
Hardware Error Detection Using
AN-Codes

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Ute Schiffel

geboren am 08. 07. 1980 in Sebnitz

Gutachter: Prof. Christof Fetzer, PhD,
Technische Universität Dresden

Prof. Dr. Wolfgang Ehrenberger,
Hochschule Fulda

Datum der Verteidigung: 20. Mai 2011

Dresden, den 10.06.2011

Abstract

Due to the continuously decreasing feature sizes and the increasing complexity
of integrated circuits, commercial off-the-shelf (COTS) hardware is becoming
less and less reliable. However, dedicated reliable hardware is expensive and
usually slower than commodity hardware. Thus, economic pressure will most
likely result in the usage of unreliable COTS hardware in safety-critical systems.

The usage of unreliable, COTS hardware in safety-critical systems results in the
need for software-implemented solutions for handling execution errors caused
by this unreliable hardware. In this thesis, we provide techniques for detecting
hardware errors that disturb the execution of a program. The detection provided
facilitates handling of these errors, for example, by retry or graceful degradation.

We realize the error detection by transforming unsafe programs that are not
guaranteed to detect execution errors into safe programs that detect execution
errors with a high probability. Therefore, we use arithmetic AN-, ANB-, ANBD-,
and ANBDmem-codes. These codes detect errors that modify data during
storage or transport and errors that disturb computations as well. Furthermore,
the error detection provided is independent of the hardware used.

We present the following novel encoding approaches:

• Software Encoded Processing (SEP) that transforms an unsafe binary into
a safe execution at runtime by applying an ANB-code, and

• Compiler Encoded Processing (CEP) that applies encoding at compile time
and provides different levels of safety by using different arithmetic codes.

In contrast to existing encoding solutions, SEP and CEP allow to encode
applications whose data and control flow is not completely predictable at compile
time.

For encoding, SEP and CEP use our set of encoded operations also presented in
this thesis. To the best of our knowledge, we are the first ones that present the
encoding of a complete RISC instruction set including boolean and bitwise logical
operations, casts, unaligned loads and stores, shifts and arithmetic operations.

Our evaluations show that encoding with SEP and CEP significantly reduces
the amount of erroneous output caused by hardware errors. Furthermore, our
evaluations show that, in contrast to replication-based approaches for detecting
errors, arithmetic encoding facilitates the detection of permanent hardware errors.
This increased reliability does not come for free. However, unexpectedly the
runtime costs for the different arithmetic codes supported by CEP compared to
redundancy increase only linearly, while the gained safety increases exponentially.

iii

Für Arthur

Es weht der Wind ein Blatt vom Baum,

von vielen Blättern eines.

Das eine Blatt, man merkt es kaum,

denn eines ist ja keines.

Doch dieses eine Blatt allein,

war Teil von unsrem Leben.

Drum wird uns dieses Blatt allein,

für immer, immer fehlen.

Hermann Hesse

Acknowledgments

Over the last years many people helped me to complete this thesis. Now, it is
time to thank them for their support.

My advisor Christof Fetzer always believed in encoding – even when I did not.
He was always open for discussions and an endless source of ideas. His constant
request: “You could publish at conference XYZ.” ensured a steady progress of
my work. Thank you.

My colleagues at the chair for Systems Engineering at TU Dresden provided
a friendly and enjoyable working environment. They were always open for
discussing ideas, problems and gave lots of feedback on paper drafts and pre-
sentations. I especially thank, Martin Süßkraut whose ideas and suggestions
considerably helped to improve the Encoding Compiler and this thesis, which
he proof-read from the first to the very last page, André Schmitt who trans-
formed my ideas for the ANB-encoding Compiler into a compiler pass during
his diploma thesis, Thomas Knauth who implemented the list- and tree-based
version management, Gert Pfeifer who had always time for me: either for just
listening or for explaining some interesting P2P or DNS technique, Andrey Brito
on whom I could count on to drop by on these long evenings before a paper
deadline, Martin Nowack who proof-read the short version of this thesis, and
Claudia Einer and Karina Wauer who helped me to survive in an otherwise
women-free work environment.

Special thanks go to my husband Stephan. He endlessly discussed problems
and possible solutions with me, he proof-read this thesis, and supported me
wherever he could.

Und zu guter Letzt: Danke meine lieben Eltern, daß Ihr mich immer unterstützt
und gefördert habt und auch heute noch für Stephan und mich da seid und alle
unsere Vorhaben mit Ratschlägen und Hilfe begleitet.

vii

Contents

Contents ix

1. Introduction 1

2. Reliability of Hardware 7

2.1. Terminology . 7

2.2. Causes and Effects of Hardware Errors 8

2.2.1. Causes for Increasing Unreliability of Hardware 8

2.2.2. (Un)Reliability of Hardware 11

2.3. Impact of Hardware Errors . 14

2.4. Conclusions from the State of Hardware Reliability 15

2.5. Software-level Symptoms of Hardware Errors 16

3. Arithmetic Codes 19

3.1. Berger Code . 21

3.2. Residue Codes . 23

3.3. AN-Codes . 26

3.3.1. Error Correcting AN-Codes 29

3.3.2. Systematic AN-Codes . 30

3.3.3. |gAN |M Code . 31

3.3.4. Conclusions for AN-Codes 33

3.4. ANB-Codes . 33

3.5. ANBD-Codes . 35

3.6. Comparison of the Codes . 36

4. Encoding an Instruction Set 39

4.1. Implementation of Encoding and Decoding 40

4.1.1. Provided Functions . 41

4.1.2. Encoding . 42

4.1.3. Conversion: Signed Encoded � Unsigned Encoded 44

4.1.4. Decoding . 46

4.2. Encoded Operations . 46

4.2.1. Encoded Base Operations 47

4.2.2. Encodable Replacement Operations 74

4.2.3. Floating Point Operations 79

4.3. Encoded Constants . 80

ix

x Contents

4.4. Calls to External Libraries . 80

4.5. Encoded Data and Control Flow 81

4.6. Encoding Dynamic Memory Access 81

4.7. Version Management . 82

4.7.1. The List . 84

4.7.2. The Tree . 86

4.7.3. Performance Evaluation 89

4.8. Outlook:
Application of Encoded Basic Building Blocks 90

5. Choice of Encoding Parameters 93

5.1. Choice of A . 93

5.1.1. How A Influences the Probability of Detecting Errors . . 94

5.1.2. Practical Evaluation: How Many Errors Are Undetectable? 96

5.2. Choice of the Signatures . 100

5.3. Version . 102

5.4. Conclusion . 103

6. The Vital Coded Processor (VCP) 105

6.1. System Overview . 105

6.2. Workflow . 107

6.3. Program Encoding . 108

6.4. Discussion of VCP . 109

7. Software Encoded Processing (SEP) 111

7.1. System Overview . 111

7.2. Workflow . 113

7.3. Program Encoding . 114

7.3.1. Critical Combinations of Error Symptoms 114

7.3.2. Encoding of the Process Image and the Instruction Pointer115

7.3.3. Encoded Program Execution 117

7.3.4. Encoding of Control Flow Instructions 120

7.3.5. Input and Output . 120

7.3.6. Code Checking . 121

7.4. Evaluation . 122

7.4.1. Error Detection Capabilities 123

7.4.2. Runtime Overhead . 125

7.5. Summary of SEP . 127

8. Compiler Encoded Processing (CEP) 129

8.1. System Overview . 130

8.2. Workflow . 132

8.3. Program Encoding . 134

8.3.1. LLVM Bitcode . 134

Contents xi

8.3.2. Preparations for Encoding 136

8.3.3. Encoding . 137

8.4. Checking the Correctness of the Execution 153

8.5. Evaluation . 155

8.5.1. Benchmarks Used . 155

8.5.2. Other Error Detection Approaches Evaluated 156

8.5.3. Error Detection Capabilities 157

8.5.4. Runtime Overhead . 163

8.5.5. Costs vs Gains . 167

8.6. Summary of CEP . 168

9. Symptom-based Error Injection Tools 171

9.1. Related Work . 172

9.1.1. Error Injectors . 172

9.1.2. Error Injectors Used in Recent Research Papers 174

9.1.3. Slicing . 176

9.1.4. Design Decisions Derived 176

9.2. FITgrind . 177

9.2.1. Design and Implementation 178

9.2.2. Results . 179

9.3. EIS . 180

9.3.1. Error Injection . 180

9.3.2. Debugging with Forward Slicing 185

9.4. Conclusion . 189

10.Related Work 191

10.1. Classifying Error Handling Approaches 191

10.2. Reliable Hardware . 193

10.2.1. Error Avoidance . 193

10.2.2. Error Detection . 195

10.2.3. Summary . 201

10.3. Handling of Hardware Errors in Software 202

10.3.1. Error Avoidance . 202

10.3.2. Error Detection . 203

10.3.3. Error Correcting Software 210

10.3.4. Summary . 211

10.4. Approaches Combining Hardware and Software 211

10.4.1. Error Detection . 212

10.4.2. Summary . 212

10.5. Conclusion . 213

xii Contents

11.Conclusion 215

11.1. Contributions . 215

11.2. Future Work . 216

11.3. Publications, Proposals, and Filed Patents 217

A. Detection of Over- and Underflows
by Choice of A 219

A.1. Detecting Overflows . 219

A.1.1. Lower Bound for A . 220

A.1.2. Upper Bound for A . 220

A.1.3. Interval of Available As 221

A.1.4. Condition for Code Invalidation 222

A.2. Detecting Underflows . 223

A.3. Practical Aspects . 223

Index 225

Bibliography 229

1. Introduction

“Dependability is the ability to deliver service that can justifiably be
trusted.” [ALRL04] When building dependable systems, we have to consider
what can go wrong in the system. Computing systems contain many sources for
failures:

• Erroneous hardware might execute the software incorrectly.
• Software contains bugs and security vulnerabilities with high probability.

These can lead to erroneous behavior when the software is executed.
• Users and operators of the system may make mistakes.

For building dependable systems, we have to deal with all these possible failures
either by preventing them by removing their causes or by tolerating them. In a
dependable computing system, we have to ensure that the software is executed
correctly by the hardware, that the correct software is executed, that users and
operators use the software correctly, and that the software itself is correct.

This thesis focuses on ensuring that software is executed correctly. We present Focus of this
thesismechanisms that enable the user to detect if software was executed correctly

or not. Being able to detect an incorrect execution, the user can react to
the problem by, for example, using checkpointing and re-execution. However,
tolerating the execution errors detected by our approaches is not part of this
thesis. This thesis presents only mechanisms for detecting execution errors.

Nobody questions that software contains bugs. But is today’s hardware unre-
liable? Many people assume that hardware executes software correctly. Most
often, we think a software error is the culprit of a failing system. This assumption
will change in the future. It is already wrong for highly dependable systems
that require smaller failure rates. In the future, the share of failures that are
caused by faulty hardware will increase. See Chapter 2 for a detailed discussion
of hardware reliability.

While hardware reliability has improved dramatically over the last decades, the
decreasing feature sizes1 of integrated circuits and their growing design complex-
ity lead to less reliable hardware in the future. According to Baumann [Bau05]
the failure rate of hardware even with additional error mitigation mechanisms
still ranges from 50–200 FIT2. Without the often expensive mitigation, the rate
increases to over 50,000 FIT per chip.

A failure rate of 50,000 FIT means that a failure should be expected every 2
years for a chip running 24 hours a day, 7 days a week. For large scale server
applications using hundreds of chips a failure rate of 50,000 FIT results in several

1Feature size means the size of the elements on a chip.
2FIT denotes failure in time. 1 FIT equals 1 failure in 109 device hours.

1

2 CHAPTER 1. INTRODUCTION

failing chips per week [Bau05]. Thus, this error rate bears an unacceptable
economic risk for high-volume cost-critical systems. For nuclear plants even 200
FIT is much too high considering the tremendous consequences such a failure
might have. 200 FIT means approximately one failure every 500 years for one
continuously working chip. Currently Germany has 17 active nuclear plants.
Even if each had only one safety-critical chip, that results in approximately one
possibly fatal failure in one of these chips every 29 years. To summarize, the
required failure rate for a single system depends on the number of such systems
used and the criticality of these systems. For many systems, the currently
provided hardware failure rates of commodity hardware are too high. Thus, we
need additional means to ensure the correct execution of software by hardware.

Critical and, in particular, safety-critical systems in the past have been mainlyHardware-
implemented
reliability

built using custom hardware that provides better error detection and masking
than common hardware. For example, custom reliable hardware is radiation
hardened to prevent environment induced execution errors. Another approach
is simple redundancy where two or more processors execute the same code and
check each other.

Recent research developing safety-critical hardware tries to implement more
sophisticated redundancy. These approaches seem very promising, especially
with respect to runtime costs. However, to the best of our knowledge, none of
the currently commercially available commodity systems use any of these new
solutions that we shortly discuss in Section 10.2 of our Related Work Chapter.

In contrast to commodity hardware, the market for custom reliable hardwareEconomics of
reliability is comparatively small. Additionally, development costs for custom reliable

hardware are high. Hence, custom reliable hardware is more expensive than
commodity hardware. In contrast to that, the average selling price per com-
putational device has decreased from 200$ to 5-10$ [Dec05]. In the future,
economic pressure will necessitate the use of unreliable but cheap commodity
hardware even in critical systems. This results in the need for mechanisms
that facilitate to build reliable systems based on unreliable hardware. Thus,
software-implemented mechanisms are required.

These mechanisms would also facilitate mixed-mode systems, which allow to
consolidate hardware. Mixed-mode systems execute both safety-critical and non-
critical applications on the same possibly unreliable commodity hardware. With
the gained flexibility, hardware utilization can be improved ensuring optimal
capacity utilization. Mixed-mode systems allow to use one powerful processor
instead of several small ones, which are specifically adapted to the criticality of
their tasks. The costs for this one commodity processor and its setup costs will be
less than the costs of several custom processors and their installation. For these
systems, the usage of custom reliable hardware would be especially uneconomic
because running non-critical applications on expensive custom reliable hardware
is a waste of resources.

For using commodity hardware in dependable systems, we have to handle their
wide spectrum of possible failures. Commodity hardware exhibits not only
fail-stop but also arbitrary value failures, which are more difficult to detect and

3

to mask. A system that exhibits arbitrary value failures might produce arbitrary
erroneous output. This deviation from the expected behavior of a software is
also known as silent data corruption. In contrast to crash failures (fail-stop),
these failures are especially difficult to handle because they are not easy to
detect.

Thus, techniques are required that facilitate building reliable systems using Software-
implemented
reliability

unreliable hardware. Therefore, it is required to extend the limited failure
detection capabilities of commodity hardware with the help of software. This
thesis presents several approaches that prevent silent data corruptions without the
need for custom hardware. The presented approaches realize failure virtualization
by turning harder to handle value failures into crash failures. Whenever an
execution error is detected that might result in a silent data corruption, the
execution is aborted. As Powell shows in [Pow95], under certain conditions more
reliable systems can be build if the used protocols can assume a crash failure
model instead of an arbitrary failure model. For the arbitrary failure model
usually more redundancy is required. This increases the probability that any of
the redundant parts fails. Additionally, the fail-stop model facilitates the usage
of less complex algorithms to manage the redundancy that is used to tolerate
hardware errors. This reduces the risk of bugs in these algorithms.

When implementing hardware error detection in software, one will need more
CPU cycles to execute an application. In comparison to using custom reliable
hardware, one can however use commodity hardware. Commodity hardware is
typically faster and less expensive than custom reliable hardware because its
development is faster progressing and less time and money consuming. The
larger market of commodity hardware further decreases its cost. Furthermore,
in many systems, only a few application components are critical and only these
components need to be protected by additional error detection. These mixed-
mode systems can be economically realized using commodity hardware and
software-implemented hardware error detection. In summary, the flexibility
gained by using a software-based approach allows

1. to reduce the hardware cost, and
2. to bound the performance impact of the software-based error detection by

focusing on the critical application components.

The error detection approaches presented in this thesis are based on arithmetic Arithmetic codes

codes, which we introduce in Chapter 3. They facilitate software-implemented
end-to-end hardware error detection, i. e., cover all components that might cause
a data corruption. In particular, arithmetic codes cover

• errors that modify data stored in memory or
• data transported on a bus and
• errors that disturb computations implemented by logical circuits, e. g.,

address computations or computations done in an arithmetic logical unit.

The detection provided is end-to-end because after encoding data, errors disturb-
ing its transportation, its storage, and its processing are detectable. For an ideal
implementation of arithmetic codes no windows of vulnerability exist. This is
much harder to achieve with hardware-implemented error detection mechanisms.

4 CHAPTER 1. INTRODUCTION

For example, if parities combined with redundant execution are used, data
is vulnerable for unnoticeable modifications after its redundant computation
and before its parity for storage is computed. Removing these windows of
vulnerability is difficult.

An application that is protected from undetected execution errors by an arith-
metic code is called (arithmetically) encoded . We will in this thesis present
different ways to arithmetically encode programs written in C. The error detec-
tion capabilities of arithmetically encoded applications are largely decoupled
from the error detection capabilities of the hardware used. They only depend on
the chosen arithmetic code and its parameters. This eases hardware replacement
in critical systems because less requirements are posed on the hardware used.

From the broad variety of known arithmetic codes (see Chapter 3), we chose the
AN-codes because they are the most useful for software implementation. The
other codes are either

• not suitable for software implementation because only a hardware imple-
mentation can provide their full detection capabilities, or
• they are less powerful because they do only support a restricted set of

recognizable errors or of operations that conserve the code.

Our error detection implementations support different AN-codes with different
error detection capabilities. Thereby different safety levels are provided to
systems engineers. Our experiments show that AN-codes decrease the rate
of silently corrupted output immensely compared to unprotected applications.
Depending on the AN-code used, this reduction ranges from one to three
orders of magnitude. Furthermore, the detection capabilities of AN-codes are
also better than that of software-implemented redundancy – especially when
permanent hardware errors are considered. Our experiments also show that a
higher detection capability always comes at the cost of an increased runtime
overhead. Increased safety as increased security does not come for free. This
is true for different AN-codes compared to each other as well as for AN-codes
compared to software-implemented redundancy. In Chapter 8 we will show the
following: When choosing a detection mechanism with higher detection rate, the
performance degradation is linear. However, the gain, i. e., reduction of the rate
of undetected silent corruptions, grows exponentially. Thus, the different safety
levels that we provide enable systems engineers to balance the error detection
capabilities and the runtime overheads of the error detection.

The thesis is structured in the following way: Chapter 2 discusses the evolutionThesis structure

of reliability of hardware in the future and the impact that unreliable hardware
has on computing systems. Furthermore, we introduce the failure model of
hardware that we assumed in the development of the error detection mechanisms.
Chapter 3 describes arithmetic codes in general and some specific codes. To
encode an application it is required to use operations that are capable of handling
encoded values. These – so-called encoded operations – preserve the code in an
error-free execution. An erroneous execution with high probability results in
invalid code words. Chapter 4 presents our encoded versions of the operations
required to encode programs. Since the error detection capabilities of an encoded

5

program do not only depend on the arithmetic code used, but also on the code
parameters, we discuss their selection in Chapter 5. Using the encoded operations
described in Chapter 4 encoding an application can be done at different levels
of abstraction and different points in the application’s life cycle. Chapters 6,
7, and 8 present three different approaches to encode an application. While
Chapter 6 introduces the Vital Coded Processor that was first described by
Forin in [For89], Chapter 7 describes our newly developed Software Encoded
Processing (SEP) and Chapter 8 presents our Compiler Encoded Processing
(CEP). For evaluating hardware error detection mechanisms error injection is a
common tool. Since none of the available error injectors fulfilled our needs, we
developed our own injection tools. Chapter 9 describes the reasons for doing
so and the tools’ design and implementation. The thesis is concluded with a
review of related work in Chapter 10 and a conclusion in Chapter 11.

Our contributions to the research community are: Contributions

The set of encoded instructions: For encoding whole applications, we need
a code-conserving version for all instructions that we encounter in an
application. This encoded version of an operation takes encoded input
values and produces encoded output values if no error disturbs the execu-
tion. In Chapter 4 we describe how we encode instructions that will be
encountered during encoding applications. To reduce the manual work of
encoding, we only encoded a small number of arithmetic operations by
hand. These encoded base operations are described in Section 4.2.1. For
more complex operations such as type casting or shifting, we developed our
own encodable C-implementations – the replacement operations. These are
described in Section 4.2.2. All occurrences of such operations are replaced
with their encodable version before the actual encoding is done. Thus,
they are encoded automatically afterwards. The remaining sections of
Chapter 4 describe the encoding of instructions implementing control flow
and memory access. To the best of our knowledge, we are the first ones
presenting a complete set of encoded instructions that facilitates complete
encoding of applications implemented in ANSI C.

Support of dynamic memory for ANB- and ANBD-encoding Forin introduc-
ed in [For89] AN-encoding with signatures (ANB-codes) and timestamps
(ANBD-codes). His implementation – the Vital Coded Processor – is
introduced in Chapter 6. One of its main drawbacks is that it does not
support dynamically accessed memory for which the access pattern is
not known at compile time. In Section 4.6 we present our approach to
support dynamically accessed memory using our newly developed dynamic
signatures.

Software Encoded Processing (SEP) Chapter 7 describes Software Encoded
Processing that protects binaries during execution from undetected silent
data corruption through hardware errors. Therefore, we developed an
encoded interpreter that executes the binaries using solely encoded opera-
tions. Error injections confirmed the error detection capabilities of this
approach.

6 CHAPTER 1. INTRODUCTION

Compiler Encoded Processing (CEP) The encoded execution of binaries using
an encoded interpreter is expensive in terms of runtime overhead. It
can be expected that for safety-critical applications the source code is
available since the source code of critical components is anyhow required
to be able to fix bugs or modify their behavior. Thus, we developed the
Encoding Compiler that we present in Chapter 8. In contrast to SEP,
the Encoding Compiler supports different safety-levels by using different
AN-codes. Furthermore, the runtime overhead induced by the resulting
encoded applications is far less than for applications executed using SEP.

Comparison of duplicated execution and different AN-codes For comparing
the different AN-codes to duplicated execution we implemented a simple
software-based double modular redundancy and a signature-based control
flow checking. We compared the error detection capabilities and runtime
overhead of the different AN-codes, double modular redundancy, and
double modular redundancy with additional control flow checking. Our
experiments have shown that safety can be adapted to the required needs
by choosing an appropriate safety-level – implemented for example by
one of the AN-codes. However, the higher the obtained error detection
capabilities are, the higher are also the runtime costs in terms of execution
time. For details see Section 8.5.

Symptom-based error injector with debugging support For evaluating our er-
ror detection mechanisms, we used symptom-based error injection. Since
we were not able to obtain a sufficient error injector that implemented the
error model described in Section 2.5, we implemented our own injectors:
FITgrind and EIS. They are described in Chapter 9. Their injection can
be applied to arbitrary applications. Hence, we can compare the error
detection capabilities of different error detection mechanisms and also of
applications that are not protected by additional mechanisms at all. The
applications analyzed can be exposed to different symptoms of hardware
failures. Furthermore, the error injector EIS allows to debug error detec-
tion mechanisms by providing traces of the data flow that was influenced
by an injected error. This helps to find weaknesses in our error detection
mechanisms and was also not available in any other error injection tool.

2. Reliability of Hardware

After introducing some basic terminology, this chapter first motivates why
hardware is expected to become less reliable in the future. Secondly, the chapter
motivates why we should take care of unreliable hardware. Therefore, we
represent studies and reports that demonstrate the impact of hardware errors
on safety and security of systems and the economical impacts undetected errors
had. Afterwards we introduce the symptom-based error model that we assume
for all our further developments. This error model describes the symptoms
unreliable hardware can cause at the level of software during the execution of
an application. Hence, it is hardware independent and enables us to develop
and test our hardware error detection independent of a specific hardware.

2.1. Terminology

For describing the reliability of systems – in this chapter mainly hardware
systems – we use the terminology introduced in [ALRL04]. The most important
terms are explained in the following.

A failure occurs when a system’s behavior deviates from its expected correct Failure

behavior. For example, if for the system memory not the same word is read
from an address as was written to that address before.

An error is the deviation in a system’s state from the expected correct version Error

of the system’s state. An error might lead to a failure if it gets activated . If
an error does not result in a failure, it is said to be masked . In our memory
example, a flipped bit is an error. If that bit is read, the error is activated. If
that bit is overwritten with other valid data, the error is masked.

A fault is the cause for an error. A fault might be activated. In that case it leads Fault

to an error. In our memory example, the fault is, for example, the vulnerability
of the memory to radiation induced bitflips.

Permanent faults are continuous in time. For hardware they are either caused
by irreversible physical changes or by a faulty design. Permanent faults cause
so-called hard or permanent errors . These errors are repeatable under the same
conditions. For example, if a memory cell has a bit that is stuck at 1, every
data item written into that cell will be modified accordingly.

The presence of transient faults is bounded in time. If an operation disturbed by
a transient fault is repeated, the result will be most likely correct. An example
for a transient fault is noise on the power supply.

An intermittent fault occurs, than vanishes, and than reappears again. Unstable
or marginal hardware is prone to intermittent faults, for example, a transistor

7

8 CHAPTER 2. RELIABILITY OF HARDWARE

that is going to break down – one time it is working correctly and the next time
not.

Transient and intermittent faults cause soft errors. These are temporary mal-
functions in a circuit [Lau06]. The soft error rate (SER) is the frequency of
occurrence of soft errors.

2.2. Causes and Effects of Hardware Errors

According to Siewiorek et. al. [SCK04] hardware reliability has been increasing
with every new generation. However, in the future the decreasing feature
size of hardware will not lead to more reliable but to less reliable hardware
[SG99]. Logical building blocks as well as memory will become more error-
prone. While the decreasing size of the elements of processors and the growing
design complexity of processors increase the performance achieved, they decrease
reliability. Hence, the rate of hardware failures will increase.

In the following, we will first present the reasons for increasing unreliability of
hardware and, second, discuss how unreliable hardware currently is and in the
future will become.

2.2.1. Causes for Increasing Unreliability of Hardware

The decreasing feature sizes of hardware lead to higher variability in theEffects of
decreasing feature
size

electrical properties of hardware. Today’s CPUs have a variation in operating
frequency of about 30% which is dealt with by using die binning, i. e., testing
the resulting chips to find their appropriate operating frequency. However, the
variability will increase further with decreasing feature sizes because of theHigher variability in

feature properties following reasons [Bor05]:

dopant variation The threshold voltage of transistors is controlled by dopants in-
serted into the transistor channels. The smaller the transistors become, the
less dopants are inserted. Thus, variations in the amount of dopants have
a greater impact onto the electrical properties of the transistors. So, the
uncontrollable variability of the production process leads to unpredictable
properties of transistors.

subwavelength lithography Nowadays, the wavelength of the light used in
lithography is bigger than the produced structures. That makes the
structures unpredictable rough and uneven resulting in variations in the
electrical properties of the produced transistors.

varying heat flux How much heat is produced highly depends on the functional-
ity of a building block and thus varies across the die. Since the transistor’s
electrical properties are influenced by heat, transistors will have varying
properties. Varying heat flux has a higher impact on smaller transistors
than on larger ones.

2.2. CAUSES AND EFFECTS OF HARDWARE ERRORS 9

Increasing variability will make processor designs, at least as done today, more
and more unpredictable. It will not only increase the amount of hardware
building blocks that fail altogether, but increased variability will also lead to
more building blocks that are marginally functional. These are susceptible to
soft errors and have a higher probability to fail altogether during the hardware’s
lifetime [CCL+08].

Decreased feature sizes and increased system sizes also lead to increased soft Increasing
soft error rateerror rates. The problem of soft errors caused by radiation is known since the

1950s of the previous century. For example, soft errors were observed at locations
near nuclear bomb test sites. Since then soft errors are continuously researched
and tried to make hardware less susceptible to them [ZCM+96]. Borkar expects
the SER (soft error rate) to increase exponentially with every new technology
generation [Bor05].

One main cause for soft errors is radiation that causes energetic particles to
travel through processors. These particles are responsible for inducing soft errors
by for example changing the state of a transistor. Soft errors can be caused by
three different kinds of radiation [Bau05]:

Alpha particles are emitted by impurities in the packaging materials of chips
that are undergoing radioactive decay. Examples are uranium and thorium
impurities. While emitted alpha particles travel through the processor,
they transfer part of their kinetic energy into the surrounding material.
Thereby, they can induce state changes [Bau05].

Since the discovery of the effect of impurities, they were reduced immensely.
However, it is not possible to exclude impurities that emit energetic
particles completely. Thus, alpha-particle-induced soft errors have to be
considered when building reliable systems [KHP04].

High-energy cosmic radiation reacts with the Earth’s atmosphere. This reac-
tions emit cascades of secondary particles – mostly high-energy neutrons –
that can also induce soft errors. The rate of these soft errors depends on
altitude and geographical location.

According to Baumann [Bau05] high-energy neutrons have a higher poten-
tial to cause soft errors than alpha particles. Furthermore, it is difficult to
protect from neutrons by shielding. Only thick layers of concrete reduce
their impact [Bau05].

Low-energy cosmic radiation results in low-energy neutrons – so-called thermal
neutrons. Boron is used as a dopant to control the threshold voltage of
transistors. Low-energy neutrons can cause soft errors when encountering
a specific boron isotope.

According to Baumann [Bau05] these soft errors can be easily prevented
because the concerned boron isotope can be avoided easily. However,
Wilkinson et. al. [WBB+05] reported that many integrated circuits still
contain the concerned boron isotope.

Note that low- and high-energy neutrons are not exclusively caused by cosmic
radiation. For example, cancer-radiotherapy equipment also emits low-energy

10 CHAPTER 2. RELIABILITY OF HARDWARE

neutrons.

Decreased feature sizes result in decreased supply voltages. Thus, less energy,
that is, less radiation, is required for causing a state change. The measurements
presented by Constantinescu [Con03] indeed show a higher SER for memories
operated at a lower supply voltage. Karnik et. al. [KHP04] observed that the
error rate grows faster than the supply voltage decreases: “The SER increases
by 2x when the voltage is reduced from 1.2V to 0.8V. Over the range of mea-
surements, the SER increases by 18 percent for every 10 percent reduction in the
supply voltage.” Thus, in the future not only hardware operated under extreme
conditions will be susceptible to soft errors. Commodity hardware under normal
conditions will also be prone to radiation induced soft errors.

Furthermore, the increased system size leads to increased error rates for systems.
Smaller transistors are less likely hit by an energetic particle and indeed the error
rates per bit of memory are decreasing [Con03, DHW09]. However, the number
of transistors per system follows Moore’s Law and grows exponentially over
time. Thus, the increased number of transistors increases the probability that
any of them is hit by an energetic particle. Constantinescu from Intel [Con03]
has shown that the SER of SRAM and DRAM increases linearly with their size.
Dixit et. al. [DHW09] (working with Sun Microsystems) also confirm higher
SERs for microprocessors with more memory. Dixit et. al. also state that the
decreased SER per bit in RAM is partly caused by a change in design and not
only by the reduced feature size. The new design was more lithography friendly
and the resulting memories thus less susceptible. Memories in logical circuits
such as registers have a less regular and thus less lithography friendly structure.
Indeed, starting with the 90nm generation Dixit et. al. observed a higher SER
for memories used in logical circuits than for SRAM.

There are various other causes for soft errors whose impact is also increased by
decreasing feature sizes because they always go hand in hand with decreasing
supply voltages:

• noise on the power supply
• charge sharing
• crosstalk and crosstalk-induced delays
• electromagnetic interference
• electrostatic discharge

Technology changes such as the feature size reduction do not only affect errorChanging
error model rates observed, but also the kind of induced errors. For a long time single bitflips

were a well-established error model. But with decreasing feature size multiple
bitflips become more probable [DHW09].

Furthermore, the reduced feature size increases the impact of physical effectsHigher impact of
physical effects such as the Miller and the skin effect. Thereby SER is also increased. The

Miller effect means that the simultaneous switching of both terminals of a
capacitor will modify the effective capacitance between the terminals. Thus,
it can significantly affect on-chip delays [SK99]. According to the skin effect
signals mostly propagate along the surface of wires at high frequencies. Because
of the skin effect the resistance of wires varies with the signal frequency [Wal00].

2.2. CAUSES AND EFFECTS OF HARDWARE ERRORS 11

Smaller features are also less reliable because decreased feature sizes increase Increasing hard
error ratethe effects of transistor aging. While today these effects are factored in during

design, this will not be possible anymore in the future [Bor05]. The amount of
transistors that are either permanently broken or exhibit a borderline behavior
will increase.

Possible causes for hard errors whose impact is increased by decreasing feature
size are [BSO05]:

• Electromigration is the transport of material caused by the gradual move-
ment of the ions in a conductor. It eventually results in highly resistive
interconnects or contacts and leads to open circuits.

• Gate oxide breakdown is caused by the progressive build-up of defects
inside the gate oxide of a transistor. Eventually these defects line up and
constitute a conductive path across the dielectric.

• As we will detail later smaller structures are more difficult to handle during
manufacturing. Hence, during chip fabrication with smaller feature sizes
more hard errors are introduced.

A further type of hard errors are design errors. Due to the increasing complexity Design errors

of processors, it becomes more and more difficult to ensure their correctness
[WA01]. Design errors are even worse than hard errors caused by randomly
failing circuits because they are not detectable with a redundant execution that
uses the same circuit.

Avižienis and He [AH99] studied the erratas of several large manufactures. These
erratas describe known design faults in processors. Avižienis and He conclude
that processors contain surprisingly many faults and that even for processors
that are already sold for years still new bugs are found. However, for a large
part of those bugs the manufactures do not intend to fix them. Furthermore,
obtaining information about the faults of a processor is not easy. Erratas are
confusing and difficult to read and not all manufactures provide them. Thus,
users of hardware that shall be reliable should use means to detect hardware
errors – even permanent ones.

2.2.2. (Un)Reliability of Hardware

After describing the reasons for increasing soft and hard error rates, we will
now present the state and expected future development of the reliability of the
building blocks of computing systems: memories and logical circuits.

Two different kinds of random access memory (RAM) are used: DRAM and Sensitivity
of memorySRAM. Dynamic RAM (DRAM) stores each bit of data in a separate capacitor

and, thus, has to be refreshed regularly. It is usually used as main memory of
computers. Static RAM (SRAM) uses bistable latching circuitry to store each
bit and is not required to be refreshed regularly. It is used, for example, for
caches, registers, and buffers in hard disks, routers etc.

The SER per bit of DRAM has reduced by more than 1000 times over seven
generations. However, the SER of DRAM-based systems has remained unchanged
because of the increased memory usage [Bau05].

12 CHAPTER 2. RELIABILITY OF HARDWARE

Schroeder et. al. [SPW09] observed the DRAM error rates in Google’s server
fleet for 2.5 years. The observed memory error rates were with “25,000 to 70,000
errors per billion device hours per Mbit” [SPW09] much higher than expected.
Furthermore, the results indicate that memory errors are not dominated by
soft but by hard errors. These results contradict statements of Baumann that

“DRAM is one of the more robust devices” [Bau05] and that we have to worry
more about SRAM’s reliability instead of DRAM’s.

According to Baumann [Bau05] SER per bit of SRAM was increasing for a
long time with every new generation. After removing the boron isotope that
is susceptible to thermal neutrons from SRAM production, single-bit SER of
SRAM stopped to increase and might even decrease in the future. However,
due to increased usage of SRAM in systems, the SER for whole SRAM-based
systems still increases with each new generation. Note that Baumann drew
these conclusions from data of SRAM that already used error correcting codes
(ECC) for memory error detection and correction. ECC is not commonly used
in commodity systems. It is the opinion of Calhoun et. al. [CCL+08] that the
error rates of SRAM will not be manageable by conventional memory protection
techniques in the future.

Memory is not only composed of state storing elements, but does also contain
logical circuits for accessing memory cells. As Karnik et. al. [KHP04] state

“Unlike a memory, the core logic often is not designed as a regular array and does
not lend itself to ECC protection.”. According to Baumann [Bau02] the SER of
the logical parts of memories is higher than that of memory that is additionally
protected. He states that the SER of memory logic is only 100 to 1000 times
lower than for unprotected SRAM.

For a long time memory SER determined system SER to a large extent. However,Sensitivity of
logical circuits logical circuits contain apart from combinational circuits also state storing

elements such as latches and flip-flops. For them similar error rates as for SRAM
are expected [Bau05]. Protecting these storage elements from undetected data
modifications is a complex and expensive task.

Combinational circuits such as NAND- or NOR-gates are more robust against soft
errors due to various masking effects that prevent soft errors from propagating.
The following kinds of masking occur [KHP04]:

• Logical masking occurs if the error changes a state that is not used. In that
case, the error has no influence. For example, if one input of a NAND-gate
is modified, that does not change the gate’s output if the other input is 0.
In that case the output of the gate will be 1 – independent of the second
erroneous input line.
• Temporal masking occurs if the error changes a signal or computation that

is not currently latched, that is, transfered into a storage element such as
a flip-flop.
• Electrical masking occurs if the introduced electrical pulse fades while trav-

eling through a circuit and evaporates before reaching a storage element.

However, reduced feature sizes make combinational circuit’s design less pre-
dictable. Interactions between adjacent circuits cannot be excluded and faulty

2.2. CAUSES AND EFFECTS OF HARDWARE ERRORS 13

or nearly faulty transistors do not behave as expected. Furthermore, reduced
propagation delays and increased clock frequency decrease the effect of temporal
masking. The reduced supply voltage reduces the effect of electrical masking
because smaller pulses suffice to modify state. Thus, it becomes more likely
that electrical pulses introduced in a combinational circuit directly or indirectly
modify the state of a storage element. Furthermore, the increased amount of
combinational circuits on a chip makes it also more probable that any of them
experiences a soft error [SKK+02, Bau05].

Many of the problems that render hardware unreliable are identified today. Will Will hardware be-
come more reliable
again?

that influence hardware design and manufacturing in a way that hardware will
become more reliable instead of less reliable? Will new computer architectures
and technologies replace current ones?

As one solution or part of the solution manufacturing could be improved. How-
ever, according to Baumann [Bau05]: “The majority of process solutions seldom
reduce SER by more than five times so their use does not justify the expense
of additional process complexity, yield loss, and substrate cost.” Some modified
processes provide a reduction by the factor 250. That still is not enough for
high-reliability applications and does not justify the increased production costs
[Bau05].

Hardware producers are right now struggling with developing new design pro-
cesses that are able to handle at least variability. Currently it is unsuccessfully
tried to handle variability by decoupling of design and technology [CCL+08]:

• Nowadays chip designers are restricted by design-for-manufacturing rules
that depend on the used technology, e. g., 90nm or 65nm. These rules
prevent the designers from designing circuits that in manufacturing will
lead to a large amount of unusable dies. However, the set of rules keeps
increasing. New rules often contradict old ones and adhering to all rules
leads to less efficient designs in terms of power, timing, and area. Further-
more, the rules do not solve the problem completely. Designs often have
to be refined after producing the first circuits.

• Furthermore, standard cell libraries are used to guarantee manufactura-
bility. For each cell of such a library it is guaranteed that it can be
manufactures correctly, and it is assumed that cells can be placed next
to each other without influencing each other. However, with decreasing
feature size interaction between neighboring cells increase. Analyzing man-
ufacturability of all possible combinations of standard cells is an intractable
task due to the amount of possible combinations and interactions.

Calhoun et. al. [CCL+08] discuss how future hardware development processes
have to integrate the new design parameters introduced by the higher variability.
The resulting design processes are much more complex and possibly costly than
todays.

In contrast, Borkar in [Bor06] argues that any new technology would have
to reduce costs while providing increased integration capacity and improved
performance. However, currently discussed approaches for increasing reliability
of circuits will always increase design and/or manufacturing costs.

14 CHAPTER 2. RELIABILITY OF HARDWARE

2.3. Impact of Hardware Errors

This section will demonstrate the impact hardware errors can have. The usage
of computing systems keeps increasing. They nowadays influence all aspects of
our live – including our safety and financial well-being. We trust computing
systems to function correctly. Hence, their impact and the impact of their failure
on our live is tremendous.

As already described in the Introduction in Chapter 1 the impact of hardware
errors depends on several factors such as error rate per device, number of
deployed devices, utilization, and consequences and costs of a failure. In large
scale systems even relatively low error rates per device can be unacceptable
because with a high number of deployed devices the probability that any of
them fails is non-negligible and grows with the number of devices. Safety-critical
systems, where a failure can have catastrophic consequences, also demand very
low error rates even if the number of deployed devices is relatively low.

In this section we will present studies and reports that describe the risk that is
introduced by hardware errors and the impact hardware failures had.

Safety of a computing system is “the absence of catastrophic consequences onImpact on safety

the user(s) and the environment” [ALRL04]. Hardware failures can lead to
the loss of safety. The New York Times reports that 5% of the mistakes in
radiation therapy are partly or all together caused by hardware errors [Bog10].
These errors are dangerous and can be fatal as is demonstrated for some cases
in [Bog10].

Another example where safety of patients is endangered is presented by Wilkin-
son et. al. [WBB+05]. They show that cancer-radiotherapy equipment emits
thermal neutrons that cause soft errors in surrounding computing systems.
These computing systems, for example, control the used radiation dosage and
could cause a dangerous overdosage. Soft errors caused by thermal neutrons
could be prevented by removing the neutron-susceptible boron isotope used in
processors. However, Wilkinson et. al. did also analyze processors used nearby
to cancer-radiotherapy equipment. They found the neutron-susceptible boron
isotope in each of the processors analyzed.

Security is defined as“a composite of the attributes of confidentiality, integrity,Impact on security

and availability, requiring the concurrent existence of 1) availability for authorized
actions only, 2) confidentiality, and 3) integrity” [ALRL04]. As we will show in
the following undetected hardware errors can endanger security considerably.

Several studies [XCKI01, CXIW02, CXK+04] injected soft errors into the text
segment of the process image of security-critical programs. Xu et. al. [XCKI01]
injected the errors into the login procedures of ftpd (the daemon program for
Internet File Transfer Protocol) and sshd (the daemon program for the Secure
Shell Protocol). They observed a probability for security compromises of 1.1%
for ftpd and of 1.5% for sshd. Considering the widespread usage of these tools
that is considerable. Chen et. al. [CXIW02, CXK+04] also injected soft errors
into the text segment of the process image of applications. Their target were
two different firewalls. The observed result is that 2% of the injected errors

2.4. CONCLUSIONS FROM THE STATE OF HARDWARE RELIABILITY15

caused security vulnerabilities. Furthermore, the authors simulated a network
with 20 firewalls. They defined a security violation as more than five otherwise
unallowed packets entering the system. Under these assumption, the results
show that a firewall failure rate of 2% leads to approximately two machines
experiencing security violations within one year.

The studies presented in [BDL97, BDH+98, BDL01] show how cryptosystems
such as RSA, ElGamal, and DSA can be broken under the presence of hardware
errors. Hardware errors enable an attacker to obtain the secrets used in the
cryptosystems with much less effort. Many of the attacks described in [BDL97,
BDH+98, BDL01] require the ability of the attacker to modify specific bits. But
as described in [SA03] the content of single SRAM cells can even be modified
using a simple flashlight.

In [GA03] it is shown how soft errors help an attacker to gain control over a
Java Virtual Machine (JVM). The authors demonstrated that an attacker can
with a probability of 70% circumvent the type-based security barrier of the JVM
if a soft error in the memory happened. The attacker can either wait for a real
one or if he has access to the system induce one by himself. If the type-based
security barrier is circumvented, the attacker can completely take over the JVM
and execute arbitrary code.

Obviously not only our safety is endangered by unreliable hardware but also our
security. However, unreliable hardware also can have immense economic impact
for enterprises and individuals as well.

The financial losses induced by hardware errors can be tremendous and they Economic impact

are already occurring. In 2008, a bitflip in a message caused several hours of
downtime for Amazon’s servers in the US and the EU [Ser08]. The Los Alamos
National Laboratory’s had to expensively track down failures caused by soft
errors when beginning to use their new ASC Q supercomputer [MHH+05].

2.4. Conclusions from the State of Hardware Reliability

The presented data confirms our claim that mechanisms are required that enable
us to build computing systems using unreliable hardware. We have to ensure that
we can depend on systems that are build using unreliable hardware. Therefore,
we must not only ensure that the executed software is dependable1, but we also
must ensure that the software is executed correctly with a probability that is
high enough for the intended application. While the consequences of undetected
hardware failures might be only annoying for mobile phones, they might be
fatal in cars or public transport or they might cause financial disasters when
destroying important data in the data base backend of a banking solution.

To handle hardware failures, we first have to detect them. Thus, mechanisms to
detect hardware errors are required. Preferably, these mechanisms are flexible,
easy to use, and adaptable to the safety requirements of their user. These
features can be achieved by implementing the error detection in software.

1That is not part of this thesis.

16 CHAPTER 2. RELIABILITY OF HARDWARE

Furthermore, software-implemented hardware error detection eases the replace-
ment of hardware in safety-critical systems. These systems usually are certified
to one of the many functional safety standards such as IEC 615082 or ISO 262623.
Using a certified software-implemented hardware error detection will ease the
recertification of the safety-critical system with the new hardware.

2.5. Software-level Symptoms of Hardware Errors

Software-implemented hardware error detection mechanisms should be hardware
independent. For example, no assumptions should be made with respect to the
failure modes of the underlying hardware. Hardware independence eases the
applicability of the error detection in new systems because no special hardware
has to be used and the detection mechanism needs not to be adapted to the
hardware used.

To evaluate hardware independent error detection mechanisms, we need a
hardware independent error model. Thus, we developed the following error
model that describes the symptoms hardware errors can cause in software at
the assembler level. It is an extension of the hardware-independent error model
presented by Forin in [For89] and comprises the following symptoms:

Exchanged operand A different but valid operand is used, that is, instead of
the intended operand another operand is used.

Exchanged operator A different operator is used, for example, an addition is
executed instead of a subtraction. The operands remain the same.

Faulty operation An operator such as addition or subtraction does not work
as expected and produces incorrect results despite of correct input values.
Every usage of the result produced is influenced by this error.

Lost update A store operation to a register or memory location is omitted.
This can result in the usage of out-dated values later on.

Modified operand An operand used by an instruction is modified by a single
or a multiple bitflip. In contrast to a faulty operation, this error only
influences one read of a value.

Further errors can be represented by combinations of these symptoms. For
example, the replacement of a complete instruction comprised of operator and
operands with a different one can be emulated using the symptoms exchange
operator and exchange operand. Control flow errors can be emulated by combi-
nations of instruction replacements.

This error model is based on the assumption that every hardware error that
is not masked influences the execution of a program in some way and that all
possible influences can be emulated by these basic symptoms.

2The international standard for Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems.

3The international standard for Road vehicles – Functional safety.

2.5. SOFTWARE-LEVEL SYMPTOMS OF HARDWARE ERRORS 17

We use this error model to develop and assess the in this thesis presented error
detection approaches. First, it guides us in the selection of an arithmetic code
for our error detection mechanism. Second, we use it to evaluate the mechanisms
implemented.

3. Arithmetic Codes

One long known technique to detect hardware errors at runtime is the application
of arithmetic codes to detect execution errors. Encoding with an arithmetic code
adds redundancy to all data words. The result is a larger domain of possible
data words. Of these possible data words only a subset are valid code words.
Figure 3.1 on page 20 demonstrates the concept of arithmetic codes.

For using an arithmetic code, we have to encode applications, i. e., they have to
be enabled to process encoded data. When an application is encoded using an
arithmetic code, it will solely process encoded data, that is, all inputs have to
be encoded and all computations use and produce encoded data.

Thereby, arithmetic codes facilitate an end-to-end protection of computations.
Errors disturbing storage, transport, and processing are detectable with the same
(arithmetic) code. Furthermore, in contrast to redundant execution, arithmetic
codes also detect permanent hardware errors.

The goal of this chapter is to introduce arithmetic codes and to motivate our
choice of an arithmetic code to implement hardware error detection. Therefore,
this chapter first introduces arithmetic codes in general. Second, we introduce
several arithmetic codes and discuss their advantages and disadvantages. We
will compare the different codes with respect to the operations that these codes
support and how many of the symptoms described in Section 2.5 they can detect.
We will not discuss with which probability they detect these symptoms. This
probability depends on the choice of the code parameters and can for most of
the codes be chosen arbitrarily high. By discussing these codes, we motivate our
choice to use AN-codes and their extensions to implement our error detection
mechanisms. We conclude the chapter by summarizing our comparison.

Arithmetic codes1 are a long known technique to detect hardware errors at Arithmetic code:
informal definitionruntime. Arithmetic codes add redundancy to processed data. Thus, a larger

domain of possible data words is created. The domain of possible words contains
the smaller subset of valid code words – the so-called encoded data items. Arith-
metic codes are preserved by correct arithmetic operations, that is, a correctly
executed operation taking valid code words as input produces a result that is
also a valid code word. On the other hand, faulty arithmetic operations do not
preserve the code with a high probability, that is, faulty operations most likely
result in a non-valid code word [Avi71]. Arithmetic codes protect data also from
unnoticed random modifications during storage or transport on a bus. These
random modifications will result in an invalid code word with high probability.
Thus, they are detectable by checking the code.

1 Note that some codes for lossless data compression are also called arithmetic codes. These
are not equivalent with the ones used throughout this thesis.

19

20 CHAPTER 3. ARITHMETIC CODES

Note that the probability with which an arithmetic code in the end detects
errors depends on the choice of the code parameters. For AN-codes we discuss
the parameter selection in Chapter 5.

Figure 3.1 depicts the general concept of arithmetic codes. It demonstrates the
following examples:

1. One correctly executed operation that takes two valid code words as input
and produces a valid code word as output.

2. One correctly executed operation that uses one valid code word and one
non-code word as input and, thus, produces an invalid output.

3. One operation whose execution is faulty and that produces an invalid
result despite the two valid code words that were used as input.

3.

1.
2.

valid code word

fault−free addition operation

faulty addition operation

read/write code word

read/write non−code word

domain of possible code words

Figure 3.1.: Concept of arithmetic codes.

A formal definition for arithmetic codes was given by Avižienis in [Avi71]:Formal definition

“Given the digital number representations, x, y, an arithmetic operation ∗, and
an encoding f : x→ x′, we say that f is an arithmetic-error code with respect
to ∗ if and only if there exists an algorithm A∗ for coded operands to implement
the operation ∗ such that A∗ (x′, y′) ≡ (x ∗ y)′.” This definition can be easily
extended to single-operand and multi-operand operations.

In contrast to Avižienis, we use the following terminology and notations:

• xc denotes the code word representation of x (denoted as f(x) = x′ above).
We call xc the encoded data or encoded value.
• The non-code word version of xc, that is x, we denote as unencoded or

functional value.
• The operation ∗ that processes the unencoded values we denote as unen-

coded operation.
• We call the operations A∗ that preserves the arithmetic code encoded

operation and use the notation ∗c. Realizing ∗c we denote as encoding the
operation ∗.

On the following pages we will introduce several arithmetic codes and compare
them according to the criteria: supported operations, detected errors, and kind
of implementation.

The set of supported operations of an arithmetic code is the set unencoded
operations ∗ for which an encoded version ∗c exists. Rao [Rao74] demands that
every arithmetic code should at least support addition. However, the more
operations are directly supported by an arithmetic code, i. e., without the need
to emulate the operation using other (encodable) operations, the more efficient

3.1. BERGER CODE 21

the implementation of an arithmetic code can be. We will examine which
operations are directly supported by an arithmetic code. Note that none of the
arithmetic codes known to us supports floating point operations. Thus, we will
in the following only consider integer operations. For encoding floating point
operations we will use an integer-based implementation (see Section 4.2.3).

Of course the error detection capabilities of an arithmetic code are also important.
Ideally, the code supports detection of all of the errors defined in Section 2.5.
Depending on the criticality of the intended application we can cut back on the
provided safety, i. e., the amount and kind of detected errors. Thereby, we might
gain a reduction in the runtime overhead generated by the code.

Last, we discuss how the presented codes can be implemented. Because of
the costs and inflexibility of custom reliable hardware, we aim at a software-
implemented solution. Thus, we prefer arithmetic codes that we can implement
in software.

Furthermore, we will classify the codes presented according to one of the following Classes of
arithmetic codespossible classes:

• non-separate and non-systematic codes,
• separate and systematic codes, and
• non-separate but systematic codes.

Rao’s definition of a systematic code is: An arithmetic code, which has each
codeword represented by, say n digits, is systematic if there exists a set of k
digits (k < n) of the codeword representing the information [i.e., the functional
value] and the remaining n− k digits representing the check(s). [Rao74]

If the encoded value is a tuple of the functional value and its check bits and for
encoded operations these check bits are computed in parallel to the functional
value, this code is separate. For a non-separate code functional value and check
bits are processed together by the same operation. Separate codes are always
systematic. Hence, the class separate and non-systematic is empty [Rao74].

Systematic codes have the advantage that the functional data can be used
directly and no decoding is required but only code checking. Systematic but
non-separate codes are especially useful because they do not require additional
structures for processing the check bits and still the data can be directly used
without an additional decoding step.

In the following we will give a short introduction into the main groups of
arithmetic codes. Especially for AN-codes, we will present more details than
absolutely necessary because some of the literature describing these codes is
from the 1970s and often not available.

3.1. Berger Code

A code word in the Berger code consists of the functional value and a redundant
part. The redundant part – the check bits – is the binary representation of the
number of zeros contained in the functional value. For example, the check bits

22 CHAPTER 3. ARITHMETIC CODES

of the 8 bit binary value 10110011 are 0011 because the value contains three
zeros. There are 4 check bits because the functional value might contain up to 8
zeros. A code word is valid if the value of the check bits equals the number of
zeros contained in the functional value.

The Berger code is a systematic and separate code. The functional value can be
directly read from the code word. However, the redundancy has to be computed
separately, i. e., we cannot just feed the functional and the redundant part
together into an operation and expect the result to contain the correct functional
value and check bits. Instead, the check bits have to be computed separately.

A further development of the Berger code is the Bose-Lin code presented in [BL85].
It provides the same error detection capabilities as the Berger code, but according
to [DT99], the Bose-Lin code requires fewer check bits and the implementation
of the code check is much simpler.

As the redundant part of the code words is computed separately, in principleSupported
operations any operation can be supported as long as the number of zeros contained in the

result can be determined from the input values. In the worst case, this requires
recomputing the checked operation and counting the zeros of the redundant
result that was obtained. However, that is simple redundancy that provides no
protection against design faults. Usually, in the hardware implementation of
the Berger code, the redundant bits of an operation’s result are computed by
redundant hardware that is simpler than the checked operation. This kind of
implementation is less susceptible to common cause errors.

To the best of our knowledge, encoding control flow statements with the Berger
code is not possible. These would have to be protected by other means. Data
flow is protected to some extend because the matching check bits have to be
used in each computation.

For most operations the hardware implementation of the Berger code is saferImplementation

and more efficient than its software implementation. For example, if we want to
compute the check bits of the result of an addition, we have to track all carries
generated during the addition of the inputs. In hardware, this can be done very
efficiently using an extended adder circuit. In software, this actually means a
redundant and either less safe or less efficient recomputation of the addition.

Of the error model described in Section 2.5 the Berger code can detect: faultyError detection
capabilities operations and modified operands. Depending on the actual implementation it

can also detect exchanged operands and exchanged operators because the check
bits used have to match the functional values used and the check bit computation
for the result has to match the operator used. Thus, there is redundancy that
can facilitate detection of exchanged operands or operators.

The Berger code cannot detect lost updates. Furthermore, the Berger code is
known to detect only unidirectional errors, i. e., all flipped bits in one word flip
in the same direction [LOBR09]. If, for example, one bit flips from 0 to 1 and
another bit flips from 1 to 0, this is undetectable with a Berger code. This is a
heavy limitation considering that multiple bitflips are becoming more probable
with decreasing feature sizes [DHW09]. Note that also the Bose-Lin code can
only detect multiple flipped bits if they do not neutralize each other.

3.2. RESIDUE CODES 23

All applications of the Berger code that are known to us are indeed implemented Systems using
this codein hardware. In [LTRN92] the Berger code is used in the design of a self-checking

arithmetic logical unit (ALU). The authors present hardware-implemented
check bit prediction algorithms for addition, two’s complement subtraction, logic
operations, the shift, and the rotate operation.

The authors of [LOBR09] also present a self-checking ALU that is realized using
the Berger code. Additionally, this ALU does also provide correction of transient
errors using the code to detect errors and a redundant execution to correct
errors that occurred.

We will not use the Berger code for our software-implemented error detection
for the following reasons:

• The Berger code is not sufficient for an implementation in software.
• It does not facilitate the detection of all error symptoms that we defined

in Section 2.5 and might not detect multiple bitflips.

3.2. Residue Codes

Residue codes are systematic and separate codes. The code word for the
functional value x is the tuple of x and its residue to a code specific constant A
that is greater than 1. Thus, the encoded version of x in a residue code is

xc = (x, x mod A) = (x, xA) with A > 1.

The code parameter A is used to adjust the detection capability of the code.
The larger A is chosen, the less probable are undetected errors because the less
functional values have the same residue.

A code word is valid if the check bits equal the modulus of A of the functional
value, that is, if the following equation holds:

x mod A = xA.

Note that the check bits xA exist redundantly to x. Thus, if using a residue
code, we have to execute additional operations to compute the results’s check
bits for each operation. Hence, x and xA of the tuple xc = (x, xA) can be used
to check the validity of xc.

Further known residue codes are multiresidue codes and inverse residue codes.
Multiresidue codes, i. e., residue codes that use multiple different residues, can
be used to implement error correction as shown in [Rao70] and [Rao74, chapter
5]. For inverse residue codes the check bits are formed as A− xA. According
to [Avi71] these codes are better in detection of repeated-use faults, i. e., faults
where a stuck bit is used several times. This kind of fault may occur in circuits
that implement shift operations.

24 CHAPTER 3. ARITHMETIC CODES

Table 3.1 summarizes which operations are supported by residue codes and whichSupported
Operations not. The table depicts for the operations supported how the functional value and

the check bits, i. e., the residue, are computed. Of course many operations could
be implemented using other operations and programming constructs such as
loops and branches. The table only presents solutions that apply basic arithmetic
and logical operators to the input residues. In particular solutions that require
a loop or branch are not presented.

encoded operation
implementation

functional value check bits

arithmetic operations:

zc = xc +c yc z = x + y zA = (xA + yA) mod A

zc = xc −c yc z = x− y zA = (xA − yA) mod A

zc = xc ∗c yc z = x ∗ y zA = (xA ∗ yA) mod A

zc = xc/cyc z = x/y not directly encodable

signed numbers: supported

shift operations:

zc = xc <<c yc z = x << y not directly encodable

zc = xc >>c yc z = x >> y not directly encodable

logical boolean operations:

or: zc = xc ||c yc z = x || y zA = xA + yA − xA ∗ yA
and: zc = xc &&c yc z = x&& y zA = xA ∗ yA
not: zc = !c xc z =!x zA = 1− xA

bitwise boolean operations:

or: zc = xc |c yc z = x | y not directly encodable

and: zc = xc &c yc z = x& y not directly encodable

not: zc = ∼c xc z = ∼ x not directly encodable

comparisons: not supported

Table 3.1.: Implementation of encoded operations for residue codes.

Note that we must not use the functional value z of the result for computing
the check bits zA. That would be nothing else than a redundant computation
instead of an arithmetically encoded one. Of course that could be always used
as a less safe fallback solution. This solution is less safe because redundancy is
susceptible to permanently faulty hardware2.

While the redundant computation of the check bits for addition, subtraction,
and multiplication is easily done, we know no solution for the division. Of course
the division can be emulated expensively using a loop that subtracts the divisor
from the dividend until zero is reached.

The supported arithmetic operations addition, subtraction, and multiplication

2Our error injection results presented in Section 8.5 confirm this statement.

3.2. RESIDUE CODES 25

support positive and negative numbers as well. Thus, arithmetic with signed
and unsigned numbers can be realized using a residue code.

The computation of the check bits for the left shift operation x << y seems
to be no problem. Because a left shift is equivalent to a multiplication with a
power of two, the residue of the result is (xA ∗ 2y) mod A. However, for the
computation of 2y the functional value y is used directly instead of its residue
yA. Thus, any error leading to a modification of y will not be detectable. For
encoding the left shift an encoded version of the computation of the power of
two is required. This also has to be emulated, for example by multiplications
with two in a loop. However, residue codes can only protect the multiplication,
but neither the required comparison nor the loop itself.

The right shift operations are equivalent to a division with an appropriate power
of two. However, since we do not know a way to compute the residue for the
division operation directly, we also do not know a way to compute the residues
for right shift operations. Additionally, the right shift also requires the encoded
version of the power-of-two computation.

Boolean logical operations are easily implemented using the knowledge how to
emulate these operations using arithmetic operations. In contrast to the ANSI-C
standard, this implementation makes it necessary to restrict boolean values to 1
representing true and 0 for representing false. Note that the remainders xA
and yA of the boolean values x and y are equal to x and y, that is, either equal
to 0 or to 1. Thus, the implementations of the boolean operations for the residue
computations are nothing else then a redundant, different implementation.

To summarize, to the best of our knowledge, directly encoding division, bitwise
logical operations, comparisons, and control flow statements with a residue code
is not possible. These either have to be protected by other means or have to be
implemented using operations for which an encoded version exists.

Residue codes can be implemented in software and hardware as well. Let us Implementation

look at the following function foo implemented in pseudocode similar to C:

int f oo (int x , int y , int z){
int u=x+y ;
int v=u+z ;
return v ;

}

If this function is protected by a residue code implemented in software, it would
in parallel compute the residues of all computation results like the following
function foo c does:

(int , int) f o o c (int x , int y , int z ,
int xA, int yA, int zA){

int u=x+y ;
int uA=(xA+yA) % A; // u % A
int v=u+z
int vA=(uA+zA) % A; // v % A
return (v , vA) ;

}

Residue codes can detect the following errors: faulty operations and modified Error detection
capabilitiesoperands because these will result in non-matching residues. They can also

26 CHAPTER 3. ARITHMETIC CODES

detect data and control flow errors such as exchanged operands and exchanged
operators to some extent because the residues, i. e., check bits, are computed
separately. Two such errors need to neutralize each other if an exchanged operand
or operator shall be not detectable. If in the above example u is erroneously
replaced by x, then either x has to have the same residue as u or uA also has
to be replaced with xA. Otherwise, the error will result in a mismatch between
v and its expected residue vA with a high probability. Finally, residue codes
cannot detect lost updates.

We know only of one example application of residue codes. That is the fault-Systems using
this code tolerant STAR computer [AGM+71] that was developed at the Jet Propulsion

Laboratory in the 1960s and used an inverse residue code for error detection. In
that computer the code was implemented in hardware. In first versions of STAR
an AN-code (see the next section) was used. However, that was replaced because
the hardware implementation of a separate residue code was more efficient.

We will not use residue codes for our software-implemented error detection
because of the following reasons:

• Residue codes do not facilitate the detection of all error symptoms that
we defined in Section 2.5.
• They provide no directly encoded version of division. However, for encoding

right shifts an encoded division is required. Especially for bitwise logical
operations and unaligned loads and stores shift operations will be needed
and should not be slowed down additionally by an emulated division
operation, that is, a division that is implemented using other directly
encoded operations.

3.3. AN-Codes

AN-codes are non-separate and non-systematic, that is, functional part and
redundancy of a code word are processed together and the functional value
cannot directly be read from the code word.

AN-encoding is done by multiplying the functional value with a constant A
whose impact on the error detection rate we discuss in Chapter 5:

xc = A ∗ x with 1 < A.

Only multiples of A are valid code words and every operation processing AN-
encoded data has to preserve this property. Code checking is done by computing
the modulus with A. For a valid code word it is zero:

xc mod A = 0.

The functional value x is obtained by an integer division x = xc/A.

Table 3.2 summarizes which operations are supported by AN-codes and whichSupported
Operations not. For the supported operations, their implementation is shown. Note that

3.3. AN-CODES 27

we depict the expected content of the encoded variables. If we replace xc by
Ax, that does not mean that at runtime a multiplication with A is executed. In
contrast, it means that the content of the variable xc contains Ax.

encoded operation implementation

arithmetic operations:

zc = xc +c yc zc = Ax + Ay = A(x + y)

zc = xc −c yc zc = Ax−Ay = A(x− y)

zc = xc ∗c yc zc = (Ax ∗Ay)/A = A(x ∗ y)

zc = bxc/c yccc zc = b(A ∗Ax)/Ayc = A
⌊
x
y

⌋
signed numbers: supported

shift operations:

zc = xc <<c yc not directly encodable

zc = xc >>c yc not directly encodable

logical boolean operations:

or: zc = xc ||c yc zc = xc +c yc −c xc ∗c yc
and: zc = xc &&c yc zc = xc ∗c yc
not: zc = !c xc zc = 1c −c xc = A−c xc

bitwise boolean operations:

or: zc = xc |c yc not directly encodable

and: zc = xc &c yc not directly encodable

not: zc = ∼c xc not directly encodable

comparisons: AN-encoded numbers can be compared directly.
However, obtaining a valid encoded result requires an unprotected
and, thus, unsafe if-statement.

Table 3.2.: Implementation of encoded operations for AN-codes.

Note further that the presented implementations of the encoded operations are
simplified versions that do only describe the general idea. We specifically ignore
the characteristics of arithmetic operations as they are implemented in usual
processors. Thus, here we do not consider such things as overflow and underflow
behavior for addition, subtraction, and multiplication, or divisibility for the
division. We do also ignore signedness as far as possible. We will discuss the
exact implementations of AN-encoded operations that consider all these details
in Chapter 4.

In contrast to residue codes, AN-codes support division additionally to addition,
subtraction, and multiplication. It is important that in the encoded implemen-
tation of the division the dividend xc is multiplied with A before it is divided
by the divisor yc. Otherwise, for a short time the functional value z would be
available and could be modified unnoticedly. Likewise, the division with A that
is required for the multiplication has to be executed after multiplying the two

28 CHAPTER 3. ARITHMETIC CODES

AN-encoded operands and must not be applied to one of the operands before
the multiplication is executed. The latter solution would lead to a window
of vulnerability where the operand that was divided by A could be modified
undetectable.

Like residue codes, AN-codes as well support signed numbers. A detailed
discussion of problems that result from the finite nature of the common digital
number representation in processors are discussed in Chapter 4.

Encoded versions of arithmetic and logic shift operations can be implemented
using division and multiplication with powers of two because a << k is equivalent
to a ∗ 2k and a >> k is equivalent to

⌊
a
2k

⌋
. In contrast to residue codes, the

implementation of the power-of-two function can be encoded more completely
for AN-codes because AN-codes do also support encoded comparisons. However,
AN-codes still leave the control flow, that is, the loop required in the power-of-two
computation, unprotected.

The implementation of AN-encoded logical operations is equal to residue-encoded
logical operations. Likewise, no directly AN-encoded versions of bitwise logical
operations are known.

AN-codes are equally suitable for implementation in software and hardware. It isImplementation

also possible to combine software and hardware implementation by realizing some
encoded operations in hardware and some in software. For implementations of
AN-codes that implement the code checking in hardware an efficient algorithm for
computing modulo A exists if A is chosen to be of the form A = 2a−1, for a ≥ 2.
Since the goal of this thesis is a software-implemented solution, we do not present
the algorithm here. You can find it in [Avi64] or [Rao74].

If an AN-code is implemented in software, this requires to transform the programs
that shall be protected from undetected execution errors. We must ensure that
encoded programs solely process encoded data and do preserve the code in an
error-free execution. Furthermore, encoded programs must not decode data
during computations. The AN-encoded version3 of the previously introduced
function foo is:

int c f o o c (int c xc , int c yc , int c zc){
int c uc=xc+yc ; // uc = A∗(x+y)
int c vc=uc+zc ; // vc = A∗(x+y+z)
return vc ; // expec ted : vc mod A == 0

}

AN-codes can detect the following errors: faulty operations and modifiedError detection
capabilities operands. Lets assume that in the above example foo c one of the additions

is faulty or xc is hit by a bitflip. This will be detected with high probability
because it is unlikely that a random error of that kind will result in another
multiple of A.

However, AN-codes might not detect exchanged operands, exchanged operators,
and lost updates, that is, AN-codes might not detect data and control flow errors.
For example, variable yc might be exchanged by another encoded variable ac

3The presented pseudo code is simplified and ignores the over- and underflow issues we
describe in [WF07a] and Chapter 4.

3.3. AN-CODES 29

that contains a correctly encoded value A ∗ a. That might be the result of a
bitflip that happens on the address bus. An AN-code will not detect this because
one multiple of A is replaced with another. Thus, the result uc also still will be
a multiple of A. On the other hand, a bitflip in the instruction unit of a CPU
might cause an operator error, for example, a subtraction could be executed
instead of an addition. However, this will also not lead to an invalid code word
because subtraction and addition as well preserve the AN-code.

For the influence of the choice of A on the error detection capabilities see
Chapter 5.

Two applications of AN-codes – both implemented in software – are Systems using
this codeED4I [OMM02] and TRUMP [CRA06]. ED4I duplicates data and instruc-

tions and these duplicates are AN-encoded. All results of duplicate instructions
have to be multiples of A of the original results. In this way, most hardware
errors are recognizable. However, whenever a program contains logical opera-
tions, the authors choose an A that is a power of two to make those operations
encodable. Thereby they reduce the detection capabilities immensely because
encoding is then equivalent to shifting to the left. The resulting code cannot
detect bitflips in the higher order bits of data values. However, these bits contain
the original functional value.

Chang et. al. in TRUMP also used an AN-code but only for operations that can
easily handle encoded values such as addition and subtraction. Furthermore, the
encoding is only applied to registers and not to memory. In the end that leaves
supposedly only small parts of applications which are AN-encoded. As should
be expected their fault injection experiments show a non-negligible amount of
undetected failures for most of the tested applications.

The literature presents several special AN-codes that, for example, promise to
provide error correction or to be systematic. In the following sections we will
introduce such special AN-codes and discuss their properties. Note that this
thesis aims at error detection and not at correction. However, if correction could
be easily supported by a code, we would prefer this code.

3.3.1. Error Correcting AN-Codes

AN-codes can be designed in a way that they do not only support error detection
but also error correction. Several such AN-codes can be found in the literature:
[Mas64, Chi64, Man67, Avi65, Rao70, RG71], and [Rao74, chapter 4]. The
general idea is to choose A in a way that every correctable error pattern produces
a distinctive modulus for A. An error pattern is composed of the original code
word and the number, the position, and the direction of the bits flipped by the
error.

These error correcting AN-codes can be used to correct transmission errors and
errors occurring during storage of the encoded value. Thus, it is possible to
correct modified operands. However, it is not possible to correct errors occurring
during the execution of operations. Thus, the symptoms faulty operation,
exchanged operand, exchanged operator, and lost update are not correctable.

30 CHAPTER 3. ARITHMETIC CODES

However, all these codes seem to depend highly on the hardware architecture
used. When these codes were developed in the 1960s, they were intended to
be implemented directly in hardware. For example, several papers note that
one’s complement is required. However, today’s processors usually use the two’s
complement. Furthermore, none of the papers presents an efficient algorithm to
infer the original code word from the error syndrome. In the worst case that
would require a tabulated approach mapping invalid code words to valid code
words and, thus, be impossible to use.

3.3.2. Systematic AN-Codes

For every AN-code with 2m−1 < A < 2m a systematic non-separate code can be
found [Mas64]. This systematic AN-code is a subcode of the original AN-code,
that is, not every code word present in the AN-code is present in its systematic
variant.

For obtaining the systematic AN-code, the functional value x is encoded using
the following rule

xc = 2m ∗ x + (−2m ∗ x mod A).

The multiplication 2m ∗ x shifts the functional value x to the left. The addition
of −2m ∗ x mod A adds the check bits.

A code word is valid if the following value

(−2m ∗ x mod A)

equals the check bits. The value for x used in this computation can be directly
read from the code word because the code is systematic and x is redundantly
contained in the check bits.

Because xc is formed by adding the remainder of the division 2m∗x
A to 2m ∗x, it is

a multiple of A. Thus, xc is a code word of an AN-code. The code is systematic
because the higher order bits contain x and the m least significant bits contain
the check bits. Table 3.3 presents two example codes with A = 7 and A = 3
respectively.

According to Rao [Rao74, page 174], this code is not closed with respect to
addition, that is, adding two valid code words might result in a non-code word.
The problem is twofold. First, just adding the check bits is not enough. They
actively have to be adapted to fulfill the code requirements again. Second, the
carries of the check bits added propagate from the check bits to the information
bits, which contain the functional value.

For an example, look into Table 3.3 at the code using A = 3. The addition of
001 10 (1) and 010 01 (2) results in 011 11. However, 011 11 is no valid code
word. The result should be 011 00 (3). Even worse an addition of two valid code
words might result in another code word that does not represent the correct

3.3. AN-CODES 31

A = 7 A = 3

x 0 ≤ x < 16
xc =

0 ≤ x < 8
xc =

23 ∗ x + (−23 ∗ x) mod 7 22 ∗ x + (−22 ∗ x) mod 3

0 0000 0000 000 000 000 00

1 0001 0001 110 001 001 10

2 0010 0010 101 010 010 01

3 0011 0011 100 011 011 00

4 0100 0100 011 100 100 10

5 0101 0101 010 101 101 01

6 0110 0110 001 110 110 00

7 0111 0111 000 111 111 10

8 1000 1000 110
9 1001 1001 101
10 1010 1010 100
11 1011 1011 011
12 1100 1100 010
13 1101 1101 001
14 1110 1110 000
15 1111 1111 110

Table 3.3.: Examples for systematic AN-codes for different As. The first col-
umn contains the functional value in decimal representation. The
remaining columns use binary representation.

result. For example, the addition of 0010 101 (2) and 0011 100 (3) in the code
formed with A = 7 results in 0110 001 (6), which is a valid code word but not
the correct result.

Thus, systematic AN-codes are unsuitable for practical use because for every
addition these effects have to be corrected expensively. For multiplications even
more corrections are required.

It remains to be said that Forin [For89] claims to use this kind of code in
combination with signatures. But he lacks to provide further information on
implementations of encoded operations. When we tried, every addition required
extensive corrections to reconstitute the code property.

3.3.3. |gAN |M Code

Because of the problems of systematic AN-codes, Rao [Rao74] developed a
systematic non-separate AN-code – the |gAN |M code – that is closed with
respect to addition. In a |gAN |M code not the least significant bits contain the
check bits but the most significant ones while the least significant bits contain
the functional value.

In contrast to the systematic AN-codes of the previous section, |gAN |M codes
are closed with respect to addition, subtraction, and multiplication.

32 CHAPTER 3. ARITHMETIC CODES

If the code shall support functional values x in the range 0 ≤ x < k, Rao defines
the one element, i. e., the element that represents the 1, of the code as

1c = gA = C1 ∗ k + 1. (3.1)

Rao, furthermore, requires that A and k are relatively prime, i. e., have no other
common divisor than 1. Obviously, 1c is a multiple of A.

Any other element of the code is defined as a multiple of the one element:

xc = (x ∗ gA) mod (A ∗ k) = (C1 ∗ k ∗ x + x) mod (A ∗ k). (3.2)

Using Equation 3.1 we know that C1 ∗ k + 1 mod A has to be zero. Thus, using
the chosen values for k and A, we can determine C1. For example, for A = 5
and k = 8 Equation 3.1 is fulfilled for C1 = 3. Thus, in that case, the remaining
code parameters are g = 5, g ∗ A = 25, and A ∗ k = 40. Table 3.4 depicts the
resulting complete |gAN |M code for k = 8 and A = 5.

0 ≤ x < 8 xc = (25x) mod 40 = |25x|40
decimal binary decimal binary

0 000 0 000 000

1 001 25 011 001

2 010 10 001 010

3 011 35 100 011

4 100 20 010 100

5 101 5 000 101

6 110 30 011 110

7 111 15 001 111

Table 3.4.: |gAN |M code for A = 5 and k = 8. Note that the 3 least significant
bits contain the functional value x.

The encoded addition of two code words xc and yc is implemented as the normal
addition modulo A ∗ k: (xc + yc) mod A ∗ k. The encoded subtraction is
defined as (xc − yc) mod A ∗ k and the multiplication as (xc ∗ yc) mod A ∗ k.
However, in contrast to the normal AN-code, no encoded division operation
is known for the |gAN |M codes. Furthermore, supporting signed, that is, also
negative numbers, requires a special hardware implementation as it was described
in [OÖ89]. This specific hardware processes sign information in parallel to the
actual |gAN |M -encoded values.

Note that the code was called |gAN |M by Rao because he defined M = A ∗ k
and used N to denote the functional values. Furthermore, |gAN |M denotes the
modulus of gAN with M . Thus, the code name |gAN |M is nothing else than
the encoding function that we described in Equation 3.2.

Olivier and Özgüner [OÖ89] showed how a |g3N |M code combined with specific
hardware can be used to protect computations in systolic arrays from unde-

3.4. ANB-CODES 33

tectable errors. However, they did only use addition and multiplication. The
presented systolic array did not require a division.

3.3.4. Conclusions for AN-Codes

We will not use any of the special AN-codes presented because they provide either
less capabilities than common AN-codes or they still require fundamental research
before being usable. The latter one is the case for error correcting AN-codes.
So far, it was only shown that they exist and under which conditions. However,
their implementation – especially the implementation of error correction – was
not described. Systematic AN-codes, on the other hand, are difficult to realize
because many corrections are required additionally to the executed operation
to produce valid code words. Last, |gAN |M codes seemed promissing. Yet, in
contrast to common AN-codes they do not support signed numbers and the
division operation.

But we will look into extensions of common AN-codes further because:

• AN-codes are the only arithmetic codes that we know of that support a
directly encoded division operation in addition to subtraction, addition,
and multiplication.

• They do not facilitate the detection of all error symptoms that we defined
in Section 2.5. However, they can be extended to detect these symptoms
also (see the following sections 3.4 and 3.5).

3.4. ANB-Codes

To solve the problem of undetectable exchanged operators and operands, Forin
in [For89] introduced static signatures (which he referred to as signatures or

“B”s). In the resulting ANB-code, the encoding of a variable x is defined as

xc = A ∗ x + Bx with 0 < Bx < A.

If two encoded values are combined for example by adding them, the result’s
signature depends on the signatures of the input values. This expected signature
for the result is precomputed when the signatures are assigned to the input
values of a program, that is, at encoding time.

To check the code of xc, xc’s modulus with A is computed. The result has to
be equal to the assigned or precomputed expected signature Bx of xc. The
functional value x is obtained by an integer division x = xc/A.

ANB-codes support nearly the same operations as AN-codes. However, currently, Supported
operationswe know no easy solution to encode a division with an ANB-code. Thus, we

either have to emulate it using subtractions executed in a loop or to use the less
safe AN-encoded variant.

ANB-encoding operations often requires additional corrections. These corrections
ensure that the encoded operation produces a valid code word with a signature

34 CHAPTER 3. ARITHMETIC CODES

that only depends on the signatures of the input values and not on their functional
values. For example, the multiplication requires extensive corrections because
xc ∗ yc does not result in the intended A ∗ x ∗ y +Bx ∗By but in A2 ∗ x ∗ y +A ∗
x ∗By + A ∗ y ∗Bx + Bx ∗By.

ANB-encoding can be realized completely in software and also partly in hardware.Implementation

A complete realization in hardware of course would be possible. However,
assigning signatures and precomputing expected signatures is easier to realize
in software. Yet, encoded programs could benefit of hardware implementations
of encoded operations. These, could reduce the runtime overhead induced by
the encoding dramatically.

Like with AN-codes, we have to ensure that ANB-encoded applications solely
process encoded data items and preserve the code. The ANB-encoded version
of our small example looks as follows:

int c f o o c (int c xc , int c yc , int c zc) {
int c uc = xc + yc ; // uc = A∗x+Bx + A+y+By = A(x+y)+Bx+By
int c vc = uc + zc ; // vc = A(x+y+z)+Bx+By+Bz
return vc ; // expec ted : vc mod A == Bx+By+Bz

}

When encoding the program represented by foo, we assign static signatures
to the input variables x, y, and z. Knowing the program, we can precompute
the result’s expected signature Bv = Bx + By + Bz. Bv also has to be smaller
than A and larger than zero. This can be ensured by correcting the signatures
during program execution. The corrections required are also precomputed at
encoding time for static signatures. We add them to the concerned encoded
value at runtime in each execution.

Note that for implementing dynamically allocated memory, we introduce dynamic
signatures in Chapter 7 and [WF07b]. These are assigned and precomputed at
runtime instead of at compile time.

If an error would now exchange the variable yc (that represents the encoded valueError detection
capabilities yc) with another encoded variable uc = A∗u+Bu, the result’s computed signature

vcmodA would be (Bx + Bu + Bz) instead of the expected (Bx + By + Bz).

If the addition were to be replaced erroneously by a subtraction, the resulting
computed signature would be (Bx –By + Bz) instead of (Bx+By + Bz).

Thus, an ANB-code can detect the following errors: faulty operations, modified
operands, exchanged operands, and exchanged operators. Because an ANB-code
can detect exchanged operands and operators, we say it detects data and control
flow errors.

However, now consider that there is a bitflip on the address bus when storing
variable yc. Thus, we have a lost update on yc because yc is stored in a wrong
memory location. When reading yc the next time, the old version of yc is
read – which is correctly ANB-encoded but outdated. This example shows that
ANB-codes might not detect lost updates.

We know of no approach that uses solely ANB-encoding apart from our encodingSystems using
this code compiler that we will present in Chapter 8. This encoding compiler can apply

different codes – including ANB-codes – to C programs.

3.5. ANBD-CODES 35

3.5. ANBD-Codes

To detect the use of outdated operands, i. e., lost updates, Forin introduced a
timestamp D that counts variable updates [For89]. In the resulting ANBD-code,
the encoded version of x is xc = A ∗ x + Bx + D. For checking the validity of
code words, the expected signature and the expected D have to be known. In
contrast to the signature, D is usually computed dynamically, that is, during
the execution of an ANBD-encoded application. How D is actually computed
and checked depends largely on how the ANBD-encoding is realized. Thus, we
will explain it later when we are describing different ANBD-encoding solutions
in the chapters 6, 7, and 8. However, all approaches have in common that the
code checker also must have access to the expected D to facilitate checking the
validity of code words.

ANBD-codes support the same operations as ANB-codes. However, the correc- Supported
operationstional actions required to ensure a reasonable signature for the result are more

complicated because they have to consider D additionally to the signatures.

The implementation of ANBD-codes is similar to ANB-codes. It can be done Implementation

completely in software. However, hardware support for especially expensive
operations in terms of runtime would be desirable to reduce the overall runtime
costs.

The ANBD-code finally can detect all errors defined in our symptom-based Error detection
capabilitieserror model in Section 2.5, i. e., it detects faulty operations, modified operands,

exchanged operands, exchanged operators, and lost updates.

The Vital Coded Processor (VCP) by Forin [For89] to the best of our knowledge Systems using
this codewas the first system to apply an ANBD-code. VCP ANBD-encodes an application

on source code level. As we pointed out in [WM08a], VCP requires knowledge
of the complete data and control flow of the encoded program to precompute
the signatures of all output variables for code checking. This prohibits the usage
of dynamically allocated memory and dynamic control flow.

Furthermore, encoding loops and nested control flow structures at source code
level is cumbersome and not described by Forin. He only presents the encoding
of additions and if-statements and gives a general idea for encoding loops.
However, he does not present encoding of other operations and nested control-
flow structures. The level of automation of Forin’s encoding also remains unclear,
and he presents neither an evaluation of the error detection capabilities of VCP
nor any runtime measurements.

Our Software Encoded Processing (SEP) (see Chapter 7) and Compiler Encoded
Processing (CEP) (see Chapter 8) use also ANBD-encoding. We developed
both solutions with the aim to remove the restrictions posed by VCP and make
ANBD-encoding more generally usable.

36 CHAPTER 3. ARITHMETIC CODES

3.6. Comparison of the Codes

Table 3.5 summarizes the results of our comparison of different arithmetic codes.
Note that for AN-codes only the common form and none of the special codes
are considered. The latter ones pose non-acceptable restrictions or are not yet
well enough researched to be an option.

Berger residue AN ANB ANBD

detectable errors

faulty operation X X X X X
modified operand X X X X X
exchanged operand © © × X X
exchanged operator © © × X X
lost update × × × × X

supported operations

addition X X X X X
subtraction X X X X X
multiplication X X X X X
division X × X × ×
shift left X × × × ×
logical right shift X × × × ×
arithmetic right shift X × × × ×
logical or X X X X X
logical and X X X X X
logical not X X X X X
bitwise or X × × × ×
bitwise and X × × × ×
bitwise not X × × × ×
comparisons X × × X X
data and control flow × × × X X
signed arithmetic X X X X X

implementation

hardware X X X X X
software × X X X X

X possible
× not possible
© possible, but susceptible to errors

Table 3.5.: Summary of properties of the arithmetic presented in this chapter.

To summarize, we will not use Berger codes because they can only be implemented
efficiently and safely in hardware. We will also not use residue codes because

3.6. COMPARISON OF THE CODES 37

they do not directly support an encoded division. However, a division is required
for implementing right shifts that in turn are required to realize bitwise logical
operations and unaligned memory accesses as we will explain in Chapter 4.
Furthermore, both, Berger and residue codes, are not able to detect lost updates.
Additionally, their support for detecting replaced operands and operators is
solely based on the redundant choice of the operator/operand and its matching
variant in the check bit computation. Thus, two matching errors that result
in the replacement of operator/operand in the computation of the functional
values and in the computation of the check bits will go undetected.

ANBD-codes are the only of the presented codes that support our complete
error model. But they do not support a directly encoded division. We will
instead use the AN-encoded division. For higher safety, an encodable software
implementation of division is required.

The existing implementation of ANBD-codes – the Vital Coded Processor
by Forin [For89] – is not sufficient for today’s demands because it requires
special hardware and is only applicable to a restricted set of programs that for
example are not allowed to use dynamically allocated memory or dynamic control
flow. Furthermore, VCP’s presentation in [For89] lacks detail and evaluation.
Apart from an encoded addition and an encoded branch statement no other
encoded operations are described. Forin does not discuss implementation of
other operations or issues caused by the usually restricted size of functional and
encoded values as well.

Hence, the objective of this thesis is to present solutions that make ANBD-codes
usable in today’s systems. This includes development of a set of encoded and
encodable operations including support for dynamically allocated memory (see
Chapter 4) and the application of these operations to programs (see chapters 7
and 8).

When implementing ANBD-codes, implementations for ANB- and AN-codes are
generated as a by-product without much additional effort. This enables us to
compare the error detection capabilities and overheads of these three codes.

4. Encoding an Instruction Set

Implementing an AN-, an ANB- or an ANBD-code in software, requires to adapt
the programs that shall be enabled to detect errors disturbing their execution.
These programs have to process encoded data items instead of unencoded ones,
and the processing has to preserve the code in the error-free case. Thus, we
have to modify the data types used to store data and the operations executed
to process data. This process we name encoding the program.

This chapter presents the encoded versions of basic building blocks of applications.
We published parts of this work in [WF07a, WF07b, SSF09]. To the best of our
knowledge, we are the first who describe encoded operations in such detail. All
encoding approaches can reuse the encoded building blocks presented in this
chapter. Especially our own approaches presented in Chapters 7 and 8 do so.

For encoding an application, the following is required and, thus, presented in
this chapter:

Implementation of encoding and decoding:
We need to encode inputs to our programs if they are not yet encoded.
Inputs can be constants stored in the program itself or inputs given at
runtime by the user. Furthermore, we must decode outputs that are sent
to other entities that are not encoded. The code of these outputs has
to be checked to prevent erroneous output. In Chapter 3, we already
described the mathematical formulas describing these three operations
(encoding, decoding, and code checking). In the following, we will describe
the problems we encountered in mapping these formulas to computer-
implemented arithmetic.

Encoded operations:
We need encoded versions of all operations used by the application that we
encode. The encoded operations are comprised, for example, of arithmetic
and logical operations. In contrast to their unencoded (native) counterparts,
encoded operations process encoded data and ensure that in an error-free
execution correctly encoded results are produced.

Encoded constants:
We have to encode all constants and initialization values used.

Encoded calls to external libraries:
We have to handle calls to external libraries.

Encoded data and control flow:
For ANB- and ANBD-codes we, furthermore, must encode data and control
flow, that is, we have to check that instructions are executed in the correct
order with the right operands and that all conditional jumps are executed
correctly.

39

40 CHAPTER 4. ENCODING AN INSTRUCTION SET

Encoded dynamically accessed memory:
If a program accesses memory, for example, in LLVM bitcode using load
and store instructions, we do not know the access pattern previously, that
is, we do not know which addresses are accessed when at runtime.
An example is an access to an array for which the accessed element depends
on user input. Each element of the array should have a different signature
to facilitate the detection of a faulty read or write to the array. However,
if we want to check if, for example, a read operations accessed the correct
value, we have to know the signature expected for this value. This signature
we cannot determine statically before running the program because the
user will determine at runtime which element is read and, thus, which
signature the value is expected to have. For such cases, the expected
signature used for code checking is determined dynamically at runtime.
Another example is dynamically allocated memory. Here, we cannot even
assign signatures statically at compile time because we might only know
at runtime how much memory is allocated. Thus, the signatures are even
assigned dynamically.
Thus, we introduce the concept of dynamic signatures for encoding dy-
namically allocated or accessed memory in this chapter.

Versioning:
For ANBD-codes we have to implement versioning of repeatedly written
data items additionally. The version D used in ANBD-codes facilitates
the detection of lost updates. However, for checking the code of an ANBD-
encoded data item, we have to be able to determine the version expected for
this data item. We will propose several approaches to solve this problem.

This selection of building blocks is based on our experiences made during
encoding the DLX (see Chapter 7) and the LLVM (see Chapter 8) instruction
sets. DLX is an academic RISC1 instruction set developed by Hennessy and
Patterson [PH90]. The LLVM compiler framework [LA04] defines the LLVM
bitcode that is a static single assignment assembler-like language. DLX and
LLVM as well have the advantage that, in comparison to any native assembler,
both have a manageable amount of operations for which we have to provide
encoded versions. However, similar concepts are used in other programming
and assembler languages. Hence, the concepts presented in this chapter can be
applied to other instruction sets as well.

4.1. Implementation of Encoding and Decoding

This section describes the implementation of operations for encoding and de-
coding data. These operations are necessary for encoding input received by a
program and constants used in the program and for decoding output produced
by the program. Note that this section does not describe encoded operations

1RISC stands for reduced instruction set computer. It describes a CPU design strategy. RISC
is based on the following assumption: A simpler instruction set can result in faster program
execution if because of the simplification the single instructions become faster.

4.1. IMPLEMENTATION OF ENCODING AND DECODING 41

such as an encoded addition. These will be described in Section 4.2.

Note further that for understanding this section, knowledge of the representation
of numbers within computing systems is required. The reader should be familiar
with the two’s complement and should know how type-casts from signed to
unsigned types and vice versa work.

In the following we will assume that functional, i. e., unencoded, values have a
size of n bits, while encoded values require m bits. For n and m the following
relations hold m > n and n > 0. Thus, m > 0 also holds. The pseudocode
examples presented here and later in Section 4.2 assume n = 32 and m = 64.
They use the appropriate signed and unsigned integer types uint32 t, int32 t,
uint64 t, and int64 t as defined in the stdint.h header file of the C standard
library.

Note that despite presenting only implementations for n = 32, we provide all
encoding/decoding operations and encoded operations for integer types of the
widths 8, 16, and 32. These implementations are very similar: Only constants
required for some corrections depend on the width of the data type of the
functional value. To ease implementation, the encoded versions of the different
functional value types are all stored using a 64-bit integer type.

4.1.1. Provided Functions

Listing 4.1 contains the declarations of the functions encode and decode for an
ANB-code. These functions we need

• for encoding input and
• for determining the functional value of a code word and at the same time

checking if this code word is a valid code word, that is, contains the
signature expected.

The interfaces for AN- and ANBD-encoding/decoding are defined quite similar.
For AN-encoding/decoding, no signature is used, and ANBD-encoding/decoding
additionally requires and applies the version information D.

1 /∗ Encode the g iven value us ing B as s i gna tu r e and the code parameter A.
2 ∗ @param v fun c t i o na l va lue
3 ∗ @param B s i gna tu r e f o r encoding
4 ∗ @param A code parameter A
5 ∗ @return ANB−encoded ve r s i on o f v : vc=A∗v+B
6 ∗/
7 uint64 t encode (uint32 t v , uint32 t B, uint32 t A) ;
8

9 /∗ Decode vc and check vc f o r v a l i d i t y .
10 ∗ I f vc i s no va l i d code word , the app l i c a t i o n i s aborted .
11 ∗ @param vc ANB−encoded value
12 ∗ @param expectedB the s i gna tu r e vc i s expected to have
13 ∗ @param A code parameter A
14 ∗ @return f un c t i o n a l va lue v o f vc
15 ∗/
16 uint32 t decode (uint64 t vc , uint32 t expectedB , uint32 t A) ;

Listing 4.1: Declaration of encoding and decoding functions for an ANB-code.

42 CHAPTER 4. ENCODING AN INSTRUCTION SET

Next, we will describe two different possibilities to implement the interface
described in Listing 4.1.

4.1.2. Encoding

Two different possibilities exist to implement the actual encoding of data: signed
and unsigned encoding. There are encoded operations that require one kind of
encoding and cannot be implemented using the other. For example, the signed
division requires signed encoded values, while the unsigned division requires
unsigned encoded values. Furthermore, the implementation of the encoded
base operations depends on the chosen kind of encoding. For these reasons, we
introduce these encoding kinds before describing the actual encoded operations.

When implementing the encoding of a number a, that is, the computation of
ac = A ∗ a + Ba, we have to decide if the operations used are executed signed or
unsigned. The first we call signed encoding , the second unsigned encoding . In C,
the type of the processed variables determines if an operation is executed signed
or unsigned. For addition and multiplication operations, signedness does not
matter. They are the same for both, signed and unsigned integers.

However, before the actual encoding is executed, we have to cast the encoded
variable a to the larger domain of encoded numbers, i. e., from n bits to m
bits. This cast is either done with a sign extension or without. If we cast to an
unsigned type, no sign extension is made, that is, independent of the content of
the variable before casting, the newly introduced higher-order bits contain zeros.
If we cast from a smaller signed type to a larger signed type, a sign extension is
made, that is, the added higher-order bits equal the most significant bit of the
casted value. For example a signed cast of 1010 from four to eight bits would
result in 11111010, while an unsigned cast would result in 00001010.

Listing 4.2 contains the signed encoding function’s implementation, and Fig-Signed encoding

ure 4.1 depicts the encoding transformation applied to numbers which are
encoded with sign extension, i. e., using a signed cast operation. We explicitly
marked where positive and negative numbers are located under the condition
that the corresponding bit patterns are interpreted as signed numbers using the
two’s complement. The values of the unsigned versions of the depicted values
increases from left to right – starting from 0 and going up to 2n − 1 and 2m − 1
respectively. Note that due to space reasons the representation does not depict
the correct size relations.

1 uint64 t encode (uint32 t v , uint32 t B, uint32 t A){
2 i n t 6 4 t r an = ((i n t 6 4 t) (i n t 3 2 t) A ∗ (i n t 6 4 t) (i n t 3 2 t) v ;
3 i n t 6 4 t r anb = r an + (i n t 6 4 t) (i n t 3 2 t)B) ;
4 return (uint64 t) r e s u l t ;
5 }

Listing 4.2: Signed ANB-encoding.

In the first row of Figure 4.1 the unencoded functional numbers are depicted.
The next row represents these numbers after type casting them to the type of the

4.1. IMPLEMENTATION OF ENCODING AND DECODING 43

���
���
���
���

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������

��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

multiplication

with A

positive

positive

positive negative

negative

negative

sign extension

typecast with

=> still unencoded

=> AN−encoded

addition of

signature

=> ANB−encoded

positive negative
gray areas depict valid code words

mapping of specific values between different encodings

2n−1

2n−1 − 1

A ∗ 2n−1 − 1

2n−1 − 1

0

2m − 1

2n − 1

A ∗ (2m − 2n−1)

2m − 2n−1

Figure 4.1.: Encoding transformations for an AN- and an ANB-code using signed
operations.

encoded numbers that requires more bits for its representation. In Listing 4.2,
this cast is implemented by (int64 t)(int32 t) v. We first cast from the unsigned
32-bit integer to the signed 32-bit integer type, and then from the smaller signed
to the larger signed type. By the first step, we ensure that the sign extension is
made in the next casting step. The resulting sign extension maps values in the
upper half of the functional values ([2n−1, 2n − 1]) to the upper half of the new
domain ([2m−1, 2m − 1]).

The next row depicts the multiplication with A, which just spreads the numbers
across the available space. Finally, the fourth row depicts the addition of the
signature. This increases the value by at most A− 1.

As can be seen in Figure 4.1, signed encoding results in the following code
property: An encoded number has the same sign as its unencoded version.
Thus, negative and positive functional values still have different signs after being
encoded. This property is required for the implementation of the encoded signed
division (see Section 4.2.1).

However , the implementation of the encoded unsigned division requires unsigned Unsigned Encoding

encoded values. The reason is that the interval of signed encoded numbers is not
continuous, but split up in the middle as can be seen in Figure 4.1. However,
the unsigned division requires a continuous interval from the smallest to the
largest value.

For the transformations executed during unsigned encoding and their results
look at Figure 4.2. Listing 4.3 contains the implementation of the unsigned
encoding.

Unsigned encoding uses an unsigned cast without sign extension. Hence, it does
not split up the domain of code words in the middle. Thus, unsigned encoded
numbers are the precondition for the unsigned division operation.

Note that many encoded operations that we will introduce in Section 4.2 slightly
differ for differently encoded values. For example, the implementation of an

44 CHAPTER 4. ENCODING AN INSTRUCTION SET

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

multiplication

with A

positive

positive

positive

negative

negative

negative

positive negative

sign extension

typecast without

=> still unencoded

=> AN−encoded

addition of

signature

=> ANB−encoded

gray areas depict valid code words

mapping of specific values between different encodings

2m − 1

2n − 10

A ∗ 2n−1A ∗ 2n−1 − 1

2n−1 − 1 2n−1

Figure 4.2.: Encoding transformations for an AN- and an ANB-code using
unsigned operations.

1 uint64 t encode (uint32 t v , uint32 t B, uint32 t A){
2 return (uint64 t)A ∗ (uint64 t) v + (uint64 t)B ;
3 }

Listing 4.3: Unsigned ANB-encoding.

encoded addition of signed encoded values is slightly different from the imple-
mentation for unsigned encoded values. However, due to space reasons we will
introduce only the versions for unsigned encoded values.

For Software Encoded Processing that we describe in Chapter 7, we implemented
both encodings and the appropriate encoded operations. We noticed no mea-
surable differences in the generated slowdown. Thus, for Compiler Encoded
Processing that we describe in Chapter 8, we implemented so far only the
unsigned encoding.

4.1.3. Conversion: Signed Encoded � Unsigned Encoded

For some operations of computer implemented arithmetic signedness matters,
that is, different versions exist for the unsigned and the signed interpretation
of numbers. This is the case for divisions and comparisons. For additions,
subtractions, and multiplication signedness does not matter, that is, for signed
and unsigned numbers the same implementation of that operation is used by
the processor to execute this operation.

The information if a signed or unsigned division or comparison is required, is
either contained in the variables’ types or directly encoded in the operation.
For example, in C the signedness is defined by the variable types. Whereas, in
LLVM signedness information is encoded into the called operation, for example,
either div or udiv is called for the signed and unsigned division respectively.

For the operations for which signedness matters, we also have to provide an
encoded version for the signed and the unsigned version. As we will demonstrate

4.1. IMPLEMENTATION OF ENCODING AND DECODING 45

later when presenting the encoded division operation, we need signed encoded
values for implementing the encoded signed division and unsigned encoded values
for implementing the encoded unsigned division. Thus, we need to be able to
translate signed into unsigned encoded numbers and vice versa.

To transform a signed encoded into an unsigned encoded value, we have to signed → unsigned

check if the encoded value represents a negative number. If the code word is
negative, we have to subtract the AN-encoded version of the sign bits (denoted
by signBitsc). These encoded sign bits signBitsc were added when first casting
the functional value to the larger signed data type with sign extension and
afterwards multiplying this value with A. If the code word is positive, nothing
has to be done because signed and unsigned encoding of positive functional
values result in the same code words because for neither case a sign extension is
made.

Signed encoded values have the same sign as the functional value represented by
them if both are interpreted using the two’s complement. Thus, for determining
if signBitsc has to be subtracted, we can just check if the encoded value is
smaller than zero using a signed comparison operation.

The AN-encoded sign bits only depend on A and the data type sizes n and m. Encoded sign bits

Otherwise, they are constant: signBitsc = (2m − 2n) ∗A mod 2m. The value
2m − 2n represents the unencoded sign bits, i. e., the upper m− n bits of the
value are set and the remaining bits are zero. These are the bits added to a
negative functional value that is casted to a larger type with sign extension.
Multiplying this value with A AN-encodes it, which is required because we want
to subtract it directly from the encoded value if required.

When transforming an unsigned encoded value into a signed encoded value, unsigned → signed

we also have to check if the encoded value represents a functional value that
is negative (if it is interpreted in two’s complement). Since unsigned encoded
numbers do not have the same sign as their represented functional values, this
requires a comparison with the encoded version of the first negative functional
value. In two’s complement, the first number that is interpreted as a negative
has the unsigned value 2n−1. It represents −2n−1. Its encoded version is
firstNegativec = A∗2n−1. If the unsigned encoded value (without signature B)
is larger than firstNegativec, we have to add the encoded sign bits signBitsc to
transform it into its signed encoded representation. If the unsigned encoded value
is smaller than firstNegativec, nothing needs to be done because a positive
functional value is represented.

These two transformations, signed → unsigned and unsigned → signed, have Encoding of these
transformationsto be completely encoded. Thus, for an ANB-code we add a signature to

each of the two constants signBitsc and firstNegativec, which are already
AN-encoded. Furthermore, the mentioned comparisons are executed using
the encoded comparison operations that we introduce later, and the required
if-statement is encoded using the mechanism introduced in the next section.

We implemented the encoded transformation from unsigned to signed encoded val-
ues in the functions unsignedToSigned <code> where <code> depending on
the encoding equals an, anb, or anbd. The functions signedToUnsigned <code>

46 CHAPTER 4. ENCODING AN INSTRUCTION SET

implement the encoded transformation from signed to unsigned encoded values.
We use these functions for implementing the encoded signed division.

4.1.4. Decoding

While encoding is applied statically to constants and dynamically to input data,
decoding and code checking is used to produce unencoded outputs.

The decoding and code checking operations for signed and unsigned encoded
values are different. The reason is that the modulo operations used to determine
the signature contained and the division used to obtain the functional value
depend on the signedness. Thus, for signed encoded values, signed division and
modulo operations have to be used in decoding and code checking. For unsigned
encoded values, unsigned division and modulo operations have to be used in
decoding and code checking.

4.2. Encoded Operations

As explained before, for encoding a program, we have to replace all data values
with their encoded versions. Thus, we have to provide encoded versions of all
operations used in a program. These encoded versions of operations take encoded
operands and produce valid encoded results without decoding the operands
for the computation. If the latter restriction is violated, the error detection
capabilities of the code are reduced. The reason is that with decoding a window
of vulnerability is opened within which data may be modified undetectably.

In the following, we present the encoded versions of arithmetic and logical
operations. We call these the encoded operations. The sections following this
one, present concepts for encoding control and data flow.

We identified two different ways to realize encoded operations. For arithmetic,Encoded
base operations boolean logical, and comparison operations we use operations that we encoded by

hand – the encoded base operations. We published these operations in [WF07a]
and in this thesis we describe them in Section 4.2.1.

To reduce the error-prone manual work for encoding operations, we only encodeEncodable replace-
ment operations a small number of operations by hand. For all remaining operations such as

type casting, shifts, bitwise logical operations, or unaligned memory accesses, we
developed our own encodable C-implementations – the replacement operations.
These replacement operations we published in [SSF09] and in this thesis we
describe them in Section 4.2.2.

The replacement operations are implemented in C and use only operations for
which hand-encoded versions exist. Thus, the replacement operations can be
automatically encoded using the hand encoded base operations. Therefore, all
occurrences of operations for which no hand-encoded version exists must be
replaced with their encodable replacement version before the actual encoding,
that is, the replacement of variables and operations with their encoded versions,

4.2. ENCODED OPERATIONS 47

is done. This replacement can be automated as well. Afterwards, the program
together with the replacement operations can be encoded automatically.

Our tools presented in Chapter 7 and 8 can only encode applications that Floating point
operationssolely process integers. Thus, floating point variables and operations have to be

replaced with an encodable software implementation. Currently, that has to be
done by hand.

4.2.1. Encoded Base Operations

This section describes the hand-encoded base operations that we provide for the
following operations:

• addition,
• subtraction,
• multiplication,
• signed and unsigned division,
• signed and unsigned comparisons, and
• the boolean logical operations and, or, and xor.

Before describing the hand-encoded base operations, we introduce the basic
requirements that encoded operations must fulfill and which we, thus, have to
consider during hand-encoding the base operations. Furthermore, for encoding
some of the base operations we need to be able to encode if-statements. Hence,
we will introduce these also before finally describing the specification of the
encoded base operations and their implementation.

Note further that our descriptions in the following consider only the ANB-encoded
versions. The AN-encoded version can be obtained by removing instructions
that correct signatures. For the ANBD-encoded variant, the version D has
to be considered additionally which is handled similar to the signatures. We
implemented all three encodings. However, we use only the AN- and ANB-
encoded operations in our encoding approaches.

Requirements Posed on Encoded Base Operations

The following requirements that we pose on encoded operations ensure that the
code is implemented in a safe way, i. e., without reducing the error detection
capabilities of the code implemented.

First of all, it has to be ensured that during an encoded operation the processed No decoding

data is not decoded completely or partially because this would open a window
of vulnerability where undetectable errors could happen. Complete decoding
happens when a code word is divided by A. If the signature is removed without
adequate substitution, this is a partial decoding. In this case the encoding
is reduced to an AN-code that, for example, cannot detect the exchange of
operands.

The term atomicity originates from the database domain. If a transaction is Atomicity

atomic, it is either executed completely or not at all. In the context of encoding,

48 CHAPTER 4. ENCODING AN INSTRUCTION SET

we use atomicity in the sense that an encoded base operation is either executed
completely or that we are at least able to notice if parts of an encoded operation
were not executed. Thus, we require that an incomplete execution of an encoded
operation produces results that are invalid code words. Thereby, we ensure
the detection of control flow errors that disturb the execution of an encoded
operation.

Each encoded operation has to result in a unique signature, that is, no twoUnique signature

encoded operations produce the same output signature when presented with the
same input signatures. This ensures detection of operator errors. Otherwise,
two operators that produce the same signature for the same input signatures
could be exchanged unnoticeably.

Encoding of If-statements

When hand-encoding arithmetic and comparison operations, we need to encode
if-statements, for example, to ensure overflow behavior that conforms to the
ANSI C-standard. Thus, we explain the encoding of an if-statement with the
help of an example whose unencoded version is:

1 i f (x >= 0){
2 y = z + x ;
3 } else {
4 y = x − y ;
5 }

We have to encode this if-statement in a way that facilitates detection of errors

• in the computations executed in the if- and the else-branch,
• in the computation of the condition (x>=0), and
• in the branch itself, i. e., if the taken branch does not match the result of

the condition evaluation.

Forin in [For89] presented the following encoded version of the if-statement that
fulfills these requirements. The comments show the variable contents for the
error-free case:

1 sigCond = sigGEZ (xc) ; // i f (x<0) sigCond = sigNeg
2 // e l s e sigCond = s igPos
3 i f (xc >= 0){
4 yc = zc+xc ; // yc=A∗(z+x)+Bz+Bx
5 } else {
6 yc = xc−yc ; // yc=A∗(x−y)+Bx−By
7 yc += (Bz+Bx) ; // yc=A∗(x−y)+Bx−By+Bz+Bx
8 yc += −(Bx−By) ; // yc=A∗(x−y)+Bz+Bx
9 yc += −s igNeg+s igPos ;

10 // yc=A∗(x−y)+Bz+Bx−s igNeg+s igPos
11 }
12 yc += sigCond ; // By=Bz+Bx+sigPos

sigGEZ(xc) computes the signature for the greater-equal-comparison of x with
zero. It evaluates to two different values: one value if the functional value x
represented by xc is greater than or equal to zero (sigPos) and a different value
if it is less than zero (sigNeg). We explain its implementation later.

4.2. ENCODED OPERATIONS 49

We define that after executing the if-statement the signature of yc (the variable
modified by the if-statement) has to be Bz + Bx + sigPos, independently of the
chosen branch. The signature of yc could be defined differently. Important is
that after the execution of the if-statement yc can only have that signature if
everything was correctly executed and that any of the described errors would
lead to yc having a different signature.

With our intended signature for variables modified by the if-statement, compu-
tations of any variable in the else-branch must be completed with:

• the addition of the signature that is generated for this variable in the
if-branch,

• the subtraction of the signature that is generated for this variable in the
else-branch, and

• the subtraction of the expected value for sigCond for the else-branch
(sigNeg) and addition of the one we defined the result to have (sigPos).

Note that in the Vital Coded Processor (see Chapter 6) and Compiler Encoded
Processing (see Chapter 8) all the values applied to yc in the lines 7 to 9 are
constants that are known at encoding time. Thus, they are precomputed and
applied with one addition. This is important because it prevents partial decoding
that might happen otherwise if signatures are removed for example in line 8.
Furthermore, this ensures that either all of these correction or none are applied.
However, if all these corrections are missing, the result produced (yc in our
example) will not be a valid code word.

While computations such as addition, subtraction, and also condition computa-
tion are protected as usual by a predetermined signature, the branching behavior
is explicitly checked by assuming a specific value for sigCond in the different
branches. The addition of the actual sigCond in line 12 implements the check
if the correct branch was taken and ensures that the signature of the condition
is part of yc’s signature. The latter checks the correctness of the computation of
the condition.

If any of the computations (in the branches or of the condition) or any of the
used operands was erroneous, the signature of yc will be destroyed because yc’s
signature depends on any of these computations. If a branch is chosen which
does not match x’s size, that is, the expected comparison result, this would also
result in a wrong signature of yc, because the addition of sigCond in line 12
would not match the value expected for sigCond in the branches.

Forin [For89] presented the following approach for realizing sigGEZ: Signed
numbers are represented using the two’s complement as is done in most systems.
When a negative value neg and a positive value pos are encoded using signed
operations and the same signature B, the two encoded values negc = A∗neg+B
and posc = A ∗ pos + B will not have the same signature if they are interpreted
as unsigned values: (posc mod A) = B 6= (negc mod A) = ((2m +B) mod A).
Remember m is the width of the binary representation of encoded values. Thus,
sigGEZ is defined as follows for xc = A ∗ x + Bx:

50 CHAPTER 4. ENCODING AN INSTRUCTION SET

sigGEZ(xc) =

{
Bx if x ≥ 0
(2m + Bx) mod A if x < 0

For more information about encoded comparison operations see page 66.

Specification of Encoded Arithmetic Operations

Before finally discussing our hand-encoded base operations, we have to determine
their intended semantics. Arithmetic operations implemented by processors
are quite different from mathematical arithmetic using infinite integers. In
processors the size of integers is restricted by the chosen data type. If the data
type is n bits wide, the computations implemented by a processor take place in
the congruence classes modulo 2n: Z/2nZ. If, for example, the addition of two
values a and b would result in a value greater than 2n − 1, the addition’s result
is (a + b) mod 2n, that is, the addition of a and b is overflown, i. e., wrapped
around.

Also higher level programming languages implement this wrapping around.
For example, the ANSI C99 standard [ISO99] that defines the programming
language C requires this wrapping around in the case of an over- or underflow
for unsigned integer types. Note that signed operations require correct modulo
arithmetic anyway, that is, the processor operations must wrap around correctly
for over- and underflowing computations to implement signed arithmetic. For
example, the addition of a negative and a positive number, if interpreted as
unsigned values, is nothing else than an overflow that wrapped around correctly.
Remember that the implementations of addition, subtraction, and multiplication
are equal for signed and unsigned values. They differ only in which flags the
processor sets to indicate which over- or underflows happened.

The encoding solutions presented by Forin in [For89] do not consider over- or
underflows. Instead the programmer has to ensure that these will not occur.
If an overflow happens, it might either lead to invalid code words or to valid
code words that contain wrong functional values. The outcome depends on the
choice of A. How arithmetic with signed values that requires correct overflows
can be encoded is not discussed at all by Forin.

However, we want to execute arbitrary programs without restricting the pro-
grammer. Thus, we have to ensure that all operations work as the programmer
expects them to work. Hence, it is required that the functional values repre-
sented by the encoded values are overflowing and underflowing as they would do
without encoding. Table 4.1 summarizes the conditions that we have to fulfill
for the different arithmetic operations that are subject to over- or underflows.

In the following section, we will show that computations with encoded values
require additional corrective actions to be taken to ensure the correct overflow
behavior in the domain of the functional values. The reason is that the algebraic
structures of unencoded and encoded numbers are not isomorphic. If the two
structures of encoded and unencoded numbers shall be isomorphic, A would have
to be equal to 2m−n. However, choosing A to be a power of two would result in

4.2. ENCODED OPERATIONS 51

operation
requires

justification
OF UF

add (signed) × addition of numbers with different signs

add (unsigned) × according to ANSI C99 standard

sub (signed) × subtraction of numbers with different signs

sub (unsigned) × according to ANSI C99 standard

mult (signed) × multiplication of numbers with different signs

mult (unsigned) × according to ANSI C99 standard

Table 4.1.: Requirements on operations with respect to correct realization of
overflows (OF) and underflows (UF).

a minimal Hamming distance of only one between valid code words – rendering
the code useless against a wide variety of bitflips. Since encoded and functional
values are non-isomorphic, encoded numbers normally will not overflow where
the functional values do. This means that we have to check for each operation
if there would have been an underflow or overflow within the functional values.
If so, we have to correct the obtained encoded result accordingly.

Signature Precomputation and Correction

For all the encoded operations, restrictions with respect to the signatures of
the input parameters have to be fulfilled. For example, for a division x

y , the
signature By should be unequal to zero because otherwise the result’s signature
Bx
By

would be undefined because a division by zero would occur in that case.
Furthermore, we ensure that the signature of the result is greater than zero and
smaller than A.

Together with our encoded base operations, we provide a signature correction Signature correc-
tion functionsfunction for each encoded operation. These facilitate choosing the signatures of

the input parameters appropriately at encoding time or adapting the signatures
of encoded values at runtime. Of course, the first method is the preferred one
because it induces no runtime costs. Signature correction functions take a
randomly chosen signature for each parameter of an operation as input, and
provide an adaptation value for each signature. This adaptation value is to
be added to the original signature. Thereby, this signature is changed to an
appropriate signature for the operation. The described adaptation can also be
applied to encoded values at runtime to change the signature of these values.

The correction functions are implemented in a way that they try to ensure
that the randomness of the given signatures is reduced as few as possible.
However, it cannot be completely prevented that the restrictions imposed lead
to some signatures being more probable than others. For example, for the naive
encoded addition where the result’s signature is the sum of the signatures of
the parameters, the input signatures chosen tend to be values smaller than A

2 .
Future implementations of the encoded operations could avoid this issue by
correcting signatures for the results instead for the parameters.

52 CHAPTER 4. ENCODING AN INSTRUCTION SET

Furthermore, we provide a signature precomputation function for each encodedSignature precom-
putation functions operation. Given the signatures of the input values, this function computes the

expected signature of the return value. Signature correction functions are used,
for example, by the encoding compiler presented in Chapter 8 for determining
the signatures of intermediate results at encoding time.

In the following, for the sake of simplicity we do not present signature correction
and signature precomputation functions. All pseudocode examples presented
contain comments at the return statement containing the formula for computing
the signature expected for the result produced. The signature precomputation
function of an operation just implements this formula. The signatures of the
input values are chosen in a way that ensures that the result’s signature is
greater than zero and smaller than A.

Addition

Figure 4.3 demonstrates the addition of two unsigned encoded values: xc =
A ∗ x + Bx and yc = A ∗ y + By. In the chosen example, the addition ofOverflow

the two functional values x and y overflows in the domain of the functional
values. Thus, the result of the addition of the functional values is x + y − 2n

because an addition (modulo the domain size 2n) overflows at most once. The
expected result of the addition of the encoded values, thus, should be sumexp =
A ∗ (x + y − 2n) + Bx + By. Instead the result of the addition of the encoded
values xc and yc is sum = A ∗x+Bx +A ∗ y +By = A ∗ (x+ y) +Bx +By. The
reason is that the domain of encoded values is large enough that the sum of the
encoded values does not overflow. That is due to the choice of A and the data
type used.

Even if we choose A in a way that ensures that the domain of the encoded
values overflows when the functional values do2, the result would be unequal to
sumexp. The reason is that the overflow of the encoded values corresponds to
modulo 2m on the the encoded value instead of modulo 2n on the functional
value. These two different overflows would be equivalent for A = 2m−n. However,
as explained before A should not be a power of two due to safety reasons. Thus,
both variants of an overflow in an addition of two functional values – with
and without overflow in the encoded values – require additional (but different)
corrective actions.

Note that sumexp and sum are both multiples of A and carry the expected
signature Bx + By, that is, both are valid code words. We call sum an incorrect
valid code word because it contains a valid code word with an incorrect functional
value. To obtain the correct code word a correction by OVERFLOW CORRECTION=
sum− sumexp = A ∗ 2n is required.

2Appendix A details the requirements for choosing an A that ensures that overflows happen
for unencoded functional values and for encoded values at the same places. In that case, if
an operation overflows in its execution with functional values, it will also overflow in its
execution with encoded values.

4.2. ENCODED OPERATIONS 53

���
���
���
���

��
��
��

��
��
��

multiplication with

A and addition

of signature

positive negative

positive negative

typecast without

sign extension

negativepositive

gray areas depict valid code words

mapping of specific values between different encodings

expected result: obtained result:

OVERFLOW_CORRECTION

sumexp = A ∗ (x + y − 2n) +Bx +By

x y

A ∗ y +By

A ∗ x +Bx

= A ∗ 2n

2n − 1

2m − 1

2m − 1

x + y − 2n

0

sum = A ∗ (x + y) +Bx +By

Figure 4.3.: Demonstration of the effects of encoding on the overflow behavior
of an overflowing addition x + y using unsigned encoded values.

The incorrect valid code word sum contains an incorrect functional value in
the m-bit domain of the encoded values. If we divide sum by A and do not
cast its type back to the n-bit-sized type of the functional values, we obtain
x + y instead of x + y − 2n. The latter one can be obtained by casting to the
n-bit-sized type of the functional values which is nothing else than a modulo
computation with 2n. Hence, incorrect valid code words can be decoded and
their code can be checked successfully.

Thus, a legitimate question is, why we should correct these incorrect valid code Why correct
incorrect valid
code words?

words? Using such results that should have been overflown is no problem in
additions, subtractions, and multiplications. The reason is that these operations
and the modulo-2n operation (that is, the cast to the n-bit-sized type) during
decoding are commutative. However, this is not the case for divisions and
comparisons. These are not commutative with the modulo operation. This will
lead to different results for these operations for corrected words, e. g., sumexp,
and uncorrected results, e. g., sum. Furthermore, leaving the values of additions,
subtractions, and multiplications uncorrected, could lead to unintended overflows
within the encoded values.

Of course, we could just accept the greater domain of encodable numbers and
do no corrections, that is, we would not restrict the functional values to values
from 0 to 2n − 1. However, realization of arithmetic with signed numbers in the
two’s complement requires overflows to wrap around correctly.

The described overflow problem occurs also for signed encoded values. However, Sign overflow

the problem does not happen if an addition wraps around 2n, but if an addition
crosses 2n−1, that is, if a so called sign overflow happens. A sign overflow
means that one adds two signed positive numbers and the result is too large
and flows over into the negative values. Figure 4.4 demonstrates this. Note

54 CHAPTER 4. ENCODING AN INSTRUCTION SET

���
���
���
���

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������

multiplication with

A and addition

of signature

positive

positive negative

negative

positive negative
gray areas depict valid code words

mapping of specific values between different encodings

sign extension

typecast with

OVERFLOW_CORRECTION

obtained result: expected result:

= −2m + A ∗ 2n

0

2m − 1

2n − 1x + yyx

A ∗ x +Bx

A ∗ y +By

sumexp = 2m − A ∗ (2n − (x + y)) +Bx +Bysum = A ∗ (x + y) +Bx +By

Figure 4.4.: Demonstration of the effects of encoding on the overflow behavior
of an overflowing addition x + y using signed encoded values.

that the expected encoded value of x + y in the depicted example is sumexp =
2m −A ∗ (2n − (x + y)) + Bx + By because of the sign extension made during
encoding. Thus, the required correctional value is OVERFLOW CORRECTION=
sum − sumexp = −2m + A ∗ 2n. This reduces to A ∗ 2n because the overflow
correction is applied modulo 2m.

The pseudocode Listing 4.4 shows our implementation of an encoded additionImplementation

using unsigned encoded values. Note that we denote xy as xˆy in all our pseu-
docode listings. We do not use xˆy for indicating the xor operation that it
signifies in C.

First, the encoded addition adds the unsigned encoded values (line 7) and
afterwards it does an encoded overflow correction if required (lines 10 to 24).
The overflow correction in Listing 4.4 uses an encoded if-statement to ensure that
control flow errors influencing the correction are detectable. Thus, it does not
impair the safety that we remove the signatures from result in line 15 because
this comparison is checked by the encoding of the if-statement that either applies
the overflow correction or not.

Note that in all our pseudocode listings we assume that A is a constant global
value that requires at most 31 bits. This ensures that OVERFLOW CORRECTION

does not require more than 64 bits for storage.

The implementation of the encoded addition using signed encoded values looks
similar. However, its check if an overflow happened is more complicated because
it has to be checked if a sign overflow of two positive (in two’s complement) or
two negative functional values should have happened.

Note that in our Compiler Encoded Processing that we will present in Chapter 8
sigPos and sigNeg are constants at runtime. Their values only depend on the
signatures of the two encoded input operands. These signatures in Compiler

4.2. ENCODED OPERATIONS 55

1 const uint32 t B OC = . . . ; // s i gna tu r e o f over f l ow c o r r e c t i o n
2 const uint64 t OVERFLOWCORRECTION = A∗2ˆ32 + B OC;
3 const uint64 t SMALLEST INTEGER NOT POSSIBLE ENC = A∗2ˆ32 ;
4

5 uint64 t add anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
6 // the ac tua l add i t i on
7 uint64 t r e s u l t = xc + yc ;
8

9 // expected s i gna tu r e s o f i f−cond i t i on check
10 uint32 t s igPos = Bx + By ;
11 uint32 t s igNeg = (2ˆ64 % A + sigPos) % A;
12

13 // app l i c a t i o n o f the over f l ow c o r r e c t i o n
14 // i f an over f l ow happened
15 i f (r e s u l t − Bx − By >= SMALLEST INTEGER NOT POSSIBLE ENC){
16 r e s u l t = r e s u l t − OVERFLOWCORRECTION;
17 } else {
18 r e s u l t = r e s u l t − B OC − s igNeg + s igPos ;
19 }
20

21 // encoded check o f the prev ious i f−statement ’ s c on t r o l f low
22 uint64 t d i f f = r e s u l t − SMALLEST INTEGER NOT POSSIBLE ENC;
23 uint32 t sigCond = d i f f % A;
24 r e s u l t += sigCond ;
25

26 return r e s u l t ; // = A∗ ((x+y) % 2ˆn) + Bx + By + sigPos − B OC
27 // = A∗ ((x+y) % 2ˆn) + 2∗(Bx + By) − B OC
28 }

Listing 4.4: Encoded addition using unsigned encoded values and doing an
encoded overflow correction.

Encoded Processing are assigned at encoding, i. e., compile, time. In Software
Encoded Processing (see Chapter 7) these signatures are only known at runtime.
Thus, for Compiler Encoded Processing, the value −B OC−sigNeg+sigPos applied in
line 18 is constant that is applied with one addition, while it is not for Software
Encoded Processing. For Compiler Encoded Processing, this ensures that the
corrections are either applied completely or not at all. If they are not applied, an
invalid code word is produced as a result and, thereby, the loss of the addition
of the correction becomes detectable.

To come back to our requirements for encoded operations that we defined in
Section 4.2.1, note that none of the encoded values used in add anb is completely
or partially decoded.

Furthermore, in Compiler Encoded Processing, if any of the instructions forming
add anb is not executed, but should have been executed, the produced result
will be an invalid code word. For Software Encoded Processing, we can not
guarantee this because −B OC−sigNeg+sigPos is computed at runtime and parts
of its application might be left out. This results in some undetectable error
scenarios. However, these always require several matching errors such as

• control flow erroneously goes to the else branch where no overflow correction
is done and

• the addition of sigPos and the removal of sigNeg are lost.

Because of the encoded overflow correction, the signature of the result is 2 ∗

56 CHAPTER 4. ENCODING AN INSTRUCTION SET

(Bx + By)−BOC . No other encoded base operation will produce this signature
for the same input signatures Bx and By.

4.2. ENCODED OPERATIONS 57

Note that the sign overflow, that is, an addition that crosses 2n−1 in the functional Future work

values, is possible without correction if unsigned encoded values are added. On
the other hand an overflow, that is, an addition that wraps around 2n in the
functional values, is possible without correction if signed encoded values are
added. Thus, if with a dataflow analysis or by using additional information
provided through the programmer the signedness of the added operands can
be determined, overflow corrections could be partly removed. However, this
might also lead to additional conversions between signed and unsigned encoded
values. Furthermore, currently, neither the DLX nor the LLVM instruction set
provide us the required information. But in the future, with additional data
flow analysis, this can be used for further optimizations.

Subtraction

For the subtraction similar issues as for the addition exist. For unsigned encoded
values, underflowing subtractions, that is, subtractions x− y with y > x, do not
result in the expect result. The reason as with the addition is that the functional
values and the code words are no isomorphic algebraic structures. These they
could only be if A would be a power of two, which is an unsafe choice for A.

Figure 4.5 demonstrates what happens if two unsigned encoded values are Underflow

subtracted whose functional versions cause an underflow if they are subtracted.
The result of x − y with y > x in the domain of n-bit values is 2n − (y − x)
because x− y wraps around at 2n by y − x, i. e., the value by which y is larger
than x. Thus, the expected result of the encoded version of this subtraction is
subexp = A ∗ (2n − (y − x)) + Bx −By.

���
���
���
���

��
��
��

��
��
��

multiplication with

A and addition

of signature

positive negative

positive negative

typecast without

sign extension

negativepositive

gray areas depict valid code words

mapping of specific values between different encodings

UNDERFLOW_CORRECTION

UNDERFLOW_CORRECTION

expected result: obtained result:

= 2m − A ∗ 2n
mod 2m = −A ∗ 2n

2n − 1

2m − 1

2m − 1

0

A ∗ x +Bx

A ∗ y +By

subexp = A ∗ (2n − (y − x)) +Bx −By

yx

(x− y) mod 2n = 2n − (y − x)

sub = 2m − A ∗ (y − x) +Bx −By

Figure 4.5.: Demonstration of the effects of encoding on the underflow behavior
of an underflowing subtraction x−y using unsigned encoded values.

58 CHAPTER 4. ENCODING AN INSTRUCTION SET

However, the obtained result of xc − yc wraps around 2m resulting in the
subtraction result sub = 2m − (A ∗ y − A ∗ x) + Bx − By = 2m − A ∗ (y −
x) + Bx − By. Hence, an underflown subtraction result has to be corrected
using UNDERFLOW CORRECTION= sub − subexp = 2m − A ∗ 2n. This correc-
tion is applied to the encoded values and thus is used modulo 2m. Thus,
UNDERFLOW CORRECTION mod 2m = −A ∗ 2n will be subtracted for correcting
underflown results of the unsigned encoded version of the subtraction.

Note that the signature correction function for the subtraction of unsigned
encoded values ensures that Bx < By. This prevents underflows of the encoded
values for the case that x = y holds.

For a subtraction with signed encoded numbers, the underflow is not theSign underflow

problem. However, subtractions that cross 2n−1, that is, x− y with x ≥ 2n−1

and y < 2n−1 require additional corrections. Since this is similar to the sign
overflow of an addition we call it a sign underflow . Subtractions with a sign
underflow require corrective actions as Figure 4.6 demonstrates. The encoded
version of y is A ∗ y + By because y is smaller than 2n−1. However, the encoded
version of x is 2m −A ∗ (2n − x) + Bx because x is larger than 2n−1 and, thus,
a sign extension is made during encoding of x. The expected result of this
subtraction would be subexp = A ∗ (x − y) + Bx − By because the functional
values do not underflow. However, the result obtained by subtracting xc − yc is
sub = 2m−A∗ (2n−x)+Bx− (A∗y+By) = 2m−A∗2n +A∗ (x−y)+Bx−By.
Hence, the subtraction of UNDERFLOW CORRECTION= sub− subexp = 2m −A ∗ 2n

is required for the encoded version of the subtraction of signed encoded values
crossing 2n−1.

���
���
���
���

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������

multiplication with

A and addition

of signature

positive

positive negative

negative

positive negative
gray areas depict valid code words

mapping of specific values between different encodings

sign extension

typecast with

UNDERFLOW_CORRECTION

expected result: obtained result:

0

2m − 1

2n − 1y x

x− y

A ∗ y +By 2m − A ∗ (2n − x) +Bx

= 2m − A ∗ 2n

= 2m − A ∗ 2n + A ∗ x +Bx

subexp = A ∗ (x− y) +Bx −By sub = 2m − A ∗ 2n + A(x− y) +Bx −By

Figure 4.6.: Demonstration of the effects of encoding on the underflow behavior
of an underflowing subtraction x− y using signed encoded values.

The pseudocode Listing 4.5 shows our implementation of an encoded subtractionImplementation

that subtracts unsigned encoded values (line 6) and does an encoded underflow

4.2. ENCODED OPERATIONS 59

1 const uint32 t B UC = . . . ; // s i gna tu r e o f underf low c o r r e c t i o n
2 const uint64 t UNDERFLOWCORRECTION = 2ˆ32 ∗ A + B UC;
3

4 uint64 t sub anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
5 // the ac tua l sub t ra c t i on
6 uint64 t r e s u l t = xc − yc ;
7

8 // expected s i gna tu r e s o f i f−cond i t i on check
9 uint32 t s igPos = Bx − By ;

10 uint32 t s igNeg = (2ˆ64 + s igPos) % A; // Note that our implementation
11 // ensure s that 2ˆ64 + s igPos
12 // does not over f l ow
13

14 // app l i c a t i o n o f the underf low c o r r e c t i o n
15 // i f an underf low happened (e l s e branch)
16 i f (xc > yc){
17 r e s u l t = r e s u l t + B UC;
18 } else {
19 r e s u l t = r e s u l t + UNDERFLOWCORRECTION − s igNeg + s igPos ;
20 }
21

22 // encoded check o f the prev ious i f−statement ’ s c on t r o l f low
23 uint32 t sigCond = r e s u l t % A;
24 r e s u l t = r e s u l t + sigCond ;
25

26 return r e s u l t ; // = A∗ ((x−y) % 2ˆn) + Bx − By + sigPos + B UC
27 // = A∗ ((x−y) % 2ˆn) + 2∗(Bx − By) + B UC
28 }

Listing 4.5: Encoded subtraction using unsigned encoded values and doing an
underflow correction.

correction if required (lines 9 to 24). The underflow correction in Listing 4.5
as the overflow correction in Listing 4.4 uses an encoded if-statement to ensure
that control flow errors influencing the correction are detectable. Again the
corrections applied in line 19 in Listing 4.5 are summarized into one constant at
encoding time for Compiler Encoded Processing, but not for Software Encoded
Processing. This summarization into one constant ensures that all corrections
are applied or if not, the result is an invalid code word. As previously described
for the encoded addition, for Software Encoded Processing, due to the missing
summarization error scenarios exist that might lead to undetectable left out
underflow corrections.

As the addition, the subtraction fulfills our requirements that we defined in
Section 4.2.1:

• There is no complete or partial decoding.
• If sub anb is not completely executed, the result will not be a valid code

word with the expected signature with high probability.
• The subtraction produces the signature 2 ∗ (Bx−By) +BUC , which is not

produced by any other encoded operation for the same input signatures
Bx and By.

60 CHAPTER 4. ENCODING AN INSTRUCTION SET

Multiplication

For implementing an encoded multiplication, we have to solve several problems:
When multiplying two encoded numbers xc and yc, several corrective actionsValue correction

are required to obtain a valid encoded result with a signature that only depends
on the signatures of xc and yc and not on the functional values multiplied.

Furthermore, as with addition and subtraction, we also require that the multipli-Overflow
correction cation overflows correctly in the domain of functional values, i. e., wraps around

2n. Therefore, further corrective actions are required. For the multiplication, the
correctional value used depends on the input parameters because a multiplication
may overflow, i. e., wrap around, several times and not only once as the addition
does at most.

Last, the intermediate results generated within the multiplication may require a128-bit integer
processing data type that is twice as large as the type used for encoded values. In our case,

where encoded values are 64-bit integers, that means that we have to store and
process 128-bit values.

Currently, our encoding approaches run on x86-64-based systems with SSE4
extensions3. SSE4 on 64-bit systems provides us with 128-bit operations and,
thus, solved the last problem described in the paragraph above. For platforms
that do not provide a hardware implementation of 128-bit operations, we provide
a software implementation of the operations required. However, these are much
slower than the hardware implementation. In our following pseudocode listings
we use the type definition uint128 t to declare 128-bit values.

Listing 4.6 demonstrates our first implementation of the encoded multiplication.
The listing focuses on obtaining a valid code word as result. Hence, it does not
implement the overflow correction. We present it because it seems to be an easy
solution and we want to point out the problems of this first implementation.

1 // p r e cond i t i on s :
2 // x∗By+y∗Bx < A and Bx∗By < A
3

4 uint64 t mult anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
5 uint128 t r e s u l t =(uint128 t) xc ∗(uint128 t) yc ; // r e s u l t = Aˆ2∗x∗y
6 // + A∗x∗By
7 // + A∗y∗Bx
8 // + Bx∗By
9 uint128 t tmp1=(r e s u l t /A % A) ∗ A; // tmp1 = A∗x∗By + A∗y∗Bx

10 uint64 t tmp2=r e s u l t % A; // tmp2 = Bx∗By
11 r e s u l t =(r e su l t−tmp1)/A; // r e s u l t = A∗x∗y
12 r e s u l t+=tmp2 ; // r e s u l t = A∗x∗y+Bx∗By
13 return (uint64 t) r e s u l t ;
14 }

Listing 4.6: First version of an encoded multiplication using unsigned encoded
values but without overflow correction and restricted functional
values.

3SSE4 stands for Streaming SIMD extensions (version 4) and is an extension of the x86
instruction set.

4.2. ENCODED OPERATIONS 61

This solution poses the following restrictions onto the encodable functional
values and usable signatures:

• x ∗By + y ∗Bx < A
• Bx ∗By < A

Especially the first restriction is problematic because it constrains the functional
values. In contrast, we choose the signatures, i. e., B ’s, at encoding time ourselves.
Thus, restrictions on these can be implemented. Note that despite restricting
the signatures being possible, restricting the signatures might reduce the safety
because it reduces the amount of possible different signatures. However, the
functional values should not at all be restricted because this restricts the user of
an application instead of the encoding process. A further issue in Listing 4.6
is that before the last correction (in line 11) the result is available as partially
decoded multiple of A: A ∗ x ∗ y. Thus, it is possible to exchange this value
unnoticeable with another multiple of A. Obviously, these restrictions make this
implementation practically unusable. Thus, we developed a second improved
version that we use in our current encoding solutions and present in Listing 4.7

In Listing 4.7, first, the actual multiplications and all corrections for obtaining Value correction

a valid code word are executed in lines 14 to 22. Thereafter, result contains
a correctly encoded multiplication result with the signature Bx ∗ By. For
implementing the corrections required, we need the functional values. These we
can obtain by simple decoding without additional code checking (lines 9 and 10)
because if any error modifies these values this will result in corrections that do
not match the result of the multiplication in line 14. Also, all errors occurring
in the corrections implemented from line 16 to line 22 lead to modifications that
do not match the result of the multiplication in line 14. Thus, errors in the
lines 9 and 10 and from line 16 to line 22 will result in an invalid code word in
line 22 with high probability.

Second, we have to handle overflows of the functional values that might happen. Overflow
correctionThe functional values should wrap around 2n where n is the size of the functional

values in bits. We need this behavior, for example, for implementing encoded
shift operations that are implemented as multiplication with powers of two
as presented in Section 4.2.2. However, if the multiplication of the functional
values overflows, the multiplication of the encoded values overflows differently
as was already the case for the encoded addition. In contrast to the addition,
a multiplication may wrap around several times depending on the functional
values. Thus, we cannot use a predetermined correction, but have to compute the
correction on execution time. Line 26 determines how often the multiplication
has overflown. Therefore, we multiply the functional values in a larger domain
(preventing the overflow) and divide the result obtained by 2n. In the following
an encoded if-statement is used to apply the correction if required.

Note that the computations of quotient in line 26 is unprotected. Errors
modifying quotient might lead to undetectable errors because quotient is
multiplied with a multiple of A in line 27. Thus, even if quotient is faulty,
result will be a valid but possibly incorrect code word.

Due to space reasons, we do not present the encoded multiplication of signed

62 CHAPTER 4. ENCODING AN INSTRUCTION SET

1 const uint64 t OVERFLOWBOUND = 2ˆ32 ;
2 const uint128 t OVERFLOWBOUND c = A ∗ OVERFLOWBOUND;
3 const uint128 t TWO TO 128 MOD A = 2ˆ128 % A;
4

5 uint64 t mult anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
6

7 // Decoding the parameters f o r l a t e r c o r r e c t i o n s .
8 // −−
9 uint32 t x = getFunct iona lValue (xc) ;

10 uint32 t y = getFunct iona lValue (yc) ;
11

12 // Actual mu l t i p l i c a t i o n with c o r r e c t i o n s .
13 // −−
14 uint128 t r e s u l t = (uint128 t) xc ∗ (uint128 t) yc ;
15 // r e s u l t = Aˆ2∗x∗y + A∗x∗By + A∗y∗Bx + Bx∗By
16 r e s u l t = r e s u l t − (uint128 t)A ∗
17 ((uint128 t) x ∗ (uint128 t)By + (uint128 t) y ∗ (uint128 t)Bx) ;
18 // r e s u l t = Aˆ2∗x∗y + Bx∗By
19 r e s u l t = r e s u l t + (uint128 t) (A−1) ∗ (uint128 t)Bx ∗ (uint128 t)By ;
20 // r e s u l t = Aˆ2∗x∗y + A∗Bx∗By
21 r e s u l t = r e s u l t / A;
22 // r e s u l t = A∗x∗y+Bx∗By
23

24 // Encoded over f l ow co r r e c t i o n i f r equ i r ed .
25 // −−
26 uint64 t quot i ent = ((uint64 t) x ∗ (uint64 t) y) / OVERFLOWBOUND;
27 uint128 t ov e r f l ow c o r r e c t i o n = OVERFLOWBOUND c ∗ quot i ent ;
28

29 uint128 t s igPos = Bx ∗ By ;
30 uint128 t s igNeg = (TWO TO 128 MOD A + sigPos) % (uint128 t)A;
31

32 i f (quot i ent >= 1){
33 r e s u l t = r e s u l t − ov e r f l ow c o r r e c t i o n ;
34 } else {
35 r e s u l t = r e s u l t + s igPos − s igNeg ;
36 }
37

38 // encoded check o f the prev ious i f−statement ’ s c on t r o l f low
39 uint128 t sigCond = (r e s u l t − OVERFLOWBOUND c) % A;
40 r e s u l t = r e s u l t + sigCond ;
41

42 return (uint64 t) r e s u l t ; // r e s u l t = A∗x∗y+Bx∗By+sigPos
43 // r e s u l t = A∗x∗y+2∗Bx∗By
44 }

Listing 4.7: Final version of our encoded multiplication using unsigned encoded
values.

encoded values in detail. Its value correction is similar. The only difference
is that signed integer types are used instead of unsigned ones. The overflow
correction uses other boundaries for determining if an overflow happened. The
reason is that the domain of signed encoded values is split up in the middle. This
we explained before when describing the encoding operations and the encoded
addition.

To the best of our knowledge, this encoded multiplication does no partialFuture work

decoding, is atomic, and produces a unique signature. The only unprotected
part that we know of is the computation of quotient. However, up to now
the encoded base operations were only subject to careful reviews and to error
injections in the context of our evaluations of the encoding schemes SEP and

4.2. ENCODED OPERATIONS 63

CEP presented in chapters 7 and 8 respectively. While that might be sufficient
for the relatively simple addition and subtraction, it clearly is not for the rather
complex multiplication.

64 CHAPTER 4. ENCODING AN INSTRUCTION SET

In the future, we propose that the safety of the encoded base operations is
assessed more sophisticated. For example, an extensive error injection can be
applied to them because they contain a more manageable amount of possible
error injection points than complete applications. We also think that the encoded
base operations lend themselves to the application of more formal methods such
as model checking or symbolic error injection for assessing their correctness and
efficacy with respect to error detection.

Division

If ANB- or ANBD-encoded values are directly divided, the obtained result is
unusable. Only the direct division of AN-encoded values produces reasonable
results. We could emulate ANB- and ANBD-encoded division operations com-
pletely in software without using the hardware implemented division operation
of the processor using encoded versions of a while-loop, a comparison, a sub-
traction, and an addition. Pseudocode Listing 4.8 demonstrates the unencoded
but encodable implementation of the software-implemented division. However,
the processor’s division implementation is surely faster than a software solution.
Thus, we use an implementation of the encoded division that utilizes the proces-
sor’s division implementation, but is partly only AN-encoded. The advantage of
the decreased execution time of this solution comes with the disadvantage of
potentially undetected exchanged operand errors.

1 /∗ Return x/y ∗/
2 uint32 t div (uint32 t x , uint32 t y){
3 uint32 t r e s u l t = 0 ;
4 while (x >= y){
5 r e s u l t++;
6 x = x − y ;
7 }
8 return r e s u l t ;
9 }

Listing 4.8: Unencoded version of a software implemented unsigned division.

Note that the division xc
yc

of the AN-encoded values xc and yc results in a

completely decoded functional value A∗x
A∗y = x

y because A is contained in both –
dividend and divisor. To prevent this, we have to multiply the divisor xc with
A before dividing it by yc. Note that, thus, the encoded division requires in our
case data types and operations that are able to handle at least integers with the
size of 96 bits. Therefore, we will again use the SSE4 extensions that enable us
to process integers as large as 128 bits.

Furthermore, we have to ensure that the implemented integer division truncatesDivisibility

the result correctly. While the AN-encoded integer division
⌊
xc
yc

⌋
=
⌊
A∗x
A∗y

⌋
=
⌊
x
y

⌋
results in a correctly truncated but decoded result, the correctly AN-encoded

integer division
⌊
xc∗A
yc

⌋
=
⌊
A∗x∗A
A∗y

⌋
=
⌊
x∗A
y

⌋
leads to a result that is not a valid

AN-code word in cases where y does not divide x without a remainder. Thus,
we have to complete the division with a correction that ensures the divisibility

4.2. ENCODED OPERATIONS 65

of dividend and divisor, that is, the division is remainder-free. We call this
correction truncation correction and use the variable truncCorrection in the
following to store its value.

The pseudocode in Listing 4.9 presents the implementation of our encoded
unsigned division whose operands are unsigned encoded. Note that our signature
correction function for the division ensures that By is never zero to prevent a
division by zero.

1 uint64 t divu anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
2 // compute c o r r e c t i o n that ensure s d i v i s i b i l i t y
3 uint32 t x = getFunct iona lValue (xc) ;
4 uint32 t y = getFunct iona lValue (yc) ;
5 uint64 t t runcCorrec t i on = x % y ;
6

7 // remove s i gna tu r e s and apply d i v i s i b i l i t y c o r r e c t i o n
8 // a f t e r that s tep the ope ra t i on s are only AN−encoded
9 xc = xc − Bx − A ∗ t runcCorrec t i on ;

10 yc = yc − By ;
11

12 // execute the unsigned d i v i s i o n
13 uint64 t r e s u l t = ((uint128 t) xc ∗ (uint128 t)A) / yc ;
14 // r e s u l t = A ∗ f l o o r (x/y)
15

16 // apply a s i gna tu r e to the r e s u l t
17 uint64 t Br = Bx/By ;
18 r e s u l t = r e s u l t + Br ;
19

20 return r e s u l t ; // r e s u l t = A∗ f l o o r (x/y) + Bx/By
21 }

Listing 4.9: Encoded unsigned division using unsigned encoded operands and
producing and unsigned encoded result.

Lines 3 to 5 compute truncCorrection. This can be done unencodedly. Any er-
ror in the truncation correction most likely results in the following division of the
encoded values being not remainder-free, that is, (A∗x−A∗truncCorrection)∗A
(computed in line 9) will not be divisible by A∗y if truncCorrection is erroneous.
As stated before, if this division is not remainder-free, the result will not be a
valid AN-code word.

For a division signedness matters, that is, an unsigned division produces different Signedness

results than a signed division of the same values. Values are the same if they
have the same bit pattern, which could be interpreted unsigned or signed in two’s
complement. Assembler languages such as the DLX or the LLVM instruction
set reflect this signedness issue by providing different operations for signed and
unsigned division. This signedness issue applies also to the encoded versions of
these operations: If we want to execute a signed division, we have to do a signed
division of signed encoded values. If we want to execute an unsigned division,
we have to do an unsigned division of unsigned encoded values.

Listing 4.10 presents our implementation of a signed division that takes un-
signed encoded values as input. Thus, we have to transform the parameters
to their signed encoded equivalents before dividing them. Therefore, we use
for ANB-encoded values the encoded function unsignedToSigned anb, which

66 CHAPTER 4. ENCODING AN INSTRUCTION SET

we described in Section 4.1. The result obtained by the following AN-encoded
division is signed encoded. If the result returned shall be unsigned encoded, we
have to transform it back using the function signedToUnsigned anb, which we
also described in Section 4.1.

In contrast to the division itself, the signedness transformations are completely
encodable for the AN-, ANB-, and ANBD-code. This includes that the signature
of the values is changed, that is, the transformed value has a different signature
than the input value and the signature produced depends on the input signature
and the operation. For an increased comprehensibility, the pseudocode in
Listing 4.10 ignores this signature modification and assumes that the sign
transformations do not change the signature.

1 uint64 t div anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
2 // compute c o r r e c t i o n that ensure s d i v i s i b i l i t y
3 i n t 3 2 t x = getFunct iona lValue (xc) ;
4 i n t 3 2 t y = getFunct iona lValue (yc) ;
5 i n t 6 4 t t runcCorrec t i on = x % y ;
6 i f (t runcCorrec t i on < 0){
7 t runcCorrec t i on += A;
8 }
9

10 // trans form parameters from unsigned to s igned encoding
11 i n t 6 4 t xc s = unsignedToSigned anb (xc , Bx) ;
12 i n t 6 4 t yc s = unsignedToSigned anb (yc , By) ;
13

14 // remove s i gna tu r e s and apply d i v i s i b i l i t y c o r r e c t i o n
15 // a f t e r that s tep the ope ra t i on s are only AN−encoded
16 xc = xc s − (i n t 6 4 t)A ∗ t runcCorrec t i on − (i n t 6 4 t)Bx ;
17 yc = yc s − (i n t 6 4 t)By ;
18

19 // execute the s igned d i v i s i o n
20 i n t 1 2 8 t d iv idend = (i n t 1 2 8 t) xc s ∗ A
21 i n t 6 4 t r e s u l t = div idend / yc s ;
22

23 // apply a s i gna tu r e to the r e s u l t
24 i n t 6 4 t Br = Bx/By ;
25 r e s u l t = r e s u l t + Br ;
26

27 return signedToUnsigned anb ((uint64 t) r e su l t , Br) ;
28 }

Listing 4.10: Simplified encoded signed division using unsigned encoded operands
and producing an unsigned encoded result.

Comparisons

For encoding applications, we need encoded versions of the following comparison
operations:

• the equality and inequality comparison, which is equivalent for unsigned
and signed values,
• signed less-equal, greater-equal, less, and greater comparisons, and
• unsigned less-equal, greater-equal, less, and greater comparisons.

4.2. ENCODED OPERATIONS 67

Note that for comparisons (apart from equality and inequality) signedness
matters. Thus, we have to provide encoded versions for signed and unsigned
comparisons as well.

Equality and Inequality Comparison For AN-encoded equality and inequality AN-encoded

comparisons the encoded values can be directly compared. Afterwards, an
unchecked if-statement is used to adapt the result that is either 0 for false or 1
for true to a code word, that is, either to 0 or to A.

The ANB- and ANBD-encoded versions of equality and inequality are realized ANB- or ANBD-
encodedby combining greater and less comparisons with a boolean and. For example, the

equality comparison x == y can be replaced with (x >= y) and (x <= y). This
we implement as a replacement operation, that is, for ANB- and ANBD-encoding,
equality and inequality comparisons are replaced with their encodable versions
before the actual encoding is done.

Less, Greater, Less-equal, and Greater-equal Comparisons Forin in [For89]
presented an encoded if-statement whose condition is a comparison with zero.
This is so far the only known form of an encoded comparison. All our encoded
comparisons presented in the following use the same principle as Forin’s encoded
if-statement. They use an encoded if-statement whose condition implements
the intended comparison and in the branches assigns the appropriate encoded
boolean value to the result. Therefore, we have to provide a way to compute a
predictable signature for the branching condition that depends on the condition’s
result, that is, the signature of the branching condition has one value if the
condition is true and another if it is false.

Remember that the encoded if-statement ensures that the result produced has
only one predictable signature independent of the branch taken. The encoded
boolean values returned by such an encoded comparison can be used in further
processing, for example, by boolean operations such as and or as condition of
an if-statement or a loop.

In the following, we first present unsigned comparisons, followed by signed
comparisons.

Listing 4.11 presents our encoded implementation of an unsigned less-equal Unsigned
comparisonscomparison operation that returns the encoded version of true if the functional

value of xc is smaller than or equal to the functional value of yc. Otherwise,
the encoded version of false is returned. The implementation presented takes
unsigned encoded values as parameters and returns an unsigned encoded result.

If two unsigned encoded values yc and xc are subtracted without underflow
correction, the signature of the result may have two different but deterministic
values: (By −Bx) if the subtraction is not underflown, and (((2m + (By −Bx))
mod A) if it is underflown. This we use to implement an encoded if-statement
that checks the comparison that itself is executed unencoded. Note that the two
signatures are only guaranteed to be different if A does not divide 2m.

68 CHAPTER 4. ENCODING AN INSTRUCTION SET

1 const uint64 t TWO TO 64 MOD A = 2ˆ64 % A;
2

3 /∗ unsigned encoded unsigned l e s s−equal o f xc and yc∗/
4 uint64 t s e t l eu anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
5

6 // unencoded comparison that uses the unsigned AN−encoded va lue s
7 uint64 t r e s u l t = (xc − Bx) <= (yc − By) ;
8 // r e s u l t i s e i t h e r
9 // 1 i f x <= y or

10 // 0 otherw i se
11

12 // encoded check o f comparison
13 uint64 t d i f f = yc − xc ; // i f x > y , d i f f = 2ˆm − (xc−yc) (underf low)
14 // = 2ˆ64 − (xc−yc)
15 // i f x <= y , d i f f = yc−xc
16 uint64 t sigCond = d i f f % A;
17 uint64 t s igPos = By − Bx ;
18 uint64 t s igNeg = (TWO TO 64 MOD A + sigPos) % A;
19

20 i f (r e s u l t){
21 // expected : sigCond == sigPos
22 r e s u l t += (A−1);
23 } else {
24 // expected : sigCond == sigNeg
25 r e s u l t += (s igPos − s igNeg) ;
26 }
27 r e s u l t += sigCond ;
28

29 return r e s u l t ; // r e s u l t = A + sigPos i f x <= y
30 // r e s u l t = s igPos otherwi se
31 }

Listing 4.11: Encoded unsigned less-equal comparison operation.

In line 7 of Listing 4.11 the comparison is executed on the only AN-encoded
values. Further decoding – apart from removing the signatures – is not required
because unsigned encoding preserves the size relations of unsigned values. The
remaining code of setleu anb checks this comparison in an encoded fashion
and ensures that the returned value is a valid code word in the error-free case.
Therefore, the two compared values are subtracted from each other in line 13
without underflow correction. This subtraction underflows if xc > yc which is
only the case if x > y because we are using unsigned encoded values and our
signature correction function for this comparison ensures that Bx < By. The
latter is required because otherwise the subtraction would also underflow if x = y
and Bx > By hold. On the other hand, the subtraction does not underflow if
x ≤ y. As explained before, the underflown subtraction result will result in a
different signature in line 16 than the non-underflown subtraction result. This
feature is used by the following encoded if-statement (lines 20 to 27), which
transforms result into a valid code word, to check the unencoded comparison
of line 7. Finally, a code word is returned that contains either A + sigPos to
represent true or sigPos to represent false.

As for our previous pseudocode examples, the signatures and correctional values
(here Bx, By, sigPos, and sigNeg) are constants for Compiler Encoded Pro-
cessing (see Chapter 8). Thus, they can be precomputed at compile time and
the application of the corrections in line 25 of Listing 4.11 is either completely

4.2. ENCODED OPERATIONS 69

executed or completely lost. The latter results in an invalid code-word as a
result with high probability.

Note that after line 22 the result is only AN-encoded until line 27. This could
be prevented by extending the signature by adding another constant sigIf in
both the if- and the else-branch. The returned code word would than be either
A + sigPos + sigIf or sigPos + sigIf . Note that this signature should be
different for each instance of such a comparison. Otherwise, the intermediate
results of the signatures could be exchanged unnoticeable. If such an extension is
really necessary, should be decided based on an extensive analysis of the encoded
operations either by error injection using one of the tools presented in Chapter 9
or by analytical methods such as symbolic error injection or model checking. If
these methods show that the described scenario is a severe vulnerability, actions
should be taken and the additional signature should be added.

Other unsigned comparisons are implemented similarly as the presented less-
equal comparison. For the greater-equal comparison, just the parameters are
exchanged with each other. For the less and the greater comparison, we have to
ensure that the subtraction also underflows if the functional values compared
are equal.

Signed comparisons are more complicated than unsigned comparisons. Figure 4.7 Signed
comparisonsin the first line demonstrates the structure of the domain of unsigned functional,

i. e., unencoded, values. These are completely ordered and can be compared
directly. On the other hand, if the same values are interpreted as signed values
using the two’s complement, as is done in the second line of Figure 4.7, they
break down into two intervals – the positive and the negative values. Within
these intervals the values are completely ordered. However, the value of the
negative values if interpreted unsigned is larger than the that of the positive
values. When encoding values, this relation is conserved no matter which kind of
encoding is used. Thus, a direct comparison of unsigned encoded values will not
result in a correct result if one of the values is positive and the other negative.

One solution would be to transform the unsigned encoded parameters into
signed encoded values and to use signed comparisons to directly compare them.
Furthermore, we would have to design an encoded check for this otherwise
unencoded comparison. Another, simpler solution is: We shift the signed
interpreted numbers so that we can compare them directly using the unsigned
comparison operations.

We implemented both versions and our runtime measurements showed no mea-
surable differences. Thus, we decided to use the simpler and easier to implement
second solution because its implementation surely is less error-prone.

Figure 4.7 in the third row depicts this simple solution. We add to both values
that are compared 2n−1. Of course, this is done using the encoded addition
operation and adding the encoded version of 2n−1. By adding 2n−1, we move
the positive values to the upper part of the domain and the negative ones to the
lower part. This effect is caused by the overflow behavior of the addition. After
that addition, for example, 0 becomes 2n−1 and −1 that is represented by 2n− 1
becomes 2n−1 − 1. The reason is that the addition wraps around when crossing

70 CHAPTER 4. ENCODING AN INSTRUCTION SET

increasing size increasing size

signed (two’s complement)

......

positive negative

increasing size

increasing size

...

negative positive

unsigned

... ...

>

...

signed (moved for comparison)

−1−2−2n−10 1 2

−1−2−2n−1 0 1 2

0 1 2 2n−1 2n − 2 2n − 1

+2n−1

Figure 4.7.: Less-than relation for different number representations.

2n. The resulting values can be compared using the encoded implementations
of the unsigned comparison operations.

Listing 4.12 presents the pseudocode of the described solution. Note that this
pseudocode is simplified with respect to the signature handling. It just assumes
that no corrections of the signatures of the parameters are required, that means
that all called encoded operations can handle the given signatures and have
no size constraints for the signatures of their parameters. We normally use
special signature precomputation and correction functions to ensure that the
restrictions of encoded operations with respect to signatures are met. Calls to
these functions we left out in the pseudocode presented.

Note, furthermore, that the signature precomputations for Compiler Encoded
Processing (see Chapter 8) are done at encoding, i. e., compile, time. Also
the computations in line 17 and 18 of Listing 4.12 result in constants that
are computed at encoding time for Compiler Encoded Processing. Thus, their
computation can be assumed to be error-free.

Boolean Logical Operations

For encoding the LLVM-intermediate representation or DLX-binaries we need
three logical operations: and, or, and xor. Their boolean, i. e., one-bit, variants
we implement as encoded base operations using arithmetic operations. We
describe these implementations in the following. Their bitwise variants are
implemented as replacement operations and we describe them in Section 4.2.2.

The precondition for our implementation of the boolean functions is that true isBoolean and

represented by the functional value 1 and false is represented by the functional

4.2. ENCODED OPERATIONS 71

1 const uint64 t FIRST NEGATIVE C = 2ˆ31 ∗ A + B FN; // n = 32
2

3 /∗ s igned l e s s−than comparison ∗/
4 uint64 t s e t l t a nb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t yc){
5 // Sh i f t both parameters by ha l f o f the domain s i z e o f the
6 // f un c t i o n a l va lue s a long the r ing formed by the f un c t i o n a l va lue s .
7 // Thereby , they are made d i r e c t l y comparable us ing the unsigned
8 // comparison func t i on .
9 uint64 t xs c = add anb (xc , Bx , FIRST NEGATIVE C, B FN) ;

10 uint64 t ys c = add anb (yc , By , FIRST NEGATIVE C, B FN) ;
11

12 // s i gna tu r e s o f the prev ious r e s u l t s :
13 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 // Remember that the d e f i n i t i o n o f the s i gna tu r e o f the r e s u l t o f
15 // add anb (ac , Ba , bc , Bb) i s 2∗(Ba+Bb)−B OC
16 // These s i gna tu r e s are constant at runtime .
17 uint32 t Bxs = 2∗(Bx+B FN)−B OC;
18 uint32 t Bys = 2∗(By+B FN)−B OC;
19

20 // the ac tua l comparison − now po s s i b l e as an unsigned comparison
21 return s e t l t u anb (xs c , Bxs , ys c , Bys) ;
22 }

Listing 4.12: Encoded signed less-than operation with simplified signature
handling.

value 0. In that case, the boolean and operation can be implemented using the
multiplication. Because of the size restrictions of its operands, this multiplication
will never overflow. This facilitates the usage of an implementation of the
multiplication operation that does not correct overflows.

The boolean xor operation is equivalent to a 1-bit addition, that is, an addition Boolean xor

that overflows if the sum is greater than 1.

The implementation of or also uses an encoded addition. However, the addition Boolean or

used overflows differently. If the addition result obtained represents 2, it “wraps”
to 1 instead of 0. A larger addition result is not possible because the input
values are restricted to 0 and 1. Listing 4.13 contains the pseudocode of our
encoded boolean or.

Runtime Overhead

The presented encoded base operations are slower than their unencoded native
counterparts. We did measure the slowdown generated by AN- and two different
ANB-encoded versions of the base operations. We did not evaluate our ANBD-
encoded operations because currently none of our encoding approaches uses
them.

For determining the slowdown of the encoded operations, we executed each
operation to be measured for a specific amount of time – 15 seconds for the
presented measurements – in an endless loop and counted the number of iterations
executed until the execution was aborted by the timer signal. This we did for
native and encoded versions. The obtained results were used to compute the
slowdown of the different encoded versions compared to the native version. The

72 CHAPTER 4. ENCODING AN INSTRUCTION SET

1 const uint64 t TWO TO 64 MOD A = 2ˆ64 % A;
2 const uint64 t OVERFLOWCORRECTION = A + B OC;
3

4 uint64 t or anb (uint64 t xc , uint32 t Bx , uint64 t yc , uint32 t By){
5 // might r e s u l t in encoded r ep r e s en t a t i o n s o f
6 // 0 , 1 , or 2
7 uint64 t r e s u l t = xc + yc ;
8

9 // c o r r e c t r e s u l t to a r ep r e s en t a t i on o f 1 i f i t i s 2
10 // us ing an encoded i f statement
11 uint64 t s igPos = Bx + By ;
12 uint64 t s igNeg = (uint64 t) (TWO TO 64 MOD A + sigPos) % A;
13 i f (r e s u l t >= 2∗A){ // c o r r e c t i f r e s u l t r ep r e s en t s 2
14 r e s u l t = r e s u l t − OVERFLOWCORRECTION;
15 } else {
16 r e s u l t += (s igPos − s igNeg − B OC) ;
17 }
18 uint64 t d i f f = (uint64 t) (r e s u l t − 2 ∗ A) ;
19 // i f r e s u l t r ep r e s en ted 2 , no underf low happens
20 // otherwise , underf low happens
21 uint64 t sigCond = d i f f % A;
22 r e s u l t = r e s u l t + sigCond ;
23

24 return r e s u l t ;
25 }

Listing 4.13: Encoded boolean or operation.

slowdown is defined as slowdown = number of iterations for native operation
number of iterations for encoded operation . The

measurements were executed on a machine that has two Intel Xeon processors
with in total 8 cores and runs a 64-Bit Fedora 10. The measurements were not
parallelized and we tried to reduce any other load on the machine during the
experiments as much as possible.

Note that we measured two different ANB-encoded versions:

encoded overflow correction These versions use an encoded if-statement for
applying (or not applying) the overflow correction in additions, subtrac-
tions, and multiplications. Note that these are the implementations that
we presented in this chapter.

unencoded overflow correction In contrast to the versions with encoded over-
flow correction, these versions use an unencoded if-statements to implement
the overflow correction. Otherwise, the implementations are equivalent to
the ones presented in this chapter.
We introduced this less safe version of the ANB-encoded operations as a
reaction to the relative high slowdowns observed for the ANB-encoded
operations with encoded overflow correction.

The measured AN-encoded versions are similar to the ANB-encoded versions,
but do not contain any signature handling. Thus, they are much simpler and
are much faster.

Figure 4.8 depicts the measured slowdowns for the encoded operations that
handle encoded values that represent 32-bit functional values and 1-bit boolean
values respectively. The results for 8-bit and 16-bit operations look similar.

4.2. ENCODED OPERATIONS 73

addition

subtraction
m

ultiplication

unsigned

division

signed

division

unsigned

greater than

signed

greater than

unsigned

less than

signed

less than

unsigned greater-

equal than

signed greater-

equal than

unsigned less-

equal than

signed less-

equal than
boolean or
boolean and
boolean xor

1

2

4

8

16

32

64

128

S
lo

w
do

w
n

of
 e

nc
od

ed
 o

ve
r

na
tiv

e
op

er
at

io
ns

.

AN-Code
ANB-Code (encoded overflow correction)
ANB-Code (unencoded overflow correction)

Figure 4.8.: Slowdowns of AN- and differently ANB-encoded operations com-
pared to unencoded native operations.

As predicted the AN-encoded operations are much faster than both of the ANB- Comparing
different codesencoded versions for all operations. The ANB-encoded versions of additions,

subtractions, and multiplications that use an encoded overflow correction are
considerably slower than the ones using an unencoded overflow correction. The
same is true for the signed comparisons and the boolean logical operations. The
reason is that these operations either use an encoded addition or multiplication.
There are no differences for divisions and unsigned comparisons because they
do not use any overflow correction.

The encoded versions of additions, subtractions, or and xor are the operations Comparing
different operationswith the least slowdowns. Encoded multiplications, divisions, and boolean and

operations are expensive. The reason is the processing of 128-bit integers that
is required for these operations. The ANB-encoded comparisons are expensive
due to the required encoded if-statement. Their AN-encoded versions are not
much slower than the addition and subtraction. For the division operation
the differences between the three codes are less pronounced because the ANB-
encoded versions of the division are only AN-encoded. Their higher slowdown
just comes from the signature removal and in case of the signed division from
the transformations between signed and unsigned encoded values.

So far, we did not separately evaluate the error detection capabilities of the en- Future work

coded base operations. However, they are part of our error injection experiments
that we applied to whole encoded applications. For the results see sections 7.4.1
and 8.5.3.

74 CHAPTER 4. ENCODING AN INSTRUCTION SET

4.2.2. Encodable Replacement Operations

Encoding by hand is a tedious and error-prone task. Hence, we automated as
much of the remaining encoding tasks as possible by providing a library of so-
called encodable replacement operations. This library contains implementations
of the following operations:

• shifts,
• modulo operations,
• casts,
• bitwise logical operations,
• unaligned memory accesses, and
• inequality and equality comparisons for ANB-encoding.

The replacement operations are written in such a way that they can be automat-
ically encoded. They are currently only used for Compiler Encoded Processing.
Before executing the actual encoding pass, our encoding compiler replaces all
otherwise non-encodable operations with their appropriate encodable replace-
ment operation. These replacement operations are described in the following.
In Software Encoded Processing these operations either do not exist or remain
unencoded and, thus, unprotected.

Shift Operations

Encoded versions of arithmetic and logic shift operations can be implemented
using division and multiplication with powers of two because a << k is equivalent
to a ∗ 2k and a >> k is equivalent to a

2k
. For obtaining the 2k required, we use

a tabulated power-of-two function named powerOfTwo with precomputed values.
The function powerOfTwo takes k with 0 ≤ k ≤ 32 as parameter and returns
2k. It obtains 2k from a table. The function powerOfTwo is also implemented
natively, i. e., unencoded, and is automatically encoded. In contrast to the logic
right shift, an arithmetic right-shift additionally requires a sign-extension to be
made if the shifted value is negative. In that case all new high-order bits have
to be set to one.

The pseudocode in Listing 4.14 represents the encodable variant of the 8-bit
arithmetic right shift operations. The presented function ashr8 shifts val k

bits to the right. Logical right shift and left shift and shift operations for the
different sizes of functional values use the same principles.

While we replace arithmetic right shifts with a call to a function containing its
replacement implementation, we replace logical shifts directly in the source code
with the required division or multiplication respectively.

Modulo Operations

Modulo operations we replace using a division, a multiplication, and a subtraction
operation. See Listing 4.15 for the implementation. In the last line the variable

4.2. ENCODED OPERATIONS 75

1 i n t 8 t ashr8 (i n t 8 t val , i n t 8 t k){
2 const stat ic u i n t 8 t s ignExt []={0 ,0 x80 , 0 xC0 , 0 xE0 , 0 xF0 ,
3 0xF8 , 0xFC,0xFE,0xFF} ;
4 i f (va l < 0){
5 // s h i f t and s e t new high−order b i t s to one
6 u i n t 8 t s h i f t e d = (u i n t 8 t) va l / (u i n t 8 t)powerOfTwo ((u i n t 8 t) k) ;
7 return s h i f t e d + signExt [(u i n t 8 t) sh] ;
8 } else {
9 // s h i f t

10 return va l / powerOfTwo ((u i n t 8 t) k) ;
11 }
12 }

Listing 4.14: Encodable arithmetic shift right operations for 8-bit functional
values.

mod contains the modulo of the division a
b This replacement is also directly

generated within the code without adding a call to a dedicated function.

1 // The f o l l ow i n g code computes the modulo a%b in an encodable f a sh i on .
2 // We assume a and b have the type u in t 32 t .
3

4 uint32 t q = a/b ;
5 uint32 t p = b∗q ;
6 uint32 t mod = a−p ;

Listing 4.15: Implementation of an encodable modulo operation.

Cast Operations

Cast operations that transform variables of one type into another type also have
to be emulated using the encoded base operations because they might change
the value stored in the variables. We make these changes that are implicitly
described by the cast explicit. Thereby, we support their automatic encoding by
the following encoding steps.

We have to handle the following kinds of integer cast operations:

downcasts that cast from a larger type to a smaller.
signed upcasts that cast from a smaller to a larger type with a sign extension,

that is, the newly introduced higher-order bits have the same value as the
highest-order bit of the source value.

unsigned upcasts that cast from a smaller to a larger type without a sign
extension, that is, the newly introduced higher-order bits are always zero.

Furthermore, we support casts from integers to pointers and vice versa. However,
since pointers are already represented as integers in encoded programs, nothing
has to be done for handling these casts. Other casts are not required because
other types are not directly supported.

For downcasts we use a modulo computation with the appropriate power of Downcasts

two to reduce the size of the contained value so that it fits into the type. The
used power of two is hard-coded into our cast implementation. The modulo

76 CHAPTER 4. ENCODING AN INSTRUCTION SET

operation we implement in an encodable way using division, multiplication,
and subtraction. If, for example, the 32-bit integer a is downcast to 8 bit, our
replacement operation trunc 32 2 8 for this downcast computes the new value
like this: a mod 28 = a− (256 ∗

⌊
a

256

⌋
).

Signed upcasts need to check if the casted value is negative, that is, we check ifSigned upcasts

its highest-order bit is set. If that is the case, a sign extension has to be made
by adding the appropriate sign bits. If the bit is not set, no changes to the value
are required. Assume that we cast a negative 8-bit integer a to a signed 16-bit
type. Therefore, we have to execute the encoded version of a = ff00hex + a. If
a is positive, no sign extension, that is, no addition of ff00hex is required. The
constants required for adding the sign extension are also hard-coded into the
implementations and encoded automatically by the encoding steps that follow.

Unsigned upcasts from smaller to larger unsigned types require no further actionsUnsigned upcasts

because the newly introduced higher-order bits are set to zero automatically.

Bitwise Logical Operations

We have different possibilities to implement encodable bitwise logical operations.
The naive approach is to use shift and addition operations to compute every bit
individually using the boolean logical operations for which appropriate encoded
base operations exist. That would generate a huge runtime overhead. For a
32-bit logical operation, alone for each operand 31 left and 31 right shifts would
be required to obtain the single bits. For each of these bits the boolean logical
operations would have to be executed. Further encoded shifts are needed to
assemble the result. All these shifts have to be implemented using encoded
multiplications and divisions, which are especially expensive.

On the other hand, we could completely tabulate the results. In that way we
implemented our encodable powerOfTwo function. However, the memory con-
sumption of this approach used for bitwise logical operations makes it unusable.
Alone for one 32-bit bitwise logical operation, we would need a table with 232∗232
entries. The encoded version of this table would require 134, 217, 728 Tera Byte
of memory.

Thus, we decided to combine these two approaches. We use tabulated results of
logical operations. However, we only tabulate 8-bit chunks and combine these
chunks using shift operations and arithmetic operations. The pseudocode in
Listing 4.16 demonstrates this approach for the 32-bit or operation. The other
bitwise logical operations, and and xor, are implemented similarly. Note that
the required shift operations are implemented using an encodable multiplication
with a power of two. The powers of two used in Listing 4.16 are constants and
are only depicted as explicit powers to improve readability.

Unaligned Memory Access

We chose to encode the memory at 32-bit granularity because we assume that
most programs mainly operate on 32-bit values. This means every 32-bit word

4.2. ENCODED OPERATIONS 77

1 // encodable modulo implementation
2 uint32 t urem32 (uint32 t dividend , uint32 t d i v i s o r){ . . . }
3

4 // encodable get bytex (u in t 32 t w) r e tu rn s the x−th byte o f w
5 uint32 t get byte0 (uint32 t w){ return urem32 (w, 2ˆ8) ; }
6 uint32 t get byte1 (uint32 t w){ return (urem32 (w, 2ˆ16) − get byte0 (w))
7 / (2 ˆ 8) ; }
8 uint32 t get byte2 (uint32 t w){ return (urem32 (w, 2ˆ24) − urem32 (w, 2ˆ16))
9 / (2ˆ16) ; }

10 uint32 t get byte3 (uint32 t w){ return w / (2ˆ24) ; }
11

12 // precomputed r e s u l t s f o r 8−b i t chunks
13 stat ic uint32 t const t ab l e o r 8 [2 5 6] [2 5 6] =
14 {0x00 , 0x01 , 0x02 , . . . } ;
15

16 // encodable b i tw i s e l o g i c a l or f o r 32−b i t i n t e g e r s
17 uint32 t or32 (uint32 t a , uint32 t b){
18 uint32 t byte0 = tab l e o r 8 [ge t byte0 (a)] [g e t byte0 (b)] ;
19 uint32 t byte1 = tab l e o r 8 [ge t byte1 (a)] [g e t byte1 (b)] ∗ (2 ˆ 8) ;
20 uint32 t byte2 = tab l e o r 8 [ge t byte2 (a)] [g e t byte2 (b)] ∗ (2 ˆ16) ;
21 uint32 t byte3 = tab l e o r 8 [ge t byte3 (a)] [g e t byte3 (b)] ∗ (2 ˆ24) ;
22

23 return byte3 + byte2 + byte1 + byte0 ;
24 }

Listing 4.16: Encodable bitwise logical or implementation for 32-bit values.

in memory is stored as an encoded 64-bit word. Thus, we need to adapt every
load to and store from memory because they have to map the original address
to the appropriate address of the encoded value. How this address mapping
is done depends on the memory implementation of the actual encoding and
is described for Software Encoded Processing in Chapter 7 and for Compiler
Encoded Processing in Chapter 8.

Due to this choice, all memory accesses in the program that we want to encode
have to be aligned to 32-bit,i. e., 4-byte, boundaries. Thus, before encoding the
program we replace all potentially unaligned loads and stores with implementa-
tions that implement these operations using loads and stores that are aligned to
32-bit boundaries.

Figure 4.9 demonstrates how an unaligned 32-bit load from address 66 is executed.
First, both aligned addresses that are affected by the 32-bit load at address 66
are read, that is, the 32-bit values from

• the first 32-bit aligned address before 66 (64) and
• the next 32-bit aligned address after 66 (68)

are read. Afterward, the relevant parts of the values read are extracted and put
together to one value using our (encodable) bitwise logical operations. Note that
the shift operation implemented by the multiplication with 216 automatically
removes the upper 16 bits of a1 during the combination. Unaligned loads of
8- or 16-bit values are implemented similarly. However, an 8-bit load always
requires only one aligned 32-bit load instead of two.

For an unaligned store we first have to load the affected addresses. This requires
two aligned loads for 16-bit and 32-bit unaligned stores and one aligned load

78 CHAPTER 4. ENCODING AN INSTRUCTION SET

32 bit 32 bit

address: 64 68 72

64 bit 64 bit

address: 64 68 72

executed instructions for
load32_unaligned(66):
 a1 = load32_aligned(64)
 a2 = load32_aligned(68) / 2^16
 result = (a1 * 2^16) + a2

66

Figure 4.9.: Execution of an unaligned load at address 66. The upper part
represents the memory layout of the original program, the lower
part that of the encoded program but with unmapped addresses.

for an 8-bit unaligned store. The read words are then modified accordingly
and written back. To prevent accessing unallocated memory when executing
an unaligned store, we adapt the size of all allocated memory regions to be a
multiple of 32 bits. Note that we zero-initialize all allocated memory regions.

In that way we also implement loads and stores for granularities smaller than
32 bit. We provide unaligned loads and stores for 8, 16, and 32 bit.

Normally, we do not know at the time when we have to replace loads and
stores with their unaligned implementations if these loads and stores are really
unaligned, that is, go to an address that is no multiple of 32. Thus, we would
have to replace all loads and stores with our implementation for unaligned loads
and stores. However, during our experiments with Compiler Encoded Processing
we observed that most of our benchmarks do not contain unaligned 32-bit loads
and stores. Thus, we optimized our encoding by usually not using the unaligned
load and store implementations presented in this section for 32-bit loads and
stores.

Equality and Inequality Comparisons

As explained in Section 4.2.1, for ANB- and ANBD-encoding, equality and
inequality are made encodable by realizing these operations using a combination
of greater and less comparisons with a boolean and. This replacement is directly
generated within the code without adding a call to a dedicated function.

For AN-encoding we provide equality and inequality comparisons as encoded
base operations because AN-encoded values can be directly compared.

Runtime Overhead

Figure 4.10 depicts the slowdowns of the unencoded versions of our replacement
operations compared to the native versions of these operations. As for the
encoded base operations the measurements were done on a machine that has
two Intel Xeon processors with in total 8 cores and runs a 64-Bit Fedora 10. The
measurements were not parallelized and during the experiments as few other
load as possible was executed on the machine.

4.2. ENCODED OPERATIONS 79

and8
and16
and32
or8
or16
or32
xor8
xor16
xor32
load8
load16
load32
store8
store16
store32
urem

8
urem

16
urem

32
srem

8
srem

16
srem

32
ashr8
ashr16
ashr32
sext-8-to-16
sext-8-to-32
sext-16-to-32
trunc-16-to-8
trunc-32-to-8
trunc-32-to-16

0.5
1.0
2.0
4.0
8.0

16.0
32.0
64.0

sl
ow

do
w

n:
 c

om
pa

re
d

to
 n

at
iv

e

unencoded replacement operations

Figure 4.10.: Slowdowns of replacement operations compared to native (un-
changed) versions. The following operations were measured
each for different integer types (sized 8, 16, and 32 bit): logi-
cal bitwise operations (and, or, and xor), unaligned loads and
stores (load and store), unsigned and signed modulo opera-
tion (urem and srem), arithmetic right shift ashr, signed upcasts
(sext-8-to-16, sext-8-to-32, and sext-16-to-32), and down-
casts (trunc-16-to-8, trunc-32-to-8, and trunc-32-to-16).

We see that especially the bitwise logical operations for larger integer types and
the unaligned loads and stores are expensive in terms of additional runtime.
Shift operations and casts are less expensive, and the modulo operations come
virtually at no cost. Sometimes their replacement versions even seem to be
faster. That surely is a measurement issue.

Figure 4.11 additionally depicts the slowdowns of the AN-encoded versions of
some of our replacement operations. For most operations encoding dramatically
worsens the situation, that is, encoding increases the slowdown tremendously.

Thus, we expect applications that make heavy use of the expensive replacement
operations (bitwise logical operations and arithmetic right shifts) to be slowed
down more than applications that mostly use operations that are encoded as
base operation or whose replacement operation is less expensive.

4.2.3. Floating Point Operations

All kinds of AN-codes are only applicable to integers. Thus, we encode floating
point operations by replacing them with encodable software implementations
that make only use of integers. Currently, the user has to do this replacement
by hand, for example, by using the SoftFloat library [sof09].

80 CHAPTER 4. ENCODING AN INSTRUCTION SET

and8

and16

and32

or8

or16

or32

xor8

xor16

xor32

urem
8

urem
16

urem
32

srem
8

srem
16

srem
32

ashr8

ashr16

ashr32

sext-8-to-16

sext-8-to-32

sext-16-to-32

trunc-16-to-8

trunc-32-to-8

trunc-32-to-16

0.5
1.0
2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0
512.0

1024.0
sl

ow
do

w
n:

 c
om

pa
re

d
to

 n
at

iv
e

unencoded replacement operations
AN-encoded replacement operations

Figure 4.11.: Slowdowns of selective AN-encoded replacement operations com-
pared to the slowdowns of their unencoded versions.

4.3. Encoded Constants

If encoding is done before execution as is the case for Compiler Encoded Pro-
cessing (see Chapter 8), all constants can be encoded statically before execution.
Non-integer constants are encoded according to our rules for memory, that is
they are divided into 32-bit chunks. Therefore, we ensure that their size is a
multiple of 32 bit.

If encoding is done at runtime as is the case for Software Encoded Processing
(see Chapter 7), the constants are also encoded on-the-fly at runtime. They
might be modified undetectably before they are encoded.

4.4. Calls to External Libraries

Encoding of binaries at runtime as it is implemented by Software Encoded
Processing automatically protects calls to external libraries if they are statically
linked into the binary executed. Therefore, their source code is not required.

In contrast, encoding at compile time does not allow for protection of external
libraries whose source code is not available at compilation time. For calls to these
libraries, we provide hand-coded decoding wrappers which decode parameters
and after executing the unencoded original, encode the obtained results. For
implementing these wrappers, we rely on the specifications of the external
functions.

Thus, with Software Encoded Processing that encodes at runtime external
libraries can also be protected. In contrast, Compiler Encoded Processing
requires the source code of every library that shall also be protected. However,
this is an accomplishable restriction for safety-critical systems. Furthermore,
note that this applies only to the parts of the application that shall be protected,

4.5. ENCODED DATA AND CONTROL FLOW 81

that is, to the parts that process safety-critical data directly. For example,
two safety-critical applications that communicate over a network can directly
exchange encoded data. However, the network protocol stack needs not to be
encoded. This does not decrease the safety, and reduces the overhead introduced
by encoding. The safety is not decreased because the encoding of the data
transfered makes errors in the transmission detectable. Note, however, that
for detecting errors in the message order, encoded sequence numbers in the
messages are required.

4.5. Encoded Data and Control Flow

With only an AN-code neither data nor control flow can be protected. Therefore,
ANB- and ANBD-codes are required. How these are used depends on the
encoding technique applied. Thus, we will introduce the encoding of data and
control flow in the respective chapters:

• Chapter 6 for the Vital Coded Processor (VCP),
• Chapter 7 for Software Encoded Processing (SEP), and
• Chapter 8 for Compiler Encoded Processing (CEP).

All have in common that the signatures (the “Bs”) are used to detect errors in
the data flow. Furthermore, they also use the signatures to encode the control
flow either by encoding conditions of loops or if-statements (VCP) or by encoding
conditions of conditional jumps (SEP and CEP). We explained the encoding of
conditions already in Section 4.2.1.

Furthermore, all three encoding techniques use an implementation of the version
D to detect outdated data with a high probability. Outdated data is a special
data flow error – a lost update. Detection of lost updates is required for addresses,
variables, or registers that might be written several times because they are written
within a loop. If one of these writes is lost, this is not detectable by only having
a signature that is attached to the address, variable, or register. Thus, a version
D (see Section 3.5) is used to count updates of the address, variable, or register.
While SEP applies a D to every data item processed, CEP applies it only to
dynamically at runtime allocated memory and not to statically at compile time
allocated memory. For VCP, it seems as if D is applied to every variable written
within a loop. The description of VCP in [For89] is not clear about the usage of
D.

4.6. Encoding Dynamic Memory Access

With dynamic memory we denote memory that may be dynamically allocated
and is dynamically accessed. Of dynamic memory we do not always know at
compile time how much memory will be required and how it will be accessed,
that is, we do not know at compile time which addresses are accessed by load

82 CHAPTER 4. ENCODING AN INSTRUCTION SET

and store instructions4, which are used to read data from and to write data to
memory. That is, for dynamic memory we have to protect previously unknown
data flow from undetected errors such as lost updates, modifications of the
stored data, or the read or written address.

To support dynamic memory, we introduce dynamic signatures in [WF07b]. InStatic and dynamic
signatures contrast to the static signatures also known as “Bs” used so far, their value is

not determined at encoding time but at runtime. While static signatures are
assigned to data items whose access pattern we know at encoding time, dynamic
signatures are used for data items for which we do not know at encoding time
how they will be accessed at runtime.

An encoded value with a static signature is defined as xc = A ∗ x + Bx. The
signature Bx is chosen (statically) at encoding time. An encoded value with
a dynamic signature is defined as xc = A ∗ x + h(addr,D) where h(addr,D) is
the dynamic signature. Both the address addr that identifies the data item and
the version D that counts the accesses to dynamic memory are not known at
encoding time. The function h(addr,D) maps these two values into one which
is the dynamic signature. For CEP we use, for example, h(addr,D) = addr +D.
In CEP, addr + D is even allowed to be larger than A because values stored
in memory are never directly decoded or used by encoded operations. Their
signature is always previously adapted to a static signature smaller than A (see
Section 8.3.3). The version D is incremented with every write operation executed.
CEP also supports only ANBD- and ANB-encoding. For the latter, D = 0 is
assumed. The consequence is that lost updates might remain undetected with a
higher probability.

Forin in [For89] does not mention the problem of dynamic memory. Thus, weSupport for
dynamic memory assume that VCP has no support for dynamic memory and uses solely static

signatures. In Contrast to VCP, SEP and CEP both support dynamic memory.
For SEP, all data access patterns are not known until runtime because the
executed binaries are encoded at runtime. Thus, no static signatures are used
at all for SEP. Every signature is dynamic. CEP allows to distinguish statically
known data flow that happens within registers and statically unknown data
flow that goes through dynamic memory at compile time. For the first, static
signatures are used. For the second, dynamic signatures are used.

4.7. Version Management

For using dynamic signatures, we need to be able to determine the signatureNecessity of version
management expected for a memory address to check if it is a valid code word. The naive

solution is to use a a global version counter that counts updates of memory and
to update all values with dynamic signatures after each write to one address to
the new expected version. Only the currently written value would not require
updating because it is updated by the write automatically. With the help of the

4We are assuming here the usage of explicit accessed to memory using load and store
instructions. However, languages where also other instructions can access memory can be
encoded similarly.

4.7. VERSION MANAGEMENT 83

global version counter, we would always know that, no matter from which address
we read, the value should have the version given by the global version counter.
However, obviously updating every dynamically allocated and accessed data
item after any write access to dynamic memory is inefficient. The alternative is
to use a data structure that enables us to determine for an address the version
that we expect for the value stored at this address.

84 CHAPTER 4. ENCODING AN INSTRUCTION SET

Using an additional data structure to manage the versions of data items, the
dynamic signature of a value needs only to be updated if the value is updated.
Instead of updating all values stored in dynamic memory, the version management
structure and the global version counter are updated. As measurements presented
in Section 4.7.3 have shown, the latter requires much less time.

Whenever the version expected for a data item is required, it is retrieved using
the version management data structure and the global version counter. For this
purpose, all our version management data structures implement the function
getVersion(Addr addr). This function returns the value the global version
counter had when addr was written the last time.

The version management data structures used have to be self-checking, that is,
if for example an update to the structure is lost or written to a wrong location,
the version information obtained from the structure has to be wrong. That
means it must not match the version used to encode a value. Thereby, the error
that influenced the execution becomes detectable. Thus, we decided to not use
a simple table mapping addresses to versions because for this approach already
two lost updates might be undetectable. If the update to the table and to the
memory were lost, this would not be detectable because both, memory and table
would be out-dated and match each other.

In the following we describe two possible data structures, a list- and a tree-based
one, and compare their impact on the runtime. Both have in common that we
provide one function for adding a just updated address and one function for
retrieving the version of an address.

4.7.1. The List

For this approach, we use a linked list to store which version belongs to which
address. Additionally a global version counter is used that counts how many
updates to dynamic memory occurred. The list nodes additionally to the pointer
to the next node contain two data fields for:

• an address that identifies an updated data item and
• the version difference between the data item identified by this node and

the item identified by the next node.

At the beginning, the list is empty because no dynamic memory modifications
took place yet. After the first instruction that updates dynamic memory, one
element is added to the list. This element contains the address of the updated
element and the version difference 1:

(addr1, 1)

For each update to another address of the dynamic memory, another node
is added at the beginning of the list containing the address that was updated
and the version difference 1. The version difference 1 in each node means that
the address identified by the next node has a version that is by 1 smaller than
the version of the address identified by this node. Thus, if we want to determine

4.7. VERSION MANAGEMENT 85

the version of an address addr, we walk through the list and sum up all version
differences we encounter until finding addr in a node. By subtracting the sum
obtained from the global version counter we determine the version the value
stored at addr should have. Listing 4.17 demonstrates this. This, construction
ensures that three matching lost updates are required for an undetectable lost
update.

1 stat ic uint64 t g loba lVers ionCounter ;
2

3 uint32 t getVers ion (Addr addr){
4 int sumOfDiffs = 0 ;
5 I t e r a t o r i t e r a t o r = l i s t . i t e r a t o r () ;
6 ListElement cur rent = n i l ;
7 while (i t e r a t o r . hasNext ()){
8 cur rent = i t e r a t o r . next () ;
9 i f (cur r ent . addr == addr){

10 found = true ;
11 return g loba lVers ionCounter − sumOfDiffs ;
12 } else {
13 sumOfDiffs = sumOfDiffs + cur rent . v e r s i o nD i f f ;
14 }
15 }
16 return 0 ; // addr was never wr i t t en
17 }

Listing 4.17: Version retrieval using the list approach.

After n updates to dynamic memory where always another address was modified
the list looks like this:

(addrn, 1)→ (addrn−1, 1)→ (addrn−2, 1)→ ...→ (addr1, 1)

If now an address is updated that was already written, that is, for which
already a node exists in the list, we

• remove the node already existing for the written address,
• increment the version difference of the previous node, and
• add a new node with version difference 1 for this address at the beginning

of the list.

For example, assume that in our example now the address addrn−1 is changed
again. The list will afterwards look like this:

(addrn−1, 1)→ (addrn, 2)→ (addrn−2, 1)→ ...→ (addr1, 1)

A new node was added for addrn−1 at the beginning of the list. The old
node was removed and the version difference of its predecessor was incremented.
The version difference 2 stored now for addrn means that the version of the
address identified by the next node is by 2 smaller than the version of addrn.

We have to access the list for every access to dynamic memory. It does not Performance

matter if it is a read or a write access, each of the accesses has in worst case a
complexity of O(lengthOfList) because for list updating and version retrieval
as well it has to be checked if the address is stored in the list. In the worst

86 CHAPTER 4. ENCODING AN INSTRUCTION SET

case, the list will contain as many entries as the supported address space has
addresses. However, a program does only modify a constrained set of data items.
Thus, the list should never become that large and hopefully locality will lead to
less overhead. For performance measurements see Section 4.7.3.

Versions reduce the risk of undetected lost updates. However, there exist stillUndetectable
errors scenarios where lost updates can remain undetected. We determine the quality of

a version management approach by the number of lost updates that are required
to remain undetected. For the list approach these are three:

• the global version counter is not incremented,

• the list is not updated, and

• the updated data item is not saved to memory.

To prevent an infinitely growing list, we introduce checkpointing. When aCheckpointing

checkpoint is done all addresses of the dynamic memory are updated to the
current global version counter and the list is cleared. If any error happens
during this update procedure, this will result in the retrieval of wrong version
information in the future and, thus, will lead to an invalid code word and
error detection. Note that this is no false positive because there really was an
execution error.

Thomas Knauth proposed in his Großer Beleg [Kna06] the usage of linear
addresses (LA) to improve performance of the list approach. Instead of the
addresses that directly point to a location in the address space, a so-called linear
address is stored in the list. This address is determined dynamically on runtime
by the order in which addresses are written to. An additional data structure is
used to map location dependent addresses onto linear addresses. With a linear
address it is much more straight forward to detect if an address was updated
at all: Either there is a mapping to a linear address stored or not. Thus, the
list has only to be accessed if such a mapping exists. Any errors within the
required additional data structure will lead to the retrieval of erroneous version
information and, thus, again are detected. Thus, the usage of linear addresses
does not reduce the safety.

4.7.2. The Tree

The list approach results in a worst case complexity of O(lengthOfList). Storing
the required data in a tree will result in O(log(lengthOfList)) complexity
independent of any locality.

For implementing version management using a tree, we store absolute version
numbers in contrast to the relative ones of the list approach. However, as
explained before, we have to include a connection to the current global version
counter. Otherwise, just loosing the update to the tree and the memory are
sufficient for an undetectable lost update.

We propose the following algorithm that we first demonstrate on the changing
tree data structure. A binary tree is used which is expanded as more and more

4.7. VERSION MANAGEMENT 87

addresses are modified. The tree size depends directly on the amount of accessed
addresses of dynamic memory.

Every modified address is mapped to a linear address (LA). As explained in
the previous section, linear addresses mirror the access order, that is, the first
value written gets address 0, the next 1, and so on. In contrast to the LAs used
for the list approach, for the tree, the once determined mappings from the real
address to the LA remain static during the whole program execution. The LA
is used to access the version information in the tree. Therefore, the LA’s bit
pattern is used as address information in the binary tree.

Directly after start-up the tree is empty. After modification of the first two
addresses the tree will look like the tree given in Figure 4.12. Each of the leaves
stores the version information of its LA. In Figure 4.12, the LA is denoted below
the leaves. This address is also the address this information has in the tree.
Therefore, the address is read from right to left. We start at the root node. If a
zero is read, we descend to the left node. If a one is read, we descend to the
right node. This addressing is finished when a leave is reached. In that case,
the remaining unread address bits must be zero.

We determine that a parent node always contains the larger version number of
its two leaves. This forms the connection to the current global version counter
because the version contained in the root node has to be equal to the global
version counter.

1 2

2

10

00010000

Figure 4.12.: Tree after using two data items. The bit patterns below the
leaves denote the addresses for which this leave stores the version
information.

Figure 4.13 shows the tree after modifying four different data items and Fig-
ure 4.14 shows the tree after updating address 0 again.

For the resulting tree, the following properties have to hold:

node consistency a parent’s version number is always equal to the greater
version number of its children and equal or greater than the smaller version
number.

root consistency the root node’s version number is always equal to the global
current version counter.

If one of these properties is not fulfilled, an execution error must have occurred.
Thus, every time the tree is accessed it has to be checked if these two properties
hold.

88 CHAPTER 4. ENCODING AN INSTRUCTION SET

1 2 3 4

4

4

2

1 10

0 1

0

0000 0001 0010 0011

Figure 4.13.: Tree after using four data items.

5 2 3 4

4

5

5

1 10

0 1

0

0000 0001 0010 0011

Figure 4.14.: Tree after updating the already existing address 0000.

An update of the tree always takes O(log(numberOfAddresses)) steps. This isPerformance

less then the worst case complexity of O(lengthOfList) for the list approach.
However, the average complexity for the list can be less, depending on the data
locality of the executed program. Obtaining the expected version of an address
also requires O(log(numberOfAddresses)) steps.

The memory requirement of the tree is in worst case in the order of
2log(numberOfAddresses) − 1, while the list requires only lengthOfList entries.

For the tree, the following error patterns lead to undetectable lost updates:Undetectable
errors

• The following two lost updates and erroneous consistency checking:
– the data item modified and
– the tree are not updated, and
– the procedure checking the consistency of the tree is executed in a

faulty way so that it reports that the tree is consistent, although it is
not.

• or the following three lost updates:
– the data item modified,
– the tree, and
– the global version counter are not updated.

4.7. VERSION MANAGEMENT 89

4.7.3. Performance Evaluation

All three approaches (list, list with LA, and tree) introduced in the previous
sections and the naive version management that uses only a global version
counter and updates all data items after each store were implemented within
our SEP interpreter (see Chapter 7) by Thomas Knauth during his Großer
Beleg [Kna06]. He also analyzed their performance impact. Therefore, he used
different basic algorithms:

loop-x A program repeatedly accessing x elements of an array.

prime-x The computation of prime numbers up to x.

quicksort-x Sorting x randomly generated numbers.

md5-x Computing the MD5 hash of a string consisting of x characters.

matrix-x Multiplying two quadratic matrices of the size x.

Table 4.2 shows the results presented in [Kna06]. The column unencoded
contains the runtimes for programs using an interpreter which executed binaries
without any encoding. The column naive presents runs using the naive version
update scheme that updates the versions of the complete dynamically accessed
memory after each memory update. For obtaining the data presented in the
columns list, list with LA, and tree, the respective scheme as presented in
the previous sections were used.

program unencoded naive list list with LA tree

loop-10 0.31 3.32 1.36 1.38 1.69

prime-5000 0.27 348.39 6.77 6.65 1.35

quicksort-1000 1.04 71.11 2.30 2.50 3.68

md5-10000 0.74 124.64 2.49 2.65 3.46

matrix-50 4.63 1819.54 19.74 22.93 19.83

Table 4.2.: Runtimes for different version management schemes in seconds.

For natively compiled runs, i. e., without any interpreter, no runtimes were
measurable with a precision of 10−2s. Compared to that already the unencoded
version of the interpreter induces large overhead. That is due to its simple and
straight-forward implementation.

As was already expected, from the encoded variants the naive version generates
the highest overhead. Every other version management scheme performs better.
In most cases the list approach is the best. Only for the prime number compu-
tation the tree is faster. The reason might be that the computation of prime
numbers in comparison to the other tested algorithms has not much locality
which is essential for the performance of the list approach but not for the tree.
Furthermore, the prime number computation handles by far the largest amount
of data compared to the other benchmarks.

Figure 4.15 depicts the runtimes for executions of loop-x for different x. These
measurements show that with decreasing locality the runtimes for all three

90 CHAPTER 4. ENCODING AN INSTRUCTION SET

schemes increase. While the increase for the lists rises linearly, it increases in
steps for the tree approach. The reason is that every time the tree has to be
expanded the search depth increases.

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 0 20 40 60 80 100 120 140

ru
nt

im
e

in
 s

ec
on

ds

x from loop-x

list
tree

list LA

Figure 4.15.: Impact of locality on runtime [Kna06].

[Kna06] has also shown that checkpoints further decrease runtimes, but that it is
difficult to determine an appropriate checkpoint size, i. e., a number of updates
of the structure after which to do a checkpoint. The measurements presented
in [Kna06] show that the optimal size depends on the executed program.

In the future, the sensitivity of the different version management schemes toFuture work

errors should be evaluated. This evaluation especially should include the simple
mapping of addresses to versions using a table. If its sensitivity to errors is
not much worse than that of the more complicated structures, its usage could
improve the runtime of encoded applications.

4.8. Outlook:
Application of Encoded Basic Building Blocks

In this chapter we introduced and evaluated all basic building blocks that we
will need to encode applications. However, these building blocks can be applied
in different ways. For example, arithmetic encoding can be done on different

4.8. OUTLOOK:
APPLICATION OF ENCODED BASIC BUILDING BLOCKS 91

levels of abstraction in a computer architecture and on different points in the
workflow used to produce an executable. These variants differ in

• the sphere of protection, that is, which parts of the workflow and the
program execution are protected from unrecognized errors,

• the workflow required to obtain and execute a protected program,
• the generated runtime overhead,
• the principles used to protect the control flow from unrecognized errors,

and
• the realization of lost update protection.

In [WM08a] we discussed the following possibilities to realize an encoded system: Levels of
encoding

• Encoding can be done on source code level. This type of encoding is done
before compiling the program into its binary format.

• Encoding on intermediate code level is implemented by modifying the used
compiler in a way that it generates appropriately encoded intermediate
code which then is compiled into the required binary format.

• Encoding on machine language level is done at runtime by an encoded
interpreter It can be applied to binaries without the requirement that the
source code is available.

• Of course, arithmetic codes can be used to directly protect arithmetic
operations in hardware. This should be by far the fastest approach, but
development costs for such special hardware are high and their usage is
not cost-effective.

The decision at which level of abstraction encoding is done influences not only Sphere of
protectionthe overhead produced but also the sphere of protection, that is, the part of the

system that is protected from undetected errors:

source code level: In that case the provided protection is the highest possible
when compared to the other encoding variants introduced above. Not
only the execution on the CPU is protected, but also the transformation
process producing the executable from an encoded version of the source
code.

intermediate code level: Encoding at intermediate code level does protect the
binary from the point of encoding on. That is not only the execution is
protected but also the binary during storage. Any modifications to an
encoded binary will result in broken codes at runtime with high probability.

machine language level: Encoding at machine level can only be done at runtime.
The reason is that encoding requires complete disassembling. This is not
possible for most binary formats. Nevertheless, the protection can be
extended onto the binary itself by providing an encoded hashsum of
the binary. This hashsum can be used to check the consistency of the
dynamically encoded process image at program start. This check can be
implemented encoded.

hardware level: Encoding at hardware level has the smallest sphere of protection.
Usually in hardware arithmetic codes without signatures are applied and,
thus, only the execution of a single operation and the data storage in
memory are protected by the code. The binary and control and data flow

92 CHAPTER 4. ENCODING AN INSTRUCTION SET

are unprotected by hardware level approaches.

Hardware level encoding would surely be the fastest solution, but it has obvious
disadvantages such as the small sphere of protection and the requirement of
specially adapted hardware which will be very expensive and inflexible. An
implementation for each of the three remaining approaches is discussed in the
following chapters.

These different encoding schemes presented in the chapters 6, 7, and 8 can all
be based on the same encoding, decoding, and code checking functions that we
introduced in this chapter and can use the same encoded base and replacement
operations that we also introduced in this chapter.

But different encoding schemes are different with respect to how encoding of
control and data flow is realized. For these tasks we introduced general principles
such as encoding of if-statements, static and dynamic signatures, and version
management that are used by all encoding schemes.

5. Choice of Encoding Parameters

The encoding approaches described in this thesis use one of the following AN-
codes to facilitate the detection of execution errors:

• AN-code,
• ANB-code, or
• ANBD-code.

We introduced these codes in Chapter 3.

All these codes are parameterized. When using these codes we have to choose
the following parameters depending on the code used:

• the code parameter A,
• signatures (Bs), and
• restrictions for the version D.

This chapter discusses how these parameters should be chosen. First, we will
discuss the choice of A. The results apply to all three codes. Second, the
choice of the signatures is discussed. This only applies to the ANB- and the
ANBD-codes. Last, we discuss necessary restrictions for the version D used by
ANBD-codes.

5.1. Choice of A

To ensure that encoding does not destroy the information contained in the
functional values encoded, A has to be an integer that is

• larger than zero and
• smaller than 2m−n if the functional values are n-bit and the code words

are m-bit values.

Another question is if A can be chosen in a way that maximizes the probability
of detecting execution errors. This section shows that indeed different values for
A result in different error detection capabilities of the AN-codes. This section
provides some general rules for choosing a good A. However, it cannot provide
the perfect A. We will also explain why this is not possible.

First, we provide a general theoretic discussion how the choice of A influences
the probability of detecting errors. Second, we experimentally evaluate different
As with respect to their probability that random modifications of code words
result in undetectable errors.

93

94 CHAPTER 5. CHOICE OF ENCODING PARAMETERS

5.1.1. How A Influences the Probability of Detecting Errors

First, A should not be a power of two. If A is a power of two, multiplicationNo power of two

with A is equivalent to a left shift of the functional value. The resulting code
words have a minimal Hamming distance of one because the redundant bits
introduced by the multiplication with A are zero for all code words. Thus, errors
that change only the higher order bits, that is, all bits that were not introduced
by the left shift, are undetectable because their result still will be the expected
power of two as long as the least significant bits added by the shift remain
untouched. Only errors that change the redundant bits (the zeros introduced by
the multiplication with an A that is a power of two) are detectable. However,
the larger the power of two used is the smaller is the probability of undetected
errors because the larger the power of two is the more of the least significant
bits have to be zero and cannot be changed undetectably.

One could assume that we should also avoid As whose factorization contains
any powers of two because any two that is part of A’s factorization introduces
one fixed zero in the least significant bits of the code words. However, we
cannot apply the same argumentation as used for powers of two to As whose
factorization contains twos. For example, for an A whose factorization contains
one two, the following applies:

• The last bit of a code word always has to be zero and cannot be changed
undetectably by an error.
• The higher order bits can also not be changed undetectably because

they have to be the product of the functional value and the remaining
factorization of A without the factor that is two (A2).

How these probabilities for error detection/non-detection can be combined is
not easy to determine. Therefore, we will in Section 5.1.2 also analyze As whose
factorization contains twos.

Also the size of A influences the probability of detecting errors. Code wordsThe larger,
the better consist of n functional bits and k redundant bits. The number of redundant bits is

determined by the size that A has in its binary representation: k = log2(A) + 1.
Obviously, k is the larger the larger A is because the logarithm function is
strictly monotonically growing.

If we assume that errors lead to a uniformly distributed random modifica-
tion, such a modification will result in another valid code word, that is, in an
undetected error, with the probability:

pundetected =
number of valid code words-1

number of possible words
=

2n − 1

2n+k
≈ 1

2k
(5.1)

The larger A and thus its size k is, the smaller is the probability that errors
remain undetected. The probability pundetected decreases exponentially with the
number of redundant bits k.

We experimentally verified Equation 5.1 by injecting random uniformly dis-
tributed errors into random encoded numbers and testing if the injected errors

5.1. CHOICE OF A 95

destroyed the code and, thus, could be recognized. Therefore, we used 32-bit
functional values and 64-bit variables for representing encoded values because
these are the sizes of functional values and code words that we use in our
encoding approaches presented in chapters 7 and 8. The functional values and
encoding parameters are randomly chosen within the given boundaries for their
size. Errors were injected by randomly choosing a 64-bit number and using it
for a bitwise xor with the randomly chosen encoded number. For all random
choices, we use a uniform distribution. Figure 5.1 depicts the results, which
confirm Equation 5.1

8 9 10 11 12 13 14 15 16 17 18 19 20
0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

measured
expected

size of A in bits

un
re

co
gn

iz
ed

 e
rr

or
s

in
 %

Figure 5.1.: Measured error detection probability vs probability expected by
Equation 5.1.

The probability pundetected as defined in Equation 5.1 determines how probable
it is that a uniformly distributed random modification of a code word results in
another valid code word. But at least for erroneous modifications of data during
storage it is known that the errors are not following a uniform distribution. For
these errors, one flipped bit is more probable than multiple bit errors [LSHC07].
However, we were not able to obtain any reliable data about error patterns
occurring during data storage, transport, or computation and the probabilities
of these errors for current hardware. If a more precise error model would be
available, we could provide a more accurate hardware-dependent approximation
for pundetected then provided by Equation 5.1.

Furthermore, Equation 5.1 assumes that the code words generated by A are
equally distributed over the available bit patterns, that is, that the minimal
Hamming distance between different code words is as large as possible. However,
so far it is not easy to choose an A which will result in a specific predetermined

96 CHAPTER 5. CHOICE OF ENCODING PARAMETERS

minimal Hamming distance between all code words. Nothing can be done but
exhaustive testing of all possible error patterns, that is, of all modifications that
might be applied to encoded data by an error. If a modification caused by an
error changes a code word by the addition or subtraction of a multiple of A,
the error is undetectable because the result of the modification still is a valid
code word. Thus, if we know how many of the error patterns that are possible
result in a modification that changes a code word by a multiple of A, we can
also provide a better approximation for pundetected. Connecting this information
with a more detailed error model of the hardware used, would result in the
most accurate approximation for pundetected. In Section 5.1.2 we determine the
number of error patterns that result in a modification that is a multiple of A
for several different As. Therewith, we try to provide more rules for choosing a
good A that provides a high probability for detecting errors.

Forin [For89] chooses A to be a prime and motivates this choice with a maximizedShould A
be prime? error detection probability for multiplications without any further clarifying

explanations or providing an implementation of an encoded multiplication.

For our encoded operations, which we introduce in Chapter 4, it is not required
that A is a prime from the point of view of correctness, that is, that the operations
provide the correct and expected result in an error-free execution.

However, our opinion is that A should have as few factors as possible to reduce the
probability of undetected operation errors, which might influence the execution in
a more systematic manner than the other error symptoms described in Section 2.5.
This is just a heuristic which could only be analyzed for a specific hardware
architecture. However, to be on the safe side a large prime A should be used.

5.1.2. Practical Evaluation: How Many Errors Are Undetectable?

The experiments presented in Figure 5.1 assume that the errors that modify
code words follow a uniform random distribution. That means that, for example,
the modification of one bit occurs with the same probability as the modification
of all bits that form the code word. However, at least for memory errors, mostly
only a small number of bits are modified [LSHC07]. Thus, As should be preferred
that ensure especially the detection of errors that modify only a few bits. In
the following, we will analyze the error detection capabilities of different As for
different numbers of bits that are flipped due to an error.

Note that here we provide no discussion of errors occurring in logical circuits,
for example, in the arithmetic logical unit (ALU) or circuits realizing memory
addressing. The reason is that these are hardware-dependent and no error
models are available to us. For reducing the probability of undetected errors
occurring in logical circuits, we recommend, as we explain in the previous section,
the usage of As that are prime.

In the following, an error e is the difference between the unmodified, error-freeError

code word ac and its erroneous, modified version a′c. An error e is not detectable
by an AN-, ANB-, or ANBD-code if the error e is a multiple of A because in thatAs few errors as

possible should be
multiples of A

case (ac mod A) ≡ (a′c mod A) holds. Thus, an A should be chosen for which

5.1. CHOICE OF A 97

only a small amount of the errors which can be formed by bitflips are multiples
of A. The less errors are multiples of A the smaller is the probability of an
undetectable error and, thus, failure of an error detection that uses AN-codes.

We know of no direct mapping from A to the probability that an error is a
multiple of A. Thus, we try out each possible error and check if it is a multiple
of A. However, this brute force computation of the probability that for a specific
A an error is a multiple of this A is very computation intensive. Therefore, we
compute this probability for a specific number of bits that are flipped. Thereby,
we start with only one flipped bit. Next, we compute the probability for two
flipped bits and so on. This approach allows us to compute the probability that
an error is a multiple of A for the most probable error patterns, that is, these
patterns that modify only a few bits.

To compute the probability that an error for a specific number of bits flipped is
a multiple of A, we check each combination in that these bitflips can modify a
code word. These combinations are formed by variations of

• on which positions in the code word the bits are flipped and
• into which direction (0→ 1 or 1→ 0) the bits are flipped.

For each possible combination, we compute the resulting error e and check if e is
a multiple of A. Furthermore, we take into account onto how many code words
the error e analyzed can be applied. For example, for an error e that flips the
highest order bit from 0 to 1, we consider only these code words whose highest
order bit is 0.

In the following, we present the computation of the probability that a random
error is undetectable, i. e., is a multiple of A. We do this analysis for several
different As for an ANB-code and ANBD-code. For our computations, we are
assuming code words that have a size of 64 bits and 32-bit functional values
because these are the sizes of functional values and code words that we use in
our encoding approaches presented in chapters 7 and 8.

If code words have a length of m bits, we have to consider all words that are
representable with these m bits as possible target of an error. The reason is
that for an ANB-code (and for an ANBD-code) depending on the choice of the
signature B (and the version D) every word representable with these m bits can
be a code word as long as the signature B (the sum of signature B and version
D) can be chosen from the interval [0, A[. If the signatures are further restricted,
the set of possible code words will be reduced. A special case of this restriction
is the AN-code where the signatures are restricted to 0. For an AN-code, only
multiples of A have to be considered for computing the error probabilities.

Figures 5.2 to 5.5 depict the results of our probability evaluations for ANB- and
ANBD-codes for different As. We calculated the probabilities for 1 to 7 flipped
bits. Due to the exponential growth of the problem size, we were not able to
calculate further probabilities in reasonable time.

Figure 5.2 shows the results for As that are powers of two that add 28 to 31 bits Powers of two

of redundancy to the functional part of the code word. For all four different As in
Figure 5.2, the probability for an undetected error decreases with the number of

98 CHAPTER 5. CHOICE OF ENCODING PARAMETERS

bits that are flipped by the error. Furthermore, as we predicted in Section 5.1.1,
the larger the A is the smaller is the probability for an undetectable error. This
holds for all numbers of flipped bits that we analyzed.

1 2 3 4 5 6 7

number of flipped bits

0
0.06
0.12
0.18
0.24
0.3

0.36
0.42
0.48
0.54

pr
ob

ab
ili

ty

268435456 = 2^28
536870912 = 2^29
1073741824 = 2^30
2147483648 = 2^31

Figure 5.2.: Probability of undetectable errors for As that are powers of two.

Figure 5.3 depicts the error probabilities for As that are prime numbers requiringSmall primes

either 8 or 16 bits for storage. The 8- and 16-bit prime numbers as well are
much smaller than the powers of two whose results we present in Figure 5.2.
However, their probabilities for undetectable errors are by several magnitudes
smaller than that of the powers of two in Figure 5.2. When we compare the
8-bit with the 16-bit As, the general rule the larger the A the less errors are
undetectable applies. However, the variations between different As – especially
for lower numbers of flipped bits – are considerable with one order of magnitude.

1 2 3 4 5 6 7

number of flipped bits

0
0.004
0.008
0.012
0.016
0.02

0.024
0.028
0.032
0.036

pr
ob

ab
ili

ty

251
241
239
233

(a) As that require 8 bits for storage.

1 2 3 4 5 6 7

number of flipped bits

0
3e-05
6e-05
9e-05

0.00012
0.00015
0.00018
0.00021
0.00024
0.00027

pr
ob

ab
ili

ty

65521
65519
65497
65479

(b) As that require 16 bits for storage.

Figure 5.3.: Probability of undetectable errors for As that are small primes.

Figure 5.4 presents our results for As that are also primes and add 31 bitsLarge primes

of redundancy. Figure 5.4(a) shows the result of four different As. However,
A = 2147483647 shows especially high probabilities for undetected errors for
only a small amount of flipped bits. For this reason, we depict in Figure 5.4(b)
only the three best As of Figure 5.4(a). These three As show very similar

5.1. CHOICE OF A 99

characteristics. However, there are also variations by one order of magnitude.
Last, note that when comparing the results presented in the figures 5.3 and 5.4,
again the rule the larger the A the less errors are undetectable applies under the
condition that especially poorly performing As are not considered.

1 2 3 4 5 6 7

number of flipped bits

0
0.0009
0.0018
0.0027
0.0036
0.0045
0.0054
0.0063
0.0072
0.0081
0.009

pr
ob

ab
ili

ty

2147483647
2147483629
2147483587
2147483579

(a) All 31-bit primes.

1 2 3 4 5 6 7

number of flipped bits

0
2e-06
4e-06
6e-06
8e-06
1e-05

1.2e-05
1.4e-05
1.6e-05
1.8e-05

2e-05

pr
ob

ab
ili

ty

2147483629
2147483587
2147483579

(b) 31-bit primes without worst performing A
of Figure 5.4(a).

Figure 5.4.: Probability of undetectable errors for As that are large primes
requiring 31 bits for storage.

Last, we evaluated several 31- to 32-bit As that are not prime but can be Non-primes

factorized, that is, represented as a product of primes. For the different As
evaluated we increased the amount of twos that are part of the factorization of
the A. The results we present in Figure 5.5. We cannot see that the number
of twos contained in A’s factorization influences the error detection probability.
However, the As analyzed are very large and the differences might be very small.
On the other hand, we were surprised to observe that all four non-prime As
whose results are presented in Figure 5.5 perform by several orders of magnitude
better than the similarly sized As whose results are presented in Figure 5.4.
Furthermore, it stands out that for all four non-prime As 1 to 5 flipped bits
have a very low probability to produce an undetectable error. This is not the
case for any of the previously analyzed As – even the similarly sized ones – that
are prime numbers. Here only 1 to 3 flipped bits have a very low probability for
undetectable errors.

To summarize, we have seen that for prime As and As that are powers of two the Summary

general rule the larger the better applies. As expected, As that are powers of two
perform much worse than other As. However, there are large differences between
different prime As. Furthermore, we were surprised to see that non-prime As
seem to perform by several orders of magnitude better than prime As (at least
for uniformly distributed bitflips). Of course, we researched only a small subset
of all possible As. To our opinion, before choosing an A, such an analysis as
presented in this section should be done to compare different candidates.

100 CHAPTER 5. CHOICE OF ENCODING PARAMETERS

1 2 3 4 5 6 7

number of flipped bits

0
9e-10

1.8e-09
2.7e-09
3.6e-09
4.5e-09
5.4e-09
6.3e-09
7.2e-09
8.1e-09

9e-09

pr
ob

ab
ili

ty

2132349219 = 3*3*3*3*7*7*11*13*13*17*17
2369276910 = 2*3*3*5*7*7*11*13*13*17*17
2482099620 = 2*2*3*5*7*11*11*13*13*17*17
2600294840 = 2*2*2*5*11*11*11*13*13*17*17

Figure 5.5.: Probability of undetectable errors for As that require 31 bits for
storage and are not prime.

In the future, the presented evaluation should be extended withFuture Work

• the analysis of further – especially also non-prime – As and
• an analysis for AN-codes, which requires to restrict the set of possible

code words to which the errors are applied. For AN-codes, only multiples
of A are possible code words.

5.2. Choice of the Signatures

The assignment of the signatures B in an ANB- or ANBD-code influences the
safety of encoded processing as well as the choice of A. Thus, we discuss rules
for choosing signatures in this section.

In general, the following equation should be fulfilled for every signature B:0 < B < A

0 < B < A. If B were equal to A or larger than A, its addition would result
in a different code word than intended. Note that B could be chosen to be
zero. However, as we detail later for several encoded operations the parameters
should not have a signature equal to zero. Furthermore, some intermediate
results in the encoded multiplication are multiples of A (See Section 4.2.1). To
prevent undetectable exchanges of variables with these multiples of A, we forbid
signatures that are equal to zero.

The signatures are used to detect exchanged operand and exchanged operator
errors (see Section 3.4). Signatures should be equally distributed. This reducesEqual distribution

the probability of undetected exchanged operand errors. If signatures are not
equally distributed but some signatures are preferred, than it is more probable
that operands with the same preferred signature exist and can be exchanged
with each other.

5.2. CHOICE OF THE SIGNATURES 101

On the probability of detecting an exchanged operator the choice of the signatures
has no influence because encoded operators should be designed in a way that
different operators used with the same signatures generate results with different
signatures (See Section 4.2.1).

Signatures of encoded variables that were computed using other encoded variables Adapt signatures
at runtime instead
of sophisticated
choice

depend on the signatures of the variables used for the computation. However,
the signatures of the results of encoded operations should also obey the general
restriction for signatures to be smaller than A and larger than 0. This is not
always the case. For example, the signature of our encoded addition of the
two encoded values xc and yc might be larger than A or also smaller than zero
because its value is 2 ∗ (Bx + By)−BOC where Bx and By are the signatures of
the two input values and BOC is the signature of the overflow correction, which
is the same for the whole program (see Section 4.2.1).

The signature of a computation result can be influenced by the choice of the
signatures of the input values. However, if signatures of input values are chosen
in such a way that the signatures of output values are valid, this can lead to
unequally distributed signatures. For example, consider a program that contains
mostly additions and uses a rather small value for BOC , for example 1. In this
case the signature of a computed result will often be larger than the ones of
the input values. Especially, it might be larger or equal to A. To ensure that
the signatures of the results are still smaller than A, the signatures of the input
values will be chosen sufficiently small. Thus, smaller signatures become more
probable and the signatures are not equally distributed anymore. Thereby, the
probability of undetectable exchanged operand errors might increase.

Alternatively, signatures of values can be adapted during the program execution.
If we, for example, want to change the Signature of xc = A ∗ x + B1x from
B1x to B2x, we have to add B2x − B1x to xc. Such adaptations allow us to
choose the signatures for all variables randomly with a uniform distribution. For
example, our Compiler Encoded Processing (see Chapter 8) assigns signatures
randomly using a uniform distribution and adds adaptations to the encoded
program whenever the signature of an input value would lead to an invalid
signature of the result of an instruction.

Apart from the above described restrictions for signatures of input values, most
encoded operations have values for signatures that should not be used for the Forbidden signa-

tures depending on
the operation

operands involved. For example:

addition & subtraction For additions and subtractions signatures should never
be zero because the result would have the same signature as the operand
with the non-zero signature. Thus, result and operand could be exchanged.
This even applies when the result’s signature is adapted because the
exchange could happen before the adaptation is executed.

multiplication The signatures of operands of a multiplication should never be
zero or one because the result’s signature then would be either zero or the
signature of the operand whose signature is unequal to one. Both scenarios
might lead to undetectable exchanged operand errors.

102 CHAPTER 5. CHOICE OF ENCODING PARAMETERS

division The signature of the divisor used in an encoded division should not be
zero to prevent divisions by zero during the signature correction required.
Furthermore, the signature of the divisor should not be one. Otherwise the
result’s signature would equal the signature of the dividend. This again
could lead to undetectable exchanged operand errors.

Similar restrictions can be found for most encoded operations described in
Section 4.2.1. These restriction are also much easier to enforce if signatures are
assigned randomly and are adapted at runtime whenever required.

5.3. Version

For an ANBD-code, code words have an additional version D and are defined
as xc = A ∗ x + Bx + D whereby 0 < Bx + D < A has to hold. Otherwise, the
addition of Bx + D results in an invalid code word for the intended Bx and D.

However, from the point of safety, that is, the capability of detecting lost updates,

• each (single assignment) variable x should have a unique signature Bx and
• for each update operation a new D should be chosen.

If a new D is used for each updated value, undetectable exchanges with otherUse a new D for
each update older code words that use the same D are the most improbable. Similarly, if for

every variable ever written a unique signature is used, undetectable exchanged
operand errors become the most improbable.

However, the size restrictions for Bx + D prevent achieving these properties for
normally sized programs with reasonable sized code words. Thus, instead of
always using a new D as many different Ds as possible should be supported.
The same applies to the signatures: As many different ones as possible should be
used. However, the more different Ds are supported the less different signatures
are supported and vice versa.

The easiest way to ensure the size restrictions for the signatures and the versionHandling size
restrictions is to statically assign the available space to the signatures and the version. For

example, half of the space can be used for signatures and half of the space for
the version. If exchanged operand or operator errors are assumed to be more
often than lost updates, more space could be used for signatures. On the other
hand, if lost updates are assumed to occur more often, more space should be
assigned to the version.

Note that the dynamic signatures as introduced in Section 4.6 combine the
address-dependent signature addr and the version v into one signature h(addr, v).
This dynamic signature is than used for encoding with an ANB-code. Thus, the
resulting code word looks as follows: xc = A ∗ x + h(addrx, v) where addrx is
the variable-dependent signature of x. Dynamic signatures should be uniformly
distributed over an as large as possible set of possible signatures. Dynamic
signatures are also restricted in their size: 0 < h(addr, v) < A has to hold.
However, in principle, neither addr nor v are restricted in their size.

5.4. CONCLUSION 103

Our encoding approaches Software Encoded Processing (see Chapter 7) and Versioning in SEP
and CEPCompiler Encoded Processing (see Chapter 8) use versioning only in connection

with dynamic signatures. While in Software Encoded Processing every data value
is versioned, in Compiler Encoded Processing only dynamically accessed memory
is versioned. For registers, for which the data flow is statically predictable, no
versioning is implemented. Since, we implement versioning only in connection
with dynamic signatures, in principle no restrictions apply to the version used.
However, our implementations use an 32-bit integer counter to determine the
version information for updates. This counter wraps around after 232 − 1
increments. Then versions are reused that were already used 232 − 1 updates
ago.

Note that also other approaches than a simple counter can be used to assign
version information. For example, the versions could be chosen from a list of
unique values. In the future, it should be researched if other algorithms for
assigning values to D increase the safety achieved.

5.4. Conclusion

In this chapter, we discussed how the different parameters of an ANB- and
ANBD-code influence the error detection capabilities of these codes.

For choosing A, the general rules that should be followed are:

• The larger the better.
• Do not use a power of two.
• Additionally check the probability for undetectable errors due to a few

bitflips for the chosen A.

Note that we did not use an optimal A for our evaluations presented in the
chapters 7 and 8 because the results presented in these chapters were obtained
and published before the ones presented in this chapter.

For choosing the signatures, the rule is the less registers share a signature
the lower is the probability of undetectable exchanged operand errors. Thus,
signatures should be assigned randomly using a uniform distribution and the
set of possible signatures should be as large as possible.

For assigning the version, the rule is a version should only repeat after as much
versioned updates as possible. This reduces the probability of undetectable lost
updates to a minimum. The version can be incremented with each update or
chosen from a predetermined list of random values. More research is required to
answer the question which of the two variants is better with respect to safety.

6. The Vital Coded Processor (VCP)

In this chapter we present the Vital Coded Processor (VCP) as it was described
by Forin in [For89]. According to our knowledge, Forin was the first that
introduced and used ANB- and ANBD-codes. Previous publications had only
presented AN-codes. Furthermore, VCP is the first encoding approach that
implements the arithmetic code to large parts in software instead of in hardware.

However, we observed several drawbacks of VCP that prevent its usage in modern
computing systems. As we will detail in this chapter, VCP requires to know the
complete data flow of a program statically at encoding time. This prevents the
usage of dynamically accessed memory. Furthermore, the description of VCP in
the available publications [For89, Dol06, Oze92] is rather vague and incomplete.
Neither the encoding of operations is described in sufficient detail, nor how the
encoding is applied to programs. It seems that large parts of the encoding –
namely the encoding of control flow – have to be done by hand.

However, encoding using ANB- and ANBD-codes provides good error detection
capabilities that are independent of the hardware used and that can be realized
without the need for special hardware. Thus, we decided to improve VCP with
the goal to facilitate its usage in modern systems.

In this chapter, we give an overview of VCP because we want to motivate why
it is not usable in today’s systems. Furthermore, VCP is the foundation for our
own encoding approaches SEP (see Chapter 7) and CEP (see Chapter 8). Thus,
knowing its foundations is essential for assessing SEP and CEP.

First, we will give an overview of VCP’s structure and the workflow that is
required to obtain an encoded program that can be executed by the VCP. Second,
we will describe the specifics of encoding programs for the VCP. We conclude
the chapter with a discussion of VCP’s disadvantages and advantages. The
disadvantages that we will describe led us to the implementation of our encoding
schemes, first SEP and later CEP, which aim at removing these disadvantages
and making encoding more generally applicable.

6.1. System Overview

The VCP applies ANBD-encoding as described in Section 3.5 on source code
level to recognize transient and permanent errors disturbing program execution.
Therefore, data as well as the program executed are modified. Programs executed
by the VCP are encoded on source code level before compilation. The input data
is encoded when it enters the system at runtime. The advantage of applying
the encoding to source code before compilation is that this enables also the

105

106 CHAPTER 6. THE VITAL CODED PROCESSOR (VCP)

detection of errors made by the compiler because these errors will destroy the
encoding of data at runtime with high probability.

The VCP executes programs in a loop and every program has the same structure.Program execution

First, it reads in inputs that are encoded by a specific encoder hardware. These
inputs are then processed by the encoded program executed by a CPU. In the
end, encoded outputs are produced. These are checked and decoded by a specific
code checker and decoder hardware. If the code is valid, output is allowed to
leave the VCP and the next iteration, i. e., execution, of the encoded program
starts. Otherwise, the output is prevented and for this iteration no output is
available. Instead the output pins are set according to Forin to a safe state.
After such a detected error, the next iteration is started in the hope that the
error is transient. In principle, the ANBD-code used can also detect permanent
hardware failures. However, Forin does not state how these are handled.

To every input a signature is assigned at encoding time, i. e., at compile time.Signature handling

The signatures of the output values are computed at encoding time. Therefore,
the data flow implemented by the program is analyzed. VCP does not use
dynamic signatures as introduced by us in Section 4.6. Thus, no dynamic
data flow is supported by VCP. The assignment of signatures to the input
and output variables is determined at encoding time and is stored in a specific
signature memory of the VCP at runtime. Encoder and checker and decoder
have both access to this memory. The encoder uses the signatures assigned to
the input values to encode the latter. The checker and decoder use the signatures
precomputed for the output variables to check their code and to obtain their
functional values for output.

The version D of the ANBD-encoded variables contains the number of alreadyVersioning

executed iterations of the program, that is, it counts how often the program was
executed and new input values were processed. Therefore, a hardware counter
(the clock) is used to which encoder and checker and decoder also have access.
For each iteration a new clock value D is used as a version in encoding the input
values. The output values produced by this iteration are expected to have the
same D. Thereby, the usage of outdated values becomes detectable. Furthermore,
D is used to check the timeliness of the iteration executed. Therefore, the clock
value is incremented when the iteration should have been finished and a new
one should start. Thus, if output is generated too late, it will be encoded with
the old D and the output values generated will not be valid code words.

Figure 6.1 summarizes the described structure of the VCP. In the exam-
ple depicted, VCP executes the encoded version of the very small program
return z = x + y.

Some parts of the VCP architecture must function correctly, that is, theySystem
requirements must not produce erroneous executions. This is the case for the code checker

and decoder because if they are erroneous, they might permit erroneous output.
Furthermore, the clock that determines D has to be correct because an erroneous
clock might lead to undetected late outputs or undetected usage of outdated
variables.

6.2. WORKFLOW 107

input

variables
output

variables

c
h

e
c

k
e

r
a

n
d

d
e

c
o

d
e

r

products of the program development process

trusted parts, i.e., required to function correctly

data not available during development

zc = add_anbd(xc,yc);

CPU executing

signatures

clock

e
n

c
o

d
e

r

A ∗ x +Bx +D
xc =

A ∗ y +By +D
yc =

D D

zc

Figure 6.1.: How VCP executes an ANBD-encoded program.

6.2. Workflow

Different approaches to apply encoding are also different with respect to the
workflow that is required for obtaining encoded programs. These differ with
respect to the complexity of the process of encoding and the safety obtained.
For the VCP, Figure 6.2 depicts the workflow required to produce an encoded
program and the assignment of signatures to input and output variables. Forin
in [For89] remains rather unclear with respect to the details of the workflow.
However, according to [Oze92] some help of the programmer is required. How
much of the encoding itself is automated in the VCP implementation described
by Forin we do not know. We assume that at least the control flow is encoded by
the programmer and that the programmer has to use special encoded data types
and instructions, for example, a special encoded addition instead of the normal
one. [Dol06] to some extent confirms this assumption. The resulting partially
encoded source code is then processed by the signature assigner that assigns
signatures and computes correctional values and the output signatures [Dol06].
The signature assigner includes the correctional values into the partially encoded
program. Thereby, it makes the latter completely encoded. After compilation of
the resulting encoded program, it has to be linked to the library of the encoded
base operations. As a result an encoded binary is obtained that can be executed
by the VCP.

We assume that the VCP is not only comprised by the encoding tool that
encodes the source code, but also by the hardware infrastructure. At least for
the encoder, the checker and decoder, the clock, and the memory for storing the
signatures expected for the output values special hardware implementations are
used.

108 CHAPTER 6. THE VITAL CODED PROCESSOR (VCP)

encoding

tool

partially encoded

source code

signature

assigner

signature

assignment

object

code

encoded source

code

linker

binary

compiler

base operations

artifact

tool

library used

encoded

Figure 6.2.: VCP workflow that generates an encoded executable and the signa-
ture assignment to input and output variables.

6.3. Program Encoding

All non-control-flow operations can be encoded as we described in Chapter 4. WeBasic instructions

do not know how Forin encoded these operations because [For89] only describes
an encoded addition operation that does not support integer overflows. The
programmer had to ensure that the program is free of overflows. Forin does
not describe the implementation of any other operation. We suppose VCP does
not support arbitrary C programs, but requires very specific features for the
programs encoded, for example, freeness of overflows and no usage of dynamic
memory.

Encoded control structures such as branches or loops are implemented in a wayControl flow

such that the signatures of all variables whose values depend on the control
structure are independent of the chosen branch or the number of iterations.
However, if an error leads to an erroneous branch or to the wrong number of
executed iterations the signatures will be destroyed with high probability. How
Forin encodes if-statements, we introduced already in Section 4.2.1.

For loops, the branch instruction that decides about leaving the loop or not is
encoded in the same way as an if-statement. For checking the number of executed
iterations for each loop x another version Dx is introduced and added to the
data items processed by the loop. With each loop iteration Dx is incremented
by a fixed value ∆Dx . After the loop numberOfIterations ∗∆Dx is subtracted
from the variables to check that the correct number of iterations was executed.
Note that with that solution the loop could be left out completely without the
possibility to detect this. Forin neither states this problem nor does he provide
a solution.

6.4. DISCUSSION OF VCP 109

Furthermore, if several loops are nested, several Dx are added to the processed
code words. It has to be made sure that this will not lead to overflows in
the domain of encoded values because these overflows would destroy the code.
Therefore, upper bounds for the loop versions or the sum of the loop versions
are required. If the iteration counters would become larger than these upper
bounds, they be set back to zero. If that happens for a loop, a bunch of iterations
can be lost unnoticedly. Thus, restricting the Dx to a specific range reduces
the safety because it might lead to undetected lost iterations. All these issues
are not discussed by Forin and to the best of our knowledge also by no other
publication.

Forin’s description of the VCP in [For89] is rather general and incomplete. Forin Unsupported
featuresclaims that the VCP supports the following operations: addition, subtraction,

multiplication, truncation, and the boolean operations and, or, xor, and not.
Note that Forin does not describe or mention an encoded division, which to
our opinion is required for implementing the encoded modulo operation that is
required to implement the trunc operation he claims to support.

Furthermore, apart from the addition Forin does not describe any implementation.
Thus, we developed our own encoded operations (see Chapter 4). In contrast to
Forin’s addition, ours supports integer overflows. Due to the lack of information
we cannot compare the remaining operations.

Of the control flow structures, Forin describes the if-statement in detail and the
general idea for a loop. He does not discuss the problems that occur when these
structures are nested in a program. Furthermore, Forin does not describe the
encoding of dynamically accessed memory and internal and external function
calls. We assume that the VCP does not support these.

Furthermore, Forin does not provide any evaluation of the VCP. Neither
measurements for the error detection capabilities of the VCP nor for its runtime
overhead are available.

6.4. Discussion of VCP

The VCP described in this chapter is a powerful tool for detection of execution
errors because:

1. It uses of the powerful ANBD-code that enables the detection of all the
error symptoms described in Section 2.5.

2. The VCP applies the encoding on source code level and, thus, facilitates
also the detection of erroneous transformations by the following tools, for
example, the compiler.

The usefulness of the VCP is also shown by the fact that it is in use in several
railway systems, for example, in the trains of the metro in Paris and Lyon
[For89].

However, as we have described in the previous sections, the VCP has major
disadvantages that restrict its usability:

110 CHAPTER 6. THE VITAL CODED PROCESSOR (VCP)

1. The complete data flow of the encoded program has to be known before the
execution to be able to precompute the signatures of all output variables.
That excludes the usage of dynamically allocated memory.

2. Special hardware is required to encode input variables, to store signatures,
and to check the signatures of output variables.

3. To the best of our knowledge, encoding for the VCP is not completely au-
tomated. The user has to write programs using special encoded operations.
It seems that the process of replacing normal operations with these special
encoded ones and the assignment of signatures are automated [Dol06].
However, it seems that the encoding of control flow has to be done by
hand. Encoding of nested control flow statements is a rather complex task
because several version counters (“Ds”) and condition checks have to be
considered. Thus, if done by hand, encoding control flow is error-prone
and might have severe impact on the safety of the VCP.

4. The information available about the VCP is vague and incomplete. The
implementation is not described in sufficient detail. Furthermore, no
evaluation of the VCP is available, neither for its runtime overhead nor for
its error detection capabilities. Thus, it is impossible to completely assess
its capabilities and to use the approach.

After analyzing the VCP, we decided to provide our own encoding implementation.
The objective of our work is to provide encoding for C programs. In contrast
to the VCP, our solution shall be as usable as possible and require as few
cooperation by the user, i. e., programmer, as possible. Thus, we first tried to
encode binaries because then no cooperation at all is required. The resulting
Software Encoded Processing (SEP) we describe in the next chapter.

7. Software Encoded Processing (SEP)

When developing Software Encoded Processing (SEP) our goal was to implement
an ANBD-encoding without requiring any help from the developer of the software
that is to be encoded. Thus, we wanted to implement encoding that requires
no modifications to the program and as few modifications as possible to the
workflow that produces an executable. For realizing this, we decided to encode
binaries directly during execution, that is, on machine language level. We
presented the SEP implementation in [WF07b].

In the following, we first give a general overview of SEP and describe the
workflow required for developing binaries that can be executed using SEP. Next,
we provide a detailed description of the encoding implemented by SEP. Thereby,
we focus on the encoding of data and control flow because the other encoded
operations we described already in Chapter 4. We conclude the chapter with
our evaluation of SEP’s error detection capabilities and the induced runtime
overhead with respect to execution time.

7.1. System Overview

The main idea of SEP is to use an interpreter to execute the binary that is Encoded
interpreterto be encoded. This interpreter itself is encoded using the principles of the

VCP [For89]. Therefore, every variable used by the encoded interpreter that is
crucial to the correct execution of the binary is encoded. This includes

• the code executed,
• the data processed, and
• also data used by the interpreter to manage program execution, for example,

the instruction pointer that points to the next instruction to execute.

The interpreter executes the binary in an encoded fashion. Thereby, it generates
encoded outputs that can be checked by another (standard) hardware unit to
determine if they are valid code words.

We do not know the binaries that will be executed by the encoded interpreter Signature
handlingbeforehand. Thus, it is not possible to precompute any signatures for the

data processed before executing a binary because we do not know which data
is processed when and how. Instead, all signatures for input are assigned at
execution time, and the expected signatures of intermediate results and output
values are precomputed at execution time. Therefore, the encoded interpreter
uses for all encoded values dynamic signatures (see Section 4.6) of the form
h(addr,D) = addr + D. addr is a unique address that identifies the encoded
value. It can identify a register and a memory address as well. D is the version

111

112 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

address, and
version counter

encoded interpreter

executing

value to check,

error signal

trusted parts, i.e., required to function correctly

data not available during development

CPU executing

checker

products of the program development process

input

variables

output

variables
binary

Figure 7.1.: How SEP is used to execute an unencoded binary.

counter that counts updates to dynamic memory. For SEP, all data with respect
to the signatures is handled as if it is accessed dynamically. The reason is that
the encoding is done at runtime and, thus, no data flows can be predicted before.
After each instruction that might update data in the program’s state, D is
incremented. Otherwise, updates might be lost without the possibility to detect
the loss.

The code checker checks that all output values are valid code words. Therefore,Checker

the encoded interpreter sends the encoded output values to the code checker
before it decodes them for output. Furthermore, the interpreter sends the address
addr at which the checked value is stored and the current version counter D to
the checker. Using this information, the checker checks if the value it received has
the expected signature h(addr,D). If that is not the case, an error is detected
and the execution of the encoded interpreter should be terminated to prevent
erroneous output.

The checker can be implemented as part of the encoded interpreter, or it can be
realized as separate software that is executed by another hardware unit. The
latter is the preferred, safer option because hardware errors having a common
cause are less probable for different hardware units.

Figure 7.1 summarizes the described structure of SEP.

As the VCP, SEP also requires some parts of the system to function correctly,System
requirements that is, they must not produce erroneous executions. For SEP, this applies to

the checker that checks the encoding of all output values and the decoding of the
output values that is done by the encoded interpreter. We discuss the realization
of the code checker more detailed in Section 7.3.6.

Note that the sphere of protection provided by SEP in comparison to the VCPSphere of
protection is reduced. Errors introduced by the transformations producing a binary from

given source code cannot be detected. Furthermore, additional measures have to

7.2. WORKFLOW 113

source code

binary

tool

artifact

compiler and

linker

encoded

interpreter

Figure 7.2.: Workflow required for producing and executing a binary that can
be executed by the encoded interpreter.

be taken to protect the binary from unrecognized modifications during storage
and during program loading and encoding.

7.2. Workflow

Figure 7.2 depicts the workflow required to generate a binary that can be
executed using SEP. As depicted the binary is compiled and linked using tools
– usually compiler and linker – that are not aware of the following encoded
execution that is realized using the encoded interpreter. Thus, no changes to
the original workflow are required.

However, the developer of a program still is restricted if SEP shall be used
to detect execution errors. Currently, he cannot use floating point operations
because these are not supported by our current SEP implementation. Their
usage will lead to a runtime error at execution time because the interpreter
encounters an unsupported operation. Other operations such as bitwise logical
operations or unaligned loads and stores are supported, but they are executed
unencodedly by our current proof-of-concept SEP interpreter.

Of course to support such an unmodified binary production process, the in-
terpreter used has to support the binary format produced by the tools used.
Our proof-of-concept implementation of the encoded interpreter executes DLX-
binaries. DLX is an academic RISC instruction set developed by Hennessy and
Patterson [PH90]. We used the DLX instruction set for our proof-of-concept
implementation because of its manageable amount of operations that have to
be encoded.

For compiling, we use the DLX compiler that is based on gcc. This compiler
is provided by UC Santa Cruz for a student project [Mil]. Furthermore, [Mil]

114 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

provides also an interpreter for DLX binaries that we extended to support our
encoding.

7.3. Program Encoding

In this section we describe the encoded interpreter that in SEP is used to
execute binaries in an encoded fashion. This interpreter is encoded following the
general principles presented by Forin in [For89] for the Vital Coded Processor
(VCP). The SEP interpreter facilitates the encoded execution of unencoded
DLX-binaries and thereby supports an unmodified binary production process.

When encoding the interpreter we have to pay attention to some critical combi-
nations and occurrences of the error symptoms that we presented in Section 2.5.
These combinations we will first briefly introduce. Second, we describe the
encoding of the data processed by the interpreter. For a DLX binary, this data
is composed of the executed binary itself, the data processed by this binary,
and the instruction pointer that identifies the instruction that is executed next.
Every other program state is part of the data processed. The DLX compiler
makes, for example, stack handling explicit in the binary. Thus, the stack pointer
is encoded automatically because it is part of the data processed by the binary.
Furthermore, we show how during program start-up the encoded process image
is constructed, that is, how the executed instructions and constants stored in the
binary are safely encoded during loading the binary into memory. Afterwards,
we present the body of the main loop of the encoded interpreter that executes
the program. This is followed, by the description of the implementation of input
and output functionality. Last, we describe the code checker implementation.

7.3.1. Critical Combinations of Error Symptoms

Some possible combinations of different error symptoms are critical for an
execution protected by SEP. These we have to consider during the design of
the encoded interpreter in addition to the symptoms described in Section 2.5.
These critical combinations of symptoms are either a composition of the basic
symptoms or a special occurrence of a symptom hitting, for example, a specific
variable of the encoded interpreter. These special symptoms are:

Instruction loading error We have to check if the instruction that we loaded
from memory is the correct instruction which we should have loaded using
the current instruction pointer. A wrong instruction could be loaded
because the address stored in the instruction pointer is modified or the
instruction itself is modified in memory or during loading.

Note that erroneously executed load instructions that are part of the
binary are detected because they are executed encodedly by the interpreter.
However, the load of an instruction is a functionality realized implicitly
by the interpreter. It is not part of the instructions forming the binary
executed. Thus, it has to be protected separately.

7.3. PROGRAM ENCODING 115

Instruction execution error To execute an instruction we have to obtain the
contained execution information such as which operation is to be executed
with which operands and to which destination the result has to be stored.
Obtaining this information is called instruction decoding . SEP has to
detect if anything with this instruction decoding went wrong. This could be
the case if any of the interpreter variables storing the decoded information
is modified during execution, or if during instruction decoding an error
occurs.

Erroneous instruction pointer The instruction pointer is crucial for the control
flow because it contains the address of the instruction that is executed
next. It is just a variable of the interpreter and, thus, it is susceptible
to soft and permanent errors as every other variable. For this reason, we
have to protect it from unrecognized erroneous modifications.

7.3.2. Encoding of the Process Image and the Instruction Pointer

The process image of an executed program consists of the data processed and
the program code. For encoding both, the same ANB-code (see Section 3.4)
with dynamic signatures (see Section 4.6) is used. In DLX all instructions are
equally sized 32-bit words. Furthermore, all registers are 32 bits width. For
encoding the memory, we divide it into 32-bit blocks.

Note that the usage of dynamic signatures enables us to detect lost updates
despite using in principle an ANB-code. The reason is that the dynamic signature
includes the version counter D, which is updated after each instruction executed.

We encode

• data data as datac = A ∗ data + h(&datac, D) and
• an instruction instr as instrc = A ∗ instr + h(&instrc, D)

whereby

&x denotes the address of x that either identifies an address in memory or a
register,

D is the version number that is incremented by the interpreter after each
instruction executed, and

h(addr,D) is a function mapping its input to a number smaller than A. We
use h(addr,D) = (addr ∗D) mod A. The modulo with A ensures that
the dynamic signature is never larger than A, which is a requirement for
ANB-codes.

To facilitate the detection of instruction loading errors and an erroneous in-
struction pointer, we have to encode the instruction pointer IP as well. The
IP is part of the interpreter and points to the next instruction to be exe-
cuted. The instruction pointer IP is encoded differently than code and data:
IPc = A ∗ IP + h(IP,D). Its encoding enables us to detect instruction loading
errors. IP has to equal the address &instr used to compute the dynamic signa-
ture of the encoded instruction that the current IPc points to. Thus, h(IP,D)
the signature of IPc and h(&instrc, D) the signature of the instruction have to

116 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

be equal. How this is used to detect instruction loading errors we explain in
Section 7.3.3 where we describe the main loop of the encoded interpreter.

However, before executing the binary, we have to ensure that the process image
used for execution by the interpreter is encoded as described. The encoding
of the process image can be achieved by either loading an already encoded
process image from a pre-encoded binary into memory on program start-up, or
by encoding the process image during start-up, i. e., during loading the process
image from the binary into the memory. The first solution – usage of a pre-
encoded binary – always ensures that modifications of the binary or the resulting
encoded process image can be detected. The second solution – encoding during
load – can be extended in a way that modifications of the binary are detectable.
Note that if we want to be able to detect modifications of the binary, it is always
required to extend or change the workflow used to generate a binary.

Pre-encoded binary To pre-encode a binary, we need to use specific addresses
and a version number D to encode instructions and data contained in the binary.
The version D can be initialized with zero. The program addresses can start on
any value because the interpreter has to emulate memory anyway. Thus, it can
put the program without problems at any address. The DLX-interpreter that
we extended locates the text segment of the binary at address zero.

If the pre-encoded binary or later the encoded process image is modified by aImpact of errors

random error, for example, a bitflip, this destroys the code with high probability,
that is, a modification of the process image results in an invalid code word. Such a
modification could hit encoded data or encoded instructions. Both modifications
will be detected if the encoded interpreter either uses the invalidly encoded data
or executes the invalidly encoded instruction. Invalidly encoded data is detected
because if encoded operations use invalidly encoded operands, the result will
also be invalid with high probability. If such a result is externalized and, thus,
its code is checked the error will be detected. Invalidly encoded instructions will
be detected because the encoded interpreter is implemented in a way that the
encoding of each instruction is checked during its execution.

Note further that if a pre-encoded binary is used, it is not required to digitally sign
the encoded program unless it should be protected against malicious attackers.
As explained above, random faults destroy the encoding of instructions or data
with high probability and, thus, are detectable.

For pre-encoding a binary, we have to consider the used binary format. WeRequired changes

have to distinguish between process image and the binary itself. The first one
is created from the binary by a program loader and resides in memory during
execution. We have to encode the process image – not the binary that stores
information required to execute a program such as the instructions to execute
and initialization values for variables. Hence, for supporting pre-encoding, it is
required to change the binary format and the program loader used.

Encoding during load If we want to support the detection of modifications
of the binary loaded or modifications occurring during the load, we need toRequired changes

7.3. PROGRAM ENCODING 117

know the hash value that the process image generated by loading the binary
will have directly after its generation. This hash value has to be encoded using
a previously known signature. Therefore, the workflow for producing a binary
has to be extended with the computation of this expected hash value.

If such an encoded, expected hash value is available, the following procedure for
constructing and checking the encoded process image is sufficient:

1. We load the program into memory and encode it during loading using the
appropriate addresses and D = 0 for computing the dynamic signatures.

2. We compute the hash value of the resulting encoded process image. There-
fore, we use a hash value computation that is (hand-)encoded using the
principles of VCP and our dynamic signatures. It uses the encoded process
image as set of encoded input values.

3. Last, the computed and the expected hash value are compared. If both are
equal, the program can be executed. If they are not equal, the execution
has to be aborted. This comparison should also be executed by the code
checker that is required to be safe.

The encoded computation of the hash of the encoded process image and its Impact of errors

encoded comparison with the hash that is expected ensures that any modifications
of the binary before and during loading will be detected. Later, during the
execution, the process image is protected from undetectable modifications by
the encoding of the instructions that influences each result produced.

7.3.3. Encoded Program Execution

After we introduced the encoding of the process image, we will now describe
how the encoded interpreter executes the program represented by the encoded
process image. Therefore, Listing 7.1 describes the body of the interpreter main
loop that loads one instruction from the encoded process image and executes this
instruction. After executing the instruction, the version counter D is incremented,
the signature management data structure is updated, and the instruction pointer
IP is set to the next instruction to be executed.

Line 3 of Listing 7.1 loads the instruction to be executed from memory. Therefore, Instruction loading

the instruction pointer is decoded in the previous line. Lines 6 to 9 extract
which operation (OpCode) is to be executed and the addresses of the operands
(O1 addr and O2 addr) and the result (Res addr). These addresses identify
registers or memory locations. Immediate values are handled similarly. We
extract this information from the AN-encoded instruction which we obtain by
subtracting the signature from Instruction c. Alternatively, for obtaining
the information needed to execute the instruction, we could completely decode
the encoded instruction Instruction c by dividing it by A. Which option is
the faster one depends on the platform used for execution. If on the platform
used divisions are more expensive than subtractions, obtaining the execution
information from the AN-encoded version of Instruction c is less expensive
with respect to execution time.

118 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

1 // decode IP and load i n s t r u c t i o n from memory
2 IP = IP c /A; // IP c = A∗IP + h(IP , D) with h(IP , D) < A
3 I n s t r u c t i o n c = loadFromMemory (IP) ;
4

5 // ex t r a c t execut ion in fo rmat ion from In s t r u c t i o n c
6 OpCode = getOpcode (I n s t r u c t i o n c − h(IP , D)) ;
7 O1 addr = getOperand1Addr (I n s t r u c t i o n c − h(IP , D)) ;
8 O2 addr = getOperand2Addr (I n s t r u c t i o n c − h(IP , D)) ;
9 Res addr = getResultAddr (I n s t r u c t i o n c − h(IP , D)) ;

10

11 // Did an e r r o r occur during load ing the i n s t r u c t i o n ?
12 // Compute check va lues C load and C ip f o r l a t e r usage .
13 // Note that C load and C ip are equal to zero
14 // i f no e r r o r modi f i ed I n s t r u c t i o n c and IP c and
15 // i f the c o r r e c t i n s t r u c t i o n matching IP was loaded .
16 C load = In s t r u c t i o n c % A − h(IP , D) ;
17 C ip = IP c % A − h(IP , D) ;
18

19 // execute i n s t r u c t i on , adapt the s i gna tu r e o f the r e su l t , and
20 // apply check va lues to the r e s u l t .
21 switch (OpCode){
22 case ADD:
23 // execute i n s t r u c t i o n and adapt r e s u l t ’ s s i gna tu r e
24 ∗Res addr = add anb (∗O1 addr , h(O1 addr ,D) , ∗O2 addr , h(O2 addr ,D)) ;
25 ∗Res addr += h(Res addr , D+1);
26 ∗Res addr −= (h(O1 addr , D) + h(O2 addr , D)) ;
27

28 // check i f
29 // −−−−−−−−−
30 // IP was unmodif ied and matching , unmodif ied i n s t r u c t i o n was loaded
31 ∗Res addr += C ip + C load ;
32 // c o r r e c t i n s t r u c t i o n was executed
33 C op=formOp(ADD, Res addr , O1 addr , O2 addr) ;
34 ∗Res addr += In s t r u c t i o n c /A−C op ;
35

36 break ;
37 case SUB:
38 ∗Res addr = sub anb (∗O1 addr , h(O1 addr ,D) , ∗O2 addr , h(O2 addr ,D)) ;
39 ∗Res addr += h(Res addr , D+1)
40 ∗Res addr −= (h(O1 addr , D) − h(O2 addr , D)) ;
41 ∗Res addr += C ip + C load ;
42 C op=formOp(SUB, Res addr , O1 addr , O2 addr) ;
43 ∗Res addr += In s t r u c t i o n c /A−C op ;
44

45 break ;
46 case MULT:
47 . . .
48 }
49

50 // increment ve r s i on counter D, update a l l other s i gna tu r e s accord ing ly ,
51 // and increment IP so that i t po in t s to the next i n s t r u c t i o n
52 D++;
53 incrementAllVersionsApartFrom (Res addr) ;
54 incrementIP () ;

Listing 7.1: Body of the main loop of the encoded SEP-interpreter. It loads one
instruction from the encoded process image, executes it, increments
the version counter D, updates the signatures of all unchanged data
values to the current D, and sets the IP to the next instruction
to be executed. Note that the representation is simplified and
does not represent the optimal implementation that, for example,
uses a version management structure as described in Section 4.7 or
summarizes functionality in functions.

7.3. PROGRAM ENCODING 119

Lines 16 and 17 calculate check values that are used to check

• if the instruction pointer IP c is a valid code word and
• if the loaded instruction Instruction c is a valid code word and if it

matches the current instruction pointer.

If these conditions are fulfilled, the computed values C load and C ip are zero.
Later both values are added in lines 31 and 41 to the result produced by the
instruction executed. If the check values are not zero, that is, if an error modified
Instruction c or IP c or the wrong instruction was loaded, this addition will
destroy the encoding of the result.

The following switch statement uses the OpCode to select the code implementing Instruction
executionthe instruction that has to be executed. Its selection is checked by the lines 33/34

and 42/43. If the correct branch was chosen Instruction c/A-C op should
evaluate to zero. Otherwise, its addition to the result will destroy the code of
the result.

For actually executing the encoded operations, the implementations described
in Section 4.2 can be used. Note, however, that our current implementation of
the SEP interpreter does not use the replacement operations. Instead, in SEP
currently logical bitwise operations, shift operations and unaligned loads and
stores are executed unencoded, i. e., unprotected.

The remaining errors that we defined in Section 2.5 (exchanged and modified
operand, operation, operator and lost update errors) are handled in a similar way
as in the VCP. Lines 24 and 38 use encoded numbers for the computations. Thus
operation and modified operand errors are detectable. Lines 25/26 and 39/40
correct the signature of the result to match the signature that is expected for
the result address. Therefore, first the expected signature for the result address
and the incremented version counter D is added. Next, the signature that results
from the expected signatures of the operands and the operation executed is
subtracted from the result. Note that the computation of the expected signature
is different for the different operations. For example, for addition and subtraction
lines 26 and 40 are different. If an exchanged or modified operand, operator or
lost update error had occurred, these correctional steps would destroy the code
of the result because the dynamically computed expected signatures used for
correction would not match the actual existing ones.

The version counter D is incremented in each iteration of the interpreter main Version
managementloop (line 52). This enables us to detect lost updates because operands have

to contain the expected D. Therefore, the version of each result computed is
updated to D + 1 during the computation of this result (see lines 25 and 39).
Of course then the versions of all other encoded values do not match the version
counter D. Listing 7.1 uses the naive approach to handle this problem. It updates
the version of all other encoded values to ensure that they match the current
version information D. However, this is too expensive. Thus, we presented in
Section 4.7 more efficient approaches, which are used by the proof-of-concept
implementation of our encoded interpreter.

120 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

Last, we increment the encoded instruction pointer stored in IP c using a specialIncrementing the
instruction pointer encoded addition of an encoded one for moving the pointer to the next instruction.

This addition also increases the version D of the encoded instruction pointer
by one and adapts its signature to the new functional value of IP c. As a
result IP c points to the next instruction to be executed and has the correct
signature h(IP,D). The encoding of the instruction pointer and the checks of
its encoding that are part of each instruction execution ensure that errors during
the incrementation or storage of IP c are detectable.

7.3.4. Encoding of Control Flow Instructions

The DLX instruction set, which is executed by our encoded interpreter, contains
jumps and conditional jump as instructions for managing the control flow of a
program. These instructions modify the instruction pointer IP. For all these
jump instructions we provide encoded versions. Encoded unconditional jumps
use an encoded addition operation to apply the also encoded offset to the encoded
instruction pointer IP c, and encoded conditional jumps additionally use an
encoded if-statement as described in Section 4.2.1 to implement the decision if
a jump is executed or not. Furthermore, conditional and unconditional jumps
as well update the signature of the instruction pointer IP c.

The DLX instruction set used by the DLX compiler we use does not contain call
instructions. It implements calls to internal function, that is, calls to functions
whose source code is part of the program, using the available jump instructions.
Calls to external functions defined in a library are not supported currently.
Thus, no encoding of call instructions is required for our SEP proof-of-concept
implementation.

7.3.5. Input and Output

Input and output functions – usually provided by system calls – are the bound-
aries of the sphere of protection provided by SEP. For both we implement
wrapper functions. While the wrappers of input functions execute the original
unencoded system call and encode the returned values, the wrappers of output
functions decode the inputs and use these decoded inputs for calling the orig-
inal unencoded system call. Before a value is decoded, the value, its address,
and the current version information D is sent to the code checker for approval.
We present more details about the checking of these values in the following
Section 7.3.6.

The DLX interpreter that we extend supports system calls for

• opening, reading, and writing files,
• allocating and freeing memory,
• writing output to an output stream, and
• exiting the program.

We provide encoding and decoding wrappers for all those system calls.

7.3. PROGRAM ENCODING 121

7.3.6. Code Checking

Encoding alone will not result in the recognition of errors. Therefore, the code
has to be checked.

When and how often code checking is performed influences performance and the When to check
the code?latency of error detection. The more often the encoding of instruction results is

checked, the faster an erroneous execution is detected. However, code checking
has to be done at least before data becomes externally visible. This generates the
smallest overhead but results in the largest detection latency. We implemented
the checking of externalized values only.

For checking the encoding of data, we send the encoded data item, the address How is the code
checked?of the data item, and its expected version to the checker. A code word in SEP

is valid if the condition xc mod A == h(&xc, D) holds where &xc denotes
the address where xc is stored. The address &xc either identifies a register or
a memory location. D is the expected version that either equals the global
version counter or is determined using a version management data structure as
introduced in Section 4.7.

In addition to checking if a data value is a valid code word, the validity of the
encoded instruction pointer IPc has to be checked because control flow errors
might only manifest in destroying the IPc’s signature. Thus, with every check
of an encoded value also IPc is checked.

In the VCP, code checking is done by a trusted hardware part. For SEP, code Implementation of
the code checkerchecking can be implemented using another (standard) hardware unit, e. g., an

FPGA or a graphics card. Of course the standard hardware used might also
be prone to execution errors such as transient or permanent hardware failures.
However, the code checking itself is a very simple process that just requires

• the computation of the signature expected expected for this code word:
h(addr,D) = (addr ∗D) mod A,

• the computation of the signature contained in the value checked using a
modulo operation, and

• finally the comparison of these two values and an appropriate reaction.

Thus, several methods to make this process safe, i. e., to ensure that execution
errors influencing it are detected, are applicable. For example, redundancy
schemes such as triple or double modular redundancy could be used or the
checker could be even encoded. For all these approaches, in the end a small
trusted part is required that is guaranteed to be executed error-free. For the
redundancy schemes that is the voter required or for an encoded checker a simple
code checker is necessary. However, note that for a false negative, that is, an
undetected error, it is required that first an error in the execution happens and
second a matching error in the code checker used occurs. In contrast to false
negatives, false positives, that is, the detection of errors in a correct execution,
from a safety point of view, are acceptable as long as their frequency is low
enough.

Furthermore, the usage of several checker implementations in parallel is possible
to further reduce the risk of not detecting an invalid code word. Each of the

122 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

checkers can independently interrupt the execution of the main CPU if it detects
an erroneous execution. It is also possible that SEP generates encoded output
that is used by another SEP interpreter or whose encoding is checked by its
user.

Remember the actual decoding in our implementation is done by the encoded
interpreter. Any function that externalizes data is replaced with a decoding
wrapper. Before executing the externalization, this wrapper sends the values
that are about to be externalized together with the current encoded instruction
pointer IPc and the data required for code checking to the checker. After
approval, it decodes the values and outputs them, for example, by printing them
on a display. The checker itself cannot perform the output because it has no
access to the system resources required for performing the output. Thus, it is
not possible to protect the output itself in our current SEP implementation. The
sphere of protection for our current SEP implementation ends with sending the
data to the code checker. However, if the safety requirements make it necessary,
this can be changed in a way that ensures that the decoder produces the output
as it is the case in the VCP.

For detecting if the interpreter has crashed or hangs, the code checker also hasAliveness checking

to implement a watchdog functionality. Therefore, the interpreter periodically
sends an alive-signal to the checker to reset the watchdog. The timeout of the
watchdog and, thus, the frequency required for the alive-signal depend on the
application’s requirements. For example, for realtime applications, the deadlines
for the outputs of the application can be used. In this case, the alive signal can
be combined with the checking of the application’s outputs.

Note that this approach does not support applications that block by design.
This behavior should be avoided in safety-critical systems.

If an invalid code word is detected by the checker or the watchdog is not resetError handling

by the interpreter, the execution of the interpreter is stopped, that is, fail-stop
is realized instead of arbitrarily erroneous output. Using this fail-stop behavior
fault tolerance can be implemented for example by going back to a checkpoint
or by recomputing invalid data. However, fault tolerance is not in the scope of
this thesis.

Our current SEP implementation contains a software-based implementation of
the code checker. Currently, this code checker runs on the same hardware as the
encoded interpreter. This checker was excluded from the error injection that we
used for evaluating the error detection capabilities of SEP.

7.4. Evaluation

We evaluated the error detection capabilities of SEP and the impact that SEP
has on the runtime of applications. The following two section present our
experiment setups and the results we obtained.

7.4. EVALUATION 123

7.4.1. Error Detection Capabilities

To test the capabilities of SEP to detect errors, we use our error injection tool The error injector

FITgrind [WF06] that we will introduce in Chapter 9. FITgrind probabilistically
injects errors of the following types:

• bitflips in memory,
• bitflips on results of operations, that is, bitflips in registers, and
• execution of different instructions.

The number of bits flipped is chosen according to an exponential probability
distribution. Thus, mostly one bit is flipped and the probability of n bits flipping
decreases exponentially with n. Note that FITgrind does not inject all symptoms
defined in Section 2.5.

We compare the three following execution variants:

encoded interpreter The encoded interpreter was used for executing the binary.
We used a prime A that added 16 bits of redundancy.

unencoded interpreter The unencoded version of our interpreter was used to
execute the binary.

native The executed program was compiled to the native architecture and
executed.

FITgrind executes an error-free golden run before the execution of the injection
runs. The results of an injection run are compared with the results of this
golden run. We checked if any erroneous output, i. e., output differing from the
golden run, was generated, and if an error was recognized either by the OS or
the interpreter.

For the error injection experiments, we used md5 that computes the MD5 hash Experiment setup

of a string. We executed md5 around 8000 times for each execution variant. In
each of these runs errors were injected probabilistically. For each run, FITgrind
was initialized with another random number and, thus, generated different error
patterns. The results we classified as follows:

correct and complete The generated output does not differ from the golden
run, despite the injected errors.

correct but incomplete The generated output was not complete, but it was a
prefix of the output of the error-free golden run. In this case, the application
crashed during execution or was stopped. For most applications, this
crashed or stopped execution can be detected and, thus, we consider this
outcome safe.

no output No output was generated. In this case, the application crashed or
was stopped before generating any output.

incorrect output Output was generated that differed from the golden run. This
includes not only runs were some parts or the whole output differed, but
also runs which first generated completely correct output and afterwards
appended additional output.

The first three output types are safe, i. e., no erroneous output is generated. But
the last type – incorrect output – represents an unsafe behavior. If a system

124 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

generates this type of arbitrary, incorrect output, it is not fail-stop.

Figure 7.3 shows the obtained results for our error injection experiments onInjection results

md5. While the encoded interpreter produced no unsafe (incorrect output) at all,
4% and 9% respectively of the unencoded interpreted and the native injection
runs produced incorrect output. On the other hand, 31% of all native runs and
15% of the unencoded interpreted runs produce complete and correct output
despite the injected errors. For the encoded interpreter, only 0.06% of the runs
under error injection produced completely correct results. That shows that the
interpreter detects errors even before they can propagate and become visible.
Thus, encoding can be used to detect hardware that becomes unreliable due to
aging. Note, however, that the parts of the encoded interpreter that are not yet
encoded such as bitwise logical operations or unaligned memory accesses were
excluded from the error injections.

correct and
complete

correct but
incomplete

no output incorrect output
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

unencoded

encoded

native

%
 o

f e
xe

cu
tio

ns

}unsafefailsafe

Figure 7.3.: Error injection results: Classification of output generated by runs
that are subject to the injection of bitflips in memory and operation
results and execution of different instructions.

Furthermore, we classified the error injection according to the kind of error
detection. The results show which amount of detected errors is detected by the
encoding itself and which amount is detected by other means. We distinguish
the following kinds of error detection:

recognized by the operating system (OS) The operating system recognized
an error and crashed the application. For example, a segmentation fault
might have occurred.

killed by FITgrind The application ran much longer than the golden run and
was killed by FITgrind. These runs might be caused by infinite loops
caused by the injected errors.

7.4. EVALUATION 125

no error recognized No error was recognized. Most of these runs either gener-
ated correct and complete or incorrect output

fail-safe inconsistency Here the interpreter detected an inconsistency, e. g., an
unaligned jump.

fail-safe invalid code These are errors recognized by the encoded interpreter
because an invalid code word was found.

Figure 7.4 presents the distribution of kinds of error detection that occurred
in our injection experiments. Most of the errors are detected by the operating
system. Only a small part is detected by the interpreter. Obviously, the structure
of the interpreter adds redundancy that leads to additional error detections
by the operating system: For the encoded and the unencoded interpreter rate
of errors detected by the operating system is significantly higher than for the
native execution. The interpreter itself does consistency checks apart from code
checking. This leads to further detections even for the unencoded interpreter.
There are no timeouts (killed by FITgrind) for the unencoded and encoded
interpreter. Obviously, the code and consistency checks already prevent deadlocks
and endless-loops for our benchmark.

recognized by
OS

killed by
FITgrind

no error
recognized

failsafe
inconsistency

failsafe
invalid code

0

10

20

30

40

50

60

70

80

90

unencoded

encoded

native

%
 o

f e
xe

cu
tio

ns

Figure 7.4.: Error injection results: detected kinds of errors.

7.4.2. Runtime Overhead

The results of our performance measurements are presented in Table 7.1. We
measured the runtimes for the following set of programs which were chosen to Experiment setup

have a broad set of different data usage patterns:

matrix-50: Multiplies two matrices of the size of 50. This benchmark is
computation intensive and uses a lot of multiplications whose encoding is

126 CHAPTER 7. SOFTWARE ENCODED PROCESSING (SEP)

quite expensive in terms of runtime1.
prime-5000: Computes the prime numbers up to 5,000 using the Sieve of

Eratosthenes. This is less computation intensive, but has many memory
accesses and input/output.

md5-10000: Computes the MD5 hash of a string that has a length of 10,000
characters. This represents a real world problem. It is a mixture of loops,
branches and computations.
Note that md5-10000 contains a large amount of bitwise logical operations,
which are executed unencodedly in our SEP interpreter implementation.
Thus, for a completely encoded version of md5-10000, higher slowdowns
have to be expected.

quicksort-1000: A quicksort, sorting 1,000 numbers. Quicksort is the least
computation intensive of our benchmarks.

The runtime measurements we performed on an AMD Athlon 64 running with
a clock rate of 2200 MHz under SuSE Linux (2.4-based kernel). For measuring
the runtime, GNU time was used. To measure the native executions thousands
of runs were executed and the resulting span of time divided by the number of
executions. The executions with the unencoded and the encoded interpreter
were done in the same fashion. However, only five executions were used. The
compilation was done with optimization (level O3).

program native
unencoded encoded
interpreter interpreter

matrix-50 0.00125s 4.63s 19.74s

prime-5000 0.00029s 0.27s 6.77s

md5-10000 0.00001s 0.74s 2.49s

quicksort-1000 0.00112s 1.04s 2.30s

Table 7.1.: Runtime comparison [Kna06]

The native versions were compiled using gcc-3.3 and optimized for the Intel
(CISC) architecture while the DLX-binaries were generated using the DLX-
compiler, which is based on gcc-2.7 that does not optimize for the DLX (RISC)
architecture.

The slowdown generated by the interpretation (native vs. unencoded interpre-Slowdowns
observed tation) ranges from around 900 times slower for quicksort and prime up to

74,000 times slower for the md5 program.

The slowdown induced by the encoding (unencoded vs. encoded interpretation)
ranges from around 2 times for quicksort up to 25 times for prime. Programs
which are more computation intensive as prime or matrix result in a higher
slowdown than less computational intensive ones such as quicksort that mostly
compares and swaps.

1Note that the performance impact of multiplications for SEP is even worse than the mea-
surements in Section 4.2.1 suggest because SEP still uses software implementations of the
128-bit operations.

7.5. SUMMARY OF SEP 127

We have not tuned the performance of SEP. Obviously, the interpretation itself
adds much to the runtime overhead. This overhead could be reduced to a range
that is similar to other machine level interpreters, e. g., by using just-in-time
compilation. For example, the overhead factor of QEMU is in the range of 4 to
10 [Bel05].

7.5. Summary of SEP

To summarize, the advantage of SEP is that every binary can be executed Advantages

in an encoded fashion without requiring its source code. Furthermore, any
kind of control flow as well as dynamically allocated memory are supported.
No explicit encoding for function calls – direct or via function pointer – for
if-statements or loops is required. Thus, also nested control flow statements
are easily encoded. On the other hand, the sphere of protection compared Disadvantages

to VCP is reduced. Protection only starts when the process image either is
encoded or an encoded signature of it is computed that later facilitates encoded
checking for modifications. However, its greatest disadvantage is the overhead
generated. Encoded operations are already significantly slower than unencoded
ones. Interpretation and signature management further worsen performance.

To improve the performance and to extend the sphere of protection, we decided
to develop an encoded compiler that is presented in Chapter 8. Binaries that
were already encoded at compile time require no additional interpretation at
runtime. Furthermore, their protection starts with the encoding at compile time
and also facilitates the detection of errors introduced by processing tools applied
to the program after encoding, for example, the linker.

However, to use an encoding compiler to provide detection of execution errors,
the source code of the safety-critical applications has to be available. But we
expect that the source code of critical components is anyhow required because
when building a safety-critical system we have to be able to fix bugs or modify
the behavior of the components used.

8. Compiler Encoded Processing
(CEP)

In this chapter we will introduce our encoding compiler that we developed
because neither the Vital Coded Processor (VCP) (introduced in Chapter 6) nor
Software Encoded Processing (SEP) (introduced in Chapter 7) are practically
usable for encoding applications that support dynamically allocated and accessed
memory and data and control flow that cannot be predicted statically. While
the VCP does not support dynamically allocated and accessed memory and data
and control flow that cannot be predicted statically, SEP supports both but its
performance impact is too high for usage in safety critical systems.

Forin’s VCP [For89] ANBD-encodes an application on source code level. As Disadvantages
of VCPwe point out in [WM08a] and in Section 6.4, VCP requires knowledge of the

complete data and control flow of the encoded program to precompute the
signatures of all output variables for code checking. This prohibits the usage of
dynamically allocated memory. Furthermore, encoding loops and nested control
flow structures at source code level is cumbersome and not described by Forin.
We assume it has to be done by hand and is not automated. Thus, the VCP is
only applicable to small applications. Forin presents neither an evaluation of
the error detection capability of VCP nor any runtime measurements.

Our first encoding solution, SEP, implements ANBD-encoding on assembler level Disadvantages
of SEPat runtime. Therefore, we developed an interpreter for programs given as binary

that itself is encoded using the principles of the VCP [For89]. Thus, we can
encode arbitrary programs with arbitrary control flow. To encode dynamically
allocated memory, we introduced the already mentioned dynamic signatures
(see Section 4.6) that are determined at runtime. The error injection results
presented in [WF07b] and Section 7.4 show that SEP successfully prevents
erroneous output. However, the observed slowdowns make SEP unusable in
practice and, thus, we stopped its development. Hence, SEP’s current encoding
remained incomplete because replacement operations as described in Section 4.2.2
were not yet used for SEP. Thus, for example, bitwise logical operations are
executed unencodedly and were not targeted in the error injections presented in
Section 7.4.1.

In contrast to VCP and SEP, CEP that we introduce in this chapter encodes CEP vs
VCP and SEPprograms at the intermediate code level. In our case, we encode programs

by instrumenting LLVM bitcode [LA04]. In contrast to previous encoding
approaches (VCP and SEP), adding the encoding at intermediate code level
at compile time needs new concepts to encode the control flow. These newly
developed concepts we published in [SSSF10a] and we will present them in more

129

130 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

detail in Section 8.3.3. However, encoding the intermediate code makes encoding
control flow easier compared to encoding at source code level because it is not
necessary to handle nested control structures explicitly. In contrast to the VCP,
CEP provides automatic encoding of programs with arbitrarily nested control
structures and dynamically allocated memory.

In contrast to SEP, CEP provides a more complete protection because:

1. CEP uses the replacement operations, which are not yet used by SEP.
Thereby, for example, encoded execution of bitwise logical operations and
shift operations is supported.

2. CEP also protects against bugs in the compiler back-end that generates
code for a specific machine. SEP cannot detect compiler bugs because
encoding is only applied at runtime. However, using additional checksums,
SEP can at least safely detect modifications of the still unencoded binary.

At the same time, CEP introduces much less overhead than SEP because
no expensive interpretation is required. Furthermore, CEP restricts usage of
expensive dynamic signatures to dynamically allocated memory. CEP uses static
signatures (i.e., signatures computed at compile time) for all statically allocated
memory, that is, memory for which we know at compile time the amount that
is allocated and when which memory location is read or written. In contrast,
in SEP, every data item has a dynamic signature because all signatures are
assigned at runtime due to the interpreter-based implementation which prevents
any predicatability of variable and memory accesses.

In the following, we will first give an overview of the execution environment ofChapter overview

binaries encoded by our encoding compiler. Next, we will describe the workflow
used to obtain an encoded binary. This is followed by a detailed description
of the encoding applied by the encoding compiler. We focus especially on the
encoding of control and data flow which is the main contribution of this chapter.
The encoding of simple data transforming operations such as arithmetic or
logical operations is already described in Chapter 4. Last, we will present our
evaluation of CEP that is comprised by measurements of the error detection
capabilities, the generated additional runtime, and a comparison to other error
detection approaches such as replication.

8.1. System Overview

Figure 8.1 summarizes the execution environment of a binary that was encoded
using our encoding compiler. This binary is directly executed by the CPU
without the need for an additional interpreter or virtual machine.

The encoded binary takes input variables and produces output variables. In ourInput/Output

current implementation of CEP, input of an application is encoded at runtime,
and its output is decoded at runtime. In the future, the system could be
extended to support direct communication of different encoded applications.
Therefore, encoded applications could directly exchange encoded data. Thereby,

8.1. SYSTEM OVERVIEW 131

Input

variables

output

variables

encoded

binary

error signal

products of the development process

data not available during development

trusted parts, i.e., required to function correctly

CPU executing

checker

check value

expected check values

Figure 8.1.: Execution environment of an encoded binary.

the protection provided by encoding can be extended to the communication
occurring between these applications.

In contrast to VCP, for CEP, we do not known at compile time when exactly
input and output takes place. The reason is that for CEP, control and data flow
are not required to be predictable at compile time. Nevertheless, we are able to
assign static signatures to input variables and to precompute static signatures
for output variables. The reason is that within basic blocks1, which may contain
input or output functions, the control flow is predictable statically, i. e., at
compile time. Only for checking the control flow between basic blocks a dynamic
approach is used. Furthermore, also the data flow between the variables of one
basic block is statically predictable. Only data flow in dynamically accessed
memory is not predictable statically. However, in LLVM, the parameters and
results of input and output functions are always statically allocated variables.
Thus, we know at compile time when an input or output function will be called
within a basic block and which variables it uses. Hence, we can assign static
signatures to the parameters and results of input and output functions.

During its execution the encoded binary continuously produces check values. Execution checking

These values and their order are determined during encoding, i. e., at compile
time. The list of expected check values is stored in the checker. Note that the
encoded binary itself does not contain this list directly. If an error disturbs
the execution, the encoded binary will produce unexpected check values with
high probability. That will be detected by the checker, which has the list of
the expected check values. The checker is a watchdog that checks that the
encoded binary continuously sends check values and that the values received by
the checker match the expected values. If a mismatch is detected or no value is
received in time, the execution of the encoded application is stopped because it
is assumed to be erroneous.

1“A basic block is a linear sequence of program instructions having one entry point (the first
instruction executed) and one exit point (the last instruction executed).”[All70]

132 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

As for VCP and SEP, CEP requires that the checker is not disturbed by executionTrusted parts

errors. The CEP-checker executes a simple algorithm that consists of a watchdog
and the comparison of the check values received with the check values expected
and stored in the checker. Thus, several mechanisms such as duplication or
VCP-based encoding can be used to make the checker safe, i. e., insusceptible to
execution errors. Furthermore, several checkers can be used independently in
parallel. If any of them detects an error, it will halt the application.

8.2. Workflow

Our encoding compiler takes a C program as source code as input and produces
an encoded binary and the list of expected check values. The encoding com-
piler supports different encodings. The user can decide which of the following
encodings is applied to the program using a compiler flag:

• an AN-code,
• an ANB-code, or
• an ANBDmem-code, that is, an ANBD-Code is used for all dynamically

allocated and accessed memory and an ANB-Code is used for the remaining
statically allocated memory, for example, the variables used by a basic
block.

Nevertheless, the encoding compiler poses some restrictions on the input source
code. The binary produced by the encoding compiler is a 64-bit binary. However,
the C program is not allowed to process integer types larger than 32-bit becauseRestrictions of the

source program we use the additional 32 bit for the redundancy introduced by the multiplication
with A and the addition of the signature. Furthermore, all floating point
operations have to be implemented using an encodable software implementation
of floating point operations such as [sof09]. During compilation and encoding,
we modify the program so that it is ensured at runtime that stack and heap
addresses will never become larger than 232 − 1. This is required because we
encode address computations and memory accesses also.

Figure 8.2 shows the structure of the encoding compiler and the intermediate
results produced. First, the compiler frontend translates the C source code intoTranslation

to bitcode a lower-level intermediate code. By exchanging the compiler frontend other
source languages then C code could be supported in the future. In our case, the
generated intermediate code is the LLVM intermediate code (LLVM bitcode)
because our encoding compiler is based on the LLVM compiler framework [LA04],
which also provides the compiler frontend that we use. The advantage of LLVM
bitcode, in comparison to any native assembler, is its manageable amount of
instructions for which we have to provide encoded versions and the available
LLVM framework for analyzing and modifying LLVM bitcode. We will provide
a short introduction into the LLVM bitcode in Section 8.3.1.

In the next step, several encoding passes provided by us transform the unencodedEncoding
of bitcode bitcode, i. e., the unencoded intermediate code that represents the program, into

encoded bitcode. This requires nearly a complete rewrite of the code because
we have to:

8.2. WORKFLOW 133

compiler

encoding

source code

encoded binary
expected

check values

compiler

frontend

unencoded

intermediate code

encoded

intermediate code

compiler

backend

encodable replacement

operations

memory

implementation

encoding

passes

artifact

tool

library used

base operations

encoded

Figure 8.2.: Structure of the encoding compiler.

• ensure that all memory accesses – both to stack and heap – use only
addresses that have at most 32 bits,

• replace all processed data items with their encoded versions, which require
a larger data type,

• replace all operations either
– with their encodable replacement operation before the actual encoding

is done, or
– with calls to their encoded counterparts during the encoding process,

• add the code that sends the check values to the checker,
• for the ANB- and the ANBDmem-encoding, we have to add the encoding

of data and control flow, and
• we have to add code for handling input and output, which is realized by

calling external functions, i. e., functions whose source code is not available
to us and, thus, is not encodable.

Last, the bitcode encoded in this way is transformed into an executable binary Lowering

using the compiler backend . The compiler backend is also provided by the LLVM
compiler framework. Generating the executable binary requires to lower the
bitcode to native machine code, and to link the resulting native machine code with
the libraries implementing the encoded base operations and the implementation
of the encoded memory backend. We describe the implementation of the encoded
base operations in Section 4.2.1. The memory backend contains all functions
required to encodedly access dynamically allocated memory. We describe its
implementation in Section 8.3.3 on page 150.

Note that it is not required to link in the replacement operations, which are
used to substitute specific operations with an encodable implementation of the
operation’s functionality (see Section 4.2.2). The replacement operations are

134 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

already inserted by one of the encoding passes before the actual encoding is
done. This is required because their implementation is automatically encoded
by subsequent encoding passes that follow the one that applies the replacement
operations. Therefore, naturally, their implementation has to be already part of
the bitcode.

8.3. Program Encoding

This section describes how we encode LLVM bitcode. Thereby, we focus on the
description of the encoding of the control and data flow because for these parts
of the encoding CEP uses different approaches than VCP and SEP.

First, we will introduce LLVM bitcode. Afterwards, we first discuss the prepara-
tions we apply to the unencoded bitcode that the compiler frontend generates.
These preparations include, for example, the application of the replacement
operations. This is followed by the discussion of the actual encoding.

8.3.1. LLVM Bitcode

This section introduces the LLVM bitcode. A basic understanding of LLVM
bitcode is required for understanding the following sections. An extensive
reference can be found on the LLVM website [LLV].

Programs in LLVM bitcode are composed of modules. Each module represents
one compilation unit. We link all modules of the program that we encode into
one module using the LLVM linker before passing the program to the encoding
passes.

Modules contain global variables, functions, and symbol table entries. GlobalModule structure

variables and functions are also denoted as global values and their names always
start with an @.

Each function definition starts with the function declaration using the defineFunction

keyword. The declaration determines the name and type of the function. The
type of a function comprises its return type and its parameters with their types.

A function’s implementation consists of basic blocks. One of the basic blocks is
marked as the entry block with which the execution of the function starts. A
basic block is a list of instructions, for example additions or loads from memory.
The first instruction is called the entry point and execution of the block always
starts with this instruction. Furthermore, the basic block is always closed with
one terminator instruction, for example, a conditional branch instruction, that
exits the block. The variables – so-called registers – local to the function have
names starting with a %.

Global and local variables in LLVM bitcode are typed, that is, each variableType system

– often also called a register – has a type such as i32 representing a 32-bit
integer or float representing a floating point value. LLVM bitcode provides
cast operations that allow to assign the content of a variable of one type to a
variable with another type.

8.3. PROGRAM ENCODING 135

Not only basic types are supported, but also so-called derived types such as
pointers, structures, unions, vectors, and arrays. The pointer type is used to
access values stored in variables of an aggregate type such as structures or arrays.
Variables of such aggregate types are always located in memory that is explicitly
accessed using load and store operations. For accessing their content, a pointer
is explicitly dereferenced using the getelementptr instruction that implements
the required pointer arithmetic. A getelementptr instruction receives always
a pointer and several indices as parameters. The pointer is the base address
and the indices identify the element of the aggregate data structure that shall
be accessed. The actual reading or writing access to the address computed by
getelementptr is executed by an explicit load or store instruction.

LLVM bitcode provides several control flow instructions. These are used as Control flow

terminator instructions and are always the last instruction in a basic block.
Supported control flow instructions are:

br is a conditional or unconditional branch to statically known basic blocks.
indirectbr is a branch whose destination is chosen from a list of possible desti-

nations at runtime.
switch chooses the destination block among a set of possible destinations based

on an additionally given integer value.
invoke and unwind are function calls with a specific semantics that enables the

implementation of exception handling.

Note that calls to functions using the call instruction do not terminate a basic
block in LLVM bitcode. Nevertheless, they are control flow instructions that we
have to encode.

In LLVM bitcode memory can only be accessed using explicit load and store Memory access

instructions. Other instructions such as additions or control flow instructions
always take registers as parameters. They cannot access parameters in memory
or store results to memory.

LLVM bitcode is a single assignment architecture, that is, for every variable Single assignment
formonly one assignment in the whole module exists. Thus, for realizing loops and

joins after a conditional execution, an additional instruction is necessary – the
so-called phi instruction. Phi instructions are always placed before the non-phi
instructions of a basic block. A phi instruction assigns a value to a variable.
The value that is assigned depends on which basic block was executed previously.
Therefore, a phi instruction has a list of (value, basic block)-pairs. This list
maps a value to each possible predecessor basic block. Depending on the basic
block executed before the entered block, the matching value is chosen from this
list for assignment.

Listing 8.1 depicts a simple LLVM bitcode module that demonstrates the
concepts introduced in this section. In the example, the function @main is
defined, which executes an endless loop that increments a counter %indvar. The
variable %indvar of the integer type i32 is either assigned 0 if the basic block
%Loop was entered from %entry, i. e., for the first time, or it is assigned the
value of %nextindvar if the block was entered from loop.

136 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

1 define i32 @main(i32 %argc , i8 ∗∗ %argv) {
2 entry :
3 br label %Loop
4

5 loop : ; I n f i n i t e loop that counts from 0 on up
6 %indvar = phi i32 [0 , %entry] , [%nextindvar , %loop]
7 %next indvar = add i32 %indvar , 1
8 br label %loop
9 }

Listing 8.1: Example program in LLVM bitcode.

After introducing LLVM, we can now present how we encode LLVM bitcode.
We start with the preparations required in the next section.

8.3.2. Preparations for Encoding

Before the actual encoding is done, we transform LLVM instructions which we
cannot directly encode, into instructions that we can encode. Note that, therefore,
an instruction might also be replaced by several instructions. Furthermore, we
increase the size of allocated memory regions to 4-byte boundaries. This is
required because encodable unaligned loads and stores are implemented using
loads of 4-byte chunks. If a memory region has a size that is not divisible by 4
bytes, we might otherwise access unallocated and uninitialized memory. This
process of replacing instructions with their encodable versions and increasing
the size of the memory regions allocated we call preparation for encoding.

Our passes that do the actual encoding are able to handle all base operations
as presented in Section 4.2.1, conditional and unconditional branches, memory
accesses using load and store instructions, and function calls. However, they
are not able to encode long jumps, indirectbr instructions, calls to invoke

and unwind, switch and select statements, alloca instructions that allocate
memory on the stack, and all the instructions for which we provide replacement
operations (see Section 4.2.2) such as casts and bitwise logical operations.

For some of the required replacements of not directly encodable instructions, we
use passes that are already provided by the LLVM-framework. For others, we
provide our own passes to transform these instructions into encodable imple-
mentations. See Table 8.1 for a summary of the instructions that we replace
using existing LLVM passes and Table 8.2 for a description of our own LLVM
passes for replacing not directly encodable instructions.

instruction pass name description

longjmp lowersetjump replace longjmp with invoke and unwind

invoke and unwind lowerinvoke remove invoke and unwind using calls

switch lowerswitch replace switch using conditional branches

Table 8.1.: Descriptions of preparations that we realize using existing
LLVM passes.

8.3. PROGRAM ENCODING 137

Most of these preparations can be executed in any order. However, for some we Order of
preparationshave to ensure a specific order. For example, long jumps have to be handled before

invokes and unwinds are removed because long jumps are replaced using invokes
and unwinds which also have to be removed by replacing them with normal
calls. Another example, is the getelementptr instruction. First, getelementptr
instructions with several indices have to be transformed into getelementptr
instructions that have at most two indices. Afterwards, these are transformed
into an explicit address computation using arithmetic operations. Our framework
of encoding passes enforces the order required.

Currently, our preparation and encoding passes support large parts of the LLVM
instruction set but not the complete instruction set. None of our preparation and Currently

unsupported LLVM
instructions

encoding passes supports floating point operations. Currently, these operations
have to be replaced by hand with an integer-based software implementation
such as [sof09]. In the future, an automated replacement before the actual
encoding can be implemented. Currently, we do also not support the vector
operations provided by LLVM bitcode. These operations allow to process vectors
of elements of the same type with the same operation. These could be also
handled by automatically replacing these vector operations by single operations
for each entry of the vector. Furthermore, the indirectbr instruction is currently
unsupported. However, an additional preparations pass can be implemented that
replaces indirectbr instructions using conditional branches, which are encodable
by our encoding passes.

8.3.3. Encoding

After we prepared the LLVM bitcode for encoding we can apply the actual
encoding passes. These passes replace every instruction and every variable with
its appropriate encoded version. In detail the following is done:

1. All variables are replaced with their encoded version. Therefore, we have
to be able to encode variables of different types.

2. All data transforming instructions are replaced with their encoded version.
3. All constants and their initializers are replaced with their encoded values.
4. For ANB- and ANBDmem-encoding, signatures are assigned and additional

instructions for encoding the data flow within a basic block are added.
Thereby, the control flow within a basic block is also encoded.

5. Conditional and unconditional branches are replaced with their encoded
versions. Thereby, the control flow between basic blocks is encoded.

6. Calls to internal functions are encoded.
7. Calls to external functions are replaced with calls to their encoding/de-

coding wrappers.
8. Memory accesses are replaced by their encoded versions.

In the following sections we will describe each of these steps in more detail.

138 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

instruction applied transformation

select (chooses one
value based on a
condition)

replace select using conditional branches, assignments
and phi instruction

getelementptr
instruction with
more than two
indices

transformation into several successive getelementptr
calls with two indices

getelementptr
instruction with
one or two indices

transformation into explicit address computation us-
ing additions and multiplication; therefore, the size of
the accessed data structures is determined using a na-
tive helper binary that writes out the size’s that data
structures used have on the target platform

seteq and setne replace with an implementation based on greater and
less comparisons connected by a boolean and for ANB-
and ANBDmem-encoding; for AN-encoding equality
and inequality are directly encodable and, thus, are not
replaced during the preparations

alloca instruction
(allocates memory
on the stack, this
memory can only
be accessed using
load and store in-
structions)

replace with our own encodable stack implementation;
however, note that currently this implementation is not
encoded due to an unresolved error occurring during
its encoding; instead it is treated as external library

shift operation
cast operation
unaligned load or

replace with appropriate replacement operations;
store

see Section 4.2.2
urem and srem
bitwise logical op-
eration

memory allocation increase size of allocated memory region so that it is a
multiple of 4-bytes

Table 8.2.: Descriptions of preparations for which we implemented our own
LLVM passes that apply these preparations.

Step 1: Encoding Variables of Different Types

We are able to encode the following primitive data types:Primitive data
types

• integer types of the sizes 8, 16, and 32 bits
• boolean variables, i. e., an integer with the size of 1 bit, and
• pointers.

8.3. PROGRAM ENCODING 139

The encoded version for all these different types is always a 64-bit integer, that
is, all variables of the program are replaced with 64-bit integer variables.

Furthermore, our encoding passes are able to handle variables with a derived Derived data
typesdata type such as arrays, strings (which are a special case of arrays), and

structures. Remember that variables of these types are only accessable using
pointers and getelementptr, load, and store instructions. Thus, the encoding
of variables with derived data types is facilitated by the ability of our encoding
passes to encode pointers, getelementptr instructions, and load and store

instructions. Additionally, we enabled the encoding passes to initialize the
encoded versions of variables with a derived data type with appropriately encoded
data values. However, vectors and vector operations are not supported by our
current implementation.

In spite of all encoded variables with a primitive data type being 64-bit integers,
operations whose semantics depends on the data type of the processed value
observe the restrictions posed by the data type of the unencoded operands. For
example, the unencoded addition %res = add i8 %param1, %param2, which adds two
8-bit integer values, in its ANB-encoded version becomes:
%res c = call i64 @add anb 8(i64 %param1 c, i32 %sig1, i64 %param2 c, i32 %sig2, i32 %A).
Thereby, the function @add anb 8 implements the overflow behavior of an addition
of 8-bit integer values, that is, the addition of the functional values is realized
as an addition modulo 28. We explained in Section 4.2.1 how we implement
this addition in an encoded fashion. Note that the parameter A contains the
encoding parameter A. A is constant that later is inlined by the compiler. A is
part of the function declaration because this eases unit testing of the encoded
base operations with different As.

At compile time, we have to encode the values of constants (see step 3), and at Encoding

runtime, we have to encode the values returned by calls to external functions
(see step 7). All other operations produce encoded values. When encoding values
whose type is not already a 32-bit integer, we cast it to a 32-bit integer. This
cast always will be an upcast, that is, a cast from a smaller to a larger type. Note
that we use a cast operation that does no sign extension. Otherwise, we would
modify the value of the functional value encoded. After the upcast, 32 bits for
possible redundancy remain because encoded values are 64-bit integers. These
we use for our encoding.

Note that our preparations, our decoding/encoding wrappers for memory allo-
cation, and our encoded memory backend ensure that pointers do not contain
addresses that require more than 32-bits for storage. Thereby, we reduce the
address space supported by our encoded applications. We do not support the
encoding of any other type that is larger than 32-bits.

Some operations require decoding of values. Examples are calls to external Decoding

functions that perform output or accesses to memory that use the decoded
address. After decoding, we first obtain a 32-bit integer. This integer has to be
casted to the intended original type that is used at its place in the unencoded
version of the program. Afterwards, the decoded value can be used. If this
decoded value is used by an external function, the value is completely unprotected

140 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

after this decoding. If this decoded value is used as address in an memory access,
the correctness of the decoded address is checked by other means, which we
present later in this section on page 150 when describing our encoded memory
access operations.

Step 2: Replacement of Data Transforming Instructions

We define data transforming instructions as all instructions that take input values
and produce an output value. Examples are arithmetic operations, comparisons,
and logical operations. We explicitly exclude instructions for managing and
accessing memory and for changing control flow.

After we executed all our preparations, the LLVM bitcode, which we are about
to encode, contains only data transforming instructions for which we provide
a hand-encoded version in our encoded base operations. These encoded base
operations were already introduced in Section 4.2.1.

During encoding, each such data transforming operation is replaced with a
call to its encoded version. This encoded operation uses the encoded variables
instead of the unencoded ones and produces an encoded result. For example,
the unencoded instruction %res = mul i16 $param1, %param2

is ANB-encoded to
%res c = call i64 @mult anb 16(i64 %param1 c, i32 %sig1, i64 %param2 c, i32 %sig2, i32 %A)

or AN-encoded to
%res c = call i64 @mult an 16(i64 %param1 c, i64 %param2 c, i32 %A).
In both cases, our encoded 16-bit implementation of the multiplication is called,
instead of executing the native unencoded multiplication instruction of LLVM.

Note that the type of the unencoded variables is not anymore recognizable on the
type of the encoded variables, but on their interpretation through the operations
processing the variables. While in the unencoded version of the multiplication
the type of the parameters indicates that the multiplication in our example is a
multiplication module 216, we have to call the 16-bit variant – @mult anb 16 or
@mult an 16 – explicitly in the encoded version.

For ANB- and ANBDmem-encoded applications, we provide the signatures of
the parameters when calling one of our hand-encoded base operations. The
values of the signatures expected for the parameters is required for corrections
such as the overflow correction. However, in contrast to our example above,
in our implementation, the signatures %sig1 and %sig2 are no variables but
hard-coded constants. Their values are chosen at encoding time. We here used
variables to clarify the meaning of these parameters. We describe the assignment
of the signatures in step 4.

Special Case: phi Instruction The phi instruction is a special case of a data
transforming instruction. It moves the content of one variable to another. The
source variable is chosen based on the predecessor basic block. For encoding
phi instructions, we replace each value in a phi instruction with its encoded
version.

8.3. PROGRAM ENCODING 141

Remember that, for ANB- and ANBDmem-encoded applications, we provide
the signatures expected for the encoded parameters when calling one of our
hand-encoded base operations. Theses expected signatures are constant at
runtime. The encoded variables used as parameters have to match these expected
signatures. However, encoded values generated by different basic blocks will and
should have different signatures with high probability. Thus, we have to ensure
that encoded values assigned by phi instructions have one signature independent
of the basic block that computed the value. Therefore, we add for every phi

instruction another one that determines an adaptation value for each predecessor
basic block that might compute the value assigned. This adaptation value is
chosen in a way that its addition changes the signature of the encoded value to
the one intended for this basic block. After executing all phi instructions, we add
to each variable assigned by a phi instruction its adaptation value determined
by the matching phi instruction. Thereby, we ensure that these variables will
have always the same signature in this basic block, independent of the basic
block that computed the value assigned to them.

See Listing 8.2 for an unencoded usage of a phi instruction. The variable %var

at the start of bb3 is either assigned %var1 or %var2 depending on which basic
block was executed before entering bb3.

1 bb1 :
2 %var1 = . . .
3 br label %bb3
4

5 bb2 :
6 %var2 = . . .
7 br label %bb3
8

9 bb3 :
10 %var = phi i32 [%var1 , %bb1] , [%var2 , %bb2]
11 . . .

Listing 8.2: Unencoded usage of phi instructions.

We present the encoded version of the phi instruction depicted Listing 8.2 in
Listing 8.3. Note that all original variables (var1, var2, and var) are replaced
with their encoded versions (var1 c, var2 c, and var c), which are 64-bit
integers. In the comments we show the signatures the values assigned will have
in an error-free execution. Line 11 contains the modified original phi instruction
that now uses the encoded variables instead of the unencoded ones. In line 12
we choose the appropriate value for adapting the signature of var c. Note that
the adaptation values are also completely determined during encoding. Thus,
they are constants at runtime and we can hard-code them into the program as
can be seen in line 12. The adaptation value is added to the chosen encoded
value in line 13.

Note that an AN-encoded phi instruction will not contain lines 12 and 13
because no signatures have to be adapted.

Errors that lead to the selection of the wrong encoded value and the matching
wrong adaptation value are not detectable. These errors could happen if the

142 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

1 bb1 :
2 %var1 c = . . . ; B var1 = 22
3 br label %bb3
4

5 bb2 :
6 %var2 c = . . . ; B var2 = 33
7 br label %bb3
8

9 bb3 :
10 ; intended s i gna tu r e f o r var c : B var = 77
11 %var c tmp = phi i64 [%var1 c , %bb1] , [%var2 c , %bb2]
12 %var adapt = phi i64 [55 , %bb1] , [44 , %bb2]
13 %var c = add i64 %var c tmp , %var adapt ; B var = 77
14 . . .

Listing 8.3: ANB-encoded usage of phi instructions.

control flow is disturbed by errors. For detecting them, we added additional
redundancy that checks that the adaptation value expected and the one as-
signed are equal. The details are presented in the diploma thesis of André
Schmitt [Sch09].

Step 3: Encoding Constants and Initializers

LLVM gives us access to all constants and initializers. We choose A and the
static signatures of all variables at encoding time, i. e., compile time. Like
the static signatures of variables we also randomly choose the signatures of
the encoded constants at encoding time. Thus, we can replace the unencoded
constants and initializers with their encoded versions at compile time for all the
supported AN-codes, that is, for the AN-, the ANB-, and the ANBDmem-code
likewise. Therefore, we change the type of the constant and encode its value
using the chosen encoding parameters.

Step 4: Encoding of Data Flow and Intra-Basic Block Control Flow

While an AN-code only detects operation and modified operand errors, an
ANB-code and an ANBDmem-code can be applied in a way that also ensures
the detection of exchanged operands and operators and arbitrary combinations
of these errors. Furthermore, the ANBDmem-code enables us to detect lost
updates of memory.

This and the following steps show how we encode LLVM bitcode with an ANB-
code in a way that facilitates the detection of data and control flow errors for
programs. The same mechanisms are applied to ANBDmem-encoded programs
because they are only different with respect to their encoding of memory accesses.
This section focuses on the data flow and the control flow within one basic block,
that is, that the instructions within one basic block are executed in the correct
order using the intended operands. In constrast, the following steps discuss the
encoding of control flow between basic block and the encoding of function calls.

Remember that the VCP and SEP also provide these comprehensive errorOther approaches

8.3. PROGRAM ENCODING 143

detection capabilities. However, the VCP requires statically predictable data
flow and allows output only at one specific point in the program execution. Only
at this point execution errors are detectable because only there the code of the
output is checked. In contrast to VCP, we implement for CEP a continuous
checking of the program execution. This enables CEP to

1. allow output at arbitrary positions,
2. support programs for which we do not know the data flow statically, and
3. provide fail-fast behavior, that is, CEP detects errors as fast as possible,

thereby, allowing for an earlier reaction to them.

SEP, like CEP, provides encoding for applications with statically not predictable
control and data flow, and SEP also allows output at arbitrary positions in the
program executed. However, SEP has a high runtime overhead.

For detecting any execution errors, CEP checks the encoding of data that Check values for
detecting errorsis about to be externalized for validity. Furthermore, for ensuring the fast

detection of errors and the detection of control flow errors, our application
encoded by the encoding compiler continuously produces check values, which
it sends to the checker. The checker tests if the check value received from the
encoded application equals the check value expected. The goal of the encoding
is that if an execution error happens, the encoded application will not send
the expected check value to the checker. Thus, the generation of these check
values is implemented in a way that ensures the detection of all execution error
symptoms defined in Section 2.5 and supported by the arithmetic code used.

We statically determine the expected check values and give them to the checker
as an ordered list s. We encode the application in a way that it will not produce
the check values expected with a high probability if an error disturbed the
application. The list s of expected check values is indexed by a counter i by the
checker. The counter i counts the check messages received by the checker. The
encoded application also has a counter i for sent check messages. This counter
allows the application to provide the expected check value in an error-free run.
Therefore, the application contains a list delta, which has the same size as the
checker’s list s. However, delta contains the differences of consecutive elements
of s, i. e., delta[i] = s[i + 1]− s[i]. The application does not contain s directly.

To all variables used we randomly assign signatures at encoding time. Therefore, Signature and
correctional value
assignment

we use a uniform distribution. Furthermore, we compute correctional values for
each usage of a variable for adapting the signatures of the encoded variables
before the usage. These correctional values are also constant at runtime. They
are added to the encoded variable before its usage. This addition adapts the
signature of the encoded variable to a value that allows the encoded instruction
using the variable to produce a correctly encoded result. If no adaptation is
required, the adaptation value is zero and the compiler later removes the useless
addition of this zero. For determining the correctional values, the signature
correction functions of our library of encoded base operations are used. We
described signature correction in Section 4.2.1 on page 51.

Using the signatures assigned and the correctional values, we can precompute a Block
signature BBxsignature for each variable computed by a basic block. Using the signatures of

144 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

the computed variables, we compute – also at encoding time – for every basic
block x a block signature BBx . The block signature BBx of the basic block x is
the sum of the signatures of all results produced in this block.

Furthermore, we add an accumulator acc to the application. This accumulatorAccumulator

acc is a global variable that summarizes the complete execution of the encoded
application. It is used to provide the check values that are sent to the external
checker.

The accumulator acc is initialized for each basic block x so that it contains the
next s[i] expected by the checker minus the basic block’s signature BBx, which
is the sum of the signatures of the values computed by this basic block. While
the basic block is executed, the signatures of all results produced are added to
acc. At the end of the block, acc should equal s[i] and is sent (using the send

function) to the checker. The accumulator acc will not contain the expected
value if any error modified the data flow, order of the instructions executed, the
computations, or the data values.

In contrast to existing control flow checking solutions, our control flow checking
implemented using acc provides more than inter-basic block checking. We also
check that every instruction was executed in the correct order, with the right
operands, and its execution itself was error-free.

We will demonstrate the approach discussed in this section on a simple example
in the next section, after introducing the encoding of unconditional branches.

Step 5(a):
Encoding of Inter-Basic Block Control Flow: Unconditional Branch

In this section we will first present our encoding of unconditional branches.
Then we demonstrate the control and data flow checking within a basic block
and between basic blocks connected by an unconditional branch using a simple
example.

Before terminating a basic block by branching to the next basic block, we have
to adapt the accumulator acc for the next basic block. By this adaptation, we
can provide control flow checking. We ensure that if the control flow is transfered
to the wrong basic block after adapting acc, the basic block signature contained
in acc will not be the expected one with a high probability. In this case, the
next check value sent to the checker will we wrong.

To adapt acc for the execution of the next basic block, we subtract the next
block’s signature from acc and update the contained value s[i] to the next
expected check value s[i + 1] by adding delta[i]. Afterwards, i is incremented.
For an unconditional branch, the next basic block is known at compile time.
We can precompute its the signature at encoding time because at this time
also the signatures of all variables used in a basic block are assigned. Thus,
we precompute the signature of the next basic block statically and add an
instruction that subtracts this signature from acc to our source basic block that
contains the unconditional branch that we are encoding.

8.3. PROGRAM ENCODING 145

Note that it is not necessary to encode the counter i that counts the check values
already sent. If i is erroneously modified, e. g., not incremented, modified by a
bitflip or a wrong increment, then the wrong delta will be applied to acc. Thus,
acc at the end of the next basic block will evaluate to a check value not expected
by the checker.

However, with that approach the following error scenario might still occur: It is
possible to jump from any call to send(acc), which sends the check value to the
checker, to any other call to send(acc) because in this moment acc contains the
current s[i] and is only adapted to the next basic block after the call to send.
To prevent this, we assign to each basic block x an ID BBx id. The ID BBx id Basic block ID

is subtracted from acc before a block is executed. However, it is not removed
from acc before sending acc to the checker. Instead, the basic block ID is also
sent to the checker. The checker checks if acc + BBx id == s[i]. If not, the
checker shuts down the application.

The ID’s for the basic blocks are chosen randomly using a uniform distribution.
Note that the ID BBx id of a basic block x and its signature BBx are different
values. In contrast to the ID BBx id, the signature BBx is completely removed
from acc before transmitting acc to the checker. Thereby, the computations
executed are checked because the signatures of their results are added to acc.
These additions step by step remove the signature BBx, which is the sum of the
signatures of the results computed in the basic block x and was removed from
acc before executing the current basic block. However, the ID BBx id remains
in acc until acc was sent to the checker together with the expected value for
BBx id. Only if the ID stays in acc, it is possible to check if the send call of the
correct basic block was executed. The reason is that if control flow is transfered
to any other send call, the following corrections will assume another basic block
ID and, thus, make acc’s content invalid.

After sending acc to the checker, the basic block ID is removed together with
subtracting the signature of the next basic block. Both values, basic block ID
and signature, are constant at encoding time and, thus, can be summarized into
one value. This ensures that both values are either applied to acc or none of
them is applied. If they are not applied, acc will not contain the expected basic
block signature. Thus, if this update of acc is lost, wrong check values will be
sent to the checker with high probability.

We will now demonstrate the encoding of control and data flow within a basic
block and of an unconditional branch using an example. See Listing 8.4 for the
unencoded version of our example. Note that we use for our examples a simplified
pseudocode that is similar to LLVM-bitcode. Furthermore, our examples assume
that no signature corrections are required to improve readability.

Our ANB/ANBDmem-encoding compiler transforms the example presented in
Listing 8.4 into the code presented in Listing 8.5. The comments (denoted by ’;’)
show the expected value of the accumulator acc. Note that xc means the encoded
version of x where x can be either a variable or a function/instruction. Line 1
shows which value acc has at the beginning of the basic block bb1 assuming
that the execution up to now was not disturbed by errors. This value of acc is

146 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

1 bb1 :
2 x = a+b
3 y = x−d
4 br bb2

Listing 8.4: Unencoded example that is used in the following for demonstrating
the encoding of a basic block and encoding of an unconditional
branch instruction. Therefore, the content of basic block bb1 and
the branch to block bb2 will be encoded.

1 bb1 : ; acc=s [i]−BB1−BB1 id BB1=Bx+By=(Ba+Bb)+(Ba+Bb−Bd)
2 xc = addc (ac ,Ba , bc ,Bb) ;Bx=Ba+Bb
3 acc += xc mod A ; acc=s [i]−BB1−BB1 id+Ba+Bb
4 yc = subc (xc ,Bx , dc ,Bd) ;By=Bx−Bd=Ba+Bb−Bd
5 acc += yc mod A ; acc=s [i]−BB1−BB1 id+2∗Ba+2∗Bb−Bd
6 ; =s [i]−BB1−BB1 id+BB1 =s [i]−BB1 id
7 send (acc , BB1 id)
8 acc += de l t a (i) ; acc=s [i +1]−BB1 id
9 i++ ; acc=s [i]−BB1 id

10 acc += BB1 id−BB2−BB2 id ; acc=s [i]−BB2−BB2 id
11 br bb2

Listing 8.5: Encoding of data and control flow within a the basic block bb1 and
of the unconditional branch to basic block bb2.

ensured by the previously executed block. Lines 2 and 4 contain the encoded
versions of the original instructions. The signatures of the results produced
by these instructions are computed and added to acc directly after executing
the instructions. Thereby, the execution of these instructions and data and
control flow within the basic block as well are checked. Finally, in line 5, acc
has the value s[i]−BB1 id. In the next line, acc and the constant basic block
ID BB1 id are sent to the checker. The checker checks if the sum of both values
equals the expected s[i]. The following lines adapt acc for the next basic block.
Line 8 ensures that acc will contain the next check value s[i+ 1] and line 10 adds
BB1 id−BB2−BB2 id. This addition removes this block’s ID BB1 id and
instead introduces the next block’s ID BB2 id and signature BB2. Note that
the value added in line 10 is a constant known at encoding time. We only display
it as a sum for demonstrating our encoding. That the different correctional
values are summarized into one constant ensures that either all corrections are
added or none at all. Thus, the loss of their addition is detectable and cannot
lead to undetectable errors.

Step 5(b):
Encoding of Inter-Basic Block Control Flow: Conditional Branch

For encoding conditional branches, we additionally have to to check that the
reached jump destination matches the actual branching condition. We explain
our encoding of conditional branches using the example depicted in Listing 8.6.
In the example, cond is the branch condition, and the control flow goes either
to bb true if cond is one, i. e., true, or to bb false if cond is zero, i. e., false.

8.3. PROGRAM ENCODING 147

1 bb1 :
2 cond = . . .
3 br cond bb true , b b f a l s e

Listing 8.6: Unencoded example that is used in the following for demonstrating
the encoding of a conditional branch instruction.

1 bb1 : ; acc=s [i]−BB1−BB1 id and BB1=Bcond
2 condc = . . . ; condc=A∗0+Bcond i f cond i s f a l s e
3 ; or A∗1+Bcond i f cond i s t rue
4 acc += condc mod A ; acc=s [i]−BB1−BB1 id+Bcond
5 send (acc , BB1 id) ; acc=s [i]−BB1 id
6 acc += de l t a (i) ; acc=s [i +1]−BB1 id
7 i++ ; acc=s [i]−BB1 id
8 acc += BB1 id−BBtrue−BBtrue id−(A∗1+Bcond)
9 ; acc=s [i]−BBtrue−BBtrue id−(A∗1+Bcond)

10 cond = condc / A ; get f un c t i o n a l va lue o f condc
11 acc += condc ; acc=s [i]−BBtrue−BBtrue id−(A∗1+Bcond)+condc
12 br cond bb true , b b f a l s e c o r r e c t i o n
13

14 bb true : ; acc=s [i]−BBtrue−BBtrue id−(A∗1+Bcond)+condc
15 ; condc = A∗1+Bcond
16 ; => acc=s [i]−BBtrue−BBtrue id
17 . . .
18

19 bb f a l s e c o r r e c t i o n : ; acc=s [i]−BBtrue−BBtrue id−(A∗1+Bcond)+condc
20 ; condc=A∗0+Bcond=Bcond
21 ; => acc=s [i]−BBtrue−BBtrue id−A∗1
22 acc += BBtrue+BBtrue id−BBfalse−BBfa l s e id+A
23 ; => acc=s [i]−BBfalse−BBfa l s e id
24 br bb f a l s e
25

26 bb f a l s e : ; acc=s [i]−BBfalse−BBfa l s e id
27 . . .

Listing 8.7: Encoding of data and control flow within a basic block and of an
unconditional branch instruction.

Listing 8.7 shows the encoded version of our example for the conditional branch
instruction. In line 4 acc is used to check the computation of the encoded
condition condc with the already introduced approach. After sending acc, we
adapt it in line 8 for the basic block bb true and for checking if the executed
branch matches condc. For the latter, we subtract A ∗ 1 + Bcond, the value
condc has if it represents true. The value added in line 8 is a constant known
at encoding time. We only display it as a sum for demonstrating our encoding.
That the different correctional values are summarized into one constant ensures
that either all corrections are added or none at all. Thus, the loss of the addition
in line 8 is detectable and cannot lead to undetectable errors.

In line 11, we add condc to acc. In contrast to the value added in line 8, condc
is dynamically computed. If the condition is true, acc now contains the correct
basic block signature and ID at the start of bb true. If the condition condc
represents false, we have to do additional corrections which are executed in the
basic block bb false correction before jumping to the actual destination bb false.
These corrections ensure that when bb false is entered, acc contains bb false’s

148 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

signature and ID. Therefore, in line 22 we add BBtrue + BBtrue id to acc to
remove the term −BBtrue − BBtrue id from acc. Furthermore, we subtract
BBfalse and BBfalse id from acc. These steps prepare acc for the execution
of the block bb false instead of bb true. Furthermore, we have to remove A from
acc. Otherwise, the addition of condc that is done in line 11 is not neutralized
correctly because we added – assuming that we will branch to bb true – already
A ∗ 1 + Bcond in line 8. However, if we (correctly) branch to bb false, condc
contains the value Bcond representing false. Note that the corrections that are
applied in line 22 are also summarized in one constant. Thus, they are either
applied or we will detect if they are not applied.

If no other blocks than bb1 branch to bb false, we can add the code of the block
bb false correction to the start of bb false. However, if different blocks branch
to bb false, different or no corrections at all will be required for bb false. Thus,
in this case, intermediate blocks – such as bb false correction – for executing
the corrections are required.

If the branch executed in line 12 does not match condc then acc will not
contain the expected block signature and ID because the expected values added
to acc as constants do not match the dynamically computed values that are
used to neutralize these expected values. Thus, a wrong check value will be
sent to the checker. Therefore, it is required that BBfalse + BBfalse id 6=
BBtrue + BBtrue id. Currently, we do not explicitly enforce this probability.
For small functions that contain only a few basic blocks, it is improbable that
the property is violated because basic block signatures and IDs are random
values depending on a uniform distribution. However, in the future, it should
be checked if the property is fulfilled and maybe constraint solving should be
used to ensure its fulfillment.

If the execution of the branch in line 24 is faulty, this is also detectable with
a high probability because acc most likely will not contain the expected value
for executing another basic block. Therefore, the sum of the signature and ID
of different blocks should be different. As stated before currently we are not
enforcing this property but use randomly assigned values.

Step 6: Encoding of Internal Function Calls

After demonstrating the encoding of control flow within functions, we now
introduce the encoding of function calls, that is, the encoding of control flow
between functions.

When a function is called we have to ensure thatPossible errors

1. the correct function is called,
2. with correct and unmodified parameters, and
3. the function is executed correctly.

Furthermore, we have to

• provide a predictable signature for the return value of non-void functions,
• to adapt acc for the entry-basic block of the called function, and,

8.3. PROGRAM ENCODING 149

• before returning from the function, we have to adapt acc for the remainder
of the basic block that called the function.

To ensure 1., i. e., that the correct function is called, we assign to every function Correct function
called?a function signature by which it has to modify acc. Before the function returns,

it adapts acc for the remainder of the calling basic block minus this function
signature. For non-void functions, an additional signature is assigned to the
return value. This guarantees a predictable signature for the return value.

To ensure 2., i. e., that the correct and unmodified parameters are used, we add Correct and
unmodified
parameters used?

the expected signatures of the parameters (known at encoding time and, thus,
constant) to acc before entering the function. In the function, we subtract the
signatures of the actual used parameters (computed at runtime) from acc. If
added and subtracted signatures do not match, acc will become invalid, that is,
at the end of the entry block of the function a wrong check value will be sent to
the checker.

After subtracting the signatures of the parameters from acc, the signatures of
the parameters are corrected to function-specific ones that are independent of
the call-site, i. e., from where the function call originated. Therefore, statically
computed correction values are used that depend on the call-site. These are
given to the function call as parameters whose values are constant but different
for each call-site of this function.

Before starting executing the function with the entry block of the function, acc Function executed
correctly?is adapted. The remaining signature and the ID of the calling basic block are

removed (by adding them), and the signature and ID of the first basic block –
the entry block – of the function are subtracted from acc. The correction value
used therefore is determined at encoding time and also added to the call-site
dependent adaptation value. Thereafter, the execution continues as described
before – now executing and checking the basic blocks of the function called.
These last measures ensure 3., i. e., that we detect if the function is not executed
correctly.

Step 7: Encoding of External Function Calls

In contrast to SEP, the static instrumentation of CEP does not allow for the
protection of external libraries whose source code is not available at compilation
time. For calls to these libraries, we currently provide hand-coded decoding/en-
coding wrappers, which decode (including code check) parameters and, after
executing the unencoded original, encode the obtained results. For implementing
these wrappers, we rely on the specifications of the external functions.

Special Case: Memory Allocation and Deallocation The functions for allo-
cating and freeing memory are also realized as decoding/encoding wrappers.
However, the allocation also takes into account that encoded values require more
space than unencoded values. Thus, larger memory areas are allocated than the
unencoded program would allocate.

150 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

Furthermore, our memory backend when accessing memory ensures that the
addresses are mapped to the correct addresses in these larger memory areas. Note
that, in principle, the functional values represented by our encoded addresses
are equivalent to the addresses of an unencoded execution. Only the base
addresses vary due to different allocation patterns. However, due to the larger
size of encoded values these unencoded addresses do not point to the correct
encoded value. Thus, the mapping is required and currently implemented using
a page-table-based approach. However, encoded memory access is explained in
the next section.

Step 8: Encoding of Memory Access

All the example listings that we presented so far used only variables – registers –
for which static signatures are used whose values are assigned at encoding time.
This is possible because for registers we know at encoding time in which order
they are accessed within a basic block.

However, we cannot predict when addresses in dynamically allocated memory
are written or read, that is, the access pattern of dynamically allocated memory
is not known at encoding time. Thus, we need to use dynamic signatures that
are calculated at runtime for values stored in memory. Dynamic signatures we
introduced in Section 4.6. Remember that a dynamic signature depends on
the address the value is stored to and, in case of the ANBDmem-code, also on
the current version counter. For ANB-encoding, we directly use the address at
which a value is stored as dynamic signature. For ANBDmem-encoding we use
the sum of address and version as dynamic signature. In the context of CEP
and these two codes, it is not required to ensure that the dynamic signatue is
smaller than A, because dynamic signatures are only applied to values stored
in memory and not to values that are decoded for externalization or used in
computations.

When storing a value, that is, transfering this value from a register to memory,
we convert its static signature into a dynamic signature. When loading a value
from memory, that is, transfering the value from memory into a register, we
convert the dynamic signature back into a static signature. The static signature
is assigned to the load instruction accessing the dynamic memory. Thus, it
depends on the location the load instruction has in the code. All these changes –
from the static to the dynamic signature and vice versa – are also encoded.

When executing a load instruction, we first have to decode the address and toMemory without
versions load the value referenced. Afterwards, the signature of the value is adapted, that

is, the dynamic signature is replaced by the static signature assigned to the load
instruction executed. This adaptation is implemented in a way that errors during
the load and the adaptation will result in the encoded load returning an invalid
code word with high probability. Listing 8.8 demonstrates our ANB-encoded
load instruction.

Note that calls to the functions load and store in our following listings do not
directly execute the load and store instructions of LLVM. These functions are

8.3. PROGRAM ENCODING 151

calls to our memory backend implementations that before loading or storing the
value map the address used to the correct value as described before.

1 /∗ ANB−encoded load i n s t r u c t i o n .
2 ∗
3 ∗ @param ptrc encoded po inter , pt rc = A∗ptr+Bptr
4 ∗ @param Bptr s i gna tu r e o f the po in t e r
5 ∗ @param cor r s t a t i c a l l y determined c o r r e c t i o n a l va lue : co r r = A∗Br+Bptr
6 ∗ @resu l t encoded loaded value
7 ∗/
8 uint64 t l oadc (uint64 t ptrc , uint32 t Bptr , int64 t co r r){
9 uint32 t ptr = ptrc / A; // decode address

10 uint64 t vc = load (ptr) ; // load value => vc = A∗ r+ptr
11

12 // adapt s i gna tu r e o f loaded value
13 uint32 t tmp = (ptrc−co r r)/A; // tmp = ((A∗ptr+Bptr)−(A∗Br+Bptr))/A
14 // = ptr−Br
15 uint64 t rc = vc−tmp ; // rc = (A∗ r+ptr)−(ptr−Br)
16

17 return rc ; // rc = A∗ r+Br
18 }

Listing 8.8: ANB-encoded load instruction.

The encoded load presented in Listing 8.8 takes an encoded pointer ptrc = ANB-encoded load

A ∗ ptr+Bptr, the expected signature Bptr of ptrc, and a correctional value corr.
During encoding we choose a value Br < A as signature of the return value
of the encoded load. For each load instruction contained in a program a new
signature Br is chosen for the value returned. The signature of the encoded
pointer Bptr and A are also chosen at encoding time. Thus, for each call to load,
the correctional value corr = A ∗ Br + Bptr is a constant whose value can be
determined at encoding time. This ANB-encoded correctional value is used to
encodedly compute an adaptation value tmp = ptr−Br in line 13 of Listing 8.8.

In line 15 the adaptation value tmp is subtracted from the loaded value. Re-
member that the dynamic signature of an ANB-encoded value is the address
ptr at which it is stored. Thus, the functional value of the pointer ptrc from
which we load data should equal the signature of the encoded value read from
memory. Hence, subtraction of tmp = ptr −Br from the loaded value removes
the dynamic signature ptr and adds the new static signature Br in one indivisible
step. If a wrong address is read or ptrc is an invalid code word, the return value
will not have the expected signature Br in line 17 with high probability.

Listing 8.9 demonstrates the ANB-encoded store operation, which is very similar ANB-encoded store

to the load operation. Before storing the encoded value its static signature is
adapted to the dynamic signature required. This adaption is ANB-encoded and
uses an at encoding time determined correctional value corr which is constant
for each store operation. After the adaptation, the address stored in ptrc is
decoded and the adapted value rc is transfered to memory.

For ANBDmem-encoded programs, values stored in memory are ANBD-encoded Memory with
versions(see Section 3.5). Thus, the dynamic signature used for values stored in memory

depends additionally on a version. This version is determined by the number
of executed stores because updates of ANBD-encoded memory occur when a

152 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

1 /∗ ANB−encoded s t o r e i n s t r u c t i o n .
2 ∗
3 ∗ @param vc encoded value that s h a l l be stored , vc=A∗v+Bv
4 ∗ @param Bv s i gna tu r e o f vc
5 ∗ @param ptrc encoded po inter , pt rc = A∗ptr+Bptr
6 ∗ @param Bptr s i gna tu r e o f the po in t e r
7 ∗ @param cor r s t a t i c a l l y determined c o r r e c t i o n a l va lue : co r r = A∗Bv+Bptr
8 ∗/
9 void s t o r e c (uint64 t vc , uint32 t Bv , uint64 t ptrc , uint32 t Bptr ,

10 int64 t co r r){
11

12 // adapt s i gna tu r e o f s to r ed value
13 uint32 t tmp = (corr−ptrc)/A; // tmp = ((A∗Bv+Bptr)−(A∗ptr+Bptr))/A
14 // = Bv−ptr
15 uint64 t rc = vc−tmp ; // rc = (A∗v+Bv)−(Bv−ptr)
16 // = A∗v+ptr
17

18 uint32 t ptr = ptrc / A; // decode address
19 s t o r e (rc , ptr) ; // s t o r e rc at ptr
20 }

Listing 8.9: ANB-encoded store instruction.

value is stored and for each ANBD-encoded value that is updated a new version
has to be used. Hence, we use the number of stores previously executed by the
application as version for a value stored.

A global version counter is incremented with every store executed by an
ANBDmem-encoded program. This global version counter is required to com-
pute the correct expected dynamic signature of a loaded memory value using an
additional version management data structure as presented in Section 4.7. Any
lost or faulty update of the global version counter will lead to inconsistencies
between global version counter, signatures of the stored values, and the version
management data structure. This we explained already in Section 4.7.

Furthermore, the success of the incrementation of the version counter can be
checked using acc. For every basic block , we know at encoding time how many
stores and, thus, incrementations of the global version counter it contains. Thus,
we ensure for every basic block x that contains stores that acc at the beginning
of the block x has the following value: acc = s[i]−BBx−BBx id−noOfStores.
This adaptation can be summarized with the other adaptations required for the
basic block and, thus, cannot be left out unnoticedly. At the end of the block x,
the difference of the global version counter at the beginning and at the end of
basic block x is subtracted from acc. Only if all stores were executed, acc will
contain the expected value at the end of basic block x. Of course, this approach
does not guarantee that we detect if a store instruction adapts only the global
version counter and the version management data structures and looses all other
instructions. However, in that case a later load of the affected address will result
in an erroneous modification of acc making this error scenario detectable.

For an ANBDmem-encoded load, we have to remove the expected dynamicANBDmem-
encoded load signature and the version, and to replace them with the static signature of the

destination register. Listing 8.10 demonstrates the ANBDmem-encoded load.
The only difference compared to Listing 8.8 is the subtraction of the expected

8.4. CHECKING THE CORRECTNESS OF THE EXECUTION 153

version in line 13 and the content of the loaded value, which now additionally
contains the version. The getVersion function used in line 13 returns the
expected version for a given address. It is part of the interface of the encoded
version management data structures that we described in Section 4.7.

1 /∗ ANBDmem−encoded load i n s t r u c t i o n .
2 ∗
3 ∗ @param ptrc encoded po inter , pt rc = A∗ptr+Bptr
4 ∗ @param Bptr s i gna tu r e o f the po in t e r
5 ∗ @param cor r s t a t i c a l l y determined c o r r e c t i o n a l va lue : co r r = A∗Br+Bptr
6 ∗ @resu l t encoded loaded value
7 ∗/
8 uint64 t l oadc (uint64 t ptrc , uint32 t Bptr , int64 t co r r){
9 uint32 t ptr = ptrc / A; // decode address

10 uint64 t vc = load (ptr) ; // load value => vc = A∗ r+ptr+ve r s i on
11 uint32 t tmp = (ptrc−co r r)/A; // tmp = ((A∗ptr+Bptr)−(A∗Br+Bptr))/A
12 // = ptr−Br
13 uint64 t rc = vc−tmp−getVers ion (ptr) ; // rc=(A∗ r+ptr)−(ptr−Br)−ve r s i on
14 rc += (ptrc−co r r) % A; // add i t i ona l check : (ptrc−co r r)%A == 0
15 return rc ; // rc = A∗ r+Br
16 }

Listing 8.10: ANBDmem-encoded load instruction.

Listing 8.11 contains the pseudocode implementation of our ANBDmem-encoded ANBDmem-
encoded storestore operation. For a store, we need to adapt the signature of the stored value

from the static signature used for values stored in registers to the dynamic
signature (consisting of address and version) used for values stored in memory.
First, this adaptation removes the old signature and adds the address part of
the new dynamic signature. This is done in line 18 of Listing 8.11. Note that
this is done in one indivisable step. If the instruction in line 18 is lost, we will
detect this error whenever the value is loaded again. Next, in lines 24 to 26
the version of the stored value is adapted and the version management data
structures are updated. Last, in line 29 the adapted value is stored. If this store
is lost or goes to a different address, this will turn acc invalid whenever either
the address erroneously not written or the one erroneously written are read.

8.4. Checking the Correctness of the Execution

As discussed in Section 8.1, the checker checks the correct execution of the
encoded program during its runtime. The checker is not part of the encoded
program and needs to be executed reliably outside of the encoded program.

Remember that the encoded application periodically sends check values to the
checker (see Section 8.1). As described in Section 8.3.3 the application always
sends two values at the same time:

• the current value of the accumulator acc and
• the ID of the current basic block.

To check the execution, the checker tests if it regularly receives these values
from the application, and if the sum of the acc value received and the basic

154 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

1 /∗ ANBDmem−encoded s t o r e i n s t r u c t i o n .
2 ∗
3 ∗ @param ptrc encoded po inter , pt rc = A∗ptr+Bptr
4 ∗ @param Bptr s i gna tu r e o f the po in t e r
5 ∗ @param vc encoded value to s tore , vc = A∗v+Bv
6 ∗ @param Bv s i gna tu r e o f s to r ed value
7 ∗ @param cor r s t a t i c a l l y determined c o r r e c t i o n a l va lue : co r r = A∗Bv+Bptr
8 ∗/
9 void s t o r e c (uint64 t ptrc , uint32 t Bptr ,

10 uint64 t vc , uint32 t Bv ,
11 uint64 t co r r){
12

13 // Adapt s i gna tu r e and ve r s i on o f the s to r ed value
14 // from the s t a t i c to the dynamic s i gna tu r e r equ i r ed
15 int64 t tmp1 = ptrc − co r r ; // tmp1 = (A∗ptr+Bptr) − (A∗Bv+Bptr)
16 // = A∗(ptr−Bv)
17 int64 t tmp2 = tmp1 / A; // tmp2 = ptr−Bv
18 vc = vc + tmp2 ; // vc = A∗v + ptr
19

20 // decode address
21 uint32 t ptr = ptrc / A;
22

23 // adapt ve r s i on and update ve r s i on management data s t r u c t u r e s
24 g loba lVers ionCounter++;
25 vc = vc + globa lVers ionCounter ;
26 updateVers ionInformat ion (ptr) ;
27

28 // s t o r e the adapted and encoded value
29 s t o r e (ptr , vc) ;
30 }

Listing 8.11: ANBDmem-encoded store instruction. Note that this implementa-
tion does not use checkpointing of the version management data
structure (see Section 4.7 page 86). Therefore, additional code is
required that triggers a checkpointing mechanism after a specific
number of store operations were executed.

block ID received equals the s[i] expected. After a check, it resets the timeout
and increments i and thereby goes to the next s[i] expected.

If the checker encounters an unexpected s[i] or the application stops sending
values (detected using a timeout), the checker terminates the application. If the
end of s is reached, both application and checker start again at the beginning of
s by setting i to zero. In improbable scenarios, this might lead to undetected
errors due to the repeated usage of the same values. Yet, the more entries s has,
the smaller is the probability of such undetected errors.

The checker has to iterate over s, do periodic comparisons with the check
values received, and has to test if the application is still alive. The checker’s
easy implementation supports the application of various mechanisms to make
its execution safe, e. g., redundant execution on different hardware such as
onboard FPGAs or the graphics unit, or hand-encoding according to VCP [For89].
Additionally, we can use multiple checkers in parallel to further reduce the risk
of an erroneous checker.

An efficient, asynchronous communication between checker and application is
required to reduce the overhead induced by sending the check values. Currently,

8.5. EVALUATION 155

we use shared memory and wait-free queues. To ensure an acceptable runtime
overhead, we can adjust the frequency of the send operation, that is, acc is not
sent in every basic block but only every x-th block or before data is externalized.
This does not reduce the provided safety but how fast an error is detected. Every
error is detected eventually. Of course, if the check values are sent with a lower
frequency, errors will be detected later on average.

8.5. Evaluation

Our evaluation in this chapter focuses on the error detection capabilities and
the performance overhead of applications that are AN-, ANB-, or ANBDmem-
encoded at compile time. Furthermore, we compare our encoding with two
replication-based approaches: SWIFT [CRA06] and SWIFT with extended
control flow checking (ECF) [RCV+05a]. For these different hardware error
detection approaches, we compare their error detection capabilities and the
slowdowns introduced by the approaches.

First, we will introduce the benchmarks we used for our evaluation. Second,
we will shortly present SWIFT and SWIFT ECF. These sections are followed
by our actual evaluations of the error detection capabilities and the slowdowns
introduced. Last, we compare the costs introduced by the different detection
approaches with the gains – the detection probability – provided by these
approaches.

8.5.1. Benchmarks Used

Usually, some parts of an application are more safety-critical than others [PGZ06].
For example, for detecting a soft error that disturbs a message transmission, it
is sufficient to protect the message with a safely computed end-to-end checksum
that checks that the message was delivered to the intended receiver unmodified.
It is not required to provide error detection for the complete network protocol
stack. Other application examples are event processing frameworks that support
the development of distributed applications. While the framework handles, for
example, message distribution, the so-called operators implement the business
logic. The framework itself can remain unprotected while the operators have to
be sufficiently equipped to detect erroneous executions that may result in silent
data corruptions (SDCs).

Thus, for our comparisons, we use several algorithms that could be expected
in safety-critical and event processing systems and executed them within a
networked environment. While the network stack is unprotected, the safety-
critical algorithms are equipped with error detection. However, we assume that
the execution of the complete application – including safety-critical algorithms
and network protocol – can be modified by transient and permanent errors.

For our evaluation, we use the following benchmark algorithms that can be
expected in safety-critical or event processing systems:

156 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

md5 calculates the md5 hash of a string.
tcas is an open-source implementation of the traffic alert and collision avoidance

system [Pap09] which is mandatory for airplanes.
pid is a Proportional-Integral-Derivative controller [Wes00].
abs implements an antilock braking system.
topK finds the k most frequent items in a data stream [CCFC04].
primes implements the Sieve of Eratosthenes.

Although, primes is not a typical example of our targeted application domain,
we included it because it uses a large array and thus is vulnerable to data
modifications.

8.5.2. Other Error Detection Approaches Evaluated

We compare our three different encoding approaches, which use different arith-
metic codes, with two replication based detection approaches: SWIFT and
SWIFT with control flow checking (SWIFT ECF), which we shortly introduce
in the following.

For evaluating SWIFT we used Martin Süßkraut’s implementation. This we
extended further for SWIFT ECF. Both implementations use the LLVM compiler
framework [LA04], which we already use for encoding.

SWIFT

Software implemented fault tolerance (SWIFT) [CRA06] duplicates all instruc-
tions and registers apart from memory accesses and control flow instructions.

SWIFT does not duplicate memory because it assumes that memory is protected
by other means such as parities. This can lead to undetected lost stores because
store instructions are not duplicated. Loads from memory are also not duplicated
because they might be uncachable [CRA06]. Instead values loaded from memory
are copied. This approach opens a window of vulnerability. For example, data
modifications on the bus may remain undetected.

Function calls are not duplicated. For a function defined in an external library,
we do not know if it is idempotent and, thus, can be called twice. Instructions
within internal functions are already duplicated by SWIFT and, thus, executed
two times without duplicating the calls. Parameters of an internal function are
duplicated at the start of the function. The return parameter of any function is
duplicated when the call returns to the callee. These duplications can lead to
undetected data modifications.

The equality of duplicates is checked before their externalization, before values
are stored to memory or are used as address in a load or store instruction, or
before the values influence control flow. For SWIFT any failed check results in
the abort of the application. Errors occurring in the vulnerable window between
check and use might remain undetected. Checks in SWIFT are not easily
protectable because they are strongly interleaved with the original program.

8.5. EVALUATION 157

As already discussed SWIFT contains several windows of vulnerabilities, i. e.,
SWIFT does not provide end-to-end detection of hardware faults. Additionally,
if both duplicates are affected by the same error, for example, a permanently
faulty operation, we expect that SWIFT will not detect this error. Furthermore,
SWIFT is susceptible to control flow errors such as taking the wrong branch of
a conditional jump.

SWIFT ECF

The authors of [RCV+05a] added enhanced control flow checking (ECF) to
SWIFT. This facilitates the detection of control flow errors. Therefore, a unique
signature is assigned to every basic block. A dedicated register named GSR keeps
track of the signature of the basic block that is supposed to execute currently.
Before leaving a basic block, an adaptation value for GSR is written to a second
dedicated register RTS. For unconditional jumps, the value assigned to RTS is a
constant. For conditional jumps, it is one of two constants depending on the
jump destination. Which of the two constants is assigned to RTS is chosen using
the duplicate of the jump condition. The actual jump uses the original. Thus, if
only duplicate or only original were modified, control flow errors are detectable.
At the beginning of a basic block, GSR is adapted to its new expected value
by xor-ing RTS to it. Afterwards, it is checked that GSR contains the expected
signature for this basic block. The expected signature and the adaptation values
are hard-coded into the binary because they are constant.

Every mismatch of the expected and the actual basic block signature results in
the abort of the application. Furthermore, any failed check of the equality of
duplicates results in the abort of the application.

8.5.3. Error Detection Capabilities

We used our symptom-based error injector EIS [SSSF10b] for our evaluation of Error injection

the error detection capabilities of our encodings and the two SWIFT approaches.
For a detailed description of EIS see Chapter 9. This section here contains a
short introduction only.

Instead of injecting errors directly into the hardware either physically or using
fault injecting hardware, EIS injects the software-level symptoms of possible
hardware failures. Directly injecting at software-level reduces masking and, thus,
makes the error injection more efficient.

We injected the following kinds of errors:

Exchanged operand (EO1): A different but valid operand is used, that is,
instead of the intended operand another register which is already defined and
has the same type is used.

Exchanged operator (EO2): A different operator is used, e. g., an addition
is executed instead of a subtraction. The operands remain the same.

158 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

Faulty operation (FO): The result of an operation is modified by bitflips. We
inject multiple as well as single bitflips. The number of flipped bits is chosen
using a Poisson distribution, that is, single bitflips are more probable than
multiple bitflips.

Lost store (LS): A store operation is omitted.

Modified operand (MO): An operand used by an instruction is modified by
a single or a multiple bitflip. While faulty operation influences every read of the
result, modified operand only influences one read of a register.

Further errors can be represented by combinations of these symptoms. For
example:

• The replacement of a complete instruction comprised of operator and
operands with a different instruction can be emulated by applying the
symptoms exchanged operator and exchanged operand to the same instruc-
tion.
• Control flow errors can be emulated by combinations of such instruction

replacements.
• Modifications of memory content are emulated by modified operand errors

that are applied to store operations.

The error model presented before is based on the assumption that every hardware
error that is not masked influences the execution of a program in some way and
that all possible influences can be emulated by these basic symptoms.

We applied those errors in three different modes:Experiment setup

Deterministic (Det): In this mode exactly one error is triggered per run.
We execute approximately 50,000 runs for each benchmark and protection
mechanism: 10,000 for each symptom. In each run another error of the same
symptom is triggered. For each symptom the injection points are distributed
equally over the possible injection points available in the program execution used.
This tests the ability of a detection mechanism to cope with seldom occurring
errors.

Probabilistic (Prob): Here, all error symptoms are injected with the same
probability and they all might be injected in one run. We use the same error
probability for all error detection mechanisms evaluated. At each possible point
where an error (of any symptom) could be triggered an error is injected with the
given probability. Thus, one execution might be hit by several different errors.
This mode allows to mirror the fact that for an error detection mechanism which
increases code size, the protected program version is more probable to collect
errors than the program version without error detection. With this mode we
executed 6,000 runs per benchmark and per detection mechanism.

Permanent errors (Per): In this mode we inject permanent faulty operation
errors simulating permanent logic errors in the processor. Depending on the
input values of an instruction, its result is modified. If a specific bit within the
input values of a specific operation is set, a bit of the result is flipped. For one
injection run, the targeted operation, the bit which has to be set for triggering
the error, and the bit flipped in the result remain the same. Permanent errors

8.5. EVALUATION 159

are only applied to arithmetic integer operations, and loads and stores of integer
values. We are injecting approximately 1,700 different permanent errors per
benchmark, per detection mechanism – one error only per run.

All our example applications are of similar size. Hence, with our fixed number of
fault injection runs we achieve similar coverages for all applications. We chose
the number of fault injection runs so that the experiments complete in a feasible
time.

We compared the results of injection runs to the results of an error-free run
to determine if the error injected resulted in a silent data corruption (SDC).
Figure 8.3 presents the results of the described error injection experiments. It Injection results

depicts the share of injection runs that resulted in an SDC, i. e., a failure of the
error detection mechanism. Note the logarithmic scale.

We make the following observations:

• We clearly see the superiority of all the AN-codes compared to SWIFT
and SWIFT ECF with respect to permanent errors. For transient errors
(Det and Prob) the AN-code has for most benchmarks higher detection
rates (i. e., lower SDC rates) than SWIFT and SWIFT ECF and for some
not.

• The ANB- and ANBDmem-codes always have an order of magnitude better
detection rates than AN-encoding, SWIFT, and SWIFT ECF. While AN-
encoded versions still have a considerable amount of SDCs: on average
0.96%, ANB-encoding reduces the amount of undetected errors to on
average 0.07%. ANBDmem-encoding again halves the rate to on average
0.03% SDCs.

• We see that the amount of SDCs in the native, i. e., unprotected, case
depends on the benchmark. There are programs that are more robust, for
example, tcas, than others, for example, md5.

• For the native cases, we see also large differences between transient and
permanent errors. While md5 is very susceptible to transient errors (Det
and Prob), it is not to permanent ones (Per). For topK, for example, it is
the other way round.

• Probabilistically (Prob) injected errors are more often detected. The
reason is that for both injection modes programs are more often hit by
several errors. This increases the probability of detection as we have shown
in [WF07b].

• Furthermore, benchmarks that show already high silent data corrup-
tion rates for the native case, show also rather high rates for SWIFT,
SWIFT ECF, or the AN-code.

• In some cases error detection mechanism with additional protection perform
worse than their supposedly weaker counter parts. For example, in 50%
of the cases SWIFT ECF detects less permanent errors than SWIFT (for
topK, pid, md5).
Another example are the deterministic injections (det) into tcas. In one
case (abs for the deterministic injection mode), ANB-encoding detects
more injected errors than ANBDmem-encoding. Increased complexity

160 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

DetProbPer

md5 native

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

sh
ar

e
of

 S
D

C
 in

 %

43
.5

72

38
.5

92

1.
59

6

DetProbPer

SWIFT

5.
95

6

0.
65

4

0.
53

2

DetProbPer

SWIFT ECF

3.
67

2

0.
00

0

1.
33

0

DetProbPer

AN

2.
80

4

0.
00

0

0.
00

0

DetProbPer

ANB

0.
12

9

0.
00

0

0.
00

0

DetProbPer

ANBDmem

0.
08

0

0.
00

0

0.
00

0

DetProbPer

pid native

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

sh
ar

e
of

 S
D

C
 in

 %

21
.2

11

25
.9

24

65
.1

44

DetProbPer

SWIFT

4.
38

4

1.
46

5

14
.6

63

DetProbPer

SWIFT ECF

3.
17

2

0.
18

4

22
.5

96

DetProbPer

AN

0.
73

8

0.
01

7

0.
00

0

DetProbPer

ANB

0.
18

9

0.
01

7

0.
00

0

DetProbPer

ANBDmem

0.
11

9

0.
00

0

0.
00

0

DetProbPer

primes native

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

sh
ar

e
of

 S
D

C
 in

 %

30
.3

84

35
.2

31

38
.0

68

DetProbPer

SWIFT

2.
90

1

2.
48

5

25
.5

68

DetProbPer

SWIFT ECF

1.
54

1

0.
45

2 19
.3

18

DetProbPer

AN

0.
01

4

0.
05

0 0.
83

4

DetProbPer

ANB

0.
00

6

0.
01

7

0.
00

0

DetProbPer

ANBDmem

0.
00

0

0.
00

0

0.
00

0

DetProbPer

tcas native

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

sh
ar

e
of

 S
D

C
 in

 %

7.
41

5

7.
48

6

28
.0

12

DetProbPer

SWIFT

0.
96

0

0.
30

9 6.
62

7

DetProbPer

SWIFT ECF

3.
11

4

0.
08

4

4.
81

9

DetProbPer

AN

1.
72

1

0.
13

3

0.
00

0

DetProbPer

ANB

0.
44

3

0.
00

0

0.
00

0
DetProbPer

ANBDmem
0.

03
4

0.
00

0

0.
00

0

DetProbPer

abs native

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

sh
ar

e
of

 S
D

C
 in

 %

34
.4

56

30
.7

74

19
.2

46

DetProbPer

SWIFT

8.
26

0

0.
21

7

0.
00

0

DetProbPer

SWIFT ECF
7.

93
5

0.
00

0

0.
00

0

DetProbPer

AN

6.
91

6

0.
21

7

0.
00

0

DetProbPer

ANB

0.
34

3

0.
00

0

0.
00

0

DetProbPer

ANBDmem

0.
41

2

0.
00

0

0.
00

0

DetProbPer

topK native

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

sh
ar

e
of

 S
D

C
 in

 %

0.
65

1

1.
17

3 18
.9

90

DetProbPer

SWIFT

0.
12

8

0.
05

1 0.
48

1

DetProbPer

SWIFT ECF

0.
11

5

0.
00

0

1.
20

2

DetProbPer

AN

0.
04

6

0.
00

0

0.
00

0

DetProbPer

ANB

0.
00

4

0.
00

0

0.
00

0

DetProbPer

ANBDmem

0.
00

0

0.
00

0

0.
00

0

Figure 8.3.: Error injection results: Share of error injection runs resulting in
silent data corruptions (SDC) in % for unprotected native applica-
tions and applications protected with SWIFT, SWIFT ECF, AN-,
ANB-, and ANBDmem-codes AN-, ANB-, and ANBDmem-codes
used A=65521.

8.5. EVALUATION 161

seems to introduce new vulnerabilities that lead to undetected silent data
corruptions. A more detailed analysis of ANBDmem-encoded runs indeed
revealed such vulnerabilities for our ANBDmem-code implementation.

162 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

Figure 8.4 depicts the results of the same error injection experiments as Figure 8.3
in more detail. All the results for the deterministic injection mode are presented
separately for each symptom: exchanged operand (EO1), exchanged operator
(EO2), faulty operation (FO), lost store (LS), and modified operand (MO).
Furthermore, not only SDCs but all possible outcomes are depicted. Apart from
SDCs, we can observe the following outcomes:

correct output The error is masked and does not influence the outcome of the
application execution.

failure detected The error is detected and prevented from becoming a failure,
that, the application crashed without producing incorrect output. The
application might crash because the error led to inconsistencies disturbing
the execution, for example, by causing a segmentation fault. Or the
application might crash because the error detection approach used detected
inconsistencies and aborted the application.

detected performance failure In this case, a timeout occurred. For CEP-
encoded applications, the checker times out. Currently we use a very
large timeout, which is three times the time needed to execute the error-
free golden run. For SWIFT (ECF)-ed applications, the error detection
does not provide a liveness check. Here runs identifed as timed out were
stopped by the error injector that also checks the execution time. Thus,
for CEP-encoded applications, a timeout means the error was detected.
However, for SWIFT (ECF)-ed applications, it means no error was de-
tected.

Figure 8.4 shows that all protection mechanisms often reduce the number of
runs that produce the correct output. The reason is that all the approaches also
detect errors that might be masked in a further execution. However, they are
not guaranteed to be masked. Thus, these detections are no false positives. If
an error is detected, their definitely was an error. However, it is unclear if it
really would have become a failure.

However, for some benchmarks and detection approaches the amount of failure-
free runs even increases. The reason might be that the detection approaches
increase the code base. Thereby, the probability of masking errors might also be
increased. Consider, for example, the version management of the ANBDmem-
encoded application. If an error is introduced there for an address that is never
read again, then this will neither be detected nor lead to a failure.

For all detection approaches, the amount of detected errors is higher than for
the native execution. Whereas, timeouts are a seldom event for native execution,
SWIFT, and SWIFT ECF. For the encoded variants, the amount of detected
timeouts for the permanent errors is surprisingly high. Obviously, the additional
encoding introduces the possibility for endless loops in case of errors. We
assume that this source is located in the memory implementation that maps
the unencoded address space to the encoded space because this is one of the
common code parts of all the encodings. Further common code parts exist in
the decoding/encoding wrappers.

8.5. EVALUATION 163

EO1E02 FO LS MO All ProbPer

md5 native

0
10
20
30
40
50
60
70
80
90

100

no
rm

al
iz

ed
 b

eh
av

io
r

in
 %

correct output (error masked) failure detected (application crashed) detected performance failure (watchdog timed out) silent data corruption

EO1E02 FO LS MO All ProbPer

SWIFT
EO1E02 FO LS MO All ProbPer

SWIFT ECF
EO1E02 FO LS MO All ProbPer

AN
EO1E02 FO LS MO All ProbPer

ANB
EO1E02 FO LS MO All ProbPer

ANBDmem

EO1E02 FO LS MO All ProbPer

pid native

0
10
20
30
40
50
60
70
80
90

100

no
rm

al
iz

ed
 b

eh
av

io
r

in
 %

EO1E02 FO LS MO All ProbPer

SWIFT
EO1E02 FO LS MO All ProbPer

SWIFT ECF
EO1E02 FO LS MO All ProbPer

AN
EO1E02 FO LS MO All ProbPer

ANB
EO1E02 FO LS MO All ProbPer

ANBDmem

EO1E02 FO LS MO All ProbPer

primes native

0
10
20
30
40
50
60
70
80
90

100

no
rm

al
iz

ed
 b

eh
av

io
r

in
 %

EO1E02 FO LS MO All ProbPer

SWIFT
EO1E02 FO LS MO All ProbPer

SWIFT ECF
EO1E02 FO LS MO All ProbPer

AN
EO1E02 FO LS MO All ProbPer

ANB
EO1E02 FO LS MO All ProbPer

ANBDmem

EO1E02 FO LS MO All ProbPer

tcas native

0
10
20
30
40
50
60
70
80
90

100

no
rm

al
iz

ed
 b

eh
av

io
r

in
 %

EO1E02 FO LS MO All ProbPer

SWIFT
EO1E02 FO LS MO All ProbPer

SWIFT ECF
EO1E02 FO LS MO All ProbPer

AN
EO1E02 FO LS MO All ProbPer

ANB
EO1E02 FO LS MO All ProbPer

ANBDmem

EO1E02 FO LS MO All ProbPer

abs native

0
10
20
30
40
50
60
70
80
90

100

no
rm

al
iz

ed
 b

eh
av

io
r

in
 %

EO1E02 FO LS MO All ProbPer

SWIFT
EO1E02 FO LS MO All ProbPer

SWIFT ECF
EO1E02 FO LS MO All ProbPer

AN
EO1E02 FO LS MO All ProbPer

ANB
EO1E02 FO LS MO All ProbPer

ANBDmem

EO1E02 FO LS MO All ProbPer

topK native

0
10
20
30
40
50
60
70
80
90

100

no
rm

al
iz

ed
 b

eh
av

io
r

in
 %

EO1E02 FO LS MO All ProbPer

SWIFT
EO1E02 FO LS MO All ProbPer

SWIFT ECF
EO1E02 FO LS MO All ProbPer

AN
EO1E02 FO LS MO All ProbPer

ANB
EO1E02 FO LS MO All ProbPer

ANBDmem

Figure 8.4.: Error injection results. AN-, ANB-, and ANBD-codes used
A=65521.

Last, we are surprised to see that AN-encoding already reduces the amount of
SDCs caused by lost stores significantly. We would have expected that AN- and
ANB-encoding perform not well in that area.

8.5.4. Runtime Overhead

For our runtime measurements, we evaluate the benchmark algorithms within Experiment setup:
networked
environment

a networked environment. A client sends requests to a server application that

164 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

executes one of our benchmark algorithms. The benchmark algorithms represent
the safety-critical part of the system. Hence, they are completely protected by
one of our detection approaches evaluated. The client, the part of the server that
receives the messages, and the network protocol stack are completely unprotected.
For the encoding-based detection approaches, we transfer encoded data from
client to server and vice versa to enable end-to-end detection of hardware errors.

To evaluate the performance, we measured the throughput of our client server
scenario. The client sends a request to the server and waits for the reply. The
server feeds the request as input to the benchmark implementation and sends
back the output as reply to the client. After receiving the reply the client sends
the next request to the server. We measured the throughput in requests per
second. All results presented are the trimmed arithmetic mean of at least 8
measurements. The deviation is negligible. Hence, we omit it in our diagrams.

Our server test machine has two Intel Xeon processors (in total 8 cores) and
runs a 64-Bit Fedora 10. The client machine has the same OS as the server, but
runs on an AMD Opteron processor (in total 16 cores). Client and server are
connected by a 10-MBit half-duplex network.

The throughput values shown in Figure 8.5 are relative to the throughputResults:
networked
environment

of the native and unprotected execution of the respective server benchmark.
The throughput of SWIFT and SWIFT ECF is within the measurement error
of the throughput of the native execution. As we expected, the arithmetic
codes come at a higher cost. AN-encoding degrades the throughput much less
than ANB-encoding. ANB-encoding degrades the throughput not as much as
ANBDmem-encoding. However, the overhead varies with the application. For
instance, abs has even for ANBDmem-encoding 79% of the throughput of the
native execution, whereas topK protected by ANBDmem-encoding only reaches
4% of the throughput of the native execution. The reason is that some encoded
operations are more expensive than others (see Section 4.2). For example, the
topK benchmark uses more of the expensive operations than the abs benchmark.

abs md5 pid primes tcas topK
0%

20%

40%

60%

80%

100%

120%

140%

th
ro

ug
hp

ut
re

la
tiv

e
to

 n
at

iv
e

ex
ec

ut
io

n

82
%

85
%96

%10
7%

79
%

99
%

65
%

58
%

94
%

94
%

86
% 96

%

19
%

44
%

45
%

98
%

53
% 59

%

11
%

33
%

36
%

89
%

42
%

40
%

4%

16
%22

%

75
%

12
% 25

%

SWIFT SWIFT ECF AN ANB ANBDmem

Figure 8.5.: Throughput of all detection techniques evaluated normalized against
the native execution.

8.5. EVALUATION 165

While in Figure 8.5 the overhead is CPU-bound, Figure 8.6 depicts the effects of
a network-bound setting. Therefore, we ran eight servers and clients in parallel
on the server and the client machine, respectively. Because both computers
have at least eight cores, this did not introduce additional limits on the CPU.
However, the network traffic increased by a factor of eight. For this setting, we
also observe reduced throughput for all detection techniques. But the observed
throughput degradation that comes with the increased safety is in general much
lower than for the non-network bound setting. For topK with ANBDmem-
encoding the throughput is still only 12% of the native execution. However, abs
with ANBDmem-encoding degrades the throughput only down to 85% of the
throughput of the native execution.

abs md5 pid primes tcas topK
0%

20%

40%

60%

80%

100%

120%

140%

th
ro

ug
hp

ut
re

la
tiv

e
to

 n
at

iv
e

ex
ec

ut
io

n

10
1%

10
1%

98
%

94
% 99

%

98
%

10
0%

10
1%

97
%

96
%

93
%

85
%

80
%

52
%

98
%

93
%

59
%

43
%

84
%

46
%

95
%

97
%

41
%

28
%

85
%

34
%

59
%

56
%

26
%

12
%

SWIFT SWIFT ECF AN ANB ANBDmem

Figure 8.6.: Same setting as in Fig. 8.5 but network-bound because of eight
parallel running servers and clients on each computer.

Furthermore, we evaluated the absolute slowdowns of encoded application, that Experiment setup:
completely
encoded

is, of applications that are completely encoded. These applications have no
unencoded parts apart from data externalization realized with the decoding
wrappers. Therefore, we directly executed some of our benchmarks without the
above described client-server-setting and measure the times for the complete
application including input-output operations. All results presented are the
trimmed arithmetic mean of at least 5 measurements.

Figure 8.7 depicts the slowdowns of the different encoded applications compared Results:
completely
encoded

to their unencoded native versions.

For the AN-code, the slowdown ranges from 2 (primes) to 75 (tcas). As we
already observed, the slowdowns vary strongly because some applications use
more of the expensive encoded operations such as multiplications or floating
point operations than other applications. For example, md5 contains an above
average number of bitwise logical operations, which, in their encodable version,
make extensive use of expensive encoded multiplications. The encoded version
of tcas is much slower because of the extensive use of floating point operations.

The ANB-code is on average 1.9 times slower than the AN-code because it
provides encoded control and data flow and the encoded operations used have

166 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

pid tcas md5 primes abs
1

2

4

8

16

32

64

128

256

512
S

lo
w

do
w

n
of

 e
nc

od
ed

 o
ve

r
na

tiv
e

ap
pl

ic
at

io
n

AN-Code
ANB-Code
ANBDmem-Code

Figure 8.7.: Slowdowns of encoded application compared to their native versions.

to consider the signatures as well.

The slowdown of the ANBDmem-code compared to the ANB-code is on average
2.6. The main reason is the additional overhead needed to safely store and
retrieve version information for dynamic memory. The version management is
a significant part of the overall runtime overhead especially for programs that
have low locality in their memory write accesses. Note that we use the list data
structure (see Section 4.7) with checkpointing for version management for all
our measurements because it showed the best results for most applications.

One objective for the development of CEP was to be faster than the interpreter-Comparison:
SEP vs CEP based SEP. For some applications, Figure 8.8 compares the speedup of the most

expensive CEP-variant – ANBDmem-encoding – to the SEP-variant of that
application. These measurements again were done for as completely encoded
applications as possible, that is, the encoding used was applied to the whole
application and no part that could be encoded with the technique used was left
unencoded. Thus, for CEP, the application was completely encoded apart from
the encoding/decoding wrappers. In contrast, for SEP, bitwise logical operations,
shifts, casts and unaligned memory accesses are executed unencodedly. For the
benchmarks tcas and abs no measurements are presented because they are not
supported by SEP due to SEP’s incomplete implementation.

2 8 32 128 512

quicksort
bubblesort

pid
md5

primes

ANBDmem-Code

Figure 8.8.: Speedup of CEP compared to SEP.

CEP always clearly outperforms SEP. We observe that the obtained speedups
depend on the executed program. Especially md5 has smaller speedups. md5

8.5. EVALUATION 167

contains an above average number of bitwise logical operations. However, SEP’s
encoding is incomplete. It especially does not support encoded versions of
bitwise logical operations, shift operations, and casts. Those operations are just
executed unencoded in SEP while they are encoded by CEP. Nevertheless, even
for these applications that are incompletely encoded in SEP and completely
encoded in CEP, CEP outperforms SEP.

8.5.5. Costs vs Gains

For comparing the different error detection approaches (CEP with its different
encodings, SWIFT, and SWIFT ECF) compared in the previous section, we set
their costs, i. e., additional runtime, and their gains, i. e., their error detection
capabilities, into relation to each other in this section.

Figure 8.9 summarizes the engineering trade-offs when choosing one of these
error detection techniques. The graph relates the costs of the presented detection
techniques to the achieved gain when using them. The cost model used (y-
axis) is the throughput of the protected execution relative to the throughput of
the native execution, i. e., the higher the throughput the smaller are the costs.
The used costs for the left graph are taken from the non-parallel client-server
experiment depicted in Figure 8.5 and for the right graph from the parallel, i. e.,
network-bound, client-server experiment shown in Figure 8.6. For both graphs,
the gain (x-axis) is the share of SDCs produced relative to the share of SDCs
produced in the native execution (the values are taken from the measurements
presented in Figure 8.3), i. e., the smaller this remaining rate of undetected errors
is the better. We averaged the number of undetected errors for all three injection
modes: deterministic, probabilistic, and permanent. Note that the x-axis is
log-scale. Every point is the mean of the measurements of all our benchmark
applications. The native execution as expected has no additional costs, but also
no gain. Thus, the native execution is located in the upper right corner. An
optimal error detection approach would induce no costs and prevent all SDC.
Thus, it would be located in the upper left corner of the diagrams in Figure 8.9.

SWIFT’s and SWIFT ECF’s runtime overhead is negligible. But using them,
about 18% of the undetected errors of the native execution remain undetected.
ANB-encoding and ANBDmem-encoding have a negligible rate of undetected
errors, but introduce high costs. AN-encoding has neither a negligible error
detection rate nor a negligible performance overhead. Furthermore, AN-encoding
has the highest variability in the error detection rate provided for different
applications.

From comparing Figure 8.9 left and right, we conclude that limits of the envi-
ronment (such as limited bandwidth) can hide some of the performance costs
of the detection techniques used. Overall we conclude from Figure 8.9: When
choosing one of the detection mechanism with higher detection rate, the per-
formance degradation is linear. However, the gain, i. e., reduction of the rate
of undetected silent data corruptions, grows exponentially. It is not surprising
that the arithmetic codes lead to a higher reduction in performance in terms

168 CHAPTER 8. COMPILER ENCODED PROCESSING (CEP)

non-parallel servers & clients (Fig. 1)

0.1% 1% 10% 100%
rate of undetected errors

relative to native execution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

th
ro

ug
hp

ut
re

la
tiv

e
to

 n
at

iv
e

ex
ec

ut
io

n

better error detection

hi
gh

er
 p

er
fo

rm
an

ce

8 parallel servers & clients (Fig. 2)

0.1% 1% 10% 100%
rate of undetected errors

relative to native execution

native
SWIFT
SWIFT ECF
AN
ANB
ANBDmem

Figure 8.9.: Comparison of the cost and the gain of our five detection techniques.

of reduced throughput. Still, we are surprised by the cost-effectiveness of the
ANB- and the ANBDmem-code.

8.6. Summary of CEP

In this chapter we presented Compiler Encoded Processing (CEP). We espe-
cially focused on the encoding of data and control flow and dynamic memory.
Furthermore, we presented an evaluation of the runtime and the error detection
capabilities of the different encodings that the encoding compiler can apply
and compared them to the replication-based approaches SWIFT [CRA06] and
SWIFT ECF [RCV+05a]. Additionally, we compared the slowdowns induced by
CEP to the slowdowns induced by our previous approach SEP.

The encoded compiler that we described is able to apply different encodings
(AN-, ANB-, and ANBDmem-code) to LLVM bitcode. Our current evaluations
and tests encode C programs. Due to the flexibility of LLVM the support for
other source languages could be provided in the future.

Our evaluations have shown that the different encodings and also SWIFT and
SWIFT ECF reduce the amount of SDCs compared to an unprotected native
execution. The different approaches provide a different reduction of SDCs.
However, they also induce different runtime overhead in terms of additional
execution time. We observed the following relation: When choosing one of the
detection mechanism with higher detection rate, the performance degradation is
linear. However, the gain, i. e., reduction of the rate of undetected silent data
corruptions, grows exponentially. Thus, our encoding compiler together with our
implementations of SWIFT and SWIFT ECF provides a toolset that enables a

8.6. SUMMARY OF CEP 169

user to trade safety and additionally required runtime.

In the future, further approaches can be implemented to provide more different
possibilities of trading safety and overhead. For example, SWIFT can be
extended with duplicated memory and with the direct use of duplicate values as
function parameters. Thereby, several windows of vulnerability are closed and
its detection capabilities are increased. However, surely the runtime overhead
will increase also.

9. Symptom-based Error Injection
Tools

For evaluating the error detection capabilities of our error detection approaches
SEP (see Chapter 7) and CEP (see Chapter 8), we used error injection. There-
fore, we implemented two symptom-based error injection tools: FITgrind and
EIS (Error Injection Slicing). We developed FITgrind for evaluating SEP. For
evaluating CEP, we developed EIS – a successor of FITgrind.

For testing fault tolerance mechanisms, error injection is a useful and accepted
method. Tools for injecting errors exist for a wide range of fault and error
types, e. g., for emulating programmer faults tools are used that apply software
mutations. To test approaches that aim at the detection of hardware errors, we
need to inject errors that failing hardware might cause.

Existing tools for injecting hardware errors that we discuss in Section 9.1 either Direct vs symptom-
based injectiondirectly modify hardware state or inject symptoms of hardware failures into the

running software. We use symptom-based error injection because, compared
to approaches that inject errors directly into hardware state, symptom-based
injection is easier to apply and the results obtained are more general because
the injection is hardware independent.

We implemented new symptom-based injection tools and did not use any of the Why another
symptom-based
injection tool?

existing symptom-based tools for several reasons:

1. Most of the existing tools implement an insufficient error model that does
not represent the whole range of possible errors. Usually just single bitflips
are injected.

2. There are tools with an error model comparable to ours, but these tools are
processor dependent and difficult to use. For example, to use the FERRARI
injection tool [KKA95], which implements a sufficient error model, the
user has to provide a processor model. Especially, if the error detection
approach shall be evaluated independently of any specific hardware, this
is a daunting and laborious task because in this case several different
processor models should be used.

3. We were not able to obtain any of the symptom-based tools. We believe
the reason is that most of them date back to the nineties. Thus, it is
probable that they are no longer actively developed and supported. This
claim is backed up by the fact that in all recent research papers presenting
error detection mechanisms custom error injectors are used for evaluating
the approaches presented. But as mentioned earlier, these custom injectors
usually just inject single bitflips.

171

172 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

The results of error injection campaigns provide information about how well
error detection mechanisms cope with errors. We are especially interested in
the percentage of errors that cause a silent data corruption (SDC), that is,
the generated output is different from the output of the fault-free run and no
error is reported. In particular, if the rate of SDCs is higher than expected,
we want to identify the ways how errors circumvent the detection mechanisms.
Therefore, we extended our error injector EIS with a dynamic forward slicing
mechanism. For the errors which interest us – usually the ones which produced
an SDC – we can generate a log of the data flow that was influenced by the
error injected. The result is a slice of the trace of the complete execution of the
tested application that shows only executed instructions whose operands or/and
results were influenced by the error. This slice is easier to manually inspect for
debugging the error detection mechanism than a complete log.

This chapter introduces our error injection tools FITgrind [WF06] and
EIS [SSSF10b] that we developed and used for the injection experiments for
evaluating SEP (see Chapter 7) and CEP (see Chapter 8). We presented the
results of these experiments in sections 7.4.1 and 8.5.3.

Before describing our error injection tools, we discuss existing error injection
and slicing mechanisms and tools. We use the results of this discussion to
motivate our decision to implement our new injection tools, which are based
on symptom-based error injection, instead of using one of the existing tools.
Finally, we describe our tools FITgrind and EIS.

9.1. Related Work

This section describes the related work for the injection of hardware errors. First,
we discuss error injection tools. However, the authors of research papers often
seem to use their own specific injectors. Thus, next, we discuss the injection
experiments that were used in recent research papers for evaluating approaches
for detecting hardware errors. Furthermore, we shortly discuss related work for
slicing to show that none of the existing approaches is sufficient for debugging
hardware error detection approaches. Last, we summarize our findings by
deriving design decisions for our own injectors FITgrind and EIS.

9.1.1. Error Injectors

In the following, we give an overview over error injection mechanisms that allow
to inject or simulate hardware errors.

Physical Injection. The most realistic hardware errors can be injected by
directly influencing the hardware, thereby simulating the real causes of hardware
errors. For example, injectors exist that bombard the processor with heavy ions,
radioactive particles or heat, or that inject errors into the pins of a circuit. One
example system is the LFI-injector [JRSMF98] that uses heat generated by a
laser.

9.1. RELATED WORK 173

All physical injection methods have in common that they are rather expensive
because special hardware and an elaborate setup is required. Furthermore, the
system under test might be damaged, and controllability and reproducibility are
very low. Debugging error detection mechanisms would be very difficult under
these conditions.

Simulation-based Tools. Simulation-based tools try to overcome the disad-
vantages of physical injections while at the same time keeping the advantage
of being very realistic. These tools simulate a processor into which gate-level
errors (stuck-at-0 or stuck-at-1), bridging errors, or timing errors are injected.
Providing such a simulator is a daunting task. The controllability and repro-
ducibility of this approach are bought with high runtime overhead generated by
the processor simulator.

Both, simulation-based tools and physical injection are hardware-dependent.
This makes it difficult to test hardware-independent detection mechanisms.
Furthermore, the masking rate for errors injected at such a low level is rather
high. Yount and Siewiorek [YS96] showed that for gate-level injection only 30%
of the errors are activated. Wang et. al. [WQRP04] and Blome et. al. [BMBF05]
observed similar high masking rates. Injecting errors directly as symptoms into
running applications is more efficient because hardware masking is circumvented.
According to Arlat et. al. [ACK+03] injection at software-level can be used to
emulate hardware errors, as long as not only the data segment but also the code
segment of an application is subject to injections.

Hardware-based Tools. Hardware-based tools use special functionality pro-
vided by the hardware to modify the current state of executed software. For
example, errors can be injected using the debug and test interfaces of modern
CPUs. Software tools can access these interfaces and use them to modify system
state. One of the tools following this approach is Xception [CMS98].

Obviously, hardware-based tools are also hardware dependent. However, we pre-
fer hardware-independent error injection for evaluating our hardware-independent
error detection approaches. Furthermore, the setup of these hardware-based
injectors is rather complex.

Error Injection Using Formal Methods. The error injection approaches
described so far never cover all possible error scenarios because realizing a
complete injection using these approaches is not possible due to the time
required. In contrast, error injection using formal methods can provide the
guarantee that all consequences of the errors injected are investigated. Therefore,
possible errors are formally modeled. Then, these error models are applied to a
model of an application or to the application directly. All the possible outcomes
resulting from the application of the general error models are analyzed. The
analysis either shows that the error modeled was detected or not. In the latter
case, a weakness in the error detection is found.

For example, the projects KeY [LH07] and SymPLFIED [PNKI08] use symbolic
execution to implement a symbolic injection of errors. KeY and SymPLFIED
aim at verifying the completeness of error detection approaches, that is, they
try to prove that all errors defined by an error model are detected. Therefore,

174 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

during the symbolic execution all variables (one after another) are marked as
erroneous, and the outcome of the symbolic execution is checked for failures,
i. e., undetected SDCs. SymPLFIED [PNKI08] uses model checking to detect
these failures.

Another example for formal error injection is presented in [NGY+05]. This paper
presents the verification of the completeness of a signature-based control flow
checking approach using model checking. Therefore, a general program using
the signature-based control flow checking approach and all possible control flow
errors are modeled and checked using the SPIN model checker1.

However, symbolic error injection and formal error injection based on model
checking exhibit major problems that prevent their usage for large systems so
far:

• An error model and, for some approaches, a model of the application have
to be provided. The completeness of this model determines the quality
of the results obtained. If the model is too abstract or misses important
error classes, possible failures of the error detection approach can remain
undetected.
• For larger problem sizes the state explosion that is inherent especially

to model checking makes the formal approaches very expensive if not
unusable. All three of the formal error injection methods discussed here
([NGY+05, LH07, PNKI08]) were only applied to relatively small examples.
The largest program analyzed with one of the approaches (SymPLFIED)
requires only 1550 lines of assembly code and, thus, is relatively small.
• Last, adaptations are required for checking probabilistic error detection

approaches such as approaches using arithmetic codes. The reason is, that
as long as the probability for an error is not zero, formal approaches will
find error scenarios.

Software-based Tools. A wide variety of software-based tools for injecting
symptoms of hardware errors exists. Most of them (see the next section)
just insert single bitflips, an error model we deem insufficient. The tools Fer-
rari [KKA95] and FINE [KIT93] do not only inject such data errors but also
control and data flow errors, e. g., by using different input registers or leaving
out instructions. But Ferrari requires the specification of a processor model and
FINE is tailored for injection into the Linux kernel only. Furthermore, both
tools are not freely available or are not available anymore.

None of the error injection tools known to us supports debugging of error
detection mechanisms as our tool EIS does.

9.1.2. Error Injectors Used in Recent Research Papers

Most of the software-based error injection tools are rather old. In recent research
papers that present methods for detecting execution errors, mostly custom
injectors are used. Of the 14 papers that we reviewed 13 used their own specific

1SPIN model checker: http://spinroot.com.

9.1. RELATED WORK 175

error injector and one did no evaluation of the provided reliability using error
injection. In the following, we investigate the capabilities of these custom
injection tools.

For recently published error detection mechanisms aiming at general hardware
errors, mostly single bitflips into data processed by an appliction were injected.
While the injectors used in [YGS09] and [WsKWY07] are implemented using
dynamic binary instrumentation for injecting single bitflips into data, the injec-
tors in [CRA06, PKI07] are realized using static instrumentation. The authors
of [RCA+06, WP06], and [RCV+05a] solely describe the error model used to
evaluate their detection approaches as single bitflip. However, the authors do
not discuss the implementation of the error injection used. For testing the
approaches presented in [RLC+08] and [RR07] simulation-based injection of
single bitflips was used.

However, recent studies (e. g., [DHW09] and [BMBF05]) show that decreasing
feature sizes lead to an increasing number of multiple bitflips. Thus, solely
injecting single bitflips is insufficient to test hardware error detection mechanisms.
Furthermore, solely injecting into the data segment of an application is not
sufficient to emulate all symptoms possibly caused by hardware errors [ACK+03].
Injections in the code segment, that is, changing the executed instructions, are
also required. For example, the simulation-based injector used to evaluate the
techniques presented in [NPI07] injects errors into the data processed and the
code executed as well. Our error injectors also modify the data processed and
the instructions executed. However, we inject these errors as symptoms into
the software executed while [NPI07] uses a hardware simulation to inject the
errors. This simulation is more time consuming because it requires to simulate
a hardware architecture. Furthermore, it obviously is hardware-dependent.

For techniques that check the validity of the control flow of an application, we see
a wide variety of techniques for evaluating the ability of these checks to detect
control flow errors. The evaluations executed range from no evaluation with error
injection for the technique presented in [BWWA06], over simple modifications of
the program counter in [VFM06] to quite elaborate error models implemented by
the error injector described in [VA06] and [VHM03]. Especially the gdb-based
error injection SFIG used in [VHM03] applies a very comprehensive error model
including:

• replacement of one or two instructions,
• usage of wrong operands and wrong result locations,
• exchanging operators,
• modification of operands and results, and
• modification of condition flags.

Unfortunately, SFIG is platform-dependent and only supports Sun Sparc ma-
chines. However, currently, we do not aim at supporting Sun Sparc as a platform
for our encoding approaches.

176 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

9.1.3. Slicing

Our error injector EIS uses slicing to facilitate debugging of error detection
approaches. Originally, slicing is a technique used for automatic debugging. To
compute a slice means to reduce a program or a trace of a program execution
to these parts that are of interest, for example, to the parts that influence a
specific variable.

Several tools implementing slicing exist. For example, Triage [TLH+07] generates
slices as bug reports for production systems. Therefore, Triage repeats the
last seconds of an application’s execution after a (crash) failure with slicing
enabled. Thereby, Triage computes a backward slice that contains any dataflow
leading to the failure. Dimitrov et. al. [DZ09] use slicing similarly to Triage for
filtering anomalies in the dataflow to a given failure. Our tool EIS could also
be extended to compute a backward slice from corrupted output to an injected
error. Therefore, the user would have to identify the corrupted output generated
by the application that is subject to error injection by EIS.

However, our injector EIS uses slicing in another way. It follows the dataflow
from a given error to an undetected failure – an SDC. We do not know of any
error injection tool that provides the possibility to compute a dynamic forward
slice based on the injected error, i. e., enables the user to observe how the error
propagates. Several papers, for example [HJS01] and [ANS+04], address static
analysis of systems to assess the susceptibility of their components to propagate
errors. But these approaches are not suitable for debugging error detection
mechanisms.

9.1.4. Design Decisions Derived

After reviewing existing error injectors and error injection methods used in recent
research papers, we decided to implement a software-implemented symptom-
based error injector. Instead of injecting errors directly into the hardware
either physically or by using special hardware interfaces or by simulating the
hardware, we abstract from the actual hardware error and inject the software-
level symptoms of possible hardware failures. The advantages of this approach
are manifold:

Less masking: Yount and Siewiorek [YS96] showed that around 70% of the gate-
level errors are already masked at the level of architected state, that is,
they never reach application registers. Directly injecting at software-level
reduces masking and, thus, makes the error injection more efficient.

Hardware independence: We want to use the error injector to test error detec-
tion mechanisms which are hardware-independent. Thus, we also want to
test as general as possible, that is, hardware-independent. This is provided
by injecting symptoms at software-level.

Good controllability and reproducibility: To facilitate debugging of undetected
errors, for example, by using forward slicing, it is essential that the error
injection is deterministic and easy to control. Since we are injecting errors

9.2. FITGRIND 177

into an application at the level of machine code, we can exactly determine
where we inject which error and when. This facilitates reproducibility of
the injection runs and detailed debugging by determining which further
instructions are influenced by the error.

Costs and ease of use: Symptom-based error injection requires no additional
hardware or software, e. g., processor simulators, processor models or com-
puters for controlling the injection process. This reduces setup costs.
Furthermore, compared to simulation-based injections the runtime over-
head is much lower.

On the other hand, the abstraction of the error model used by symptom-based
error injection bears the risk of using an error model that does not mirror real
errors exactly. Furthermore, in contrast to injections using formal methods,
symptom-based error injection cannot provide guarantees that all errors are
detected with a specific probability.

For implementing our symptom-based injectors, we assume that any non-masked
hardware failure results in a software-level symptom. For example, timing issues
might lead to a register being written too late. An instruction using this register
will use the register’s previous value. We can simulate this with the software-level
symptom that exchanges an operation’s operand with another value.

Furthermore, we consider the often used single bitflip error model insufficient
because:

1. Arlat et. al. [ACK+03] showed that errors modifying only the data segment
of an application, that is, the values processed, cannot emulate the whole
set of possible hardware errors. Only additional modifications of the code
segment, that is, which instructions are executed with which data, result in
a sufficient coverage of possible hardware errors by the symptoms injected.

2. Reduced feature sizes in todays and future integrated circuits lead to a
growing amount of multiple bitflips [DHW09, BMBF05].

Considering this, we decided to insert error symptoms that modify data and data
and control flow. Thereby, we oriented ourselves on the error model described
in Section 2.5.

9.2. FITgrind

We developed the error injection tool FITgrind for evaluating SEP (see Chapter 7).
For implementing FITgrind, we used dynamic binary instrumentation with the
help Valgrind [Net04]. Thus, FITgrind adds the code required for injection at
runtime.

FITgrind abstracts from the underlying hardware architecture. Errors are
injected as error symptoms into the artificial architecture provided by Valgrind.
FITgrind can inject the following types of errors:

• Modification of operands and results of instructions to simulate bitflips or
stuck-at faults in memory, registers or on buses.

178 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

• Exchange of operands with other operands to simulate address line faults
during data access.

• Replacement of instructions with other valid instructions or groups of
instructions to simulate address line faults during instruction loading.

It would be also possible to simulate bitflips in instructions or operand addresses,
but Valgrind will reject most of these injections because they generate invalid
code.

9.2.1. Design and Implementation

For instrumenting a binary using Valgrind, we have to execute this binary withError injection
using dynamic
instrumentation

Valgrind. Valgrind translates every basic block encountered during the execution
of a binary into UCode which forms the hardware model on which FITgrind is
injecting faults. UCode is a single-assignment load-store architecture, that is,
every register is assigned at most once and memory is accessed using explicit
load and store instructions. Valgrind facilitates the implementation of tools that
can instrument the translated basic blocks.

We register FITgrind as a tool with Valgrind. Thus, Valgrind hands every trans-
lated basic block to FITgrind for instrumentation. After FITgrind instrumented
the basic block, Valgrind transfers the instrumented basic block from UCode
into native binary code. The result is stored into a cache for later reuse and
then executed. Thereafter, the next basic block, which is the destination of the
jump leaving the previous block, is translated and instrumented in the same
fashion.

FITgrind randomly chooses locations within a basic block for error injection
and extends the UCode accordingly. Valgrind tools (as FITgrind is one) can
modify existing UCode instructions, add new UCode instructions, or add calls
to so-called dirty helpers. Dirty helpers are C functions to which calls can be
added to a basic block. Using these possible instrumentations, we can add code
that might inject errors when it is executed. For example, if we want to inject
an error that modifies the result of an instruction, we redirect the result of the
original instruction into another register by modifying the UCode. Then, we
call a dirty helper that randomly decides between the following two options:

• it either stores the original result into the original destination register,
that is, it does not inject an error, or
• it stores a modified version, that is, it injects an error. For example, to

modify an operand, Valgrind randomly chooses how many bit shall be
flipped. Therefore, it uses a Poisson distribution because single bitflips are
more probable than multiple bitflips [LSHC07]. Then, FITgrind randomly
chooses the bits using a uniform distribution and inverts their values.

All other error types are implemented in a similar fashion. Currently, the user
of FITgrind can configure which of the supported error types he wants to inject
with which probability. Of course, FITgrind could also be extended to support
a more detailed choice of error injection points, e. g., by time or instruction type
as provided by Xception and FERRARI.

9.2. FITGRIND 179

FITgrind allows the user to define error injection campaigns with given proba- Experiment
executionbilities for errors, error types, and target applications. One campaign consists of

several error injection runs for one target application with one configuration for
the error types and their probability. The different runs of one campaign differ
in the seed used for the random number generator controlling the error injection
process. Furthermore, for each campaign, we execute one golden run in which
we do not inject errors. Each error injection run is repeatable by choosing the
same configuration of probabilities, error types, and seed.

The output of an error injection run and the golden run are compared byte wise.
The following results are possible:

correct but incomplete output In this case, we first observe correct output.
However, at some point, the output stops. The reason is that either
the operating system detected the error, for example, if an unallocated
memory area was accessed due to the error, or that another error detection
mechanism detected the error and prevented erroneous output.

no output No output at all was generated by the erroneous run. The application
crashed before any erroneous data could be externalized. Thus, no output
is a special case of correct but incomplete output. In this case, the error is
detected before any output is generated.

correct and complete output We observe the correct output, that is, the output
of the run with an injected error and the error-free golden run are equal.
There are no deviations. Thus, the error was masked. For example, a later
unused value was modified or a value was modified that was used for a
comparison. This comparison might still have evaluated to the correct
result despite the erroneous comparison parameter.

incorrect output In this case, a silent data corruption occurred, that is, output
was produced that differs from the error-free run. Obviously, the reason is
that undetected errors became failures. When testing our error detection
approaches, this is a failure of the error detection. In contrast to crashes,
arbitrarily erroneous output is difficult to detect as such.

Furthermore, we parse the output of the program to check if an error was
detected and which error was detected. Thus, we will see if an error was detected
by the operating system or a specific error detection mechanism. All results, the
error injection configuration and the types and number of the errors injected
are stored in a database for later analysis.

9.2.2. Results

We presented the results of our error injection experiments for evaluating SEP in
Section 7.4.1. FITgrind clearly demonstrated the differences between unprotected
applications and applications protected by SEP. For the latter, the rate of SDCs
observed was much lower and we could also see that about 8% of the errors
detected were detected by SEP exclusively.

To determine the runtime overhead of FITgrind, we tested it with a recursive
grep as target application for which we executed 1,300 injection runs. The time

180 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

measurements were taken with adding the instrumentation for triggering errors
but without actually triggering them. One error injection run was on average
21.5 times slower than an uninstrumented natively compiled run. This is the
same slowdown Valgrind (version 3.2.0) generates when no instrumentation is
done at all. When triggering errors, the runs are almost always faster, because
of crash failures.

9.3. EIS

FITgrind supports our intended error model (see Section 2.5) only partly. Fur-
thermore, the dynamic binary instrumentation used by FITgrind leads to large
slowdowns – at least for these injection runs that do not crash immediately.
Thus, we decided to develop the new injection tool named EIS2 that is based
on static instrumentation instead of dynamic instrumentation that was used by
FITgrind.

EIS stands for Error Injection Slicing. This name captures that EIS does not
only inject errors, but also provides a debugging mechanism for error detection
approaches. This debugging mechanism applies slicing to allow the user to
determine where an error circumvented error detection mechanisms.

In the following, we first introduce the error injection provided by EIS. After-
wards, we describe the slicing for debugging error detection mechanisms.

9.3.1. Error Injection

In EIS, we insert the error symptoms at the level of the LLVM bitcode [LA04] of
the application’s source code. For implementing EIS, we use the LLVM compiler
framework that allows us to modify LLVM bitcode. We give a short introduction
to the LLVM compiler framework and LLVM bitcode in Section 8.3.1. If you
are not familiar with LLVM, you should read this section before going on with
the current section. However, note that the error model implemented by EIS is
not tied to LLVM. It can be easily mapped to other assembler languages and
with more difficulty to programming languages.

LLVM’s platform-independence allows simulation of hardware errors independent
of any hardware. In contrast to error injection at source code level, insertion
in LLVM-bitcode is reasonably easy and allows to realize a wide variety of
symptoms of hardware errors. Furthermore, LLVM-bitcode is easier to read
than assembler and easier to map to the original source code.

On the other hand, the LLVM framework restricts us in the kind of errors we
can insert because it performs a restrictive code consistency check. For example,
it is not possible to use an undefined register.

2Note that EIS is a joint work with Martin Süßkraut and André Schmitt. While the author
of this thesis mainly implemented the error injection part of EIS, Martin Süßkraut and
André Schmitt provided the slicing part that facilitates the debugging of error detection
mechanisms.

9.3. EIS 181

The Error Model

The injector inserts the following error symptoms that were first introduced by Error symptoms

[For89] and that we already describe in Section 2.5:

• Exchange operand: A different but valid operand is used, that is, instead
of the intended operand another register which is already defined and has
the same type is used.

• Exchange operator: A different operator is used, e. g., an addition is
executed instead of a subtraction. The operands remain the same.

• Faulty operation: The result of an operation is modified by bitflips.
This can be multiple as well as single bitflips. Every read of the result is
influenced by the injected error.

• Lost store: A store operation is omitted.

• Modify operand: An operand used by an instruction is modified by a
single or a multiple bitflip. In contrast to a faulty operation, a modified
operand only influences one read of a register.

These symptoms represent data and data flow errors.

Currently, errors modifying the control flow of an application are supported
implicitly because any conditional jump can be subject to the existing error
model. For example, a modified or exchanged condition operand could result
in erroneous control flow. In the future, EIS could be extended with explicit
support for control flow errors. Therefore, error symptoms have to be added
that

• modify existing jump instructions or
• insert new jump instructions.

This facilitates the simulation of errors that arbitrarily modify the program
counter.

In contrast to FITgrind that supported only probabilistic injection, EIS supports Injection modes

different injection modes:

• Deterministic: In this mode exactly one error is triggered per run. Usu-
ally several thousands of such runs are executed where in each run another
error of the same type is triggered. This tests the ability of a detection
mechanism to cope with rarely occurring errors. Furthermore, we can
determine if an error detection mechanism is especially susceptible to some
error types.

• Probabilistic: This mode combines all error types. The user has to
provide the probability that an error will occur. At each possible point
where an error could be triggered a random number is generated. The
random number and the error probability provided by the user determine
if an error is injected or not. Thus, one execution might be hit by several
different errors. This mode allows to mirror the fact that for an error
detection mechanism which increases code size, the protected program

182 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

version is more probable to collect errors than the program version without
error detection.

• Permanent errors: In this mode we inject permanent faulty operation
errors simulating permanent logic errors in the processor. Depending on
the input values of an instruction, its result is modified. If a specific bit
within the input values of a specific operation is set, a bit of the result is
flipped. For one injection run, the targeted operation, the bit which has to
be set for triggering the error, and the bit flipped in the result remain the
same. Permanent errors are only applied to arithmetic integer operations,
and loads and stores of integer values.

Trigger Points and Error Triggering

Injecting errors into an application, which might or might not contain error
detection mechanisms, is a two-stage process: First, EIS statically, i. e., at
compile time, injects the code which might trigger an error. We call the code
injected trigger points. Second, when executing a trigger point at runtime, we
decide if an error is injected or not. The decision algorithm used depends on
the injection mode chosen by the user.

Inserting Trigger Points When inserting the trigger points, the user has to
decide if he wants do a probabilistic, deterministic, or permanent injection.
For a deterministic injection, he has to provide the desired error type. For a
deterministic and a probabilistic injection, he also has to provide the trigger
frequency that determines how many of the possible trigger points are inserted.
If the user chooses a trigger frequency of x, every x-th possible trigger is inserted.
Thus, a frequency of one inserts all possible triggers. For example, for the
modify operand error type that means that at runtime every operand used in
the application could be replaced with a modified one. For large applications,
inserting all possible trigger points results in too high memory requirements for
linking the result obtained by the injection process to the libraries required for
the error injection. The reason is that every trigger point inserted contains a
call to a function implemented in an additional library. To circumvent these
out-of-memory problems of the linker process, we could directly insert the code
for triggering an error. However, this surely would lead to a code explosion that
makes lowering of the resulting LLVM code to machine code difficult.

Note that the trigger frequency for the injection of permanent errors is always one.
This ensures that a permanent error is always triggered if its trigger conditions
are true. If in the future more types of permanent error should be supported,
this might lead to compilation and linking problems due to resource constraints.

In the following, we present the insertion of a trigger point. Take, for example,Example:
trigger point the following LLVM bitcode extract which represents the multiplication of two

32-bit integers:

1 %c = mul i32 %a , %b

9.3. EIS 183

After inserting trigger points for the modified operand error type with a trigger
frequency of one the code looks as follows:

1 %a bf = c a l l i 32 @b i t f l i p i 3 2 (i 32 %a)
2 %b bf = c a l l i 32 @b i t f l i p i 3 2 (i 32 %b)
3 %c = mul i32 %a bf , %b bf

The @bitflip i32 function gets one argument: the register which might be
modified at runtime. At runtime, @bitflip i32 decides if an error is injected
or not. If an error is injected, @bitflip i32 returns a modified version of its
argument. Otherwise, it returns the unmodified argument. Furthermore, we
replace the original operands of mul with the possibly modified versions %a bf

and %b bf. However, the decision if an error is injected that is implemented in
@bitflip i32 depends on the chosen injection mode.

For the probabilistic injection, a random number between 0 and 1 is generated Probabilistic
trigger pointand compared to the trigger probability provided by the user of EIS. If the

number is smaller than the probability, the error is triggered and @bitflip i32

returns a modified version of the original operand. Otherwise, no error is
triggered and @bitflip i32 returns the original, unmodified operand.

For the deterministic one-error-per-run injection, a counter is incremented in Deterministic
trigger point@bitflip i32 at each passed trigger point. The user gives an error ID, i. e.,

the counter value identifying the passed trigger point at which an error is to
be injected. At runtime, when the trigger point with the given counter value is
reached, an error is injected. No other passed trigger point will inject an error
for the deterministic injection.

For a permanent error, the decision if an error is injected depends on the Permanent
trigger pointinstruction executed and the values of the parameters given to this instruction.

If the targeted instruction is executed and a specific bit of the input parameters
is set, a bit of the output value is flipped. For each different injection run, a
different operation or a different bit of the input parameters is automatically
chosen as a trigger condition.

Implementation of the Error Symptoms LLVM is a typed language. To
simplify the presentation, we only present the instrumentation for the LLVM type
i32 (32-bit integer). Operands and operators of other types are instrumented
accordingly. We have implemented the five error symptoms as follows:

• Exchange operand: The instrumentation adds a call to
@select operand i32 (i8 %no alt ops, i32 %orig o, ...) for each
operand that shall be replaceable at runtime. The second argument
%orig op is the original operand. Other operands with which the original
operand could be exchanged are passed as vararg. Matching operands are
selected by type statically at compile time. The first argument %no alt ops

gives the number of passed alternative operands. At runtime, when an
error is triggered the function returns the value of one of the other operands.
If no error is triggered the original operand’s value is returned.

184 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

• Exchange operator: If an operator shall be exchanged, its result is
passed through the function @exchange operator i32 (i32 %result,

i32 %op1, i32 %op2, i8 %op) The argument %result is the original
result of the operation. The constant %op identifies the original operator
(such as add, sub, or, and so on). The original arguments to operator %op
are passed as %op1 and %op2. If no error is injected %result is returned.
Otherwise, a random operator (different from %op) is applied to %op1 and
%op2 and its result is returned.

• Faulty operation: The result of any operation whose result we want to
modify is passed through @bitflip i32() as introduced above.

• Lost store: All store operations that are to be left out are wrapped by
the function @lose store(i32* %ptr, i32 %val). If no error is injected
%val is stored at %ptr. Otherwise, @lose store returns without doing a
store.

• Modify operand: The instrumentation for modify operands uses
@bitflip i32() as introduced above.

Triggering Injections Before executing injection runs, an error-free golden run
is executed. Its results are used to determine the effect of the error injection.
For example, by comparing the output of the golden run with the output of an
error injection one can identify silently corrupted output.

The golden run is also used to measure the time that is required for an error-free
execution. For error injection runs, we wait three times the execution time of
the error-free run before we kill the application and assume that the injected
error resulted in a deadlock or and endless loop.

Furthermore, the golden run provides the number of passed trigger points. This
number is normally higher than the number of inserted trigger points because
injected trigger points located within loops mostly are passed multiple times. In
the deterministic injection mode, the number of passed trigger points is used
to determine the trigger point that has to inject an error in the current run. If
the number of the trigger point passed equals the ID of the error that shall be
injected in the currently executed run, an error is injected. The error IDs used
are uniformly distributed over all trigger points passed at runtime.

To execute the actual injections the user of EIS has to provide the chosen
injection mode (deterministic, probabilistic, or permanent). For the deterministic
mode, the number of injections has to be provided. For the probabilistic mode,
additionally the probability with which a trigger point turns into an error is
required. For the permanent mode, always all possible errors are injected. For
every possible permanent error, one injection run is executed. The information
provided by the user is used in the trigger points, e. g., the @bitflip i32

function, to decide if an error is inserted.

Determining the Injection Results As for FITgrind an error injection cam-
paign consists of several injection runs applying the same symptom in the same

9.3. EIS 185

mode at different points of the application. The results of these injection runs
are compared to the error-free golden run. We described the possible outcomes
already in Section 9.2.1.

Evaluation

We used EIS for evaluating our Compiler Encoded Processing presented in
Chapter 8. Therefore, we parallelized its execution. This is easily possible
because the different injection runs are independent of each other. The results
of these injections are discussed in Section 8.5.3.

9.3.2. Debugging with Forward Slicing

Most hardware error detection tools only detect a certain amount of silently
corrupted output failures. However, the question arises if the remaining unde-
tected failures are caused by the incomplete coverage of the detection approach
or by bugs in the error detection. EIS’ debugging support helps to analyze and
debug undetected failures. Therefore, EIS identifies the complete data flow of
an injected error through the application. It provides this information to the
user as a so-called forward slice. The forward slice produced by EIS represents
the LLVM instructions that were influenced by the error. This enables the user
of EIS to detect bugs in his error detection mechanisms because he can read
LLVM-bitcode and map it to the original source code. By inspecting the data
flow the developer of an error detection mechanism can find missing checks
and missing redundancy in the detection mechanism or just plain bugs in the
implementation of the detection mechanism. Hence, EIS’s debugging support is
two-fold:

• It helps to improve the coverage of the error detection approach and
• it helps to debug the error detection implementation.

Approach

To facilitate the debugging of error detection mechanisms, EIS computes a
slice Se for every injected error e.

Definition 1. The slice Se of an injected error e is the set of all instructions
operating on values directly or indirectly influenced by error e.

Together with the data flow the slice contains also the control flow influenced by
the injected error e. However, deviations from the control flow of an error-free
execution are hard to detect because only the control flow of the erroneous run
is part of the slice. Furthermore, the slice contains all output instruction that
may generate erroneous output because of the injected error.

For convenience, EIS generates an XML representation of Se. The XML rep-
resentation can be automatically post-processed for further analysis or more

186 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

1 [+] @abs :
2 [+] bb1 :
3 %reg1 = c a l l i 32 @b i t f l i p i 3 2 (i 32 %tmp0)

4 s t o r e i 32 %reg1 , i 32 ∗ %addr1

5

6 [+] bb2 :
7 %reg2 = load i32 ∗ %addr1

8 s t o r e i 32 %reg2 , i 32 ∗ %addr2

9

10 [+] return :
11 %reg3 = load i32 ∗ %addr2

12 r e t %reg3

13

14 [+] @main :
15 [+] bb4 :
16 %reg1 = c a l l i 32 @abs (i 32 %tmp0)

17 %reg2 = add i32 %reg1 , %tmp1

18 s t o r e i 32 %reg2 , i 32 ∗ %addr3

19 ; ; loop s t a r t (repeated 350 t imes)
20 %reg3 = load i32 ∗ %addr3

21 %reg4 = add i32 %tmp2 , %reg3

22 s t o r e i 32 %reg4 , i 32 ∗ %addr3

23 ; ; loop end
24

25 [+] bb15 :
26 %reg5 = load i32 ∗ %addr3

27 c a l l void @print f (i 8 ∗ %msg , i 32 %tmp3 , i 32 %reg5 , i 32 %tmp4)

Figure 9.1.: An example slice produced by EIS. The data flow that is of interest,
that is, depends on the error injected, is underlined. A bitflip is
injected in function @abs. It propagates into @main, through a loop
and into the output function @printf where the bitflip becomes
visible as corrupted output.

human-accessible presentation. Currently, we only support the generation of a
browsable HTML version of Se. The user can manually inspect Se to analyze
and debug why the error e is not detected. Note that a slice is more than
the difference between the log of a run with error injection and the log of the
error-free golden run. As long as the injected error does not influence the control
flow the slice and the difference between the two logs are similar. However, if the
injected error changes the control flow, e. g., the error changes the conditional
value of a conditional branch, a slice follows the injected error. Whereas the
difference between the two logs would contain a mixture of both control flows
and not be very helpful anymore.

Listing 9.1 shows a slice of a modified operand error injected into an unprotected
application, i. e., an application without any additional mechanisms for detecting
hardware errors. The slice consists of a sequence of LLVM instructions. To
simplify the presentation, we highlighted the data flow of the error by underlining
the registers that were influenced by the injected error. The modified operand is
injected into the first operand of the store in line 4 via a call to @bitflip i32

in the previous line. The error propagates via load and store through the
memory (addresses %addr1 and %addr2) until it is returned from function @abs

(line 12). Hence, the function call in line 16 returns an erroneous value. The

9.3. EIS 187

erroneous return value influences an addition in line 17 and then is used by the
loop that starts at line 20. For readability, we omitted all but one loop iteration.
In line 27 the erroneous value is finally output by the external function @printf.

Implementation of the Slicing

EIS assigns a unique error ID to each error injected. Each execution of an
arbitrary trigger point is assigned a different error ID. Thus, the error ID
identifies one specific injected error. Together with the runtime configuration of
an injection, the error ID allows us to deterministically repeat error injection
runs. The runtime configuration consists of the seed that controls the possibly
used random numbers, the symptoms injected, and the injection mode used.
To generate a slice for a given error with error ID e, EIS does a single error
injection run with debugging support enabled. In this run only the error e is
triggered. The output of this run is a binary log containing all instructions of
the forward data flow derived from e. EIS then converts this log into an XML
representation for further processing.

EIS’ debugging support consists of a dynamic data flow analysis. The imple-
mentation of the data flow analysis consists of two parts:

Shadow instructions trace the data flow of the injected error through the ap-
plication.

Logging code logs unique IDs of instructions that take part in the traced data
flow.

The shadow instructions and logging instructions are added after the error
injection instrumentation and only if debugging support is enabled.

Shadow Instructions At runtime, each LLVM register r is shadowed by a
register rS tracing the data flow of the injected error. Depending on whether
the current value of r is part of the traced data flow or not, rS contains one of
two values: either INTERESTING or BORING. INTERESTING means the value of r
was influenced by the injected error. BORING means it was not influenced.

EIS uses shadow instructions to update the shadow values after each instruction
that was executed. Therefore, after each instruction a shadow instruction is
added. EIS adds shadow instructions and registers as follows:

• Constants are shadowed as BORING.

• The shadow value of the result of an unary instruction gets the same
shadow value as the operand of the instruction.

• Instructions with an arity of two and higher are shadowed by the disjunction
of its operands, that is, if any of the operands is INTERESTING the result
is also.

• The injected error is shadowed by INTERESTING. All other error injection
points pass-through the shadow values of the original registers. Thus, they
are treated as instructions with multiple operands.

188 CHAPTER 9. SYMPTOM-BASED ERROR INJECTION TOOLS

• Loads and stores are shadowed by accesses to a shadow memory. Each
byte in memory is shadowed by a shadow value. Initially, all bytes are
shadowed by BORING. A shadow store writes the shadow value of the
stored register into the shadow memory at the address of the original store.
Similarly, a shadow load reads the shadow value from the shadow memory
at the address of the original load. Our shadow memory implementation
is derived from [NS07].

• Functions get one additional argument per original argument carrying the
shadow value of the original argument. They also get a second return
value representing the shadow value of the original return value. Function
calls are instrumented accordingly.

Logging Code EIS adds to every original instruction a log instruction. The log
instruction logs the unique ID of the original instruction, if and only if, at least
one operand (or argument in case of function calls) of the original instruction
has a shadow value of INTERESTING.

After running the application, the logged instruction IDs form the slice. In a
post processing step, EIS converts the logged IDs with the help of the original
LLVM code into the XML representation introduced above.

Evaluation

It is difficult to objectively evaluate the usefulness of slicing in our context.
However, we performed a case study with four of the applications introduced in
Section 8.5.1 to give an intuition about the usefulness of our approach. For each
application, we executed 10 error injection runs in two configurations. For the
first configuration, we logged all executed instructions as a full log. The second
configuration only logged the sliced log of the data flow of the injected error.

Table 9.1 shows the results of these experiments. All values for runtime and
size are the average of all 10 runs. Logging a slice only is in average 14.48x
faster than doing the full log. Data flow analysis needed for slicing introduces
some runtime overhead. On the one hand, for the two faster executions (primes
and md5) the slicing is actually slower than writing out the full log. However,
the absolute runtime with slicing is still shorter than 0.1s. On the other hand,
for long running applications the overhead is more than compensated by the
IO overhead of logging all instructions for a full log. The slices are in average
1316.1x smaller than the full log. We believe the space reduction makes it
much more feasible to manually inspect the slice than the full log. Automated
inspection will also profit from the reduced size.

We inspected slices of the error injection results of ANBDmem-compiler-encoded
benchmarks (see Section 8.5.3). We were able to identify several issues that lead
to silent data corruptions.

One example is the overflow correction for an ANB-code that we described
in [WF07a] and Section 4.2.1. The correction is required to ensure correct

9.4. CONCLUSION 189

Application
Runtime for

full log sliced log Speedup

primes 0.017s 0.027s 0.63x

md5 0.020s 0.029s 0.7x

pid 1.691s 0.106s 15.95x

tcas 3.649s 0.092s 39.66x

Average 14.48x

Application
Size of

full log sliced log Reduction

primes 458kb 4kb 114.5x

md5 616kb 20kb 30.8x

pid 79,000kb 1,879kb 42.0x

tcas 132,000kb 26kb 5076.9x

Average 1316.1x

Table 9.1.: Runtime and space required for a full log compared to a sliced log
for four different applications.

integer overflow behavior for computations with encoded values. But for small
As it has a vulnerability to exchanged operand errors. We found this issue
because the number of silent data corruptions for exchanged operand errors was
unexpectedly high. Slices of runs where operands were exchanged revealed the
cause of this vulnerability.

For ANBDmem-encoding version management is required (see [WF07b] and
Section 4.7). Using the slicing of EIS we were also able to identify a safety-
relevant bug in our list-based version management.

9.4. Conclusion

This Chapter introduced our two error injectors FITgrind and EIS that we used
to evaluate the error detection capabilities of SEP and CEP, respectively. Both
error injectors are generally applicable and can be used to evaluate arbitrary error
detection approaches or the resilience of unprotected applications with respect
to execution errors. Furthermore, both injectors are hardware-independent and
do not require a hardware model.

EIS in addition to error injection also provides forward slicing. Thereby, it
facilitates the debugging of error detection approaches. This already enabled us
to identify several safety issues in our Compiler Encoded Processing presented
in Chapter 8.

Both tools helped in evaluating our encoding approaches and in further improving
their error detection capabilities. Results obtained using them where published
in several papers [WF07b, SSSF10c, SSSF10a].

10. Related Work

In this chapter, we relate our work to other hardware error handling approaches.
Thereby, we focus on techniques for detecting hardware errors, but also discuss
approaches for avoiding the occurrence of hardware errors. Detection facilitates
the correction of errors. However, we will not present techniques for handling
the errors detected by the mechanisms presented.

For determining the capability of error detection mechanisms to detect errors,
often error injection is used. We already described the state of the art for error
injection tools in Chapter 9.

Before describing the error detection approaches in the following, we introduce Chapter overview

different ways of ordering and classifying approaches to handle hardware errors
in Section 10.1. Then, we describe the different error detection approaches
ordered by their kind of implementation. The detection of hardware errors can
be implemented in

• hardware (see Section 10.2),
• software (see Section 10.3), or
• a combination of both (see Section 10.4).

10.1. Classifying Error Handling Approaches

This section introduces several schemes to order and classify error handling
approaches. Therewith, we will order the related work presented in the following
sections and our own work.

To implement a fault tolerant system two general strategies exist:

Avoidance: The occurrence of errors is avoided. For hardware errors, this mostly
means that hardware is designed in a way that prevents hardware errors.
This hardware must not be susceptible to soft errors, which might be caused
by radiation, heat, etc., and must not contain permanent errors – or at
least the error rates caused by soft and permanent errors should be as low
as required for building a reliable system. Also software approaches exist
that try to avoid the occurrence of hardware errors by using the hardware
in a way that makes the occurrence of hardware errors improbable.

Detection & correction: The occurrence of errors is accepted and not prevented.
Instead, approaches are applied that detect errors and cope with them.
Furthermore, approaches exist that correct errors without detecting them.
We call these self-correcting.

191

192 CHAPTER 10. RELATED WORK

This thesis introduces a mechanism that facilitates the detection of hardware
errors. We do not provide correction. Thus, our related work presented in
the following will focus on the detection of hardware errors – implemented in
hardware or software. However, we will also present some approaches that avoid
the occurrence of hardware errors or are self-correcting. We will show that these
approaches have an insufficient coverage or are not generally applicable.

Every error detection approach is based on some kind of redundancy or a
combination of different kinds of redundancy. There are three different types of
redundancy used for error detection:

Hardware redundancy: Additional hardware is used to implement the detection
of errors. For example, for detecting soft errors, an additional processor
could be used. This processor executes a program, function, or instruction
a second time. An additional voter compares the results of both processors
and detects an error if the results are not equal. Of course, the additional
voting step may increase the runtime.

Time redundancy: In contrast to space redundancy, time redundancy uses the
same hardware to realize error detection. However, additional runtime
is used to detect errors by executing additional code. For example, for
detecting soft errors, a program can be executed two times – one replica
after the other – and the results of these two executions are compared. A
mismatch indicates an error.

Information redundancy: Data is supplemented with additional data that facili-
tates the detection of errors. For example, data can be stored several times
or a parity is added to each data item stored. Any mismatch between
the redundant information and the data identifies an error. Checking the
consistency of data may increase the runtime.

Encoding is a combination of all three forms of redundancy. Encoding supple-
ments data with additional data whose consistency property facilitates error
detection. Thus, information redundancy is used. The signatures expected
for encoded values are precomputed at compile time. Therefore, other more
safer hardware can be used. Thus, the signature precomputation adds time and
possibly hardware redundancy.

Classification by the type of redundancy is too general. Thus, we will order
the detection approaches first by their kind of implementation: in hardware,
software, or a combination of both. Within these categories we will use the
following classification that describes the technique used in general:

Replicated execution: Approaches that use replicated execution use hardware
or time redundancy to re-execute the program or parts of it. One re-
execution facilitates detection of one erroneous execution. Using more
replicas even facilitates the correction of detected errors.

Consistency Checking: For consistency checking, also additional hardware re-
sources or runtime are required. Furthermore, the program executed needs
to contain some invariants that can be checked. For example, assertions
are an example for consistency checking. Another example is a processor
that checks the consistency of the control signals generated during the

10.2. RELIABLE HARDWARE 193

execution of an instruction.
Control and Data Flow Checking: Control flow checking ensures that the con-

trol flow, that is, the order in which instructions are executed, is valid for
the application executed. To realize control flow checking, most approaches
extend the program executed with a model of the control flow expected
and check if the control flow observed at runtime matches this model. Most
approaches check only the correct ordering of basic blocks, but not the
correctness of the order of the instructions within the basic blocks.
Similar to control flow checking, also data flow checking exists. Therefore,
at runtime, the data flow observed is compared to the data flow expected
for the application. A mismatch indicates an error.
Control and data flow checking cannot check for general computation
errors. Control flow checking detects only errors that turn control flow
into invalid control flow, and data flow checking can only detect errors
that disturb the choice and loading of operands.

Arithmetic Encoding: Arithmetic encoding uses information redundancy to
detect erroneous modifications of data and also erroneous computation of
data. This also requires additional hardware resources because encoded
data and programs require a larger amount of memory for storage. Fur-
thermore, also additional runtime is required because arithmetic encoding
slows down the protected program. However, no replicated execution
(either in parallel on redundant hardware or sequentially on the same
hardware) is required.

The AN-/ANB-/ANBDmem-encoding proposed in this thesis is an arithmetic
encoding approach that is implemented in software.

10.2. Reliable Hardware

An alternative for handling hardware errors in software – as proposed in this
thesis – is to handle them already in hardware. This section aims at showing
that building reliable hardware is a complex and expensive task. Therefore, we
first present hardware solutions for avoiding the occurrence of hardware errors.
Second, we describe hardware-implemented solutions for detecting hardware
errors.

Most solutions presented in the following protect only parts of the system, for
example, the memory, or the control flow, or a computation. However, every part
of the hardware is susceptible to errors and, thus, has to be protected. Hardware
approaches that aim at a comprehensive error detection for the whole system
usually combine several techniques which makes them complex and expensive.

10.2.1. Error Avoidance

Of course, it would be much more effective to completely prevent the occurrence
of hardware errors – soft and permanent ones. Calhoun et. al. in [CCL+08] give
an overview of techniques that are nowadays used to produce usable hardware

194 CHAPTER 10. RELATED WORK

despite the problems posed by downscaling. For example, the usage of design-
for-manufacturing rules and standard cell libraries shall avoid that circuits
contain permanent errors caused by downscaling and are tolerant to soft errors
induced by variation, heat, radiation, etc. However, the smaller the feature sizes
become the less successful are these techniques. For example, the design-for-
manufacturing rules have become so complex that several rules contradict each
other. Already today, the resulting hardware is not sufficient for safety-critical
applications.

Several other papers present approaches for realizing hardware that is not
susceptible to soft errors. In the following, we will present some examples.
However, this list of examples is far from being complete because the focus of
our work is the detection of errors and not their prevention because it is our
opinion that complete prevention is not possible.

Avirneni et. al. in [ASS09] present registers that are designed in a way thatFault-tolerance
by design enables them to tolerate single event transients. However, this approach does

not protect logical circuits and busses. Therefore, additional measures are
required.

One approach to make memory and logical circuits tolerant to soft errors is gateGate resizing

resizing. In this approach again larger feature sizes are used to produce the
circuits. These circuits are than used with a higher voltage. Using larger feature
sizes and higher voltages makes circuits more tolerant to soft errors because the
negative impacts of downscaling are reversed. However, it makes no sense to
resize whole circuits. In contrast, the approaches described in [WM08b, ZM06]
determine gates that are susceptible to soft errors. Only these gates are than
resized, that is, produced using larger feature sizes and used with higher voltages
than the smaller-sized gates.

A transient is said to be latched if it erroneously modifies the state of a flipflop. IfFlipflop selection

a transient induced into a logical circuit by radiation or heat is latched, depends
on the timing behavior of the transient induced and the flipflop at which the
transient arrives. Joshi et. al. in [JRBS06] present different flipflop designs with
different temporal masking capabilities. Thus, depending on the signal properties
on the input lines of the flipflop, a flipflop implementation can be selected that
increases temporal masking of transients on the input lines as much as possible.

Rao et. al. in [RBS06] propose to combine gate resizing with flipflop selection.
Additionally to increasing the feature size of susceptible gates, Rao et. al. deter-
mine the timing behavior of the signals at the input lines of flipflops, and choose
a flipflop implementation that makes latching an error the most improbable.

Weaver et. al. in [WEMR04a, WEMR04b] reduce the impact of radiation byReduced exposure

reducing the time that instructions forming a program are stored in vulnerable
storage structures. The authors assume that the pipeline is vulnerable and the
memory is not. Thus, instructions are removed from the pipeline when long
delays are encountered.

All these approaches have in common that they increase the complexity of the
hardware design process and make the hardware produced more complex and

10.2. RELIABLE HARDWARE 195

expensive. Furthermore, all these approaches only aim at soft errors and protect
only parts of the system. None of the approaches targets permanent hardware
errors and all need to be combined with an approach to handle errors occurring
in memory or on busses.

10.2.2. Error Detection

In the following, we will first present hardware-implemented approaches that de-
tect errors in one single part of the hardware. This is followed by the presentation
of several systems that combine different technologies to provide comprehensive
error detection for the whole computing system.

Replicated Execution

Replicated execution is widely used to detect hardware errors during program Replication of
functional unitsexecution. Several systems replicate large functional units of the hardware and

use voters to detect and often even correct errors. Examples are:

• The Boeing 777 uses triple modular redundancy for the computing system,
the electrical power supply, the hydraulic power, and the communication
path [Yeh96]. Thus, one erroneous replica can also be corrected.

• Complete function blocks of IBM’s S/390 G5 microprocessor are duplicated
for error detection [SAC+99].

• The NonStop Advanced Architecture by HP at least duplicates all parts of
the computing system. If error correction is needed, also TMR, that is,
triplication, is supported [BBV+05].

The DIVA checker [Aus99, WA01] replicates a whole processor. However, the
DIVA checker that checks the original is a simpler implementation of the original
processor. For example, no speculation and out-of-order execution are provided
and a smaller frequency is used to operate the replica. For ensuring that the
checker nevertheless is fast enough, it reuses results of the original processor,
for example, the results of the original’s pipeline instruction ordering logic are
used to speed up the checker. The DIVA checker is more robust and easier to
verify than the CPU checked. Thus, the DIVA checker can be assumed to be
less susceptible to errors.

Bower et. al. extended the DIVA checker approach in [BSO05] with a reconfig-
uration procedure that disables permanently erroneous units in the complex
original processor.

Several papers present CPU designs that use simultaneous multi-threading to Replication using
multi-threadingexecute several copies of a thread and compare the results to detect errors

occurring in the CPU. Examples are:

• Active-stream/Redundant-stream Simultaneous Multithreading
(AR-SMT) [Rot99],
• the Simultaneous and Redundantly Threaded (SRT) processor [RM00],
• the Simultaneously, and Redundantly Threaded processor with Recovery

(SRTR) [VPC02],

196 CHAPTER 10. RELATED WORK

• the Slipstream Processor presented in [PSR00],
• Redundant Execution using Critical Value Forwarding

(RECVF) [SSSL10], and
• the Chip-level Redundantly Threaded multiprocessor with Recovery

(CRTR) [GSVP03].

All these processors execute programs using duplicated redundant threads: one
leading and one trailing thread. In contrast to the approaches presented above,
the redundant threads are dynamically scheduled and only synchronized with
respect to data externalization at the boundaries of the sphere of protection, that
is, at the boundaries of the duplicated part of the execution. For all the examples,
the sphere of protection comprises the processor including the register file. Thus,
all approaches check the consistency of the duplicates before externalizing data
to the memory.

The Slipstream Processor [PSR00] reduces one of the threads executed to these
instructions that are required for making process. Thereby, the whole system is
sped up because, for example, branch predictions from this faster thread can be
used to speed up the trailing thread that checks the execution. RECVF [SSSL10]
also forwards results from the leading thread to the trailing thread. This speeds
up the trailing thread. In RECVF this speed up is used to reduce the overall
energy consumption by using a slower and lower-voltage core for executing the
now faster trailing thread.

SRTR [RM00] additionally provides a rollback mechanism for recovering from
detected errors.

The Mixed-Mode Multicore [WCS09] and the Reconfigurable Generic Dual-CoreAdaptable
replication Architecture [KS06] also dynamically duplicate threads using the multi-threading

capabilities of modern CPUs. In contrast to the above discussed approaches,
these solution provide more flexibility because the user can choose which threads
are critical and shall be duplicated and which are not critical and can run
unduplicated and faster using only one core.

Yao et. al. in [YWZ04] presents the design of a quad-core processor that dynam-
ically can be configured to execute applications in parallel two, three, or four
times. Thus, even error correction and the adaptation onto different levels of
criticality are possible.

Furthermore, a more fine-grained replication can be realized by replicatingInstruction
replication single instructions as presented in [PF82, NPI07, RLC+08, TMBS10]. All these

approaches only protect the execution of the instruction. Additional measures
are required, for example, to detect data modifications in memory, the registers,
or on the bus. Also errors disturbing the instruction selection are not detectable
using solely these approaches.

The approach presented in [TMBS10] additionally duplicates the instruction de-
coding. However, instruction loading still is unduplicated and thus unprotected.

The approach presented in [NPI07] provides a hardware-implemented selective
duplicated execution of critical instructions. This approach only duplicates
the execution of instructions that influence variables that the user marked as

10.2. RELIABLE HARDWARE 197

critical. While the duplication is done at runtime in hardware, it is determined
at compile time which instructions have to be duplicated.

The approach presented in [PF82] not only duplicates the instructions but diver-
sifies the processed data by, for example, using for the second execution operands
that are shifted one bit. Thereby, permanent errors and even some design errors
become detectable. However, for supporting this, special implementations of
the instructions are required.

Replicated execution detects soft errors. However, it is susceptible to permanent
errors, for example, in the instruction execution, loading, and decoding. If a
permanent error influences all replicas, the error is not detectable. Furthermore,
all the replication approaches described above have to be combined with error
detection for memory and busses. Some even do not provide error detection
within registers.

Consistency Checking

Under consistency checking we summarize all approaches that do not use repli-
cated execution, but instead check consistency properties of an execution. These
consistency properties could be already available in an architecture or are ex-
plicitly introduced by the checking approach. Of course, replicated execution is
a special case of consistency checking because it checks the consistency of the
replicas.

Offline selftesting of hardware checks the correctness of the hardware itself. Offline selftesting

Therefore, test patterns are applied to the hardware and the results generated by
the hardware are compared to the expected results. Example implementations
are presented in [BHP+71, BI86, LMM08, AB09].

Offline selftesting can detect permanent errors and the susceptibility of hardware
to soft errors if a soft error disturbs the test execution. However, if a program
execution is disturbed by soft errors or newly occurring permanent errors, is not
detectable using offline selftesting of the hardware.

One widely used consistency checking approach are checksums that detect data Checksums

modifications occurring during storage and transport of data. The reason for
their widespread use in reliable systems is that memory was the first part of
systems in which soft errors were observed. Furthermore, due to its regular
structure, memory is easier to protect than logical circuits.

To implement checksums, additional data is added to each data word. This
information redundancy summarizes the original data word. An example is a
single-bit parity that is zero if the original data word contains an even number
of bits set to one, and one otherwise. This single-bit parity can detect single
bitflips. If enough redundant information is added to each data word, not only
detection of multiple bitflips but also correction can be realized. Examples, are
error correcting codes (ECC) and IBM’s Chipkill [IBM99].

Most checksum approaches provide no detection of computation errors. Thus,
they are often combined with other approaches for detecting these errors. For

198 CHAPTER 10. RELATED WORK

example, the Argus project [MBS07] combines checksums to detect data modifi-
cations with control and data flow checking and additional consistency checks
of the functional units of the processor such as the adder circuit. However,
for example, arithmetic codes can be used to detect data modifications and
computation errors as well. We present hardware implementations of arithmetic
codes in the following on page 200.

Nowadays processors are often designed for testability, that is, additional circuitsLatch replication

are produced on a chip that are only used for testing purposes. During normal
execution these parts of a processor remain unused. The approach presented
in [MSZ+05] shows how these testing circuitry can be reused for the detection of
soft errors during the execution of programs. Therefore, the existing test circuits
are used to shadow latches with a replicated latch. Thereby, modifications
occurring to one of the two latches become detectable to an additional checker.

The approach for reusing testing circuits presented in [MSZ+05] is extended with
adaptability in [ZMM+06]. Only critical applications use the shadow latches
for error detection. For non-critical applications, the shadow/testing latches
remain unused. Thereby, the energy consumption of the circuit is reduced for
non-critical applications.

While the previous approaches detected permanently faulty hardware or errorsExecution checking

modifying stored data, the following approaches check consistency properties of
the execution of a program. These approaches especially aim at detecting errors
in the logical circuits that control the processing of data.

Ganesh et. al. in [GSS06] present a hardware-implemented checking of the control
signals that are generated within the CPU during program execution. If these
do not match the instruction scheduled, an error is detected.

In [YMOS07] checker implementations for adders and multipliers are presented.
These checkers do not reimplement the circuits but use faster consistency checks.
For example, the multiplication a ∗ b is checked by computing ((a mod C) ∗ (b
mod C)) mod C and comparing it to (a ∗ b) mod C where C is a small hard-
coded integer constant that is larger than one. Thus, the implementation of the
check is much simpler and faster than the operation checked.

[NDMF97] presents a similar approach that extends every logical circuit such
as an adder or multiplier with a parity prediction. Thus, values stored with
a parity for detecting data modifications can be processed by these circuits
and the processing is checked by the parity prediction. [GEJL10] extends this
approach with bit interleaving. The reason is that multiple bit errors have
become more probable and thus might disturb the parity prediction as presented,
for example, in [NDMF97]. Thus, the parity prediction of different computations
is interleaved so that if multiple bits flip, only one of each operation is affected.
However, [GEJL10] presents this approach only for an 8-bit adder.

Reddy et. al. in [RAZR06] present an approach that checks the correctness of an
execution by asserting microarchitectural “truths”. They present two example
functionalities for which they implemented such architectural assertions:

• Register Name Authentication (RNA) for the rename unit and

10.2. RELIABLE HARDWARE 199

• Timestamp-Based Assertion Checking (TAC) for the issue unit of the
processor.

In [RR07], Reddy et. al. describe how redundant execution traces within the
execution of an application can be used for consistency checking. On the first
execution of a trace, a checksum is computed which hashes non-data-dependent
parts of the trace, for example, the order of the instructions and which registers
are used. For further executions of the trace, the checksum is recomputed and
compared to the value expected which was computed when executing the trace
for the first time.

To increase the coverage provided by execution checking, Reddy et. al. in [RR08]
combine several of their execution checking approaches. Thereby, the error
detection capabilities of the whole system are improved considerable. However,
still only a coverage of 83% of the non-masked hardware errors is achieved.

Several approaches check the consistency of the values computed by a program. Value checking

For example, [RCMM07] dynamically determines a model for result values
expected for instructions. If these expectations are not met, the pipeline is
flushed assuming that a soft error led to the mismatch and a reexecution will
correct the error. [DZ07] presents a similar approach. However, it is checked
that the variance of an instruction’s result matches the limits within which it
stays most of the time.

[PSC+06] describes the automated derivation of hardware-implemented error
detectors. The mechanism described derives error detectors for a program and
generates a hardware implementation executing these. A detector checks if a
variable at a certain point during the program execution has an expected value,
for example, is element of a certain interval or set, or is bigger than its predecessor
etc. To derive these detectors, the program is executed with a representative
set of inputs and certain previously chosen variables are monitored. Then for
each monitored variable an appropriate detector class fitting the data seen is
chosen and appropriately parameterized. To summarize, the authors present
an approach that automatically derives assertions and provides a hardware-
implementation checking these assertions.

If errors do not result in values that violate the checked properties, errors are
undetectable for these value checking approaches.

ReStore [WP06] checks an execution for behavior that indicates that an error Symptom
detectiondisturbed the execution. For example, in the following cases the authors assume

that a hardware error occurred:

• if memory access and alignment exceptions occur,
• if a mismatch between a branch prediction that has a high confidence level

and the branch taken is detected, or
• if a cache miss occurs.

If such a symptom is detected, the processor is rolled back to a checkpoint. If
the symptom occurs again in the following reexecution, the authors assume that
no error was the cause and continue the execution or in case of an exception let
the exception propagate.

200 CHAPTER 10. RELATED WORK

This approach is susceptible to permanent errors. Furthermore, errors that do not
cause the symptoms checked, but just silently corrupt output are undetectable
using this approach.

Control and Data Flow Checking

Control flow checking provides means to recognize invalid control flow for theControl flow
checking program executed, that is, execution of sequences of instructions which are

not permitted for the binary executed. This can be implemented in hardware
and software. The following approaches are implemented in hardware: [LG04,
BUEA06]. All of them are signature-based and protect the control flow between
basic blocks but not within basic blocks. Therefore, for each program a model is
generated that describes the allowed control flow. At runtime, the control flow is
monitored and if it contradicts the model, it is assumed that an error occurred.

Control flow checking does not detect data modifications or computation errors
that do not result in an invalid control flow.

The already mentioned Argus project [MBS07] also applies this kind of controlData flow
checking flow checking. Furthermore, Argus also determines for each application a data

flow model and checks the data flows occurring at runtime for consistency with
this model. This techniques is more detailed described in [MS07].

Control and data flow checking cannot detect errors that result in erroneous
program state but not in invalid control or data flow.

Hardware-implemented Arithmetic Codes

Arithmetic codes can be implemented in hardware and software. For some
codes, such as the Berger codes, only a hardware implementation makes sense
as we explicated in Section 3.1. Indeed most of the hardware implementations
of arithmetic codes use Berger codes. Examples are described in [LTRN92,
MR98, DT99, LOBR09]. While [LTRN92] and [LOBR09] use plain Berger
codes, [MR98] uses Dong’s code and [DT99] uses a Bose-Lin-code. Both are
special Berger codes that can be implemented more efficiently.

The only hardware-implemented approach that does not use a Berger code that
we know of is the STAR computer [AGM+71] that uses a Residue code with
residue 15 for detecting execution errors.

Frameworks & Systems

The approaches presented so far protect only single parts of a system. For
detecting as much hardware errors as possible, it is necessary to combine different
approaches. In the following we present approaches that strive to protect as
much of a computing system as possible

10.2. RELIABLE HARDWARE 201

The Reliability and Security Engine (RSE) The Reliability and Security En-
gine (RSE) [INKM05, IKP+07] is a common processor-level framework that
provides application-aware reliability and security. This framework allows to
build computing systems that provide detection, masking, and recovery for
errors caused by accidental failures and malicious attacks as well. Therefore,
RSE integrates the following hardware-implemented detection and masking
mechanisms:

• hardware-implemented error detectors that like assertions check if variable
contents are reasonable [PSC+06],

• algorithms for efficiently placing these detectors [PKI05], and
• hardware-implemented selective duplicated execution of critical instruc-

tions [NPI07].

Implementations of RSE exist for the pipelines of the DLX and the Leon3
processor.

High-end mainframes/servers Several high-end mainframes and servers ap-
ply various mechanisms for detecting hardware errors. For example, Hewlett
Packard’s NonStop computer systems [BBV+05] uses the following techniques:

• redundant execution using non-lock-stepped multicores that execute two
or more copies of one thread,

• triple or double modular redundancy for important parts such as network
and IO-adapters,

• dynamic reconfiguration, that is, failed components are not used anymore,
and

• checksums and duplication to detect memory errors.

According to [BBV+05], no single error stops the execution of a NonStop
computer system.

Further similar systems that strive to provide a comprehensive error detection
are IBM’s G4 [SG98], G5 [SAC+99], and z10 [Web08].

Argus The Argus project [MBS07] combines checksums to detect data modifi-
cations with control and data flow checking and additional consistency checks
of the functional units of the processor such as the adder circuit.

10.2.3. Summary

Most of the hardware-implemented approaches that we presented in this section
protect only parts of a computing system. Providing comprehensive error
detection for a computing system completely in hardware is a daunting task
that requires to combine several approaches. The reason is that errors can occur
in every part of a system, that is, during storage and transport of data and
also during the processing of data. While it is relatively easy to protect large
memories and also busses, protecting logical circuits and all transfers and storing
of data within those circuits is a complex task.

202 CHAPTER 10. RELATED WORK

Developing such custom hardware is an expensive process. Once developed,
such hardware would most certainly be exclusively used for safety-critical tasks.
Furthermore, because of its high initial costs, it would for a long time not be
replaced with newer and, thus, faster and less power-consuming hardware.

10.3. Handling of Hardware Errors in Software

The most important argument against hardware solutions are the high devel-
opment costs and the restricted market. Due to economic pressure, the trend
for critical and safety-critical systems is to use commodity systems instead of
custom hardware. Thus, software approaches for handling hardware errors are
required.

Software approaches provide much more flexibility. They are easier to apply,
cheaper and faster to develop, and allow to use most recent, i. e., more powerful,
hardware. Furthermore, software-based solutions facilitate mixed-mode systems.
These systems execute both safety-critical and non-critical applications on the
same (commodity) hardware. Thereby, they improve hardware utilization.

Software-implemented error detection mechanism allow to use up-to-date hard-
ware in safety-critical systems which require certification. The precondition
is that the error detection probability of the mechanism is independent of the
hardware used. This can, for example, be provided by using arithmetic codes
such as the AN-code.

In the following, this section describes approaches that avoid or detect hardware
errors and are implemented completely in software.

10.3.1. Error Avoidance

Detouring [MS08] compiles software in a way that the usage of faulty parts ofAvoidance of
faulty hardware the CPU is circumvented. For example, faulty data bypasses in the pipeline

are avoided using instruction reordering or the insertion of nops. However, in
an example implementation for a simulated RISC CPU, for only 42% of the
hardware such a detour could be provided. Especially, for often used operations
such as additions no (efficient) detour is available. Furthermore, this approach
requires that the faulty parts of the hardware used are known at compile time.

Yang and Orailoglu [YO09] observe that asymmetric register usage leads toRegular heat
distribution an irregular heat distribution on the chip. This reduces the reliability of cir-

cuits because heat – especially having different temperatures at different parts
of a chip – modifies the electrical properties of gates [Bor05]. Thus, Yang
and Orailoglu [YO09] present a compiler that determines a register mapping
that equally distributes heat generation over the registers. Therefore, it uses
application-dependent execution profiles.

If safety-critical and non-safety-critical applications run on the same processor,
the compilation for regular heat distribution has to be applied to all applications.

10.3. HANDLING OF HARDWARE ERRORS IN SOFTWARE 203

Otherwise, non-safety-critical applications could heat up parts of the register
set.

All these avoidance techniques do not cover the complete processor. Thus, they
are not sufficient for safety-critical systems. However, they could be combined
with the error detection approaches presented in the following. Using these
avoidance techniques additionally to detection techniques can increase the
availability of systems.

10.3.2. Error Detection

In the following, we present approaches that as the encoding approaches proposed
in this thesis aim at detecting hardware errors in software. For the correction of
the errors detected, other methods have to be used.

Replicated Execution

Several papers present replication that is implemented in software. We can
distinguish these approaches by the point in time when the replication is applied:

• source code is transformed into replicated source code before the actual
compilation is executed, or

• the replication is applied to an intermediate, assembler-like code during
compilation, or

• dynamic binary instrumentation is used, that is, the replication is done at
runtime.

Rebaudengo et. al. [RRTV99, RRVT01] apply duplication to C source code. Source-to-source
transformationThey replicate every instruction – including statements controlling the control

flow such as if statements. Furthermore, they insert instructions that check
that the two versions of a variable are equal after each use of the variable. The
intention is to stop the propagation of errors as early as possible. These checks
are part of the resulting modified program. They are executed by the same
hardware that executes the program.

Benso et. al. [BCPT00] analyze for each variable of a C or C++ program which
impact it has on the reliability of the program. Therefore, the lifetime of each
variable and the number of variables depending on this variable are determined.
The longer a variable is alive and the more other variables depend on it, the
more impact does this variable have. Benso et. al. try to reduce this impact,
for example, by reducing the lifetime of variables with high impact. Therefore,
they use instruction reordering. Furthermore, they duplicate the computation
of safety-critical variables. Which variables are safety-critical is either directly
chosen by the user or he specifies the percentage of variables whose computation
shall be duplicated. In this approach also, the consistency checks are added to
the program and are executed on the same hardware.

Nicolescu and Velazco [NV03] also perform a source-to-source transformation
of C code for duplicating all instructions. Furthermore, they apply a data

204 CHAPTER 10. RELATED WORK

flow analysis with the objective that consistency checks are not performed on
intermediate variables. In this approach also, the consistency checks are added
to the program and are executed on the same hardware.

In contrast to the software replication approaches presented above, Wang
et. al. [WsKWY07] parallelize the execution of the replicas. While, the ap-
proaches presented above execute original instructions and duplicates in one
thread, Wang et. al. generate two threads and provide means to synchronize
these threads with respect to memory access and externalization of data. Syn-
chronization always includes to check the consistency of both replicas. However,
as for the previous approaches, the consistency check is part of the duplicated
software and executed on the same hardware.

While the approaches presented so far apply replication to the high-level sourceTransformation of
intermediate code code of programs, the approaches presented in the following transform some

kind of simpler, assembler-like intermediate code.

SWIFT [RCV+05a] is a compiler extension working on intermediate code. It
duplicates the instructions of a program and adds comparisons of the duplicates
to detect execution errors. However, memory is not duplicated because the
authors assume that memory is protected by other means such as ECC. This
leads to several windows of vulnerability. For example, when the program writes
a variable to memory, both replicas of the variable are compared. If they are
equal, one of them is written to memory. However, the variable’s content could
be modified undetectable between the check and its storage in the ECC-protected
memory.

To provide also error correction, the SWIFT compiler was extended with SWIFT-
R [CRA06]. SWIFT-R uses triple modular redundancy instead of duplication.
Having three replicas facilitates the detection of errors that disturb only one
of the replicas. In SWIFT-R, comparing the three replicas and choosing the
correct value in case of an error is added to the program and executed on the
same hardware as the protected program.

Pattabiraman et. al. in [PKI07] use the LLVM compiler framework to implement
a compiler that duplicates the computation of critical variables. A variable is
considered critical by the authors if it exhibits high sensitivity to random data
errors. The authors present an approach for determining which variables are
critical in [PKI05]. For every critical variable, a backward slice is determined
by static analysis. All such backward slices are duplicated and the duplicates
are compared to the originals for detecting errors.

Lyle et. al. in [LCP+09] instead of duplicating the backward slices in software,
generates a hardware-implemented version of the backward slice. Thereby, the
overhead at runtime is reduced. However, expensive special hardware is required.

ESoftCheck [YGS09] uses the SWIFT-approach, that is, redundantly executes
the instructions of a program within one thread. However, additionally a data
flow analysis is done and based on its result unnecessary checks between copy and
original are removed. Furthermore, unnecessary copies are removed. Thereby,
the register pressure is reduced.

10.3. HANDLING OF HARDWARE ERRORS IN SOFTWARE 205

The system of Dimitrov et. al. presented in [DMZ09] has the objective of detect-
ing hard and soft errors in graphics processors. It provides three variants of
replication:

time redundancy two threads execute the same functionality and are executed
sequentially

hardware redundancy two threads execute the same functionality and are exe-
cuted parallelly on different cores

interleaved one GPU-thread contains for each instruction a duplicate.

All three mechanisms are combined with memory protection mechanisms. How-
ever, no automation is provided by Dimitrov et. al.. The replication has to be
done by hand.

Shoestring [FGAM10] combines a symptom-based hardware error detection
similar to ReStore [WP06] and compiler-implemented duplication of instructions
as proposed by SWIFT [RCV+05a]. All instructions that despite symptom-based
detection might produce user-perceptible failures are duplicated.

Spot [RCA+06] executes each instruction two times. Therefore, it uses dynamic Duplication
at runtimebinary translation provided by PIN [LCM+05], that is, the duplication is done

at runtime when executing the application. The application of redundancy
is adaptable depending either on the register used or on the part of the code
executed. This design is based on the observation that different registers and
parts of code are differently susceptible to silent data corruption.

The Chameleon/ARMOR project [BSW+00, KIBW99] provides replication to
detect execution errors in distributed systems. Therefore, the functionality of a
critical component of a system is executed multiple times on different hardware
nodes. The results of these replicas are checked for consistency. Due to the high
level at which Chameleon/ARMOR replicates the execution, no modification of
the software executed is necessary.

Note that for all those approaches which are based on redundant execution of
instructions or whole programs, it is not possible to provide guarantees with
respect to permanent hardware errors. Furthermore, all approaches presented
here execute the consistency checks that compare the results of the redundant
execution on the same unreliable hardware. Thus, the checks themselves are
susceptible to execution errors.

To overcome the problem that permanent errors might corrupt all replicas Diversified versions

equally, the system presented in [Joc02] generates two different versions of a
program with the aim that hardware errors do not result in the same error. For
example, additional tests are introduced modifying the code layout, the register
allocation is changed, basic blocks are split etc. The resulting two versions run in
parallel and their results are compared. However, still the check for errors itself
is susceptible to errors. Furthermore, permanent errors might remain undetected
if they influence both replicas equally. This could, for example, happen for a
permanently faulty addition instruction because the instructions themselves are
not diversified.

206 CHAPTER 10. RELATED WORK

Orchestra [SJGF09] similarly to the approach presented in [Joc02] provides
different versions of a program. However, the motivation is not safety but
security. Attackers are not able to successfully run buffer overflow attacks on
Software that is diversified by Orchestra. Orchestra uses diversified redundancy.
Thus, it is also able to detect transient hardware errors. However, Orchestra
can also not detect hardware errors disturbing the consistency check and might
not detect permanent errors in single instructions because the latter ones are
not diversified.

Consistency Checking

Algorithm-based fault tolerance (ABFT) [HA84, SM04] and self-checking soft-ABFT:
Algorithm-based
fault tolerance

ware [WB97, BLR90] use invariants contained in the executed program to check
the validity of the results generated. This requires that appropriate invariants
exist. These invariants have to be designed to provide a good failure detection
capability and are not easy – if not impossible – to find for most applications.
Mostly, invariants are presented for mathematical problems. For example, [ZL09]
presents an ABFT scheme for the elliptic curve cryptography algorithms.

The Chameleon/ARMOR project [BSW+00, KIBW99] additionally to replica-Protocol models

tion uses consistency checking. Therefore, the developer of a system provides
information which types of reply message are valid for a request. At runtime, the
system checks if all request/reply pairs are valid. Chameleon/ARMOR does not
provide consistency checks for computations. As long as a component generates
a reply message that matches the message received, errors in the computations
producing the reply message are not detectable by Chameleon’s consistency
checking.

SWAT [LRS+08] detects non-masked hardware errors by checking if one of theSymptom-based
error detection following symptoms that can be caused by hardware errors can be observed:

• occurrence of a fatal trap that would normally lead to a crash of the
application or the operating system,
• the application exits with an abnormal exit code,
• the application or the operating system hangs, and
• abnormally excessive operating system activity.

If one or more of these symptoms occur, a diagnosis process is started to check
if the cause was a hardware error. If a hardware error does not result in any of
the symptoms checked, it is undetectable by SWAT.

In [SLR+08] SWAT is extended with error detection that uses automatically
generated assertions. These assertions are generated for each store and check
that the value stored is within a certain range. This increases the coverage
provided by SWAT. However, still errors that neither cause a symptom nor lead
to a value leaving its range of expected values are not detectable.

Shoestring [FGAM10] also uses symptom-based hardware error detection and
combines it with the duplication of instructions to ensure error detection also for
those parts of an application that are not probable to cause any of the symptoms

10.3. HANDLING OF HARDWARE ERRORS IN SOFTWARE 207

checked. Thus, Shoestring is vulnerable to permanent errors because these might
not cause symptoms and might remain undetected by the duplication used.

To summarize, consistency checking is only as good as the invariants used or
symptoms are. These have to cover as much of the executed software as possible.
If good invariants or symptoms are available, depends on the application executed.
Combining consistency checking with replication improves the coverage. However,
permanent errors still might remain undetected.

Control Flow Checking

Control flow checking as for example described in [BCN+01, OSM02, GRSRV03,
BKIL03, VHM03, BWWA06, VA06, SMF06] and also used in the Chameleon/AR-
MOR project [BSW+00, KIBW99] provides means to recognize invalid control
flow, that is, the execution of sequences of instructions that are not permitted
for the executed binary. Therefore, the compiler generates a model of the control
flow expected for the compiled program. At runtime, the control flow is observed
and compared to the expected control flow defined by the model.

All approaches presented in [BCN+01, OSM02, GRSRV03, BKIL03, VHM03,
BWWA06, VA06, SMF06] provide only the checking of control flow between
different basic blocks. Therefore, a signature is assigned to each basic block. The
model describing the control flow of an application is, for example, an automaton
that contains a node for each possible basic block. This node is marked with the
signature of the basic block represented by this node. At runtime, a watchdog or
the application itself checks that the order of the basic blocks executed matches
this automaton.

None of the approaches cited above checks the control flow within a basic
block. Using these approaches this can only be achieved by putting each
instruction into its own basic block. To the best of our knowledge, only ANB-
and ANBD-encoding approaches such as the Vital Coded Processor [For89],
SES [MSVZ07, SMM10a], our Software Encoded Processing (see Chapter 7), and
the ANB- and ANBDmem-encoding of our Encoding Compiler (see Chapter 8)
provide direct checking of the control flow within basic blocks without splitting
blocks and between basic blocks.

Control flow checking can only detect erroneous control flow that is, for example,
caused by an erroneous modification of the instruction pointer. However, if a
fault modifies a computation within a program or a value stored or transfered
by the program, this is not detectable using control flow checking. The reason
is that these faults and the resulting errors do not lead to control flow that is
not valid. Even taking the wrong branch of a conditional jump is not detectable
because the resulting control flow is consistent with the control flow model. In
contrast, ANB- and ANBD-encoding provides detection of computation errors,
control and data flow errors.

208 CHAPTER 10. RELATED WORK

Software-implemented Arithmetic Codes

Instead of duplication, or additionally, arithmetic codes can be used to detect
errors. We already introduced arithmetic codes in Chapter 3. Applying an
arithmetic code requires to modify the program and also the data processed.
This is called encoding. Software-implemented arithmetic encoding mostly uses
AN-codes and enhancements of AN-codes such as the ANB-code.

ED4I [OMM02], uses a source-to-source transformation to generate a secondAN-encoding

version of a program. This version does not process the original data but A-
multiples of it. All results of duplicate instructions have to be A-multiples of the
original results. The AN-encoded replica and the original are executed in parallel.
For each output variable, ED4I checks that the result of the AN-encoded version
is an A-multiple of the unencoded version’s result.

However, whenever a program contains logical operations, the authors choose a
factor A which is a power of two to make these operations encodable. Thereby,
they reduce the detection capabilities immensely. The resulting code cannot
detect bitflips in the higher order bits of data values. However, these bits contain
the original functional value. See Chapter 5 for an evaluation of different As with
respect to their error detection probability. In contrast to ED4I, our Encoding
Compiler is able to encode also logical operations using an A that is not a power
of two.

Furthermore, the developers of ED4I do not discuss the overflow problems
occurring for AN-encoded arithmetic operations that we pointed out in [WF07a]
and Section 4.2.1. Over- and underflows in arithmetic operations are not
conserved when AN-encoded values are used, e. g., in an addition. If for example
the result of an addition overflows, ED4I will most probably detect an error.
This is a false positive because the C standard expects over- and underflows to
form a ring of the unsigned integers. For example, the addition of two 32-bit
integers a and b is expected to result in a + b mod 232. For signed integers
overflows are also required to be correct because the addition of a negative
number in the end results in an overflow in its unsigned representation. For the
details, see Section 4.2.1. In contrast to ED4I, we provide a ANSI-C conform
encoded implementation of addition, subtraction, and multiplication.

TRUMP [CRA06] also uses an AN-code combined with an unencoded replica.
In contrast to ED4I, TRUMP is applied on an assembler-like intermediate
code. Every instruction is duplicated and the duplicate is AN-encoded whenever
possible. TRUMP AN-encodes only operations that easily can handle encoded
values such as additions and subtractions. In contrast to our approaches, bitwise
logical operations remain unencoded. As in ED4I, TRUMP also ignores the
over-/underflow issue.

In contrast to ED4I, TRUMP applies encoding only to registers and not to
memory. In the end, that leaves supposedly only small parts of applications
which are AN-encoded. As should be expected, the error injection experiments
presented in [CRA06] show a non-negligible amount of undetected failures for
most of the tested applications.

10.3. HANDLING OF HARDWARE ERRORS IN SOFTWARE 209

Our measurements (see Section 8.5.3) have shown that even complete AN-
encoding as provided by our Encoding Compiler still does not detect a significant
amount of errors. However, AN-encoded programs exhibit smaller slowdowns
than the more safer ANB- and ANBDmem-encoded versions.

Forin’s Vital Coded Processor (VCP) [For89] ANBD-encodes an application on ANB- and ANBD-
encodingsource code level. Thereby, in addition to data modifications and operation

errors, VCP also detects the usage of wrong operands, the usage of wrong
operators, and lost updates. VCP provides a predictable and high error coverage.
The achievable degree of safety can be influenced by the choice of A. Furthermore,
VCP also detects errors introduced by the compiler or linker because encoding
is done on the source code level.

VCP has the following disadvantages that restrict its use for execution of general
software on commodity hardware:

• The complete data flow of the encoded program has to be known before the
execution to be able to precompute the signatures of all output variables.
This excludes the usage of dynamically allocated memory and function
pointers.

• Special hardware is required to encode input variables, to store signatures,
and to check the signatures of output variables.

• Encoding of control flow statements – especially nested ones – is a rather
complex task because several timestamps and check values have to be
considered. Furthermore, upper bounds for loop iteration counters are
required to prevent overflows of the code words due to the iteration counter.
Therefore the version counters have to be set back to zero when reaching
the bound. This increases the encoding complexity. For the VCP, this
complex encoding of control flow statements is not automated.

The description of VCP in [For89] is rather incomplete. Apart from an encoded
addition, an encoded if statement, and the encoding of a single non-nested
while loop no other encoded operations are described. Furthermore, the level of
automation of the encoding remains unclear. It seems that encoded versions
of operations such as addition exist and are automatically applied. We assume
that the control flow on the other hand is hand-encoded.

SES [MSVZ07, SMM10a] also uses ANBD-encoding. SES executes two ANBD-
encoded copies of a program redundantly. The copies are diversified by using
different As. However, SES does not support dynamically allocated memory
and does not provide the correct over- and underflow behavior for additions,
subtractions, and multiplications. Furthermore, the description of SES remains
also rather incomplete. Only the implementation of additions and subtractions,
and encoded if statements is described. We do also not know if the encoding,
which is applied at source code level, is completely automated or if parts of it
have to be done by hand.

Steindl et. al. in [SMM+09, SMM+10b] present the implementation of SES-
encoded programs on FPGAs. The objective is to provide a faster hardware-
implemented ANBD-encoding solution. However, still only encoded additions
and subtractions are described and these encoded versions do not provide a

210 CHAPTER 10. RELATED WORK

correct overflow behavior. The authors do not demonstrate the encoding of any
other operation.

Siemens obtained a patent [KSS02] for a diversified DMR system. The system
executes once the original application and once an encoded version of the
application. The encoded version uses the following encoding relation xc =
−A∗xf−1, that is, all variables are ANB-encoded with −A and the signature −1.
Thus, exchanged operands are less probable to be detected because all variables
have the same signature and can be exchanged with each other undetectably.
The patent does not describe the implementation of encoded operations.

For none of the described ANB- and ANBD-encoding approaches (VCP, SES,
diversified DMR by Siemens), an evaluation of the error detection capabilities
using some kind of error injection was published.

Furthermore, for VCP and the diversified DMR by Siemens no runtime mea-
surements were presented. For SES, the authors showed that their encoded
addition on an embedded system has a slowdown of 3.5. For completely encoded
applications the time needed for execution was not evaluated.

In contrast to [For89, MSVZ07, SMM10a, SMM+09, SMM+10b, KSS02], we
presented extensive measurements of the runtime overhead and the error detection
capabilities of our encoding schemes. Furthermore, to the best of our knowledge,
we are the first that use and describe the encoding of a complete instruction set
in a detailed manner. The publications [For89, MSVZ07, SMM10a, SMM+09,
SMM+10b, KSS02] only describe additions, subtractions, if statements and
simple non-nested loops.

10.3.3. Error Correcting Software

MASK [CRA06] applies so-called assertion enforcement. The aim is to maskAssertion
enforcement errors. For example, if it is known that the upper 33 bits of a value have to

be zero, MASK ensures that these bits are indeed zero by explicitly zeroing
them. Therefore, the code is extended at compile time with instructions that
enforce invariants that can be found using static analysis. The measurements
presented in [CRA06] show that MASK mostly reduces the amount of silent
data corruptions. However, up to 13% of the error injection runs produced silent
data corruptions despite MASK. Even worse, some applications produced more
silent data corruptions with MASK than without.

As described in [dKS09] error mitigation is not necessary for many algorithmsSelf-correcting
software because they are self-correcting, that is, can tolerate errors. For example,

algorithms using simulated annealing or the Monte Carlo method are inherently
error tolerant. However, the authors of [dKS09] draw from their error injection
experiments the conclusion that the error-tolerance provided by the algorithms
is not sufficient.

Sloan et. al. in [SKKR10] transform programs into more error-tolerant versions
by turning the solved problem into an optimization problem. The algorithm
for solving the optimization problem is itself able to correct execution errors.

10.4. APPROACHES COMBINING HARDWARE AND SOFTWARE 211

However, the authors restrict the error model to errors in the floating point unit
of the processor. For all other errors, for example, in integer units or logical
circuits controlling program execution, no error detection is guaranteed.

As consistency checking, using the self-correction abilities of programs and
assertion enforcement depend on the application executed. No guarantees can
be provided with respect to the error detection and correction capabilities.
Furthermore, self-correction is only provided by a restricted set of algorithms.

10.3.4. Summary

The error avoidance techniques presented in Section 10.3.1 provide no sufficient
coverage of the hardware for their usage in safety critical systems. The same
applies to the error correcting software presented in Section 10.3.3.

To summarize the software-implemented error detection techniques presented in
Section 10.3.2:

Replicated execution is, in contrast to arithmetic encoding, susceptible to
permanent hardware errors that might influence all replicas equally. This
issue can be overcome by using diverse versions of the software executed.
The question is how diverse the different versions have to be. For example,
some approaches change the program layout. However, for this example,
a faulty addition still could go unnoticed. Using encoding to diversify the
replicas removes this issue.

Consistency checking is application dependent. Only if the application that
shall be protected provides enough consistency properties that can be
checked or is prone to produce distinctive symptoms in case of an erroneous
execution, consistency checking can successfully be used to detect hardware
errors.

Control flow checking is not able to detect errors that solely disturb the com-
putation of values, but do not lead to an invalid control flow that is not
allowed for the program.

Software-implemented arithmetic codes provide error detection that is inde-
pendent of the application. The codes always significantly reduce the
amount of silent data corruptions observed. However, the error detection
capabilities and overhead depend on the code chosen. In contrast to
our encoding techniques, encoding techniques previously presented were
incomplete and not well described and evaluated.

10.4. Approaches Combining Hardware and Software

Last, we present in this section approaches that are implemented in hardware
and software as well. All approaches presented in the following try to implement
as much of the detection in software. Only parts they cannot protect in software
are protected by hardware solutions.

212 CHAPTER 10. RELATED WORK

10.4.1. Error Detection

Hu et. al. [HLD+05] implement duplication on assembler code. To control the
amount of duplication, the user provides an upper bound for the increase of
the length of the program schedule. In contrast to the previously presented
approaches, Hu et. al. use a hardware extension for consistency checking.

SWIFT duplicates all instructions and registers, however, not the memory. Thus,
when loading and storing values, these values might be modified undetectably.
To overcome this issue, Reis et. al. [RCV+05b] combine SWIFT with hardware
support for interfacing with the non-duplicated memory. Such a hardware
implementation of the memory access can ensure that

• on a load the parity protecting data in memory is checked and the value
safely is duplicated, or
• on a store the duplicates are checked for equivalence and the value is

written safely to memory – including parity generation.

However, this hardware implementation of the memory access has to be protected
from errors.

Note that also the encoding approaches VCP [For89] and SES [MSVZ07, SMM10a]
implement the code checking in hardware. However, they fail to describe how
this check is realized so that it is not susceptible to errors.

The code checking for our encoding approaches could also be implemented in
hardware. However, we proposed in Section 8.4 also a software implementation
that is made reliable by executing it several times on diverse hardware.

Bolchini et. al. in [BMR+08] describe a system that implements as much as
possible of the hardware error detection in software. Only parts that the authors
cannot cover with their chosen software approaches are protected by hardware
means. The authors use replication and control flow checking in software.
However, this does not facilitate the detection of control flow errors that occur
in both replicas and disturb the execution within a basic block. To detect such
errors, the authors replicate the instruction pointer in hardware.

10.4.2. Summary

As stated earlier, software-implemented detection of hardware errors is more
flexible and does not require expensive, special hardware. However, most of the
software-implemented approaches presented in Section 10.3 require some kind
of check. Often this check itself is susceptible to execution errors.

Other approaches, for example SWIFT, combine different protection mechanisms.
In case of SWIFT this is replication and ECC. However the transition between
these different protection mechanisms also has to be protected.

The above described approaches that combine hardware- and software-imple-
mented detection overcome these issues. However, the approaches described do
not cover all possible hardware errors because they are using replication and
control flow checking. Thus, they are still susceptible to permanent errors.

10.5. CONCLUSION 213

10.5. Conclusion

This chapter first demonstrated that extensive research exists that aims at
detecting hardware errors in the hardware itself. However, protecting a whole
system using these approaches is cumbersome and expensive because each
approach aims only at parts of the whole system. Thus, several different
approaches have to be combined safely. The resulting safe hardware is expensive
and inflexible because due to its costs it will only be used for safety-critical tasks
and will be replaced seldom.

On the other hand, many software approaches exist. Of these approaches
arithmetic codes provide the most comprehensive error detection capabilities
because they independently of the hardware used detect

• transient and permanent errors that
• modify data during transport and storage, or
• disturb computations including control and data flow.

In contrast to existing software-implemented approaches that use arithmetic
codes,

• we demonstrate the AN-,ANB- and ANBD-encoding of a complete RISC
instruction set,

• we support the encoding of arbitrary control and data flow – including
data flow that is not statically predictable,

• our encodings are fully automated, and
• we presented extensive evaluations comprising runtime measurements and

error injection results.

11. Conclusion

This chapter summarizes the contributions of this work and provides a brief
outline of possible future work. Furthermore, we give an overview of publications,
patent applications, and granted proposals resulting from the research presented
in this thesis.

11.1. Contributions

To the best of our knowledge, we are the first ones that present AN-, ANB-, and Encoded
operationsANBD-encoded versions of the following operations:

• addition and subtraction with ANSI-C-conform over- and underflow be-
havior,

• multiplication,
• division,
• modulo,
• comparisons,
• bitwise logical operations,
• casts,
• shifts, and
• unaligned loads and stores.

Previous work [Rao74, For89, OMM02, RCV+05a] only presented encoded ad-
ditions and subtractions with over- and underflow behavior that is not ANSI-C-
conform. The encoding of further operations was not presented at all.

Furthermore, none of the previously presented ANBD-encoding approaches Dynamic
signatures[For89, MSVZ07, SMM10a] is able to encode dynamically accessed memory for

which the access pattern is not known at encoding time. For facilitating the
encoding of dynamically accessed memory, we developed dynamic signatures
that are determined at runtime. Using these dynamic signatures our encoding
approaches SEP and CEP support dynamically accessed memory.

Our first encoding approach, Software Encoded Processing (SEP), takes previ- SEP

ously unencoded binaries and ANBD-encodes them at runtime. To the best of
our knowledge, SEP is the first software-based implementation of ANBD-codes
that is able to protect programs whose source code is not available from execution
errors.

Our second encoding approach, Compiler Encoded Processing (CEP) similarly CEP

to VCP [For89] and SES [MSVZ07, SMM10a] applies encoding at compile
time. However, in contrast to VCP and SES, CEP supports the encoding of

215

216 CHAPTER 11. CONCLUSION

programs whose data and control flow cannot be predicted completely at compile
time. Furthermore, in contrast to VCP, CEP is fully automated. We have no
information about the tools existing for SES.

Additionally, CEP provides different levels of safety by supporting encodingEncoding vs redun-
dancy transformations using different arithmetic codes (AN-, ANB-, or ANBDmem-

code). We compared these different encodings applied by CEP to each other and
to redundancy-based error detection. As expected, we observed that the higher
the error detection probability is for an approach, the higher is the increase of
the runtime required. However, while the probability of detecting errors grows
exponentially, the increase of the runtime grows only linearly.

For evaluating arbitrary error detection approaches – including ours –, weSymptom-based
error injection developed the symptom-based error injectors FITgrind and EIS. In contrast

to the single bitflip error model used in recent research papers for evaluating
error detection approaches, FITgrind and EIS provide a broader error model
including data and control flow errors. Furthermore, EIS provides debugging
support for error detection approaches by providing an execution log that only
contains instructions that were influenced by an injected error.

11.2. Future Work

The slowdowns of encoding have decreased dramatically with the usage of CEPOptimization

instead of SEP. In the future, further optimizations can be researched to further
reduce the overhead induced by encoding. The following optimizations can be
analyzed:

• If we can verify for an execution of an operation that no over- or underflow
can happen for this execution, an encoded version of this operation without
the expensive over- or underflow correction can be used.
• Currently, the encoded program contains one table with precomputed

values for each bitwise logical operation supported. These can be reduced
to one because for example a nand is sufficient to implement or, and,
and not. This reduces the size of the encoded binary. This is especially
important for embedded systems, which have restricted resources.
• Currently, multiplication and division use expensive 128-bit operations

because intermediate results of these encoded operations might require
more than 64 bits. However, the expensive 128-bit operations should only
be used when necessary. If A is chosen well (see Appendix A), overflows of
the encoded values result in invalid code words. Thus, detecting overflows
and if so using a non-overflowing 128-bit-based implementation is possible.
• Hardware support for the encoded operations would also speed up our

encoded programs.

For improving the error detection capabilities the following can be done:

• A thorough error injection into the encoded operations and the encoded
replacement operations will help to identify weaknesses. Further debugging
should remove these weaknesses.

11.3. PUBLICATIONS, PROPOSALS, AND FILED PATENTS 217

• Further pursuing the research presented in Chapter 5 will enable us to
choose better encoding parameters, for example, an A that maximizes the
probability of detecting errors.

For transferring CEP into the industrial practice, it will be required to support Porting to
embedded systemsother backends than desktop computers. Therefore, embedded systems such as

Infineon’s TriCore should be supported.

Currently, encoding is just claimed and believed to be correct due to its simple Formal validation

arithmetic representation. However, the implementation is complicated in many
places. Our implementation is tested by an extensive set of unit and integration
tests and its error detection capabilities are evaluated using error injection.
However, these measures cannot guarantee that the safe encoded software
produces the same results as the unsafe original software in an error-free execution
and that no implementation error prevents error detection. Applying formal
verification techniques can provide guarantees with respect to the correctness of
the transformation and the error detection capabilities achieved.

The statically assigned signatures can also be used to localize permanent hard- Debugging of
hardware errorsware errors and avoid them by reconfiguration. Therefore, the encoding of all

results computed have to be checked immediately. If a check fails, the part of
the hardware implementing the previously executed operation is erroneous. Of
course, this expensive version that checks the code of all computations immedi-
ately can only be used for diagnosis. During normal operation of a system code
checks have to be done regularly, but less often. Only if an error is detected
such a system should switch into the expensive diagnosis mode.

Some parts of a program are more critical than others [PGZ08]. CEP can be Adaptive encoding

extended to support different encodings within one program. This would allow
to adapt the encoding to the needs for safety even more.

Encoding can also be used to detect security attacks. For example, if an attacker Encoding for
securitywants to insert new code using a buffer overflow attack, he has to ensure that

his code conserves the encoding of output values produced and sends the correct
check values to the watchdog. If he does not know the encoding parameters,
this is difficult. However, further research is needed to determine the conditions
under which attacks can be prevented.

11.3. Publications, Proposals, and Filed Patents

We present our encoding technologies in the following publications:

• “Hardware Failure Virtualization Via Software Encoded Processing” pre-
sented at INDIN 2007 [WF07a]

• “Software Encoded Processing: Building Dependable Systems with Com-
modity Hardware” presented at SafeComp 2007 [WF07b]

• “Software Protection Mechanisms for Dependable Systems” presented at
DATE 2008 [WM08a]

• “AN-Encoding Compiler: Building Safety-Critical Systems with Commod-
ity Hardware” presented at SafeComp 2009 [SSF09]

218 Chapter 11. Conclusion

• “Software-Implemented Hardware Error Detection: Costs and Gains” pre-
sented at DEPEND 2010 [SSSF10c]
• “ANB- and ANBDmem-Encoding: Detecting Hardware Errors in Software”

presented at SafeComp 2010 [SSSF10a]

We present our error injection tools in the following publications:

• “Hardware Fault Injection Using Dynamic Binary Instrumentation: FIT-
grind” (fast abstract) presented at EDCC 2006 [WF06]
• “Slice Your Bug: Debugging Error Detection Mechanisms using Error

Injection Slicing” presented at EDCC 2010 [SSSF10b]

Two patents are filed to protect the intellectual property created in this thesis:

• “Data processing arrangement comprises coding device, which is adjusted
to assign codeword to data item to be stored in memory element based on
signal information” [Wap07]
• “Verfahren zur Datenverarbeitung zum Bereitstellen eines Wertes zum

Ermitteln, ob bei einer Ausführung eines Programms ein Fehler aufgetreten
ist” [Sch10]

Furthermore, several successful proposals and one industry cooperation resulted
from the research presented in this thesis:

• Siemens for funded the one-year project Optimization techniques and safety
assessment of the coded monoprocessor.
• The Deutsche Forschungsgemeinschaft (German Research Foundation)

funded the two-year project Software implemented, hardware independent
detection of transient and permanent execution errors with adaptable safety.
• EXIST by the German Bundesministerium für Wirtschaft und Technologie

will fund the salaries of three researchers and one business manager for
1.5 years with the objective to transfer the findings of this thesis into a
startup.
• The Reykjav́ık University will fund a postdoc position for one year with

the objective to formally verify CEP.

A. Detection of Over- and Underflows
by Choice of A

Several encoding approaches (for example, VCP [For89] and TRUMP [CRA06])
claim that they are able to detect overflows because these destroy the encoding.
However, the authors of these papers do not demonstrate that this is indeed
possible. Our findings in Section 4.2.1 show that overflows can remain undetected.
Nevertheless, using encoding to detect over- and underflows would be useful for
encoding applications in which over- and underflows should never happen.

In the following, we analyze how the A for an ANB-code has to be chosen
for facilitating the detection of over- and underflows in computer-implemented
arithmetic operations. Therefore, we try to choose A in such a way that an
over- or underflow of the functional value always produces an invalid code word
instead of a valid one. The considerations presented consider only unsigned
encoded numbers.

A.1. Detecting Overflows

In Chapter 4 we defined that

• the functional values range from 0 to 2n − 1 and
• the encoded values from 1 to 2m − 1. The smallest encoded value is 1

because the signature of a code word has to be at least 1. Thus, the
smallest functional value, 0, can be encoded to A ∗ 0 + 1 = 1.

All computations are either executed mod 2n for functional values or mod 2m

for encoded values. Thus, the results never become larger or equal to 2n and
2m respectively. However, in our formulas we will explicitly state this modulo
operation to denote the difference to the arithmetic operations that do not
overflow.

If we want to ensure that overflows in the functional values for an operation op
destroy the encoding, we have to ensure that for its encoded operation opc, the
following equations hold:

(opc(xc, yc) mod 2m) mod A = opsig(Bx, By) if op(x, y) does not overflow

(opc(xc, yc) mod 2m) mod A 6= opsig(Bx, By) if op(x, y) does overflow

Note that the function opsig(Bx, By) determines the signature expected for the
operation opc. The value returned by opsig(Bx, By) is always larger than zero
and smaller than A.

219

220
Appendix A. Detection of Over- and Underflows

by Choice of A

As long as the encoded operations themselves do not overflow, the encoding
of their results is always valid – even if the functional values overflow. See
Section 4.2.1 for the details. Thus, we will analyze if it is possible to choose an
A that ensures that

• the encoded values overflow whenever the functional values do and
• do not overflow whenever the functional values do not overflow.

Furthermore, we have to show that for this A

• if the encoded values overflow the signature is destroyed, that is, becomes
unequal to the expected signature.

In the following, we determine lower and upper bounds for A that ensure that
overflows in the encoded values happen if and only if overflows in the functional
values happen. Furthermore, we determine size restrictions for the functional
and encoded values that ensure that at least one A exists fulfilling the size
restrictions. Last, we show under which conditions it is guaranteed that an
overflow in the encoded values results in an invalid code word.

A.1.1. Lower Bound for A

To ensure that functional and encoded values simultaneously overflow, we have
to choose A in such a way that for the first functional value that overflows, i. e.,
that is not representable with n bits, its encoded version overflows, too. This is
the case when

if z ≥ 2n then zc = A ∗ z + Bz ≥ 2m

holds. The smallest possible signature Bz is one. And the smallest functional
result of an operation that is overflown is 2n. Thus, A’s lower bound is determined
by:

A ∗ z + Bz ≥ 2m

A ∗ 2n + 1 ≥ 2m

A ≥ 2m − 1

2n

However, A must be an integer. Furthermore, as we explained in Section 5.1.1
A must not be a power of two. Thus, A’s lower bound is:

A >
2m

2n

A.1.2. Upper Bound for A

If A is chosen too large, we cannot guarantee that for every functional value a
valid code word exists. Thus, we have to determine an upper bound for A.

The greatest functional value that must be encodable is 2n − 1. The largest
possible signature Bmax is a value smaller than A and larger than zero. We use

Appendix A. Detection of Over- and Underflows
by Choice of A 221

b to denote how much smaller than A Bmax is. Thus, Bmax := A− b with b ∈ N
and 0 < b < A. The resulting largest code word A ∗ (2n − 1) + Bmax has to be
smaller than 2m because otherwise 2n − 1 would not be representable. Thus,
A’s upper bound is determined by:

A ∗ (2n − 1) + Bmax < 2m

A ∗ (2n − 1) + A− b < 2m

A ∗ 2n − b < 2m

A <
2m + b

2n

A.1.3. Interval of Available As

As we have shown in the previous sections, for ensuring that the functional
and the encoded values overflow at the same time, A has to fulfill the following
condition:

2m

2n
< A <

2m + b

2n
(A.1)

The larger b is, that is, the more we restrict the number of available signatures
by reducing Bmax the more possible As exist that fulfill this inequality.

The interval within which A must lie has the size

noOfPossibleAs =
2m + b

2n
− 2m

2n
− 1

noOfPossibleAs =
b

2n
− 1

Thus, b has to be larger than 2n. Otherwise, noOfPossibleAs will be smaller
than or equal to zero, meaning that no A exists fulfilling the conditions.

Both, b and Bmax depend on A: A = Bmax + b. Thus, even if we choose
Bmax = 0, A has to be larger than 2n. Such an A will at least add n + 1 bits of
redundancy to the n-bit-sized functional values. This results in the condition
m > 2 ∗ n for the sizes of the functional and the encoded values. The larger the
difference between m and 2 ∗ n is

• the larger can be b and, thus, the more possible As exist, or
• the larger can be Bmax and, thus, the more possible different signatures

exist.

Assume, for example, n = 32 and m = 70. Thus, A can require 38 bits. If
we constrain the amount of available signatures to Bmax = A− 236 by setting
b = 236, according to Equation A.1 only 270+236

232
− 270

232
= 16 values fulfill the

conditions and are possible values for A. If we constrain the amount of signatures
more by setting b = 237, 270+237

232
− 270

232
= 32 values fulfill the conditions and are

possible values for A.

222
Appendix A. Detection of Over- and Underflows

by Choice of A

A.1.4. Condition for Code Invalidation

Furthermore, for guaranteeing the detection of an overflow, we have to ensure
that the overflow in the domain of the code words results in an invalid code
word, that is, the result is not a multiple of A with the expected signature B.
To guarantee that an overflow destroys the signature of the resulting code word,
requires further restrictions on A.

Assume that we have a functional value a that is

• larger than 2n − 1, and
• is encoded with A and the signature Ba.

This value overflows during its compution. If we ensure that functional and
encoded values overflow simultaneously, mod 2m is applied to the encoded version
ac = A ∗ a−Ba of a. Furthermore, for code checking, the signature contained
in ac is computed by applying modA to the encoded value. This computed
signature is compared to the expected signature Ba. For detecting an overflow,
the computed signature and the expected signature have to be unequal:

((A ∗ a + Ba) mod 2m) mod A 6= Ba

Transforming all modulo operations according to the definition of modulo results
for some y, z ∈ N in:

((A ∗ a + Ba) mod 2m) mod A 6= Ba

((A ∗ a + Ba) mod 2m)−A ∗ y 6= Ba

A ∗ a + Ba − 2m ∗ z −A ∗ y 6= Ba

A(a− y) 6= 2m ∗ z

This inequality can be guaranteed to remain an inequality if A’s factorization
contains at least one factor larger than z and larger than 2. Under this condition,
we cannot find an assignment for a, y, and z so that A(a−y) = 2m ∗ z is fulfilled.

Note that z by its definition counts how often the encoded value A ∗ a + Ba is
overflown, that is, how often 2m fits into A ∗ a + Ba. Thus, z ≥ 1 holds because
at least the one overflow that we want to detect happens.

To fulfill A(a− y) = 2m ∗ z the following equations have to be fulfilled:

A = 2m−k ∗ z1
(a− y) = 2k ∗ z2

with z ≥ 1 and z = z1 ∗ z2 and, thus, z1 ≤ z and z2 ≤ z.

The prime factorization of a number is unique. If A’s prime factorization contains
at least one factor larger than z and 2, this factor cannot be a factor of 2m−k ∗z1.
Thus, the equation A = 2m−k ∗ z1 cannot be fulfilled.

Thus, under the condition that A’s prime factorization contains at least one
factor larger than z and 2, A(a−y) 6= 2m ∗z holds and the detection of overflows
is guaranteed.

Appendix A. Detection of Over- and Underflows
by Choice of A 223

A.2. Detecting Underflows

Underflows only occur for subtractions. For unsigned encoded values, the under-
flows of the functional and the encoded values already happen simultaneously
(see implementation of the encoded subtraction in Section 4.2.1). Thus, we only
have to show that such an underflow results in an unexpected signature.

Assume that we are subtracting two encoded values xc = A ∗ x + Bx and
yc = A ∗ y + By with y > x. As we show in Section 4.2.1 the result of this
underflowing subtraction is

xc − yc = 2m − (A ∗ y + By − (A ∗ x + Bx)) = 2m −A(y − x) + Bx −By.

The signature expected for xc − yc is Bx −By. However, under the assumption
that Bx and By were chosen so that Bx−By < A, the signature of the underflown
result of the subtraction of xc and yc is

(2m −A(y − x) + Bx −By) modA = 2m modA + Bx −By.

Since A must not be a power of two,

2m modA + Bx −By 6= Bx −By

holds. Thus, underflows are detectable for unsigned encoded values.

A.3. Practical Aspects

Detecting over- and underflows using arithmetic encoding seems to be use-
ful. However, at least for our AN-based encoding approaches, it has severe
disadvantages.

For example, consider our implementation of encoded shift operations that we
describe in Section 4.2.2. Therefore, shifts to the left are mapped to multiplica-
tions. If a shift to the left shifts bits out of the functional value, this is nothing
else than an overflow in the multiplication that we use to realize the encoded
version of this shift operation. Thus, with the overflow detection proposed above,
valid operations, for example, our encoded shift to the left, would destroy the
encoding.

The operations affected in this way by the proposed overflow detection are:

• shifts to the left,
• bitwise logical operations, and
• unaligned loads and stores.

Thus, code-based detection of overflows, makes encoding these operations more
difficult.

Index

acc, 144
accumulator, 144
alloca instruction, 138
ALU, 23
AN-code, 26
ANB-code, 33
ANB-encoded memory access, 150
ANBD-code, 35
ANBDmem-code, 132
ANBDmem-encoded memory access, 151
arbitrary value failures, 3
arithmetic code, 19

AN-code, 26
ANB-code, 33
ANBD-code, 35
Berger code, 21
Bose-Lin code, 22
error correcting AN-code, 29
gAN code, 31
residue code, 23
systematic AN-code, 30

avoidance, 191

base operations, 46
basic block, 131, 134
basic block ID, 145
basic block signature, 144
Berger code, 21
block ID, 145
block signature, 144
Bose-Lin code, 22
br instruction, 135

CEP, 129
code

arithmetic, 19
non-separate, 21
separate, 21
systematic, 21

compiler backend, 133

Compiler Encoded Processing, 129
compiler frontend, 132
crash failure, 3

data transforming instructions, 140
decoding wrappers, 149
derived type, 135
design-for-manufacturing rules, 13
detection, 191
dirty helper, 178
dynamic memory, 81
dynamic signature, 34, 40, 82

electrical masking, 12
electromigration, 11
encodable replacement operations, 46,

74
encoded

application, 4
data, 19, 20
operation, 4, 20
value, 20

encoded base operations, 46
encoded interpreter, 111
encoded operation, 46
encoded operations, 46
encoded overflow correction, 72
encoding during load, 116
encoding passes, 132
encoding wrappers, 149
erroneous instruction pointer, 115
error, 7, 96

activation, 7
hard, 7
masking, 7
permanent, 7
soft, 8

error avoidance, 191
error correcting AN-code, 29
error detection, 191

225

226 Index

error ID, 187
error injection

hardware-implemented, 173
physical, 172
simulation-based, 173
software-implemented, 174
symbolic, 173

error injection campaign, 179
error trigger point, 182
expected signature, 33

fail-stop, 3
failure, 7
failure virtualization, 3
fault, 7

intermittent, 7
permanent, 7
transient, 7

fault-tolerant design, 13, 194
FITgrind, 178
flipflop selection, 194
function, 134
functional value, 20

gAN code, 31
gate oxide breakdown, 11
gate resizing, 194
getelementptr, 135
global version counter, 82
golden run, 123, 179

hardware-implemented error injection,
173

incorrect valid code word, 52
indirectbr instruction, 135
information redundancy, 192
injection campaign, 179
injection mode, 181
instruction decoding, 115
instruction execution error, 115
instruction loading error, 114
instruction pointer, 111
instruction pointer error, 115
invoke instruction, 135

LA, 86
linear address, 86

list-based version management, 84
LLVM bitcode, 132, 134
load instruction, 135
logical masking, 12

masking
electrical, 12
logical, 12
temporal, 12

memory with versions, 151
memory without versions, 150
Miller Effect, 10
mixed-mode system, 2
module, 134

non-separate code, 21

overflow correction, 52, 53
overflow problem, 52, 53

phi instruction, 135
physical error injection, 172
pre-encoded binary, 116
preparation for encoding, 136
preparations, 136

RAM, 11
DRAM, 11
SRAM, 11

redundancy
information, 192
space, 192
time, 192

replacement operations, 46, 74
residue code, 23

safety, 14
safety level, 4
security, 14
SEP, 111
separate code, 21
SER, 8
sign overflow, 53
sign underflow, 58
signature

dynamic, 34
static, 33

signature correction function, 51

Index 227

signature precomputation function, 52
signed encoding, 42
silent data corruption, 3
simulation-based error injection, 173
single assignment architecture, 135
single assignment form, 135
skin effect, 10
Software Encoded Processing, 111
Software implemented fault tolerance,

156
software-implemented error injection,

174
space redundancy, 192
sphere of protection, 91
standard cell library, 13
static signature, 33, 82
store instruction, 135
SWIFT, 156
switch instruction, 135
symbolic error injection, 173
systematic AN-code, 30
systematic code, 21

temporal masking, 12
terminator instruction, 134
time redundancy, 192
tree-based version management, 86
trigger point, 182
truncation correction, 65

UCode, 178
underflow correction, 57, 58
underflow problem, 57, 58
unencoded

operation, 20
value, 20

unencoded overflow correction, 72
unsigned encoding, 42
unwind instruction, 135

Valgrind, 178
VCP, 105
version management, 82
Vital Coded Processor, 105

Bibliography

[AB09] Diogo José Costa Alves and Edna Barros. A logic built-in self-test
architecture that reuses manufacturing compressed scan test pat-
terns. In SBCCI ’09: Proceedings of the 22nd Annual Symposium
on Integrated Circuits and System Design, pages 1–6, New York,
NY, USA, 2009. ACM.

[ACK+03] Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Em-
merich Fuchs, and Gunther H. Leber. Comparison of Physical
and Software-Implemented Fault Injection Techniques. IEEE
Transactions on Computers, 52(9):1115–1133, 2003.

[AGM+71] A. Avizienis, G.C. Gilley, F.P. Mathur, D.A. Rennels, J.A.
Rohr, and D.K. Rubin. The STAR (Self-Testing And Repairing)
Computer: An Investigation of the Theory and Practice of Fault-
Tolerant Computer Design. Transactions on Computers, Volume
C-20:1312– 1321, 1971.

[AH99] Algirdas Avizienis and Yutao He. Microprocessor Entomology: A
Taxonomy of Design Faults in COTS Microprocessors. In DCCA
’99: Proceedings of the conference on Dependable Computing for
Critical Applications, page 3, Washington, DC, USA, 1999. IEEE
Computer Society.

[All70] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–
19, 1970.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and
Secure Computing. IEEE Trans. Dependable Secur. Comput.,
1(1):11–33, 2004.

[ANS+04] W. Abdelmoez, D. M. Nassar, M. Shereshevsky, N. Gradetsky,
R. Gunnalan, H. H. Ammar, Bo Yu, and A. Mili. Error Propaga-
tion In Software Architectures. In METRICS ’04: Proceedings
of the Software Metrics, 10th International Symposium, pages
384–393, Washington, DC, USA, 2004. IEEE Computer Society.

[ASS09] Naga Durga Prasad Avirneni, Viswanathan Subramanian, and
Arun K. Somani. Low overhead Soft Error Mitigation techniques
for high-performance and aggressive systems. In Proceedings of
the Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, pages 185–194. IEEE Computer
Society, 2009.

229

230 Bibliography

[Aus99] Todd M. Austin. DIVA: a Reliable Substrate for Deep Submicron
Microarchitecture Design. In MICRO 32: Proceedings of the 32nd
annual ACM/IEEE international symposium on Microarchitecture,
pages 196–207, Washington, DC, USA, 1999. IEEE Computer
Society.

[Avi64] Algirdas Avizienis. A set of algorithms for a diagnosable arithmetic
unit. Technical report, Jet Propulsion Laboratory, 1964.

[Avi65] Algirdas Avizienis. A Study of the Effectiveness of Fault-Detecting
Codes for Binary Arithmetic. Technical report, Jet Propulsion
Laboratory, 1965.

[Avi71] A. Avizienis. Arithmetic Error Codes: Cost and Effectiveness
Studies for Application in Digital System Design. In IEEE Trans-
actions on Computers, pages 1322 – 1331, 1971.

[Bau02] Robert Baumann. The impact of technology scaling on soft error
rate performance and limits to the efficacy of error correction. In
International Electron Devices Meeting, 2002.

[Bau05] Robert C. Baumann. Radiation-induced soft errors in advanced
semiconductor technologies. IEEE Transactions on Device and
Materials Reliability, 5:305– 316, 2005.

[BBV+05] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia,
Robert Jardine, Jim Klecka, and Jim Smullen. NonStopAd-
vanced Architecture. Proceedings of the International Conference
on Dependable Systems and Networks (DSN), 00:12–21, 2005.

[BCN+01] Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, Paolo Prinetto,
and Luca Tagliaferri. Control-Flow Checking via Regular Expres-
sions. In Proceedings of the 10th Asian Test Symposium (ATS
’01), page 299, Washington, DC, USA, 2001. IEEE Computer
Society.

[BCPT00] Alfredo Benso, Silvia Chiusano, Paolo Prinetto, and L. Tagliaferri.
A C/C++ Source-to-Source Compiler for Dependable Applications.
In DSN ’00: Proceedings of the 2000 International Conference
on Dependable Systems and Networks (formerly FTCS-30 and
DCCA-8), page 71, Washington, DC, USA, 2000. IEEE Computer
Society.

[BDH+98] Feng Bao, Robert H. Deng, Yongfei Han, Albert B. Jeng, A. De-
sai Narasimhalu, and Teow-Hin Ngair. Breaking Public Key
Cryptosystems on Tamper Resistant Devices in the Presence of
Transient Faults. In Proceedings of the 5th International Work-
shop on Security Protocols, pages 115–124, London, UK, 1998.
Springer-Verlag.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
Importance of Checking Cryptographic Protocols for Faults. In
Advances in Cryptology EUROCRYPT 97, 1997.

Bibliography 231

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
Importance of Eliminating Errors in Cryptographic Computations.
J. Cryptology, 14(2):101–119, 2001.

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the 2005 USENIX Annual Technical Conference,
FREENIX Track, pages 41– 46. USENIX, April 2005.

[BHP+71] W. G. Bouricius, E. P. Hsieh, G. R. Putzolu, J. P. Roth, P. R.
Schneider, and C. Tan. Algorithms for Detection of Faults in
Logic Circuits. IEEE Trans. Comput., 20(11):1258–1264, 1971.

[BI86] M A Breuer and A A Ismaeel. Roving Emulation as a Fault
Detection Mechanism. IEEE Trans. Comput., 35(11):933–939,
1986.

[BKIL03] S. Bagchi, Z. Kalbarczyk, R. Iyer, and Y. Levendel. Design and
Evaluation of Preemptive Control Signature(PECOS) Checking.
IEEE Transactions on Computers, 2003.

[BL85] Bella Bose and Der J. Lin. Systematic Unidirectional Error-
Detecting Codes. IEEE Trans. Comput., 34(11):1026–1032, 1985.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problems. In STOC ’90: Proceed-
ings of the twenty-second annual ACM symposium on Theory of
computing, pages 73–83, New York, NY, USA, 1990. ACM Press.

[BMBF05] Jason Blome, Scott Mahlke, Daryl Bradley, and Krisztián Flaut-
ner. A microarchitectural analysis of soft error propagation in a
production-level embedded microprocessor. In In Proceedings of
the First Workshop on Architecture Reliability, 2005.

[BMR+08] C. Bolchini, A. Miele, M. Rebaudengo, F. Salice, D. Sciuto, L. Ster-
pone, and M. Violante. Software and Hardware Techniques for
SEU Detection in IP Processors. J. Electron. Test., 24(1-3):35–44,
2008.

[Bog10] Walt Bogdanich. Radiation Offers New Cures, and Ways to
Do Harm. The New York Times: http://www.nytimes.com/
2010/01/24/health/24radiation.html?pagewanted=all, January
2010.

[Bor05] Shekhar Borkar. Designing Reliable Systems from Unreliable Com-
ponents: The Challenges of Transistor Variability and Degradation.
IEEE Micro, 25(6):10–16, 2005.

[Bor06] Shekhar Borkar. Electronics beyond nano-scale CMOS. In
DAC ’06: Proceedings of the 43rd annual conference on Design
automation, pages 807–808, New York, NY, USA, 2006. ACM
Press.

[BSO05] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. A Mechanism for
Online Diagnosis of Hard Faults in Microprocessors. In MICRO
38: Proceedings of the 38th annual IEEE/ACM International

232 Bibliography

Symposium on Microarchitecture, pages 197–208, Washington, DC,
USA, 2005. IEEE Computer Society.

[BSW+00] Saurabh Bagchi, Balaji Srinivasan, Keith Whisnant, Zbigniew
Kalbarczyk, and Ravishankar K. Iyer. Hierarchical Error Detec-
tion in a Software Implemented Fault Tolerance (SIFT) Environ-
ment. IEEE Transactions on Knowledge and Data Engineering,
12(2):203–224, 2000.

[BUEA06] Mihai Budiu, Úlfar Erlingsson, and Mart́ın Abadi. Architectural
support for software-based protection. In ASID ’06: Proceedings of
the 1st workshop on Architectural and system support for improving
software dependability, pages 42–51, New York, NY, USA, 2006.
ACM Press.

[BWWA06] Edson Borin, Cheng Wang, Youfeng Wu, and Guido Araujo.
Software-Based Transparent and Comprehensive Control-Flow
Error Detection. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), pages 333–345,
Washington, DC, USA, 2006. IEEE Computer Society.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding
frequent items in data streams. Theoretical Computer Science,
312(1):3–15, 2004.

[CCL+08] B.H. Calhoun, Yu Cao, Xin Li, Ken Mai, L.T. Pileggi, R.A.
Rutenbar, and K.L. Shepard. Digital Circuit Design Challenges
and Opportunities in the Era of Nanoscale CMOS. Proceedings of
the IEEE, 96(2):343–365, Feb. 2008.

[Chi64] R. Chien. On linear residue codes for burst-error correction. In
IEEE Transactions on Information Theory, 1964.

[CMS98] João Carreira, Henrique Madeira, and João Gabriel Silva. Xcep-
tion: A Technique for the Experimental Evaluation of Dependabil-
ity in Modern Computers. IEEE Trans. Softw. Eng., 24(2):125–
136, 1998.

[Con03] Cristian Constantinescu. Trends and Challenges in VLSI Circuit
Reliability. IEEE Micro, 23(4):14–19, 2003.

[CRA06] Jonathan Chang, George A. Reis, and David I. August. Auto-
matic Instruction-Level Software-Only Recovery. In Proceedings
of the International Conference on Dependable Systems and Net-
works (DSN), pages 83–92, Washington, DC, USA, 2006. IEEE
Computer Society.

[CXIW02] Shuo Chen, Jun Xu, R.K. Iyer, and K. Whisnant. Evaluating the
security threat of firewall data corruption caused by instruction
transient errors. In Dependable Systems and Networks, 2002. DSN
2002. Proceedings. International Conference on, pages 495–504,
2002.

Bibliography 233

[CXK+04] Shuo Chen, Jun Xu, Zbigniew Kalbarczyk, Ravishankar K. Iyer,
and Keith Whisnant. Modeling and evaluating the security threats
of transient errors in firewall software. Perform. Eval., 56(1-4):53–
72, 2004.

[Dec05] G. Declerck. A look into the future of nanoelectronics. In VLSI
Technology, 2005. Digest of Technical Papers. 2005 Symposium
on, pages 6–10, June 2005.

[DHW09] Anand Dixit, Raymond Heald, and Alan Wood. Trends from Ten
Years of Soft Error Experimentation. In System Effects of Logic
Soft Errors (SELSE), 2009.

[dKS09] Marc de Kruiff and Karu Sankaralingam. Exploring the Synergy
of Emerging Workloads and Silicon Reliability Trends. In IEEE
Workshop on Silicon Errors in Logic - System Effects (SELSE),
2009.

[DMZ09] Martin Dimitrov, Mike Mantor, and Huiyang Zhou. Understand-
ing software approaches for GPGPU reliability. In GPGPU-2:
Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, pages 94–104, New York, NY, USA,
2009. ACM.

[Dol06] Daniel Dollé. Vital software: Formal method and coded processor.
In Proceedings of Embedded Real Time Software (ERTS) 2006,
Toulouse, France, 2006.

[DT99] Debaleena Das and Nur A. Touba. Synthesis of Circuits with
Low-Cost Concurrent Error Detection Based on Bose-Lin Codes.
J. Electron. Test., 15(1-2):145–155, 1999.

[DZ07] Martin Dimitrov and Huiyang Zhou. Unified Architectural Sup-
port for Soft-Error Protection or Software Bug Detection. In
PACT ’07: Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, pages 73–82,
Washington, DC, USA, 2007. IEEE Computer Society.

[DZ09] Martin Dimitrov and Huiyang Zhou. Anomaly-based bug predic-
tion, isolation, and validation: an automated approach for software
debugging. In ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming languages
and operating systems, pages 61–72, New York, NY, USA, 2009.
ACM.

[FGAM10] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
Shoestring: probabilistic soft error reliability on the cheap. In
ASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and operating
systems, pages 385–396, New York, NY, USA, 2010. ACM.

[For89] P. Forin. Vital Coded Microprocessor Principles and Applica-
tion for Various Transit Systems. In IFA-GCCT, pages 79–84,
Toulouse, France, Sept 1989.

234 Bibliography

[GA03] Sudhakar Govindavajhala and Andrew W. Appel. Using Memory
Errors to Attack a Virtual Machine. In SP ’03: Proceedings of
the 2003 IEEE Symposium on Security and Privacy, page 154,
Washington, DC, USA, 2003. IEEE Computer Society.

[GEJL10] Nishant J. George, Carl R. Elks, Barry W. Johnson, and John
Lach. Bit-slice logic interleaving for spatial multi-bit soft-error
tolerance. In Proceedings of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2010,
pages 141 – 150, Chicago, USA, 2010. IEEE Computer Society.

[GRSRV03] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante.
Soft-error detection using control flow assertions. In 18th IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, pages 581–588, Nov. 2003.

[GSS06] T. S. Ganesh, Viswanathan Subramanian, and Arun Somani. SEU
Mitigation Techniques for Microprocessor Control Logic. European
Dependable Computing Conference, 0:77–86, 2006.

[GSVP03] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith
Pomeranz. Transient-Fault Recovery for Chip Multiprocessors.
International Symposium on Computer Architecture, 0:98, 2003.

[HA84] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-Based
Fault Tolerance for Matrix Operations. IEEE Trans. Computers,
33(6):518–528, 1984.

[HJS01] Martin Hiller, Arshad Jhumka, and Neeraj Suri. An Approach
for Analysing the Propagation of Data Errors in Software. In
DSN ’01: Proceedings of the 2001 International Conference on
Dependable Systems and Networks (formerly: FTCS), pages 161–
172, Washington, DC, USA, 2001. IEEE Computer Society.

[HLD+05] Jie S. Hu, Feihui Li, Vijay Degalahal, Mahmut Kandemir, N. Vi-
jaykrishnan, and Mary J. Irwin. Compiler-Directed Instruction
Duplication for Soft Error Detection. In DATE ’05: Proceedings of
the conference on Design, Automation and Test in Europe, pages
1056–1057, Washington, DC, USA, 2005. IEEE Computer Society.

[IBM99] IBM. IBM Chipkill Memory. Whitepaper, 1999.

[IKP+07] Ravishankar K. Iyer, Zbigniew Kalbarczyk, Karthik Pattabiraman,
William Healey, Wen-Mei W. Hwu, Peter Klemperer, and Reza
Farivar. Toward Application-Aware Security and Reliability.
IEEE Security and Privacy, 5(1):57–62, 2007.

[INKM05] Ravishankar K. Iyer, Nithin M. Nakka, Zbigniew T. Kalbarczyk,
and Subhasish Mitra. Recent Advances and New Avenues in
Hardware-Level Reliability Support. IEEE Micro, 25(6):18–29,
2005.

[ISO99] ISO. The ANSI C standard (C99). Technical Report WG14
N1124, ISO/IEC, 1999.

Bibliography 235

[Joc02] Markus Jochim. Detecting Processor Hardware Faults by Means
of Automatically Generated Virtual Duplex Systems. In DSN ’02:
Proceedings of the 2002 International Conference on Dependable
Systems and Networks, pages 399–408, Washington, DC, USA,
2002. IEEE Computer Society.

[JRBS06] Vivek Joshi, Rajeev R. Rao, David Blaauw, and Dennis Sylvester.
Logic SER Reduction through Flipflop Redesign. In ISQED
’06: Proceedings of the 7th International Symposium on Quality
Electronic Design, pages 611–616, Washington, DC, USA, 2006.
IEEE Computer Society.

[JRSMF98] Jr. J. R. Samson, W. Moreno, and F. Falquez. A Technique for
Automated Validation of Fault Tolerant Designs Using Laser Fault
Injection (LFI). In FTCS ’98: Proceedings of the The Twenty-
Eighth Annual International Symposium on Fault-Tolerant Com-
puting, page 162, Washington, DC, USA, 1998. IEEE Computer
Society.

[KHP04] Tanay Karnik, Peter Hazucha, and Jagdish Patel. Characterization
of Soft Errors Caused by Single Event Upsets in CMOS Processes.
IEEE Trans. Dependable Secur. Comput., 1(2):128–143, 2004.
Senior Member-Tanay Karnik and Member-Peter Hazucha.

[KIBW99] Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, Saurabh Bagchi,
and Keith Whisnant. Chameleon: A Software Infrastructure for
Adaptive Fault Tolerance. IEEE Trans. Parallel Distrib. Syst.,
10(6):560–579, 1999.

[KIT93] Wei-lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE:
A Fault Injection and Monitoring Environment for Tracing the
UNIX System Behavior Under Faults. IEEE Trans. Softw. Eng.,
19(11):1105–1118, 1993.

[KKA95] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham.
FERRARI: A Flexible Software-Based Fault and Error Injection
System. IEEE Trans. Comput., 44(2):248–260, 1995.

[Kna06] Thomas Knauth. Performance Improvements of the Vital Encoded
Interpreter. Großer Beleg, Technische Universität Dresden, 2006.

[KS06] Thomas Kottke and Andreas Steininger. A Reconfigurable Generic
Dual-Core Architecture. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pages
45–54, Washington, DC, USA, 2006. IEEE Computer Society.

[KSS02] Richard Krüger, Andreas Schenk, and Frank Schiller. Patent
DE 102 19 501 B4: System und Verfahren zur Verbesserung
von Fehlerbeherrschungsmassnahmen, insbesondere in Automa-
tisierungssystemen, April 2002.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Pro-
ceedings of the international symposium on Code generation and

236 Bibliography

optimization (CGO), page 75, Washington, DC, USA, 2004. IEEE
Computer Society.

[Lau06] Olivier Lauzeral. WNR Helps Solve New Reliability Challenges
on Electronic Devices. LANSCE Los Alamos Neutron Science
Center Activity Report 2006, 2006.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language design
and implementation, pages 190–200, New York, NY, USA, 2005.
ACM.

[LCP+09] Galen Lyle, Shelley Cheny, Karthik Pattabiraman, Zbigniew
Kalbarczyk, and Ravishankar Iyer. An end-to-end approach
for the automatic derivation of application-aware error detectors.
In Proceedings of the Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2009, pages 584–589.
IEEE Computer Society, 2009.

[LG04] Xiaobin Li and Jean-Luc Gaudiot. A Compiler-Assisted On-Chip
Assigned-Signature Control Flow Checking. In Yew and Xue
[YX04], pages 554–567.

[LH07] Daniel Larsson and Reiner Hähnle. Symbolic Fault Injection.
In 4th International Verification Workshop in connection with
CADE-21, pages 85–103, Bremen, Germany, 2007.

[LLV] The LLVM Compiler Infrastructure. http://llvm.org/.

[LMM08] Yanjing Li, Samy Makar, and Subhasish Mitra. CASP: concurrent
autonomous chip self-test using stored test patterns. In DATE
’08: Proceedings of the conference on Design, automation and test
in Europe, pages 885–890, New York, NY, USA, 2008. ACM.

[LOBR09] Daniel Limbrick, Edward Ossi, Bharat Bhuva, and William Robin-
son. Soft-error Mitigation at the Architecture-Level Using Berger
Codes and Instruction Repetition. In IEEE Workshop on Silicon
Errors in Logic - System Effects (SELSE 5), 2009.

[LRS+08] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo,
Sarita V. Adve, Vikram S. Adve, and Yuanyuan Zhou. Un-
derstanding the propagation of hard errors to software and impli-
cations for resilient system design. SIGOPS Oper. Syst. Rev.,
42(2):265–276, 2008.

[LSHC07] Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu. A mem-
ory soft error measurement on production systems. In ATC’07:
2007 USENIX Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference, pages 1–6, Berkeley, CA,
USA, 2007. USENIX Association.

Bibliography 237

[LTRN92] Jien-Chung Lo, Suchai Thanawastien, T. R. N. Rao, and Michael
Nicolaidis. An SFS Berger check prediction ALU and its applica-
tion to self-checking processor designs. IEEE Trans. on CAD of
Integrated Circuits and Systems, 11(4):525–540, 1992.

[Man67] David Mandelbaum. Arithmetic codes with large distance. In
IEEE Transactions on Information Theory, 1967.

[Mas64] J. L. Massey. Survey of residue coding for arithmetic errors. ICC
Bulletin, Volume 3:195–209, 1964.

[MBS07] Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus: Low-
Cost, Comprehensive Error Detection in Simple Cores. In MICRO
’07: Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 210–222, Washington, DC,
USA, 2007. IEEE Computer Society.

[MHH+05] S.E. Michalak, K.W. Harris, N.W. Hengartner, B.E. Takala, and
S.A. Wender. Predicting the number of fatal soft errors in Los
Alamos National Laboratory’s ASC Q supercomputer. In IEEE
Transactions on Device and Materials Reliability, pages 329 – 335,
2005.

[Mil] Ethan L. Miller. DLX-Compiler:
http://www2.ucsc.edu/courses/cmps111-elm/dlx/install.shtml.
UC Santa Cruz, School of Engineering.

[MR98] A. Maamar and G. Russell. A 32-Bit Risc Processor with Concur-
rent Error Detection. In Proceedings of the 24th Conference on
EUROMICRO (EUROMICRO ’98), pages 461 – 467, Washington,
DC, USA, 1998. IEEE Computer Society.

[MS07] Albert Meixner and Daniel J. Sorin. Error Detection Using
Dynamic Dataflow Verification. In PACT ’07: Proceedings of
the 16th International Conference on Parallel Architecture and
Compilation Techniques, pages 104–118, Washington, DC, USA,
2007. IEEE Computer Society.

[MS08] Albert Meixner and Daniel J. Sorin. Detouring: Translating
software to circumvent hard faults in simple cores. In DSN, pages
80–89. IEEE Computer Society, 2008.

[MSVZ07] Jürgen Mottok, Frank Schiller, Thomas Völkl, and Thomas Zeitler.
A Concept for a Safe Realization of a State Machine in Embedded
Automotive Applications. In Francesca Saglietti and Norbert
Oster, editors, The 26th International Conference on Computer
Safety, Reliability and Security (SafeComp 2007), volume 4680
of Lecture Notes in Computer Science, pages 283–288. Springer,
2007.

[MSZ+05] Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and
Kee Sup Kim. Robust System Design with Built-In Soft-Error
Resilience. Computer, 38(2):43–52, 2005.

238 Bibliography

[NDMF97] Michael Nicolaidis, Ricardo O. Duarte, Salvador Manich, and Joan
Figueras. Fault-Secure Parity Prediction Arithmetic Operators.
IEEE Des. Test, 14(2):60–71, 1997.

[Net04] Nicholas Nethercote. Dynamic Binary Analysis and Instrumenta-
tion. PhD thesis, Computer Laboratory, University of Cambridge,
United Kingdom, November 2004.

[NGY+05] Bogdan Nicolescu, Nicolas Gorse, Savaria Yvon, El Mostapha
Aboulhamid, and Raoul Velazco. On the use of model checking
for the verification of a dynamic signature monitoring approach.
IEEE transactions on nuclear science, 2005.

[NPI07] Nithin Nakka, Karthik Pattabiraman, and Ravishankar Iyer.
Processor-Level Selective Replication. In DSN ’07: Proceed-
ings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 544–553, Washington,
DC, USA, 2007. IEEE Computer Society.

[NS07] Nicholas Nethercote and Julian Seward. How to shadow every byte
of memory used by a program. In VEE ’07: Proceedings of the
3rd international conference on Virtual execution environments,
pages 65–74, New York, NY, USA, 2007. ACM.

[NV03] B. Nicolescu and Raoul Velazco. Detecting Soft Errors by a Purely
Software Approach: Method, Tools and Experimental Results.
In Design, Automation and Test in Europe (DATE ’03), pages
20057–20063. IEEE Computer Society, 2003.

[OMM02] Nahmsuk Oh, Subhasish Mitra, and Edward J. McCluskey. ED4I:
Error Detection by Diverse Data and Duplicated Instructions.
IEEE Trans. Comput., 51(2):180–199, 2002.

[OÖ89] James L. Olivier and Füsun Özgüner. Design of concurrent error-
detecting systolic arrays using |g3N |M codes. IEEE Trans. on
CAD of Integrated Circuits and Systems, 8(10):1089–1099, 1989.

[OSM02] N. Oh, P.P. Shirvani, and E.J. McCluskey. Control-flow checking
by software signatures. IEEE Transactions on Reliability, 51:111–
122, 2002.

[Oze92] Patrick Ozello. The coded microprocessor certification. In
Proceedings of SafeComp, pages 185–190, 1992.

[Pap09] The Paparazzi Project. http://paparazzi.enac.fr/wiki/ Main Page,
2009.

[PF82] J. H. Patel and L. Y. Fung. Concurrent Error Detection in ALU’s
by Recomputing with Shifted Operands. IEEE Trans. Comput.,
31(7):589–595, 1982.

[PGZ06] Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn.
Samurai - Protecting Critical Heap Data in Unsafe Languages.
Technical report, Microsoft, 2006.

Bibliography 239

[PGZ08] Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn.
Samurai: protecting critical data in unsafe languages. In Eurosys
’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pages 219–232, New York,
NY, USA, 2008. ACM.

[PH90] David A. Patterson and John L. Hennessy. Computer architecture:
a quantitative approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990.

[PKI05] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. Application-Based Metrics for Strategic Placement of De-
tectors. In PRDC ’05: Proceedings of the 11th Pacific Rim
International Symposium on Dependable Computing, pages 75–82,
Washington, DC, USA, 2005. IEEE Computer Society.

[PKI07] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. Automated Derivation of Application-aware Error Detectors
using Static Analysis. In IOLTS ’07: Proceedings of the 13th
IEEE International On-Line Testing Symposium, pages 211–216,
Washington, DC, USA, 2007. IEEE Computer Society.

[PNKI08] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer. Sym-
PLFIED: Symbolic program-level fault injection and error detec-
tion framework. Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on,
pages 472–481, June 2008.

[Pow95] David Powell. Failure Mode Assumptions and Assumption Cover-
age. Technical report, 1995.

[PSC+06] Karthik Pattabiraman, Giacinto Paulo Saggese, Daniel Chen,
Zbigniew Kalbarczyk, and Ravishankar Iyer. Dynamic Derivation
of Application-Specific Error Detectors and their Implementation
in Hardware. In Proceedings of the Sixth European Dependable
Computing Conference (EDCC 2006), pages 97 – 108, Coimbra,
Portugal, May 2006.

[PSR00] Zach Purser, Karthik Sundaramoorthy, and Eric Rotenberg. A
study of slipstream processors. In MICRO 33: Proceedings of the
33rd annual ACM/IEEE international symposium on Microarchi-
tecture, pages 269–280, New York, NY, USA, 2000. ACM.

[Rao70] T.R.N. Rao. Biresidue Error-Correcting Codes for Computer
Arithmetic. In Transactions on Computers, 1970.

[Rao74] Thammavarapu R. N. Rao. Error Coding for Arithmetic Proces-
sors. Academic Press, Inc., Orlando, FL, USA, 1974.

[RAZR06] Vimal K. Reddy, Ahmed S. Al-Zawawi, and Eric Rotenberg.
Assertion-Based Microarchitecture Design for Improved Fault Tol-
erance. In Proceedings of the International Conference on Com-
puter Design (ICCD 2006), pages 362 – 369, San Jose, USA,
2006.

240 Bibliography

[RBS06] Rajeev R. Rao, David Blaauw, and Dennis Sylvester. Soft error
reduction in combinational logic using gate resizing and flipflop
selection. In ICCAD ’06: Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, pages 502–509,
New York, NY, USA, 2006. ACM.

[RCA+06] George A. Reis, Jonathan Chang, David I. August, Robert Cohn,
and Shubhendu S. Mukherjee. Configurable Transient Fault
Detection via Dynamic Binary Translation. In Proceedings of the
2nd Workshop on Architectural Reliability (WAR), 2006.

[RCMM07] Paul Racunas, Kypros Constantinides, Srilatha Manne, and Shub-
hendu S. Mukherjee. Perturbation-based Fault Screening. In
HPCA ’07: Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, pages
169–180, Washington, DC, USA, 2007. IEEE Computer Society.

[RCV+05a] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan,
and David I. August. SWIFT: Software Implemented Fault
Tolerance. In Proceedings of the international symposium on Code
generation and optimization (CGO), pages 243–254, Washington,
DC, USA, 2005. IEEE Computer Society.

[RCV+05b] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Ran-
gan, David I. August, and Shubhendu S. Mukherjee. Design
and Evaluation of Hybrid Fault-Detection Systems. In ISCA
’05: Proceedings of the 32nd annual international symposium on
Computer Architecture, pages 148–159, Washington, DC, USA,
2005. IEEE Computer Society.

[RG71] T. Rao and O. Garcia. Cyclic and multiresidue codes for arithmetic
operations. In IEEE Transactions on Information Theory, 1971.

[RLC+08] Eduardo Luis Rhod, Carlos Arthur Lisbôa, Luigi Carro, Mat-
teo Sonza Reorda, and Massimo Violante. Hardware and Software
Transparency in the Protection of Programs Against SEUs and
SETs. J. Electron. Test., 24(1-3):45–56, 2008.

[RM00] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient
fault detection via simultaneous multithreading. In ISCA ’00:
Proceedings of the 27th annual international symposium on Com-
puter architecture, pages 25–36, New York, NY, USA, 2000. ACM
Press.

[Rot99] Eric Rotenberg. AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. In FTCS ’99: Proceedings
of the Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing, page 84, Washington, DC, USA, 1999. IEEE
Computer Society.

[RR07] Vimal Reddy and Eric Rotenberg. Inherent Time Redundancy
(ITR): Using Program Repetition for Low-Overhead Fault Toler-
ance. In DSN ’07: Proceedings of the 37th Annual IEEE/IFIP

Bibliography 241

International Conference on Dependable Systems and Networks,
pages 307–316, Washington, DC, USA, 2007. IEEE Computer
Society.

[RR08] Vimal K. Reddy and Eric Rotenberg. Coverage of a
Microarchitecture-level Fault Check Regimen in a Superscalar
Processor. In The 38th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pages 1–10,
2008.

[RRTV99] Maurizio Rebaudengo, Matteo Sonza Reorda, Marco Torchiano,
and Massimo Violante. Soft-Error Detection through Software
Fault-Tolerance Techniques. In DFT ’99: Proceedings of the
14th International Symposium on Defect and Fault-Tolerance in
VLSI Systems, pages 210–218, Washington, DC, USA, 1999. IEEE
Computer Society.

[RRVT01] Maurizio Rebaudengo, Matteo Sonza Reorda, Massimo Violante,
and Marco Torchiano. A Source-to-Source Compiler for Generating
Dependable Software. Proceedings of the First IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM),
00:0035, 2001.

[SA03] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault
Induction Attacks. In CHES ’02: Revised Papers from the 4th
International Workshop on Cryptographic Hardware and Embedded
Systems, pages 2–12, London, UK, 2003. Springer-Verlag.

[SAC+99] T.J. Slegel, R.M. Averill, M.A. Check, B.C. Giamei, B.W.
Krumm, W.H. Krygowski, C.A.and Li, J.S. Liptay, J.D. Mac-
Dougall, T.J. McPherson, J.A. Navarro, E.M. Schwarz, K. Shum,
and C.F. Webb. IBM’s S/390 G5 microprocessor design. IEEE
Micro, 19:12 – 23, 1999.

[Sch09] André Schmitt. Development of an ANBD-Checker for ParExC.
diploma thesis, Technische Universität Dresden, 2009.

[Sch10] Verfahren zur Datenverarbeitung zum Bereitstellen eines Wertes
zum Ermitteln, ob bei einer Ausführung eines Programms ein
Fehler aufgetreten ist. Patent pending: DE 10 2010 037 457.1
applied for by Technische Universität Dresden, 2010. Inventors:
Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer.

[SCK04] Daniel P. Siewiorek, Ram Chillarege, and Zbigniew T. Kalbar-
czyk. Reflections on Industry Trends and Experimental Research
in Dependability. IEEE Trans. Dependable Secur. Comput.,
1(2):109–127, 2004.

[Ser08] Amazon Web Services. Amazon S3 Availability Event: July 20,
2008. http://status.aws.amazon.com/s3-20080720.html, 2008.

[SG98] L. Spainhower and T. A. Gregg. G4: A Fault-Tolerant CMOS
Mainframe. In FTCS ’98: Proceedings of the The Twenty-Eighth

242 Bibliography

Annual International Symposium on Fault-Tolerant Computing,
page 432, Washington, DC, USA, 1998. IEEE Computer Society.

[SG99] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: A Historical Perspective. IBM Journal
of Research, 43, 1999.

[SJGF09] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz.
Orchestra: intrusion detection using parallel execution and moni-
toring of program variants in user-space. In EuroSys ’09: Proceed-
ings of the 4th ACM European conference on Computer systems,
pages 33–46, New York, NY, USA, 2009. ACM.

[SK99] Dennis Sylvester and Kurt Keutzer. Rethinking Deep-Submicron
Circuit Design. Computer, 32(11):25–33, 1999.

[SKK+02] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler,
Doug Burger, and Lorenzo Alvisi. Modeling the Effect of Tech-
nology Trends on the Soft Error Rate of Combinational Logic. In
Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN), pages 389–398, Washington, DC, USA,
2002. IEEE Computer Society.

[SKKR10] Joseph Sloan, David Kesler, Rakesh Kumar, and Ali Rahimi.
A numerical optimization-based methodology for application ro-
bustification: Transforming applications for error tolerance. In
Proceedings of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2010. IEEE Computer
Society, 2010.

[SLR+08] S.K. Sahoo, Man-Lap Li, P. Ramachandran, S.V. Adve, V.S.
Adve, and Yuanyuan Zhou. Using likely program invariants to
detect hardware errors. In Dependable Systems and Networks
(DSN), pages 70–79, June 2008.

[SM04] V.K. Stefanidis and K.G. Margaritis. Algorithm Based Fault
Tolerance : Review and experimental study. In Proceedings of
the International Conference of Numerical Analysis and Applied
Mathematics, 2004.

[SMF06] Yasser Sedaghat, Seyed Ghassem Miremadi, and Mahdi Fazeli. A
Software-Based Error Detection Technique Using Encoded Sig-
natures. In 21st IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT’06), pages 389–400. IEEE
Computer Society, 2006.

[SMM+09] Michael Steindl, Jürgen Mottok, Hans Meier, Schiller Frank, and
Markus Früchtl. Diskussion des Einsatzes von Safely Embedded
Software in FPGA-Architekturen. In Proceedings of the 2nd
Embedded Software Engineering Congress, pages 655–661, 2009.

[SMM10a] Michael Steindl, Jürgen Mottok, and Hans Meier. SES-based
Framework for Fault-tolerant Systems. In Proceedings of the 8th

Bibliography 243

IEEE Workshop on Intelligent Solutions in Embedded Systems,
Heraklion, Greece, 2010.

[SMM+10b] Michael Steindl, Jürgen Mottok, Hans Meier, Schiller Frank, and
Markus Früchtl. Safeguarded Processing of Sensor Data. In Em-
bedded Real Time Software and Systems (ERTS2 2010), Toulouse,
France, 2010.

[sof09] SoftFloat. http://www.jhauser.us/arithmetic/SoftFloat.html,
2009.

[SPW09] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber.
DRAM Errors in the Wild: a Large-scale Field Study. In SIG-
METRICS ’09: Proceedings of the eleventh international joint
conference on Measurement and modeling of computer systems,
pages 193–204, New York, NY, USA, 2009. ACM.

[SSF09] Ute Schiffel, Martin Süßkraut, and Christof Fetzer. AN-Encoding
Compiler: Building Safety-Critical Systems with Commodity Hard-
ware. In The 28th International Conference on Computer Safety,
Reliability and Security (SafeComp 2009), 2009.

[SSSF10a] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer.
ANB- and ANBDmem-Encoding: Detecting Hardware Errors in
Software. In The 29th International Conference on Computer
Safety, Reliability and Security (SafeComp 2010), 2010.

[SSSF10b] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer.
Slice Your Bug: Debugging Error Detection Mechanisms using
Error Injection Slicing. In Eighth European Dependable Computing
Conference (EDCC 2010), 2010.

[SSSF10c] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fet-
zer. Software-Implemented Hardware Error Detection: Costs and
Gains. In The Third International Conference on Dependability
(DEPEND 2010), 2010.

[SSSL10] Pramod Subramanyan, Virendra Singh, Kewal K. Saluja, and Erik
Larsson. Energy-efficient fault tolerance in chip multiprocessors
using Critical Value Forwarding. In Proceedings of the Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2010. IEEE Computer Society, 2010.

[TLH+07] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and
Yuanyuan Zhou. Triage: diagnosing production run failures at
the user’s site. SIGOPS Oper. Syst. Rev., 41(6):131–144, 2007.

[TMBS10] Avi Timor, Avi Mendelson, Yitzhak Birk, and Neeraj Suri. Using
Underutilized CPU Resources to Enhance Its Reliability. IEEE
Trans. Dependable Secur. Comput., 7(1):94–109, 2010.

[VA06] Ramtilak Vemu and Jacob A. Abraham. CEDA: Control-flow
Error Detection through Assertions. In IOLTS ’06: Proceedings
of the 12th IEEE International Symposium on On-Line Testing,

244 Bibliography

pages 151–158, Washington, DC, USA, 2006. IEEE Computer
Society.

[VFM06] Alireza Vahdatpour, Mahdi Fazeli, and Seyed Ghassem Miremadi.
Experimental Evaluation of Three Concurrent Error Detection
Mechanisms. In Proceedings of the International Conference on
Microelectronics (ICM), pages 67–70, 2006.

[VHM03] Rajesh Venkatasubramanian, John P. Hayes, and Brian T. Murray.
Low-Cost On-Line Fault Detection Using Control Flow Assertions.
Proceedings of the 9th IEEE On-Line Testing Symposium (IOLTS),
00:137, 2003.

[VPC02] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-
fault recovery using simultaneous multithreading. SIGARCH
Comput. Archit. News, 30(2):87–98, 2002.

[WA01] Chris Weaver and Todd M. Austin. A Fault Tolerant Approach
to Microprocessor Design. In DSN ’01: Proceedings of the 2001
International Conference on Dependable Systems and Networks
(formerly: FTCS), pages 411–420, Washington, DC, USA, 2001.
IEEE Computer Society.

[Wal00] Martin G. Walker. Modeling the wiring of deep submicron ICs.
IEEE Spectr., 37(3):65–71, 2000.

[Wap07] Data processing arrangement comprises coding device, which
is adjusted to assign codeword to data item to be stored in
memory element based on signal information. Patent pending:
DE102007040721A1 applied for by Technische Universität Dresden,
2007. Inventors: Ute Wappler and Christof Fetzer.

[WB97] Hal Wasserman and Manuel Blum. Software reliability via run-
time result-checking. J. ACM, 44(6):826–849, 1997.

[WBB+05] J.D. Wilkinson, C. Bounds, T. Brown, B.J. Gerbi, and J. Peltier.
Cancer-radiotherapy equipment as a cause of soft errors in elec-
tronic equipment. Device and Materials Reliability, IEEE Trans-
actions on, 5(3):449–451, Sept. 2005.

[WCS09] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi.
Mixed-mode multicore reliability. In ASPLOS ’09: Proceeding
of the 14th international conference on Architectural support for
programming languages and operating systems, pages 169–180,
New York, NY, USA, 2009. ACM.

[Web08] Charles F. Webb. IBM z10: The Next-Generation Mainframe
Microprocessor. IEEE Micro, 28:19–29, 2008.

[WEMR04a] Christopher Weaver, Joel Emer, Shubhendu S. Mukherjee, and
Steven K. Reinhardt. Techniques to Reduce the Soft Error Rate of
a High-Performance Microprocessor. In ISCA ’04: Proceedings of
the 31st annual international symposium on Computer architecture,
page 264, Washington, DC, USA, 2004. IEEE Computer Society.

Bibliography 245

[WEMR04b] Christopher T. Weaver, Joel Emer, Shubhendu S. Mukherjee,
and Steven K. Reinhardt. Reducing the Soft-Error Rate of a
High-Performance Microprocessor. IEEE Micro, 24(6):30–37,
2004.

[Wes00] Tim Wescott. PID without a PhD. Embedded Systems Program-
ming, 13(11), 2000.

[WF06] Ute Wappler and Christof Fetzer. Hardware Fault Injection Using
Dynamic Binary Instrumentation: FITgrind. In Proceedings of
the Sixth European Dependable Computing Conference (EDCC
2006) [Fast Abstract], volume Proceedings Suplemental, 2006.

[WF07a] Ute Wappler and Christof Fetzer. Hardware Failure Virtualization
Via Software Encoded Processing. In 5th IEEE International
Conference on Industrial Informatics (INDIN 2007), 2007.

[WF07b] Ute Wappler and Christof Fetzer. Software Encoded Processing:
Building Dependable Systems with Commodity Hardware. In The
26th International Conference on Computer Safety, Reliability and
Security (SafeComp 2007), 2007.

[WM08a] Ute Wappler and Martin Müller. Software Protection Mechanisms
for Dependable Systems. Design, Automation and Test in Europe
(DATE ’08), 2008.

[WM08b] Kai-Chiang Wu and Diana Marculescu. Power-aware soft error
hardening via selective voltage scaling. In ICCD, pages 301–306.
IEEE, 2008.

[WP06] Nicholas J. Wang and Sanjay J. Patel. ReStore: Symptom Based
Soft Error Detection in Microprocessors. In IEEE Transactions
on Dependable and Secure Computing, pages 30–39, Washington,
DC, USA, 2006. IEEE Computer Society.

[WQRP04] Nicholas J. Wang, Justin Quek, Todd M. Rafacz, and Sanjay J.
Patel. Characterizing the Effects of Transient Faults on a High-
Performance Processor Pipeline. In DSN ’04: Proceedings of
the 2004 International Conference on Dependable Systems and
Networks, page 61, Washington, DC, USA, 2004. IEEE Computer
Society.

[WsKWY07] Cheng Wang, Ho seop Kim, Youfeng Wu, and Victor Ying.
Compiler-Managed Software-Based Redundant Multi-threading
for Transient Fault Detection. In International Symposium on
Code Generation and Optimization (CGO), 2007.

[XCKI01] Jun Xu, Shuo Chen, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. An Experimental Study of Security Vulnerabilities Caused by
Errors. Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 00:0421, 2001.

246 Bibliography

[Yeh96] Y Yeh. Triple-triple redundant 777 primary flight computer. In In
Proceedings of the 1996 IEEE Aerospace Applications Conference
1, pages 293–307, 1996.

[YGS09] Jing Yu, Maria Jesus Garzaran, and Marc Snir. ESoftCheck:
Removal of Non-vital Checks for Fault Tolerance. In CGO ’09:
Proceedings of the 2009 International Symposium on Code Gen-
eration and Optimization, pages 35–46, Washington, DC, USA,
2009. IEEE Computer Society.

[YMOS07] Mahmut Yilmaz, Albert Meixner, Sule Ozev, and Daniel J. Sorin.
Lazy Error Detection for Microprocessor Functional Units. In
DFT ’07: Proceedings of the 22nd IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems, pages 361–369,
Washington, DC, USA, 2007. IEEE Computer Society.

[YO09] Chengmo Yang and Alex Orailoglu. Processor reliability enhance-
ment through compiler-directed register file peak temperature
reduction. In Proceedings of the Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN
2009, pages 468–477. IEEE Computer Society, 2009.

[YS96] Charles R. Yount and Daniel P. Siewiorek. A Methodology for
the Rapid Injection of Transient Hardware Errors. IEEE Trans.
Comput., 45(8):881–891, 1996.

[YWZ04] Wenbin Yao, Dongsheng Wang, and Weimin Zheng. A Fault-
Tolerant Single-Chip Multiprocessor. In Yew and Xue [YX04],
pages 137–145.

[YX04] Pen-Chung Yew and Jingling Xue, editors. Advances in Computer
Systems Architecture, 9th Asia-Pacific Conference, ACSAC 2004,
Beijing, China, September 7-9, 2004, Proceedings, volume 3189 of
Lecture Notes in Computer Science. Springer, 2004.

[ZCM+96] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and
B. Chin. IBM experiments in soft fails in computer electronics
(1978–1994). IBM J. Res. Dev., 40(1):3–18, 1996.

[ZL09] Chang N. Zhang and Xiao Wei Liu. An Algorithm Based Fault
Tolerant Scheme for Elliptic Curve Public-Key Cryptography.
In DEPEND ’09: Proceedings of the 2009 Second International
Conference on Dependability, pages 28–33, Washington, DC, USA,
2009. IEEE Computer Society.

[ZM06] Q. Zhou and K. Mohanram. Gate sizing to radiation harden
combinational logic. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2006.

[ZMM+06] Ming Zhang, Subhasish Mitra, T.M. Mak, Norbert Seifert,
Nicholas Wang, Quan Shi, Kee Sup Kim, Naresh Shanbhag, and
Sanjay Patel. Sequential Element Design with Built-In Soft Error
Resilience. IEEE Trans. VLSI, December 2006.

	Contents
	1 Introduction
	2 Reliability of Hardware
	2.1 Terminology
	2.2 Causes and Effects of Hardware Errors
	2.2.1 Causes for Increasing Unreliability of Hardware
	2.2.2 (Un)Reliability of Hardware

	2.3 Impact of Hardware Errors
	2.4 Conclusions from the State of Hardware Reliability
	2.5 Software-level Symptoms of Hardware Errors

	3 Arithmetic Codes
	3.1 Berger Code
	3.2 Residue Codes
	3.3 AN-Codes
	3.3.1 Error Correcting AN-Codes
	3.3.2 Systematic AN-Codes
	3.3.3 |gAN|M Code
	3.3.4 Conclusions for AN-Codes

	3.4 ANB-Codes
	3.5 ANBD-Codes
	3.6 Comparison of the Codes

	4 Encoding an Instruction Set
	4.1 Implementation of Encoding and Decoding
	4.1.1 Provided Functions
	4.1.2 Encoding
	4.1.3 Conversion: Signed Encoded Unsigned Encoded
	4.1.4 Decoding

	4.2 Encoded Operations
	4.2.1 Encoded Base Operations
	4.2.2 Encodable Replacement Operations
	4.2.3 Floating Point Operations

	4.3 Encoded Constants
	4.4 Calls to External Libraries
	4.5 Encoded Data and Control Flow
	4.6 Encoding Dynamic Memory Access
	4.7 Version Management
	4.7.1 The List
	4.7.2 The Tree
	4.7.3 Performance Evaluation

	4.8 Outlook:Application of Encoded Basic Building Blocks

	5 Choice of Encoding Parameters
	5.1 Choice of A
	5.1.1 How A Influences the Probability of Detecting Errors
	5.1.2 Practical Evaluation: How Many Errors Are Undetectable?

	5.2 Choice of the Signatures
	5.3 Version
	5.4 Conclusion

	6 The Vital Coded Processor (VCP)
	6.1 System Overview
	6.2 Workflow
	6.3 Program Encoding
	6.4 Discussion of VCP

	7 Software Encoded Processing (SEP)
	7.1 System Overview
	7.2 Workflow
	7.3 Program Encoding
	7.3.1 Critical Combinations of Error Symptoms
	7.3.2 Encoding of the Process Image and the Instruction Pointer
	7.3.3 Encoded Program Execution
	7.3.4 Encoding of Control Flow Instructions
	7.3.5 Input and Output
	7.3.6 Code Checking

	7.4 Evaluation
	7.4.1 Error Detection Capabilities
	7.4.2 Runtime Overhead

	7.5 Summary of SEP

	8 Compiler Encoded Processing (CEP)
	8.1 System Overview
	8.2 Workflow
	8.3 Program Encoding
	8.3.1 LLVM Bitcode
	8.3.2 Preparations for Encoding
	8.3.3 Encoding

	8.4 Checking the Correctness of the Execution
	8.5 Evaluation
	8.5.1 Benchmarks Used
	8.5.2 Other Error Detection Approaches Evaluated
	8.5.3 Error Detection Capabilities
	8.5.4 Runtime Overhead
	8.5.5 Costs vs Gains

	8.6 Summary of CEP

	9 Symptom-based Error Injection Tools
	9.1 Related Work
	9.1.1 Error Injectors
	9.1.2 Error Injectors Used in Recent Research Papers
	9.1.3 Slicing
	9.1.4 Design Decisions Derived

	9.2 FITgrind
	9.2.1 Design and Implementation
	9.2.2 Results

	9.3 EIS
	9.3.1 Error Injection
	9.3.2 Debugging with Forward Slicing

	9.4 Conclusion

	10 Related Work
	10.1 Classifying Error Handling Approaches
	10.2 Reliable Hardware
	10.2.1 Error Avoidance
	10.2.2 Error Detection
	10.2.3 Summary

	10.3 Handling of Hardware Errors in Software
	10.3.1 Error Avoidance
	10.3.2 Error Detection
	10.3.3 Error Correcting Software
	10.3.4 Summary

	10.4 Approaches Combining Hardware and Software
	10.4.1 Error Detection
	10.4.2 Summary

	10.5 Conclusion

	11 Conclusion
	11.1 Contributions
	11.2 Future Work
	11.3 Publications, Proposals, and Filed Patents

	A Detection of Over- and Underflowsby Choice of A
	A.1 Detecting Overflows
	A.1.1 Lower Bound for A
	A.1.2 Upper Bound for A
	A.1.3 Interval of Available As
	A.1.4 Condition for Code Invalidation

	A.2 Detecting Underflows
	A.3 Practical Aspects

	Index
	Bibliography

