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Textile Composite Systems Based on Tension Stiffening Models 
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Summary: The Aveston Copper and Kelly (ACK) Method has been routinely 
used in estimating the efficiency of the bond between the textile and cementitious 
matrix. This method however has a limited applicability due to the simplifying 
assumptions such as perfect bond. A numerical model for simulation of tensile 
behavior of reinforced cement-based composites is presented to capture the inef-
ficiency of the bond mechanisms. In this approach the role of interface properties 
which are instrumental in the simulation of the tensile response is investigated.  
The model simulates the tension stiffening effect of cracked matrix, and evolution 
of crack spacing in tensile members. Independent experimental results obtained 
from literature are used to verify the model and develop composite tensile stress 
strain response using alkali resistant (AR) glass textile reinforced concrete.  

The composite stress strain response is then used with a bilinear representation of 
the composite obtained from the tensile stiffening model. The closed form and 
simplified equations for representation of flexural response are obtained and used 
for both back-calculation and also design. A method based on the average mo-
ment-curvature relationship in the structural design and analysis of one way and 
two way flexural elements using yield line analysis approaches is proposed. This 
comprehensive approach directly shows the interrelation of fundamental materi-
als characterization techniques with simplified design equations for further utili-
zation of textile reinforced concrete materials. 
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1 Introduction 

The field of Textile Reinforced Concrete (TRC) has led the development of novel cement 
based materials with a significant degree of strength, ductility, and versatility [1,2]. With as 
much as one order of magnitude higher strength and two orders of magnitude higher in duc-
tility than fiber reinforced concrete (FRC), TRC’s development has utilized innovative fab-
rics, matrices, and manufacturing processes. A variety of fiber and fabric systems such as 
Alkali resistant (AR) glass fibers, polypropelene (PE), polyethylene (PE), and Poly Vinyl 
Alcohol (PVA) have been utilized [3,4]. Mechanical properties of the composites under uni-
axial tensile, flexural, and shear tests indicate superior performance such as tensile strength 
as high as 25 MPa, and strain capacity of 1-8%. As compared to the conventional FRC mate-
rials, the fracture toughness is increased by as much as two orders of magnitude. The domi-
nant toughening mechanisms in these systems are attributed to matrix cracking, ply 
delamination, and crack deflection mechanisms as studied by means of fluorescent microsco-
py, scanning electron microscopy.  

Classes of strain-softening and hardening FRC are discussed by Naaman and Reinhardt [5]. 
Unlike FRC that fracture localization occurs immediately after the first crack is formed, dis-
tribution of cracking throughout the specimen in strain hardening cement composites (SHCC) 
is facilitated by the fiber bridging mechanism. Since a substantial amount of energy is re-
quired to further extend existing cracks, secondary cracks form. Single crack localization is 
therefore shifted to multiple distributed cracking mechanisms, leading to macroscopic pseu-
do-strain hardening behaviors as shown in Figure 1. When used as continuous reinforcement 
in cement matrices, the enhanced mechanical bond strength presented by the textiles result in 
a composite with strain hardening and multiple cracking behavior.  

Since TRC materials exhibit the characteristics of Strain hardening materials (SHCC), they 
are well-suited for applications that may eliminate conventional reinforcement or for the 
structures in seismic regions where high ductility is desired [6]. In addition, strain hardening 
materials offer fatigue and impact resistance and are attractive for use in industrial structures, 
highways, bridges, earthquake, hurricane, and high wind loading conditions. The design and 
implementation of these systems requires the use within the strain-hardening range that is 
attributed to multiple cracking under tensile stresses. The post-crack response extends over a 
large strain range, and is modeled using a reduced stiffness. The simulation of reduced stiff-
ness may be based on either empirical approaches obtained from experimental data [7], or 
gradual debonding of textiles using analytical debonding models [8]. 

In order to use TRC materials, fundamental approaches for tensile and flexural design are 
needed. This paper addresses methods to predict moment-rotation capacity integrated with a 
general template for predicting load deformation performance. Two examples of analysis and 
design of various structural systems are used to demonstrate the calculation steps. 
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The Aveston Cooper and Kelly model (ACK Model) addresses the increased strain capacity 
of the matrix and the multiple cracking mechanism in the presence of fibers in unidirectional 
composites [9]. This method however does not address the tension stiffening effect defined as 
the ability of the uncracked segments in between the two parallel cracks to carry tensile force. 
A majority of tension stiffening models in the literature either don’t take into account the 
gradual transition of bond-slip mechanism or simplify it to a linear interfacial model.  
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Fig. 1:  Tensile response of a Strain hardening fiber cement based composite. 

1.1 Tension stiffening model 

The finite difference tension stiffening model developed by Soranakom and Mobasher  
[10,11,12,13] simulates the crack spacing and stress-strain response of SHCC materials under 
static and dynamic loads. Based on the finite difference method, the model takes into account 
non-linear bond slip model. The individual component failure criterion as presented for a 
continuous textile reinforced composite in Figure 2, are defined by three distinct mecha-
nisms: matrix strength cracking criterion, interface bond-slip characteristics, and tensile 
stress-strain of the continuous fibers.  

In this model a cracked tension specimen is idealized as a series of 1-D segments consisting 
of fiber, matrix, and interface elements. As the load on the composite increases such that the 
cracking stress of the matrix is reached, cracked planes form sequentially. The load at the 
cracked planes is solely carried by the longitudinal fibers by means of interface elements. 
The individual segments continue to transfer the load through the intact fibers at cracked lo-
cations. An iterative solution algorithm based on nonlinear analysis enforces that load-
deformation response follows the material constitutive laws. Once the slip distributions are 
solved the corresponding stress and strain responses are identified.  
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Fig. 2:  Schematic representation of three distinct mechanisms in TRC: (a) matrix strength cracking 
(b) interface bond-slip characteristics and (c) tensile stress-strain of the continuous fibers.  

The matrix is treated as brittle with no strain-softening with its cracking strength defined as 
σm,cr as shown in Figure 2(a). The second characteristic parameter is the bond between fiber 
and matrix, described by a generalized free form bond stress τ = τ(s) expressed as function of 
slip (s) (Figure 2(b)). Multi-linear segments define the pre and post-peak behaviors of the 
bond characteristics. At each load step, a secant modulus k enforces the local bond stress and 
slip at each node in the finite difference model to follow the prescribed bond-slip relation. 
The third aspect (Figure 2(c)) addresses fiber properties.  

The equilibrium equations are derived from free body diagrams of the nodes and expressed as 
coefficient and the unknown variable slip (s), defined as the relative difference between the 
elongation of the continuous fibers and matrix. A finite length between two consecutive 
nodes i and i+1 along the longitudinal x-axis is used. The embedded length L is discretized 
into ‘‘n’’ nodes with equal spacing of “h” as shown in Figure 3a through 3c. The bond stress 
is assumed constant over the small spacing h for each node within each linear domain. At the 
left end force in the fiber is imposed to be zero, simulating stress free condition, implying 
that the fiber strain or derivative of slip vanishes. At the right end the nodal slip is prescribed 
incrementally, simulating displacement control. As the loading progresses, the part of the 
fiber that slips out of the matrix has no frictional bond resistance; thus, fiber elongation is the 
only term in that section. The extruding part can be easily implemented by checking the 
amount of slip versus the embedded length of each node. If the slip is greater than the em-
bedded length, zero bond stress is applied to that node.  
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The pullout model is shown in Figure 4(a) using available experimental data addressing sin-
gle fiber or textile systems [15]. Figure 4(b) represents both the fiber and interface model 
used in the simulation. While the applied load is less than the first cracking limit, elastic be-
havior is assumed and tensile response is calculated by means of the rule of mixtures. As the 
strength criterion of matrix is met, the sample is divided into two parts, each segment is mod-
eled as a pull-out problem and solved independently. As the load increases, additional cracks 
form at locations as the strength criterion is satisfied and the process repeated. The cracked 
specimen is thus represented by a number of independently solved pull-out segments that 
represent the entire specimen. The analysis terminates as the stress in yarn reaches its ulti-
mate tensile strength or a solution is not found due to slip instability (very large slip values). 

It is observed from Figure 5(a) that by decreasing the values of efficiency of the interfacial 
bond η the total strain of the composite increases up to a point that the fiber starts to fracture. 
Fiber failure occurs when η equals 0.3. An efficiency factor of 0.6 corresponds with the ulti-
mate strain of approximately 1.5% (close to experimental results). The crack spacing contin-
ues to extend to smaller values due to significant debonding and slip when the efficiency 
factor η decreases. 

(a) 

 

Fig. 4:  Fiber pull out test results of a AR Glass (L=20 mm) Compared with numerical finite differ-
ence model and (b) Interface constitutive relation used in the finite difference simulation 

The influence of the matrix first crack strength on the tensile and crack spacing is shown in 
Figure 5(b). Both the ultimate strain and crack spacing increase as the matrix first crack 
strength is increased ranging from 3.5 to 6.5 MPa. No effect on the ultimate tensile strength 
(UTS) is observed. 
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(a) (b) 

Fig. 5:  Simulation of tensile response and crack spacing: a) effect of efficiency factor of fiber mod-
ulus and strength, and b) effect of matrix first crack strength. (the arrows point to the specif-
ic axis corresponding to the plots shown, or the range of variables used)  

Figure 6 shows the comparison between experimental and predicted tension and cracking 
spacing behavior. It used an efficiency factor η = 0.6, matrix first crack strength of 7 MPa 
and the interfacial bond model presented in Figure 4b. The predicted stress-strain response 
also shows a good fit with experimental values therefore validating the used model. This ver-
ification has been done for the upper bound values and changing the variables will enable the 
fitting of the lower bound values as well. Note that the model correlates well with the upper 
bound experimental curves up to a strain of 1.0%. After that point it overestimates both the 
experimental curves. The predicted crack spacing response obtained from the tension stiffen-
ing model correlates well with the experimental results as shown in Figure 6 top portion, as 
the model accurately predicts the saturated crack spacing. The numerical crack spacing 
shows an accurate prediction up to a strain value of 0.005 %. At the crack saturation level, an 
approximate spacing of 30 mm is obtained using the model which compares to a 23 mm for 
experimental results.  
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Fig. 6:  Comparison of experimental and numerical results of the composite tensile response and 
crack spacing. Lower and upper bound experimental data compared with the numerical sim-
ulation [16]. 

2 Simplified Strain-Hardening Fiber Reinforced Concrete Model 

A general strain hardening tensile, and an elastic perfectly plastic compression model as de-
rived by Soranakom and Mobasher [17] and shown in Figure 7 is used to further simplify the 
tension stiffening model. Tensile response is defined by tensile stiffness, E, first crack tensile 
strain εcr, Cracking tensile strength, σcr, =Eεcr, ultimate tensile capacity, εpeak, and post crack 
modulus Ecr. The softening range is shown as a constant stress level μEεcr , and the compres-
sion response is defined by the compressive strength σcy defined as ωγEεcr. In order to simpli-
fy material characteristics of strain-hardening FRC, and yet obtain closed form design 
equation generation several assumptions are made. It has been shown that the difference in 
compressive and tensile modulus, parameter γ, has negligible effect to the ultimate moment 
capacity [17]. By defining all parameters as normalized with respect to minimum number of 
variables, closed form derivations are obtained. Applied tensile and compressive strains at 
bottom and top extreme layers (Fig. 7c), β, and λ are defined as: 
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neutral axis, the moment and curvature distributions are obtained. The depth of neutral axis, 
the nominal moment capacity Mn is obtained by taking the first moment of force about the 
neutral axis, is expressed as a product of the normalized nominal moment mn and the crack-
ing moment Mcr 

2
,

6
cr

n n cr cr
bhM m M M σ

= =
  

(3) 

Location of neutral axis and moment capacity are obtained by the definitions provided in 
Table 1. This table presents all potential combinations for the interaction of tensile and com-
pressive response. According to bilinear tension and elastic compression models shown in 
Figure 7(a)&(b), the maximum moment capacity is obtained when the normalized tensile 
strain at the bottom fiber (β = εt/εcr) reaches the tensile strain at peak strength (α = εpeak/εcr). 
Note that depending on the relationship among material parameters, any of the zones 2.1, and 
2.2, or 3.1, and 3.2 as shown in Table 1 are potentially possible.  

Analysis of these equations indicates that the contribution of fibers is mostly apparent in the 
post cracking tensile region, where the response continues to increase after cracking [Figure 
7(a)]. The post-crack modulus Ecr is relatively flat with values of η = 0.00-0.4 for a majority 
of cement composites and can be directly related to the efficiency of the textile bonding 
mechanism discussed before. The tensile strain at peak strength εpeak is relatively large com-
pared to the cracking tensile strain εcr and may be as high as α = 100 for polymeric based 
fiber systems.  These unique characteristics cause the flexural strength to continue to increase 
after cracking. Since typical strain-hardening FRC do not have a significant post-peak tensile 
strength, the flexural strength drops after passing the tensile strain at peak strength. Further-
more the effect of post crack tensile response parameter μ can be ignored for a simplified 
analysis. In the most simplistic way, one needs to determine two parameters in terms of post 
crack stiffness η, and post crack ultimate strain capacity α, to estimate the maximum moment 
capacity for the design purposes.  

4 Analysis - Prediction of Load Deflection Response of Fabric Cement Com-
posites 

TRC composites that use a bonded AR glass, and reported earlier are used in the simulation 
phase [18]. These composites were manufactured using a cement paste with a water to ce-
ment ratio of 0.45, and AR glass fabrics manufactured by Nippon Electric Glasss Company. 
The AR Glass bundle had a Strength of 1360 MPa, a Modulus of elasticity of 78 Gpa, fila-
ment size of 13.5 microns and a bulk bundle diameter of 0.8 mm. The grid size was 4 yarns 
per cm with 2 individual yarns in each the longitudinal and transverse directions [18][19]. 
The textile reinforced composites had 8 layers of textiles.  

Uniaxial tensile results of these composites 10x25x200 mm in dimension are shown in Figure 
8a. The initial linear region terminates by cracking at the Bend over Point (BOP) and fol-
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lowed by the formation of multiple cracking. As multiple cracking takes place, the stiffness 
of the sample significantly drops while the crack spacing decreases to about 20 mm reaching 
saturation crack spacing at this level. The saturation of crack spacing correlates to overall 
strain levels corresponding to 1.5%. [11,12] 

In order to correlate the tension and bending responses, experimental data from a set of spec-
imens under three point bending tests were also used. The flexural specimens were 
10x25x200 mm with a clear span of 152 mm. Figure 8(b) shows the predicted flexural load 
deflection response of cement composites. The material parameters for tension model were 
determined by fitting the model to the uniaxial tension test and flexural test result as shown 
by the dashed line in Figures 8(a) and 8(b).  

 

Stage Parameters k m = M/Mcr 

1 0 < β < 1 1

1               for =1
2

1
   for 1

1

k
γ

γ
γ

γ

⎧
⎪⎪= ⎨− +⎪ ≠
⎪ − +⎩

 ( ) 3 2
1 1 1

1
1

2 1 3 3 1

1

k k k
m

k

β γ⎡ ⎤− + − +⎣ ⎦=
−

 

2.1 
1 < β < α  

0 < λ < ω 

2
21 21

21 2
21

D D
k

D
γβ

γβ
−

=
−

 

( )2
21 2 1 2 1D η β β β= − + + −  

( )3 3 2
21 21 21 21 21 21 21

21
21

2 3 3
'

1

C k C k C k C
M

k

γβ − + − +
=

−
 

3 2 2

21 2
(2 3 1) 3 1C β β η β

β
− + + −

=  

2.2 
1 < β < α  

ω < λ< λcu 

22
22

22 2
Dk

D ωγβ
=

+
,

2
22 21D D γω= +  

( )2 2
22 22 22 22 22 22' 3 2M C k C k Cγωβ= + − +

3

22 21 2C C γω
β

= −  

3.1 
α < β < βtu 

0 < λ < ω 

2
31 31

31 2
31

D D
k

D
γβ

γβ

−
=

−
 

( ) ( )2
31 2 1 2 2 1D η α α μ β α α= − + + − + −  

( )3 3 2
31 31 31 31 31 31 31

31
31

2 3 3
'

1

C k C k C k C
M

k

γβ − + − +
=

−

 

( )3 2 2 2 2

31 2

(2 3 1) 3 3 1
C

α α η μ α β α

β

− + − − + −
=

 

3.2 
α < β < βtu 

ω < λ < λcu 

32
32

32 2
Dk

D ωγβ
=

+
, 

2
32 31D D γω= +  

( )2 2
32 32 32 32 32 32' 3 2M C k C k Cγωβ= + − + ,

3

32 31 2C C γω
β

= −  

   
φ =  'i crφ φ     

( )
'

2 1i
ik

βφ =
−  Where i applies to  cases in Table 1 referring to  2.1,2.2,3.1, and 3.2 

Table 1:  Neutral axis parameter k, normalized moment m and curvature φ for each stage 
of tensile strain at bottom fiber (β) 
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The steps in calculation of load-deflection response from the moment-curvature have been 
discussed in detail in recent publications dealing with strain hardening [20] and strain soften-
ing type composites [21, 22].  No attempt was made to obtain a best fit curve to the response.  
The average material properties for the simulation of upper bound values were: α = 65, 
 μ = 4, η = 0.06, γ = 5.0, and, ω = 10.  The constants were εcr = 0.0002, and E = 20000 MPa, 
while the limits of the modeling were βtu = 135, and λcu = 40.  The material properties for the 
lower bound values were : α = 80,  μ = 3, η = 0.154, γ = 1, and, ω = 10.  the constants were 
εcr = 0.0008, and E = 5200 MPa, while the limits of the modeling were βtu = 100, and λcu = 
80.   Note that these values are shown for a preliminary set of data and proper optimization of 
the model with upper and lower bound values for each variable are required. It should also be 
mentioned that due to the nature of modeling a unique set of properties from the flexural tests 
can’t be obtained and normally there are a set of tensile properties that may result in similar 
flexural responses. For this purpose it is essential to measure both tension and flexural re-
sponses together in the back-calculation processes.  
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Fig. 8:  Tensile stress strain response input model and predicted load deflection response of AR-
Glass fabric composites. 

In these systems, the high tensile stiffness and strength of the composite leads to high values 
for the load, and distributed flexural cracking. Analysis of the samples indicates formation of 
diagonal tension cracks in the samples due to the shear failure mechanism. No provisions for 
shear cracking were accounted for in the present approach.  

Simulation that use direct tension data underestimates the equivalent flexural stress. This may 
be due to several factors including the size effect, uniformity in loading in tension vs. the 
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linear strain distribution in flexure, and variation in lamina orientation which may lead to a 
wider range of variation among the flexural samples.   The underestimation of the flexural 
capacity can be eliminated by increasing the tensile capacity by scaling parameters as dis-
cussed in earlier publications, however these topics are beyond the scope of present work [17, 
20, 22]. This procedure shows the potential for the use the flexural response and developing a 
reliable moment-curvature response that can be used for both back-calculation and also the 
design phase of the flexural load cases. 

 

5 Design Guidelines- Simply supported Beam Under Distributed Load 

The methodology used in the design of conventional reinforced concrete according to ACI-
318 [23] is adopted next. The nominal moment capacity of a flexural member Mn must be 
decreased by a reduction factor to account for variability in materials and workmanships. The 
reduced capacity must be greater than the ultimate moment Mu due to factored loading by 
ACI Sec. 9.2.  

r n uM Mφ ≥   (4) 

 where φr is the reduction factor for strain-hardening FRC and may be conservatively taken as 
0.8, equal to the reduction factor for compressive failure of plain concrete as stipulated by 
ACI Sec. C.3.5 [23] . Despite the post-crack flexural response of HPFRC is ductile such that 
it can sustain large deflections after cracking, it fails abruptly with little warning after passing 
the ultimate moment. For this reason, a conservative reduction factor for compressive failure 
of plain concrete is adopted. Flexural capacity of a simply supported beam subjected to a 
variety of loadings can be developed using standard approaches. For example, in the case of a 
distributed loading as shown in Figure 9, one can use the principal of virtual work to equate 
the external and internal work measures together. Application of yield line conditions while 
representing an upper bound approach is sufficiently conservative such that even when the 
full ultimate state safety factors are applied, the resulting failure modes are predictable and 
do not lead to catastrophic modes.    

θ θ δ      /2max

θ

NNN

qq

L  
Fig. 9:  The collapse mechanism in a flexural beam with distributed load. 



 
310 
 
Plas
dissi
bend

For 
laps

This
alon
cent
the i
port
whic

 

Fig. 

stic analysis
ipated work
d flexural be

int exW W=

a three poin
e moment i

int exW W=

s yield patte
ng its two o
ter-point loa
internal ene
ed round sl
ch is determ

10:  Princip
round p

s approach u
k to obtain t
eam as show

xt      2 PM θ =

nt bending o
s computed

xt      2 PM θ =

ern can be u
r four edge
ading is sho
ergy dissipa
lab, the allo

mined throug

ple of virtual 
panel test sim

MOB

uses the prin
the collapse
wn in Figur

22 PM
L
δ⎛ ⎞= =⎜ ⎟

⎝ ⎠

of a slab co
d in accordan

2
LP P θδ= =

 
used to defin
s. Flexural 

own in Figur
ation change
owable appl
gh laborator

work used f
mply support

BASHER: Des

ncipal of vir
e load. For e
re 9 , the wo

2
2 2
L[ q δ⎛ ⎞⎛= ⎜ ⎟⎜

⎝ ⎠⎝

ontaining a 
ance to the f

   4
ult

P
PM =

ne the poten
capacity of
re 11. Note
es. It is how
ied load can
ry tests on f

for the determ
ted along its 

sign Procedur

rtual work t
example for
ork equation

2
]δ ⎞

⎟
⎠      

PM =

single yield
following eq

4
t L

ntial collaps
f round slab
that depend

wever show
n be related
flexural sam

mination the
continuous e

res for Flexu

to equate th
r a distribut
ns is derived

2

8
ultq L

=

d line along 
quation: 

se mechanis
b simply sup
ding on the 

wn that in th
d to the ben
mples. 

e ultimate loa
edge, subject

ural Applicat

he internal a
ted load on 
d as: 

the centerl

sm of a plate
upported sub

number of 
he case of s
nding mome

 
ad carrying c
ted to center 

tions of TRC

and external
three point

(5

ine the col-

(6

e supported
bjected to a

f yield lines,
simply sup-
ent capacity

capacity of a
point load. 

C

l 
t 

) 

-

) 

d 
a 
, 
-
y 

a 



 
6th Colloquium on Textile Reinforced Structures (CTRS6) 311
 

int extW W=      
R
δθ =

     
int P PdW M R d M dθ α δ α= =  

2

0
2int ext P P ultW W M d M P

π
δ α π δ δ= = = =∫  

2ult PP Mπ=
  

(7) 

 

Using moment vs. allowable load relationship derived above in Eq 5, 6 and/or 7, one can 
obtain the required moment for a given applied load and depending on the cross sectional 
geometry and fiber type parameters allowed as design paramaters, determine the magnitude 
of variables and dimensions of test specimens to meet the ultimate moment capacity. 

6 Conclusions 

Procedures are presented to use a closed form solution based model as a basis for backcalcua-
tion of tensile data from flexural samples. Using the same proposed methodology, one can 
compute the flexural capcity of strain hardening cement composites such as TRC materials. 
In order to expand the design implications,  yield line theory can be used in conjunction with 
the model outputs to generate the ultimate moment capacity for a given geometry and loading 
conditions. The parametrized moment curvature response, once adjusted by the geometry and 
size of strain hardening material can be used to predict its moment capacity using principals 
of plastic design of structures or structural analysis software.  
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