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Abstract. Of key importance for metamodelling are appropriate mod-
elling formalisms. Most metamodelling languages permit the develop-
ment of metamodels that specify tree-structured models enriched with
semantics like constraints, references and operations, which extend the
models to graphs. However, often the semantics of these semantic con-
structs is not part of the metamodel, i.e., it is unspeci�ed. Therefore, we
propose to reuse well-known compiler construction techniques to specify
metamodel semantics. To be more precise, we present the application
of reference attribute grammars (RAGs) for metamodel semantics and
analyse commonalities and di�erences. Our focus is to pave the way for
such a combination, by exemplifying why and how the metamodelling
and attribute grammar (AG) world can be combined and by investi-
gating a concrete example � the combination of the Eclipse Modelling
Framework (EMF) and JastAdd, an AG evaluator generator.

1 Motivation

Modelling has always been a key activity in software engineering [26]. Abstract-
ing from the real world (i.e., extracting a representation of a domain's elements
and their relationships) to become able to reason about it is a basis for success-
ful software development. A common understanding � i.e. metamodel � is a
necessity to be able to reason about information provided by a third party, to
manipulate it and to support it for others. That is why metamodels are impor-
tant. They specify a common interpretation of their model instances and permit
the integration of tools based on a common repository. To achieve such an unique
understanding of models, a metamodel's speci�cation must be complete with re-
spect to the question if some input is a model and, if it is, how the model looks
like1. Otherwise, tools sharing the same metamodel can hardly cooperate, since
each tool may interpret model instances di�erently.

1 It is important to acknowledge, that only the speci�cations of metamodels must be
complete. The actual algorithms implementing a metamodel's speci�cation, i.e., how
to recognize model instances and how models are (physically) represented, do not
have to be part of it.



If we consider metamodels used in practice, a problem becomes obvious. As
will be shown in Section 2.1, most metamodelling languages support the spec-
i�cation of an abstract syntax underlying each model instance � a spanning
tree � which is enriched with semantic constructs like constraints, references
and operations, that impose a graph on top of it. Unfortunately, it is impossible
in most metamodeling languages to develop metamodels that not only specify
each model's spanning tree and declare the existence of a graph, but also spec-
ify the graph's shape. Thus, semantic constructs like constraints, references and
operations are often not de�ned, but rather only declared. Consequently, even if
tools based on such a metamodel agree on how to interpret a model's context-
free structure, the interpretation of its embedded semantics may disagree. Such
metamodels only specify syntax enriched with semantic interfaces and lack for-
mal semantics. For example, consider a declared reference of a certain type. The
metamodel developer might have speci�c visibility restrictions for the reference
in mind, but he cannot specify them within the metamodel. Consequently, each
of the cooperating tools has to implement its own well-formedness checks or
name resolution algorithms. As a more concrete example, consider the EMF's
Uni�ed Modelling Language (UML) metamodel [8] which speci�es the existence
of types, but does not specify (i.e., include) the resolution of type references.
Assume a refactoring tool is used to change the type of an entity. Since another
tool based on the same metamodel may perform a di�erent type resolution, the
refactoring tool's changes may obtain a completely di�erent meaning. Similar
problems occur for operations which are declared, but whose functionality can-
not be speci�ed within the metamodel.

How to best represent semantics in metamodels and to what extent this is
feasible is still an open issue. For now, it is important to acknowledge that at
some point semantics must be speci�ed regardless of whether semantics is part
of metamodels or is tool dependent. And it would be very pleasant, if metamodel
semantics can be speci�ed using a formalism.

In the remainder of this paper we investigate the application of the well known
AG formalism [17,18], extended by reference attributes [14], for the speci�cation
of metamodel semantics with respect to practical issues. The next section shortly
introduces metamodels and AGs. Both are related to each other to clarify why
AGs are appropriate to specify metamodel semantics. Afterwards, a concrete
prototype integration is presented: The adaptation of JastAdd AG evaluators to
the EMF. Encountered problems are explained and general issues of the concept
are highlighted. A section about related work follows. Finally, a summary and
outlook conclude the paper.

2 Metamodels and Attribute Grammars

AGs are a well-known formalism to specify semantics for context-free languages.
If we like to specify metamodel semantics using AGs, metamodels must implicitly
specify context-free structures, i.e. a spanning tree for each model instance. We
think, that this is the case and, that consequently RAGs are an appropriate



formalism to specify metamodel semantics. In the rest of this section these claims
are substantiated. Since no �consolidated body of knowledge� about the design of
models, metamodeling languages and the application of model driven techniques
exists yet [26], we investigate a representative metamodelling language � the
Essential MOF (EMOF) [11] � to exemplify, that model instances satisfying a
metamodel M developed in a common metamodelling language indeed have a
spanning tree implicitly speci�ed by M . Based on that observation we introduce
AGs and their application for metamodel semantics.

2.1 Metamodelling Languages

In this section, we �rst discuss general concepts of metamodelling languages. Af-
terwards, a distinction between metamodels' syntactic and semantic constructs
is made based on the general concepts' characteristics. Finally, we show thir
application in EMOF.

General Metamodelling Language Concepts

In the domain of metamodelling languages certain concepts � thus, meta-meta-
model constructs and their relationships � are common. Most metamodelling
languages support a tailorable, nameable basic construct used to model arbi-
trary domain concepts2. The tailoring of such a basic construct CM , to repre-
sent a certain domain concept CD and its intrinsic and extrinsic values3, is often
achieved using nameable property constructs associated with CM , whereas each
value of CD is represented by one property. To specify a property's co-domain,
metamodelling languages support the concept of types. Each type represents a
certain co-domain and most metamodelling languages have a common set of ba-
sic types like integers, �oating point numbers, strings and enumerations. Domain
concepts, i.e., basic constructs and their properties, are also types, since they
abstract from (possibly in�nite) sets of distinct entities. To permit the compu-
tation of several extrinsic values in one step, the explicit computation of context
information and model manipulations, many metamodelling languages support a
typed operation construct. Using typed properties, relationships between domain
concepts can be modeled. To model a directed relationship between a domain
concept C1 and C2, a property of type C2 associated with C1 can be used. Alter-
natively, some metamodelling languages have an association construct to model
relationships more explicitly. Anyway, most metamodelling languages support
one special relationship between domain concepts � the composition. If entities
of a domain concept C1 consist of entities of a domain concept C2, such that
the C2 entities become an inextricable part of the C1 entities, the relationship
between C1 and C2 is a composition.

2 domain concept = concept of the domain for which a metamodel is developed
3 An extrinsic value depends on the concrete relationships and values of properties its
associated entity has � it depends on its context.



Model Syntax and Semantic

An important observation is that i� an entity E1 is a composite of an entity E2,
E2 cannot be a composite of E1. Thus, the graph of any valid model instance's
composition relationships must be a tree4. This does not imply that metamod-
els' composition relationships must be acyclic. The correlation between the tree
shape of model instances and the graph shape of their metamodels is analoug to
the one between a concrete word derivable from a context-free grammar (CFG)
and the grammar itself. The word's structure is a tree, even if the dependency
relationship between the grammar's non-terminals can be an arbitrary graph.
In addition, the generalisation concept supported by most metamodelling lan-
guages does not contradict this observation � a metamodel's composite rela-
tionships specify a spanning tree for its model instances5. Contrary, metamodels'
non-composite relationships only declare the existence of relationships between
domain concepts, but do not specify them. This means, although models have
a spanning tree containing all entities, a non-composite relationship R between
two domain concepts C1 and C2 still does not specify with which concrete entity
E2 ∈ C2 R associates an entity E1 ∈ C1. Non-composite relationships can de-
pend on any known model instance information, in the simplest case just intrinsic
property values like ids up to complicated context dependencies � computable
based on the model's spanning tree � or a combination thereof. With respect to
the section's introduction � that the reasoning about a model instance's struc-
ture is its semantics � non-composite relationships represent model semantics.
Since metamodels do not de�ne non-composite relationships' semantics, they
are only semantic interfaces. In addition, extrinsic values and operations are
semantic interfaces, since their context dependencies and manipulations are not
speci�ed within metamodels too.

In consequence, we say that most metamodelling languages only permit the
declaration of extrinsic values, non-composite relationships and operations, but
do not support their de�nition. They have no method to specify such constructs'
value and behaviour � they do not support their speci�cation. Therefore, we
regard metamodels' basic constructs (representing domain concepts), compos-
ite relationships and intrinsic values as syntax and their extrinsic values, non-
composite relationships and operations as semantic.

4 To be precise, the graph of any valid model instance's composition relationships
must be acyclic. It is still possible, that an entity EC is a composite of two distinct
other entities E1, E2. E.g., a door is part of two rooms. However, in such cases the
entity can be considered to be the composite of just one of the entities E1 or E2

and have an ordinary relationship, resolved by its semantics, with the other one. It
is only important, that the overall structure, the model's semantics are based on, is
well-de�ned.

5 Since most metamodelling languages L are speci�ed using a metamodel M ∈ L �
a meta-metamodel � like CFGs are speci�ed using a CFG, also metamodels have a
spanning tree. Thus, our presented approach is feasible to specify the semantics of
metamodelling languages.



Fig. 1. EMOF core constructs [11]

EMOF as Example Metamodelling Language

Figure 1 illustrates the concepts introduced above using EMOF's speci�cation
� its meta-metamodel. The basic construct used to model domain concepts is
called Class and properties simply Property. The relationship between Class

and Property is a composition and the properties of a certain domain concept
are its owned attributes. In a similar way, operations are modeled. Properties
can model intrinsic and extrinsic values, depending on their isDerived value.
They are also used to model relationships � called associations � in which
case they can be a composite depending on their isComposite value. Finally
yet importantly, a special superClass association of Class is used to model
generalization.

2.2 Attribute Grammars

AGs are a form of two level grammar [17,4,19], i.e., they specify semantics on
top of context-free structures. Usually, their basic context-free structures are
abstract syntax trees (ASTs), which are speci�ed using some kind of CFG. To
reason about CFGs synthesized and inherited attributes are associated with
non-terminal symbols. A synthesized attribute represents an information �ow
upwards the syntax tree. Thus, a synthesized attribute's equation � i.e., the
speci�cation how to compute it � can depend on any information given in



the (sub-) tree the node the attribute is associated with spans. Analogously,
an inherited attribute's equation represents an information �ow downwards the
syntax tree. Using synthesized and inherited attributes context information can
be freely distributed and combined across the AST. Hence, AGs provide an
elegant formalism to specify semantics of context-free languages.

However, the basic formalism as introduced by Knuth [17,18] does not provide
su�cient concepts to be applicable for object-oriented structures. Therefore,
several AG extensions were developed. In [13], attribute grammars are applied
to object-oriented ASTs supporting generalization, which is also a key concept of
metamodelling languages. Additionally, reference attributes (RAGs, [14]) allow
direct information �ows between remotely located AST nodes and can be used
to easily specify an arbitrarily structured abstract syntax graph (ASG) on top
of the AST. Finally, circular attributes [7] ease the speci�cation of complicated
semantic computations.

Besides being declarative, AGs have a very good tool support. Broad ranges
of compiler construction environments use RAGs to implement their semantics.
Furthermore, many AG tools permit the separation of semantic concerns (e.g.,
type analysis or data �ow analysis) as well as semantic extensibility [5]. A very
convenient characteristic of AGs is that speci�cations can be checked for con-
sistency and completeness, i.e., static checks if semantics is well de�ned for any
AST. Finally yet importantly, AGs are well understood, investigated for a long
time and still have an active research community.

2.3 Unifying Metamodels and Attribute Grammars

Using RAGs for Metamodel Semantics

Considering the last two sections about metamodelling languages and RAGs,
a concept how to apply RAGs to specify metamodel semantics becomes obvious.
If a metamodel M is modelled as described in Section 2.1, M separates all its
model instances Mi into two parts: A context-free tree structure S, speci�ed by
M 's composite relationships, and a declared, but not de�ned, graph structure im-
posed on top of S, given by M 's derived properties, non-composite relationships
and operations. Each Mi's imposed graph structure represents its semantics. If
one likes to specify semantics for all possible model instance Mi using an object-
oriented RAG, M 's composite relationships can be used to derive an appropriate
AST speci�cation for the RAG � i.e. a speci�cation that accepts any Mi's S.
Additionally, each of M 's derived properties, non-composite relationships and
operations must be de�ned by the RAG. This can be achieved by representing
each derived property by an attribute of equal type, each non-composite rela-
tionship by a reference attribute of equal destination type and each operation by
a parameterised attribute with equal signature, whereas each of these attributes
is associated with the AST node type representing the concept they are associ-
ated with in M . The desired metamodel semantics (i.e. each model instance's
semantic) is now the ASG the RAG implies on top of each Mi's S.



Using RAGs for Graph-Shaped Models' Semantic

By applying RAGs to metamodels, we argue that one can go beyond this strict
separation between the context-free and imposed graph structure by also consid-
ering graphs, with unique spanning trees, as possible starting points for attribute
evaluations. The only condition beside the spanning tree is, that nodes of the
same type always have the same set of reference types. Edges in such an input
graph, that are not part of its spanning tree, can be considered as reference
attributes with a prede�ned value and destination type. As presented before,
EMOF metamodels specify unique spanning trees for their model instances and
non-containment references are typed and associated with a Class. Thus, any
EMOF metamodel satis�es the mentioned conditions. In fact, to have graphs as
input for semantic evaluations is rather common, since the EMF provides a set
of standard reference resolution algorithms, e.g. to resolve the reference values
of models serialized as XML �les.

A Methodology for Metamodel Development Waiting in the Wings

The presented approach is not only theoretically backed and technically and
practically convenient but also provides a kind of methodology how to develop
metamodels with semantics. Its key concept is to separate a metamodel into its
context-free parts and its semantics. In a �rst step, it has to be clari�ed how
entities' syntax looks like. In a second step, the semantics of simple relationships
has to be developed, such that models' basic reference graph is well-de�ned.
References permit the distribution of information known to one model entity to
arbitrary other entities and consequently ease the speci�cation of complicated
model semantics. Finally, the desired metamodel semantics can be speci�ed,
reusing the imposed reference graph.

3 Example Metamodel and Attribute Grammar

Integration

In this section, we discuss the integration of metamodelling and attribute gram-
mar technology by the example of the EMF and the JastAdd meta-compiler. The
�rst two subsections brie�y introduce the features of both tools that are impor-
tant for their integration. Afterwards, the integration approach is described and
a mapping between EMF features and JastAdd features is presented. Further-
more, we analyse arising con�icts, which we distinguish in groups of structural
or behavioural.

3.1 The Eclipse Modelling Framework

The EMF is a common modelling framework for Java. Its core language Ecore
roughly corresponds to EMOF and supports the development of metamodels



by graphical editing in a UML class diagram like notation. Essentially, Ecore-
based metamodels de�ne the abstract syntax of a language. Like EMOF, the
language does not provide �rst class language constructs to specify semantics.
Consequently, the most common way to implement the semantics of Ecore mod-
els is adding Java code to the generated metamodel classes or encode it in the
applications relying on the metamodel. To address this problem, several tools,
mostly not based on a well-known semantic formalism like AGs, have emerged.
We compare some of these tools to our approach in Section 4.

In comparison to EMOF, Ecore has some advantages that ease its exten-
sion with AG features and its integration with JastAdd. First, it is not only a
standard, at least for Java the EMF provides intuitive code generation facilities.
Metamodel classes (EClass) are generated as Java interfaces and Java imple-
mentation classes. Their properties become class attributes that can be accessed
via getter and setter methods and packages (EPackage) become Java packages.
A further important advantage over EMOF is a more sophisticated distinction
between attributes (EAttribute) and references (EReference). References can
additionally be classi�ed as containments, de�ning context-free structure, or
non-containments, de�ning graph structure. To reduce confusion of ideas we
refer to Ecore attributes as properties for the rest of this section.

3.2 The JastAdd Metacompiler

JastAdd [1,6] is an object-oriented, AG-based system to specify language tooling
reaching from type and �ow analyses to whole compiler frontends. It allows gen-
erating demand-driven Java AG evaluators. Besides the basic attribute grammar
concepts, JastAdd supports advanced concepts such as reference and circular at-
tributes.

A JastAdd speci�cation consists of several modules. The abstract syntax of
the target language is speci�ed by an AST speci�cation that consists of a list of
node types (non-terminals) and a list of child nodes (terminals or non-terminals)
for each of them. In the following a small example AST speci�cation is given
wich de�nes the abstract syntax of simple addition expressions. It contains an
abstract node type Expression and two concrete realisations. Addition has
two expression children and expectedly represents binary arithmetic additions.
A Constant declares two terminals de�ning its type (which may be Real or Int)
and value (which may be a real or integer value).

abstract Express ion ;
Addit ion : Express ion : := Op1 : Express ion Op2 : Express ion ;
Constant : Express ion : := <ConstValue : Value> <ConstType : Type>;

Semantics is usually speci�ed within several modules containing attribute
de�nitions and attribute equations, which are associated with node types in the
AST speci�cation. In the following, we specify a type analysis and evaluation
methods for the addition language above. Two synthesised attributes Type and
Value for the Expression non-terminal are declared using the keyword syn.
Since Expression is abstract, we only specify the corresponding equations for



both of the concrete node types using the keyword eq. For Constants, we just
need to pass the corresponding terminal values to the attributes. The type of
Additions depends on their operands' types. If both of them are of type Int

the Addition's type is also de�ned as Int, otherwise it is de�ned as Real. For
value computation, an appropriate sum implementation is selected depending
on the value of the Type attribute.

syn Type Express ion . Type ( ) ;
eq Constant . Type ( ) = getConstType ( ) ;
eq Addition . Type ( ) = ( getOp1 ( ) . Type()==Real | | getOp2 ( ) . Type()==Real )?

Real : Int ;
syn Value Express ion . Value ( ) ;
eq Constant . Value ( ) = getConstValue ( ) ;
eq Addition . Value ( ) = Type()==Real ?

Real . sum( getOp1 ( ) . Value ( ) , getOp2 ( ) . Value ( ) ) :
Int . sum( getOp1 ( ) . Value ( ) , getOp2 ( ) . Value ( ) ) ;

The JastAdd metacompiler generates a Java class for each node type and
a method for each attribute within the class generated for the node type the
attribute is associated with. The method body contains the code evaluating the
attribute. Consequently, the generated AST classes are the AG evaluator.

3.3 Bridging the Gap

Considering the code generated for EMF-based metamodels and JastAdd spec-
i�cations with respect to Section 2, an intuitive integration of semantics into
EMF metamodels becomes evident. Assume, one uses JastAdd to implement
the semantics of a metamodel. In such a case, the metamodel's node types (the
EClasses) correspond to the classes generated for the AST speci�cation, i.e.,
both have to share the same context-free structure. Furthermore, the semantics
associated with non-containment references6, derived properties and operations
correspond to inherited and synthesized attributes of the AG. More precisely,
each derived property's non-containment reference's or operation's EMF method
corresponds to a method of the generated evaluator and as its implementation
the one generated by JastAdd can be used.

Table 2 shows the proposed mapping of features for the integration of JastAdd
with EMF metamodels while Figure 2 presents an example scenario for the well-
known domain of a nested, block structured language and its name analysis
semantics. Obviously, many AG features have one or more correspondences in the
Ecore language such that an integration of both tools seems feasible. However,
some features of EMF do not have a direct correspondence in the AG formalism.
There is no direct correspondence for opposite references and the resolution of
proxy objects. Opposite references are used to de�ne pairs of references between
EClasses as a kind of navigable bidirectional association. Although there is no
similar language construct in JastAdd, the AG can be used easily to specify
similar behaviour. The same holds for the proxy object resolution algorithm,
which resolves external resources on demand: It would be easy to specify a non
terminal attribute that loads a resource on demand since JastAdd's generated

6 non-containment references in Ecore = non-composite references of section 2



JastAdd AG

features

EMF Ecore features General

Metamodelling

Language Concepts

AST node types EClasses Concepts

AST terminal children EClass properties Intrinsic values

AST non-terminal children EClass containment references Composite relationships

Synthesized attributes EClass derived properties Extrinsic values

EClass operations Operations

Inherited attributes EClass derived properties Extrinsic values

EClass operations Operations

Collection attributes EClass derived properties* Extrinsic values

EClass non-containment references* Non-composite relationships

Reference attributes EClass non-containment references Non-composite relationships

No matching AG formalism

Can be simulated Opposite references Non-composite relationships

Can be simulated Proxy objects -

- Dynamic EMF -

Table 2. Proposed bidirectional mapping between JastAdd and EMF Ecore features
w.r.t. the general metamodelling language concepts presented in Section 2.1. * means
the feature has a cardinality greater one.

evaluators themselves are demand-driven. The only EMF feature that cannot
be handled appropriately by JastAdd is its ability to dynamically instantiate
metamodels without generating code (Dynamic EMF [27]).

Based on the mapping proposal, we implemented JastEMF - a tool that
adapts JastAdd for EMF by merging the classes generated by both tools7. Fig-
ure 3 gives an overview of our tool's integration approach. The process starts
from the JastAdd and Ecore input speci�cations designed w.r.t. Table 2. Thus,
the AST de�ned by containment references in Ecore and the AST speci�ed
in JastAdd must be equal and the semantics of non-containments, operations
and derived properties have to be speci�ed by attributes and their equations in
JastAdd. Code generation is controlled by JastEMF, which triggers the execu-
tion of EMF and JastAdd generating a class hierarchy according to the Ecore
metamodel and the speci�ed AST. To integrate both hierarchies we prepare the
JastAdd classes to work with the EMF repository and merge the hierarchies
using the EMF merge tool. The adaptation becomes necessary because of struc-
tural and behavioural con�icts and is implemented by automated refactoring
operations (using Eclipse refactorings) and aspect weaving (using AspectJ [16]).
These and other more complex con�icts that we discovered will be discussed in
the next section.

7 http://www.jastemf.org



Fig. 2. JastAdd speci�cation for an Ecore metamodel's name analysis semantics includ-
ing the example of Section 3.2. Besides the concepts of the example, the metamodel on
the right declares two additional semantic concepts: A non-composite relationship be-
tween Reference and Declaration and a LookUp(EString) operation associated with
ASTNode. The speci�cations on the left de�ne the semantic components using synthe-
sised and inherited attributes.

3.4 Integration Con�icts

Even if the integration presented above is promising, several problems arise. We
distinguish minor structural con�icts, complex behavioural, and usage con�icts.
Minor structural con�icts are mainly caused by repairable API mismatches be-
tween the respective tools and concepts that are not explicitly included in one
of the speci�cation languages. Behavioural and usage con�icts stem from di�er-
ences between the purposes of AGs and metamodels. In the following, we discuss
both con�ict groups and sketch our solutions.

Minor Structural Con�icts

� EClass properties with cardinality > 1 cannot be modeled in JastAdd's AST
speci�cation language. However, JastAdd terminals can have any valid Java
type even collections. Since in EMF a special type is used to represent
collection properties (the EList) an adaptation is necessary.

� ELists in EMF also represent containment references with cardinality >
1, whereas JastAdd has its own type to represent unbounded repetitions
(Kleene closures). Hence, JastAdd's lists must be adapted to EList. Addi-



Fig. 3. JastEMF adaptation and integration process

tionally, bounded repetitions are not supported in JastAdd, though its lists
can represent them.

� A non-null wrapper object (Opt) in JastAdd internally represents optional
containment references. To adapt optional AST children, the merged classes
have to access the wrapped object transparently8.

� EMF allows modelling multiple inheritance while JastAdd does not. How-
ever, since Java does not support multiple inheritance, it is reduced to single
inheritance and multiple interface inheritance. Since JastAdd supports inter-
type declarations, it is no problem for an adaptation to extend AST classes
with certain interfaces.

� All JastAdd nodes share a common supertype (ASTNode) which is generated
separately for each AG evaluator. In EMF, all generated metamodel classes
are of type EObject. To adapt the AST classes to EMF, it is su�cient to
declare EObject as supertype of ASTNode.

� Metamodels in EMF can be arranged in packages (EPackage) which are re-
�ected as Java packages in the generated class hierarchy. Since JastAdd does
not support packages, refactorings become necessary to move the evaluator
classes into the packages speci�ed in the metamodel,.

Behavioural and Usage Con�icts

The main purpose of AGs in general is compiler construction for textual lan-
guages. Thus, AG evaluators expect complete input information, i.e., ASTs are
complete and no interactive changes are expected. In contrast, metamodels have
multiple use cases ranging from interactive graphical languages over domain spe-
ci�c languages and model transformations to editors and compilers for textual
languages. Thus, some applications change models interactively with potentially

8 The problem does not occur for optional properties and references.



incomplete or invalid intermediate states while others also expect complete mod-
els as an input. As a result, even if for many use cases the adapted JastAdd can
immediately be applied to specify EMF-based metamodels semantics, interactive
EMF applications require additional adaptations, e.g.:

� To support graphical editing with di�erent views, models need to report
changes to registered applications by emitting noti�cation messages. JastEMF
guarantees this behavior by weaving a noti�cation aspect around the Jas-
tAdd methods for AST manipulations.

� Imperative attribute changes have to be supported, so the user can specify
an attribute's value interactively. However, it has to be considered that im-
perative changes shadow attribute equations and may lead to inconsistent
semantics. Especially, if attribute caching and the switching from automatic
JastAdd evaluation to imperative speci�ed values and back are considered,
the necessary adaptations become complicated. In our current implemen-
tation we generate a simple Boolean �ag for each attribute, that signals
whether the attribute has to be computed by its equation or the user imper-
atively speci�ed a value. An aspect guarantees, that always the attribute is
accessed and the �ag signals its value is given by the user, the given value is
returned instead executing the attribute's equation. As soon as an attribute
is imperatively speci�ed, all attribute caches are cleared, to ensure correct
values for attributes depending on it.

As an essence of the last two sections, the RAG approach seems compatible with
metamodelling languages as long as the use case is similar. However, if the latter
is not the case, behavioural con�icts reside on a conceptual level. There is a
need for advanced attribute grammar tools that can cope with interactive usage
scenarios. An e�cient propagation of manual changes with respect to the AG,
as presented in [23,20], is needed. Inconsistent intermediate states throughout
interactive modelling activities have to be considered by the AG evaluator used
to compute a model's semantic.

4 Related Work

Textual concrete syntax mapping tools like EMFText [15] combine existing
parser generator technology with metamodelling technology [10]. They enable
users to generate powerful text editors including features such as code completion
and pretty printing. However, static semantics and code analysis still needs to
be created manually. Consequently, such tools could immediately pro�t from our
integration approach.

The Object Constraint Language (OCL) [12] is a standardised functional
programming language for the speci�cation of constraints, such as invariants
and pre and post conditions, over UML artifacts. The EMF also provides an
implementation for Ecore that is often used for the purpose of model validation



or to impose additional requirements on metamodels. In comparison to AGs,
OCL is only convenient to de�ne constraints that check for context-sensitive
well fromedness based on certain values while AGs are additionally convenient
to specify how such values can be computed. I.e. AGs do not only have a con-
straining character, but also a generative one.

Kermeta [21] provides an integrated environment for domain speci�c modeling
language development based on the EMF. A language in Kermeta is developed
by specifying its abstract syntax with an EMOF metamodel and static seman-
tics with OCL constraints. Execution semantics can be implemented using a
new imperative programming language. Abstract syntax, static semantics and
execution semantics are developed in modules that can be combined using Ker-
meta's aspect language. The modularization concept supported by Kermeta's
aspect language seems very similar to the aspect concept of JastAdd: They both
support the separation of crosscutting semantic concerns. Additionally, Kermeta
and JastEMF projects immediately bene�t from EMF tooling in Eclipse.

However, we are sceptical about the Kermeta developers decision to design
a new imperative programming language for execution semantics. Besides the
additional e�ort for users to learn it, the vital question how well such programs
can interact with other Java applications and can be integrated in heterogeneous
project environments remains. We believe that the JastAdd developers decision
to seamless integrate it with Java is very convenient, since users can switch to
ordinary Java code at any time. Furthermore, we see no advantage of the inter-
action9 between static semantics speci�ed using OCL and imperative operations
over static semantics which is speci�ed using JastAdd and execution semantics
speci�ed by Java operations. Quite contrary, we believe that many execution
semantic related problems occurring in the metamodelling world can be solved
using JastAdd's rewrite capabilities10.

The FUJABA approach [22] integrates UML class diagrams and graph
rewriting to specify semantics of class operations. It provides story driven mod-

eling as a visual language to de�ne rewrite rules, which can be compared to
UML activity diagrams. MOFLON [2] adapts FUJABA to support the Meta
Object Faclility (MOF) as a modelling language. In general, graph-rewriting
systems are harder to understand than AGs. Given a set of rewrite rules, it is
complicated to foresee all possible consequences w.r.t. their application on start
graphs. Rewriting results usually depend on the order of rule applications. To
solve this problem, it is necessary to ensure that the rewrite system is con�uent,
which implies a lot of additional e�ort, not only for the proof of con�uence, but
also for the design of appropriate strati�cation rules. On the other hand, AGs

9 Interaction here means that the computation of static semantics is initiated by exe-
cution semantics on demand.

10 We speci�ed a simple functional programming language in JastAdd, that supports
Boolean, integer and vector arithmetic, control �ow expressions, lexical scope and
function closures and whose execution semantics is based on rewrites.



require a basic context-free structure or a spanning tree they are de�ned on
whereas graph rewriting does not rely on such assumptions. Furthermore, RAGs
can only add information to an AST but not remove them or even change its
structure. However, there are AG concepts such as higher order attributes [28]
(non-terminal attributes in JastAdd) and rewrite rules which improve in that
direction.

Abstract State Machines and MOF. In [9], a framework for behavioural
semantics of MOF-based languages is proposed. The approach is based on the
Abstract State Machine (ASM) formalism which is mapped to the MOF. In
contrast to our approach, the metamodelling language is extended. Furthermore,
the approach has its focus on execution semantics and considers weaving of
operations. On the contrary, JastEMF is better suited for static semantics and
supports not only the speci�cation of operations' semantics, but also of derived
properties' and non-containment references' semantics. Similar to AGs, the ASM
approach is theoretically backed and has been applied in multiple practical use
cases [3].

Incremental AGs. The idea to apply AGs in interactive scenarios is not a new
one. Especially for the development of interactive editors � as common in IDEs
� incremental AG evaluation concepts have been investigated, which reduce the
recomputation overhead in the presence of frequent context information changes
[23,20]. Further developments in that direction for JastAdd also look promising,
as shown by refactoring extensions for the extensible JastAddJ compiler [24,25].
Nevertheless, the support of interactive AST and attribute value changes, such
that depending attributes are automatically updated, is still an open issue in
JastAdd.

5 Conclusion and Outlook

In this paper, we discussed and motivated the integration of metamodelling ap-
proaches and attribute grammars to allow for the speci�cation of metamodel
semantics using a technique that is grounded in compiler theory. We showed in
Section 2 that common metamodelling languages de�ne a spanning tree for each
model instance and how � based on that observation � RAGs can be used to
specify metamodel semantics. Afterwards, we sketched a concrete integration for
the JastAdd metacompiler and the Eclipse modelling Framework for which a pro-
totype implementation exists. We believe that the presented overview supports
research in either direction � a formalised mapping between metamodel se-
mantics and RAGs or concrete tool implementations and example integrations.
However, further e�ort with respect to interactive, incomplete or contracting
user inputs is essential to establish the presented approach in interactive usage
scenarios.
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