Zuverlässigkeit 3D-integrierter Chips: Die Rolle metallischer Oberflächen und Grenzflächen

Reliability of 3D-integrated chips: The role of metallic surfaces and interfaces

Ehrenfried Zschech, Fraunhofer IZFP Dresden Fraunhofer Cluster Nanoanalysis Dresden

6 December 2012

3D TSV scheme

2D stress solution of single TSV

No elastic mismatch between Si and Cu

Stresses controlled by CTE mismatch between TSV and Si; via size, material and T important.

TSV performance and reliability risks

Courtesy: Xiaopeng Xu, Synopsys

Stress engineering in 3D IC structures: Need of database and input for database: Multi-scale materials data

Stress-related phenomena caused by 3D TSV integration can influence chip performance (and variability), yield and reliability.

Stress management in complex systems (packaged dies, 3D integration, etc.) requires multi-scale modeling, including accurate MULTI-SCALE MATERIALS DATA

- Input data for simulation
- Model validation (and calibration)

Multi-scale materials database concept¹

- Global and local materials data for wafer-level and package-level structures require MULTI-SCALE MATERIALS CHARACTERIZATION

- Multi-scale (thermo-)mechanical materials data
- Strain in transistor channel

Reliability assessment for 3D IC systems

Database information: Packaging materials

Materials	Temperature dependent	Underfill	Cu pillars	Molding compound	Flip-Chip ball (~ 100µm)	Micro ball (10s of µm)	BGA bump (>200µm)	Effective interconnect (Iow-k/Cu)	Effective bulk of silicon die (Si/Cu-TSV)	Effective package substrate (PCB/Cu)
CTE (ppm/K)	yes	x	x	x	x	x	x	x	x	x
Young's modulus (GPa)	yes	x	x	x	x	x	x	x	x	x
Poisson's ratio	no	x	x	x	x	x	x	x	x	x
Plasticity (MPa)	yes		х							
Visco-plasticity (MPa)	yes				x	x	x			
Visco-elasticity (MPa)	yes	x		x						x
Glass transition Tg (°C)	no									x
Die attach Ta (°C)	no		х		х	х	х			

Database information: Wafer-level materials

Materials	Cu (BEoL)	ULK	Cu (TSV)	SiO ₂ Liner	Barrier	Si	BRDL
CTE (ppm/K)	x	x	x			x	х
Young's modulus (GPa)	x	х	x	x	x	x	х
Plasticity (MPa)			x				x
Poisson's ratio	x	x	x	x	x	x	x

+ adhesion

TSV performance and reliability risks

Courtesy: Xiaopeng Xu, Synopsys

Thermal stress induced TSV pop-up

Shear Stress (MPa)

Large shear stress at Cu-TSV/Si-wafer interface and poor adhesion leads to de-bonding !

Courtesy: Xiaopeng Xu, Synopsys

3D IC Integration: Quality engineering / failure analysis needs – Interface delamination and "pop-up"

Adhesive failure:

Interface delamination and "pop-up" only occurs if the adhesion Si/SiO₂(liner)/barrier*/copper is low !

^{*} TaN/Ta, <u>TiN/Ti</u>, (Ru), ...

Which is the right analytical technique for delamination detection and quantitative "pop-up" evaluation?

- nondestructive
- sub-100nm spatial resolution

Classification of NDE techniques

Comparison of imaging tools

Feature	X-ray	Optical	SEM	ТЕМ
Spatial resolution	Current: 20-30 nm Ultimate: ~1 nm?	200-300 nm	1-10 nm typically >500 nm for elemental analysis	0.1 nm
Elemental sensitivity	Good (absorption edges + fluorescence)	None (labels)	Good (EDX)	Good (EDX, EELS)
Probing depth	1-50 μm for E<10 keV, 20 mm for E=100 keV	<100 nm for metal, opaque or transparent materials	< 10 nm typically < 3000 nm for element analysis	~ 100 nm
Material class	all	all	all (charging for nonconducting samples)	all (charging for nonconducting samples)
Vacuum requirement	No (multi-keV) Yes (low-E, cryo)	Νο	Yes	Yes
Radiation damage	modest	None (bleaching)	High	High

X-ray transmission in Si/Cu structures

Material	Material Density (g/cm ³)	Absorption Length (μm)	Transmission(%)			
			50µm	30μm	5µm	
Silicon	2.33	70.82	49.4	65.5	93.2	
Copper	8.96	22.89	10.6	26	79.9	

Xradia NanoXCT: Lab based X-ray microscopy

Xradia nanoXCT @ Fraunhofer IZFP Dresden

Limits of zone plates: ~ 30 nm structures

Zone plates are fabricated out of high-Z (typically gold) material using electron beam lithography, reactive ion etching and electroplating.

Focusing efficiencies 10-30% currently achievable (depends on A/R).

E. Zschech, W. Yun, G. Schneider, Appl. Phys. A 92, 423 – 429 (2008) Courtesy: Xradia Inc., Concord/CA

Cu TSV extrusions – Quantitative analysis (1)

5um TSV

4um TSV

Both 4 and 5um TSV show Copper is extruded and with de-lamination at the wall

Copperation with Lay Wai Kong and Alain Diebold, College of Nanoscale Science and Engineering at the University at Albany/NY, Lay Wai Kong et al., 3D IC Metrology Workshop @ Semicon West 2010 Composition of the Composition

Reliability of 3D-integrated chips: The role of metallic surfaces and interfaces

Reliability of 3D stacked ICs depends strongly on materials compatibility and stress.

Stress engineering is necessary to ensure the required product performance and reliability. Multi-scale simulations needs multi-scale materials input data.

Barrier quality, including homogeneity and surface, determine the interface energy and the adhesion of Cu-TSV/Si-wafer structures.

Failure analysis and the study of damage mechanisms like "pop-up" require nondestructive analysis techniques. Nano-XCT allows studies of Through Silicon Vias in 3D stacked Ics, including quantitative "pop-up" effect.

Thank you!

Sven Niese, Peter Krüger Fraunhofer IZFP Dresden

Jeff Gelb, Kevin Fahey, Xradia

Contact: ehrenfried.zschech@izfp-d.fraunhofer.de

