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1 Introduction

1 Introduction

For many years computing the stem base has been the default method
for extracting a small but complete set of implications from a formal
context. There exist mainly two algorithms to achieve this [4, 8] and
both of them compute not only the implications from the stem base,
but also concept intents. This is problematic as a context may have
exponentially many concept intents. Recent theoretical results suggest
that existing approaches at computing the stem base may not lead to
algorithms with better worst-case complexity [3, 1].
Proper premises provide another approach for obtaining an implica-

tional base of a formal context. Because this set of implications does not
have minimal cardinality, proper premises have been outside the focus of
the FCA community for many years. However, there are substantial argu-
ments to reconsider using them. Existing methods for computing proper
premises avoid computing concept intents. Thus, in contexts with many
concept intents they may have a clear advantage in runtime over the stem
base algorithms.
We want to be able to make a prognosis whether we can expect stem

base algorithms or proper premises algorithms to perform better on con-
text of a given size. Therefore, it is interesting to know what number in
intents and what number of proper premises one can expect in a formal
context. We make no further assumptions about this formal context, in-
stead we assume that it is chosen uniformly at random among all formal
contexts of a given size.
Knowing the expected behaviour is also useful when conducting experi-

ments such as in [2]. They allow us to compare the theoretically expected
behaviour to experimental results.

2 Preliminaries

We provide a short summary of the most common definitions in formal
concept analysis. A formal context is a triple K = (G,M, I) where G
is a set of objects, M a set of attributes, and I ⊆ G ×M is a relation
that expresses whether an object g ∈ G has an attribute m ∈ M . If
A ⊆ G is a set of objects then A′ denotes the set of all attributes that
are shared among all objects in A, i.e. A′ = {m ∈ M | ∀g ∈ G : gIm }.
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Likewise, for some set B ⊆ M we define B′ = { g ∈ G | ∀m ∈ B : gIm }.
Pairs of the form (A,B) where A′ = B and B′ = A are called formal
concepts. Formal concepts of the form ({m }′, {m }′′) for some attribute
m ∈ M are called attribute concept and are denoted by µm. We define
the partial order ≤ on the set of all formal concepts of a context to be
the subset order on the first component. The first component of a formal
concept is called the concept extent while the second component is called
the concept intent.
Formal Concept Analysis provides methods to mine implicational knowl-

edge from formal contexts. An implication is a pair (B1, B2) where
B1, B2 ⊆ M , usually denoted by B1 → B2. We say that the implica-
tion B1 → B2 holds in a context K if B′1 ⊆ B′2. An implication B1 → B2

follows from a set of implications L if for every context K in which all
implications from L hold B1 → B2 also holds. We say that L is sound
for K if all implications from L hold in K, and we say that L is complete
for K if all implications that hold in K follow from L. There exists a
sound and complete set of implications for each context which has mini-
mal cardinality [6]. This is called the stem base. The exact definition of
the stem base is outside the scope of this work.
A sound and complete set of implications can also be obtained using

proper premises. For a given set of attributes B ⊆M we define B• to be
the set of those attributes in M \ B that follow from B but not from a
strict subset of B, i.e.

B• = B′′ \

B ∪ ⋃
S(B

S′′

 .

B is called a proper premise if B• is not empty. It is called a proper
premise for m ∈ M if m ∈ B•. It can be shown that L = {B → B• |
B proper premise } is sound and complete [5].
We write g $ m if g′ is maximal with respect to the subset order among

all object intents which do not contain m.

3 Expected Number of Concept Intents
We provide formulae for the statistical expectation of the number of in-
tents and proper premises in a formal context that is chosen uniformly at
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random among all n×m-contexts for fixed natural numbers n and m.1
First we consider a fixed set Q ⊆M with |Q| = q ≤ m and a fixed set

R ⊆ G with |R| = r ≤ n. We compute the number of n × m-contexts
that satisfy Q′ = R and R′ = Q. Table ?? illustrates this computation.
From R ⊆ Q′ we obtain that the relation I ∩ (Q × R) must be the full
relation, and therefore there is only one choice for I ∩ (Q × R). Q′ ⊆ R
requires that no object g in G\R is in relation gIq with all q ∈ Q. Within
the quadrant Q × (G \ R) we thus obtain 2q − 1 choices per object, i.e.
in total (2q − 1)n−r choices for I ∩ (Q × (G \ R)). Analogously, R′ = Q
yields (2r − 1)m−q choices for I ∩ ((M \ Q) × R). No restrictions apply
to I ∩ ((M \Q)× (G \R)), yielding 2(m−q)(n−r) possibilities. Hence the
total number of contexts with Q′ = R and R′ = Q is

2(m−q)(n−r)(2q − 1)n−r(2r − 1)m−q.

Summing over all possible choices for R gives us the number NQ of all
contexts that have Q as their intent:

NQ =

n∑
r=0

(
n

r

)
2(m−q)(n−r)(2q − 1)n−r(2r − 1)m−q.

It must hold that
∑

K contextNK =
∑

Q⊆M NQ where NK is the number
of intents of K. The expected number of intents is then obtained as

Eintent = 2−nm
∑

K context

NK

= 2−nm
∑
Q⊆M

NQ

=

m∑
q=0

(
m

q

) n∑
r=0

(
n

r

)
2−rq(1− 2−r)m−q(1− 2−q)n−r.

4 Expected Number of
Hypergraph-Transversals

Before we can compute the expected number of proper premises we need
to consider hypergraph transversals, as they are closely related to proper
1We ignore renaming of attributes and objects.
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Table 1: Computing the Expected Number of Concept Intents

. . . Q . . . . . .
...
R 1 (2r − 1)m−q

...

... (2q − 1)n−r 2(m−q)(n−r)

premises. This relationship will be examined more closely in Section ??.
Let V be a finite set of vertices. A hypergraph H is simply a subset of
the power set of V . Intuitively, each set E ∈ H represents an edge of the
hypergraph, which, in contrast to classical graph theory, may be incident
to more or less than two vertices. A set S ⊆ V is called a hypergraph
transversal of H if it intersects every edge E ∈ H, i.e.

∀E ∈ H : S ∩ E 6= ∅.

S is called a minimal hypergraph transversal The transversal hypergraph
of H is the set of all minimal hypergraph transversals of H. It is denoted
by Tr(H).
Notice that there is a correspondence between hypergraphs and formal

contexts, where the attributes of the formal context correspond to the
vertices and the object intents correspond to the edges. Table ?? is to
be understood in this sense.
We present a formula for the expected number of hypergraph transver-

sals for a hypergraph that is chosen uniformly at random among all hy-
pergraphs with m vertices and n edges.
We start by computing the number of hypergraphs that have a given

set Q ⊆ V as a minimal hypergraph transversal. We make use of the
following proposition.

Proposition 1. In a hypergraph H a set of vertices Q ⊆ V is a minimal
hypergraph transversal if and only if
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1. Q ∩ E 6= ∅ for all E ∈ H, and

2. for all v ∈ Q there exists some E ∈ H such that Q ∩ E = {v}.

Proof. The first property is simply the transversal property. The second
property is equivalent to minimality, since for all v ∈ Q the set Q \ {v}
is a hypergraph transversal iff there is no E such that Q ∩ E = {v}.

Let the edges of H be numbered E1, . . . , En. By Propostion ?? if Q is
a minimal hypergraph transversal then we can find values p1 < · · · < pm
such that Q ∩ Epi

= {vi} for some vi ∈ V and Q ∩ Epi
6= Q ∩ Ej for

all i ∈ {1, . . . ,m} and all j < pi. By choosing the pi in this way we can
avoid counting the same context multiple times.

Table ?? illustrates the number of choices for the n edges of H. For
each edge E the entries in E\Q are irrelevant and therefore allow 2(m−q)n

choices. For Epi ∩ Q there is only one choice, namely Epi ∩ Q = {vi}.
For each edge Ej , j < p1 it must hold that Ej ∩ Q 6= ∅ since Q is a
hypergraph transversal and Ej ∩ Q 6= {v} for all v ∈ Q because of our
choice of the pi. Hence there are 2q − 1− q choices for Q ∩ g′j . Similarly,
we obtain 2q − 1 − (q − 1) choices for Ej ∩ Q where p1 < j < p2 since
now Q ∩ Ej can also take the value Q ∩ Ej = {v1}. The total number
of contexts K that have Q as a minimal hypergraph transversal is then
obtained by summing over all possible values for the pi and multiplying
with k! to account for permutations of the vi.

NQ(n,m, q) = q! · 2(m−q)n
∑

(p1,...,pq)∈Nq

1≤p1<···<pq≤n

q∏
i=0

(2q − 1− i)pi+1−pi−1

where we define p0 = 0 and pq+1 = n+1. Using similar arguments as for
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Table 2: Computing the Expected Number of Hypergraph Transversals

. . . Q . . . . . .

... (2q − 1− q)p1−1

Ep1 1

... (2q − 1− (q − 1))p2−p1−1

2(m−q)n

Ep2
1

...
...

Epq 1

... (2q − 1)n−pq

Eintent we obtain

EHG−trans = 2−mn
∑

K context

NK

= 2−mn
∑
Q⊆M

NQ(n,m, q)

= 2−mn
m∑
q=0

(
m

q

)
NQ(n,m, q)

=

m∑
q=0

(
m

q

)
q! 2−q

2 ∑
(p1,...,pq)∈Nq

1≤p1<···<pq≤n

q∏
i=0

(
1− 2−q(1 + i)

)pi+1−pi−1
.
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5 Expected Number of Proper Premises
We present a connection between proper premises and minimal hyper-
graph transversals. This connection can help us to obtain a formula for
the expected value of proper premises from the formula for EHG−trans.
This connection has been exploited in database theory to the purpose
of mining functional dependencies from a database relation [7]. Implic-
itly, it has also been known for a long time within the FCA community.
However, the term hypergraph has not been used in this context (cf.
Proposition 23 from [5]). The following proposition can be found in [5]
among others.

Proposition 2. P ⊆M is a premise of m iff

(M \ g′) ∩ P 6= ∅

holds for all g ∈ G with g $ m. P is a proper premise for m iff P is
minimal (with respect to ⊆) with this property.

We immediately obtain the following corollary.

Corollary 1. P is a premise of m iff P is a hypergraph transversal of

{M \ g′ | g ∈ G, g $ m}.

The set of all proper premises of m is exactly the transversal hypergraph

Tr({M \ g′ | g ∈ G, g $ m}).

Notice that the sets g′ with g $ m are by definition exactly the maximal
elements of {g′ | g ∈ G,m /∈ g′}. Hence, {M \ g′ | g ∈ G, g $ m}
contains exactly the minimal elements of {M \g′ | g ∈ G,m /∈ g′}. When
searching for hypergraph transversals it suffices to look at the minimal
edges in a hypergraph and therefore a set S is a hypergraph transversal
of {M \ g′ | g ∈ G, g $ m} if and only if S is a hypergraph transversal of
{M \ g′ | g ∈ G,m /∈ g′}. This yields the following corollary.

Corollary 2. The set of all proper premises of m is exactly the transver-
sal hypergraph

Tr({M \ g′ | g ∈ G,m /∈ g′}).
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From Corollary ?? we obtain for the expected value of proper premises
of an attribute v0

Epp(n,m) =
∑
R⊆G

2−nEHG−trans(|R|,m)

=

n∑
r=0

(
n

r

)
2−nEHG−trans(r,m)

= 2−n
n∑

r=0

(
n

r

)m−1∑
q=0

(
m

q

)
q! 2−q

2 ∑
(p1,...,pq)∈Nq

1≤p1<···<pq≤r

q∏
i=0

(
1−2−q(1+i)

)pi+1−pi−1
.

where the sum is over all possible ways to choose the attribute intent v′0,
where each choice has probability 2−n.

6 Conclusion

In this work formulae have been obtained for the expected values of in-
tents and proper premises in a context that has been chosen uniformly
at random. A third formula gives the expected number of hypergraph
transversals in a hypergraph that has been chosen uniformly at random.
Our hope is that these formulae can help to examine and compare the
behaviour of existing algorithms for finding an implicational base for a
formal context. The plots in Figure 1 show that when the number of
objects is large compared to the number of attributes proper premise
algorithms appear to have an advantage over algorithms that compute
both pseudo-intents and intents.
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