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The aim of this paper is to show how Formal Concept Analysis can be
used for the benefit of clone theory. More precisely, we show how a recently
developed duality theory for clones can be used to dualize clones over boun-
ded lattices into the framework of Formal Concept Analysis, where they can
be investigated with techniques very different from those that universal alge-
braists are usually armed with. We also illustrate this approach with some
small examples.

1 Introduction

In this paper, we show how a duality theory from [Ker11] can be used to connect clone
theory with Formal Concept Analysis [GW99].

A clone is a set of (finitary) operations over a set A that is closed under composition
and contains all the projection mappings. The interest in clones is driven by the fact that
clones represent the behaviour of algebras. However, as long as A contains at least three
elements, very little is known about the structure of all clones on A, despite intensive
research for several decades.

The principle of Duality is “a very pervasive and important concept in (modern) ma-
thematics” [Haz95] and “an important general theme that has manifestations in almost
every area of mathematics” [GBGL08]. When it comes to dualizing clones, the usual
approach is to consider a clone as the set of term functions of a suitable algebra and
then try to dualize this algebra, which may, or may not, be possible. Another approach,
applicable for all clones, was introduced in [Ker11], where clones, inspired by an idea
from [Maš06], are dualized by treating them in a more general way as sets of morphisms
in a category.

In this paper, we will use the duality theory from [Ker11] (recalled in Section 3 after
the preliminaries) and put it to work in Section 4, where we apply it to clones over
bounded lattices (also called centralizer clones of bounded lattices), i.e., clones in which
every operation is a homomorphism from a finite power of a bounded lattice to the lattice
itself. Since the category of bounded lattices can be dualized to the category of standard
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topological contexts ([Har93], see Subsection 2.3), we can dualize the clones to certain
sets of context morphisms. This allows us to investigate the clones from a different angle,
namely in the setting of Formal Concept Analysis. To show that this method is in fact
a helpful technique to investigate clones over lattices, we choose a few small examples
in Section 5 and put the duality to work, producing some concrete results.

2 Preliminaries

In the preliminaries, we will introduce all the ingredients that we need to set up a
duality for clones over bounded lattices, except that we will assume the reader to be
familiar with the basic notions from Formal Concept Analysis [GW99]. We start with
the necessary terminology from category theory, recall the rudimentary basics of clone
theory, and end by outlining the dual equivalence for lattices from [Har93] that we are
about to incorporate into our clone duality.

2.1 Category theory

We assume that the reader is familiar with the rudimentary basics of category theory. By
that, we mean that the reader should be familiar with the definitions of categories, func-
tors, natural transformations, products and coproducts. In this section, we only intro-
duce our notation and the terminology of duality. For an object A in a category C , we de-
note by An the n-th power of A (provided it exists) and by πni : An → A (i ∈ {1, . . . , n})
the associated projection morphisms. For morphisms f1, . . . , fn : B→ A, we denote by
〈f1, . . . , fn〉 : B→ An the tupling of f1, . . . , fn. Dually, for an object X ∈ C , we denote
by n ·X the n-th copower of X (provided it exists) and by ιni : X→ n ·X (i ∈ {1, . . . , n})
the associated injection morphisms. For morphisms h1, . . . , hn : X → Y, we denote by
[h1, . . . , hn] : n ·X→ Y the cotupling of h1, . . . , hn.1

A dual equivalence between categories A and X is a quadruple 〈D,E, e, ε〉 where
D : A → X and E : X → A are contravariant functors (i.e., functors that reverse the
direction of the morphisms) and e : idA → ED and ε : idX → DE are natural isomor-
phisms. The notion “dual equivalence” is justified since D and E are full, faithful and
preserve all purely category-theoretic properties, except that they reverse the direction
of the morphisms. For instance, monomorphisms become epimorphisms and products
become coproducts. In particular, we have An ∈ A if and only if n ·D(A) ∈ X .

2.2 Clones

Let A be a (not necessarily finite) non-empty set. For n ∈ N+ and a set B, we say that
the i-th argument of a function f : An → B is nonessential if

f(x1, . . . , xn) ≈ f(x1, . . . , xi−1, y, xi+1, . . . , xn).

1We will not use the letter g for morphisms since we want to reserve this letter for objects in contexts.
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If the i-th argument of f is not nonessential, then it is called essential. We say that f is
essentially k-ary if it has exactly k essential arguments.

Now let OA :=
⋃
n≥1A

An
be the set of all finitary, non-nullary operations over A.

A subset C ⊆ OA is a clone on A if it contains all the projection mappings

πni : An → A : (x1, . . . , xn) 7→ xi (1 ≤ i ≤ n)

(also called trivial operations) and is closed with respect to superposition of operations in
the following sense: For an n-ary operation f ∈ C and k-ary operations f1, . . . , fn ∈ C,
the k-ary operation f(f1, . . . , fn) defined by

f(f1, . . . , fn)(x1, . . . , xk) := f(f1(x1, . . . , xk), . . . , fn(x1, . . . , xk))

is also in C. Given an algebra, the set of its non-nullary term functions is a clone.
Conversely, every clone can be realized as the set of term functions of a suitable algebra.
Hence, clones on a set A represent all possible different behaviours of algebras with carrier
set A. Roughly speaking, if one understands all clones on a set A, one understands all
algebras on A. This is the main motivation behind clone theory.

The set of all clones on a set A forms a lattice with inclusion, which we denote by LA.
The lattice is countable and completely known for |A| ≤ 2. However, for |A| ≥ 3, there
are continuum many clones in LA, and very little is known about the structure of this
lattice.

2.3 Hartung’s Duality for Lattices

A topological representation theorem for lattices seems to have first appeared in [Urq78].
Since then, there has been put much work into lifting this representation theorem to a
dual equivalence of categories (see for example [Geh06], [HD97]). Here, we will look
at the duality presented in [Har93], where the dual equivalence is set up between the
category of bounded lattices with homomorphisms (i.e., functions that commute with ∨
and ∧ and preserve the bottom and the top of the lattice) and the category of so-called
standard topological contexts with so-called multivalued standard morphisms, described
as in the remainder of this subsection.

A standard topological context is a standard context where the set of objects and the
set of attributes are equipped with suitable topologies. To explain this more precisely,
let Kτ = ((G, ρ), (M,σ), I) be a triple where (G, ρ) and (M,σ) are topological spaces
and (G,M, I) is a context. A concept (A,B) ∈ B(G,M, I) is said to be closed if A and
B are closed with respect to ρ and σ, respectively. Denote the set of all closed concepts
of B(G,M, I) by Bτ (Kτ ). To define a topological context, recall that, for a topological
space (X, T ), a subcollection S ⊆ T is said to be a subbasis of (X, T ) if T is generated
by S, i.e., if T is the smallest topology on X containing S.

Definition 2.1. The structure Kτ is called a topological context if

(i) A ∈ ρ⇒ A′′ ∈ ρ and B ∈ σ ⇒ B′′ ∈ σ,
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(ii) Sρ := {A ⊆ G | (A,A′) ∈ Bτ (Kτ )} is a subbasis of (G, ρ) and
Sσ := {B ⊆M | (B′, B) ∈ Bτ (Kτ )} is a subbasis of (M,σ).

A topological context is called a standard topological context if, in addition, the following
three conditions hold:

(a) (G,M, I) is a standard context,
(b) for every (g,m) ∈ I, there exists some (A,B) ∈ Bτ (Kτ ) such that g ∈ A and

m ∈ B,
(c) (Ic, (ρ × σ)|Ic) is a compact space2 where Ic := (G ×M) \ I and ρ × σ denotes

the product topology on G×M .

We will now explain that there is indeed a one-to-one correspondence between bounded
lattices and standard topological spaces.

First, let Kτ = ((G, ρ), (M,σ), I) be a standard topological context, and set

Bτ (Kτ ) := 〈Bτ (Kτ ),≤〉

where ≤ is the restriction of the usual order-relation on B(G,M, I). Then, Bτ (Kτ ) is
a bounded lattice. In fact, it is a bounded (but not necessarily complete) sublattice of
B(G,M, I).

For the other direction, we need to introduce the notion of I-maximal filters and
F -maximal ideals: For a bounded lattice A, denote by F(A) and I(A) the set of non-
empty (but not necessarily proper) lattice filters and lattice ideals of A, respectively.
For F ∈ F(A) and I ∈ I(A), we say that F is I-maximal whenever F ∩ I = ∅ and every
proper superfilter F ∗ ) F already intersects I. Similarly, we say that I is F -maximal if
F ∩ I = ∅ and every proper superideal I∗ ) I already intersects F . Now, set

F0(A) := {F ∈ F(A) | ∃I ∈ I(A) : F is I-maximal},
I0(A) := {I ∈ I(A) | ∃F ∈ F(A) : I is F -maximal},
R(A) := {(F, I) ∈ F0(A)× I0(A) | F ∩ I 6= ∅}.

With this notation, we can now define a standard topological context Kτ (A) such that
Bτ (Kτ (A)) ∼= A. This standard topological context can be defined as follows:

Kτ (A) := ((F0(A), ρ0), (I0(A), σ0),R(A)),

where ρ0 and σ0 are given by the subbases

Sρ0 := {{F ∈ F0(A) | a ∈ F} | a ∈ A},
Sσ0 := {{I ∈ I0(A) | a ∈ I} | a ∈ A},

respectively.
Since we will use this fact in the remainder of this paper, let us note the following

(obvious) proposition:

2By a compact space, we mean what is sometimes also called a quasicompact space. That is, a topo-
logical space in which all open covers have finite subcovers.
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Proposition 2.2. For X ⊆ F0(A), we have g ∈ X ′′ if and only if g is a superfilter of
some x ∈ X. Similarly, for X ⊆ I0(A), we have m ∈ X ′′ if and only if m is a superideal
of some x ∈ X.

Let us now turn our attention to the morphism part of the duality. Therefor, we need
to define multivalued standard morphisms and their composition.

A multivalued function F : X → Y from a set X to a set Y is a binary relation
F ⊆ X × Y such that π1(F ) = X. For x ∈ X, A ⊆ X and B ⊆ Y , we define

F (x) := {y ∈ Y | (x, y) ∈ F},
F [A] := {y ∈ Y | ∃a ∈ A : (a, y) ∈ F},

F [−1][B] := {x ∈ X | F (x) ⊆ B}.

Definition 2.3. Let Kτ
1 = ((G1, ρ1), (M1, σ1), I1), Kτ

2 = ((G2, ρ2), (M2, σ2), I2) be stan-
dard topological contexts. A multivalued standard morphism h : Kτ

1 → Kτ
2 is a pair

(Rh, Sh) of multivalued functions Rh : G1 → G2 and Sh : M1 →M2 such that

(i) (R
[−1]
h [A], S

[−1]
h [B]) ∈ Bτ (Kτ

1) for every (A,B) ∈ Bτ (Kτ
2),

(ii) Rh(x) = Rh(x)′′ = Rh(x) for every x ∈ G1 and
Sh(x) = Sh(x)′′ = Sh(x) for every x ∈M1.

For j ∈ {1, 2, 3}, let Kτ
j = ((Gj , ρj), (Mj , σj), Ij), be standard topological contexts.

We define the composition h2 ◦h1 of two multivalued standard morphisms h1 : Kτ
1 → Kτ

2

and h2 : Kτ
2 → Kτ

3 by setting:

Rh2◦h1 : G1 → G3 : Rh2◦h1(x) := Rh2 [Rh1(x)]′′,
Sh2◦h1 : M1 →M3 : Sh2◦h1(x) := Sh2 [Sh1(x)]′′.

For two bounded lattices A, B and a homomorphism f : A → B, we define the
multivalued standard morphism (Rf , Sf ) : Kτ (B)→ Kτ (A) by setting:

Rf : F0(B)→ F0(A) : Rf (x) := {y ∈ F0(A) | f−1[x] ⊆ y},
Sf : I0(B)→ I0(A) : Sf (x) := {y ∈ I0(A) | f−1[x] ⊆ y}.

It is important to note that, for f being surjective, the preimage of each F ∈ F0(B)
and each I ∈ I0(B) is an element of F0(A) and I0(A), respectively. For arbitrary
homomorphisms, this is not necessarily true.

Now let X be the category with standard topological contexts as objects, multivalued
standard morphisms as morphisms and ◦ as composition. Note that, for a given standard
topological context X = ((G, ρ), (M,σ), I) ∈ X , the identity morphism idX is given as
follows:

RidX : G→ G : RidX(x) = x′′,
SidX : M →M : SidX(x) = x′′.
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Theorem 2.4 ([Har93]). Let A be the category of bounded lattices with homomorphisms
as morphisms and the usual composition of functions. Then, A and X are dually equi-
valent via the two contravariant functors D : A → X and E : X → A that are given as
follows:

D(A) := Kτ (A) = ((F0(A), ρ0), (I0(A), σ0),R(A)),

D(f) := (Rf , Sf ),

E(Kτ ) := Bτ (Kτ ),

E(h) := (R
[−1]
h [−1], S

[−1]
h [−2]) : (A,B) 7→ (R

[−1]
h [A], S

[−1]
h [B]).

3 Duality Theory for Clones

In this section, we will explain how we can dualize arbitrary clones. This theory will
be the foundation of our work in Section 4, where we will use the machinery to dualize
clones over bounded lattice into the framework of Formal Concept Analysis. To obtain
this duality theory for clones, we will use a more general notion of a clone:

Definition 3.1. Let n ∈ N+. A morphism f : An → A is called an n-ary operation

over A. Denote by O
(n)
A the set of all n-ary operations over A, define OA :=

⋃
n∈N+

O
(n)
A

and, for F ⊆ OA, set F (n) := F ∩O(n)
A .

Definition 3.2. A subset C ⊆ OA is called a clone of operations, written C ≤ OA,
if C contains all the projection morphisms πni : An → A and, for each f ∈ C(n) and
f1, . . . , fn ∈ C(k), the superposition f ◦ 〈f1, . . . , fn〉 is also in C.

If A is the category of sets, then this definition coincides with the usual notion of a
clone. It is easy to verify that the clones over an object A form a complete lattice with
respect to inclusion. We call this lattice the lattice of clones over A, and we denote it
by LA. The top element of LA is the full clone OA, and the bottom element is the clone
that contains only the projection morphisms.

Since clones are closed under arbitrary intersection, we can define the closure operator
Clo that assigns to each subset F ⊆ OA the least clone of operations over A that contains
F . It is called the clone generated by F . For a single operation f , we write Clo(f) to
mean Clo({f}).

Examples 3.3.

(i) If A = Set , then OA is the full clone on the set A and LA is the usual clone lattice.
(ii) If A is a variety (or a quasivariety) of algebras, then OA is the centralizer clone of

the algebra A and LA is the lattice of subclones of OA. Centralizer clones are of
particular interest in universal algebra (see [MMT87], for instance).

(iii) For each clone C on a finite set A, we obtain C = OA if we define A to be a
relational structure 〈A,R〉 in a variety of relational structures such that C is the
set of polymorphisms of R (that is, the set of operations that preserve each σ ∈ R).
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Such a set of relations R can always be found. In this case, LA is the lattice of
subclones of C.

These examples show that one can investigate clones over sets by treating them as
clones over objects in (abstract or concrete) categories different from Set .

We can lift every notion from clone theory to our setting as long as we can write it in
purely category-theoretic terms. For instance, we can write all kinds of identities. E.g.,
we can define essential arguments of an operation as follows:

Definition 3.4. For n ∈ N+ and i ∈ {1, . . . , n}, the i-th argument of an operation

f ∈ O(n)
A is said to be nonessential if

f ◦ 〈πn+1
1 , . . . , πn+1

n 〉 = f ◦ 〈πn+1
1 , . . . , πn+1

i−1 , π
n+1
n+1, π

n+1
i+1 , . . . , π

n+1
n 〉.

An argument is called essential if it is not nonessential. Moreover, we say that an
operation is essentially k-ary if it has exactly k essential arguments.

This definition coincides with the usual definition of (non-)essential arguments as
presented at the beginning of Subsection 2.2 whenever the latter is applicable (that is,
if the powers of A are Cartesian powers and the morphisms are set-functions). Having
written operations and clones in purely category-theoretic terms, we can dualize all these
notions:

Definition 3.5. Let n ∈ N+. An n-ary dual operation over X (or cooperation over

X) is a morphism from X to n ·X. Denote by O
(n)
X the set of all n-ary dual opera-

tions over X, define OX :=
⋃
n∈N+

O
(n)
X and, for a set of dual operations H ⊆ OX, set

H(n) := H ∩O(n)
X .

Definition 3.6. A subset C ⊆ OX is called a clone of dual operations (or coclone),
written C ≤ OX, if it contains all the injection morphisms and, for each h ∈ C(n) and
h1, . . . , hn ∈ C(k), the superposition [h1, . . . , hn] ◦ h is also in C.

If X is a set in the category of sets, then a clone of dual operations over X is a coclone
as introduced in [Csá85].

Definition 3.7. For n ∈ N+ and i ∈ {1, . . . , n}, the i-th argument of a dual operation

h ∈ O(n)
X is said to be nonessential if

[ιn+1
1 , . . . , ιn+1

n ] ◦ h = [ιn+1
1 , . . . , ιn+1

i−1 , ι
n+1
n+1, ι

n+1
i+1 , . . . , ι

n+1
n ] ◦ h.

An argument is called essential if it is not nonessential. Moreover, we say that an
operation is essentially k-ary if it has exactly k essential arguments.

Again, clones of dual operations form a complete lattice, which we will denote by LX
and call the lattice of clones of dual operations over X.
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Analogue to the closure operator Clo on sets of operations, we can define Clo: For a
set of dual operations H ⊆ OX, we denote by Clo(H) the least clone of dual operations
that contains H. Again, for a single dual operation, we write Clo(h) instead of Clo({h}).

We will now describe how to dualize clones. For this, let 〈D,E, e, ε〉 be a dual equi-
valence between two arbitrary categories A and X , and let A ∈ A such that all finite
non-empty powers of A are also in A. Set X := D(A). Since A and X are dually equi-
valent, X contains all finite non-empty copowers of X. The functor D carries A to X
and reverses the order of the morphisms, so wishful thinking suggests that it should map
a morphism f ∈ OA to a morphism in OX. Unfortunately, this is not always the case
as D maps f to a morphism from X to D(An) and the latter is only isomorphic and
not necessarily equal to n ·X.3 However, we can get around this technical problem by
finding a family of isomorphisms (ηn)n∈N+ such that f 7→ ηar(f) ◦D(f) becomes a clone

isomorphism from OA to OX (recall that ar(f) denotes the arity of f).

Lemma 3.8 ([Ker11]). There exists a unique family of isomorphisms

(ηn : D(An)→ n ·X)n∈N+

such that the mapping

(−)∂ : OA → OX : f 7→ ηar(f) ◦D(f)

has the following properties:

(i) (−)∂ : O
(n)
A → O

(n)
X is a bijection for each n ∈ N+,

(ii) (πni )∂ = ιni and (f ◦ 〈h1, . . . , hn〉)∂ = [h∂1 , . . . , h
∂
n] ◦ f∂ for all n, k ∈ N+, f ∈ O(n)

A

and h1, . . . , hn ∈ O(k)
A .

In fact, ηn = [D(πn1 ), . . . , D(πnn)]−1.

By this lemma, it follows immediately that C is a clone of operations over A if and
only if C∂ is a clone of dual operations over X. Moreover, the family (ηn)n∈N+ and hence
the construction of (−)∂ only depends on the choice of the dual equivalence. Thus, the
following definition is justified:

Definition 3.9. The mapping (−)∂ : OA → OX is called the clone duality with respect
to D. For F ⊆ OA, set F ∂ := {f∂ | f ∈ F}.

By Lemma 3.8, we immediately obtain the following theorem:

Theorem 3.10. LA ∼= LX, where an isomorphism between LA and LX is given by
C 7→ C∂.

3Of course, we could avoid the trouble by defining n · X := D(An) for all n ∈ N+. But then, the
copowers of X might not be canonical and they would depend on the choice of the dual equivalence.
One usually wants to avoid both.
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Moreover, it is an obvious consequence of Lemma 3.8 that an identity holds in C if
and only if its dualized version holds in C∂ :

Lemma 3.11. Let f1 ∈ O(k)
A , f2 ∈ O(l)

A . For i1, . . . , ik, j1, . . . , jl ∈ {1, . . . , n}, we have

f1 ◦ 〈πni1 , . . . , π
n
ik
〉 = f2 ◦ 〈πnj1 , . . . , π

n
jl
〉 ⇐⇒ [ιni1 , . . . , ι

n
ik

] ◦ f∂1 = [ιnj1 , . . . , ι
n
jl

] ◦ f∂2 .

In particular, this lemma evidently implies the statement that the i-th argument of
some f ∈ OA is nonessential if and only if the i-th argument of f∂ ∈ OX is nonessential.

In [Ker11], clone dualities are used to obtain new results for clones over finite sets
and in particular for clones over classical algebraic structures such as Boolean algebras,
distributive lattices, median algebras or Boolean groups. In the next section, we will
present a new example and discuss how clones over (not necessarily finite) bounded
lattices dualize to clones of dual operations in an FCA-framework.

4 Clones over Bounded Lattices

From now on until the end of this paper, let A = 〈A,∨,∧, 0, 1〉 be a bounded lattice,
and let A be the category of bounded lattices with all homomorphisms as morphisms.
Recall that, in this scenario, OA is the centralizer clone of the lattice A (cf. Example
3.3(ii)). Our goal is to investigate LA, that is, the lattice of subclones of OA.

We will now construct a clone duality for OA. By Theorem 2.4, A is dually equivalent
to the category X of standard topological contexts with multivalued standard morphisms.
Recall that the corresponding functor D : A → X is given as follows:

D(A) := Kτ (A) = ((F0(A), ρ0), (I0(A), σ0),R(A)),

D(f) := (Rf , Sf ).

From now on, let X := D(A). To obtain the clone duality (−)∂ : OA → OX, we need to
observe how the powers of A dualize under D.

Lemma 4.1. For n ∈ N+, we have

F0(A
n) =

{
Ai−1 × x×An−i | i ∈ {1, . . . , n}, x ∈ F0(A)

}
,

I0(A
n) =

{
Ai−1 × x×An−i | i ∈ {1, . . . , n}, x ∈ I0(A)

}
.

Proof. We only show the first equality, since the part for I0(A
n) is similar.

“⊆”. We will show this direction in three steps. First we show that each F ∈ F0(A
n)

must be the Cartesian product of n filters F1, . . . , Fn ∈ F(A), then we show that exactly
n−1 of the sets F1, . . . , Fn equal A, and finally we show that Fi 6= A implies Fi ∈ F0(A).
For the first part, let (a1, . . . , an), (b1, . . . , bn) ∈ F . Since F is a filter, it is closed under
∧. Thus, for ci ∈ {ai, bi}, we have

(c1, . . . , cn) ≥ (a1 ∧ b1, . . . , an ∧ bn) = (a1, . . . , an) ∧ (b1, . . . , bn) ∈ F,
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and consequently (c1, . . . , cn) ∈ F since F is also an increasing set. This proves that F
can be written as F1 × . . . × Fn for some F1, . . . , Fn ⊆ A. If Fi is not an increasing set
for some i ∈ {1, . . . , n}, then F is not an increasing set. If Fi is not closed under ∧ for
some i ∈ {1, . . . , n}, then F is not closed under ∧. Hence, F1, . . . , Fn ∈ F(A).
For the second part, let us first note that we cannot have F = An, so Fi 6= A holds for at
least one i ∈ {1, . . . , n}. Now, let us assume the existence of two integers i, j ∈ {1, . . . , n},
i 6= j, such that Fi 6= A and Fj 6= A. Without loss of generality we can assume i = 1
and j = 2. Since F1, . . . , Fn are filters, we also have that F ∗ := F1 × A× F3 × . . .× Fn
and F ∗∗ := A×F2× . . .×Fn are filters. Moreover, they both properly contain F . Since
F ∈ F0(A

n), there must exist an ideal I ∈ I(An) that is disjoint to F but intersects F ∗

as well as F ∗∗. Let x1 ∈ F ∗∩I and x2 ∈ F ∗∗∩I. But now, we have x1∨x2 ∈ I since I is
an ideal, and we have x1∨x2 ∈ F by construction of F ∗ and F ∗∗. Thus, x1∨x2 ∈ I ∩F ,
which is impossible.
For the third part, let us assume Fi 6= A for some i ∈ {1, . . . , n}. Since we already
know that Fi is a filter, we can finish the proof by showing that there exists Ii ∈ I(A)
such that Fi is Ii-maximal. Recall that F is I-maximal for some I ∈ I(An). By argu-
ments analogue to above, I can be written as I1 × . . .× In where I1, . . . , In ∈ I(A). In
particular, Ii is an ideal. Let us show that Fi is Ii-maximal. By

F1 = . . . = Fi−1 = Fi+1 = . . . = Fn = A,

we can conclude Fi ∩ Ii = ∅ since otherwise it would follow F ∩ I 6= ∅, a contradiction to
the I-maximality of F . It remains to show that there cannot exist a proper superfilter
F ∗i ) Fi that is disjoint to Ii: The existence of such F ∗i ∈ F(A) would imply that I
does not intersect the filter Ai−1 × F ∗i × An−i ) F , which would again contradict the
I-maximality of F .

“⊇”. Let i ∈ {1, . . . , n} and x ∈ F0(A). Clearly, F := Ai−1×x×An−i is a filter. Since
x ∈ F0(A), there exists I ∈ I(A) such that x is I-maximal. But now, Ai−1× I×An−i is
an ideal, and we will finish the proof by showing that F is (Ai−1 × I ×An−i)-maximal.
Clearly, Ai−1 × I × An−i is disjoint to F . Let F ∗ ) F be a proper superfilter. By
arguments from above, F ∗ is of the form Ai−1 × y × An−i for some filter y ) x. But
now, y intersects I, and so F ∗ intersects Ai−1 × I ×An−i. Thus, F ∈ F0(A

n).

It remains to understand how the projection morphisms dualize. For n ∈ N+ and
i ∈ {1, . . . , n}, we have (πni )−1[x] = Ai−1 × x × An−i for each x ∈ F0(A) and each
x ∈ I0(A). Thus, the multivalued standard morphism

D(πni ) = (Rπ
n
i , Sπ

n
i ) : D(A)→ D(An)

is given as follows:

Rπ
n
i (x) = {y ∈ F0(A

n) | Ai−1 × x×An−i ⊆ y},
Sπ

n
i (x) = {y ∈ I0(A

n) | Ai−1 × x×An−i ⊆ y}.

We will now look at the following canonical definition of copowers in X : Let

Y := ((GY, ρY), (MY, σY), IY)
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be an object in X . Then, the n-th copower of Y is defined by setting

n ·Y := ((n ·GY, ρn·Y), (n ·MY, σn·Y), In·Y),

where

n ·GY := {〈i, g〉 | i ∈ {1, . . . , n}, g ∈ GY},
n ·MY := {〈i,m〉 | i ∈ {1, . . . , n},m ∈MY},

ρn·Y and σn·Y are the disjoint union topologies (that is, the finest topologies for which
all canonical injections g 7→ 〈i, g〉 and m 7→ 〈i,m〉 are continuous) and

〈i, g〉In·Y〈j,m〉 :⇐⇒ i 6= j or gIYm.

The associated injection morphisms ιni are given by

Rιni : GY → n ·GY : Rιni (y) = {〈i, g〉 | g ∈ y′′} = 〈i, y〉′′,
Sιni : MY → n ·MY : Sιni (y) = {〈i,m〉 | m ∈ y′′} = 〈i, y〉′′.

Moreover, for a standard topological context Z = ((GZ, ρZ), (MZ, σZ), IZ) and mor-
phisms h1, . . . , hn : Y → Z, the cotupling [h1, . . . , hn] : n ·Y → Z is given as follows:

R[h1,...,hn] : n ·GY → GZ : R[h1,...,hn](〈i, y〉) = Rhi(y),

S[h1,...,hn] : n ·MY →MZ : S[h1,...,hn](〈i, y〉) = Shi(y).

Recall that X = D(A) = ((F0(A), ρ0), (I0(A), σ0),R(A)). For the copowers of X, we
can give a more concrete characterization of the injection morphisms and their cotu-
plings:

Lemma 4.2. Let n ∈ N+ and i ∈ {1, . . . , n}. Then,

Rιni (x) = {〈i, y〉 | y ∈ F0(A), x ⊆ y},
Sιni (x) = {〈i, y〉 | y ∈ I0(A), x ⊆ y}.

Consequently, for i1, . . . , ik ∈ {1, . . . , n}, we obtain

R[ιni1
,...,ιnik

](〈j, x〉) = {〈ij , y〉 | y ∈ F0(A), x ⊆ y},

S[ιni1 ,...,ι
n
ik
](〈j, x〉) = {〈ij , y〉 | y ∈ I0(A), x ⊆ y}.

Proof. As described above, we have Rιnij
(x) = {〈ij , y〉 | y ∈ x′′}, and it is a direct

consequence of Proposition 2.2 that we also have

{〈ij , y〉 | y ∈ x′′} = {〈ij , y〉 | y ∈ F0(A), x ⊆ y}.

The part for Sιni follows in the same way.
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Let us now turn back to constructing our duality. By Lemma 3.8, there exists a unique
family of isomorphism (ηn : D(An) → n ·X)n∈N+ with ιni = ηn ◦D(πni ) for all n ∈ N+

and i ∈ {1, . . . , n}. Moreover, the lemma states that this family is obtained by setting
ηn := [D(πn1 ), . . . , D(πnn)]−1 for all n ∈ N+. In the following proposition, we will describe
this family more concretely:

Proposition 4.3. For n ∈ N+, the unique isomorphism ηn : D(An)→ n ·X from Pro-
position 3.8 is given as follows:

For x ∈ F0(A
n): Rηn(x) = {〈i, y〉 ∈ n · F0(A) | x ⊆ Ai−1 × y ×An−i},

for x ∈ I0(A
n): Sηn(x) = {〈i, y〉 ∈ n · I0(A) | x ⊆ Ai−1 × y ×An−i}.

Proof. In view of Lemma 3.8, we need to show ηn = [D(πn1 ), . . . , D(πnn)]−1. For brevity,
let us set h := [D(πn1 ), . . . , D(πnn)]. Then,

Rh : n · F0(A)→ F0(A
n) : Rh(〈i, y〉) = {x ∈ F0(A

n) | Ai−1 × y ×An−i ⊆ x},
Sh : n · I0(A)→ I0(A

n) : Sh(〈i, y〉) = {x ∈ I0(A
n) | Ai−1 × y ×An−i ⊆ x}.

On the one hand, for x ∈ F0(A
n), we have

Rh◦ηn(x) = Rh[Rηn(x)]′′ = Rh[{〈i, y〉 ∈ n · F0(A) | x ⊆ Ai−1 × y ×An−i}]′′

= {z ∈ F0(A
n) | x ⊆ z}′′ = x′′ = RidD(An)

,

where the last but one step follows directly from Proposition 2.2. On the other hand,
for 〈i, y〉 ∈ n · F0(A), we have

Rηn◦h(〈i, y〉) = Rηn [Rh(〈i, y〉)]′′ = Rηn [{x ∈ F0(A
n) | Ai−1 × y ×An−i ⊆ x}]′′

= {〈i, z〉 ∈ n · F0(A) | y ⊆ z}′′ = 〈i, y〉′′ = Ridn·X(〈i, y〉),

where the fourth step is again due to Proposition 2.2. In the same way, it follows that
we have Sh◦ηn = SidD(An)

and Sηn◦h = Sidn·X . Thus, ηn = h−1.

As outlined in Section 3, we now obtain the clone duality (−)∂ : OA → OX by setting
f∂ := ηar(f) ◦D(f) for f ∈ OA. The following proposition states (−)∂ explicitly:

Proposition 4.4. For f ∈ OA with ar(f) = n, the multivalued standard morphism

f∂ ∈ O(n)
X is given as follows:

For x ∈ F0(A): Rf∂ (x) = {〈i, y〉 ∈ n · F0(A) | f−1[x] ⊆ Ai−1 × y ×An−i},
for x ∈ I0(A): Sf∂ (x) = {〈i, y〉 ∈ n · I0(A) | f−1[x] ⊆ Ai−1 × y ×An−i}.

Proof. For x ∈ F0(A), we have

Rf∂ (x) = Rηn◦D(f)(x)

= Rηn [Rf (x)]′′

= Rηn [{z ∈ F0(A
n) | f−1[x] ⊆ z}]′′

= {〈i, y〉 ∈ n · F0(A) | f−1[x] ⊆ Ai−1 × y ×An−i}′′

= {〈i, y〉 ∈ n · F0(A) | f−1[x] ⊆ Ai−1 × y ×An−i}.

The part for Sf∂ follows in the same way.
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As already noted in the preliminaries, surjective homomorphisms play a special role
in the dual equivalence. For them, we can state the following proposition:

Proposition 4.5. Let f ∈ O
(n)
A be surjective. Then, for each x ∈ F0(A) there exist

i ∈ {1, . . . , n}, y ∈ F0(A) such that Rf∂ (x) = Rιni (y), and similarly, for each x ∈ I0(A)
there exist i ∈ {1, . . . , n}, y ∈ I0(A) such that Sf∂ (x) = Sιni (y).

Proof. Let x ∈ F0(A). As noted in the preliminaries, f being surjective implies that
we have f−1[x] ∈ F0(A

n). Thus, there exist i ∈ {1, . . . , n} and y ∈ F0(A) such that
f−1[x] = Ai−1 × y × An−i. Hence, Rf∂ (x) = {〈i, z〉 | z ∈ F0(A), y ⊆ z} = Rιni (y). As
usual, the part for Sf∂ follows in the same way.

Let us summarize the work of this section: We have constructed a clone duality (−)∂

that dualizes clones over bounded lattices (of arbitrary cardinality) to clones of dual
operations that consist of multivalued standard morphisms between standard topological
contexts. Thus, we have obtained a technique that allows us to transfer problems from
clone theory to the field of Formal Concept Analysis. In the next section, we will put
this duality to work and give a small illustration of how this connection can be a useful
tool to investigate clones over bounded lattices.

5 A Small Illustration of the Duality

Let us now illustrate that the duality can be used to obtain (new) results for clones
over bounded lattices that would be much harder to obtain without the duality. Recall
that the categories A and X , the objects A and X, the functor D and the clone dua-
lity (−)∂ : OA → OX still denote what they denoted in the last section (they were all
introduced on page 9).

First, we deal with essential arguments. Since the morphisms in our category A are
homomorphisms and therefore set-functions and the products in A are the Cartesian
products, the i-th argument of a morphism f ∈ OA is essential in the sense of Definition
3.4 if and only if the i-th argument of f is essential in the usual sense that we have
presented at the beginning of Subsection 2.2. Furthermore, as we have noted in Lemma
3.11, the i-th argument of f is nonessential if and only if the i-th argument of f∂ is
nonessential. Thus, we can investigate the essentiality of the arguments of an operation
f ∈ OA by investigating the arguments of its dual f∂ ∈ OX. To do the latter, we can
use the following lemma:

Lemma 5.1. Let n ∈ N+. For an at least binary multivalued standard morphism

h ∈ O(n)
X , the following two statements are equivalent:

(1) the t-th argument of h is nonessential,
(2) Rh[F0(A)] ⊆ {〈i, y〉 | i ∈ {1, . . . , t− 1, t+ 1, . . . , n}, y ∈ F0(A)}, and

Sh[I0(A)] ⊆ {〈i, y〉 | i ∈ {1, . . . , t− 1, t+ 1, . . . , n}, y ∈ I0(A)}.
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Proof. Without loss of generality, we can assume t = 1.
(1) =⇒ (2). By assumption, h does not depend on its first argument. Hence,

[ιn+1
1 , . . . , ιn+1

n ] ◦ h = [ιn+1
n+1, ι

n+1
2 , . . . , ιn+1

n ] ◦ h,

and so the claim follows by using Lemma 4.2.
(2) =⇒ (1). We have Rh(x) ⊆ {〈i, y〉 | i ∈ {2, . . . , n}, y ∈ F0(A)} for each x ∈ F0(A).

Hence, Lemma 4.2 yields

R[ιn+1
1 ,...,ιn+1

n ]◦h(x) = R[ιn+1
1 ,ιn+1

2 ,...,ιn+1
n ][Rh(x)]

= R[ιn+1
n+1,ι

n+1
2 ,...,ιn+1

n+1]
[Rh(x)]

= R[ιn+1
n+1,ι

n+1
2 ,...,ιn+1

n ]◦h(x).

The equation S[ιn+1
1 ,...,ιn+1

n ]◦h = S[ιn+1
n+1,ι

n+1
2 ,...,ιn+1

n ]◦h follows in the same way.

As this lemma shows, one only needs to look at the images of Rf∂ and Sf∂ to determine
which arguments of an operation f ∈ OA are essential and which are nonessential. In
most cases, this is much easier than trying to investigate the essentiality of an argument
in the usual way. In fact, with this lemma, it becomes remarkably easy to infer many
results about the essential arity of operations among OA. For instance, we can now
almost trivially deduce the fact that the essential arity of operations among OX, and
hence OA, is bounded if X is finite (note that X is finite if and only if A is finite). This
result is known and usually derived from the fact that lattice-homomorphisms satisfy
the strong term condition [McK83], so what we have obtained is an alternative proof,
where the lemma above replaces the arguments from universal algebra. A much more
ambitious goal would be to use this lemma to obtain a sharp bound on the essential arity
of operations over a given finite lattice, which, to the best knowledge of the author, is
an open problem. It seems promising that this problem can be solved with the help of
the lemma above and some work with the multivalued standard morphisms. However,
it would be beyond the scope of this paper.

Let us instead conclude this section with some results about idempotent operations.
Recall that a function f is said to be idempotent if f(x, . . . , x) ≈ x. Writing this equiva-

lently in category-theoretic notation, we can say that an operation f ∈ O(n)
A is idempotent

if and only if f ◦ 〈idA, . . . , idA〉 = idA. Clearly, by Lemma 3.11, f ∈ OA is idempotent
if and only if f∂ ∈ OX is a dual idempotent operation, that is, [idX, . . . , idX] ◦ f∂ = idX.
A clone of (dual) operations is called idempotent if it contains only idempotent (dual)
operations.

We start our small investigation of idempotent operations by providing the following
characterization of the dual idempotent operations among OX:

Lemma 5.2. Let h ∈ O(n)
X . The following two statements are equivalent:

(1) h is idempotent.
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(2) For all x ∈ F0(A), there exists i ∈ {1, . . . , n} such that Rh(x) = Rιni (x), and
for all x ∈ I0(A) there exists i ∈ {1, . . . , n} such that Sh(x) = Sιni (x).

Proof. (1) =⇒ (2). As usual, we only need to show the part for Rh since the statement for
Sh follows in the same way. First, let x ∈ F0(A). There exists f ∈ OA such that f∂ = h.
Since h is idempotent, so is f . This also implies that f is surjective. Therefore, we
can apply Proposition 4.5, and it follows that there exists i ∈ {1, . . . , n} and y ∈ F0(A)
such that Rh(x) = Rιni (y). Moreover, the idempotency of h implies ιni = [ιni , . . . , ι

n
i ] ◦ h.

Hence,

Rιni (x) = R[ιni ,...,ι
n
i ]◦h(x) = R[ιni ,...,ι

n
i ]

[Rh(x)]′′ = R[ιni ,...,ι
n
i ]

[Rιni (y)]′′

= R[ιni ,...,ι
n
i ]◦ιni (y) = Rιni (y) = Rh(x).

(2) =⇒ (1). We have to show idX = [idX, . . . , idX] ◦ h. For each x ∈ F0(A), there
exists i ∈ {1, . . . , n} such that Rh(x) = Rιni (x). Hence,

RidX(x) = R[idX,...,idX]◦ιni (x) = R[idX,...,idX][Rιni (x)]′′

= R[idX,...,idX][Rh(x)]′′ = R[idX,...,idX]◦h(x).

Analogously, it follows SidX = S[idX,...,idX]◦h, so idX = [idX, . . . , idX] ◦ h.

With this lemma, we can establish a close connection between the dual idempotent
operations over X (and hence the idempotent operations over A) and certain partitions.

Definition 5.3. For a dual idempotent operation h ∈ O(n)
X , we denote by Π(h) the par-

tition of F0(A)∪I0(A) obtained by setting Π(h) := {X1, . . . , Xn}\{∅} where X1, . . . , Xn

are defined as follows:

For x ∈ F0(A): x ∈ Xi :⇐⇒ Rh(x) = Rιni (x),

for x ∈ I0(A): x ∈ Xi :⇐⇒ Sh(x) = Sιni (x).

Note that Π(h) is a well-defined partition due to Lemma 5.2. Thus, every dual idem-
potent operation on X can be uniquely assigned to a partition of F0(A)∪I0(A) (but not
necessarily vice versa). Moreover, denoting by 4 the finer-than relation for partitions,
we can use Lemma 5.2 to easily deduce the following statement (its proof will be omitted
due to limitation of space):

Lemma 5.4.

(a) For two idempotent dual operations h1, h2 ∈ OX, we have h2 ∈ Clo(h1) if and only
if Π(h1) 4 Π(h2). Consequently, Clo(h1) = Clo(h2) if and only if Π(h1) = Π(h2).

(b) Each idempotent C ≤ OX is generated by a single dual operation.

Note that the second part of the lemma clearly also holds in its dualized version,
that is, each idempotent C ≤ OA is determined by a single operation. The first part
of this lemma makes it very easy to decide whether two dual idempotent operations
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generate each other, and with a little bit more work, we can also establish a close
connection between the lattice of partitions of F0(A) ∪ I0(A) (given by 4) and the
lattice of idempotent clones over A (one of the ideals of the clone lattice that is of
particular interest).

Proposition 5.5. The lattice of idempotent clones of operations over A can be embedded
into the lattice of partitions of the set F0(A) ∪ I0(A).

Proof. By Lemma 5.4, the desired lattice-embedding ϕ can be obtained by setting
ϕ(C) := Π(f∂) where f is one of the single operations that generate C.

For future research, it would be an interesting task to further investigate the lattice
of idempotent clones of operations over A by characterizing the sublattice of the lattice
of partitions of F0(A) ∪ I0(A) to which it is isomorphic.

6 Conclusion

We used the dual equivalence from [Har93] and the results from [Ker11] to construct
a duality between clones over bounded lattices and so-called clones of dual operations
over standard topological contexts. We gave some small examples of how this connec-
tion between clone theory and Formal Concept Analysis can be used to simplify clone
theoretic problems and to produce concrete results. In the process, we also stated some
open problems for which an application of the duality seems promising.
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