
Providing Mainstream Parser Generators
with Modular Language Definition Support

Sven Karol, Steffen Zschaler

Institut für Software- und Multimediatechnik

TUD-FI10-01-Januar 2010

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236367101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Providing Mainstream Parser Generators with Modular
Language Definition Support

Sven Karol1 and Steffen Zschaler2

1 Lehrstuhl Softwaretechnologie, Fakultät Informatik, Technische Universität Dresden
Sven.Karol@inf.tu-dresden.de

2 Computing Department, Lancaster University
szschaler@acm.org

Abstract. The composition and reuse of existing textual languages is a frequently
re-occurring problem. One possibility of composing textual languages lies on
the level of parser specifications which are mainly based on context-free gram-
mars and regular expressions. Unfortunately most mainstream parser generators
provide proprietary specification languages and usually do not provide strong ab-
stractions for reuse. New forms of parser generators do support modular language
development, but they can often not be easily integrated with existing legacy
applications. To support modular language development based on mainstream
parser generators, in this paper we apply the Invasive Software Composition (ISC)
paradigm to parser specification languages by using our Reuseware framework.
Our approach is grounded on a platform independent metamodel and thus does
not rely on a specific parser generator.

1 Introduction

Solving complex problems in software development commonly leads to decomposi-
tion into a set of less complex sub problems that can be solved more easily. Solutions
to sub problems are encapsulated in components like functions, modules or classes
on programming language level and may also be reused as partial solutions in other
systems. A re-occurring complex problem in software development is parser construc-
tion to provide support for textual languages. Parser generators can substantially re-
duce complexity through lifting parser construction to a more declarative and abstract
level [1]. Instead of implementing parsing methods manually, languages are declared
by syntax specifications based on context-free grammars. In most cases, languages are
described by a monolithic specification as a parser generator’s input source. However,
since syntax specifications for large languages can become quite complex, concepts for
modularisation on the specification level are desirable. Related parts of syntax specifi-
cations then can be decomposed into modules to reduce complexity and to allow reuse
of partial solutions in other related problems.

Because of these clear benefits, some recent approaches tackle the support for mod-
ular language definitions by using enhanced parsing techniques. We consider scanner-
less parsing and generalised parsing as the most prominent ones. Section 2 briefly dis-
cusses these techniques and compares them to mainstream parser generators.



In this work, we use the term mainstream to refer to the group of parser gener-
ators with classical strict separation of lexical analysis based on regular expressions
and deterministic finite automata (DFA) as well as syntactic analysis based on context-
free grammars and deterministic push down automata (PDA) (e.g. LL(k) and LR(k)).
Examples are the JavaCC [13] and SableCC [22] parser generators. Mainstream parser
generators often lack an appropriate module support. This is mainly due to the restricted
grammar classes they can handle and the DFA based lexical analysis phase: Both easily
cause ambiguities in composed languages. However, appropriate reuse abstractions can
help to resolve or avoid these conflicts. Introducing them to mainstream parser gener-
ators would enable their users to specify more reliable grammars, to decompose huge
languages into a composite of smaller sublanguages and to easily adapt or extend exist-
ing complex language definitions.

Implementing module support for each parser generator from scratch is an elaborate
task. Hence, a more generic solution would be beneficial. The idea of this paper is to
use a generic parser specification component model as a basis for a generic composition
system for parser specification languages. The system provides appropriate composition
operators to suffice most use cases, e.g. supporting extension, adaptation and refactor-
ings of existing language specifications. To partially reach these goals, we implement
an operator conceptually based on grammar inheritance [2]. In addition, we introduce
a composition operator for transparent language embedding which is a common task
when it comes to the composition of domain specific languages (DSLs). However, em-
bedding operations for mainstream parser generators are problematic: Besides the fact
that LL(k) and LR(k) grammar classes are not closed under unification, overlaps be-
tween token definitions usually foil modularity. To handle the latter case, we define a
composition operator which generates lexer state automata which in fact are supported
by many mainstream generators.

We use Invasive Software Composition (ISC) as realisation technique for our com-
position system. For the prototype implementation we apply our Reuseware framework
[12]. Reuseware allows to create composition systems based on ISC for any language
given by its component model and a form of concrete syntax either textual or graphical.

The paper is structured as follows: Section 2 gives an overview of the most preva-
lent concepts for modular language specifications. Section 3 discusses requirements for
the component model and the composition system. In Section 4, a prototype implemen-
tation and applications of the system are presented. Subsequently, Section 5 discusses
the usability of the system in comparison to others. Section 6 concludes the paper and
gives an outlook.

2 State of the Art in Parser Generation

In contrast to mainstream parser generators, systems with a strong notion of modularity
exist. The SDF2/SGLR [25] environment is based on the generalized LR (GLR) pars-
ing technology which allows to generate a parser for any context-free grammar [24].
The basic idea of GLR is to extend the LR(k) formalism such that ambiguities do not
result in a parsing error but instead to construct a parse forest covering all alterna-
tives to continue the parse. From a compositional point of view, GLR is very practical



since context-free grammars are closed under composition, which is not the case for
the restricted LL(k) and LR(k) classes. SDF2/SGLR fully integrates lexical and syn-
tactic analysis such that generated parsers directly consume characters from the input
stream. This allows to assign equivalent strings with different meaning depending on
the productions (i.e. the context) which produce the strings, which clearly is an ad-
vantage over mainstream parser generators whose users are often faced with lexical
conflicts between token definitions that define non disjoint regular languages. These
conflicts are normally solved manually by declaring a precedence order over token def-
initions or concepts that simulate context like lexer states. Thus scannerless parsing
allows to compose languages from modules without bothering about intersections be-
tween token definitions. The scannerless parser generator Rats! [10] provides strong
module support. Rats! can be used to generate backtracking packrat parsers that can
cache and reuse intermediate results to converge to linear parsing time at the cost of in-
creased memory consumption. The syntax definition language of Rats! is derived from
the parsing expression grammars (PEG) [8] formalism which goes beyond a declara-
tive description of languages, specifying how to parse them. In contrast to context-free
grammars derivation semantics, packrat parsers are based on a greedy approach. Thus,
even if a grammar is ambigous a packrat parser will at worst find one valid derivation.
This is a clear difference in comparison to the parse forest output of GLR parsers.

The concept of context-aware scanning [27] can be regarded as a compromise be-
tween strict separation and full integration of lexical and syntactic analysis phases. In
context-aware scanning, the token set currently valid is determined by the tokens a
parser expects by its look-ahead. In this way the lexer is always informed about con-
text, but lexer and parser are only loosely coupled. Unfortunately, so far, there only
seems to be a prototypical implementation by the authors of [27].

However, mainstream parser generators are still in widespread use. There are multi-
ple reasons for this: Their concepts are very common and well known by users, thus the
learning effort is relatively small. The generated components are usually fast and rela-
tively compact. Moreover, especially for recursive descent LL(k), the generated parsers
are similar to handwritten ones such that debugging is relatively easy, at least for de-
velopers that are used to it. Additionally, some look more like programs instead of
grammars, e.g. in JavaCC and ANTLR [19] productions are similar to Java methods.

Many mainstream parser generators provide access to rich repositories of prede-
fined grammars, even for complex languages. These grammars already contain solu-
tions to problems related to the base formalisms. A composition system can be applied
to enhance reuse of grammars from repositories and legacy software. Existing software
based on mainstream parser generators can be developed further in a more modular
fashion.

3 Ingredients of the Composition System

According to [3], a well defined composition system consists of three main building
blocks:

– The component model describes structure, interface and kinds of components.
Interfaces allow to hide implementation details and make relevant parts visible to



the outside. Different kinds of components may occur on different levels of abstrac-
tion.

– The composition technique describes how components are brought together.
This usually includes a set of composition operators based on a specific implemen-
tation technology.

– Composition programs are specified according to a composition language.
This can be a dedicated language for composition purposes only or an extension to
the component language. [11] proposes the latter as a viable solution for providing
existing DSLs with module support.

In Invasive Software Composition, components are fragments given by a form of ab-
stract syntax or metamodel. To enable extensibility and variability of components, ISC
uses the concepts hook for extension points and slot for variation points. A concrete
hook in a fragment is a position that can be safely extended by a compatible fragment.
In contrast, slots are placeholders for missing parts of an underspecified component
that can be safely bound to a compatible fragment. Fragments are woven based on inva-
sive composition operators. Extend and bind are the most elementary ones that can be
used to write composition programs or to define more complex composition operators
(composers).

In this paper, we use the Reuseware composition framework [12]. Reuseware is
based on the Eclipse Modelling Framework (EMF) [6] and allows to apply the ideas of
Invasive Software Composition (ISC) [3] to any language given by its metamodel and a
form of syntax either textual or graphical.

In the following we conceptually discuss the main parts of the composition system
for syntax definitions.

3.1 Component Model

Component models in invasive software composition are fragment based, thus given by
a form of abstract syntax or metamodel. To create a generic component model for syntax
definitions in mainstream parser generators, we investigated the common concepts of
these languages.

A syntax definition normally consists of at least two sections for lexical analysis
and syntactic analysis. Lexical analysis is a pre-processing phase and introduces reg-
ular expressions and tokens into parser specification languages. Tokens are considered
as terminal symbols during syntactic analysis and their value range is determined by a
regular language specified by a regular expression. Since the valuations of tokens are
not necessarily disjoint, parser specifications normally allow to specify precedence in
token definitions. Another supplementary concept to better handle these decision prob-
lems is the concept of lexer states as it is supported by tools like JavaCC. The concept
is simple: Every lexer state describes a state a scanner can be in and contains a set of to-
kens being valid in that state. Transitions between lexer states are caused by recognised
tokens which have been marked with a follow state in the parser specification. Syntactic
analysis is usually based on context-free grammars and Extended Backus Naur Form
(EBNF).
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Fig. 1. Language metamodel overview

From these general observations we derived a fragment component model which
is specified by the basic metamodel depicted in Figure 1 and the actual fragment box
hierarchy specified in Listing 1. Fragment boxes provide means for accessing fragment
components, i.e., they manage a fragment’s hooks and slots, provide access methods for
child boxes, ensure type-safe composition and manage persistency.

The component model is generic in the sense that it does not support generator
specific constructs. Instead, the model provides concepts that are very likely to occur in
mainstream parser specifications. To apply the composition system to a specific parser
generator, a mapping to the component model has to be created. We have created such
mappings for JavaCC and partially for SableCC. In this paper, we will focus specifically
on the JavaCC realisation, which will be discussed in Sect. 4.

The concepts LexerProductionList and GrammarProductionList cor-
respond to the above mentioned parts of a syntax definition. Every lexer production
describes exactly one lexer state. Therefore, all tokens defined by lexer rules in a pro-
duction are only acceptable for a scanner if it has currently the state defined by the
production. The initial state of a scanner is given by the first occurring production in
the sequence of lexer productions. The order of lexer rules implies the precedence of
defined tokens in context of a lexer production. Furthermore, a token can be of the
type normal or ignore, which declare whether it can occur as a terminal on the right
hand side of syntactical productions. A nonterminal is allowed to occur once on the left
hand side of one single production (definition) and in any EBNF expression in any
production (reference).

To emphasise where extension points and variation points may occur, we marked
several model elements as HookType or SlotType. A HookType is a container pro-



componentmodel SyntaxDefinitionBoxology
fragmentnamespace <http://www.reuseware.org/ syntaxdefinition >

boxtype SyntaxDefinitionBox hiding SyntaxDefinition provides
hook LexerProductionHook : lexerproductions
hook GrammarProductionHook : grammarproductions

boxtype LexerProductionBox hiding LexerProduction provides
hook LexerRuleHook : lexerrules

boxtype GrammarProductiofragmentnamespacenBox hiding GrammarProduction provides
hook ExpressionHook : body

boxtype LexerRuleBox hiding LexerRule provides
hook ExpressionHook : expression

slottype GrammarProduction binds TerminalReference by name
slottype REGExpression binds REGExpression by name
slottype LexerRule binds LexerRule by name
slottype Terminal binds TerminalReference by name
slottype NonTerminal binds NonTerminalSymbol by name

Listing 1. Componentmodel specification for syntax definitions

viding a collection that can be extended with additional elements, e.g., a composer may
append new lexer productions to the corresponding sequence. Instances of HookTypes
are always part of a component’s implicit interface. In contrast, SlotTypes contribute
to the explicit interface: Variation points of components have to be declared by its de-
veloper.

For parser specifications we propose different slot types. A common scenario is the
import of complex lexer rules and regular expressions from a library, e.g. notations for
different data types. Variation points for grammar productions, terminals and nonter-
minals serve to define templates of grammar productions. A reasonable use case for
grammar templates are expression languages. Stacking of the language’s operators ac-
cording to their precedence is an acceptable way to avoid ambiguities, at least in the
concerned part of the grammar. Since many kinds of expressions basically share a sim-
ilar syntactic structure, e.g. boolean- and arithmetic expressions in infix notation, this
can be factored out as a template. A small example for this is depicted in listing 2.
The first part shows an EBNF based production serving as a template for infix binary
expressions. It contains a variation point for the operator (Op) and the two operands
(L1 and L2). Note that the recursion of L1 will cause instantiated expressions to be rep-
resented right associative in syntax trees. In the second part the template is imported
twice and instantiated such that a simple boolean expression language is created. The
priority levels are connected through binding L2 and L1 appropriately. The resulting
EBNF productions are shown in the listing’s third part.



[NonTerminal:L1]::=[NonTerminal:L2][Terminal:Op][NonTerminal:L1] | [NonTerminal:L2]

import fragment expression as level1
import fragment expression as level2
bind level1 : L1−>Or, Op−>"|", L2−>And
bind level2 : L1−>And, Op−>"&", L2−>Value

Or ::= And " || " Or | And
And ::= Value "&" And | Value

Listing 2. Instanciation of an expression template as boolean expression

In ISC components are fragments, i.e. in our case instances of parts of the com-
ponent model. The set of valid fragment types can mainly be derived from the set of
Slot- and HookTypes defined in the component model specification (see Listing
1). Additionally, we see syntax definitions as valid fragments. Note that a module may
contain one or more fragments.

3.2 Composition Technique and Composition Operators

Composition systems are only as powerful as their composition operators are. Lämmel
[15] defines a set of basic operators for grammar adaption, reflecting a grammar devel-
oper’s potential actions when manually customising an existing grammar through edit-
ing. A syntax composition system should not be restrictive in performing these actions
when reusing fragments from a module. Since the underlying formalisms of mainstream
parser generators constrain valid compositions, the system also has to support the user,
either through manually resolving or automatically (at least partially) avoiding conflicts.
The first case resembles whitebox composition while the latter is about blackbox reuse.
In the following we briefly discuss the composers realized in our system.

Import allows to directly include fragments from a declared module. In contrast to the
example of Listing 2, we use import as an in-place bind operator. Thus the operator
may occur in place of a variation point replacing itself with the imported fragment.

Adapt provides whitebox reuse abstractions and is based on grammar inheritance
[2,16]. It allows the adaptation of existing language specifications at a very fine level
of granularity. Several kinds of merge rules can be applied. Remove and refine allow
to delete or add a certain alternative to an EBNF expression or a regular expression
of the base specification. Furthermore, override permits replacements of complete ex-
pressions. To handle conflicts among regular expressions in lexical rules we provide an
additional kind of rule: Merge before inserts a lexical rule before a specific lexical rule
occurring in the base specification.



/∗∗
∗ This function computes faculty of a number.
∗ @param number − the value for which to compute faculty
∗ @return number!
∗/
public int fac ( int number) // do computation

Listing 3. A Java method with doclet comment

A usage of refinements will lead to an enrichment of the languages which are sub-
ject of adaption while removing and replacing may cause non-monotonic changes with
respect to base languages.

Several use cases for grammar inheritance can be found in connection with the
Polyglot [18] framework which provides an extensible compiler frontend for Java.

A formal definition of the operator as we use it here can be found in the Appendix
B.

Refactor allows to rename or remove all of a grammar symbol’s occurrences in a
module. This is essentially useful for avoiding naming conflicts in composed fragments
or for removing unwanted parts of a reused language.

Embed is an invasive composer for embedding existing languages from syntax defin-
tion modules into a host language. Although grammar inheritance is a powerful and
useful mechanism to allow adaptations of existing language specifications and there-
fore introduces a notion of modularity into language specifications, it seems not to be
adequate in some cases: Users need to have an exact understanding of the context-free
language and the specification they want to adapt. However, there are use cases in which
a kind of blackbox reuse would be more adequate to provide modularity, in particular
when a language is composed of embedded sublanguages.

In many cases textual languages and especially programming languages can be re-
garded as composed languages. For instance, the common object-oriented language
Java may be regarded syntactically as a composite of a host language which contains
the language’s basic concepts (e.g. compilation units, method bodies, statements etc.)
and some additional hooked in sublanguages like expression languages (e.g. arithmetic
or boolean expressions). Furthermore, Java allows a special kind of static annotations
in comments (called doclets) whose syntactic structure can also be regarded as a sub-
language. External tools like XDoclet [26] and Javadoc [20] then make use of this ad-
ditional meta-information for code generation or generation of documentation. Listing
3 shows an example of a simple Java method with an annotated doclet comment which
can be processed by Javadoc. The doclet comment language is delimited from the rest
of Java through / ∗ ∗ and ∗/. Hence, doclets are embedded into the Java language. A
composition operator which embeds sublanguages into a host language automatically
would allow to pull the doclet language specification out of the Java specification into
a separate module.



In mℎost // A host language module
In membed // The module to be embedded
In name // The unique module name
In ttype // The preferred transition token type
In guardin, guardout // Regular expressions for valid guard literals
Out mcomp // The composed result
I . Syntactic embedding

Create the sequence of syntactic productions in mcomp such that
I .1 mcomp contains all productions of membed and mℎost

I .2 mcomp contains a production name ::=startsymbol(membed)
if ttype = ignore or
otherwise name ::=name_in startsymbol(membed) name_out

I .3 startsymbol(mcomp) = startsymbol(mℎost)
II . Lexical embedding

Create the new lexer state automaton in mcomp such that
II .1 mcomp contains all lexer states of mℎost and membed

II .2 both modules have their own namespace in mcomp

II .3 ℎom maps mℎost and membed to mcomp

II .4 each state in ℎom(membed) has a host lexer transition with
name = name_out , tokentype = ttype ,regex = guardout and
state = startstate(ℎom(mℎost))

II .5 each state in ℎom(mℎost) has a lexer transition with name = name_in ,
tokentype = ttype , regex = guardin and state = startstate(ℎom(membed))

Listing 4. Description of the embed operator in pseudo code

One may argue that embedding sublanguages into host languages means just copy-
ing productions from one grammar into another. In the broadest sense and in theory
this is true, however, in practice, additional conditions need to be considered. Parser
specifications do not only contain grammar productions but also lexical rules which de-
fine terminal symbols as tokens. Copying just one specification into another most likely
causes conflicts between lexical rules in the composite. Reconsider the above example.
The string number frequently occurs inside the doclet comment and in parts of the
method declaration. In the doclet’s context number is regarded as a piece of text while
it actually is an identifier in Java.

In Section 2 we discussed scanner-less parsing and context-aware scanning as
prevalent concepts for avoiding lexical conflicts. Realizing these non declarative con-
cepts in a mainstream parser generator require changing its implementation. Scanner-
less parsing even requires appropriate disambiguation constructs in the specification
language [23]. Hence, for our composition system, we decided to build up on lexer
states as a more declarative but maybe less powerful technology that is common to
many mainstream parser generators, e.g., JavaCC and SableCC.

Listing 4 shows an abstract description of the embed operator. embed creates a new
syntax definition by extending it with the rules and productions from the participating
modules in a structure preserving manner. In Listing 4, structure preservation is ensured
by the homomorphic mapping ℎom. The lexer state automata defined by lexer produc-
tions of the modules are then connected via in and out transitions as configured by the



user through guardin and guardout. Lexer states of different modules are separated by
namespaces. Users can also select the appropriate token type for guard tokens. Ignored
tokens have the advantage not to influence the context-free grammar’s structure such
that tools do not have to cope with newly introduced symbols. However, then they are
not available for firstset computations in the parser generator which can be problematic
in some cases.

An additional formal definition of the embed operator for multiple arguments can
be found in Appendix C.

3.3 Composition Language

A very important part of composition systems is the language composition programs
are written in. To exemplify the usability of ISC for grammars in Listing 2, a very sim-
ple composition language supporting the importing of fragments and binding of slots
was chosen. However, this language is a general composition language which does not
provide any domain specific abstractions (e.g., it does not include the complex com-
posers of the previous section). To define a more specialized and usable composition
language, we decided to extend the metamodel of Figure 1 with concepts representing
composer calls. Such concepts can be rewritten by Reuseware by traversing the frag-
ment components and executing the composers defined in Section 3.2.

To avoid redundancy with Figure 1, we explain our composition language briefly
here:

– Refactor operations occur at the syntax definition root.
– Import may occur in place of grammar productions, regular expressions, or lexer

rules.
– A call to Adapt has to be placed in the root of a syntax definition. The merge rules

refine, override and remove are combined with grammar productions. Merge before
additionally occurs in lexer rules.

– Embed only occurs in place of grammar productions.

Section 4 will show some concrete example composition programs.

4 Prototype and Applications

In this section, we show an application of our composition system to syntax specifi-
cations that can be used with the JavaCC parser generator. While composition takes
place on the model level, a concrete syntax mapping closes the gap between the frag-
ment based component model and the concrete specification language jj of JavaCC3.
In the following, we shortly discuss the mapping between our composition system and
JavaCC. Afterwards, we present some examples creating the Java and AspectJ [14] like
toy languages �Java and �AspectJ from modules.

3 See https://javacc.dev.java.net/doc/javaccgrm.html to get an overview
of the complete jj specification language. In this paper, we consider a subset of jj abstracting
from semantic actions and other generator-specific constructs.



<DEFAULT>
TOKEN:{

<opor:" || ">:DEFAULT |
<opand:"&&">:DEFAULT

}
void Or():{} { And() <opor> Or() | And() }
void And():{} { Value() <opand> And() | Value() }

Listing 5. Expressions of Listing 2 in jj syntax

Reuseware

CompositionEngine

Embed Importejj

recipe
Adapt

JJ/EJJParser JJPrinter

jj

fragment
Refactor

Modules

Fig. 2. Composition execution

4.1 Implementation

To support specification languages of mainstream parser generators, parts of their spec-
ification languages have to be mapped to corresponding concepts in the fragment com-
ponent model. For instance, concepts for syntactic productions have to be mapped to
the type GrammarProduction in the model. To load and store jj fragments, we use
text-to-model and model-to-text transformations. Therefore, a variety of textual concrete
syntax mapping approaches exist [9]. In Reuseware, such transformations are realised
with the help of the EMFText [7] tool which allows to create mappings to automatically
generate parser, printer and a text based editor.

The usage of jj and model-to-text transformations is due to JavaCC’s support for
lexer states and its close similarity to the metamodel from Section 3.1. Listing 5 shows
a syntax definition in jj syntax equivalent to the instantiated expression template in
Listing 2. It contains a lexical production defining the lexer state DEFAULT , which
always is the name of the initial state in JavaCC. The production contains two lexical
rules for the expression operators, both declaring a reflective transition toDEFAULT .
Syntactic productions are defined in the remainder of the specification. As an extension
to jj, ejj is a textual syntax for composition programs based on the extended meta-
model mentioned in Section 3.3. Consider Figure 2 which gives a rough overview on
how compositions are executed by our system. It first takes an ejj specification as com-
position program.



1 REUSING SyntaxDefinition IN /doclet. jj AS doclet ;
2 REUSING GrammarProduction IN /expressiontemplate.ejj AS expression;
3 {
4 TOKEN:{
5 <INT:"int">|
6 // ... snip ...//
7 <IDENT:(["a"−"z"]|"_")(["a"−"z","0"−"9"]|"_")∗>|
8 <INTEGER_VALUE:(["1"−"9"](["0"−"9"])∗)|"0">
9 }

10
11 SKIP:{ <WS:" "|"\t" | " \n" | " \ r" | " \ f"> }
12
13 void CompilationUnit () :{}{ ( PackageDeclaration () )? (

ImportDeclaration () | Comment() )∗ ( ClassDeclaration () ) }
14
15 @ Comment(){ "/∗∗": doclet :"∗/" }
16
17 void PackageDeclaration () :{}{ <PACKAGE> QualifiedName() <

SEMICOLON> }
18
19 // ... snip ...//
20
21 void Statement () :{}{( ExpressionStatement () | WhileStatement() |

IfStatement () | ReturnStatement () ) }
22
23 // ... snip ...//
24
25 IMPORT expression<expression−>’Expression()’.jj,op−>’Operator1()’.jj,

term−>’Expression2()’. jj>
26
27 void Term():{}{ Atom() | <LBRACK> Expression() <RBRACK> }
28
29 // ... snip ...//
30
31 void Operator1() :{}{ <LT> | <GT> | <EQOP> }
32
33 // ... snip ...//
34 }

Listing 6. Embedding doclets

1 {
2 SKIP:{ < default_doclet :"/∗∗">: doclet_default }
3
4 TOKEN:{
5 <INT:"int">|
6 // ... snip ...//
7 }
8
9 SKIP:{ <WS:" "|"\t" | " \n" | " \ r" | " \ f"> }

10
11 < doclet_default >
12 SKIP:{ < doclet_default_host :"∗/">: DEFAULT }
13
14 < doclet_default >
15 TOKEN:{
16 <PARAM:"@"((["a"−"z","A"−"Z"]|"_")(["a"−"z","A"−"Z","0"−"9"]|

"_")∗)>|
17 <TEXT:(~["@","∗"])+>
18 }
19
20 < doclet_default >
21 SKIP:{ <WSD:"∗"> }
22
23 void CompilationUnit () :{}{ ( PackageDeclaration () )? (

ImportDeclaration () |Comment() )∗ ( ClassDeclaration () ) }
24
25 void Comment():{}{ doclet () }
26
27 // ... snip ...//
28
29 void Expression () :{}{ Expression2() ( Operator1() Expression () )? }
30
31 // ... snip ...//
32
33 void doclet () :{}{ DocletStatement () }
34
35 // ... snip ...//
36 }

Listing 7. Composition result

The specification contains references to jj conformant modules as subjects to be
composed. The ejj parser creates model instances for ejj programs and each referenced
module to make them available to the Reuseware composition engine. The composition
engine is aware of all defined composition operators and interprets the composition
programs by traversing the model and executing the composers. After composition, the
resulting model is forwarded to a printer and stored as textual component reusable as a
module itself.

4.2 Constructing �Java

In the following two subsections we show how a doclet language could be embedded
into a subset of the Java programming language (called �Java) and how the composed
language may be extended to obtain an AspectJ like aspect language (called �AspectJ)
containing an embedded pointcut language.

Listing 6 shows an excerpt from our �Java definition in ejj syntax. The first two
lines declare references to the doclet definition (namespace doclet) and to a generic
expression production (namespace expression). Lines 4-11 define the host language’s
lexical productions. Lines 13-34 contain syntactic productions in jj syntax and com-
poser calls. A call to embed can be found in line 15. It is declared by the @ keyword.
There are several things to be observed: First, the doclet module is treated as blackbox,
since it is just referred by its name. Second, doclets will be surrounded by / ∗ ∗ and ∗/
in the composed language. And finally, the doclet definition can be referenced by the
nonterminal Comment() as in line 13. A call to import can be found in line 25. It in-



cludes a grammar production from the expression module and fills the variation points
expression,op and term with appropriate nonterminals.

Listing 7 shows the resulting specification produced by the Reuseware composition
engine. Lexer states have been included and manipulated by embed with ignore tokens.
Lines 2-9 belong to the host language’s default state (implicitly named DEFAULT
in JavaCC) while the doclet language’s default state ( named < doclet_default >) is
declared in lines 11-21. Line 2 and line 12 define transitions between �Java and doclet
language and have been introduced by embed for the arguments / ∗ ∗ and ∗/. A gram-
mar production for Comment() can be found in line 25 while the doclet production
sequence actually begins in line 33. The result corresponding to the mentioned import
call can be found in line 29.

4.3 Extending �Java to �AspectJ

In this section we use our system to extend the resulting specification from last section
to obtain �AspectJ – a small aspect oriented language with AspectJ like syntax. Deriv-
ing a complete compiler for AspectJ is out of the scope of this paper since this work has
already been done by the abc project [4] which uses Polyglot [18] for extending Java.
Moreover, in [5] a scannerless solution based on SDF2/SGLR is presented.

Here we use adapt to slightly modify �Java. In combination we use embed to embed
a small pointcut language into the specification. The actual composition program is
contained in Listing 8. The EXTEND keyword declares a specification to reuse and
extend a base specification and belongs to the adapt composer call. In this context, lines
7-12 introduce new aspect related keywords to the basic �Java specification in front of
the identifier (IDENT) definition since this definition would subsume them normally.
The aspect syntax is declared by a newly introduced production for the nonterminal
AspectDeclaration() in line 18. To make aspects available in compilation units the
original CompilationUnit() production is replaced to allow aspect declarations as
alternative to class declarations.

Pointcuts are embedded in lines 23-24. In comparison to the embedding of doclets
no single literals but regular expressions are used to declare in and out transitions to the
pointcut lexer state automaton. That leads to a more convenient notation for transitions
between host language and pointcut language, since < in > and < out > can be used
instead of pointcut and ;. Furthermore, pointcuts are connected to the original �Java
type declarations. This is done by replacing the declared variation point TypeSlot with
Type().

In contrast to �Java we will not discuss the resulting specification here. Instead we
glance at a concrete instance of the composed aspect language shown in Listing 9. It
contains an aspect with several pointcuts, a standard Java method, a doclet comment and
an advice. Recall that the pointcut definitions in lines 5,11,13 and the doclet comment
in lines 7-10 belong to embedded languages. In our case, the main difference between
doclet comments and pointcuts is that the former was embedded independently, hence
introduces no references to the host language. In contrast, pointcuts are connected to
the host language via a reference to Type() replacing TypeSlot.



1 REUSING SyntaxDefinition IN /java−comments.jj AS java;
2 REUSING ReuseSyntaxDefinition IN /pointcuts. ejj AS pointcuts ;
3
4 EXTEND java{
5
6 TOKEN : {
7 MERGE BEFORE IDENT <ASPECT:"aspect">|
8 MERGE BEFORE IDENT <BEFORE_:"before">|
9 MERGE BEFORE IDENT <AFTER:"after">|

10 MERGE BEFORE IDENT <AROUND:"arround">|
11 MERGE BEFORE IDENT <DP:":">|
12 MERGE BEFORE IDENT <RET:"returning">
13 }
14
15 OVERRIDE void CompilationUnit():{}{
16 ( PackageDeclaration () )? ( ImportDeclaration () |Comment() )∗ (

ClassDeclaration () | AspectDeclaration () ) }
17
18 void AspectDeclaration () :{}{
19 <ASPECT> <IDENT> ( ExtendList() )? AspectBody() }
20
21 // ... snip ...//
22
23 @ PointcutDeclaration (){
24 " pointcut " | "<in>" : pointcuts <TypeSlot−>’Type()’.jj> : " ;" | "

<out>" }
25 }

Listing 8. Extending �Java

1 package tests ;
2
3 aspect TestAspectUnit{
4
5 pointcut classes () : within(<out>babylon. util . SharedList<in>) ||

within(<out>babylon. util .LinkedMap<in>);
6
7 /∗∗
8 ∗ Pointcut for selecting all methods returning integer numbers.
9 ∗ <out> and <in> declare lexerstate transitions .

10 ∗/
11 pointcut methods(): execution(<out>int<in> ∗(..) ) ;
12
13 pointcut pointsOfInterest () : methods() && classes() ;
14
15 public int fac ( int number){
16 int result = 1;
17 while(number > 0){
18 result = result ∗ number;
19 number = number− 1;
20 }
21 return result ;
22 }
23
24 after () returning( int result ) : pointsOfInterest () {
25 System.out . println ("Faculty of " + result + " is " + fac (

result ) ) ;
26 }
27 }

Listing 9. An aspect

Naturally, if a type occurs in an actual pointcut definition (e.g. lines 5 and 11) it
is necessary to switch to the host language’s lexer state automaton and back, since ter-
minals required by Type() are not contained in the pointcut language but in the host
language. This could have been avoided with some redundancy by manually duplicating
the token definitions for the terminals demanded by Type() in the pointcut lexer state
automaton. Clearly, such an action may introduce unwanted conflicts among token def-
initions only solvable by an extra lexer state. Hence, in such cases it could be better to
use import instead of embed.

The next section discusses the usability and possible improvements of the compo-
sition system.

5 Usability and Future Work

The examples of the last section showed that the syntax composition system provides
a sufficient set of composition operators to extend the Java syntax appropriately. Alto-
gether, our approach combines invasive software composition and parser specifications
in a very beneficial way for mainstream parser generators. The adapt composer allows
to extend and adjust grammars in a flexible and nearly unrestricted way. On the one
hand, this flexibility is especially important if language extensions make more complex
adjustments in a grammar necessary, such as factoring out a common prefix to avoid
overlapping firstsets which is a likely transformation to make grammars manageable
for LL(k) parser generators. On the other hand, in combination with interfaces given
by slots and hooks, adapt is essential for adding grammar connectors as a kind of glue
between language modules.

In contrast, embed is much more specific. It provides black-box reuse abstractions
by generating special glue which connects lexer state DFAs of the modules and the host
language and thus, avoids introducing new conflicts between token definitions. How-
ever, there are some obvious limitations of the embed operator. Its need for special
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Fig. 3. Syntax trees of composed languages

guard tokens declaring transitions between lexer state automata forces to enrich the lan-
guage with perhaps unwanted keywords. In general, this is not the case for scanner-less
parsing and context-aware scanning. These techniques make use of the parser’s state in-
formation. Lexer states can only simulate context, i.e., the guards mark beginning and
ending of the embedded language’s input. The input tokens then are created according to
the context of the starting nonterminal of the embedded language. However, lexer state
based context simulation is sufficient in several use cases, especially if the cohesion
between host language and embedded language is low. Figure 5 shows three hypotheti-
cal syntax trees t(Li) representing different levels of syntactic cohesion between a host
language LWi and an embedded sublanguage LEi. Note that Li is the language com-
posed from LWi and LEi. In the first example (Figure 3(a)) subtrees ti(LE1) contain
nodes which belong to constructs of LE1 only, as it would be the case with the doclet
language. For L1 like cases, lexer state based embedding can be applied with similar
results to the context-aware technologies. In contrast, Figure 3(b) and Figure 3(c) con-
tain examples for syntax trees of embedded languages which refer to the host language
and may contain subtrees whose root represents constructs of the host language. The
pointcut language from Section 4.3 could be L2 since it actually is a relatively com-
plex language providing own leaf nodes in syntax trees. The problem here is the needed
context simulation forcing users to recurringly declare transitions from LE2 to LW2

and back. It depends on the language designer to make this transparent in the created
language. In case of L3, the benefit gained from embedding LE3 from a module into
LW3 is even more questionable, since trees ti(LE3) are rather flat. Additionally, every
path in a ti(LE3) leads to a subtree which belongs to LW3 at some point. This is due to
the fact that LE3 does not provide any leaf nodes, hence does provide no terminals in
its (partial) grammar.

There are several starting points for future work and improvements of the presented
composition system:

– A more intelligent implementation of embed could analyse the grammar to derive
the guards automatically if possible.



– The component model is relatively small and lacks a support of semantic actions,
which usually consist of platform dependent program fragments. To integrate them
into the generic component model, an appropriate representation has to be found.

– To support multiple mainstream parser generators, a more advanced composition
system should provide means for extending a platform independent core by adding
generator specific plugins, languages for semantic actions and composition oper-
ators. To some degree, such a system may also allow to compose specifications
written in different parser specification languages.

6 Conclusion

In this paper we presented a generic composition system for syntax specifications of
mainstream parser generators. The system supports a set of composition operators that
are tailored to the features of these parser generators. It helps to resolve conflicts in
grammars that usually would have been resolved through directly editing the specifica-
tions to be composed. Naming conflicts can be avoided by using the refactor operator.
Import easily allows to instantiate and reuse single constructs and templates from a
repository. By using the adapt composer, syntax definitions can be adapted and ex-
tended at a very fine level of granularity. This especially helps when legacy systems
are about to be developed further and allows to create extensions as modules. Embed
introduces abilities to embed languages from modules and avoids to create lexical con-
flicts. It generates lexer states to separate the token sets of the participating languages.
However, it has some restrictions because lexer states can only simulate context.

As a proof of concept we implemented the composition system on the basis of the
Reuseware framework. The resulting system includes the generic component model, a
generic composition language extending the component model and implementations of
the discussed composition operators. To apply the composition system to a mainstream
parser generator, we chose the JavaCC specification language. A corresponding sub-
set was mapped to our component model. Composition programs can be written in an
extended syntax based on the selected subset.

In the future we aim to apply our composition system to more mainstream parser
generators. We also want to extend the component model to support more constructs
like semantic actions.
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A Foundations

In this section we will define syntax definitions on the basis of context-free grammars
and deterministic finite automata (DFA). The definition reflects the needs of parser gen-
erators for such specifications and considers the concept of lexer states for lexical dis-
ambiguation. It also uses the concepts of regular expressions in context-free grammars.

Definition 1 (Context-free Grammar (CFG)). A context free grammar is a 4-tupel
G = (N,T, P, S) with N a set of nonterminals, T a set of terminals with T ∩N = ∅,
P : N ×RegexpT∪N the production relation and S ⊆ N the set of start symbols.

Definition 2 (Lexer Grammar (LG)). A lexer grammar is a CFG with P : N ×
RegexpT and S=P . P is ordered and elements of P are called token definitions.

Definition 3 (Deterministic Finite Automaton (DFA)). A deterministic finite automa-
ton A = (Q, �, q0, QF , E) is a 5-tupel with Q a set of states, � : Q × E → Q the
transition function, q0 ∈ Q the initial state, QF ⊆ Q the set of accepting states and the
set E of edge names.

Definition 4 (Syntax Definition with Lexer States). A syntax definition
D = (GS , GL, I, A,QL) consists of a context-free grammar GS , a lexer grammar GL

with TS = NL−I , I ⊆ NL a set of ignored tokens, a lexer stateDFAA withQF = Q
and E = NL and QL a set of lexer productions with QL : Q→ P (NL).

The set I marks tokens that are not to be used in the CFG and thus are igored by
the parser. In the remainder of this paper, we distinguish different types of tokens by
annotating them with normal or ignore. Lexer productions are used to assign token
definitions with states in the lexer state DFA which is used by the scanner component
at runtime to determine the currently valid set of tokens.

To stay close to the component model in Section 3.1 and the actual prototype imple-
mentation discussed in Section 4, we use a similar notation for syntax definitions which
can be mapped to Definition 4.

Definition 5 (Notation for Syntax Definitions). A syntax definitionD := (gL : GL, gS :
GS) consists of a context-free grammar gS of type GS and a sequence of lexer pro-
ductions gL of type GL with GL := [q1 : QL, . . . , qi : QL, . . . , qn : QL] and
QL := (gR : GR, sA : Q). gR denotes a sequence of token definitions with GR :=
[r1 : R, . . . , rj : R, . . . , rm : R] and

R := (terminal : T → regex : RegexpT , ttype : I, sF : Q).

terminal is a terminal of type T and ttype denotes the token type, sF is a lexer state
of type Q and regex a regular expression. A grammar of type GS := [p1 : P, . . . , pi :
P, . . . , pn : P ] is defined by a sequence of syntactical productions of the form

P := (nonterminal : N → regex : RegexpN∪T ).

The following example defines the concrete syntax of a simple language for arith-
metic expressions like 3− 4÷ 5.



Example 1 The syntax definition DExp describes the concrete syntax of simple arrithmetical
expression allowing the operators − and ÷.

DExp = (GLExp , GSExp)

GLExp = [(GRExp , default)]

GRExp = [(minus→ ′′−′′, normal, default),
(div → ′′÷′′, normal, default),
(num→ ′′[0− 9]+′′, normal, default)
(wse→ ′′∖n∣∖r∣ ′′, ignore, default)]

GSExp = [(E → T (−T )∗),
(T → F (÷F )),
(F → num)]

E represents the start symbol of the context-free grammar since its production E → T (−T )∗
occurs first in the sequence of syntactical productions. ♢

To define the composition operators we will use some elementary notations and
operations. Syntax definitions consist of sequences of grammar and lexer productions
and sequences of token definitions. Therefore, operations based on lists can be helpful
to manipulate the whole data structure. Thus in the following our notation for lists and
some simple operations on lists are defined.

Lists can be declared by the keyword List and List E declares a list with entries of
type E. For example List P declares a list of syntactical productions which may also
be abbreviated withGS . An entry type E could again be a list, so that List GS declares
a list of lists with entries of type P , e.g., a list of context-free grammars. We use three
different representations for lists which later get used in the operator definition.

∙ ∅ - denotes an empty list
∙ [e1∣e2, . . .] - denotes a list of arbitrary length with first element e1 and rest
e2, . . .

∙ [ei, . . . , ej ] - denotes a list with elements from ei to ej of length l = 1 +
(j − i) and i, j ∈ ℕ ∧ i < j

Furthermore, we use _⊕ _ to concatenate lists and _⊖ _ to filter lists 4.
To enable a usage of _ ⊕ _ with regular expressions, these are treated as lists of

regular expressions. A list of partial expressions is equivalent to their unification, e.g.,
a regular expression a∣bc∣(e)∗ is equivalent to [a, bc, (e)∗].

Beyond manipulation operators, some constructors are needed. For every possible
type T , which may be used in a syntax definition, we introduce a standard constructor
T (arg1, . . . , argn) to construct an element of type T .

The next sections introduce the adapt composition operator for extending syntax
definitions and embed composition operator for embedding context-free languages spec-
ified by syntax definitions.

4 It takes two lists l1 and l2 as arguments and removes all elements from l1 which also occur in
l2.



B Adapt Composer Definition

The adapt composer realises a grammar inheritance relation between different syntax
definitions. The basic idea is to reuse productions and token definitions from an existing
base grammar and to a adapt it to a new usage context by replacing, refining, extending
or removing parts of the grammar.

Grammar inheritance is often used by systems providing concepts for modular
grammars, e.g., the parser generator PPG [21] or LISA [17], an attribute grammar based
compiler framework.

B.1 Merge Relations

The adapt composer maps a base definition Dℬ = (GSℬ , GLℬ) and an extending defi-
nition Dℰ = (GSℰ , GLℰ ) to a new syntax definition Dℳ = (GSℳ , GLℳ), with:

GSℳ = merge(GSℬ , GSℰ , SMRℬ⊲ℰ)

GLℳ = merge(GLℬ , GLℰ , LMRℬ⊲ℰ)

Users may use four different basic merge operations to specify how and what parts
of the base definition should be adapted. Those merge operations can be applied to the
context-free grammar and token definitions by providing a syntax merge relation (SMR)
and a lexical merge relation (LMR).

refine Allows to append new alternatives to regular expressions in grammar produc-
tions or token definitions.

override Allows to replace regular expressions grammar productions or token defini-
tions.

remove Allows to remove alternatives in regular expressions.
add Allows to add new grammar productions or token definitions.

In the following we define the merge function for the context-free grammar part of
syntax definitions. Afterwards, we define the merge function for token definitions and
lexer productions.

B.2 Adapting Grammar Productions

Syntax merge relations are defined as follows.

SMR : Pℰ × Pℬ × {refine, override, remove}
SMR : Pℰ × {add}

A SMR has to be specified by the user and is required to be left-unique such that
extending grammar production can be mapped to multiple merge operations. In the fol-
lowing the actualmerge function is specified.merge traverses the list of base grammar
productions and creates the merged production list. It delegates merge execution for re-
fine, override and remove to the manipulate function which traverses the extending
grammar’s productions and merges them with the current base production as specified
in the SMR. Finally, all extension grammar productions annotated with add are ap-
pended to the new production list.



merge : GS ×GS × SMR→ GS

merge(gS , ∅, smr) = gS

merge(∅, gS , smr) = g′S with g′S ⊆ gS ∧ ∀pk ∈ g′S : (pk, add) ∈ smr

merge([p1∣p2, . . .], gS , smr) =⎧⎨⎩

[p1]⊕merge([p2, . . .], gS , smr)
if ∀p ∈ gS : (p, p1, refine) /∈ smr ∧

(p, p1, remove) /∈ smr ∧
(p, p1, override) /∈ smr

manipulate(p1, gS , smr)⊕merge([p2, . . .], gS , smr)
otherwise

manipulate : P ×GS × SMR→ P

manipulate(p, ∅, smr) = p

manipulate(p, [p1∣p2, . . .], smr) =⎧⎨⎩

manipulate((p.nonterminal→ p1.bnfex), [p2∣ . . .], smr)
if (p1, p, override) ∈ smr

manipulate((p.nonterminal→ p.bnfex⊕ p1.bnfex), [p2∣ . . .], smr)
if (p1, p, refine) ∈ smr

manipulate((p.nonterminal→ p.bnfex⊖ p1.bnfex), [p2∣ . . .], smr)
if (p1, p, remove) ∈ smr

manipulate(p, [p2∣ . . .], smr)
otherwise

The following example shows the merge of two grammars.

Example 2 Let Gb be the base grammar and Ge an extending grammar:

Gb = [p1, p2] with p1 = A→ aB Ge = [p3, p4, p5] with p3 = A→ aA
p2 = B → b p4 = B → bC∣bB

p5 = C → c∣cC

Obviously, L(Gb) = {ab}. Now we want to extend Gb with Ge to obtain Gr, such that
L(Gr) = {anbmco∣(n,m, o ∈ ℕ) ∧ (n,m, o > 1)}.
With SMRr = { (p5, add), (p1, p3, refine), (p2, p4, override)} Gr results as fol-
lows:

Gr = merge(Gb, Ge, SMRr) = [A→ aB∣aA,
B → bC∣bB,
C → c∣cC] ♢



B.3 Adapting Token Definitions

Merging lexer grammars is very similar to the merge of context-free grammars. How-
ever, we have to consider the order of token definitions and their contexts w.r.t. different
lexer states. The order of token definitions is important, because scanners generated by
mainstream parser generator use this information for disambiguation of overlapping
token definitions, e.g., overlapping keywords and identifiers.

Therefore, we introduce two additional kinds of merge operations.

combine Triggers a merge of lexer productions (lexer states).
before Allows to insert new token definitions at a specific position in the base defini-

tion.

Similar to SMR, a lexer merge relation LMR maps token definitions R and lexer
productions QL to merge operations.

LMR : QLℰ ×QLℬ × {combine}
LMR : QLℰ × {add}

LMR for token definitions:

LMR : Rℰ ×Rℬ × {refine, override, remove, before}
LMR : Rℰ × {add}

LMR is left-unique.
In the following we define merge for lexer productions. merge traverses the list of

base lexer productions and merges the token definitions of those productions which are
annotated with combine by delegating to mergeGR

. Extension productions annotated
with add are appended to the new lexer production list, i.e., the corresponding lexer
states are added to the lexer state DFA.

merge : GL ×GL × LMR→ GL

merge(gL, ∅, lmr) = gL

merge(∅, gL, lmr) = g′L with g′L ⊆ gL ∧ ∀qk ∈ g′L :(qk, add) ∈ lmr

merge([q1∣q2, . . .], gL, lmr) =⎧⎨⎩
QL(mergeGR

(q1.gR, q.gR, lmr), q1.sA ⊕merge([q2, . . .], gL, lmr)
if q ∈ gL ∧ (q, q1, combine) ∈ lmr

[q1]⊕merge([q2, . . .], gL, lmr)
otherwise

In the following we define the mergeGR
function. The actual execution of merge

operations is again delegated to the manipulate function.

mergeGR
: GR ×GR × LMR→ GR



mergeGR
(gR, ∅, lmr) = gR

mergeGR
(∅, gR, lmr) = g′R with g′R ⊆ gR ∧ ∀rk ∈ g′L :(rk, add) ∈ lmr

mergeGR
([r1∣r2, . . .], gR, lmr) =⎧⎨⎩

[r1]⊕mergeGR
([r2, . . .], gR, lmr)

if ∀r ∈ gR : (r, r1, refine) /∈ lmr ∧
(r, r1, remove) /∈ lmr ∧
(r, r1, before) /∈ lmr ∧
(r, r1, override) /∈ lmr

manipulate([r1], gR, lmr)⊕mergeGR
([r2, . . .], gR, lmr)

otherwise

manipulate : GR ×GR × LMR→ GR

manipulate(gR, ∅, lmr) = gR

manipulate([r1, . . . , ri], [ri+1∣ri+2, . . .], lmr) =⎧⎨⎩

manipulate(
[r1, . . . , (ri.terminal→ ri+1.regex, ri+1.ttype, ri+1.sF )],
[ri+2∣ . . .],
lmr)

if (ri+1, ri, override) ∈ lmr

manipulate(
[r1, . . . , (ri.terminal→ ri.regex⊕ ri+1.regex, ri.ttype, ri.sF )],
[ri+2∣ . . .],
lmr)

if (ri+1, ri, refine) ∈ lmr

manipulate(
[r1, . . . , (ri.terminal→ ri.regex⊖ ri+1.regex, ri.ttype, ri.sF )],
[ri+2∣ . . .],
lmr)

if (ri+1, ri, remove) ∈ lmr

manipulate(
[r1, . . . , ri+1, ri],
[ri+2∣ . . .],
lmr)

if (ri+1, ri, before) ∈ lmr

manipulate([r1, . . . , ri], [ri+2∣ . . .], lmr)
otherwise



C Embed Composer Definition

We begin our discussion with an example of the steps needed to embed a sublanguage
into a host language. The concept of lexer states will be used to separate the sets of
tokens of the participating languages.

Example 3 In this example we embed a slightly modified DExp (see Example 1) into
a rudimentary programming language. For this, we replace (F → num) with (F →
num∣Otℎer). The host language DHost defines a program to consist of a sequence of
methods which themselves contain a block as a sequence of variable declarations and
assignments.

DHost = ([(GRHost
, default)], GSHost

)

GRHost
= [(begin→ ′′begin′′, normal, default),

(end→ ′′end′′, normal, default),
(var → ′′var′′, normal, default),
(ident→ ′′[0− 9a− zA− Z]+′′, normal, default)
(wsp→ ′′∖n∣∖r∣ ′′, ignore, default)]

GSHost
= [(Program→Metℎod+),

(Metℎod→ ident begin Block end),
(Block → Declaration∣Assignment),
(Declaration→ var ident ),
(Assignment→ var Expression),
(Otℎer → ident)]

Expression is a placeholder to later refer to the embedded expression language. On
the other hand, (Otℎer → ident) will provide a connection from D′

Exp to DHost.
Hence, the composition interface between host language and sublanguage consists of
Other and Expression5. For an embedding of the grammar it seems to be enough to
append all productions in GSExp

to GSHost
and to glue them together by introducing an

additional production (Expression → E). Hence the resulting production sequence
may be constructed as follows:

5 In ISC, Otℎer and Expression can be modelled as slots which can be bound with glue
nonterminals of a grammar connector. Grammar connectors can be added by using the adapt
composer.



GSRes
= GSHost

⊕ [(Expression→ E)]⊕G′
SExp

= [(Program→Metℎod+),
(Metℎod→ ident begin Block end),
(Block → Declaration∣Assignment),
(Declaration→ var ident ),
(Assignment→ var Expression),
(Otℎer → ident),
(Expression→ E),
(E → T (−T )∗),
(T → F (÷F )),
(F → num∣Otℎer)]

Embedding lexer productions is slightly more complex. To avoid conflicts between the
participating token sets it is necessary to structurally preserve lexer automata defined in
G′

LExp
and GLHost

. Both definitions declare a state default which should be mapped
to different states in the resulting specification. Since the resulting DFAs are disjoint,
we need to introduce special edges in lexer productions by adding new token defini-
tions with highest priority. These rules then refer to the former default states. In the
following we construct GLRes

by combining G′
RHost

and G′′
RExp

, by retaining the
state default in DHost and renaming default in DExp to expression and by adding
transitions in and out between both states.

GLRes
= [(G′

RHost
, default), (G′′

RExp
, expression)]

G′
RHost

= [(in→ ′′%′′, ignore, expression)]⊕GRHost

G′′
RExp

= [(out→ ′′%′′, ignore, default),
(minus→ ′′−′′, normal, expression),
(div → ′′÷′′, normal, expression),
(num→ ′′[0− 9]+′′, normal, expression),
(wse→ ′′∖n∣∖r∣ ′′, ignore, expression)]

Transitions between expression and default are now triggered by occurrences of % in a
concrete program. ♢

embed realises the steps discussed in the example above for one or more language
modules and lexer state DFAs.

Beside a host definition given by the first argument and a list of syntax definitions
to be embedded, embed takes different types of mappings as arguments:

GNM : GS → N A name mapping associates a fresh nonterminal to every grammar
module. In the resulting specification, they may be referred by the associated non-
terminal. For instance, in example 3 Expression refers to the former start symbol
E in G′

LExp
.



GRM : GL → RegexpT This mapping associates a regular expression to the lexer
production sequences involved. In this way value ranges for the transitions between
token sets are defined. In the example this would be the case for %.

The operator embed consists of a helper function embedL embedding lexer produc-
tions and a helper function embedS embedding grammar productions:

embed((gLW
, gSW

), [(gL1 , gS1), . . . , (gLn , gSn)], gnm, grm) =

D( embedL(gLW
, [gL1

, . . . , gLn
], grm),

embedS(gSW
, [gS1

, . . . , gSn
], gnm) )

Both functions will be defined in the following subsections. embedS will be dis-
cussed first.

C.1 Embedding Grammar Productions

To embed language modules into a host language, the productions of all sublanguages
have to be appended to the host language’s production sequence. Additionally, for ev-
ery sublanguage a nonterminal is introduced, such that the embedded languages can be
referenced by referring to that nonterminal. In general, we assume the sets of nontermi-
nals of all participating languages to be disjoint, except those parts which belong to the
component interface.

embedS takes a host grammar, a list grammar modules to be embedded and a user-
specified GNM mapping.

embedS : GS × List GS ×GNM → GS

embedS(gS , ∅, gnm) = gS

embedS(gS , [gS1 = [p1∣p2 . . .]∣gS2, . . .], gnm) =

gS ⊕ (gnm(gS1)→ p1.nonterminal)⊕ embedS(gS1, [gS2, . . .], gnm)

C.2 Embedding Lexer Productions

An embedding of lexer productions has to preserve the lexer state DFAs of the modules
involved and has to reasonably integrate all lexer automata into a more complex au-
tomaton. The result DFA shall allow to switch between the partial automata via explic-
itly distinguished transitions in composed languages. The functionality of constructing
such a complex automaton and how to bring lexer production sequences together is
realised by embedL (to increase readability, the mapping GRM will be left out in all
signatures).

embedL : GL × List GL → GL

embedL(gL, ∅) = gL



embedL(gL, listGL
) =

addtransitionsL(gL, listGL
)⊕ combine(gL, listGL

, ∅)

New edges are added by addtransitions while combine traverses the list of lan-
guage modules and triggers addtransitions for each module.

Overall, edges between the host language and each module and between the mod-
ules are added. In the following both functions are defined.

combine : GL × List GL × List GL → GL

combine(gL, ∅, listGL
) = ∅

combine(gL, [gL1∣gL2, . . .], listGL
) =

addtransitionsL(unique_states(gL1), [gL]⊕ listGL
⊕ [gL2, . . .])

⊕ combine(gL, [gL2, . . .], listGL
⊕ [gL1])

unique_states uniquely maps lexer states in the lexer grammars to corresponding
states in the composed DFA.

addtransitions implements the addition of transitions to the token set of a lan-
guage. It introduces token definitions with highest priority to the productions qi of a
given production sequence gL. Tokens introduced that way are of the type ignore,
since they are relevant for lexical disambiguation but not for syntax analysis.

addtransitionsL : GL × List GL → GL

addtransitionsL(∅, listGL
) = ∅

addtransitionsL([q1∣q2, . . .], listGL
) =

QL(addtransitionsR(q1.gR, listGL
), q1.sA)

⊕ addtransitionsL([q2, . . .], listGL
)

addtransitionsR : GR × List GL → GR

addtransitionsR(gR, ∅) = gR

addtransitionsR(gR, [gL1∣gL2, . . .]) =

(gtm(gL1)→ grm(gL1), ignore, unique_states(gL1).q1.sA)
⊕ addtransitionsR(gR, [gL2, . . .])

Here, gtm creates a unique terminal name as edge name for the given language.


