
A framework for Automatic Web Service

Composition based on service dependency analysis

Dissertation

In partial fulfillment of the requirements of the degree
Doctor of Engineering (Dr.-Ing)

Submitted to
Technical University of Dresden

Department of Computer Science

by

Abrehet Mohammed Omer
born on 19.08.1976 in Assela

Advisors:
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill TU Dresden
Univ. Prof. Dr. Schahram Dustdar TU Vienna
Prof. Dr. Uwe Assmann TU Dresden

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236366586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dresden, Germany

April, 2011

I dedicate this dissertation to my mother Nuria.

Confirmation

I hereby confirm that I am the sole author of this dissertation. This is

a true copy of the thesis as accepted by my examiners.

Dresden June, 2011.

Abrehet Mohammed Omer

Acknowledgments

First and foremost, I would like to thank my supervisor, Prof. Dr. rer. nat. habil. Dr. h. c.

Alexander Schill, for allowing me to work under his chair. His consistent extraordinarily prompt

near real-time feedbacks, constant follow-up, along with his scheduled nature forced me to always

stick myself to schedules. His invaluable technical support is indispensable. I am very lucky to have

the chance to work under his supervision.

I would like to thank my co-advisor Prof. Dr. rer. nat. habil. Uwe A”smann, for his support during

my research. I would like to express my gratitude to Univ.Prof. Dr. Schahram Dustdar for kindly

agreeing to be my external reviewer.

Special thanks also go to Dr. Josef Spillner, Dr. Anja Strunk, and Dr. Iris Braun for their helpful

ideas during the initial phase of the study. In particular, I am also indebted to Dr. Josef Spillner for

his thoughtful comments on the original manuscript. I thank Dr. Waltenegus Dargie for proofreading

this thesis and suggesting improvements to the language. All the feedbacks and comments I received

have helped me in making of this thesis. I also enjoyed the time with my officemates Anne, Sandro,

and Dong, I thank you for the accompany.

I have received enormous support from my family. My mother always has a special place in my life.

She consistently encourages me to pursue my studies. I don’t have words to express my love to her.

She is the most intelligent woman in my life without formal education. My brother Jemal (Abi)

have been my greatest mentor throughout my life, and I thank him from the bottom of my heart.

My brothers and sisters, I owe you a big thank for your supports and love all along.

My daughters Liyou and Ruh, you always make me stop thinking about my research work with

your irresistible smiles, which is the main source of my efficiency. Thinking of my beloved husband

Negede always keep me strong. He was with me all along the study period, being my motivator,

critic, reviewer, and above all, the best partner one can ever dream. His presence, at happy and hard

times, and invaluable moral and technical help were instrumental to the conduct of my research.

Thanks are also due to all my friends living in Germany for making me feel home and made my life

complete. I should also express my appreciation to my friends who supported me via technology.

Last but not least, very special thanks goes to the DAAD (Deutsche Akademischer Austausch Dienst)

in providing the financial support to this PhD study.

Contents

Acknowledgments iv

List of Figures xii

List of Tables xviii

Abstract xx

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 6

1.3 Problem statement and primary research objectives 7

1.4 Scope and approach . 8

1.5 Research contributions . 9

1.6 Structure of the thesis . 11

2 Background and related works 13

2.1 Background . 13

2.1.1 Service Oriented Architecture (SOA) concepts 13

2.1.2 Service dependency . 19

vii

2.2 Related work . 21

2.2.1 Service dependency . 22

2.2.2 Dependency based service composition techniques 24

2.2.3 Service composition approaches 29

2.2.4 Summary on characteristics of static and dynamic

composition techniques . 35

3 The proposed approach: automatic process model cre-

ation 37

3.1 Problem formulation . 37

3.2 User request, abstract service and composite service specification . . . 39

3.3 Case study description . 40

3.4 Architecture . 41

3.4.1 Candidate abstract service description selection 41

3.4.2 Service dependency generator 43

3.4.3 Extracting cyclic dependency 46

3.4.4 Dependency analyzer . 47

3.4.5 Process model generator . 48

3.4.6 Validator/Evaluator . 50

3.5 Chapter summary and conclusions . 50

viii

4 Automatic service dependency extraction 53

4.1 Description of example scenario . 53

4.2 Service dependency identification . 60

4.2.1 Explicit direct Input/Output dependency extraction 62

4.2.2 Indirect service dependency identification 65

4.3 Chapter summary and discussion . 70

5 Matrix based automatic process model generation 73

5.1 Automatic process model generation procedure 74

5.2 Extracting cyclic dependency . 76

5.2.1 Adjacency matrix . 78

5.2.2 Power of matrix . 78

5.2.3 Cyclic dependency extraction procedure 80

5.3 Construction of Explicit Indirect Dependency Matrix(IDM) 85

5.4 Dependency matrix analysis . 85

5.5 Process model generation . 88

5.6 Chapter summary and discussion . 91

6 Graph based automatic process model generation 93

6.1 Automatic process model generation procedure 94

6.2 Construction of dependency graph . 95

ix

6.3 Finding cyclic dependency . 97

6.4 Dependency analysis . 102

6.5 Process model generation . 102

6.6 Chapter summary and discussion . 105

7 Prototype Implementation and Evaluation 107

7.1 Theoretical performance evaluation 108

7.2 Prototype implementation . 112

7.2.1 Background . 112

7.2.2 Architecture . 116

7.2.3 SWSgen scenario: demonstrating the prototype 118

7.3 Experiments . 125

7.3.1 Experimental results . 126

7.3.2 Discussion of performance evaluation results 140

7.3.3 Discussion on the generated process models 141

7.4 Chapter summary and conclusions . 149

7.4.1 Summary . 149

7.4.2 Chapter conclusion . 150

8 Conclusions and outlooks 153

8.1 Conclusions . 153

x

8.2 Outlook . 157

9 Appendices 159

9.1 Matrix based approach detailed architecture 161

9.2 Graph based approach detailed architecture 162

9.3 MBA cyclic dependency extraction algorithm pseudocode 163

9.4 MBA cyclic free dependency regeneration pseudocode 164

9.5 Synthetic web service generator architecture 165

Bibliography 167

xii

Figures

2.1 The Service Oriented Architecture [1] 14

2.2 Classification of WS composition techniques[2] 19

2.3 State of the art . 22

3.1 Architecture . 43

3.2 Dependency representation using directed graph 46

3.3 Process model . 50

4.1 Data flow diagram . 59

4.2 Dependency matrix extraction . 64

4.3 General approach structure . 71

5.1 Dependency matrix based approach architecture 74

5.2 Process model generated based on N1 value(PM1) 90

5.3 Process model generated based on N2 value(PM2) 91

xiii

6.1 Dependency graph based approach architecture 95

6.2 Direct Dependency Graph (DDG) . 96

6.3 Direct dependency graph with cyclic dependency 100

6.4 Cycle-free direct dependency graph with compound node 101

6.5 Execution plan with compound node 103

6.6 Final execution plan . 104

7.1 Implementation architecture . 117

7.2 Generating web services . 119

7.3 Generating web services . 121

7.4 Generating web service dependency. 122

7.5 Dependency analysis and process model generation. 123

7.6 Dependency analysis and process model generation. 124

7.7 Dependency Generation time vs number of web services 129

7.8 Number of dependencies vs number of web services 130

7.9 MBA: cycle checking time vs number of web services 132

7.10 GBA: Cycle detection time vs number of web services 132

7.11 MBA: indirect dependency generation time vs number of web

services(recusrsive algorithm) . 133

xiv

7.12 MBA: indirect dependency generation time vs number of web services

(Warshall algorithm) . 134

7.13 MBA: indirect dependency generation time vs number of web services

(Comparison of algorithms) . 135

7.14 GBA: graph generation time vs number of web services 136

7.15 GBA: Process model(path) generation time vs number of web services 137

7.16 GBA: Ratio of graph generation time to path generation 137

7.17 MBA: process model generation time vs number of web services . . . 138

7.18 Comparison of MBA and GBA approach: computation time vs

number of web services . 139

7.19 GBA approach: cycle detect and composition plan generation vs

number of web services . 140

7.20 Dependency graph and matrix . 142

7.21 Dependency graph and matrix . 145

7.22 Dependency graph and matrix . 147

9.1 Matrix based approach detailed architecture 161

9.2 Graph based approach detailed architecture 162

9.3 Synthetic web service generator architecture 165

xvi

List of Algorithms

1 Indirect dependency extraction main function caller 66

2 The recursive function of indirect dependency extraction 67

3 Warshall algorithm: indirect dependency extraction 69

4 The cyclic dependency extraction procedure 81

5 Regeneration of cycle-free dependency matrix sub-procedure 82

6 Tarjan algorithm . 98

7 Call of Tarjan to find cycle . 99

8 Modified topological sorting . 103

9 The cyclic dependency extraction algorithm in pseudocode 163

10 The cyclic free dependency regeneration algorithm pseudocode . . . 164

xviii

Tables

2.1 Summary table of dependency usage 28

2.2 Comparison table for composition techniques 35

2.3 Comparison of static and dynamic composition techniques 36

3.1 E-health scenario Input/Output description 41

4.1 On-line shopping scenario study Input/Output description 55

5.1 Summary of dependency analyser output 87

5.2 Sorted Based on N1 value in descending order 89

5.3 Sorted Based on N2 value in ascending order 90

7.1 Summary of theoretical computational complexity 109

7.2 Symbols and variables . 126

7.3 Symbols and variables . 127

7.4 Output process model from graph based approach 142

xix

7.5 Output process model from matrix based approach 143

7.6 Output process model from graph based approach 146

7.7 Output process model from matrix based approach 146

7.8 Output process model from graph based approach 147

7.9 Output process model from matrix based approach 148

ABSTRACT

The practice of composing web services has received an increasing interest with the

emerging application development architecture called Service Oriented Architecture

(SOA). A web service composition can be done either manually or (semi-) automat-

ically. Doing composition (semi-) automatically minimizes runtime problems that

arise due to dynamic nature of runtime environments. However, the implementation

of (semi-) automatic composition demands for the automation of a process model or

a composition plan generation process. In addition, creating a composite service or

applications from component services, that are developed and meant to work indepen-

dently, causes unavoidable dependencies among the services involved. Consequently,

in a composite service development, understanding, analyzing and tracking of such

dependencies becomes important. This thesis views the process model generation

sub-task of a service composition as a service dependency identification and analysis

problem.

In this thesis, we propose a dependency based automatic process model generation

methods. For this purpose, the following issues are explored. First, a top layer ar-

chitecture with a composition engine is developed. The architecture gives a complete

picture of dependency based automatic service composition. Second, the process

model generation sub-task is formulated as a service dependency identification and

analysis problem. Third, a two-stepped method for automatic process model gener-

ation, given a set of candidate web service descriptions, is proposed.

The first step of the proposed approach deals with the identification of potential

direct and indirect dependencies between abstract services. The direct dependency

extraction is done by assuming a semantic I/O matching of service parameters. The

extraction of indirect dependency from direct dependency is done using a recursive

algorithm derived from the transitive closure property. Alternatively the Warshall

algorithm is used.

The second step of the proposed approach deals with analysis of dependency infor-

mation and generation of process model (PM) automatically. To execute this step,

we propose two approaches: matrix based and graph based approaches. The ma-

trix based approach utilizes both direct and indirect dependencies. This approach

represents dependencies using matrix and takes advantages of a sorting algorithm.

The matrix representation facilitates a simplistic mathematical dependency analysis

for generating important indicators during automatic process model creation. The

process model is generated using a sorting algorithm that uses the analysis result ob-

tained from the dependency matrix as sorting criterion. The graph based approach

uses only direct dependency among candidate services. As its name indicates, in this

approach the extracted I/O dependencies are represented using a directed graph. A

modified topological sorting algorithm is used for generating a process model that

shows the execution order of candidate services. Both of the proposed approaches

(matrix and graph based approaches) recognize the existence of cyclic dependencies

and provide ways of dealing with them. The resulting process model or composition

plan from both approaches has a sequential, concurrent and loop control flows.

Finally, the performance of the proposed approaches is studied theoretically as well

as experimentally. For the experimental validation and evaluation purpose, the ap-

proaches are implemented in a prototype that facilitates the validation and evaluation

of the approaches at a larger scale. An extensive experimental performance evalua-

tion is done first on each proposed approach. The two approaches are then compared

and their pros and cons under different scenarios are assessed.

1

Chapter 1

Introduction

This introductory chapter presents the research motivation, the research objectives

and the problems that are addressed. In addition, the research approach and its scope

as well as the research contributions and the organization of the thesis are presented.

1.1 Background

Service composition is the process of combining and linking available component

services to create a composite service that has more functionality than the component

services it is made of. A composite service can be regarded as a combination of services

invoked in a predefined order and executed as a whole. It is used in situations where

a client request cannot be satisfied by any single available service.

The service composition process comprises the following major sub activities:

1. Process model (composition plan) creation: a process model is a model that

simplifies the representations of activities and their enactment. It specifies

the full task control- and data-flow among different subtasks. It can be done

manually (by a developer at design time), semi-automatically (with the help of

a template) or automatically (by a software agent).

2. Concrete service discovery and binding : this activity involves finding and bind-

2

ing services for each subtask of the composite service. It can be done at design

time or run time.

3. Availing composite service: this refers to making the composite service available

to a potential client and its management.

A service composition could be done statically, semi-dynamically or dynamically (fully

automated). These different levels of automation are determined by how and by whom

the process model is created and the timing (design or run time) of service discovery

and binding. In static composition, a process model is created manually and a service

binding is done at design time. Whereas in a dynamic composition a process model

is created automatically and a service binding is done at runtime. All methods in

between these two extremes are categorized as semi-dynamic [2] (see figure 2.2).

Static service composition has shortcomings in that it does not adapt automatically

unpredictable changes in a dynamic run time environment. For example, new ser-

vices might become available, old services might be inaccessible, or a number of ser-

vice providers might grow or shrink. Under such circumstances a composite service

requires a run time adaptation which cannot be achieved by a static service compo-

sition. Due to such shortcomings of static composition methods nowadays there is a

growing tendency for shifting to a dynamic service composition mechanisms. A dy-

namic service composition composes services on-demand, without or with minimum

user intervention. It has the following advantages: It enables composite application

extension at runtime, it does not need to keep a local repository of available web ser-

vices, and it is possible to produce more than one composite service with the same set

of component services [3]. In the endeavor of shifting from a static to a dynamic ser-

vice composition, many approaches achieve a semi-dynamic composition. One that

3

realizes the runtime service binding while still relying on a manual process model

creation, is for example, the work by [4, 5]. However, realizing a dynamic service

composition or tackling the problems a static composition mechanisms are not only

limited to achieving a runtime service binding but they also demand the ability to

automatically creating a process model.

In a few cases, where attempts were made for creating fully-dynamic composition

mechanisms, researchers tried to tackle the problem by mixing the process model

creation and the service binding process into one. In this regard, the work by [6, 7, 8]

can be mentioned. Such methods implement an automated chaining of services or

a graph representation of available services. The main limitation with this kind of

approaches is scalability. Specially, simple chaining methods may insert a high degree

of uncertainty regarding semantic correctness and the search space is very large [9].

Moreover, the algorithms can execute indefinitely if matches are not found, or may

result in compositions of too many component services [10].

The most extensively employed attempts towards a fully dynamic composition which

includes an automatic process model creation is a planning based technique adopted

from Artificial Intelligence (AI). For example, a body of work by [11, 12, 13] use

GOLOG with AI planning technique and a work by [14] use case-based reasoning

from AI machine learning techniques. The AI planning approaches for service com-

position has scalability and high computation time requirement as limitations [15][2].

Moreover, these techniques require a complete knowledge about the existing services

and their transition. Building a complete knowledge base takes a considerable time

and space with a fast growth of web services. Also the performance of AI planning

algorithms is significantly influenced by the size of the knowledge base. As a result

4

most of AI based composition techniques begin with a closed world assumption.

From the discussion above it is apparent that the complexity of creating a process

model automatically is the main bottle neck for achieving a dynamic service compo-

sition. It is the major missing link in the road leading to achieving a fully dynamic

web service composition and thus is the focus of this research.

A thorough investigation of the approaches in a process model creation shows that all

methods try to extract implicit or explicit dependencies (relationships) while they try

to create composite services. For example, in graph-based and chaining mechanisms,

while trying to create a process model, mainly input/output relationships between

services are explicitly searched in their algorithm. In workflow based techniques

programmers try to identify implicit and explicit dependencies. In case of AI-based

methods input/output, temporal and some other logical relationships are considered

by making use of domain knowledge.

Though the concept of dependency is explored in component based systems, prin-

cipally for managing component based systems [16, 17], there are some approaches

that recognize the importance of dependency in SOA, specifically in a service com-

position. For example, [18] looks at service dependencies from a composite service

management point of view. In their approach, it is shown that dependencies could be

tracked from log files, which normally are available in SOA audit files. [19] discusses

the use of dependency information from composite services to establish a dependency-

aware service-oriented architecture. Its main aim is to capture and reuse composite

service information, which is called service dependency, for further composition. The

service dependency in [19] principally refers to a temporal dependency in order to

determine the sequential execution path.

5

[20, 21, 22], use a pre-computed dependency graph between all services in a repository.

These approaches utilize back-ward chaining and graph search algorithms to find a

sub-graph that contains services that are teaming to accomplish the requested task.

The dependency graph size becomes very complex when there is a high number of

services in the repository, which probably increases the complexity of the algorithm

of the composition plan creation. Moreover, they assume the dependency graph to

be an acyclic graph which, however, is not always true in reality.

As mentioned above a dynamic service composition has many advantages. However,

it also has some disadvantages and limitations, especially when the composition prob-

lem is complex, in which case the composition becomes difficult to achieve. This limits

its wide application in real world situations. This limitation could be overcomed by

resorting to a semi-dynamic composition techniques but those with high degree of

automation during a process model creation to speed up the composition process [2].

The advantage of resorting to such technique is that they could use available static

knowledge (i.e. advertised abstract service description), which is left out by most of

dynamic service composition mechanisms that would otherwise support the process of

service composition. Their advantage over the mere semi-dynamic composition meth-

ods is their automation in the process model creation which eliminates the burden

of a manual process model creation and increase the flexibility of creating composite

service on demand.

Therefore, this thesis focuses, first, on a general framework for automatic service

composition using extracted dependency from a statically available knowledge about

services; second, on establishing automatic process model creation methods that are

solutions to one of the main problems, to increase the automation level of service

6

composition techniques. The automatic process model generation methods utilize

automatically extracted service dependency that has not been adequately addressed

in earlier and recent researches. This is considered as a step forward towards semi-

dynamic composition with a high degree of automation in a process model creation.

Furthermore, a prototype that has a test bed to enable test and validation of a service

composition techniques is developed and used to validate the proposed approaches.

1.2 Motivation

Though there are various existing techniques of service composition, there are still

open issues and limitations that need to be addressed. In particular this research is

inspired by the following issues:

1. The need to have (semi-) dynamic-composition technique to overcome limita-

tions of static-composition techniques.

2. The importance of automatic process model creation to achieve dynamic com-

position and the fact that this is a missing link in the endeavor of shifting from

static to dynamic composition.

3. The relationship between process model creation and service dependency and

its potential for use in automatic process model creation.

In this research service dependency is treated as a core concern for dynamic ser-

vice composition. This is because understanding dependencies between services is a

requirement to automatic process model creation.

7

1.3 Problem statement and primary research objectives

As it is described in section 1.1 there are many issues and knowledge gaps that hin-

der the transition towards achieving a dynamic composition. Specifically, the lack

of runtime process model creation techniques complicates the intent for a (semi) dy-

namic service composition. In earlier researches the usage of service dependency

among component services for an automatic process model creation was not signifi-

cant. Therefore, there is a clear research need to understand service dependency and

get more refined means to identify, represent, analyze, and use service dependency

information for ultimate use in an automatic process model creation. Consequently,

developing methods for an automatic dependency extraction and an automatic pro-

cess model creation will be the main research problem.

More specifically, the main issues that this thesis addresses can be summarized with

the following research questions :

1. How can statically available knowledge be used to achieve a (semi) dynamic

service composition?

2. How can dependencies among component services comprising a composite ser-

vice be efficiently and automatically determined?

3. How to generate an appropriate process model for composite services using

service dependency information?

Thus the primary objectives of the research, are:

1. To develop a general architectural frameork that provides a complete picture of

8

a dependency based automatic web service composition technique.

2. To identify the general web service dependency types.

3. To develop a methodology for extracting dependencies among web services.

4. To get a way of representing and analysing web service dependencies for further

use.

5. To show the application of web service dependency for an automatic process

model or a composition plan∗ generation.

1.4 Scope and approach

The service dependency based automatic service composition discussed in this thesis

pre-supposes that there exists a formal user request, statically available local reposi-

tory, with abstract service description, and a goal based service discovery mechanism.

The goal based service discovery mechanism is responsible for discovering and select-

ing the component services that could satisfy a user request that can not otherwise be

satisfied by a single service. The discovery and selection of services is made from local

repository of services. In fact, goal based service discovery mechanisms are mainly

used in individual service discovery web services for a specific request, such as [23]

and [24]. Goal based service discovery mechanism is out of the scope of this research.

Therefore, the starting ground for the proposed approach is a formal user request and

selected abstract service descriptions that are ready for composition.

∗In this thesis process model and composition plan are used interchangeably

9

The proposed approach principally focuses on automatically identifying and analyzing

service dependency among component services and then making it ready for use in

process model creation.

To achieve the specific goals mentioned in section 1.2 and to ultimately solve the main

research question, the research follows seven major steps. The steps are:

1. Identifying the common web service dependency types in service composition;

2. Establishing a methodology to identify and specify dependencies among web

services;

3. Selecting a way to represent and analyze web service dependencies for further

use;

4. Illustrating the application of web service dependency for a process model gen-

eration;

5. At the end of the conceptual work, a prototype is developed to demonstrate

the proposed strategies. To validate and evaluate its potentials and limitations

different case scenarios are considered.

1.5 Research contributions

The main contributions of this research is proposing dependency based automatic

process model creation techniques for the purpose of dynamic composition. Moreover,

a prototype that has a composition engine developed using the proposed approach

is implemented. The prototype is capable of generating synthetic composable web

10

services with similar behavior as existing web services in order to validate and evaluate

the proposed methods.

As a whole the contributions can be summarized as follows:

1. To the best of our knowledge, this research is the first to give an on-demand

process model creation based on dependency that is extracted automatically

from an abstract service description. It also shows the use of indirect depen-

dencies for a composition plan generation. Moreover, the developed approach

is capable of extracting dependency automatically. This capability is useful not

only in process model creation but also in a SOA management.

2. Despite most methods that use service dependency for a composition plan cre-

ation [22, 25, 21], the approach in this thesis does not pre-compute unnecessary

semantic links between all registered services. We argue that finding out only

the semantic link (dependency) among candidate abstract service descriptions

for the required composition avoids the unnecessary computation required to

create all links between services in the registry. Moreover, the use of abstract

service description that represent a collection of services with the same func-

tionality minimizes the search space in the local repository.

3. To the best of our knowledge, the approach proposed by this research is the first

to deal with cyclic dependency in detail. The proposed approach is capable of

finding cyclic dependencies from the generated dependency; it is illustrated

that what cyclic dependency means, how cyclic dependency can be used as

an indicator of a loop control flow and how to eliminate it to avoid further

complexity in a further execution plan generation process.

11

4. It proposes the use of simple sorting and topological sorting algorithms for

generating a process model. This solves the scalability problems that occur in

many composition plan generation algorithms.

5. The research develops a prototype validation system that generates synthetic

web services using random parameters, which can be used to test other ap-

proaches of web service composition in a closed world assumption.

1.6 Structure of the thesis

Apart from the introduction in chapter 1, the thesis is composed of the following

parts.

The basic concepts and terminologies are presented in chapter 2. Moreover, an ex-

tensive review of related work is given. The review is done separately for different

categories of service composition techniques which are introduced in the first chapter.

Chapter 3 focuses on elaborating the proposed approach from different perspectives.

Section 3.1 introduces the composition problem from the perspective of the thesis.

Section 3.2 presents the way services, user request, service dependency and compos-

ite services are specified. In section 3.3 a small motivating scenario to show a brief

overview of the proposed approach is provided. In section 3.4 the proposed architec-

ture along with explanation of each part of the architecture is presented. Section 3.5

presents the summary and conclusion of the chapter.

Chapter 4 presents the automatic dependency extraction process and a description of

an example scenario. In section 4.1, the description of a complex example scenario,

12

which will be used throughout the thesis for illustrating the proposed methodolo-

gies, is presented. In section 4.2 a detail explanantion of the automatic dependency

extraction method is given.

Chapter 5 describes a matrix-based approach to create a composition plan automat-

ically. The chapter starts by providing a matrix based method to manage a cyclic

dependency which is consdiered the first step of the approach. Then continues the

process model generation which is based on Topological sorting algorithm.

In chapter 6 a graph-based approach to create a composition plan automatically is

presented. The chapter starts by providing a graph based method to manage a cyclic

dependency which is based on the Tarjan algorithm. Then follows the composition

plan generation which uses a modified topological sorting algorithm.

In chapter 7, a prototype implementation and an evaluation of the proposed approach

is described. Here the description of implemented prototype and the experimental

results are presented in detail.

Finally, in chapter 8 conclusions and outlooks for future research work is provided.

13

Chapter 2

Background and related works

This chapter has two parts. The first part provides a brief introduction to basic con-

cepts of Service Oriented Architecture (SOA), service dependency and other related

concepts with the intention of giving background knowledge on service composition

techniques. The second part provides a review of selected works related to this re-

search. The related works section has four sub sections. In 2.2.1 reviews of related

work on component and service dependency are presented. In section 2.2.3 review

of service composition approaches, categorized based on the automation level and

consideration of service dependency usage, is discussed. Finally, in section 2.2.4 a

summary and comparison of related works is given.

2.1 Background

2.1.1 Service Oriented Architecture (SOA) concepts

Service Oriented Architecture (SOA) is an application development architecture that

uses individual software services to build composite applications. This is possible

because smaller and simpler applications can be developed and availed in the form

of Web Services (WS). These individual applications can be published, located, and

invoked across the web. The ability to invoke and compose services using multiple

14

individual services allows meeting larger and single user requirements, which could not

otherwise be met with any of the available smaller services. Thus, a complex service

based applications can be created in a SOA environment by composing individual

services. This application development architecture (SOA) has increased the demand

for web services and it has called for researches in the area of WS composition.

In SOA there are three major actors involved: the service provider, service requester

and web broker. Each actor has different responsibilities involves around the ser-

vices. Service providers develop web services and make them accessible to service

consumer. Service requesters (consumers) get the service by sending request in a

specified manner. Service broker is a mediator between provider and requester.

Figure 2.1 : The Service Oriented Architecture [1]

web services are the fundamental block of SOA. Web Services (WSs) are self-contained,

modular units of application logic, which provide business functionality to other ap-

plications/users via an Internet connection. WSs are not dependent on the context or

15

state of other web services. The development process of web services has become suffi-

ciently mature [26]. At present more and more small and simple applications are being

developed and made available in the form of WS. As a result developers/researchers

start working towards other potential usage of web services like developing applica-

tions making use of existing web services.

Since Web Services (WS) have main role in service oriented architecture we need to

explore and understand them. i.e. it is important to know how they are designed (web

service description), how they can be accessible to consumer (web service discovery),

how they can interact and accomplish a bigger task that can not be accomplished by

a single service (web service composition). The next sub section describes these basic

concepts.

Web Service description

Web Service description is important for clients to understand and use a service

provided. It is necessary because the communication between WS requester and

provider should be in an orderly manner. Web services can be described by their

functional and non-functional properties. Functional property description provides

what exactly the service can do in the form of input, output, pre-condition and effect.

Non-function property description gives anything a service gives as a constraint over

the functional properties such as: cost, computation time, response time etc. A service

consumer must understand each service in-terms of functional and non-functional

properties in order to communicate and get appropriate result from web services.

There are different technologies for describing services. Different technologies have

16

different description capabilities. Web service description technologies categorized

by application domain and presented in [27]. In this paper syntactic, semantic and

resource description languages are provided. In syntactic web service description

category web service description language (WSDL) and web service business process

execution language (WS-BPEL) are mentioned. WSDL describes only requirements

and capabilities of web services [28]. It provides only a comprehensive technical

description of a service. WS-BPEL is used to define an executable business process

than individual services [29]. It focuses on describing state transitions and interaction

of processes making use of WSDL description for message exchanges. Technologies

like semantic web service description language-S (WSDL-S) [30], semantic annotation

for web service description language (SA-WSDL) [31], web service ontology language

(OWL-S) [32], web service modeling ontology (WSMO) [33], web service modeling

language (WSML) [34] are being discussed in semantic Web service community.

WSDL-S extends WSDL by defining new elements and annotations for already ex-

isting elements. It connects WDSL and OWL. OWL[32] is a W3C standard based

on resource description language (RDF)(S) and it has been designed to meet the

need for a web ontology language. OWL-S is an ontology represented in OWL which

contains a bunch of classes and property definitions. SA-WSDL is based on WSDL-

S and provides semantic characterization to Input and Outputs of web services by

defining a small set of WSDL extension attributes. WSMO provides a conceptual

model necessary for semantic web services. It includes: goals, ontologies, mediators

and functional semantic description of web services. WSML describes WS in the form

of ontologies. It is a way to formally describe components in WSMO. Such semantic

descriptions could help in enhancing existing service composition techniques and in

developing new automatic service composition mechanisms that involve the usage of

17

semantic knowledge in the composition process. In general, semantic web description

creates another layer on the top of WS infrastructure to supply semantic meaning to

web services. To fully utilize WS users (service consumers) should be able to discover,

compose and synthesize services automatically. For that a proper WS description is

necessary.

Once the WS developed and described in proper manner service providers register it

to service registry located on web broker and consumers search for it in the registry

using the WS description. What follows after WS description is WS discovery by

service consumer.

Web Service discovery

WS discovery is related to getting appropriate service for a request. It is one of the

critical steps in the process of developing applications based on SOA. It can be done

using syntactic matching or semantic matching.

[35] presents a method to locate required web services on the basis of the capabilities

that they provide. i.e semantically enabled I/O matching a technique. Their strategy

tries to accommodate a softer definition for the term ’sufficiently similar’ (i.e makes

the matching techniques flexible since in real case scenario no exact match can always

be found). For such flexibility in the algorithm different degree of matching is defined.

To do this, whenever a match between the request and any of the advertisements is

found, it is recorded and stored to find the matches with the highest degree. [36] also

used the degree of matching proposed by [35] and extend it by adding intersection

function.

18

Web Services composition

The other fundamental concept is web service composition which sometimes overlaps

or will merge with the process of WS discovery. WS composition is a mechanism of

combining two or more basic services into a possibly complex service. It is used to

solve complex problems by combining available basic services. It helps to accelerate

rapid application development and facilitate service reuse from developer perspective

and from user perspective it increases complex service consumption. As mentioned

earlier a composite service can be regarded as a combination of services invoked in

a predefined order and executed as a whole and that has more functionality than

its components. WS composition is needed because finding a right service provider

for the request is not an easy task on fast growing WWW sometimes it is even

impossible. Thus WS composition becomes necessary and inevitable. Composing

WS from existing ones is an effective method to fill this gap.

There are different WS composition techniques developed by researchers. These tech-

niques are also categorized based on various criteria. For example: [2] categorized

the techniques into three major categories, static, semi-dynamic and dynamic, based

on the way process model created and the time of service binding as shown in figure

2.2. [3] provide six categories(runtime reconfiguration using wrappers, runtime com-

ponent adaptation, composition language, work-flow-driven composition techniques,

ontology-driven web service composition and declarative composition) of dynamic ser-

vice composition techniques based on the underlying approach. [37] presents a survey

of WS composition techniques from the work-flow and AI planning research commu-

nity. This thesis uses the classification made by [2] and further classify the methods

based on the underlying approach used in their algorithm and the way their process

19

Figure 2.2 : Classification of WS composition techniques[2]

model is created. In section 2.2 review of related work based on such categorization

is presented.

2.1.2 Service dependency

In SOA the task of creating composite services from component services results de-

pendencies between the component services. Primarily these services are created

by same or different providers and they are meant to be accessed and work inde-

pendently. However, establishment of composite services necessitates interaction,

communication, cooperation and coordination of services and this inevitability create

some sort of dependencies among the services.

20

As described in chapter 1, the course of action of process model creation in various

service composition techniques involves tracing directly or indirectly various type of

dependencies among web services. Similarly, our approach also begins from extracting

dependency between services to create execution plan for composite service.

Overview of dependencies

There are different kinds of service dependencies among component services within a

composite service. One can identify the possible service dependencies from data and

control flows, which occur due to the need for interaction among component services

in composite service. The following dependency types are the most common among

many:

1. Sequential control flow occurs due to data (I/O) or temporal dependency caused

by user constraints. I/O dependency happens when the data generated by one

service should be used by another service. (For example if a user requests

to book boat trip or buy movie ticket depending on weather condition then

weather forecast data generated by weather services will be used by the two

services book boat trip and buy movie ticket services).

2. Concurrent control flow happens when there is no dependency between services.

3. Loop control flow happens due to repetition (cyclic) dependency. Cyclic depen-

dency occurs when a service is dependent on it self or when there exits a cycle

of dependency chain.

4. Alternative control flow is used in relation to selection dependency. Selection

dependency occurs when there is a criteria set for selecting among services, for

21

example when a criteria is satisfied then select service A otherwise select service

B. From the example considered above, if weather is good go book Boat tour

else buy movie ticket. It can also occur if service A costs less than service B

but with the same functionality which are called alternative services.

There are also other types of dependencies which can not be explicitly attached to any

of existing control flows that are normally used in composite service execution plan

generation. For example, when a service uses another service in order to complete

its task (eg. credit card payment service may require validation service before it

completes the payment process).

The focus of this thesis is the first three types of dependency and the approach can

generate a process model with sequential, concurrent and loop control flow.

2.2 Related work

The two major research topics relevant to this thesis are service dependency and

service composition. These two research topics are very broad and inter-related.

Figure 2.3 gives pictorial description of their inter-relation. This section gives review

on works related to service dependency and service composition. In addition, it gives

and comparison of existing composition techniques.

22

CBS
management

Service
composition

Service
Dependency Semantics

Adaptation

Service
dependency for

service
composition

Service binding
(Optimization)

Composition
plan generation

Monitoring

Task
decomposition

Service
Discovery

SOA
management

Work-flow
analysis

Semantic
matching

Figure 2.3 : State of the art

2.2.1 Service dependency

Dependency information is seen being used both in component based systems and

SOA. Brief overview of published work about dependency that bears a relation to our

work is given here.

[16] discussed the use of component dependency in component-based software engi-

neering. They proposed a matrix based method to analyze dependencies in component-

based software engineering. In their approach dependencies are represented by graph,

23

which can equivalently be represent by an adjacency matrix. Ultimately, they dis-

cussed how dependency analysis result can be used to understand, test and to main-

tain component based systems. The approach in this thesis also uses adjacency matrix

and directed graph to represent service dependency.

Another work by [19] discusses the possibility of deploying and reusing composite

services based on service dependency. In their research, the composite service is

described in terms of elementary service dependency extracted from a pre-existing

process model. The invocation of the composite services is done by managing these

dependencies. Their goal is to create dependency aware service interaction, i.e. de-

pendency aware service publication, discovery, composition and binding.

[18] looks for service dependencies from a composite service management point of

view. Their approach shows that dependencies could be tracked from log files, which

normally are available in SOA audit files. Here, dependencies are utilized for impact

analysis (to distinguish services that can be affected by a particular service status)

and service-level root-cause analysis (finding out the reasons of a service failure by

inspecting at the other services it depends on).

[38] identifies primary service dependencies and model them by graph. Then generates

a dependency matrix that specify the degree of dependency among services. Using the

information from dependency analysis modeled by matrix and graph, they developed

an impact analysis model that looks at the impact of the service evolution. In this

paper the concept of cyclic dependency is not mention.

24

2.2.2 Dependency based service composition techniques

Most of the approaches that use dependency graph for composition utilizes chaining

algorithms, for instance [21] and [20] can be mentioned. Chaining algorithms try

to find the link between service input and output parameters in order to create a

process model that satisfies the user request. Forward chaining begins from input or

pre-condition of user request and searches for chain of services till it reaches output

or final goal of the user request. The backward chaining follows the same procedure

in opposite direction, i.e. it starts from output of user request and ends at the input

of user request.

[21] proposes to pre-compute and store network of services that are linked by their

I/O parameter. The link is built by using semantic similarity functions that is based

on an ontology. They represent the service network using graph structure. Their

approach utilizes back-ward chaining and depth-first search algorithms in order to

find a sub-graph that contains services to accomplish the requested task. Unlike [22]

they propose a way to select optimal plan in cases when more than one plan is found.

[22] used dependency graph to store information about existing web services in repos-

itory. In the graph, nodes represent I/O parameters and edges represent web services.

Web services are modeled using I/O description and dependency information to other

WSs through its I/O. They utilize graph search algorithm to find set of candidate

services for the composite service. They also use interface automata tool to create

execution path by taking discovered services. They did not discuss a way to stop

search of candidate services. This possibly makes search complicate in cases when

more than one set of candidate service exist. The complexity of their approach is

25

exponential in terms of the number of involved parameters, and also exponential in

terms of the number of services in a repository.

In [20], the authors propose dependency graph based web service composition. In

their graph structure nodes characterize both I/O parameters and services, while

edges characterize the link among parameter nodes and service nodes. The graph

construction is done in a way that facilitates the use of backward chaining algorithm,

i.e. the edge starts from output parameter node, goes to service name node and then

to input parameter node. In order to get the required services for a composite task

they use back-ward chaining, in combination with depth first search, . They did not

clearly discuss execution plan generation algorithm and the complexity.

However [20, 21, 22] generates (pre-computed) dependency graph between all services

in repository. This procedure complicates and makes the graph size very big when

there is high number of services. They do selection of candidate services based on

pre-computed dependency graph.

[39], [40] and [41] uses Service Dependency Graph(SDG) and AND/OR graph in their

proposed approaches. The SDG is formed from data and service nodes. An edge could

be either from data node to service node or vice-versa or from data to data node.

An edge from data node to service node implies that data is an input for the service

and an edge from service to data implies that data is an output of the service. An

edge is from data to data node implies that one is sub class of the other. When there

is a directed path from one service node to another through data node then there

is dependency between those services. Based on some simple logical rules AND/OR

graph constructed from SDG is used in their proposed algorithm. Their algorithm

gives a sub-graph of the AND/OR graph or SDG as solution for composition problem.

26

There is no major semantic difference between SDG and AND/OR graph. In an

AND/OR graph the data nodes are represented as OR nodes. This indicates that

data can be output of either of the source service nodes. In an AND/OR graph the

service node is represented as AND node. The implication is all source nodes (data

nodes) for incoming edges to-wards service (AND) node is pre-requisite for a service

to start execution. [39],[40] and [41] has used the extracted dependency information

for automatic service composition. However, in their graph representation existence

of cyclic dependency is not included.

The main difference among the approaches, discussed above, is in the representation

of service dependency and in the algorithm utilized to generate a composite service.

They all assume the dependency graph to be acyclic, which is not always true in

reality. In case of cycle existence their composition algorithm fails.

In [42] a service composition technique that utilizes Casual Link Matrix(CLM) is pre-

sented. CLM is used to store semantic I/O link between candidate services. The CLM

is built based on semantic similarity functions that provide the degree of similarity

between input and output parameters of web services. To generate the composition

plan, they use a recursive and regression-based search AI planning technique. They

claim that the complexity is polynomial time in number of rows, number of columns,

which is equivalent of number of I/O parameters. They explicitly mentioned that the

approach fails when cycle is detected.

Table 2.1 summarizes the various approaches that use dependency with respect to

five aspects. The table shows the way dependencies are modeled(graph or matrix);

whether semantics is used or not(yes/ no); whether cyclic dependency are considered

or not (yes/ no); whether the approach assumes closed world assumption or not (yes/

27

no) and in the comment column it gives the application area in which dependencies

are utilized.

28

Table 2.1 : Summary table of dependency usage

Year Author Modeling

method

Semantic

usage

Cyclic de-

pendency

Closed

world

Comment

2005 B. Li et al. Matrix

and

Graph

no no NA In CBS

2006 L. Ma et al. Matrix no no NA In CBS

2007 J. Zhou et al. NA NA - NA Dependency aware

SOA

2007 S. Basu et al. NA NA no NA Service impact anal-

ysis in composite ser-

vice

2007 R. Aydogan

et.al

Graph no no Service composition

2008 Z. Gu Graph no no no Service composition

2005 D. B. Claro et

al.

Matrix NA NA NA Service discovery op-

timization

2006 F. Lecue and

A. Leger

Matrix yes no yes Regression based au-

tomatic composition

2009 S.Wang, et al. Matrix

and

Graph)

NA NA NA For Service evolution

(Version)

2005 S. V.

Hashemian,

et.al

Graph no no no Automatic service

composition

2008 H. N. Talan-

tikite

Graph yes no no Automatic service

composition

CBA=Component Based System

NA=Not Applicable

29

2.2.3 Service composition approaches

In this section, we review some web service composition approaches by focusing on the

way they formulate the composition problem and create composition plan. The review

is made by classifying the approaches based on the level of automation the composition

process (see figure 2.2). A more extensive study of web service composition approaches

can be found in the survey articles [37, 3, 9, 43].

Static composition approaches

Static service composition approaches are sometimes called work-flow based meth-

ods. [44] presents a static composition techniques that abstracts web services. They

claim the abstraction is useful to present web services interfaces and operations in

a consistent and uniform manner. The process model is created manually from set

of candidate services collected from the local library that stores the abstracted web

services.

[45] provides a work-flow editor to compose from distributed data sources. It allows

scientists to effectively query and compose services. However, the service discovery

is done at design time by the scientists and the composition plan generation is also

manual.

Static composition approaches have manual and labor-intensive task, and thus are

not appropriate for large-scale web service composition endeavor.

Semi-dynamic composition approaches

This category is very broad. It includes all approaches that are neither static nor fully

dynamic. citebrahim2003 presents a semi-dynamic service composition approach.

30

The approach requires a user to specify the request as high-level composition plan,

which contains sequence of operations and control flows between operations. The

concrete service binding is done at run-time. Thus, the approach relies on the com-

position plan created manually by the service requester.

[2] proposes a semi-dynamic model based composition approach. In this approach

abstract level process model is generated manually in the form of computation in-

dependent model (CIM). Detailed process model is generated automatically using

ontology, service registry and pre-existing database with lower level activity model.

This approach requires domain knowledge to convert the CIM to executable com-

posite service. The main difficulty with this approach is the requirement of domain

knowledge and also someone has to do the initial high level composition plan manu-

ally.

[8] presents a semi-automatic composition techniques that allows users to select web

services to add to the chain. They showed that automatic planner and human being

can work together to generate the composite service that satisfy the user’s request.

[46] proposed a template based semi-dynamic composition techniques. The approach

uses templates to create a composition plan and binds concrete services at runtime.

In semi-dynamic composition approaches the process model generation labor is less

than that of static approaches. However, it is still not flexible enough for large-scale

web service composition.

Dynamic composition approaches

[14] presents an approach that utilizes a case-based reasoning machine learning method.

31

A case-based reasoning machine learning method is applied in the process of dis-

covering and creating composite service. Service case-based, which are stored pre-

assembled composite services, are used for the purpose of identifying relation-ships

between services.

[6] propose a service composition technique using syntactic input/output matching.

The approach does the candidate service discovery, and process model generation is

done simultaneously using backward and forward chaining.

[7] presents a developer toolkit to form a composite service that uses entity-relation

model to specify input/output parameters of the web services. To generate a com-

position plan a request should be given in the form of initial and final states. The

composition plan is generated using rule-based chaining. The approach creates a local

repository by re-defining existing services. The service re-definition is done in order to

make the services understandable by the rule based planner. Mostly this approach is

applicable to compose typical information web services, not services that constraints

like account credit or debit or various business-business services.

[47] proposes a dynamic composition approach that uses SHOP2. SHOP2 is Hierar-

chical Task Network (HTN) planner. It starts from a general user request and de-

composes the request into lower level sub-tasks. To decompose tasks or user request,

it uses axioms, methods and operations created and stored using domain knowledge.

In this approach composition plan is created by searching component services while

planning . It uses rules to decompose the composite task step-by-step in order to

find a task that can be accomplished using a single service. Though this approach

does not need user intervention to generate composite service, creating the domain

knowledge makes it less applicable.

32

Most of the attempts to achieve dynamic composition techniques uses AI planning

techniques. For instance: Reiff-Marganiec[2008] proposes a composition approach

that extend planning problem as model checking using semantics. Services are mod-

eled as transition systems. S. Oh et al.(2007) also propose AI planning algorithm to

compose services. They have used forward search(for service discovery) and regres-

sion search algorithm (to generate optimal sequence) that uses heuristics. D.Berardi,

et al. [2008] modeled existing services as a finite state transition system. User request

is given as transition system of target services. Then by traversing the FST system

a composite service is generated. Service discovery and composition plan tasks are

done automatically (simultaneously) .

[12][11] states that the way they perceive web service composition problem is deter-

mined by how services are represented. In their approach web services are conceived

as an action and web service composition problem is perceived as planning problem.

They adapt and extend Golog language to formally represent web services to enable

automatic composition. Golog is a logic programming language built on top of the

situation calculus. User request and constraints represented by first order language

of situation calculus.

Thus, from discussions so far it can be seen that the complexity of creating the process

model automatically is one of the main bottle necks to-wards achieving dynamic

service composition.

In both forward and backward chaining cases the problem space is very large [9].

Some researchers try to combine forward and backward chaining in order to speedup

the search process. For example [6] describes a technique to discover and compose web

service using syntactical and semantical knowledge. In this work the starting point

33

of the composition is the input and output of the user request. It has two ways, the

first one is forward chaining mechanism that starts from the input of the request and

discovers services by matching the inputs and then again try to find service which

has the same input as the service output discovered in the first step (same input

as user request). It repeats this step till it gets the output of the request or when

the backward chain procedure gets a service input that matches the output of the

service found by forward chain. The backward chaining starts from output of the

user request and ends at the input or when it finds a matching service input from the

discovered services in forward chain procedure. The two procedures run concurrently

to speedup the service discovery process. After discovering all the necessary services

another procedure performs the service composition task by linking a chain of services

using one service output with input of the other service.

In AI planning approach composition problem is changed into planning problem in

order to find the solution using various planning techniques. Normally, AI-planning

problem is defined by a set of initial states, target states (the goal of the plan to

be generated) and set of actions. The objective of planner will be to find a path or

sequence of action that takes from the initial state to the target state by assuming

that there is a knowledge about the set of all possible states of the world and set of

actions. The main difference among AI planning methods used in service composition

is the way the represent the knowledge and the usage of algorithms. These techniques

work only when we have complete information about the existing services and their

transition. Considering the fast growth of Web services, building a full knowledge

base by converting all Web services into axioms will be expensive. Moreover, when

the knowledge base description is direct map from existing web services the search

space becomes big. That is why they mostly work in closed world assumption.

34

As a summary of all web service composition techniques explained above, Table 2.2

compares the different approaches with the following six comparison criteria.

1. PM generation: The way process model generation is performed (manual/

template-based/ automatic)

2. Domain knowledge: whether the approache uses domain knowledge or not

(yes/no)

3. Simple/ complex PM : when the output process model by the composition

approach includes only one control flow (sequential) it is categorized as simple

PM, when the output PM includes two or more control flows (out of sequential,

alternative, concurrent) it is categorized as complex PM;

4. Cycle in PM : whether the approach considers cyclic dependency or loop control

flow

5. Closed world: whether the approach is applicable to a single domain or it works

across any domains (yes/ no)

6. Semantic usage: whether the approach uses semantics or not (yes/ no)

35

Table 2.2 : Comparison table for composition techniques

Year Author Approach PM genera-

tion

Domain

knowl-

edge

Simple/

complex

PM

Cycle

in

PM

Closed

world

Semantic

usage

2004 M.P. Papazoglou et

al.

manual no yes complex yes no no

2004 Altintas et al., (Ke-

pler)

manual no yes complex yes no no

2003 B.Medjahed, et al. Sem-dynamic no yes complex NA yes yes

2003 Sivashanmugam et al. Template

based

no yes both NA no no

2006 M. Fluegge et al. Model based no yes complex NA yes Yes

2003 B.Limthanmaphon

and Y. Zhang

Case base

reasoning

yes yes complex no yes yes

2006 Ramasamy, V. chaining yes no sequential no - yes

2002 S.R. Ponnekanti and

A.Fox

Planning yes yes sequential no yes no

2004 E. Sirin et al. HTN yes yes sequential no yes no

2007 H. Meyer and

M.Weske

Heuristic

Search

yes yes complex no yes no

2007 Seog-Chan O. et al planning yes yes sequential no yes no

2008 D.Berardi FSM yes yes - yes yes no

2008 H. Q. Yu and S. Reiff-

Marganiec

Planning yes no sequential - yes no

2009 McIlraith et.al Golog yes no NA - yes yes

2009 Y. Bo and Q. Zheng graph plan yes yes sequence yes yes yes

2.2.4 Summary on characteristics of static and dynamic composition tech-

niques

Comparisons of static and dynamic composition techniques is given in table 2.3 below

in a self explanatory way.

36

Table 2.3 : Comparison of static and dynamic composition techniques

Criteria Static Dynamic

Process model generation time Design/compile time Run time(Late)

Service Discovery/selection

time

Design/compile time Run time

Service binding Design/compile time (Early)

i.e each instantiation of the

composite service will be made

up of the same constituent ser-

vices.

Runtime(late)

Composition Design compile time Run time

Customization at run time Not possible Possible

Run time capability extension Not possible Possible

number of services provided Limited Not limited

Cost Constant Varies depending of the service selected

Fault tolerance and reliability Less High specifically in case a service becomes un-

available after some time which can be com-

pensated by invocation of functionally equiva-

lent service

Adaptability to changing envi-

ronment

Less (eg. Old services are re-

placed by other ones inconsis-

tence might be caused)

High (since service providers frequently leaving

and joining)

37

Chapter 3

The proposed approach: automatic process model

creation

This chapter describes the proposed approach. It starts by formulating the compos-

ite service problem. Following that, the adopted formalism for a web service, a user

request and a composite service will be presented. Then, to facilitate easy understand-

ing of the problem in focus and the proposed high level architecture description, a

simple example will be given. A description of a more complex and complete example

scenario that will be used throughout the thesis, in the explanation and illustration

of the details of the proposed approach, will be given in chapter 4. Finally, a high

level architecture that shows the proposed approach and its brief explanation at a

conceptual level is illustrated with a simple example scenario. Further details of the

proposed architecture are discussed in chapter 4, 5 and 6. The chapter is concluded

by summarizing the proposed approach.

3.1 Problem formulation

A service composition process involves finding and combining services for a user re-

quest that can not be satisfied a single service. The partition of major tasks in service

composition (these are process model creation, component abstract service (subtask)

discovery and concrete service binding) could lead to different ways of understanding

38

composition problem. While developing composition techniques, many researchers

integrate one, two or all of the three subtasks of composition. For example, [22]

perceives a service composition problem as the extended version of a matching prob-

lem. [48] proposes an approach which simultaneously does all the three major tasks

of a service composition discussed above. A body of work by [6, 49, 50] provides

composition techniques that combine the service discovery and the composition plan

generation tasks. We believe that looking at each part of the composition subtask

as a sub-problem of a service composition instead of considering them as a whole

minimizes the complexity of a composition problem. As a result in this thesis a com-

position problem is seen as three problems that could potentially interrelate with each

other, these are:

1. Task decomposition or component service description identification based on

user request.

2. Creation of a process model for the identified subtask or an abstract service

description.

3. Concrete service binding problem.

Based on this composition task division, a complete composition problem and a gen-

eral solution approach is formulated as follows:

Given a local repository with list of abstract service descriptions and a user request

in which each abstract service description represents a collection of services (service

community) that provide the same functionality, composite services that satisfy a

user request could be created in three steps. First, using a goal-based match-making

39

technique abstract service descriptions can be discovered to satisfy the goals of a user

request. Then, the process model or composition plan should be generated in order to

combine the component abstract services and form a composite service. Finally, the

concrete service binding subtask should be done by selecting a service from members

of the service community represented by abstract description and considering non-

functional properties.

The main focus of this thesis is on the second task, i.e., a process model creation.

The other two problems are out of the scope of this thesis. Therefore, the process

model generation sub-problem deals with:

“ Given a list of component abstract service descriptions to be composed and a formal

user request, how can it be possible to generate a process model or a composition

plan for the composite service automatically? ”

3.2 User request, abstract service and composite service spec-

ification

Extracting dependencies from the candidate services requires a suitable way of de-

scribing web services and user requests. Specifically our approach necessitates a

formalization that has a functional abstract description of web services. Functional

properties describe what the service exactly can do in the form of inputs, outputs,

pre-conditions, and effects. These are used to perform the service discovery, matching

and composition.

Although a user-request is in the form of a natural language, there are natural lan-

40

guage processing techniques that parse a request and convert it into a formal descrip-

tion. This formal user request can be formulated as a web service. For our purpose,

a similar description with OWL-S [32], both for web service and user request descrip-

tions that includes a tuple (I, O, P, E, G) is taken. where:

• I: is the list of input parameters.

• O: is the list of output parameters.

• P: is the list of preconditions (describing logical expressions that must be

satisfied in order to invoke a (composite) service).

• E: is the list of effects (describing the changes to the current state resulting

from the invocation of a (composite) service).

• G: is the list of goals.

3.3 Case study description

As a case study, an example of an e-health scenario that is partly taken from [25] is

considered. This scenario assumes existing medical applications and devices interfaced

by web services. By creating a composition of devices (a composition of devices

wrapped as web services) one can enable an on-line patient follow-up, to reduce time-

consuming consultations and medical checkups.

For this scenario, the following web services are considered: WS1 returns the blood

pressure (BP) of a patient given the PatientID (PID) and DeviceAddress (ADD); WS2

returns the supervisor (Person) given a medical organization (Org) (Org is a general

41

term for different departments); WS3 returns a Warning level (WL) given a blood

pressure; WS4 returns the Emergency department(ED) given a level of Warning; WS5

returns the Organization (Org) given a Warning level. Table 3.1 shows the inputs

and outputs of each service.

Table 3.1 : E-health scenario Input/Output description

Web services Inputs Source web service Outputs

WS1 PID,ADD User request BP

WS2 Org WS5 Person

WS3 BP WS1 WL

WS4 WL WS3 ED

WS5 WL WS3 Org

3.4 Architecture

This section provides an overview of the proposed general architecture followed by

a brief description of each component of the architecture [51] using the example

scenario.

3.4.1 Candidate abstract service description selection

Figure 3.1 shows the proposed three layered general architecture. The first layer

consists of a data repository, an incoming user request and a service matching module.

The data repository contains a statically available list of abstract semantic service

42

descriptions in a specified format as discussed in section 3.2. The abstract service

description is a description of a group of services, which are sometimes called a service

community, with an equivalent functionality. In otherwords, an abstract descripton

is a single functional description for all functionally equivalent available services in a

repository, regardless of their quality(non functional property). A user is expected to

describe his or her request in terms of goals, inputs and outputs to facilitate candidate

service discovery. Thus candidate abstract services will be discovered from the local

repository using a goal based discovery mechanism based on a user requirement. For

the e-health scenario, the services described in section 3.3 are assumed to be candidate

services discovered by the matching module (see the architecture in figure 3.1) which

has a goal based discovery mechanism. Table 3.1 gives the input/output descriptions

of the candidate abstract services; the third column of the table shows from where a

service gets its inputs. This description is given here to clearly show the dependency

generation process which is the bottomline for the full composition steps. Otherwise,

the research doesnt́ deal with the abstract service discovery mechanisms and this

thesis does not further discuss it.

43

Abstract service
description repository Matching User request

description

Dependency generator

Dependency analyzer

Dependency repository

Process model generator

Evaluator

Service Discovery and Binding

Selected services & request

Figure 3.1 : Architecture

The second layer, which is the core part of this thesis, consists of a data repository

and six modules which are responsible for creating the process model using the output

of the first layer. The dependency repository contains service dependencies occurring

during composition. The role of each module in this layer is described as follows:

3.4.2 Service dependency generator

Although service descriptions are expected to include semantic annotations to facili-

tate the dependency extraction process, dependencies are not expected to be included

in such descriptions. This is because, firstly, it requires prior knowledge about com-

position requirements of services at design time and this limits flexibility. Secondly, a

service could have different types of dependencies for different composition requests.

44

This means, achieving a comprehensive prior knowledge of dependencies is unlikely.

Therefore, incorporating semantic dependency description in a service description is

unpractical. We proposed an architecture that has an automatic dependency gener-

ator module.

The module extracts service dependencies upon receiving a formal description of the

user request and a list of semantic service descriptions. The dependency extraction

is based on two inputs received from layer one; these are semantic description of

abstract services and a user request with an additional annotation that enables the

dependency generator to extract different dependencies. The extracted dependencies

will be represented in an appropriate data structure and will be stored in the depen-

dency repository ready for a further use or re-use when needed. For example, for the

e-health scenario, WS2 is dependent on WS5. Such dependencies among services and

other dependencies between services and a user request can be found by using IOPE

matching with a support of semantic descriptions.

Service dependency representation

Dependency can be represented as a graph or equivalently as an adjacency matrix.

For example [39], [41], [40], [22], [21] and [20] use a graph to represent dependency.

[42] and [16] represent dependencies as a matrix.

Most of the approaches in the related work agree on the general representation of ser-

vice dependency, i.e. the representation of semantics is more or less the same, except

for a slight difference in the detail(syntax). For example, some construct service de-

pendency graph(SDG) as a directed graph with service nodes and dependency edges,

45

and others represent with parameter (data) nodes and service edges. Such kind of

a difference is only a syntactic difference that result while trying to fit the specific

application area or the proposed algorithm. There is also no global agreement in

syntax for dependency representation either as a graph or a matrix.

In this thesis, a directed graph and an adjacency matrix are used to represent I/O

dependencies among services. The reason why both representations are used is due to

the existence of advantages and disadvantages in both approaches. For instance, for

a very dense dependency, a matrix model is more appropriate than a graph in terms

of space complexity. Moreover, the representation has significant influence on the

computational complexity of the algorithm in use. If, for example the algorithm has

an adjacent node search operation, with matrix representation, a single adjacent node

search takes only one value check. It could take O(E)(where E=Edges) operation in

case of a graph. On the other hand, if the algorithm requires the checking of neigh-

boring nodes, a matrix representation takes O(n)(where n=number os nodes); this

will be O(E) operations for a graph representation. Thus, based on the application

dominant feature different representation can be used.

A matrix that models a dependency is a square matrix (nxn) where n equals the

number of available services to form the composite service. Each row and column

represents a candidate web service ((WSi)) for the composition. Let a composite

service requires n web services: WS1,WS2, ...WSn. Then the dependency matrix

(DM) is defined as:

DM=

C11 · · · C1n

...
. . .

...

Cn1 · · · Cnn

whereCij =

1, if WSi is dependent on WSj

0, if otherwise

46

Figure 3.2 : Dependency representation using directed graph

If a service on the ith column is dependent on a service on the jth row, then the Cij

value of the matrix will be 1, otherwise, it will be zero.

A directed graph, which can be equivalently represented by an adjacency matrix, can

also be used to represent dependencies between services. Let a directed graph that

models dependency has n nodes, where n equals to the available services to form

the composite service and edges of the graph represent the dependency link. The

edge direction indicates the service dependency flow. For instance, if the ith service is

dependent on the jth service then there will be a directed edge from Si to Sj, where

Si and Sj are represented by nodes.

3.4.3 Extracting cyclic dependency

The dependency graph or matrix shows either unidirectional or bidirectional com-

munication between services. In a unidirectional communication, one service gives

its outputs and the other receives.them. As a result there will be a one way de-

pendency between a service input provider and receiver. When all dependencies are

unidirectional, the dependency graph will also be direct acyclic graph. In cases of a

bidirectional communication, a service starts execution and gives a partial output to

another service and waits for a reply to finish an execution. Or sometimes service(s)

47

might need more than one invocation to accomplish a task. In such cases, the de-

pendency graph or matrix will include a cyclic dependency. However, in case of the

existence of cycles, most of the existing approaches that use dependency graph and/or

matrix for various applications face difficulty, because their basic assumption is the

non-existence of a cyclic dependency. As a result, finding and extracting a cyclic

dependency is compulsory for any approach that uses a service dependency. In this

research, we propose a method for extracting cyclic dependencies and regeneration of

an acyclic dependency graph/ or matrix as a first step in generation of composition

plan [52].

A cyclic dependency extraction takes place in both proposed approaches. In the

matrix based approach a power matrix based algorithm is used to extract the cyclic

dependency. In section 5.2 a detail explanation can be found. In the graph based

approach the Tarjan algorithm [53] is used which is originally proposed to find strongly

connected components in a directed graph. The algorithm can also enumerates all

cycles by taking the directed dependency graph in the form of an adjacency list.

By considering each cyclic component subgraph as a compound node, a new acyclic

graph is generated. In section 6.3 a detail explanation of the Tarjan algorithm and

its implementation is given in chapter 7.

3.4.4 Dependency analyzer

This module takes the service dependencies stored by the dependency generator as

an input and it analyzes them to put them in an understandable and interpretable

format. The analyzer has a key role in processing and converting raw dependency

data into data that are more applicable. Anticipated application areas are alter-

48

native process model generation, development of process adaptability or composite

service management. The approach proposed in this thesis analyzes a dependency by

counting the number of services dependent on it (N1), number of services a service

is dependent on (N2) and the dependency between a service and a user request(s),

which provide the priority level of a service.

When the dependency represented in matrix form N1 is found by adding the columns

of the full dependency matrix(direct and indirect). Similarly N2 is found by adding

the rows of the full dependency matrix. In case of a graph, they can be found by

counting incoming and outgoing edges. For the example scenario considered here WS1

has higher execution priority because it takes inputs directly from the user request.

But WS5 has the least priority since WS5 takes inputs from WS3 and WS3 takes

inputs from WS1. This shows WS5 is dependent on two services, WS3 and WS1.

3.4.5 Process model generator

A process model, that will be generated by the proposed approach, gives services

invocation orders based on the data dependency. It provides core constituents of a

composite service which is given by a composite service structure description. Nev-

ertheless, it needs an additional enhancement before final deployment. For instance,

inclusion of data transformations, mapping, translation and transactions.

The composite service structure description holds information about service compo-

nents and how they interconnect with each other. This includes possible control flows

that form the process model. Both structural and behavioral relationships among the

component services of a composite service can be determined from their dependency.

49

As discussed before, the dependency extraction among the component services is vi-

tal for this step, and it can be supported by the semantic description of services.

The possible control flows that form the process model are sequential, alternative,

concurrent and iterative. Thus, by taking the analyzer outputs, the process model

generator will further interpret and associate it with any of the control flows. By

doing so, the process model generator tries to create possible process models for the

intended composite service. For the e-health this sequential process model found by

simply sorting based on the number of services a particular service dependent on :

WS1 ⇒ WS3 ⇒ WS5 ⇒ WS2 ⇒ WS4.

In case of a graph representation, the execution plan is generated using a topologi-

cal sorting algorithm. A topological sorting is often used in scheduling jobs or tasks

given precedence constraints. In our case, the precedence constraint is the dependency

graph. It takes an acyclic graph and outputs linear ordering tasks (nodes/services).

We adopt the modified topological sorting that is used to sort threads that can be

executed concurrently [54](see algorithm 8 in chapter 6). The composition plan gen-

erated by this algorithm for the travel scenario is given in figure 3.3.

In the proposed architecture, the dependency analyzer is coupled with the process

model generator, so that they work interactively and iteratively.

50

Figure 3.3 : Process model

3.4.6 Validator/Evaluator

The validator is responsible for checking the correctness of the generated process

model(s) based on a temporal or an execution order. If the generated process model

does not fully or partially satisfy the dependency pre-requiste then it should be ex-

cluded.

The evaluator is responsible to evaluate and compare the generated process models.

3.5 Chapter summary and conclusions

Dependencies reflect the potential of a service to affect or be affected by the elements

of other services that compose the application. Analysing and tracking of dependen-

cies is important in SOA management. However, little attention is given to it so far

to-wards the usage of a service dependency in an automatic service composition. In

this thesis, we argue that a semantic description of web services and user request

enables detection of dependencies between services automatically. This in turn al-

51

lows the automatic creation of composite services. We believe that the proposed

architecture will enable to consider a service composition as a service dependency

identification and analysis problem. This opening ways for developing more flexible

and scalable applications from smaller, semantically described services.

53

Chapter 4

Automatic service dependency extraction

As mentioned in section 1.2 the main focus of this thesis is on establishing automatic

process model creation methods based on an automatic extraction of dependency

among web services. In this chapter, details of the automatic dependency extraction

process and the description of an example scenario will be presented. The example

scenario described in section 4.1 will be used throughout the thesis for illustrating

the proposed methodologies.

4.1 Description of example scenario

To demonstrate the applicability of the proposed methodologies an on-line shopping

scenario is considered. For the sake of clarity the real life scenario is slightly modified,

without losing its main features, so that it can effectively demonstrate the proposed

approaches step by step.

In an on-line shopping consumers typically browse through an on-line catalog to view

the products offered for sale, purchase the products based on their preferences and

get them delivered. To accomplish these sub-tasks from viewing the product detail

to receiving the product at their gate, the following specific tasks shall be executed:

• displaying products information,

54

• checking availability of the product requested by a user,

• offering different shipping methods (express or normal) and determine a delivery

date based on the weather forecast,

• insuring the product,

• calculating the total price based on the tax amount, the insurance charge and

the delivery cost,

• locating the user (identifying location of a user from IP or based on information

obtained from completed address form),

• show the total price for the user in his local currency, and

• verifying payment information.

Table 4.1 shows the input and output description of 12 web services that are presumed

as requirements to accomplish an on-line shopping.

55

Table 4.1 : On-line shopping scenario study Input/Output description

WS name Inputs Source WS Outputs

WS1

OnlineCatalog Item selection UR Item detail={

Item category

Item code

Item quantity

Item Price

Item value}

IP address

WS2 CustomerLocator IP address WS1 Customer location

WS3

ItemChecker Item category WS1 Availability

Item code Number of Items

Item quantity

Number of Item WS3

WS4
TaxCalculator Item category WS1 Tax amount

Item Price

WS5

Insurance Item category WS1 Insurance reference

Item quantity Insurance cost

Item Price

Item value

WS6 GetItem Availability WS3 Location

WS7

PriceCalculator Item price WS1 Total price

Tax amount WS4

Insurance cost WS5

Delivery cost WS10

WS8
POC Item detail WS1 Purchase order

Total price in local cur-

rency

WS12

WS9
WeatherForecast Item location WS6 Weather

Customer location WS2

WS10
Delivery Weather WS9 Delivery cost

Item detail WS1 Delivery order

Receipt (payment confir-

mation)

WS11 Tracking number

WS11 Payment Purchase Order WS8 Receipt

WS12 Currency converter Total price WS7 Total price in local cur-

rency

56

To observe the logical execution order of individual web services in a composition,

the scenario is analyzed and data-flow diagram is created manually. Figure 4.1 shows

the manually generated data-flow of the on-line shopping scenario. This provides

a benchmark to cross check the correctness of the process models generated by the

proposed approaches. It also provides a perspective on the stepwise execution of tasks

in order to accomplish a requested task.

The web services involved are explained as follows:

1. A user browses the on-line catalog service (WS1) to choose items he/she wants

to buy. This service provides the user with data on item details and it serves

as interface to receive the input from the user. When the user selects an item,

the on-line catalog service outputs information about the details of the selected

item (Item category, Item code, Item price, item value, and quantity). Also the

catalog takes preliminary customer information (mainly customer IP address).

2. The Customer locator (WS2) gets the IP address from the catalog service and

outputs customer location. It prompts the user to change or edit customer

location information as required.

3. The tax Calculator (WS4) takes the item name, category and price from the

on-line Catalog service and calculates tax and provides information about the

tax amount to the total price calculator.

4. The item availability checker (WS3) inputs item details provided by the catalog

service in step one and checks the availability of the selected items in stock at

the required quantity. This service first counts the number of items requested

and checks the availability of all items. Based on this count value it may

57

execute more than once (self loop) when more than one item is selected. It

also checks the availability of the selected item(s) first in a stock. If the item

is not available in the stock then it checks the availability of this item with

other vendors or manufacturers. If the requested item is found then it sends

confirmation otherwise, in case the item is not available neither in the stock nor

with other vendors or manufacturer, it ends the process.

5. The insurance service (WS5) calculates insurance cost by taking an item code,

name and price from the catalog service. Then outputs an insurance cost and

an insurance number.

6. The get item service (WS6) returns the item location by taking the item avail-

ability from the item availability checker.

7. The price calculator service (WS7) returns the total price given an item’s basic

price, an insurance cost, a tax and a delivery cost.

8. The weather forecast (WS9) service gets a customer location from the customer

locator, an item location from the get item service and outputs the weather

forecast at the item and customer location.

9. The currency converter (WS12) returns the total price in local currency as well

as in Euros by taking a customer location and a total price.

10. The delivery service (WS10) gets information on an item category (from cat-

alog), an item location (from get item), a customer location(from customer

locator), and weather both at customer and item location (from weather fore-

cast) and then returns the delivery cost to the total price calculator. It then

58

waits for the payment confirmation before returning the delivery order and the

tracking number for the end user.

11. The purchase order creator POC (WS8) gets basic inputs from the catalog ser-

vice and the total price from the currency converter and generates the Purchase

Order (PO) for the selected items and sends the PO to the payment service.

12. The payment service (WS11) takes PO from POC and it provides alternative

payment methods (pay pal or credit card) to a user. When the payment is

made it sends the payment confirmation receipt to the end user and the delivery

service. When the payment confirmation reaches the delivery service, it gives

delivery order and returns the tracking number to the end user. Here, it should

be noted that there is a bi-directional communication(cycle) among the delivery

and the payment service.

59

Tracking number, delivery date

Web service name

Web service outputs

Online catalog(WS1)

Item detail (Item category, code, quantity, price,
value), IP address

Customer locator (WS2)

Customer location

IP address

Item availability checker (WS3)

Availability, More items

Item details

Tax calculator (WS4)

Tax amount

Insurance (WS5)

Insurance cost, reference number

item name, category and price

item code,name and price

Get Item (WS6)

Item location

Availablity

Price calculator (WS7)

Total price

Insurance costItem price

Tax amount

Purchase order Creator (WS8)

Purchase Order (PO)

Total price

Currency converter (WS12)

Price in local currency

Total price in local currency
Weather Forecast (WS9)

Weather

Customer location

Delivery (WS10)

Delivery cost, Tracking number

Delivery cost

Payment (WS11)

Payment confirmation

PO

end Payment confirmation

begin
User input

Item location

Payment confirmation

More items

Legend

Figure 4.1 : Data flow diagram

60

4.2 Service dependency identification

The establishment of a composite services based application necessitates interaction,

and data exchange among individual component services. This leads to the emergence

of different types of dependencies among the services involved in the composition, such

as:

1. Input/Output (I/O) dependency: this occurs when a service requires or provides

data from/to another service. For example, in the on-line shopping scenario

since WS2 (customer locator) gets its input from WS1 (on-line catalog), WS2

has I/O dependency on WS1.

2. Constraint dependency: this occurs due to user constraints. For example, based

on a user choice the insurance cost could be added or escaped.

3. Cause and effect dependency: this occurs when a service has preconditions to

be satisfied based on the effects of other services. For example, the delivery

service needs the completion of a payment service before it sends the delivery

confirmation (tracking number).

Such dependencies between two services could occur directly, which we call a direct

dependency or it might occur indirectly through (an) intermediate service(s), which

we call indirect dependency. Service dependency can also occur in an explicit or

an implicit manner. Explicit direct I/O dependencies among services occur when a

service requires/or provides data from/to another service. An explicit dependency

can be readily visible and extractable from service descriptions. On the other hand

61

an implicit dependency can not be directly expressed in service descriptions. In this

thesis, we used direct dependency and explicit direct dependency interchangeably.

Generally, managing dependencies is considered to be the basis for defining task (ser-

vice) coordination mechanisms [55]. Sequential, alternative, iterative and concurrent

coordination mechanisms are the basic coordination mechanism in any business pro-

cess or dependency management. These coordination mechanisms are used during

process model creation for the composite services.

The two proposed approaches start with automatic extraction of I/O dependencies

among candidate abstract services for the composition. The first approach, i.e. depen-

dency matrix based approach (chapter 5), utilizes a two stepped I/O dependencies

extraction procedure. The dependencies are represented using a matrix. The first

step is the extraction of direct I/O dependency and storing it in a matrix (Direct

Dependency Matrix(DDM)). The second is extraction of indirect dependency and

storing it in a matrix(Indirect Dependency Matrix (IDM)) from the DDM. Then

summing up the two dependency matrices provides the full I/O dependency matrix

(Full Dependency Matrix (FDM)). The other alternative way is directly extracting full

dependency from direct dependency. The issue of service dependency representation

using matrix is discussed in section 3.4.2.

The second approach, i.e. dependency graph based approach (chapter 6), uses only

the explicit direct dependency. It represents the dependency using a directed graph

(see chapter 3.4.2).

62

4.2.1 Explicit direct Input/Output dependency extraction

An explicit direct I/O dependency between two services exists if at least one output

of a service is taken as an input by the other service. During a service composition,

all inputs of web services are either from a user request or from another web service.

For the purpose of explaining the proposed approach we used an example that has

almost perfect match between I/O parameters described in section 4.1. However, in

real case scenario it is not possible to get services whose interface shows a perfect

match. In our approach we use the concept of finding semantic similarity between

service inputs and outputs. Thus, the extraction of explicit direct I/O dependency

is done using semantically enabled I/O matching technique, which is adopted from

[35]. It uses the following three semantic I/O matching functions proposed in [35]

and intersection of I/O parameter sets proposed in [36]:

1. Exact I/O matching function: this matching occurs when the output parameter

of one web service (say WS1) and the input parameter of another web service

(say WS2) are equivalent concepts, where WS1 and WS2 are services whose

dependency is being assessed.

2. Plug in function: this matching occurs when output of WS1 is sub-concept

of input WS2; for example, if WS2 (customer locator) of the on-line shopping

scenario outputs full address of the customer that includes (city name, zip code,

telephone etc) and WS9 (weather forecast) might require only the city name.

The input of WS9 is a sub-concept of the output of WS2.

3. Intersection: this occurs when the intersection of the output of WS1 and the

input WS2 is satisfiable. For example, from the on-line scenario

63

Input(GetItem)
⋂
Output(onlinecatalog) = {(Itemcategory, Itemcode, Itemquantity}

4. Fail : if all the above conditions are not satisfied.

Figure 4.2 schematizes the dependency matrix extraction process which is the detailed

version of the first module of the second layer of the general architecture presented

in chapter 3 (figure 3.1).

The dependency generator checks the intersection between the whole set of input

parameters of one service with the whole set of output parameters of the other service.

To do the intersection operation each input parameter should be checked with the

output parameter using exact or plug in function. i.e. In(WS1)
⋂
Out(WS2) 6= φ,

If and only if at least one pair of parameter sets (each from Input (WS1) and Output

(WS2)) has either exact or plug-in relationship, then there is dependency between

the two services. This check is done because the main aim is to find out from which

services a particular service gets its inputs, i.e. on which services it is dependent on.

64

I/O matching

Abstract candidate
service description

Formal user request
description

Dependency repository

end

Begin

ontology

.

Figure 4.2 : Dependency matrix extraction

By applying this function the explicit direct dependency of the on-line shopping

example scenario is extracted. This extracted service dependency can be represented

as a matrix or a graph. Mapping from a graph to a matrix and from a matrix to a

graph is possible. Therefore, if the matrix is available, the corresponding graph can

be drawn or vice-versa. So, without loss of generality, here it is decided to store the

dependency among component services of the scenario in the form of a matrix. Matrix

5.1 shows the explicit direct input/output dependencies for the scenario described in

section 4.1. The dependency graph can be drawn directly from the dependency matrix

when required.

65

Matrix 4.1 Direct dependency matrix for on-line shopping scenario

DDM =

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9 WS10 WS11 WS12

WS1 0 0 0 0 0 0 0 0 0 0 0 0

WS2 1 0 0 0 0 0 0 0 0 0 0 0

WS3 1 0 1 0 0 0 0 0 0 0 0 0

WS4 1 0 0 0 0 0 0 0 0 0 0 0

WS5 1 0 0 0 0 0 0 0 0 0 0 0

WS6 0 0 1 0 0 0 0 0 0 0 0 0

WS7 1 0 0 1 1 0 0 0 0 1 0 0

WS8 1 0 0 0 0 0 1 0 0 0 0 1

WS9 0 1 0 0 0 1 0 0 0 0 0 0

WS10 1 0 0 0 0 0 0 0 1 0 1 0

WS11 0 0 0 0 0 0 0 1 0 0 0 0

WS12 0 0 0 0 0 0 1 0 0 0 0 0

4.2.2 Indirect service dependency identification

Since dependency holds transitivity property one can extract an indirect I/O depen-

dencies between services from a direct I/O dependency. For example, if service B has

a direct dependency on service A and service C has a direct dependency on service

B then service C will have indirect dependency on service A. Thus, one should tra-

verse all possible explicit direct service dependency chains to extract explicit indirect

dependencies. This dependency chain is a linked list of services that starts from a

service in focus and terminates with a service that does not have an explicit direct de-

pendency with any service. The link between individual services in a chain represents

the explicit direct dependency between services.

Thus, an explicit indirect I/O dependency exists if and only if:

66

• a service has explicit direct dependency to at least one service,

• there exists service in a chain of explicit direct dependencies that does not have

an explicit direct dependency with a particular service in focus. For example,

one possible direct dependency chain of WS8 from on-line shopping scenario is

: WS8 ⇒ WS7 ⇒ WS4 ⇒ WS1 ⇒ none. From this chain, since WS8 also

has an explicit direct dependency with WS1, only an indirect dependency with

WS4 is counted. When representing indirect dependency all direct dependencies

should be excluded to control redundant counting of dependency.

The actual extraction of indirect dependency is done in two ways and the efficient

method is implemented. As a first attempt, the following algorithm is developed

based on a transitive closure property of dependency to generate the explicit indirect

dependency matrix from an explicit direct dependency matrix. It takes explicit direct

dependency matrix as input and returns an explicit indirect dependency matrix.

Algorithm 1 Indirect dependency extraction main function caller

1: INPUT : Direct Dependency Matrix (DDM)

2: n = number of services

3: i = 1

4: while i<=n do

5: Function(i, i)

6: i = i+ 1

7: end while

67

Algorithm 2 The recursive function of indirect dependency extraction

1: Function(k,m)

2: n = number of services

3: for j = 0 to n− 1 do

4: if DDM [j][k] = 1 then

5: if DDM [j][m]! = 1 then

6: IDM[j][m]=1

7: Function(j,m)

8: end if

9: end if

10: return 0

11: end for

Algorithm 1 refers to the call of the main recursive function in algorithm 2 for each

service in order to get all services a service has indirect dependency. In line 4 of

algorithm 1, the while loop shows the iterative call of an indirect dependency extractor

function for each service (n services). Two arguments are passed while calling the

recursive function. The first parameter stands for the last service in the services

dependency chain and the second one is for the service in which the search for indirect

dependency is being made. For one function call the recursive function tries to get

all possible dependency chains by making recursive calls. During the recursive calls

(till the recursive function returns the control to the caller) the second argument will

not be changed. This is because the argument is associated to the service for which

the caller is looking for indirect dependencies.

68

Algorithm 2 describes the recursive function that looks for chains of services to get

the indirect dependencies. This recursive function has two parameters. As mentioned

before the first parameter corresponds to the service in focus and the second corre-

sponds to the last service in the service dependency chain. In line 3, 4 and 5 of

this algorithm the dependency chains will be explored and an indirect dependency

matrix value will be assigned. The value checking at line 4 is done to exclude direct

dependencies inside an indirect dependency matrix. All direct dependencies should

be excluded to avoid redundancy. For example, for the on-line shopping scenario the

following chain of dependencies exists:

1. WS1 ⇒ none ; Since WS1 has no direct dependency to any service it doesn’t

have a chain of service dependencies which shows indirect dependency.

2. WS7⇒ WS1⇒ none; One possible service chain with only one direct depen-

dency.

WS7 ⇒ WS4 ⇒ WS3 ⇒ WS1 ⇒ none; in this chain there are 4 services.

The service in focus is WS7 that has direct dependency to WS4 and WS1 and

indirect dependency to WS3.

As a second attempt, the Warshall algorithm is used to find the transitive closure

of dependencies which generates a complete dependency matrix from explicit direct

dependency matrix. It takes explicit direct dependency matrix as input and returns

an full dependency matrix.

69

Algorithm 3 Warshall algorithm: indirect dependency extraction

1: Input : AdjacencymatrixDDMofnelements

2: Output : AdjacencymatrixFullDMofnelements

3: FullDM := DDM [initializeFullDMtoDDM]

4: for i = 0 to n do

5: for j = 0 to n do

6: if DDM [i][j] = 1 then

7: for k = 0 to n do

8: if DDM [j][k] == 1 then

9: FullDM[i][k]=1

10: end if

11: end for

12: end if

13: end for

14: end for

15: End of Warshall

Algorithm 3 describes the Warshall transitive closure algorithm that looks for chains of

services to get indirect dependencies. In line 6 this algorithm explores the dependency

chains and in line 8 the full dependency matrix value is assigned.

Both the above methods can be used to get the complete dependency matrix, which is

a combination of direct and indirect dependency, extracted from its direct dependency

matrix. But, both ways of the indirect dependency extractor algorithm work when

there is no cyclic dependency, otherwise it will enter into an infinite loop and results in

70

a stack overflow error. Therefore, cyclic dependency shall be identified and extracted

prior to indirect dependency extraction. It is found convenient to discuss method for

extracting cyclic dependency from matrix in section 5.2. The indirect dependency

extraction process description will continue in section 5.3.

Two equally valid process models can be created based on two calculated numbers

N1 and N2 above.

4.3 Chapter summary and discussion

This chapter provides the dependency extraction procedure which is based on seman-

tic description of web services and semantic enabled I/O matching techniques. This

step is crucial for the two proposed methods of process model generation that are

presented in the next two chapters. Both methods rely on the dependency extraction

method presented here. Figure 4.3 shows the general structure of the full methodol-

ogy of this thesis. It shows the input, expected output of the methodology and the

role of dependency extractor for the matrix based and the graph based approach.

71

Candidate service
description

Formal user
request

Matrix based
approach

Graph based
approach

D
ep

en
de

nc
y

ex
tr

ac
tio

n

Inputs

Process model

Output

Figure 4.3 : General approach structure

Since the dependency extraction process does one by one I/O matching, its complex-

ity in the worst case scenario is O (#(Input parameters) #(Output parameters)).

The first indirect dependency generator does recursive calls that vary with the direct

dependency in concern which makes the calculation of complexity difficult. Thus,

this will be checked during experimental evaluation. But the second way of indi-

rect dependency extraction is a known algorithm and its theoretical complexity is

O(n3)(where n is number of services).

The dependency considered in this thesis is only the I/O dependency aspect which

has a major contribution for composition plan generation. Unlike all other meth-

72

ods that construct dependency between all services in repository we generated de-

pendency between candidate services automatically. We believe, pre-computing all

possible semantic links (dependency) between services might lead to extended graph

that increases the complexity of plan creation. To generate composition plan the

majority dependency based composition techniques often used graph traverse algo-

rithms, this arose O(number of vertex * number of edge), which is fully dependent

on the number of edges and vertices that in turn is dependent on the number of ser-

vices in the repository(even services with same functionality). Therefore, compared

to the quadratic complexity of our approach this complexity is much bigger when

the number of services in repository increases. To tackle such complexity problem

in existing approaches, our approach assumes goal based candidate service discovery

upon receipt of user request. This approach takes those discovered candidate services,

extracts their dependency, analyzes it and then generates the composition plan.

Contrary to other proposed approaches our method explicitly shows which service

is dependent on which service in its dependency model. For example: casual link

matrix only shows the degree of similarity between Input and output parameters,

graph based composition techniques proposed by [22] shows the dependency between

services implicitly but the dependency graph is generated at design time.

73

Chapter 5

Matrix based automatic process model generation

This chapter presents the proposed matrix based automatic process model genera-

tion approach [56]. This approach, first extracts direct dependencies from candidate

abstract service description. Then it automatically extracts existing indirect depen-

dencies from the direct dependency extracted earlier. For extracting indirect depen-

dencies the approach uses two alternative algorithms that is based on the transitive

closure property.

The approach uses a matrix to model the dependencies among web services. The

matrix values are either 1 or 0 depending on existence and non existence of depen-

dency, i.e. if a service on ith column is dependent on a service on jth row then the

Cij value of the matrix will be 1 otherwise it will be zero. This matrix representation

facilitates a simplistic mathematical dependency analysis for generating important

indicators during the automatic process model creation. The process model is gener-

ated using a sorting algorithm that uses the dependency matrix analysis result found

from dependency matrix as a sorting criteria.

First, a stepwise description of dependency matrix based automatic process model

generation is provided. Following that, a detailed explanation of each step of the PM

creation, with the help of example scenario, is presented. Finally, a summary of this

technique, advantages and its shortcomings are presented.

74

5.1 Automatic process model generation procedure

The detailed architecture of the proposed dependency matrix based approach is pro-

vided in figure 5.1. This approach uses two sets of information for automatic creation

of process model:

1. Direct dependencies among abstract candidate services,

2. A formal user request description.

Cyclic dependency
identifier

Dependency anayzer Process model generator

Formal user request
description

Dependency repository

Cycle exists Yes
Cycle free Dependency

matrix regeneration

Cycle free
DM

Indirect Dependency matrix
generation

NO

end

Begin

Direct and
 Indirect DM

Figure 5.1 : Dependency matrix based approach architecture

75

The steps for automatic PM generation are summarized as follows:

1. Construct direct I/O dependency matrix (DDM). (section 4.2.1)

2. Identify cyclic dependencies from a direct dependency matrix by computing a

power of matrix and then construct a cycle free direct I/O dependency matrix.

3. Identify an indirect I/O dependencies by recursively exploring the cycle free

direct dependencies and construct the indirect dependency matrix (IDM).

4. Merge the cycle free direct and the indirect dependencies and form one de-

pendency matrix (we call this Full dependency matrix (FDM)). Alternatively

construct the full dependency matrix from DDM in one step using the Warshall

algorithm, in this case step 3 should be skipped.

5. Calculate the number of services that depend on a particular service WSj by

adding respective values in the column j from a matrix found in step 4. We call

this number N1.

6. Calculate the number of services providing input to a particular service (say

WSi) by adding the row i values of DDM found in step 4. We call this number

N2.

7. Use simple sorting algorithm to generate a process model by sorting services

based on calculated values in step 5 and step 6 .

This is a simplified stepwise description of the process model generation architecture

schematized in figure 5.1. The detailed explanation on automatic explicit direct and

indirect dependency extraction procedure (step 1 and 3 of the PM generation process

76

above) is given in chapter 4. The other steps of the approach listed above are further

explained in the following successive sections.

5.2 Extracting cyclic dependency

As it is introduced in chapter 3 , cyclic dependency occurs when there is bidirectional

communication between services. Cycles in service dependency are indicators of an

iterative control flow among services participating in a cycle existing with in a process

model. Therefore, extracting the cyclic dependency is apparently among the major

steps of an automatic process model generation.

We have extensively explored a matrix properties with an intent of finding a property

that could indicate existence of cycles. From this exploration the following matrix

properties are found as indicators of a cyclic dependency, i.e. a cyclic dependency

exists when one of the following conditions are satisfied:

1. When a diagonal element of dependency matrix is 1. This implies a service

is dependent on itself. It also means only one service is involved in the cycle

which forms a self loop in the resulting process model. If more than one diagonal

elements of a matrix have a value of 1, then this indicates existence of more

than one self loop(cycle) in the process model. Symbolically, let i represent row

number, and j represent column number. For i=j if DDM[i, j]=1, then service

i is dependent on itself. Self-loops practical interpretation is, a service needs

to execute more than once to accomplish the composite task. As a result a

loop control flow should be attached to it. For example, the on-line shopping

scenario DDM (matrix 5.1) has value 1 on WS3(Item checker). This is because

77

WS3 needs to run a number of times to check the availability of all items

requested by the user. Such as, if a consumer chooses n different items then

WS3 runs n times to check the availability of all n items.

2. A value of 1 at the symmetrical elements of DDM indicates participation of

two services in a cycle. For example: if DM[i, j]=DM[j, i]=1 then ith and jth

element has a bidirectional communication. Its practical interpretation is that

the two services need to wait for each other to complete their execution.

3. A non-zero value at a diagonal element of nth power of a matrix indicates the

participation of n number of services in a cycle.

The first two cases are specific cases of the case listed under 3. The third case is

a general case for a cycle of any length (n). In case 1 and 3 the value of diagonal

elements of the DDM has a key role in cycle identification. From this observation,

in the proposed approach we used the third test, which incorporates the special case

given in one and two, for identification of cycle of any length k.

Testing self loop is trivial. It only requires checking the diagonal elements of the

dependency matrix(DDM). But, finding a cycle involving n (n ≥ 2) services and at

the same time specifically identifying the services involved demands the calculation

of nth power of a matrix, where n is the dimension of the matrix.

In the following sub-sections some reviews on selected matrix properties and their

implication in cyclic dependency extraction are presented. In this regard properties

of an adjacency matrix and a power of matrix are investigated.

78

5.2.1 Adjacency matrix

Definition 5.1 The adjacency matrix of a simple graph is a matrix with rows and

columns labeled by graph vertices(V), with a 1 or 0 in position (vi, vj) according to

whether vi and vj are adjacent or not. For a simple graph with no self-loops, the

adjacency matrix must have zeros on the diagonal.

The adjacency matrix represents all the paths of length 1. Each entry indicates

whether there is a path length 1 between the corresponding nodes or not. It also

tells us how many paths of length 1 are there between the two nodes. In our context

the adjacency matrix is same as the dependency matrix defined in section 3.4.2. The

value DM[i, j]=0 indicates no dependency between service i and j (no path between

ith and jth node) and value DM[i, j]=1 indicates there is dependency between service

i and j (there is path of length 1). Therefore, the self loop which is cycle of length

1 in adjacency matrix context occurs when the diagonal element (which is i = j

component) of the matrix has value 1. In our context the condition DM[i, j]=1 for

i = j indicates the existence of cyclic dependency on ith component service. This

implies a service is dependent on itself. It also means a service needs to execute more

than once to accomplish the part of the requested composite task.

5.2.2 Power of matrix

Definition 5.2 The power Ak of a matrix for a non-negative integer is defined as the

matrix product of k copies of A:

Ak = A.A.A....A (k times)

79

The detailed description from mathematical point of view of the relationship between

cycle existence and a power of adjacency matrix is presented in [57].

According to [57] an adjacency matrix contains all the information on paths of length

1. A non-zero value p at element aij (diagonal element) of nth power of a matrix

indicates existence of p paths(cycles) of length n. Note that when we are especially

looking for cycles only values of a diagonal elements(aij for i = j) are relevant. But,

when referring the general case of both cycles and open paths any element aij is of

interest. For example, if we take adjacency matrix and multiply it by itself (A2) the

result shows the number of paths between the node i and jof length 2. Consequently,

when we look at the diagonal elements it shows the existence of cycle of length 2

that begins and ends at that particular node. Therefore, a cyclic dependency of any

length involving n > 0 services can be found by calculating nth power of a dependency

matrix.

Specifically, the diagonal elements aii of An indicates the existence of p cycles of

length n that begin and ends at ith node. All nodes or services that participate in

the cycle will have the same non zero diagonal element value. To get and collect the

nodes(services) that contribute to the cycle, it is required to look all the diagonal

elements. In the simple case, which is one cycle of path length n, the number of

non-zero diagonal elements and path length (n) should be the same. But, when there

are more than one separate cycles of length n then the participant nodes will have a

value that is an integer multiple of n. There is a possibility that multiple laps could

be seen in power of matrix, i.e. any node(service) with n cycle could also show n ∗ i

cycles, where i is a positive integer. Therefore, one has to find a way to exclude

such cases. The maximum length of possible simple cycle is the same as number of

80

node(services). In [57] only the theoretical explanation of power of matrix in relation

to cycle from mathematical point of view is discussed. We adopted this theory and

applied to composition purpose.

From power of a matrix (An) one can get all the information on paths of length n

including cycles. For example, the on-line shopping scenario has cyclic dependency

of length 5 because the fifth power of the DDM (matrix 5.1) (DDM5) has non zero

diagonal elements for 5 services (see matrix 5.2). The detailed elaboration can be

found in section 5.2.3.

This theoretical explanation on an adjacency matrix and a power of a matrix given

above is applied in our approach to identify a cyclic dependency. We derived an

algorithm for extracting cyclic dependencies and to regenerate a cycle free dependency

matrix.

5.2.3 Cyclic dependency extraction procedure

An algorithm (algorithm 4) is derived to find cyclic dependency based on the theo-

retical explanation given in the preceding section. Algorithm 4 gives a procedure for

identifying cycles from DM and regenerating cycle free DM. The algorithm mainly

utilizes power of a matrix operation. The pseudocode of it is given in appendix 10.

Our aim is only to find simple cycles from dependency matrix and replace the par-

ticipant services in the cycle with a single compound node, and regenerate a cycle

free dependency matrix with the newly created compound node. This is done in two

steps. The first step is self loop extraction. The second step is extraction of cycles

with more than one participant service and replacement of the cyclic components

81

with a compound node. The extraction and replacement of cycles with more than

one participant service is done iteratively (see algorithm 4).

Algorithm 4 The cyclic dependency extraction procedure

1: Initialize n = 1

2: Check the diagonal elements of the original direct dependency matrix.

3: Collect and assign flag to all services with non-zero diagonal element value. The

flag will be used to assign loop control flow while generating a process model.

4: Reassign all the diagonal elements to zero. (This helps to eliminate multiple laps

and finding the cycles repeatedly. It is equivalent of removing the cyclic path

from the graph so that we won’t traverse it again.)

5: Multiply the dependency matrix by itself.

6: Increment n by 1.

7: Check the diagonal elements.

8: Collect all the diagonal elements(node or services) with non zero value.

9: If the number of nodes that has non zero diagonal value is equal to n then create

one compound node and replace all the participant services with the compound

node and go to step 12)

10: If the number of nodes that has non zero diagonal value is greater than n (which

is integer multiple of n) then there exists more than one cycle of path length n.

11: Trace the individual cycle participants using original dependency matrix values

and create compound node that replaces each cycle and go to step 12)

12: Regenerate the dependency matrix with the compound node replace-

ment(Algorithm 5).

13: Repeat from 5 to 12 till n equals dimension of the original dependency matrix.

82

Algorithm 5 gives a sub-procedure for regenerating cycle free DM with compound

node. The pseudocode code of this algorithm can be found in appendix 9.4

Algorithm 5 Regeneration of cycle-free dependency matrix sub-procedure

1: Get the compound node components(participant services in the cycle) and the

original dependency matrix.

2: Form a matrix with the compound nodes and the services that are not in com-

pound node.

3: Trace on which individual services each compound node is dependent, i.e. by

checking on which services each element of a compound node is dependent and

assign the cycle-free dependency matrix row values.

4: Trace which services are dependent on each compound node, i.e by checking

which services are dependent on each element of a compound service and assign

the cycle-free dependency matrix row values.

5: Assign the other cycle-free matrix values from initial dependency matrix values

(for individual services).

In the on-line shopping scenario there are two cyclic dependencies. The first one is

a self loop. This is the cyclic dependency involving only WS3 which is indicated by

diagonal element DDM[3, 3]=1 in the initial DDM (matrix 5.1). The second one is

a cyclic dependency involving 5 services (WS7, WS8, WS10, WS11 and WS12). The

process of extracting these two cycles using proposed algorithms is summarized as

follows:

1. The initial DDM has one non zero diagonal element which indicates that there

is a cyclic dependency that involves only one service and that can be identified

83

using step 2 of algorithm 4. Matrix 5.1 highlights the self loop in the initial

DDM of on-line shopping scenario. Then as it is mentioned in step 3 and 4 of

the algorithm it is required to remove the self loop indicator found in step 1 in

order to exclude multiple paths. So, in this case the diagonal value DDM[3, 3]

should be re-assigned to 0.

2. Calculating the power of matrix for k = 2 to 12 and simultaneously checking

the diagonal values at each step enables the identification of other cyclic depen-

dencies. The resulting power matrix of DDM (i.e DDMk) shows no diagonal

value has non zero value for k=2, 3, 4, 6, 7, 8, 9, 10, 11, and 12. This indicates

there is no cyclic dependency that involves 2, 3, 4, 6, 7, 8, 9, 10, 11 or 12 ser-

vices. However, the diagonal values for the fifth power of the DDM for WS7,

WS8, WS10, WS11 and WS12 are non-zero (see matrix 5.2). This shows there

is cyclic dependency among these services.

Matrix 5.1 Direct dependency matrix for on-line shopping scenario

DDM =

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9 WS10 WS11 WS12

WS1 0 0 0 0 0 0 0 0 0 0 0 0

WS2 1 0 0 0 0 0 0 0 0 0 0 0

WS3 1 0 1 0 0 0 0 0 0 0 0 0

WS4 1 0 0 0 0 0 0 0 0 0 0 0

WS5 1 0 0 0 0 0 0 0 0 0 0 0

WS6 0 0 1 0 0 0 0 0 0 0 0 0

WS7 1 0 0 1 1 0 0 0 0 1 0 0

WS8 1 0 0 0 0 0 1 0 0 0 0 1

WS9 0 1 0 0 0 1 0 0 0 0 0 0

WS10 1 0 0 0 0 0 0 0 1 0 1 0

WS11 0 0 0 0 0 0 0 1 0 0 0 0

WS12 0 0 0 0 0 0 1 0 0 0 0 0

84

Matrix 5.2 The firth power of direct dependency matrix of on-line shopping scenario

DDM5 =

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9 WS10 WS11 WS12

WS1 0 0 0 0 0 0 0 0 0 0 0 0

WS2 0 0 0 0 0 0 0 0 0 0 0 0

WS3 0 0 0 0 0 0 0 0 0 0 0 0

WS4 0 0 0 0 0 0 0 0 0 0 0 0

WS5 0 0 0 0 0 0 0 0 0 0 0 0

WS6 0 0 0 0 0 0 0 0 0 0 0 0

WS7 1 0 0 0 0 0 1 0 0 0 0 0

WS8 0 1 0 0 0 1 0 1 0 0 0 0

WS9 0 0 0 0 0 0 0 0 0 0 0 0

WS10 1 0 0 1 1 0 0 0 0 1 0 0

WS11 3 0 0 0 0 0 0 0 1 0 1 0

WS12 2 0 1 0 0 0 0 0 0 0 0 1

Algorithm 5 takes the identified cyclic components of the initial DDM (see matrix

5.2) and generates a cycle-free dependency matrix which is shown in the matrix 5.3).

This matrix has one compound node (CN1) that replaces WS7, WS8, WS10, WS11

and WS12 of the initial DDM.

Matrix 5.3 Cycle-free direct dependency matrix for on-line shopping scenario

DDM =

WS1 WS2 WS3 WS4 WS5 WS6 WS9 CN1

WS1 0 0 0 0 0 0 0 0

WS2 1 0 0 0 0 0 0 0

WS3 1 0 0 0 0 0 0 0

WS4 1 0 0 0 0 0 0 0

WS5 1 0 0 0 0 0 0 0

WS6 0 0 1 0 0 0 0 0

WS9 0 1 0 0 0 1 0 0

CN1 1 1 0 1 1 0 1 0

After finding the cyclic dependency the necessary control structures should be at-

85

tached to the respective services. And then the cyclic dependency indicators should

be eliminated from the matrix for the next step.

5.3 Construction of Explicit Indirect Dependency Matrix(IDM)

The discussion of explicit direct dependency extraction is covered in chapter 4. Algo-

rithm 1 (see section 4.2.2) takes cycle free direct dependency matrix(DDM) as input

and does recursive call of algorithm 2 (see section 4.2.2) and delivers an indirect

dependency matrix (IDM) that does not include any direct dependency(see section

matrix 5.4).

Matrix 5.4 Indirect dependency matrix for on-line shopping scenario

DDM =

WS1 WS2 WS3 WS4 WS5 WS6 WS9 CN1

WS1 0 0 0 0 0 0 0 0

WS2 0 0 0 0 0 0 0 0

WS3 0 0 0 0 0 0 0 0

WS4 0 0 0 0 0 0 0 0

WS5 0 0 0 0 0 0 0 0

WS6 1 0 0 0 0 0 0 0

WS9 1 0 1 0 0 0 0 0

CN1 0 0 1 0 0 1 0 0

5.4 Dependency matrix analysis

The dependency matrix analysis is done using full dependency matrix. The full

dependency matrix(FDM) is calculated by simply adding the direct(DDM) and the

indirect dependency matrices(IDM). Matrix 5.5 shows the full I/O dependency matrix

of the considered scenario. As alternative way the Warshall algorithm could be used

86

to get the full dependency matrix directly from a direct dependency matrix in one

step.

Matrix 5.5 Full dependency matrix for on-line shopping scenario

DDM =

WS1 WS2 WS3 WS4 WS5 WS6 WS9 CN1 N2

WS1 0 0 0 0 0 0 0 0 0

WS2 1 0 0 0 0 0 0 0 1

WS3 1 0 0 0 0 0 0 0 1

WS4 1 0 0 0 0 0 0 0 1

WS5 1 0 0 0 0 0 0 0 1

WS6 1 0 1 0 0 0 0 0 2

WS9 1 1 1 0 0 1 0 0 4

CN1 1 1 1 1 1 1 1 0 7

N1 7 2 3 1 1 2 1 0

From the full dependency matrix, which is free of cyclic dependency, we get two

straight forward but important indicators that decide the execution priority of ser-

vices. The indicators (N1 and N2) are given at the last row and last column of matrix

5.5.

The indicators are described as follows:

1. The number of other services that are dependent on a given service (represented

by N1).

This number can be calculated by counting services taking input directly from

output of a given service (explicit direct dependency) plus the number of services

that have explicit indirect I/O dependencies on it. From the FDM one can get

this value by adding each row of the matrix. Table 5.1 summarizes the result of

FDDM (DDM plus IDM). The second row (N1) of table 5.1 shows the number

87

Table 5.1 : Summary of dependency analyser output

Web services WS1 WS2 WS3 WS4 WS5 WS6 WS9 CN1

N1 7 2 3 1 1 2 1 0

N2 0 1 1 1 1 2 4 7

of services dependent on ith service. For example, there are 7 services dependent

on WS1. From this indicator it can be reached to a partial conclusion, that is,

if more services are dependent on a service then that service has higher priority.

Because, when m services are dependent on a service, definitely that particular

service should be executed before all m services that are dependent on it.

2. The number of services a given service is dependent on (represented by N2).

In a similar manner, as the first indicator, this number can also be found by

counting the number of services from which a given service takes input directly

(direct dependency) plus the number of services a service indirectly depends

on. From the FDM one can get this value by summing up each column of the

matrix. In table 5.1 the third row shows the number of services the jth service

depends on (N2). For example, WS2 is dependent on only one service. From this

indicator we can also reach to another partial conclusion that the more services

a service depends on the lesser priority that service has. This is because when

a service is dependent on m services this indicates that these m services on

which that service depends on should be executed before it. Therefore, from a

straight forward analysis of input/output dependency we got the two indicators

that provide equally valuable information for creating the process model.

88

5.5 Process model generation

Here, we discuss the application of the result of dependency analysis made using

the proposed approach for generating a process model with sequential, concurrent

and iterative control flows. Moreover, interpretations of results will be given. Two

possible process models can be generated using the two numbers described in section

5.4 as a sorting criteria in a simple sorting algorithm. The main logic behind using

sorting algorithm is summarizes using four rules as follows:

Rule 1: If WS1 is dependent on less services than WS2 then WS1 definitely is not

dependent on WS2 and WS1 can be executed before WS1.

Rule 2: If more services are dependent on WS1 than WS2 then WS1 is not dependent

on WS2 and WS1 can be executed before WS2.

Rule 3: If WS1 and WS2 is dependent on equal number of web services (only quatity

wise) then WS1 and WS2 are not dependent on each other and WS1 and WS2 can

be executed concurrently.

Rule 4: If equal number of services is dependent on WS1 and WS2 then WS1 and WS2

are not dependent on each other and WS1 and WS2 can be executed concurrently.

These possible process models generated are explained as follows:

1. Sorted based on N1:

This sorting is based on the number of services dependent on a particular service

in descending order. (See table 5.2)

2. Sorted based on N2:

This sorting is done based on how many other services a particular service

89

depends on in ascending order. This is because a service that depends on many

services logically should have lower priority compared to service dependent on

a smaller number of services. From rule 2 and rule 3 we have seen services with

equal value of N1 or N2 can be executed concurrently. In first case WS4, WS5,

and WS9 can be executed concurrently. The first case output process model is

shown in table 5.2 and figure 5.2. In the second case WS2, WS3, WS4 and WS5

can be executed concurrently. The resulting process model is given in table 5.3

and figure 5.3.

Table 5.2 : Sorted Based on N1 value in descending order

Web Service N1

WS1 7

WS3 3

WS2 2

WS6 2

WS4 1

WS5 1

WS9 1

CN1 0

90

WS1

WS5

WS4

WS2

WS6

WS9

endbegin CN1WS3

Figure 5.2 : Process model generated based on N1 value(PM1)

Table 5.3 : Sorted Based on N2 value in ascending order

Web services N2

WS1 0

WS2 1

WS3 1

WS4 1

WS5 1

WS6 2

WS9 4

CN1 7

91

WS1 WS6
WS4

WS2

WS5

WS9 Endbegin CN1
WS3

Figure 5.3 : Process model generated based on N2 value(PM2)

Two process models are equally valid and can be taken as two alternative process

models.

5.6 Chapter summary and discussion

The approach presented in this chapter represents the I/O dependencies as a matrix.

The matrix representation enables us to develop an algorithm to extract cyclic de-

pendencies and regenerate and cycle free dependency matrix. Moreover, it allows us

to do a simple mathematical analysis which provides two important indicators for the

composition plan generation.

The cyclic dependency extraction algorithm has a complexity of O (n5) . The com-

position plan generation algorithm complexity is equivalent to the sorting algorithm

used that is O (n ∗ n) with n being the number of services. Consequently, the over-

all approach complexity is equivalent to the cyclic dependency extraction algorithm,

which is of polynomial time.

We tested the applicability of the matrix based approach using case studies taken from

92

[22, 25] and other related papers. In all cases our approach gave a process models

that are similar to the ones in the papers reviewed. This has been of assistance to

empirically prove the aptness of the process model generated by the proposed method.

Further validation of the approach is discussed in chapter 7

The matrix model has already been used by [25] for service composition. Comparing

with the method in [25] which uses CLM matrix our approach uses a simple algorithm

to generate the process model, which we deem, makes it more efficient especially when

the numbers of candidate services are high. CLM based technique does not offer a

means to identify cyclic dependencies. The author explicitly mentioned that their

approach does not work when there is cyclic dependency.

The simplified nature of the proposed methodology increases its applicability in real

world scenarios. We have tested the method at a conceptual level making use of

scenarios having from 3 to 11 web services. For these scenarios the output pro-

cess model was valid. Thus, we intend to extend this approach to be able to find

complex parameter dependencies, and for exploring other dependencies, for instance

Pre-condition/Effect dependencies, and dependencies caused by user constraints. In

addition, extensive experiments run with synthetic web services are done to validate

this approach. The experimental results will be presented in chapter 7.

93

Chapter 6

Graph based automatic process model generation

In chapter 5 the dependency matrix based automatic process model generation method

is presented that models service dependency using matrix. In this chapter the second

proposed approach, which is the graph based automatic process model creation [58],

will be presented. To generate the process model (composition plan) this approach

utilizes only explicit direct dependency among the abstract service descriptions . The

explicit direct dependency extraction procedure make use of semantic similarities

between I/O parameters of services as discussed in chapter 4.

As its name indicates, this approach represents the extracted I/O dependencies using

a directed graph. This approach recognizes the existence of cyclic dependencies among

candidate services. Consequently, a cyclic dependency extraction from dependency

graph and a regeneration of acyclic graph is taken as first step during PM generation.

Then, execution plan generation is done using modified topological sorting algorithm.

The on-line shopping scenario is used to explain the approach.

This chapter starts with the description of the procedure of graph based automatic

process model generation. Following that, the detailed explanation of each step with

the help of cases from the example scenario is presented. Finally, a summary of the

proposed technique and its shortcomings are presented.

94

6.1 Automatic process model generation procedure

The proposed architecture for the graph based automatic PM creation is given in

figure 6.1. There are five components in the architecture shown in figure 6.1: a

dependency graph constructor, a cyclic dependency extractor, an acyclic dependency

graph generator, a dependency analyzer and a process model generator. The tasks of

these components can be summarized as follows:

1. A dependency graph constructor : construct direct dependency graph from

the extracted explicit direct dependencies. (steps for the dependency extraction

and the generation of dependency matrix are provided in section 4.2.1).

2. A cyclic dependency extractor: find out all cyclic dependencies, if there

are any, using the Tarjan algorithm developed by [53] for finding cycles in the

directed graph.

3. An acyclic dependency graph generator : regenerate a graph by making

each cyclic sub graph as one compound node.

4. A dependency analyzer:

(a) calculate the number of services dependent on a particular service by count-

ing incoming edges from the acyclic dependency graph found in step 3 or

from the original dependency graph constructed in step 1.

(b) calculate the number of other services dependent on a particular service

by counting the outgoing edges from the acyclic dependency graph found

in step 3 or from the original dependency graph constructed in step 1.

95

5. A process model generator: uses a graph traversal algorithm (modified

topological sorting) to generate an execution plan based on the calculated values

in step 4 and the graph found at step 3 if there is a cycle, if not use the original

dependency graph constructed in step 1.

Cyclic dependency
identifier

(Tarjan algorithm)

Dependency anayzer Process model generator
(Topological sorting)

Formal user request
description

Dependency repository

Cycle exist Yes
Cycle free Dependency

graph regeneration

NO

end

Begin

Direct dependency graph
generator

Figure 6.1 : Dependency graph based approach architecture

6.2 Construction of dependency graph

As it is mentioned before, in this approach the explicit direct dependency is repre-

sented using a directed graph, which can be equivalently represented by an adjacency

96

matrix. Since the detailed explanation of an explicit direct dependency extraction

process is presented in chapter 4, here we only explain the way nodes and edges are

constructed to represent service dependencies.

The directed graph that represents the dependency among candidate services will

have n number of nodes, where n equals to existing number of candidate services.

Edges represent the dependency link between services. Since the graph is a directed

graph the edge will have a source and a destination node. The service represented

by a source node is dependent on the service represented by a destination node. The

dependency graph of the on-line shopping scenario is shown in figure 6.2.

WS1

WS2 WS3
WS4 WS5

WS6 WS7WS8

WS9

WS10

WS11

WS12

Figure 6.2 : Direct Dependency Graph (DDG)

97

Note that the data-flow is in the opposite direction to that of the edge direction. This

edge direction definition and representation is adopted to show clearly the dependency

and a backward graph traversing while generating a process model.

6.3 Finding cyclic dependency

To extract the cyclic dependency a modified Tarjan algorithm [53] is used. The tarjan

algorithm is originally created to find strongly connected components from a directed

graph. This algorithm enumerates all strongly connected components by taking the

direct dependency graph(DDG) in the form of an adjacency list. Algorithm 6 shows

the pseudo code of Tarjan algorithm. Algorithm 7 shows the pseudo code of main

function that makes a call to the Tarjan algorithm to find nodes that are strongly

connected to each node. A strongly connected component of a directed graph G

includes all set of vertices V such that for all u and v in V there exists a directed

path from u to v and from v and u. A cyclic component in a graph is strongly

connected, and every strongly connected components of a graph contains at least one

cycle.

98

Algorithm 6 Tarjan algorithm

1: publicArrayList < ArrayList < Node >> tarjan(Nodev,AdjacencyListlist)

2: v.index = index; //entry level

3: v.lowlink = v.index; //root of the vertex

4: v.InSCC = false; v.visited = true; index+ +; stack.add(0, v);Noden = null;

5: for Edgee : list.getAdjacent(v) do

6: n = e.to; // for all edges starting from vertex v

7: if (n! = null) then

8: if !stack.contains(n) then

9: tarjan(n, list); //call tarjan for not visited

10: end if

11: if (!v.InSCC) then

12: v.lowlink = Math.min(v.index, n.lowlink);

13: end if

14: end if

15: end for

16: if (v.lowlink == v.index) then

17: Node n2;

18: ArrayList < Node > component = newArrayList < Node > ();

19: repeat

20: n2 = stack.remove(0);

21: component.add(n2);

22: n2.InSCC = true;

23: until (n2! = v)

24: SCC.add(component);

25: end if

26: return SCC;

99

Algorithm 7 Call of Tarjan to find cycle

Input: Dependency graph G(V,E)

1: index = 0 {DFS node number counter}

2: S = empty { An empty stack of nodes}

3: for all v in V do

4: if v.index is undefined then

5: tarjan(v) { Not visited node}

6: end if

7: end for

Using this theoretical background we used the Tarjan algorithm to identify and ex-

tract component services that form a cyclic dependency from a directed service de-

pendency graph. Tarjan algorithm traverses the directed graph in depth first search

and collects all strongly connected components that may contain more than one cy-

cle. In our case what we would like to achieve is to identify each simple cycle and

regenerate acyclic graph. To effect this, the main function makes a call of the Tarjan

algorithm iteratively and the Tarjan algorithm returns cyclic components. The cyclic

components returned by the Tarjan algorithm could have single or multiple nodes.

A single node occurs when a node does not participate in any cycle or in case of self

loop. A multiple node is a result of cyclic dependency that involves more than one

node. One call of the Tarjan algorithm returns all possible cycles of a given graph

iff the graph is connected. However in case of disconnected graphs, which is possible

in case of service dependency, iterative call of the Tarjan algorithm will allow us to

have a complete search of cycles from the dependency graph.

Therefore, by considering each cyclic component subgraph identified as one com-

100

pound node a new acyclic graph can be generated. To do this the Tarjan algorithm

(algorithm 7) is called from any node of DDG. Then, at each return of the Tarjan

algorithm with cyclic components the call continues for nodes that are not already

visited. In the on-line shopping scenario there is only one cyclic subgraph with 5

services (WS7, WS8, WS10, WS11, WS12). Figure 6.3 highlights the identified cyclic

dependency for the scenario.

WS1

WS2 WS3
WS4 WS5

WS6 WS7WS8

WS9

WS10

WS11

WS12

Figure 6.3 : Direct dependency graph with cyclic dependency

After getting all possible cyclic components from the Tarjan algorithm, an acyclic

graph generation will continue. This is done by simply replacing the cyclic sub-graph

101

nodes or participant services by a compound node and reconstructing the graph.

While constructing the graph, all incoming and outgoing edges to all participant

nodes of a cycle should be preserved. This can be done by linking all incoming

and outgoing edges of the participant nodes of a cycle to the compound node. In

terms of dependency, this means all services dependent on each cyclic component

service (services that participate in a cyclic dependency) will become dependent on

the compound node that replaces them. Similarly, for all services in which each cyclic

component is dependent upon the new compound node also dependent on them. The

acyclic dependency graph for the considered scenario generated using the proposed

approach is shown in Figure 6.4.

WS1

WS2 WS3
WS4 WS5

WS6

CN1
WS9

Figure 6.4 : Cycle-free direct dependency graph with compound node

102

6.4 Dependency analysis

From the dependency graph which is free of cyclic dependencies we get two straight-

forward but important indicators that will be used during a composition plan gener-

ation. First, the number of other services that are dependent on a given service (N1),

which can be found by counting incoming edges. Second, the number of services a

given service is dependent on (N2), which can be found by counting the number of

outgoing edges from the dependency graph.

In this approach N1 is used to get services that have higher execution priority. N2

values are used in a service(s) selection criterion that can be included in execution

plan. Thus, the two values have a key role in the execution plan generation algorithm.

6.5 Process model generation

The composition plan is generated using a topological sorting algorithm. The topo-

logical sorting is often used in scheduling jobs or task given precedence constraints. In

our case the precedence constraint is the dependency graph. It takes an acyclic graph

and outputs a linear ordering tasks (node/services). We adopt modified topological

sorting that is used to sort threads that can be executed concurrently [54](see algo-

rithm 8). The composition plan generated by this algorithm for the on line shopping

scenario is given in figure 6.5. This execution plan includes a compound node since

its input is the regenerated acyclic graph that also has a compound node.

Topological sorting algorithm utilizes the number of incoming edges (N1) and outgo-

ing edges (N2) to generate the composition plan(PATH).

103

Algorithm 8 Modified topological sorting

Input: Dependency graph G(V,E)

Output: PATH(C0, C1...CN) {PATH contains a sequence of group of services}

1: L← 0

2: C0 = C1 = ... = CN = Empty list {Ci contains service(s) that can be executed

concurrently }

3: Path← Empty

4: while V is Non-Empty do

5: CL ← all v in V without outgoing edge

6: E ← E − {all E that start from v in CL}

7: Path← Path+ CL

8: L← L+ 1

9: end while

WS1

WS5

WS4

WS3

WS2

WS6 WS9 CN1 End
Begin

Figure 6.5 : Execution plan with compound node

104

WS1

WS5

WS4

WS3

WS2

WS6 WS9

End

Begin

WS7 WS8

WS10 WS11

WS12

Figure 6.6 : Final execution plan

To get the final execution plan the compound node has to be replaced by the exe-

cution plan that involves loop control flow. To do this it is only required to get the

starting node of the cycle. Then by traversing the dependency graph in backward

direction the order of execution of the WSs that are involved in the loop can be deter-

mined. This simplified approach that create execution sub-plan for cyclic component

assumes service execution inside the loop is only sequential which is valid in most

cases. However, in case of other control flows nested within the loop repetitive use of

the topological sorting algorithm is required. The final execution plan generated for

the on-line shopping scenario is shown in figure 6.6.

105

6.6 Chapter summary and discussion

In this chapter an Input/Output dependency graph based automated composition

plan creation method is discussed. The I/O dependency is represented as directed

graph. The usage directed graph enables us to utilize existing graph traversal algo-

rithms to extract cyclic dependencies and generate process model.

The complete graph based approach complexity is determined by the complexity of

dependency graph generation algorithm, the cycle extraction algorithm and the pro-

cess model generation algorithm. The cyclic dependency extraction has the same

complexity as the tarjan algorithm, that is of linear in the number of edges (E), ver-

tices (V)and number of cycles(C) of the dependency graph (O(#(V)+#(E)+#(C))).

The composition plan generation algorithm complexity is equivalent to the complexity

of topological sorting algorithm which is (O(#(V)+#(E))). Since the complexity of

dependency graph generation is quadratic time, the overall running time of the graph

based algorithm is equivalent to the dominating complexity which is complexity of

dependency graph generation.

Similar to matrix based approach the applicability of this approach is tested using

case studies taken from [25, 22] and other related papers. In all cases the approach

gave process models that are similar to the ones in the papers reviewed. Moreover, we

have tested the method at a conceptual level making use of scenarios having from 3

to 11 web services. For these scenarios the output process model was valid. Extensive

running experiments are done to further validate dependencies based process model

creation method which is presented in chapter 7.

Unlike all other methods that construct dependency between all services in repository

106

we generated dependency between candidate services automatically. We believe, pre-

computing all possible semantic links (dependency) between services(even services

with same functionality) might lead to extended graph that increases the complexity

of plan creation.

107

Chapter 7

Prototype Implementation and Evaluation

In previous chapters, an on-line shopping scenario has been used for the explanation

and the conceptual validation of the proposed approaches. In addition, theoretical

performance analysis has been conducted in order to specify the worst case complex-

ity of the algorithms of the proposed approaches. However, the conceptual validation

alone is not an adequate means to justify the applicability of the approaches in real

case scenarios that could have diverse and complex behaviors. The theoretical perfor-

mance analysis abstracts the implementation details and, consequently, might provide

a different result from that of a real performance value. To avert this limitation, we

have implemented a prototype performed experiments and evaluated the proposed

approaches.

This chapter is devoted mainly for discussions on the implementation and performance

study of the two proposed approaches. The chapter is organized as follows, section

7.1 describes the theoretical performance evaluation of algorithms used in the pro-

posed approaches and gives summary of the results from the theoretical (conceptual)

evaluation. The conceptual evaluation results will be used as a benchmark for the

experimental evaluation. Section 7.2 presents the prototype implementation details

together with the discussion of the testbed that facilitates experimental performance

evaluation. Section7.3, presents the experimental results and discussion. Finally, the

summary and the chapter conclusion will be presented in section 7.4.

108

7.1 Theoretical performance evaluation

The worst-case running time and space complexity of all the algorithms used in both

proposed approaches are determined and explained in chapter 5 and 6. The com-

plexity of each algorithm is determined based on the main input factor n (number of

abstract candidate web services). Table 7.1 summarizes the explained complexities

of both approaches.

109

Table 7.1 : Summary of theoretical computational complexity

MBA GBA

Name complexity Name complexity

Direct dependency

generation (DDM)

I/O

match-

ing

O(n2) I/O matching O (n2)

Cycle checker New O(n4) Tarjan algorithm O(| V | + | E |)

Cycle-free DDM gen-

erator

New O(n2) New O(n)

Indirect dependency

matrix generator

Floyd-

Warshall

algorithm

O(n3) none

Process model genera-

tor

Insertion

sorting

algorithm

O(n2) Topological sort-

ing

O (| V | + | E |)

Overall complexity O (n4) O (n2)

| V |= n is the number of nodes which is the same as number of abstract level component web services

| E | is number of edges which is the same as number of direct dependencies.

The overall running time complexity of the matrix based approach is of polynomial

order of four(4) while the graph based approach has polynomial time order of 2 (

quadratic time complexity). The matrix based approach has a high complexity due

to the cyclic dependency checking algorithm.

The space complexity is directly proportional to the data structure used during im-

110

plementation. Hence, we discuss space complexity by considering pros and cons of

possible data structures that can be used. The data structures employed in the two

approaches and the resulting space complexities are presented below.

Matrix based approach

• n : number of services.

• data structure : 2 dimensional array

• complexity: O(n2)

Graph based approach

• n : number of services or vertices.

Two possible data representation methods:

• data structure: 2 dimensional array

– complexity: O(n2)

– pro: easy to check if (u, v) an edge in G

– con: Takes O(n2) space if even graph has very few edges;

• data structure: Adjacency LIST which can be implemented as an array of

(header cells for) or a linked list

– complexity: O(E) (each directed edge stored only once)

– Pro: Linear space and easy to list out all vertices adjacent to u

– Con: a single adjacent node search takes O(E) operation.

111

The space complexity of the matrix-based approach is quadratic order. Since the

approach relies on the matrix representation of dependency, there is no simpler or

optional way of representing the dependency other than a 2 -dimensional array. How-

ever, for the graph-based approach there are two optional ways of representing the

graph. The first one is a 2-dimensional array in a similar manner to that of the MBA

which is quadratic space complexity. The second way of representing is an adjacency

list, which results in a linear space complexity. An adjacency list is a data structure

for representing graphs. In an adjacency list representation all the vertices in a graph

and the list of vertices that have edge from these vertices are stored (that is, called

vertex adjacency list). As it is shown above, the space complexity is better when a

graph is represented by the adjacency list than that of an adjacency matrix. Besides,

in the space complexity, the representation could also be influenced by the compu-

tational time of the algorithm. That is because data representation facilitates how

elementary operations are done inside algorithms.

The main operations that influence the computation time of graph-based algorithms

are : finding all adjacent vertices, removing an edge and deleting a vertex. A single

adjacent vertex search takes only one operation which is one value checking in case

of matrix representation (i.e. O(1)). But in case of an adjacency list it takes the

number of edge operations adjacent to that node which could be O(E) in worst case.

Looking for all neighboring nodes will take an operation of O(n) complexity in case of

matrix. But it will be only equal to the number of adjacent nodes (O(E)) operations

for a matrix representation.

For the topological sorting algorithm, the main operations that influence the compu-

tation time are finding all nodes with no incoming edge, removing the nodes and the

112

edges. The first operation (finding all nodes with no incoming edges) will be simpler

with adjacency list which takes O(n) time. The adjacency list also makes second and

the third operations simpler.

The Tarjan algorithm is built based on a Depth First Search (DFS) technique. When

DFS uses an adjacency list for n vertices, the time complexity will be proportional

to O(E + n), and with a matrix representation it will have time complexity propor-

tional to O(n2). Thus, the adjacency matrix is better not only in terms of the space

complexity but also in terms of the time complexity.

7.2 Prototype implementation

7.2.1 Background

As mentioned before, an alternative way to evaluate the performance of algorithms

is through experiment. For an experimental evaluation a real or a synthetic data

can be used on the actual hardware. When performing an experimental performance

evaluation of service compositions, it is often desirable to measure the performance of

the approaches subjected to various aspects of a composition problem. For example,

effects of high number of possible services, combining multiple control flows (concur-

rent, sequential, alternative, or loop) in a process model, and effects of inter-domain

service combinations (openness/closeness of the environment) can be assessed.

To conduct such an experimental performance evaluation getting an appropriate web

service environment (testbed) is a pre-requisite. However, it is difficult to get a real

web service environment with large and various number of composable web services.

113

Indeed, there are few existing prototypes that generate synthetic web services and

provide test-bed for a service composition. For example, [59] propose a test-bed that

generates synthetic web services to form a dependency graph. The focus of their

testbed is cross-domain chaining and service composition request generation. The

test-bed considers composition mechanisms that use the backward or the forward

chaining technique and do a service discovery and a process model creation simulta-

neously. This approach is not applicable for approaches that take a service discovery

and a process model generation as two different steps during a composition. [60]

presents a testbed called WSben. WSben is created to facilitate service discovery

and composition mechanisms. This testbed is suitable mainly for approaches that

combine a service discovery and a process model generation during a composition.

Both [59] and [60] do not address the issue of cyclic component in their graph model.

The existence of a testbed that provides abstract service descriptions, which are not

interconnected, is an important factor for evaluating composition techniques that do

a service discovery and a process model generation separately. This actually is the

case pertinent to the two approaches proposed in this thesis. None of the existing

testbeds meet this requirement. Therefore, there was a need to develop a new testbed

for this research.

To summarize, the reasons why we did not use existing web service environments are:

1. Due to an input/output parameter compatibility problems, it was not possible

to use available public web services

2. There are no service repositories available with a large number of real compos-

able services.

114

3. The existing test beds that generate synthetic web services has description of

concrete services. But, we want to have service descriptions at an abstract level

or as a community service description.

4. This research splits the service discovery and process generation processes and

handles them separately. But, existing test beds support only the evaluation of

composition approaches that combine a service discovery and a process model

generation in a single step.

5. All testbeds did not consider the existence of cycles in their graph model.

Thus, as a part of this research, a prototype is implemented to get a suitable testbed.

This prototype has two parts. The first part is called a Synthetic Composable Web-

Service GENerator (SCWSGen); and the second part is called a composition plan

or a process model generator. The SCWSGen is responsible for generating synthetic

web services which can be used to do the experimental performance evaluation of the

composition approaches. The composition plan generator is responsible for generating

a composition plan or a process model. In the prototype, the composition plan

generator is actually the implementation of the two proposed approaches.

However, any other composition approach could also be implemented. Figure 7.1

shows the two layered implementation architecture of the prototype.

Before designing a general architecture for the prototype, a requirement analysis has

been done. The analysis aimed on finding answers to the following questions:

1. Which properties of the composition problems are worth testing?

2. What are the major properties of composable web services? and

115

3. What kinds of tests (validation) are relevant?

As mentioned earlier, scalability is one of the main problems associated with compo-

sition approaches that is worth testing. The scalability of any composition approach

as a whole is related to either the scalability of a candidate service retrieval process of

the requested task, or to the scalability of a composition plan generation algorithm.

The latter is the main focus of this research.

Doing scalability testing of a composition plan generation algorithm requires a testbed

with a high number of composable services. As a part of this thesis a testbed with a

synthetic web service generator is developed. This synthetic web service generator has

a parameter pool, a random I/O parameter picker and a deployable WS generator.

It generates n sets of composable synthetic web services from individual services.

The validation process not only requires an arbitrary n number of composable services

but also scenarios that represent potential real world cases. The success of generating

scenarios that represent real world cases depends on the suitability of the employed

random parameter selection process. Thus, assumptions and constraints are imposed

to guide the random parameter selection process. For setting up suitable assumptions

and constraints reference is made to the related work.

For instance, [61] made a survey of available web services to characterize their be-

haviors. According to their research finding, the number of operations per services

is mostly less than five. Moreover, they claim that the number of input and out-

put parameters per operation is also low. [62] make similar analysis on available

public web services. According to their analysis more than 77% of available public

web services have less than 5 operations and more than 36% of them have only one

116

operation. In their work it is mentioned that, for web services with more than one

operation, the possibility of interaction among operations within a service is less. It

is also found that there are no compositions among public web services with more

than 2 operations [62].

Thus, the following fundamental assumptions and constraints are set based on the

above references and also with an intent of simplifying the implementation process:

• the number of operations per service is one,

• a service has on an average three input parameters,

• a service has on an average 2 output parameters,

• n is the maximum number of services to be generated (the number of composable

services is a user modifiable constraints),

• m is the number of parameters in a parameter pool (the average total number

of parameters proportionally grows with n),

• input and output parameters should be picked from the same parameter pool

(since the aim is to generate composable web services)

In the next sections, we will discuss the architecture of the proposed testbed.

7.2.2 Architecture

The requirement analysis that has been conducted resulted in a two layered architec-

ture (see figure 7.1). The first layer is responsible for generating a generic synthetic

117

web services and for setting-up experimental validation scenarios for the composition

approach. This layer generates synthetic web services that have randomly assigned

synthetic I/O parameters. The second layer deals with the actual implementation of

the proposed composition approaches. In this later layer the proposed composition

approaches; i.e. matrix based and graph based approaches, are implemented.

Synthetic composable web service generation

WS generator

 random I/O parameter picker

I/O parameter pool

Dependency repository

Direct dependency generator

Matrix based approach Graph based approach

Proposed approach

Figure 7.1 : Implementation architecture

118

For further detailed implementation architecture and the description of each compo-

nent of the architecture shown in figure 7.1 see appendix 9.

7.2.3 SWSgen scenario: demonstrating the prototype

As described before the prototype includes the SCWSGen and the layer that deals

with the implementation of the two proposed approaches. The SCWSGen is used

to generate n number of service descriptions that form composite service scenarios.

Each scenario will contain n number of services that have various numbers of services

and dependency arrangement at each run.

The prototype has a graphical user interface (GUI) that takes a user inputs. In order

to perform the testing of the proposed approaches a user has to initially provide to the

SWSGEn the required number of services (n). Then using the other GUI components

of the prototype a user is allowed to run each part of both approaches interactively

and generate the final process model and see the partial outputs visually.

The major steps for using the prototype to perform experiments are described below.

Step 1: Synthetic web service and dependency generation

The GUI is developed using Java Frame. It has three frames. The first frame is the

main frame (figure 7.2) and it includes:

119

Figure 7.2 : Generating web services

1. Five buttons: web service generator, dependency generator, show dependency,

MBA and GBA. These buttons provide a means to receive the action of users’

input. The first two buttons allow a user to generate web services and identify

dependencies among these web services, respectively. The last two buttons

(MBA and GBA) directs the user to the two specific approaches frames. These

frames in turn have their own components for taking input from a user and for

120

generating a process model.

2. Three tabs : web services, graphs and direct dependency matrix. These tabs

allow users to see partial outputs, i.e. a dependency matrix and a dependency

graph. Since the display area is small the GUI only shows outputs for n < 40

but all intermediate and final outputs are stored in file for further use.

3. One JTree component, which is a tree-like structure, is used to display the

generated web services names and their inputs and outputs.

To generate synthetic web services a user should provide the number of services to be

generated. Clicking “WS generator” button will bring dialog box so that a user gives

number of web services. Figure 7.3 depicts the main frame along with the dialog box

that prompts a user to input number of services to be generated.

121

Figure 7.3 : Generating web services

Then Clicking on the “dependency generator” button generates dependency and

stores it in a text file. Clicking on the show dependency button displays the de-

pendencies in a graph and a matrix format. The dependency can be seen in a graph

format by clicking on the graph tab and it can be seen in a matrix format by clicking

on the direct dependency tab. Figure 7.4 shows when the main frame displays the

generated web services in the tree format and dependencies in a graph and a matrix

format.

122

Figure 7.4 : Generating web service dependency.

Step 2: Dependency analysis and process model generation using MBA

Clicking the MBA button on the main frame opens a new frame that is connected to

the implementation of the matrix based approach. This frame has:

1. Two buttons: cycle check and process model generate buttons. Clicking the

cycle check button run the cycle check algorithm and returns with cycle free

full dependency matrix. Clicking the process model button generates the final

output which is the process model. It displays the process model for n < 40

visually and stores the entire result in a text file.

2. Three tabs : cycle, indirect dependency matrix and process model tabs. These

tabs allow users to see partial outputs, i.e. the existence of cycle, the indirect,

123

the full dependency and the final process model respectively. Figure 7.5 shows

the matrix based approach implementation frame.

Figure 7.5 : Dependency analysis and process model generation.

Step 3: Dependency analysis and process model generation using GBA

Clicking to the GBA button on the main frame opens a new frame that is connected

to the implementation of the graph based approach. This frame has:

1. Two buttons: cycle check and process model generate buttons. Clicking the

cycle check button run the cycle check algorithm and returns cycle free full

dependency graph. Clicking the process model button generates the final output

124

which is the process model. It displays the process model for n < 40 visually

and stores entire result in a text file.

2. Two tabs: cycle and process model tabs. These tabs allow users to see the par-

tial outputs, i.e. the existence of cycle and the final process model respectively.

Figure 7.6 shows the graph based approach implementation frame.

Figure 7.6 : Dependency analysis and process model generation.

125

7.3 Experiments

The experimental performance evaluation mainly focuses on investigating how much

the proposed approach is scalable and on monitoring how the proposed mechanisms

behave for varying number of services linked by the combination of the different

control flows (i.e. loop, concurrent and sequential).

An extensive experimental evaluation is conducted using the web services generated

by the SCWSGen. The performance evaluation is done on each component of both

approaches as well as on the integral approach as a whole. Then, the experimental

results are compared against the theoretical complexities (see section 7.1). Moreover,

the comparison of the two proposed approaches using the experimental result is also

done. Finally, the assessment of the process model generated by the two approaches

is done.

The implementation was performed on the Microsoft Windows XP Professional Edi-

tion platform (Service Pack 3)using Java. Apache tomcat was used as a back end

server to deploy the web services. The code written for performing the evaluations is

around 2800 lines of codes. A laptop computer with an Intel(R) Celeron(R) M (1.4

GHz) CPU and 1 gigabytes of internal memory was used for running the experiments.

7.2 defines the variables and symbols used in this chapter.

126

Table 7.2 : Symbols and variables

Variables

Nop Number of operations per an abstract service description (community)

Nc Number of cycles per a composition plan

NSperC Number of services per cycle

NIpara Number of input parameters per a service description

NOpara Number of output parameters per a service description

Performance measurement parameters and functions

Symbols Descriptions

tD Time to extract a direct I/O dependency from the service descriptions

tC Time to check and extract a cyclic dependency

tCFD Time to generate a cycle free dependency

tID Time to extract an indirect dependency from a direct dependency

TMBA Total composition time for the matrix based approach

TGBA Total composition time for the graph based approach

7.3.1 Experimental results

Table 7.3 shows the common settings for all simulation experiments.

127

Table 7.3 : Symbols and variables

n 10-150

Nop 1

NIpara 0-3

NOpara 0-2

Nc 0-3(depending on number of services)

NSperC 1-5

Each algorithm in the proposed approaches runs over several experimental sets of web

services. For each experimental run the number of services vary from n =10 to 150

with an iteration range of 10. For each run, the number of services(n) is an input

for the SCWSGen. Synthetic services descriptions are generated from a randomly

selected I/O parameter. This randomness in selecting the I/O parameters enables the

SCWSGen to generate a distinct set of services for every simulation. Thus, to ensure

consistency during simulation, we run each algorithm of the proposed approaches 10

times using the same set of services and calculated the average time. Moreover, we

run each algorithm 10 times for the same n with various sets of services. The first one

is to see how the algorithm scales when the number of services increases. The later

one is to see if the algorithm is influenced by the number of dependencies. Therefore,

the number of services (n) and the number of dependencies (E) are the two variables

used for evaluation.

The experimental result presentation is organized as follows: first, the experimental

results obtained for each algorithm of the proposed approach is presented; then the

128

aggregated experimental results obtained for each approaches is presented and finally

the comparison of MBA and GBA approaches in terms of individual algorithms and

aggregated results are presented. Note that each algorithm runs on the same set of

data because they should run consecutively in order to get the final output process

model.

Experimental result 1: Dependency generation time and number of de-

pendencies

This experiment is started by generating n number of synthetic web services contain-

ing one operation with three input and two output parameters. Then the dependency

among these services is generated and the computation time for n services is recorded

in a log file. The maximum value of n is 150, which is greater than practically ex-

pected in one work-flow. In most related work it is assumed that a single work-

flow could contain between 30 and 50 nodes. Figure 7.7 shows the result of this

experiment as a scatter chart. In this chart, each point represents the run time of

dependency generator in nano-seconds versus the number of services (n). The experi-

ment is run 10 times for each n and the average time is taken. The graph has a shape

of a quadratic function and this confirms the result of the theoretical performance

analysis of the dependency generation algorithm.

As the number of services increase, the dependency generation computation time

also grows quadratically. However, as it is mentioned earlier the maximum number

of services in a single work-flow mostly do not exceed 50. Thus, it can be concluded

that the dependency generator gives a response in a reasonable time.

129

I/O Matching
O(n^2) approximation

0.E+00

5.E+07

1.E+08

2.E+08

2.E+08

3.E+08

3.E+08

4.E+08

4.E+08

5.E+08

0 50 100 150 200

n(number of w eb services)

R
un

ni
ng

 ti
m

e
in

 n
an

o-
se

co
nd

s

Figure 7.7 : Dependency Generation time vs number of web services

During the experiment of the dependency generation algorithm, a log file is generated.

This log file stores the number of dependencies and the number of services for each

run. The relationship between the number of dependencies and the number of services

is assessed using this information. This is done because the number of dependencies

occur among services might influence some of the algorithms of the two proposed

approaches. This result enables us to explain the computation time not only based on

the number of services but also based on the number of dependencies when necessary.

Here also 10 repeated runs of dependency generator are made, for each n with various

sets of synthetic web services. Figure 7.8 is a scatter chart plot of the number of

services versus the number of dependencies (averaged over the 10 repeated runs). The

chart shows that the number of dependencies is linearly proportional to the number

130

of services. During this experiment, web service and dependency generators run 10

times for the same n. Each runs results different set of synthetic services with varies

number of dependencies due to the randomness of SCWSGen. But, this variation does

not have significant influence on the computation time of the dependency generator.

Number of dependencies
O(n) approximation

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

n(number of w eb services)

N
um

be
r o

f d
ep

en
de

ci
es

Figure 7.8 : Number of dependencies vs number of web services

Experimental result 2: Cycle detection time

The cycle detection sub-task is done at the second step for both the matrix and

graph-based composition approaches. This experiment uses the dependency among

the same synthetic web services generated in the first step of the experiment. Here,

the experimental results of cycle detection algorithms of the two proposed approaches

is presented. Figure 7.9 and figure 7.10 show the scatter chart of the MBA and the

GBA cycle detection algorithms, respectively. The MBA has a higher rate of growth

131

compared to the GBA cycle detection algorithm. This is also observed during the

theoretical complexity analysis.

The MBA higher rate of growth comes from the matrix multiplication with three

loops that resulted in complexity O(n3) and the forth loop running from 1 to n used

to find the cyclic path. Thus, the matrix multiplication is carried out n − 1 times

which makes the overall complexity of MBA cycle detection to O(n4).

The Tarjan algorithm is used for the graph-based approach. This algorithm has the-

oretically a linear time complexity as a sum of the number of services(n) and the

number of edges or dependencies (E) (O (| n | + | E |)). But the experimental

result indicates it is not fully linear. It is more than a linear complexity and less

than quadratic complexity. This is found by calculating the ratio n2 to the computa-

tion time from the experimental results. The reason for this difference could be the

recursive call of Tarjan algorithm.

132

MBA Cycle Detect
O(n^4) approximation

0.E+00

5.E+09

1.E+10

2.E+10

2.E+10

3.E+10

3.E+10

0 20 40 60 80 100 120 140 160

n(number of w eb services)

R
un

ni
ng

 ti
m

e
in

 n
an

o-
se

co
nd

s

Figure 7.9 : MBA: cycle checking time vs number of web services

GBA Cycle detect

1.E+06

1.E+06

1.E+06

2.E+06

2.E+06

2.E+06

2.E+06

2.E+06

3.E+06

3.E+06

3.E+06

0 20 40 60 80 100 120 140 160

n(number of web services)

R
un

ni
ng

 ti
m

e
in

 n
an

o-
se

co
nd

s

Figure 7.10 : GBA: Cycle detection time vs number of web services

133

Experimental result 3: Indirect dependency generation time

As the graph-based approach does not use an indirect dependency, this experiment is

valid only for the matrix based approach. Figure 7.11 shows the scatter chart of the

recursive algorithm of the indirect dependency generator (see algorithm 2 in chapter

5). The shape of the graph is similar to a polynomial function of order five.

Indirect dependecy extraction
O(n^5) approximation

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

3.5E+10

4.0E+10

4.5E+10

5.0E+10

0 20 40 60 80 100 120 140

n(number of web services)

Ti
m

e
na

no
 s

ec
on

d

Figure 7.11 : MBA: indirect dependency generation time vs number of web ser-

vices(recusrsive algorithm)

Figure 7.12 shows the scatter chart of the indirect dependency generator using War-

shall algorithm [63]. The shape of the graph is similar to a quadratic complexity

function, which is less than that of the result obtained in the theoretical study. This

is because though the Warshall algorithm has three loops, the third loop is executed

134

depending on the if condition in algorithm 2 line 6 (see section 4.2.2)). This condition

is true to the maximum of n times based on the experimental result obtained (see

graph 7.8). So the inner loop won’t be executed n times with the two external loops.

Indirect dependecy generator
O(n^2) approximation

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

3.E+06

4.E+06

0 20 40 60 80 100 120 140 160

n(number of web services)

R
un

ni
ng

 ti
m

e
in

 n
an

o-
se

co
nd

s

Figure 7.12 : MBA: indirect dependency generation time vs number of web services

(Warshall algorithm)

The two alternative indirect dependency generator have polynomial complexity. Fig-

ure 7.13 gives a scatter plot of the two algorithms computation time vs the number

of services. In figure 7.13 the y-axis is in logarithmic scale. This graph clearly shows

that the Warshall algorithm performace is much better than the recursive algorithm.

Therefore, the Warshall algorithm is employed in the matrix based approach.

135

1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+06
1.0E+07
1.0E+08
1.0E+09
1.0E+10
1.0E+11

0 20 40 60 80 100 120 140
n(number of web services)

Ti
m

e
na

no
 s

ec
on

d
t(recursive algorithm) t(Warshall algorithm)

Figure 7.13 : MBA: indirect dependency generation time vs number of web services

(Comparison of algorithms)

Experimental result 4: process model generation time

Here the results of the process model generation algorithms of the MBA and the GBA

is assessed. In case of the MBA, the experimental results confirm the theoretical

result. However, the GBA’s topological sorting algorithm experimental result graph

has a quadratic time shape. This is because the theoretical complexity assumes

that deleting nodes from the graph is a simple operation, but practically it requires

O(n) iterations to search and delete a node which is inserted in a path. Moreover,

the theoretical complexity does not include the initial graph generation time which

has a linear time complexity (see figure 7.14). To clearly see where the process

model generator spends most of its time, the initial graph generation time and the

136

path generation graphs are plotted separately. Figure 7.14 shows the initial graph

construction time vs the number of services and figure 7.15 shows the composition

plan(path) generation part of the algorithm. From these two graphs one can see that

there is a significant computation time spent during the initial graph generation. This

initial time is spent on file reading and constructing the initial graph. Figure 7.16

shows clearly the percentage of time spent in the two subtasks (graph initialization

and path generation) of the process generation algorithms.

1.E+06

5.E+07

1.E+08

2.E+08

2.E+08

3.E+08

3.E+08

4.E+08

4.E+08

5.E+08

0 20 40 60 80 100 120 140 160

R
u
n
n
in
g
 t
im
e
 i
n
 n
a
n
o
-s
e
c
o
n
d
s

n(number of web services)

Graph generate
O(n) approximation

Figure 7.14 : GBA: graph generation time vs number of web services

137

7.E+05

8.E+05

9.E+05

1.E+06

1.E+06

1.E+06

1.E+06

1.E+06

2.E+06

2.E+06

0 20 40 60 80 100 120 140 160

R
u
n
n
in
g
 t
im
e
 i
n
 n
a
n
o
-s
e
c
o
n
d
s

n(number of web services)

Path generate
O(n) approximation

Figure 7.15 : GBA: Process model(path) generation time vs number of web services

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

t_PathGen tGgen

Figure 7.16 : GBA: Ratio of graph generation time to path generation

138

Figure 7.17 shows the scatter chart of the full process generation algorithm, which

is the Topological sorting algorithm, computation time in nano-second versus the

number of services.

process model generator
O(n^2) approximation

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

1.E+07

1.E+07

2.E+07

0 20 40 60 80 100 120 140 160

n(number of web services)

R
un

ni
ng

 ti
m

e
in

 n
an

o-
se

co
nd

s

Figure 7.17 : MBA: process model generation time vs number of web services

Comparison

In this section the matrix and the graph based approaches will be compared in terms

of computation time and output process models. Figure 7.18 shows the total com-

putation time of the GBA and the MBA on the same scatter chart. Generally, the

MBA computation time is higher than the GBA. As it is discussed before, the main

cause of this is that the MBA takes high computation time during cyclic dependency

checking. However, the experimental evaluation shows that the MBA has a better

response time than the GBA for n < 30. In most practical cases, the number of tasks

139

in one work-flow does not exceed 40. We can conclude the MBA performs better and

is more applicable.

Comparison of total composition time

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

0 20 40 60 80 100 120 140 160

n

t (
ns

)

MBACompTime
GBACompTime

Figure 7.18 : Comparison of MBA and GBA approach: computation time vs number

of web services

If we look at the percentage of time spent in each algorithm of both approaches,

both the MBA and the GBA spent more time in checking the cyclic dependency. The

cyclic dependency checking time is, therefore compared with the other sub-tasks of the

composition. Figure 7.19 shows an area graph chart of the trend of the contribution

of the cycle detect algorithm and the composition plan generation algorithm. In this

graph we used a logarithmic scale to show the results clearly.

140

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

T_GBACD T_GBApm

Figure 7.19 : GBA approach: cycle detect and composition plan generation vs number

of web services

7.3.2 Discussion of performance evaluation results

According to the experimental evaluation reported in this section, it is observed that

most of the algorithms experimental evaluation results agree with the theoretical

complexity analysis. However, the experimental results of the indirect dependency

generator of the MBA, the Cycle checking (Tarjan) algorithm of the GBA, and the

process model generator (topological) algorithm are different from the theoretical

complexity. The reasons for this difference are:

• the theoretical complexity analysis overlooks some of operations as simple op-

eration which is not practically correct

141

• the theoretical complexity analysis assumes the worst case, which might not

always true. However, the experimental evaluation provides the practical result

based on the considered cases.

In section 7.3 the run-time performance of the MBA and the GBA is analyzed and

the two results are also compared. From the result it is observed that although the

GBA performs well, it has still room for improvement. For instance, the GBA cycle

detection algorithm during the experimental study has been found to be quadratic,

this requires improvement. As mentioned before, for n < 30 the MBA performs better

than the GBA, which shows the MBA approach is more applicable for work-flows with

30 tasks or less. In spite of this strength, the MBA also needs some improvement.

Specifically the cycle detection algorithm has a complexity of polynomial time of

degree 4. Due to this, the whole approach spent most of its time in detecting cyclic

dependencies. This suggests that we need to improve or replace the cycle detection

mechanism. This task is left as a future work.

7.3.3 Discussion on the generated process models

As a final evaluation step the process models generated by the two proposed ap-

proaches are assessed and compared. The resulting process model correctness is

verified in terms of the correctness of the execution order (temporal order). This

verification is done manually by visual inspection of the process models and the ser-

vice dependency graph/matrix. To illustrate this, three random scenarios having

n = 10, 20 and 30 web services were generated by the test bed.

Figure 7.20 shows the dependency graph and matrix for the scenario with n = 10.

142

Table 7.4 and 7.20 show the process model generated for the same scenario by the

graph based approach and the matrix based approach, respectively. The process mod-

els generated by both approaches comply with the dependency pre-requisite shown

in Figure 7.20. Thus, the process models are correct in terms of execution order.

Test case one n=10

Figure 7.20 : Dependency graph and matrix

Table 7.4 : Output process model from graph based approach

1 concurrent services level one WS0, WS1, WS2, WS3, WS4, WS8,

2 concurrent service level two WS5, WS6, WS7, WS9

Web services in the same row (level) can be executed concurrently,so are called concurrent web services.

Web services in row (level) n should be executed before web services in row (level) m, where m > n.

143

Table 7.5 : Output process model from matrix based approach

1 concurrent services level one WS0, WS1, WS2, WS3, WS4, WS8

2 concurrent service level two WS6, WS7

3 concurrent service level three WS5, WS9

Web services in the same row (level) can be executed concurrently,so are called concurrent web services.

Web services in row (level) n should be executed before web services in row (level) m, where m > n.

The process models generated by the matrix-based approach and the graph-based

approach are compared. This is again done through a visual inspection of the output

process models of the two approaches for the same scenario. To illustrate this the

above scenario for n = 10 is used, in which case the process model generated by GBA

has two sets of concurrent services to be executed, one after the other (see table 7.4).

On the other hand, the MBA approach outputs a process model with three sets of

concurrent services to be executed sequentially (see table7.5). The difference resulted

from the logic used in the process model generation algorithms of the two approaches.

The MBA used the number of services a particular service depends upon (N2) as

one criterion to sort the services in ascending order and it gets the composition

plan with one additional criterion. The second criterion is introduced in order to

include concurrent control flow, i.e when services have the same N2, then they become

concurrent because two directly or indirectly interdependent services can not have

the same value of N2. This process model generator, when it inserts a service in

a composition plan, does not have a way to trace whether all services that provide

input to a particular service are already in composition plan or not.

144

In summary, the rules followed by MBA approach are the following:

Rule 1: If S1 is dependent on less number of services (quantity) than S2, then S1 is

not dependent on S2, consequently, S1 can be executed before S2.

Rule 2: If S1 is dependent on more number of services (quantity) than S2, then S1

might be dependent on S2, consequently, it is impossible to decide whether S1 can

be executed before S2 or not. In such a case to avoid error S1 will come after S2 in

the composition plan.

For example, in the process model generated by MBA for n = 10, WS5,WS9 are

in the last concurrent group of services. These two services could be executed along

with the second group of services since all their pre-requisite services are in the path.

But, their N2 value is 3, which is larger than the N2 value of services in the second

group, which is 2. Based on rule 2, WS5 and WS9 come after WS6 and WS7 in the

composition plan.

Contrary to MBA, GBA does not have this problem. This is because the process

model generation logic, while adding a particular service in the composition plan

under construction, has a way to trace weather all pre-requisite services are in the

plan or not. Therefore, these problems do not occur. In GBA the process model

generation algorithm starts with services that do not depend on any service and

keeps on tracing whether all pre-requisite services are included or not. Therefore,

the output process model always includes all possible concurrent service executions.

As a result, the scenario with n = 10 has two sets of concurrent services. Thus, the

output process model by the GBA is more condensed than the MBA. This makes

the execution time of a composite service created by the GBA less than that of the

145

one created by the MBA, provided that there is enough hardware resource to execute

concurrent services.

Figure 7.21 shows the dependency graph matrix for the scenario with n = 20. Table

7.7 and 7.6 shows the process model generated for this scenario using the graph based

approach and the matrix based approach, respectively.

Figure 7.22 shows the dependency graph matrix for the scenario with n=30. Table

7.8 and 7.9 shows the process model generated for this scenario by the graph based

approach and the matrix based approach respectively.

Test case one n=20

Figure 7.21 : Dependency graph and matrix

146

Table 7.6 : Output process model from graph based approach

1 concurrent services level one WS0, WS1, WS2, WS3, WS4, WS13, WS14, WS15

2 concurrent service level two WS8, WS6

3 concurrent service level three WS9, WS7

4 concurrent service level four WS5

5 concurrent service level five WS10, WS11

6 concurrent service level six WS12

7 concurrent service level seven WS16, WS19

8 concurrent service level eight WS17

9 concurrent service level nine WS18

Web services in the same row (level) can be executed concurrently,so are called concurrent web services.

Web services in row (level) n should be executed before web services in row (level) m, where m > n.

Table 7.7 : Output process model from matrix based approach

1 concurrent services level one WS0, WS1, WS2, WS3, WS4, WS13, WS14, WS15

2 concurrent service level two WS5, WS6, WS7, WS8, WS9

3 concurrent service level three WS10, WS11, WS12

4 concurrent service level four WS16, WS17, WS18, WS19

Web services in the same row (level) can be executed concurrently,so are called concurrent web services.

Web services in row (level) n should be executed before web services in row (level) m, where m > n.

Test case one n=30

147

Figure 7.22 : Dependency graph and matrix

Table 7.8 : Output process model from graph based approach

1 concurrent services level one WS0, WS1, WS2, WS3, WS4, WS15, WS23,

2 concurrent service level two WS5, WS6, WS7W, WS8, WS9, WS29,

3 concurrent service level three WS10, WS11, WS12, WS13, WS14,

4 concurrent service level four WS16, WS17, WS18, WS19,

5 concurrent service level five WS20, WS21, WS22, WS24,

6 concurrent service level six WS25, WS26, WS27, WS28,

Web services in the same row (level) can be executed concurrently,so are called concurrent web services.

Web services in row (level) n should be executed before web services in row (level) m, where m > n.

148

Table 7.9 : Output process model from matrix based approach

1 concurrent services level one WS0, WS1, WS2, WS3, WS4, WS15, WS23

2 concurrent service level two WS7, WS8, WS29

3 concurrent service level three WS14, WS5, WS9

4 concurrent service level four WS6

5 concurrent service level five WS13

6 concurrent service level six WS11, WS12

7 concurrent service level seven WS18, WS10

8 concurrent service level eight WS19, WS16

9 concurrent service level nine WS17, WS24

10 concurrent service level ten WS21, WS22

11 concurrent service level eleven WS25

12 concurrent service level twelve WS20

13 concurrent service level thirteen WS27, WS28, WS26

Web services in the same row (level) can be executed concurrently,so are called concurrent web services.

Web services in row (level) n should be executed before web services in row (level) m, where m > n.

For all cases, outputs of both approaches are valid in terms of execution order, which

means no service comes before any other service that is dependent on it (both di-

rect and indirect). Similarly, the output composition plans for n = 20 and n = 30

of the GBA approach includes all possible concurrent control flows. The MBA ap-

proach composition plan has more sets of concurrent services that can be executed

concurrently.

149

7.4 Chapter summary and conclusions

7.4.1 Summary

The results obtained from the experimental study are comparable to the results from

theoretical complexity analysis with the exception of the MBA indirect dependency

generator, GBA cycle detection and GBA process model generator. Proper expla-

nation is given for the causes of these exceptions. The overall performance of the

proposed approaches can be summarized as follows. First, most of the composition

time (for both MBA and GBA approaches) is spent in cycle detection. This step

is very important not only for the approaches in this research but also for other

approaches which use service dependency information. Second, the number of ab-

stract services which represent a service community with the same functionality and

the number of dependencies among such abstract descriptions have impact on the

composition time. The bigger the number of abstract services, the bigger is the com-

position time. Unlike other composition approaches, the number of services within

the community does not influence the proposed approaches composition time because

the composition is done without considering individual member services. Third, the

composition time for MBA is better than GBA for n < 30 and for n > 30 GBA’s

composition time is better than MBA. Fourth, output process model of the GBA

includes more concurrent control flow than MBA. In this regard, GBA outperforms

MBA because the more concurrent services in the process model, the less the the

execution time of the composite service.

150

7.4.2 Chapter conclusion

In this chapter, the experimental results and their interpretation is presented. The

experimental analysis allowed to validate the theoretical results and made the evalu-

ation of the performance of the proposed approaches possible.

The computation time of dependency generation is checked in relation to the number

of services and the number of dependencies. The result indicates that there is no

significant change in the computation time with number of dependencies for the same

n number of services. Moreover, a test is done to investigate the relationship between

number of services and number of dependencies. This information is important for

algorithm complexity analysis. The relationship between the number of services and

the corresponding dependencies is extracted by calculating the average number of

dependencies for a single set of services. i.e. the number of dependencies that exist

in one scenario with n number of services.

The MBA spent most of the time in cycle detection. Thus, we believe improving the

MBA cycle detection algorithm is one way to improve its performance. One way of

achieving this can be using the Tarjan algorithm for cycle detection. This algorithm

is used in the GBA.

The GBA approach outputs a composition plan with all possible concurrent services.

Thus, its output has more concurrent services than the MBA. In general, the GBA

scales better than the MBA. However, the MBA approach results in a better perfor-

mance for n < 30.

The test-bed developed as part of this research differs from other existing test-beds

because it generates composable discrete abstract service descriptions. This enables

151

performance evaluation and validation of service composition techniques that does

service discovery and composition plan generation separately. The testbed allowed

us to prove the applicability and the scalability of the proposed approaches.

153

Chapter 8

Conclusions and outlooks

8.1 Conclusions

Creating a composite service or an application from component services, which are

developed and meant to work independently, brings dependencies among the services

involved. Thus, analyzing and tracking of dependencies are important issues in a

composite service development and management.

This thesis advocates the potential utilization of service dependency information for

an automatic service composition. The research investigates, develops and imple-

ments methods for representing, analyzing and utilizing service dependency infor-

mation for enabling automatic service composition. As a result, first, a top layer

architecture with a composition engine for the purpose of automatic generation of

composite service is developed. Second, a two-stepped method for automatic process

model generation, given a set of candidate web service descriptions, is proposed.

The top layer architecture gives the general picture of dependency- based automatic

service composition. We believe that this architecture will allow to consider a service

composition problem as a service dependency identification and analysis problem.

We argue that semantic description of web services and user requests enable the

automatic detection of dependencies between services. This opens ways for developing

154

more flexible and scalable applications from smaller semantically described services.

The proposed architecture utilizes the concept of abstract service description, as

opposed to the traditionally used concrete service description. An abstract service

description is a way of describing services that have the same functionality (which are

also called community services) with a single description. This consolidated abstract

service description reduces the size of the service repository and minimizes the search

space, which in turn increases the scalability of the service composition and discovery

approaches.

The actual realization of the proposed architecture dealt with the following major

issues: (i) extracting direct dependencies among candidate service descriptions for the

composite task, (ii) identifying cyclic dependencies (if there are any) and regenerating

cycle free dependency, (iii) analysis of dependency information for a composition

plan generation, (iv) generating a composition plan or a process model using the

analyzed dependency information. The first issue is handled by utilizing semantically

enabled I/O matching technique. For the remaining three issues, we took advantage

of matrix-based and graph-based algorithms and concepts and accordingly proposed

two approaches.

The first composition approach uses adjacency matrix to represent the dependency

among candidate services. The rows and columns of the matrix represent candi-

date services. In this approach the cyclic dependency is identified and extracted

using a new algorithm developed based on the concept of power of a matrix. This

cycle detection algorithm has a complexity of polynomial of degree four. The full

dependency matrix (direct and indirect dependency) is extracted using the Warshall

algorithm which has a theoretical complexity of O(n3) but the result from the exper-

155

iment showed that it has a quadratic complexity. The process model generation of

MBA utilizes a sorting algorithm that is modified to suit the intended purpose. The

modified algorithm outputs a composition plan with concurrent services. The sorting

is done based on the number of services dependent on a particular service (N1) in a

descending order. The number of services a particular service depends upon (N2) is

sorted in an ascending order. The overall complexity of the matrix based approach

is of polynomial complexity of degree four. This approach makes use of direct and

indirect dependencies.

The second approach represents a dependency using a directed graph. In the depen-

dency graph nodes represent services and direct edges represent dependencies. The

graph-based approach identifies and extracts cyclic dependencies using the Tarjan

algorithm. In this approach, the composition plan is generated using the Topological

sorting algorithm that is modified to the purpose. The modification is made in order

to include concurrent services in the output process model. This approach has an

overall theoretical complexity of a quadratic order.

The proposed approaches have been successfully validated conceptually using pub-

licly available real scenarios with 7 to 12 services. Moreover, the approaches have

been implemented in a prototype that generates composable synthetic web service

descriptions and successfully compose up to 200 services. The experimental results

confirmed that both approaches output correct process models in terms of execution

order.

The performance of the proposed approaches is also studied theoretically as well as

experimentally. For the experimental validation and evaluation purpose, a prototype

that has a test-bed to generate synthetic composable services is developed. This

156

test-bed can be used with any other composition techniques. For our purpose, the

implementation of the two proposed approaches is done as parts of the prototype.

The scalability of the two approaches in terms of computation time and validity of

output process model are verified.

Results of the comparison experimental evaluation of the two approaches indicated

that MBA performs better when the numbers of web services are less than 30. In

practice, most composite services do not involve more than 30 services. This suggests

that the matrix-based approach performs better in majority of the cases than the

graph-based approach. The output composition plan by the graph-based approach

includes all possible concurrent services, which is not the case for the matrix based

approach. Both approaches recognize the existence of cyclic dependencies and they

propose a way of dealing with it. We believe that identifying, extracting cyclic de-

pendency and generating acyclic dependency matrix or graph should be considered as

an element of the steps in approaches that utilized service dependency information.

The simplified nature of the proposed methodologies increases their applicability in

real world scenarios.

Comparing the MBA with the method in [25] which uses CLM matrix, our approach

uses a simple algorithm to generate the process model, which we deem, makes it

more efficient especially when the numbers of candidate services are high. CLM based

technique does not offer a means to identify cyclic dependencies. The author explicitly

mentioned that their approach does not work when there is cyclic dependency.

We believe our approach fills an important missing link in existing service composition

approaches. This missing link is the ability for automatic process model generation.

The proposed approaches automatically outputs a composition plan with sequential,

157

concurrent and loop control flow, given candidate abstract service descriptions for the

composite task.

As final remark we suggest to investigate the Tarjan algorithm to improve the per-

formance of MBA.

8.2 Outlook

The work in this thesis can be extended and improved in a number of ways in order

to further widen its scope and efficiency. We indicated some of the possibilities for

practical improvement in different sections of the thesis.

This thesis focused only on the usage of I/O dependency. However including more

dependencies could provide more information, which in turn leads to a better compo-

sition plan. Thus, the approach could be extended by exploring other dependencies,

for example Pre-condition/Effect dependencies, and dependencies caused by user con-

straints. Moreover, the proposed approaches in this thesis overlook alternative control

flow a further analysis is therefore needed to incorporate alternative control flows in

process models.

The service dependency extraction uses straight forward I/O matching. But this

need to be improved. This improvement can be achieved by including some more

annotation in the abstract service description that to limit the search space during

match making.

If a service takes or gives more than one input/output to a particular service then

the two services will have multiple dependencies. In this thesis the effect of multiple

158

dependencies in a composition plan generation is not considered. Multiple dependen-

cies could be included as a cardinality of dependencies which might help to improve

the composition plan. Thus we recommend to further investigate this concept and

its application.

In addition, adaptability techniques for a composite service to unforeseen events hap-

pening at run-time, such as a change in the service landscape, user request variation

(goal variation) and service failure is a requirement. The service dependency informa-

tion could also be used to develop run-time process adaptation techniques by utilizing

a process model re-generation or modification.

159

Chapter 9

Appendices

160

161

9.1 Matrix based approach detailed architecture

Figure 9.1 : Matrix based approach detailed architecture

162

9.2 Graph based approach detailed architecture

Figure 9.2 : Graph based approach detailed architecture

163

9.3 MBA cyclic dependency extraction algorithm pseudocode

Algorithm 9 The cyclic dependency extraction algorithm in pseudocode

1: Input : DDM

2: Output: S

3: PMAT = 1

4: STACK S = empty

5: for i = 1 to DDM.size do

6: PMAT = PMAT ∗DDM.M

7: for j = 1 to DDM.size do

8: if ((PMAT [j, j] = 1)) then

9: S.push(DDM.comp(j))

10: DDM.comp(j).incycle = true

11: end if

12: end for

13: DDM = Reg(DDM,S, i)

14: end for

164

9.4 MBA cyclic free dependency regeneration pseudocode

Algorithm 10 The cyclic free dependency regeneration algorithm pseudocode
1: Reg(DDM, S,i)

2: if (S.size == i) then

3: repeat

4: CN.addcomp(S.pop)

5: until S is empty

6: else

7: K=1

8: Create (S.size/i) compound nodes(CN)

9: CN[K].addcomp(S.pop)

10: while s not empty do

11: T=S.pop

12: if T dependent with any element CN[K] then

13: CN[K].addcomp(T)

14: else

15: Stemp.push(T)

16: end if

17: end while

18: S=Stemp

19: Stemp.clear

20: if CN[K].size=i then

21: increment K by 1

22: end if

23: end if

24: NDDM.addcomp(CN)

25: for i = 1 to DDM.size do

26: if (DDM.comp(i)notincycle) then

27: NDDM.addcomp(i)

28: end if

29: end for

30: for i = 1 to NDDM.size do

31: for j = 1 to NDDM.size do

32: if (NDDM.comp(i) dependOn NDDM.comp(j)) then

33: NDDM.M[i][j]=1

34: end if

35: end for

36: end for

37: Return NDDM

165

9.5 Synthetic web service generator architecture
S

ynthetic com
posable w

eb service generation

Testing Deployment

AXIS
 (generate the

necessary stubs
for deployment)

Initial Interface
file generation

Java Interface
file generator

Interface W
eb

service basic input
Java com

piler

(A
xis)

Java2W
S

D
L

(A
xis)

W
SD

L2Java
Java com

piler
(*.java)

Jar file creator
D

eploy

C
om

position plan
generation algorithm

Figure 9.3 : Synthetic web service generator architecture

167

Bibliography

[1] M. S. S. M. James McGovern, Sameer Tyagi, Java Web Services Architecture.

Elsevier Science, 2003.

[2] M. Fluegge, I. J. G. Santos, N. P. Tizzo, and E. R. M. Madeira, “Challenges

and techniques on the road to dynamically compose web services,” in ICWE ’06:

Proceedings of the 6th international conference on Web engineering, (New York,

NY, USA), pp. 40–47, ACM, 2006.

[3] A. Alamri, M. Eid, and A. E. Saddik, “Classification of the state-of-the-art

dynamic web services composition techniques,” Int. J. Web Grid Serv., vol. 2,

no. 2, pp. 148–166, 2006.

[4] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. Shan, “eflow: A

platform for developing and managing composite e-services,” (Los Alamitos, CA,

USA), p. 341, IEEE Computer Society, 2000.

[5] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing web services

on the semantic web,” The VLDB Journal, vol. 12, pp. 333–351, November 2003.

[6] V. Ramasamy, “Syntactical and semantical web services discovery and composi-

tion,” (Los Alamitos, CA, USA), p. 68, IEEE Computer Society, 2006.

[7] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit for web ser-

vice composition,” in Proceedings of the 11th International WWW Conference

168

(WWW2002), (Honolulu, HI, USA), 2002.

[8] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic composition of web services

using semantic descriptions,” in In Web Services: Modeling, Architecture and

Infrastructure workshop in ICEIS 2003, pp. 17–24, ICEIS’03, April 2003.

[9] U. Kster, M. Stern, and B. Knig-ries, “A classification of issues and approaches

in automatic service composition,” 2005.

[10] E. M. G. da Silva, L. F. Pires, and M. J. van Sinderen, “An algorithm for au-

tomatic service composition,” in 1st International Workshop on Architectures,

Concepts and Technologies for Service Oriented Computing, ICSOFT 2007, Bar-

clona, Spain (E. M. G. da Silva, L. F. Pires, and M. J. van Sinderen, eds.),

(Portugal), pp. 65–74, INSTICC Press, July 2007.

[11] S. Mcilraith and T. C. Son, “Adapting golog for composition of semantic web

services,” in Proceedings of the Eighth International Conference on Knowledge

Representation and Reasoning, 2002.

[12] S. A. Mcilraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE Intel-

ligent Systems, vol. 16, pp. 46–53, 2001.

[13] S. Narayanan and S. A. Mcilraith, “Simulation, verification and automated com-

position of web services,” in WWW ’02: Proceedings of the 11th international

conference on World Wide Web, (New York, NY, USA), pp. 77–88, ACM Press,

2002.

[14] B. Limthanmaphon and Y. Zhang, “Web service composition with case-based

reasoning,” in ADC ’03: Proceedings of the 14th Australasian database confer-

169

ence, (Darlinghurst, Australia, Australia), pp. 201–208, Australian Computer

Society, Inc., 2003.

[15] G. Kapitsaki, D. Kateros, I. Foukarakis, G. Prezerakos, D. Kaklamani, and I. Ve-

nieris, “Service composition: State of the art and future challenges,” in Mobile

and Wireless Communications Summit, 2007. 16th IST, pp. 1 –5, july 2007.

[16] B. Li, “Managing dependencies in component-based systems based on matrix

model,” in Proc. Of Net.Object.Days 2003, pp. 22–25, 2003.

[17] L. Ma, H. Wang, and Y. Lu, “The design of dependency relationships matrix

to improve the testability of component-based software,” (Los Alamitos, CA,

USA), pp. 93–98, IEEE Computer Society, 2006.

[18] S. Basu, F. Casati, and F. Daniel, “Web service dependency discovery tool for soa

management,” (Los Alamitos, CA, USA), pp. 684–685, IEEE Computer Society,

2007.

[19] J. Zhou, D. Pakkala, J. Perl, and E. Niemel, “Dependency-aware service oriented

architecture and service composition,” in IEEE International Conference on Web

Services., pp. 1146–1149, July 2007.

[20] R. Aydogan and H. Zirtiloglu, “A graph-based web service composition technique

using ontological information,” (Los Alamitos, CA, USA), pp. 1154–1155, IEEE

Computer Society, 2007.

[21] H. N. Talantikite, D. Aissani, and N. Boudjlida, “Semantic annotations for web

services discovery and composition,” vol. In Press, Corrected Proof, pp. –, 2008.

170

[22] S. V. Hashemian and F. Mavaddat, “A graph-based approach to web services

composition,” (Los Alamitos, CA, USA), pp. 183–189, IEEE Computer Society,

2005.

[23] M. Stollberg, U. Keller, H. Lausen, and S. Heymans, “Two-phase web service dis-

covery based on rich functional descriptions,” in In Proc. 4th European Semantic

Web Conference (ESWC 2007, Springer, 2007.

[24] B. Dai and X. Li, “An enhanced goal-based semantic web service discovery,”

in Knowledge Acquisition and Modeling, 2009. KAM ’09. Second International

Symposium on, vol. 1, pp. 107 –110, 302009-dec.1 2009.

[25] F. Lecue and A. Leger, “Semantic web service composition based on a closed

world assumption,” Web Services, European Conference on, pp. 233–242, 2006.

[26] K. J. Ma, “Web services: What’s real and what’s not?,” IT Professional, vol. 7,

no. 2, pp. 14–21, 2005.

[27] B. Blau, C. van Dinther, and M. Behrendt, “State of the art in service modeling

languages,” technical report, Universität Karlsruhe (TH), 2007.

[28] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web service

definition language (wsdl),” tech. rep., March 2001.

[29] “Oasis, web services business process execution language version 2.0.”

http://docs.oasisopen.org/wsbpel/2.0/OS/wsbpelv2.0OS.html, 2007.

[30] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, and

K. Verma, “Web service semantics-wsdl-s,” tech. rep., 2005.

171

[31] J. Farrell and H. Lausen, “Semantic annotations for WSDL and XML Schema,”

tech. rep., World Wide Web Consortium, August 2007.

[32] M. K. Smith, C. Welty, and D. McGuinness, “Owl web ontology language guide,

http://www.w3.org/tr/owl-guide/, accessed,” 2004.

[33] U. K. Dumitru Roman, Holger Lausen, “Web service modeling ontology.”

http://www.wsmo.org/TR/d2/v1.1/D2v120050210.pdf, 2005.

[34] J. De, B. Holger, L. A. Polleres, D. Fensel, J. De, B. Holger, L. Axel, and P. D.

Fensel, “The web service modeling language wsml: An overview,” 2005.

[35] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara, “Semantic matching

of web services capabilities,” in International Semantic Web Conference (I. Hor-

rocks, J. A. Hendler, I. Horrocks, and J. A. Hendler, eds.), vol. 2342 of Lecture

Notes in Computer Science, pp. 333–347, Springer, 2002.

[36] L. Li and I. Horrocks, “A software framework for matchmaking based on semantic

web technology,” in WWW ’03: Proceedings of the 12th international conference

on World Wide Web, (New York, NY, USA), pp. 331–339, ACM Press, 2003.

[37] J. Rao and X. Su, “A survey of automated web service composition methods,”

in In Proceedings of the First International Workshop on Semantic Web Services

and Web Process Composition, SWSWPC 2004, pp. 43–54, 2004.

[38] S. Wang and M. A. M. Capretz, “A service dependency model for multiple service

version synchronization.,” in WSE’09, pp. 7–16, 2009.

[39] Z. Gu, J. Li, and B. Xu, “Automatic service composition based on enhanced

service dependency graph,” in ICWS ’08: Proceedings of the 2008 IEEE Inter-

172

national Conference on Web Services, (Washington, DC, USA), pp. 246–253,

IEEE Computer Society, 2008.

[40] Q. Liang, L. N. Chakarapani, S. Y. W. Su, R. N. Chikkamagalur, and H. Lam,

“A semi-automatic approach to composite web services discovery, description

and invocation,” Int. J. Web Service Res., vol. 1, no. 4, pp. 64–89, 2004.

[41] Y. Yan, B. Xu, and Z. Gu, “Automatic service composition using and/or graph,”

in CECANDEEE ’08: Proceedings of the 2008 10th IEEE Conference on E-

Commerce Technology and the Fifth IEEE Conference on Enterprise Comput-

ing, E-Commerce and E-Services, (Washington, DC, USA), pp. 335–338, IEEE

Computer Society, 2008.

[42] F. Lecue, E. M. G. da Silva, and L. F. Pires, “A framework for dynamic web ser-

vices composition,” in 2nd ECOWS Workshop on Emerging Web Services Tech-

nology (WEWST07), Halle, (Germany), CEUR Workshop Proceedings, Novem-

ber 2007.

[43] V. Agarwal, G. Chafle, S. Mittal, and B. Srivastava, “Understanding approaches

for web service composition and execution,” in Compute ’08: Proceedings of

the 1st Bangalore annual Compute conference, (New York, NY, USA), pp. 1–8,

ACM, 2008.

[44] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented

computing: State of the art and research challenges,” Computer, vol. 40, no. 11,

pp. 38–45, 2007.

[45] I. Altintas, E. Jaeger, K. Lin, B. Ludaescher, and A. Memon, “A web service

composition and deployment framework for scientific workflows,” in Proceedings

173

of the IEEE International Conference on Web Services (ICWS04), 2004.

[46] K. Sivashanmugam, J. A. Miller, A. P. Sheth, and K. Verma, “Framework for

semantic web process composition,” tech. rep., LSDIS Lab, 2003.

[47] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “Htn planning for web service

composition using shop2,” Web Semantics: Science, Services and Agents on the

World Wide Web, vol. 1, no. 4, pp. 377 – 396, 2004. International Semantic Web

Conference 2003.

[48] D. Wu, B. Parsia, E. Sirin, J. Hendler, , D. Nau, and D. Nau, “Automating daml-

s web services composition using shop2,” in In Proceedings of 2nd International

Semantic Web Conference (ISWC2003, 2003.

[49] S.-C. Oh, D. Lee, and S. R. T. Kumara, “Web service planner (wspr): An

effective and scalable web service composition algorithm,” Int. J. Web Service

Res., vol. 4, no. 1, pp. 1–22, 2007.

[50] D. Berardi, F. Cheikh, G. D. Giacomo, and F. Patrizi, “Automatic service com-

position via simulation,” Int. J. Found. Comput. Sci., vol. 19, no. 2, pp. 429–451,

2008.

[51] A. M. Omer and A. Schill, “A framework for dependency based automatic ser-

vice composition,” in In Business Process Management Workshops, p. 535541,

Springer, 2008.

[52] A. M. Omer and A. Schill, “Automatic management of cyclic dependency among

web services.” submitted to ICWE 2011.

174

[53] R. Tarjan, “Enumeration of the elementary circuits of a directed graph,” J.SIAM,

vol. 2, pp. 211–216, 1973.

[54] Z. Ma, P. Marchal, D. P. Scarpazza, P. Yang, C. Wong, J. I. Gomez, S. Himpe,

C. Ykman-Couvreur, and F. Catthoor, Systematic Methodology for Real-Time

Cost-Effective Mapping of Dynamic Concurrent Task-Based Systems on Hetero-

geneous Platforms. Springer, 2007.

[55] J. W. Kim and R. Jain, “Web services composition with traceability centered on

dependency,” vol. 3, (Los Alamitos, CA, USA), p. 89, IEEE Computer Society,

2005.

[56] A. M. Omer and A. Schill, “Web service composition using input/output depen-

dency matrix,” in AUPC 09: Proceedings of the 3rd workshop on Agent-oriented

software engineering challenges for ubiquitous and pervasive computing, pp. 21–

26, ACM, 2009.

[57] R. B. FROST, “Directed graphs and their adjacency matrices:misconception and

more efficient methods,” Engineering Optimization, vol. 20, pp. 225–239, 1992.

[58] A. M. Omer and A. Schill, “Dependency based automatic service composition

using directed graph,” in Fifth International Conference on Next Generation

Web Services Practices, pp. 76–81, IEEE Computer Society, 2009.

[59] I. Constantinescu, B. Faltings, and W. Binder, “Large scale, type-compatible

service composition,” Web Services, IEEE International Conference on web ser-

vices, p. 506, 2004.

[60] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara, “Wsben: A web services discovery

and composition benchmark,” in ICWS ’06: Proceedings of the IEEE Interna-

175

tional Conference on Web Services, (Washington, DC, USA), pp. 239–248, IEEE

Computer Society, 2006.

[61] E. Cho, S. Chung, and D. Zimmerman, “Automatic web services generation,” in

42nd Hawaii International Conference on System Sciences, 2009. HICSS ’09.,

pp. 1–8, Jan. 2009.

[62] J. Fan and S. Kambhampati, “A snapshot of public web services,” SIGMOD

Rec., vol. 34, no. 1, pp. 24–32, 2005.

[63] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, June 1962.

