at next-to-next-to leading order accuracy, have
been used for a wide range of precision tests of our understanding of QCD and the Standard
Model. They are also important for the subtraction of backgrounds in searches for new
physics. When being compared to such calculations, experimental measurements are usually
corrected for detector effects, while the perturbative result is corrected for hadronisation and
multiparton interactions. Such non-perturbative corrections are typically determined by us-
ing models built in the multi-purpose Monte-Carlo event generators PYTHIA/PYTHIA8 [2, 5],
HERWIG/HERWIG++ [3, 134], or SHERPA [7, 8]. Only after performing these corrections,
theoretical predictions and experimental data are on the same footing. But, to describe
perturbative QCD, these generators typically relied on leading-order matrix elements only,
combined with parton showers implementing the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
resummation, which in turn model QCD radiation effects in a leading logarithmic approxi-
mation.
Improvements to this approximation can be obtained through merging methods, called
ME+PS methods, pioneered in [135, 27, 28], and further worked out in different varieties
at different accuracies and for different parton showers, e.g. in [30, 32, 33, 34, 35]. In this
merging approach, tree-level matrix elements for processes with different jet multiplicities
are combined with parton showers, avoiding problems related to double counting of emis-
sions. Lately, a new formulation has been proposed which can be proved to preserve the
formal accuracy of the parton shower, independent of the process under consideration [29]3.
Despite varying degrees of formal accuracy amongst the various methods, their respective
predictions tend to agree on a level expected from such improved leading order perturbation
theory [36, 37]. In most cases the approach leads to a dramatic improvement in the descrip-
tion of hard QCD radiation, which makes it a state-of-the-art tool for many analyses, that
depend on the shape of distributions related to hard QCD radiation.
However sophisticated at modeling multi-jet topologies, the above methods lack the precision
of higher-order calculations regarding the overall normalisation, i.e. the cross section of
the inclusive process under consideration. To accurately estimate uncertainties intrinsic to
perturbative calculations, which manifest themselves for instance in uncertainties related to
choices of renormalisation and factorisation scales, full next-to leading order corrections are
a sine qua non.
So far, two different methods to achieve the systematic inclusion of complete NLO corrections
for a fixed multiplicity have not only been described but also implemented, asserting their
practicality. The first one has been dubbed MC@NLO [11]. By now it has been applied to
a variety of processes using the framework of both the HERWIG [137, 138, 139, 140, 141]
and the PYTHIA [142] event generators, proving its versatility. It effectively relies on using

3A similar procedure, although restricted to the case of e+e−-annihilation into hadrons was also presented
in [136].
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the parton shower approximation in the calculation of the next-to-leading order expressions,
thus avoiding double counting and related problems, and then correcting this approximation
to the full result using a separate leading order event sample with real emission kinematics
which is by construction finite. The MC@NLO method therefore effectively incorporates
the parton shower in the NLO matrix element. The inherent second sample of correction
events, however, is not restricted to be positive definite and may lead to a number of events
with a negative weight. Although not problematic per se, such negatively weighted events
were disfavoured by experimentalists for a long time. The second method includes the NLO
corrections into the parton showers and is known as the POWHEG technique [12, 13]. In
contrast to MC@NLO, it can ensure that only events with positive weights are generated.
To achieve this, the simulation starts with a Born-level event, reweighted to include the
full NLO correction, i.e. including virtual and real corrections, integrated over the real-
emission subspace. The first emission is then produced using the exact real-emission matrix
element, thus providing not only the correct differential cross section, but also the correct
radiation pattern to first order in αs. The big advantage of this technique is that it can be
implemented in a shower-independent way, which has been used to some extent in [143, 144,
145, 146, 147, 148, 149, 150, 151], where different processes with trivial divergence structures
have been implemented, leaving further parton evolution and non-perturbative corrections
to PYTHIA and/or HERWIG. A few implementations for processes with non-trivial colour
and divergence structures have been implemented in [152, 153, 154, 155]. In addition, there
have been some implementations in the framework of HERWIG++ [156, 157, 158, 159, 160,
161, 162]4. In fact, because the POWHEG method is very similar to traditional matrix-
element corrections [163, 164, 165, 166, 167, 168], it is relatively simple to implement in
a process-independent way and thus very well suited for the systematic inclusion of NLO
QCD corrections to arbitrary processes. This is reflected by the fact that a corresponding
toolbox has already been advertised in [15]. Although the code has not been published, an
automated version of MC@NLO, dubbed aMC@NLO, has been used in [169, 170].
Obviously, the ultimate goal is to have a multi-jet merging prescription, accurate at NLO,
and to simultaneously respect the logarithmic accuracy of the parton shower. A first step into
this direction has been presented for the case of e+e− annihilation into hadrons in [171]. An
alternative approach was suggested in [172], extending the method of [29] to NLO accuracy
for the core interaction. This second method relies on the POWHEG technique to ensure the
NLO cross section of the core process, keeping the multijet features of the ME+PS method.
The outline of Part II is thus as follows: Chapter 6 will review the DGLAP resummation of
large logarithms arising in collinear parton emissions. Then, in Chapter 7 a formalism will
be introduced, basing on the single leg/parton language of the DGLAP resummation, which
allows for an abstract formulation of a parton shower and the subsequent reformulation of
POWHEG method as an advanced matrix element corrected parton shower supplemented with
a NLO weight [65]. This splitting kernel based formulation directly facilitates an automated
implementation whose properties and capabilities to describe data are then assessed. Chapter
8 finally takes the reformulated POWHEG method as an input to combine it with the well
known ME+PS method. The resulting MENLOPS method [173] thus features a simultaneous
description of NLO-accurate inclusive observables, as in the POWHEG and MC@NLO methods,
and LO-accurate multijet-dependent observables, as in the ME+PS method, of course not
spoiling the DGLAP resummation in the collinear region.

4 It is worth stressing, that in order to ensure formal accuracy a truncated shower must be used, as
pointed out in the original publications proposing the method. This option is not available for all parton
shower algorithms that have been used in the actual implementations.
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Chapter 6

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
resummation and approximate higher order
corrections

This chapter reviews the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi resummation, which will
serve as a basis for discussing logarithmically enhanced higher order corrections in general
and matrix element corrected parton showers in particular in the following chapters.

When studying scattering processes involving massless strongly charged partons1 each order
in the perturbative expansion of the QCD Lagrangian in αs contains a term of the form

αs log
Q2

κ2
, (6.0.1)

relative to the previous order. Therein Q2 is the scale of the hard interaction and κ2 is a
scale at which non-perturbative effects become important. Thus, the size of this interaction
is enhanced by a potentially large logarithm as compared to a factor of just αs times a
constant. Thus, such higher order corrections can be of order one, and need to be resummed
to all orders if quantitative predictions are to be made. To study how this factor arises QCD

corrections to the naïve parton model have to examined, and a universal structure has to be
found.

To this end, it is advantageous to follow the reasoning of [93, 177, 178] in the following review
in Section 6.1. Section 6.2 then uses the collinear approximation inherent in the DGLAP
resummation kernels to construct approximative real emission matrix elements. Their suc-
cessive iteration leads to the definition of the Sudakov form factor [179], the probability
for a parton to evolve between two scales without a further emission. It forms the basis in
the construction of parton shower discussed in Chapter 7. Finally, Section 6.3 discusses the
approximation of the real emission cross section in the limit of soft gluon emissions and how
such corrections can be incorporated in the definition of the splitting kernels.
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Figure 6.1: A representation of a generic scattering process in collisions involving initial
state hadrons in the parton model. Parton a and a generic second initial state
X scatter into a final state Y . fa denotes the parton density of parton a inside
the hadron.

6.1 Dokshitzer-Gribov-Lipatov-Altarelli-Parisi resummation

6.1.1 The naïve parton model

The description of a scattering process involving composite objects, or more specifically
hadrons, in the naïve parton model [180] is depicted in Figure 6.1. The focus rests on
one hard interaction probing the inner content of one hadron. The second initial state,
denoted X in the above figure, remains unspecified. By virtue of the factorisation theorem
[181, 182, 183] it cannot have an influence on the topic at hand, be it a virtual photon as
in deep inelastic scattering or another hadron as in hadron-hadron collisions; it merely sets
the scale Q2. Similarly, the final state is collectively denoted Y .
The parton model itself rests on the assumption that interactions of hadrons at high energies
are due to the interactions of their constituent partons. Therein, the internal structure of
the hadrons is described by instantaneous parton distribution functions. Obviously, changes
both in the number and the momenta of the constituent partons have to be negligible during
the time of interaction. The probability dPa(x,Q2) to find a parton with momentum fraction
x ∈ [ξ, ξ + dξ) of flavour a at some scale Q2 is then given by

dPa(x,Q2) = fa(ξ,Q
2)δ(x− ξ) dx dξ . (6.1.1)

The so-called parton distribution function fa(x,Q2) contains information about the bound
state hadron and, thus, cannot be calculated perturbatively. It depends on soft processes that
determine the hadron’s internal structure containing quarks and gluons. For completeness,
it needs to be noted that the parton distributions can be defined in terms of hadronic matrix
elements of the quark and gluon number operators, cf. [183]. However, in the present context,
this definition is not particularly useful, and is therefore omitted.

1 The collinear factorisation and the following resummation was indeed first studied in the context of
QED [174, 175, 176]. However, since this part of this thesis concerns itself with higher order QCD corrections,
the following chapter focuses on the derivation and consequences of this resummation in the context of QCD.
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Figure 6.2: Next-to-leading order QCD corrections to the naive parton model of Figure 6.1.
Parton a splits into partons b and c, before interacting with the second initial
state X to produce the final state Y + c.

The cross section of the process of Figure 6.1 can then be computed as

dσ(P +X → Y + . . .) =
∑
a

dPa(x,Q2) dσ̂a(a+X → Y ) , (6.1.2)

wherein σ̂a denotes the cross section with the partonic initial state a instead of the hadron
P . The ellipsis again stands for the unspecified hadron remnant and the sum runs over all
possible partons, i.e. quarks, anti-quarks, and gluons. The second initial state X may need
to be treated similarly.
The parton distribution functions themselves, in the form fa(x,Q

2), are only rigorously
defined in the infinite momentum frame. In this limit |~ph| � mh, i.e. the magnitude of the
hadron’s spatial momentum ~ph is large compared to its massmh. The longitudinal size of the
hadron is contracted by a factor mh/|~ph| in this frame, such that all partons are restricted
to move collinearly with the proton, making it possible to represent their momentum by a
single ratio x = |~pa|/|~ph| = Ea/Eh +O(m2

h/|~ph|2).
The naïve parton model, as defined above, predicts the behaviour of the parton distribution
functions in the Bjørken limit, defined as Q2 →∞ for fixed momentum fraction x,

fa(x,Q
2)

Q2→∞, x fixed
−−−−−−−−−−−−→ fa(x) . (6.1.3)

This is known as Bjørken scaling [184, 180]. This scaling however, is violated by higher order
QCD corrections supplying logarithms of Q2.

6.1.2 QCD corrections to the parton model

Identifying the partons of the previous section with the quarks and gluons of QCD naturally
leads to higher order corrections to the naïve parton model. Additional radiation off the
partons allows them to acquire transverse momentum k⊥ which is in fact not restricted to
be small: it is only restricted by the kinematic limit Q2. It is then a particular feature of
renormalisable gauge theories with local fermion-vector interactions to introduce logarithms
of this kinematic endpoint Q2, explicitly breaking the Bjørken scaling.
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Figure 6.3: Next-to-leading order QCD corrections to the naive parton model of Figure 6.1
if matrix elementsM′

n containing gluon initial states exist. Then again, as in
Figure 6.2, parton a splits into partons b and c, before interacting with the
second initial state X to produce the final state Y + c.

Consider the parton distribution function f̂ba(x,Q2) 2 to find parton b inside of parton a at
momentum fraction x and scale Q2. In the naïve parton model, corresponding to leading
order QCD, this is given by

f̂ba(x,Q
2) = δba δ(1− x) , (6.1.4)

again exhibiting Bjørken scaling. The next-to-leading order real emission corrections can
then be calculated directly, taking Figures 6.2 and 6.3 as a guideline. Because of calculating
with massless particles infrared divergences are present. They can be regulated introducing
an invariant cut-off κ2 removing the singular region, resulting in

αs
2π

Pba(x) log
Q2

κ2
+ C

(R)
ba (x) . (6.1.5)

The functions Pba(x) and C(R)
ba (x) are intimately related with the relevant QCD vertex, trans-

forming parton a into parton b. Pba(x), known as the splitting function, is of special interest
since it is defining the Q2 dependence of the parton distribution function. Its explicit form
depends of course on the involved parton flavours a and b and is given in Appendix C.

The form of the virtual corrections, computed at next-to-leading order, are dictated by
momentum conservation and the Kinoshita-Lee-Nauenberg theorem [91, 92], i.e.

− αs
2π

[
K log

Q2

κ2
− C(V)

]
δba δ(1− x) . (6.1.6)

2 Please note the occurrence of a second index for the parton distribution function f̂ . Contrary to hadronic
parton distribution functions where the flavour of the “mother”, i.e. the hadron, is always implicitly under-
stood, partonic parton distribution functions always carry an index explicitly stating the mother partons
flavour, within the confines of this work.
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The x and Q2 independent factor K can then be determined by requiring the conservation
of the quark number, as is the case in QCD, i.e.

Q2 ∂

∂Q2

1∫
0

dx f̂ba(x,Q
2) = 0 . (6.1.7)

Including K in the splitting function Pba(x) via the replacements

Pba(x) −→ Pba(x) +K δba δ(1− x) , (6.1.8)

and defining Cba(x) = C
(R)
ba (x) +C(V)δba δ(1− x), the parton distribution function of parton

a including QCD corrections up to O(α) then reads

f̂ba(x,Q
2) = δba δ(1− x) +

αs
2π

[
Pba(x) log

Q2

κ2
+ Cba(x)

]
. (6.1.9)

In this form the violation of Bjørken scaling is evident.

6.1.3 Factorisation and the collinear counterterm

Eq. (6.1.9) contains one left-over divergence, namely when parton b is created collinear to
parton a with k2

⊥ → 0. This collinear divergence is not subject to the singularity cancellation
with the virtual terms because, in practice, the hard process might be able to distinguish
between the quark and the gluon. The limit k2

⊥ → 0 corresponds to a long-range part
of the strong interaction that is not calculable in perturbative QCD. Hence, the invariant
cut-off κ2 takes on a physical meaning to effectively separate the perturbative from the
non-perturbative regime3.

Thus, to obtain a parton distribution function of a hadron fa(x,Q2) its bare parton distri-
bution function of the naïve parton model, fa,0(x), has to be convoluted with the partonic
parton distribution function of the last section, eq. (6.1.9), giving

fa(x, µ
2
F ) = fa,0(x) +

αs
2π

∑
b

1∫
x

dξ

ξ
fb,0(ξ)

[
Pab

(
x

ξ

)
log

µ2
F

κ2
+ Cab

(
x

ξ

)]
(6.1.10)

as the renormalised parton distribution. The sum runs over all parton flavours b present
in the hadron the parton a could have originated from. The scale µF , introduced to define
the renormalised parton distribution, is called the factorisation scale. It is to note that the

3Had the collinear divergence been regularised by the means of dimensional regularisation, a pole structure

f̂ba(x,Q2)
∣∣∣
div
∝ −1

ε
Pba(x)

would have been recovered. The finite part would then have retained the same form as in eq. (6.1.9), only
κ2 would now have had the meaning of the dimensional renormalisation scale commonly denoted µ2. Its
physical interpretation, however, is less intuitive as the one of an invariant cut-off.
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treatment of the finite constant Cab is arbitrary and is defined by the factorisation scheme.
Eq. (6.1.10) then leads to the parton distribution at any Q2

fa(x,Q
2) =

∑
b

1∫
x

dξ

ξ
fb(ξ, µ

2
F )

{
δab δ

(
1− x

ξ

)
+
αs
2π

[
Pab

(
x

ξ

)
log

Q2

µ2
F

+ Cab

(
x

ξ

)]}
.

(6.1.11)

The ability to factorise short- and long-distance contributions to the parton distributions,
and thus to any physical cross section according to eq. (6.1.2), is a fundamental property
of the theory. This was proven to hold to all orders in perturbation theory in [181]. The
factorisation scale µF itself is an arbitrary parameter, effectively separating the scales at
which partons are considered part of the hadronic structure (k⊥ < µF ) and the scales where
they are part of short-distance physics (k⊥ > µF ), which is calculable perturbatively. Hence,
generalising eq. (6.1.2) to the QCD improved parton model and, as being the most relevant
case in this part of this thesis, to two initial state protons, Pa and Pb, the factorised cross
section reads

σ(Pa + Pb → X + . . .)

=
∑
a,b

1∫
0

dxa

1∫
0

dxb fa(xa, µFa) fb(xb, µFb) σ̂ab(a+ b→ X,µFa, µFb, µR) . (6.1.12)

Again, as in eq. (6.1.2), the ellipsis stands for the the proton remnants. In principle, for
both proton’s parton distribution functions the factorisation scales µFi could be specified
separately. However, in practice they are usually set to a common value µFa = µFb = µF .
Further, the dependence of the short distance cross section on the renormalisation scale
µR is made explicit. In principle, introducing also higher order corrections to the parton
distribution functions, they could also depend on µR. Further in many calculations, especially
in all modern extractions of parton distribution functions from data [185, 186, 187, 188, 189],
all arbitrary scales are set to a common value, µFa = µFb = µR = µ. Thus, the conventions
here have to be carefully matched when carrying out a perturbative calculation based on
the factorisation theorem and a set of parton distributions fitted to experimental data using
another calculation, as not to introduce any inconsistencies.

6.1.4 The DGLAP equations

As already discussed earlier, the parton distribution functions of a hadron cannot be cal-
culated perturbatively. Nonetheless, their dependence on the factorisation scale µF can be
calculated. Thus, once measured at one scale they are known at any other scale in the
perturbative regime. By demanding that fa(x, µ2

F ) of eq. (6.1.11) is independent of µF the
evolution equation is obtained. Differentiating with respect to µ2

F ∂/∂µ
2
F gives a differential

equation for the µF -dependence of fa(x, µ2
F )

µ2
F

∂

∂µ2
F

fa(x, µ
2
F ) =

αs
2π

∑
b

1∫
0

dξ

ξ
Pab

(
x

ξ

)
fb(ξ, µ

2
F ) . (6.1.13)

This equation is known as the DGLAP equation and represents the analogue of the β-function
for parton density evolution. It was derived first for QED in [174, 175, 176], and for QCD in
[93].
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Introducing t = µ2
F and replacing αs by its running value αS(t) gives

t
∂

∂t

 fqi(x, t)

fg(x, t)

 =
αs(t)

2π

2Nf∑
j=1

1∫
x

dξ

ξ

 Pqiqj

(
x
ξ

)
Pqig

(
x
ξ

)
Pgqj

(
x
ξ

)
Pgg

(
x
ξ

)  fqj(ξ, t)

fg(ξ, t)

 (6.1.14)

making the forms explicit for the QCD partons, quarks and gluons. The sum now runs over
all quarks and anti-quarks. This form of the DGLAP equation does not only hold for QCD
splittings at O(αs) but to any order in perturbative QCD, as shown in [190, 191]. Thus,
eq. (6.1.14) generalises to

t
∂

∂t

 fqi(x, t)

fg(x, t)

 =
αs(t)

2π

2Nf∑
j=1

1∫
x

dξ

ξ

 Pqiqj

(
x
ξ
, αs(t)

)
Pqig

(
x
ξ
, αs(t)

)
Pgqj

(
x
ξ
, αs(t)

)
Pgg

(
x
ξ
, αs(t)

)  fqj(ξ, t)

fg(ξ, t)

 .

The regularised splitting kernels Pab(z, αs(t)) now have a perturbative expansion in αs
Pqiqj(z, αs) = δijP

(0)
qq (z) + αs

2π
P (1)
qiqj

(z) +O(α2
s)

Pqig(z, αs) = P (0)
qig

(z) + αs
2π
P (1)
qig

(z) +O(α2
s)

Pgqi(z, αs) = P (0)
gqi

(z) + αs
2π
P (1)
gqi

(z) +O(α2
s)

Pgg(z, αs) = P (0)
gg (z) + αs

2π
P (1)
gg (z) +O(α2

s) .

(6.1.15)

Charge conjugation and flavour SU(Nf ) symmetries impose further relations

Pqiqj = Pq̄iq̄j

Pqiq̄j = Pq̄iqj

Pqig = Pq̄ig ≡ Pqg

Pgqi = Pgq̄i ≡ Pgq ,

(6.1.16)

restricting their functional form. The leading order terms P (0)
ab are the familiar Altarelli-

Parisi splitting kernels [93]. The next-to-leading order terms have been calculated in [192,
193, 194, 195, 196]. But, since they are not incorporated in standard Markovian parton-
shower Monte-Carlo programs, they will not be discussed here4. The explicit form of the
leading order splitting functions is discussed in Section C.

The leading order DGLAP splitting kernels P (0)
ab (z), representing the classical limit, can be

interpreted for z < 1 as the probabilities of finding a parton a in a parton b with an energy
fraction z and relative transverse momentum k2

⊥ < µ2. However, due to the inclusion of
virtual corrections, cf. eq. (6.1.8), this interpretation does not hold for z = 1.
The above consideration lead to the following sum rules

0 =

1∫
0

dz P (0)
qq (z)

0 =

1∫
0

dz z
(
P (0)
qq (z) + P (0)

gq (z)
)

0 =

1∫
0

dz z
(
2Nf P

(0)
qg (z) + P (0)

gg (z)
)

(6.1.17)

4 Attempts have been made to incorporate the NLO splitting kernels in a Monte-Carlo simulation, cf. [197,
198]. Their inclusion in the Markovian simulations is however not straight forward due to their non-positive
definiteness for z < 1.
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Figure 6.4: Kinematics of a generic timelike final state parton
branching. While the splitting of one final state
parton a into partons b and c is explicitly depicted,
the rest of the matrix element is denoted by the
gray blob.

corresponding to quark number and momentum conservation in both the splittings of quarks
and gluons.

6.2 Parton evolution

6.2.1 Approximate real emission cross sections

This section discusses how real emission cross sections, approximated in the soft-collinear
limit can be derived from the general considerations of the previous section. At first, final
state timelike branchings are considered where one a final state parton a splits into two
partons b and c, as depicted in Figure 6.4. The following relation is then assumed for the
respective parton virtualities

p2
b , p

2
c � p2

a ≡ t . (6.2.1)

This corresponds to a strict hierarchy in the variable t when moving away from the n-parton
matrix element, taken as the baseline. Further, defining the energy fractions of partons b
and c as

z = zb = 1− zc =
Eb
Ea

= 1− Ec
Ea

, (6.2.2)

the virtuality of parton a then reads in the collinear limit, where the opening angle θ between
partons b and c tends to zero,

t = p2
a = q2 = 2EbEc (1− cos θ)

θ→0

−−−−→ z(1− z) θ2E2
a . (6.2.3)

This is directly related to the relative transverse momentum of the splitting

k2
⊥ = z(1− z) q2 = z2(1− z)2 θ2E2

a . (6.2.4)
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Thus, the the following differentials are equivalent

dt

t
=

dq2

q2
=

dk2
⊥

k2
⊥

=
dθ2

θ2
. (6.2.5)

To compute now the term in the real emission matrix element corresponding to a branching
of one of its final state legs a into partons b and c the following factorisation is used

|Mn+1,ba|2 ∝ |Mn|2 ⊗
αs
t
Fba(z;λa, λb, λc) . (6.2.6)

Herein, Fba is the full vertex function in the collinear approximation, depending on the
relative energies of partons a, b and c, and their respective spins (quarks) or polarisations
(gluons) λa, λb and λc. Both the n- and (n + 1)-parton matrix elements are well-defined in
the collinear limit, where all particles are approximately on-shell. The collinear divergences
of Mn+1 are encoded in the 1/t-propagator function while further singularities due to soft
gluon emissions, zg → 0, might be present in vertex function. The convolution the n-parton
matrix element with the vertex functions is necessary because of the latter’s dependence on
the spin/polarisation state of parton a. Integrating out these spin/polarisation degrees of
freedom the vertex function reduces to

〈Fba(z;λa, λb, λc)〉 =

∫
dφ

2π
Fba(z, φ) = P̂ba(z) , (6.2.7)

where P̂ba(z) are the unregularised splitting functions5. Simultaneously the vertex function
looses its spin dependence, and the above convolution reduces to a simple product of real
functions.
Using this to compute cross sections from the collinearly approximated matrix elements,
also initial state fluxes F and the final state phase space element dΦn have to be considered.
This leads to

dσn = F dΦn |Mn|2 with dΦn =
n∏
i\a

d3pi
2(2π)3Ei

· d3pa
2(2π)3Ea

(6.2.8)

The product runs over all final state partons, except for a. Its phase space element is denoted
separately. Initial state partons are assumed not to be present. Hence, all contributions to
the real emission cross section come from branchings of final state partons. Thus, the flux
factor remains unaltered for all contributions while the phase space element now reads

dΦn+1 =
n+1∏
i\b,c

d3pi
2(2π)3Ei

· d3pb
2(2π)3Eb

· d3pc
2(2π)3Ec

=
n∏
i\a

d3pi
2(2π)3Ei

· d3pa
2(2π)3Ea

· 1

32π3
dt dz dφ

= dΦn ·
1

32π3
dt dz dφ .

(6.2.9)

5The unregularised Altarelli-Parisi splitting functions are related to the regularised Altarelli-Parisi split-
ting functions of eq. (6.1.15) through

Pab(z) =
[
P̂ab(z)

]
+

where [. . . ]+ is the so-called plus-distribution, introduced in Appendix C.
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Figure 6.5: Kinematics of a generic spacelike initial state par-
ton branching. While the splitting of one initial
state parton a into partons b and c is explicitly de-
picted, the rest of the matrix element is denoted by
the gray blob.

Herein, the linearity of the momentum conservation equation, pa = pb+pc, and the Jacobians
in the collinear approximation, derived from eq. (6.2.3) have been used. Thus, the (n + 1)-
parton matrix element in the collinear approximation, summed over all possible splitter
partons a and all possible splitting products b = g, q, reads

dσn+1 = dσn ⊗
n∑
a=1

∑
b=q,g

dt

t
dz

dφ

2π

αs
2π

Fba(z, φ) . (6.2.10)

Integrating out the spin dependence of Fba(z;λa, λb, λc), i.e. the dependence on the azimuthal
angle φ, using eq. (6.2.7) leads to

dσn+1 = dσn ·
n∑
a=1

∑
b=q,g

dt

t
dz

αs
2π

P̂ba(z) . (6.2.11)

Thus, the (n + 1)-parton cross section in the collinear approximation can be expressed in
terms of the n-parton cross section times a sum over unregularised Altarelli-Parisi splitting
kernels describing all possible splittings, averaged over spins and polarisations of both the
splitter and the splittees. The approximated (n+ 1)-parton cross section of eq. (6.2.10) pos-
sesses the same collinear divergence structure as the full (n+1)-parton cross-section, because
it is derived in exactly these infrared divergent limits. For eq. (6.2.11), however, this is not
necessarily the case due to the averaging over the intermediate parton a’s spin/polarisation.
Nonetheless, the approximation in the form of eq. (6.2.11) carries a great practical advan-
tage: it only requires a spin-summed n-parton cross section as input and the convolution of
eq. (6.2.10) reduces to a trivial product. Thus, no information about the n-parton matrix
element is required beyond its parton flavours and momenta to calculate its dominant higher
order corrections.
Turning now to processes with initial state partons and the associated spacelike parton
branchings where one initial state parton a splits into two partons the kinematics are as
follows: parton b, which is the previous n-parton process’ initial state, and parton c which is

98 Chapter 6 DGLAP resummation & approximate higher order corrections



part of the new final state. Parton a is now the initial state of the (n+ 1)-parton process, as
depicted in Figure 6.5. The kinematic invariants are assumed to have the following hierarchy

|p2
a|, p2

c � |p2
b | ≡ t . (6.2.12)

The splitting variable z is defined as in eq. (6.2.2), i.e.

z = zb = 1− zc =
Eb
Ea

= 1− Ec
Ea

. (6.2.13)

Thus, the virtuality of parton b can be expressed as

t = |p2
b | = |q2| = 2EaEc (1− cos θc) = (1− z)E2

a θ
2
c . (6.2.14)

Again, this is directly related to the relative transverse momentum of the splitting

k2
⊥ = z(1− z) |q2| = z(1− z)2E2

a θ
2
c , (6.2.15)

and, again, also eq. (6.2.5) holds for initial state splittings. The (n+ 1)-particle phase space
can then be parametrised in this particular collinear branching as

dΦn+1 = dΦn ·
1

32π3
dt

dz

z
dφ , (6.2.16)

following analogous steps to eq. (6.2.9). However now also the parton flux changes, obeying
the relation

F(Eb) = F(z Ea) = zF(Ea) , (6.2.17)

and, thus, introducing again a factor z to eq. (6.2.16). Consequently, the (n + 1)-parton
collinearly approximated cross section factorises as in the case of final state branchings,
eq. (6.2.10)

dσn+1 = dσn ⊗
2∑
b=1

∑
a=q,g

dt

t
dz

dφ

2π

αs
2π

Fba(z, φ) , (6.2.18)

or, averaging over spins and polarisations,

dσn+1 = dσn ·
2∑
b=1

∑
a=q,g

dt

t
dz

αs
2π

P̂ba(z) . (6.2.19)

Thus, the same formula holds for initial and final state splittings, summing the splitting
functions over all partons of the n-parton process for all possible splitting, i.e into/from
quarks or gluons.
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Figure 6.6: Graphical representation of (constrained) initial state and (unconstrained) final
state evolution in the case of a quark line. Successive gluon emissions reduce
the scale of the quark line from tn ∼ Q2 at the hard process down to t0, the
infrared cut-off of the evolution signaling the onset of non-perturbative effects.
The xi in case of initial state evolution signify the momentum fraction of the
parton at scale ti of the proton it originates from. Both the ti and the xi obey
the strict relations t0 < t1 < . . . < tn and x0 > x1 > . . . > xn, respectively.

6.2.2 Parton evolution

As noted already at the very start of this chapter, for splittings in the soft-collinear limit
factors of αs log(Q2/κ2) occur, where the logarithm is produced by integrating over P̂ba(z)
down to some resolution scale κ. If this resolution scale κ2 is of the order of the hard
interaction scale Q2, the logarithm is of order one and the usual behaviour of the perturbative
series in αs is recovered. If now much softer objects are to be resolved κ2 � Q2 then the
logarithm is large and higher orders in αs do not decrease in size. Hence, these contributions
have to be considered from every order in the perturbative series. The factorised cross section
of both eq. (6.2.11) and eq. (6.2.19) now provides the means to analyse the dominant terms
order-by-order iteratively.

Taking Figure 6.6 as a guideline, the parton evolution is again described by the DGLAP
equation, eq. (6.1.13). In this context, the parton distribution function fa may be the parton
distribution of parton a inside the initial state hadron probed at scale t and momentum
fraction x, or it is the momentum fraction distribution of the produced final state parton at
scale t. Both follow the same evolution equation, although their direction of evolution differs,
cf. Section 6.2.1. Being defined in terms of the regularised Altarelli-Parisi splitting kernels,
the singularities present at z → 1 corresponding to soft gluon emissions are regularised.
While the above form is particularly useful for analytical analyses of the dominant higher
order corrections in the collinear limit, they are not that well suited for studying particular
properties of individual parton splittings or differential parton distributions. To this end,
consider the probability of a parton a to emit any parton b at any scale t′ inbetween the
scales t ∼ Q2 and some infrared cut-off scale t0. This is given by the considerations of the
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last section by

Pa(t, t0) =
∑
b=q,g

t∫
t0

dt′

t′

∫
dz

αs(t
′)

2π
P̂ba(z) , (6.2.20)

in collinear limit at leading order. Herein, the soft gluon singularites are still present in the
unregularised kernels P̂ab(z) and have to be regularised by tightening the integration bound-
aries to zmin > 0 and zmax < 1. The collinear singularity in 1/t is similarly regularised by
introducing the scale t0 as a lower limit on the t integration. Emissions outside the integra-
tion region, i.e. having either z > zmax, z < zmin or t′ < t0, are considered unresolvable. Once
parton a has radiated at scale t′ and is thereby transformed into parton b, the probability it
radiates again inbetween t′ and t0 is given by

Pb(t′, t0) =
∑
c=q,g

t′∫
t0

dt′′

t′′

∫
dz

αs(t
′′)

2π
P̂cb(z) . (6.2.21)

Consequently, the resulting distribution of the number of emissions between two scales t and
t0 follows Poisson statistics. Therefore, the probability of no emission inbetween both scales
is given by

∆a(t, t0) ≡ Pa(t, t0)n

n!
exp[−Pa(t, t0)]

∣∣∣∣
n=0

= exp

−∑
b=q,g

t∫
t0

dt′

t′

∫
dz

αs(t
′)

2π
P̂ab(z)

 .

(6.2.22)

This is the so-called Sudakov form factor, representing probability of evolving from scale t to
scale t0 without any resolvable emission. It in fact sums all collinearly enhanced virtual con-
tributions and non-resolvable real emissions to all orders. Therein, the virtual contributions
are included via the unitarity of the splitting probability and the Kinoshita-Lee-Nauenberg
theorem [91, 92], cf. eqs. (6.1.5)-(6.1.8). The phase space boundaries on the z integration
can in principle be chosen arbitrarily. However, arguing on physical grounds, they should be
chosen such, that the criterion of non-resolvability is fulfilled in a similar way both for the
regions z > zmax, z < zmin and the region t′ < t0. This leads to the relation

z(1− z) >
t0
t

(6.2.23)

for timelike final state partons. Thus,

zmax = 1− zmin
∼= t0

t
for t0 � t . (6.2.24)

With the help of the Sudakov form factor the DGLAP equation, eq. (6.1.13), can now
be rewritten for resolved emissions in terms of the unregularised Altarelli-Parisi splitting
functions as

t
∂

∂t
fa(x, t) =

∑
b=q,g

∫
dz

z

αs(t)

2π
P̂ab(z) fb

(x
z
, t
)

+
fa(x, t)

∆a(t, t0)
t
∂

∂t
∆a(t, t0) . (6.2.25)
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Of course, the same phase space restrictions to the z integral apply as in the Sudakov form
factor itself. They again have been omitted for brevity. This then leads to an equation
similar in form to the DGLAP equation, only now for fa/∆a instead of fa itself

t
∂

∂t

fa(x, t)

∆a(t, t0)
=

1

∆a(t, t0)

∑
b=q,g

∫
dz

z

αs(t)

2π
P̂ab(z) fb

(x
z
, t
)
. (6.2.26)

In this form, this equation can be integrated, giving

fa(x, t) = ∆a(t, t0)fa(x, t0) +
∑
b=q,g

t∫
t0

dt′

t′
∆b(t, t0)

∆b(t′, t0)

∫
dz

z

αs(t
′)

2π
P̂ab(z) fb

(x
z
, t′
)
. (6.2.27)

Using the property of the Sudakov form factorisation

∆a(t1, t2) = ∆a(t1, t
′) ·∆a(t

′, t2) , (6.2.28)

which can directly be derived from eq. (6.2.22), corresponding to independent emissions, this
simplifies to

fa(x, t) = ∆a(t, t0) fa(x, t0) +
∑
b=q,g

t∫
t0

dt′

t′

∫
dz′

z′
αs(t

′)

2π
P̂ab(z

′) ∆b(t, t
′) fb

( x
z′
, t′
)
. (6.2.29)

This makes evolution of parton a evident: the first term gives the probability that parton a
evolves from scale t to scale t0 without any resolvable emission, while second term describes
the probability of evolving from scale t down to scale of the first branching t′ where it trans-
forms into parton b. The evolution of parton b is then described by reinserting eq. (6.2.29)
into itself, i.e.

fb

( x
z′
, t′
)

= ∆b(t
′, t0) fb

( x
z′
, t0

)
+
∑
c=q,g

t′∫
t0

dt′′

t′′

∫
dz′′

z′′
αs(t

′′)

2π
P̂bc(z

′′) ∆c(t
′, t′′) fc

( x

z′z′′
, t′′
)
.

Thus, the differential branching pattern can be computed iteratively with the help of eq.
(6.2.29).

6.2.3 Scale choices for the running coupling

In the previous section the coupling αs was always taken to be running, i.e. varying with the
scale of the respective branching. This running is defined via the QCD β-function as

αs(µ) =
αs(µ0)

1 + αs(µ0)β0 log µ
µ0

(6.2.30)

However, the scale µ was always only indicated as being of the order of the branching scale t.
Taking t simply as the virtuality |q2| of the branching parton then the Sudakov form factor
of eq. (6.2.22) behaves in the limit t→∞ keeping t0 fixed as

∆a(t, t0) ∝
(
t0
t

)c1 ( αs(t)

αs(t0)

)c2
∝
(
t0
t

)c3
, (6.2.31)
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with the positive constants c1, c2 and c3. Thus, at large t, the Sudakov form factor vanishes
like a negative power of t. [199] show that instead t = k2

⊥ = z(1 − z)|q2| should be used as
its argument. Expanding eq. (6.2.30) to next-to-leading order then gives

αs(k
2
⊥) = αs(|q2|) + β0 log[z(1− z)]

α2
s(|q2|)
4π

+O(α3
s) . (6.2.32)

Combining this with the (1 − z)−1 singularity found in all gluon emission unregularised
Altarelli-Parisi splitting functions, P̂ab(z), a next-to-leading order behaviour of the form

αs(k
2
⊥)

1

1− z
z→1

−−−−−−−−→ log[1− z]

1− z . (6.2.33)

This behaviour is indeed found in explicit calculations of higher-order corrections to the
splitting functions P̂ab(z). Thus, the Sudakov form factor vanishes more rapidly in the limit
t→∞

∆a(t, t0) ∝
(
αs(t)

αs(t0)

)c4 log t

, (6.2.34)

enhancing the radiation probability.

6.3 Soft emission corrections

In the previous sections a formalism has been reviewed that takes into account collinear
enhancements of parton branchings to all orders in perturbation theory. However, there also
exist enhancements of higher order corrections originating in the emission of soft massless
gauge bosons: gluons in QCD and photons in QED. Evidences of the associated soft diver-
gences have been present throughout the derivation of the DGLAP equation and the Sudakov
form factor in the form of diverging unregularised Altarelli-Parisi splitting functions in the
limit of z → 1 and z → 0. As shown in Appendix C, the soft divergence for z → 0, present
in P̂gg(z) only, can be mapped by symmetry arguments onto the divergence z → 1. However,
these soft gluon divergences are not restricted to the collinear limit, but are are distributed
all over the real emission phase space. This soft divergence is universal6, and takes the same
form as that derived in Part I of this thesis.
In the limit of soft gluon emissions the next-to-leading order amplitude factorises into eikon-
als, equivalently to eq. (2.2.1),

dσn+1 = dσn ⊗
αs
2π

ωdω
dΩ

2π

∑
i,j

Cij
pi · pj

pi · q pj · q

= dσn ⊗
αs
2π

ωdω
dΩ

2π

∑
i,j

−Cij
2

[
pi
pi · q

− pj
pj · q

]2

.

(6.3.1)

The n-parton cross section is convoluted with the colour factor Cij in the spirit of [51]. Its
explicit form is

Cij = −Ti ·Tj = Cji , (6.3.2)
6Universal in this context means, that the soft limit is determined by the partons’ charges and momenta

only. Especially, it is independent of the partons’ spin and flavour, contrary to the collinear limit.
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where Ti and Tj are the (colour) charges of partons i and j. Thus, in QCD the Cij are
matrices in colour space. The sum in eq. (6.3.1) extends over all ordered pairs of charged
particles, whose momenta are denoted pi and pj. q is the gluon momentum and ω is its
energy. dΩ is the solid angle element. The second line of eq. (6.3.1) is the generalisation
to massive partons emitting the soft massless gluon. The colour weighted some of the soft
eikonals is also called the antenna pattern of the process.
In this form one sees that the simple single-parton evolution picture of the previous section,
manifestly evident in the various forms of the DGLAP equation, is not suited to describe the
soft divergence structure of a process. Thus, soft gluons are emitted coherently by the entire
ensemble of charged particles. Further, since the soft limit is spin-independent, eq. (6.3.1)
is the full equivalent of eq. (6.2.10). Ansatzes to incorporate both limits take the dipole
factorisation as a basis and add DGLAP evolution on top of it, such that

dσn+1 = dσn ⊗
∑
i,j

dVij (6.3.3)

with

dVij →



dt
t

dz dφ
2π

αs
2π
Fgi(z, φ) for pi · k → 0, ω finite

dt
t

dz dφ
2π

αs
2π
Fgj(z, φ) for pj · k → 0, ω finite

ωdω dΩ
2π

αs
2π
Cij

pi·pj
pi·q pj ·q for ω → 0 .

(6.3.4)

Examples of such an ansatz are the Catani-Seymour dipole subtraction [51, 95, 52] and the
antenna factorisation [200, 201, 202, 203].
For QCD there are further methods to approximately incorporate both limits at the same
time. In the limit of an infinite number of colours, Nc →∞, the colour correlation matrices
read [62]

Cij = −Ti ·Tj →

 Ti
2 +O(N−2

c ) for i = q

1
2
T2
i +O(N−2

c ) for i = g

 ≡ Ci . (6.3.5)

Thus, all Cij ≡ Ci depend only on the emitting parton. Further, all Ci are real valued
numbers and the convolution of eq. (6.3.1) reduces to an ordinary product; the sum over
ordered parton pairs i, j may be rewritten as a sum over single emitting partons of the n-
body phase space. Similarly, the soft-collinear splitting functions Vij reduce to Vi with the
following properties

dVij → dVi =


dt
t

dz dφ
2π

αs
2π
Fgi(z, φ) for pi · k → 0, ω finite

ωdω dΩ
2π

αs
2π
Ci

pi·ε
pi·q for ω → 0

. (6.3.6)

ε is the polarisation of the external soft gluon. This enables to retain the simple single-
parton evolution picture, however, coming at the cost of large-Nc accuracy in the soft limit
only. These terms can also be approximately recovered by either using t = θ as the evolution
variable, which is a valid choice according to eq. (6.2.5) and has been used in [204, 205],
or by using a conventional evolution variable t = |q2| and imposing an additional veto, i.e.
θ0 < θ1 < ... < θn, cf. [206].
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Chapter 7

Parton showers and fixed order corrections –
The reinterpretation and automisation of the
POWHEG method

The DGLAP resummation, as reviewed in the last chapter, allows for the constructing
of parton showers, supplementing Born level processes with higher order real and virtual
correction approximated in the collinear limit. Such parton showers are successful tools to
describe intrajet evolution. However, by construction they grossly misestimate the amount
and radiation pattern of hard wide angle emission. Further, employing parton showers only
to estimate higher order effects lack, due to their unitarity, the overall normalisation of a
true next-to-leading order calculation, i.e. the cross section of the inclusive process under
consideration. This roots in the fact that the associatedK-factor, the ratio of the leading and
next-to-leading order cross section, is largely determined by non-logarithmic contributions.
Further, to accurately estimate uncertainties intrinsic to perturbative calculations, which
manifest themselves for instance in uncertainties related to choices of renormalisation and
factorisation scales, full next-to leading order corrections are needed.
Two different methods to achieve the systematic inclusion of a complete NLO calculation
in a parton shower Monte-Carlo: MC@NLO [11] and POWHEG [12, 13]. The latter one is
adopted in this thesis and reformulated into a matrix element reweighted parton shower
supplemented with a next-to-leading order weight. This reformulation facilitates an auto-
mated implementation, provided tree-level matrix element for the real emission correction
are known. The framework of the SHERPA event generator provides both a parton shower,
the CSS [62] based on Catani-Seymour splitting kernels [51, 52], and two tree-level matrix
element generators, COMIX [26] and AMEGIC++ [25]. AMEGIC++ also contains an automated
implementation of the Catani-Seymour subtraction terms [51, 52], rendering it well-suited
for the present purpose.
This part of this thesis therefore reports on the methods and findings published in [65].
It outlines as follows: Section 7.1, after briefly introducing the notation facilitating the
purpose of this chapter, reviews the decomposition real emission matrix elements into their
singular limits employing a single-leg language. This single-leg formulation is well suited to
discuss these matrix elements on the same footing as the DGLAP equation in the spirit of
Section 6.2.1. This is then used to construct an abstract parton shower formalism in Section
7.2, implementing the DGLAP resummation in the form of Section 6.2.2. Section 7.3 then
reviews a possibility to account for non-logarithmic higher-order corrections not present
in the collinear approximation. Finally, Section 7.4 reformulates the POWHEG technique
as an advanced method of effecting such fixed-order next-to-leading corrections upon an
existing parton shower, supplementing it with a next-to-leading order weight. To guarantee
full next-to-leading order accuracy for any observable, this reformulation of the POWHEG
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method intimately links the decomposition of the real emission matrix elements by the
parton shower and the subtraction terms. This will be discussed in great detail in Section
7.5. Section 7.6 then elaborates on the ambiguities of the POWHEG method and Section
7.7 uses these ambiguities to relate it to the MC@NLO method. Section 7.8 then briefly
introduces the relevant parts of the SHERPA event generator necessary for its automation.
The only missing bit of the NLO calculation driving the POWHEG method are the virtual
contributions, which still need to be interfaced on a process-by-process basis. It is the first
time that the POWHEG method has been automated using dipole subtraction rather than
the Frixione-Kunszt-Signer method [207, 208]. The overall quality of the implementation
will be exemplified in a number of characteristic processes containing only a single coloured
line (i.e. two colour-charged particles) at the Born level in Section 7.9, including the hitherto
unpublished case of W -pair production in hadronic collisions. Section 7.10 on the other
hand presents results for non-trivial colour structures. Section 7.11 finally summarises the
results.

7.1 Decomposition of the real-emission cross sections

This and the two following section will introduce the notation and the formalism neces-
sary to discuss the formulation and implementation of the POWHEG method to incorporate
next-to-leading order corrections into parton shower Monte Carlo generators in order to
reach hadron level predictions with next-to-leading order accuracy in perturbative QCD and
non-perturbative corrections calculated on an event-by-event basis. Therefore, the route
of Section 6.2 is pursued, but with a notation adapted to the task at hand, precisely de-
tailing all components entering a certain expression to explicitly keep track of all ratios of
parton distributions, symmetry factors and the like. The starting point of the discussion
is the factorisation theorem underlying the specific parton-shower model, like the DGLAP
equation [174, 175, 176, 93], the colour-dipole model [209, 210, 211], Catani-Seymour factori-
sation [51, 52] or antenna factorisation [200, 201, 202, 203]. Except in collinear factorisation,
the splitting functions of the parton shower depend on (at least) one additional parton, which
is often referred to as the “spectator”. In order to make this connection explicit, the notation
of a dipole-like factorisation is adopted, which is sufficiently general to discuss all relevant
features.
In the following, sets of n particles in a 2 → (n − 2) process will summarily be denoted
by {~a} = {a1, . . . , an}, and the particles will be specified through their flavours {~f } =
{f1, . . . , fn} and momenta {~p } = {p1, . . . , pn}. The generic expression for a fully differential
Born-level cross section in a scattering process with (n−2) final-state particles can be written
as a sum over all contributing flavour combinations as

dσB({~p }) =
∑
{~f }

dσB({~a}) , where dσB({~a}) = dΦB({~p }) B({~a}) . (7.1.1)

The individual terms in the sum are given by

B({~a}) = L({~a})B({~a}) , B({~a}) =
1

F ({~p})
1

S({~f })
|MB|2 ({~a}) ,

dΦB({~p }) =
dx1

x1

dx2

x2

dΦB({~p }) , L({~a};µ2) = x1ff1(x1, µ
2) x2ff2(x2, µ

2) .

(7.1.2)

Here, |MB|2 ({~a}) denotes the partonic matrix element squared, with all factors due to
averaging over initial state quantum numbers such as spin or colours absorbed into it, and
dΦB({~p}) is the corresponding differential n-particle partonic phase-space element; S({~f })
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is the symmetry factor due to identical flavours associated to the partonic subprocess, while
F ({~p}) denotes the flux factor and L is the parton luminosity given by the corresponding
parton distribution functions (PDFs). In the case of leptonic initial states, ignoring QED
initial state radiation, the parton distribution functions f(x, µ2) are replaced by δ(1− x).
In a similar fashion, the real-emission part of the QCD next-to-leading order cross section
can be written as a sum, this time over parton configurations {a1, . . . , an+1}, i.e. including
one additional parton. A corresponding subprocess cross section reads

dσR({~a}) = dΦR({~p }) R({~a}) . (7.1.3)

At this point, it is helpful to introduce a notation for mappings from real-emission parton
configurations to Born parton configurations. Such mappings combine the partons ai and
aj into a common “mother” parton aı̃, in the presence of the spectator ak by defining a new
flavour fı̃ and by redefining the particle momenta. To be specific,

bij,k({~a}) =

{
{~f } \ {fi, fj} ∪ {fı̃}
{~p } → {~̃p } . (7.1.4)

The flavour of the “mother” parton, fı̃, is thereby fixed unambiguously by the QCD inter-
actions, while the flavour of the spectator, fk, remains unaltered, cf. also [51, 52]. The
momentum map guarantees that all partons are kept on their mass shell.

Conversely, any Born parton configuration and a related branching process ı̃, k̃ → ij, k
determine the parton configuration of a real-emission subprocess as

rı̃,k̃(fi,ΦR|B ; {~a}) =

{
{~f } \ {fı̃} ∪ {fi, fj}
{~̃p } → {~p } . (7.1.5)

The radiative variables ΦR|B are thereby employed to turn the n-parton momentum config-
uration into an n+1-parton momentum configuration using the inverse of the phase-space
map defined by eq. (7.1.4). The flavour fj is again determined unambiguously by the QCD

interactions. Here, also two obvious generalisations of eq. (7.1.4) shall be defined, bij,k({~f })
and bij,k({~p }), which act on the parton flavours and on the parton momenta only. Corre-
spondingly, such generalisations exist for eq. (7.1.5).
In the soft and collinear limits, the partonic matrix element squared, R({~a}), can be decom-
posed as a sum of terms Dij,k({~a}),

R({~a}) →
∑
{i,j}

∑
k 6=i,j

Dij,k({~a}) . (7.1.6)

This corresponds directly to eq. (6.3.3) incorporating both the collinear limit of eq. (6.2.6)
and eq. (6.2.10), and the soft limit of eq. (6.3.1) in the spirit of [51, 52]. These terms
Dij,k({~a}) factorise into a Born-level term and a universal splitting kernel, encoding the
transition of aı̃ to ai and aj. The splitting is associated with a universal procedure for
factorising the phase-space integral into a Born level part and a one-particle radiative phase
space,

dΦR({~p }) = dΦB(bij,k({~p })) dΦij,k
R|B({~p }) . (7.1.7)

The existence of universal decompositions like in eq. (7.1.6) forms the basis of subtraction
methods like the Catani-Seymour dipole subtraction [51, 52], antenna subtraction [200, 201,
202, 203], or the subtraction method of Frixione, Kunszt, and Signer [207, 208, 212]. It also
serves as starting point for the construction of parton shower algorithms [62, 213, 214], which
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aim at approximating parton emissions in the collinear and soft limits of the radiative phase
space, to resum the associated large logarithms, cf. Section 6.2 and 7.2.
However, it is important to stress that, also away from the infrared limits, R({~a}) can be
decomposed into a number of terms Rij,k such each Rij,k contains exactly one singular limit,
analogous to the Dij,k,
Rij,k({~a}) := ρij,k({~a})R({~a}) . (7.1.8)

The projector ρij,k({~a}) is discussed in great detail in Section 7.5. For the present purpose
the precise form of the ρij,k({~a}) is of no interest. They only need to fulfil the following
completeness relation∑
{i,j}

∑
k 6=i,j

ρij,k({~a}) = 1 ∀ {~a} ∈ ΦR , (7.1.9)

and each ρij,k({~a}) must project on exactly one singular limit, i.e.

Rij,k({~a})→ Dij,k({~a}) . (7.1.10)

Thus, eq. (7.1.3) can now be rewritten as a sum of trivially factorised contributions

dσR({~a}) =
∑
{i,j}

∑
k 6=i,j

dσB(bij,k({~a})) dσij,kR|B({~a}) , (7.1.11)

where

dσij,kR|B({~a}) = dΦij,k
R|B({~p }) Rij,k({~a})

B(bij,k({~a}))
. (7.1.12)

dΦij,k
R|B({~p }) are now exactly the radiation variables in the specific singular limit of Rij,k.

Thus, according to Section 6.2.1, it can be written in terms of the collinear radiation variables
dt, dz and dφ. Further, Rij,k({~a}) = L({~a})Rij,k({~a}). These equations are key ingredients
to understanding and implementing the POWHEG method.

7.2 Construction of a parton shower

This section aims at the abstract formulation of a generic parton shower algorithm, wherein
the notation emphasises the single-leg evolution inherent to the DGLAP resummation. How-
ever, due to the requirement of local momentum conservation the presence of one or several
spectators is strictly necessary. Through this notation the generalisation to dipole or even
multipole based parton showers is trivial. Further, this notation also enables a straightfor-
ward correction of the parton shower approximation to the exact matrix elements discussed
in the last section.
As was realised in Section 6.3, the non-Abelian nature of QCD prevents the terms Dij,k in
eq. (7.1.6) to factorise on the level of squared matrix elements, including all colour contribu-
tions. To arrive at a practical model for a parton shower, sub-leading colour configurations
are therefore neglected, which leads to an assumed factorisation on the level of squared
matrix elements. In the infrared limits one can then write

Dij,k({~a}) → B(b
(PS)
ij,k ({~a}))

S(b
(PS)
ij,k ({~f }))
S({~f })

1

2 pipj
8π αsKij,k(pi, pj, pk) ≡ R(PS)

ij,k ({~a}) ,
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(7.2.1)

the parton shower’s approximation to the real emission matrix element. Therein, the set of
momenta b(PS)ij,k ({~p }) is determined by the phase-space map of the parton-shower model.1 The
parton map b(PS)ij,k ({~a})) as well as its inverse r(PS)

ı̃,k̃
(fi,ΦR|B ; {~a}) are defined in full analogy to

the subtraction terms’ parton maps of eq. (7.1.4) and eq. (7.1.5). As noted, such an assumed
factorisation, decoupling the colour degrees of freedom of the splitting from the ones of the
leading order process, can only hold in the leading colour approximation (Nc →∞), as was
shown in eq. (6.3.5). Thus, quantities Kij,k, known as the parton-shower evolution kernels
which depend on the parton flavours fi, fj and fk and on the radiative phase space, fulfil
the limits of soft-collinear limits of eq. (6.3.6). Hence, their spin-averaged versions converge
to the familiar unregularised Altarelli-Parisi splitting functions P̂i ı̃(z) in the collinear limit.
The denominator factor 2 pipj or any linearly dependent quantity is usually used to define
the parton shower evolution variable, in the following denoted by t. Using the above model,
the parton-shower approximation of eq. (7.1.12) can be derived as

dσ
(PS) ij,k
R|B ({~a}) = dΦij,k

R|B({~p })
S(b

(PS)
ij,k ({~f }))
S({~f })

1

2 pipj
8π αsKij,k(pi, pj, pk)

L({~a})
L(b

(PS)
ij,k ({~a}))

= dΦij,k
R|B({~p })

R
(PS)
ij,k ({~a})

B(b
(PS)
ij,k ({~a}))

. (7.2.2)

Partons produced in the parton shower are resolved at a certain evolution scale and can
therefore be distinguished from partons at higher and lower scales. At most the final state
two partons ai and aj, emerging from the same splitting process, can be seen as identical.
Hence, the ratio of symmetry factors in eq. (7.1.12) changes to

S(b
(PS)
ij,k ({~f }))
S({~f })

→ 1

Sij
=

{
1/2 if i, j > 2 and ai = aj
1 else . (7.2.3)

The integral over the radiative phase space can be written as

dΦij,k
R|B({~p }) =

1

16π2
dt dz

dφ

2π
Jij,k(t, z, φ) , (7.2.4)

with t the evolution variable, z the splitting variable, and φ an azimuthal angle. Here, J
denotes the Jacobian factor, that potentially arises due to the transformation of variables.
eq. (7.2.2) thus becomes

dσ
(PS) ij,k
R|B ({~a}) =

dt

t
dz

dφ

2π

αs
2π

1

Sij
Jij,k(t, z, φ)Kij,k(t, z, φ)

L({~a}; t)
L(b

(PS)
ij,k ({~a}); t)

, (7.2.5)

which is the direct analogue of eq. (6.2.11). The assignment of the mother parton, the
spectator and the underlying Born process can now be assumed to be fixed. Then, the
sum runs over all possible real-emission configurations originating from this particular Born-
level state instead. Furthermore, assuming independence of the individual emissions, i.e.

1 Note that here only parton showers with local energy-momentum conservation are considered. Therefore,
the phase-space maps {~p }R → {~p }B exist.
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Poisson statistics, this leads to the constrained no-branching probability of the parton-shower
model [215, 177] between the two scales t′′ and t′

∆
(PS)

ı̃,k̃
(t′, t′′; {~a}) = exp

{
−
∑
fi=q,g

∫ t′′

t′

dt

t

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

αs
2π
Kij,k(t, z, φ)

L(r
(PS)
ı̃,k̃

(fi, t, z, φ; {~a}); t)
L({~a }; t)


= exp

{
−
∑
fi=q,g

∫ t′′

t′
dΦij,k

R|B({~p })
R

(PS)
ij,k ({~a})

B(b
(PS)
ij,k ({~a}))

}
,

(7.2.6)

which is the analogue of the Sudakov form factor of eq. (6.2.22) for constrained parton
evolution. The integral boundaries as well as the values of t′ and t′′ of the second form
are given implicitly according to eq. (7.2.4). It is worth noting that eq. (7.2.6) depends
on the underlying Born process, since the flavour and momentum of the spectator enter as
arguments of Jij,k and Kij,k, or dΦij,k

R|B and Rij,k. The ratio of L in eq. (7.2.6) accounts for
a potential change of the parton luminosity when integrating over the initial-state phase
space2. Note that the partons {~a} in eq. (7.2.6) denote a Born-level set, while in (7.2.2) and
(7.2.5) {~a} denote a set of partons at real-emission level. Using the definition

∆(PS)(t0, µ
2; {~a}) =

(PS)∏
{ı̃,k̃}

∆
(PS)

ı̃,k̃
(t0, µ

2; {~a}) (7.2.7)

the total cross section in the parton-shower approximation reads

σB =
∑
{~f }

∫
dΦB({~p }) B({~a})

 ∆(PS)(t0, µ
2; {~a})

+

(PS)∑
{ı̃,k̃}

∑
fi=q,g

∫ µ2

t0

dt

t

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

αs
2π
Kij,k(t, z, φ)

L(r
(PS)
ı̃,k̃

(fi, t, z, φ; {~a}); t)
L({~a }; t) ∆(PS)(t, µ2; {~a})

 ,

(7.2.8)

or

σB =
∑
{~f }

∫
dΦB({~p }) B({~a})

 ∆(PS)(t0, µ
2; {~a})

+

(PS)∑
{ı̃,k̃}

∑
fi=q,g

∫ µ2

t0

dΦij,k
R|B({~p })

R
(PS)
ij,k ({~a})

B(b
(PS)
ij,k ({~a}))

∆(PS)(t, µ2; {~a})

 .

(7.2.9)

The superscript (PS) on the sum or product over emitter-spectator pairs denotes the fact,
that only such pairings as present in the parton shower are considered. Thus, in conventional

2 Note that, depending on the parton shower model, the xi do not necessarily fulfil the relation xi =
x̃i/z [216, 64].
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parton shower formulations emitter-spectator pairs whose colour correlator Cij, cf. eq. (6.3.2)
and eq. (6.3.5), vanishes in the large-Nc limit are discarded. The scale t0 acts as the infrared
cutoff of the parton shower. Simple inspection shows that the sum in the square bracket
equals unity, since the second term can be written as∫ µ2

t0

dt
d∆(PS)(t, µ2; {~a})

dt
. (7.2.10)

This makes the probabilistic properties of the parton shower explicit. At the same time it
also shows that this unitarity leads to the cross section in standard parton-shower Monte
Carlos to be exactly the respective leading-order cross section. In order to evaluate the
formal accuracy of the description of the radiation pattern, induced by the second term
in the square bracket – the first term encodes the probability that there is no resolvable
emission off the Born-level configuration – a corresponding observable must be introduced.
This complicates the discussion somewhat and is therefore postponed to Secs. 7.4.1 and 7.4.2.

7.3 Matrix element corrections to parton showers

The aim of this section is to devise a simple method for reinstating O(αs) accuracy in the
emission pattern of the parton shower, i.e. the hardest emission in the parton shower should
follow the distribution given by the corresponding real-emission matrix element. Loosely
speaking, the key idea is to replace the splitting kernels K with the ratio of real-emission and
Born-level matrix elements. Thus, instead of the splitting kernels, this ratio is exponentiated
in the Sudakov form factor and employed in simulating the splitting.
Comparing eqs. (7.1.12) and (7.2.2), a corresponding factor correcting the parton shower
approximation K to resemble the exact ration R/B can be easily identified. Using eq. (7.2.3),
this corrective weight can actually be defined per splitting function, i.e. per {ij, k} pair. It
reads

wij,k({~a}) =
dσij,kR|B({~a})

dσ
(PS) ij,k
R|B ({~a})

=
ρ
(PS)
ij,k ({~a})R({~a})
R(PS)
ij,k ({~a})

=
2 pipj
8π αs

S({~f })
S(b

(PS)
ij,k ({~f }))

ρ
(PS)
ij,k ({~a})R({~a})

B(b
(PS)
ij,k ({~a})) Kij,k({~a})

.

(7.3.1)

ρ
(PS)
ij,k is the parton shower’s analogue of ρij,k introduced in eq. (7.1.8), it projects the real

emission matrix element onto the singular regions of the parton shower. At this stage,
because the parton shower only considers finite emission above some infrared cut-off t0, both
projectors are completely independent objects. Nonetheless, defining

R(PS)({~a}) ≡
∑
{i,j}

(PS)∑
k 6=i,j

R(PS)
ij,k ({~a}) and R(PS)

ij,k ({~a}) ≡ ρ
(PS)
ij,k ({~a})R(PS)({~a}) , (7.3.2)

and employing the parton-shower approximation, eq. (7.2.1), gives

w({~a}) =

 ∑
{m,n}

(PS)∑
l 6=m,n

S(b
(PS)
mn,l({~f }))
S({~f })

B(b
(PS)
mn,l({~a}))
R({~a})

8π αs
2 pmpn

Kmn,l({~a})

−1

=

R(PS)({~a})
R({~a})

−1

.

(7.3.3)
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Note that this global corrective weight is splitter-spectator independent. Correcting the par-
ton shower to the full matrix element can thus be achieved through the following algorithm:

1. Determine an overestimate for eq. (7.3.3) for every possible splitting ı̃ → i j, i.e.
find a set of Wı̃,fi for every Born flavour state {~f} such that the global correc-
tion weight w(r

(PS)
ı̃,k̃

(fi,ΦR|B; {~a})) ≤ Wı̃,fi({~f }) for any real emission configuration

r
(PS)
ı̃,k̃

(fi,ΦR|B; {~a}) that can be generated off the Born configuration {~a} and splitting

ı̃→ i j for all spectators k̃.

2. Replace the parton shower splitting kernels Kij,k by the overestimate Wı̃,fi({~f })Kij,k.

3. Accept parton-shower branchings with probability w(r
(PS)
ı̃,k̃

(fi,ΦR|B; {~a}))/Wı̃,fi({~f }).

It can then be shown that the constrained no-branching probability of such a matrix-element
corrected parton shower reads

∆
(ME)

ı̃,k̃
(t′, t′′; {~a}) = exp

{
−
∑
fi=q,g

1

16π2

∫ t′′

t′
dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(rı̃,k̃(fi; {~f }))
S({~f })

ρ
(PS)
ij,k R(r

(PS)
ı̃,k̃

(fi, t, z, φ; {~a}))
B({~a})

 ,

(7.3.4)

wherein the obvious argument of the projector ρ(PS)ij,k has been suppressed for brevity. The
ratio R/B in eq. (7.3.4) coincides with the ratio in the original publications presenting the
POWHEG method. In the relatively simple cases treated so far [12, 13, 143, 144, 145, 147,
148, 146, 152, 153, 150, 149], the various symmetry factors in the equation above cancel and
can be neglected. For more complicated flavour structures this factor may differ from one
and therefore must be retained.
Employing again the definition of eq. (7.2.7), but this time for the Sudakov form factor ∆(ME)

constructed from the ratio R/B yields the cross section in the matrix element improved
parton shower approximation. It reads

σB =
∑
{~f }

∫
dΦB({~p }) B({~a})

[
∆(ME)(t0, µ

2; {~a}) (7.3.5)

+

(PS)∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(rı̃,k̃(fi; {~f }))
S({~f })

ρ
(PS)
ij,k R(rı̃,k̃(fi, t, z, φ; {~a}))

B({~a}) ∆(ME)(t, µ2; {~a})
]
.

Again, the term in the square bracket equals one and thus reflects the probabilistic nature of
this approach. Consequently, in the matrix-element improved parton-shower approximation
the total cross section is given by the Born cross section, although the radiation pattern has
improved. For a detailed discussion of the real-emission term see Section 7.4.2.

112 Chapter 7 The reinterpretation and automisation of the POWHEG method



7.4 The reformulation of the POWHEG method

In this thesis, the POWHEG method is reinterpreted as an advanced matrix-element correction
technique for standard parton showers. Having introduced the necessary notation in the last
three sections, this section outlines the parallels between the POWHEG method and traditional
matrix-element corrections. It then assesses the fixed-order and resummation properties of
the POWHEG method.

7.4.1 Approximate NLO cross sections

In the previous two sections it has become clear that the total cross section of events sim-
ulated in a parton-shower Monte-Carlo is determined by the “seed” cross section, typically
computed at Born level. While matrix-element improvement of the naive parton-shower
picture will lead to radiation patterns which are accurate to O(αs), the total cross section
of the event sample and any observable that can be defined at Born level will still be given
by the respective leading-order expression. To allow for a simulation with next-to-leading
order accuracy, including the cross section of the event sample, a prescription to assign a
corresponding weight and multiplicity of the seed event must be found.
The solution is to replace the original Born-level matrix element with a modified one [12, 13],
denoted by B̄,

dσB({~a}) → dσB̄({~a}) := dΦB({~p }) B̄({~a}) . (7.4.1)

Such that the “seed” cross section, dσB̄, integrates to the full NLO result. When constructing
such an NLO-weighted differential cross section for the Born configuration, certain approxi-
mations must be made, since NLO cross sections have two contributions, one with Born-like
kinematics and one with real-emission like kinematics, both of which exhibit divergent struc-
tures. The value of a given infrared and collinear safe observable, O, computed at NLO, is
given in terms of the Born term B, the real emission term R, and the virtual contribution
(including the collinear counter-terms), denoted by Ṽ, as

〈O〉(NLO) =
∑
{~f }

∫
dΦB({~p })

[
B({~a}) + Ṽ({~a})

]
O({~p })

+
∑
{~f }

∫
dΦR({~p }) R({~a})O({~p }) .

(7.4.2)

It is obvious that the real-emission contribution cannot be simply combined with the Born
and virtual terms, as it depends on different kinematics. In the following, the solution of
this problem in the framework of the POWHEG method is outlined.
In order to compute eq. (7.4.2) in a Monte-Carlo approach, subtraction terms, rendering
the real emission finite in D = 4 space-time dimensions are introduced. Corresponding
integrated subtraction terms regularise the infrared divergences of the virtual terms. In the
dipole subtraction method [51, 52], the equation above can then be written as

〈O〉(NLO) =
∑
{~f }

∫
dΦB({~p })

[
B({~a}) + Ṽ({~a}) + I({~a})

]
O({~p })

+
∑
{~f }

∫
dΦR({~p })

R({~a})O({~p })−
∑
{i,j}

∑
k 6=i,j

Sij,k({~a})O(bij,k({~p }))

 .
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(7.4.3)

Note that each Sij,k defines a separate phase-space map and that the observable O in the last
term depends on the parton map bij,k({~p }), rather than {~p }, which is a crucial feature of
the subtraction procedure. The real and integrated subtraction terms Sij,k({~a}) and I({~a})
fulfil the relation

I({~a}) =
∑
{i,j}

∑
k 6=i,j

∫
dΦij,k

R|B({~p }) Sij,k({~a}) . (7.4.4)

Identifying Dij,k with Sij,k, the term with real-emission kinematics in eq. (7.4.3) can then be
decomposed according to eq. (7.1.8), resulting in∑
{~f }

dΦR({~p })
∑
{i,j}

∑
k 6=i,j

[
Rij,k({~a})O({~p })− Sij,k({~a})O(bij,k({~p }))

]
. (7.4.5)

Therein, the implicit projector ρij,k is defined in terms of Sij,k and its associated singular
region, as in eq. (7.1.8). In the POWHEG method, this term is approximated as

∑
{~f }

dΦR({~p })
∑
{i,j}

∑
k 6=i,j

[
Rij,k({~a})− Sij,k({~a})

]
O(bij,k({~p })) (7.4.6)

=
∑
{~f }

dΦB({~p })
∑
{ı̃,k̃}

∑
fi=q,g

dΦij,k
R|B

[
Rij,k(rı̃,k̃({~a}))− Sij,k(rı̃,k̃({~a}))

]
O({~p }) .

Thus, in this form all contributions have the same dependence on the observable O. This
allows the combination of all contributions into one function, the B̄-function

B̄({~a}) = B({~a}) + Ṽ({~a}) + I({~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦij,k

R|B

[
Rij,k(rı̃,k̃({~a}))− Sij,k(rı̃,k̃({~a}))

]
. (7.4.7)

Note that the difference with respect to an exact result lies in the phase-space dependence
of the real-emission contribution to 〈O〉. To restore NLO accuracy, the following correction
term must be added∑
{~f }

dΦB({~p })
∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦij,k

R|B Rij,k(rı̃,k̃({~a}))
[
O(rı̃,k̃({~p }))−O({~p })

]
. (7.4.8)

In the next section it will be shown that the combination of B̄ with a matrix-element corrected
parton shower can recover exactly this correction. It is also through this relation, that a
relation between ρij,k and ρ(PS)ij,k is established.

7.4.2 The POWHEG method and its accuracy

The key point of the POWHEG method is, to supplement Monte Carlo event samples from
matrix-element corrected parton showers with a next-to-leading order weight to arrive at
full NLO accuracy. This is achieved by combining the two methods discussed in Secs. 7.3
and 7.4.1. To obtain the O(αs) approximation to the cross section in the POWHEG method,
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the parton-shower expression of the real-emission probability is combined with the approx-
imated initial cross section, dσB̄. This yields the following master formula for the value of
an infrared and collinear safe observable, O,

〈O〉(POWHEG) =
∑
{~f }

∫
dΦB({~p }) B̄({~a})

[
∆(ME)(t0, µ

2; {~a})O({~p })

+

(PS)∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(r
(PS)
ı̃,k̃

({~f }))
S({~f })

ρ
(PS)
ij,k (r

(PS)
ı̃,k̃

({~a})) R(r
(PS)
ı̃,k̃

({~a}))
B({~a})

×∆(ME)(t, µ2; {~a}) O(r
(PS)
ı̃,k̃

({~p }))
]
,

(7.4.9)

where obvious arguments of the parton shower parton map r
(PS)
ı̃,k̃

have been suppressed.
Clearly, if the observable O on the right hand side of eq. (7.4.9) becomes one, the quantity
computed is the total cross section, as for the cases discussed in Sections 7.2 and 7.3. This
particular case, however, is insensitive to the details of the radiation pattern. eq. (7.4.9) can
be rearranged as [12, 13]

〈O〉(POWHEG) =
∑
{~f }

∫
dΦB({~p }) B̄({~a})

[
O({~p })

+

(PS)∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(r
(PS)
ı̃,k̃

({~f }))
S({~f })

ρ
(PS)
ij,k (r

(PS)
ı̃,k̃

({~a})) R(r
(PS)
ı̃,k̃

({~a}))
B({~a})

×∆(ME)(t, µ2; {~a})
[
O(r

(PS)
ı̃,k̃

({~p }))−O({~p })
] ]

,

(7.4.10)

Two special cases should now be considered [12, 13]

• The infrared limit (t→ 0)
In this case, only the first term in eq. (7.4.10) contributes, as any infrared safe observ-
able maps the real-emission kinematics for collinear (soft) emissions to the kinematics
of the (any) underlying Born configuration

O(r
(PS)
ı̃,k̃

({~p })) t→0→ O({~p })

The contribution to 〈O〉(POWHEG) from this phase-space region is therefore correct to
O(αs). Further, close to this limit the dominant contributions to 〈O〉 come from the
leading logarithmic terms in both the real emission matrix element and the matrix ele-
ment corrected Sudakov form factor in the real emission term. Thus, also the accuracy
of the DGLAP resummation is preserved.
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• Hard emissions (t→ µ2)
In this case ∆(ME) → 1 and to O(αs) one can replace B̄ → B. Thus, the second term
in eq. (7.4.10) becomes

∑
{~f }

∫
dΦB({~p })

(PS)∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

dt

∫
dz

∫
dφ

2π
Jij,k(t, z, φ)

×
S(r

(PS)
ı̃,k̃

({~f }))
S({~f })Sij

ρ
(PS)
ij,k (r

(PS)
ı̃,k̃

({~a})) R(r
(PS)
ı̃,k̃

({~a}))
[
O(r

(PS)
ı̃,k̃

({~p }))−O({~p })
]
.

Comparing this result with the correction term, eq. (7.4.8), reveals that both expres-
sions differ by the factor S({~f })Sij/S(rı̃,k̃({~f })), which arises solely due to the way
the real-emission phase space is populated by the parton shower (cf. Section 7.2).
Therefore, the contribution to 〈O〉(POWHEG) from this phase-space region is correct to
O(αs) as long as both parton maps are complete.

In the phase-space regions “between” these limits, the POWHEG method interpolates smoothly
between the two above results. However, as will be derived in the following section, theO(αs)
expansion of the POWHEG master formula, eq. (7.4.9), can be shown to coincide with fixed-
order next-to-leading order result if specific relations between the two parton maps ρij,k and
ρ
(PS)
ij,k are established.

7.5 The single-singularity projectors ρij,k and ρ(PS)ij,k

The functions ρij,k and ρ(PS)ij,k are not projectors in the strict mathematical sense, i.e. neither
ρij,k · ρij,k 6= ρij,k nor ρ(PS)ij,k · ρ

(PS)
ij,k 6= ρ

(PS)
ij,k . Nonetheless, both have to fulfil the following

relations, cf. eq. (7.1.8) and eq. (7.3.2)∑
{i,j}

∑
k 6=i,j

ρij,k({~a}) = 1 ∀ {~a} ∈ ΦR (7.5.1)

and

∑
{i,j}

(PS)∑
k 6=i,j

ρ
(PS)
ij,k ({~a}) = 1 ∀ {~a} ∈ ΦR | t(ΦR) > t0 . (7.5.2)

Further, eq. (7.4.7) demands that ρij,k({~a}) also fulfils the relation

ρij,k({~a})R({~a})→ Dij,k({~a}) = Sij,k({~a}) (7.5.3)

in the soft-collinear limits. While the completeness relation ensures∑
{i,j}

∑
k 6=i,j

Rij,k({~a}) = R({~a}) ∀ {~a} ∈ ΦR (7.5.4)
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the second relation guarantees the presence of exactly one singular structure in each Rij,k,
namely that of the corresponding subtraction term. The latter is a vital prerequisite in
Section 7.4, where the subtracted real emission contribution to the total cross section is
broken down into a sum of dipole contribution. Each of them has to be finite, thus the
divergence structures of Rij,k({~a}) and Sij,k({~a}) have to match exactly. Because the parton
shower only considers resolved emission above some infrared cut-off t0 this condition does not
have to be satisfied by the ρ(PS)ij,k . In fact, it is explicitly violated by the fact that the parton
shower neglects terms which are subleading in colour, and thus neglects their singularity
structure.

Without any further specifications of the relations between ρij,k and ρ(PS)ij,k , it could only be
shown in the last section that the POWHEG master formula, eq. (7.4.9), correctly reproduces
the fixed-order next-to-leading order results in the limit t→ 0 and t→ µ2. To achieve next-
to-leading order accuracy over the full phase space for an arbitrary observable eq. (7.4.9) has
to be expanded in αs giving

〈O〉(POWHEG) =
∑
{~f }

∫
dΦB({~p})

(
B + Ṽ + I

)
({~a}) O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦB({~p}) dΦij,k

R|B

(
ρij,k(rı̃,k̃({~a})) R(rı̃,k̃({~a})) Θ(t0 − tij,k)

− Sij,k(rı̃,k̃({~a}))
)
O({~a})

+
∑
{~f }

∫
dΦB({~p})

 ∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦij,k
R|B ρij,k(rı̃,k̃({~a})) R(rı̃,k̃({~a}))

−
(PS)∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦij,k
R|B ρ

(PS)
ij,k (r

(PS)
ı̃,k̃

({~a})) R(r
(PS)
ı̃,k̃

({~a}))

 O({~a})

+
∑
{~f }

(PS)∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦB({~p}) dΦij,k
R|B ρ

(PS)
ij,k (r

(PS)
ı̃,k̃

({~a})) R(r
(PS)
ı̃,k̃

({~a})) O(r
(PS)
ı̃,k̃

({~a}))

+ O(α2
s) .

(7.5.5)

From this expansion it is immediately clear that observables that vanish on the Born phase
space, i.e. O({~α}) = 0 for every Born configuration {~a}, are determined at the same accu-
racy as in a fixed-order NLO calculation. This is guaranteed by the completeness relation
eq. (7.5.2). However, due to the term in the third line which arises because of the potential
mismatch of the parton maps and projectors between the parton shower and the subtraction
algorithms, the observable’s dependence on the Born phase space is distorted. Its depen-
dence is already given to NLO accuracy by the terms of the first two lines. Thus, it remains
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to be shown that ∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦij,k
R|B ρij,k(rı̃,k̃({~a})) R(rı̃,k̃({~a}))

−
(PS)∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦ
ij,k (PS)
R|B ρ

(PS)
ij,k (r

(PS)
ı̃,k̃

({~a})) R(r
(PS)
ı̃,k̃

({~a}))

 = O(α2
s)

(7.5.6)

for every Born phase configuration {~a}. Obviously, the above statement holds true if both
parton maps coincide. Introducing ρ̄ij,k as a common projector for both the subtraction
terms and the parton shower, then necessarily also defining identical parton maps, b̄ij,k({~a})
and r̄ı̃,k̃({~a}), the O(αs) expansion of the POWHEG master formula then reads

〈O〉(POWHEG) =
∑
{~f }

∫
dΦB({~p})

(
B + Ṽ + I

)
({~a}) O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦB({~p}) dΦij,k

R|B

(
ρ̄ij,k(r̄ı̃,k̃({~a})) R(r̄ı̃,k̃({~a})) Θ(t0 − tij,k)

− Sij,k(r̄ı̃,k̃({~a}))
)
O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦB({~p}) dΦij,k
R|B ρ̄ij,k(r̄ı̃,k̃({~a})) R(r̄ı̃,k̃({~a})) O(r̄ı̃,k̃({~a}))

+ O(α2
s) ,

(7.5.7)

coinciding, up to O(α2
s) terms, with the fixed-order next-to-leading expression for any in-

frared safe observable O. Further, the equality of both parton maps consequently enforces
the usage of a shower algorithms which matches the subtraction formalism. Thus, when
employing the Catani-Seymour subtraction scheme [51, 52], as is done in this thesis, this
enforces the usage of a parton shower based on the same phase space maps, e.g. [62, 213],
cf. Section 7.8.
In general, however, since most parton showers operate in the Nc → ∞ limit, the parton
maps cannot coincide for every emitter-spectator pair {ı̃, k̃} for processes with non-trivial
colour structures at the Born level, i.e. where the Born amplitude contains more than just
a δ-function in colour space. This is because pairs {ı̃, k̃} corresponding to a subleading
colour dipoles in an 1/Nc expansion of the amplitude are not present in the parton shower
maps. These missing dipoles, however, contribute to the soft limit, as was shown in Section
6.3. For t > t0 their respective contributions are finite and can be effected collectively
through the remaining correction weights wij,k of eq. (7.3.1) of the leading terms in the large
Nc expansion, resulting in a correct description of the real emission amplitude in Nc = 3
through the corrected parton shower3.

3 In practice, it turns out that most of these subleading colour contributions are opposite in sign to
the leading colour contributions, thus effectively lowering the correction weights wij,k and improving the
numerical behaviour of the ME-correction algorithm.
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Thus, by the above arguments, the form of the common projector ρ̄ij,k is fixed to resemble
ρ
(PS)
ij,k for t > t0. Nonetheless, in the singular limit still the condition eq. (7.5.3) has to hold,

thus enforcing

ρ̄ij,k({~a}) =


ρij,k({~a}) for t({~a}) < t0

ρ
(PS)
ij,k ({~a}) for t({~a}) > t0

. (7.5.8)

In particular, for subleading colour dipoles the projector needs to vanish above t0 in order
to fulfil eqs. (7.5.1)-(7.5.3).
To derive an explicit functional form for the projectors ρ̄ij,k suitable for a Monte Carlo
implementation it is advantageous to separate the Monte Carlo phase space definitions,
usually implemented through phase space cuts Θ({~a}) to regularise Born processes which
are already divergent by themselves, from the observable definition. In this notation the
subtracted real emission contribution to a fixed-order next-to-leading order calculation would
read

∑
{~f}

∫
dΦR({~a})

R({~a}) Θ({~a})O({~a})

−
∑
{i,j}

∑
k 6=i,j

Sij,k({~a}) Θ(bij,k({~a}))O(bij,k({~a}))

 .

(7.5.9)

In general, for t({~a}) < t0 the ρij,k can now be defined as

ρij,k({~a}) =
Sij,k({~a})H(bij,k({~a}))∑

{m,n}

∑
l 6=m,n

Smn,l({~a})H(bmn,l({~a}))
. (7.5.10)

Such a form was already suggested in [13]. Herein the function H(bij,k({~a})) is defined on the
Born phase space. Its precise functional form is arbitrary, as long as it fulfils the following
constraints:

• When bij,k({~a}) approaches the Born singularity, H(bij,k({~a})) needs to vanish suffi-
ciently fast such that

∑
{~f}

∫
dΦR({~a})

[
Rij,k({~a}) Θ({~a})− Sij,k({~a}) Θ(bij,k({~a}))

]

is still integrable.

• H(bij,k({~a})) needs to be well behaved, such that numerical integration is feasible.
Most importantly it should be positive definite and free of integrable divergences.

• For all bij,k({~a}) where Θ(bij,k({~a})) 6= 0 H(bij,k({~a})) should be equal to unity. This
is not a strict requirement, but otherwise event weights of the other parts of the next-
to-leading order calculation would have to be modified accordingly.
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To illustrate this further, first consider the process of the production of a W boson at
a hadronic collider. Since there are no divergences present in this process at the Born
level the trivial choice H(bij,k({~a})) = Θ(bij,k({~a})) = 1 throughout the phase space is
sufficient, because Θ({~a}) = 1 then implies Θ(bij,k({~a})) = 1 for all parton maps. Thus, the
decomposition of R into singular regions is complete because if R({~a}) Θ({~a}) 6= 0 then all
Sij,k({~a})H(bij,k({~a})) = Sij,k({~a}) Θ(bij,k({~a})) 6= 0.
Next consider the case of the production of a Drell-Yan pair at a hadron collider. Here
the Born phase space has to be cut to shield against the virtual photon singularity. How-
ever since, when working within the Catani-Seymour subtraction scheme, all parton maps
leave Lorentz-invariant quantities of the Drell-Yan pair unchanged the choice H(bij,k({~a})) =
Θ(bij,k({~a})) = 1 is again sufficient, provided the Born amplitude’s phase space cuts are de-
fined invariantly. Again, the reason for this to hold is that Θ({~a}) = 1 implies Θ(bij,k({~a})) =
1 for all parton maps.
For a less trivial example consider now the production of vector boson in association with
a jet. In order to define the process at Born level, a phase space cut has to be introduced
shielding against the divergence when the transverse momentum of the jet goes to zero.
Requiring a minimum transverse momentum of the jet of p⊥cut would be sufficient to achieve
this. However, with this choice Θ({~a}) = 1 does no longer imply Θ(bij,k({~a})) = 1 to hold
for all parton maps. Thus, choosing H(bij,k({~a})) = Θ(bij,k({~a})) as in the above cases will
lead to some Rij,k being zero. Its singularity region will then be redistributed to all other
Rij,k. Naïvely one might argue that in the strict limit, where this specific Rij,k is singular
Sij,k({~a}) Θ(bij,k({~a})) will not vanish due to the infrared safety of the definition of the parton
maps in any subtraction algorithm. However, close to the singular limit this situation does
indeed occur and then lead to an incomplete subtraction of Rij,k and Sij,k leaving a very
large weight4. Thus, functional forms of H(bij,k({~a})) have to be found that reduce the effect
of such incomplete subtractions to a minimum, dampen the Born singularity, a potentially
doubly singular region for R and the Sij,k, enough and, therefore, leave the subtracted real
emission integral well defined. In Section 7.10, where processes of this structure are under
investigation, this becomes relevant.

In contrast, for t({~t}) > t0 the ρ(PS)ij,k are defined on a completely finite phase space region.
Thus, the definition

ρ
(PS)
ij,k ({~a}) =

R(PS)
ij,k ({~a})∑

{m,n}

∑
l 6=m,n

R(PS)
mn,l({~a})

(7.5.11)

with the definitions of eq. (7.2.1) is completely sufficient.

7.6 Theoretical ambiguities

The POWHEG method possesses an ambiguity regarding which parts of the real emission
matrix elements are and which are not to be exponentiated. This was first noted in [146]

4 This feature of incomplete subtraction is also present in a fixed-order next-to-leading order calculation
using any subtraction scheme. There, however, events fall in only two categories, the observable defined
on the Born phase space or the observable defined on the real emission phase space, making an accidental
cancellation of such incomplete subtractions with the opposite configuration, Θ({~a}) = 0 and Θ(bij,k({~a})) =
1, very likely. But as soon as such incompletely subtracted events are showered they are distributed to many
different observable categories, depending on the exact shower evolution of such an event. It is needless
to say, that the likelihood for such accidental cancellations of incomplete subtractions is then very much
reduced.
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and heavily used in [149]. To this end, the real emission matrix element is split into a singular
and a regular contribution,

R({~a}) = R(s)({~a}) +R(r)({~a}) . (7.6.1)

R → R(s) has to hold in the singular limits, i.e. R(s) has to contain all the singular logarithms.
R(r), thus, in turn is free of any singularities or associated large logarithms which need to
be resummed. Consequently, the POWHEG master formula, eq. (7.4.9), can be altered in the
following way

〈O〉(POWHEG) =
∑
{~f }

∫
dΦB({~p }) B̃({~a})

[
∆̃(ME)(t0, µ

2; {~a})O({~p })

+

(PS)∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(r
(PS)
ı̃,k̃

({~f }))
S({~f })

ρ
(PS)
ij,k (r

(PS)
ı̃,k̃

({~a})) R(s)(r
(PS)
ı̃,k̃

({~a}))
B({~a}) (7.6.2)

× ∆̃(ME)(t, µ2; {~a}) O(r
(PS)
ı̃,k̃

({~p }))
]

+
∑
{~f }

∫
dΦR({~p}) R(r)({~a})O({~p}) ,

i.e. the non-singular part is removed from the exponentiation and then added as an ex-
plicit separate leading order sample. Therein are defined, in full analogy to eq. (7.4.7) and
eq. (7.3.4),

B̃({~a}) = B({~a}) + Ṽ({~a}) + I({~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦij,k

R|B

[
R

(s)
ij,k(rı̃,k̃({~a})) − Sij,k(rı̃,k̃({~a}))

]
,

(7.6.3)

and

∆̃
(ME)

ı̃,k̃
(t′, t′′; {~a}) = exp

{
−
∑
fi=q,g

1

16π2

∫ t′′

t′
dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(rı̃,k̃(fi; {~f }))
S({~f })

ρ
(PS)
ij,k R(s)(r

(PS)
ı̃,k̃

(fi, t, z, φ; {~a}))
B({~a})

 .

(7.6.4)

To show the NLO order accuracy the consideration of Section 7.5 still apply to the expo-
nentiated part of eq. (7.6.2). This ambiguity has two important consequences. Firstly, the
resummation properties, encoded in the Sudakov form factor of eq. (7.6.4), depend on the
specific choice of the separation between R(s) and R(r). Of course, in the region of large
logarithms where resummation effects are important this dependence is minimised by con-
struction. Secondly, the exponentiated part of the real emission cross section, R(s), always
comes with a prefactor of B̃/B = 1 + O(αs), thus introducing arbitrary O(α2

s) terms to
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〈O〉. In contrary, the explicitly added non-exponentiated regular parts R(r) do not have
such a prefactor. Hence, the precise numerical magnitude of the O(α2

s) terms introduced
through the exponentiation, according to eq. (7.6.3), depends again on the splitting defini-
tion between R(s) and R(r). This is especially important for processes with large NLO/LO
K-factors, locally corresponding exactly to B̃/B, such as Higgs boson production in gluon
fusion or the associated production of a bb̄ pair and a W boson [149].
This freedom thus presents an intrinsic uncertainty when matching next-to-leading order
matrix elements and parton showers.

7.7 MC@NLO

This section introduces the alternative method for matching fixed-order next-to-leading order
calculations to parton showers, called MC@NLO [11], using the same single-leg notation
of the previous sections. This allows to straight forwardly establish the equality of both
methods at next-to-leading order and leading logarithmic accuracy and, further, to assess
their relation to one another. MC@NLO employs a pseudo-subtraction using the parton
shower approximation R(PS) to a given real emission correction R. Thus, again starting
from the fixed order expression, cf. eq. (7.4.3),

〈O〉(NLO) =
∑
{~f }

∫
dΦB({~p })

[
B({~a}) + Ṽ({~a}) + I({~a})

]
O({~p })

+
∑
{~f }

∫
dΦR({~p })

R(PS)({~a})O({~p })−
∑
{i,j}

∑
k 6=i,j

Sij,k({~a})O(bij,k({~p }))


+
∑
{~f }

∫
dΦR({~p })

R({~a})O({~p })− R(PS)({~a})O({~p })

 .

(7.7.1)

This form uses the parton shower approximation R(PS) defined in eq. (7.3.2) as an inter-
mediate subtraction term. However, in order for every term in eq. (7.7.1) to be separately
finite, R(PS) would have to exhibit the same singularity structure as the exact real emission
matrix element R, i.e.

R → R(PS) =
∑
{i,j}

(PS)∑
k 6=i,j

R(PS)
ij,k ({~a}) , (7.7.2)

in full analogy to eq. (7.1.6). This relation, however, does not hold in a general case. The
reason lies both in the usual employment of the Nc → ∞ approximation and the usage of
spin-averaged splitting kernels in the parton shower. Nonetheless, supposing5 the parton
shower approximation to the real emission matrix element fulfils the above property this

5 In the original formulation of the MC@NLO method [11, 137] the leading colour parton shower approxi-
mation was modified to smoothly transform into the real emission matrix element in the soft gluon emission
limit to circumvent the impossibility to map its general soft singularity structure onto the Altarelli-Parisi
splitting functions, see Section 6.3. This was justified by the assumption that infrared-safe observables are
insensitive to the angular distribution of soft gluon emissions.
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implies that every R(PS)
ij,k corresponds directly to a subtraction term Sij,k if every R(PS)

ij,k covers
exactly one singular region only. Hence, Sij,k and R(PS)

ij,k coincide in the singular limits, but
may differ in the finite regions. Similarly, all sums necessarily run over the same set of
indices. Consequently, without the need of a further projector a modified B̄-function, B̃,
can be defined

B̃({~a}) = B({~a}) + Ṽ({~a}) + I({~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦij,k

R|B

[
R

(PS)
ij,k (rı̃,k̃({~a}))− Sij,k(rı̃,k̃({~a}))

]
.

(7.7.3)

This leads to the MC@NLO master formula for the expectation value of any arbitrary infrared
safe observable O

〈O〉(MC@NLO) =
∑
{~f }

∫
dΦB({~p }) B̃({~a})

[
∆(PS)(t0, µ

2; {~a})O({~p })

+
∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(r
(PS)
ı̃,k̃

({~f }))
S({~f })

R
(PS)
ij,k (r

(PS)
ı̃,k̃

({~a}))
B({~a}) (7.7.4)

×∆(PS)(t, µ2; {~a}) O(r
(PS)
ı̃,k̃

({~p }))
]

+
∑
{~f }

∫
dΦR({~p})

[
R({~a})− R(PS)({~a})

]
O({~p}) .

Note the absence of any single-singularity projectors from the above definition. Nonetheless,
still the parton maps of the parton shower and the subtraction terms may differ, leading to
a term

∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦij,k
R|B

[
R

(PS)
ij,k (rı̃,k̃({~a}))− R

(PS)
ij,k (r

(PS)
ı̃,k̃

({~a}))
]
O({~a}) (7.7.5)

which potentially still spoils NLO accuracy. Nonetheless, supposing both parton maps are
identical, a requirement also shown to be mandatory for the POWHEG method in the Section
7.5, NLO accuracy is preserved. Further, contrary to the POWHEG method, no additional
terms not present in parton shower are exponentiated in the MC@NLO formalism. The
approximation made in these exponentiated so-called S-events is then corrected to fixed
order by the so-called H-events, a finite leading order sub-sample.
Finally, eq. (7.7.4) exposes the relation of MC@NLO and the POWHEG method. Exploiting
the ambiguity of the POWHEG method, elaborated upon in Section 7.6, and making the
explicit choice of

R(s)({~a}) = R(PS)({~a}) and R(r)({~a}) = R({~a})−R(PS)({~a}) (7.7.6)

sets both methods on equal footing. MC@NLO thus chooses explicitly to exponentiate only
those terms the parton shower does exponentiate, leaving the rest to be added in as a
leading order sample. Consequently, MC@NLO retains all resummation properties of the
parton shower.
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7.8 Realisation of the POWHEG method in the SHERPA Monte
Carlo

This section concerns itself on the details of the implementation of the POWHEG method de-
scriber in the last section within the framework of the SHERPA Monte Carlo event generator.
It introduces its components necessary for this study.
The SHERPA event generator framework [7, 8], was briefly introduced in Section 1.2. SHERPA’s
strong point is the consistent simulation of high multiplicity processes. To this end, SHERPA
contains two internal tree-level matrix element generators AMEGIC++ [25] and COMIX [26] for
the simulation of high-multiplicity final states of well separated partons. Soft and collinear
parton radiation is generated in SHERPA by means of a parton shower based on Catani–
Seymour dipole factorisation [62]. The program also allows to steer external modules for the
computation of virtual corrections using a standardised interface [53]. The corresponding
real corrections and subtraction terms in the Catani-Seymour formalism [51, 52] are then
provided automatically by AMEGIC++ [50].
SHERPA is therefore perfectly suited to implement the POWHEG method as all prerequisites
outlined in Section 7.4 are found within a single, coherent framework.

7.8.1 Matrix elements and subtraction terms

For this study, the matrix-element generator AMEGIC++ [25] is employed. It is based on the
construction of Feynman diagrams, which are evaluated using the helicity methods intro-
duced in [38, 217]. For the computation of NLO cross sections in QCD-associated processes,
AMEGIC++ provides the fully automated generation of dipole subtraction terms [50], im-
plementing the Catani-Seymour formalism [51, 52]. As outlined in Section 7.4.1, such a
subtraction procedure is a necessary ingredient to be able and compute NLO QCD cross
sections with Monte-Carlo methods.
In the Catani-Seymour method, the soft and collinear singularities of the real-emission am-
plitude squared, R({~a}), are removed by a local subtraction term (cf. eq. (7.4.3))

S({~a}) =
∑
{i,j}

∑
k 6=i,j

Sij,k({~a})

=
∑
i,j

∑
k 6=i,j

D̃ij,k({~a}) +
∑
i,j

∑
a

D̃aij({~a}) +
∑
a,j

∑
k 6=j

D̃ajk ({~a}) +
∑
a,j

∑
b6=a

D̃aj,b({~a}) .

(7.8.1)

On the first line, the notation of Section 7.4.1 is adopted, while on the second line the
definitions of [51, 52] are restored by defining i, j, k > 2, a, b = 1, 2 and requiring all indices
to be mutually distinct. Along those lines, D̃ij,k, D̃aij, D̃ajk and D̃aj,b are the four types of
Catani-Seymour dipole terms, as depicted in Fig. 7.1, for final-state splittings with final-state
spectators, final-state splittings with initial-state spectators, initial-state splittings with final-
state spectators and initial-state splittings with initial-state spectators, respectively. This
implies that for final-state splittings, i.e. i, j > 2,

Sij,k = Sji,k =
1

2
D̃ij,k and Sij,a = Sji,a =

1

2
D̃aij , (7.8.2)

while for initial-state splittings

Saj,k = D̃ajk and Saj,b = D̃aj,b . (7.8.3)
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Figure 7.1: Effective diagram for the splitting of (1) a final-state parton connected to
a final-state spectator, (2) a final-state parton connected to an initial-state
spectator, (3) an initial-state parton connected to a final-state spectator and (4)
an initial-state parton connected to an initial-state spectator in the standard
Catani-Seymour notation. The blob denotes the colour correlated leading order
matrix element, and the incoming and outgoing lines label the initial-state and
final-state partons participating in the splitting.

Due to its analytic integrability over the extra emission phase space dΦij,k
R|B in D = 4 − 2ε

dimensions, the subtraction term S, in its integrated form I of eq. (7.4.4), as well as the
collinear counter-terms can be added back to the virtual contributions to cancel their poles
in ε,{

ε
[
Ṽ({~a}) + I({~a})

]}
ε=0

=
{
ε
[
V({~a}) + I({~a}) + C({~a})

]}
ε=0

= 0 , (7.8.4)

wherein V is the one-loop matrix element convoluted with the Born amplitude and C is the
collinear counter-term.
The implementation in SHERPA’s matrix element generator AMEGIC++, expanding upon its
tree-level capabilities to generate B and R, is able to generate both the subtraction terms S
and their integrated counterparts I as well as the collinear counter-term C in an automated
fashion. The virtual contributions V , however, are obtained from dedicated external codes
interfaced using the Binoth-Les Houches Accord [53]. Having all this at hand, the assembly
of the B̄-function of eq. (7.4.7), integrable in D = 4 dimensions, is feasible in an automated
way. This involves integrating over the real-emission subspace of the phase space of the NLO
real correction to the Born process, cf. eq. (7.4.7), and adding the result to the terms with
Born-level kinematics.
The only remaining issue is to construct an integration method, which, starting from a
given Born configuration, is able to fill the real-emission phase space in an efficient man-
ner. Having an implementation of the Catani-Seymour subtraction method at hand, the
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Type α z Type α z
FF yij,k z̃i IF uj xjk,a
FI 1− xij,k z̃i II ṽj xj,ab

Table 7.1: Definition of integration variables in eq. (7.8.5)
for the various dipole configurations of Fig. 7.1.

Type zi,jk ỹij,k Type zj,ak ỹja,k

FF z̃i yij,k IF xjk,a
uj
xjk,a

FI z̃i
1−xij,a
xij,a

II xj,ab
ṽj
xj,ab

Table 7.2: Mapping of variables for eqs. (7.8.6) and (7.8.7). Note
that the definitions for massless partons in [51, 52] are
employed.

construction of an integrator for the real-emission subspace based on CS-subtraction terms
is rendered a straightforward exercise. The actual integration can be decomposed into three
one-dimensional integrals (cf. eq. (7.2.4)) [51, 52]

dΦij,k
R|B =

2 pı̃pk̃
16π2

dα dz
dφ

2π
J̃ij,k(α, z, φ) , (7.8.5)

with the two integration variables α and z given in Tab. 7.1, cf. [50]. The azimuthal angle,
φ, is common to all configurations.
Several different integration channels, each based on a separate CS dipole, can be combined
to yield a multi-channel integrator [45] for the real-emission phase space. The a-priori weights
in the multi-channel can be employed to better adapt to the emission pattern of the process
under consideration. Additionally, every one-dimensional integrator can be individually
improved using the VEGAS algorithm [218, 47].

7.8.2 The parton shower

SHERPA implements a parton shower based on Catani-Seymour (CS) dipole factorisation,
named CSS [62]. The model was originally proposed in [219, 220] and worked out and
implemented in parallel in [62, 213]. It relies on the factorisation of real-emission matrix
elements in the CS subtraction framework [51, 52]. While the original algorithm has been
improved in several ways [29, 64], the following section describes its version specially adapted
to fill the needs of the POWHEG implementation.
Consider the process depicted in Fig. 7.1, where a parton ı̃, accompanied by a spectator par-
ton k̃, splits into partons i and j, with the recoil absorbed by the spectator k. Conveniently
the combined momenta are identified as pij = pi + pj and Q = pij + pk. A Lorentz–invariant
transverse momentum, k̃2

T , which acts as ordering parameter in the parton shower algorithm,
can now be defined as

k̃
(FS) 2
T =

∣∣Q2 −m2
i −m2

j −m2
k

∣∣ ỹij,k zi,jk(1− zi,jk)− (1− zi,jk)2m2
i − z2

i,jkm
2
j , (7.8.6)
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where mi, mj and mk are the parton masses. The above relation holds, independent of
whether the spectator parton is a final- or initial-state particle for all final-state splittings,
while for initial-state splittings a → ã j, again independent of the type of spectator, the
ordering parameter is given by

k̃
(IS) 2
T =

∣∣Q2 −m2
j −m2

a −m2
k

∣∣ ỹja,k (1− zj,ak)−m2
j − (1− zj,ak)2m2

a . (7.8.7)

The precise definition of ỹ and the splitting variables z for the various dipole types are listed
in Tab. 7.2.
Sudakov form factors for all branching types, taking into account finite masses of final-state
partons and strictly relying on the Lorentz-invariant variables z and k̃2

T , have been derived.
The corresponding evolution kernels, as defined in eq. (7.2.1), read

Kij,k(k̃2
T , z) =

1

S̄ij

1

Nspec

〈Vij,k(k̃
2
T , z)〉 , (7.8.8)

where Nspec is the number of spectator partons of the off-shell particle aı̃ in the large NC
limit. The spin-averaged dipole functions 〈V〉, taken in four dimensions, depend on the
type of emitter and spectator parton and are listed in [62]. Their infrared singularities are
regularised through the parton shower cutoff, t0, typically of the order of 1 GeV2. The
denominator factor S̄ij avoids double-counting identical final states in final-state evolution
and is given by

1

S̄ij
=

{
1/2 if i, j > 2
1 else . (7.8.9)

A potential shortcoming of the original approach in [62] is that certain dipole functions
connecting the initial and final state may acquire negative values in some non-singular regions
of the phase space. This prohibits their naive interpretation in terms of splitting probabilities
and leaves the corresponding parts of the phase space unpopulated. The problem was solved
recently by altering the finite parts of the affected splitting functions such that they reproduce
corresponding full matrix elements [221]. The splitting kinematics are defined through the
Catani-Seymour phase space maps.
To generate an emission using the matrix-element correction technique presented in Section
7.3, it is important to be able and access matrix-element information during the parton-
shower evolution, such that eq. (7.3.3) can be implemented in a process-independent manner.
SHERPA provides an interface between its tree-level matrix-element generators and its parton
shower, which allows for all the necessary interactions. Together with an implementation
of the phase-space maps bij,k({~a}), that correspond to the inverse of the Catani-Seymour
splitting kinematics, eq. (7.3.3) can then be realised easily.

7.8.3 Implementation & techniques

This section details the implementation of the POWHEG method within the SHERPA frame-
work described in detail in the previous sections. Simulating events according to eq. (7.4.9)
proceeds in two steps:

1. Computing B̄({~a}), cf. eq. (7.4.7).
AMEGIC++ [25] is used to generate Born and real-emission matrix elements. Subtrac-
tion terms are evaluated in the Catani-Seymour scheme [51, 52] according to [50], as
described in Section 7.8.1. Virtual contributions are computed by external programs,
which can be interfaced using the Binoth-Les Houches accord [53] or through dedi-
cated interfaces. The sum over integrated subtracted real-emission contributions in
eq. (7.4.7) is sampled using a variable number of points. Each integral in turn is evalu-
ated in a Monte-Carlo fashion by using a single point in the respective radiative phase
space, Φij,k

R|B.
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2. Generating the hardest emission.
A matrix-element corrected version of SHERPA’s parton shower CSS [62, 64], described
in Section 7.8.2, is employed to generate the hardest emission. For each trial emission,
AMEGIC++ is invoked to obtain the matrix elements needed to compute the corrective
weight according to eq. (7.3.1)

wij,k({~a}) =
ρ
(PS)
ij,k ({~a})R({~a})
R(PS)
ij,k ({~a})

. (7.8.10)

The emissions are then ordered as in the CSS, i.e. in the relative transverse momentum
k⊥, cf. eqs. (7.8.6) and (7.8.7).

A special situation can arise in some next-to-leading calculations, where certain real-correction
parton configurations cannot be mapped onto any of the underlying Born contributions us-
ing b(PS)ij,k ({~a}). Then two cases can distinguished: mappings that are forbidden because of
kinematic restrictions of the phase space mapped onto and mappings that are forbidden
because of a mismatch in parton flavours.
An example for the former case would be a situation where two high-pT quarks emerge from
a gluon that is collinear to the beam direction in the process uū → e+e−dd̄. The collinear
singularity of the underlying Born process uū → e+e−g is then screened by the large gluon
virtuality. However, a subtraction algorithm would put the gluon on-shell and thus identify
a singular configuration, below the cut on the Born phase space.
An example for the latter case would be the parton-level subprocess uū → e−ν̄e cs̄, con-
tributing at NLO to the production of a W− accompanied by a jet. At O(α2

s) the W can
only be produced by emitting it from a final state cc̄ or ss̄ quark line. In the framework of
a parton-shower, this would be counted as an electroweak correction to dijet production. In
other words, such configurations cannot be connected to any meaningful ratio R/B.
Both of the above examples have in common that they do not lead to singularities, as
the collinear pole is screened by large parton virtualities. Such contributions to the real-
emission cross section do not exponentiate. They can therefore be dealt with in a uniform
way. A solution to the problem was introduced in [146] in order to treat radiation zeros in
W production, see Section 7.6. Its automation is discussed in Section 7.8.4. Therein, real-
radiation corrections R are split into a potentially singular part R(s), that can be mapped
onto an underlying Born contribution, and into a regular part R(r), where this is not possible
or not desired. In this case, no phase-space maps need to be defined. Such a splitting into
singular and non-singular parts can also be employed to implement a different scheme for
matching logarithmic contributions from the parton shower and hard matrix elements, see
Sections 7.4 and 7.7.
Details on how the splitting between singular and non-singular pieces is achieved for processes
with existing underlying Born configurations can be found in Section 7.8.4. Nonetheless, the
event generation then proceeds as above, replacing R → R(s), and adding R(r) explicitly as
a leading order sub-sample.

7.8.4 Automatic identification of Born zeros

It was noted in [146] that eq. (7.3.3) can develop spurious singularities as the matrix element
of the underlying Born process may be zero, while the real-emission matrix element is not.
Such configurations do not exponentiate, as R is not singular when B → 0. This fact can
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be employed to formulate a general solution to the problem [146]. One can split R into two
parts, a singular one, R(s), and a regular one, R(r).

R(s) = R Z

Z +H
, and R(r) = R H

Z +H
, (7.8.11)

where

Z =
B
Bmax

, and H = κ2
res

t

tmax

. (7.8.12)

Note that Bmax can be determined during the integration of the seed cross section, while tmax

is given as a universal function of the hadronic centre-of-mass energy, depending only on the
definition of t in the parton shower model. The resolution factor κres then determines the
relative splitting between R(s) and R(r): the larger κres, the larger the fraction R(r) of R.
The necessity of such a splitting of the real emission matrix element can be determined
on an event-by-event basis by comparing the correction factor of eq. (7.3.1), wij,k, to a
predefined threshold wth

ij,k. Thus, regular non-exponentiated R(r) events are only produced
if wij,k > wth

ij,k. Such a treatment ensures that both the exponentiation of the real-emission
matrix element is as inclusive as possible and the parton-shower correction factor does not
get too large, rendering event generation too inefficient.

7.9 Results for processes with trivial colour structures

This following sections collect results obtained with the implementation of the POWHEG
algorithm in the SHERPA event generator. The focus of this section rests on processes ex-
hibiting a trivial colour structure, i.e. containing only a single coloured line, to assess the
performance of the algorithm. This is exemplified in a variety of processes, listed in detail
in Section 7.9.1 with their respective cuts and relevant settings. Rooting in the identity of
the Nc → ∞ limit with the exact Nc = 3 expression, as discussed in Section 7.5, for such
processes the necessary equality of both projectors, ρij,k and ρ(PS)ij,k , is trivially fulfilled when
using the Catani-Seymour subtraction method in combination with the CSS, see Section 7.8.
The function H({~a}) in eq. (7.5.10) can then be chosen to coincide with the phase space
constraint Θ({~a}) for every configuration of the Born phase space. The resulting distribu-
tions are thus correct at next-to-leading order accuracy for any observable throughout the
phase space.

Where applicable, the CTEQ6.6 [222] parton distribution functions (and, correspondingly,
the MS renormalisation scheme) have been employed and the strong coupling has been
defined accordingly as αs(mZ) = 0.118 with NLO running for both the matrix elements
and the parton shower. In Section 7.9.2 the internal consistency of the implementation
is checked by performing scale variations, cross section comparisons with ordinary NLO
calculations, and variations of internal parameters of POWHEG. Comparisons of results
from the new implementation with predictions from tree-level matrix-element parton-shower
merging (ME+PS) are presented in Section 7.9.3. Finally, comparisons with experimental
data are made in Section 7.9.4. For DIS analyses the HZTOOL framework [81] is used while all
other analyses have been performed using RIVET and are documented in the corresponding
manual [80].
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7.9.1 Process listing

Jet production in e+e− collisions

The annihilation of e+e− into hadrons is studied at LEP Run 1 energies, ECMS = 91.25
GeV. This setup allows to validate the algorithms of Section 7.4 in pure final-state QCD
evolution, which is the simplest testing ground. The parton shower cut-off scale has been
set to k2

T,min = 1.6 GeV2. Even though the improvements discussed in this thesis are purely
related to perturbative physics, the results are presented after hadronisation with the Lund
model [223, 224, 2] to make comparison to experimental results more meaningful. The
ME+PS samples have been generated with up to one additional jet in the matrix elements
and the phase space slicing parameter was set to log(ycut) = −2.25. For the virtual matrix
elements, the code provided by the BLACKHAT collaboration [54, 225, 226, 227, 228, 229]
was used.

Deep-inelastic lepton-nucleon scattering

Hadronic final states in deep-inelastic lepton-nucleon scattering (DIS) are studied at HERA
Run 1 energies, ECMS = 300 GeV. Just like e+e−-annihilation into hadrons, this process
boasts a wealth of precise experimental data. From the theoretical perspective, it is invalu-
able, as it allows to test QCD factorisation in an extremely clean environment. The associated
scale, given by the virtuality of the exchanged γ∗/Z-boson is not fixed, but potentially varies
by orders of magnitude, which allows to test perturbative QCD predictions in various kine-
matic limits. The results are presented at the parton level only, as hadronisation corrections
have little effect on the observables selected and the focus lies on the potential improvements
in the perturbative part of the simulation. The Monte-Carlo settings correspond to those
in [221]. ME+PS samples have been generated with up to one additional jet in the matrix el-
ement and the phase space slicing parameters were set to Q̄cut = 5 and SDIS = 0.6 (cf. [221]).
Virtual matrix elements were provided by BLACKHAT [54, 225, 226, 227, 228, 229].

Drell-Yan lepton pair production

Drell-Yan lepton pair production at Tevatron Run 2 energies is investigated, simulating pp̄
collisions at ECMS = 1.96 TeV. A cut on the invariant mass of the lepton pair of 66 <
m``/GeV < 116 is applied at the matrix-element level. For the ME+PS samples matrix
elements with up to one additional jet were generated and a phase-space slicing cut of
Qcut = 20 GeV was applied. Virtual matrix elements were provided by BLACKHAT [54, 225,
226, 227, 228, 229]. The factorisation and renormalisation scales for the NLO matrix element
were chosen as µ2

R = µ2
F = m2

⊥, ``. In all tree-level matrix elements SHERPA’s default scale
choice was employed: The matrix element is clustered onto a core 2→ 2 configuration using
a kT -type algorithm with recombination into on-shell particles. Scales are defined as the
lowest invariant mass or negative virtuality in the core process. Hadronisation and multiple
parton interactions have been disabled to allow for a study at the parton-shower level. The
Z → `` decay is corrected for QED next-to-leading order and soft-resummation effects in the
Yennie-Frautschi-Suura (YFS) approach [74].
The three reactions listed in Sections 7.9.1-7.9.1 essentially amount to one and the same
process at the parton level, as they only differ by crossing of initial- and final-state legs.
Their combination allows to validate the implementation of the matrix-element corrections
in Section 7.3 for all possible dipole configurations with quark splitters.
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W boson production

Production ofW bosons is presented in pp̄ collisions at ECMS = 1.8 TeV. Although in principle
similar to the Drell-Yan case, this process is of special interest to validate the automatic
decomposition of the real-emission term into singular and non-singular pieces, as outlined in
Section 7.8.4. If not stated otherwise, the parameters for this decomposition are set to κres =
4 and wth

ij,k = 100. A cut on the invariant mass of the lepton-neutrino pair of m`ν > 10 GeV
was applied at the matrix-element level. For the ME+PS samples matrix elements with up
to one additional jet were used and a phase space slicing cut of Qcut = 20 GeV was applied.
Virtual matrix elements were provided by BLACKHAT [54, 225, 226, 227, 228, 229]. The
factorisation and renormalisation scales for the NLO matrix element were chosen as µ2

R =
µ2
F = m2

⊥, `ν . In all tree-level matrix elements SHERPA’s default scale choice was employed,
cf. Section 7.9.1. Hadronisation and multiple parton interactions have been disabled. The
W → `ν decay is corrected for QED next-to-leading order and soft-resummation effects in
the YFS approach [74].

Higgs boson production through gluon-gluon fusion

The production of Higgs bosons through gluon-gluon fusion is simulated for proton-proton
collisions at ECMS = 14 TeV. The coupling to gluons is mediated by a top-quark loop and
modeled through an effective Lagrangian [230, 231]. Again, this process is technically very
similar to the Drell-Yan case, but it also allows to validate matrix-element corrections to the
remaining initial-state splitting functions. Next-to-leading order corrections are rather large
at nominal LHC energies, with a ratio of K ≈ 2 between the NLO and the LO result for
the total cross section. This fact has spurred tremendous efforts to perform fully differential
calculations at NNLO [232, 233, 234] and several predictions have been presented which
merged such fixed-order results with resummation at next-to-next-to-leading logarithmic
accuracy [235, 236], as the process is expected to have high phenomenological relevance at
LHC energies. However, this Chapter of this thesis centres on the behaviour of the theory at
NLO only, as a prediction beyond this level of accuracy is clearly not within the capabilities
of the POWHEG method.
Considering a decay of the Higgs boson into the τ+τ− final state, a cut for the invariant
mass of the τ pair of 115 < mττ/GeV < 125 was applied at the matrix-element level. For
the ME+PS merged samples matrix elements with up to one additional jet were used and a
phase-space slicing cut of Qcut = 20 GeV was applied. The virtual matrix elements have been
implemented according to [160]. The factorisation and renormalisation scales for the NLO
matrix element were chosen as µ2

R = µ2
F = m2

⊥, ττ . In all tree-level matrix elements SHERPA’s
default scale choice was employed, cf. Section 7.9.1. Hadronisation and multiple parton
interactions have been disabled. The h → ττ decay is corrected for QED soft-resummation
and approximate next-to-leading order effects in the YFS approach [74].

Z–pair production

The production of pairs of Z bosons is studied for proton-proton collisions at ECMS = 14 TeV.
This is an important background for the golden-plated Higgs-boson discovery mode at the
LHC. Detailed studies of the decay properties of the Z bosons and their correlations are
known to allow for a determination of some properties of the Higgs boson, when found.
Among these correlations are, e.g. the relative orientation of the decay planes of the bosons.
A cut on the invariant mass of each lepton pair of 66 < m``/GeV < 116 was applied at the
matrix-element level. For the ME+PS samples matrix elements with up to one additional
jet were used and a phase-space slicing cut of Qcut = 20 GeV was applied. Virtual matrix
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elements were provided by MCFM [9, 237, 238]. The factorisation and renormalisation scales
were chosen as µ2

R = µ2
F = m2

ZZ . Hadronisation and multiple parton interactions have been
disabled to allow for a study at the parton shower level. Each Z → `` decay is corrected for
QED next-to-leading order and soft-resummation effects in the YFS approach [74].

W+W−–production

W+W−–production is also studied for proton-proton collisions at ECMS = 14 TeV. It is
worth noting that this process hitherto has not been treated in the POWHEG approach.
Similar to the Z–pair production, it is an important background to the search channel for
the Standard-Model Higgs boson, at masses around and above 130 GeV. Again, in order to
suppress this background, distributions which depend on correlations of decay products of
the W ’s in phase space are heavily used.
A cut on the invariant mass of each lepton-neutrino pair of m`ν > 10 GeV was applied at the
matrix-element level. For the ME+PS samples matrix elements with up to one additional
jet were used and a phase-space slicing cut of Qcut = 20 GeV was applied. Virtual matrix
elements were provided by MCFM [9, 237, 238]. The factorisation and renormalisation scales
were chosen as µ2

R = µ2
F = m2

WW . Hadronisation and multiple parton interactions have been
disabled to allow for a study at the parton-shower level. Each W → `ν decay is corrected
for QED next-to-leading order and soft-resummation effects in the YFS approach [74].

7.9.2 Tests of internal consistency

The aim of this section is to provide consistency checks on the different aspects of the
POWHEG implementation in SHERPA. At first, total cross sections as obtained from POWHEG
are compared with the corresponding results from a standard NLO calculation. In this case,
the public release SHERPA-1.2.2 6 serves as the reference, which includes an implementation
of [50]. Results for e+e− annihilation into hadrons and deep-inelastic positron-proton scat-
tering are presented in Tab. 7.3. Numbers for inclusive Z-boson production with decay to an
electron-positron pair, for inclusive W -boson production with decay to an electron-neutrino
pair, and for Higgs-boson production via a top-quark loop with decay into τ are listed in
Tables 7.4 and 7.5. The agreement between the POWHEG results and those of the standard
integration method typically is within a 1σ range as given by the respective Monte-Carlo
errors.
To examine differences between POWHEG and a parton-shower Monte Carlo regarding the
exponentiation of the real-emission matrix elements in POWHEG, R can be approximated by
its parton-shower equivalent in eq. (7.3.3), thus leading to a corrective weight of w({~a}) = 1.
Performing this (seemingly trivial) replacement does not only constitute a mandatory cross-
check, whether the parton-shower approximation is retained, but it also estimates the size
of corrections that can be expected at all when switching to NLO accuracy in the event
simulation. Apart from the overall normalisation, in processes with no additional phase space
dependence introduced by the loop matrix element, the emission pattern in POWHEG should
be identical to the parton-shower result. This is verified in inclusive Z-boson production
at Tevatron energies as displayed in Figure 7.2. For low transverse momentum (low jet
resolution) p⊥ � µF both distributions coincide within statistical errors, which are indicated
by the yellow band in Figure 7.2. For large values the emission phase space is severely
restricted in the parton-shower approach, as t < µ2

F ≈ m2
Z and p⊥ . t. Any contribution to

this phase-space region must therefore originate from configurations where more than one
hard parton recoils against the lepton pair. Such configurations are suppressed by higher
orders of αs, and therefore the emission rate is gravely underestimated by the parton shower.
As a direct consequence, all deviations are then manifestations of the exponentiation of non-
logarithmic terms, which can be sizeable in the hard wide-angle emission region.
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e+e− → hadrons e+p→ e++ j +X

Ecms = 91.2 GeV Ecms = 300 GeV
Q2 > 150 GeV2

µ = µR = µF Factor POWHEG NLO POWHEG NLO

√
Q2

1/2 30179(18) 30195(20) 3906(9) 3908(10)
1 29411(17) 29416(18) 4047(10) 4050(11)
2 28680(16) 28697(18) 4180(10) 4188(11)

Table 7.3: Cross sections in pb for e+- e− annihilation into hadrons at
LEP and deep-inelastic positron-proton scattering at HERA
as calculated in the POWHEG framework and in a conven-
tional fixed order NLO calculation [50].

pp̄→ W++X pp̄→ Z +X
Ecms = 1.8 TeV Ecms = 1.96 TeV
m`ν > 10 GeV 66 < m`` < 116 GeV

µ = µR = µF Factor POWHEG NLO POWHEG NLO

m`ν/m``

1/2 1235.4(5) 1235.1(1.0) 243.96(14) 243.84(16)
1 1215.0(5) 1214.9(9) 239.70(13) 239.59(16)
2 1201.4(5) 1202.0(9) 236.72(13) 236.77(15)

m⊥

1/2 1231.0(5) 1230.3(1.0) 243.00(14) 243.06(16)
1 1211.8(5) 1211.7(9) 239.01(13) 238.96(15)
2 1198.8(5) 1199.3(9) 236.23(13) 236.13(14)

Table 7.4: Cross sections in pb for inclusiveW+[→ e+νe] and Z[→ e+e−] pro-
duction at the Tevatron as calculated in the POWHEG framework
and in a conventional fixed order NLO calculation [50].

pp→ h+X
Ecms = 14 TeV

115 < mττ < 125 GeV
µ = µR = µF Factor POWHEG NLO

m`ν/m``

1/2 2.3153(13) 2.3130(13)
1 2.4487(12) 2.4474(13)
2 2.5811(13) 2.5786(13)

m⊥

1/2 2.2873(13) 2.2869(14)
1 2.4255(12) 2.4231(19)
2 2.5623(13) 2.5620(14)

Table 7.5: Cross sections in pb for inclusive h[→ τ+τ−] pro-
duction via a top-quark loop at the LHC as calcu-
lated in the POWHEG framework and in a conven-
tional fixed order NLO calculation [50].
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Figure 7.2: 0 → 1 jet resolution in kT clustered jets and transverse momentum of
the reconstructed Z-boson in Drell-Yan lepton-pair production at the
Tevatron. The standard parton shower effected on the leading order
matrix elements (solid, red) is compared to the POWHEG formulation
(dotted, blue) and to POWHEG with the real emission matrix element
R replaced by its parton-shower approximation R(PS) (dashed, green).

The automatic splitting of the real-emission matrix element into singular and regular contri-
butions as presented in Section 7.8.4 contains two unphysical parameters: κres, which governs
the relative sizes of the exponentiated, singular part R(s) and the non-exponentiated, regular
part R(r), and wth

ij,k, which determines when the above separation is actually employed. The
effect of κres on the central parton shower correction factor wij,k is detailed in Figure 7.3.
There, it can be seen that for values of κres chosen neither too low, such that the maximum of
the correction factor rises beyond reasonable bounds rendering the reweighting of the parton
shower inoperable, nor too high, such that parts of leading logarithmic structure of R are
not exponentiated, event generation with the accuracy aimed at by the POWHEG algorithm
is feasible. Hence, the results of the Monte-Carlo simulation should be fairly independent of
κres and wth

ij,k, if varied within a reasonable range. Figure 7.4 displays predictions for trans-
verse momentum spectra in W -boson production for several values of κres. As expected, no
significant variations of the emission pattern can be observed. The small differences that can
be seen when changing the resolution scale κres are entirely within the logarithmic accuracy
of the parton-shower approach and therefore also within the logarithmic accuracy of the
real-emission contribution in POWHEG. Variations in wth

ij,k only have very little influence on
physical distributions.

7.9.3 Comparison with tree-level matrix-element parton-shower merging

By comparing POWHEG results to a standard parton shower combined with LO matrix
elements (LO+PS), it can be established whether observables are produced correctly in
regions where the soft/collinear approximations in the parton shower are equivalent to the
R/B ratios in POWHEG. An example is the distribution of the jet resolution scale d01,
using the longitudinally invariant kT -algorithm in W/Z + jets production. This observable
amounts to the kT -scale where a 1-jet event is clustered into a 0-jet event. Figure 7.5

6See http://www.sherpa-mc.de.
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Figure 7.3: Dependence of the parton shower correction factor wij,k on the Z-H-
splitting parameter κres forW− production at the Tevatron. wth

ij,k = 100
was kept fixed.
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Figure 7.4: Predictions for 0→ 1 jet resolution in kT clustered jets and transverse
momentum of the reconstructed W boson in W -boson production at
the Tevatron for different settings of the Z-H-splitting parameters κres
and wth

ij,k.

shows that there is good agreement between the LO+PS and POWHEG results for d01 < 50
GeV.7 For harder emissions the LO+PS approach fails due to the restricted phase space, as
explained in the previous section.
In this thesis, the POWHEG method is regarded as an advanced matrix-element correction
technique for the parton-shower algorithm, in which the correction is supplemented with
local K-factors to implement full NLO corrections. It is therefore useful to compare the
respective results with matrix-element parton-shower merged samples (ME+PS), which are
rescaled by a suitably chosen global K-factor. Such samples are known to yield approximate
NLO radiation patterns by effectively implementing higher-order matrix-element corrections

7Here and in the following, the yellow band indicates the size of statistical errors on the POWHEG event
sample.
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Figure 7.5: Predictions for the 0→ 1 jet resolution in kT clustered jets in Z/γ∗ (left) and
W (right) boson production at the Tevatron.
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Figure 7.6: Exclusive jet multiplicity for jets with p⊥ > 20 GeV in the kT algorithm in
Z/γ∗ (left) and W (right) boson production at the Tevatron.
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Figure 7.7: Transverse momentum of the leading jet in Z/γ∗ (left) and W (right) boson
production at the Tevatron.
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Figure 7.8: Separation between vector boson and leading jet in Z/γ∗ (left) andW (right)
boson production at the Tevatron.

into the parton shower. An implementation of one of the most advanced ME+PS algorithms
to date is available within the SHERPA framework [29] such that a direct comparison with
POWHEG is a straightforward exercise. However, because of the lack of virtual contributions
in the LO+PS and ME+PS samples, an agreement of the total rate cannot be expected.
Thus, in the comparisons below the following global K-factors were employed:

• K = 1.038 for e+e− → hadrons at LEP energies,

• K = 1.2 for Z/γ∗ and W production at Tevatron energies,

• K = 1.2 for ZZ production at the LHC (14 TeV),

• K = 1.34 for W+W− production at the LHC (14 TeV), and

• K = 2.1 for Higgs production through gluon fusion at the same LHC energies.

When comparing POWHEG results to ME+PS results including matrix elements up to the
1-jet final state one should obtain a very similar radiation pattern. The observed agreement
indeed is very good, as expected. Figure 7.5 shows that, for example, the differential one-jet
rates inW/Z-boson production agrees on the 20% level, even for relatively large scales (d01 >
50 GeV). The remaining differences can be attributed to the differences in the Sudakov form
factors: While POWHEG exponentiates R/B, the ME+PS method uses standard Sudakov
form factors at the logarithmic accuracy of the parton shower.
Such differences become visible also in the multiplicity distribution of kT jets with p⊥ > 20
GeV in Drell-Yan and W production, cf. Figure 7.6. The 0-jet and 1-jet rates agree within
10% between POWHEG and ME+PS, but for higher multiplicity final states the POWHEG
method predicts significantly more jets. Here a ME+PS simulation with more jets in the
matrix element would lead to better agreement.
Now focusing on the properties of the leading jet produced in association with a W or Z
boson, the transverse momentum of the leading jet is shown in Figure 7.7. Here the LO+PS
approach fails to describe the hard tail of the distribution, again due to lacking phase space,
while the POWHEG and ME+PS approaches agree within 20%. The separation in η-φ space
between this jet and theW/Z boson is displayed in Figure 7.8. Clear differences are observed
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Figure 7.9: Transverse momentum of the Higgs boson (left) and leading jet (right) in
gg → h fusion at nominal LHC energies.
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Figure 7.10: Rapidity of the leading jet (left) and separation of the leading and second-
leading jet (right) in gg → h fusion at nominal LHC energies.

in the shape of the distribution when comparing the LO+PS approach with both POWHEG
and ME+PS. This is expected, since parton showers cover only a restricted area of the phase
space, and, in addition, they do not encode the full final-state correlations described by the
matrix elements. On the other hand, results from the POWHEG and ME+PS methods agree
very well, with differences below 10% only.
The transverse momentum of the Higgs boson and the transverse momentum of the leading
jet displayed in Figure 7.9 give a similar picture as in vector boson production: All three
methods agree very well for low transverse momenta. In the high p⊥ region the POWHEG
and ME+PS approaches show differences up to 40%.
Figure 7.10 shows that minor differences arise between the LO+PS and the POWHEG and
ME+PS approaches in the pseudorapidity spectrum of the leading jet. This can be un-
derstood as a direct consequence of the different transverse momentum distributions in the
LO+PS method, as harder jets tend to be more central than softer ones. The POWHEG and
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Figure 7.11: HT (left) and transverse momentum of the individual Z bosons (right) in
ZZ production at nominal LHC energies.
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Figure 7.12: Azimuthal angle between the two Z bosons (left) and angle between the two
Z decay planes (right) in ZZ production at nominal LHC energies.

ME+PS approaches agree well in the central rapidity region and show up to 10% difference
only in the forward region. The distribution of η-φ separation between the two leading jets
proves again that the POWHEG and ME+PS predictions are very similar, with deviations be-
low the 5% level. Again, the LO+PS prediction shows a slightly different behaviour, because
of the reasons stated above.
Looking at diboson production at nominal LHC energies of 14 TeV, Figure 7.11 (left) shows
a comparison of the scalar sum HT of the transverse momenta of jets and leptons in Z-pair
production. Deviations of up to 50% become visible between the three compared approaches.
This is especially true in the high-HT region. It is well understood that the predictions of the
LO+PS approach are softer than either of the two other approaches, due to the restricted
emission phase space. The relatively large differences between the ME+PS approach and
POWHEG are naively not expected, but might stem from using consistent but somewhat
oversimplified scale schemes. This surely should be analysed in more detail in further studies
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Figure 7.13: Transverse momentum of the leading jet (left) and separation of the lepton
and leading jet (right) in W+W− production at nominal LHC energies.
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Figure 7.14: Pseudorapidity difference (left) and azimuthal angle (right) between the two
oppositely charged leptons in W+W− production at nominal LHC energies.

where pair production processes, including WH and ZH would be studied. The transverse
momentum distributions of the individual Z bosons (Figure 7.11 right) on the other hand
agree very well in both approaches, while it is again obvious that the LO+PS sample cannot
describe the hard region of this spectrum.
In the azimuthal separation of the two Z bosons, see Figure 7.12, a similar feature as in
HT can be found: The events are harder in ME+PS than in POWHEG, leading to increased
decorrelation of the boson pair. In Figure 7.12 (right) it can be seen that the angle between
the boson decay planes is predicted very consistently in all three approaches.
Properties of the leading jet in W+W− pair production at LHC energies are displayed in
Figure 7.13. On the left hand side one can see the transverse momentum of the leading
jet and on the right hand side the separation between lepton and leading jet. For both the
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Figure 7.15: Durham 2→ 3 jet resolution (left) and thrust distribution (right) compared
to data from the ALEPH experiment[239].
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Figure 7.16: Total jet broadening (left) and C-Parameter (right) compared to data from
the ALEPH experiment[239].

ME+PS and POWHEG approaches agree well within 20% and the LO+PS sample severely
underestimates the hardness of the first jet due to its phase-space restrictions.
Figure 7.14 displays observables related to the two oppositely charged leptons from the two
decays. The pseudorapidity difference (left) agrees within 20% for all three approaches,
while their azimuthal decorrelation is significantly lower in the LO+PS sample than in the
ME+PS and POWHEG approaches, which agree very well.

7.9.4 Comparison with experimental data

The remainder of this section is dedicated to a comparison of results from the POWHEG
approach with experimental data to assert the improved description of data, provided by
this method.
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For the reaction e+e− → hadrons at LEP1 energies the LO+PS and ME+PS predictions
do not show significant differences except in extreme regions of phase space. The POWHEG
prediction confirms that picture. This is largely due to the fact that the parton-shower
algorithm, which is employed in SHERPA is based on Catani-Seymour subtraction terms and
those terms constitute a rather good approximation to the real-emission matrix element in
the process e+e− → qq̄g.

In the distribution of the Durham jet resolution at which 3-jet events are clustered into 2-jet
events (Figure 7.15 left) all three approaches agree very well with the measurement over
large parts of the phase space. Only in the hard emission region y23 > 0.05 deviations from
the LO+PS result can be seen. It is encouraging, although not surprising to note that both
POWHEG and ME+PS describe the data better. Good agreement of all three approaches
with each other and with the measurement is also observed e.g. for the thrust distribution
(Figure 7.15 right), the total jet broadening (Figure 7.16 left) and the C-Parameter (Figure
7.16 right).

As was discussed in [221], deep-inelastic scattering processes offer the opportunity to test
perturbative QCD in a region where the factorisation scale of the inclusive process, Q2, is
smaller than the scale of the actual event, which might be set e.g. by the transverse mo-
mentum of a hard jet. As measurements can be performed down to very low values of Q2,
many hard jets must usually be included in the simulation to achieve a good description
of data throughout the phase space. This method cannot be used in the context of this
work, as the POWHEG implementation in SHERPA can so far only be employed for the core
process e±q → e±q. Therefore, results are presented for the high-Q2 region only and the
discussion of the low-Q2 domain is postponed to Chapter 8, cf. also [173], where the merging
of POWHEG samples with higher-multiplicity matrix elements will be discussed. Figure 7.17
shows reasonable agreement between the POWHEG results and experimental data in a mea-
surement of the di-jet cross section performed at the H1 experiment [240, 241]. Deviations
from the LO+PS result are apparent, especially at lower values of Q2, as the phase space of
the parton shower is severely restricted by the low factorisation scale. Similar findings apply
to the rapidity spectra shown in Figure 7.18.

The probably most discussed observable probing the influence of QCD radiation in hadron-
hadron collisions is the transverse momentum of the lepton pair in Drell-Yan production,
which is displayed in Figure 7.19. Very good agreement, compared to a recent measurement,
is found for both the POWHEG and ME+PS approaches, while the LO+PS method is not able
to describe large parts of the spectrum because of the restricted real-emission phase space.
The rapidity of the Z boson in Figure 7.19 is described very well by all three approaches.

The situation is very similar in W -boson production. A comparison of POWHEG predictions
with Tevatron data from the DØ experiment [244] is shown in Figure 7.20, where very good
agreement between the Monte-Carlo result and the data can be observed. In addition to
the direct comparison the uncertainties related to a variation of the renormalisation and
factorisation scales are also shown. Thereby, two different strategies are pursued: While
the inner (dark) band shows the uncertainty related to a variation of the scale in the hard
matrix elements only, the outer (light) band shows the influence of varying the scales also in
the parton-shower evolution. It is rather obvious that the latter approach yields the larger
variations, as it is associated with an uncertainty in the choice of the strong coupling for
the real-emission subprocess. While this process essentially determines the shape of the
transverse momentum distribution in Figure 7.20, it enters at tree-level accuracy only, thus
leading to a rather large scale dependence.
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Figure 7.17: The di-jet cross section as a function of Q2 in bins of ET,1 +ET,2 (left), the
three-jet cross section as a function of Q2 (right top) and the ratio of the
three- over the two-jet rate as a function of Q2 (right bottom) compared
to data from the H1 experiment [240, 241].
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Figure 7.18: The di-jet cross section as a function of η′, compared to data from the H1
experiment [240]. η′ denotes half the rapidity difference of the two leading
jets in the Breit frame.
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Figure 7.19: Transverse momentum and rapidity of the Z boson in Drell-Yan lepton-pair
production at the Tevatron compared to data from the DØ experiment[242,
243].
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Figure 7.20: Transverse momentum of the W boson in W+jets production at the Teva-
tron compared to data from the DØ experiment [244]. Scale variations of the
POWHEG prediction by factors of 1/2 and 2 are displayed for two different
scale schemes, µF = µR = mlν (left) and µF = µR = m⊥,lν (right). The in-
ner (dark) band displays the variations associated with redefining the scales
for matrix elements alone, while the outer (light) band also takes variations
in the running coupling of the parton shower evolution into account.

7.9.5 Comparison with existing POWHEG results

In this section the predictions of the automated implementation are compared to results from
the dedicated codes in the HERWIG++ 2.4.2 event generator [3, 134] 8. Drell-Yan lepton pair

8Thanks are extended to David Grellscheid, Keith Hamilton and Peter Richardson for their help with
settings in the HERWIG++ generator run card.
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Figure 7.21: Invariant mass (left) and rapidity (right) of the lepton pair in Z/γ∗ produc-
tion at the Tevatron compared to HERWIG++.
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Figure 7.22: Pseudorapidity (left) and transverse momentum (right) of the lepton in Z/γ∗
production at the Tevatron compared to HERWIG++.

production and Higgs boson production through gluon-gluon fusion are analysed. HERWIG++
was set up to use the CTEQ6.6 [222] PDF and matrix element cuts have been chosen identical
to the ones employed in SHERPA. The same analyses as for SHERPA have been performed
on the HERWIG++ events and serve as a basis for the following discussion. Corresponding
details can be found in Sections 7.9.3 and 7.9.4.
For Drell-Yan lepton pair production predictions of inclusive observables related to the lepton
pair are compared in Figures 7.21-7.23. Excellent agreement is found for the mass and
rapidity of the lepton pair as well as the pseudorapidity of the individual leptons. Looking
at the transverse momentum of both, individual leptons and the lepton pair, one finds the
SHERPA predictions to be slightly harder, which also seems to be favoured by the DØ data
shown on the right hand side plot of Figure 7.23.
Further distributions sensitive to the hard radiation pattern are displayed in Figures 7.23–
7.25. The transverse momentum spectrum for the leading jet is consistent for both imple-
mentations over large regions of phase space. The pseudorapidity of the leading jet shows
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Figure 7.23: Transverse momentum of the leading jet (left) and of the lepton pair (right)
in Z/γ∗ production at the Tevatron compared to HERWIG++ and against
data from the DØ collaboration [245].
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Figure 7.24: Predictions for the pseudorapidity of the hardest jet (left) and the exclusive
jet multiplicity (right) in Z/γ∗ production at the Tevatron compared to
HERWIG++.
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Figure 7.25: Separation of the leading jet and the lepton pair in ∆R (left) and ∆φ (right)
in Z/γ∗ production at the Tevatron compared to HERWIG++ and DØ [245].
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Figure 7.26: Rapidity (left) and transverse momentum (right) of the reconstructed Higgs
boson in gg → h fusion at nominal LHC energies compared to HERWIG++.
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Figure 7.27: Transverse momentum (left) and pseudorapidity of the leading jet in gg → h
fusion at nominal LHC energies compared to HERWIG++.
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Figure 7.28: Inclusive jet multiplicity (left) and pseudorapidity separation of the leading
jet to the reconstructed Higgs boson in gg → h fusion at nominal LHC
energies compared to HERWIG++.
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good agreement in the central region, while SHERPA produces more jets in the forward direc-
tion, |η| > 3. Regarding the leading jet, excellent agreement is also found for the exclusive
jet multiplicity. For higher jet multiplicities one can see differences, with SHERPA producing
more jets. At this point, it is important to stress that the production of multiple hard jets
is described by the parton shower only, and the respective prediction is not systematically
improved by the POWHEG method. A perfect agreement of the two results would therefore
be rather unexpected, given the different assumptions underlying the parton shower algo-
rithms in SHERPA and HERWIG++. Angular correlations between the lepton pair and the
leading jet show some deviations especially in the region of low separation in ∆R and ∆φ
where multiple hard emissions become relevant. Here the DØ [245] data also favour the
predictions from SHERPA.

For gg → h fusion at nominal LHC energies HERWIG++ is compared to two different settings
of SHERPA: One with the correct dependence on the mass of the top quark in the effective
gg → h vertex and one with the approximation mt → ∞ which has also been used for
the plots in Section 7.9.3. In Figures 7.26-7.28 one finds agreement of the inclusive cross
section on the level of a few percent between the generators using a finite top quark mass,
while the mt → ∞ approximation leads to a change of ≈ 5% in the total rates. The
shape of the rapidity distribution of the reconstructed Higgs boson shows good agreement
while its transverse momentum is considerably harder in the SHERPA predictions. A very
similar feature can be found for the transverse momentum of the leading jet. The results for
Drell-Yan lepton pair production at the Tevatron showed the same behaviour, albeit not as
drastic as observed here. Good agreement is found for the shape of the pseudorapidity of the
first jet. The jet multiplicity distribution shows a significant difference for the production
of multiple hard jets where the difference between the parton showers in both generators
becomes important. For the distribution of the rapidity difference between the reconstructed
boson and the leading jet good agreement in the shape is found.

7.10 Results for processes with non-trivial colour structures

Contrary to the last section, this section presents results obtained for processes with non-
trivial colour structures, containing at least three colour-correlated particles at the Born
level. As discussed in Section 7.5, the equality of both projectors ρij,k and ρ

(PS)
ij,k , is mandatory

in order to achieve full next-to-leading order accuracy for any observable. For the results
presented in this section, however, the parton maps and projectors native to both the Catani-
Seymour subtraction formalism and the CSS shower algorithm were left unchanged, i.e. no
common projector ρ̄ij,k was introduced. Nonetheless, since the CSS’ splitting kernels are the
(spin averaged) Nc →∞ approximations to the Catani-Seymour dipole terms, both parton
maps coincide for emitter-spectator pairs which are colour correlated in this limit. The
difference of both projectors, cf. eq. (7.5.6), is thus still of O(αs) but subleading in a 1/Nc

expansion. The results presented in this section thus exhibit next-to-leading order accuracy
in the limits t→ 0 and t→∞ and interpolate smoothly in between with the formal accuracy
lowered to the leading colour approximation.

Similarly, the factor H({~a}) present in the functional definitions of the projectors, as given
in eq. (7.5.10), is chosen to coincide with the phase space constraint Θ({~a}). {~a} again
denotes a configuration in the Born phase space. As discussed in Section 7.5 this choice
may lead incomplete subtractions of large contributions from either the real emission or
the subtraction terms near the phase space boundaries, however, choosing coarsely grained
observables reduces this effect to a minimum.
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Figure 7.29: Inclusive jet cross sections and inclusive transverse momentum distributions
of all and all-but-the-hardest jets compared to CDF data [247].

7.10.1 Comparison with experimental data

This section compares the predictions for Z+jet and W+jet production using the POWHEG
method to experimental data. The one-loop matrix elements are supplied by BLACKHAT
[54, 225, 226, 227, 228, 229]. The CTEQ6.6 [222] parton distribution functions (and, cor-
respondingly, the MS renormalisation scheme) have been employed and the strong coupling
has been defined accordingly as αs(mZ) = 0.118 with NLO running for both the matrix
elements and the parton shower. During the event generation every event was required to
contain at least one jet with a transverse momentum of more than 10 GeV in the B̄-function,
defined using the anti-kt jet algorithm [246] with D = 0.5. The renormalisation and factori-
sation scales were chosen to be the transverse momentum of the hardest jet therein. The
independence of the analyses’ results on the precise value and definition of the required jet
at generation time has been checked.
Further perturbative QCD corrections were effected through the parton shower [62, 64], and
the leptonic decay of both the Z and the W bosons were corrected for next-to-leading order
and soft resummation effects in the Yennie-Frautschi-Suura approach [74], cf. Part I of this
thesis. Non-perturbative corrections, i.e. multiple parton interaction effects [66] according
to [67], hadronisation [72] of all quarks and gluons into colour-neutral hadrons and their
subsequent decay into stable or long-lived mesons and baryons, are also taken into account
to allow for a direct comparison to the experimental data. All analyses have been performed
using RIVET and are documented in the corresponding manual [80].

Z + j-production at the Tevatron

Turning first to Z production in association with at least one jet at the Tevatron at a
centre-of-mass energy of 1.96 TeV, a measurement from the CDF collaboration [247] in the
electron channel is considered. The reconstructed electrons are required to have transverse
momenta p⊥ > 25 GeV and an invariant mass of 66 < mee < 116 GeV. Jets are defined
using the midpoint cone algorithm [250] with R = 0.7 and a split/merge fraction of 0.75. At
least one jet with p⊥ > 30 GeV and |y| < 2.1 needs to be present and separated from both
electrons by ∆Rej > 0.7. Figure 7.29 displays a comparison of the algorithm described in
this thesis with experimental data. Cross sections and differential distributions both agree.
It is remarkable that, despite only computing Z+jet production to next-to-leading order
accuracy, the inclusive 2-jet rate and the transverse momentum spectrum of the second jet
match the experimental data. These quantities are predicted at leading order only.
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Figure 7.30: Transverse momentum and rapidity distributions of the reconstructed Z bo-
son (top row), and the total cross section, the transverse momentum and
rapidity distributions of the hardest jet (bottom row) in Drell-Yan produc-
tion in association with at least one jet compared to DØ data [248].
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Figure 7.31: Transverse momentum distributions of the three hardest jets in Drell-Yan
production in association with at least one jet compared to DØ data [249].
All SHERPA predictions are scaled to the normalised Z + 1 jet cross section as
measured in data.

More characteristics of Z-boson plus jet production were investigated in a recent DØ analysis
[248]. Events with two muons of invariant mass 65 < mµµ < 115 GeV and with at least one
jet of p⊥ > 20 GeV and |y| < 2.8 were collected. Jets were defined using the DØ midpoint
cone algorithm [251] with R = 0.5 and a split/merge fraction of 0.5. Each jet had to be
separated from both leptons by ∆Rµj > 0.5. A comparison of Monte-Carlo predictions
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Figure 7.32: Azimuthal and rapidity difference distributions of the reconstructed Z boson
and the hardest jet and their rapidity average in Drell-Yan production in
association with at least one jet compared to DØ data [245].

with this measurement is shown in Figure 7.30. The agreement is excellent, except for
the pT -spectrum of the first jet, where a deficiency of the Monte-Carlo result in the range
pT > 60 GeV is observed.
A further measurement of Z+jet production in the electron channel was presented by the
DØ collaboration in [249]. Each electron is required to have p⊥ > 25 GeV and the mass
window 65 < mee < 115 GeV is enforced. Jets are defined using the midpoint cone algorithm
[251] with R = 0.5 and a split/merge fraction of 0.5. At least one jet with p⊥ > 20 GeV and
|η| < 2.5 must be present in the event. Experimental data were normalized to the inclusive
Drell-Yan cross section. This value is not predicted by the POWHEG simulation of Z+jet, and
therefore all results presented here are scaled by the ratio between the 1-jet inclusive cross
section measured in data and the one predicted by the simulation. Figure 7.31 displays the
comparison of these scaled POWHEG predictions with the results from DØ . It is interesting
to note that even the transverse momentum spectrum of the third jet is described well by
the simulation. This observable is given in the parton-shower approximation only.
To quantify the success of the next-to-leading order calculation it is important not only to
investigate single-particle spectra, but also correlations between the Z-boson and the hardest
jet. Such observables give insights into the genuine one-loop effects in Z+jet production. We
follow the analysis strategy of a measurement presented by the DØ collaboration in [245].
Opposite-sign muons with p⊥ > 15 GeV and an invariant mass of 65 < mµµ < 115 GeV are
required in association with at least one jet of p⊥ > 20 GeV and |y| < 2.8. Jets are defined
using the midpoint cone algorithm [251] with R = 0.5 and a split/merge fraction of 0.5.
Two event samples are defined, one requiring the transverse momentum of the reconstructed
Z boson to be above 25 GeV, the other requiring it to be above 45 GeV. Figure 7.32 compares
the predictions of the presented algorithm with the experimental measurement. The shape
of distributions is matched very well, but a slight discrepancy of cross sections is observed.
It does, however, not exceed the experimental uncertainties.
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Figure 7.33: Inclusive jet cross sections and transverse momentum spectra of the hardest
and second hardest jet in W production in association with at least one jet at
the LHC compared to ATLAS data [252].

W + j at the LHC

The production of a W boson in association with at least one hard jet in proton-proton
collisions at

√
s = 7 TeV has been studied by the ATLAS collaboration at the CERN

LHC [252]. In the electron channel events are selected by requiring an electron with p⊥ >
20 GeV defined at the particle level to include all photon radiation within a ∆R = 0.1
cone. Only electrons in the fiducial volume |η| < 1.37 or 1.52 < |η| < 2.47 are taken
into account. Emiss

⊥ at the particle level has been defined through the leading neutrino
in the event which is required to have pν⊥ > 25 GeV. The transverse mass cut is placed
at mT =

√
2p`⊥p

ν
⊥ (1− cos(φ` − φν)) > 40 GeV. Jets are reconstructed using the anti-kt

algorithm [246] with R = 0.4 and have been taken into account if pjet⊥ > 20 GeV, |ηjet| < 2.8
and ∆R(`, jet) > 0.5. Muons, neutrinos and the leading electron were excluded from the
input of jet reconstruction. The comparison in Figure 7.33 shows very good agreement of
the SHERPA hadron level prediction with ATLAS data.

7.11 Summary and conclusions

In this thesis the successful implementation of the POWHEG algorithm for processes with
trivial colour structures into the SHERPA framework was detailed. The program is fully
automated, relying on SHERPA’s efficient matrix-element generation modules, which allow
to construct real-correction terms for given processes and their respective Catani-Seymour
dipole terms in both differential and integrated form. It is worth stressing that this is the first
time that the POWHEG method has been applied simultaneously to various higher-order cal-
culations using Catani-Seymour dipole terms for partitioning the real-emission phase space.
This implementation makes a number of processes, computed at NLO and available in pub-
lic program libraries accessible for matching with a parton shower. Additional processes are
easily added in SHERPA, by merely linking the corresponding code for the virtual correction
terms9.
The implementation was validated by a number of systematic checks, including

9 A wealth of processes not discussed yet is, for instance, available in the extremely well-developed MCFM
library.
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• the stability of cross sections, as exhibited in Tables 7.3, 7.4 and 7.5;

• the radiation patterns, through comparison with a fake POWHEG algorithm, based on
shower kernels, cf. Figure 7.2;

• the automated detection of Born zeroes and their stable cure, as shown in Figures 7.3
and 7.4;

• merged LO samples, see Figures 7.5 and 7.6;

• an independent POWHEG implementation, HERWIG++ 2.4.2, cf. Figures 7.21–7.28;

• and comparison with a variety of data, cf. Figures 7.15–7.20 and Figures 7.29–7.33.

The process ofW -pair production has been investigated for the first time using the POWHEG
technique. Results for this, along with some distributions in Z-pair production are displayed
in Figures 7.11–7.14.
More processes with one coloured line only, such as WH and ZH as well as Wγ and Zγ
associated production or Higgs production in gluon fusion decaying in variety of final states,
including H → γγ, H → 4` H → 2`2ν, were added to the SHERPA framework since the time
of publication of [65].
The formal relation of the POWHEG method and the MC@NLO method was established by
exploiting their respective ambiguities regarding their exponentation behaviour.
Further, the principle methods presented in [65] was shown to hold for processes with non-
trivial colour structures as well. Furthermore, the arising subtleties were discussed in great
detail. Section 7.10 then presented the results of an approximate implementation giving
predictions in the leading colour limit to the accuracy of the POWHEG method. There, a
large variety of both Tevatron and LHC data is described very well.
Finally, the methods developed in this part of this thesis serve as the starting point for
a combination with the ME+PS method of [29] to result in a simultaneous description of
inclusive observables with next-to-leading order accuracy, as in the POWHEG method, and
observables defined on the multi-jet final state with leading order accuracy, as in the ME+PS
method. This combination, dubbed MENLOPS [172, 173], is detailed in Chapter 8.
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Chapter 8

MENLOPS

To improve the description of multiple hard QCD radiation, “merging algorithms” (ME+PS),
have been proposed [27, 28, 30, 32, 33, 253, 136] and compared in [36, 37]. A reformulation
which generically maintains the logarithmic accuracy of the parton shower for any scattering
process was achieved in [29]1, providing also the means to classify the various methods and
implementations according to their formal accuracy. It necessitates use of truncated parton
showers, a concept initially introduced in [12] in the context of the POWHEG method.
While the ME+PS methods succeed at improving the simulation of multijet events, they do
not address the apparent problem that the total cross sections of the simulated inclusive sam-
ples are still of leading-order accuracy. However, this accuracy often is insufficient for tests
of physics within and searches beyond the Standard Model. Examples for such situations
range from luminosity measurements at the LHC through the production ofW bosons to the
determination of Yukawa couplings of the Higgs boson, once it is found. NLO cross-sections
can included in a parton shower Monte-Carlo via either the POWHEG method [12, 13] or
MC@NLO [11]. Both methods, however, lack the appropriate description of multiple hard
emission.
Having at hand two, somewhat orthogonal, methods (ME+PS [29] and POWHEG [65], cf.
Chapter 7) in one coherent Monte-Carlo event generator, SHERPA, enables the construction
of an algorithm to improve both the hard QCD radiation activity and the total event rate
in a given process. This is the topic addressed by this part of this thesis, cf. also [173].
In a parallel to the development of [173], Hamilton and Nason [172] suggested an identical
method; however, their actual implementation only approximates the formal result. Due to
the formal equivalence of both proposals, the new technique will generally be referred to as
the MENLOPS approach.
This chapter therefore proceeds as follows: Section 8.1 recollects the prime features of both
the POWHEG and the ME+PS methods, drawing heavily on the notation introduced in
Chapter 7. Section 8.2 combines both methods into the MENLOPS method and assess its
formal accuracy. In Section 8.3, presents consistency tests of the new method and some first
predictions of the SHERPA implementation are exhibited, exemplifying the improvements
that can be achieved. Section 8.4 then summarises the results. These results and their
interpretation solidify the findings of [172].

8.1 Improving parton showers with higher-order matrix elements

This section is devoted to the introduction of a formalism that allows to describe, on the
same footing, the two basic methods for correcting parton-shower algorithms with real-
emission matrix elements, the reformulated POWHEG method of Chapter 7 and the ME+PS

1 The algorithm has been further extended to include QED effects [64] and multi-scale problems [221].
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method of [29]. As a common notation, the notation of Chapter 7, formally introduced in
Section 7.1, will be used. To compare, and, ultimately, to combine both algorithms, only
the expressions for the differential cross section describing the first emission off a given core
interaction must therefore be worked out. This is where the combination takes place. The
focus in the following sections rests on processes with a trivial colour structure, in particular
the expressions for Nc = 3 and Nc →∞ coincide.

8.1.1 The POWHEG approach

As detailed in Chapter 7 the POWHEG method is reinterpreted as a matrix element reweighted
parton shower supplemented with a NLO weight. Thus, using the simple corrective weight
of eq. (7.3.1), it is possible to modify the parton-shower such that it produces the O(αs)
radiation pattern of the matrix element as described. The corresponding dipole-dependent
no-branching probability reads

∆
(ME)

ı̃,k̃
(t′, t′′; {~a}) = exp

{
−
∑
fi=q,g

1

16π2

∫ t′′

t′
dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(rı̃,k̃(fi; {~f }))
S({~f })

Rij,k(rı̃,k̃(fi, t, z, φ; {~a}))
B({~a})

}
,

(8.1.1)
where the actual real emission matrix element projected on the singular region associated
with the splitting {ı̃, k̃} → {ij, k}, Rij,k, and the born matrix element B, which both also
include the respective parton luminosity factors, replace the parton shower kernel K and the
parton luminosities of the equation above.
The key point of the POWHEG method is to supplement Monte-Carlo event samples from
such matrix-element corrected parton showers with an approximate next-to-leading order
weight to arrive at NLO accuracy, cf. Section 7.4. This is achieved by multiplying eq. (8.1.1)
with the local K-factor B̄({~a})/B({~a}), where

B̄({~a}) = B({~a}) + Ṽ({~a}) + I({~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦij,k

R|B

[
Rij,k(rı̃,k̃({~a}))− Sij,k(rı̃,k̃({~a}))

]
. (8.1.2)

In this expression, Ṽ({~a}) is the NLO virtual contribution, including the collinear mass fac-
torisation counterterms, while Sij,k(rı̃,k̃(a)) and I({~a}) denote real and integrated subtraction
terms, respectively.
This yields the following master formula for the value of an infrared and collinear safe
observable, O

〈O〉(POWHEG) =
∑
{~f }

∫
dΦB({~p }) B̄({~a})

[
∆(ME)(t0, µ

2; {~a})O({~p })

+
∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(rı̃,k̃({~f }))
S({~f })

Rij,k(rı̃,k̃({~a}))
B({~a})

×∆(ME)(t, µ2; {~a}) O(rı̃,k̃({~p }))
]
.

(8.1.3)
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Note that the second term in the square bracket describes resolved emissions, simulated by
the matrix-element corrected parton shower, while the first term incorporates unresolved
emissions and virtual corrections.
To reveal the fixed order properties of eq. (8.1.3) it is useful to inspect its expansion keeping
terms up to O(αs). Thus, restating eq. (7.5.7),

〈O〉(POWHEG) =
∑
{~f }

∫
dΦB({~p})

(
B + Ṽ + I

)
({~a}) O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦB({~p}) dΦij,k

R|B

(
ρ̄ij,k(r̄ı̃,k̃({~a})) R(r̄ı̃,k̃({~a})) Θ(t0 − tij,k)

− Sij,k(r̄ı̃,k̃({~a}))
)
O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

µ2∫
t0

dΦB({~p}) dΦij,k
R|B ρ̄ij,k(r̄ı̃,k̃({~a})) R(r̄ı̃,k̃({~a})) O(r̄ı̃,k̃({~a}))

+ O(α2
s) .

(8.1.4)

It is imperative to note that neither the presence nor the precise form of ∆(ME) in the
resolved emission term influence the fixed-order accuracy of the method at O(αs), as long
as it expands as ∆(ME) = 1 + O(αs). Similarly, different choices of scales at which αs is
evaluated in R, the B̄-function, and the matrix-element corrected parton shower emission
terms contribute at O(α2

s) because αs(µ1) = αs(µ2) (1 +O(αs)) [12, 13].
In order to obtain the correct leading logarithmic behaviour of the real-emission term, αs
and the parton luminosities in ∆(ME) and the resolved emission term of eq. (8.1.3) must be
evaluated at scale k2

T . NLL accuracy can be restored for processes with no more than three
coloured partons by means of the replacement [254, 255]

αs → αs

{
1 +

αs
2π

[(
67

18
− π2

6

)
CA −

5

9
nf

]}
, (8.1.5)

where the MS expression of αs should be used. This Monte-Carlo implementation of the
POWHEG method follows this approach.

8.1.2 The ME+PS approach

The ME+PS approach for the inclusion of matrix-element corrections into the parton-shower
relies on a twofold generation of radiative corrections: Through an ordinary parton shower
on the one hand and through real-radiation tree-level matrix elements on the other hand.
In contrast to the POWHEG method, which only corrects the first emission off the core
interaction, the ME+PS technique can be employed for arbitrary higher-order tree-level
configurations.
A first algorithm to achieve this was presented in [27, 28]. The solution there is based on
separating the radiative phase space into a region of soft/collinear emissions, the parton-
shower (PS) region, and a region of hard emissions, the matrix-element (ME) region. By
demanding each region to be filled by the respective way of generating radiation and some
reweighting double counting and other problems can be avoided. The original formulation
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has been tremendously improved in [29], by realising that, formally, separate splitting kernels
in the ME and PS regions can be defined, which add up to the full splitting kernel:

KME
ij,k(t, z, φ) = Kij,k(t, z, φ) Θ

(
Qij,k(t, z, φ)−Qcut

)
(8.1.6)

KPS
ij,k(t, z, φ) = Kij,k(t, z, φ) Θ

(
Qcut −Qij,k(t, z, φ)

)
. (8.1.7)

The functional form of the separation criterion Qij,k is in principle arbitrary as long as it
identifies soft and collinear divergences in the real-radiation matrix elements. The approach,
fully outlined in [29], then replaces the splitting kernels in the ME region by the ratio of the
real-emission and Born matrix elements, just like this is done in a matrix-element corrected
parton shower. However, in contrast to a reweighting technique, only emission terms are
modified and no correction is applied to the no-emission probabilities.
The ME+PS technique can be implemented in a master formula for the first emission,
describing the expectation value of an arbitrary infrared safe observable O, similar to the
POWHEG case:

〈O〉(MEPS) =
∑
{~f }

∫
dΦB({~p}) B({~a})

[
∆(PS)(t0, µ

2; {~a})O({~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

(
8π αs
t
Kij,k(t, z, φ)

L(rı̃,k̃(fi, t, z, φ; {~a}); t)
L({~a }; t) Θ

(
Qcut −Qij,k

)
+
S(rı̃,k̃({~f }))
S({~f })

Rij,k(rı̃,k̃({~a}))
B({~a}) Θ

(
Qij,k −Qcut

) )

× ∆(PS)(t, µ2; {~a}) O(rı̃,k̃({~a}))
]
.

(8.1.8)

There are three components to the differential cross section: The first term describing un-
resolved emissions, which is generated in the standard parton-shower approach, and the
second term describing the resolved part, which is now split between the PS and the ME
domain. Within the ME domain, the matrix-element generator is directly invoked to define
the real-emission configuration. This is possible due to the restricted phase space, remov-
ing all infrared divergent regions by applying the cut in Qij,k = Qij,k(t, z, φ) and rendering
the matrix element finite. In this case, the Sudakov form factor ∆(PS), which makes the
matrix element exclusive, must be added explicitly. It can either be calculated analyti-
cally, like in the original formulation of [27, 28], or by utilising the shower itself to generate
the correct probabilities. This latter option is commonly referred to as the pseudoshower
approach [30, 29].
A complication arises if the phase-space separation criterion Qij,k is different from the parton-
shower evolution variable t. This can imply the possibility of a shower emission Q < Qcut

being allowed “between” two branchings at Q > Qcut in the parton-shower history of the
matrix element. In such cases, in order not to spoil the logarithmic accuracy of the parton
shower, the existing branchings need to be embedded into the subsequent parton-shower
evolution. This leads to a truncated shower algorithm [12, 29].
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If the expectation value 〈O〉 in eq. (8.1.8) is the total cross section, i.e. if O = 1, then

σ(MEPS) =
∑
{~f }

∫
dΦB({~p}) B({~a})

[
∆(PS)(t0, µ

2; {~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ) O(rı̃,k̃({~a}))

× 1

Sij

8π αs
t
Kij,k(t, z, φ)

L(rı̃,k̃(fi, t, z, φ; {~a}); t)
L({~a }; t) ∆(PS)(t, µ2; {~a})

×
(

Θ
(
Qcut −Qij,k

)
+ w(rı̃,k̃(fi, t, z, φ; {~a})) Θ

(
Qij,k −Qcut

) )  .

(8.1.9)

where (cf. eq. (7.3.3))

w({~a}) =

 ∑
{m,n}

∑
l 6=m,n

S(bmn,l({~f }))
S({~f })

B(bmn,l({~a}))
R({~a})

8π αs
2 pmpn

Kmn,l({~a})

−1

. (8.1.10)

If w({~a}) equals one, i.e. if the parton shower approximation is equal to the real-radiation
matrix element, the t-integral can be performed easily and the square bracket in eq. (8.1.9)
equals one. The total cross section is therefore identical to the leading order result, as a
direct consequence of the unitarity constraint for the parton shower. The more common
configuration will however be that w({~a}) 6= 1. In this case, the square bracket in eq. (8.1.9)
is different from one and the total cross section is not equal to the leading order result. The
origin of the mismatch is a difference in the emission rate of the parton shower compared
to the ratio R/B of matrix elements. While the former is exponentiated into the Sudakov
form factor, the latter appears in the differential real-radiation probability only. Thus, for
w({~a}) 6= 1, the unitarity of the parton shower is violated. Hence, this effect is referred to
as “unitarity violation” in the following. Its physical interpretation is the same as in, for
example, the violation of the unitarity of the S-matrix: the probability to scatter/radiate
and the probability not to scatter/not to radiate do not add up to one. However, in the
present case the unitarity violation merely leads to a correction to the total cross section
which is formally of higher order, as is shown below, and, therefore, does not to unphysical
results.

To investigate the consequences of this unitarity violation on arbitrary observables, eq. (8.1.8)
can be expanded in powers of αs, resulting in

〈O〉(MEPS) =
∑
{~f }

∫
dΦB({~p}) B({~a}) O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫
dΦB({~p})

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 8π αs
t

1

Sij
B({~a})Kij,k(t, z, φ)

L(rı̃,k̃(fi, t, z, φ; {~a}); t)
L({~a }; t)

×
[
O(rı̃,k̃({~a}))−O({~a})

]
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+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫
dΦB({~p})

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 8π αs
t

1

Sij
B({~a})Kij,k(t, z, φ)

L(rı̃,k̃(fi, t, z, φ; {~a}); t)
L({~a }; t)

× Θ
(
Qij,k −Qcut

) [
w(rı̃,k̃(fi, t, z, φ; {~a}))− 1

]
O(rı̃,k̃({~a}))

+ O(α2
s) . (8.1.11)

While the first and second terms represent the usual parton-shower prediction, the third
term encodes the unitarity violation effected by the matrix element corrections in the region
of well separated partons. In the ME+PS approach they enter at O(αs).

Such unitarity violations seem to be an undesirable side-effect of the ME+PS method at
first. However, given eq. (8.1.11), they can serve as an indicator for the relevance of (or more
precise the magnitude of non-logarithmic) higher-order real-emission corrections. This fact
will be elaborated upon in some more detail in Section 8.3.

8.2 Merging POWHEG and ME+PS - The MENLOPS approach

In this section, the two master equations for the POWHEG, eq. (8.1.3), and ME+PS, eq. (8.1.8),
approaches are combined into one single expression, defining the MENLOPS approach. The
aim of this combination algorithm is to simultaneously have NLO accuracy in the cross
section, leading logarithmic accuracy as implemented in the parton shower and hard higher-
order emissions corrected using tree-level matrix elements.

Our method of choice is to simply replace the unresolved and the PS resolved part in
eq. (8.1.8) with the respective POWHEG expression. This essentially amounts to the re-
placement of the parton-shower no-emission probability with the corresponding POWHEG
result, ∆(PS) → ∆(ME) and a substitution of the leading-order weight B by B̄, like in the
POWHEG method itself.

The ME part of the cross section is then generated separately, starting from real-emission
matrix elements, as described in Section 8.1.2. This immediately implies that it will not
automatically benefit from a POWHEG implementation regarding the localK-factor B̄/B, and
it is therefore necessary to supply this K-factor explicitly. There is no a-priori definition of a
Born-level parton configuration in this context, because the ME event is defined in terms of a
real-emission configuration. One rather has to identify a branching history {~a} → bij,k({~a})
such that B̄/B can be computed depending on bij,k({~a}). The definition is achieved by
clustering the real-emission configuration using an algorithm which is similar to a sequential
recombination jet scheme and which determines the node to be clustered according to the
related branching probability in the parton shower. For more details on this technique see
[29].

Implementing these ideas, the master formula for the first emission in MENLOPS is obtained
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as

〈O〉(MENLOPS) =
∑
{~f }

∫
dΦB({~p}) B̄({~a})

[
∆(ME)(t0, µ

2; {~a})O({~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t0

dt

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

S(rı̃,k̃({~f }))
S({~f })

Rij,k(rı̃,k̃({~a}))
B({~a})

×
(

∆(ME)(t, µ2; {~a}) Θ
(
Qcut −Qij,k

)

+ ∆(PS)(t, µ2; {~a}) Θ
(
Qij,k −Qcut

) )
O(rı̃,k̃({~a}))

 .

(8.2.1)

Again Qij,k = Qij,k(t, z, φ). The resolved-ME part of the expression in square brackets
(Qij,k > Qcut) exhibits an additional factor

∆(PS)(t, µ2; {~a})
∆(ME)(t, µ2; {~a})

= 1 +
∑
{ı̃,k̃}

∑
fi=q,g

1

16π2

∫ µ2

t

dt̄

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t̄, z, φ)

× 1

Sij

[
S(rı̃,k̃({~f}))
S({~f})

Rij,k(rı̃,k̃({~a}))
B({~a}) − 8παs

t̄
Kij,k(t̄, z, φ)

L(rı̃,k̃({~a}); t̄)
L({~a}; t̄)

]
+O(α2

s)

(8.2.2)

compared to the POWHEG master formula. This makes the unitarity violation in the MENLOPS
method explicit. However, the expectation value of O is still determined correct to O(αs),
as can be seen by explicitly expanding eq. (8.2.1) in powers of αs:

〈O〉(MENLOPS) =
∑
{~f }

∫
dΦB({~p})

(
B + Ṽ + I

)
({~a}) O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦB({~p}) dΦij,k

R|B

[
Rij,k(rı̃,k̃({~a})) Θ(t0− t)− Sij,k(rı̃,k̃({~a}))

]
× O({~a})

+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦB({~p}) dΦij,k

R|B Rij,k(rı̃,k̃({~a})) Θ(t− t0) Θ
(
Qcut −Qij,k

)
× O(rı̃,k̃({~a}))
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+
∑
{~f }

∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦB({~p}) dΦij,k

R|B Rij,k(rı̃,k̃({~a})) Θ(t− t0) Θ
(
Qij,k −Qcut

)
× O(rı̃,k̃({~a}))

+ O(α2
s) . (8.2.3)

Comparing this with eq. (8.1.4), it is evident that the O(αs) accuracy of the MENLOPS
method is identical to what is obtained from POWHEG. The potential mismatch between
exact higher-order tree-level matrix elements and their respective parton-shower approxima-
tion, leading to a difference between ∆(ME) and ∆(PS), contributes terms of O(α2

s) or higher
as long as Θ (Qij,k −Qcut) enforces t > t0. The precise value of Qcut must therefore be chosen
such that this constraint is satisfied.
Apart from being of order αs, the term in the square brackets of eq. (8.2.2) should be
rather small in practice, as potential differences between matrix-element and parton-shower
expressions merely lie in subleading logarithmic and power corrections. This corresponds to
the mismatch between POWHEG and MENLOPS results being at most of order α2

s log (µ2/Q2
cut)

if the parton shower has LL accuracy, and of order α2
s if it has NLL accuracy.

Generating a second emission using the ME+PS method supplemented with the above men-
tioned local K-factor of course introduces additional unitarity violations, as described by
eq. (8.1.11). However, because such terms are of O(α2

s), they do not spoil the next-to-leading
order accuracy of the method.
At this point it is important to stress that in their publication Hamilton and Nason arrived
at the same ideas [172].

8.3 Results

This section collects results obtained with an implementation of the algorithm described in
the previous sections in the SHERPA framework. It aims at detailing the improved description
of data collected in various collider experiments and at quantifying some of the systematic
uncertainties inherent to the MENLOPS method, in particular those related to the merging
of the multijet tree-level contributions. Note again, that the MENLOPS approach is designed
to merge the next-to-leading order accurate description of a given core interaction (like for
example e+e−→qq̄) through the POWHEG method with higher-order tree-level contributions
(like e+e− → qq̄gg) described in the ME+PS approach. Since the total cross section is
essentially defined by the POWHEG expression of the core process in question, uncertainties
like those related to the choice of scales are encoded mostly there. They have been discussed
in Chapter 7, while uncertainties related to the ME+PS method were discussed for example
in [29, 221].
However, a comparison with results of the ME+PS and POWHEG techniques alone is ex-
tremely useful to assess the quality of the approach and the improvements related to it.
The precise setup of SHERPA for this comparison, including in particular a parton shower
based on Catani-Seymour subtraction terms [62] and an automated implementation of the
Catani-Seymour subtraction method [50] in the matrix-element generator AMEGIC++ [25]
was described in Section 7.8. Throughout this part of this thesis, the CTEQ6.6 parton
distribution functions [222], (and, correspondingly, the MS renormalisation scheme) with
αS(mZ) = 0.118 and NLO running, are used. If not stated otherwise, hadronisation is
not accounted for. Multiple parton interactions are not included in the simulation. The
RIVET program package [79, 80] and the HZTOOL library [81] are employed for analyses and
comparison with data.
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8.3.1 Merging Systematics

As pointed out in the previous section, the ME+PS approach violates the unitarity of the
parton-shower simulation. This discrepancy is directly inherited by the MENLOPS method.
The extent of this effect depends entirely on the quality of the parton-shower algorithm, as
can be seen in eq. (8.2.2): If the parton-shower approximation to the real-emission matrix
element is good, the correction factor, eq. (8.2.2), is close to one.
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Figure 8.1: Visualisation of the unitarity violation, detailed in Tables 8.1–8.6, induced by
the ME+PS and MENLOPS master formulas, eqs. (8.2.1) and (8.1.8), respec-
tively.
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log10 ycut

Nmax

0 1 2 3
LO+PS POWHEG ME+PS MENLOPS ME+PS MENLOPS ME+PS MENLOPS

-1.25
28.37(1) 29.43(1)

28.09(2) 29.60(2) 28.11(2) 29.63(2) 28.09(2) 29.63(2)
-1.75 27.46(2) 29.47(3) 27.56(3) 29.43(3) 27.48(3) 29.43(3)
-2.25 27.11(3) 29.38(3) 26.90(3) 29.18(4) 26.93(4) 29.17(4)

Table 8.1: Dependence of the inclusive e+e− → jets cross section in nb on the number of extra jets
generated in both the ME+PS and the MENLOPS method. For Nmax = 0 these reduce to the
LO+PS and POWHEG methods, respectively.

Q̄cut

Nmax

0 1 2 3
LO+PS POWHEG ME+PS MENLOPS ME+PS MENLOPS ME+PS MENLOPS

3 GeV
365.7(4) 322.4(6)

380.5(6) 333.5(9) 388.4(6) 339.3(1.0) 396.6(9) 344.4(1.2)
5 GeV 380.0(6) 330.6(9) 387.0(6) 339.2(1.1) 393.2(8) 342.8(1.2)
9 GeV 381.8(7) 330.4(1.0) 388.1(8) 337.9(1.2) 394.2(8) 344.0(1.2)

Table 8.2: Dependence of the DIS production cross section in nb on the number of extra jets generated
in both the ME+PS and the MENLOPS method. For Nmax = 0 these reduce to the LO+PS
and POWHEG methods, respectively. The precise definition of Q̄cut is given in [221].

Qcut

Nmax

0 1 2 3
LO+PS POWHEG ME+PS MENLOPS ME+PS MENLOPS ME+PS MENLOPS

15 GeV
1993(1) 2423(1)

2114(6) 2549(9) 2169(6) 2587(9) 2159(7) 2599(10)
20 GeV 2103(4) 2516(6) 2137(5) 2548(9) 2135(5) 2548(9)
40 GeV 2092(3) 2477(9) 2104(3) 2485(7) 2101(3) 2482(7)

Table 8.3: Dependence of the W production cross section in pb on the number of extra jets generated
in both the ME+PS and the MENLOPS method. For Nmax = 0 these reduce to the LO+PS
and POWHEG methods, respectively.
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Qcut

Nmax

0 1 2 3
LO+PS POWHEG ME+PS MENLOPS ME+PS MENLOPS ME+PS MENLOPS

15 GeV
394.7(1) 477.8(1)

417.7(8) 489.3(8) 425.9(9) 502.6(1.3) 429.4(1.1) 503.6(1.3)
20 GeV 416.8(7) 487.2(9) 424.3(8) 496.4(1.0) 423.6(8) 496.1(1.0)
40 GeV 417.1(4) 486.6(6) 419.8(5) 489.1(6) 420.6(5) 489.1(6)

Table 8.4: Dependence of the Z production cross section in pb on the number of extra jets generated in
both the ME+PS and the MENLOPS method. For Nmax = 0 these reduce to the LO+PS and
POWHEG methods, respectively.

Qcut

Nmax

0 1 2 3
LO+PS POWHEG ME+PS MENLOPS ME+PS MENLOPS ME+PS MENLOPS

15 GeV
1.063(1) 2.425(1)

1.217(4) 2.698(11) 1.297(6) 2.846(15) 1.353(11) 2.937(27)
20 GeV 1.195(3) 2.627(9) 1.255(5) 2.762(13) 1.270(7) 2.769(19)
40 GeV 1.177(2) 2.488(6) 1.215(3) 2.571(10) 1.212(4) 2.598(13)

Table 8.5: Dependence of the Higgs production cross section in pb in gluon fusion on the number of
extra jets generated in both the ME+PS and the MENLOPS method. For Nmax = 0 these
reduce to the LO+PS and POWHEG methods, respectively.

Qcut

Nmax

0 1 2 3
LO+PS POWHEG ME+PS MENLOPS ME+PS MENLOPS ME+PS MENLOPS

20 GeV
0.949(1) 1.333(1)

1.305(4) 1.369(5) 1.391(6) 1.469(7) 1.405(7) 1.470(9)
40 GeV 1.277(3) 1.379(5) 1.361(4) 1.459(6) 1.378(6) 1.465(6)
80 GeV 1.227(2) 1.405(5) 1.285(3) 1.451(5) 1.298(5) 1.460(5)

Table 8.6: Dependence of the W+W−-production cross section in pb on the number of extra jets gen-
erated in both the ME+PS and the MENLOPS method. For Nmax = 0 these reduce to the
LO+PS and POWHEG methods, respectively.
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The quality of the algorithms is tested in the reactions e+e− → hadrons, deep-inelastic
lepton-nucleon scattering, Drell-Yan lepton-pair production, W - and Higgs-boson produc-
tion and W+W−-production by varying the phase-space separation cut, Qcut, and the max-
imum number of partons, Nmax, which is simulated with matrix elements in the MENLOPS
approach. This is in close correspondence to the sanity checks of the ME+PS method which
have been presented in [29]. The respective results are summarised in Tabs. 8.1-8.6 and
depicted in Figure 8.1. It is interesting to note that differences in the total cross-section
are smallest for the MENLOPS samples with Nmax = 1, and that they increase steadily for
larger Nmax. This indicates that the parton shower tends to underestimate the cross section
of higher-order tree-level contributions.
Two important effects, which allow judgment of the quality of the MENLOPS approach with
respect to NLO accuracy, are observed: Firstly, for Nmax = 1 the unitarity violations never
exceed the size of the NLO corrections. Secondly, for any given value of Qcut and Njet, the
relative difference between the cross sections from MENLOPS and POWHEG is always smaller
than the one between the cross sections from ME+PS and LO+PS. This is best seen in
Figure 8.1, and it gives some confidence that the MENLOPS technique can help to improve
perturbative QCD predictions from parton-shower Monte Carlo.
The above analysis can be seen from a different perspective as follows: Usually, the biggest
intrinsic uncertainty of the ME+PS approach stems from the freedom to choose the phase-
space separation cut, Qcut, as explained and exemplified in a number of processes in [29].
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Figure 8.2: Differential jet rates dnn+1 for three different merging cuts, Qcut, in Drell-Yan
lepton-pair production at the Tevatron at

√
s = 1.96 TeV.
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Since the MENLOPS method relies on identical ideas to separate the real-emission phase
space, it naturally inherits this source of uncertainty. Deviations of MENLOPS results from
results with different values of Qcut are to be expected. However, their small size in a
reasonable range of Qcut is a sign of the algorithm working well. The following rule of thumb
can be applied: If the value of Qcut is chosen too large, too much extra emission phase
space is left to the POWHEG simulation, typically leading to an underestimation of jet rates,
since POWHEG only simulates the first emission through matrix elements. If, on the other
hand, this value is too small, too much phase space is filled by matrix elements with large
final-state multiplicity, which may lead to noticeable unitarity violations. The value of Qcut

should therefore lie well between the parton-shower cutoff and the factorisation scale of the
core process, with some margin on either side of this interval.
The stability of the MENLOPS implementation with respect to variations of Qcut is exempli-
fied in Figure 8.2. Due to their similarity to Qij,k, the differential jet rates shown there are
extremely sensitive to the details of the radiation pattern and thus to the accuracy of the
ME+PS implementation. They tend to expose even the slightest mismatch between PS and
ME subsamples, which then shows up as a kink in the distribution. However, when vary-
ing Qcut in a rather wide range, no sizable discrepancies between the respective MENLOPS
predictions are observed, which is a very encouraging result regarding the quality of the
algorithm and its implementation in SHERPA.
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Figure 8.3: Durham dn n+1 jet resolutions at LEP compared to data taken by the ALEPH
experiment [239].
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Figure 8.4: Total jet broadening and jet mass difference at LEP compared to data taken
by the ALEPH experiment [239].
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Figure 8.5: C-parameter and thrust distribution at LEP compared to data taken by the
ALEPH experiment [239].

8.3.2 e+e− → jets

In this section the focus rests on electron-positron annihilation into hadrons at LEP energies
(
√
s = 91.25 GeV). The core process of the simulation is therefore the reaction e+e− → qq̄.

A full wealth of experimental data has been provided by the LEP experiments, which allows
to assess the quality of the MENLOPS approach in this simplest realistic scenario. Although
the improvements discussed in this thesis concern only the perturbative QCD part of the
Monte-Carlo simulation, the presented results account for hadronisation effects using the
Lund model [223, 224, 257, 2] to make them comparable to experimental data. Virtual
matrix elements needed for the simulation were supplied by code provided by the BLACKHAT
collaboration [54, 225, 226, 227, 228, 229].
Figure 8.3 highlights the improvement in the description of jet data. In the hard-emission
region the MENLOPS results for the 2→ 3-, the 3→ 4- and the 4→ 5-jet rate are generally
closer to the data than the POWHEG ones, which hints at the success of the simulation.
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Figure 8.6: Angles between the leading (in energy) four jets defined using the Durham
algorithm with ycut = 0.008. Results at the parton level are compared to data
from the OPAL experiment [256].

Deviations in the 5 → 6-jet rate are most likely due to the fact that matrix elements for
six-jet production are not included. Note that these distributions are normalised to the total
cross section, such that no rate difference between the ME+PS and the MENLOPS samples
can be observed.
Figures 8.4 and 8.5 show examples of event-shape variables, which are all very well described
in the hard-emission region by the MENLOPS simulation. Several distributions for jet an-
gular correlations in 4-jet production, that have been important for the analysis of QCD
and searches for physics beyond the Standard Model are investigated in Figure 8.6. The
good fit to those data proves that correlations amongst the final-state partons are correctly
implemented by the higher-order matrix elements.

8.3.3 Deep-inelastic lepton-nucleon scattering

Deep-inelastic scattering (DIS) is one of the best understood processes in perturbative QCD.
However, it has been an obstacle for a very long time to properly simulate hadronic final
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Figure 8.7: Left: The inclusive jet cross section as a function of E2
T,B/Q

2 in bins of ηlab,
compared to data from the H1 collaboration [258]. E2

T,B is the jet transverse
energy in the Breit frame, while ηlab denotes the jet rapidity in the laboratory
frame. Right: The dijet cross section as a function of Q2 in bins of ET,1 +ET,2,
compared to data from the H1 collaboration [240].
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Figure 8.8: The dijet cross section as a function of the Bjørken variable xB, compared
to data from the H1 collaboration [240].
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Figure 8.9: The dijet cross section as a function of the dijet mass mjj, compared to data
from the H1 collaboration [240].

states in DIS using general-purpose Monte Carlo based on collinear factorisation. Only re-
cently, a consistent approach was presented [221], that allows to describe jet data throughout
the experimentally accessible range of Q2, the negative virtuality of the exchanged virtual
γ∗/Z-boson. It is absolutely mandatory for this method that a large number of final-state
partons can be described by hard matrix elements in order to lift the severe restrictions on
the real-emission phase space of the parton shower, which are imposed by the factorisation
theorem.
In all simulations the core process e+q → e+q is used. The first is the measurement of
inclusive jet production in [258], which covers different ranges of jet-pseudorapidity in the
laboratory frame, ηlab, in the low-Q2 domain 5 < Q2 < 100 GeV2. Jets are defined using the
inclusive kT -algorithm [259, 260] and are constrained to ET,B > 5 GeV and the pseudorapid-
ity range −1 < ηlab < 2.8, where ET,B is the jet transverse energy in the Breit frame. The
second analysis corresponds to the measurement of dijet production in [240], which covered a
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Figure 8.10: The transverse momentum of the reconstructed Z boson in Drell-Yan
lepton-pair production at the Tevatron at

√
s = 1.96 TeV. Experimen-

tal data stem from the DØ experiment [242, 262] and are described
in the text.

wider range of Q2 and produced many doubly differential jet spectra. The acceptance region
is 5 < Q2 < 15000 GeV2 and −1 < ηlab < 2.5. Jet transverse energies are subject to the
cuts ET,B 1,2 > 5 GeV and ET,B 1 + ET,B 2 > 17 GeV. The latter requirement is introduced
to avoid ET,B 1 ≈ ET,B 2, which is the region of the phase space where next-to-leading order
corrections are unstable due to implicit restrictions on soft emissions [261].
As outlined in [221], a crucial observable is given by the inclusive jet cross section, differential
with respect to E2

T,B/Q
2. For E2

T,B/Q
2 > 1 it probes a part of the phase space where

leading order Monte-Carlo models without the inclusion of low-x effects are bound to fail
in their description of jet spectra. Another very good observable to validate the proper
Monte-Carlo simulation is the dijet cross section as a function of Q2. While still a relatively
inclusive quantity, it is an important indicator for the correct simultaneous implementation
of inclusive DIS and the additional production of hard QCD radiation. The high quality of the
MENLOPS prediction for the two above observables is confirmed in Figure 8.7. Discrepancies
in the description of the E2

T,B/Q
2-spectrum in the forward region can be attributed to the

fact that the simulation is limited to three additional partons in the hard matrix elements.
This restriction is imposed by the usage of the matrix-element generator AMEGIC++ [25].
Figures 8.8 and 8.9 exemplify again that the MENLOPS simulation correctly predicts multijet
differential distributions in all regions of the phase space, while the POWHEG approach fails
in the low-Q2 domain.

8.3.4 Drell-Yan lepton-pair production

Results for lepton-pair production through the Drell-Yan process are compared to data from
the Tevatron at

√
s = 1.96 TeV in Figures 8.10-8.13, using the core process qq̄ → ``, where

` = e, µ. The invariant mass of the lepton pair was restricted to be within 66 < m``/GeV <
116 in the simulation. The MENLOPS and ME+PS samples use tree-level matrix elements
up to Z + 3 jets with a merging cut of Qcut = 20 GeV. Virtual matrix elements are provided
by BLACKHAT [54, 225, 226, 227, 228, 229]. The Z → `+`− decay is corrected for QED
next-to-leading order and soft-resummation effects using the Yennie-Frautschi-Suura (YFS)
approach [74].
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Figure 8.11: Rapidity of the reconstructed Z boson [243] (left) and azimuthal sep-
aration of the boson and the leading jet [245] (right) in Drell-Yan
lepton-pair production at the Tevatron at

√
s = 1.96 TeV.

The Tevatron experiments provide a wealth of measurements sensitive to QCD corrections in
Drell-Yan production. Figure 8.10 shows the transverse momentum distribution of the lepton
pair in two different analyses from the DØ experiment. The left hand plot displays a very
recent analysis using the Z → µµ channel [242] to measure the Z-p⊥ distribution normalised
to the inclusive cross section. It requires muons with p⊥ > 15 GeV in a mass window of
65 < mµµ/GeV < 115 and with |η| < 1.7. The muon signal is corrected to the particle level
including photons clustered in a cone of radius R = 0.2 around each lepton. The plot on
the right hand side stems from an analysis in the electron channel [262] which uses Monte-
Carlo models to correct the leptons for all acceptances including the pseudorapidity range
and minimal transverse momentum. Here the peak region of the transverse momentum of
forward Z bosons with |yZ | > 2 is displayed. The agreement between all three approaches
and the measurement is outstanding. In the bins at p⊥ < 10 GeV non-perturbative effects
like the intrinsic transverse momentum of partons in a proton might play a role. Related
Monte-Carlo models in SHERPA could be tuned to reach an even better agreement. Still, the
Monte-Carlo prediction lies within the experimental error band over the full range.
Two more measurements from the DØ experiment are displayed in Figure 8.11. The pseu-
dorapidity of the Z boson [243] was measured in the electron channel requiring electrons
with p⊥ > 15 GeV in the mass window 71 < mee/GeV < 111. Again, all three Monte-Carlo
approaches agree very well with the experimental data. The right hand plot shows the az-
imuthal correlation between the Z boson and the leading jet [245]. This is a measurement
in the muon channel with the same selection cuts as described above. The distribution has
been normalised using the inclusive Z cross section and the comparison shows that the three
approaches underestimate the total rate for Z+jet production with respect to inclusive Z
production by approximately 10%. This might hint at the need for NLO accuracy also in the
Z+jet process. It is remarkable though that the inclusion of higher-order tree-level matrix
elements significantly improves the shape of the distribution with respect to the POWHEG
simulation.
The observables presented so far are mainly sensitive to the correct description of the leading
jet. For that reason even the POWHEG approach is well capable of providing sufficient
accuracy in their prediction.
Proceeding to observables sensitive to higher-order corrections, Figure 8.12 (left) shows the
inclusive jet multiplicity [263] for jets constructed using the DØ improved legacy cone al-
gorithm [251] with a cone radius of R = 0.5 and p⊥ > 20 GeV. Jets were required to lie in
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Figure 8.12: Inclusive jet multiplicity [263] (left) and transverse momentum of the
leading jet [249] (right) in Z+jets events at the Tevatron at

√
s = 1.96

TeV.
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Figure 8.13: Transverse momentum of the second and third jet [249] in Z+jets
events at the Tevatron at

√
s = 1.96 TeV.

|η| < 2.5 and to be separated from the leptons by ∆R(`, jet) > 0.4. While POWHEG agrees
with the data for the Njet = 1 bin it fails to predict the rate of events with more than one jet.
The MENLOPS and ME+PS predictions impressively demonstrate the effect of higher-order
corrections provided by tree-level matrix elements up to the third jet. They agree with the
measurement within the error bands for Njet = 2, 3 and as expected fail to predict the correct
four-jet rate because no matrix-element corrections have been applied at that multiplicity.

Transverse momentum spectra of the three leading jets accompanying the Z boson were
measured by DØ in [249]. The distributions in Figure 8.12 (right) and 8.13 are normalised
to the inclusive cross section for Z production and the jets have been constructed using the
same settings as in the multiplicity measurement. Both MENLOPS and ME+PS deliver a
very good description of these spectra while POWHEG fails to describe the rate and shape
for the second and third jet.
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Figure 8.14: Transverse momentum of theW , compared to data taken by the DØ collab-
oration [244], and the exclusive jet multiplicity in inclusive W production
at the Tevatron at

√
S = 1.8 TeV.
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Figure 8.15: Pseudorapidity of the hardest jet and angular separation of the first two
hardest jets in inclusive W production at the Tevatron at

√
S = 1.8 TeV.

8.3.5 W+jets Production

In this section the focus rests on the production of W -bosons and their subsequent decay
into an electron-neutrino pair at the Tevatron at

√
s = 1.8 TeV. The core process of the

Monte-Carlo simulation is therefore qq̄′ → `ν̄. The separation criterion is set to Qcut = 20
GeV and up to three extra jets are taken into account. The electron-neutrino pair is required
to have an invariant mass of meν > 10 GeV. The W → eν decay is corrected for QED next-
to-leading order and soft-resummation effects using the YFS approach [74]. Virtual matrix
elements are supplied by BLACKHAT [54, 225, 226, 227, 228, 229].
The left panel of Figure 8.14 displays the transverse momentum of theW -boson as compared
to data taken by the DØ collaboration [244], while the right panel shows the exclusive jet
multiplicity of k⊥-clustered jets (D=0.7) with at least 20 GeV. Although the event sample
generated using the POWHEG technique only provides the best match to the central value
of the data, all three event samples are well within the experimental uncertainties. On the
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Figure 8.16: Differential jet rates dnn+1 in W production at the Tevatron at
√
s = 1.8

TeV.

other hand, already in the rate of single-jet events deviations between the POWHEG sample
and both the MENLOPS and ME+PS samples are visible, with the latter two agreeing very
well. Similarly, the POWHEG sample underestimates the amount of radiation into the central
detector region, as exemplified in Figure 8.15. The right panel of this figure shows that, since
the POWHEG approach is capable of modeling the second hardest emission using the soft-
collinear approximation of the parton shower only, its description of the angular separation
of the the first two hardest jets is missing prominent features originating in the wide angle
region. These features are of course present in the approaches having fixed-order matrix
elements at their disposal.
Figure 8.16 shows the differential jet rates d01, d12, d23 and d34 using the above k⊥-algorithm.
While the first three of them, for the matrix-element merged samples, are described by ma-
trix element to matrix element transitions, only the softer part of d01 is described by such
a transition for the POWHEG sample. The harder part of the d01 receives corrections by
matrix elements of higher jet multiplicity which are clustered into a single hard jet first. Of
course, these corrections are missing in the POWHEG sample. Furthermore, d12 is described
by a matrix element to parton shower transition only in the POWHEG sample. Hence, it
strongly underestimates the amount of hard wide-angle radiation. Similarly, both d23 and
d34 are described by the parton shower only in the POWHEG sample, showing the same be-
haviour. It is worth noting that both the MENLOPS sample, implementing local K-factors,
and the ME+PS, scaled by a global K-factor, agree within their respective statistical uncer-
tainties over the whole range, indicating the well known fact of the approximate momentum
independence of the virtual corrections to the leading order process.
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Figure 8.17: Transverse momentum of the reconstructed Higgs boson in the gluon-fusion
process at nominal LHC energies (14 TeV).
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Figure 8.18: Transverse momentum of the first and second hardest jet in Higgs-boson
production via gluon fusion at nominal LHC energies (14 TeV).

8.3.6 Higgs boson production

This section presents predictions for Higgs boson production via gluon fusion at nominal
LHC energies of

√
s = 14 TeV. As NLO corrections to the core process gg → h→ τ+τ− are

rather large, tremendous efforts have been made to perform fully differential calculations at
NNLO [232, 233, 234] and several predictions have been presented which merged such fixed-
order results with resummation at next-to-next-to-leading logarithmic accuracy [235, 236].
Within the confines of the MENLOPS approach there are no means for an improvement of
the resummed calculation. Instead it is restricted by the limitations of the parton-shower
model. However, the systematic inclusion of higher-order tree-level matrix elements through
the MENLOPS method can yield a significant improvement of existing NLO predictions, thus
partially closing the gap between full NNLO predictions and Monte-Carlo results. It was
shown, for example, in [264] that the predictions from ME+PS algorithms are often compet-
itive to NNLO results if only the shape, not the normalisation, of observable distributions is
concerned.
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Figure 8.19: Pseudorapidity difference and angular separation of the first and second
hardest jet in Higgs-boson production via gluon fusion at nominal LHC
energies (14 TeV).

In the simulations mH = 120 GeV is set, and the decay h → τ+τ− and Γh are included.
However, the analysis focuses on the properties of QCD radiation associated with production
of the Higgs boson. The invariant τ -pair mass is restricted to 115 < mττ/GeV < 125 at the
matrix-element level. Virtual matrix elements are implemented according to [230, 231]. The
decay h → τ+τ− is corrected for QED soft-resummation and approximate next-to-leading
order effects using the YFS approach [74].
Figure 8.17 shows the transverse momentum spectrum of the reconstructed Higgs boson.
Therein, it is to note that both the POWHEG and MENLOPS samples are very consistent in
the prediction of this rather inclusive observable. On the other hand, differences are observed
in the results for individual jet transverse momentum spectra, cf. Figure 8.18. They increase
with jet multiplicity and with increasing transverse momentum, as can be expected, since
the higher multiplicity jets are described by the uncorrected parton shower in the POWHEG
method. Deviations are also found in the prediction of the dijet separation in η − φ space,
which is shown in Figure 8.19. However, it was previously found that the ME+PS result
yields a prediction which is very similar to the NNLO result [264]. This feature is naturally
retained in the MENLOPS simulation.

8.3.7 W+W−+jets Production

In this section predictions for the production of the W+[→ e+νe] W
−[→ µ−ν̄µ] final state

at nominal LHC energies of
√
s = 14 TeV are presented. The lepton-neutrino pairs are

required to have an invariant mass of m`ν > 10 GeV each. TheW → `ν decays are corrected
for QED next-to-leading order and soft-resummation effects using the YFS approach [74].
Virtual matrix elements are supplied by MCFM [9, 237, 238]. Again, this study focuses
mainly on the properties of QCD radiation accompanying the diboson production process.
Up to three additional jets at Qcut = 20 GeV are simulated in both, the MENLOPS and
the ME+PS sample. It is known that high-multiplicity matrix elements in the ME+PS
approach yield sizable effects on total event rates and shapes in this reaction [265], a feature
which is inherited by the MENLOPS method. Setting the phase-space separation criterion
to a rather low value compared to the average partonic centre-of-mass energy will thus
always lead to sizable emission-rate differences, which might be an indication of potentially
large higher-order corrections. A similar effect was observed in a recent analysis of Z-
boson pair production in association with a hard jet [266]. While the NLO corrections to
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Figure 8.20: Invariant mass of the electron-muon pair (left) and HT (right) in W+W−

production at nominal LHC energies (14 TeV).
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Figure 8.21: Transverse momentum of the first and second hardest jet in W+W− pro-
duction at nominal LHC energies (14 TeV).
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Figure 8.22: Azimuthal separation of the electron and the muon (left) and of the two
hardest jets (right) in W+W− production at nominal LHC energies (14
TeV).
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Figure 8.23: Invariant mass of the electron-muon pair (left) and HT (right) in W+W−

production at nominal LHC energies (14 TeV) after vetoing events with
more than one jet with pT > 20 GeV.
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Figure 8.24: Azimuthal separation of the electron and the muon (left) and transverse mo-
mentum of the hardest jet in W+W− production at nominal LHC energies
(14 TeV) after vetoing events with more than one jet with pT > 20 GeV.

this process are comparably small at Tevatron, they can be rather large at nominal LHC
energies. Restricting the available final-state phase space by a jet veto, the corrections were
again limited to smaller values, which makes the importance of the ZZ+2 jets final state
explicit. As up to three additional jets in the simulation of W+W− production are included,
similar effects are observed.
Figure 8.20 displays the invariant mass of the lepton pair and the scalar sum of transverse
momenta of the jets, leptons and the missing transverse energy, HT . While the former is
described very well by the next-to-leading order calculation used in the POWHEG sample
and receives only mild corrections from higher-order matrix elements, HT receives sizable
corrections at rather low values already. The reason for this is easily found in the sensitivity
of HT to any jet activity and thus to higher-order matrix element corrections of the parton
shower. This can be seen in comparison to Figure 8.23, where a veto on additional jet activity
was applied. Figure 8.21 exemplifies that the ME+PS part of the MENLOPS simulation
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predicts significantly harder radiation than the POWHEG subsample. The corresponding
corrections naturally amplify the deviations between the respective predictions of HT . The
impact of a jet veto on this distribution is shown in the right panel of Figure 8.24.
Figure 8.22 presents predictions for the azimuthal separation of the leptons and the two hard-
est jets. Again, the former receives only comparably small corrections, while higher-order
matrix-element corrections have large impact on the latter. This hints at the importance to
include higher-order matrix elements in Monte-Carlo simulations of hadron-collider events
if the hadronic centre-of-mass energy is large. The effect of a jet veto on the azimuthal
separation of the leptons is shown in the left panel of Figure 8.24.

8.4 Summary and conclusions

In this part of this thesis, a parallel development and independent implementation [173] of
the MENLOPS algorithm, first discussed in [172], has been presented. This new algorithm
combines the so far most advanced methods to include higher-order corrections to a given
core process: The POWHEG technique, which allows to produce inclusive samples for that
process with next-to-leading order accuracy, and the ME+PS technique, which allows to
generate inclusive samples with a leading-order cross section, but with the production of
additional hard radiation corrected by higher-order tree-level matrix elements.
Until the work of Hamilton and Nason [172] and the work presented here, these two ap-
proaches were considered orthogonal and thus used independent from each other, in the
regime of their respective strengths and validity. With the recent efforts on combining them,
the shortcomings of each method, i.e. the description of higher jet multiplicities in POWHEG
and lack of the correct NLO cross section in ME+PS, have been expunged.
The findings of Hamilton and Nason are fully confirmed concerning both the formalism
and the relative improvement in the simulation obtained through it. This is even more
emphasised here, since the implementation of the MENLOPS method as presented in [172]
seems to suffer from the choice of tools. As already indicated in the introduction, the omission
of truncated showering in the program used to simulate the ME region may have caused a few
of the uncertainties. The superior quality of the ME+PS part of the simulation in SHERPA,
including the truncated showering, is the only reason behind the improved simulation here –
the formalism is identical in both publications. The drastically reduced uncertainties stress
the great improvement by the MENLOPS method.
The results presented here and the ones presented by Hamilton and Nason in fact show a
significant improvement of many aspects of previous simulations in a variety of processes,
including here e+e− annihilation to hadrons, hadronic final states in DIS, jets in association
with single vector bosons and with vector boson pairs, and the production of Higgs bosons
through gluon fusion.
In the future, the description of many more processes with this combined NLO matching
and multijet merging will become feasible. This is possible, because both the POWHEG and
the ME+PS part of the implementation are fully automated in SHERPA.
It is also worth pointing out that the methods developed so far will naturally serve as a
starting point to promote the ME+PS idea to full NLO, in the sense that merging sequences
of multijet matrix elements at NLO into one inclusive sample becomes feasible. A first
attempt to achieve this from a somewhat different angle has been presented in [171].
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Summary

In this thesis the consistent combination of two types of resummations, the Yennie-Frautschi-
Suura (YFS) resummation resumming large soft photon logarithms and the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) resummation resumming large collinear parton ra-
diation logarithms, and fixed-order next-to-leading order matrix element has been achieved.
The description of photon and parton radiation, respectively, therefore exhibits the best
descriptions available over the whole radiation phase space, both hard and soft, and both
collinear and wide angle, respectively.
Part I discussed the YFS resummation and how fixed order hard photon emission matrix
elements can be incorporated. An algorithm implementing this resummation, allowing for the
incorporation of higher order matrix elements to any decay process up to any order in the QED
coupling constant α, has been implemented as an independent physics module, PHOTONS++,
in the SHERPA event generator framework. An automated construction for the collinear
approximation to any decay matrix element, for processes which do not have dedicated exact
matrix elements implemented, was presented. Thus, the bulk of the hard photon radiation
can always be described correctly to O(α). For processes that have dedicated higher order
matrix elements implemented, these are not restricted to next-to-leading order real emission
matrix elements. On the contrary, the implementation is constructed such that real as well
as virtual emission matrix elements, in the form of the squared infrared subtracted matrix
elements β̃nm, can be added to any order in α without modifying PHOTONS++’ core. This
implementation has then been compared to traditional parton shower implementations by
calculating the expectation values of selected observables in Drell-Yan production. Very
good agreement was found. As well as a reduced sensitivity to unphysical cutoff parameters.
Similarly, the predictions of the algorithm for the radiative decay widths of µ and τ decays
has been compared to data published by the Particle Data Group and excellent agreement
was found.
Chapter 5 used the versatility of the implementation to calculate observables in semileptonic
B meson decays, key processes at past and present B-factories. Therefore, the electroweak
corrections to such processes were calculated in the respective effective decay model aug-
mented with QED gauge invariance. These corrections were implemented to facilitate their
use with the automated resummation implementation. The results show good agreement
with the parallely implemented fixed-order next-to-leading order result in large regions of
the phase space. However, regions of the various observables which are dominated by re-
summation effects have been identified and a considerable improvement has been found.
Part II was dedicated to discuss the DGLAP resummation and how its results can be con-
sistently combined with fixed order results. Therefore, the established POWHEG method has
been reformulated on the basis of the evolution of single legs, as present in the DGLAP
formalism. This enabled its reinterpretation as an advanced matrix element reweighting of
conventional parton showers, supplied with a next-to-leading order weight. For the prove
of full next-to-leading order correctness for inclusive observables as well as (next-to-)leading
logarithmic correctness of the parton evolution, intimate relations between the subtraction
algorithm, enabling a numeric implementation of next-to-leading order corrections, and the
parton shower have been established. Together with the automated tree-level matrix ele-
ment generators and the automated implementation of the Catani-Seymour dipole subtrac-
tion present within the SHERPA framework this reformulation of the POWHEG method led to
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its automated implementation, given the virtual matrix element is linked from an external
source. This automated implementation has thoroughly tested both for internal consistency
and its ability to describe experimental data. Very good agreement was found. Further,
the formal relation of the POWHEG method and the MC@NLO method has been established
exploiting their respective ambiguities regarding their exponentiation behaviour.
The new formulation of the POWHEG method and its automated implementation in SHERPA
led to a straightforward combination with the ME+PS algorithm, merging samples of succes-
sively increasing final state parton multiplicity into one inclusive event sample. The resulting
MENLOPS algorithm is thus able to describe inclusive observables with the same accuracy
as the POWHEG algorithm and observables depending on higher order real parton emissions
with the same accuracy as the ME+PS method. Of course, also the intrajet parton evolu-
tion, described at the same level of accuracy in both POWHEG and ME+PS, is not spoiled
either. These facts have been verified by extensive cross-algorithm comparisons. Finally the
predictions for a wealth of observables have been compared to a wide range of data and very
good agreement was found.
Altogether, in can be concluded that the SHERPA event generator is thus able to simultane-
ously calculate a very wide range of observables with the highest accuracy. The comparison
to data has shown the improved quality of its description over a wide range of experiments,
from the data taken by the e+e− collider BABAR at the Υ(4S) resonance to the e+e− col-
lider LEP taking data at the Z pole, including the deep inelastic scattering data from the
ep-collider HERA and data from the two hadron colliders Tevatron, colliding pp̄ at 1.8 TeV
and 1.96 TeV, and LHC, colliding pp at 7 TeV.
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Appendix A

Details on the YFS resummation
implementation

A.1 The YFS-Form-Factor

In this appendix, the cancellation of virtual and real soft singularities will explicitly be
performed and the YFS-Form-Factor will be calculated. As already defined in Chapters 2
and 3 the YFS-Form-Factor Y (Ω) reads

Y (Ω) = 2α
∑
i<j

(
Re B(pi, pj) + B̃(pi, pj,Ω)

)
, (A.1.1)

where the virtual infrared factor is given by

B(pi, pj) = − i

8π3
ZiZjθiθj

∫
d4k

k2

(
2piθi − k

k2 − 2(k · pi)θi
+

2pjθj + k

k2 + 2(k · pj)θj

)2

(A.1.2)

and the real infrared factor reads

B̃(pi, pj,Ω) =
1

4π2
ZiZjθiθj

∫
d4k δ(k2) (1−Θ(k,Ω))

(
pi

(pi · k)
− pj

(pj · k)

)2

. (A.1.3)

As before, Zi and Zj are the charges of particles i and j in units of the positron charge,
respectively, and the sign factors θi,j = ±1 for final (initial) state particles. Again, Ω is the
“unresolved” region of the phase space for the soft photons. In this form the divergences need
to be regularised, which can be achieved by either introducing a fictitious small photon mass
λ, as in the original YFS paper [75], or through dimensional regularisation. In both cases,
however, the limited real emission phase space Ω will lead to potentially large logarithms.
After performing the momentum integration, the virtual infrared factor can be written as

B(pi, pj) = −ZiZjθiθj
2π

ln
mimj

λ2
+ 1

2
(pi · pj)θiθj

1∫
−1

dx
ln p′2x

λ2

p′2x
+ 1

4

1∫
−1

dx ln
p′2x

mimj

 ,

(A.1.4)

where

p′x =
(piθi − pjθj) + x(piθi + pjθj)

2
(A.1.5)
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and

− lnλ2 =
1

ε
− ln µ̃2 (A.1.6)

contains the infrared divergence. Similarly, the real infrared factor reads

B̃(pi, pj, ω) =
ZiZjθiθj

2π

ln
ω2

λ2
+ ln

mimj

EiEj
− 1

2
(pi · pj)

1∫
−1

dx
ln p2x

λ2

p2
x

+ 1
2
(pi · pj)

1∫
−1

dx
ln E2

x

ω2

p2
x

− G̃(1)− G̃(−1) + (p1 · p2)

1∫
−1

dx
G̃(x)

p2
x

 ,

(A.1.7)
with

px =
(pi + pj) + x(pi − pj)

2
(A.1.8)

and ω is the momentum cut-off specifying Ω in the frame B̃ is to be evaluated in. Further-
more,

G̃(x) =
1− βx

2βx
ln

1 + βx
1− βx

+ ln
1 + βx

2
. (A.1.9)

with

βx =
|~px|
p0
x

=

√
(~pi + ~pj)2 + 2x(~p2

i − ~p2
j) + x2(~pi − ~pj)2

(Ei + Ej) + x(Ei − Ej)
. (A.1.10)

Combining both terms to the YFS-Form-Factor the divergences cancel and a finite result is
obtained. The remaining parameter integrals do not give rise to further divergences as long
as p2

i , p
2
j > 0, i.e. as long as the emitting particles are massive. Thus, taken together, the

YFS form factor reads

Y (pi, pj, ω) = − α

π
ZiZjθiθj

ln
EiEj
ω2
− 1

2
(pi · pj)

1∫
−1

dx
ln E2

x

ω2

p2
x

+ 1
4

1∫
−1

dx ln
p′2x

mimj

+ 1
2
(pi · pj)Θ(θiθj)

 8π2Θ(x′1x
′
2)

(x′2 − x′1)(pi + pj)2
+

1∫
−1

dx
lnx2

p2
x


+ G̃(1) + G̃(−1)− (pi · pj)

1∫
−1

dx
G̃(x)

p2
x

 ,

(A.1.11)

where x′1,2 are the roots of p′2x with x′1 < x′2. The general case cannot be evaluated in closed
form. This is due to the fact that the term

1∫
−1

dx
G̃(x)

p2
x

, (A.1.12)

although completely finite, can only be evaluated analytically for the dipole in its rest frame
or in the rest frame of one of either of its constituent particles. This can only be achieved if
there is one dipole only. All other cases need to be evaluated numerically.
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A.1.1 Special cases

Decay into two particles with (piθi + pjθj)
2 < 0

If the multipole consists of only two particles in the final state, e.g. for decays of the type
Z → `¯̀, then there is an analytical solution in the rest frame of the dipole formed by the
two charged particles. In the high-energy limit, given by Ei � mi for both QED corrected
charged particles, the critical term above can be written as

(pi · pj)
1∫

−1

dx
G̃(x)

p2
x

∼= 1
6
π2 . (A.1.13)

Therefore, in this case, the full YFS form factor reads

Y (pi, pj, ω) ∼= − α

π
ZiZjθiθj

[(
1− ln

2(pi · pj)
mimj

)
ln
EiEj
ω2

+ ln
Ei
Ej

ln
mi

mj

− 1
2

ln2 Ei
Ej

+ 1
2

ln
(piθi + pjθj)

2

mimj

− 1− π2

6

]
.

(A.1.14)

This result in the high-energy limit agrees with the result stated in [75].

Decay of a charged particle with one charged final state with (piθi + pjθj)
2 = 0

A similar, but nonetheless different case occurs for the decay of a charged particle into a
final state involving only one charged particle, e.g. the case ofW -decays, W → `ν`. Then, in
the corresponding dipole’s rest frame neither mW � EW nor (piθi+pjθj)

2 < 0 and therefore
this case is different from the one above. In this case, for (pW − pl)2 = 0,

YW(ω) =
α

π

[
2

(
1− ln

mW

ml

)
ln
mW

ω
√

8
+ ln

mW

ml

− 1
2

+ 3
2

ln 2− 3
12
π2

]
. (A.1.15)

This result of course differs from the result in [98] since both results are given in different
Lorentz-frames. Also, if in this process a photon is radiated, then (pW −pl)2 = 2(pν ·pγ) > 0
and the YFS-Form-Factor takes a different a form.

A.1.2 The full YFS form factor

Here the complete solutions to analytically integrable parameter integrals in the YFS form
factor are given. In the following, using the invariance of Y (Ω) under the interchange of
pi ↔ pj, the labels pi and pj are chosen such that Ej ≥ Ei. It is useful to define

x1,2 = −
p2
i − p2

j ± 2
√

(pi · pj)2 − p2
i p

2
j

(pi − pj)2
(A.1.16)

as the roots of p2
x and

x′1,2 = −
p2
i − p2

j ± 2
√

(pi · pj)2 − p2
i p

2
j

(pi + pj)2
(A.1.17)
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as those of p′2x in case of θiθj = +1, satisfying x1,2 /∈ [−1, 1] and x′1,2 ∈ (−1, 1), respectively.
It holds that x1, x

′
2 > 0 and x2, x

′
1 < 0 if (pi − pj)

2 < 0 and 0 < x1 < x2 and 0 < x′1 <
x′2 if (pi − pj)

2 > 0. These difference in the relations between x1 and x2 necessitate the
differentiation of distinct cases in the calculations.
If (pi−pj)2 = 0 then x1,2 are not defined. If θiθj = −1 then p′2x = p2

x and x′1,2 are meaningless,
leading to another set of distinct cases.

When evaluating the first set of the parameter integrals that fact simplifies matters a lot
resulting in

Re

θiθj 1∫
−1

dx
ln p′2x

λ2

p′2x
+

1∫
−1

dx
ln p2x

λ2

p2
x

 θiθj=−1
= 0 . (A.1.18)

Otherwise, the evaluation is more complicated and involves shifting the poles at x′1,2 off the
real axis. The solution then is

Re

θiθj 1∫
−1

dx
ln p′2x

λ2

p′2x
+

1∫
−1

dx
ln p2x

λ2

p2
x


=

8π2Θ (x′1x
′
2)

(x′2 − x′1)(pi + pj)2
+

8

(x1 − x2)(pi − pj)2

[
ln |x1|

(
Li2
(
x1−1
x1

)
− Li2

(
x1+1
x1

))
− ln |x2|

(
Li2
(
x2−1
x2

)
− Li2

(
x2+1
x2

))]
.

(A.1.19)

In any case, the last piece of the divergence has cancelled, leaving finite terms negligible in
the high energy limit.

The other integral containing p′2x is to be evaluated next. In total there are three cases to
consider.

• θiθj = +1

Re

 1∫
−1

dx ln
p′2x

mimj


= 2 ln

(pi + pj)
2

4mimj

+ ln
[
(1− x′21 )(1− x′22 )

]
− x′1 ln

∣∣∣∣1− x′11 + x′1

∣∣∣∣− x′2 ln

∣∣∣∣1− x′21 + x′2

∣∣∣∣− 4 .(A.1.20)

Although, there again are poles within the range of integration the integral over them
is finite.

• θiθj = −1. The range of integration does not comprise any poles and, thus, is real,
giving

1∫
−1

dx ln
p2
x

mimj

= 2 ln
|(pi − pj)2|

4mimj

+ ln
[
(1− x2

1)(1− x2
2)
]

+ x1 ln

∣∣∣∣1 + x1

1− x1

∣∣∣∣+ x2 ln

∣∣∣∣1 + x2

1− x2

∣∣∣∣− 4 .(A.1.21)
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Evidently, the case (pi − pj)2 = 0 has to be treated separately. It yields

1∫
−1

dx ln
p2
x

mimj

= 2 ln
|p2
i − p2

j |
2mimj

+ ln |1− x2
p|+ xp ln

∣∣∣∣1 + xp
1− xp

∣∣∣∣− 2 . (A.1.22)

where xp = −p2i+p
2
j

p2i−p2j
. In decay matrix elements it is not kinematically possible to also

have mi = mj.

The last integral that is generally solvable analytically differentiates even more cases. The
easiest to solve is the case of Ei = Ej, as it is occurring in leptonic Z-decays. Here, Ex is
independent of x, thus giving

1∫
−1

dx
ln E2

x

ω2

p2
x

=
8

(x1 − x2)(pi − pj)2
ln
Ei + Ej

2ω
ln

∣∣∣∣(1− x1)(1 + x2)

(1 + x1)(1− x2)

∣∣∣∣ . (A.1.23)

For all other dipoles three distinct cases appear:

• (pi − pj)2 < 0

1∫
−1

dx
ln E2

x

ω2

p2
x

=
8

(x1 − x2)(pi − pj)2

[
ln
Ei
ω

ln

∣∣∣∣1− x1

1 + x1

∣∣∣∣+ ln |y1| ln
∣∣∣∣1− x1

1 + x1

∣∣∣∣
− ln

(1 + x2)Ei + (1− x2)Ej
2ω

ln

∣∣∣∣1− x2

1 + x2

∣∣∣∣
+ Li2

(
− ζ(1+x1)

y1

)
− Li2

(
ζ(1−x1)

y1

)
− Li2

(
− 1+x2
xE−x2

)
+ Li2

(
1−x2
xE−x2

) ]
(A.1.24)

with y1 = 1 + ζ(1− x1), ζ = −Ei−Ej
2Ei

and xE = −Ei+Ej
Ei−Ej .

• (pi − pj)2 > 0

1∫
−1

dx
ln E2

x

ω2

p2
x

=
8

(x1 − x2)(pi − pj)2

[
ln
Ei
ω

ln

∣∣∣∣1− x1

1 + x1

∣∣∣∣+ ln |y1| ln
∣∣∣∣1− x1

1 + x1

∣∣∣∣
+ 1

2
ln2

∣∣∣∣ y2

ξ(1 + x2)

∣∣∣∣− 1
2

ln2

∣∣∣∣ y2

ξ(1− x2)

∣∣∣∣
− ln

Ej
ω

ln

∣∣∣∣1− x2

1 + x2

∣∣∣∣+ ln |y2| ln
∣∣∣∣1− x2

1 + x2

∣∣∣∣
+ Li2

(
− ζ(1+x1)

y1

)
− Li2

(
ζ(1−x1)

y1

)
− Li2

(
− y2
ξ(1−x2)

)
+ Li2

(
y2

ξ(1+x2)

) ]
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(A.1.25)

with y2 = 1 + ξ(1 + x2) and ξ =
Ei−Ej

2Ej
.

• (pi − pj)2 = 0
With the definitions for xE and xp from above it allways holds that xE > xp > 1, thus

1∫
−1

dx
ln E2

x

ω2

p2
x

=
4

p2
j − p2

i

[
ln
Ej − Ei

2ω
ln

∣∣∣∣1 + xp
1− xp

∣∣∣∣+ ln(xE − xp) ln

∣∣∣∣1 + xp
1− xp

∣∣∣∣
+ Li2

(
xp−1

xp−xE

)
− Li2

(
xp+1

xp−xE

) ]
(A.1.26)

The last integral can generally only be solved numerically. This is due to the complexity of
βx. If, however, the dipole is in its rest frame or in the rest frame of one of its constituents,
there are analytical solutions. Because PHOTONS++ always treats multipoles in their rest
frames solutions for the integral will only be given in that frame. Two important cases are:

• mi = mj

1∫
−1

dx
G̃(x)

p2
x

=
1

βE2

[
1
2

ln2 1 + β

2
+ ln 2 ln(1 + β)− 1

2
ln2 2− 1

2
ln2(1 + β)

+ Li2
(

1−β
2

)
− Li2

(
1+β

2

)
+ Li2 (β)− Li2 (−β)

]
(A.1.27)

with β = |~pi|
Ei

=
|~pj |
Ej

and E = Ei = Ej.

• Leptonic W -decay (mi � mj = mW )

1∫
−1

dx
G̃(x)

p2
x

∼= 2

m2
j

[
3
12
π2 + Li2 (−2)

]
. (A.1.28)

A.2 Details on the photon generation

In this section the generation of the photon distribution is detailed.
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Figure A.1: Sketch of how the axes are chosen in the
angular integration in multipoles.

A.2.1 Avarage photon multiplicity

The average photon multiplicity n̄ is the average of the Poisson distribution before it is
corrected by the various weights. It is therefore not immediately connected to the true
average photon multiplicity of the final event. Nonetheless, it is an integral part of the
generation procedure. An analytical result in closed form is available for both dipoles and
multipoles. However, the calculations for multipoles are more involved as the integrations
do not nicely separate as they do in the dipole case in the chosen frame. Thus, as a starting
point the analytical result for the dipole in its rest frame will be given. It reads

n̄ =

∫ ωmax

ωmin

d3k

k0
S̃q(k) = −α

π
Z1Z2θ1θ2 ln

ωmax

ωmin

(
1 + β1β2

β1 + β2

ln
(1 + β1)(1 + β2)

(1− β1)(1− β2)
− 2

)
,

where ωmin is the infrared cut-off and ωmax is the maximal kinematically allowed photon
energy. The latter can be determined by setting the rescaling parameter u to zero in
eqs. (3.1.17) and (3.1.22), respectively, and by assuming single photon emission. Addi-
tionally, βi = |~pi|

Ei
.

In the case of a multipole, the integral over the photon energy can still be separated, as long
as the soft photon region is sufficiently well-behaved. This is the case, if Θ(k,Ω) forms an
isotropic hypersurface in the frame of the integration. However, the angular integration still
remains to be done:

n̄ =

∫
d3k

k0
Θ(k,Ω)S̃q(k)

=
α

4π2

∑
i<j

ZiZjθiθj

∫
d3k

k0
Θ(k,Ω)

(
qi

(qi · k)
− qj

(qj · k)

)2

=
α

4π2
ln
ωmax

ωmin

∑
i<j

ZiZjθiθj

(
8π −

∫
dΩ

2(qi · qj)
(qi · ek)(qj · ek)

)
.

(A.2.1)

Choosing different orientations of the polar axes for each interference term of every con-
stituent dipole, all angular integrations can be done analytically. This choice simplifies the
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integration immensely. The orientation for each of the interference terms is thus chosen to
be such that both momenta lie symmetrically in the unit sphere, both forming an angle αij
with the polar axis, see Fig. A.1. Therefore, by this choice,

(qi · qj) = EiEj (1− aiaj + bibj)

(qi · ek) = Ei (1− ai sinϕ sin θ − bi cos θ)

(qj · ek) = Ej (1− aj sinϕ sin θ + bj cos θ) ,

(A.2.2)

where eµk again is 1
k0
kµ with e2

k = 0, cf. Eq. (3.1.33), and the further parameters are given by

ai,j = βi,j sinαij and bi,j = βi,j cosαij . (A.2.3)

With these choices the last integral reads∫
dΩ

EiEj
(qi · ek)(qj · ek)

=

2π∫
0

dϕ

π∫
0

dθ sin θ
1

(1− ai sinϕ sin θ − bi cos θ) (1− aj sinϕ sin θ + bj cos θ)
. (A.2.4)

Using the decomposition

1

bj (1− ai sinϕ sin θ − bi cos θ)
− 1

bi (1− aj sinϕ sin θ + bj cos θ)
(A.2.5)

=
(bi − bj) + 2bibj cos θ

bibj (1− ai sinϕ sin θ − bi cos θ) (1− aj sinϕ sin θ + bj cos θ)
(A.2.6)

and aibj = ajbi, this can be easily integrated giving∫
dΩ

EiEj
(qi · ek)(qj · ek)

= 2π

 bi√
B2Ci − ABDi + A2Ei

ln
A+B

A−B

√
Ci −Di + Ei + B(2Ci−Di)−A(Di−2Ei)

2
√
B2Ci−ABDi+A2Ei√

Ci +Di + Ei + B(2Ci+Di)−A(Di+2Ei)

2
√
B2Ci−ABDi+A2Ei

= − bj√
B2Cj − ABDj + A2Ej

ln
A+B

A−B

√
Cj −Dj + Ej +

B(2Cj−Dj)−A(Dj−2Ej)

2
√
B2Cj−ABDj+A2Ej√

Cj +Dj + Ej +
B(2Cj+Dj)−A(Dj+2Ej)

2
√
B2Cj−ABDj+A2Ej

 ,

(A.2.7)

with

A = bi − bj
B = 2bibj

Ci,j = 1− ai,j
Di,j = ∓ bi,j

Ei,j = a2
i,j + b2

i,j .

(A.2.8)

Upon closer examination it can be seen that for αij → 0 the result of the dipole case is
recovered.
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A.2.2 Photon energy

Due to the decomposition of the integration over the photon energy and the integration over
the unit sphere, the photon energy distribution and the photon angular distribution can be
generated separately. Of course, this independence of distributions is no longer true after
the reweighting procedure, but it alleviates the generation of the crude distribution.
In the implementation presented here, the photon energy is distributed according to 1

k0
,

generated through

k0 = ωmin

(
ωmax

ωmin

)R
(A.2.9)

where R is a uniformly distributed random number on the interval [0, 1].

A.2.3 Photon angles

Similar to all other parts of the photon distribution, the photon angles are also generated
according to S̃q(k). For this, the relevant function is recast into the form

−
(

qi
(qi · ek)

− qj
(qj · ek)

)2

= − 1− β2
i

(1− βi cos θ)2
+

2(1 + βiβj)

(1− βi cos θ)(1 + βj cos θ)
− 1− β2

j

(1 + βj cos θ)2
, (A.2.10)

where θ is some polar angle w.r.t. the dipole axis in the dipole rest frame. In this frame, the
generation of the azimuthal is trivial - it just follows a flat distribution in [0, 2π]. The polar
distribution above can be bound from above through the interference term. This allows to
generate the true distribution by generating the angle according to the interference term and
applying a hit-or-miss rejection. The interference term can be decomposed analogously to
the general case above into two independent terms according to

1

(1− βi cos θ)(1 + βj cos θ)
=

βiβj
βi + βj

(
1

βj(1− βi cos θ)
− 1

βi(1 + βj cos θ)

)
. (A.2.11)

The cosine of the polar angle, cos θ, is then generated to either of the two terms, i.e. it is
generated according to (1− βi cos θ)−1 with probability

Pi =
ln 1+βi

1−βi

ln 1+βi
1−βi + ln

1+βj
1−βj

(A.2.12)

and according to (1 + βj cos θ)−1 with probability Pj = 1 − Pi, selected through a random
number. These angles can be generated by

cos θ =
1

βi

[
1− (1 + βi)

(
1− βi
1 + βi

)R]
(A.2.13)

in the former case and

cos θ = − 1

βj

[
1− (1− βj)

(
1 + βj
1− βj

)R]
(A.2.14)
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in the latter. R again is a uniformly distributed random number on [0, 1]. The correction
weight for obtaining the full distribution reads

W =
− 1−β2

i

(1−βi cos θ)2
+

2(1+βiβj)

(1−βi cos θ)(1+βj cos θ)
− 1−β2

j

(1+βj cos θ)2

2(1+βiβj)

(1−βi cos θ)(1+βj cos θ)

≤ 1 . (A.2.15)

The azimuthal angle ϕ is distributed uniformly.

A.2.4 Photons from multipoles

In a multipole configuration again the photons are generated according to S̃q(k). The integral
over photon energies can still be separated from the angular integrations, decoupling the
generation of the energy of a single photon as above. However, its angular distribution is
very complex. But due to

S̃q(k) =
∑
i<j

S̃(qi, qj, k) (A.2.16)

the photon angles are distributed according to

−
∑
i<j

|ZiZjθiθj|
(

qi
(qi · ek)

− qj
(qj · ek)

)2

. (A.2.17)

This is nothing but a sum of angular distributions of different dipoles which are not in their
respective rest frame.
Subsequently, one of those constituent dipoles is chosen with the probability

Pij =
|n̄ij|∑

i<j

|n̄ij|
=

∣∣∣∫ d3k
k0
S̃(qi, qj, k)

∣∣∣∑
i<j

∣∣∣∫ d3k
k0
S̃(qi, qj, k)

∣∣∣ . (A.2.18)

Then, photon angle generation can proceed as above in the rest frame of the dipole. To
obtain the right distribution in the rest frame of the overall multipole, a null-vector of unit
length is created in the rest frame of the dipole using the newly generated angles ϕ ant θ.
Then this null vector is boosted into the rest frame of the multipole. It now has the angular
distribution according to its constituent dipole in this frame. Since it is a null vector it has
the properties of a photon and only needs to be rescaled to the energy generated earlier.

A.3 Massive dipole splitting functions

The massive dipole splitting functions are needed for the calculation of the approximation
to the infrared subtracted single hard photon emission matrix element β̃1

1 . They are taken
directly from [94] for spin-1

2
emitters and are generalised from [52] for all other cases. Prob-

lems arising during this generalisation are related to the fact that these splitting functions
for spin-1 particles are only given for massless gluons and that all initial states are considered
massless as well. The extension to radiation off massive spin-1 particles is rather straight
forward by augmentation with a simple mass term. The extension to massive initial states
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is less clear since decay matrix element are far off the massless initial state limit. However,
the decaying particle is always much more massive than its decay products when those are
supposed to emit hard bremsstrahlung. Thus, photons are predominantly emitted at large
angles to the initial state resulting in negligible contributions from these splitting functions.
Hence, they can safely be omitted.
Also, velocity factors from [52] have been omitted. They were introduced to facilitate the
analytic integration and change neither the infrared nor the quasi-collinear limit. They only
result in a different interpolation inbetween. The same is true for the factor Rij in the
massive fermion splitting function of [94]. Nonetheless, here this factor is kept because of
the direct applicability of these splitting functions to the completely massive splitting.
Three cases need to be differentiated regarding the state, initial or final, the emitter and
spectator are in. The fourth case where both emitter and spectator are in the initial state
lies outside the present applicability of this program, it will therefore be omitted.
To repeat the notation, pi is the 4-momentum of the emitter, pj that of the spectator and
k is the emitted photon. All massive dipole splitting functions will be given, in that order,
for spin-0, spin-1

2
and spin-1 emitters. Since there are no massive dipole splitting functions

available for emitters of spin-3
2
or spin-2, their emissions have to be described by the soft limit

only. Of course, it is always possible to implement exact process specific matrix elements.

A.3.1 Final State Emitter, Final State Spectator

In case of a final state emitter and a final state spectator the dipole splitting functions read

gij(pi, pj, k) = g(soft)
ij (pi, pj, k)

=
1

(pi · k)Rij(yij)

[
2

1− zij(1− yij)
− 1− zij −

m2
i

(pi · k)

]
=

1

(pi · k)

[
2

1− zij(1− yij)
+

2

1− zkj(1− yij)
+ 2zijzkj − 4− m2

i

(pi · k)

] (A.3.1)
with

yij =
pik

pipj + pik + pjk

zij =
pipj

pipj + pjk

zkj = 1− zij

vik,j = 1
2
Rij(yij)

√
λ(P 2

ij,m
2
i ,m

2
j)

(pi + k) · pj

(A.3.2)

and

Rij(x) =

√(
2m2

j + P̄ 2
ij(1− x)

)2 − 4P 2
ijm

2
j√

λ(P 2
ij,m

2
i ,m

2
j)

(A.3.3)

with
Pij = pi + pj + k

P̄ 2
ij = P 2

ij −m2
i −m2

j = 2 (pipj + pik + pjk)
(A.3.4)

wherein the photon is massless, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the Kallen-
function.
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A.3.2 Final State Emitter, Initial State Spectator

In case of a final state emitter and an initial state spectator the dipole splitting functions
read

gij(pi, pj, k) = g(soft)
ij (pi, pj, k)

=
1

(pi · k)xij

[
2

2− xij − zij
− 1− zij −

m2
i

(pi · k)

]
=

1

(pi · k)xij

[
2

2− xij − zij
+

2

2− xij − zkj
+ 2zijzkj − 4− m2

i

(pi · k)

] (A.3.5)

with

xij =
pipj + pjk − pik
pipj + pjk

zij =
pipj

pipj + pjk

zkj = 1− zij

(A.3.6)

A.3.3 Initial State Emitter, Final State Spectator

In the case of radiation off an initial state emitter some simplifications occur. Here, the
emitting particle is always assumed to be much heavier than its decay products resulting in
its contributions to the real emission corrections to be negligible. Thus,

gij(pi, pj, k) = g(soft)
ij (pi, pj, k) (A.3.7)

is set irrespective of the emitter’s spin.
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Appendix B

Formfactors and higher order matrix elements
for semileptonic B meson decays

B.1 Form factor models of exclusive semileptonic B meson decays

B.1.1 Form factors for B → D ` ν

Parameter Value
G(1) 0.98
ρ2
D 1.19

Table B.1: Parameter values used for the transition current 〈D|V µ|B〉 taken from Heavy
Quark Effective Theory.

The vector current describing the semileptonic B → D ` ν decay is given by

〈D|V µ|B〉 =
√
mBmD

(
h+(w)

(
vB + vD

)µ
+ h−(w)

(
vB − vD

)µ)
, (B.1.1)

with the heavy quark form factors h± parametrised [267]

h+(w) =G(1)×
[
1− 8ρ2

D z + (51ρ2
D − 10) z2 − (252ρ2

D − 84) z3)
]
,

h−(w) = 0 .
(B.1.2)

It is z =
√
w+1−

√
2√

w+1+
√

2
with w =

m2
B+m2

D−t
2mBmD

, ρ2
D the form factor slope, and G(1) the normalisation

at w = 1. The values used are given in Tab. B.1.

B.1.2 Form factors for B → π ` ν

The vector current describing the semileptonic B → π ` ν decay is given by

〈π|V µ|B〉 =

((
pB + pπ

)µ − m2
B −m2

π

t

(
pB − pπ

)µ)
f+(t) +

(
m2
B −m2

π

t

(
pB − pπ

)µ)
f0(t) ,
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Parameter Value
m2
f+1

28.40 GeV2

m2
f+2

40.73 GeV2

m2
f0

33.81 GeV2

Parameter Value
rf+1 0.744
rf+2 -0.486
rf0 0.258

Table B.2: Parameter values used for the transition current 〈π|V µ|B〉 taken from the pole
parametrisation in [268].

(B.1.3)

with form factors parametrised as [268]

f+(t) =
rf+1

1− t
m2
f+1

+
rf+2

1− t
m2
f+2

,

f0(t) =
rf0

1− t
m2
f0

.
(B.1.4)

rf+1 , rf+2 , and rf0 are normalisations and mf+1 , mf+2 , and mf0 pole masses. Their values
are listed in Tab. B.2.

B.1.3 Form factors for B → D∗0 ` ν

Parameter Value
εc 0.3571 GeV−1

εb 0.1042 GeV−1

ζ ′ -1.0

Parameter Value
Λ̄ 0.4 GeV

Λ̄∗ 0.75 GeV
ζ(1) 1.0

Table B.3: Parameter values used for the transition current 〈D∗0|Aµ|B〉 taken from the pole
parametrisation in [269, 270].

The axial-vector current describing the semileptonic B → D∗0 ` ν decay is given by

〈D∗0|Aµ|B〉 =
√
mBmD∗0

(
g+(w)

(
vB + vD∗0

)µ
+ g−(w)

(
vB − vD∗0

)µ)
. (B.1.5)

with the form factors g± parametrised as [269, 270]

g+(w) = εc

[
2(w − 1)ζ1(w)− 3ζ(w)

wΛ̄∗ − Λ̄

w + 1

]
− εb

[
Λ̄∗(2w + 1)− Λ̄(w + 2)

w + 1
ζ(w)− 2(w − 1)ζ1(w)

]
,

g−(w) = ζ(w) .

(B.1.6)

with

ζ(w) = ζ(1)× [1 + ζ ′(w − 1)] ,

ζ1(w) = Λ̄ ζ(w) .
(B.1.7)
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where ζ ′ denotes the form factor slope. The parameters are defined as εc ≡ 1
2mc

, εb ≡ 1
2mb

,
Λ̄ ≡ mD−mc, and Λ̄∗ ≡ mD∗0

−mc. Their values are listed in Tab. B.3. As can be seen from
the hadronic current of eq. (B.1.5) the role of vector and axial-vector terms are reversed in
decays to scalars as opposed to decays to pseudo-scalars. Thus, in the discussion of IB and
SD terms the role of Vµν and Aµν are reversed. In particular, V IB

µν = 0 and AIB
µν 6= 0.

B.2 NLO matrix elements

In the following, the real emission and virtual one-loop correction matrix elements which
serve as primary ingredient to the calculation of the electroweak next-to-leading order cor-
rections to semileptonic B meson corrections.

B.2.1 Real emission matrix elements

This appendix presents details on the real emission matrix elements with special focus on
the inner bremsstrahlungs (IB) vertex emission terms. The summed real emission matrix
element of the Feynman graphs a to c in Figure 5.3 for B+ → X̄0 `+ ν` γ is

M
1
2
1 = i e

GF√
2
VxbHµ(pB, pX ; t) ūν PRγ

µ p` · ε∗ + 1
2
/k/ε∗

p` · k
v`

− i e GF√
2
Vxb

pB · ε∗
pB · k

Hµ(pB − k, pX ; t′) ūν PRγ
µ v`

+M
1
2
1,vertex emission .

(B.2.1)

Similarly, the summed matrix element of the Feynman graphs a to c in Fig. 5.4 for B0 →
X̄− `+ ν` γ is

M
1
2
1 = i e

GF√
2
VxbHµ(pB, pX ; t) ūν PRγ

µ p` · ε∗ + 1
2
/k/ε∗

p` · k
v`

− i e GF√
2
Vxb

pX · ε∗
pX · k

Hµ(pB, pX + k; t′) ūν PRγ
µ v`

+M
1
2
1,vertex emission .

(B.2.2)

The real emission changes the definition of the four momentum transfer squared, depending
on the emission leg:

t =
(
pB − pX

)2
=
(
p` + pν + k

)2
, t′ =

(
pB − pX − k

)2
=
(
p` + pν

)2
, (B.2.3)

and it is

Hµ(p1, p2; t) =
(
p1 + p2

)
µ
f+(t) +

(
p1 − p2

)
µ
f−(t) , (B.2.4)

as defined in eq. (5.1.3). The emission terms off the external mesons and leptons in eqs.
(B.2.1) and (B.2.2) are, however, not gauge invariant by themselves. The vertex emission
terms are thus needed to restore gauge invariance. Assuming t = t′, f±(t) = f±(t′), the
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vertex emission terms of the constant-form-factor QED invariant Lagrangian of eq. (5.2.8)
are recovered:

M
1
2
1,vertex emission = − i e GF√

2
Vxb (f+(t) + f−(t)) ūν PR/ε

∗v` (B+ → X̄0 `+ν`)

M
1
2
1,vertex emission = + i e

GF√
2
Vxb (f+(t)− f−(t)) ūν PR/ε

∗v` (B0 → X̄− `+ν`) .

(B.2.5)

This is a reasonable approximation for heavy meson processes. Here, hard photons are
emitted predominantly collinear to the charged lepton. Light meson processes, however, also
radiate a considerable fraction of their hard radiation in the direction of the light meson and,
hence, give rise to non-negligible corrections for t 6= t′. There are two ways to obtain these
corrections.
A: Supposing the form factors f± can be expanded around t, the hadronic current reads

Hµ(t′) = Hµ(t) + k′
dHµ

dt

∣∣∣
k=0

+ k′2
1

2

d2Hµ

dt′2

∣∣∣
k=0

+O(k3) , (B.2.6)

with t′ = t + k′ and k′ = − 2k ·
(
pB − pX

)
. Introducing eq. (B.2.6) into eqs. (B.2.1) and

(B.2.2) and employing Ward’s identity [271] to obtain the gauge restoring terms, results in

M
1
2
, B+→X̄0`+ν`

1,vertex emission

= i e
GF√

2
Vxb ūν PRγ

µv`

(
pB · ε∗
pB · k

kα − ε∗α
)(

δαµ (f+(t) + f−(t))− 2 (pB − pX)α
dHµ

dt′

∣∣∣
k=0

)
+O(k2) ,

(B.2.7)

and

M
1
2
, B0→X̄−`+ν`

1,vertex emission

=− i e GF√
2
Vxb ūνPRγ

µv`

(
pX · ε∗
pX · k

kα − ε∗α
)(

δαµ (f+(t)− f−(t))− 2 (pB − pX)α
dHµ

dt′

∣∣∣
k=0

)
+O(k2) ,

(B.2.8)

respectively. Neglecting higher order terms in the expansion of eq. (B.2.6) results in Low’s
matrix element [106] for these processes. This approach, by implying the existence of a
Taylor-series representation of the form factors f±(t), yields a consistent result both for the
interaction terms of the phenomenological Lagrangian and the Feynman rules. However, the
exact functional form of the form factors has to be known. Further, by including higher order
corrections in k structure dependent contributions to the matrix element are introduced: the
isolated terms that restore gauge invariance are not unique, and undesired ambiguities are
apparent. The impact of such terms were studied for Kl3 decays in [272, 125], finding
negligible impact on the next-to-leading order decay rate. This result however can’t be
extrapolated to B meson decays, due to the wide range of possible excited intermediate
states.
B: A result independent of the functional form of the form factors, and thus not relying on
their differentiability, can be derived similarly. Instead of their argument, the form factors
themselves are decomposed

f±(t′) = f±(t) + Z±(t, t′) . (B.2.9)
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Now, the missing terms for achieving gauge invariance of the real emission amplitude are
determined as

M
1
2
, B+→X̄0`+ν`

1,vertex emission

= i e
GF√

2
Vxb ūν PRγ

µv`

(
− (f+(t′) + f−(t′)) ε∗µ

+ (pB + pX)µ ε
∗· Z+(t, t′) + (pB − pX)µ ε

∗· Z−(t, t′)
)
(B.2.10)

and

M
1
2
, B0→X̄+`−ν`

1,vertex emission

= i e
GF√

2
Vxb ūν PRγ

µv`

(
(f+(t′)− f−(t′)) ε∗µ

+ (pB + pX)µ ε
∗· Z+(t, t′) + (pB − pX)µ ε

∗· Z−(t, t′)
)
,(B.2.11)

respectively. Z±(t, t′) = k·n
k·nZ±(t, t′) = kα

nα

k·n (f±(t′)− f±(t)) ≡ kαZ
α
±(t, t′), k ·n 6= 0. Through

the definition of n, however, again ambiguities are introduced into this generic result which,
again, are assumed to be negligible in this paper. Further, because these ambiguities satisfy
kαδZ

α
±(t, t′) = 0, they can be considered part of V SD

µν . Thus, the (minimal) emission terms
constructed this way constitute the inner-bremstrahlungs part of the non-local emission term
V IB
µν of Section 5.2.4.

B.2.2 Virtual emission matrix elements

The section lists the corresponding virtual emission matrix elements. They are calculated in
D = 4 − 2ε dimensions and are UV regularised using the Pauli-Villars prescription [117] of
introducing an unphysical heavy photon of mass Λ, the matching scale to the short distance
result. Thus, the infrared subtracted squared matrix elements (using the definitions of eqs.
(2.1.1), (2.3.3), (5.2.9) and (5.2.21)) and ultravioletly regulated are defined via

β̃1
0(Λ) = 2Re

(
M0

0 ·M1∗
0 (Λ)

)
. (B.2.12)

They are evaluated under the additional assumption

∫
dDk

f± (t(k)) kµ1 · · · kµ1
k2 d1 . . . dN

≈ f±(t)

∫
dDk

kµ1 · · · kµ1
k2 d1 . . . dN

, (B.2.13)

introduced to render the calculation feasible.
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Decays B0 → X− `+ ν`

The infrared subtracted one-loop matrix elementsM1
0 (Λ) for this process can be decomposed

as

M1
0 (Λ) =M1

0(Λ)− αB

=
GF√

2
Vxb

α

2π

{
ūν PR

(
f+(t)(/pB + /pX) + f−(t)(/pB − /pX)

)
v`

×
[
M1,1

0,X`(Λ) +M1
0,V X(Λ) +M1

0,V `(Λ) + L(Λ)

+ 1
2
δZ,X(Λ) + 1

2
δZ,`(Λ)− 2π B

]
+ ūν PR /pXv`

[
f+M1,2+

0,X`(Λ) + f−M1,2−
0,X`(Λ)

]
+ ūν PR v` m`

[
f+M1,3+

0,X`(Λ) + f−M1,3−
0,X`(Λ)

]}
.

(B.2.14)

Therein, the M1
0,X` correspond to the terms, decomposed into their Dirac structure, con-

taining a virtual photon linking the final state meson and the charged lepton. Similarly, the
M1

0,V X andM1
0,V ` correspond to the terms containing a photon loop from the vertex to the

final state meson and the charged lepton, respectively. δZ,X and δZ,X are the wave-function
corrections. These terms exhibit ultraviolet divergences and, thus, include the regulating
terms from Pauli-Villars heavy photon diagrams. Finally, αB is the YFS approximation in
the infrared limit. It needs to be subtracted here in order to be exponentiated, cf. Section
5.2.5. L is the Sirlin logarithm of the short-distance picture, containing the renormalisation,
cf. Section 5.2.2.
The precise forms of these terms are listed in the following.

δZ,X(Λ) = 2
(
B1(m2

X ; 0,m2
X)−B1(m2

X ; Λ2,m2
X)
)

+ 4
(
B0(m2

X ; 0,m2
X)−B0(m2

X ; Λ2,m2
X)
)

− 4m2
X

(
C0(m2

X , 0,m
2
X ; 0,m2

X ,m
2
X)− C0(m2

X , 0,m
2
X ; Λ2,m2

X ,m
2
X)
)

− 8m2
X

(
C10(m2

X , 0,m
2
X ; 0,m2

X ,m
2
X)− C10(m2

X , 0,m
2
X ; Λ2,m2

X ,m
2
X)
)

− 4m2
X

(
C20(m2

X , 0,m
2
X ; 0,m2

X ,m
2
X)− C20(m2

X , 0,m
2
X ; Λ2,m2

X ,m
2
X)
)

− 4
(
C24(m2

X , 0,m
2
X ; 0,m2

X ,m
2
X)− C24(m2

X , 0,m
2
X ; Λ2,m2

X ,m
2
X)
)

+ Λ2
(
C0(m2

X , 0,m
2
X ; Λ2,m2

X ,m
2
X) + C10(m2

X , 0,m
2
X ; 0,m2

X ,m
2
X)
)

(B.2.15)

δZ,`(Λ) = (D − 2)
(
B0(m2

` ; 0,m2
`)−B0(m2

` ; Λ2,m2
`)
)

+ 4m2
`

(
C0(m2

` , 0,m
2
` ; 0,m2

` ,m
2
`)− C0(m2

` , 0,m
2
` ; Λ2,m2

` ,m
2
`)
)

− 2(D − 4)m2
`

(
C10(m2

` , 0,m
2
` ; 0,m2

` ,m
2
`)− C10(m2

` , 0,m
2
` ; Λ2,m2

` ,m
2
`)
)

− 2(D − 2)m2
`

(
C20(m2

` , 0,m
2
` ; 0,m2

` ,m
2
`)− C20(m2

` , 0,m
2
` ; Λ2,m2

` ,m
2
`)
)

− 2(D − 2)
(
C24(m2

` , 0,m
2
` ; 0,m2

` ,m
2
`)− C24(m2

` , 0,m
2
` ; Λ2,m2

` ,m
2
`)
)

(B.2.16)

M1
0,V X(Λ) = 2

(
B0(m2

X ; 0,m2
X)−B0(m2

X ; Λ2,m2
X)
)

+
(
B1(m2

X ; 0,m2
X)−B1(m2

X ; Λ2,m2
X)
) (B.2.17)
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M1
0,V `(Λ) = 2

(
B0(m2

` ; 0,m2
`)−B0(m2

` ; Λ2,m2
`)
)

− (D − 2)
(
B1(m2

` ; 0,m2
`)−B1(m2

` ; Λ2,m2
`)
) (B.2.18)

2π B = − 4(pX · p`)C0(m2
X , sX`,m

2
` ; 0,m2

X ,m
2
`)

− 2m2
X C0(m2

X , 0,m
2
X ; 0,m2

X ,m
2
X)

− 2m2
` C0(m2

` , 0,m
2
` ; 0,m2

` ,m
2
`)

−B0(sX`;m
2
X ,m

2
`)

+ 1
2
B0(0;m2

X ,m
2
X)

+ 1
2
B0(0;m2

` ,m
2
`)

(B.2.19)

L(Λ) = ln
m2
W

Λ2
(B.2.20)

M1
0,X`,1(Λ) = 2(m2

X − pX · p`)
(
C11(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)

− C11(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)
)

+ 2(m2
` − 2pX · p`)

(
C12(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)

− C12(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)
)

− 4(pX · p`)
(
C0(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C0(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− Λ2C0(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)

(B.2.21)

M1,2+
0,X`(Λ) = − 4(pX · p`)

(
C11(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C11(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− 2m2
`

(
C12(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C12(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− 2(pX · p`)
(
C21(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C21(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

+ 2m2
`

(
C23(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C23(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− Λ2C11(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)

− 2Λ2C0(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)

(B.2.22)

M1,2−
0,X`(Λ) = 4(pX · p`)

(
C11(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C11(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− 2m2
`

(
C12(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C12(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

+ 2(pX · p`)
(
C21(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C21(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− 2m2
`

(
C23(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C23(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

+ Λ2C11(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)

+ 2Λ2C0(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)
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(B.2.23)

M1,3+
0,X`(Λ) = − 4(m2

X + 2pX · p`)
(
C12(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)

− C12(m2
X , sX`,m

2
` ; Λ2,m2

X ,m
2
`)
)

+ 2m2
`

(
C22(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C22(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− 2(pX · p`)
(
C23(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C23(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

+ 2
(
C24(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C24(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− Λ2C12(m2
X sX`,m

2
` ; 0,m2

X ,m
2
`)

(B.2.24)

M1,3−
0,X`(Λ) = − 2m2

`

(
C22(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C22(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

+ 2(pX · p`)
(
C23(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C23(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

− 2
(
C24(m2

X , sX`,m
2
` ; 0,m2

X ,m
2
`)− C24(m2

X , sX`,m
2
` ; Λ2,m2

X ,m
2
`)
)

+ Λ2C12(m2
X sX`,m

2
` ; 0,m2

X ,m
2
`)

(B.2.25)

Decays B+ → X0 `+ ν`

In these types of decays, the infrared subtracted one-loop matrix element can be decomposed
similarly to eq. (B.2.14). It reads

M1
0 (Λ) =M1

0(Λ)− αB

=
GF√

2
Vxb

α

2π

{
ūν PR

(
f+(t)(/pB + /pX) + f−(t)(/pB − /pX)

)
v`

×
[
M1,1

0,B`(Λ) +M1
0,V B(Λ) +M1

0,V `(Λ) + L(Λ)

+ 1
2
δZ,B(Λ) + 1

2
δZ,`(Λ)− 2π B

]
+ ūν PR /pBv`

[
f+M1,2+

0,B`(Λ) + f−M1,2−
0,B`(Λ)

]
+ ūν PR v` m`

[
f+M1,3+

0,B`(Λ) + f−M1,3−
0,B`(Λ)

]}
.

(B.2.26)

The decomposition terms take the same meaning as before. Of course, the wave-function
corrections are identical to the ones in the case of B0 → X− `+ ν` decays with the replacement
mX → mB in δZ,B. Similarly, also the short distance term L(Λ) remains unchanged. Also,
M1

0,V B andM1
0,V ` take the same form as in the previous Subsection, with the replacement

mX → mB. The remaining terms now read

2π B = + 4(pB · p`)C0(m2
B, sB`,m

2
` ; 0,m2

B,m
2
`)

− 2m2
B C0(m2

B, 0,m
2
B; 0,m2

B,m
2
B)

− 2m2
` C0(m2

` , 0,m
2
` ; 0,m2

` ,m
2
`)

−B0(sB`;m
2
B,m

2
`)

+ 1
2
B0(0;m2

B,m
2
B)

+ 1
2
B0(0;m2

` ,m
2
`)

(B.2.27)
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M1
0,B`,1(Λ) = 2(m2

B + pB · p`)
(
C11(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)

− C11(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)
)

+ 2(m2
` + 2pB · p`)

(
C12(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)

− C12(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)
)

+ 4(pB · p`)
(
C0(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C0(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− Λ2C0(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)

(B.2.28)

M1,2+
0,B`(Λ) = 4(pB · p`)

(
C11(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C11(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− 2m2
`

(
C12(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C12(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

+ 2(pB · p`)
(
C21(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C21(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

+ 2m2
`

(
C23(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C23(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− Λ2C11(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)

− 2Λ2C0(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)

(B.2.29)

M1,2−
0,B`(Λ) = 4(pB · p`)

(
C11(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C11(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

+ 2m2
`

(
C12(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C12(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

+ 2(pB · p`)
(
C21(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C21(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

+ 2m2
`

(
C23(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C23(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− Λ2C11(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)

− 2Λ2C0(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)

(B.2.30)

M1,3+
0,B`(Λ) = 4(m2

B + 2pB · p`)
(
C12(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)

− C12(m2
B, sB`,m

2
` ; Λ2,m2

B,m
2
`)
)

− 2m2
`

(
C22(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C22(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− 2(pB · p`)
(
C23(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C23(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− 2
(
C24(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C24(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

+ Λ2C12(m2
B sB`,m

2
` ; 0,m2

B,m
2
`)

(B.2.31)

M1,3−
0,B`(Λ) = − 2m2

`

(
C22(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C22(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− 2(pB · p`)
(
C23(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C23(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

− 2
(
C24(m2

B, sB`,m
2
` ; 0,m2

B,m
2
`)− C24(m2

B, sB`,m
2
` ; Λ2,m2

B,m
2
`)
)

+ Λ2C12(m2
B sB`,m

2
` ; 0,m2

B,m
2
`)

(B.2.32)
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B.3 Scalar Integrals

B.3.1 General definitions

The scalar integrals used in Appendix B.2.2 are derived through Passarino-Veltman tensor
reduction [273, 274, 275]. Thus, the relevant tensor integrals are defined by, in the notation
of [276],

A0(m2) = fΓ

∫
dD`

1

[`2 −m2]
(B.3.1)

B0(p2;m2
1,m

2
2) = fΓ

∫
dD`

1

[`2 −m2
1][(`+ p)2 −m2

2]
(B.3.2)

B0(0;m2,m2) = fΓ

∫
dD`

1

[`2 −m2]2
(B.3.3)

Bµ(p2;m2
1,m

2
2) = pµB1(p2;m2

1,m
2
2)

= fΓ

∫
dD`

`µ

[`2 −m2
1][(`+ p)2 −m2

2]
(B.3.4)

C0(p2
1, s, p

2
2;m2

0,m
2
1,m

2
2) = fΓ

∫
dD`

1

[`2 −m2
0][(`+ p1)2 −m2

1][(`+ p2)2 −m2
2]

(B.3.5)

Cµ(p2
1, s, p

2
2;m2

0,m
2
1,m

2
2) = pµ1C11 + pµ2C12

= fΓ

∫
dD`

`µ

[`2 −m2
0][(`+ p1)2 −m2

1][(`+ p2)2 −m2
2]

(B.3.6)

Cµν(p2
1, s, p

2
2;m2

0,m
2
1,m

2
2) = pµ1p

ν
1C21 + pµ2p

ν
2C22 + (pµ1p

ν
2 + pµ2p

ν
1)C23 + gµνC24

= fΓ

∫
dD`

`µ`ν

[`2 −m2
0][(`+ p1)2 −m2

1][(`+ p2)2 −m2
2]

(B.3.7)

C0(p2, 0, p2;m2
0,m

2,m2) = fΓ

∫
dD`

1

[`2 −m2
0][(`+ p)2 −m2]2

(B.3.8)

Cµ(p2, 0, p2;m2
0,m

2,m2) = pµC10

= fΓ

∫
dD`

`µ

[`2 −m2
0][(`+ p)2 −m2]2

(B.3.9)

Cµν(p2, 0, p2;m2
0,m

2,m2) = pµpνC20 + gµνC24

= fΓ

∫
dD`

`µ`ν

[`2 −m2
0][(`+ p)2 −m2]2

(B.3.10)

with the common prefactors

fΓ =
µ4−D

iπ
D
2 rΓ

and rΓ =
Γ2(1− ε) Γ(1 + ε)

Γ(1− 2ε)
. (B.3.11)

The obvious arguments on the C1i and C2i have been suppressed for brevity. The triangle
integrals with a squared propagator, i.e. p = p1 = p2 and, consequently, s = (p1 − p2)2 =
0, occur in the evaluation of massive wave function renormalisations and the YFS virtual
subtraction term. They can equally well be calculated as the derivative of a bubble integral
with respect to p. In this form, however, their infrared divergence structure arises straight
forwardly and not as a transformed ultraviolet divergence.
The scalar components of above integrals relevant for the results of Appendix B.2.2 are listed
in the following sections.

210 Appendix B Formfactors and higher order matrix elements for semileptonic B decays



B.3.2 Tadpole integrals

Within the confines of this thesis, only the scalar tadpole integral is of interest. It solves to

A0(0) = 0 (B.3.12)

A0(m2) = m2

[
1

εUV
+ ln

µ2

m2
+ 1

]
. (B.3.13)

B.3.3 Bubble integrals

In case of the two point integrals, both the scalar integral as well as the scalar components of
rank one tensor integral, both in the ordinary form and in the form with a squared propagator
are needed. They read

B0(m2; 0,m2) =
1

εUV
+ ln

µ2

m2
+ 2 (B.3.14)

B0(m2; Λ2,m2) =
1

εUV
+ ln

µ2

m2
+
∑
i=1,2

[
lΛi ln

lΛi − 1

lΛi
− ln(lΛi − 1)

]
+ 2 (B.3.15)

B0(s;m2
1,m

2
2) =

1

εUV
+ ln

µ2

s− iε +
∑
i=1,2

[
lsi ln

lsi − 1

lsi
− ln(lsi − 1)

]
+ 2 (B.3.16)

B0(0;m2,m2) =
1

εUV
+ ln

µ2

m2
(B.3.17)

B1(m2; 0,m2) = − 1
2

A0(m2)

m2
(B.3.18)

B1(m2; Λ2,m2) =
1

2m2

[
A0(Λ2)− A0(m2)− Λ2B0(m2; Λ2,m2)

]
(B.3.19)

with

lΛ1,2 =
Λ2

2m2

[
1 +

√
1− 4

m2

Λ2

]
(B.3.20)

ls1,2 =
s−m2

2 +m2
1 +

√
(s−m2

2 +m2
1)2 − 4m2

1(s− iε)
2s

. (B.3.21)

The term iε signifies a tiny imaginary part to define the correct Riemann sheet.

B.3.4 Triangle integrals

C0(m2, 0,m2; 0,m2,m2) =
1

2m2

[
1

εIR
+ ln

µ2

m2
− 2 + 2 ln 2

]
(B.3.22)

C0(m2, 0,m2; Λ2,m2,m2) =
1

m2 lΛ
ln

[
lΛ + Λ2

m2 − 2

lΛ − Λ2

m2 + 2
· l

Λ − Λ2

m2

lΛ + Λ2

m2

]
(B.3.23)
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C0(m2
1, s,m

2
2; 0,m2

1,m
2
2) =

1

2sb

[
1

εIR
ln(x+x−)− ln

µ2

sb
ln(x+x−)

+ 1
2

ln2(−g+)− 1
2

ln2(1− g+)

− 1
2

ln2(g−) + 1
2

ln2(g− − 1)

− Li2

(
1− g−
b

)
− Li2

(g+

b

)
+ Li2

(
g+ − 1

b

)
+ Li2

(−g−
b

)]
(B.3.24)

C0(m2
1, s,m

2
2; Λ2,m2

1,m
2
2) =

1

N

∑
i=0,1,2

[
R(yi, y

+
i ) +R(yi, y

−
i ) + Si

]
(B.3.25)

C10(m2, 0,m2; 0,m2,m2) =
1

2m2

[
B0(m2; 0,m2)−B0(0;m2,m2)

]
(B.3.26)

C10(m2, 0,m2; Λ2,m2,m2) =
1

2m2

[
B0(m2; Λ2,m2)−B0(0;m2,m2)− Λ2C0

]
(B.3.27)

C11(m2
1, s,m

2
2; 0,m2

1,m
2
2) = − 2

λ(s,m2
1,m

2
2)

×
[
m2

2

(
B0(m2

2; 0,m2
2)−B0(m2

2;m2
1,m

2
2)
)

− 1
2
(s−m2

1 −m2
2)
(
B0(m2

1; 0,m2
1)−B0(m2

2;m2
1,m

2
2)
)]

(B.3.28)

C11(m2
1, s,m

2
2; Λ2,m2

1,m
2
2) = − 2

λ(s,m2
1,m

2
2)

×
[
m2

2

(
B0(m2

2; Λ2,m2
2)−B0(m2

2;m2
1,m

2
2)− Λ2C0

)
− 1

2
(s−m2

1 −m2
2)
(
B0(m2

1; Λ2,m2
1)−B0(m2

2;m2
1,m

2
2)

− Λ2C0

)]
(B.3.29)

C12(m2
1, s,m

2
2; 0,m2

1,m
2
2) = − 2

λ(s,m2
1,m

2
2)

×
[
m2

1

(
B0(m2

1; 0,m2
1)−B0(m2

1;m2
2,m

2
1)
)

− 1
2
(s−m2

1 −m2
2)
(
B0(m2

2; 0,m2
2)−B0(m2

1;m2
2,m

2
1)
)]

(B.3.30)

C12(m2
1, s,m

2
2; Λ2,m2

1,m
2
2) = − 2

λ(s,m2
1,m

2
2)

×
[
m2

1

(
B0(m2

1; Λ2,m2
1)−B0(m2

1;m2
2,m

2
1)− Λ2C0

)
− 1

2
(s−m2

1 −m2
2)
(
B0(m2

2; Λ2,m2
2)−B0(m2

1;m2
2,m

2
1)

− Λ2C0

)]
(B.3.31)
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C20(m2, 0,m2; 0,m2,m2) =
1

m2 (D − 1)

×
[D

2

(
B1(m2; 0,m2) +B0(0;m2,m2)

)
−B0(0;m2,m2)

]
(B.3.32)

C20(m2, 0,m2; Λ2,m2,m2) =
1

m2 (D − 1)

×
[D

2

(
B1(m2; Λ2,m2) +B0(0;m2,m2)− Λ2C10

)
−
(
B0(0;m2,m2) + Λ2C0

)]
(B.3.33)

C21(m2
1, s,m

2
2; 0,m2

1,m
2
2) = − 2

λ(s,m2
1,m

2
2)

×
[
m2

2

(
B1(s;m2

1,m
2
2)−B0(s;m2

1,m
2
2)− 2C24

)
− 1

2
(s−m2

1 −m2
2)
(
B1(m2

1; 0,m2
1)−B1(s;m2

2,m
2
1)
)]

(B.3.34)

C21(m2
1, s,m

2
2; Λ2,m2

1,m
2
1) = − 2

λ(s,m2
1,m

2
2)

×
[
m2

2

(
B1(s;m2

1,m
2
2)−B0(s;m2

1,m
2
2)− Λ2C11 − 2C24

)
− 1

2
(s−m2

1 −m2
2)
(
B1(m2

1; Λ2,m2
1)−B1(s;m2

2,m
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2
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2
1)− Λ2C12 − 2C24

)
− 1

2
(s−m2
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2)
(
B1(m2

2; Λ2,m2
2)−B1(s;m2

1,m
2
2)

− Λ2C11

)]
(B.3.37)

C23(m2
1, s,m

2
2; 0,m2

1,m
2
2) = − 2

λ(s,m2
1,m

2
2)

×
[
m2

1

(
B1(m2

1; 0,m2
1)−B1(s;m2

2,m
2
1)
)

− 1
2
(s−m2

1 −m2
2)
(
B1(s;m2

1,m
2
2) +B0(s;m2

1,m
2
2)

− 2C24

)]
(B.3.38)
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2) (B.3.40)

C24(m2
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2
2; Λ2,m2

1,m
2
1) =

1

D − 2

[
Λ2C0 + 1

2
B0(s;m2

1,m
2
2) + Λ2C11 + Λ2C12

]
(B.3.41)

C24(m2, 0,m2; 0,m2,m2) =
1

D − 1

[
− 1

2

(
B1(m2; 0,m2) +B0(0;m2,m2)

)
−B0(0;m2,m2)

]
(B.3.42)

C24(m2, 0,m2; Λ2,m2,m2) =
1

D − 1

[
− 1

2

(
B1(m2; Λ2,m2) +B0(0;m2,m2)− Λ2C10

)
−
(
B0(0;m2,m2) + Λ2C0

)]
(B.3.43)

with

lΛ =
Λ2

m2

√
1− 4

m2

Λ2
(B.3.44)

b =

√
(−s+m2

1 +m2
2)2 − 4m2

1m
2
2

s
(B.3.45)

g± = 1
2

[
s−m2

1 +m2
2

s
± b
]

(B.3.46)

x+ =
g+ − 1

g+

x− =
g−

g− − 1
(B.3.47)

and λ(x, y, z) = x2+y2+z2−2xy−2xz−2yz is the Kallen function. Again, obvious arguments
have been suppressed. The definitions for N , R(a, b), Si, yi and y±i for the general UV and
IR finite triangle C0(m2

1, s,m
2
2; Λ2,m2

1,m
2
2) can be found in [274].
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Appendix C

Explicit form of the leading order
Altarelli-Parisi splitting functions

A

B

X

Y

C

B

X

Y

Figure C.1: The scattering process with (left) and without (right) next-to-leading
order corrections to the parton model.

In this section, reviewing the results of [93], the explicit form of the leading order splitting
kernel P (0)

BA(z) is computed directly from the QCD vertices. The value of the splitting kernels
is first computed for z < 0, leaving out the divergence at z = 1. There, the splitting kernels
have a direct physical interpretation as the probability to find parton B inside parton A at
momentum fraction z in the infinite momentum frame, i.e.

dPBA(z) dz =
αs
2π

P̂BA(z) dz d log p2
⊥ . (C.0.1)

Considering now the differential scattering cross section of a hadron and a second initial state
X with (dσa) and without (dσb) NLO QCD corrections to the parton model, as depicted in
Figure C.1, they read

dσa =
1

8EAEX

|VA→B+C |2 |VB+X→Y |2
(2EB)2 (EB + EC − EA)2

(2π)2 δ(pA + pX − pC − pY )
d3pC

(2π)3(2EC)
dΦY

dσb =
1

8EBEX
|VB+X→Y |2 (2π)2 δ(pB + pX − pY ) dΦY .

(C.0.2)

Therein, the Ei and pi are the energy and the momenta of the respective states, and the
VA→B+C , VB+X→Y and VB+X→Y are the relevant transition matrix elements. Their absolute
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square can be identified with the vertex functions FBA etc. of Section 6.2 eq. (6.2.6). ΦY

is the phase space of the arbitrary final state Y . dσa has been decomposed in the limit
of a collinear splitting A → B + C, such that the intermediate state B is on-shell. The
on-shell propagator is encoded in the 1/(EB +EC −EA)2 term, whereas the factor 1/(2EB)2

is removed from the vertex function VA→B+C . According to eq. (6.1.2) both expressions are
related by

dσa = dPBA(z) dz dσb . (C.0.3)

Thus, using eq. (C.0.2)

dPBA(z) dz =
EB
EA

|VA→B+C |2
(2EB)2(EB + EC − EA)2

d3pC
(2π)3(2EC)

. (C.0.4)

Introducing now the relative transverse momentum p⊥ of the states B and C, the momenta
of the states A, B and C read in the collinear limit

pA =

(
p, 0, p

)
pB =

(
zp+

p2
⊥

2zp
, p⊥, zp

)
pC =

(
(1− z)p+

p2
⊥

2(1− z)p
,−p⊥, (1− z)p

)
.

(C.0.5)

Again, the assumption z < 1 is implied. Eq. (C.0.5) can then be used to rewrite the final state
phase space element of parton C in terms of z and the absolute of p⊥, p2

⊥. Integrating out the
azimuthal degree of freedom, φ, equivalent to an averaging over spins and/or polarisations
of the involved partons, it reads

d3pC
(2π)3(2EC)

=
dz dp2

⊥
16π2(1− z)

. (C.0.6)

Hence, the differential probability to find parton B in parton A at momentum fraction z
now reads

dPBA(z) dz =
z(1− z)

2

∑
spins

|VA→B+C |2
p2
⊥

dz d log p2
⊥ , (C.0.7)

making the dependence on p2
⊥ explicit. The unregularised Altarelli-Parisi splitting function

then reads, with eq. (C.0.1),

αs
2π

P̂BA(z) =
z(1− z)

2

∑
spins

|VA→B+C |2
p2
⊥

(z < 1) . (C.0.8)

Thus, recovering the result of eq. (6.2.7), the unregularised Altarelli-Parisi splitting functions
are given in terms of the vertex functions. A similar analysis holds for final state splittings,
leading to the same splitting functions, as was shown in Section 6.2.

C.1 Collinear limit of real emission matrix elements

In the following the unregularised splitting functions for all four possible parton splittings
are derived. The regularised Altarelli-Parisi splitting functions are then determined via the
reinterpretation of the 1/(1 − z) terms as (. . .)+ distributions and adding the appropriate
terms proportional to δ(1− z) to fulfil the constraints of eq. (6.1.17).
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C.1.1 q → gq splittings

A C

B

Figure C.2: The quark-gluon vertex de-
termining P̂gq.

The probability to find a gluon of momentum fraction z in a quark is determined by the
vertex function depicted in Figure C.2, and thus by the QCD quark-gluon vertex. It reads
in the collinear approximation

αs
2π

P̂gq(z) =
z(1− z)

2

∑
spins
pols

|Vq→gq|2
p2
⊥

(z < 1) , (C.1.1)

with∑
spins
pols

|Vq→gq|2 = 1
2

αs
2π

CF Tr(/pCγ
µ
/pAγ

ν)
∑
pols

ε∗µεν . (C.1.2)

Herein, the momenta are labeled with A, B and C as before, ε signifies the gluon polarisation.
The factor 1

2
arises from averaging over the initial state quark’s spin. As the intermediate

gluon is taken to be on its mass shell, only its physical polarisations contribute. Thus,

∑
pols

ε∗µεν =

{
δµν − pµBp

ν
B

p2B
µ, ν ∈ {1, 2, 3}

0 else.
(C.1.3)

With the parametrisation of eq. (C.0.5) the spin average now reads∑
spins
pols

|Vq→gq|2 =
αs
2π

CF
2p2
⊥

z(1− z)

1 + (1− z)2

z
. (C.1.4)

Thus,

P̂gq(z) = CF
1 + (1− z)2

z
. (C.1.5)

Because P̂gq(z) is finite as z → 1 the regularised Altarelli-Parisi splitting function equals the
unregularised one, i.e.

P (0)
gq (z) = P̂gq(z) . (C.1.6)
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A C

B

Figure C.3: The quark-gluon vertex de-
termining P̂qq.

C.1.2 q → qg splittings

The probability to find a quark of momentum fraction z in a quark, depicted in Figure C.3,
is directly related to the result of the last Section by momentum conservation, i.e.

P̂qq(z) = P̂gq(1− z) . (C.1.7)

Thus,

P̂qq(z) = CF
1 + z2

1− z . (C.1.8)

Unlike eq. (C.1.5) eq. (C.1.8) exhibits a divergence at z = 1. Hence, following the procedure
outlined above, interpreting the 1/(1− z) as 1/(1− z)+ and adding a term proportional to
δ(1− z) to fulfil eq. (6.1.17), gives the regularised Altarelli-Parisi splitting function

P (0)
qq (z) = CF

[
1 + z2

(1− z)+

+ 3
2
δ(1− z)

]
. (C.1.9)

C.1.3 g → qq splittings

A C

B

Figure C.4: The quark-gluon vertex de-
termining P̂qg.

The vertex function to determine the probability to find a quark of momentum fraction z in
a gluon is depicted in Figure C.4. The Altarelli-Parisi splitting function again arises out of
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the quark-gluon vertex. The spin and polarisation summed and averaged vertex function in
this rotation reads∑

spins
pols

|Vg→qq|2 = 1
2

αs
2π

Tr(/pCγ
µ
/pBγ

ν)
∑
pols

ε∗µεν . (C.1.10)

Again, care has to be taken to account for physical polarisation states only. This leads to∑
spins
pols

|Vg→qq|2 =
αs
2π

TR 2p2
⊥

(
1− z
z

+
z

1− z

)

=
αs
2π

TR
2p2
⊥

z(1− z)

(
z2 − (1− z)2

)
.

(C.1.11)

Thus,

P̂qg(z) = TR
(
z2 − (1− z)2

)
. (C.1.12)

Herein, the symmetry of z ↔ 1 − z is evident. Again, P̂qg(z) is finite for z → 1, hence the
regularised Altarelli-Parisi splitting function is equal to the unregularised one,

P (0)
qg (z) = P̂qg(z) (C.1.13)

C.1.4 g → gg splittings

A C

B

Figure C.5: The triple gluon vertex de-
termining P̂gg.

Contrary to the other three cases the Altarelli-Parisi splitting function for the probability to
find a gluon of momentum fraction z inside another gluon is determined by the triple gluon
vertex of QCD. Here, the vertex function of Figure C.5 needs to be summed and averaged
over the external gluon polarisations εA, εB and εC , leading to∑

pols

|Vg→gg|2 = 2
αs
2π

CA
2p2
⊥

z(1− z)

[
z

1− z +
1− z
z

+ z(1− z)

]
. (C.1.14)

Thus, the unregularised Altarelli-Parisi splitting function reads

P̂gg(z) = 2CA

[
z

1− z +
1− z
z

+ z(1− z)

]
. (C.1.15)
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Again, the symmetry under z ↔ 1 − z is evident as is the pole at z = 1. The regularised
splitting function consequently reads

P (0)
gg (z) = 2CA

[
z

(1− z)+

+
1− z
z

+ z(1− z)

]
+

11CA − 4NfTR
6

δ(1− z) . (C.1.16)

For completeness sake, the next-to-leading order expressions for the Altarelli-Parisi splitting
functions in the MS factorisation and renormalisation schemes can be found in [192, 193].

220 Appendix C Explicit form of the leading order Altarelli-Parisi splitting functions



Bibliography

[1] A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504
(2011), 145–233, [arXiv:1101.2599 [hep-ph]].

[2] T. Sjöstrand, S. Mrenna and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05
(2006), 026, [hep-ph/0603175].

[3] G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions
with interfering gluons (including supersymmetric processes), JHEP 01 (2001), 010,
[hep-ph/0011363].

[4] G. Corcella, I. G. Knowles, G. Marchesini, M. Moretti, K. Odagiri, P. Richardson,
M. H. Seymour and B. R. Webber, HERWIG 6.5 Release Note, hep-ph/0210213.

[5] T. Sjöstrand, S. Mrenna and P. Skands, A brief introduction to PYTHIA 8.1, Comput.
Phys. Commun. 178 (2008), 852–867, [arXiv:0710.3820 [hep-ph]].

[6] S. Gieseke, D. Grellscheid, K. Hamilton, A. Papaefstathiou, S. Platzer et al., Herwig++
2.5 Release Note, arXiv:1102.1672 [hep-ph].

[7] T. Gleisberg, S. Höche, F. Krauss, A. Schälicke, S. Schumann and J. Winter, SHERPA
1.α, a proof-of-concept version, JHEP 02 (2004), 056, [hep-ph/0311263].

[8] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert and J. Win-
ter, Event generation with SHERPA 1.1, JHEP 02 (2009), 007, [arXiv:0811.4622 [hep-
ph]].

[9] J. Campbell, R. K. Ellis and C. Williams, MCFM – Monte Carlo for FeMtobarn pro-
cesses .

[10] Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron-hadron
collisions, Phys. Rev. D68 (2003), 094002, [hep-ph/0307268].

[11] S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower
simulations, JHEP 06 (2002), 029, [hep-ph/0204244].

[12] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algo-
rithms, JHEP 11 (2004), 040, [hep-ph/0409146].

[13] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton
shower simulations: the POWHEG method, JHEP 11 (2007), 070, [arXiv:0709.2092
[hep-ph]].

[14] S. Frixione, F. Stoeckli, P. Torrielli, B. R. Webber and C. D. White, The MCaNLO
4.0 Event Generator, arXiv:1010.0819 [hep-ph].

[15] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010),
043, [arXiv:1002.2581 [hep-ph]].

Bibliography 221

http://inspirebeta.net/record/884202
http://arXiv.org/pdf/1101.2599
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0603175
http://arXiv.org/pdf/hep-ph/0603175
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/0011363
http://arXiv.org/pdf/hep-ph/0011363
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0210213
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0210213
http://arXiv.org/pdf/hep-ph/0210213
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.3820
http://arXiv.org/pdf/0710.3820
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1102.1672
http://arXiv.org/pdf/1102.1672
http://www.slac.stanford.edu/spires/find/hep/www?irn=5730570
http://arXiv.org/pdf/hep-ph/0311263
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0811.4622
http://arXiv.org/pdf/0811.4622
http://mcfm.fnal.gov
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0307268
http://arXiv.org/pdf/hep-ph/0307268
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0204244
http://arXiv.org/pdf/hep-ph/0204244
http://inspirebeta.net/record/659055
http://arXiv.org/pdf/hep-ph/0409146
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0709.2092
http://arXiv.org/pdf/0709.2092
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1010.0819
http://arXiv.org/pdf/1010.0819
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1002.2581
http://arXiv.org/pdf/1002.2581


[16] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, ALPGEN, a
generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003), 001,
[hep-ph/0206293].

[17] E. Boos et al., The CompHEP collaboration, CompHEP 4.4 - automatic compu-
tations from Lagrangians to events, Nucl. Instrum. Meth. A534 (2004), 250–259,
[hep-ph/0403113].

[18] A. Pukhov, CalcHEP 3.2: MSSM, structure functions, event generation, batchs, and
generation of matrix elements for other packages, hep-ph/0412191.

[19] A. Kanaki and C. G. Papadopoulos, HELAC: A package to compute electroweak helicity
amplitudes, Comput. Phys. Commun. 132 (2000), 306–315, [hep-ph/0002082].

[20] C. G. Papadopoulos, PHEGAS: A phase-space generator for automatic cross-section
computation, Comput. Phys. Commun. 137 (2001), 247–254, [hep-ph/0007335].

[21] A. Cafarella, C. G. Papadopoulos and M. Worek, HELAC-PHEGAS: A generator
for all parton level processes, Comput. Phys. Commun. 180 (2009), 1941–1955,
[arXiv:0710.2427 [hep-ph]].

[22] T. Stelzer and W. F. Long, Automatic generation of tree level helicity amplitudes,
Comput. Phys. Commun. 81 (1994), 357–371, [hep-ph/9401258].

[23] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going
Beyond, JHEP 1106 (2011), 128, [arXiv:1106.0522 [hep-ph]].

[24] W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at
LHC and ILC, Eur. Phys. J. C71 (2007), 1742, [arXiv:0708.4233 [hep-ph]].

[25] F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix Element Generator In
C++, JHEP 02 (2002), 044, [hep-ph/0109036].

[26] T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008),
039, [arXiv:0808.3674 [hep-ph]].

[27] S. Catani, F. Krauss, R. Kuhn and B. R. Webber, QCD matrix elements + parton
showers, JHEP 11 (2001), 063, [hep-ph/0109231].

[28] F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 0208
(2002), 015, [hep-ph/0205283].

[29] S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated
showers, JHEP 05 (2009), 053, [arXiv:0903.1219 [hep-ph]].

[30] L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix ele-
ments, JHEP 05 (2002), 046, [hep-ph/0112284].

[31] N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP
07 (2005), 054, [hep-ph/0503293].

[32] M. L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evo-
lution in hadronic collisions: Wbb̄+ n-jets as a case study, Nucl. Phys. B632 (2002),
343–362, [hep-ph/0108069].

[33] M. L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements
and shower evolution for top-pair production in hadronic collisions, JHEP 01 (2007),
013, [hep-ph/0611129].

222 Bibliography

http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0206293
http://arXiv.org/pdf/hep-ph/0206293
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0403113
http://arXiv.org/pdf/hep-ph/0403113
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0412191
http://arXiv.org/pdf/hep-ph/0412191
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0002082
http://arXiv.org/pdf/hep-ph/0002082
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0007335
http://arXiv.org/pdf/hep-ph/0007335
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.2427
http://arXiv.org/pdf/0710.2427
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9401258
http://arXiv.org/pdf/hep-ph/9401258
http://inspirebeta.net/record/912611
http://arXiv.org/pdf/1106.0522
http://inspirehep.net/record/759495
http://arXiv.org/pdf/0708.4233
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0109036
http://arXiv.org/pdf/hep-ph/0109036
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=f+eprint+0808.3674
http://arXiv.org/pdf/0808.3674
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0109231
http://arXiv.org/pdf/hep-ph/0109231
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0205283
http://arXiv.org/pdf/hep-ph/0205283
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0903.1219
http://arXiv.org/pdf/0903.1219
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0112284
http://arXiv.org/pdf/hep-ph/0112284
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0503293
http://arXiv.org/pdf/hep-ph/0503293
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0108069
http://arXiv.org/pdf/hep-ph/0108069
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0611129
http://arXiv.org/pdf/hep-ph/0611129


[34] S. Mrenna and P. Richardson, Matching matrix elements and parton showers with
HERWIG and PYTHIA, JHEP 05 (2004), 040, [hep-ph/0312274].

[35] J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy
colored particles at the LHC, JHEP 02 (2009), 017, [arXiv:0810.5350 [hep-ph]].

[36] S. Höche et al., Matching Parton Showers and Matrix Elements, hep-ph/0602031.

[37] J. Alwall et al., Comparative study of various algorithms for the merging of parton
showers and matrix elements in hadronic collisions, Eur. Phys. J. C53 (2008), 473–
500, [arXiv:0706.2569 [hep-ph]].

[38] R. Kleiss and W. J. Stirling, Spinor techniques for calculating pp̄ → W±/Z0+jets,
Nucl. Phys. B262 (1985), 235–262.

[39] A. Ballestrero, E. Maina and S. Moretti, Heavy quarks and leptons at e+e− colliders,
Nucl. Phys. B415 (1994), 265–292, [hep-ph/9212246].

[40] T. Gleisberg, F. Krauss, C. G. Papadopoulos, A. Schälicke and S. Schumann, Cross
sections for multi-particle final states at a linear collider, Eur. Phys. J. C34 (2004),
173–180, [hep-ph/0311273].

[41] K. Hagiwara et al., Supersymmetry simulations with off-shell effects for the CERN
LHC and an ILC, Phys. Rev. D73 (2006), 055005, [hep-ph/0512260].

[42] T. Gleisberg, F. Krauss, K. T. Matchev, A. Schälicke, S. Schumann and G. Soff,
Helicity formalism for spin-2 particles, JHEP 09 (2003), 001, [hep-ph/0306182].

[43] N. D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys.
Commun. 180 (2009), 1614–1641, [arXiv:0806.4194 [hep-ph]].

[44] N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks, M. Herquet, F. Mal-
toni and S. Schumann, A comprehensive approach to new physics simulations, Eur.
Phys. J. C71 (2011), 1541, [arXiv:0906.2474 [hep-ph]].

[45] R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput.
Phys. Commun. 83 (1994), 141–146, [hep-ph/9405257].

[46] F. A. Berends, R. Pittau and R. Kleiss, All electroweak four-fermion processes in
electron-positron collisions, Nucl. Phys. B424 (1994), 308, [hep-ph/9404313].

[47] G. P. Lepage, VEGAS - An Adaptive Multi-dimensional Integration Program, CLNS-
80/447.

[48] R. Kleiss, W. J. Stirling and S. D. Ellis, A new Monte Carlo treatment of multiparticle
phase space at high energies, Comput. Phys. Commun. 40 (1986), 359.

[49] A. van Hameren and C. G. Papadopoulos, A hierarchical phase space generator for
QCD antenna structures, Eur. Phys. J. C25 (2002), 563–574, [hep-ph/0204055].

[50] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations,
Eur. Phys. J. C53 (2008), 501–523, [arXiv:0709.2881 [hep-ph]].

[51] S. Catani and M. H. Seymour, A general algorithm for calculating jet cross sections in
NLO QCD, Nucl. Phys. B485 (1997), 291–419, [hep-ph/9605323].

[52] S. Catani, S. Dittmaier, M. H. Seymour and Z. Trocsanyi, The dipole formalism for
next-to-leading order QCD calculations with massive partons, Nucl. Phys. B627 (2002),
189–265, [hep-ph/0201036].

Bibliography 223

http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0312274
http://arXiv.org/pdf/hep-ph/0312274
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0810.5350
http://arXiv.org/pdf/0810.5350
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0602031
http://arXiv.org/pdf/hep-ph/0602031
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0706.2569
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0706.2569
http://arXiv.org/pdf/0706.2569
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B262,235
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9212246
http://arXiv.org/pdf/hep-ph/9212246
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0311273
http://arXiv.org/pdf/hep-ph/0311273
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0512260
http://arXiv.org/pdf/hep-ph/0512260
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0306182
http://arXiv.org/pdf/hep-ph/0306182
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0806.4194
http://arXiv.org/pdf/0806.4194
http://inspirebeta.net/record/823106
http://arXiv.org/pdf/0906.2474
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9405257
http://arXiv.org/pdf/hep-ph/9405257
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9404313
http://arXiv.org/pdf/hep-ph/9404313
http://www.slac.stanford.edu/spires/find/hep/www?r=CLNS-80/447
http://www.slac.stanford.edu/spires/find/hep/www?j=CPHCB,40,359
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0204055
http://arXiv.org/pdf/hep-ph/0204055
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0709.2881
http://arXiv.org/pdf/0709.2881
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9605323
http://arXiv.org/pdf/hep-ph/9605323
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0201036
http://arXiv.org/pdf/hep-ph/0201036


[53] T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-
loop programs, Comput. Phys. Commun. 181 (2010), 1612–1622, [arXiv:1001.1307
[hep-ph]].

[54] D. Maître, private communication.

[55] C. Duhr, S. Höche and F. Maltoni, Color-dressed recursive relations for multi-parton
amplitudes, JHEP 08 (2006), 062, [hep-ph/0607057].

[56] F. A. Berends and W. T. Giele, Recursive calculations for processes with n gluons,
Nucl. Phys. B306 (1988), 759.

[57] F. A. Berends and W. Giele, The six-gluon process as an example of Weyl-van der
Waerden spinor calculus, Nucl. Phys. B294 (1987), 700.

[58] F. A. Berends, W. T. Giele and H. Kuijf, Exact expressions for processes involving a
vector boson and up to five partons, Nucl. Phys. B321 (1989), 39.

[59] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron
colliders, Nucl. Phys. B312 (1989), 616.

[60] F. A. Berends, W. T. Giele and H. Kuijf, On six-jet production at hadron colliders,
Phys. Lett. B232 (1989), 266.

[61] T. Gleisberg, S. Höche, F. Krauss and R. Matyskiewicz, How to calculate colourful
cross sections efficiently, arXiv:0808.3672 [hep-ph].

[62] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour
dipole factorisation, JHEP 03 (2008), 038, [arXiv:0709.1027 [hep-ph]].

[63] Z. Nagy and D. E. Soper, Final state dipole showers and the DGLAP equation, JHEP
05 (2009), 088, [arXiv:0901.3587 [hep-ph]].

[64] S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element
parton-shower merging, Phys. Rev. D81 (2010), 034026, [arXiv:0912.3501 [hep-ph]].

[65] S. Höche, F. Krauss, M. Schönherr and F. Siegert, Automating the POWHEG method
in SHERPA, JHEP 04 (2011), 024, [arXiv:1008.5399 [hep-ph]].

[66] S. Alekhin et al., HERA and the LHC - A workshop on the implications of HERA for
LHC physics: Proceedings Part A, hep-ph/0601012.

[67] T. Sjöstrand and M. van Zijl, A multiple-interaction model for the event structure in
hadron collisions, Phys. Rev. D36 (1987), 2019.

[68] T. D. Gottschalk, A realistic model for e+e− annihilation including parton
bremsstrahlung effects, Nucl. Phys. B214 (1983), 201.

[69] T. D. Gottschalk, An improved description of hadronization in the QCD cluster model
for e+e− annihilation, Nucl. Phys. B239 (1984), 349.

[70] B. R. Webber, A QCD model for jet fragmentation including soft gluon interference,
Nucl. Phys. B238 (1984), 492.

[71] T. D. Gottschalk and D. A. Morris, A new model for hadronization and e+e− annihi-
lation, Nucl. Phys. B288 (1987), 729.

[72] J.-C. Winter, F. Krauss and G. Soff, A modified cluster-hadronisation model, Eur.
Phys. J. C36 (2004), 381–395, [hep-ph/0311085].

224 Bibliography

http://inspirehep.net/record/842428
http://arXiv.org/pdf/1001.1307
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0607057
http://arXiv.org/pdf/hep-ph/0607057
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B306,759
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B294,700
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B321,39
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B312,616
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B232,266
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=f+eprint+0808.3672
http://arXiv.org/pdf/0808.3672
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0709.1027
http://arXiv.org/pdf/0709.1027
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0901.3587
http://arXiv.org/pdf/0901.3587
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0912.3501
http://arXiv.org/pdf/0912.3501
http://inspirebeta.net/record/866705
http://arXiv.org/pdf/1008.5399
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0601012
http://arXiv.org/pdf/hep-ph/0601012
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D36,2019
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B214,201
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B239,349
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B238,492
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B288,729
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0311085
http://arXiv.org/pdf/hep-ph/0311085


[73] F. Krauss, T. Laubrich and F. Siegert, Simulation of hadron decays in SHERPA, in
preparation.

[74] M. Schönherr and F. Krauss, Soft photon radiation in particle decays in SHERPA, JHEP
12 (2008), 018, [arXiv:0810.5071 [hep-ph]].

[75] D. R. Yennie, S. C. Frautschi and H. Suura, The Infrared Divergence Phenomena and
High-Energy Processes, Ann. Phys. 13 (1961), 379–452.

[76] E. Barberio and Z. Wa̧s, PHOTOS - a universal monte carlo for QED radiative cor-
rections: version 2.0, Comput. Phys. Commun. 79 (1994), 291–308.

[77] M. R. Whalley, D. Bourilkov and R. C. Group, The Les Houches Accord PDFs
(LHAPDF) and LHAGLUE, hep-ph/0508110.

[78] P. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators,
decay packages, and event generators, JHEP 07 (2004), 036, [hep-ph/0311123].

[79] A. Buckley, Tools for event generator tuning and validation, arXiv:0809.4638 [hep-
ph].

[80] A. Buckley et al., Rivet user manual, arXiv:1003.0694 [hep-ph].

[81] B. M. Waugh et al., HZTool and Rivet: Toolkit and framework for the comparison of
simulated final states and data at colliders, hep-ph/0605034.

[82] S. Jadach, B. F. L. Ward and Z. Wa̧s, The precision Monte Carlo event generator KK
for two- fermion final states in e+e− collisions, Comput. Phys. Commun. 130 (2000),
260–325, [hep-ph/9912214].

[83] S. Jadach, B. F. L. Ward and Z. Was, Coherent exclusive exponentiation for pre-
cision Monte Carlo calculations, Nucl. Phys. Proc. Suppl. 89 (2000), 106–111,
[hep-ph/0012124].

[84] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward and Z. Wa̧s, Precision predictions
for (un)stable W+W− pair production at and beyond LEP2 energies, Phys. Rev. D65
(2002), 093010, [hep-ph/0007012].

[85] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward and Z. Wa̧s, The Monte Carlo
program KoralW version 1.51 and the concurrent Monte Carlo KoralW&YFSWW3
with all background graphs and first order corrections to W pair production, Comput.
Phys. Commun. 140 (2001), 475–512, [hep-ph/0104049].

[86] M. Schönherr, Modeling of QED Effects in Particle Decays on the Basis of the Yennie-
Frautschi-Suura-Formalism, Diploma thesis.

[87] E. Barberio, B. van Eijk and Z. Was, PHOTOS: A Universal Monte Carlo for QED
radiative corrections in decays, Comput.Phys.Commun. 66 (1991), 115–128.

[88] G. Nanava and Z. Wa̧s, Scalar QED, NLO and PHOTOS Monte Carlo, Eur. Phys. J.
C51 (2007), 569–583, [hep-ph/0607019].

[89] K. Hamilton and P. Richardson, Simulation of QED radiation in particle decays using
the YFS formalism, JHEP 07 (2006), 010, [hep-ph/0603034].

[90] Z. Was, P. Golonka and G. Nanava, PHOTOS Monte Carlo and its theoretical accuracy,
arXiv:0807.2762 [hep-ph].

Bibliography 225

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0810.5071
http://arXiv.org/pdf/0810.5071
http://www.slac.stanford.edu/spires/find/hep/www?j=APNYA,13,379
http://www.slac.stanford.edu/spires/find/hep/www?j=CPHCB,79,291
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0508110
http://arXiv.org/pdf/hep-ph/0508110
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0311123
http://arXiv.org/pdf/hep-ph/0311123
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0809.4638
http://arXiv.org/pdf/0809.4638
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1003.0694
http://arXiv.org/pdf/1003.0694
http://projects.hepforge.org/rivet
http://arXiv.org/pdf/hep-ph/0605034
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9912214
http://arXiv.org/pdf/hep-ph/9912214
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0012124
http://arXiv.org/pdf/hep-ph/0012124
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0007012
http://arXiv.org/pdf/hep-ph/0007012
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0104049
http://arXiv.org/pdf/hep-ph/0104049
http://iktp.tu-dresden.de/~marek/thesis.pdf
http://www-spires.dur.ac.uk/spires/find/hep/www?j=CPHCB,66,115
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0607019
http://arXiv.org/pdf/hep-ph/0607019
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0603034
http://arXiv.org/pdf/hep-ph/0603034
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0807.2762
http://arXiv.org/pdf/0807.2762


[91] T. Kinoshita, Mass Singularities of Feynman Amplitudes, J.Math.Phys. 3 (1962), 650–
677.

[92] T. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev.
133 (1964), B1549–B1562.

[93] G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B126
(1977), 298–318.

[94] S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B565
(2000), 69–122, [hep-ph/9904440].

[95] S. Catani, S. Dittmaier and Z. Trocsanyi, One-loop singular behaviour of QCD and
SUSY QCD amplitudes with massive partons, Phys. Lett. B500 (2001), 149–160,
[hep-ph/0011222].

[96] S. Jadach and B. Ward, YFS2: The Second Order Monte Carlo for Fermion Pair
Production at LEP / SLC with the Initial State Radiation of Two Hard and Multiple
Soft Photons, Comput.Phys.Commun. 56 (1990), 351–384.

[97] F. A. Berends, W. van Neerven and G. Burgers, Higher Order Radiative Corrections
at LEP Energies, Nucl.Phys. B297 (1988), 429.

[98] W. Placzek and S. Jadach, Multiphoton radiation in leptonic W boson decays,
Eur.Phys.J. C29 (2003), 325–339, [arXiv:hep-ph/0302065 [hep-ph]].

[99] M. H. Seymour, Photon radiation in final state parton showering, Z. Phys. C56 (1992),
161–170.

[100] Y. L. Dokshitzer and D. Kharzeev, Heavy quark colorimetry of QCD matter, Phys.Lett.
B519 (2001), 199–206, [arXiv:hep-ph/0106202 [hep-ph]].

[101] C. Amsler et al., The Particle Data Group collaboration, Review of particle physics,
Phys. Lett. B667 (2008), 1.

[102] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963),
531–533.

[103] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak
Interaction, Prog. Theor. Phys. 49 (1973), 652–657.

[104] J. Charles et al., The CKMfitter Group collaboration, CP violation and the CKM
matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C41 (2005),
1–131, [hep-ph/0406184].

[105] M. Bona et al., The UTfit collaboration, The UTfit collaboration report on the status
of the unitarity triangle beyond the standard model. I: Model- independent analysis and
minimal flavour violation, JHEP 03 (2006), 080, [hep-ph/0509219].

[106] F. E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions,
Phys. Rev. 110 (1958), 974–977.

[107] A. Sirlin, Current Algebra Formulation of Radiative Corrections in Gauge Theories
and the Universality of the Weak Interactions, Rev.Mod.Phys. 50 (1978), 573.

[108] A. Sirlin, Large m(W), m(Z) Behavior of the O(alpha) Corrections to Semileptonic
Processes Mediated by W, Nucl.Phys. B196 (1982), 83.

226 Bibliography

http://www-spires.dur.ac.uk/spires/find/hep/www?j=JMAPA,3,650
http://www-spires.dur.ac.uk/spires/find/hep/www?j=JMAPA,3,650
http://www-spires.dur.ac.uk/spires/find/hep/www?j=PHRVA,133,B1549
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B126,298
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9904440
http://arXiv.org/pdf/hep-ph/9904440
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0011222
http://arXiv.org/pdf/hep-ph/0011222
http://inspirebeta.net/record/270989
http://inspirebeta.net/record/248933
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0302065
http://arXiv.org/pdf/hep-ph/0302065
http://www-spires.dur.ac.uk/spires/find/hep/www?j=ZEPYA,C56,161
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/0106202
http://arXiv.org/pdf/hep-ph/0106202
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B667,1
http://www-spires.dur.ac.uk/spires/find/hep/www?j=PRLTA,10,531
http://www.slac.stanford.edu/spires/find/hep/www?j=PTPKA,49,652
http://www.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0406184
http://arXiv.org/pdf/hep-ph/0406184
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0509219
http://arXiv.org/pdf/hep-ph/0509219
http://www-spires.dur.ac.uk/spires/find/hep/www?j=PHRVA,110,974
http://inspirebeta.net/record/122234
http://inspirebeta.net/record/166593


[109] S. Eidelman et al., The Particle Data Group collaboration, Review of particle physics,
Phys. Lett. B592 (2004), 1.

[110] A. Sher et al., New, high statistics measurement of the K+ → π0e+ν (Ke3) branching
ratio, Phys. Rev. Lett. 91 (2003), 261802, [hep-ex/0305042].

[111] T. Alexopoulos et al., The KTeV collaboration, A Determination of the CKM Param-
eter |Vus|, Phys. Rev. Lett. 93 (2004), 181802, [hep-ex/0406001].

[112] T. Alexopoulos et al., The KTeV collaboration, Measurements of KL Branching
Fractions and the CP Violation Parameter |η±|, Phys. Rev. D70 (2004), 092006,
[hep-ex/0406002].

[113] T. Alexopoulos et al., The KTeV collaboration, Measurements of Semileptonic KL
Decay Form Factors, Phys. Rev. D70 (2004), 092007, [hep-ex/0406003].

[114] T. C. Andre, Radiative corrections in K0l3 decays, Nucl. Phys. Proc. Suppl. 142 (2005),
58–61, UMI-31-49380.

[115] F. U. Bernlochner and H. Lacker, A phenomenological model for radiative correc-
tions in exclusive semileptonic B-meson decays to (pseudo)scalar final state mesons,
arXiv:1003.1620 [hep-ph].

[116] S. Descotes-Genon and B. Moussallam, Radiative corrections in weak semi-leptonic
processes at low energy: A two-step matching determination, Eur. Phys. J. C42 (2005),
403–417, [hep-ph/0505077].

[117] W. Pauli and F. Villars, On the Invariant regularization in relativistic quantum theory,
Rev. Mod. Phys. 21 (1949), 434–444.

[118] T. Burnett and N. M. Kroll, Extension of the low soft photon theorem, Phys.Rev.Lett.
20 (1968), 86.

[119] D. Becirevic and B. Haas, D* → D pi and D* → D gamma decays: Axial coupling and
Magnetic moment of D* meson, arXiv:0903.2407 [hep-lat].

[120] J. Gasser, B. Kubis, N. Paver and M. Verbeni, Radiative K(e3) decays revisited, Eur.
Phys. J. C40 (2005), 205–227, [hep-ph/0412130].

[121] D. Becirevic and N. Kosnik, Soft photons in semileptonic B → D decays, Acta
Phys.Polon.Supp. 3 (2010), 207–214, [arXiv:0910.5031 [hep-ph]].

[122] J. Bijnens, G. Ecker and J. Gasser, Radiative semileptonic kaon decays, Nucl.Phys.
B396 (1993), 81–118, [arXiv:hep-ph/9209261 [hep-ph]].

[123] A. A. Poblaguev, What can be learned from an experimental study of radiative K(l3)
decay?, Phys. Atom. Nucl. 62 (1999), 975–979.

[124] V. Cirigliano and D. Pirjol, Factorization in exclusive semileptonic radiative B decays,
Phys. Rev. D72 (2005), 094021, [hep-ph/0508095].

[125] H. W. Fearing, E. Fischbach and J. Smith, Current algebra, anti-k0-l-3 form-factors,
and radiative anti-k0-l-3 decay, Phys. Rev. D2 (1970), 542–560.

[126] P. Golonka and Z. Wa̧s, PHOTOS Monte Carlo: A Precision tool for QED corrections
in Z and W decays, Eur. Phys. J. C45 (2006), 97–107, [hep-ph/0506026].

[127] B. Aubert et al., The BABAR Collaboration collaboration, Measurement of |V(cb)|
and the Form-Factor Slope in B̄ → Dl−ν̄ Decays in Events Tagged by a Fully Recon-
structed B Meson, Phys.Rev.Lett. 104 (2010), 011802, [arXiv:0904.4063 [hep-ex]].

Bibliography 227

http://www-spires.dur.ac.uk/spires/find/hep/www?j=PHLTA,B592,1
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=HEP-EX/0305042
http://arXiv.org/pdf/hep-ex/0305042
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0406001
http://arXiv.org/pdf/hep-ex/0406001
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0406002
http://arXiv.org/pdf/hep-ex/0406002
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0406003
http://arXiv.org/pdf/hep-ex/0406003
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHZ,142,58
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1003.1620
http://arXiv.org/pdf/1003.1620
http://www.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0505077
http://arXiv.org/pdf/hep-ph/0505077
http://www.slac.stanford.edu/spires/find/hep/www?j=RMPHA,21,434
http://inspirebeta.net/record/51370
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0903.2407
http://arXiv.org/pdf/0903.2407
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0412130
http://arXiv.org/pdf/hep-ph/0412130
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0910.5031
http://arXiv.org/pdf/0910.5031
http://inspirebeta.net/record/338768
http://arXiv.org/pdf/hep-ph/9209261
http://www.slac.stanford.edu/spires/find/hep/www?j=PANUE,62,975
http://www.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0508095
http://arXiv.org/pdf/hep-ph/0508095
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D2,542
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0506026
http://arXiv.org/pdf/hep-ph/0506026
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0904.4063
http://arXiv.org/pdf/0904.4063


[128] B. Aubert et al., The BABAR Collaboration collaboration, Measurements of the
Semileptonic Decays B̄ → Dlν̄ and B̄ → D ∗ lν̄ Using a Global Fit to D X l anti-
nu Final States, Phys.Rev. D79 (2009), 012002, [arXiv:0809.0828 [hep-ex]].

[129] M. B. Wise, Chiral perturbation theory for hadrons containing a heavy quark, Phys.
Rev. D45 (1992), 2188–2191.

[130] G. Burdman and J. F. Donoghue, Union of chiral and heavy quark symmetries,
Phys.Lett. B280 (1992), 287–291.

[131] T.-M. Yan et al., Heavy quark symmetry and chiral dynamics, Phys. Rev. D46 (1992),
1148–1164.

[132] M. B. Wise, Combining chiral and heavy quark symmetry, hep-ph/9306277.

[133] B. Aubert et al., The BABAR collaboration, Measurement of the B0 → π−l+ν
Form-Factor Shape and Branching Fraction, and Determination of |Vub| with a
Loose Neutrino Reconstruction Technique, Phys. Rev. Lett. 98 (2007), 091801,
[hep-ex/0612020].

[134] M. Bähr et al., Herwig++ Physics and Manual, Eur. Phys. J. C58 (2008), 639–707,
[arXiv:0803.0883 [hep-ph]].

[135] J. André and T. Sjöstrand, Matching of matrix elements and parton showers, Phys.
Rev. D57 (1998), 5767–5772, [hep-ph/9708390].

[136] K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging
approach to angular-ordered parton showers, JHEP 11 (2009), 038, [arXiv:0905.3072
[hep-ph]].

[137] S. Frixione, P. Nason and B. R. Webber, Matching NLO QCD and parton showers in
heavy flavour production, JHEP 08 (2003), 007, [hep-ph/0305252].

[138] S. Frixione, E. Laenen, P. Motylinski and B. R. Webber, Single-top production in
MC@NLO, JHEP 03 (2006), 092, [hep-ph/0512250].

[139] S. Frixione, E. Laenen, P. Motylinski, B. R. Webber and C. D. White, Single-
top hadroproduction in association with a W boson, JHEP 07 (2008), 029,
[arXiv:0805.3067 [hep-ph]].

[140] C. Weydert, S. Frixione, M. Herquet, M. Klasen, E. Laenen, T. Plehn, G. Stavenga
and C. D. White, Charged Higgs boson production in association with a top quark in
MC@NLO, Eur. Phys. J. C67 (2010), 617–636, [arXiv:0912.3430 [hep-ph]].

[141] T. Toll and S. Frixione, Charm and bottom photoproduction at HERA with MC@NLO,
arXiv:1106.1614 [hep-ph].

[142] P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using
MC@NLO, JHEP 04 (2010), 110, [arXiv:1002.4293 [hep-ph]].

[143] P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z
pair hadroproduction, JHEP 08 (2006), 077, [hep-ph/0606275].

[144] S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte
Carlo for heavy flavour hadroproduction, JHEP 09 (2007), 126, [arXiv:0707.3088
[hep-ph]].

228 Bibliography

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0809.0828
http://arXiv.org/pdf/0809.0828
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D45,2188
http://inspirebeta.net/record/31950
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D46,1148
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9306277
http://arXiv.org/pdf/hep-ph/9306277
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0612020
http://arXiv.org/pdf/hep-ex/0612020
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0803.0883
http://arXiv.org/pdf/0803.0883
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/9708390
http://arXiv.org/pdf/hep-ph/9708390
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0905.3072
http://arXiv.org/pdf/0905.3072
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0305252
http://arXiv.org/pdf/hep-ph/0305252
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0512250
http://arXiv.org/pdf/hep-ph/0512250
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0805.3067
http://arXiv.org/pdf/0805.3067
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0912.3430
http://arXiv.org/pdf/0912.3430
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1106.1614
http://arXiv.org/pdf/1106.1614
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1002.4293
http://arXiv.org/pdf/1002.4293
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0606275
http://arXiv.org/pdf/hep-ph/0606275
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0707.3088
http://arXiv.org/pdf/0707.3088


[145] S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion
matched with shower in POWHEG, JHEP 04 (2009), 002, [arXiv:0812.0578 [hep-
ph]].

[146] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with
shower in POWHEG, JHEP 07 (2008), 060, [arXiv:0805.4802 [hep-ph]].

[147] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched
with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009), 111,
[arXiv:0907.4076 [hep-ph]].

[148] P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched
with shower in POWHEG, JHEP 02 (2010), 037, [arXiv:0911.5299 [hep-ph]].

[149] C. Oleari and L. Reina, W b bbar production in POWHEG, JHEP 1108 (2011), 061,
[arXiv:1105.4488 [hep-ph]].

[150] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W+W+ plus dijet production in
the POWHEGBOX, Eur.Phys.J. C71 (2011), 1670, [arXiv:1102.4846 [hep-ph]].

[151] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W+W-, WZ and ZZ production in
the POWHEG BOX, arXiv:1107.5051 [hep-ph].

[152] S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in
POWHEG, JHEP 1101 (2011), 095, [arXiv:1009.5594 [hep-ph]].

[153] S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG,
JHEP 1104 (2011), 081, [arXiv:1012.3380 [hep-ph]].

[154] A. Kardos, C. Papadopoulos and Z. Trocsanyi, Top quark pair production in association
with a jet with NLO parton showering, arXiv:1101.2672 [hep-ph].

[155] M. Garzelli, A. Kardos, C. Papadopoulos and Z. Trocsanyi, Standard Model Higgs
boson production in association with a top anti-top pair at NLO with parton showering,
arXiv:1108.0387 [hep-ph].

[156] O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-
order Monte Carlo for e+e− annihilation to hadrons, JHEP 02 (2007), 051,
[hep-ph/0612281].

[157] K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order
Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008), 015,
[arXiv:0806.0290 [hep-ph]].

[158] O. Latunde-Dada, Applying the POWHEG method to top-pair production and decays at
the ILC, Eur. Phys. J. C58 (2008), 543–554, [arXiv:0806.4560 [hep-ph]].

[159] A. Papaefstathiou and O. Latunde-Dada, NLO production of W ′ bosons at hadron
colliders using the MC@NLO and POWHEG methods, JHEP 07 (2009), 044,
[arXiv:0901.3685 [hep-ph]].

[160] K. Hamilton, P. Richardson and J. Tully, A positive-weight Next-to-Leading Or-
der Monte Carlo Simulation for Higgs boson production, JHEP 04 (2009), 116,
[arXiv:0903.4345 [hep-ph]].

[161] L. D’Errico and P. Richardson, A Positive-Weight Next-to-Leading-Order Monte Carlo
Simulation of Deep Inelastic Scattering and Higgs Boson Production via Vector Boson
Fusion in Herwig++, arXiv:1106.2983 [hep-ph].

Bibliography 229

http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0812.0578
http://arXiv.org/pdf/0812.0578
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0805.4802
http://arXiv.org/pdf/0805.4802
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0907.4076
http://arXiv.org/pdf/0907.4076
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0911.5299
http://arXiv.org/pdf/0911.5299
http://inspirebeta.net/record/900922
http://arXiv.org/pdf/1105.4488
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1102.4846
http://arXiv.org/pdf/1102.4846
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1107.5051
http://arXiv.org/pdf/1107.5051
http://inspirebeta.net/record/871058
http://arXiv.org/pdf/1009.5594
http://inspirebeta.net/record/881431
http://arXiv.org/pdf/1012.3380
http://inspirebeta.net/record/884386
http://arXiv.org/pdf/1101.2672
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1108.0387
http://arXiv.org/pdf/1108.0387
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0612281
http://arXiv.org/pdf/hep-ph/0612281
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0806.0290
http://arXiv.org/pdf/0806.0290
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0806.4560
http://arXiv.org/pdf/0806.4560
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0901.3685
http://arXiv.org/pdf/0901.3685
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0903.4345
http://arXiv.org/pdf/0903.4345
http://inspirebeta.net/record/913715
http://arXiv.org/pdf/1106.2983


[162] L. D’Errico and P. Richardson, Next-to-Leading-Order Monte Carlo Simulation of
Diphoton Production in Hadronic Collisions, arXiv:1106.3939 [hep-ph].

[163] M. H. Seymour, Matrix-element corrections to parton shower algorithms, Comp. Phys.
Commun. 90 (1995), 95–101, [hep-ph/9410414].

[164] M. H. Seymour, A simple prescription for first-order corrections to quark scattering
and annihilation processes, Nucl. Phys. B436 (1995), 443–460, [hep-ph/9410244].

[165] G. Corcella and M. H. Seymour, Matrix element corrections to parton shower simula-
tions of heavy quark decay, Phys. Lett. B442 (1998), 417–426, [hep-ph/9809451].

[166] G. Miu and T. Sjöstrand, W production in an improved parton-shower approach, Phys.
Lett. B449 (1999), 313–320, [hep-ph/9812455].

[167] G. Corcella and M. H. Seymour, Initial state radiation in simulations of vector boson
production at hadron colliders, Nucl. Phys. B565 (2000), 227–244, [hep-ph/9908388].

[168] E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B603
(2001), 297–342, [hep-ph/0010012].

[169] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau et al., Scalar and pseu-
doscalar Higgs production in association with a top-antitop pair, Phys.Lett. B701
(2011), 427–433, [arXiv:1104.5613 [hep-ph]].

[170] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, W and Z/γ∗
boson production in association with a bottom-antibottom pair, JHEP 1109 (2011), 061,
[arXiv:1106.6019 [hep-ph]].

[171] N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements,
JHEP 12 (2008), 070, [arXiv:0811.2912 [hep-ph]].

[172] K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with
higher order matrix elements, JHEP 06 (2010), 039, [arXiv:1004.1764 [hep-ph]].

[173] S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO matrix elements and truncated
showers, JHEP 08 (2011), 123, [arXiv:1009.1127 [hep-ph]].

[174] V. N. Gribov and L. N. Lipatov, Deep inelastic e-p scattering in perturbation theory,
Sov. J. Nucl. Phys. 15 (1972), 438–450.

[175] L. N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975),
94–102.

[176] Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering
and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys.
JETP 46 (1977), 641–653.

[177] R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and collider physics, ed. 1, vol. 8,
Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol., 1996.

[178] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory, Westview
Press, 1995.

[179] V. V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov.
Phys. JETP 3 (1956), 65–71.

[180] R. P. Feynman, Photon-hadron interactions, Reading, MA, USA: Benjamin, 1972.

230 Bibliography

http://inspirebeta.net/record/914215
http://arXiv.org/pdf/1106.3939
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9410414
http://arXiv.org/pdf/hep-ph/9410414
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/9410244
http://arXiv.org/pdf/hep-ph/9410244
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9809451
http://arXiv.org/pdf/hep-ph/9809451
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/9812455
http://arXiv.org/pdf/hep-ph/9812455
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/9908388
http://arXiv.org/pdf/hep-ph/9908388
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0010012
http://arXiv.org/pdf/hep-ph/0010012
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1104.5613
http://arXiv.org/pdf/1104.5613
http://inspirehep.net/record/916196
http://arXiv.org/pdf/1106.6019
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0811.2912
http://arXiv.org/pdf/0811.2912
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1004.1764
http://arXiv.org/pdf/1004.1764
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1009.1127
http://arXiv.org/pdf/1009.1127
http://www.slac.stanford.edu/spires/find/hep/www?j=SJNCA,15,438
http://www.slac.stanford.edu/spires/find/hep/www?j=SJNCA,20,94
http://www.slac.stanford.edu/spires/find/hep/www?j=SPHJA,46,641
http://www.slac.stanford.edu/spires/find/hep/www?j=SPHJA,3,65


[181] J. C. Collins and D. E. Soper, The theorems of perturbative QCD, Ann. Rev. Nucl.
Part. Sci. 37 (1987), 383–409.

[182] J. C. Collins, D. E. Soper and G. Sterman, Soft gluons and factorization, Nucl. Phys.
B308 (1988), 833–856.

[183] J. C. Collins, D. E. Soper and G. Sterman, Factorization of hard processes in QCD,
Adv. Ser. Direct. High Energy Phys. 5 (1988), 1–91, [hep-ph/0409313].

[184] J. Bjorken, Asymptotic Sum Rules at Infinite Momentum, Phys.Rev. 179 (1969), 1547–
1553.

[185] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Parton distributions for the
LHC, Eur. Phys. J. C63 (2009), 189–295, [arXiv:0901.0002 [hep-ph]].

[186] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky et al., New parton distributions
for collider physics, Phys.Rev. D82 (2010), 074024, [arXiv:1007.2241 [hep-ph]].

[187] S. Lionetti, R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio et al., Precision de-
termination of αs using an unbiased global NLO parton set, Phys.Lett. B701 (2011),
346–352, [arXiv:1103.2369 [hep-ph]].

[188] S. Alekhin, J. Blumlein, S. Klein and S. Moch, The 3, 4, and 5-flavor NNLO Parton
from Deep-Inelastic-Scattering Data and at Hadron Colliders, Phys.Rev. D81 (2010),
014032, [arXiv:0908.2766 [hep-ph]].

[189] The H1 and ZEUS Collaborations, Combined measurement and QCD analysis
of the Inclusive e±p scattering cross sections at HERA, JHEP 01 (2009), 109,
[arXiv:0911.0884 [hep-ex]].

[190] H. Georgi and H. Politzer, Electroproduction scaling in an asymptotically free theory
of strong interactions, Phys.Rev. D9 (1974), 416–420.

[191] D. J. Gross and F. Wilczek, Asymptotically free gauge theories. II, Phys. Rev. D9
(1974), 980–993.

[192] G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading
order: The non-singlet case, Nucl. Phys. B175 (1980), 27.

[193] W. Furmanski and R. Petronzio, Singlet parton densities beyond leading order, Phys.
Lett. B97 (1980), 437.

[194] E. Floratos, D. Ross and C. T. Sachrajda, Higher Order Effects in Asymptotically Free
Gauge Theories: The Anomalous Dimensions of Wilson Operators, Nucl.Phys. B129
(1977), 66–88.

[195] A. Gonzalez-Arroyo, C. Lopez and F. Yndurain, Second Order Contributions to
the Structure Functions in Deep Inelastic Scattering. 1. Theoretical Calculations,
Nucl.Phys. B153 (1979), 161–186.

[196] E. Floratos, C. Kounnas and R. Lacaze, Higher Order QCD Effects in Inclusive An-
nihilation and Deep Inelastic Scattering, Nucl.Phys. B192 (1981), 417.

[197] K. J. Golec-Biernat, S. Jadach, W. Placzek and M. Skrzypek, Markovian Monte Carlo
solutions of the NLO QCD evolution equations, Acta Phys.Polon. B37 (2006), 1785–
1832, [arXiv:hep-ph/0603031 [hep-ph]].

[198] A. Kusina, S. Jadach, M. Skrzypek and M. Slawinska, NLO evolution kernels: Monte
Carlo versus M̄S, Acta Phys.Polon. B42 (2011), 1475, [arXiv:1106.1787 [hep-ph]].

Bibliography 231

http://www.slac.stanford.edu/spires/find/hep/www?j=ARNUA,37,383
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B308,833
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0409313
http://arXiv.org/pdf/hep-ph/0409313
http://inspirebeta.net/record/52694
http://inspirebeta.net/record/52694
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0901.0002
http://arXiv.org/pdf/0901.0002
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1007.2241
http://arXiv.org/pdf/1007.2241
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1103.2369
http://arXiv.org/pdf/1103.2369
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0908.2766
http://arXiv.org/pdf/0908.2766
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0911.0884
http://arXiv.org/pdf/0911.0884
http://inspirebeta.net/record/2448
http://www.slac.stanford.edu/spires/find/hep/www?j=Phys%20Rev,D9,980
http://www-spires.dur.ac.uk/spires/find/hep/www?j=NUPHA,B175,27
http://www-spires.dur.ac.uk/spires/find/hep/www?j=PHLTA,B97,437
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B129,66
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B153,161
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B192,417
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0603031
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0603031
http://arXiv.org/pdf/hep-ph/0603031
http://inspirebeta.net/record/913184
http://arXiv.org/pdf/1106.1787


[199] D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini and G. Veneziano, A treatment of
hard processes sensitive to the infrared structure of QCD, Nucl. Phys. B173 (1980),
429.

[200] D. A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev. D57
(1998), 5410–5416, [hep-ph/9710213].

[201] D. A. Kosower, Antenna factorization in strongly-ordered limits, Phys. Rev. D71
(2005), 045016, [hep-ph/0311272].

[202] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Antenna subtraction at
NNLO, JHEP 09 (2005), 056, [hep-ph/0505111].

[203] A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial
states, JHEP 04 (2007), 016, [hep-ph/0612257].

[204] G. Marchesini and B. R. Webber, Simulation of QCD Jets Including Soft Gluon In-
terference, Nucl. Phys. B238 (1984), 1.

[205] G. Marchesini and B. R. Webber, Monte Carlo Simulation of General Hard Processes
with Coherent QCD Radiation, Nucl. Phys. B310 (1988), 461.

[206] M. Bengtsson and T. Sjöstrand, A comparative study of coherent and non-coherent
parton shower evolution, Nucl. Phys. B289 (1987), 810.

[207] S. Frixione, Z. Kunszt and A. Signer, Three-jet cross-sections to next-to-leading order,
Nucl. Phys. B467 (1996), 399–442, [hep-ph/9512328].

[208] S. Frixione, A general approach to jet cross sections in QCD, Nucl. Phys. B507 (1997),
295–314, [hep-ph/9706545].

[209] G. Gustafson, Dual description of a confined colour field, Phys. Lett. B175 (1986),
453.

[210] G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys.
B306 (1988), 746.

[211] B. Andersson, G. Gustafson and L. Lönnblad, Gluon splitting in the color dipole cas-
cades, Nucl. Phys. B339 (1990), 393–406.

[212] S. Frixione, Colourful FKS subtraction, JHEP 1109 (2011), 091, [arXiv:1106.0155
[hep-ph]].

[213] M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism,
Phys. Rev. D76 (2007), 094003, [arXiv:0709.1026 [hep-ph]].

[214] W. T. Giele, D. A. Kosower and P. Z. Skands, A Simple shower and matching algorithm,
Phys. Rev. D78 (2008), 014026, [arXiv:0707.3652 [hep-ph]].

[215] R. D. Field, Applications of perturbative QCD, Addison-Wesley, Redwood City, USA,
1989, Frontiers in physics, 77.

[216] S. Plätzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP 01
(2011), 024, [arXiv:0909.5593 [hep-ph]].

[217] A. Ballestrero and E. Maina, A new method for helicity calculations, Phys. Lett. B350
(1995), 225–233, [hep-ph/9403244].

[218] G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput.
Phys. 27 (1978), 192.

232 Bibliography

http://www-spires.dur.ac.uk/spires/find/hep/www?j=NUPHA,B173,429
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9710213
http://arXiv.org/pdf/hep-ph/9710213
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0311272
http://arXiv.org/pdf/hep-ph/0311272
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0505111
http://arXiv.org/pdf/hep-ph/0505111
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0612257
http://arXiv.org/pdf/hep-ph/0612257
http://www-spires.dur.ac.uk/spires/find/hep/www?j=NUPHA,B238,1
http://www-spires.dur.ac.uk/spires/find/hep/www?j=NUPHA,B310,461
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B289,810
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/9512328
http://arXiv.org/pdf/hep-ph/9512328
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/9706545
http://arXiv.org/pdf/hep-ph/9706545
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B175,453
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B306,746
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B339,393
http://inspirebeta.net/record/902330
http://arXiv.org/pdf/1106.0155
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0709.1026
http://arXiv.org/pdf/0709.1026
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0707.3652
http://arXiv.org/pdf/0707.3652
http://inspirebeta.net/record/832635
http://arXiv.org/pdf/0909.5593
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9403244
http://arXiv.org/pdf/hep-ph/9403244
http://www-spires.dur.ac.uk/spires/find/hep/www?j=JCTPA,27,192


[219] Z. Nagy and D. E. Soper, Matching parton showers to NLO computations, JHEP 10
(2005), 024, [hep-ph/0503053].

[220] Z. Nagy and D. E. Soper, A new parton shower algorithm: Shower evolution, matching
at leading and next-to-leading order level, hep-ph/0601021.

[221] T. Carli, T. Gehrmann and S. Höche, Hadronic final states in deep-inelastic scattering
with SHERPA, Eur. Phys. J. C67 (2010), 73, [arXiv:0912.3715 [hep-ph]].

[222] P. M. Nadolsky et al., Implications of CTEQ global analysis for collider observables,
Phys. Rev. D78 (2008), 013004, [arXiv:0802.0007 [hep-ph]].

[223] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation
and String Dynamics, Phys. Rept. 97 (1983), 31–145.

[224] B. Andersson, The Lund model, vol. 7, Camb. Monogr. Part. Phys. Nucl. Phys. Cos-
mol., 1997.

[225] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres-Cordero, D. Forde, T. Gleisberg, H. Ita,
D. A. Kosower and D. Maître, Precise Predictions for W + 3 Jet Production at Hadron
Colliders, Phys. Rev. Lett. 102 (2009), 222001, [arXiv:0902.2760 [hep-ph]].

[226] C. F. Berger et al., Next-to-leading order QCD predictions for W+3-Jet distributions
at hadron colliders, Phys. Rev. D80 (2009), 074036, [arXiv:0907.1984 [hep-ph]].

[227] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres-Cordero, D. Forde, T. Gleisberg, H. Ita,
D. A. Kosower and D. Maître, Next-to-leading order QCD predictions for Z, γ∗+3-
Jet distributions at the Tevatron, Phys. Rev. D82 (2010), 074002, [arXiv:1004.1659
[hep-ph]].

[228] Z. Bern, G. Diana, L. Dixon, F. Febres-Cordero, D. Forde et al., Left-Handed W Bosons
at the LHC, Phys. Rev. D84 (2011), 034008, [arXiv:1103.5445 [hep-ph]].

[229] Z. Bern, G. Diana, L. Dixon, F. Febres-Cordero, S. Höche et al., Driving Missing Data
at Next-to-Leading Order, arXiv:1106.1423 [hep-ph].

[230] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B359 (1991),
283–300.

[231] A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders:
QCD corrections, Phys. Lett. B264 (1991), 440–446.

[232] C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson produc-
tion and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B724
(2005), 197–246, [hep-ph/0501130].

[233] C. Anastasiou, G. Dissertori and F. Stöckli, NNLO QCD predictions for the H →
WW → lνlν signal at the LHC, JHEP 09 (2007), 018, [arXiv:0707.2373 [hep-ph]].

[234] C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to
Higgs boson production in gluon fusion, JHEP 04 (2009), 003, [arXiv:0811.3458 [hep-
ph]].

[235] S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs
boson production at hadron colliders, JHEP 07 (2003), 028, [hep-ph/0306211].

[236] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resum-
mation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B737 (2006),
73–120, [hep-ph/0508068].

Bibliography 233

http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0503053
http://arXiv.org/pdf/hep-ph/0503053
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0601021
http://arXiv.org/pdf/hep-ph/0601021
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=f+eprint+0912.3715
http://arXiv.org/pdf/0912.3715
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0802.0007
http://arXiv.org/pdf/0802.0007
http://www.slac.stanford.edu/spires/find/hep/www?j=Phys%20Rept,97,31
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0902.2760
http://arXiv.org/pdf/0902.2760
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0907.1984
http://arXiv.org/pdf/0907.1984
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1004.1659
http://arXiv.org/pdf/1004.1659
http://inspirebeta.net/record/894419
http://arXiv.org/pdf/1103.5445
http://inspirebeta.net/record/912896
http://arXiv.org/pdf/1106.1423
http://www.slac.stanford.edu/spires/find/hep/www?j=Nucl%20Phys,B359,283
http://www-spires.dur.ac.uk/spires/find/hep/www?j=PHLTA,B264,440
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0501130
http://arXiv.org/pdf/hep-ph/0501130
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0707.2373
http://arXiv.org/pdf/0707.2373
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0811.3458
http://arXiv.org/pdf/0811.3458
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/0306211
http://arXiv.org/pdf/hep-ph/0306211
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0508068
http://arXiv.org/pdf/hep-ph/0508068


[237] J. M. Campbell and R. K. Ellis, Update on vector boson pair production at hadron
colliders, Phys. Rev. D60 (1999), 113006, [hep-ph/9905386].

[238] L. J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(αs) production of
W+W−, W±Z, ZZ, W±γ, or Zγ pairs at hadron colliders, Nucl. Phys. B531 (1998),
3–23, [hep-ph/9803250].

[239] A. Heister et al., The ALEPH collaboration, Studies of QCD at e+e− centre-of-mass
energies between 91 and 209 GeV, Eur. Phys. J. C35 (2004), 457–486.

[240] C. Adloff et al., The H1 collaboration, Measurement and QCD analysis of jet cross
sections in deep-inelastic positron-proton collisions at

√
s of 300 GeV, Eur. Phys. J.

C19 (2001), 289–311, [hep-ex/0010054], DESY-00-145.

[241] C. Adloff et al., The H1 collaboration, Three-jet production in deep-inelastic scattering
at HERA, Phys. Lett. B515 (2001), 17–29, [hep-ex/0106078], DESY-01-073.

[242] V. M. Abazov et al., The DØ collaboration, Measurement of the normalized Z/γ∗ →
µ+µ− transverse momentum distribution in pp̄ collisions at

√
s = 1.96 TeV, Phys.

Lett. B693 (2010), 522–530, [arXiv:1006.0618 [hep-ex]].

[243] V. M. Abazov et al., The DØ collaboration, Measurement of the shape of the boson
rapidity distribution for pp̄→ Z/γ∗ → e+e− + X events produced at

√
s of 1.96 TeV,

Phys. Rev. D76 (2007), 012003, [hep-ex/0702025].

[244] B. Abbott et al., The DØ collaboration, Differential cross section for W boson produc-
tion as a function of transverse momentum in pp̄ collisions at

√
s = 1.8 TeV, Phys.

Lett. B513 (2001), 292–300, [hep-ex/0010026].

[245] V. M. Abazov et al., The DØ collaboration, Measurement of Z/γ∗+jet+X angular
distributions in pp̄ collisions at

√
s = 1.96 TeV, Phys. Lett. B682 (2010), 370–380,

[arXiv:0907.4286 [hep-ex]].

[246] M. Cacciari, G. P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP
0804 (2008), 063, [arXiv:0802.1189 [hep-ph]].

[247] T. Aaltonen et al., The CDF collaboration, Measurement of Inclusive Jet Cross Sec-
tions in Z/γ∗(→ ee)+ jets Production in pp̄ Collisions at

√
s = 1.96 TeV, Phys. Rev.

Lett. 100 (2008), 102001, [arXiv:0711.3717 [hep-ex]].

[248] V. M. Abazov et al., The DØ collaboration, Measurement of differential Z/γ∗ + jet +
X cross sections in pp̄ collisions at

√
s = 1.96 TeV, Phys. Lett. B669 (2008), 278–286,

[arXiv:0808.1296 [hep-ex]].

[249] V. Abazov et al., The DØ collaboration, Measurements of differential cross sections of
Z/γ∗+jets+X events in proton anti-proton collisions at

√
s = 1.96 TeV, Phys. Lett.

B678 (2009), 45–54, [arXiv:0903.1748 [hep-ex]].

[250] A. Abulencia et al., The CDF collaboration, Measurement of the inclusive jet cross
section in pp̄ interactions at

√
s = 1.96-TeV using a cone-based jet algorithm., Phys.

Rev. D74 (2006), 071103, [hep-ex/0512020].

[251] G. C. Blazey et al., Run II jet physics, hep-ex/0005012.

[252] G. Aad et al., The ATLAS collaboration, Measurement of the production cross section
for W-bosons in association with jets in pp collisions at

√
s = 7 TeV with the ATLAS

detector, Phys. Lett. B698 (2011), 325–345, [arXiv:1012.5382 [hep-ex]].

234 Bibliography

http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9905386
http://arXiv.org/pdf/hep-ph/9905386
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9803250
http://arXiv.org/pdf/hep-ph/9803250
http://www-spires.dur.ac.uk/spires/find/hep/www?j=EPHJA,C35,457
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0010054
http://arXiv.org/pdf/hep-ex/0010054
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0106078
http://arXiv.org/pdf/hep-ex/0106078
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1006.0618
http://arXiv.org/pdf/1006.0618
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0702025
http://arXiv.org/pdf/hep-ex/0702025
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0010026
http://arXiv.org/pdf/hep-ex/0010026
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0907.4286
http://arXiv.org/pdf/0907.4286
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0802.1189
http://arXiv.org/pdf/0802.1189
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0711.3717
http://arXiv.org/pdf/0711.3717
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0808.1296
http://arXiv.org/pdf/0808.1296
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0903.1748
http://arXiv.org/pdf/0903.1748
http://inspirebeta.net/record/699933
http://arXiv.org/pdf/hep-ex/0512020
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0005012
http://arXiv.org/pdf/hep-ex/0005012
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1012.5382
http://arXiv.org/pdf/1012.5382


[253] N. Lavesson and L. Lönnblad, Merging parton showers and matrix elements – back to
basics, JHEP 04 (2008), 085, [arXiv:0712.2966 [hep-ph]].

[254] S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard
processes, Nucl. Phys. B327 (1989), 323.

[255] S. Catani, B. R. Webber and G. Marchesini, QCD coherent branching and semiinclusive
processes at large x, Nucl. Phys. B349 (1991), 635–654.

[256] G. Abbiendi et al., The OPAL collaboration, A simultaneous measurement of the
QCD colour factors and the strong coupling, Eur. Phys. J. C20 (2001), 601–615,
[hep-ex/0101044].

[257] T. Sjöstrand, PYTHIA 5.7 and JETSET 7.4 Physics and Manual, hep-ph/9508391.

[258] C. Adloff et al., The H1 collaboration, Measurement of inclusive jet cross-sections
in deep-inelastic ep scattering at HERA, Phys. Lett. B542 (2002), 193–206,
[hep-ex/0206029], DESY-02-079.

[259] S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron collisions,
Phys. Rev. D48 (1993), 3160–3166, [hep-ph/9305266].

[260] S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Longitudinally-
invariant k⊥-clustering algorithms for hadron–hadron collisions, Nucl. Phys. B406
(1993), 187–224.

[261] S. Frixione and G. Ridolfi, Jet photoproduction at HERA, Nucl. Phys. B507 (1997),
315–333, [hep-ph/9707345].

[262] V. M. Abazov et al., The DØ collaboration, Measurement of the shape of the boson
transverse momentum distribution in pp̄ → Z/γ∗ → ee + X events produced at

√
s =

1.96 TeV, Phys. Rev. Lett. 100 (2008), 102002, [arXiv:0712.0803 [hep-ex]].

[263] V. M. Abazov et al., The DØ collaboration, Measurement of the ratios of the Z/γ∗+ ≥
n jet production cross sections to the total inclusive Z/γ∗ cross section in pp̄ collisions
at
√
s=1.96 TeV, Phys. Lett. B658 (2008), 112–119, [hep-ex/0608052].

[264] J. M. Butterworth et al., The Tools and Monte Carlo working group: Summary report,
arXiv:1003.1643 [hep-ph], Proceedings of the Workshop “Physics at TeV Colliders”,
Les Houches, France, 8-26 June, 2009.

[265] T. Gleisberg, F. Krauss, A. Schälicke, S. Schumann and J.-C. Winter, StudyingW+W−

production at the Fermilab Tevatron with SHERPA, Phys. Rev. D72 (2005), 034028,
[hep-ph/0504032].

[266] T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD correc-
tions to ZZ+jet production at hadron colliders, Phys. Lett. B683 (2010), 154–159,
[arXiv:0911.3181 [hep-ph]].

[267] I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of B̄ → D(∗)lν̄
form factors, Nucl. Phys. B530 (1998), 153–181, [hep-ph/9712417].

[268] P. Ball and R. Zwicky, New results on B → π,K, η decay form factors from light-cone
sum rules, Phys. Rev. D71 (2005), 014015, [hep-ph/0406232].

[269] A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Semileptonic B decays to
excited charmed mesons, Phys. Rev. D57 (1998), 308–330, [hep-ph/9705467].

Bibliography 235

http://www.slac.stanford.edu/spires/find/hep/www?eprint=0712.2966
http://arXiv.org/pdf/0712.2966
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B327,323
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B349,635
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ex/0101044
http://arXiv.org/pdf/hep-ex/0101044
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9508391
http://arXiv.org/pdf/hep-ph/9508391
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0206029
http://arXiv.org/pdf/hep-ex/0206029
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9305266
http://arXiv.org/pdf/hep-ph/9305266
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B406,187
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/9707345
http://arXiv.org/pdf/hep-ph/9707345
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0712.0803
http://arXiv.org/pdf/0712.0803
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0608052
http://arXiv.org/pdf/hep-ex/0608052
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1003.1643
http://arXiv.org/pdf/1003.1643
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0504032
http://arXiv.org/pdf/hep-ph/0504032
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0911.3181
http://arXiv.org/pdf/0911.3181
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9712417
http://arXiv.org/pdf/hep-ph/9712417
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0406232
http://arXiv.org/pdf/hep-ph/0406232
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9705467
http://arXiv.org/pdf/hep-ph/9705467


[270] A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Model independent results for
B→ D1(2420) l anti-nu and B→ D*2(2460) l anti-nu at order Lambda(QCD)/m(c,b),
Phys. Rev. Lett. 78 (1997), 3995–3998, [hep-ph/9703213].

[271] J. C. Ward, An Identity in Quantum Electrodynamics, Phys. Rev. 78 (1950), 182.

[272] E. Fischbach and J. Smith, Current algebra, k-l-3+ form-factors, and radiative k-l-3+
decay, Phys. Rev. 184 (1969), 1645–1660.

[273] G. Passarino and M. Veltman, One Loop Corrections for e+e− Annihilation Into µ+µ−

in the Weinberg Model, Nucl.Phys. B160 (1979), 151.

[274] D. Y. Bardin and G. Passarino, The standard model in the making: Precision study of
the electroweak interactions, Oxford, UK: Clarendon, 1999.

[275] R. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 0802 (2008),
002, [arXiv:0712.1851 [hep-ph]].

[276] R. Ellis, QCDloop: A repository for one-loop scalar integrals, http://qcdloop.fnal.gov/.

236 Bibliography

http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/9703213
http://arXiv.org/pdf/hep-ph/9703213
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,78,182
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,184,1645
http://inspirebeta.net/record/133460
http://inspirebeta.net/record/770258
http://arXiv.org/pdf/0712.1851
http://qcdloop.fnal.gov/


Declaration

The work in this thesis is based on research carried out at the Institut für Kern- und Teilchen-
physik, Technische Universität Dresden.
The research described in this thesis was carried out in collaboration with Jennifer Archibald,
Dr. Florian Bernlochner, Dr. Tanju Gleisberg, Dr. Stefan Höche, Dr. Frank Krauss, Dr.
Steffen Schumann, Dr. Frank Siegert, Dr. Jan Winter.

Refereed Publications

• Marek Schönherr, Frank Krauss,
Soft Photon Radiation in Particle Decays in SHERPA,
JHEP 12(2008)018 [arXiv:0810.5071]

• Tanju Gleisberg, Stefan Höche, Frank Krauss, Marek Schönherr, Steffen Schumann,
Frank Siegert, Jan Winter,
Event generation with SHERPA 1.1,
JHEP 02(2009)007 [arXiv:0811.4622]

• Stefan Höche, Frank Krauss, Marek Schönherr, Frank Siegert,
Automating the POWHEG method in Sherpa,
JHEP 04(2011)024 [arXiv:1008.5399]

• Stefan Höche, Frank Krauss, Marek Schönherr, Frank Siegert,
NLO matrix elements and truncated showers,
JHEP 08(2011)123 [arXiv:1009.1127]

Preprints

• Florian U. Bernlochner, Marek Schönherr,
Comparing different ansatzes to describe electroweak radiative corrections to exclusive
semileptonic B meson decays into (pseudo)scalar final state mesons using Monte-Carlo
techniques,
arXiv:1010.5997

Conference Proceedings

• Tanju Gleisberg, Stefan Höche, Frank Krauss, Radoslaw Matyszkiewicz, Marek Schön-
herr, Steffen Schumann, Frank Siegert, Jan Winter,
New trends in modern event generators,
arXiv:0705.4648

237



• Jennifer Archibald, Tanju Gleisberg, Stefan Höche, Frank Krauss, Marek Schönherr,
Steffen Schumann, Frank Siegert, Jan Winter,
Simulation of photon-photon interactions in hadron collisions with SHERPA,
Nucl.Phys.Proc.Suppl.179-180 (2008) 218-225

• Jennifer Archibald, Tanju Gleisberg, Stefan Höche, Frank Krauss, Marek Schönherr,
Steffen Schumann, Frank Siegert, Jan Winter,
Recent developments in SHERPA,
Nucl.Phys.Proc.Suppl.183 (2008) 60-66

• Jennifer Archibald, Tanju Gleisberg, Stefan Höche, Frank Krauss, Marek Schönherr,
Steffen Schumann, Frank Siegert, Jan Winter,
Recent developments in SHERPA,
Prepared for 16th International Workshop on Deep Inelastic Scattering and Related
Subjects (DIS 2008), London, England, 7-11 Apr 2008

• Stefan Höche, Frank Krauss, Marek Schönherr, Frank Siegert,
Next-to-leading order matrix elements and truncated showers,
To appear in the proceedings of Physics at the LHC 2010 (PLHC2010), Hamburg,
Germany, 7-12 Jun 2010. Published in *Hamburg 2010, Physics at the LHC 2010*
199-203 [arXiv:1009.1477]

• Frank Siegert, Stefan Höche, Frank Krauss, Marek Schönherr,
Multi-jet merging with NLO matrix elements,
Prepared for 35th International Conference on High Energy Physics: ICHEP 2010,
Paris, France, 21-28 Jul 2010. Published in PoS ICHEP2010:119, 2010
[arXiv:1011.6657]

238 Bibliography



Acknowledgements

First of all I would like to thank Dominik Stöckinger for giving me the opportunity to carry
out the research that went into this PhD thesis. Thank you also for the continuing support
and all the fruitful discussions and different angles brought into it.
I would also like to thank the other members of the SHERPA team for a very good collaboration
and numerous insights and discussions. Special thanks therefore go to Frank Siegert, Stefan
Höche, Steffen Schumann, Jan Winter, Tanju Gleisberg, Jennifer Archibald, Korinna Zapp,
Hendrik Hoeth and Frank Krauss.
I am equally thankful to Florian Bernlochner for the collaboration on the B physics project.
I gained a lot of insights into the specifics of flavour physics. Similarly, I would like to thank
Heiko Lacker for many discussions on that matter.
Many thanks go to my colleagues at the IKTP, foremost my office mates Hyejung Stöckinger-
Kim and Peter Athron, but also Alexander Voigt and Christoph Gnendiger, Peter Steinbach,
Thomas Göpfert, Philipp Anger, Ulrike Schnoor, Anja Vest, Deepak Kar, Wolfgang Mader,
Michael Kobel and everyone else in the institute for making this a very pleasant and stimu-
lating environment to work in. Special thanks go to Michael Kobel for his support between
the finishing of my diploma thesis and the beginning of the work on my PhD thesis with
Dominik.
I would further like to thank Peter Richardson and Nigel Glover for making my stays at the
IPPP in Durham possible. A lot of the work was accomplished while staying in this inspiring
surrounding.
I am also indebted to the secretaries Gisela Schöler and Tatjana Sereda for taking care of
all the non-physics related problems.
Special thanks also go to the team at the ZIH for their struggle to keep deimos running
where much of the computational demands for this thesis were satisfied.
Finally I would like to thank my family, Lenka and all my friends for all the support despite
not seeing me as often as they would have wanted.

239



240 Bibliography



Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden
Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.
Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form
einer anderen Prüfungsbehörde vorgelegt.

Die vorliegende Arbeit wurde am Institut für Kern- und Teilchenphysik der Technischen Uni-
versität Dresden unter wissenschaftlicher Betreuung von Herrn Prof. Dr. Dominik Stöckinger
angefertigt.

Es haben keine früheren erfolglosen Promotionsverfahren stattgefunden.

Hiermit erkenne ich die Promotionsordnung der Fakultät für Mathematik und Naturwis-
senschaften der Technischen Universität Dresden vom 23. Februar 2011 an.

Dresden, 15.09.2011 Marek Schönherr

241


	Introduction
	Event generators
	The event generator Sherpa
	Outline of this thesis

	I YFS resummation & fixed order calculations
	Yennie-Frautschi-Suura resummation
	Resummation of virtual photon corrections
	Resummation of real emission corrections
	The Yennie-Frautschi-Suura form factor

	A process independent implementation in Sherpa
	The Algorithm
	The master formula
	Phase space transformation
	Mapping of momenta
	Event generation

	Higher Order Corrections
	Approximations for real emission matrix elements
	Real emission corrections
	Virtual emission corrections


	The Z lineshape and radiative lepton decay corrections
	The Z lineshape
	Radiation pattern
	Numerical stability

	Radiative lepton decays
	Summary and conclusions

	Electroweak corrections to semileptonic B decays
	Tree-level decay
	Next-to-leading order corrections
	Matching of different energy regimes
	Short-distance next-to-leading order corrections
	Long-distance next-to-leading order corrections
	Structure dependent terms
	Soft-resummation and inclusive exponentiation

	Methods
	BLOR
	Sherpa/Photons
	PHOTOS

	Results
	Next-to-leading order corrections to decay rates
	Next-to-leading order corrections to differential rates
	Influence of explicit short-distance terms

	Summary and conclusions


	II DGLAP resummation & fixed order calculations
	DGLAP resummation & approximate higher order corrections
	Dokshitzer-Gribov-Lipatov-Altarelli-Parisi resummation
	The naïve parton model
	QCD corrections to the parton model
	Factorisation and the collinear counterterm
	The DGLAP equations

	Parton evolution
	Approximate real emission cross sections
	Parton evolution
	Scale choices for the running coupling

	Soft emission corrections

	The reinterpretation and automisation of the POWHEG method
	Decomposition of the real-emission cross sections
	Construction of a parton shower
	Matrix element corrections to parton showers
	The reformulation of the POWHEG method
	Approximate NLO cross sections
	The POWHEG method and its accuracy

	The single-singularity projectors 
	Theoretical ambiguities
	 MC@NLO
	Realisation of the POWHEG method in the SHERPA Monte Carlo
	Matrix elements and subtraction terms
	The parton shower
	Implementation & techniques
	Automatic identification of Born zeros

	Results for processes with trivial colour structures
	Process listing
	Tests of internal consistency
	Comparison with tree-level matrix-element parton-shower merging
	Comparison with experimental data
	Comparison with existing POWHEG results

	Results for processes with non-trivial colour structures
	Comparison with experimental data

	Summary and conclusions

	MENLOPS
	Improving parton showers with higher-order matrix elements
	The POWHEG approach
	The ME+PS approach

	Merging POWHEG and ME+PS - The MENLOPS approach
	Results
	Merging Systematics
	e+ e- to jets
	Deep-inelastic lepton-nucleon scattering
	Drell-Yan lepton-pair production
	W+jets Production
	Higgs boson production
	WW+jets Production

	Summary and conclusions


	Summary
	Appendix
	Details on the YFS resummation implementation
	The YFS-Form-Factor
	Special cases
	The full YFS form factor

	Details on the photon generation
	Avarage photon multiplicity
	Photon energy
	Photon angles
	Photons from multipoles

	Massive dipole splitting functions
	Final State Emitter, Final State Spectator
	Final State Emitter, Initial State Spectator
	Initial State Emitter, Final State Spectator


	Formfactors and higher order matrix elements for semileptonic B decays
	Form factor models of exclusive semileptonic B meson decays
	Form factors for B to D l nu decays
	Form factors for B to pi l nu decays
	Form factors for B to D*0 l nu decays 

	NLO matrix elements
	Real emission matrix elements
	Virtual emission matrix elements

	Scalar Integrals
	General definitions
	Tadpole integrals
	Bubble integrals
	Triangle integrals


	Explicit form of the leading order Altarelli-Parisi splitting functions
	Collinear limit of real emission matrix elements
	q to gq splittings
	q to qg splittings
	g to qq splittings
	g to gg splittings



	Bibliography

