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î  estimated parameter value of each 

model i 

r   regression coefficients 

BIC Bayesian Information Criterion 

C constant term in the K-L equation 
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ABSTRACT 

 

 

 

 

 

 

 

 

 

There is a great deal of uncertainty in hydrogeological modeling. Overparametrized models 

increase uncertainty since the information of the observations is distributed through all of the 

parameters. The present study proposes a new option to reduce this uncertainty. A way to 

achieve this goal is to select a model which provides good performance with as few calibrated 

parameters as possible (parsimonious model) and to calibrate it using many sources of 

information. 

 

Akaike’s Information Criterion (AIC), proposed by Hirotugu Akaike in 1973, is a statistic-

probabilistic criterion based on the Information Theory, which allows us to select a 

parsimonious model. AIC formulates the problem of parsimonious model selection as an 

optimization problem across a set of proposed conceptual models. The AIC assessment is 

relatively new in groundwater modeling and it presents a challenge to apply it with different 

sources of observations.  

 

In this dissertation, important findings in the application of AIC in hydrogeological modeling 

using different sources of observations are discussed. AIC is tested on groundwater models 

using three sets of synthetic data: hydraulic pressure, horizontal hydraulic conductivity, and 

tracer concentration. In the present study, the impact of the following factors is analyzed: 

number of observations, types of observations, and order of calibrated parameters. These 



xiv 

 

analyses reveal not only that the number of observations determine how complex a model can 

be but also that its diversity allows for further complexity in the parsimonious model. However, 

a truly parsimonious model was only achieved when the order of calibrated parameters was 

properly considered. This means that parameters which provide bigger improvements in model 

fit should be first considered.  

 

The approach to obtain a parsimonious model applying AIC with different types of information 

was successfully applied to an unbiased lysimeter model using two different types of real data: 

evapotranspiration and seepage water. With this additional independent model assessment it 

was possible to underpin the general validity of this AIC approach.  
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ZUSAMMENFASSUNG 

 

 

 

 

 

 

 

 

 

Hydrogeologische Modellierung ist von erheblicher Unsicherheit geprägt. Überparametrisierte 

Modelle erhöhen die Unsicherheit, da gemessene Informationen auf alle Parameter verteilt 

sind. Die vorliegende Arbeit schlägt einen neuen Ansatz vor, um diese Unsicherheit zu 

reduzieren. Eine Möglichkeit, um dieses Ziel zu erreichen, besteht darin, ein Modell 

auszuwählen, das ein gutes Ergebnis mit möglichst wenigen Parametern liefert 

(„parsimonious model“), und es zu kalibrieren, indem viele Informationsquellen genutzt 

werden. 

 

Das 1973 von Hirotugu Akaike vorgeschlagene Informationskriterium, bekannt als Akaike-

Informationskriterium (engl. Akaike’s Information Criterion; AIC), ist ein statistisches 

Wahrscheinlichkeitskriterium basierend auf der Informationstheorie, welches die Auswahl 

eines Modells mit möglichst wenigen Parametern erlaubt. AIC formuliert das Problem der 

Entscheidung für ein gering parametrisiertes Modell als ein modellübergreifendes 

Optimierungsproblem. Die Anwendung von AIC in der Grundwassermodellierung ist relativ 

neu und stellt eine Herausforderung in der Anwendung verschiedener Messquellen dar. 

 

In der vorliegenden Dissertation werden maßgebliche Forschungsergebnisse in der 

Anwendung des AIC in hydrogeologischer Modellierung unter Anwendung unterschiedlicher 

Messquellen diskutiert. AIC wird an Grundwassermodellen getestet, bei denen drei 
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synthetische Datensätze angewendet werden: Wasserstand, horizontale hydraulische 

Leitfähigkeit und Tracer-Konzentration. Die vorliegende Arbeit analysiert den Einfluss 

folgender Faktoren: Anzahl der Messungen, Arten der Messungen und Reihenfolge der 

kalibrierten Parameter. Diese Analysen machen nicht nur deutlich, dass die Anzahl der 

gemessenen Parameter die Komplexität eines Modells bestimmt, sondern auch, dass seine 

Diversität weitere Komplexität für gering parametrisierte Modelle erlaubt. Allerdings konnte 

ein solches Modell nur erreicht werden, wenn eine bestimmte Reihenfolge der kalibrierten 

Parameter berücksichtigt wurde. Folglich sollten zuerst jene Parameter in Betracht gezogen 

werden, die deutliche Verbesserungen in der Modellanpassung liefern. 

 

Der Ansatz, ein gering parametrisiertes Modell durch die Anwendung des AIC mit 

unterschiedlichen Informationsarten zu erhalten, wurde erfolgreich auf einen 

Lysimeterstandort übertragen. Dabei wurden zwei unterschiedliche reale Messwertarten 

genutzt: Evapotranspiration und Sickerwasser. Mit Hilfe dieser weiteren, unabhängigen 

Modellbewertung konnte die Gültigkeit dieses AIC-Ansatzes gezeigt werden. 
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It is better to be roughly right than precisely wrong. 

(John Maynard Keynes; English economist, 1883-1946)
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INTRODUCTION 

 

 

 

 

 

 

 

 

 
 

Hydrogeological modeling is a complicated science. Mathematicians, chemists, and 

engineers probably find modeling a very frustrating task due to the great deal of uncertainty 

which they are confronted with. There are uncertainties in the value of the parameters, scale 

chosen, data quality, boundary conditions, etc. At a given point these can be quite 

overwhelming and decrease confidence in the results. Modeling is not an exact science and 

plenty of compromises must be made. For example, the measured field values can not be 

directly used to parametrize the model and the same is true for the values from the 

laboratory. They have to be all “averaged” to account for wrong boundary conditions, a 

chosen scale, and unparametrized variables. Several attempts have been tried to reduce 

these uncertainties and one of those is the present dissertation. A way to reduce uncertainty 

could be to choose a model with as few calibrated parameters as possible and still having 

good performance (parsimonious model) and to use for calibration many sources of 

information (for example: heads, flows, concentration, etc.). 

 

Akaike’s Information Criterion (AIC) is a model selection criterion based on Information 

Theory which allows us to choose a parsimonious model. A recent tendency among 

hydrogeologists is to postulate several alternative hydrogeological models for a site and use 

a model selection criteria in order to: 1) rank the models, 2) eliminate some of them and/or, 

3) weight and average predictions and statistics generated by the models (Ye et al. 2008). 



1.1 OBJECTIVE  2 

 

Since the application of model selection criteria is relatively new in groundwater modeling, 

there is still some insecurity about the correct implementation of the model selection criteria. 

A challenge is always present when applying AIC and other model selection criteria in 

hydrogeological models, especially when using different sources of observations.  

 

1.1 OBJECTIVE  

 

The scientific premise in this dissertation is the application of Akaike’s Information Criterion 

to hydrogeological models while using different sources of observations, such as head, 

hydraulic conductivity, and concentration values for calibration. If this criterion can be 

applied, then, it is necessary to determine the impact of the number and type of 

observations, as well as the order of the calibrated parameters. This is to my information still 

not achieved in the field of hydrogeological modeling, although, some attempts were already 

made by Hill and Tiedeman (2007a). Akaike’s Information Criterion is rarely applied in 

hydrogeological modeling. The same is true for calibrating with different information types. 

The combination of these two practices is not well developed yet and I believe that this 

combination will substantially reduce uncertainty in hydrogeological modeling. 

 

1.2 STRUCTURE  

 

Chapter 1 presents the justification of the study, the research objective and gives a short 

overview of the whole dissertation.  

 

In Chapter 2, the scientific foundations, assumptions, and formulas involved in the 

Information Theory are explained.  

 

Chapter 3 describes the Model Selection theory in depth. At the beginning, an overview of 

model selection methods is provided, followed by a detailed explanation of the AIC method, 

assumptions, formulas, and its most important modifications. There is also a discussion of 

whether the model selection methods AIC, AICc, BIC, and KIC were correctly derivated 

assuming the truth was not included within the candidate models. Furthermore, the results of 

the comparison of model selection methods in hydrogeology are mentioned. Finally, the 

implementation problems in hydrogeology of model selection methods are presented and 

discussed. 

 

In Chapter 4, the combination of applying AIC to groundwater models and calibrating them 

with different types of observations as a practical method to reduce conceptual model 
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uncertainty is tested using synthetic data. The way to norm the different data types is 

revealed. The model that generates the synthetic data is presented, along with the candidate 

models proposed to simulate the data. This is followed by the set up and evaluation of three 

experiments with synthetic data. These experiments test the application of AIC in 

groundwater models using first, only hydraulic pressure observations for calibration; second, 

calibrating additionally with the conductivity observations; and third, making use of all three 

data sets, including the concentration values. A discussion follows about the impact of 

number of observations, type of observations, and the influence of parameter order on the 

model selection ranking. The discussion provides important insights into the optimal way to 

set up the model selection evaluation according to the amount and types of observations 

available.  

  

Chapter 5 applies the method proposed in the previous chapter to a real case using two 

different types of observations from a lysimeter. To this end, the order of the parameters was 

optimally arranged to obtain the best possible AIC value.   

 

Chapter 6 provides the closure to the research by presenting the conclusions and discussing 

the implications of using the combination of applying AIC to hydrogeological models and 

calibrating the models using different types of observations as an innovative method to 

reduce model uncertainty. The areas where further research is needed are also identified. 

 

Finally, important information about basic mathematical subjects which are essential to 

understand AIC are annexed at the end, along with relevant model selection topics related to 

the present dissertation. 
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2 INFORMATION THEORY 
 

 

 

 

 

 

 

 
 

Information Theory is a science that began in the Second World War. Codified information 

was sent to allies and intercepted by enemies. Efforts on both sides were made to decode 

this information. Under these conditions, Kullback and Leibler (1951) found out the 

mathematical expression which defines information loss between a model and the “truth” 

(parametrized truth or truth-model). This expression is known as the Kullback-Leibler (K-L) 

information, also known as K-L divergence, relative entropy, or I-divergence (Seghouane and 

Amari 2007). The mathematical efforts to codify, send, and decode information constitute the 

Information Theory. The main applications are found on the field of telecommunication, which 

includes transmitting information (audio, images, data files, etc.) through different channels, 

but the discovery of Kullback and Leibler can be applied to other fields such as modeling.  

 

2.1 HOW TO MEASURE INFORMATION LOSS 

 

K-L information (Information loss) can indeed be measured and it is defined for continuous 

functions as the integral:  
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where I(f,g) denotes the information lost when g is used to approximate f (Burnham and 

Anderson 2002:51); g(x|θ) is a model which is expected to provide an approximation of the 

truth; while f(x) is the representation of the truth; and θ stands for model parameters.  

 
We can precisely calculate this loss of information with the previous equation as shown in the 

following illustrative example modified from Burnham and Anderson (2002:54). Let the true 

model )(xf  be the probability density function of a gamma distribution with two parameters 

( = 4,  = 4), defined as 
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and consider three different probability density functions g(x|θ), Lognormal, Inverse 

Gaussian, and F distribution, denoted g1, g2, and g3 respectively, each with two parameters, 

as approximation models, shown below: 
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These functions are substituted in Equation 1 and evaluated in the range [0, 50]. The one 

with the minimum value has the smallest information loss, also interpreted as the shortest K-

L “distance,” which means the closest approximation to )(xf . Burnham and Anderson 

(2002:52) note that according to Kullback (1959) the K-L information could be seen as the 

direct “distance” from g (approximation) to f (truth), but not as the distance from f to g since it 

is an oriented distance in which both directions are different1. The three models and their 

corresponding “distances” to )(xf  are listed in the following table: 

                                                

1
 Seghouane and Amari (2007) symmetrized the K-L divergence using the geometric and harmonic 

mean and apply it as a base for a model selection criteria (AICc*, more on this subject in Section 3.4.3). 
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Table 1:  Information loss between )(xf  Gamma distribution ( = 4,  = 4) and three 

approximating models gi 

 Approximating model ),( igfI  

g1 Lognormal distribution (θ = 2,  = 2 ) 0.672 

g2 Inverse Gaussian ( = 16,  = 64) 0.060 

g3 F distribution ( = 4,  = 10) 5.745 

 

The closest approximation to )(xf  is the probability density function g2, followed by g1 and 

far behind by g3. It can also be visually verified (for this simple example) by plotting the three 

functions against the gamma distribution as it is presented in Figure 1. 

 

In this example, we know exactly the truth and its parameters; what in practice seldom 

happens. This makes out of the K-L divergence a theoretical formula which in the real praxis 

is not possible to be calculated. 

 

 

Figure 1:  Plots of truth )(xf  gamma distribution (4, 4) (solid line), against three g(x) 

approximating models (dashed lines): g1 = lognormal (2, 2 ), g2 = inverse Gaussian (16, 64), 

and  g3 = F distribution (4, 10)  

 

If one is familiarized with the entropy concept, then one could notice that the K-L information 

and the entropy are related. Burnham and Anderson (2002:54, 86) note that Boltzmann 

(1877) derive the theorem that entropy is proportional to minus logarithm of the probability. 

Hence, Kullback and Leibler derive a measure that in fact happens to be the negative of 

Boltzmann’s entropy:  

 

Boltzmann’s entropy = - ln
)(

)(

xg

xf
  6 

 

The K-L information [I(f,g)] is the expectation with respect to f of minus Boltzmann’s entropy: 
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I(f,g)  =  Ef 
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Hence, maximizing the entropy equals minimizing the K-L distance. Burnham and Anderson 

(2002:86) explain that entropy means “disorder,” so by maximizing the entropy we get the 

maximum of disorder, which means minimum of information. It is, however, the “noise” which 

is disordered at its maximum and forced to a minimum of information. A good model has the 

information on the data, leaving only “noise” as a residual. Burnham and Anderson 

summarize that this leaves a model which is maximally justified by the data and with a 

minimum of noise when the K-L distance is minimized.  

 

At least theoretically, the information loss between the model and the truth is known. It 

seems as if the K-L information would not be useful in practice since the truth is generally 

unknown and therefore not quantifiable. The K-L information is, though, relevant since 

Akaike (1973) found an estimation to the K-L information when the truth is unknown.  

 

2.2 HOW TO ESTIMATE INFORMATION LOSS WHEN THE 
TRUTH IS UNKNOWN 

 

The K-L information expressed in extended form is the following: 

 

  dxxgxfdxxfxfgfI )]|(ln[)()](ln[)(),(   8 

 

Clearly, every term at the right is an expectation with respect to f(x). The expectation of the 

logarithm of the truth with respect to the truth is not of interest since it is always constant. 

Therefore, we can take it to the other side as a constant C as follows: 

 

 dxxgxfCgfI )]|(ln[)(),(   9 

 

The left hand side term is no more the exact value of the K-L information but a numerical 

value of the K-L information minus a constant which depends on the unknown truth. 

Calculating the right hand side will not give us the exact information loss, it will be just a 

value. However, this numerical value is useful since the truth remains constant for a specific 

situation and can be compared to those from other approximating models. Akaike (1973) 

found a way to estimate the right hand term when f(x) is unknown based on the maximum 

likelihood function. An estimate of relative information loss can be obtained. Since the x is 
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integrated out and there is no data on the above expression, Akaike assumed then some 

finite y data to estimate the parameters  as follows: 

 

 dydxyxgxfyfCgfI  ))](ˆ|(ln[)()(),(   10 

 

At this point, we introduce the mathematical notation of estimators “^.” The parameters   are 

not known, they must be estimated ̂ . A term with a “hat” is not the theoretical true value but 

an estimated or calculated value of it. Akaike found out that the expectation of x and y from 

)](ˆ|(ln[ yxg   with respect to the truth could be estimated by substituting the unknown truth 

with the maximum likelihood estimate which is asymptotically chi squared distributed when 

considering large samples and "good" approximating models (close to the truth) 2. This gives 

(Burnham and Anderson 2002:353, 364):  

 

KyLCgfI  )]|ˆ(ln[),(   11 

 

where ln[ )]|ˆ( yL   is the natural logarithm of the maximum likelihood function of the 

parameter estimators ̂  given some data. It is not a problem to solve the likelihood function 

since it can be found in mathematical handbooks for different distributions. Akaike 

determined that the bias introduced by substituting the maximum likelihood estimate is 

approximately equal to K, which is the number of unknown estimable parameters. These 

parameters can be hydrological as well as statistical.  

 

We have seen that information loss between the truth and an approximating model can be 

measured and that Akaike’s approach can estimate the information loss when the truth is 

unknown by relying on sample data of that truth. The relation found by Akaike between the 

K-L information and the maximum likelihood estimate has allowed major practical and 

theoretical advantages in model selection and the analysis of complex data sets (Burnham 

and Anderson 2002:261, deLeeuw 1992). In the next chapter, we will explore the 

applications of Akaike’s approximation in Model Selection. 

 

                                                

2
 Detail information on the estimation of )](ˆ|(ln[ yxg  in Akaike (1973), Sawa (1978), Linhart and 

Zucchini (1986:41-47, 76-78, 243-245), deLeeuw (1992), Konishi and Kitagawa (1996), and Burnham 

and Anderson (2002:Chapter 7). 
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3 MODEL SELECTION METHODS 
 

 

 

 

 

 

 

 

 
 

In this chapter, an overview of the variety of model selection methods found in the literature 

is presented. However, we will focus on the Akaike Information Criterion and AICc, the 

corrected version for small data samples. These two methods will be explained in detail, 

while other related selection models such as QAIC, QAICc, AICc*, BIC, and KIC will be just 

shortly introduced. Then, a literature discussion will be presented about doubts of proper 

mathematical derivation of AIC and BIC. This will be followed by a literature comparison of 

the performance of model selection methods in hydrogeology. And to conclude, the 

implementation problems faced by our hydrogeology colleagues will be presented, focusing 

on the implementation problem resulting from considering different kind of observations. 

 

3.1 MODEL SELECTION METHODS IN THE LITERATURE 

 

If data is available, one could always find several models that fit equally well the data. For 

example, given two points, we could fit beside a line also any curve. Without making any 

further assumptions, there is no reason to prefer a model over other one. In other words, we 

are forced to make assumptions to fit the data with a model. Several model selection 

methods have been proposed in order to enable us to choose wisely among the different 

possibilities. Just to give an overview, a list of methods classified as theoretical or empirical, 

modified from Sewell (2008) are listed below: 
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Theoretical methods: 

 AICc (Sugiura 1978, Hurvich and Tsai 1989); 

 AICc* (Seghouane and Amari 2007); 

 AICi (Bengtsson and Cavanaugh 2006); 

 AICW (Wilks 1995); 

 Akaike Information Criterion (AIC, Akaike 1973); 

 Bayesian Information Criterion (BIC, also Schwarz Criterion, Schwarz Information 

Criterion (SIC), or Schwarz-Bayesian Information Criterion; Schwarz 1978); 

 CAT (Parzen 1974, 1977); 

 Consistent AIC with Fisher Information (CAICF, Bozdogan 1987); 

 Deviance Information Criterion (DIC, Spiegelhalter et al. 2002); 

 FIC (Wei 1992); 

 Final prediction error (FPE, Akaike 1969); 

 FPE (Bhansali and Downham 1977); 

 FPEC (de Luna 1998); 

 FPER (Larsen and Hansen 1994); 

 Gamma Test (Han et al. 2009); 

 Generalized cross-validation (GCV, Craven and Wahba 1979); 

 Generalized prediction error (GPE; Moody 1991, 1992); 

 GM (Geweke and Meese 1981); 

 Hannan and Quinn Criterion (HQ, Hannan and Quinn 1979); 

 ICOMP(IFIM) Inverse Fisher Information Matrix (Bozdogan 2000); 

 Informational Complexity Criterion (ICOMP, Bozdogan and Haughton 1998); 

 KIC (Kashyap 1982); 

 KICc (Cavanaugh 2004); 

 Mallows’ Cp (Cp, Mallows 1973); 

 Minimum description length (MDL, Rissanen 1978); 

 Minimum message length (MML, Wallace and Boulton 1968); 

 Predicted squared error (PSE, Barron 1984); 

 PRESS (Allen 1974); 

 QAIC, QAICc (Lebreton et al. 1992); 

 Structural risk minimization (SRM, Vapnik and Chervonenkis 1974); 

 Takeuchi’s information criterion (TIC, also Generalized AIC (GAIC) or AICT; Takeuchi 

1976); and 

 VC-dimension (Vapnik and Chervonenkis 1968, 1971; Vapnik 1979). 
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Empirical methods: 

 Adjusted R2 (Wherry 1931); 

 Cross-validation (Stone 1974, Geisser 1975); 

– Bootstrap (Efron 1979) 

– Jacknife 

– K-fold cross-validation 

– Leave-one-out cross-validation 

 Linear regression; 

 Shibata’s model selector (sms, Shibata 1981); 

 Signal-to-noise ratio; and 

 Test set validation. 

 

If one goes into the details of every single method, one would get easily lost in such a 

diversity of model selection methods. The literature is highly technical and dispersed 

throughout research articles and books. Therefore, it is not my intent to explain every single 

method, but to focus on AIC and briefly mention some other methods, especially, those 

which have been used to evaluate and rank models in hydrogeology.  

 

3.2 PRINCIPLE OF PARSIMONY 

 

In numerical modeling context, the principle of parsimony means that models are favoured 

for fitting the observed values and penalized for building additional model complexity. The 

principle of parsimony is one of the main principles of many selection methods and stands for 

“as less as possible.” It is also known as Occam’s razor: It is vain to do with more what can 

be done with fewer, William of Occam (Grünwald 2000:133). An increase in estimated 

parameters means an increase in complexity. However, the addition of a parameter may 

result on substantial improvement of model fit which would compensate for the penalty. If the 

improvement does not compensate for the penalty, model selection criteria do not rank the 

model higher than the competing models. In this manner, model selection criteria choose the 

parsimonious model. 

 

3.3 AKAIKE’S INFORMATION CRITERION (AIC, AKAIKE 1973): 
MODEL SELECTION BASED ON THE ESTIMATION OF THE 
INFORMATION LOSS 

 

Akaike defined a model selection criterion called Akaike’s Information Criterion (AIC) based 

on his estimation of the information loss between an approximating model and an unknown 
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parametrized truth. With this criterion, Akaike could estimate a “relative” information loss. AIC 

can distinguish if an approximating model loses less information than another one, and thus, 

identify the one which is closer to the unknown truth which generated the data. He achieved 

this by multiplying by -2, due to historical reasons, the unbiased estimation of the K-L 

information, KyL )]|ˆ(ln[  , and defining AIC as follows: 

 

KyLAIC 2)]|ˆ(ln[2    12 

 

One could think that these “historical reasons” have no justification and could be left out. 

However, deLeeuw (1992) adds that although the justification in Akaike’s paper for using -2 

may seem weak, the result is a natural distance measure between probability densities.  He 

also mentions that this result has strong connections with the Shannon-Wiener information 

criterion, the Fisher information, and entropy measures used in thermodynamics. Burnham 

and Anderson (2002:64) emphasize that -2 times the natural logarithm of the ratio of two 

maximized likelihood values is asymptotically chi-squared distributed under certain 

conditions and assumptions. Thus, the term -2 is not unreasonable.  

 

AIC, as given in Equation 12, cannot be directly entered into the calculator. First, one should 

substitute the corresponding likelihood function, which depends on the distribution of the 

data. In hydrology, most annual hydrologic events are described by the normal distribution 

(Reddy 2005:58, 63). When analysing model results, we are dealing mostly with normal 

distributed residuals. Residuals are a kind of experimental error obtained by subtracting the 

model results from the observed data. Therefore, the general assumptions for errors apply: 

One expects them to be (roughly) normal and (approximately) independently distributed with 

a mean of 0 and some constant variance (NIST/SEMATECH 2003:Section 5.2.4). The 

normal distribution, also called Gaussian or Bell Curve, is probably the most useful 

distribution. The Central Limit Theorem states that with increasing number of observations, 

data which is roughly normal, not necessarily independent, to some extent random, and with 

finite variance, tends to a normal distribution3 (Brutsaert 2005:524). This means that as n 

increases, our data will tend to be normally distributed even if we relax the assumptions of 

independence, randomness, and normal distribution of the observations. Independence 

means that the value of an observation does not depend on the values of previous 

observations. The likelihood function of the normal distribution function is  

 

                                                

3
 Appropriate transformations to make non normal data approximately normal may be needed. 
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The notation stands for 
2ˆ
ML : maximum likelihood variance estimate,  : residual (observed 

minus calculated value), and n: number of observations. More information about the maximum 

likelihood estimation of the normal distribution can be found in Appendix A.2 (p. 91). 

 

Inserting the just mentioned likelihood function into the general AIC formula (Equation 12) will 

provide us with an AIC equation for normally distributed residuals which can be easily 

computed with a calculator:  

 

KnnnAIC ML 2)2ln()ˆln( 2    15 

 

where K is the number of estimable parameters. If 
2 of the data is known, K equals the 

number of hydrological parameters. However, if 
2  is unknown, as is often the case, K 

equals the number of hydrologic parameters plus one (Ye et al. 2008). This is because the 

unknown statistical parameter 
2  has to be approximated by Maximum Likelihood to obtain 

the estimate 
2ˆ
ML . 

 

Since the terms )2ln( n and n are constant, they do not influence model selection and can 

be dropped, leaving us with a practical Gaussian AIC formula: 

 

KnAIC ML 2)ˆln( 2    16 

 

AIC can be regarded as a balance equation between closeness to the truth and model 

complexity. Assuming that there is a set of candidate models with varying complexity, the 

optimal model would be the one with the smallest AIC, as noted by the black triangle with the 

smallest value in Figure 2. The term )ˆln( 2

MLn   is a measure of model fit, indicated by the 

blue diamonds in the same figure. Usually, the model fit improves substantially from non-

calibrated models to models calibrated with increasing number of parameters. However, the 

improvement is not linear. Frequently, allowing more parameters to be calibrated results in 

little improvement. On the other hand, the term 2K, indicated in the figure as red squares, 
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penalizes model complexity in linear form. Adding this last term to the model fit term gives us 

the value of AIC. This proves to be a very simple criterion to identify parsimonious models. 
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Figure 2:  Schematic example of AIC principle 

 

Burnham and Anderson (2004) suggest taking the Akaike differences to rank the models:  

 

minAICAICii   17 

 

where i  is the difference between each AIC value and the minimum AIC value of the set. 

The best model will have a = 0 while the others will show positive numbers. As a rough 

guideline, one can consider that models characterized by 2i  have support to a large 

extent; 74  i  have considerably less support; and 10i  have basically no support 

(Burnham and Anderson 2004). 

 

The Akaike differences allow us to easily calculate the likelihood of a model given the data. 

According to Burnham and Anderson (2004), the likelihood of the model given the data is  

 








 


2
exp)( i

i ygL  18 

 

It should be recalled that Akaike multiplied the unbiased estimation of the K-L information by 

-2 to obtain AIC; otherwise, the likelihood would be simply: 

 

)exp()( ii ygL   19 
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The likelihood of the model is important since the Akaike weights wi are defined by 

normalizing the likelihoods such that they all sum 1 (Burnham and Anderson 2004):   
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The wi results can be interpreted as the probability that model i is the best model supported 

by the data. 

 

3.4 AIC MODIFICATIONS (AICC, QAIC, QAICC, AND AICC*) 

 

AIC found widespread acceptance and received immediate attention from the scientific 

community. A part of this community searched applications for AIC while another one tried to 

find a “better model selection criterion.” From these last efforts, several modifications of AIC 

were developed. It seems that there is no best model selection criterion for all cases. 

Instead, a certain model works best for a determined case.  

 

3.4.1 Small sample correction: AICc (Sugiura 1978, Hurvich 
and Tsai 1989)  

 

A correction to the bias, which Akaike found out to be approximately equal to 2K, was made 

by Sugiura (1978), and applied by Hurvich and Tsai (1989) for the case of having few 

observations: 
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in Gaussian form:   
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dropping out the constant terms we get 
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It could also be expressed in terms of AIC as presented by Burnham and Anderson (1999): 
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As the ratio of number of observations to number of estimated parameters (n / K) decreases, 

the bias of the estimated K-L information in AIC increases (Ye et al. 2008). Therefore, 

Burnham and Anderson (2002:66) suggest using AICc when n / K < 40 for the candidate 

model with the most of parameters. For the opposite case, when the number of observations 

increases with respect to the estimable parameters, AICc tends to AIC. 

 

The AICc is probably the most useful modification of AIC, since modelers often have few 

observations to work with. The following example illustrates the AICc. Suppose we have the 

following truth: 

  

 

Figure 3:  Elephant drawing (Wel 1975) 

 

The elephant was defined by Wel (1975) with 36 points and simulated with four different 

models using the least square Fourier sine series (Equations 25 and 26) with 5, 10, 20 and 

30 terms. The results are shown in the following figure: 
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Figure 4:  Elephant fit using the least square Fourier sine series with 5 (a), 10 (b), 20 (c), and 30 

(d) terms (Wel 1975) 

  

From the above figure we can tell that with more terms, we obtain a better fit. And that model 

“d” seems to be a very good approximation of the elephant. But, was the effort of adding so 

many parameters worthy? How can this be quantified? To answer this, we implement AICc. 

 

The 36 points which Wel used to define his elephant and to calibrate the four models are 

located at the line inflections of the elephant model: 

 

 

Figure 5:  Elephant data  

 

The x and y coordinates of the points were parametrized by Wel in terms of a variable t, 

which assumes integer values from 1 to 36. The following least square Fourier sine series 

were used to fit the data: 
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By overlaying the data (Figure 5) to the model results shown in Figure 4, we obtain the 

following “original data – approximating models” superpositions: 

 

a b

dc

 

Figure 6:  Elephant point data and fit of the least square Fourier sine series with 5 (a), 10 (b), 20 

(c), and 30 (d) terms 

 

The shortest distance of the points to the fitted curves in the above figure is taken as the 

residual. With the residuals, we can calculate the model fit (first term of Equation 23). K can 

be calculated as the number of parameters (terms of least square Fourier sine series) + 1 

statistical parameter (
2ˆ
ML ). Furthermore, the Akaike differences (AICc Δi) are the differences 

of the respective model to the best model of the set. These differences are calculated 

analogously to those of AIC Δi with Equation 17 (p. 14). The Akaike weights (AICc wi) are 

calculated with Equation 20 (p. 15). The results are summarized in the following table and 

visualized in the following graph: 

 

Table 2:  AICc evaluation of least square Fourier sine series with 5 (a), 10 (b), 20 (c), and 30 (d) 

terms 

Model K Model Fit 
AICc 

Penalty 
AICc AICc Δi AICc wi 

a 6 91.8 14.9 106.7 2.4 0.24 

b 11 71.4 33.0 104.4 0.0 0.76 

c 21 18.3 108.0 126.3 22.0 0.00 

d 31 -129.7 558.0 428.3 323.9 0.00 

n = 36      
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Figure 7:  AICc evaluation of the four elephant candidate models 

 

The ratio n / K of the model with more parameters (Model “d”) is 36 / 31 = 1.2. This value is 

much lower than 40 and therefore, the set of models is to be analized by AICc. The bias of 

the estimated K-L information is too high to apply AIC.  

 

In the previous graph, one can see that the model fit improves from model to model. This 

was already evident in Figure 6. Not evident was that the penalty term increases as in Figure 

7. The penalty term is the second term of Equation 23 (p. 15). The form of the penalty term 

curve depends on the number of observations. The less observations, the more exponential 

the curve behaves; the more observations, the flatter it is (AICc tends to AIC). For this data 

set with 36 observations we obtain almost an exponential penalty term curve with a limit at 

34 calibrated parameters. There, K = 35 and n – K – 1 = 0 (division by zero is not defined). 

The mathematical limit of the penalty term is the number of observations available minus 

three (since with minus two we have already the division by zero). In practice one should 

calibrate with far less parameters than available observations. 

 

Out of the four models, the best approximation is Model “b,” with the lowest AICc value 

(Figure 7). This is the best compromise between data availability and model complexity. It 

has approximately 75 % probability of being the best model, as indicated by the Akaike 

weights (AICc wi) in Table 2. Model “d,” has almost as much parameters as data is available. 
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Such a model is clearly overfitted. This means that given another set of data, for example, by 

choosing different points along the elephant of Figure 5, Model “d” will most probably provide 

a very different result to that in Figure 6 d. In contrast, Model “b” results will be more 

consistent and still look similar to the result of Figure 6 b. Model “a” is slightly underfitted with 

approx. 25 % probability of being the best model. Model “c” is overfitted and has no support 

from the Akaike weights. 

 

With this exercise we do not just illustrate AICc but also ratify the common English expression 

that given enough parameters one can fit an elephant, or rather: overfit an elephant. 

 

3.4.2 Modified criteria for overdispersion in count data: QAIC 
and QAICc (Lebreton et al. 1992)  

 

When count data sampling variance differs from the predicted Poisson or multinomial 

probability distributions, count data is said to be overdispersed (Burnham and Anderson 

2001). This modification of AIC is probably not relevant in hydrogeological modeling since we 

do not work with count data. However, it is certainly of relevance for ecological population 

models where AIC has been mostly applied. An appropriate modification of AIC and AICc to 

take overdispersion into account was found by Lebreton et al. (1992):  
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and where 
2 is the goodness-of-fit chi-square statistic with df degrees of freedom, which are 

the additional number of parameters needed to specify the most complex model fitted to the 

available data (Richards 2008). Burnham and Anderson (2001) note that only one value of ĉ  

should be used along a set of candidate models. They add that a value of ĉ  lower than 1 

should not be used and when c is estimated, it counts as a parameter and should be 

included in K. ĉ  is an estimated variance inflation factor which should be estimated from the 
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highest dimensioned model in the set of candidates (Burnham and Anderson 1999). When 

no overdispersion occurs c = 1 and QAIC is equivalent to AIC.  

 

3.4.3 Symmetric criterion: AICc* (Seghouane and Amari 2007) 

 

As noted in Section 2.1, the K-L information on which the AIC is based is an oriented 

“distance” where both directions are different. Seghouane and Bekara (2004) found that the 

K-L distance may reflect errors due to overfitting while the alternative direction may reflect 

errors due to underfitting. They argue that symmetrizing the K-L information would provide an 

AIC modification that provides a better balance of model disparity than any of the both 

directions.  

 

By applying the mean average to the K-L Information, Seghouane and Amari (2007) obtain a 

symmetric AICc criterion called AICc*: 
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Seghouane and Amari (2007) symmetrized AICc also using the geometric and the harmonic 

mean, but they are not sure about the benefits of using one or the other mean. They 

conclude that using a symmetrized AICc criterion could be preferable to the normal AICc, but 

more research is needed on the properties of the different criteria resulting by applying 

different average methods in order to make some further suggestions about them. 

 

However, their formula is not based on Equation 21 but on a version of this AICc equation in 

which K is added 1. They claim to have it also from Hurvich and Tsai (1989): 
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3.5 BAYESIAN INFORMATION CRITERION (BIC, SCHWARZ 1978) 
AND KASHYAP INFORMATION CRITERION (KIC, KASHYAP 1982)  

 

BIC is after AIC one of the most popular model selection methods. It was developed by 

Schwarz (1978) under a Bayesian context as an asymptotic approximation of a 

transformation of the posterior probability of a candidate model (Ye et al. 2008). Background 
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KASHYAP INFORMATION CRITERION (KIC, KASHYAP 1982) 

 

information on Bayesian inference is presented in Appendix A.3 (p. 93). Even though, the 

derivation of BIC sounds complicated, the result is as simple as AIC: 

 

nKyLBIC ln)]|ˆ(ln[2    32 

 

In the same manner as with AIC, the terms with -2 ])ˆ(ln[ yL   are measures of goodness of 

fit; the smaller the term the better the fit between predicted and observed values. Terms 

containing K are measures of model complexity. The goodness of fit term is the same for AIC 

as for BIC; the different model selection criteria differ only in the approximation of the bias. 

 

KIC was also developed under a Bayesian context by Kashyap (1982) as an asymptotic 

approximation to the model likelihood (Ye et al. 2008): 

 

FnKnKpyLKIC lnln)2/ln()ˆ(ln2)]|ˆ(ln[2    33 

 

which can be simplified to 

 

 ln)2ln()ˆ(ln2)]|ˆ(ln[2  KpyLKIC  34 

 

where )ˆ(p  is the prior probability of the parameter   evaluated at the estimated parameter 

value ̂ . The term )ˆ(ln2 p  drops out when no previous information of the parameters is 

available; the two vertical lines | | denote the determinant of a matrix; F  is the observed 

Fisher information matrix which is usually interchanged by F , the expected Fisher 

information matrix having the following elements (Ye et al. 2008): 
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In Equation 34, |∑| denotes the Cramér-Rao lower bound of the covariance matrix of the 

Maximum Likelihood parameter estimates which is equal to the inverse of the determinant of 

the expected Fisher information matrix (Ye et al. 2008): 
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AICc and KIC provide a better approximation for the bias than AIC and BIC when only few 

observations are present. With increasing number of observations, AICc tends to AIC and 

KIC to BIC (Ye et al. 2008). 

 

As noted by Ye et al. (2008), dropping out constant terms, the Gaussian forms of BIC and 

KIC are as follows: 

 

nKnBIC ML ln)ˆln( 2    37 

      

 ln)2ln()ˆ(ln2)ˆln( 2  KpnKIC ML  38 

When the prior information about the hydrological parameters is not available, the term 

)ˆ(ln2 p  drops out and 
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where J stands for the Jacobian (sensitivity) matrix having elements: 
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and ẑ  are the predicted system state variables in space-time; 
T
 is the Transpose matrix 

operator and w stands for a weight.  

 

KIC can be then expressed as: 

 

wJJKKnKIC T

ML ln)2ln()ˆln()( 2    41 

 

Now that the topic model selection has received more attention in hydrogeology, Neuman 

(2003) proposes to apply KIC in hydrogeological modeling. This proposal was implemented 

by his colleagues (Ye et al. 2008, 2005, 2004, and Meyer et al. 2007). Ye et al. (2008) note 

that in KIC there are unique terms which not only make possible to evaluate models based 

on the number of observations and parameters but also based on their quality. On the other 

hand, KIC has also a major drawback in comparison to AICc. The terms that make KIC so 

special, like the Fisher information matrix, are not easy to be calculated. This contrasts to 

AICc, which is very easy to calculate and to apply. AICc seems to incorporate the parsimony 
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principle itself. This contributes in a great part to its popularity, especially outside the field of 

hydrogeology where AIC and AICc have been mainly applied.  

 

3.6 DISCUSSION ABOUT THE TRUE MODEL NOT BEING 
PRESENT IN THE SET OF CANDIDATE MODELS FOR 
CORRECT DERIVATION OF AIC AND BIC 

 

AIC and therefore, also AICc were derived assuming the true model was NOT in the set of 

candidate models (Poeter and Anderson 2005). However, Ye et al. (2008) examined all 

rigorous deviations of AIC they could find and concluded that the “true model” which 

generated the observed data needs to be present for a correct mathematical derivation. On 

the other hand, BIC and therefore also KIC (which tends to BIC as number of observations 

become large relative to estimated parameters) were derived assuming that the true model 

IS present in the set of candidate models. However, Cavanaugh and Neath (1999) rederived 

BIC without assuming that the true model is included in the set of candidate models (Ye et al. 

2008, Burnham and Anderson 2002:293). Takeuchi (1976) derived also an information 

criterion (TIC) without assuming the truth to be in the set of candidate models (more about 

this criterion in Appendix B.1). According to Shibata (1989) and Burnham and Anderson 

(2002:65), AIC is the best estimator of TIC. Ye et al. (2008) do not object the TIC derivation. 

 

The debate has been a main issue for model selection in hydrogeology. Model selection 

criteria such as AIC, AICc, BIC, and KIC may perform similarly in applications (Ye et al. 2008, 

Poeter and Anderson 2005). Therefore, presenting a solid theoretical argument such as “a 

derivation without assuming the truth to be present in the set of models” would be a good 

argument to justify the use of a specific selection method. The assumption of including the 

true model in the set of candidate models for derivation purposes is neither easy to prove nor 

to deny, since the mathematics to derivate the equations are not simple. Poeter and 

Anderson (2005) prefer to use AICc (which tends to AIC as observations increase) instead of 

BIC and KIC. They cite primarily Burnham and Anderson (2002) and argue that even if the 

model selection methods may perform similarly, AICc was derived assuming the truth was not 

considered in the set of models while for the derivation of the other methods this was not the 

case. The group of Neuman (Ye et al. 2008) prefers to use KIC (which tends to BIC as 

observations increase) instead of AIC and AICc. They argue that even if model selection 

methods perform similarly they found out that contrary to Poeter and Anderson (2005) and 

Burnham and Anderson (2002), AIC must, in contrast to BIC, indeed assume that the truth is 

in the set of models.  

 



25  MODEL SELECTION METHODS 

   

In summary, there is an agreement that BIC and TIC do not actually require the “true model” 

to be present in the set of candidate models for derivation. It also seems reasonable that KIC 

does not require either to include the “true model” since it is an asymptotic limit of BIC. It also 

seems convincing that AIC does not need to include the “true model” since it is a reliable 

approximation of TIC when a good performing model is included in the set of candidate 

models. Consequently, neither AIC nor BIC assume the truth to be included in the set of 

candidate models. 

 

3.7 COMPARISON OF MODEL SELECTION METHODS IN 
HYDROGEOLOGY 

 

As mentioned in the previous section, Ye et al. (2008) and Poeter and Anderson (2005) 

agree that model selection criteria such as AIC, AICc, BIC, and KIC may perform similarly in 

applications. Ye et al. (2008) carried out a comparison between the predictive performance 

of the model selection methods AIC, AICc, BIC, and KIC. They used real hydrological data 

and cross-validation to test the prediction performance4. From the four methods compared by 

Ye et al. (2008), KIC showed a better performance. However, they noticed that the difference 

between model averaging predictions5 for the different methods was much smaller than the 

difference between any individual best model results, independent from model selection 

method. As a result, they conclude that the decision to apply model averaging is more impor-

tant than the choice of the model selection method. Also, Burnham and Anderson (2004) note 

that model averaging produces better results than either AIC or BIC under all circumstances.  

 

Foglia et al. (2007) also compared AICc, BIC, and GCV6 with Cross Validation (CV) using 

hydrogeological data and concluded that model selection methods are as good as the 

computationally expensive cross validation test. 

                                                

4
 Details on their applied cross-validation method and model averaging procedures in Ye et al. (2004). 

For a general explanation of cross-validation methods see Browne (2000). 

5
 Information on “multimodal inference”, also known as “model averaging” is given in Appendix B.2. 

6
 In Foglia et al. (2007) defined with a logarithmic transformation to compare it with the other selection 

methods as follows: ]ln)[ln(2lnln 2 nKnnnGCVn ML   . The original version without the 

logarithmic transformation is (Regonda et al. 2005): 
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3.8 IMPLEMENTATION PROBLEMS OF MODEL SELECTION 
METHODS IN HYDROGEOLOGY 

 

Since the late eighties, model selection methods have been sporadically applied in 

hydrogeology. However, implementation problems have occurred. According to Ye et al. 

(2008), Carrera and Neuman (1986) applied KIC to a hydrogeology problem but the term 

nK ln , a penalty term, was missing in their equation. This omission continued with 

Hernández et al. (2006) and with Poeter and Anderson (2005) which also seem to miss the 

term 
2ˆln MLK   due to a wrong specification of the Fisher information matrix (Ye et al. 2008). 

 

Carrera and Neuman (1986) proposed including the term )ˆ(ln2 p  which appears in KIC 

also into the leading term )]|ˆ(ln[2 yL   of AIC and BIC. However, Ye et al. (2008) explain 

that the term )ˆ(ln2 p  drops out of KIC as the number of observations increase and 

therefore, should not be included into BIC, AIC, or AICc as allowed by Hill (1998), Hill and 

Tiedeman (2007a), and Poeter and Hill (2007). Ye et al. (2008) conclude that the term 

)ˆ(ln2 p  is a unique feature of KIC. 

 

In a serious attempt to apply AIC to groundwater models calibrated with different kinds of 

observations (hence, with different kinds of units), Hill (1998) normalized the model residuals 

with the help of weights ( ) making them unitless. However, the weight matrix is defined 

such that the common error variance of the residuals equals one. This solves the unit 

problem, but prevents the use of the AIC formula as defined by Akaike (Equation 16, p. 13). 

The leading term of the Gaussian form of AIC, )ˆln( 2

MLn  , drops out ( n 01ln  ). The formula 

used by Hill (Equation 42) is not the AIC any more as it is claimed, since the maximum 

likelihood term was dropped through an inconvenient mathematical decision which stripped 

the AIC of its maximum-likelihood goodness-of-fit term.  

 

KeenAIC T

TiedemanandHill 2ln)2ln(    42 

 
This formula is implemented in MODFLOW-2000 (Harbaugh et al. 2000, Hill et al. 2000) and 

UCODE_2005 (Poeter et al. 2005)7. Hill’s (1998) approach is described in Appendix B.3 (p. 

97). The AIC implementation problems of Hill and Tiedeman8 are discussed below in detail 

                                                

7
 MODFLOW-2000 and UCODE_2005 are open source, public domain computer programs developed 

by the USGS. The first one solves the 3-D groundwater flow equation using a control-volume finite-

difference numerical method (Hill and Tiedeman 2007a:19). UCODE_2005 performs general inverse 

modeling and can be used to calibrate models, perform sensitivity and uncertainty analysis. 

8
 Hill (1998) publication was superseded by the book of Hill and Tiedeman (2007a) which includes not 

just all the information in Hill (1998) but it is also reviewed and embedded in a wider modeling context. 
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with the help of two exercises from Hill and Tiedeman’s (2007a) book. Exercise 6.1 is about 

analyzing a groundwater model previously created using synthetic data in exercise 5.2c. 

Both exercises serve as a practical example of Hill and Tiedeman’s method to obtain the 

value of AIC for different types of observations. Hill and Tiedeman provide detailed 

instructions on how to create this groundwater model (exercise 5.2c) in their book’s web 

site9. This information includes the complete input files for the model, as well as answers to 

the specific exercise’s questions. The project file is EX5.2C.NAM and the output files can be 

easily calculated. The input data can be also verified through the program interface, MFI2K 

(Harbaugh 2002). The software is freely available at the USGS website10. For the following 

exercise, MODFLOW-2000 latest version: 1.18.01 (20th June, 2008) was downloaded in June 

2009. The main output files are EX5.2C.GLO and EX5.2C.LST. Here we can verify the 

observations, the estimated parameters, the residuals, and the AIC value. The calculated 

value of AIC is -5.6713, found near the bottom of file EX5.2C.GLO. The way in which Hill and 

Tiedeman come to this result is explained below. 

 

The data which Hill and Tiedeman provide consist of 13 values: 10 head values (m); 1 flow 

value (m3/s) equal to the groundwater discharge to a river reach (the reach extends along the 

entire length of the river); 1 hydraulic conductivity value of the riverbed (m/s); and 1 value of 

vertical hydraulic conductivity of the confining bed (m/s).  

 

Enough information to solve the first term of Hill and Tiedeman’s AIC formula (Equation 42):  

 

13 2ln = 23.89      43 

 
To solve the next term, we need to determine which weights are used for each observation 

data type. To make the data unitless Hill and Tiedeman use weights. The weights are the 

inverse of an assumed measurement error variance. For this exercise, Hill and Tiedeman 

(2007a:38) assumed a measurement error variance of 1.0025 m2 (1 m2 well elevation 

measurement error + 0.0025 m2 water-level measurement error) for head values. The weight 

is defined as the inverse of the variance: 0.9975 m-2.  

 
For the flow data, an error measurement of 0.10 coefficient of variation was assumed (Hill 

and Tiedeman 2007c). By multiplying the coefficient of variation by the flow measurement we 

obtain the standard deviation,  0.10 x (-4.4 m3/d). The variance is the square of this last 

one, 2 0.1936 m6/d2. Taking the inverse gives us the weight 5.165 d2/m6. 

                                                

9
 http://wwwbrr.cr.usgs.gov/projects/GW_ModUncert/hill_tiedeman_book/ (accessed February 2008).  

10
 http://water.usgs.gov/software / (accessed June 2009). 
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A coefficient of variation of 0.30 was assumed to calculate the weights of both hydraulic con-

ductivity parameters: of the riverbed (K_RB in m/s) and the confining bed (VK_CB in m/s). 

The weights are calculated in the same manner as previously carried out with the flow data: 
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Hence, the 2nd term of Equation 42 is calculated as follows: 

 

12.52))10111.1()10716.7(165.59975.0ln(ln 11516110    46 

 

In Equation 46, the units are omitted since the natural log is dimensionless (Hill and 

Tiedeman 2007c).  

 

The third term of Equation 42 is equivalent to the weighted residual sum of squares (RSS) 

which is equal to 10.561, as shown in the next table at the bottom-right corner: 

 

Table 3:  RSS obtained from Hill and Tiedeman’s (2007a) exercises 

Name Observed  Calculated  Residual  (Weight)
1/2

  

(Weighted 

residual)
2 

head01 101.804 m 100.210 m 1.594 m 0.999 m
-1

 2.536 (-) 

head02 128.117 m 126.942 m 1.175 m 0.999 m
-1

 1.378 (-) 

head03 156.678 m 157.185 m -0.507 m 0.999 m
-1

 0.256 (-) 

head04 124.893 m 126.942 m -2.049 m 0.999 m
-1

 4.190 (-) 

head05 140.961 m 141.076 m -0.115 m 0.999 m
-1

 0.013 (-) 

head06 126.537 m 127.090 m -0.553 m 0.999 m
-1

 0.305 (-) 

head07 101.112 m 100.934 m 0.178 m 0.999 m
-1

 0.032 (-) 

head08 158.135 m 157.141 m 0.994 m 0.999 m
-1

 0.987 (-) 

head09 176.374 m 176.650 m -0.276 m 0.999 m
-1

 0.076 (-) 

head10 142.020 m 141.137 m 0.883 m 0.999 m
-1

 0.779 (-) 

flow01 -4.400 m
3
/d -4.417 m

3
/d 1.71E-02 m

3
/d 2.27 d/m

3
 0.002 (-) 

K_RB 1.20E-03 m/s 1.17E-03 m/s 3.08E-05 m/s 2.78E+03 s/m 0.007 (-) 

VK_CB 1.00E-07 m/s 9.90E-08 m/s 1.02E-09 m/s 3.33E+07 s/m 0.001 (-) 

∑         10.561 (-) 
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It should be noticed that in Table 3, the residuals are not multiplied by the weights but by the 

square roots of the weights. This operation is necessary since the variances do not have the 

same units as the residuals. Multiplying the residuals by the inverse of the assumed standard 

deviation provides unitless weighted residuals.  

 

Finally, the last term in Equation 42 is simply two times the number of calibrated parameters, 

2K. The parameters being estimated are six, listed on the following table: 

 

Table 4:  Estimable parameters for exercise 5.2C from Hill and Tiedeman (2007a) 

Parameter  Initial value 
Reasonable 
lower limit 

Reasonable 
upper limit 

HK_1 3.00E-04 3.00E-05 3.00E-03 

HK_2 4.00E-05 4.00E-06 4.00E-04 

VK_CB 1.00E-07 1.00E-08 1.00E-06 

K_RB 1.20E-03 1.20E-04 1.20E-02 

RCH_1 63.072 32 126 

RCH_2 31.536 16 63 

 

MODFLOW-2000 calculates 2K as 62 . In this case, there are no statistical parameters to 

be calculated, since it is assumed unit standard deviation (  1). As explained in Section 

3.3, K equals then just the number of hydrological parameters. 

 

Substituting all terms in Equation 42 we obtain what is calculated in UCODE_2005 and 

MODFLOW-2000: 

 

67.52656.1012.5289.23 TiedemanandHillAIC  47 

 

In exercise 6.1b, Hill and Tiedeman propose a simple exercise to demonstrate that the 

expected value of both the calculated error variance and the standard error is 1. With Excel 

one can generate a list of random numbers with the function “norminv(rand(),0,)” and then, 

calculate the error variance with the equation below: 
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where s2 is the error variance, 
2

ia  represents square residuals, which in this exercise are 

squared random numbers generated with a given variance. 1/
2  represents the weights, 
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which are 1 over the variance of data measurement error, for this exercise the variance of 

the random numbers distribution. 

 

The result of the previous calculation (Exercise 6.1b) is indeed one. However, in groundwater 

modeling, the variance of the residuals distribution depends on the model and reflects 

a fit to the conceptual model and not a fit to measurement error. This concept is ignored 

by Hill and Tiedeman (2007a). In consequence, one cannot assume unit variance. This in 

turn means that the leading term of the Akaike equation should not be dropped. Accordingly, 

the penalty term should take into consideration an extra statistical parameter, the variance. It 

should also be emphasized that contrary to Akaike’s Equation 16 (p. 13), in Hill and 

Tiedeman’s underlying AIC formula (dropping constant terms, Equation 96, p. 98) there is no 

influence of the number of observations since n is not present. Last but not least, as 

mentioned in Section 3.3, there is no need to retain constant values which remain the same 

for all models, as it is the case in Equation 42 (p. 26), which is calculated by MODFLOW-

2000 and UCODE_2005.  

 

This chapter provided an overview of model selection methods. It presented in detail the 

theory, formulas and principles of the AIC and AICc model selection methods; including a 

practical example of how the method works using an elephant as a model. Furthermore, it 

also presented AIC modifications and the model selection methods BIC and KIC. The current 

debate in the literature about the assumption for the correct mathematical derivation of AIC 

and BIC that the truth is not in the set of candidate models was also discussed. Also studies 

about comparison of these four model selection methods were presented. The chapter 

concluded by presenting implementation problems, in particular those faced by Hill and 

Tiedeman (2007a) when using different types of observations for calibration.  

 

The next chapter presents a suggestion for a proper implementation of AIC and AICc 

considering different types of observations using synthetic data.  
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4 MODEL ASSESSMENT WITH DIFFERENT TYPES OF 
OBSERVATIONS USING SYNTHETIC DATA 
 

 

 

 

 

 

 

 

 
 

Another approach to implement AIC to models calibrated with different kind of observations 

is proposed in this dissertation. However, theory by itself is not enough in applied sciences. 

We need to demonstrate that the theory works with data. Hence, this chapter will present an 

approach to apply Akaike’s Information Criterion to models calibrated with synthetic data 

using different types of hydrogeological information. To accomplish this, a groundwater 

playground for model assessment was created. The playground consists of synthetic data 

and several sets of models of varying complexity which were calibrated to these data.  

 

4.1 NORMING DIFFERENT KINDS OF OBSERVATIONS 

 

When evaluating model performance with a model selection method, we are normally 

interested in the estimated parameters and the residuals. The number of calibrated 

parameters is related to model complexity, while the residuals are the values which evaluate 

the model fit to the data. Residuals result from substracting observed “real” values which we 

want to reproduce, to “model-produced” or “model-given” values which the model calculates 

or needs as parameters. Small residuals mean that “real” and “model” values are similar. 

Residuals are the basis of model calibration. The calibration procedure consists basically in 

changing the values of the parameters until the residuals are minimized. Usually, different 
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information is available for model calibration and it would be valuable to make use of it. 

However, different types of observations have usually different types of units. This poses a 

mathematical dilemma when attempting to analyse a data set of mixed elements. Since we 

cannot add apples and oranges, we have to transform them such that all of them have either 

the same units, or even better, no units. Furthermore, the values lay on different order of 

magnitudes and have to be evaluated together as a single data set. To transform them so 

that they are unitless and have similar order of magnitudes is not an easy task. Several 

methods were tested for this purpose:  

 

 observations of a given type were divided by their respective mean, maximum, or 

minimum value;  

 simulated values were divided by observed values; 

 observed and simulated values were scaled first such that the observed values equal 

1 and then normed by the scaled simulated values; 

 the observed and simulated values are normed by their respective observed standard 

deviation. 

 

The best method proved to be the last mentioned. The previous ones may solve the unit 

problem, but not the difference of magnitude issue. The procedure to norm the data is 

explained schematically in the figure below.  

 

  

Figure 8:  Schematic example of norming procedure of observed and simulated values 

 

Three different observed data sets are represented in different green tones: head (m), 

horizontal hydraulic conductivity (m/s), and concentration (g/m3). The hydraulic conductivity 

and concentration values have to be log transformed (base 10) in order to have, as the head 

residuals, a normal distribution instead of a logarithmic one. The arithmetic mean of each set 
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of observations is taken to center the data sets at zero and obtain their respective standard 

deviation value (h, K, or C, which has the same units as the data). The observed values are 

divided then by their standard deviations (normalized). A practical example using synthetic 

data of this norming procedure can be found in Appendix B.5 (p. 101). The blue sets of 

simulated head, log K, and log concentration values are also normed with the same 

observed (green) standard deviations and not with the simulated standard deviations. In this 

manner, observed and simulated values are consistently normed and provide unitless 

residuals of the same order of magnitude. They can be finally evaluated as a single data set 

to calculate AIC (Equation 16, p. 13) or AICc (Equation 23, p. 15). In order to estimate the 

maximum likelihood variance (Equation 14, p. 13) the set is centered at zero. However, the 

norming mass can not be always estimated. If there is not enough data to calculate a 

representative standard deviation for a data type, then it has to be assumed. In this case, an 

appropriate estimation will depend on the experience of the modeler.  

 

4.2 SYNTHETIC DATA GENERATING MODEL 

 

In order to obtain space and time distributed synthetic data, it is first necessary to create the 

spatial-temporal environment for which a virtual model has to be built and parametrized. To 

make a realistic environment, heterogeneity has to be added. The advantage of such a 

model is that it does not need to be calibrated since it represents an ideal situation. Its 

objective is to be a realistic model to provide data. 

 

For this purpose, I created a two layered, steady-state groundwater model using the PMWIN 

program (Processing Modflow) version 5.3.0 (Chiang and Kinzelbach 1991-2001), a free pre- 

and postprocessing tool for modeling algorithms such as MODFLOW, MODPATH, and 

MT3D. This version of PMWIN comes with MODFLOW 96, which was applied in this 

dissertation to simulate the groundwater flow system.  

 

4.2.1 Conceptual model and boundary conditions 

 

The model is designed such that water enters the system at a constant head boundary and 

as groundwater recharge. The upper layer is unconfined while the lower is confined. After 

flowing through the layers, groundwater leaves the system at a well and a river boundary. 

The boundary conditions, illustrated in Figure 9, were defined as in the following table:  
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Table 5:  Boundary conditions of data generating model 

Boundary Condition 

Right side of domain No flow 
Left side of domain No flow 
Top of domain Constant recharge 
Bottom of domain No flow 
Back of layer 1 Constant head 
Back of layer 2 Constant head 
Front of layer 1 River condition 
Front of layer 2 No flow 

 

 

Figure 9:  Conceptual model and boundary conditions of data generating model (modified from 

Liedl 2007) 

 

4.2.2 Geometry 

 

The geometric features can be summarized in the following table: 

 

Table 6:  Geometric parameters to generate the model 

Attributes Value 

Number of layers 2 
Number of rows 100 
Number of columns 150 
Number of cells 30 000 
Cell size 10 x 10 m 
Domain length 1000 m 
Domain width 1500 m 
Top of layer 1 40 m 
Top of layer 2 20 m 
Bottom of layer 2 0 m 

 

4.2.3 Initial heads 

 

The values of the constant head boundary of layer 1 are evenly spaced: 37.68 m to the west, 

37.63 m at the center, and 37.58 m to the east (not shown in figure above). For layer 2, the 
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value remains constant at 39.7 m. Due to this hydraulic pressure difference, water from the 

lower layer tries to flow into the upper one. Initial heads were set iteratively for the cells not 

marked as constant heads. First, 37 m was assigned to those cells in layers 1 and 2. This 

value is the mean between layer 1 constant head boundary and average river height. Then, 

after being fully parametrized, the model was executed and the resulting heads were used as 

initial head values.  

 

4.2.4 Recharge and hydraulic conductivity fields 

 

To make the model realistic, heterogeneity was built in. For the recharge, plausible average 

values were taken from the literature. A graph of water percolation depending on soil type 

and precipitation for a typical middle European basin (temperate climate) in Hölting (1992:59) 

served as reference. Furthermore, hydraulic conductivity of layer 1 and groundwater recharge 

were correlated. In the same area where the highest recharge values are found, we also find 

the highest conductivity values. The same is true for lower and middle values. This can be 

easily appreciated in the following figure comparing the highest recharge zones (dark blue 

areas) of the recharge distribution (upper right image) with the highest hydraulic conductivity 

zones (white areas) of the hydraulic conductivity distribution of layer 1 (upper left image). 

 

 

Figure 10:  Hydraulic conductivity and groundwater recharge heterogeneity distributions 

 

The values of hydraulic conductivity shown in Figure 10 lay on the order of magnitude which 

is found in unconsolidated rocks, see the following table: 
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Table 7:  Typical hydraulic conductivity values (Hölting 1992:104)  

Material Hydraulic conductivity, K (m/s) 

Pure gravel  10-1 - 10-2 
Coarse grained sand 10-3 
Medium grained sand 10-3 - 10-4 
Fine grained sand 10-4 - 10-5 
Silty sand 10-5 - 10-7 
Clayey silt 10-6 - 10-9 
Clay < 10-9 
  
Conductivities according to  DIN 18130, Tl.1 (m/s) 

Very high conductivity > 10-2  
High conductivity 10-2 - 10-4 
Permeable 10-4 - 10-6 
Low conductivity 10-6 - 10-8 
Very low conductivity < 10-8 

 

4.2.5 Generation of heterogeneity 

 

The hydraulic conductivity and groundwater recharge heterogeneity were built using the Field 

Generator (Frenzel 1995) which comes with PMWIN.  

 

For the user, the Field Generator consists of a single dialog window where the values of 

seven parameters should be given. Figure 11 shows the values used to create the 

heterogeneous recharge field.  

 

 

Figure 11:  The Field Generator dialog window with parameter values used to generate the 

heterogeneous groundwater recharge field 

 

The number of created fields (realizations) can be set high for the purpose of stochastic 

modeling. For my case, I just need one realization. Eleven realizations where made for the 

generation of recharge distribution, but just one of them was selected. Moreover, since the 

mean should be given in log10, the value -8.4 represents a mean of 10-8.4 (m/s) which is 

approx. 125 mm/a. The standard deviation value was chosen to allow variations of one order 

of magnitude. Other parameters are ratios, like the “Correlation Length/Field Width” in I- or J-
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direction. The I-direction represents the Y axis, for this model 1000 m length (100 cells of 10 

m width). The J-direction is the X axis, in this case 1500 m. Therefore, a ratio of 0.25 in the I-

direction means 250 m / 1000 m. A ratio of 0.20 in the J-direction is 300 m / 1500 m. The 

ratio of “Correlation Length / Field Width” in I-direction to J-direction of the recharge field is 

1.25 = 25/20. The same ratio, but for the hydraulic conductivity field of layer one is 1.3158 = 

25/19. The previous two ratios are similar, but intentionally not the same. This similarity gives 

a touch of realistic correlation between both sets.   

 

To create the three heterogeneous fields of hydraulic conductivity with the Field Generator, 

the following parameters were used: 

 

Table 8:  Field Generator parameter values to generate hydraulic conductivity heterogeneity 

fields 

Field Generator Parameters Kh Layer 1 Kh Layer 2 KV 

Number of Realizations 3 24 3 

Mean Value (log10) -3.09691 -5.04576 -6.22185 

Standard Deviation (log10) 0.2 0.2 0.4 

Correlation Length / Field Width in the I-direction 0.5 0.5 0.25 

Correlation Length / Field Width in the J-direction 0.38 0.38 0.20 

Number of Cells in the I-direction 100 100 100 

Number of Cells in the J-direction 150 150 150 

 

In the three cases, the last realization was always taken while the others were discarded. 

According to Chiang (2005:167), the hydraulic conductivity is commonly assumed to be log-

normally distributed, Y = log(X). This results in a log-normal distribution of X when Y is 

normally distributed with a mean value µ and standard deviation .  

 

4.2.6 Effective porosity 

 

Two zones of effective porosity were assigned to layer 1 (Figure 12). The orange zone with a 

value of 0.28 corresponds roughly to the higher hydraulic conductivity values in layer 1 while 

the brown zone (0.22) corresponds to the lower ones. The second layer remained 

homogeneous and received an effective porosity value of 0.25. 
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Figure 12:  Effective porosity in layer 1: Orange = 0.28, Brown = 0.22 

 

4.2.7 Parametrization of MODFLOW packages: River, Well 
and Solver 

 
The river is located at the South boundary of our area and flows with a small gradient from 

left to right. The river water level does not vary through time and is at the left border 36.6 m, 

in the middle 36.5 m, and 36.4 m at the right border. The river has a constant width of 10 m 

and a riverbed bottom elevation of 30 m. The riverbed conductance was set to 0.003 m2/s 

which is equivalent to a 10 cm thick riverbed layer with 3 x 10-6 m/s hydraulic conductivity. 

 
A water supply well was defined at the following x, y coordinates: 1045 m, 295 m. At this 

location there was no influence of the domain boundaries. The well is screened on the 

interval 20 to 40 m depth (2nd layer) and discharges 1000 m3/d. 

 
The solver chosen to solve the resulting system of simultaneous finite difference linear 

equations is the PCG2 (Preconditioned Conjugate Gradient Package 2), with the default 

preconditioning method: Modified Incomplete Cholesky. 

 

4.2.8 Transport model 

 
The transport of a non-reactive compound (just advection and dispersion, no chemical 

reaction transport) was simulated with MT3D11. The initial (background) concentration was 

set to zero. In MT3D, there are four solution schemes to simulate advection. According to 

Chiang (2005:94), the Upstream Finite Difference Method is only suitable for solving 

transport problems not dominated by advection due to the problems of numerical dispersion 

and artificial oscillation. The Method of Characteristics (MOC) is virtually free of numerical 

dispersion but it can be slow and requires a large amount of computer memory. The Modified 

Method of Characteristics (MMOC) is normally faster than the MOC but introduces some 

numerical dispersion. And the hybrid method of characteristics (HMOC) combines both, 

                                                

11
 Modular three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical 

Reactions of Contaminants in Groundwater Systems, Version DOD_1.5, July 1996; comes with PMWIN. 
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when sharp concentrations are present advection is solved by MOC, otherwise by MMOC. 

For this model, the MMOC solution scheme was selected because this method is a 

compromise between performance and numerical dispersion and it has much less 

parameters to be determined than the HMOC. The parameters of the MMOC were left as 

default, except the Courant number. This number stands in MMOC for the fraction of a cell 

that a particle is allowed to move in any direction in one transport step and it was set to 0.5. 

One restrains the particle shift per time step to avoid numerical instability, which could 

happen if a very high velocity is calculated for a particle and makes it “jump” a cell. At the 

cells with the highest hydraulic gradient values, velocities up to 3 m/d are contemplated, 

thus, no particle jumps are expected.  

 
MT3D provides three particle tracking algorithms: 1st-order Euler, 4th-order Runge-Kutta, or a 

hybrid of these two. According to Chiang (2005:95), the 1st-order Euler has a big numerical 

error unless the transport step is small. The 4th-order Runge-Kutta needs more computational 

effort because it provides the average velocity of the particle at four different times, at the 

beginning of the time step, at the end, and at two midpoints in between. The hybrid approach 

was selected as the particle tracking algorithm. This approach uses the 4th-order Runge-

Kutta algorithm just on cells adjacent to or containing sink and source cells; otherwise, it 

uses the 1st-order Euler approach. 

 

4.2.9 Dispersion 

 
There are four parameters on the dispersion package of MT3D: Horizontal longitudinal 

dispersivity, horizontal transverse dispersivity, vertical dispersivity, and molecular diffusion. 

The values for the first three parameters are given in the table below. The fourth parameter is 

not taken into account since dispersion by molecular diffusion is very small and just important 

when there are very slow groundwater velocities. These are not present in this model. 

 
Table 9:  Dispersivity values of data generating model 

Dispersivity Layer 1 (m) Layer 2 (m) 

Longitudinal 12.00 12.00 
Transverse   1.32   0.84 
Vertical    0.66   0.60 

 
Dispersion is scale dependent, the larger the domain (in flow direction), the bigger the 

dispersivity value. For 1000 m distance a value of longitudinal dispersivity greater than 10 m 

can be expected (Walther et al. 2008:195). Furthermore, the transverse and vertical 

dispersivities are usually one to two orders of magnitude smaller than the longitudinal 

dispersivity. However, these values are not seen by the model since they are much lower 

than the cell size. Nevertheless, we obtain plausible model results since the longitudinal 
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dispersion and the heterogeneity of the porous media are intended to be the main 

contributors to dispersion in the model.  

 

4.2.10 Concentration source 

 
As concentration source, a “recharge” value of 1000 g “tracer” per cubic meter water per day 

was constantly supplied for a period of 28 days. The element introduced in the system 

stands for a virtual non reactive substance, analogous to the tracers used by hydrogeologists 

in the field. A saturated cell of 10 x 10 x 20 m (x, y, z) with an effective porosity of 0.22 

provides for 440 m3 water. By multiplying this last value times 1000 g/(m3d) tracer, we obtain 

approx. 5 g “tracer” recharge input at every source cell. The source is located in four cells of 

the upper layer (column,row): (40,19), (41,19), (41,18), and (42,18), see small polygon 

between borehole 1 and 61 in the top left corner of Figure 13 (p. 42).   

 

4.2.11 Time discretization 

 
In order to simulate transport of the substance, 364 days were discretized into two stress periods: 

a first period of 28 days with constant tracer input and a second one of 336 days where no 

input takes place. A summary of the time discretization values is shown in the following table: 

 
Table 10:  Time discretization overview of data generating model 

Attribute Value 

Simulation flow type Steady state 
Number of stress periods 2 
Length Period 1 28 days 
Length Period 2 336 days 
Total simulation time 364 days 
Transport step size  1 day 

 

The value of the transport step size was carefully chosen. Numerical problems appear, if the 

transport step is too big. On the other hand, if the transport step is too small, the computer 

demand increases. The optimal value depends on the velocity of the fluid, the dispersion and 

cell length in flow direction ( x ). The relationships between these parameters are given by 

the three terms shown in the following section (Co, Ne and Pe). 

 

4.2.12 Numerical stability 

 

The stability in groundwater numerical models is usually represented by unitless numbers. 

To maintain numerical stability during simulation, the Courant criterion (Co) has to be smaller 

or equal to one and the Neuman criterion (Ne) smaller or equal to 0.5 (Kolditz 1997:69):  
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where t  is the transport time step; v  stands for the fluid velocity within the pores (seepage 

velocity), which is the Darcy velocity divided by the effective porosity of the medium ( effn ), 

effnhKv / , where K  is the hydraulic conductivity and h  is the hydraulic pressure 

gradient; D  is the dispersion coefficient, vD L  , where L  is the longitudinal dispersivity. 

 

These conditions were evaluated twice in layer 1: once in the high conductivity zone which 

resembles a paleo-channel (Co = 0.3, Ne = 0.4), and outside of it (Co = 0.009, Ne = 0.01). 

The conditions were fulfilled for both cases, which suggests stability of the numerical transport 

computation even at the high velocity zones of the channel. The highest average velocity 

attained was 3.5 m/d in some narrow channel segments. Average velocity in the channel was 

around 3 m/d. The average velocity of selected channel segments was calculated using 

PMPATH v.6.1.0 (Chiang and Kinzelbach 1994-2001). This particle tracking program reads 

the Modflow result files and calculates flowlines, pathlines and velocities at single cells. 

 

The Peclet number (Pe), which expresses the relationship between advective and dispersive 

transport (Kolditz 1997:69), was also calculated:  
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The value obtained for layers one and two was Pe = 0.8. This suggests that the transport 

process is more affected by dispersion than by advection, the differential equation is more 

parabolic and stability is expected, see following table: 

 

Table 11:  Interpretation of the Peclet Number (Kolditz 1997:69) 

Physical proportion ratio between advective to 

dispersive transport 

Pe < 1 more dispersive 

Pe > 1 more advective 

Mathematical Differential equation characterization for 

transport properties 

Pe < 1 more parabolic 

Pe > 1 more hyperbolic 

Numerical Stability criteria Pe 2 linear elements 

Pe 4 quadratic elements 
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4.2.13 Boreholes and observations 

 

In order to collect data, 100 points were selected. The boreholes were randomly chosen but 

taking into account the following guidelines: as in real life, there are more boreholes in upper 

layers as in lower layers, since deeper boreholes involve higher costs; 57% of the wells are 

in layer one and 43% in layer two. Also more boreholes are found in higher hydraulic 

conductivity zones as in lower ones since the first ones are of more interest for water 

extraction or injection. Therefore, more wells are located to the left side in the upper layer 

and to the right side in the lower one, as it can be appreciated in the following figure:  

 

  

Figure 13:  Boreholes distribution for reading hydraulic pressure and conductivity values in 

layer 1 (left) and layer 2 (right). Polygon areas encompass boreholes which were additionally 

used to read concentration values. The concentration input zone is shown in the small red 

polygon between boreholes 1 and 61 in the top left corner of layer 1 

 

However, not all boreholes are of interest to sample concentration. Most of them do not 

register concentration values at any time. Therefore, just the boreholes inside the polygons 

shown in Figure 13 were selected to read concentration values. The polygons are oriented 

more or less along the high conductivity zone which resembles a paleo-channel (see Figure 

10, p. 35). The polygon in layer two is 1/3 smaller than in layer one. At the output control of 

MT3D, it was specified that every 28 days the concentration is read. The limit of detection 

was set to 1x10-7 g/m3 per cell, any value smaller than this was not seen and noted as zero.  

 

4.2.14 Model results 

 

After completing the parametrization and successfully running the model, we obtain spatially 

distributed results of hydraulic pressure, velocity vectors, and concentration (see Figure 14 

and 15). Groundwater flows from high hydraulic pressure (dark blue in the figure below) to 

low hydraulic pressure (light blue). This produces a flow roughly from North to South. 
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However, groundwater does not flow through every cell in the same quantity. Most of the flow 

occurs in specific regions, as it can be seen in the velocity vector distributions (Figure 14, 

middle section). These regions correspond to high conductivity areas of the model (see 

Figure 10, p. 35). The concentration distributions shown at the bottom of Figure 14 are those of 

day 364. This is the last day of the simulation and maximum extent of the plume in the model. 

The dark orange regions are of high concentration and the contours decrease by one order of 

magnitude until 1x10-7 g/m3, which is the detection limit (light orange in the following figure). 

The concentration plume is present in both layers and follows the “channel” of high conductivity 

values. The synthetic data generated at the “boreholes” is annexed in Appendix B.4 (p. 99). 

 

 

Figure 14:  Model distributions of hydraulic pressure, velocity vectors, and tracer 

concentration at day 364; upper layer (left) and lower layer (right) 

 

upper layer lower layer 

Well 

upper layer lower layer 
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Figure 15 shows the velocity vectors in North - South profile at the middle of the model area. 

The velocity vectors, calculated with PMPATH, represent magnitude and direction of the flow 

velocity. Flow in layer 1 is more horizontal and faster as in layer 2. Groundwater flows from 

the constant head boundaries (in the figure below in dark blue) and it discharges in the river 

(marked in light blue).  

 

 

Figure 15:  Velocity vectors North - South profile at the middle of the model 

 

4.3 CANDIDATE MODELS  

 

Seven models, each of them with increasing number of parameters to be calibrated were 

created to simulate the synthetic data. The parameters are basically different zones of 

hydraulic conductivity (K), either in the riverbed (CondRiverbed), or as horizontal (Kh), or vertical 

hydraulic conductivity (KV) zones in the model layers.  

 

Model 1 is the simplest of all seven models because it consists of one homogeneous layer 

with just one parameter to be calibrated, the horizontal hydraulic conductivity (KLay 1). Model 2 

consists of two homogeneous layers with one horizontal hydraulic conductivity value (KLay 2 is 

equal to KLay 1) and a value of vertical hydraulic conductivity (KV). Model 3 consists of two 

independent homogeneous layers (KLay 1 and KLay 2, which are separated by KV). In Model 4, 

the Kh of the upper layer is divided in a channel zone (KLay 1 channel) where the highest 

conductivity values are observed and in a second zone which comprises the rest of the layer 

(KLay 1 without channel). Model 5 adds to it a zonation of the lower layer in right (KLay 2 right) and left 

zone (KLay 2 left). Model 6 introduces a North - South zonation of KV (KV North and KV South). 

Finally, Model 7 adds the hydraulic conductivity of the riverbed (CondRiverbed) as calibration 

parameter. A summary of the models calibration parameters is shown below: 
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Table 12:  Calibration parameters of candidate models (newly introduced parameters are 

marked bold) 

Model name and number of 

calibration parameters 
Calibration parameters 

1 KLay 1 

2 KLay 1 and KV (KLay 2 is tied to KLay 1) 

3 KLay 1, KLay 2 and KV 

4 KLay 1 channel, KLay 1 without channel, KLay 2 and KV 

5 KLay 1 channel, KLay 1 without channel, KLay 2 right, KLay 2 left and KV 

6 
KLay 1 channel, KLay 1 without channel, KLay 2 right, KLay 2 left,                 

KV North and KV South 

7 
KLay 1 channel, KLay 1 without channel, KLay 2 right, KLay 2 left,                 

KV North, KV South and CondRiverbed 

 

 

 
 
Figure 16:  Hydraulic conductivity zonation of the seven candidate models 

 

All the candidate models share the following properties: 

 

 the constant head values of the back of the layer (North border) were estimated from 

the head observations near the boundary. For Models 2 to 7, this resulted in evenly 

decreasing values at the upper layer: 37.9 m at the west then, 37.8 m, 37.7 m and 

37.6 m to the east. For the lower layer (west - eastward): 39.6 m, 39.4 m, 39.2 m and 

39.0 m. Since Model 1 is a one layer model, all of the observations were considered 

to take place in this layer. The observations near the boundary suggest evenly 

decreasing head values, starting at the west with 38.75 m, then 38.60 m, 38.45 m 

and 38.30 m to the east; 

 effective porosity 0.25, which is a value that can occur in medium, coarse, gravelly 

sand and fine gravel (Hölting 1992:79); 

Model 1 Model 2 Model 3 

Model 4 

 

Model 5 

 

Model 6 

 

Model 7 
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 longitudinal dispersivity of 10 m and 1 m horizontal and vertical transverse dispersivity; 

 the calibration data: 100 hydraulic pressure values, 100 hydraulic conductivity values 

and 100 concentration values (see Appendix B.4, p. 99). 

 

The following properties shared by the candidate models are also the same as in the data 

generating model: 

 

 geometry (see Section 4.2.2, p. 34), except for Model 1 which is a single layer model 

where just the upper layer is considered; 

 upper layer unconfined and lower layer confined; 

 boundary conditions of Models 1 to 6 differ from those of the data generating model 

(Table 5, p. 34) only in that instead of a river boundary, the front of layer 1 (Southern 

boundary) is constant head with the same pressure values as in the river stage (see 

Section 4.2.7, p. 38);  

 Model 7 boundary conditions; 

 steady state flow; 

 recharge (see Figure 10, p. 35); 

 time discretization (see Table 10, p. 40); 

 the well in the lower layer (see Section 4.2.7, p. 38). Except in Model 1 where it is in 

the upper layer, since the lower layer is not present; 

 initial background concentration: zero; 

 1000 )/( 3 dmg water  “tracer” input supplied as recharge during the first stress period in 

the same 4 cells; 

 MODFLOW solver, MT3D solution scheme and particle tracking algorithm. 

 

4.4 MODEL SELECTION ANALYSIS WITH DIFFERENT TYPES 
OF OBSERVATIONS 

 

4.4.1 Model selection analysis with one type of observations 

 

The candidate models were calibrated to 100 hydraulic pressure (h) observations using 

PEST (Doherty 2006), an automated hydrologic calibration inverse code. Besides PEST 

there is another inverse code for automated hydrologic calibration: UCODE_2005 (Poeter et 

al. 2005). Both are available in MODFLOW-2000. They even calculate TiedemanandHillAIC  

(Equation 42, p. 26) and TiedemanandHillBIC  based on Equation 93 (p. 98). However, due to the 

problems mentioned in Section 3.8 (p. 26), the criteria are not correctly applied, and thus, not 
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considered here. The parameter values obtained through PEST calibration are shown in the 

following table: 

 

Table 13:  Parameter values obtained from automated calibration to 100 h observations 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

KLay 1 without channel (m/s) 0.222 0.02384 0.03193 0.02082 0.02091 0.01901 0.03242 

KLay 1 channel (m/s)    0.05338 0.05413 0.04449 0.04830 

KLay 2 right (m/s)  = KLay 1 0.02306 0.02099 0.02106 0.03250 0.01785 

KLay 2 left (m/s)     0.02012 0.03141 0.02069 

KV North (m/s)  1.9E-07 1.8E-07 1.7E-07 1.6E-07 1.4E-07 9.1E-08 

KV South (m/s)      3.9E-07 2.3E-07 

CondRiverbed (m
2/s)       0.12246 

 

The horizontal conductivity in the channel (KLay 1 channel) and the values of vertical hydraulic 

conductivities (KV North and KV South) are in the same order of magnitude as the ones used in 

the data generating model (see Figure 10, p. 35). The value of the other parameters (KLay 1 

without channel, KLay 2 right, KLay 2 left and CondRiverbed) lay much higher than in the data generating 

model. The best fit of each model is obtained by using horizontal hydraulic conductivity 

values equivalent to those of pure gravel. A satisfactory explanation for this behaviour could 

not be found. One would have expected that some conductivity values lay indeed much 

higher, yet others much lower than those of the reference model.   

 

The calibrated models attained the best possible fit at their respective complexity level. With 

every additional parameter model fit improves. A summary of the results from the model 

selection evaluation for the seven candidate models is given in the following table and graph: 

 

Table 14:  Model selection analysis of candidate models calibrated to 100 h observations 

Model AICc AIC BIC 

Nr. Fit K Penalty AICc Δi wi Penalty AIC Δi wi Penalty BIC Δi wi 

1 -68.4 2 4.1 -64.2 214.9 0.00 4 -64.4 216.4 0.00 9.2 -59.1 212.0 0.00 

2 -285.0 3 6.3 -278.7 0.5 0.27 6 -279.0 1.8 0.18 13.8 -271.1 0.0 0.87 

3 -285.3 4 8.4 -276.9 2.3 0.11 8 -277.3 3.4 0.08 18.4 -266.9 4.3 0.10 

4 -286.0 5 10.6 -275.4 3.7 0.05 10 -276.0 4.7 0.04 23.0 -263.0 8.1 0.02 

5 -286.9 6 12.9 -274.0 5.2 0.03 12 -274.9 5.9 0.02 27.6 -259.3 11.9 0.00 

6 -293.4 7 15.2 -278.2 0.9 0.21 14 -279.4 1.3 0.23 32.2 -261.2 9.9 0.01 

7 -296.7 8 17.6 -279.2 0.0 0.34 16 -280.7 0.0 0.44 36.8 -259.9 11.2 0.00 
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Figure 17:  AICc, AIC, and BIC analysis of candidate models calibrated to 100 h observations 

 

As mentioned in Section 3.3, K represents the number of hydrological plus statistical 

calibration parameters, Δi the difference to the best model and wi the probability of having the 

best model. The difference between the fit of the first model (fit = -68.4) and the rest of them 

is so large that Model 1 results do not appear on the range of Figure 17. The ratio n / K is 

12.5 (= 100 / 8). This suggests the use of AICc for ranking purposes instead of AIC. AICc 

selects Model 7 with 34 % certainty as the best model, followed by Model 2 (27 %) and 

Model 6 (21 %). The rankings of AIC and BIC are disregarded. However, they are presented 

here to corroborate the observation of Ye et al. (2008) and Poeter and Anderson (2005) that 

they perform similarly in applications (Section 3.6). The best models selected by AIC are also 

the same as those of AICc, however, in another ranking order: Model 7 (44 %) ranks also 

first, followed this time by Model 6 (23 %) and Model 2 (18 %). For BIC, the best model is 

number 2 with a high certainty (87 %).  

 

In summary, with 100 h observations available for calibration, Model 7 (the most 

complicated) or Model 2 (one of the simplest ones) are chosen by AICc as the best models 

with a certainty of around 30 % each. The other models are either not simple enough or their 

model fits are not good enough to justify the increase in complexity.  

 

4.4.2 Model selection analysis with two types of 
observations 

 

The same candidate models as in Section 4.3 (p. 44) are now calibrated to two types of 

observations: as done before, to hydraulic pressure (h) and additionally to horizontal 
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hydraulic conductivity (Kh). This last parameter is not a model result like h or concentrations. 

To emphasize this difference Kh observations are usually called “prior information.” However, 

in the same manner as typical observations are compared to model results, the simulated Kh 

values are here also compared to the “observed” Kh values. Therefore, in the present study 

they are all referred as “observations” since there is here no practical reason to distinguish Kh 

observed values from other observed values. 

 

The models were calibrated to 100 h and 100 Kh observed values using a mixture of PEST 

(Doherty 2006) and “trial and error” calibration methods. Such a combination is the most 

appropriate calibration strategy (Kresic 1997:336). KV and CondRiverbed parameters are first 

calibrated with PEST to fit the h observations; their fit to the Kh observations is evaluated 

manually. The PEST-calibrated parameters are used then as departure values for “trial and 

error” calibration runs. The Kh input values which fit the best the Kh observations are known. 

These values are the mean of the Kh observations. For example, the best input value for 

Model 1 is simply the mean of all Kh observations. However, the Kh average might not be 

necessarily the value which provides the best fit to the h observations. Hence, the value of Kh 

is manually changed and the model fit to h and Kh is evaluated norming the values as in 

Section 4.1 (p. 31). It should be recalled that in the just referred section we obtain unitless 

residuals which can be evaluated as a single data set by norming the observed and 

calculated values of h and log Kh. The norming values are their respective observations 

standard deviation values (h and logK). From the resulting unitless residuals we estimate the 

maximum likelihood variance (Equation 14, p. 13), which allows us to implement AIC. Notice 

that when calculating the variance or standard deviations, the data sets are previously 

centered at zero. The final parameter values obtained through calibration are shown in the 

following table: 

 

Table 15:  Parameter values obtained from calibration to 100 h and 100 Kh observations 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
Observed 

mean 

KLay 1 without channel (m/s) 0.001 0.002 0.00209 0.00072 0.00061 0.00068 0.00065 0.00061 

KLay 1 channel (m/s)    0.001 0.002 0.0021 0.0056 0.0054 

KLay 2 right (m/s)  = KLay 1 0.00051 0.00038 0.00046 0.00052 0.00049 0.00046 

KLay 2 left (m/s)     0.00012 0.00014 0.00013 0.00011 

KV North (m/s)  3.9E-07 7.5E-08 5.3E-08 3.1E-08 4.0E-10 5.1E-11  

KV South (m/s)      9.3E-08 8.0E-08  

CondRiverbed (m
2
/s)       0.06357  

 

From the above table we can tell that from all models, the best fit to the Kh observations is 

that of Model 7, followed by number 5. The observed mean value (last column of the above 
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table) is the average of the Kh values at the boreholes in the respective parameter Kh zone. 

However, this does not necessarily mean that Models 5 or 7 also provide the best fit to the h 

observations. A model fit to both Kh and h observation types is provided in the table and 

figure below. 

 

The model selection evaluation of the seven models is summarized in the table below. With 

additional parameters, model fit improves while the penalty increases in linear (AIC and BIC) 

or almost linear (AICc) form, see table and figure below:  

 

Table 16:  Model selection analysis of candidate models calibrated to two types of 

observations 

Model AICc AIC BIC 

Nr. Fit K Penalty AICc Δi wi Penalty AIC Δi wi Penalty BIC Δi wi 

1 -54.9 2 4.1 -50.9 173.3 0.00 4 -50.9 173.9 0.00 10.6 -44.3 157.4 0.00 

2 -111.2 3 6.1 -105.1 119.1 0.00 6 -105.2 119.6 0.00 15.9 -95.3 106.4 0.00 

3 -161.3 4 8.2 -153.3 71.1 0.00 8 -153.3 71.4 0.00 21.2 -140.1 61.6 0.00 

4 -217.5 5 10.3 -207.2 17.0 0.00 10 -207.5 17.3 0.00 26.5 -191.0 10.7 0.00 

5 -232.3 6 12.4 -219.9 4.3 0.08 12 -220.3 4.5 0.07 31.8 -200.5 1.2 0.34 

6 -238.8 7 14.6 -224.2 0.0 0.67 14 -224.8 0.0 0.66 37.1 -201.7 0.0 0.61 

7 -239.0 8 16.8 -222.2 2.0 0.25 16 -223.0 1.8 0.27 42.4 -196.6 5.1 0.05 
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Figure 18:  AICc, AIC, and BIC analysis of candidate models calibrated to 100 h and 100 Kh 

observations 

 

The ratio n / K is 25 (= 200 / 8). The use of AICc is preferred to AIC, although, their behaviour 

is very similar, as we can discern from the above table and figure. All model selection 
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methods agree with approximately 2/3 of certainty that Model 6 is the best option (see wi 

values in the above table). The second position is with approx. 30 % certainty reserved to 

Model 7 (AIC and AICc) or to Model 5 (BIC, approx. 30 %). This difference is due to the 

heavier penalties of BIC for adding parameters. BIC prefers as second option a simpler 

model, while AIC and AICc prefer a more complex one. The most parsimonious model 

(number 6) is not the one with the best fit to the Kh values (Model 7) and it is different to the 

one chosen as the best model in Section 4.4.1 (p. 46) using just one type of information 

(Model 2 and 7). Even though we have the same conceptual models, the same modeler and 

the same h observations, the ranking is different. However, this time we had additionally 100 

Kh observations. In this example there might be enough data or enough data types to clearly 

support a complex model as the best parsimonious model. The effect of the number of 

observations in the model selection will be discussed in Section 4.5.1 (p. 54). 

 

4.4.3 Model selection analysis with three types of 
observations 

 

The same candidate models evaluated in the last two sections are now calibrated to all three 

data sets: 100 h, 100 Kh and 100 concentration observations.  

 

The models are not calibrated with PEST or UCODE_2005 since they do not work with 

different types of normed observations values (as in Section 4.1, p. 31). These automated 

inverse codes work well with one type of observations. It is possible, for example, to calibrate 

the parameters of a groundwater flow model with the help of these codes using hydraulic 

pressure observations (as it was carried out in Section 4.4.1). It is also possible to use these 

codes to calibrate a transport model with just concentration data. The models here were 

calibrated by “trial and error” to the observed values of h (m), Kh (m/s) and concentration 

(mg/l). The unitless residuals were obtained as explained in Section 4.1 and the models were 

ranked according to their AICc value. “Trial and error” calibration was the first calibration 

technique in groundwater modeling and it is still preferred by many modelers. It is highly 

recommended to perform this type of calibration since the modeler develops a better “feeling” 

for the model and its assumptions (Kresic 1997:331). 

 

More than 2000 “trials” were performed to find the best possible parameter values. The 

results obtained from calibration are listed in the following table: 
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Table 17:  Parameter values obtained from calibration to 100 h, 100 Kh, and 100 concentration 

observations 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
Observed 

mean 

KLay 1 without channel (m/s) 0.00029 0.00052 0.00062 0.00048 0.00048 0.00048 0.00060 0.00061 

KLay 1 channel (m/s)    0.0011 0.0011 0.0011 0.0016 0.0054 

KLay 2 right (m/s)  = KLay 1 0.00055 0.00029 0.00032 0.00032 0.00037 0.00046 

KLay 2 left (m/s)     0.00025 0.00024 0.00009 0.00011 

KV North (m/s)  2.1E-07 2.8E-07 1.8E-07 2.1E-07 2.1E-07 7.0E-09  

KV South (m/s)      2.3E-07 3.1E-07  

CondRiverbed (m
2
/s)       0.00043  

 

Model 7 approaches the most the observed Kh mean values. In contrast to the calibrated 

values obtained with just one data set, the values obtained here lay within the same order of 

magnitude as the ones in the original model which generated the data. 

 

The model selection results of all seven models are summarized in the table below. The 

model fit improves with every extra parameter. The penalty term of AICc is by 300 

observations almost linear as the AIC one (red squares and crosses at the bottom of the 

figure below). The BIC penalty term is linear but more pronounced than that of AIC. BIC 

punishes the use of additional parameters stronger than AIC and AICc. AICc wi confirms with 

a 100% of confidence that Model 7 is the best model supported by the data. The ratio n / K is 

almost 40, (300 / 8 = 37.5). At this ratio, AIC and AICc give practically the same result (see 

Figure 19). From these two criteria, just the AICc values are included in the table below to 

improve its readability.  

 

Table 18:  AICc and BIC evaluation of candidate models calibrated to 100 h, 100 Kh, and 100 

concentration observations 

Model AICc  BIC 

Nr. Fit Penalty AICc Δi wi Penalty BIC Δi wi 

1 352.7 4.0 356.8 155.1 0.00 11.4 364.1 133.3 0.00 

2 342.6 6.1 348.6 147.0 0.00 17.1 359.7 128.9 0.00 

3 320.4 8.1 328.6 126.9 0.00 22.8 343.3 112.5 0.00 

4 203.9 10.2 214.1 12.5 0.00 28.5 232.5 1.7 0.29 

5 201.9 12.3 214.2 12.6 0.00 34.2 236.2 5.4 0.04 

6 201.7 14.4 216.0 14.4 0.00 39.9 241.6 10.8 0.00 

7 185.1 16.5 201.6 0.0 1.00 45.6 230.8 0.0 0.66 
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Figure 19:  AICc, AIC, and BIC evaluation of candidate models calibrated to 100 h, 100 Kh, and 

100 concentration observations 

 

In this case, AICc selects the model which most resembles the synthetic data generating 

model. Model 7 has the lowest AICc value and also the highest number of parameters. In 

comparison to the other 6 models, Model 7 attains with 100 % certainty the best equilibrium 

between complexity and model fit. BIC selects Model 7 also as the best model, with 66 % of 

certainty (see BIC wi, above table) followed by Model 4 with 29 % of probability of being the 

best model. BIC would even consider Model 5, however, with minor support (4 %). By 

considering the 3rd type of observations (concentrations) the model selection evaluation also 

reveals a big difference between models with channel (4 to 7) and those without channel (1 

to 3). Since concentration data are considered in this case, including information about the 

channel is important. The channel controls transport behaviour to a much higher extent than 

flow behaviour. In this example there is enough data to support the most complex model as 

the best parsimonious model. However, this result might have been just the effect of a 

subjective selection of the order of parameters. If the channel (parameter KLay 1 differentiated 

in Model 4) and CondRiverbed (added in Model 7) had been introduced before, the model 

selected would probably have been one with less parameters. The effect in model selection 

of the order in which the parameters are introduced will be discussed in Section 4.5.3 (p. 59). 
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4.5 DISCUSSION 

 

4.5.1 Impact of number of observations 

 

When considering 100, 200 or 300 observations in Section 4.4, AICc selected models of 

different complexity level. Not just the number of observations increased but also the types of 

information considered. By calibrating the models to the three types of information, the value 

of the estimated parameters (Table 17) resemble more the ones of the original data 

generating model (Figure 10, p. 35) in contrast to the parameter values estimated by the 

models calibrated with just one type of information (Table 13, p. 47). In order to see the 

impact of the number of observations in model selection, an evaluation with fewer 

observations than in previous examples is performed hereupon.  

 

The candidate models are now calibrated to 20 h observations (data from the first 20 

boreholes were selected, see Table 33, p. 99) instead of 100 h observations (Section 4.4.1, 

p. 46). 25% of the observations lay in the lower layer. The resulting calibrated parameter 

values are shown in the following table: 

 

Table 19:  Parameter values obtained from calibration to 20 h observations 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
Observed 

mean 

KLay 1 without channel (m/s) 0.00222 0.00457 0.01688 0.01051 0.02545 0.03158 0.04977 0.00037 

KLay 1 channel (m/s)    0.0400 0.0818 0.0887 0.0705 0.0043 

KLay 2 right (m/s)  = KLay 1 0.01437 0.01440 0.01902 0.02276 0.01365 0.00036 

KLay 2 left (m/s)     0.00366 0.05183 0.02710 0.00010 

KV North (m/s)  8.2E-08 1.1E-07 1.2E-07 3.1E-07 3.7E-07 2.1E-07  

KV South (m/s)      3.5E-07 1.8E-07  

CondRiverbed (m
2
/s)       0.12306  

 

The values of the parameters KLay 1 without channel, KLay 2 right, KLay 2 left and CondRiverbed are as high 

as in Section 4.4.1, far away from those “observed.” The observed mean values (furthermost 

right column of the above table) are the Kh average values from the 20 boreholes in the 

respective hydraulic conductivity zones. KLay 1 channel and KV North are still one order of 

magnitude off and only KV South is similar to the one in the original data generating model (see 

Figure 10, p. 35).  

 

A summary of the result of the model selection evaluation is given in the following table and 

graph:  
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Table 20:  AIC evaluation of candidate models calibrated to 20 h observations 

Model AICc AIC BIC 

Nr. Fit K Penalty AICc Δi wi Penalty AIC Δi wi Penalty BIC Δi wi 

1 -15.8 2 4.7 -11.1 39.8 0.00 4 -11.8 42.0 0.00 6.0 -9.8 39.6 0.00 

2 -58.4 3 7.5 -50.9 0.0 0.69 6 -52.4 1.4 0.16 9.0 -49.4 0.0 0.50 

3 -58.5 4 10.7 -47.8 3.1 0.15 8 -50.5 3.4 0.06 12.0 -46.5 2.9 0.12 

4 -59.6 5 14.3 -45.3 5.6 0.04 10 -49.6 4.2 0.04 15.0 -44.7 4.8 0.05 

5 -65.6 6 18.5 -47.1 3.8 0.10 12 -53.6 0.2 0.29 18.0 -47.6 1.8 0.20 

6 -65.7 7 23.3 -42.4 8.5 0.01 14 -51.7 2.1 0.11 21.0 -44.7 4.7 0.05 

7 -69.9 8 29.1 -40.8 10.2 0.00 16 -53.9 0.0 0.33 24.0 -45.9 3.6 0.09 

 

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

1 2 3 4 5 6 7

Model number = Calibrated parameters

In
fo

rm
a

ti
o

n
 c

ri
te

ri
a

 v
a

lu
e BIC penalty term

AIC penalty term

AICc penalty term

Model fit

AICc

BIC

AIC

 

Figure 20:  AICc, AIC, and BIC analysis of candidate models calibrated to 20 h observations 

 

The ratio n / K is 2.5 (= 20 / 8). At this ratio, the AICc penalty term differentiates itself clearly 

from both AIC and BIC penalty terms. As mentioned in Section 3.5, AICc and KIC are better 

options than AIC and BIC respectively, if few observations are present. Still, these two last 

ones are calculated here for comparison purposes. In Section 4.4.1 (with 100 observations), 

the best models are numbers 2 and 7 (each with approx. 30 % probability). In contrast, the 

AICc weights evidence in this case with almost 70 % certainty that Model 2 represents the 

best option. Model 1 was improbable to be chosen, even with 20 observations, as observed 

already in Section 4.4.1; the fit to one layer model with just h observations is extremely poor. 

AICc recognizes that for this case a two-layer model describes the data better than a 1 layer 

model. However, for more model complexity, the data is certainly (70 %) not enough. 
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The seven candidate models are now calibrated to just the first 19 h and 19 Kh 

observations12. The normalized data is shown on Appendix B.5 (p. 101). The parameter 

values obtained through calibration are shown in the following table: 

 
Table 21:  Parameter values obtained from calibration to 19 h and 19 Kh observations 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
Observed 

mean 

KLay 1 without channel (m/s) 0.0007 0.0008 0.0007 0.00054 0.00037 0.00041 0.00042 0.00037 

KLay 1 channel (m/s)    0.0055 0.0043 0.0046 0.0047 0.0043 

KLay 2 right (m/s)  = KLay 1 0.0003 0.00029 0.00036 0.00041 0.00041 0.00036 

KLay 2 left (m/s)     0.00010 0.00012 0.00012 0.00010 

KV North (m/s)  1.0E-07 3.9E-08 3.8E-08 3.1E-08 4.0E-10 1.2E-10  

KV South (m/s)      9.3E-08 9.5E-08  

CondRiverbed (m
2
/s)       0.09916  

 
Model 5 fits again the observed Kh mean values very well as it did previously in Section 4.4.2. 

With more parameters, the values deviate from the mean; with less, the observed mean does 

not apply. The values in the last column of Table 21 are valid just for the differentiated Kh 

zones. However, Kh observations account for just half of the calibration data. A summary of 

the model selection results for the seven models is given in the following table and graph:  

 
Table 22:  AIC evaluation of seven candidate models calibrated to 19 h and 19 Kh observations 

Model AICc AIC BIC 

Nr. Fit K Penalty AICc Δi wi Penalty AIC Δi wi Penalty BIC Δi wi 

1 -6.4 2 4.3 -2.1 21.1 0.00 4 -2.4 22.7 0.00 7.3 0.9 17.7 0.00 

2 -22.1 3 6.7 -15.4 7.7 0.01 6 -16.1 9.0 0.00 10.9 -11.2 5.6 0.03 

3 -26.3 4 9.2 -17.1 6.0 0.02 8 -18.3 6.7 0.01 14.6 -11.8 5.1 0.05 

4 -35.0 5 11.9 -23.2 0.0 0.48 10 -25.0 0.0 0.33 18.2 -16.8 0.0 0.57 

5 -37.1 6 14.7 -22.4 0.8 0.32 12 -25.1 0.0 0.33 21.8 -15.2 1.6 0.26 

6 -38.4 7 17.7 -20.6 2.5 0.14 14 -24.4 0.7 0.24 25.5 -12.9 3.9 0.08 

7 -38.4 8 21.0 -17.4 5.7 0.03 16 -22.4 2.7 0.09 29.1 -9.3 7.6 0.01 

 

The resulting ratio (n / K) for this assessment is 4.75 (= 38 / 8), which is much lower than 40.  

In Figure 21 we can discern a clear difference between AICc and AIC. The last parameter 

(riverbed conductance) brought no improvement in model fit. A constant head boundary 

(without resistance to flow) provides the same fit as a river condition without (or just minimal) 

flow resistance. For this case, the flow resistance property of parameter 7 seems not to be 

needed to attain a better fit to the 38 observations. The best model according to AICc is 

number 4 with 48 % of certainty, followed by number 5 with 32 % probability. BIC also ranks 

Model 4 as the best (57 %) followed again by Model 5 (26 %).   

                                                

12
 These were the first calibrated models of the dissertation. The number of observations was arbitrarily 

chosen. Afterward, I decided to calibrate models with round numbers such as 100 or 20 observations. 
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Figure 21:  AICc, AIC, and BIC analysis of models calibrated to 19 h and 19 Kh observations 

 
The AICc plotted side by side for all four evaluated cases is presented in the following figure: 

 

 

Figure 22:  AICc of candidate models calibrated to different number and type of observations: 

100 h, 20 h, 100 h + 100 Kh, and 19 h + 19 Kh observations. The green symbol indicates the best 

model(s) selected by AICc 

n = 100 

n = 100 + 100 n = 19 + 19 

n = 20 
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When reducing the number of observations from 100 to 20 for models calibrated to just 

heads (upper graphs on above figure), the AICc selected with certainty the simplest (Model 2) 

of both possible best options (Model 2 and 7) as the optimal. The number of observations 

were reduced from 100 h plus 100 Kh in Section 4.4.2 (lower left graph on above figure) to 19 

h plus 19 Kh observations (lower right graph on above figure) while everything else remained 

the same. As a result, we observed that the model selection criteria chose a model with four 

parameters instead of one with 6 as the optimal model. Even though reality is more complex, 

just a certain level of complexity can be attained with a limited amount of data. The more 

parameters one implements, the more the limited information spreads throughout them. 

Furthermore, the fewer the number of observations, the harder the AICc penalizes an 

increase in complexity. This causes AICc to prefer simpler models when fewer observations 

are available.   

   

4.5.2 Impact of type of observations 

 

The values of the calibrated parameter values did not change substantially by considering 

different numbers of observations (see table below). When calibrating to 100 or 20 heads, 

the values remained mostly on the same order of magnitude. The same occurred when 

calibrating to 100 h + 100 Kh or to just 19 % of these observations. The following table gives 

an overview of the resulting order of magnitude for the calibrated parameters when 

considering different type and number of observations, detailed values can be found in Table 

13, 15, 19, 21, and in Figure 10. 

 

Table 23:  Order of magnitude of parameters calibrated to different types and numbers of 

observations and those of the data generating model for comparison 

 20 h 100 h 19 h + 19 Kh 100h+100Kh 
100h+100Kh 

+ 100 Conc. 

Data genera-

ting model 

KLay 1 without channel 
(m/s) 

10-2 10-2 10-4 10-4 10-4 10-4 

KLay 1 channel (m/s) 10-2 10-2 10-3 10-3 10-3 10-3 

KLay 2 right (m/s) 10-2 10-2 10-4 10-4 10-4 10-4 

KLay 2 left (m/s) 10-2 10-2 10-4 10-4 10-5 10-5 - 10-6 

KV North (m/s) 10-7 10-7 10-8 10-10 10-9 10-6 

KV South (m/s) 10-7 10-7 10-8 10-8 10-7 10-7 

CondRiverbed 
(m

2
/s) 

- - - - 10-4 10-3 

 

The calibrated parameter values which approximate the data generating model values more 

closely are those of the model which used all three types of information (penultimate column 
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of the above table), followed by the two sets of values which use two types of information. 

Farthest from the original values were both of the calibrated models which just use head 

values for calibration.  

 

The type of information influences model structure. Every type of information reveals 

important model features. Head information clearly pointed out that a two layer model is 

needed, independently of either 20 or 100 observations were considered. However, this 

information would never have suggested that a paleochannel is a required model feature. In 

contrast the model of Section 4.4.3, where concentration information was available, 

obviously supported the presence of a paleochannel. In the same manner, the models 

calibrated to both: head and Kh observations, were able to identify the two layer models with 

K-zonations as the optimal models, independently of 100 h + 100 Kh or just 19 of each 

observation type were considered. As we have seen, the number of observations using these 

two sets of information would just affect the decision of how many K-zones are supported by 

the data. 

 

Therefore, in order to improve the quality of the calibrated parameters, the diversity of 

information type is more important than a mere increase in number of a given observation 

type. Furthermore, information diversity also provides additional support for model 

complexity. 

  

4.5.3 Impact of parameter order 

 

In Section 4.4.3 (p. 51), Model 7 was ranked best with 100 % of certainty. However, the 

model fit curve (Figure 19) does not resemble that of Figure 2, where the biggest 

improvements occur at the beginning and then gradually diminish. In Section 4.4.3, the most 

important improvement happens first at Model 4 (new parameter: KLay 1 channel) and there is no 

significant improvement until Model 7’s new parameter CondRiverbed appears. In Section 4.4.1 

(p. 46), we have again a similar model fit behaviour (Figure 17, p. 48) where after an initial 

amelioration, no significant improvement occurs until the most complex models. This 

contrasts to the analysis made in 4.4.2 (p. 48) where there is a model fit curve (Figure 18, p. 

50), similar to that of Figure 2 (p. 14) in which the improvement is gradually decreasing with 

model complexity. This suggests that the order in which the parameters are introduced may 

not be trivial. As a matter of fact, the important parameters, those for which the models react 

more sensitive to changes in parameter value, should come first. Therefore, a sensitivity 

analysis for the more complex model (where all parameters are calibrated) is performed and 

a ranking of parameters according to their sensitivities is obtained. With this information it 
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can be evaluated whether introducing first the most influential parameters provides a more 

parsimonious model selection ranking. 

 

Sensitivity is a measure of the change in output (calculated values) with respect to a change 

in input (parameter values). To evaluate this measure, we can calculate sensitivity 

coefficients for each parameter at every observation value. These coefficients are formed by 

calculating the partial derivative of the output value (a model result like hydraulic pressure or 

concentration) with respect to the partial derivative of the parameter (Mc Elwee 1982, 1987):  
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The sensitivity coefficient can be approximated with the forward, backward, or central 

difference methods (Hill and Tiedeman 2007a:47). In these methods, the parameter is 

changed by a small amount, which is as a rule of thumb between 1 and 5 % (Zheng and 

Bennett 2002:345). The sensitivity coefficient is the difference in model result between a 

reference parameter and either a slightly higher value (forward difference), a lower one 

(backward difference), or the average of these two (central difference) divided by the 

difference in parameter value. For example, the sensitivity coefficient approximated by 

forward difference method is calculated as:  
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where  ,...,1i number of parameter changes; )(ˆ ipy  and )(ˆ 1ipy  are calculated values 

obtained at current parameter position i and at parameter p varied by a small amount i+1.  

 

The units are those of the output values divided by those of the parameter. For comparison 

purposes the sensitivity coefficients can be normalized as follows so that their units are the 

same as the output values (Zheng and Bennett 2002:343):  
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The relative sensitivity coefficients can be further normalized to dimensionless relative 

sensitive coefficients. This can be achieved by multiplying the sensitivity coefficients by the 

ratio reference parameter to reference output value as follows: 
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The reference values can be for example, the calibrated parameter and the calibrated model 

result. The above equation provides dimensionless relative sensitivity coefficients for every 

parameter at every observation. However, it can be more helpful to have a single coefficient 

as indication of the sensitivity of a given parameter value. This unification can be achieved 

with the sum of squares of all relative sensitivity coefficients for a given parameter value. The 

summation is performed over all observations. The reverse mathematical actions (to divide 

by the number of observations and take the square root) are also implemented for 

consistency. In this way, we obtain just one relative sensitivity coefficient for every parameter 

value, instead of n different ones:  
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where n = number of observations, and j counts from 1 until n. 

 

The results of the sensitivity analysis are not absolute, but influenced by the choice of 

variation percentage in parameter ( parameter ) and by the selection of the reference 

parameter values (Zheng and Bennett 2002:353). It is, however, an analysis tool which 

provides useful information for further uncertainty analysis, model development, and 

calibration. 

 

To illustrate the sensitivity analysis procedure and its importance to the parameter order 

when building model complexity, we take the example of Section 4.4.1 (p. 46) where seven 

models were calibrated to 100 h observations with PEST assistance. For Model 7, we 

calculated the sensitivity coefficients of all of the seven parameters. The parameters are 

evaluated for a variation of 5 % and the calibrated values (see Table 13, p. 47) are taken as 

a reference.  

 

The symbols in the graph below represent the relative sensitivity coefficients for all 

parameters of Model 7 (calculated with Equation 56). The higher the values, the more 

influential the parameters are. The points at 1.0 in the x-axis represent the sensitivities at 

calibrated values. The sensitivity coefficients are calculated in a 5 % step change in 

calibrated value until the range from 50 to 150 % of the calibrated values is covered.  
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Figure 23:  Relative sensitivity coefficients of Model 7 (100 h observations) 

 

The above figure shows that the parameters KLay 2 (triangles) and KV (+ and *) are more 

influential than CondRiverbed (-) and KLay 1 (circles). Sometimes it is difficult to generalize which 

parameter is more important, since it depends on which range the values lay. In Model 7, the 

parameter KV South (+) gains on importance with smaller values than the calibrated value, while 

for higher values the KLay 2 left and KLay 2 right (triangles) are the most influential parameters. 

However, we can say that for most of the analyzed range, the most influential parameters are 

KV and KLay 2 and the less influential parameter is KLay 1. 

 

In the table below, we find an overview of the arrangements of calibration parameters in the 

sequence in which they were considered. In the first column, we have the original setup of 

Section 4.4.1 (p. 46). In the second column, the arrangement suggested by the sensitivity 

analysis (most influential parameters first, less influential at the end) is presented. Finally, the 

third column shows the best order which was found after trying several different 

combinations.  
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Table 24:  Order of parameters: original (1
st

 column), sensitivity analysis parameter ranking 

(middle column), optimal (last column); newly introduced parameters are marked bold 

Model 

Calibration parameters: 

KLay 1, KLay 2, KV and 

CondRiverbed 

Calibration parameters: 

KV, KLay 2, CondRiverbed and 

KLay 1 

Calibration parameters: 

KV, CondRiverbed,KLay 2 and 

KLay 1 

1 KLay 1 KLay 1 KLay 1 

2 
KLay 1 and KV  

(KLay 2 tied to KLay 1) 

KLay 1 and KV  

(KLay 2 tied to KLay 1) 

KLay 1 and KV  

(KLay 2 tied to KLay 1) 

3 KLay 1, KLay 2 and KV  KLay 1, KV North and KV South  KLay 1, KV North and KV South  

4 
KLay 1 without channel, KLay 1 

channel, KLay 2 and KV 

KLay 1, KV North, KV South and 

KLay 2 

KLay 1, KV North, KV South and 

CondRiverbed 

5 

KLay 1 without channel, KLay 1 

channel, KLay 2 right, KLay 2 left 

and KV 

KLay 1, KV North, KV South, KLay 

2 right and KLay 2 left  

KLay 1, KV North, KV South, 

CondRiverbed and KLay 2  

6 

KLay 1 without channel, KLay 1 

channel, KLay 2 right, KLay 2 left, 

KV North and KV South 

KLay 1, KV North, KV South, 

CondRiverbed, KLay 2 right and 

KLay 2 left 

KLay 1, KV North, KV South, 

CondRiverbed, KLay 2 right and 

KLay 2 left  

7 

KLay 1 without channel, KLay 1 

channel, KLay 2 right, KLay 2 left, KV 

North, KV South and 

CondRiverbed 

KLay 1 without channel, KLay 1 

channel, KLay 2 right, KLay 2 left, 

KV North, KV South and 

CondRiverbed 

KLay 1 without channel, KLay 1 

channel, KLay 2 right, KLay 2 left, 

KV North, KV South and 

CondRiverbed 

 

 

Figure 24:  Model selection analysis of different parameter arrangements for models calibrated 

to 100 h observations (The AICc refers exclusively to the bottom blue diamonds) 
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In the model fit of Section 4.4.1 (gray diamonds in above figure), it is evident that there is no 

significant model fit improvement after Model 2 until Model 6 (where KV is divided into zones) 

is introduced. KV South is the most influential parameter below 80% of the calibrated value (see 

“+” symbols in Figure 23). This suggests that KV zonation should be introduced earlier as a 

calibrating parameter. The second arrangement of models (developed by taking into account 

the sensitivity analysis ranking) differentiates as suggested, first in Model 3, between the KV 

parameters (instead of KLay 1), then, between the KLay 2 parameters, followed by adding 

CondRiverbed, and finally, discerning between KLay 1 zones. Models 1 and 2 are the same for all 

three arrangements. The model fit improves significantly (compare blue diamond at model 

number 3 with the gray one in the above figure). However, Model 4 (new parameter KLay 2) 

and Model 5 (KLay 2 zonation) bring just little improvement (white diamonds with blue outline 

on the above figure). Nevertheless, it improved after adding CondRiverbed in Model 6. Adding 

this last parameter earlier (into Model 4; third arrangement) brought the lowest (best) AICc 

result (orange squares in the above figure). This best model has just one value of horizontal 

conductivity, two vertical conductivities and a flow resistance at the South boundary. It does 

not consider zonations at either upper or lower layer. The order of parameters plays an 

important role for the model ranking. By rearranging the parameters in such a way that the 

biggest improvements in model fit occur first, we could obtain a much lower value of AICc 

than the one previously obtained in Section 4.4.1 (p. 46), thus, a more parsimonious model.  

 

Unexpectedly, the sensitivity analysis arrangement did not obtain the best results. A reason 

for this is that the sensitivity of Model 7 is not transferable to the simpler models. The 

sensitivity of a parameter depends also on the interaction with other parameters. For 

example, KLay 2 might just be very influential in presence of CondRiverbed. Also, the simpler 

(homogeneous) models have other parameters, since they lack zonations. For example, 

Model 2 has just one horizontal hydraulic conductivity parameter for both layers. In Model 7, 

this parameter is covered by four different hydraulic conductivity parameters. Another reason 

is that, as mentioned on page 61, the sensitivity value is not absolute and maybe an 

adequate interval or reference value was not chosen for a certain parameter. Hence, we 

were not looking at the meaningful value range.  

 

The goal of Akaike’s Information Criterion is to find the model having the best result with as 

few parameters as possible. In order to truly achieve this goal, we have to build up 

complexity with an optimal parameter arrangement, as accomplished here with the third 

arrangement (blue diamonds in above figure). However, the parameter ranking of the 

sensitivity analysis of Model 7 did not forecast the optimal complexity order. Trying all 

parameter combinations to find the optimal arrangement is not a practical approach, since 
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they are too many of them and have to be calibrated each time. Calibrating the models is 

usually a very difficult task in contrast to performing sensitivity analysis where just repeated 

forward simulation runs are performed while varying parameter values. It is our task to find 

the most influential parameters for each model since AIC does not find them for us. Burnham 

and Anderson (2002:62) note:  

 

AIC is useful in selecting the best model in the set; however, if all the models are 

very poor, AIC will still select the one estimated to be best, but even that 

relatively best model might be poor in an absolute sense. Thus, every effort must 

be made to ensure that the set of models is well founded.  

 

The sets of models can be optimised by a sensitivity analysis which can help to design the 

candidate models already with optimal parameters. I suggest that a short sensitivity analysis 

of all parameters (or as many as possible) should be made at the initial stage of designing 

the candidate models. Since the models at this initial stage are not calibrated, we can use 

literature parameters or an initial guess with their respective model results as reference 

values for the Equations 54 and 55 (p. 60 and 61). Two runs for parameter changes (simply 

+ or – 5%) might be enough to give us an idea about parameter sensitivity. It is not wasted 

time since such an analysis provides useful information which proves very valuable for 

calibration purposes. While performing calibration, it is important to have a “feeling” of how 

the model reacts to changes in parameters. This preliminary analysis will improve the quality 

of our candidate models. Despite sensitivity analysis the arrangement of the candidate 

models may not be optimised, this would mean that improvements do not decrease 

gradually. In this case, one can slip back the parameters that cause significant improvements 

and consider them within the less complex models as it was accomplished in Figure 24. 

Another approach is to apply a “stepwise” calibration. Several parameters that according to 

sensitivity analysis and modeler experience come into consideration are first tried out before 

selecting a new parameter; the one which provides the biggest improvement is chosen. In 

this manner, an optimal arrangement is usually guaranteed without trying all possible 

parameter combinations.  

 

In this chapter, it was shown how to norm the different types of information using their 

respective observed standard deviations. Then, the synthetic data generating model and the 

candidate models were presented. Three different sets of synthetic data were generated, 

annexed in Appendix B.4 (p. 99). It was demonstrated that AIC can be applied to 

groundwater models using different types of information and depending on the amount and 

type of data selected for calibration, it chooses a model with certain complexity. Furthermore, 
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the impact of number of observations, types of observations, and order of parameters on 

model selection results was discussed. In the frame of this discussion, an evaluation using 

models calibrated with much less observations was performed. It was corroborated that AICc 

prefers simpler models when fewer observations are available, and the opposite is true for 

more data availability. It was also possible to prove that the use of different types of 

information for calibration also provides additional support for model complexity. Moreover, it 

was seen that for the quality of calibrated parameters, the diversity of information type is 

more important than the number of observations. Also the order of parameters plays an 

important role in model assessment. By rearranging the parameters in such a way that the 

biggest improvements in model fit occur first, we could obtain much lower values of AIC and 

AICc than with the original arrangement in Section 4.4.1, thus, a more parsimonious model 

was achieved. 

  

In the next chapter we will apply AIC to real data using two different types of observations 

and we will optimally arrange the calibrated parameters to find the most parsimonious model.  
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5 MODEL ASSESSMENT WITH DIFFERENT TYPES OF 
OBSERVATIONS USING REAL DATA 
 

 

 

 

 

 

 

 

 
 

Synthetic data can be biased since it is especially designed for a given purpose. A test with 

real data is thus necessary. In this chapter, the AIC is applied to different field measured data 

on a lysimeter model parametrized by Bärschneider (2008) in her hydrological-

meteorological student project report for the Institute of Hydrology and Meteorology of the 

Technische Universität Dresden. Lysimeters are columns of soils which are carefully 

monitored to investigate the water mass balance at a given location. In order to accomplish 

this task, the water which infiltrates through the soil column is collected at the bottom of the 

column and measured. The column has an inbuilt scale which records a change in weight 

due to precipitation or evapotranspiration. 

 

5.1 REAL DATA  

 

The real data were measured at the lysimeter 10/2 located in Etzdorf (approx. 40 km 

westward from Dresden, Germany), which is part of the Brandis lysimeter station operated by 

the Saxon State Agency for Environment, Agriculture and Geology (LfULG). For model 

evaluation the lysimeter data set consists basically of two time series of daily values of actual 

evapotranspiration (ET) and seepage water (RU), shown in the figure below. The six months 

time-series start on October 1st, 1987 which corresponds to the start of the sowing period.  
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Figure 25:  Real data time series of actual evapotranspiration, seepage water, and precipitation 

at lysimeter 10/2 from October 1
st

, 1987 until March 31
st

, 1988 

 

Additional measured data were also available to Bärschneider for parametrization, such as 

precipitation values registered near the ground; reference potential evaporation; the lysimeter 

balance records, which register the change in weight of the soil column; the lysimeter soil 

description; land use schedule (with crop type, sowing and harvesting dates); and the crop 

leaf area index.  

 

5.2 LYSIMETER MODEL  

 

In order to simulate the lysimeter data, Bärschneider (2008) used the Richards equation 

(1931) without hysteresis to describe the one dimensional flow of water through a partially 

saturated porous medium: 
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and parametrized the soil hydraulic properties according to van Genuchten (1980) based on 

Mualem’s model:  
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where  is water content [L3L-3]; x is the spatial coordinate [L] (positive upward); Krelative is the 

relative [-] and Ksaturated the saturated hydraulic conductivity [LT-1]; h is water pressure (head) 

[L]; r and s are the residual and saturated water content [-]; m and n are empirical 

parameters [1/L], [-], [-] and e stands for effective water content [-]. 

 

To simulate the data, Bärschneider used the public domain program Hydrus 1-D version 4.03 

(Simunek et al. 2005-2008), which numerically solves the Richards equation using the finite 

element method. 

 

The lysimeter is 3 m long and with a 1 m2 surface which during the period of interest was 

cultivated with winter wheat. The soil column is discretized in 101 nodes, which are 3 cm 

apart from each other. In the figure below the resulting 100 “cells” are outlined at the side of 

the column. In 1994, the lysimeter was cut and analyzed revealing three horizons of soil 

material: silty loam (material 1), mid-clayey silt (material 2) and sand (material 3). The first 

two horizons are mostly silt while the third one consisted mostly of sand.  
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Figure 26:  Lysimeter 10/2 geometry and spatial discretization 

 

For each of the three soil materials the following six parameters of the Mualem - van 

Genuchten hydraulic model must be parametrized:  

 

 residual water content (r); 

 saturated water content (s); 

 the empirical parameters of the soil water retention function (, n); 

 saturated hydraulic conductivity (Ks); and 

 tortuosity (l). 

 

Bärschneider (2008) used a dynamically linked library (dll) included in Hydrus-1D named 

Rosetta to get estimations of Ks and water retention parameters (r, s, , n; see following 

table). Rosetta, which was developed by Marcel Schaap at the U.S. Salinity Laboratory 

implements pedotransfer functions (PTFs) to predict these parameters. The PTFs were 

calibrated with soils from northern USA and northern Europe (Bärschneider 2008). The 

tortuosity parameter l is estimated as 0.5 by Mualem (1976). 
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Table 25:  Mualem - van Genuchten parameters generated with Rosetta dll for the 3 soil materials 

Material r [-] s [-]  (mm-1) n [-] Ks (mm/d) l [-] 

silty loam 0.0630 0.4918 0.00036 1.7831 1871.9 0.5 

mid-clayey silt 0.0833 0.5594 0.00053 1.6726   853.0 0.5 

sand 0.0492 0.5429 0.00554 2.0581 5836.3 0.5 

 

The initial value of the pressure head was estimated by Bärschneider (2008) as -100 mm at 

the top and gradually increased to 0 mm at the bottom.  

 

The upper boundary condition is atmospheric pressure with surface water layer. This 

condition permits water to build up on the surface: The height of the surface water layer 

increases due to precipitation and reduces because of infiltration and evaporation (Simunek 

et al. 2008). The upper boundary condition is specified daily according to the values of 

precipitation and potential evapotranspiration. The lower boundary condition is Seepage 

Face (h = 0), which is used when the bottom of the lysimeter is exposed to the atmosphere, 

as it is the case here.  

 

The variable boundary conditions are parametrized with daily data of precipitation, potential 

evaporation, and potential transpiration values. The absolute value of the minimum allowed 

pressure head at the soil surface (hCritA) was set by Bärschneider to 10 000 mm.  The 

precipitation values are measured and the potential evaporation and transpiration were 

calculated by Bärschneider with the following equations from Mailhol et al. (1997):   
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where E is the soil water potential evaporation [LT-1], T is potential transpiration [LT-1], CP is a 

partition coefficient also known as surface cover fraction [-], ET0 is the reference potential 

evaporation measured at the lysimeter station [LT-1], LAI is the measured leaf area index [-], 

KC is the crop coefficient [-] (see Table 26), and aw an empirical crop parameter with a value 

of 0.75 [-] taken from Mailhol et al. (1997). Hydrus simulates the actual evaporation and 

transpiration according to water availability based on the given potential E and T (Simunek et 

al. 2008). 
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Table 26:  KC coefficient for winter wheat in Europe (Allen et al. 1998:Chapter 6) 

 Start phase Growth phase Maturation phase Final phase 

Days 160 75 75 25 

KC 0.70 0.70 - 1.15 1.15 0.40 

 

Most of the simulation time performed by the model (182 days) comprises just the KC start 

phase which lasts 160 days and begins on October 16th, 1987. When analysing the cut 

lysimeter in 1994, the maximal depth of the roots was found to be 160 cm. The root 

distribution gradually increased attaining its maximum at 120 - 150 cm depth. Bärschneider 

(2008) selected the root water uptake model according to Feddes et al. (1978) and a critical 

stress index for water uptake of 1. The advantage of choosing the Feddes et al. model is that 

Hydrus-1D includes for this model a database of water uptake parameters for different crops. 

The parameters for winter wheat are shown in the following table:  

 

Table 27:  Root water uptake values for winter wheat after Wesseling et al. (1991) 

Parameters  (mm) 

Pressure head below which roots start to extract water (P0) 0 

Pressure head below which roots start to extract water at maximum rate (P0pt) -10 

Limiting pressure head, below which roots cannot longer extract water at max. 

rate, assuming r2H potential transpiration rate (r2H below in this table) (P2H) 
-5000 

Limiting pressure head, below which roots cannot longer extract water at max. 

rate, assuming r2L potential transpiration rate (r2L at the end of this table) (P2L) 
-9000 

Pressure head below which root water uptake ceases (wilting point) (P3) -160000 

Potential transpiration rate per day (r2H) 5 

Potential transpiration rate per day (r2L) 1 

 

The values for time discretization, iteration criteria, time step control, and the interval for 

internal interpolation tables are shown in Table 28. The time step control parameters and the 

pressure head tolerance are those recommended and given as default by Hydrus-1D. The 

initial time step value of 0.001 d is used while the number of iterations remains in the optimal 

iteration range (between 3 to 7 iterations; table below). Out of this range, the initial step is 

increased or decreased as needed by multiplying it by the lower or upper time step 

multiplication factor (Simunek et al. 2008).   

 



73      MODEL ASSESSMENT WITH DIFFERENT TYPES OF OBSERVATIONS USING REAL DATA 

 

 Table 28:  Values for time discretization, iteration criteria, time step control, and internal 

interpolation tables interval 

Time discretization (days)  

Initial Time 0 

Final Time 183 

Initial Time Step 0.001 

Minimum Time Step 1 x 10-5 

Maximum Time Step 5 

  

Iteration Criteria  

Maximum Number of Iterations [-] 10 

Water Content Tolerance [-] 0.001 

Pressure Head Tolerance (mm) 10 

  

Time Step Control [-]  

Lower Optimal Iteration Range  3 

Upper Optimal Iteration Range  7 

Lower Time Step Multiplication Factor  1.3 

Upper Time Step Multiplication Factor  0.7 

  

Internal Interpolation Tables (mm)  

Lower Limit of the Tension Interval  1 x 10-5 

Upper Limit of the Tension Interval 100 000 

 

The internal interpolation tables (last two parameters of above table) define a range of 

pressure heads in which the hydraulic properties are internally interpolated from tables. The 

tables are of water contents, hydraulic conductivities, and specific water capacities from the 

specified set of hydraulic parameters which Hydrus generates for each soil type at the 

beginning of a numerical simulation (Simunek et al. 2008). Bärschneider (2008) set an 

interval big enough to encompass the entire range of pressure heads since the interpolation 

is much faster than calculating each time the values with hydraulic functions. 

 

The uncalibrated model parametrized by Bärschneider provides the following time series 

(plotted against original data for comparison): 
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Figure 27:  Uncalibrated model results of ET and RU (black line) vs. observed values (in color) 

 

As can be observed in the above figure, only the ET values for the first six weeks are very 

similar to the observed values. The rest of the time series reveals a need for calibration. On 

the other hand, the seepage water (RU) simulation results follow closely the observed values 

with exception of the first two months of the time series. During this period, the simulated RU 

results are strongly affected by the initial values of pressure head distribution, which were 

assumed to be evenly distributed from -100 mm at the surface to 0 mm at the bottom of the 

lysimeter. A model with optimal initial values saves simulation time since it needs less 

iterations to converge. Therefore, it is recommendable to provide better initial pressure head 

values. The final pressure head distribution ranged from -2851.354 mm at the surface to 0 

mm at the bottom. Since the initial values are not exactly the final values, a reasonable 

guess is to set the initial head values evenly distributed from -3000 mm at the surface to 0 

mm at the bottom of the lysimeter. This provided the following simulated time series: 
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Figure 28:  Uncalibrated model results of ET and RU (black line) vs. observed values (in color) 

with initial head values evenly distributed from -3000 mm at the surface to 0 mm at the bottom 

of the lysimeter 

 



75      MODEL ASSESSMENT WITH DIFFERENT TYPES OF OBSERVATIONS USING REAL DATA 

 

As it can be seen in Figure 28, there is no change in ET simulated values. However, the 

change in initial head pressure distribution positively impacted the simulated RU values 

during the first two months. The simulation time decreased by 80 % (from 11.50 s to 2.25 s).  

 

5.3 SENSITIVITY ANALYSIS 

 

The uncalibrated model presented in the previous section may not be parsimonious 

(providing good results while keeping the number of calibrated parameters as low as 

possible). To find out whether it is parsimonious, we have to gradually introduce some 

complexity and evaluate the improvement with AIC. It was demonstrated in Section 4.5.3 that 

the order in which the parameters are considered influence the choice taken by AIC. The 

sensitivity analysis provides hints on which could be the best order of complexity. 30 

calibratable parameters were found in the model. They are listed in the following table: 

 

Table 29:  Calibratable parameters of the lysimeter model 

Category Parameters 

Discretization Time step 

 Number of nodes 

Initial conditions Initial pressure head  

Boundary cond. Absolute value of the minimum allowed 

pressure head at the soil surface (hCritA) 

Soil  Water retention parameters (r, s, , n) 

and Ks for each of the three soil materials 

 Tortuosity 

Plant  KC 

 aw 

 Critical stress index for water uptake 

 P0, P0pt, P2H, P2L, P3, r2H, r2L 

 

Equation 54 (p. 60) can be used to obtain relative sensitivity coefficients for every 

observation since both types of information have the same units. To apply Equation 54, 

forward runs with the parametrization of Bärschneider as reference, and with parameter 

variations of plus and minus 5 % were performed. To summarize all of the resulting 

coefficients into just one single coefficient for each parameter, we use Equation 56 (p. 61). 

The results are plotted on the graph below. A difficulty was encountered with parameter P0 

which has a value of zero. Since we cannot use zero as reference value in Equation 54 to 

norm the sensitivity coefficients or to determine a small variation, the value of a very close 
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parameter was taken instead. The related parameter is P0pt with a value of -10 mm, which 

makes a 5 % variation of -0.5 mm.  

 

Along the y-axis in Figure 29, the relative sensitivity coefficients derived from the difference 

in results by a 5 % parameter change (x-axis) are plotted. The first values along the x-axis 

represent the relative sensitivity coefficient considering a reduced parameter value of 95 % of 

the original value. The values in the middle of the x-axis analyze the impact by using 105 % 

of the original parameter value. Finally, the last values in the x-axis are the relative sensitivity 

coefficient by considering a 5 % increment to a parameter value of 110 %.  
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Figure 29:  Relative sensitivity coefficients of the lysimeter model parameters  

 

There are four very influential parameters which are (in order of sensitivity): initial head, aw, 

material 3, and nmaterial 3. They have relative sensitivity coefficients greater than 1 mm. Not too 

influential are the five parameters which range from 0.25 to 1mm. These are material 2, s 

material 2, nmaterial 2, number of nodes, and Ks material 3. The rest of the 21 parameters have by a 5 

% change of the model value not much impact on model results. From these, just six 

parameters (nmaterial 1, KC, tortuosity, s material 3, s material 1, and Ks material 2) have minor relative 

sensitivity coefficients in the range of 0.1 to 0.25 mm. The time step and five soil parameters 

(r of all three materials, Ks, and  of material 1) were almost unimportant with relative 

sensitivity coefficient values lower than 0.1 mm. The seven root water uptake parameters, 

the critical stress index for water uptake, and the hCritA were unimportant by a 5 % change 

of the model value. 
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5.4 MODEL ASSESSMENT 

 

In order to calculate Akaike’s Information Criterion considering different model results as it is 

the case here, the data have to be normed as already explained in Section 4.1.  By norming 

the observed and calculated values of evapotranspiration and infiltration with their standard 

deviation, we obtain values which are unitless and within the same order of magnitude. The 

evapotranspiration standard deviation (ET) norms the different sets of observed and 

calculated evapotranspiration. The infiltration standard deviation (RU) does the same with 

the observed and calculated infiltration data sets. The two standard deviation values (ET and 

RU) are calculated from their respective observed data sets centered at zero. The residuals 

obtained from the normed values can be then analyzed as a single data set.  

 

The ratio n / K is 61 (= 366 / 6). A ratio bigger than 40 indicates that we can rank the models 

using AIC and still provide the same result as with the slightly more complex corrected 

version (AICc).  The results are summarized in the following graph and table:   

 

Table 30:  AIC evaluation results by adding complexity as suggested by the sensitivity analysis 
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Figure 30:  AIC evaluation adding model complexity as suggested by the sensitivity analysis 

Model AIC 

Nr. Param. Fit K Penalty AIC Δi wi 

0  -72.6 1 2 -70.6 173.3 0.00 

1 ini. h -129.2 2 4 -125.2 118.7 0.00 

2 +w -129.3 3 6 -123.3 120.5 0.00 

3 +3 -161.2 4 8 -153.2 90.7 0.00 

4 +2 -186.4 5 10 -176.4 67.5 0.00 

5 +Kc -255.8 6 12 -243.8 0.0 1.00 
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By calibrating the model using the parameters in the order of the sensitivity analysis, we get 

the biggest improvement using all 5 parameters together. Out of this 5 calibration scenarios, 

we can tell that number 5 is chosen by AIC as the best option with 100% certainty. However, 

the calibration with two parameters provided only little improvement. Also, the improvements 

by adding the soil parameters 3 and 2 are not as big as in the last calibration where the 

plant parameter was added. These discrepancies are an indication that the different 

parameter combinations are not optimally chosen. To find the optimal combinations of 

parameters, we try several parameters first. The one which provides the biggest 

improvement is chosen. We repeat this for all of the parameters and by doing so we obtain 

the following results:  

 

Table 31:  AIC evaluation results by adding complexity stepwise 

Model AIC 

Nr. Param. Fit K Penalty AIC Δi wi 

0  -72.6 1 2 -70.6 177.0 0.00 

1 +Kc -186.1 2 4 -182.1 65.4 0.00 

2 +2 -240.1 3 6 -234.1 13.4 0.00 

3 +w -255.6 4 8 -247.6 0.0 0.64 

4 +3 -255.8 5 10 -245.8 1.8 0.26 

5 ini. h -255.8 6 12 -243.8 3.8 0.10 

 

-275

-250

-225

-200

-175

-150

-125

-100

-75

-50

-25

0

0 1 2 3 4 5

Model number = Calibrated parameters

In
fo

rm
a

ti
o

n
 c

ri
te

ri
a

 v
a

lu
e

AIC penalty term

Model fit

AIC

 

Figure 31:  AIC evaluation by adding complexity stepwise 

 

The most parsimonious model is achieved by calibrating stepwise, in this case with 3 

parameters: first with the plant parameter Kc, then with the soil parameter 2 and finally, 

using the plant parameter w. Calibrating with more parameters does not improve the AIC. 
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Model 3 results can be seen in the figure below. Observed evapotranspiration is in red; 

observed infiltration is in blue; and the simulation results are in black: 

 

1-Oct-87 1-Nov-87 1-Dec-87 1-Jan-88 1-Feb-88 1-Mar-88 1-Apr-88

0

1

2

3

4

5

6

S
im

u
la

te
d

 E
T

 v
s
. 

o
b

s
e

rv
e

d
 [

m
m

]

1-Oct-87 1-Nov-87 1-Dec-87 1-Jan-88 1-Feb-88 1-Mar-88 1-Apr-88

0

1

2

3

4

5

6

S
im

u
la

te
d

 R
U

 v
s
. 

o
b

s
e

rv
e

d
 [

m
m

]

 

Figure 32:  Calibrated optimal fit of the parsimonious model 

 

The parsimonious model did not exactly match the observed values. Nevertheless, the 

calculated ET values fit the observed data much better than the uncalibrated results (Figure 

28, p. 74), especially during winter and spring. 

 

5.5 DISCUSSION AND CONCLUSION 

 

In this chapter, the AIC application to real data using different kinds of observations proves 

the viability of this method to address uncertainty assessment on hydrogeological models. 

The real data and the model are not biased since data were not created by the modeler. 

Likewise, the model itself was neither created nor parametrized by the model selection 

evaluator.  

 

Complexity was slowly built in, one parameter at a time, calibrating first the most influential 

parameters. As occurred in Section 4.5.3, the sensitivity analysis did not reveal the optimal 

order of the parameters. Nevertheless, it was useful to distinguish between parameters 

which were probably worth trying from those which were not.  

 

By calibrating the model stepwise, for the first parameter the highest improvement was 

achieved with the plant parameter Kc. I would like to point out that both plant parameters (Kc 

and w) brought a better fit as first choice parameter than any other tested soil parameter. 

This is probably due to the fact that evapotranspiration values have a worst fit to observed 

data than infiltration values; thus, having more potential to improve. A soil parameter, 2, 

brought the best improvement when selected as second parameter. In this calibration step, 

all of the tested soil parameters achieved a bigger improvement in model fit as the plant 
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parameter w. Yet, as a third parameter, w had more impact than the rest of the soil 

parameters. This calibrating behaviour reveals that more important than choosing a given 

parameter is to choose a parameter from a certain group, for example, after calibrating a 

plant parameter it is recommended for the next calibration step to select a soil parameter.  

 

The most efficient way to find a parsimonious model, which provides the best fit with the 

lowest amount of calibrated parameters, is to perform a stepwise calibration trying at each 

step influential parameters of different parameter groups. 
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6 CONCLUSION AND OUTLOOK 
 

 

 

 

 

 

 

 

 
 

One of the biggest uncertainties in hydrogeological modeling, which can be minimized by 

applying AIC, is the choice of the conceptual model itself. The uncertainty assessment based 

on Information Theory (AIC, explained in Section 3.3) ranks models calibrated to the same 

data by favouring them for fitting observed values and penalizing them for building additional 

model complexity. Hence, AIC can be regarded as a balance equation between closeness to 

the truth and model complexity. The information criterion developed by Akaike has gained on 

popularity due to its practical simplicity. Yet, it is based on deep statistical theories originated 

from the Information Theory. AIC can estimate a relative information loss between the 

unknown truth and a given conceptual model based on the maximum likelihood function.  

 

It is not always easy to apply model selection methods to hydrogeological models, in 

particular, when using different sources of information (see implementation errors 

documented in Section 3.8). Different types of observations have different order of 

magnitudes and types of units. However, it is possible to norm observed and simulated 

values by their respective observed standard deviations, as described in Section 4.1. This 

provides a single data set of normed observations which can be analyzed by AIC.  

 

The application of AIC was successfully tested on groundwater models using three different 

sets of  synthetic data: hydraulic pressure (h), horizontal hydraulic conductivity (Kh), and 
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tracer concentration. Several conceptual models were proposed to simulate these data, each 

of them with increasing number of parameters to be calibrated (Section 4.3). The conceptual 

models were calibrated first to one data set (h), then to two data sets (h plus Kh), and finally, 

to all of the three data sets. The results of the three model analyses (Section 4.4) revealed a 

need for investigation of the influence of number of observations, type of information 

considered, and order of calibrated parameters, in model selection results (Section 4.5). 

 

The investigation on data availability (Section 4.5.1) revealed that the number of 

observations determine how complex a model can be. The fewer the number of 

observations, the harder the AIC penalizes an increase in complexity. This causes AIC to 

prefer simpler models when fewer observations are available.  

  

Also information diversity allows for further complexity in parsimonious models. Every type of 

information reveals important model features. For example, the models calibrated with just heads 

(Sections 4.4.1 and 4.5.1) clearly pointed out the need of a two layer model, disregarding 

whether 100 or just 20 observations were considered. Models calibrated additionally to Kh 

values (Sections 4.4.2 and 4.5.1) provided information about K-zonations also independent of 

the number of observations considered. Concentration data supported the presence of a 

Paleochannel structure (Section 4.4.3). Hence, more complex models can be selected by AIC if 

different types of observations are used for calibration. Furthermore, the quality of the 

calibrated parameters improved, the more different types of observations were used for 

calibration (Section 4.5.2).  

 

The analysis made on the order of the calibrated parameters revealed that the order in which 

complexity is built up is essential to attain a truly parsimonious model (Section 4.5.3). 

Calibrated parameters that provide bigger improvements in model fit should be first taken 

into consideration. This can be achieved, by either trying all possible combinations of 

parameters or by combining a sensitivity analysis with a stepwise calibration. However, trying 

all parameter combinations to find the optimal arrangement is not a practical approach, since 

there are too many of them and they have to be calibrated each time. In contrast, performing 

sensitivity analysis does not require calibration, therefore, it is a much easier procedure 

which provides valuable information for an effective calibration. The stepwise calibration 

consists of several steps in which several parameters are tried out and the one which 

provides the biggest improvement is selected. The procedure is repeated with the rest of the 

parameters until a desired complexity level is attained or AIC has been minimized.  
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As synthetic data was created for the specific purpose of testing the previous models and as 

this step was performed by the same person who also developed these models, it can be 

argued that the procedure is biased. Applying AIC with different types of information was 

thus also verified with unbiased lysimeter data. The model was parametrized by 

Bärschneider (2008); the real data (actual evapotranspiration and seepage water) was 

measured from the Brandis lysimeter station operated by the Saxon State Agency for 

Environment, Agriculture and Geology (LfULG) near Dresden, Germany. Using this model 

and these data, it was demonstrated that AIC can be applied in real hydrogeological studies 

using different types of information, hence, reducing uncertainty. AIC found an optimal 

lysimeter model using a stepwise calibration which slowly built up model complexity. A 

sensitivity analysis provided hints on which parameters may be worth trying to obtain the 

biggest model fit improvements happening first. Although, the resulting parsimonious model 

did not exactly matched the observed values, calibration with only three parameters 

substantially improved the original model fit.  

 

To further demonstrate the advantages of conceptual model selection analysis, it would be 

necessary to test AIC using different types of observations in more real cases. This will also 

motivate modelers to apply the here presented analyses to their hydrogeological models. 

Moreover, the implementation of this uncertainty assessment as automated or semi-

automated algorithms will contribute to simplify its practical application and extend its use 

among the hydrogeological modeling community. These algorithms should calculate 

normalized relative sensitive coefficients and also be able to calibrate several parameters in 

automated form to different types of observations. Furthermore, implementing the stepwise 

calibration with AICc model selection ranking as an automated algorithm would provide a very 

useful model selection tool. 

  

Modelers are divided in two groups: first, those who see in stochastic modeling the tool for 

optimal aquifer complexity description and proper model prediction and second, those who 

favor the use of parsimonious models. At the session of “complexity versus simplicity” of the 

MODFLOW2003 conference, a discussion between both groups took place and they 

concluded that both approaches had their advantages and disadvantages (Gómez-Hernández 

2006). With help of the above mentioned automated or semi-automated tools, an approach 

could be developed to minimize conceptual model uncertainty by applying AIC using different 

types of information to stochastic resulting models. With such a parsimonious stochastic 

model selection procedure, it may be possible to reconcile these two groups of modelers. 
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This research proved the benefits of combining the application of AIC in hydrogeological 

models with the stepwise calibration using several types of observations. It is hoped that the 

presented dissertation will stimulate hydrogeologists to address conceptual model uncertainty 

using this innovative uncertainty assessment method based on Information Theory. 
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APPENDIX 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

A A. BASIC MATHEMATICAL ASPECTS TO 
UNDERSTAND AIC 

 

Akaike estimated the “K-L information minus a truth dependent constant” from given data. He 

arrived to a result involving the likelihood function. This was possible by using the maximum 

likelihood method to estimate the model parameters during the derivation of the solution. 

Therefore, in order to have a better understanding of Akaike’s Information Criterion, it is also 

important to draw attention to the maximum likelihood estimation method and the likelihood 

function.  

 

A.1 ESTIMATING PARAMETERS WITH THE MAXIMUM 
LIKELIHOOD ESTIMATION METHOD 

 

Maximum likelihood estimation (MLE) is a standard parameter estimation method, commonly 

applied in statistical inference. It estimates coefficients from a given data set, assuming a 

certain probability distribution function. 

 

In natural sciences, data is in the best of cases just a random sample taken out of all of the 

existing values. According to Myung (2003), all of these existing values could be represented 
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statistically with a probability distribution which has some parameters associated with it. If the 

values of these parameters are changed, a different probability distribution is generated. All 

of these probability distributions together are called a model; and a certain value of the 

parameters gives the most likely approximation to the data.  

 

To understand MLE, it is important to recall the probability concept. For this purpose, we take 

the easiest example which is tossing a coin. For an unbiased coin, the probability to get head 

or tail is 0.5. For this case, the model, the data, and the parameters are given. The interest 

lies on finding the probability of observing a certain event. Burnham and Anderson (2002) 

remind us that the “model” of this problem is the binomial probability function g(data: n, k | 

parameter: p; model: binomial),  

 

)()1();|,( knk pp
k

n
binomialpkng 








   where 

!)!(

!

kkn

n

k

n











 65 

 

where n is the number of trials, k the number of successes, and parameter p is the probability 

of success. For example, for the case of getting 3 heads out of 10, the calculation is as follows  
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There is approx. 12 % probability of getting 3 heads out of 10 coin flippings. Let us vary the 

number of success k = 0, 1, …, 10; n and p remain fix. The results are shown in Figure 33:  
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Figure 33:  Probability of having a certain number of head outcomes out of 10 coin flips 
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The probability is on the y axis for the number of heads obtained out of 10 coin flips (x axis). 

It is easy to see that the highest probability is 5 heads out of 10 and that 3 heads out of 10 

has a probability of 0.117 (approx. 12 %). 

 

Now, in the case of the likelihood L(p | n, k; binomial), the model and the data are also 

given. The interest lies in estimating the parameters. Usually, in natural sciences we observe 

some data, assume a model and try to estimate the parameters. The formula as Massmann 

(2004) remarks is the same as the probability function, just our assumption changes. Before, 

we calculated the probability of an event given parameters and data. Now, we calculate the 

likelihood of the parameters given the data and event. For example, assuming a fix data of 3 

heads out of 10 coin flips, which would be the most likely value of the parameter p? The 

answer is given by the likelihood function of the binomial model: 
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This function is plotted in the following diagram:  
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Figure 34:  Likelihood function of having 3 heads out of 10 coin flips 

 

The likelihood function plotted above tells us that the most probable value for the parameter p 

(to get the result of 3 out of 10 events) would be 0.3, meaning an unbalanced coin which tends 

to give head just 30 % of the times. It also shows that if the parameter had a 0.5 probability of 

success, our result of 3 heads out of 10 coin flips would have approx. 12 % of probabilities to 

occur. As Myung (2003) points out, both graphs are not comparable since they have different x 

axis. In the probability function, we are varying the data, while in the likelihood function we vary 

the parameter. Notice that the graph is a simple curve. If we would be estimating two 

parameters, then the plot would be a 2D surface. If there were x number of parameters to 
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estimate, then the result would be an x-dimensional geometrical figure sitting above an x-

dimensional hyperplane spanned by the parameter vectors p = (p1, …, px) (Myung 2003). 

 

The exact value of the parameter is found by maximizing the likelihood function. The 

likelihood function provides values between 0 and 1. Zero means it is impossible that the 

data is created by the model while one means a complete certainty that the data is created 

by the model. This might be simple, straightforward and clear but seldom applied. As Hélie 

(2006) explains, the result of multiplying numbers bonded between [0, 1] never increases. 

Hence, the likelihood is always a very small number which can result in an underflow of 

modern computers (the smallest representable number is usually 1 x 10-7). The solution to 

the underflow is to use the logarithmic transformation. The logarithm is a monotonic 

increasing function. Products in the logarithm become sums. The ln-likelihood function is 

bounded between [-∞, 0] where minus infinity represents certainty that the model did not 

generate the data and zero representing absolute certainty that the model generates the 

data. This seems more practical for computers. The value is always a negative number 

which could be seen as counterintuitive for an error function. Therefore, the negative of the 

ln-likelihood is often used. This function is bounded from [0, ∞]; zero representing absolute 

certainty that the model generates the data and infinity representing certainty that the model 

did not generate the data (Hélie 2006). Let us then apply the natural logarithm to our 

likelihood example to avoid underflow, 
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The natural logarithm of our likelihood function is described in the following graph: 

 

Figure 35:  Ln-likelihood of having 3 heads out 10 coin flips 
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The curve in the figure has another form but the peak remains at the same position. 

Maximizing this function (finding the peak) is the same as maximizing the function without 

logarithmic transformation. We can find the maximum likelihood estimate by solving the 

derivative with respect to the parameter of the ln-likelihood function when it equals zero, 
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Evaluated at zero pMLE = 0.3. The notation MLE as subscript denotes the Maximum 

Likelihood Estimate. To make sure that the solution represents a maximum and not a 

minimum, the second derivative has to be calculated and evaluated at p = pMLE (Myung 

2003),  
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The negative value confirms that we have indeed found a maximum. In practice, Myung 

(2003) remarks that it is not always possible to find an analytical solution, especially when 

several parameters must be estimated and a non linear problem is present. This has to be 

calculated by using non linear optimization algorithms. These algorithms play a kind of hotter 

- colder game to get to the answer, instead of conducting an exhausting search through the 

entire domain. Depending on the choice of the initial parameter, the algorithm could give us 

the maximum likelihood estimate pMLE, global maximum, or a local maximum.  

 

On Figure 36, Point C is called global maximum while Point A, B, and D are local maxima. 

Selecting x2 as the initial guess of parameter p will lead to the global maximum, while 

choosing x1 leads to Point A. Selecting other starting point could lead to other suboptimal 

answer such as Point B, or in the case of choosing x3, to Point D.  
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Figure 36:  Schematic representation of a Ln-likelihood function of a 1 parameter model with 

several local maxima and a global maximum at C. Parameters x1, x2, and x3 are initial guesses  

 

Unfortunately, there is no general solution to overcome the local maximum problem 

efficiently. Even though, a variety of techniques can be used to try to avoid this problem. For 

example, one could try to choose different starting values and if the same parameter value is 

obtained, one could have some confidence that the value represents a global maximum. A 

stochastic optimization algorithm known as simulated annealing (Kirkpatrick et al. 1983) can 

theoretically overcome the local maxima problem, however, the algorithm may not be a 

practicable option as it may take an unrealistically long time to find the solution (Myung 

2003). 

 

For the case of easy examples of a few parameters, it is possible to use an analytical 

solution for the estimation of parameters. The solution will be to derivate the natural 

logarithmic likelihood function with respect to the parameter, as it was exemplified. The 

likelihood function is in fact the probability function, yet, treating the parameters as variables. 

In practice, we use iterative maximum-likelihood-based numerical algorithms to estimate 

parameters. 

 

For other examples, see Myung (2003). He also provides the example of how to estimate the 

value of two parameters (a, b > 0) for the exponential model y = a exp(-b x) and for the 

power model y = a x-b using a MATLAB numerical algorithm which is also provided. 
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A.2 MAXIMUM LIKELIHOOD ESTIMATE FOR THE NORMAL 
DISTRIBUTION CASE 

 

In Burnham and Anderson (2002), we find the derivation of the likelihood function of normally 

distributed residuals. Consider a multiple linear regression model where a variable y is 

function of r variables x, with r  regression coefficients. The residuals i of the n 

observations are assumed to be independent and normally distributed with a constant 

variance of 2:  

 

irri xxxy   ...22110   i = 1, …, n 73 

 

The probability distribution model for the observation i is given by, 
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where   represents the unknown parameters ),,...,,( 10  r . The number of parameters 

in linear regressions equals the unknown regression coefficients + 1, unknown standard 

deviation .  

 

Since we want to work with all of the observations, the probability distribution model for all 

independent observations is simply the product of each probability distribution from i = 1, …, 

n. 
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If we interpret the above probability function as a function of: the parameters   given the 

model and the data x and having the same properties of the residuals i, as assumed before 

(normal distribution, independence, and constant variance 2), the likelihood function is 
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Notice that the right term of the equation is the same as in the probability distribution, just the 

interpretation at the left side changed. Instead of laying interest on the probability of getting a 

certain residual, we are interested on which is the most probable parameter according to x 

data.  

The variance normally has to be estimated, so it gets a “hat,” and a logarithmic 

transformation is applied to obtain a computer friendly likelihood function: 
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denotes the estimated variance in the maximum likelihood method. This variance is biased, 

but there is no theoretical justification to replace it with the unbiased least squared variance 

2ˆ
LS  (Ye et al. 2008) 
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When n is much greater than K, the difference between the two variances is negligible. 

 

By replacing 
2ˆ
ML  in the above likelihood or ln-likelihood function we obtain the maximized 

likelihood function of the normal distribution  

 

n

n

ML

exL 2

1

2ˆ2

1
)(



















  80 

 

and the maximized Gaussian Ln-likelihood function  
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These resulting three terms can be easily calculated and are the ones which are normally 

substituted in model selection methods like in the general AIC equation (Equation 12) or into 

BIC or KIC, which were developed under a Bayesian context. 

 

A.3 BAYESIAN INFERENCE 

 

Bayesian inference is basically statistical inference using the Bayes Theorem. Its goal is to 

update the probability of an event A by taking into account additional information gained by 

observing event B. For example, consider the existence of God13 (event A). Either God could 

exist or not, statistically the probability is ½. However, if we consider the creation and order 

of the universe with its stars, galaxies, and different celestial objects (event B), the probability 

might change. With the Bayes theorem, it is possible to calculate a new probability which 

takes this information into account. The Bayes theorem is (Soong 2004:25)  
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where 

P(A|B) is the posterior probability or conditional probability of A given B; 

P(A)     is the prior or marginal probability of A, regardless of information about B; 

P(B|A) is the likelihood or conditional probability of B given A; 

P(B)     is the prior or marginal probability of B defined as  
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where Ai represents a set of mutually exclusive and exhaustive events. In this case only two 

events apply, either God exists or not. 

 

Let us put some numbers on our very simple example: the probability that God exists without 

additional knowledge is P(A) = ½, while the probability that He does not is P(A’) = ½. We 

guess or assume that the creation of the universe (event B) is more probable if God exists, 

P(B|A) = ⅔; than if He does not, P(B|A’) = ⅓. 

                                                

13
 The calculation with the Bayes Theorem of the probability that God exists was the cover article of 

the P.M. magazine in December 2006. 
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Bayes theorem can be expressed in different forms. For example, by dividing both the 

numerator and denominator in Equation 82 by P(B|A’), which is the conditional probability of 

B given an alternative to A (such as “not A”), we obtain  
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This formula was rewritten for simplicity by Vašek (2006) as follows: 
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where Pafter replaces P(A|B); Pbefore substitutes P(A); 1 – Pbefore  is used instead of P(A’); and  

GI, the God existence indicator, is the ratio 
)'|(

)|(

ABP

ABP
 for which Vašek (2006) suggests 

values from 10 to 0.1, see following table:  
 

Table 32:  Meaning of several GI values 

GI value meaning 
)'|(

)|(

ABP

ABP
 

10 
most likely when 

God exists 0909.0

9090.0
 

2 
likely when God 

exists 3333.0

6666.0
 

1 neutral 
5.0

5.0
 

0.5 
likely when God 

does not exist 6666.0

3333.0
 

0.1 
most likely when 

God does not exist 9090.0

0909.0
 

 

The probability that God exists increased from ½ to ⅔ when considering the creation of the 

universe. We can continue to calculate the probability of God existence considering other 
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criteria such as war, hunger, rapes, murder, and criminality. These calamities are most likely 

to occur in a world without God; therefore, we assign a GI of 0.1 

166.0
666.011.0666.0

1.0666.0
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The probability for the existence of God drops to around 17 %. One could continue in this 

manner to recalculate the probability considering other events which may affect the result.  

 

Other examples can be found in most books of Statistics, for example in Soong (2004:25) or 

Koch (2000:5). 

 

B B. MODEL SELECTION ISSUES 
 

Relevant model selection issues referred to in the main text are annexed here, as well as the 

synthetic data generated by the model presented in Section 4.2.  

 

B.1 TAKEUCHI’S INFORMATION CRITERION (TIC, TAKEUCHI 
1978) 

 

Although Akaike was the first to estimate the K-L information, he was not the only one. 

Takeuchi (1976) developed a model selection criterion based on an estimate of the K-L 

distance. He made a very general derivation without assuming that reality exists as a model 

or that such a model is in the set of candidate models. Takeuchi’s information criterion (TIC) 

is given as (Burnham and Anderson 2002:65): 

 

])()([2)]|(ln[2 1  IJtryLTIC  88 

 

where “tr” stands for the matrix trace function. J() and I() are matrices of K x K 

dimensions. Burnham and Anderson (2002:65) do not recommend the use of TIC since it is 

very hard to estimate proper values for the matrices. These values can hardly be estimated 

unless n is extremely big. Even if the matrix elements are properly estimated and we have 

good approximating models, the result is almost equal to AIC. When the approximating 

model is “good” (meaning low K-L information), the second term in TIC, ])()([2 1  IJtr  is 

ALMOST EQUAL to 2K; this makes AIC an excellent approximation of TIC (Burnham and 

Anderson 2002:65, 368, 385). According to Shibata (1989) the best estimator of 

])()([ 1 IJtr  is probably K. For these reasons, Burnham and Anderson (2002:65) 
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conclude that AIC is a reliable estimator of TIC. This proves that AIC is as unbiased as TIC, 

which would mean that the truth does not need to be present in the set of models. Ye et al. 

(2008) disagree on this last issue and point out that Burnham and Anderson (2002:368) also 

state that if the “true” model is considered in the set of candidate models then ])()([ 1 IJtr  

EQUALS K. This would mean that AIC assumes that the truth is included. More information 

on the mathematical derivation of the TIC can be found in Shibata (1989), Konishi and 

Kitagawa (1996), and Burnham and Anderson (2002:368).  

 

B.2 MULTIMODEL INFERENCE 

 

The development of the Akaike weights for model selection made possible the incursion into 

another area of data analysis: multimodel inference. Instead of only selecting a model with 

AIC, modelers use the best ranked models together to make inference. In practice, this is 

achieved by averaging model parameters. Burnham and Anderson (2002) experimented in 

ecology and wildlife models using the average procedure and highly recommend the method. 

In their experience, the predictions are better and the method considers the other good 

models in addition to just the best one. In the case that the best model is not the absolute 

winner with Akaike weights (w) bigger than 0.9, then model average could be carried out with 

help of these weights as follows:  
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where iŷ is the estimated result of each model i and ŷ  is the averaged estimated result, 
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where î  is the estimated parameter value of each model i and ˆ stands for the averaged 

estimated parameter.  

  

If the parameter is not present in all of the models, there are two possibilities to average it. 

Either we simply assume a value of zero when the parameter is absent, 0ˆ   in Equation 

90, or we just consider the models which include the parameter being averaged (Massmann 
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2004:16). Notice that for this last option, we have to recalculate the Akaike weights to also 

sum 1 for the subset of models considered (Poeter and Anderson 2005).  

 

However, Poeter and Anderson (2005) do not recommend parameter averaging in 

groundwater modeling; in their own words: “Parameter averaging is rarely useful for ground 

water modeling because use of an average parameter value in a particular model construct 

is not appropriate.” 

 

B.3 HILL AND TIEDEMAN’S (2007A) METHOD TO OBTAIN THE 
VALUE OF AIC FOR DIFFERENT TYPES OF OBSERVATIONS 

 

Hill (1998) implemented the AIC in hydrogeology to models calibrated with different kinds of 

observations. However, this procedure is not an easy task and severe implementation errors 

(discussed in Section 3.8) were made.  

 

AIC is given by Hill and Tiedeman (2007a:99) as  

 

2)'(')'(  NPbSbAIC  91 

 

where )'(' bS  is the maximum likelihood function and NP is the number of estimated 

parameters.  

 

Hill and Tiedeman’s (2007a:375) )'(' bS  is based on the normal distribution likelihood 

function found on Brockwell and Davis (1987:247). By assuming normally distributed 

residuals, multiplying this likelihood function by -2, and taking the natural logarithm of it, Hill 

and Tiedeman obtained the following maximum likelihood objective function: 
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where n is number of observations, | | is the determinant of a weight matrix with dimension 

[n x n], and e  is a vector of residuals of the form [y-y’] where y is an observation vector and 

y’ the simulated value vector. All vectors have a dimension equal to the number of observed 

values. 

 

Hill and Tiedeman (2007a:29) define the weight matrix such that the common error variance 

of the residuals equals one. Substituting the unit variance in Equation 92 causes the leading 
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term of the AIC Gaussian form )ˆln( 2n  to drop and the maximum likelihood function is 

simplified to: 

 

eeNPRNDbS T  ln)2ln()()'('  93 

 

where (ND+NPR) is the number of observations plus number of prior information. Prior 

information is another type of data or “observation,” for example a conductivity value. In this 

dissertation there is no distinction between them and both are treated as n = number of 

observed values.  

 

This objective function, adopted from Hill (1998) does not appear in any model selection 

criteria developed by other authors. Model selection criteria based on the maximum 

likelihood function usually have the same goodness of fit term: )ˆln( 2n , and the criteria 

differ just on the penalty term. Hill and Tiedeman’s book corrections (Hill and Tiedeman 

2007b) state that AIC, AICc, and BIC are more commonly calculated with Equation 94 below 

and not with Equation 93 above. 

 

  neenbS T /ln)'('   94 

 

where n stands for the number of observations plus number of prior information. 

 

Substituting 94 in 91 results in the accepted AIC formula (Equation 16, p. 13), whereas 

substituting 93 in 91 results in the AIC formula used by Hill and Tiedeman (2007a:29, 99)  
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where eeT  is the weighted Residual Sum of Squares, RSS. 

 

AIC does not provide an absolute value. The value is a relative value which only provides 

information when compared with AIC values of other candidate models. Therefore, we are 

not interested in the value itself and are able to drop constant terms. By dropping the terms 

which are invariable for all candidate models, we find the underlying equation which actually 

ranks the models of Hill and Tiedeman: 
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B.4 SYNTHETIC DATA 

 

The following data were obtained from the “data generating model” documented in Section 

4.2. It consists of three data sets, each of 100 observations. Hydraulic pressure (h) and 

conductivity (K) observations where observed once, since the flow model is steady state. The 

concentration observations were observed in selected boreholes every 28 days. 

 

Table 33:  Synthetic data: observed hydraulic pressure (h), hydraulic conductivity (K), and 

concentration  

Borehole 
nr. 

Coordinates 
h (m) K (m/s) 

Borehole 
nr. 

Time (s) 
Concentration 

(g/m
3
) X Y 

1 392.29 855.35 37.59 6.05E-04 1 2419200 3.04E-06 
2 223.81 744.65 37.53 1.80E-04 1 4838400 2.51E-05 
3 218.78 588.68 38.05 2.14E-04 1 7257600 5.72E-05 
4 148.37 523.27 37.16 9.44E-05 1 9676800 8.38E-05 
5 1002.36 224.89 36.89 1.49E-03 1 12100000 1.01E-04 
6 246.44 203.77 36.88 4.32E-03 1 14520000 1.10E-04 
7 402.35 334.59 37.44 2.99E-05 1 16930000 1.13E-04 
8 500.42 586.16 37.88 1.63E-04 1 19350000 1.13E-04 
9 628.67 548.43 37.36 1.57E-03 1 21770000 1.10E-04 

10 691.53 802.52 37.54 3.40E-04 1 24190000 1.05E-04 
11 606.04 228.93 36.83 2.03E-04 1 26610000 1.00E-04 
12 772.00 314.47 36.91 2.55E-04 1 29030000 9.42E-05 
13 955.57 314.47 37.11 2.50E-04 1 31449200 8.84E-05 
14 1020.96 561.01 37.07 2.33E-03 6 26610000 0 
15 1174.35 845.28 37.44 2.72E-04 6 29030000 1.74E-07 
16 1390.61 822.64 38.12 5.16E-04 6 31449200 4.73E-07 
17 1254.82 425.16 37.02 4.70E-05 8 31449200 0 
18 1352.89 193.71 36.82 1.95E-04 22 21770000 0 
19 1121.54 98.11 36.75 8.39E-04 22 24190000 2.94E-07 
20 123.00 847.24 37.66 2.43E-04 22 26610000 7.94E-07 
21 66.45 377.65 37.00 3.80E-03 22 29030000 1.75E-06 
22 234.68 437.06 37.07 6.96E-03 22 31449200 3.31E-06 
23 585.30 694.48 37.42 1.08E-02 23 31449200 0 
24 421.30 138.61 36.79 1.61E-03 40 16930000 4.45E-07 
25 600.85 379.07 37.07 5.28E-04 40 19350000 1.37E-06 
26 852.50 932.11 37.59 4.60E-05 40 21770000 3.19E-06 
27 916.12 792.08 37.40 8.21E-04 40 24190000 6.08E-06 
28 875.12 609.62 37.24 1.26E-03 40 26610000 9.97E-06 
29 1036.29 397.45 36.95 7.65E-03 40 29030000 1.46E-05 
30 1396.80 554.46 37.31 4.96E-05 40 31449200 1.96E-05 
31 1238.45 243.28 36.90 1.67E-03 41 14520000 4.94E-07 
32 333.65 241.87 37.18 2.30E-05 41 16930000 1.92E-06 
33 1229.97 848.66 38.39 3.62E-04 41 19350000 5.33E-06 
34 1187.56 613.86 37.72 6.60E-04 41 21770000 1.16E-05 
35 1401.04 438.47 37.57 6.37E-03 41 24190000 2.10E-05 
36 1104.15 377.65 37.40 2.32E-03 41 26610000 3.32E-05 
37 928.84 425.74 37.32 3.03E-04 41 29030000 4.75E-05 
38 926.01 212.16 36.99 2.45E-04 41 31449200 6.26E-05 
39 1080.11 275.81 37.02 3.35E-04 42 9676800 8.45E-07 
40 370.39 590.41 37.32 4.61E-03 42 12100000 4.36E-06 
41 342.75 623.62 37.32 5.79E-03 42 14520000 1.36E-05 
42 377.76 688.19 37.36 2.01E-03 42 16930000 3.05E-05 
43 460.69 656.83 37.39 2.64E-02 42 19350000 5.56E-05 



B.4 SYNTHETIC DATA  100 

   

44 416.46 619.93 37.36 2.39E-02 42 21770000 8.68E-05 
45 462.53 592.25 37.36 6.80E-03 42 24190000 1.22E-04 
46 383.29 433.58 37.18 1.26E-03 42 26610000 1.57E-04 
47 764.74 621.77 37.30 2.17E-03 42 29030000 1.90E-04 
48 571.25 898.52 37.58 2.50E-02 42 31449200 2.18E-04 
49 66.34 706.64 37.54 3.09E-04 43 21770000 2.62E-07 
50 73.71 73.80 36.81 1.19E-03 43 24190000 5.28E-07 
51 528.87 435.42 37.21 7.14E-04 43 26610000 8.83E-07 
52 221.13 278.60 36.98 1.04E-02 43 29030000 1.30E-06 
53 302.21 178.97 36.83 4.90E-03 43 31449200 1.74E-06 
54 427.52 282.29 36.97 2.89E-03 44 16930000 1.82E-07 
55 451.47 311.81 37.01 3.06E-03 44 19350000 5.83E-07 
56 545.45 46.13 36.68 3.84E-03 44 21770000 1.33E-06 
57 232.19 933.58 37.68 7.83E-04 44 24190000 2.46E-06 
58 473.59 881.92 37.58 6.20E-03 44 26610000 3.88E-06 
59 963.76 70.11 36.65 1.05E-03 44 29030000 5.49E-06 
60 136.36 190.04 36.90 7.01E-03 44 31449200 7.13E-06 
61 410.93 787.82 37.51 2.43E-04 45 31449200 1.34E-07 
62 316.95 793.36 37.59 4.55E-04 46 29030000 1.81E-07 
63 239.56 461.25 37.09 3.35E-03 46 31449200 3.35E-07 
64 574.94 147.60 36.74 2.03E-03 52 26610000 1.66E-07 
65 674.45 459.41 37.18 1.41E-04 52 29030000 4.78E-07 
66 164.00 619.93 37.37 3.74E-04 52 31449200 1.12E-06 
67 326.17 306.27 36.99 2.91E-03 58 31449200 0 
68 175.06 306.27 36.99 4.97E-03 61 2419200 1.28E-04 
69 228.50 92.25 36.78 4.88E-02 61 4838400 7.06E-04 
70 493.86 522.14 37.32 3.47E-03 61 7257600 1.29E-03 
71 816.34 848.71 38.99 3.86E-05 61 9676800 1.64E-03 
72 781.33 627.31 37.66 1.39E-04 61 12100000 1.78E-03 
73 961.92 695.57 37.86 2.27E-04 61 14520000 1.78E-03 
74 1087.22 610.70 37.70 6.94E-04 61 16930000 1.71E-03 
75 1085.38 466.79 37.48 2.90E-03 61 19350000 1.60E-03 
76 1247.54 396.68 37.49 4.03E-03 61 21770000 1.48E-03 
77 1310.20 278.60 37.42 1.32E-03 61 24190000 1.35E-03 
78 1315.73 178.97 37.28 2.07E-04 61 26610000 1.23E-03 
79 1435.50 88.56 37.09 8.87E-05 61 29030000 1.11E-03 
80 1083.54 62.73 36.85 7.54E-05 61 31449200 1.00E-03 
81 1190.42 60.89 36.84 4.30E-05 62 31449200 0 
82 1199.63 178.97 37.16 2.81E-04 63 24190000 2.27E-07 
83 1253.07 317.34 37.43 8.28E-04 63 26610000 6.15E-07 
84 1225.43 507.38 37.54 2.90E-03 63 29030000 1.37E-06 
85 1393.12 625.46 37.72 4.81E-03 63 31449200 2.60E-06 
86 1304.67 741.70 37.92 1.50E-03 67 31449200 0 
87 1136.98 793.36 38.16 5.16E-04 68 29030000 1.58E-07 
88 1177.52 905.90 38.73 4.39E-04 68 31449200 4.17E-07 
89 1374.69 922.51 38.71 2.45E-04 70 31449200 0 
90 1442.88 955.72 39.03 5.75E-05 92 31449200 1.67E-07 
91 528.87 387.45 37.55 1.29E-04 94 9676800 1.53E-07 
92 348.28 555.35 37.90 6.71E-04 94 12100000 2.74E-07 
93 263.51 732.47 38.80 3.41E-04 94 14520000 4.22E-07 
94 364.86 845.02 39.09 2.15E-04 94 16930000 5.90E-07 
95 125.31 915.13 39.27 6.28E-04 94 19350000 7.70E-07 
96 95.82 562.73 38.08 9.61E-05 94 21770000 9.55E-07 
97 119.78 287.82 37.42 4.24E-04 94 24190000 1.14E-06 
98 281.94 97.79 36.95 4.77E-05 94 26610000 1.31E-06 
99 504.91 123.62 36.79 9.08E-06 94 29030000 1.47E-06 

100 674.45 119.93 36.81 7.55E-05 94 31449200 1.61E-06 
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B.5 NORMALIZED SYNTHETIC DATA 

 

The following data consists of two data sets: hydraulic pressure (h) and conductivity (K). We 

consider the first 19 observations of the full synthetic data set of 100 observations provided 

in the previous section. The observed values are normalized by their observed standard 

deviation. In order to calculate the standard deviation, the values are first centered at zero.  

 

Table 34:  Normalized values of observed hydraulic pressure (h) and hydraulic conductivity (K)  

Borehole 
nr. 

Observed 
h (m) 

Centered 
at zero 

Normalized 
 by St.dev. (-) 

Observed 
 K (m/s) 

Log 
transformed 

Centered 
at zero 

Normalized by 
St.dev. (-) 

1 37.59 0.3 91.0772 6.05E-04 -3.2 0.3 -5.9546 

2 37.53 0.3 90.9326 1.80E-04 -3.7 -0.3 -6.9285 

3 38.05 0.8 92.1780 2.14E-04 -3.7 -0.2 -6.7890 

4 37.16 -0.1 90.0374 9.44E-05 -4.0 -0.6 -7.4469 

5 36.89 -0.4 89.3687 1.49E-03 -2.8 0.6 -5.2297 

6 36.88 -0.4 89.3363 4.32E-03 -2.4 1.1 -4.3756 

7 37.44 0.2 90.6930 2.99E-05 -4.5 -1.1 -8.3722 

8 37.88 0.6 91.7661 1.63E-04 -3.8 -0.3 -7.0068 

9 37.36 0.1 90.5094 1.57E-03 -2.8 0.7 -5.1888 

10 37.54 0.3 90.9514 3.40E-04 -3.5 0.0 -6.4182 

11 36.83 -0.5 89.2340 2.03E-04 -3.7 -0.2 -6.8317 

12 36.91 -0.4 89.4194 2.55E-04 -3.6 -0.1 -6.6475 

13 37.11 -0.2 89.9169 2.50E-04 -3.6 -0.1 -6.6633 

14 37.07 -0.2 89.8154 2.33E-03 -2.6 0.8 -4.8721 

15 37.44 0.2 90.6981 2.72E-04 -3.6 -0.1 -6.5957 

16 38.12 0.8 92.3451 5.16E-04 -3.3 0.2 -6.0821 

17 37.02 -0.3 89.6778 4.70E-05 -4.3 -0.9 -8.0072 

18 36.82 -0.5 89.1918 1.95E-04 -3.7 -0.2 -6.8623 

19 36.75 -0.5 89.0371 8.39E-04 -3.1 0.4 -5.6918 

Mean 37.28 0.0   -3.5 0.0  

St.dev.  0.41    0.54  
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