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Introduction

Electronic correlations are originating from the Coulomb interactions between elec-

trons. They play a major role in the definition of the electronic structure and, as

following, in the physical properties of a wide range of materials. In the case of

weak correlations the description of properties can be simplified to the level of non-

interacting particles, as in normal uncorrelated metals. When strong correlations

are involved then the materials are exhibiting intriguing and unexpected properties

due to a large number of degrees of freedom in the electronic interactions. These

interactions can be of a spin, charge, lattice, or orbital origin and moreover can be

simultaneously active. There are many fascinating examples of properties that sys-

tems with strong correlations possess: Colossal magnetoresistance (CMR), where

enormous changes in resistance are produced by small magnetic field variations

[1]; High-temperature superconductivity (HTSC) with superconducting transition

temperatures up to 135K at ambient pressure [2, 3]; Low-dimensional spin systems

where the growth of quantum fluctuations gives rise to new exciting phenomena

absent in three-dimensional systems [4, 5]; etc. Understanding these materials

is very challenging and important for the establishment of our view of solids. A

great example of research which pushed far ahead the understanding of the physics

and stimulated the development of experimental and theoretical methods is the

investigation of the high-temperature superconducting cuprates [2, 3].

Experimental results obtained in recent years have revealed that many transition-

metal-based materials, especially oxides, exhibit charge, structural and/or mag-

netic inhomogeneities at the nanoscale (and sometimes at mesoscopic length scales).

The presence of such inhomogeneities immediately calls for local probe techniques.

One of them is high-field electron spin resonance spectroscopy (ESR) which is able

to access a wide range of electronic properties of the materials, such as magnetic

ordering and interactions, local magnetic fields, local electric field distribution



(crystal field effect), spin dynamics, etc. Employing the ESR method, we ad-

dress in this work the problem of inhomogeneities in strongly correlated electronic

systems by studying two systems based on transition metal elements, with very

different properties. The first system is an iron based high-temperature supercon-

ductor. The present work was focused on a member of the so called 1111-family,

(La,Gd)O1−xFxFeAs compound. As it is established, this material exhibits coex-

istence of a static short range magnetic order with superconductivity up to high

doping levels. The other system is a cubic perovskite, cobaltite LaCoO3 where

hole doping induces a strong interaction between electrons on neighboring Co ions

which leads to a collective high-spin state, called a spin-state polaron. These

polarons are inhomogeneously distributed in the nonmagnetic matrix.

This thesis is organized in three chapters. The first chapter gives basic ideas of

magnetism in solids, focusing on the localized picture. The aim of the second chap-

ter is to introduce the method of ESR. The third chapter is dedicated to the study

of 1111-type iron arsenide superconductors. In the first part X-band (ν ∼ 9.5GHz)

ESR measurements on 2% and 5% Gd-doped LaO1−xFxFeAs are presented. In

the second part a combined investigation of the properties of GdO1−xFxFeAs sam-

ples by means of thermodynamic, transport and high-field electron spin resonance

methods is presented. The last, fourth chapter presents the investigation of the

unexpected magnetic properties of lightly hole-doped LaCoO3 cobaltite by means

of the electron spin resonance technique complemented by magnetization and nu-

clear magnetic resonance measurements.



Chapter 1

Theoretical background

1.1 Overview

In this chapter the basic theoretical background will be given in order to help

understanding the phenomenon of electron spin resonance. The discussions will

mostly address quantum mechanical (QM) properties of atom or ion. Where pos-

sible, the classical examples/analogies will be given to help getting into the physics

of the subject. The information presented here is based on the text-books of C.

Kittel [6], S. Blundell [7], J. Weil an J. Bolton [8], S. Altshuler and B. Kozyrev [9],

A. Abragam and B. Bleaney [10], C. Poole [11], L. Landau and L. Lifshitz [12].

1.2 Angular momenta and magnetic moments of

electron

Orbital and spin momenta

Due to the quantum nature, an electron possess ”own” (”eigen” or ”intrinsic”)

angular moment, called spin. In addition, due to the orbital motion, an electron

has an orbital angular momentum. In quantum mechanics the allowed values of

the magnitude of the angular momentum arising from its operator J 1 [12–14] are

given by J(J + 1) where J is the primary angular-momentum quantum number

1In the case of orbital angular momentum one should write L, in the case of spin - S
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Figure 1.1: Angular and magnetic moments

(J = 0, 1/2, 1, 3/2, ...). In the usual convention all angular momenta and their

components are given in units of ~. The allowed values of the component of vector

J along any selected direction are restricted to the quantum numbers MJ , which

range in unit increments from −J to +J , giving 2J +1 possible components along

an arbitrary direction.

Relation between angular momentum and magnetic mo-

ment

In both classical and quantum mechanics the angular momentum of an electron is

proportional to a magnetic moment (Fig.1.1):

µ = γG (1.1)

Here µ is the magnetic moment, γ is the gyromagnetic ratio and G is either a

classical angular momentum or a quantum one. In the quantum case the relation

can be presented as:

G = ~J (1.2)

As it follows from Eq.1.1 and Eq.1.2, values of the component of vector µ along

any selected direction are quantized as well as in the case of J. The gyromagnetic

ratio is equal to:

γ = −g e

2mec
(1.3)
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where e is electron charge, me is electron mass, c is the speed of light and g is a so

called g-factor which depends on several properties of the system. For example, in

the case of only orbital angular momentum, the g-factor with the accuracy of 10−4

is equal to gL = 1. In the case of only a spin angular momentum gS = 2.00231.

1.3 Electron Hamiltonian

In quantum mechanics the energy states of a system are given by the solution of

the Schrödinger equation:

HΨ = EΨ (1.4)

where H is the Hamiltonian operator, E are eigenvalues of this operators (energy

states of the system) and Ψ is a set of eigenfunctions of the system.

The Hamiltonian operator for one electron orbiting about the nucleus is written

as:

He =
p2

2me

− Ze2

r
(1.5)

Here the first term is the kinetic energy of the electron (me - electron mass, p -

momentum operator) and the second one is the potential energy of the Coulomb

attraction (Z - nuclear charge number, e - electron charge, r - distance between

nucleus and electron).

In the case of an atom with N electrons (N > 1), beside the sum over all single

electron Hamiltonians, the full Hamiltonian will contain also the Coulomb inter-

action between electrons:

H =
N∑

k=1

(He k +
1

2

∑
k 6=l

e2

|rk − rl|
) =

N∑
k=1

(
p2

k

2me

− Ze2

rk

+
1

2

∑
k 6=l

e2

|rk − rl|
) (1.6)

The inter-electron interaction makes the solution of the Schrödinger equation for

this case rather complex, or even impossible. A common approach is the Hartree-

Fock approximation [18–20] which is the assumption that each electron is situated

in the central-symmetric electric field, created by other electrons2. In this case

1”For those readers with masochistic tendencies, we furnish some references [15–17] to the
quantum electrodynamic theory of the electron magnetic moment, which has been spectacularly
successful in matching the observed value of gS, and continues to evolve with ever-increasing
sophistication.” - quotation from ”Electron paramagnetic resonance elementary theory and prac-
tical applications” by John A. Weil and James R. Bolton [8].

2This field is usually called self-consistent field
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the full Hamiltonian will be the sum of single electron Hamiltonians including the

central-symmetric field term Vk(k):

H ≈ H0 =
N∑

k=1

(
p2

k

2me

− Ze2

rk

+ Vk(k)) (1.7)

Since the electrostatic potential −Vk(k)/e is central-symmetric, then the solution

of the Schrödinger equation for this Hamiltonian can be obtained using the eigen-

function or spinor presented in polar coordinates as a product of a radial and

angular parts1:

ψk = Rnl(r)Y
ml
l (θ, φ)χ(ms), k = (n, l,ml,ms) (1.8)

The radial part R(r) is the function of only distance r between nucleus and the

electron. The angular part, in turn, is the function of only two polar angles. This

part depends on the orbital quantum number l and on the magnetic quantum

number ml which gives the z component of the angular momentum. To distinguish

different ms
2 states of the electron, this spinor ψk, beside radial and angular parts,

consists of a spin part χ(ms). The total eigenfunction for the many electron

Hamiltonian H0 (Eq.1.7) can be obtained by the construction of the N×N Slater

determinant ΨN(ψk) of N single electron spinors ψk. The use of a determinant of

spinors ensures the antisymmetry of many electron eigenfunction and thus satisfies

the Pauli principle by the natural antisymmetry of determinants.

Spinors ψk, defining the electron states in atom, are characterized by 4 quantum

numbers n, l, ml, ms. Here n is called as principal quantum number, l is the orbital

quantum number and as it results from the solution (see [12–14]) it can not exceed

the n − 1 value. ml is a z-component of an electron orbital moment. In contrast

to a single-electron atom, in the case of a many-electron atom the degeneracy in l

is lifted because the potential is no longer 1/r. Physically this means that states

with lower angular momentum have a larger probability to be near the origin and

hence sample more of the nuclear charge, while states of high angular momentum,

which are suppressed at the origin, see the nuclear charge shielded by the electrons

in the inner orbits. As a result, at each n the energy goes up with l. The ”radius”

of each state grows with n, with a slight dependence on l. States of a given n are

thus said to form a shell (in a semiclassical sense, they may be viewed as moving

1Problem of the hydrogen atom in QM [12–14]
2ms is a z-component of an electron spin
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on a sphere of radius equal to the most probable value of r). States of a given l

and n are said to form a subshell. So for a fixed pair of quantum numbers (n, l)

the subshell is spanned by 2l+1 orbitals of identical energy, each of them holding

at most two electrons with different spin direction ms. This manifold of 2(2l + 1)

electronic states defines a multiplet. The common way to describe a multiplet is

to use a number for n, letter s,p,d,f... for l (see also Sec.1.4) and superscript for

electron number. For example the outermost multiplet of Co3+ is 3d6.

1.4 Electronic configuration, Hund’s rules

In Sec.1.3 the possible electronic energy levels were obtained for a multi-electron

atom. It was shown, that to determine the ground state of the atom, or, in other

words, the electronic configuration, one should minimize its energy while solving

the Schrödinger equations. In the Hartree-Fock approximation case this effectively

means that one should ”fill” the free electronic states starting from the one with

lowest energy. In the case of a free atom at a given pair of quantum numbers (n, l)

there is a remanent 2(2l+1)-fold degeneracy of the energy levels. The procedure of

”filling” these degenerated levels is governed by empirical Hund’s rules [21–23] and

Pauli principle [24]. As they rule the occupation of the orbitals in terms of their

quantum numbers, the magnetic moment of the ion is immediately determined.

The three empirical Hund’s rules are listed in order of decreasing importance, so

that one first satisfies the first and then, having done this, attempts to satisfy the

second, and so on for the third.

(1) Arrange the electronic wave function so as to maximize S. In this way the

Coulomb energy is minimized because of the Pauli exclusion principle, which

prevents electrons with parallel spins being in the same place, and this reduces

Coulomb repulsion between electrons.

(2) The next step is, given the wave function determined by the first rule, to

maximize L. This also minimizes the energy and can be understood by imagining

that electrons in orbits rotating in the same direction can avoid each other more

effectively and therefore reduce Coulomb repulsion.

(3) Finally the value of J (see Sec.1.5) is found using J = |L − S| if the shell is

less than half full and J = |L+S| if it is more than half full. This third rule arises

from an attempt to minimize the spin-orbit energy. One should note that the third
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rule is only applicable in certain circumstances. In many systems, e.g. transition

metal ions, the spin-orbit energies are not as significant as some other energy term

such as the crystal field so that Hund’s third rule is disobeyed. However, for rare

earth ions Hund’s third rule works very well.

Having found values for S, L and J , this ground state can be summarized using a

term symbol of the form 2S+1LJ . Here L is written not as a number, but using a

letter according to the sequence:

L 0 1 2 3 4 5 ...

S P D F G H ...

The value 2S+1 represents a spin multiplicity. One should note here that Hund’s

rules lead to a prediction of the ground state but tell nothing about the excited

states or how close they are to the ground state.

1.5 Spin-orbit coupling

Nature of spin-orbit coupling

The spin-orbit interaction in an atom arises as follows. In the nucleus rest frame

an electron is orbiting about an atom, but in an inertial frame comoving with

the electron the nucleus appears to be orbiting about the electron. The orbiting

nucleus constitutes a current which gives rise to a magnetic field at the origin

equal to

B =
E × v

c2
(1.9)

where

E = −∇V r = −r

r

dV (r)

dr
(1.10)

is the electric field at the electron due to the nucleus and V (r) is the corresponding

potential energy. Equation Eq.1.9 comes from the transformation of electric and

magnetic fields in special relativity. This magnetic field interacts with the spin of

the electron to give a term in the Hamiltonian

HSO = −1

2
m ·B =

e~2

2mec2r

dV (r)

dr
s · l = λs · l (1.11)
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where the orbital angular momentum is given by ~l = mer × v and the magnetic

moment m = (e~/me)s, and where the factor of 1/2 in Eq.1.11 is the relativistic

Thomas factor [25]. The parameter λ represents the strength of the spin-orbit

coupling. This result can be obtained extremely elegantly with the relativistic

correction automatically included using the Dirac equation1. This effect is known

as the intrinsic spin-orbit interaction and is an interaction between the spin and

the orbital part of an electron’s wave function in an atom. For the Coulomb field

in a hydrogen-like atom the potential energy V (r) is known so

1

r

dV (r)

dr
=

Ze

4πε0r3
. (1.12)

As can be seen, depending on the charge of the nucleus, Ze, the spin-orbit coupling

gains in strength for heavier elements. If more than one electron is considered,

the structure of the coupling will basically be the same for each electron, but

the amplitude will be influenced by screening effects which lower the coupling for

electrons in outer shells.

Type of spin-orbit coupling

In the definition of the ground state of the free atom (ion) there is a competition

between spin-orbit coupling and electrostatic interactions of electrons. In case of

atoms with small and intermediate atomic number Z the spin-orbit interaction is a

weak perturbation and the main energy terms are determined by the electrostatic

interactions that control the values of L and S, i.e. by combining, separately, the

orbital and spin angular momenta for the electrons:

L =
N∑

k=1

lk and S =
N∑

k=1

sk. (1.13)

Only then, when the total orbital and spin angular momenta of the atom as a whole

are known, we consider applying the spin-orbit interaction as a weak perturbation.

This type of spin-orbit interaction is called as LS- or Russel-Saunders coupling [26].

1There are an infinite set of Lorentz transformations corresponding to the various instanta-
neous rest frames of the electron around its orbit. The Lorentz transformations do not commute
when the direction of velocity changes and this is something our derivation has ignored. The net
Lorentz transformation contains a rotation and it turns out that this Thomas precession yields
a factor of precisely one-half.
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The Hamiltonian in this case is:

HLS = λL · S (1.14)

For atoms with high atomic number Z the spin-orbit interaction energy cannot

be treated as a small perturbation. A better scheme is known as j − j coupling:

here the spin-orbit interaction is the dominant energy and we couple the spin

and orbital angular momentum of each electron separately, and consequently the

weaker electrostatic effect may then couple the total angular momentum from each

electron.

Transition metals (3d) and rare earth elements (4f), which are studied in this the-

sis, both exhibit first type of coupling, namely LS or Russel-Saunders. Therefore

we omit the discussion about j − j coupling.

Effect of spin-orbit coupling

The presence of the LS-coupling yields that L and S are not separately conserved

but the total angular momentum J = L+S is conserved. If the relativistic effects

are considered as a perturbation (which usually can be done) then one can consider

L2 = L(L+ 1) and S2 = S(S + 1) as being conserved. Thus states with L and S

are split into a number of levels with differing J ; this is known as fine structure.

J takes the values from |L− S| to |L+ S|. From the definition of J :

J2 = L2 + S2 + 2L · S, (1.15)

and since the spin-orbit interaction takes the form λL · S, where λ is a constant,

the expected value of this energy is

< λL · S >=
λ

2
[J(J + 1)− L(L+ 1)− S(S + 1)]. (1.16)

The energy of the atom is mainly determined by the values of S and L via elec-

trostatic considerations and so the energy eigenstates can be labelled with values

of S and L. The precise value that J takes in the range |L − S| to |L + S| is

immaterial in the absence of the spin-orbit interaction. Each level is a multiplet of

(2S+1)(2L+1) states. When adding the spin-orbit interaction as a perturbation,

the multiplets split up into different fine structure levels labelled by J . Each of
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these levels themselves has a degeneracy of 2J + 1. The splitting of the different

fine structure levels follows a relationship known as the Landé interval rule which

will now be described. The energy separation between adjacent levels E(J) and

E(J − 1) of a given multiplet is given by:

E(J)− E(J − 1) =
λ

2
[J(J + 1)− L(L+ 1)− S(S + 1)]−

−λ
2
[(J − 1)J − L(L+ 1)− S(S + 1)]

= λJ. (1.17)

Thus the splitting is proportional to J (considering the separation of levels J − 1

and J).

Magnetic moment associated with J , Landé g-factor

As in the case of S and L angular momenta, there is a magnetic moment associated

with J = L + S (see Sec.1.2):

µ = gJµBJ (1.18)

Here gJ is called g-factor Landé and it is determined by:

gJ = gL

(
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)

)
+ gS

(
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)
(1.19)

with gL and gS being g-factors for orbital and spin moments respectively. As

can be seen, the presence of the orbital moment and spin-orbit coupling yield the

g-factor value different from pure spin value of 2.
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1.6 Zeeman effect, atom in magnetic field

Magnetic moment in magnetic field

When magnetic dipole is subjected to a magnetic field H , it experiences a torque.

In the classical picture the equation of motion is

dG

dt
= µ×H (1.20)

which may be combined with Eq.1.1 to give

dG

dt
= γG×H . (1.21)

If the magnetic field is assumed to lie along the z-axis of a system of Cartesian

coordinates, the solution of this equation can be written in the form:

Gx = G sinα cos(ωLt+ ε)

Gy = G sinα cos(ωLt+ ε) (1.22)

Gz = G cosα

with analogous equations for µ. The motion the vectors G, µ consist of a uniform

precession about H with angular velocity (Fig.1.1, H||z)

ωL = −γH . (1.23)

where the negative sign means that the precession is in the direction of a left-

handed screw advancing along H if γ is positive, and vice versa. The component

of G, µ along H remains fixed in magnitude, so that the energy of dipole in the

field H

E = −µ ·H (1.24)

is a constant of the motion. Let us assume that only the electron spin produces the

magnetic moment, which is true in the case of a free electron. Since in quantum

mechanics magnetic moment µ can have only quantized components along selected

direction (see Sec.1.2), then there is a set of energy levels, associated with this

components MS

E = gµBHMS, MS = −S...+ S (1.25)
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where in case of electron g ≈ 2 and MS = ±1/2. Hence E ≈ ±µBH. This splitting

of the magnetic moment energy levels driven by the applied magnetic field is called

Zeeman effect [27].

Atom in magnetic field

In addition to spin angular momentum, electrons in an atom also possess orbital

angular momentum. If the position of the kth electron in the atom is rk, and it

has momentum pk, then the total angular momentum is ~L and it is given by

~L =
∑

k

rk × pk (1.26)

where the sum is taken over all electrons in an atom. Let us now consider an atom

with a Hamiltonian H0 given by Eq.1.7.

We now add a magnetic field H given by

H = ∇×A (1.27)

where A is the magnetic vector potential. We choose a gauge1 such that

A(r) =
H × r

2
. (1.28)

Since the charge on the electron is −e, the kinetic energy is [pk + eA(rk)]
2/2me

and hence the perturbed Hamiltonian must now be written

H =
N∑

k=1

(
[pk + eA(rk)]

2

2me

− Ze2

rk

+ Vk(k)) + gµBH · S

=
N∑

k=1

(
p2

k

2me

− Ze2

rk

+ Vk(k)) + µB(L + gS) ·H +
e2

8me

N∑
k=1

(H × rk)
2

= H0 + µB(L + gS) ·H +
e2

8me

N∑
k=1

(H × rk)
2 (1.29)

1Eq.1.27 relates H and A. However, for a given magnetic field H, the magnetic vector
potential A is not uniquely determined; one can add to A the gradient of a scalar potential and
still end up with the same H. The choice of A that we make is known as a choice of gauge.
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The dominant perturbation to the original Hamiltonian H0 is usually the param-

agnetic Zeeman term

HZ = µB(L + gS) ·H (1.30)

This is the effect of the atom’s own magnetic moment. The third term, e2

8me

∑N
k=1(H×

rk)
2, is due to the diamagnetic moment. This contribution is purely field-induced

owing to its dependence on the square of the field. It is neglected in the following,

since in moderate fields it is usually overcompensated by the permanent moment

as long as it exists. Moreover, it is not responsible for an ESR signal.

1.7 Ligand environment

In the solid state we are concerned mostly with ions rather than with atoms. Many

such ions have closed electron shells which have no resultant angular momentum

and hence no permanent electronic magnetic dipole moment. Partly filled shells,

with permanent dipole moments due to the orbital motion of the electrons, or to

their intrinsic spin, or to both, occur in the ’transition groups’ such as 3d, 4d, 5d,

4f and 5f elements. Here we will restrict ourself with 3d and 4f elements only.

The ion in the solid is first of all influenced by the crystal field which is an electric

field derived from neighbouring atoms in the crystal. In crystal field theory the

neighbouring orbitals are modelled as negative point charges, this approach works

rather well for 4f orbitals of rare earth element, but not good for 3d orbitals of

transition metals. An improvement on this approximation is ligand field theory

which is essentially an extension of molecular orbital theory that focusses on the

role of the d orbitals on the central ion and their overlap with orbitals on sur-

rounding ions (ligands). This difference is coming from different sensitivity of 3d

and 4f ions to the crystal field. In the case of 3d element d shell is outermost

which makes the effect of the crystal field to be very strong, much stronger than

the spin-orbit coupling. In contrast, f shell is well shielded by the higher lying

s and p shells which strongly reduces the influence of the crystal field and helps

spin-orbit coupling to win in energy. Additionally, the size and nature of crystal

field effects depend crucially on the symmetry of the local environment.
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1.8 Transition metal elements in crystal field, 3d

shell

Since the influence of the crystal field in the case of 3d elements is stronger than

spin-orbit coupling, then the Hamiltonian will take a form

H = H0 + HCF + HLS + HZ (1.31)

where H0 >> HCF > HLS ≥ HZ . The initial Hamiltonian H0 is that of Hartree-

Fock (see Eq.1.7), HCF is a crystal field term, spin-orbit term HLS is determined

by Eq.1.14 and Zeeman term is defined in Eq.1.29. In the case of the initial

Hamiltonian H0 the total L and S are conserved, so they can be used to describe

states. To find the ground state we can use the perturbation method, starting

with H0 and including CF, LS and Zeeman Hamiltonians step by step.

Splitting of orbital sates

The first one is HCF since it has higher energy then the others. The electrostatic

nature of the crystal field makes it acting on the orbital angular momentum, but

does not affect spin. In the first approximation we do not consider LS-coupling

(L and S are decoupled), so the crystal field splits only L states, or in other

words it lifts the degeneracy of 3d orbitals. This splitting strongly depends on

the symmetry of the crystal field. In many cases the transition metal has a cubic

ligand surrounding, so it is important to consider the splitting in the crystal field of

a cubic symmetry. Fig.1.2 depicts the angular part of the 3d orbital wavefunctions

in the cubic symmetry. In the absence of the crystal field all these orbitals have the

same energy, but in the octahedral ligand surrounding (red balls in Fig.1.2) this

degeneracy is lifted. The orbitals x2−y2 and 3z2−r2 are pointing towards ligands

whereas xy, xz and yz orbitals are pointing in between. Since ligands are usually

negatively charged electron ”sitting” on xy, xz or yz orbital better avoids ligands

than ”sitting” on x2 − y2 or 3z2 − r2 which yields that the energy of x2 − y2 and

3z2− r2 orbitals is higher then that of xy, xz and yz orbitals. So five degenerated

orbital energy levels split into two groups: eg, comprising x2 − y2 and 3z2 − r2,

and t2g, comprising xy, xz and yz. Same splitting occurs also in the case of cubic
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Figure 1.2: 3d orbitals in crystal field of a cubic symmetry

(blue and green balls in Fig.1.2) or tetrahedral (blue balls in Fig.1.2) surrounding

but the eg group has lower energy than t2g.

Quenching of the orbital moment

The consequence of the splitting of the orbital states is the partial or total quench-

ing of the orbital magnetic moment. The phenomenon of the quenching one can

understand in the following. In an electric field directed towards a fixed nucleus,

the plane of a classical orbit is fixed in space, so that all the orbital angular mo-

mentum components Lx, Ly, Lz are constant. In quantum theory one angular

momentum component, usually taken as Lz, and the square of the total orbital

angular momentum L2 are constant in a central field. In a noncentral field the

plane of the orbit will move about; the angular momentum components are no

longer constant and may average to zero. In a crystal Lz will no longer be a

constant of the motion, although to a good approximation L2 may continue to be

constant. When Lz averages to zero, the orbital angular momentum is said to be

quenched. The magnetic moment of a state is given by the average value of the

magnetic moment operator µB(L + 2S). In a magnetic field along the z direction

the orbital contribution to the magnetic moment is proportional to the quantum
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Figure 1.3: Splitting of 3d orbital states and stabilization of different spin
states due to the crystal field strength and symmetry, shown on an example
of Co3+ ion; (a) free ion; (b) weak crystal field, high spin state with S = 2;
(c) strong crystal field, low spin state with S = 0; (d) tetragonal distortion,

intermediate spin state with S = 1. See text for details.

expectation value of Lz. So if the mechanical moment Lz is quenched, then the

orbital magnetic moment is quenched as well.

When the spin-orbit interaction energy is introduced, the spin may drag some

orbital moment along with it. If the sign of the interaction favors parallel orienta-

tion of the spin and orbital magnetic moments, the total magnetic moment will be

larger than for the spin alone, and the g value will be larger than 2. The experi-

mental results are in agreement with the known variation of sign of the spin-orbit

interaction: g > 2 when the 3d shell is more than half full, g = 2 when the shell is

half-full, and g < 2 when the shell is less than half-full.

Determination of the ground state

After considering the splitting of the orbital states one can fill up these orbitals

according to the Hund’s rules and taking into account the quenching of the orbital
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moment. Since we will need it later let us take an example of a Co3+ ion (Fig.1.3).

In the case of a free ion there are 6 electrons on a 3d shell so the spin S is equal to

2 and orbital moment L = 2 (Fig.1.3,a). The SO-coupling leads to the magnetic

ground state with J = 4.

In the non-distorted octahedral crystal field there are two possible configurations.

When the energy of the crystal field is smaller than the Hund’s energy (electric

repulsion of electrons), then all electrons occupy both eg and t2g levels which gives

the spin S = 2 (Fig.1.3,b). This spin state is called high spin state (HS). In this

case crystal field splitting leads to the partial quenching of the orbital moment.

To calculate the latter one can attribute the fictive orbital moment to the t2g level

which will be l̃ = −1. Application of the Hund’s rules only to the t2g level yields the

total orbital moment L = 1. After considering the crystal field splitting the SO-

coupling can be taken into account since it is next biggest in energy perturbation

(see Eq.1.31). The SO-coupling in this case yields the total moment of the ion

J = 1.

Second configuration is represented on Fig.1.3,c. Here the energy of the crys-

tal field is bigger than the Hund’s energy (electric repulsion of electrons), so all

electrons occupy only t2g levels which gives the spin S = 0 and totally quenched

orbital moment L = 0. This state is called low spin state (LS).

If the crystal field has symmetry lower then octahedral, then it leads to further

splitting of the orbital states. For example the distortion of octahedra like uniaxial

elongation (tetragonal distortion), as shown Fig.1.3,d leads to the splitting of t2g

level into orbital doublet and singlet and splitting of eg level into two orbital

singlets. Electric repulsion energy sets 4 electrons on the degenerated xz and yz

orbitals, one on xy and one on 3z2−r2. This configuration gives a total spin S = 1

and the fully quenched orbital moment L = 0. The spin state in this case is called

an intermediate spin state (IS).

1.9 Rare earth elements in crystal field, 4f shell

As was shown before, in the case of the rare earth elements in the crystal field

the situation is different from transition metals. Here SO-coupling wins in energy
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Figure 1.4: Energy levels of rare earth element Ce3+ due to the spin-orbit
coupling and the crystal field; (a) free ion; (b) splitting of the states due to the
spin-orbit coupling; (c) further splitting due to the crystal field. See text for

details.

against the crystal field, so the Hamiltonian takes form of:

H = H0 + HLS + HCF + HZ (1.32)

where H0 >> HLS > HCF > HZ . The initial Hamiltonian H0 is that of Hartree-

Fock (see Eq.1.7), spin-orbit term HLS is determined by Eq.1.14 and the Zeeman

term is defined in Eq.1.29. Since the SO-coupling energy is dominating the CF and

Zeeman energy, then the good quantum number to describe states is J = |L+ S|
or J = |L − S| (see Hund’s rules, Sec.1.4). As shown on Fig.1.4 in the case of

Ce3+ ion, which has a half integer spin, firstly the SO-coupling splits states with

different J , an only after that the crystal field splits states for a given J in a

set of doublets. Each doublet has an effective spin 1/2 and an effective g-factor

depending on the crystal field.
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1.10 Half-filled shell elements in crystal field, 3d5

and 4f7

Another case of the interaction of the crystal field with the ion is the case of ions

with the half-filled shell, such as Cr+, Mn2+, Fe3+ (3d) and Gd3+, Eu2+, Tb4+,

Cm3+ (4f). Here, in the first approximation, ions do not have an orbital moment

which should lead to the absence of the interaction with the crystal field. In fact

such ions could have a very small splitting of the energy levels due to the crystal

field. It can be explained by the fact that the presence of the crystal field leads

to the slight deformation of orbitals, so there is an uncompensated small orbital

moment which then couples to the spin [28].

1.11 Effective spin Hamiltonian

Whichever theoretical approach is adopted the result is a splitting of levels, leav-

ing groups of rather small degeneracy. The degeneracy within each group (and,

to some extent, the relative splittings between different groups) depends on the

symmetry within the complex, and can thus be predicted by group theory. An im-

portant over-riding theorem concerning the residual degeneracy is due to Kramers

[9, 10, 29]; in a system containing an odd number of electrons, at least twofold

degeneracy must remain in the absence of a magnetic field.

At temperatures below room temperature only lower lying states of an ion are

populated. To represent the behavior of such a group of levels when a magnetic

field is applied to the system one can neglect higher lying states and use the

concept of an ’effective spin’ S, which is a fictitious angular momentum such that

the degeneracy of the group of levels involved is set equal to (2S+1). For example,

an isolated Kramers doublet with just two levels is assigned an effective spin S

=1/2. This concept of an ’effective spin’ is useful because it is possible to set up

an ’effective spin Hamiltonian’ that gives a correct description of the behavior of

the group of levels in terms as concise as those for a free atom or ion. In some

cases a theoretical justification of the effective spin Hamiltonian can be given; if

the local symmetry of the complex is known, the effective spin Hamiltonian is

expected to reflect this symmetry, thus imposing restrictions on its form. The

good approach to write down such a Hamiltonian basing on the symmetry is to
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use Stevens operators Om
n [9, 30, 31]. In this case the crystal field part of the

effective Hamiltonian for the tetragonal symmetry will be [9]:

HCF = B0
2O

0
2 +B0

4O
0
4 +B0

6O
0
6 +B2

4O
2
4 +B4

6O
4
6 (1.33)

Stevens operators Om
n are the functions of Sz, S+, S− and their higher orders,

they can be found in several text-books [9, 30, 31]. Coefficients Bm
n depend on the

crystal field strength and symmetry and are usually chosen empirically in order

to better fit the experimental data obtained from magnetization, ESR, INS, etc.

In the simplest case of uniaxial symmetry one can neglect the high order terms

in Hamiltonian in Eq.1.33 and keep only the first term. Defining D = 3B0
2 and

knowing that O0
2 = 3S2

z − S(S + 1) one can write:

Huniaxial
CF = D(S2

z −
S(S + 1)

3
) (1.34)

It is important to note that S is not necessarily the true angular momentum of the

system, in which case the quantity g does not give the true magnetogyric ratio.

For this reason g is better called the ”spectroscopic splitting factor”.

1.12 Interactions

Here we consider the different types of magnetic interaction which can be impor-

tant in allowing the magnetic moments in a solid to communicate with each other

and potentially to produce long range order.

Magnetic dipolar interaction

The first interaction which might be expected to play a role is the magnetic dipolar

interaction. Two magnetic dipoles µ1 and µ2 separated by r have an energy equal

to

E =
µ0

4πr3
[µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)] (1.35)

which therefore depends on their separation and their degree of mutual alignment.

We can easily estimate the order of magnitude of this effect for two moments each

of µ = 1µB separated by r = 1 Å to be approximately 1K in temperature. Since
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many materials order at much higher temperatures, the magnetic dipolar interac-

tion must be too weak to account for the ordering of most magnetic materials.

Exchange interaction

Exchange interactions lie at the heart of the phenomenon of long range magnetic

order. Exchange interactions are nothing more than electrostatic interactions,

arising because charges of the same sign loose energy when they are close together

and save energy when they are apart.

Consider a simple model with just two electrons with spins S1 and S2. The

spin-dependent term in the effective Hamiltonian can be written

Hspin = −2JS1 · S2. (1.36)

If J > 0 then the minimum of energy is corresponding to the parallel spin align-

ment, triplet state. If J < 0 then the minimum of energy is corresponding to

the antiparallel spin alignment, singlet state. This equation is relatively simple

to derive for two electrons, but generalizing to a many-body system is far from

trivial. Nevertheless, it was recognized in the early days of quantum mechanics

that interactions such as that in Eq.1.36 probably apply between all neighboring

atoms. This motivates the Hamiltonian of the Heisenberg model [32, 33]:

H = −2
∑
i>j

JijSi · Sj . (1.37)

where Jij is the exchange constant between the ith and jth spins.

The calculation of the exchange integral can be complicated in general, but we

here mention some general features. First, if the two electrons are on the same

atom, the exchange integral is usually positive. This stabilizes the triplet state

and ensures an antisymmetric spatial state which minimizes the Coulomb repulsion

between the two electrons by keeping them apart. This is consistent with Hund’s

first rule.

When the two electrons are on neighboring atoms, the situation is very different.

Let us consider a simple case of a hydrogen molecule H2. Any joint state will be

a combination of a state centered on one atom and a state centered on the other.



1.12 Interactions 23

Figure 1.5: Exchange interaction in the H2 molecule.

The electrons can save kinetic energy by forming bonds because this allows them

to wander around both atoms rather than just one. The correct states to consider

are now not atomic orbitals but molecular orbitals (see Fig.1.5). These can be

bonding (spatially symmetric) or ’antibonding’ (spatially antisymmetric), with

the antibonding orbitals more energetically costly. This is because the antibonding

orbital has a greater curvature and hence a larger kinetic energy since while moving

electrons have to avoid each other due to the Pauli exclusion principle. This favors

singlet (antisymmetric) states and the exchange integral is therefore likely to be

negative.

The case of atoms with more than one electron is more complicated. To deter-

mine the ground state there is rule called Goodenough-Kanamori or Goodenough-

kanamori-Anderson rule [34–37]. It states that the exchange interactions are anti-

ferromagnetic if overlapping orbitals of neighboring atoms are half-filled, and they

are ferromagnetic if one of overlapping orbitals of neighboring atoms is half-filled

and another one is empty or filled.

Superexchange interaction

Besides the direct exchange interaction described above, there is also an indirect

exchange. One of the mechanisms is known to be a superexchange. It can be

defined as an indirect exchange interaction between non-neighboring magnetic

ions which is mediated by a non-magnetic ion placed in between the magnetic

ions. In the case of corner sharing metal ion-ligand configuration, it arises because

there is a kinetic energy gain for antiferromagnetism. This can be understood

from Fig.1.6,a which shows two transition metal ions (M) separated by an oxygen

ion (O). For simplicity we will assume that the magnetic moment on the transition
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Figure 1.6: Super exchange between two transition metal ions through oxygen
p-orbitals; (a) corner sharing, antiferromagnetic coupling; (b) edge sharing,

ferromagnetic coupling.

metal ion is due to a single unpaired electron (more complicated cases can be dealt

with in analogous ways). Hence if this system were perfectly ionic, each metal

ion would have a single unpaired electron in a d orbital and the oxygen would

have two p electrons in its outermost occupied states. The figure demonstrates

that antiferromagnetic coupling lowers the energy of the system by allowing these

electrons to become delocalized through the virtual hopping process, thus lowering

the kinetic energy. Here the ferromagnetic coupling is not energetically favorable

due to the Pauli exclusion principle which would not allow the occupation of the

same orbital by the two electrons with parallel spin directions. In fact, the super-

exchange strength (energy) depends on the degree of the overlap of the orbitals

and its sign is strongly dependent on the angle of the M-O-M bond. Indeed, as

it is shown on Fig.1.6,b, in the case of 90 o M-O-M bond angle the superexchange

should be ferromagnetic. Here during the virtual hopping process the electrons on

the px and py orbitals have parallel spins because of the Hund’s rule coupling (see

Fig.1.6,b, bottom).

Double exchange interaction

In some oxides, it is possible to have a ferromagnetic exchange interaction which

occurs because the magnetic ion can show mixed valency, that is it can exist in

more than one oxidation state. Examples of this include compounds containing the
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Figure 1.7: Double exchange between Co3+ and Co4+ ions through oxygen
p-orbitals.

Co ion which can exist in oxidation state 4+ or 3+. The ferromagnetic alignment is

due to the double exchange mechanism [38] which can be understood from Fig.1.7.

The eg electron on a Co3+ ion can hop through the oxygen orbitals to a neighboring

site only if there is a vacancy of the same spin direction (since hopping proceeds

without spin-flip of the hopping electron). If the neighbor is a Co4+ which has no

electrons in its eg shell, this should be possible. However, there is a strong on-site

(Hund’s rule number 1) exchange interaction between the eg electron and the five

electrons in the t2g level which keeps them all aligned. Thus it is not energetically

favorable for an eg electron to hop to a neighboring ion in which the t2g spins will

be antiparallel to the eg electron. Ferromagnetic alignment of neighboring ions

is therefore required to maintain the high-spin arrangement on both the donator

and acceptor ion. Because the ability to hop gives a kinetic energy saving, the

hopping process shown in Fig.1.7 reduces the overall energy. Thus the system

ferromagnetically aligns to save energy.





Chapter 2

Electron Spin Resonance

2.1 Introduction

As an introduction to the ESR method here you can find a short historical overview

of the subject. The magnetic resonance age started when Stern-Gerlach in their

famous experiment showed that an electron magnetic moment in an atom can take

on only discrete orientations in a magnetic field [39, 40]. Shortly after, Einstein and

Ehrenfest gave few ideas of quantum transitions between magnetic energy levels

of atoms induced by the radiation [41]. Subsequently, Uhlenbeck and Goudsmit

[42] linked the electron magnetic moment with the concept of the electron spin

angular momentum. Breit and Rabi [43] described the resultant energy levels of

a hydrogen atom in a magnetic field. Rabi et al. [44] studied transitions between

levels induced by an oscillating magnetic field. Finally, the first observation of an

electron spin resonance peak, using the magnetic field of about 300mT and radio-

frequency of 133MHz, was made in 1944 in Kazan (Russia) by Zavoisky during

his first experiments of resonance absorption in salts of transition metal ions [45].

Later on, the growing availability of the high (microwave) frequency emitters and

detectors and the development of the superconducting magnets enabled to increase

the measurement frequency and magnetic field which gave a possibility to extend

the range of physical properties and effects accessible with this method.
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2.2 Phenomenon of Electron Spin Resonance

Let us consider a free spin S = 1
2
. If we apply the magnetic field, the spin states

| + 1
2
> and | − 1

2
> split according to Zeeman effect (see Sec.1.6). If we expose

this spin to a microwave radiation of a certain frequency ν matching the energy

gap between these states then this radiation will induce the resonance transition

of the spin state which will lead to the absorption of the microwave power. This

resonance condition can be written as:

hν = gµBH (2.1)

Due to the quantum nature, a photon of a microwave radiation has a spin sphoton =

1, but it has no magnetic moment [46, 47]. This yields a selection rule for the

change of the spin projection ∆Sz = ±1. This selection rule is automatically

fulfilled in the case of S = 1
2
, but it needs to be considered when dealing with

higher spin values.

2.3 Spectrum parameters

The ESR experiment is mostly set up in the configuration when the MW radiation

is kept constant and the magnetic field is swept. The result of such an experiment

is the resonance absorption line (see Fig.2.1). Lets discuss parameters of this line.

Shape and width of the line

The shape of the line and its width might depend on different parameters. The

intrinsic line shape and linewidth are determined by the lifetime of the spin in the

exited state through the Heisenberg uncertainty principle [48]. In this case the

line has a Lorentzian shape (Fig.2.2,a):

L =
A

1 + [2(H −H0)/∆H1/2]2
(2.2)

If there are mechanisms which increase the speed of the relaxation process, or in

other words, decrease the lifetime, then the line homogeneously broadens. Such
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Figure 2.1: (a) Zeeman effect for a S = 1/2 system. At the resonance con-
dition, microwave with energy hν = gµBHres is absorbed by the spin; (b)
resulting ESR line, A - amplitude, ∆H1/2 - full width at half maximum, Hres -

resonance magnetic field, I - intensity.

Figure 2.2: Examples of line shape.
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mechanism is, for instance, spin-lattice relaxation. If the line broadens and changes

its line shape then it is called the inhomogeneous broadening. For instance, the

dipole-dipole interaction in the ensemble of spins, leads to the Gaussian line shape

(Fig.2.2,b, Eq.2.3) since there is a random distribution of local magnetic fields at

each spin.

G = 2Ae
−

(
2(H−H0)
∆H1/2

)2

(2.3)

If in this spin ensemble in addition there is an isotropic exchange interaction the

ESR line will narrow. To understand this, one can consider an extreme case

of an infinite exchange interaction when the whole ensemble behaves as a single

spin. The result of the ESR experiment will be the Lorentzian line with intrinsic

linewidth. Another important example of the inhomogeneous broadening is the

broadening due to the unresolved fine structure. In this case neither Lorentzian

nor Gaussian line shapes give a good fit for the line (Fig.2.2,d).

In the experiments with phase-locked detection, like in the case of Bruker x-band

spectrometer with a cavity (see Sec.2.4.1), there is an effect of mixing of absorption

of a microwave with dispersion if the sample has nonzero conductivity. This effect

takes place due to the conduction electrons which absorb and re-emit the incident

microwave. In this case the line shape is called Dysonian (Fig.2.2,c):

D = Aabsorption
1

1 + [2(H −H0)/∆H1/2]2

+ Adispertion

[2(H −H0)/∆H1/2]

1 + [2(H −H0)/∆H1/2]2
(2.4)

Resonance field

Resonance field of the ESR line in the case of an isolated ion is determined by the

g-factor (see Sec.1.2 and Sec.1.5).

The ion placed in the crystal field of ligands, depending of the symmetry, exhibits

an additional shift of the resonance line due to the splitting of the energy levels.

If to consider the simplest case of the spin S = 1 and uniaxial symmetry of the

crystal field Eq.1.34, then the energy levels of such a spin placed in the magnetic

field can be found using Hamiltonian:

Huniaxial = −gµBHSz +D(S2
z −

S(S + 1)

3
) (2.5)
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Figure 2.3: Electron spin resonance of a spin S = 1 with splitting of the
energy levels in zero magnetic field due to the crystal field. (a) energy levels
dependence on an applied magnetic field; (b) resonance absorption lines, solid
lines - with zero field gap, dashed - without zero field gap; (c) frequency as a

function of resonance magnetic field for such system.

and they are depicted in Fig.2.3,a. In this case measuring the frequency depen-

dence of the resonance field one can obtain the value of the energy gap (Fig.2.3,b,c).

In some systems, the interactions between different magnetic centers lead to the

induction of the local internal magnetic field which can be added to or subtracted

from the applied magnetic field. This leads as well to the shift of the ESR line

since the resonance condition is changed according to:

hν = gµB(H ±Hint) (2.6)

with Hint being the internal magnetic field.
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Integrated intensity

The integrated intensity I of the ESR line is proportional to the local spin sus-

ceptibility. In certain cases the integrated intensity can be calculated from the

amplitude A of the signal and a full width at half maximum ∆H1/2. In the case

of Lorentzian line the intensity is:

ILorentz = 1.57A∆H1/2 (2.7)

In the case of Gaussian line the intensity is:

IGauss = 1.0643A∆H1/2 (2.8)

2.4 ESR Instrumentation

2.4.1 X-band ESR spectrometer

The ESR measurements at 9.56 GHz (X-band) were performed by means of a com-

mercial X-band Bruker EMX spectrometer with a Bruker rectangular resonator

4104OR-C/0801 [49]. The temperature control was carried out using a helium gas-

flow cryostat and a temperature controller ITC503 (Oxford Instruments) which

enables to set the temperatures between 3.4K and 300K.

2.4.2 High field - high frequency ESR spectrometer

Here the basics of high field - high frequency ESR spectrometer based on Millime-

terwave Vector Network Analyzer (MVNA) are presented. More detailed informa-

tion can be found in the PhD dissertations of C. Golze [50] and U. Schaufuss [51]

and in Ref.[52].

High-field electron spin resonance (HF-ESR) experiments were performed with

a spectrometer based on a Millimeterwave Vector Network Analyzer (MVNA)

from AB Millimetre. This vector analyser is used for generation of millimeter-

and submillimeter range microwaves and for phase-sensitive detection of a signal.

MVNA enables to tune quasi-continuously the frequency of the microwave in the
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Figure 2.4: The principle scheme of the Millimeterwave Vector Network An-
alyzer

wide range from 16GHz to 800GHz. The detection of changes in the amplitude

and the phase of microwaves is realized electronically by application of non-linear

solid state devices. The principle scheme of the MVNA is shown in Fig.2.4. Here,

source 1 generates a base frequency F1 which is further multiplied using a Schottky

diode (harmonic generator HG). Then it is transferred to the sample by means of

oversized wave guides (see below). After passing through the sample the microwave

of a resulting frequency F1 × N is mixed on a second Schottky diode (harmonic

mixer HM) with the reference microwave from source 2 with frequency F2 × N .

Note here, that the reference frequency is slightly smaller by the value of f =

F1 − F2, f � F1, F2. Mixing of the signals, or their multiplication, in practice

is the generation of the harmonics with added and subtracted frequencies:

Acos(F1 + φ)× cos(F2) =
1

2
[Acos(F1− F2− φ) + Acos(F1 + F2 + φ)] (2.9)

The last term can be filtered with a low-pass filter, and the first term contains the

information about the amplitude A and the phase φ changes due to the resonance.
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The filtering and the data acquisition is then performed by a signal receiver. Due

to the phase sensitivity of the detection it is possible to obtain not only informa-

tion about the absorption but also about the dispersion of the microwaves at the

resonance.

To perform ESR experiments in high magnetic fields, the superconducting magneto-

cryostat from Oxford Instruments was used in combination with MVNA. It is able

to produce magnetic fields up to 15T in normal mode operation and up to 17T by

pumping the helium in order to decrease the temperature of the superconducting

coil. The variable temperature insert installed in the magneto-cryostat enables

the precise stabilization of the temperature in the range between 2K and 300K.

The propagation of the microwaves to the sample placed in the cryostat in the

magnetic field is realized by means of ”oversized” wave guides, pipes with inner

diameter much higher than a wave length of a microwave radiation. The multi-

mode regime of such wave guides gives a possibility to tune quasi-continuously

the frequency of a spectrometer. In Fig.2.5 two examples of probeheads based

on such wave guides are shown. On the left the transmission-type is presented.

Here the microwave emitted by the source is reflected from the 45 ◦ mirror and

then directed towards the sample. It passes through the sample reflects twice

from the 45 ◦ mirrors and thus propagates to the detector where the absorption

and the phase shift are analyzed. This type of a probehead is suitable only for

insulating samples since metallic samples are not transparent for microwaves, so

they will reflect the microwaves back to the source. To measure ESR on metallic

samples we use a reflection-type probehead presented on the right-hand side of

Fig.2.5. Here the initial polarization of the microwave plays an important role.

The vertically polarized microwave with electrical component E pointing up and

down is emitted by the detector. The beam splitter, which is metallic grid, turned

in the way that all the incident microwave of such a polarization is reflected down,

towards the sample. At the resonance the polarization of the microwave rotates, so,

after reflecting from the sample or from the bottom mirror, the part of microwave

power passes through the beam splitter and induces a signal at the detector, which

is then analyzed by MVNA. As can be seen such wave guide is suitable for metallic

and insulating samples.
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Figure 2.5: Probeheads based on multi-mode wave guides.





Chapter 3

(Gd,La)O1−xFxFeAs

superconductors

3.1 Introduction

Iron-pnictide superconductors [53] with superconducting critical temperatures up

to 55K [54–56] have attracted a huge interest due to striking similarities to super-

conducting cuprates [2, 3] as well as due to their original properties. Indeed, most

families of these layered materials feature an antiferromagnetically (AFM) ordered

parent compound, and the evolution of superconductivity concomitantly with sup-

pression of AFM order upon doping (see Fig.3.2). However there are important

differences which render the Fe-pnictides a separate new class of superconducting

materials. Most striking of them are semi-metallicity and the spin density wave

(SDW) character of the AFM order in the undoped pnictides contrasted with the

Mott-insulating AFM state in the cuprates [2, 3], as well as a multi-band versus

single-band electronic structure in the Fe-pnictide and cuprate high-temperature

superconductors, respectively.

Beyond study of the superconducting ground state, and of the magnetic and as-

sociated structural transitions seen in the parent compound, much attention has

been devoted to the issue of the ground states’ coexistence. Discrepancies on this

issue have been found between different families [55, 57–62], with the variation of

the boundary of the two ground states and different length scales of coexistence,

especially in the so-called 1111 family. This family has the composition ROFePn
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Figure 3.1: Crystal structure of 1111-type iron-pnictide and spin density wave
antiferromagnetic ordering in Fe-layer.

(R - rare earth, Pn - pnictide) and exhibits a layered structure shown on Fig.3.1.

The non-superconducting parent compound shows a structural transition from

tetragonal to orthorhombic phase [56, 63] and an ordering of the Fe-layer in the

antiferromagnetic spin density wave with the magnetic structure shown in Fig.3.1

[64]. The substitution of fluorine for oxygen induces the superconductivity in the

Fe-layer. The replacement of one rare earth element with another can cause a

significant variation of properties. Whereas in La-based superconducting samples

there is evidence against static magnetic order in the FeAs planes (see Fig.3.2,a)

[57], in the case of superconducting Sm-based samples evidence of remanent static

magnetism is found (see Fig.3.2,b) [55]. The situation appears complicated due to

the fact that the magnetism then tends to be of a short-range order or disordered,

possibly even dynamic [65], which calls for the use of local probe techniques. These

two different pictures complicate the establishment of the unified phase diagram

for 1111 pnictides, necessary for the full understanding of these materials. In ad-

dition, as was shown by NMR [66, 67] and µSR [64] studies, there is a magnetic

coupling between 4f (Ce, Pr and Sm) and 3d (Fe) moments. Such coupling of the

rare earth to the FeAs plane might give an additional contribution to the difference

in physical properties of different 1111-type superconductors.

In this part of the thesis two questions will be addressed, interaction of the Fe-layer

with the rare earth element, here Gd, and the issue of coexistence of supercon-

ductivity and magnetism within Fe-layer. Firstly, this chapter starts with the

investigation of lightly Gd doped LaO1−xFxFeAs where it is possible to probe lo-

cal properties at the R site, such as crystal field and the internal magnetic field
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Figure 3.2: Phase diagrams of 1111-type iron-pnictides; (a) LaO1−xFxFeAs
[57]; (b) SmO1−xFxFeAs [55].

from the Fe-layer. The result is that Gd probes the structural changes in the com-

pound and the appearance of the internal dipole field induced by the SDW ordered

Fe-layer. Secondly, the result of the investigation of concentrated GdO1−xFxFeAs

compounds will be shown. In this material the ESR data reveal a significant ex-

change coupling of Gd- and Fe-moments in the parent GdOFeAs sample which

enables the Gd3+ HF-ESR to probe sensitively the formation of the static SDW

magnetic order in the FeAs planes. Interestingly, it is found that the signatures

of such an order are still observed in the ESR spectra after doping. In particular,

though long-range SDW order present at very low doping is suppressed at dop-

ing levels where superconductivity appears, our results imply static on the ESR

time scale, likely short-range, magnetic correlations between Fe spins. This result

suggests that GdO1−xFxFeAs compounds may feature coexistence of quasi-static

magnetism and superconductivity on a large doping range.

3.2 Sample preparation

Sample preparation was done by Dr. G. Behr, Dr. A. Köhler and Dr. S. Wurmehl.

The polycrystalline samples of GdO1−xFxFeAs (x = 0, 0.15, 0.17, nominal content)

and Gd1−yLayO1−xFxFeAs (x = 0, 0.1, and y=0.02, 0.05 nominal content) were

prepared by two different routes. Route 1, which is similar to that described in
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Figure 3.3: Powder x-ray diffraction data of the c-axis aligned GdOFeAs sam-
ple.

Ref.[68], starts with FeAs, Gd, Gd2O3, GdF3 or FeAs, Gd, La, La2O3, LaF3 in

a stoichiometric ratio. All materials were homogenized by grinding in a mortar.

Route 2 (only GdO1−xFxFeAs) uses GdAs, Fe, Fe2O3 and FeF3 as starting ma-

terials in a stoichiometric ratio. Here, the starting materials were homogenized

by grinding in a ball mill. In either case, the resulting powders were pressed into

pellets under Ar atmosphere, and subsequently annealed in an evacuated quartz

tube either in a two step synthesis at 940◦C for 12 h and at 1150◦C for 48 h (60 h)

or in a one step synthesis at 940◦C for 168 h.

In order to confirm the single phase character of the polycrystals, powder x-ray

diffraction was performed on a Rigaku diffractometer (Cu Kα-radiation, graphite

monochromator). The samples were either phase pure or contained insignificantly

small amounts of GdAs, GdOF, and Fe3O4. The microstructure and the com-

position were examined by scanning electron microscopy (SEM, XL30 Philipps,

IN400) equipped with an electron microprobe analyzer for semi-quantitative ele-

mental analysis using the wave length dispersive x-ray (WDX) mode. The analysis

showed that the GdO1−xFxFeAs sample with x = 0.15 (nominal content) in fact

contains ∼ 0.07± 0.02 of F and x = 0.17 contains ∼ 0.14± 0.02 of F. Further on,

we will use the doping levels obtained by WDX in order to label these samples.

For the c-axis alignment of the parent GdOFeAs sample, which was synthesized
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under high pressure [69], and of the Gd1−yLayOFeAs (y = 0.02, 0.05) samples, the

powder was mixed with epoxy resin and hardened while rotating in a magnetic field

of 1.5T. The x-ray diffraction data of the aligned powder samples were collected

at room temperature using a PANalytical X’Pert PRO system (Philips) with Co

Kα-radiation (Fig.3.3). The presence of highly intense [00l] reflections (Fig.3.3,

arrows) which dominate the pattern points to a sufficiently good quality of the

alignment in the case of all oriented samples. Reflections with Miller indices

different from [00l] (Fig.3.3, asterisks) are visible in the background, too, but their

intensity is strongly suppressed compared to the powder pattern. In Fig.3.3,a

there are additional reflection, marked with symbol ”p”. They are attributed to

the sample holder (plasticine).

3.3 Gd1−yLayO1−xFxFeAs

3.3.1 Sample characterization

Investigation of the static magnetic properties were performed by N. Leps and

Prof. Dr. R. Klingeler. The temperature dependence of the susceptibility of 2%

and 5% Gd doped LaOFeAs samples, shown on Fig.3.4,a,b as squares, can be

fitted with high accuracy using Curie-Weiss [6] law (solid lines). This fit enables

to estimate the actual content of the Gd ions doped in the sample. For the

samples without fluorine doping, with nominal content of Gd of 2% the estimate

from magnetization is ≈ 1.6%, with nominal content of 5% the actual content

is ≈ 4.8%. For the sample with 5% of Gd and 10% of F the actual Gd content

is ≈ 4.9%, the experimental data and the fit for this sample are not shown. In

all cases the real content value does not differ significantly from the nominal one.

Later to label the samples we will use nominal content values. By subtracting

the Curie-Weiss fit from the measured data we extract the susceptibility of the Fe

layer in these samples. The results of the subtraction are shown as dashed lines on

Fig.3.4,a,b for both 2% and 5% doped LaOFeAs samples. It is clearly seen that

at temperatures in the range from ∼ 120K to ∼ 150K there are changes in the

susceptibility similar to that of the parent LaOFeAs sample [70]. This behavior is

attributed to the structural changes in the samples and to the stabilization of the

SDW order.
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Figure 3.4: Magnetic susceptibility data measured on: (a)
La0.98Gd0.02OFeAs; (b) La0.95Gd0.05OFeAs.
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Figure 3.5: Electrical resistivity measurements performed on: (a)
La0.98Gd0.02OFeAs; (b) La0.95Gd0.05OFeAs; (c) La0.95Gd0.05O0.9F0.1FeAs.
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Investigation of transport properties was carried out by A. Kondrat and Dr. C.

Hess. In order to precisely determine the phase transition temperatures (TST ,

TSDW and Tc) of 2% and 5% Gd doped LaO1−xFxFeAs samples electrical resistiv-

ity measurements were performed. In the case of samples without fluorine doping

(Fig.3.5,a,b) the resistivity shows qualitatively similar behavior to that of the

LaOFeAs parent sample. The difference is in transition temperatures which are

shifted to lower values, possibly due to increased disorder in the system. For 2%

and 5% Gd doped sample transition temperatures are TST = 148K and TSDW =

130K. The Gd1−yLayO1−xFxFeAs sample with 10% fluorine doping does not give

any evidence for structural transition and SDW transition, but shows the super-

conductivity with Tc = 25K (Fig.3.5,c).

3.3.2 X-band ESR

The typical powder ESR spectra are shown on Fig.3.6,a and Fig.3.6,b for 2%

and 5% doped samples respectively. These measurements were done at X-band

frequency of ∼ 9.5GHz and temperature T = 130K. To fit the spectra we used

two Dysonian lines, dashed lines in Fig.3.6,a,b. Later in the text they will be

called broad and narrow components. The Dysonian ESR line shape is typical for

metallic and semi-metallic system which the present samples are. The necessity

to use two lines for the fit is explained by following. Gd3+ has an effective spin

7/2 and it is situated in the tetragonal/orthorombic crystal field due to the crystal

lattice symmetry [56, 63]. Therefore, energy levels of the Gd3+ ion can be described

using the effective spin hamiltonian in the generalized form [9, 10]:

Heff = gµBH · S +B0
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Here the first term accounts for the Zeeman energy and in the following terms Om
n

are Stevens operators describing the crystal-field (CF) interaction with parameters

Bm
n . The schematic picture of energy levels and ESR spectrum corresponding to

them according to Eq.(4.3) is shown in Fig.3.7,a. The ESR spectrum consists of

seven absorption lines: the central transition +1
2
↔ −1

2
with the highest intensity

and 6 satellites ±3
2
↔ ±1

2
, ±5

2
↔ ±3

2
and ±7

2
↔ ±5

2
. Such a structure of the

line is called a fine structure splitting. In the case of an isotropic g-factor the
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Figure 3.6: Two component fit of the ESR spectrum of: (a)
La0.98Gd0.02OFeAs; (b) La0.95Gd0.05OFeAs

.

Figure 3.7: (a) Crystal field and Zeeman splitting of the energy levels of the
Gd3+ ion and a corresponding ESR spectrum. (b) Angular dependence of this

ESR spectrum.

resonance field of the main transition (+1
2
↔ −1

2
), in contrast to the satellites,

almost does not depend on the angle between the symmetry axis and the external

magnetic field (see Fig.3.7,b). Hence, the powder averaging of the spectra, sum

of all directions, leads to its transformation to a shape shown on Fig.3.6,a,b (see

also S. E. Barnes [71], p.831). The information about the CF-splitting and the
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accurate value of the magnetic field acting on the Gd ion which, in fact, defines

the position of the central line can be extracted from the two component fit. The

narrow component models the main transition. Its resonance field is determined

by the local field at the Gd site. The broad component mimics the effect of the

powder averaging of the satellites. Its width is therefore a measure of the CF

splitting, and of the local magnetic field if there are magnetically nonequivalent

Gd sites.

On Fig.3.8,a,b the temperature dependencies of the width δH of the broad com-

ponent and the resonance field of the narrow component Hres are shown for the

2% and 5% Gd doped LaOFeAs samples. Hres is practically constant down to the

temperature of the magnetic phase transition TSDW = 130K where it begins to

shift to lower fields. The shift ≈ 0.007T is similar for both samples. At tem-

peratures above TSDW and TST there is gradual decrease of the width δH of the

broad component and also of the narrow component with decreasing the temper-

ature. Since both components exhibit narrowing, this behavior can be attributed

to the Korringa relaxation of Gd spins on the conduction electrons, similar to the

EuFe2As2 [72].

δH ∼ (N(εF )J)2T (3.2)

The slope value, according to Eq.3.2 [71, 73], is proportional to the electronic

density of states N(εF ) and to the coupling J and it is equal to ∼ 0.45 · 10−4 T/K

in this case. With lowering temperature below TST = 148K linewidth of broad

component δH(T ) starts to increase and at TSDW = 130K there is a jump which

is more pronounced in the case of the 5% doped sample. The initial broadening

one can associate with changes in the fine structure of the Gd3+ ESR line and the

jump at TSDW can be associated with stabilization of magnetic order in Fe layer.

In contrast, the fluorine doped sample does not reveal any anomalies at temper-

atures above Tc (Fig.3.8,c). The Korringa slope found in this case is equal to

∼ 0.6 · 10−4 T/K. This value is significantly higher then that in the fluorine un-

doped case which suggests the increased density of states at the Gd ion after the

charge doping.

To resolve the Gd3+ fine structure we have measured ESR on the 2% and 5%

Gd doped LaOFeAs samples c-axis oriented in magnetic field. At temperatures

above TSDW and TST a single lorentzian line without a fine structure is observed.

With decreasing the temperature the Gd3+ fine structure starts to develop and
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Figure 3.8: Temperature dependence of the resonance field of narrow com-
ponent (a) and the linewidth of both components (b) of Gd doped LaOFeAs
samples. (c) Temperature dependence of the linewidth (right) and resonance

field (left) of La0.95Gd0.05O0.9F0.1FeAs sample.
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Figure 3.9: Temperature dependence of the ESR spectrum of 2% Gd doped
c-axis oriented LaOFeAs sample with magnetic field parallel to c-axis.

Figure 3.10: Angular dependence the ESR spectra at low temperature of 2%
(a) and 5% (b) Gd doped c-axis oriented LaOFeAs sample.
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Figure 3.11: Theoretical simulation of the low-temperature ESR spectrum of
c-axis oriented 2% Gd doped LaOFeAs sample assuming: (a) two nonequivalent
Gd sites with different internal magnetic field Hint; (b) four nonequivalent Gd
sites, two with different internal magnetic field Hint and two with different

crystal field.
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Figure 3.12: Two magnetically nonequivalent Gd sites, dark brown arrows
depict dipolar field at the Gd/La ions produced by the SDW ordered Fe-layer.

becomes resolved at T ∼ 80K (Fig.3.9). The absence of the fine structure in

the ESR spectra at high temperatures can be explained by the poor signal to

noise ratio due to a small susceptibility of Gd ions at high temperatures. On

the angular dependence of the ESR spectra, measured at T = 4K, shown on

Fig.3.10,a,b, one can see that the ESR line at lowest magnetic field, in contrast

to other lines, does not exhibit any changes with varying the angle θ between

magnetic field and c-axis of the sample. This leads to the conclusion that this line

is not a part of the Gd signal and, most probably, is a signal from Fe impurity.

As one can see on Fig.3.10,a,b, the best resolution is achieved for the smallest

Gd concentration of 2% and for the direction of the external field parallel to the

orientation axis of the samples (c-axis). In this case the spectrum consists of

at least 12 absorption lines, but a single Gd3+ ion, according to its spin value
7
2
, may have maximum 7 lines. Straightforward explanation for that would be

the SDW order in the Fe plane which creates the dipole field on the La/Gd site.

According to the Fe spin alignment in the SDW, which is similar in the whole

1111-family of Fe-based superconductors (see Fig.3.1 and Fig.3.12), there are two

magnetically nonequivalent positions of the La/Gd ion, where the internal field

from the ordered Fe moments has the opposite sign (Fig.3.12). We performed

the simulation of the Gd3+ spectra using the Hamiltonian (4.3) and assuming

two magnetically nonequivalent positions. The best fit to the measured spectra

is shown on Fig.3.11,a. The fit reproduces the middle part of the spectra rather

well, but it lacks the most outer lines. To better recreate the measured spectra

we had to use the model which includes not only two magnetically nonequivalent
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positions (+/- Hint), but also two Gd sites with different crystal field parameters

(CF1/CF2). Altogether this gives 4 different Gd sites. The best fit for this model

is shown on Fig.3.11,b. The value of the internal magnetic field given by the fit is

∼ 0.0078T which is in the order of magnitude of possible dipolar field produced

by Fe-layer.

3.3.3 Gd1−yLayO1−xFxFeAs summary

The ESR results on the lightly Gd doped LaO1−xFxFeAs samples establish Gd

ions as a sensitive probe of magnetic and structural changes in the Fe planes.

In the parent, i.e. not doped with fluorine, samples the change of the extent of

the fine structure reflects the occurrence of the structural transition. In addition,

the AF SDW order manifests in the shift and broadening of the powder spectra.

The analysis of the spectra of the c-axis oriented sample yield 4 different Gd sites

at low temperatures. Two magnetically nonequivalent positions are due to the

SDW order in the Fe layer, which creates the alternating dipolar field on the Gd

ions, and two positions with different charge environment. Crystal structure does

not allow two different crystallographic Gd sites which yields the conclusion that

different charge environments are probably due to the local disorder effects.

3.4 GdO1−xFxFeAs

3.4.1 Thermodynamic and transport measurements

Investigation of thermodynamic properties was carried out by N. Leps, L. Wang

and Prof. Dr. R. Klingeler. In Fig.3.13,a, the temperature dependencies of the

static susceptibility χ = M/H and the inverse susceptibility χ−1 = H/M of the

GdOFeAs sample are presented. As χ(T ) is dominated by the response of the

Gd moments, the results are very similar for the F-doped samples, which are not

shown. In general, the data obey the Curie-Weiss law which is expected due to

the presence of paramagnetic Gd3+ ions. Note that the response of the FeAs-

layers which is e.g. visible in LaOFeAs is about 3 orders of magnitude smaller and

hence masked by the magnetism of the rare earth ions [74]. Analyzing the data

in terms of the Curie-Weiss-law yields the antiferromagnetic Weiss temperature
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Figure 3.13: (a) Static susceptibility χ = M/H (left axis), χ−1 (right axis);
(b) specific heat cp (left axis) and thermal expansion coefficient α (right axis)
of GdOFeAs vs. temperature; specific heat data for x = 0.07 and x = 0.14
samples is artificially shifted down for clarity; inset in (b) panel presents specific
heat anomaly associated with long-range antiferromagnetic ordering of the Gd-

moments at µ0H = 0 and µ0H = 9T.

Θ = −16 ± 1K and the effective magnetic moments peff = 7.81 ± 0.04 µB which

is close to the magnetic moment of a free Gd3+ ion (peff = 7.94 µB). At a low

temperature of about ∼ 5K there is a kink of the magnetization due to the AFM

ordering of the Gd moments.

While the structural and magnetic phase transitions of the Fe-layer are not visible

in the magnetization data, there are pronounced anomalies in the specific heat

cp and the thermal expansion coefficient α (Fig.3.13,b) in the case of the parent

GdOFeAs sample. There is one broad feature visible in the specific heat data.

In contrast, the thermal expansion coefficient exhibits two huge anomalies with
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Figure 3.14: (a) Electrical resistivity ρ of GdO1−xFxFeAs samples, x = 0,
0.07, 0.14; (b) electrical resistivity derivative dρ/dT for x = 0 (left axis), x =

0.07, 0.14 (right axis).

opposite sign which can be attributed to the structural and SDW transitions of

the compound at TST = 136 ± 5K and TSDW = 128 ± 2K. In addition, the

specific heat data reveal a sharp anomaly at TNGd = 3.8K which is associated with

the onset of long range antiferromagnetic order of the Gd moments, in accord

with the magnetization data. Note that the anomaly is not present in the thermal

expansion data due to the restricted temperature range T ≥ 6K. Upon application

of external magnetic fields, Gd order is strongly suppressed as shown in Fig.3.13

(inset in the lower panel). TNGd is shifted to 2.5K in an external magnetic field

of µ0H = 9T. While anomalies associated with Gd-ordering are still observed in

the specific heat data of the F-doped samples with x = 0.07 and x = 0.14, there

are no visible anomalies at higher temperatures (Fig.3.13,b). This evidences the

absence of long-range SDW order in the doped, superconducting samples.
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Investigation of transport properties was carried out by A. Kondrat and Dr. C.

Hess. Fig.3.14,a shows the temperature dependence of the electrical resistivity ρ

of the GdO1−xFxFeAs samples for all three doping levels: x = 0, 0.07 and 0.14. To

get a better insight into the data we present the temperature derivatives dρ/dT

in the bottom panel (Fig.3.14,b). The resistivity of the undoped material exhibits

features closely connected to the structural and magnetic phase transitions: a

maximum close to TST and an inflection point at TSDW = 128 K, which are

characteristic for all the 1111 parent compounds [56, 68, 70]. With doping, the

electrical resistivity drastically changes its behavior, superconductivity emerges

at low temperature and the intermediate temperature maximum disappears. The

SC temperatures Tc for x = 0.07 and x = 0.14 samples amount to 20K and

45K, respectively. No pronounced features of the SDW phase are present in these

compounds in the whole investigated temperature range. However, the normal

state behavior of ρ(T ) for x = 0.07 is very unusual. At high temperatures the

resistivity is linear down to approx 200 K, then it develops a curvature and drops

below the linear approximation of the high temperature part. With decreasing

temperature further, ρ(T ) becomes linear again and develops a slight opposite

curvature at T . 50 K, prior to the onset of superconductivity. Upon increasing

the F doping level in the samples, namely to x = 0.14, this anomaly becomes

weaker. A similar drop of ρ(T ) at T . 200 K as found here has previously

been observed for other 1111-type pnictide superconductors [56, 68, 75] as well

as for Ba1−xKxFe2As2 [76, 77]. The qualitative resemblance to the sharp drop

at TSDW which is observed in the respective parent compounds suggests that the

resistivity drop in the superconducting samples is indicative of remnants of the

SDW phase. In fact, a recent study of the Nernst effect on LaO1−xFxFeAs provides

strong evidence that precursors of the SDW phase develop in the vicinity of the

resistivity anomaly despite the absence of static magnetism [78].

3.4.2 GdOFeAs, 9.6 GHz X-band measurements

The ESR measurements performed at a frequency of 9.6GHz on the c-axis aligned

GdOFeAs sample in the whole temperature range of study and for both sample

orientations (Hext || or ⊥ c) reveal one broad line with the g-factor ∼ 2 (Fig.3.15,a,

inset). Such ESR response is typical for the systems where Gd3+ ions occupy

regular positions in the crystal lattice with short distances between neighboring

ions [71]. The Gd3+ is an S-state ion with a half-filled 4f shell which yields an
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isotropic g-factor equal to 2 and a spin value of 7/2. The rather big spin value leads

to strong magnetic dipole-dipole interactions which together with the unresolved

fine structure broaden the ESR line. This broadening mechanism should lead to

a Gaussian line shape which is however not observed in the spectra. Instead, the

Lorentzian1 function had to be used to fit the spectra (thin line in the inset in

Fig.3.15,a) in order to obtain accurate values of the resonance field (Hres) and the

linewidth. The Lorentzian shape suggests that homogeneous narrowing of the line

does take place, which can be caused by isotropic exchange interaction between

Gd spins [10, 71]. The temperature dependencies of Hres and the linewidth are

shown on Fig.3.15,a,b. With lowering the temperature no drastic changes are seen

in Hres down to ∼ 10K where there is a strong shift of the line due to the ordering

of Gd moments (Fig.3.15,a). The linewidth, in contrast to the resonance field,

shows clear change in the behavior at TSDW = 128K for both sample orientations

(Fig.3.15,b). At temperatures above TSDW there is a gradual decrease of the width

of the ESR line upon cooling. This can be attributed to a Korringa-like behavior

[71, 73], with the linewidth having a linear in T contribution due to the relaxation

of the Gd spins through interaction with the conduction electrons (see Eq.3.2),

similar to EuFe2As2 [72]. The slope value amounts to ∼ 0.9 · 10−4 T/K which is

one order of magnitude smaller than that in EuFe2As2. A strong broadening of

the line below TSDW can be attributed to the SDW ordering in the FeAs layers.

Similar effects in the Gd3+ ESR linewidth were observed before in the case of

Gd2BaCuO5 samples where exchange coupling of Gd- and Cu-moments enabled

to probe by means of Gd3+ ESR the magnetic ordering of the Cu layers [79] (see

the discussion below).

3.4.3 GdOFeAs, high-frequency/field measurements

In the measurements performed at 9.6GHz, the linewidth of the Gd3+ ESR signal

is comparable to its resonance field. This leads to complications in the spectra

analysis and to a lack of resolution. In order to improve the spectral resolution we

performed high-frequency/field measurements on GdOFeAs samples. The high-

temperature ESR spectra of the non-oriented GdOFeAs powder sample measured

at a frequency of 328GHz (Fig.3.16,a) consist of a single broad Lorentzian-shaped

1Note here that a Dysonian ESR line shape, which is typical for metallic samples in a cavity,
is not observed here due to the fine grinding of the sample and further mixing with epoxy. This
procedure reduces the microwave dispersion which is the origin of the Dysonian line shape.
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Figure 3.15: Results of the X-Band ESR (ν = 9.6 GHz) measurements per-
formed on c-axis aligned powder GdOFeAs sample for two sample orientations
in the magnetic field, open circles - field in ab plane, open squares - field parallel
to the c-axis; (a) temperature dependence of the resonance field on a reduced
field scale (H −H0)/H0. Here µ0H0 = 0.323/0.328 T is resonance field at the
highest temperature for H ⊥ c/H ‖ c; the inset shows the spectrum at T = 70K
in H ‖ c configuration, the arrow points at a small Fe ESR signal which pres-
ence indicates a small amount of impurities; (b) temperature dependence of the
linewidth; inset shows the change of the T-dependence at the SDW transition.



3.4 GdO1−xFxFeAs 57

Figure 3.16: Temperature evolution of the high-frequency/field ESR spectra
of GdOFeAs powder and c-axis aligned powder samples at a frequency of ν =
328 GHz, shown on a reduced field scale (H −H0)/H0. Here µ0H0 = 11.7 T is
the resonance field of the signal at high temperature; (a) non-oriented powder;

(b) c-axis oriented powder.

line with a g-factor of ∼ 2 and a linewidth of ∼ 0.2T, similar to the low-frequency

measurements. However, the very small Korringa contribution detected in the low

frequency measurements is not visible in the HF-ESR spectra (Fig.3.21,a). The

low-temperature HF-ESR spectra exhibit an inhomogeneously broadened shape

which is in contrast to X-band data. As a measure of this broadening the full width

at the half maximum (FWHM) of the signal ∆H has been taken (see Fig.3.21,a).

As can be seen, with decreasing the temperature there is only a weak broadening

of the signal down to a characteristic temperature Tif ∼ 150K (if denotes an

internal field at the Gd ion, see the discussion below) where substantial inhomo-

geneous broadening begins to develop continuously down to the lowest measured

temperature of 4K. Concomitantly with the inhomogeneous broadening there is

a noticeable shift of the minimum of the absorption to lower fields, as shown on

Fig.3.17 (open circles) on a reduced field scale (H −H0)/H0. Here µ0H0 = 11.7T

is the resonance field of the signal at high temperature. The spectral shape at low

temperature (Fig.3.16,a) appears to be very similar to the shape of the ESR signal

from a powder sample with an anisotropic g-factor. However, since the Gd3+ ion

is a pure S-state ion, it should have an isotropic g-factor very close to 2. Hence
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Figure 3.17: The shift of the minimum of absorption of the spectra with
temperature, measured at a frequency of ν = 328GHz, on a reduced field scale
(Hres − H0)/H0. Here µ0H0 = 11.7 T is the resonance field of the signal at
high temperature; open circles - powder sample, open squares - c-axis aligned

powder sample, solid lines - fits of the resonance field using Eq. 3.6.

one can conjecture that the shape of the ESR signal from the GdOFeAs sample

is caused by the anisotropy of the internal field at the Gd site arising from the

AFM-ordered Fe moments. In such an anisotropic powder situation most of the

spectral weight is coming from the grains whose c-axes are oriented perpendicular

to the direction of the external field Hext. One should note here that in the case of

in-plane anisotropy there will be an additional averaging effect due to the distribu-

tion of resonance fields of grains whose (ab)-planes are parallel to Hext. Therefore

we assume here that the low-field minimum of the absorption corresponds to the

mean value of the resonance field of the Gd3+ ESR response (Hres⊥) in the case of

the external field applied perpendicular to the c-axis. Correspondingly, the high-

field shoulder of the spectra arises from grains whose c-axes make small angles

with respect to Hext.

In order to probe the Gd3+ response for the geometry Hext ‖ c we have performed

ESR measurements on the c-axis oriented GdOFeAs powder sample. Though,

according to the x-ray diffraction analysis, the alignment of the powder particles

was not perfect, a substantial c-axis texturing of the sample has been achieved
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(Fig.3.3). Similarly to the non-oriented powder sample, the c-axis oriented sample

at temperatures above ∼ 150K exhibits only a small broadening of the ESR spec-

trum with decreasing temperature (Fig.3.16,b). Below this temperature the signal

experiences strong inhomogeneous broadening where most of the spectral weight

is shifted to higher fields, which is opposite to the finding in the non-oriented pow-

der sample. In the oriented sample most of the spectral weight and, consequently,

the minimum of the absorption should correspond to the resonance field of the

Gd3+ ESR response (Hres‖) in the geometry Hext ‖ c whereas a non-ideal powder

alignment yields the low-field shoulder of the ESR signal.

From our measurements on non-oriented and c-axis oriented powder samples one

can, therefore, extract the temperature dependencies of Hres in two configurations,

i.e., for fields aligned along the c-axis (Hres‖) and in the (ab)-plane (Hres⊥), as

summarized in Fig.3.17. As can be seen, the changes of both resonance fields

Hres⊥ and Hres‖ start upon cooling at Tif . 150K and the shifts have opposite

directions.

The qualitative difference in the high-field/frequency and low-field/frequency mea-

surements leads to the conclusion that the shift of the resonance field and the

inhomogeneous broadening of the spectra measured at a frequency of 328GHz is

a field-induced effect. To investigate it, we have measured the frequency ν versus

magnetic field Hres dependence of the GdOFeAs powder and the c-axis aligned

samples, respectively, both at T = 280K and T = 4K (Fig.3.18). At T = 280K

the spectrum at all studied frequencies and fields consists of a single lorentzian

line with the same linewidth value. A linear ν(Hres) dependence has been revealed

yielding a g-factor g = hν/(µBHres) equal to 2.005 (straight solid line on Fig.3.18).

The spectra at T = 4K for the non-oriented powder (thin line) and c-axis oriented

powder (thick line) samples at different frequencies together with the frequency

dependence of the resonance fields Hres⊥ and Hres‖ are shown on Fig.3.18 as well.

This measurement reveals that the difference between Hres⊥ and Hres‖ increases

linearly with increasing the frequency and the field strength.

3.4.4 GdOFeAs, discussion

Since the inhomogeneous broadening and the shift of the Gd ESR signal set in close

to the SDW ordering temperature, one can associate them with the interaction of

the Fe ordered moments with the Gd spins. The shifts of Hres⊥ and Hres‖ from
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Figure 3.18: Frequency dependence of the ESR signal from GdOFeAs non-
oriented powder and c-axis oriented powder samples measured at T = 4K; data
points correspond to the position of the minimum of absorption of the spectra
at different frequencies, open circles - non-oriented powder sample, open squares
- c-axis oriented powder sample, dashed lines - guides for the eyes, solid line -
the frequency dependence of the position of the high-T Gd ESR line measured
at T = 280 K; the lineshape of the spectra is shown as well, thin solid line -

non-oriented powder, thick solid line - c-axis oriented powder.

a common high-temperature paramagnetic value H0 can hence be related to the

occurrence of an internal magnetic field (Hint⊥ and Hint‖) at the Gd site due to the

formation of the static SDW in the FeAs layer. Based on the dependence shown

on Fig.3.18 we can conclude that the strength of these internal fields depends on

the strength of the applied magnetic field.

When the FeAs planes are in the paramagnetic state, at temperatures above

TSDW = 128K, the exchange/dipolar field at the Gd position is negligible as the

applied magnetic field cannot effectively polarize small paramagnetic moments at

elevated temperatures. At temperatures below TSDW = 128K the Fe moments

order statically in the (ab)-plane. The AFM structure of the magnetic order (see

Fig.3.1), which is similar for all R-based 1111-type pnictides can be found in

Ref.[64]. Due to symmetry reasons, without an applied magnetic field the internal

field at the Gd site can be only of dipolar nature and in this case according to an
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estimate it should not exceed ∼ 0.03T. We suggest that application of an external

magnetic field induces tilting of the Fe spins and hence creates an uncompensated

magnetic moment (mFe) in the direction of the external field1. This moment can

interact with the Gd3+ spins which would effectively lead to the occurrence of an

additional internal field. If Hext⊥ c, then the Fe spins tilt in the ab plane as it

is schematically shown on Fig.3.19,a,b for the configuration where Hext makes an

angle of 90◦ with the AFM ordered Fe spins. The shift of the ESR line Hres⊥,

measured at 328GHz, yields an estimate of the internal field (Hint⊥) of about

≈ 0.4T parallel both to Hext and to the uncompensated moment mFe in the FeAs

plane. If Hext ‖ c, then the Fe moments tilt out of the plane (Fig.3.19,c,d). In

this case the shift of the ESR line, measured at 328GHz, yields an estimate of

the internal field (Hint‖) of about ≈ 0.65T antiparallel both to the Hext and to

the uncompensated moment mFe. One should note here that an estimate of the

dipolar field produced by the FeAs layers at the Gd site yields a value which does

not exceed ≈ 0.05 T even for full out-of-plane canting. This field is one order of

magnitude smaller than the experimentally observed value which clearly implies

the presence of an appreciable exchange interaction between Gd and canted Fe

moments. The dependence of the sign of the internal field on the direction of the

applied magnetic field suggests that the sign of the exchange interaction with Gd

spins is different for different directions of the uncompensated Fe moments, i.e.,

ferromagnetic for the in-plane and antiferromagnetic for the out-of-plane direc-

tions. This surprisingly strong anisotropy of the exchange might be related with

the multiband electronic structure of iron pnictides which might give rise to differ-

ent pathways for interactions between the Gd 4f orbitals and the in-plane xy and

out-of-plane xz and yz Fe 3d bands. Note that, in zero magnetic field and hence

without Fe spin canting, the exchange interaction between Fe and Gd moments of

an arbitrary sign is geometrically frustrated (see Fig.3.19). The application of a

field which tilts the Fe moments thus removes this frustration.

Considering the exchange interaction, one might suppose that the temperature

dependence of the internal field at the Gd site should follow the behavior of the

SDW order parameter in 1111 compounds (see Fig.3.20) [57, 64, 70, 80], which

increases fast within ∼ 30K starting at TSDW and then stays almost constant with

further decreasing the temperature. Here, the internal field acting on the Gd3+

1For simplicity which does not affect the conclusions of the following qualitative discussion,
we assume hereafter that the uncompensated magnetic moments and thereby created internal
fields are collinear with the applied magnetic field.
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Figure 3.19: Canting of the Fe moments due to the applied magnetic field
Hext; (a),(b) Hext⊥ c (the angle between Hext and Fe AFM ordered moments
is 90◦); (c),(d) Hext‖ c; arrows on the Fe site depict magnetic moments, whereas

arrows on the Gd sites represent the induced internal field.

moments arises at a temperature Tif ≈ 150K which is∼ 20K higher than TSDW =

128K and keeps increasing upon cooling till the lowest measured temperature

(see Fig.3.17). When approaching the temperature of the SDW transition from

high temperatures, the appearance of the internal field well above TSDW can be

explained by growing quasi-static correlations between the Fe moments seen in

the time window of the high-frequency ESR. The development of the internal

field below TSDW is found to be similar to that of some other systems where

paramagnetic ions are coupled to magnetically-ordered moments of another type

[81, 82]. To explain this evolution of the internal field we use a simple model based

on a mean-field approximation [6, 71].

To simplify the calculations we assume that a magnetic field and magnetic mo-

ment vectors are collinear. In this model, the internal field at the Gd site Hint

is proportional to the magnitude of the uncompensated Fe moment mFe with a
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Figure 3.20: Temperature dependence of the order parameter of
LaO1−xFxFeAs, taken from Ref.[70]

coefficient λ:

Hint = ±λmFe (3.3)

Hereafter the sign depends on the type of interaction, being ”+” for ferromagnetic

and ”−” for antiferromagnetic exchange. Neglecting the weak dipolar contribu-

tion, the magnetization normalized to the single ion mGd of the Gd subsystem is

proportional to the sum of the applied magnetic field Hext and internal field Hint:

mGd = χGd(T ) (Hext ±Hint), (3.4)

where χGd(T ) = CGd/(T − Θ) is the Gd magnetic susceptibility, CGd is the Gd

Curie constant, Θ is the Gd Curie temperature. Due to the exchange interaction,

the uncompensated magnetic moment mFe is proportional not only to the applied

field but also to the internal field created by the Gd moments:

mFe = α(Hext + λmGd) (3.5)

Here α is the susceptibility of the ordered Fe moments to the external magnetic

field. Using Eq. 3.3, Eq. 3.4 and Eq. 3.5 one can obtain the equation for the
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internal field Hint at the Gd site:

Hint = ±λ
2αCGd + λα(T −Θ)

(T −Θ)− λ2αCGd

Hext (3.6)

Eq. 3.6 enables to fit reasonably well the measured temperature dependence of

the internal field (see Fig.3.17). The resonance field of the Gd is determined by

the applied field and by the internal field H0 = Hext ± Hint. At high tempera-

tures when there is no internal field at the Gd site at any strength of the applied

magnetic field (Hint = 0) one can measure the resonance field H0 = 11.7T (for

measurement frequency ν = 328GHz). Assuming that the resonance field of the

Gd ions H0 = 11.7T stays constant at all measured temperatures one obtains the

expression for the applied field Hext = H0 ∓ Hint (H0 = 11.7T). The fit for two

measurement configurations (Hres⊥ and Hres‖) is shown on Fig.3.17 by solid lines.

The parameters CGd, Θ and α can be taken from different experiments. The Gd

Curie constant CGd and Curie temperature Θ are known from the susceptibility

data of GdOFeAs samples (see Sec. 3.4.1). As it is shown in Ref.[74] the bulk Fe

susceptibility of LaOFeAs samples is determined by the spin susceptibility. There-

fore the parameter α can be estimated from this measurement yielding a value of

∼ 10−4 erg
G2 mol

[63, 74, 83, 84]. The λ value resulting from the fit is equal to ∼ 19.7
G2 mol

erg
for Hres⊥ and ∼ 25.3 G2 mol

erg
for Hres‖. According to the mean field theory

[6], these values yield an estimate of the exchange interaction energy J for two

configurations amounting to |J | ∼ 15K for Hres⊥ and |J | ∼ 19K for Hres‖. In

addition, Eq. 3.3 enables to calculate the uncompensated moment mFe. Its value

grows with decreasing the temperature and increasing the Gd susceptibility until

it reaches ∼ 0.03µB at the lowest measured temperature which suggests that the

Gd subsystem additionally tilts or polarizes the SDW.

To summarize this part, the ESR results on GdOFeAs samples show that the

Gd subsystem is exchange-coupled to the magnetic FeAs planes. On approaching

the AFM SDW transition from above, the growing correlations between the Fe

moments yield a shift of the Gd ESR line. At lower temperature, depending on

the angle betweenHext and the c-axis of the sample, the signal shifts to higher or to

lower fields due to the uncompensated exchange field which is transferred to the Gd

site from the Fe moments canted in an external magnetic field. Since the full width

at the half maximum ∆H is proportional to the difference between resonance fields
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Hres⊥ −Hres‖, then the width of the ESR signal ∆H of the non-oriented powder

sample can be taken as a measure of this exchange field (Fig.3.21,a).

3.4.5 GdO1−xFxFeAs (x = 0.07, 0.14)

The influence of the fluorine doping on the Gd ESR has been studied on two

powder samples of GdO1−xFxFeAs with 7% and 14% of fluorine. On Fig.3.22,a,b

the evolution of the respective Gd3+ ESR spectra is shown on a reduced field scale.

Similarly to the undoped sample, at high temperature the ESR spectrum for both

doped samples consists of a single Lorentzian-shaped line with g = 2.005. While

lowering the temperature, the line remains almost unchanged until a characteristic

temperature Tif is reached. This temperature corresponds to the onset of an

additional inhomogeneous contribution to the width of the ESR signal ∆H. This

inhomogeneous contribution is shown by the shaded area on Fig.3.21,b,c. The

temperature Tif clearly depends on the fluorine doping level. In the case of the

7% F-doped sample a noticeable broadening of the line starts at Tif (x = 0.07) ∼
125K, whereas for the 14% doped sample it starts at a lower temperature Tif (x =

0.14) ∼ 100K. For both doped samples there is a shift of the minimum of the

absorption (Hres⊥) to lower magnetic fields below Tif (Fig.3.23). Qualitatively

this shift is similar to that of the undoped sample (solid line on Fig.3.23), but it

is less pronounced. In addition, the inhomogeneous broadening and the shift of

Hres⊥ to lower magnetic fields exhibit a magnetic field dependence similar to that

of the undoped GdOFeAs sample (Fig.3.24).

3.4.6 Superconducting GdO1−xFxFeAs, discussion

The remarkable similarities of the Gd ESR behavior between the fluorine-doped

samples and the undoped one strongly suggest that, even in the superconducting

samples where the phase transition to the AFM SDW state is not observed in the

thermodynamics and transport properties, quasi static (on the time scale of the

ESR measurement) magnetic correlations in the FeAs planes are present below

the characteristic temperature Tif . Such correlations may explain the peculiar

features in the resistivity data shown in Sec. 3.4.1.
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Figure 3.21: The full width at the half maximum (FWHM) ∆H of the ESR
lines, measured at a frequency of ν = 348 GHz (x = 0.07) and ν = 328 GHz
(x = 0, 0.14), as a function of temperature for the non-oriented GdO1−xFxFeAs

samples; (a) x = 0; (b) x = 0.07; (c) x = 0.14.
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Figure 3.22: Temperature evolution of the high-frequency/field ESR spectra of
GdO1−xFxFeAs powder samples measured at a frequency of ν = 348GHz (x =
0.07) and ν = 328GHz (x = 0.14), shown on a reduced field scale (H−H0)/H0.
Here H0 is the resonance field of the signal at high temperature; (a) x = 0.07,

µ0H0 = 12.4 T; (b) x = 0.14, µ0H0 = 11.7 T.

The unified phase diagram for the iron pnictides, especially for the 1111 materi-

als, is not fully established so far since the issue of coexistence of superconduc-

tivity and magnetism remains controversial. The nonmagnetic rare earth based

LaO1−xFxFeAs material exhibits no evidence for the presence of a static magnetic

order for any superconducting composition, but rather reveals SDW-like spin fluc-

tuations seen in the transport [78] and inelastic neutron scattering experiments

[85, 86]. On the other hand, the magnetic rare earth based systems (Ce, Sm, Nd)

studied so far demonstrate coexistence of superconductivity and static magnetism

at least in the underdoped region [55, 87]. Our high-field ESR results show that

there is yet another 1111 system comprising a strongly magnetic rare earth (Gd)

subsystem where the coexistence of quasi-static magnetism and superconductivity

is still visible in large doping range. Here, the increase of the fluorine content and

correspondingly the rise of Tc leads to the suppression of magnetic correlations

indicating a possible interplay between these two states. All this suggests that

the coexistence and possible interplay of the static or quasi-static magnetism and

superconductivity may be a generic property of 1111-type compounds. In this

regard, a remaining question yet to be answered is the extent to which the R-Fe
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Figure 3.23: The shift of the minimum of absorption of the spectra with
temperature, measured at a frequency ν = 348GHz(x = 0.07)/328 GHz(x =
0.14), on a reduced field scale (Hres −H0)/H0. Here µ0H0 = 12.4 T/11.7T is
the resonance field of the signal at high temperature, open hexagons - x = 0.07,
open triangles - x = 0.14, solid line - fit of the resonance field in the parent

GdOFeAs sample.

magnetic interaction influences the magnetic correlations in the FeAs planes.

3.4.7 GdO1−xFxFeAs summary

Our HF-ESR study of polycrystalline samples of the GdO1−xFxFeAs superconduc-

tor reveals a magnetic coupling between the Gd subsystem and the FeAs layers.

This coupling, most probably of the anisotropic exchange type, is visible in the

Gd ESR response in the undoped GdOFeAs in the SDW state, in form of a field-

induced inhomogeneous broadening and shift of the ESR spectrum. This effect is

caused by the interaction of the Gd spins with the uncompensated Fe moments

due to the canting of the Fe moments in magnetic field. Furthermore, the data

suggest that the Gd moments additionally tilt the ordered Fe moments. Surpris-

ingly, the broadening and the shift of the spectrum are present also in the doped

superconducting samples where there is no evidence of long range magnetic order.

This points to the presence of short range, static on the ESR time scale, magnetic
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Figure 3.24: Frequency dependence of the ESR signal from GdO1−xFxFeAs
powder samples measured at a temperature of T = 4 K, in SC state; data
points correspond to the position of the minimum of absorption of the spectra
at different frequencies, open hexagons - x = 0.07, open triangles - x = 0.14,
dashed line - guide for the eyes, solid line - the frequency dependence of the
position of the high-T Gd ESR line measured at T = 280 K for both F-doped
samples; the lineshape of the spectra is shown as well, thin solid line - x = 0.07,

thick solid line - x = 0.14.

correlations. This may be relevant to the interplay of magnetism and supercon-

ductivity in these materials, where on doping with fluorine there is a simultaneous

increase of the superconducting critical temperature and suppression of the mag-

netic correlations. The possible relevance of the exchange interaction between the

magnetic rare-earth subsystem and the FeAs planes to the properties of this novel

class of superconductors remains to be elucidated.

3.5 Conclusion

The ESR investigation on the Gd- and La-based 1111-type FeAs superconductors

evidences that there is an interaction between Gd- and Fe-layers. In fact one

can separate different types of interactions taking place in this material. First

of all there is a dipole-dipole interaction, whose effect is most pronounced in the
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Gd diluted system and in small external magnetic fields. The second type of

the interaction is the anisotropic exchange interaction, which appears to be most

pronounced in the concentrated GdO1−xFxFeAs system. Besides its anisotropic

nature, this interaction has an interesting feature, namely a frustration in the

absence of an external magnetic field. To switch it on one has to tilt the SDW using

magnetic field and thus to create an uncompensated Fe magnetic moment, which

will interact with the Gd subsystem. At present the origin of this interaction can

not be unambiguously verified. Likely it can be an exchange interaction between

different Fe 3d bands and Gd 4f orbitals with some admixture of an RKKY type

coupling.

The ESR measurements performed on the concentrated GdO1−xFxFeAs system

suggest the coexistence of superconductivity and magnetism in the Fe-layer. The

magnetism, found in the doped superconducting samples, is static on the ESR

time scale and exhibit similar properties as in the undoped GdOFeAs sample.

The quantitative analysis yields that the temperature, at which short range mag-

netic order is found, decreases with increasing the doping level, and as following

with increasing Tc. This suggest that the magnetism of the Fe layers becomes

more suppressed with doping, but, interestingly, it is still present up to the high

doping levels. This finding enables to suggest the picture of the coexistence and

the interplay between magnetism and superconductivity in Gd-based 1111 FeAs

superconductors [88].



Chapter 4

Hole induced spin polarons in

LaCoO3

4.1 Introduction

The physical properties of nanostructured magnetic materials are extensively stud-

ied because of their fundamental interest and potential applications. A naturally-

occurring analog to the artificially-fabricated heterostructures [89] and single molec-

ular magnets [90] are doped perovskites with intrinsic inhomogeneities, i.e., with a

spatial coexistence of magnetic clusters in a nonmagnetic matrix. A good example

of such a material is LaCoO3 doped with holes via the substitution of Sr with La.

It has a pseudo-cubic structure (Fig.4.1) with a trigonal distortion along one of

the cube diagonals, which makes this diagonal a symmetry axis [001] (see Fig.4.1)

[91, 92]. The Sr2+ for La3+ substitution provides a charge hole to the system due

to the difference in valency of these ions and creates a local crystal field distortion

due to the difference in the ionic radii of Sr2+ and La3+ [91, 92].

The magnetic properties of La1−xSrxCoO3 are defined by the Co3+ and Co4+ spin

states. Depending on the crystal field strength and symmetry (Fig.4.2) there are

several possible spin states (see also Sec.1.8). In the case of Co3+ in a weak

octahedral crystal field the 6 3d electrons occupy both the eg and the t2g levels,

yielding a high spin state with a spin value of S = 2 (Fig.4.2,b). The partial

quenching of the orbital moment reduces it to L = 1 in this case. A strong

crystal field can split the eg and the t2g levels so that the Hund’s energy is not
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Figure 4.1: Pseudo-cubic structure of LaCoO3. Oxygen ions form around each
Co ion an octahedron with a small trigonal distortion . Cube diagonal [001] is

the symmetry axis of the system.

big enough to overcome this gap (Fig.4.2,c). In this case all 6 electrons stay on

the t2g levels, yielding a low spin state with spin S = 0 and a fully quenched

orbital moment L = 0. This state is thus nonmagnetic. The distortion of the

octahedral symmetry of the crystal field leads to the splitting of the eg and t2g

levels themselves (Fig.4.2,d). Here, depending on the strength of the distortion, it

is possible to stabilize an intermediate spin state of the Co ion with a spin value

of S = 1 and a fully quenched orbital moment L = 0. The case of Co4+ is very

similar to Co3+ with the difference that there is one less electron in the 3d shell.

This yields S = 5
2

and L = 0 for the high spin state, S = 1
2

and L = 1 for the low

spin state and S = 3
2

and L = 1/2 for the intermediate spin state.

Such a large number of different Co states and the possibility to transform one

to another by changing dopant content and temperature yields a rich diversity of

the electronic phases. Conceptional phase diagram has been predicted many years

ago by J.B. Goodenough basing on electron diffraction, static magnetometery

and transport measurements (see Fig.4.3) [91]. The later experimental works

confirmed its validity and allowed to build slightly simplified phase diagram which

is shown on Fig.4.4 [93]. First, the parent LaCoO3 is nonmagnetic insulator at

low temperatures. At elevated temperatures it becomes paramagnetic due to the

thermal activation of the high spin state and it exhibits semiconducting properties.

Second, it is widely believed that the addition of each hole into pristine LaCoO3

through the substitution of a divalent, e.g., Sr2+, ion for the La3+ ion creates a Co4+
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Figure 4.2: Spin states of the Co3+ ion depending on the crystal field strength
and symmetry. a) Free Co3+ ion, S = 2, L = 2; b) weak crystal field with an
octahedral symmetry, high spin state S = 2, partially quenched orbital moment
L = 1; c) strong crystal field with an octahedral symmetry, low spin state S = 0,
quenched orbital moment L = 0; d) crystal field with an tetragonally-distorted
octahedral symmetry, intermediate spin state S = 1, quenched orbital moment

L = 0.

ion in the lattice which has a nonzero S in any spin-state configuration, thereby

inducing a magnetic moment in the system [91, 94]. At low temperatures Sr-doped

LaCoO3 shows a spin-glass and superparamagnetic behavior for ∼ 0.05 ≤ x ≤∼
0.2 [91, 93–95] which is believed to be due to agglomeration of holes in clusters.

With the addition of charge carriers, the number and possibly the size of the

clusters grow, leading to a percolation-type long-range ferromagnetic (FM) order

and metal-insulator (MI) transition [96] at x ≥ 0.18 [91, 93, 95].

Most of the investigations up to now have been focused on a relatively high Sr

concentration (x > 0.1). An amazing fact was found by Yamaguchi et al. in 1996

[98] and apparently forgotten later. Namely, already lightly-doped material with

x = 0.002 (i.e., with an estimated concentration of only two holes per thousand

Co3+ ions) exhibits unusual paramagnetic properties at low temperatures: The few

resulting spins, embedded in a nonmagnetic matrix, give magnetic susceptibility

an order of magnitude larger than expected. It was proposed that a doped hole in
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Figure 4.3: Phase diagram of La1−xSrxCoO3 (0 ≤ x ≤ 0.50) made by M.
Señaŕıs-Rodŕıguez and J. Goodenough, [91]

the spin-singlet ground state of LaCoO3 behaves as a localized magnetic impurity

with a unusually large spin value S = 10 − 16 [98] due to the formation of a

magnetic polaron whose nature, however, remained unclear. Later, and for higher

Sr doping x > 0.05, it was surmised that the addition of charge carriers causes the

appearance of Zener-type polarons or even many-site magnetopolarons [94, 95].

However, experimental proof of the existence of such polarons is missing so far.

In this work we present the analysis and discussion of magnetization, ESR and

NMR measurements performed on 0.2% Sr-, Y- and Ca- doped LaCoO3. The

goals of the research were to prove experimentally the formation of spin polarons,

to understand the mechanism of this formation, and to establish the role of the

hole and of the crystal field distortion introduced by the doping. Sr2+ has an ionic
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Figure 4.4: Magnetic phase diagram for La1−xSrxCoO3 [93]. PS - param-
agnetic semiconductor, PM - paramagnetic metal, FM - ferromagnetic metal,
SG - spin glass, MIT - metal-insulator transition, and Tirr is the irreversibility
temperature which marks the bifurcation of the ZFC and FC dc magnetiza-
tion curves. The open triangles at very low x indicate the estimated spin-state

transition temperature from Yamaguchi et al. [97]

radius of ∼ 1.44 Å which is significantly higher than the radius ∼ 1.36 Å of La3+.

Therefore the Sr for La substitution yields a large local distortion. In order to

probe the hole-doped system without the crystal field distortion we have chosen

Ca2+ as the dopant, since its ionic radius is ∼ 1.34 Å. The Y3+ ion does not provide

a hole to the system but creates a crystal field distortion due to its smaller ionic

radius of ∼ 1.08 Å which makes the Y-doped sample a good system to study pure

crystal field distortion effects.

The experimental data evidence that the hole introduced by the substitution of

only 0.2% of Sr2+ or Ca2+ for La3+ changes the spin state of 7 neighboring Co

ions. The latter are then coupled ferromagnetically, leading to the formation at

low temperature of spin polarons with a high magnetic moment and a sizeable

orbital contribution. The Y3+-doped LaCoO3 sample exhibits weaker magnetism,

not of polaronic origin. Therefore the carried out studies strongly suggest that
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the introduced hole plays the main role in the formation of magnetic polarons,

whereas the crystal field distortion plays a minor role.

4.2 Experimental details

Highly stoichiometric powder samples (La0.998Ca0.002CoO3and La0.998Y0.002CoO3)

and a single crystal sample (La0.998Sr0.002CoO3) were synthesized and character-

ized by Dr. E. Pomjakushina according to procedures described elsewhere [6]. The

static magnetization measurements on these samples were done with a conven-

tional Quantum Design VSM SQUID magnetometer. High-field/high-frequency

ESR (HF-ESR) measurements were performed with a home-made spectrometer

(see Chapter 2 and Ref.[52]) at frequencies ν = 27− 550GHz and magnetic fields

Bµ0H = 0 − 15T. Calculations of the spin energy levels and simulations of the

frequency dependence of the ESR spectra were done with the EasySpin software

package [99, 100], which is an open-access toolbox for MATLAB. The 59Co and the
139La NMR were measured at frequencies of 47.65 MHz and 94MHz respectively

with a Tecmag pulse NMR spectrometer.

4.3 Static magnetization measurements

The static magnetometry data (Fig.4.6) for Ca- and Sr-doped samples is very simi-

lar to the one measured by Yamaguchi et al. [98]. In contrast to the parent LaCoO3

sample, the temperature dependence of the magnetic susceptibility of 0.2% Ca-

and Sr-doped samples (Fig.4.5) shows anomalously strong upturn at temperatures

below ∼ 30K. On the contrary, the 0.2% Y-doped LaCoO3 sample behaves sim-

ilarly to the parent compound, with a susceptibility only slightly higher. When

increasing the temperature above ∼ 30K, the susceptibility increases in all four

samples in a similar manner. The reason for this is the temperature activation of

the high-spin state of all Co3+ ions leading to the change of the effective cobalt

spin from S=0 to S=2 [98, 101–107]. Indeed, a temperature increase can lead to

the change of the lattice parameters and of the vibration of the lattice which, in

turn, leads to the change of the energy gap between eg and t2g levels of Co3+ ion

(see Fig.4.2) so that the Hund energy wins crystal field energy and two electrons

populate eg level. At the temperature of ∼ 100K the susceptibility reaches its
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Figure 4.5: Temperature dependence of the static magnetic susceptibility of
La0.998Sr0.002CoO3 single crystal sample (open circles), La0.998Ca0.002CoO3 pow-
der sample (squares), La0.998Y0.002CoO3 powder sample (diamonds), LaCoO3

single crystal sample (open triangles).

maximum and decreases with further temperature increase. This characteristic

temperature is the temperature where the spin state of the most of Co ions have

transformed to a high spin state.

In order to estimate the effective magnetic moment in doped samples exhibiting the

anomalous susceptibility at low temperature, we fitted the magnetization measured

as a function of magnetic field (Fig.4.6) with the conventional Brillouin function

Bs(y) [6] and a field-linear term (4.1).

M(H) = NµBgSBs(y) + χ0H, y =
gµBSH

kBT
(4.1)

Assuming the doping concentration N = 0.002 we obtain the moment gS ∼
15µB/hole for the Sr-doped sample. The Ca-doped sample exhibits a value which

is slightly smaller, gS ∼ 13.5µB/hole, but still this value is much larger than what

we can expect from Co3+ and Co4+ in any spin state. For instance, high-spin Co4+

which has the largest spin S = 5/2, will have a magnetic moment gS = 5µB, as-

suming g = 2.
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Figure 4.6: Magnetic field dependence of the static magnetization of
La0.998Sr0.002CoO3 single crystal sample (open circles), La0.998Ca0.002CoO3 pow-
der sample (squares), LaCoO3 single crystal sample (open triangles). Solid
lines depict Brillouin function fits yielding magnetic moment values of gS ∼
15µB/hole for the Sr-doped sample and of gS ∼ 13.5µB/hole for the Ca-doped

sample.

To summarize, static magnetometry data evidences that the Y doped sample ex-

hibits the low-T behavior similar to the undoped LaCoO3. In contrast, Sr- and

Ca-doped samples exhibit similar strong magnetic response at low-T, but the mag-

netic moment in Ca-doped sample is slightly reduced.

4.4 Nuclear magnetic resonance

The NMR data presented in this chapter were obtained and analyzed by Dr. E.

Vavilova. We started our NMR experiments on the undoped and Sr-doped LaCoO3

samples, using 59Co nuclei as probes of the local properties. The external mag-

netic field H was applied along the pseudo-cubic axis. The data are summarized

in Fig.4.7. The spectral shape and the spin-lattice relaxation rate of the undoped

LaCoO3 agree very well with previous 59Co NMR studies [108, 109]. According to

a simple estimate, doping with 0.2% Sr, which yields 0.2% of Co4+ sites, should

change the electric field gradient for at most 5% of nuclei. This would only slightly
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Figure 4.7: 59Co NMR data of La0.998Sr0.002CoO3 (closed circles) and LaCoO3

(open circles) single crystals. a) Low-T spectra; b) temperature dependence of
the nuclear spin-lattice relaxation rate T−1

1 .

affect the low-T 59Co NMR spectra, the very well resolved quadrupole structure

seen in the undoped sample would stay unchanged after doping. In contrast, the

observed significant changes (Fig.4.7,a), namely strong broadening and poor res-

olution of the quadrupole structure suggest that the doping-induced change of

the low-T spectrum is not due to the quadrupole interaction and has probably

a magnetic origin. It becomes even more apparent in the nuclear spin dynamics

yielding at low-T a more than one order of magnitude enhanced relaxation rate

T−1
1 (Fig.4.7,b). The observed stretched-exponential shape of the nuclear magne-

tization recovery curve suggests a substantially nonuniform distribution of local

magnetic environments at low-T as seen by the Co nuclei [110]. Thus the 59Co

NMR data for La0.998Sr0.002CoO3 clearly indicate the formation of regions with

large magnetization and which are non-uniformly distributed in the sample at

low-T . In contrast, above ∼ 35K, where a considerable fraction of Co ions is in

the thermally-activated HS state, the NMR spectra and relaxation for the doped

and undoped samples are very similar, and the shape of the nuclear magnetization

recovery testifies to an almost homogeneous distribution of magnetic centers.

The temperature dependence of the 59Co spin-lattice relaxation rate T−1
1 in the

Ca- and Y-doped LaCoO3 samples is shown on Fig.4.8,b together with data for

Sr-doped and undoped samples for a comparison purpose. The Ca-doped sample,
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Figure 4.8: Temperature dependence of the nuclear relaxation rate T−1
1 of

La0.998Sr0.002CoO3 single crystal sample (open circles), La0.998Ca0.002CoO3 pow-
der sample (squares), La0.998Y0.002CoO3 powder sample (diamonds), LaCoO3

single crystal sample (open triangles). a) 139La NMR data; b) 59Co NMR data.

similar to Sr-, exhibit a significantly faster, about ∼ 5 times, relaxation rate,

whereas the Y doped sample shows almost the same relaxation rate as the undoped

LaCoO3. The low-T 139La relaxation rate measurements exhibit even more drastic

differences between Ca-doped and Y-doped samples (Fig.4.8,a). As can be seen,

the Y-doped sample behaves similarly to the undoped sample, meaning that there

is no magnetism at low-T in this sample. In contrast, the La0.998Ca0.002CoO3

sample at low-T shows a behavior similar to that of the Sr-doped sample, but

with slightly reduced relaxation rates. This indicates that Ca doping leads to the

formation of inhomogeneous regions with large magnetization, as well as in the

Sr-doping case.

4.5 Electron spin resonance

4.5.1 La0.998Sr0.002CoO3, single crystal

Previous ESR studies on the undoped LaCoO3 showed that this compound ex-

hibits no ESR signal at T ≤ 30K due to the singlet ground state [105]. On Fig.4.9

the temperature dependence of the ESR response of La0.998Sr0.002CoO3 measured
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Figure 4.9: Temperature dependence of the high-field ESR spectra of the
La0.998Sr0.002CoO3 single crystal sample, measured in the configuration where

the external magnetic field H is applied along the pseudo-cubic axis.

at f = 384GHz is shown for the measurement configuration where the external

magnetic filed is parallel to the pseudo-cubic axis of the crystal (Fig.4.11, bottom).

In contrast to LaCoO3, La0.998Sr0.002CoO3 shows a strong signal at the lowest tem-

perature of T = 4K, with a spectrum consisting of many well defined absorption

lines (1,2,3,4,5...). When increasing the temperature, the intensity of these ab-

sorption peaks decreases until T ∼ 35K where all these lines almost disappear.

At the same temperature two new lines (A,B) arise.

Let us first discuss the high-T regime (T > 35K). The frequency dependence of

the A,B lines measured at T = 50K (Fig.4.10) was found to have one to one sim-

ilarity to the frequency dependence measured by Noguchi on the parent LaCoO3

compound [105] (see inset in Fig.4.10). The fit of the resonance branches A and

B (solid lines on the Fig.4.10) was made in the same way as it was proposed in

Ref.[105]. Due to the symmetry of the LaCoO3 [101, 105] which is pseudocubic

with a trigonal distortion along the cube’s diagonal it is possible in the first ap-

proximation to describe the system using the simple effective spin Hamiltonian of
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a uniaxial symmetry (see Sec.1.11 and [105]):

H = gµBH · S +
D

3
{3S2

z − S(S + 1)} (4.2)

By choosing the magnetic field as a quantization axis, Eq.4.2 can be transformed

to the form of:

H = gµBHSz +
D

3
{1

2
(3 cos2 θ − 1)O0

2(S)− 3 sin 2θO1
2(S) +

3

2
sin2 θO2

2(S)} (4.3)

with Stevens operators (see Sec.1.11)

O0
2(S) = 3S2

z − S(S + 1)

O1
2(S) =

1

2
(SzS+ + S+Sz)

O2
2(S) =

1

2
(S2

+ + S2
−),

and θ being the angle between the magnetic field and the symmetry axis [001],

pseudo-cube diagonal in this case. In the present measurement configuration the

angle θ is equal to 55o. Diagonalization of the matrix of this Hamiltonian gives

the magnetic field dependence of the energy levels of the system which enables to

calculate ESR resonance fields at a given frequency. By changing the Hamiltonian

parameters one can fit experimental points with calculated resonance branches.

The best fit gives a g-factor and a single-ion anisotropy parameter D identical to

those in the reference [105], g = 3.48 and D = 147GHz (4.9 cm−1). This finding

suggests that at high temperatures the magnetism of Sr-doped LaCoO3 has the

same nature as that in the undoped sample, namely it is due to the temperature-

activated Co3+ high-spin state.

To understand the nature of the low-temperature ESR response we measured the

frequency dependence at T = 4K in two different experimental configurations,

magnetic field applied parallel to the pseudo-cubic axis (Fig.4.11) and magnetic

field having an angle of 110o with the [001] crystallographic direction (cube’s di-

agonal) (Fig.4.12). We have chosen the 3 most intensive transitions present at

all measurement frequencies (1,2 and 3 on Fig.4.9) and tried to simulate their

frequency dependence. Due to the same symmetry reason as in the case of the

LaCoO3 [101, 105] (see above), we took the effective spin Hamiltonian described by

Eq.4.3 and performed the numerical diagonalization of its matrix for different spin
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Figure 4.10: Frequency dependence of the ESR spectra of the
La0.998Sr0.002CoO3 single crystal sample measured at T = 50 K and with the
magnetic field applied along the pseudo-cubic axis. Inset represents the fre-
quency dependence of undoped LaCoO3 measured in the same configuration by

Noguchi et al. [105]

values S. In addition, we varied its parameters (g-factor and crystal field anisotropy

D) in order to better fit the frequency dependence of the chosen transitions.

The angle θ in the Hamiltonian is the angle between the symmetry axis [001]

and the magnetic field direction, its value we take from the experiment. For

the experimental configuration where the magnetic field is parallel to the pseudo-

cubic axis (Fig.4.11) the angle θ is equal to 55o. The magnetization measurements

provide the saturation magnetic moment value of gS = 15µB/hole which gives the

limit for the spin and g-factor value. The best fit, which is shown on the Fig.4.11

as solid lines, was obtained for S = 13/2, g = 2.6 and D = 101GHz. These values

give a magnetic moment of 16.9µB/hole at saturation which is only slightly larger

than obtained from the magnetization measurements. According to the fit the

three absorption lines 1, 2 and 3 are transitions between the spin energy levels

−1
2
↔ +3

2
, −1

2
↔ −3

2
, and −1

2
↔ +1

2
respectively (inset on Fig.4.11).

For the experimental configuration with θ = 110o we made the same simulation
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Figure 4.11: Frequency dependence of the low-T ESR response of the
La0.998Sr0.002CoO3 single crystal sample measured at T = 4 K with the an-
gle θ = 55o between the magnetic field H and the symmetry axis [001] (H is
parallel to the pseudo-cubic axis, see bottom of the figure). The solid lines rep-
resent the theoretical simulation of the frequency dependence of the resonance

fields. The corresponding energy level diagram is shown in the inset.
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Figure 4.12: Frequency dependence of the low-T ESR response of the
La0.998Sr0.002CoO3 single crystal sample measured at T = 4 K with the an-
gle θ = 110o between the magnetic field H and the symmetry axis [001], see
bottom of the figure. The solid lines represent the theoretical simulation of the
frequency dependence of the resonance fields. The corresponding energy level

diagram is shown in the inset.
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procedure keeping all the parameters constant except θ itself. The resulting theo-

retical resonance branches of the same 1,2 and 3 transitions (solid lines on Fig.4.12)

fit the experimental points as well as in the case of H‖cubic axis. The main ab-

sorption line of the spectra for both field directions, i.e., the one with the largest

intensity (line 3), is the allowed transition between ±1
2

states. This transition is

gapless due to Kramers’s theorem [9, 10, 29]. The two other transitions 1 and 2

are so called ”forbidden” transitions having a gap of ∼ 200GHz which is 0.8meV.

The ESR selection rule allows only transitions with ∆Sz = ±1, but transitions

1 and 2 seem to disobey this rule. In fact in the complex systems any kind of

interaction or anisotropy would lead to a mixing of the states so that:

| − 1

2
>= α1| −

1

2
> +β1|+

1

2
> +γ1| −

3

2
> +δ1|+

3

2
> ...

|+ 1

2
>= α2| −

1

2
> +β2|+

1

2
> +γ2| −

3

2
> +δ2|+

3

2
> ...

| − 3

2
>= α3| −

1

2
> +β3|+

1

2
> +γ3| −

3

2
> +δ3|+

3

2
> ...

|+ 3

2
>= α4| −

1

2
> +β4|+

1

2
> +γ4| −

3

2
> +δ4|+

3

2
> ...

and so on... (4.4)

with αi, βi, αi, γi being weight coefficients defining the degree of mixing. When

states are mixed then there is always a finite probability to have a transition

between any states without breaking the selection rule. This leads the appearance

of so called ”forbidden” transitions.

In addition we measured the frequency dependence of the powder La0.998Sr0.002CoO3

sample. Here, on the ESR spectra one sees mainly one pronounced ESR line

(Fig.4.13) present at all measured frequencies. This line is essentially the result of

the powder averaging of the most intensive absorption due to the allowed transi-

tion −1
2
↔ +1

2
. The measurement frequency as a function of the resonance field of

this line is shown on Fig.4.15 (open squares). Using the above model, keeping all

the parameters unchanged, we were able to fit this powder frequency dependence

as well. The fit, shown as a dotted line on the same figure, exhibits very good

agreement with the measured points, which additionally proves the consistency of

the model.

Thus, the ESR measurement performed on the La0.998Sr0.002CoO3 single crystal

strongly suggest an existence of a magnetic object with huge spin value of 13/2,
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Figure 4.13: Frequency dependence of the ESR signal from powder
La0.998Sr0.002CoO3 at T = 4K.

which, in turn points to the formation of extended magnetic cluster at low temper-

atures. The g-factor of 2.6 indicates noticeable admixture of orbital magnetism.

Besides the three absorptions taken into account for the above calculations there

are less intensive resonance absorptions at higher magnetic fields which are not

included in the simulation. Due to the fact that they appear at high magnetic

field they might result from forbidden transitions between excited spin states of

the magnetic cluster.

Connection to the inelastic neutron scattering data

The inelastic neutron scattering data (measured by Dr. A. Podlesnyak and pub-

lished in Ref.[111]) are also perfectly explained using the calculated energy levels

of a spin cluster with S = 13/2. On Fig.4.14 the magnetic field dependence of the

INS energy transfer (a) together with the energy levels (b) are shown. The split-

ting of the INS peak is a consequence of the Zeeman splitting of the lowest doublet

±1
2

and the next doublet ±3
2
. At zero magnetic field when these doublets are not

split there is only one peak I with the energy of 0.79meV, which represents the
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Figure 4.14: a) Magnetic field development of the inelastic neutron scattering
intensity as a function of energy transfer measured on La0.998Sr0.002CoO3 at
T = 4K. Data points are taken from Ref.[111]; b) Energy level diagram obtained

from the ESR data

transition between the ±1
2

and ±3
2

doublets. At the applied magnetic field of 0.4T

there are two resolved transition peaks II and III with energies of 1.01meV and

0.66meV respectively. The transition II is the transition between −1
2

state and

poorly resolved ±3
2

doublet, the transition III, in turn, is the transition between

+1
2

state and poorly resolved ±3
2

doublet.

4.5.2 La0.998Ca0.002CoO3, powder sample

The low temperature ESR measured on the powder La0.998Ca0.002CoO3 showed

an intense ESR response at all measured frequencies (Fig.4.15). Due to the pow-

der averaging, the ESR spectra consist of mainly one broad line whose frequency

dependence is qualitatively similar to that of the −1
2
↔ +1

2
transition in the

case of La0.998Sr0.002CoO3 sample (open squares). The broad line exhibits gap-

less frequency dependence, which is characteristic for half-integer spin systems.

The effective g-factor value, estimated through linear approximation of the high

frequency part of the frequency dependence, is ∼ 2.5 (see Fig.4.15). The same ap-

proach for the powder La0.998Sr0.002CoO3 provides a larger g-factor value of ∼ 5.2
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Figure 4.15: Frequency dependence of the resonance field of the ESR absorp-
tion line measured on powder samples of Sr (squares) and Ca (circles) doped
LaCoO3. Straight solid lines represent linear fits of the experimental points at

high magnetic fields.

(see Fig.4.15). The qualitative similarities in the ESR of the powder Ca-, and

Sr-doped LaCoO3 samples yield the conclusion that magnetic clusters are present

at low temperatures in both cases, but the effective g-factor of the magnetic clus-

ters in the case of Ca doped sample is reduced, possibly due to the different local

crystal field symmetry because of different ionic radii of Sr and Ca.

4.5.3 La0.998Y0.002CoO3 powder sample

First of all the ESR response is much weaker in the intensity, more than ∼ 20 times

(the mass was twice bigger, the intensity 10 times smaller), than that of Ca and

Sr doped samples. At all measured frequencies there is a rather narrow gapless

resonance absorption C (Fig.4.16, triangles) with g = 2.04. This absorption most

probably is due to paramagnetic impurities in the samples. One can identify two

other resonances A and B (circles and squares), both of which are gapped with

energy gap values of ∼ 223GHz and ∼ 127GHz and g-factors of ∼ 4.08 and

∼ 3.11 respectively. The gapped nature of the resonance absorptions, seen in the
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linear fits, points to the fact that they are results of the transitions between the

energy levels of an integer spin, contrary to the case of the Sr doped sample where

the spin is half-integer (13/2). Together with the fact that the intensity is much

smaller than in the case of Ca- and Sr- doped samples this leads the conclusion

that the origin of the response is different from that of La0.998Sr0.002CoO3 and

La0.998Ca0.002CoO3. The big difference in the ionic radii of Y and La leads to a

strong distortion of the O octahedra surrounding the 8 Co ions nearest to Y3+.

The strength of the distortion might be enough to stabilize a non-zero spin state

of these 8 Co3+ ions, IS with the spin S = 1 or even HS with S = 2, but in

contrast to the hole doping they remain not coupled to a giant spin. This creates

at low temperatures 1.6% of paramagnetic Co ions. The number is small, that is

why it is almost not seen in the magnetization measurements and gives a slight

or no increase of NMR spin-lattice relaxation rate. The ESR as a local probe for

paramagnetic centers is able to detect it. Therefore the ESR data measured on

La0.998Y0.002CoO3 suggest that the local CF distortion creates magnetic centers

due to the change of the spin state of individual Co ions, but does not lead to the

formation of magnetic clusters in contrast to that in the Ca and Sr doped LaCoO3

samples. Detailed information about these paramagnetic individual Co ions is still

to be obtained from measurements on single crystals which are not yet available.

4.6 Discussion

The magnetization measurements made on the Sr-doped single crystal sample evi-

dence a strong magnetic response at low temperatures with a magnetic moment at

saturation of gS ∼ 15µB/hole. The NMR experiments suggest that the sample has

regions with large magnetization which are non-uniformly distributed in the sam-

ple volume, i.e., that there are extended magnetic objects formed after Sr doping.

ESR investigation gives an additional proof of the existence of magnetic clusters,

and provides an important quantitative description: the cluster has a magnetic

ground state with a large spin value of 13/2, substantial spin-orbit coupling yield-

ing a g-factor of 2.6 and an energy gap of ∼ 200GHz (∼ 0.8meV) between the

lowest doublet±1
2

and the first excited triplet±3
2

due to an axially-symmetric crys-

tal field. The scattering wave vector dependence of the INS intensity (see work by

Podlesnyak et al. Ref.[111]) provides the size and the shape of the magnetic cluster

which is an octahedrally-shaped Co heptamer (Fig.4.17). The measurements on
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Figure 4.16: Frequency dependence of the resonance fields of the ESR ab-
sorption lines A, B and C measured on powder sample of Y doped LaCoO3.

Straight solid lines represent linear fits of the experimental points.

the Ca-doped LaCoO3 powder sample, where the substitution causes hole doping

without any crystal field distortion due to the very similar ionic radii of Ca and

La, together with measurements on the Y-doped sample, where there is no hole

doping, but only the distortion of the crystal lattice, allow to establish the role

of the hole and of the CF distortion in the formation of this extended cluster.

The remarkable similarities between Ca- and Sr-doped samples, and absolutely

different from Sr-doped sample result of all measurements on the Y-doped sample

yield the conclusion that essentially the doped hole is responsible for the cluster

formation. Putting all this facts together we propose a model of a spin cluster, or

spin polaron, stabilized by the doped hole.

The mechanism of the magnetic cluster (spin polaron) formation is shown on

Fig.4.17. The hole introduced by Sr or Ca doping changes the oxidation state of

one of the Co from 3+ to 4+. The smaller ionic radii and higher positive charge

of the Co4+ lead to the attraction of the negatively-charged O ions to the Co4+

ion. The displacement of the oxygen weakens the crystal field and reduces its

symmetry at the 6 neighboring Co3+ ions therefore stabilizing the IS state with

S = 1, see Fig.4.2. Due to the increased crystal field at the central Co4+ ion it
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stays in the LS state with S = 1/2. From the ESR measurements it is concluded

that the spin value amounts to 13/2. To obtain this value all involved Co spins

must be coupled ferromagnetically. A reasonable mechanism for the coupling was

proposed by Louca and Sarrao [94]. The neighboring LS-Co4+ and IS-Co3+ ions

can share an eg electron via the double exchange process (Sec.1.12, Fig.4.18). The

eg electron hopes from one Co site to another through the p-orbitals of the oxygen

ion and swaps the oxidation and the spin state of the involved Co ions. Due to

the Hund’s rules the unpared t2g electron is polarized parallel to the eg electron

which yields the ferromagnetic coupling (see Fig.4.18) and stabilization of the high

spin S = 13/2 of the polaron. Therefore, we propose that the holes introduced in

the LS state of LaCoO3 do not stay at a single Co site but are extended over the

neighboring Co sites involved in the spin polaron.

4.7 Conclusions

The presented work gives a clear microscopic explanation why hole doping of as

low as of 0.2% may dramatically affect the magnetic properties of the entire sys-

tem. A combined HF-ESR and magnetization studies complemented by NMR

and INS measurements enabled to establish that holes introduced in LaCoO3 by

substitution of Sr or Ca for La change the oxidation state of one of the Co3+ ions

from 3+ to 4+ and transform the six nearest-neighbor Co3+ ions to the IS state.

The double exchange interaction driven by the doped hole couples ferromagneti-

cally the 7 neighboring ions forming octahedrally shaped spin-state polarons. As

was proved by the magnetization, NMR and ESR measurements, the additional

crystal field distortion introduced due to the different size of the Sr ion seems to

play a minor role in the formation of the polaron, possibly changing the details

of spin-orbital coupling and the of local crystal field. The local crystal field dis-

tortion without hole-doping, like in the Y-doped sample, alone is not enough to

form polarons at low-T. ESR data suggests that it can only change the spin state

of 1.6% of Co ions which do not interact.

It is difficult to draw a definite conclusion with regard to the spin polarons stabiliz-

ing in the high temperature regime. Plausibly, owing to the activation of magnetic

states of Co in the bulk [91, 95, 107], the existence of spin polarons is not anymore

energetically favorable, and therefore they continuously dissolve upon raising the

temperature in the regular magnetic lattice of IS or HS Co ions.
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Figure 4.17: Schematic representation of the polarons in lightly hole-doped
LaCoO3.

Figure 4.18: Double exchange between Co3+ and Co4+ ions through oxygen
p-orbitals.
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A tempting scenario would be that the spin-state polarons in doped LaCoO3 are

the building blocks of all low-T magnetic phases present in the phase diagram (see

Fig.4.4). At very low doping levels, there are only spin polarons embedded in a

nonmagnetic matrix. Increasing the doping level would lead to the agglomeration

of the polarons, yielding magnetic clusters of a bigger size, but still localized and

behaving as a spin glass. At a certain doping level of x ∼ 0.18 the metal-insulator

transition would take place when the magnetic clusters’ size becomes so big that

they overlap and the holes can percolate through the whole sample volume. Hence

the sample becomes a ferromagnetic metal.



Summary

In this work two representatives of strongly correlated electronic systems have been

studied by means of high-field electron spin resonance, complemented by nuclear

magnetic resonance, thermodynamic and transport measurements. Our investiga-

tion has revealed a significant exchange coupling between Gd- and Fe-layers in the

first system, the superconducting GdO1−xFxFeAs material. Moreover the Gd3+

ESR through this coupling has established the coexistence of superconductivity

with short-range quasi-static magnetic correlations which suppresses with increas-

ing the doping level and Tc, but still survive at the doping level close to optimal.

Such coexistence and possible interplay of usually competing phases suggests a

nontrivial nature of the superconductivity, possibly due to a complex electronic

structure. In the second material, hole doped perovskite LaCoO3 it has been es-

tablished that there is a formation of magnetically polarized clusters (polarons)

in a nonmagnetic matrix at very low hole doping levels. These magnetic polarons

appear to be building blocks for magnetic phases occurring at higher doping levels.

To conclude, both examples prove that magnetic and electronic inhomogeneities

and coexistence of different phases together with strong electronic interactions

play an important role in the physics of these materials.
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