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Abstract

Communication in microkernel-based systems is much more frequent than system calls
known from monolithic kernels. This can be attributed to the placement of system
services into their own protection domains. Communication has to be fast to avoid
unnecessary overhead. Also, communication channels in microkernel-based systems are
used for more than just remote procedure calls. In distributed systems, which also have
a componentized design, it is state of the art to use tools to generate stubs for the
communication between components. The communication interfaces of components are
described in an interface definition language (IDL). In contrast to distributed systems,
components of a microkernel-based system run on the same architecture and message
delivery is guaranteed.

In this Thesis, I explore the different kinds of communication, which can be used in
microkernel-based systems, as well as their possible representation in IDL. Specifically,
I introduce the syntax to describe kernel objects in IDL. I discuss the complexity of
IDL compilers and its relation to the complexity of the IDL. Furthermore, I evaluate
the performance of the communication stubs generated by different IDL compilers and
discuss techniques to minimize performance overhead in generated stubs. I validated
these techniques by implementing the Drops IDL Compiler – Dice. Finally, this Thesis
presents a mechanism to measure the frequency and performance of invocations of gen-
erated communication code. I used this technique to conduct measurements in highly
complex systems and introducing the least possible overhead.
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Chapter 1

Introduction

Communication in microkernel-based systems has always been the focus of research in
the operating systems community. The performance of the interaction between various
components of an operating system at all times influences the performance of the overall
system. In this Thesis I will analyze the various kinds of interaction between components
of the Dresden Real-time OPerating System (DROPS) as an example of microkernel-
based systems. I will isolate the influence of compilers, communication code and the
hardware on which the code runs. And I will describe a method how tools, namely
stub code generators, can help to use efficient communication code for the interaction
of components of a microkernel-based operating system.

An operating system provides its functionality by a set of services. These ser-
vices are often implemented in distinct components, which communicate via interfaces.
Microkernel-based operating systems emphasize the separation by placing distinct com-
ponents into respective protection domains. Because communication between compo-
nents crosses protection domain boundaries, microkernel-based systems have similarities
with distributed object computing, where communication with a service crosses nodes.

The code to invoke a procedure of a “remote” component – to make a remote pro-
cedure call – is divided into client and server part and follows the same pattern for all
services: The client communication code first packs the parameters of an invocation into
the message (i.e., marshals), sends the message to the server and waits for a reply. The
server communication code waits for a request, unpacks input parameters, i.e., unmar-
shals, dispatches the request, marshals output parameters, and sends the reply. The
client code then unmarshals the return values from the reply.

For distributed systems it is state of the art to use tools to generate this commu-
nication code. The description of a server interface, written in an interface description
language (IDL), is translated into communication code – also called stubs – by an IDL
compiler or stub code generator. Most microkernel-based systems also use IDL compil-
ers to generate communication stubs, for instance MIG for Mach, IDL4 for Pistachio, or
Dice for L4.Fiasco.

The usage of tools to generate communication code reduces common software errors
in the communication code, such as typos or mismatches between client side and server

1



2 CHAPTER 1. INTRODUCTION

side parameters. An interface description is much simpler to read and errors much
easier to find than in hand-written communication code. Furthermore, using a tool
allows migrating a component to a different communication platform easily by adapting
only one piece of software: the IDL compiler.

IDL compilers always generate code for a specific communication platform. For
distributed systems, such a platform is usually the operating system’s socket interface.
For microkernel-based systems such a target platform is the L4 microkernel. Because the
inter-process communication (IPC) of L4 microkernels is fast, the share of computation
time for marshaling and unmarshalling data is, compared to the communication itself,
important. Therefore, one requirement for IDL compilers for microkernels is that the
generated communication code requires minimum time.

As mentioned before, remote procedure calls (RPCs) are used to communicate be-
tween components and to invoke services. Additionally to RPC, microkernel-based sys-
tems use communication to signal state between threads with simple messages. Or
applications stream large amounts of data using shared memory.

Other restrictions that apply to communication in microkernel-based systems include:
Lower level services cannot use dynamic memory management (heaps) or a thread li-
brary. An IDL compiler for microkernel-based systems has to generate code that works
without this functionality. Also, developers of low level component have to have fine-
grained control over resource usage in the communication code. Heaps or unbounded
stacks are often unavailable. Multi-threaded clients and servers should be able to use
the generated code without provoking a deadlock.

As mentioned above, the usage of an IDL compiler allows to easily retarget software to
different communication platforms. An alternative approach is to use a communication
library that can be used on different communication platforms. But, besides allowing
a maximum of portability, we also want to achieve a maximum of performance, which
requires the exploitation of all capabilities of the underlying communication mechanism.
Using a generic communication library does not allow to exploit all features of the
microkernel’s communication mechanisms.

On L4 microkernel-based systems transferred data can also have additional semantic.
Flexpages, for instance, specify a memory range that should be made accessible in the
address space of the communication target. Most recent L4 versions generalize this
feature to transfer capabilities, i.e., generic rights to objects, to another thread. Other
special semantics include indirect data transfer, where the message only contains base
address and size of a memory region and the kernel copies the data directly from the
source address to the target address.

Besides the previously mentioned requirements on an IDL compiler, there also exist
requirements, which, on first sight, do not belong to communication.

One such requirement is the real-time property of a server. A real-time capable
server should communicate using real-time capable stubs, that is, they process messages
in bounded time.

Another orthogonal requirement on communication is introduced by security. Mon-
itors are one technique to perform access control for servers by restricting or filtering
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requests. Such security measures could be automatically supported in the generated
code.

Resource management in the communication code is important for real-time and
security properties. If resource access in the communication code is not bounded, the
response time of the entire service cannot be guaranteed. Also, denial of service attacks
can exhaust resources required in the communication code, thus preventing the service
to receive further requests.

However, adding a new feature or kind of communication to an IDL compiler has to
be thoroughly discussed. The costs of a feature, such as code complexity or performance
degradation of the generated code, have to be weighed against the benefit for the user.
It might be possible to implement a feature as a wrapper, which avoids the additional
costs for the generic case, but allows exploiting a specific feature for a special case.

This Thesis will contribute to the state of the art by discussing the following three
parts:

• In microkernel-based systems different communication forms are used. Supporting
these different forms of communication in a tool that generates communication
code is essential. This Thesis includes a detailed analysis of the most common
forms of communication in microkernel-based systems and will introduce means
to describe these forms of communication in an interface description language.
Cross-cutting problems, such as resource management or security will be discussed
as well.

• A microkernel API changes more frequently than the API of a monolithic kernel.
Software running on top of the microkernel has to adapt to these changes and
an IDL compiler generating the code, which interfaces with the microkernel, can
provide a level of abstraction. With a new microkernel API new potentials for
optimization or new features are introduced. An IDL compiler will have to exploit
these features, otherwise it becomes inefficient. This Thesis discusses a technique
to exploit specific features of a microkernel API but still provide an interface
description that is portable.

• Efficient tools are easy to learn and use. To minimize the learning curve, features
known to the users have to be reused in a new tool with the same semantics or
a minimum of differences. This Thesis shows how known techniques and features
have been integrated into an IDL compiler.

In the rest of the Thesis I will first summarize related work. I will then discuss the
claims of this Thesis in more detail. Chapter 6 will then evaluate my claims and finally I
will conclude by giving an outlook on future work. As a practical instrument to validate
and test the communication forms and features I implemented the Drops IDL Compiler
(Dice) which is referenced throughout this Thesis.
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Chapter 2

Related Work

The following chapter introduces and discusses work related to communication in microkernel-
based systems. I will discuss communication mechanisms, such as Message Passing
Interface, followed by different approaches to stub code generation. More detailed dis-
cussion of stub code generators for microkernel-based systems is included as well as a
presentation of alternative approaches to specify interface contracts.

2.1 Message Passing Interface

The Message Passing Interface (MPI) [73, 24] was designed as means to ease communica-
tion between programs running on heterogeneous nodes. Programs connected with MPI
implement massive parallel applications, such as matrix calculations. MPI is designed as
a library, without the need for pre-processing or compilation. Thus, assumption about
exchanged data cannot be made in advance, but the interface is generic enough to allow
all sorts of data. Because the applications run in a heterogeneous environment, data has
to be typed so necessary conversions can be detected and performed.

The MPI standard defines functions for sending and receiving messages, where a send
or receive function takes as payload argument only a pointer to a buffer. To exchange
multiple different parameters, either multiple sends are necessary or the parameters have
to be packed into a byte array by wrapper functions. Due to the intended use for massive
parallel computations, the MPI library only contains send and receive functions: A
coordinator sends input data to the distributed computation programs and later collects
the output from these programs. The caller was not suspended after sending the request
until the reply was delivered. There was no intention to support remote procedure calls.

2.2 Remote Procedure Calls

To extend the availability of remote processing power to a broader range of services, the
idea of remote procedure calls was widely discussed. Birrell and Nelson discuss one of
the first implementations of RPC in [16]. They extend earlier ideas [81] with precise

5
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semantics of behavior in case of communication failure, semantics of address-containing
arguments in the absence of shared memory, how services are identified, and protocols
for data and control transfer between caller and callee.

RPC is synchronous, that is, the caller is suspended when sending the request and
only resumes after the reply has been received. The concept of RPC obsoleted commu-
nication channel setup as specified in the OSI network layers. Session-based communi-
cation can be implemented on top of RPC. Also, RPC is strictly peer to peer oriented
whereas MPI is targeted to many to many communication.

2.3 Sun RPC

The Sun remote procedure call (RPC) [75]–or transport-independent remote procedure
call (T1-RPC)–was developed by Sun and AT&T as part of the UNIX System V Release
4. It makes RPC applications transport-independent by allowing a single binary version
of a distributed program to run on multiple transports, i.e., communication protocols.
Previously, with transport-specific RPC, the transport was bound at compile time so ap-
plications could not use other transports unless the program was rebuilt. With TI-RPC,
applications can use new transports if the system administrator updates the network
configuration file and restarts the program. Thus, no changes are required to the binary
application.

TI-RPC allows only a single parameter to be passed from client to server. If more
than one parameter is required, the parameters have to be combined into a structured
parameter. Reply information passed from server to client is passed as the function’s
return value.

Because T1-RPC was explicitly designed for network communication it deals with
issues such as message loss, data representation, and interchangeable communication
protocols. To identify a service, a tuple of program number, version number, procedure
number is specified. The tool used to generate communication stubs for T1-RPC is
rpcgen, one of the first tools to generate communication stubs from an IDL. Extended
features of rpcgen include C-style argument passing to stubs (instead of a pointer to a
structure containing the parameters), multithreading-safe stubs, and timeout handling
for client and server.

2.4 Firefly

In [14] Bershad et al. describe optimizations for remote procedure calls (RPC) on local
nodes, which are copy avoidance and lazy scheduling. These optimizations are achieved
using four techniques described in the paper as: simple control transfer (lazy scheduling),
simple data transfer (direct transfer of argument stack and thus copy avoidance), simple
stubs, and design for concurrency (avoid shared data structure bottlenecks). The paper
contains a detailed analysis of frequency of local and remote calls and the typical size
of an RPC. The results of the analysis show that in a common machine setup less than
6% of all calls are to remote machines. To closer differentiate the local calls 28 RPC
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services with 366 procedures have been instrumented and the numbers show that 95% of
the RPC invocations have gone to 10 procedures and 75% to only 3 procedures. In the
95 percentile most calls were 50 bytes in size or less and the majority was less than 200
bytes in size. This paper describes the design of RPC services of a distributed system
where the programmers had the distribution in mind.

Schroeder and Burrows describe in [86] some basic rules for RPC. They argue that
only fast RPC will make programmers use it and to make RPC fast you have to be aware
of what happens where and when. This is a very strong point for fine-grained analysis
of generated code and usage patterns. Once the slow parts are identified they have to
be rewritten. A major point made by Schroeder and Burrows is that message buffers
should be used in place to avoid copies.

2.5 Spring

Spring [79] is a distributed system with about 100 modules, 200 interfaces, and 500
operations. Kessler describes in [63] approaches to use interpretive stubs instead of
compiled stubs for RPC communication. A compiled stub is fixed for each method
specified in the interface description and optimized for that method. If you have 500
operations in a system, the size of the stubs has a major impact on the overall size of
the system. With a typical size of 300 bytes, as described in the paper, this is quite
significant.

Kessler suggests using one interpretive stub that takes a condensed interface descrip-
tion for each method and translates that description together with the arguments of the
call into the RPC. The interpreter described in the paper had a size of four kilobytes
and an average description was only 27 bytes in size. In the paper no significant per-
formance overhead was observed, but the measurements were made on a SPARC with a
suboptimal C++ compiler. A benefit of this approach is the locality of the interpreter
code: it can be used by every client via shared memory.

2.6 Pebble

The Pebble approach to inter-process communication integrates the stub code generation
into the run-time system of operating system. In Pebble, which is a microkernel with
protection domains, communication is done through portals, where portals are addressed
via local names, i.e., indices into a process local portal table. A portal has invoker-side
and invoked-side generated portal code that is protected from the user and generated
by the portal manager and pasted into the address space of the application on portal
creation. When creating a new portal the receiver specifies the possible parameters for
the portal. To keep the size of the stub code generator small, communication only uses
a small number of fixed sized parameters or memory pages.

The specification consists of three parts. The first one defines what to do with the
stack on message transfer: either allocate a new stack at receiver’s side or use the caller’s
stack. The second part specifies what to do with the caller’s registers: protect them or
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only save a minimal subset. And the last one contains the parameter specification,
where a parameter can be a constant, an integer value, or a memory page (window).
These elements are specified as characters in the portal specification. For example:
“smcii” – share stack (’s’), minimal register protection (’m’), one constant and two
integer parameters (’cii’).

This approach is not viable for our microkernel-based system. Interpretive stubs
always add performance overhead. In our system performance is paramount and used
as the main factor to define stubs as acceptable or not.

2.7 MIG - The Mach Interface Generator

Mach [2] as a first generation microkernel uses a stub code generator – The Mach In-
terface Generator (MIG) [27] – to generate communication code. To understand the
features of MIG I will first introduce some of Mach’s basic concepts and mechanisms
[60].

Mach uses tasks as execution environments in which threads may run. A task is the
basic unit for resource allocation. A thread it the basic unit of CPU utilization. Threads
communicate with each other using messages, which consist of data objects, which can
be of any size, contain pointers and typed capabilities. The target of a message is a
port. A port is also used as protected capability for all objects. The creating thread
has ownership and receive rights on that port. In [94] Walmer and Thompson describe
a port set as a collection of ports from which one thread may receive. Ports can also
be part of a message and thus rights to invoke methods on objects can be transferred
between threads. If no port set is used, one thread may only receive from one port.

The virtual memory (address space) of a task is managed by the Mach kernel. It
implements the paging and replacement strategy for all tasks. A task may request
additional chunks of virtual memory using system calls. Such chunks can be assigned to
memory objects [97], which is a named resource that can be shared with other tasks. The
creator of a memory object is its pager. The Mach kernel may create memory objects
which are backed by a default pager.

Mach was designed as a distributed operating system on heterogeneous nodes in
a network. To unify communication on local nodes and between different nodes all
messages are in a platform independent format. The payload of a message is typed, i.e.,
it contains type identification for each member and the actual data. The receiver checks
the type identification against its platform and has to convert data if required.

The payload may consist of simple data, out-of-line data, and ports. Simple data
is stored in the message itself. Out-of-line data points to a region in virtual memory.
At receiver’s side memory is allocated using virtual memory calls of kernel and data is
copied from sender to receiver. Because the Mach kernel does all the virtual memory
handling, it will also guarantee that out-of-line data can be transferred across nodes.
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2.7.1 Specification Language

The Mach Interface Generator (MIG) [27] is derived from Matchmaker and uses features
of Matchmaker’s specification language. MIG’s specification language (MIG IDL) is
similar to Pascal and allows the usage of simple types, structured types, arrays, and
pointers. It also has the notion of a polymorphic type, which is similar to a union type
in C/C++. It may be instantiated to any other IDL type at run-time. One special
feature of MIG IDL is the support of types that change during transmission, which is
implemented using type translators. Type translators are hooks defined in the interface
specification, which are called at the server side after receiving a message and before a
reply. The type is translated from the transport format into the server internal format
and, before the reply, converted back into the transport format. Generally speaking one
type has three representations: in the user (client) code, in the server stub, and in the
server procedure.

MIG IDL allows the specification of different types of RPC: operations without return
value (procedure), operations with a type as return value (function), and operations with
error codes as return value (routine). In case of an error procedures and functions invoke
callbacks instead of returning the error code as return type. Procedures and routines
may also be send only for asynchronous invocations.

The definition of the parameters of all operations consists of type, variable name,
an optional deallocation flag, and a specification, which determines the usage of that
parameter. This can be either in, out, or inout indicating the direction of the trans-
mission. Alternatively one may specify RequestPort or ReplyPort indicating the ports
to send to or receive the reply from. Or a parameter can have the specification WaitTime

indicating a timeout for the RPC. The specification may also indicate the message type,
which can be normal for two message invocations: send and receive, RPC for one mes-
sage invocation combining the send and receive, or encrypted for encrypted message
transfer. If no ReplyPort argument is given a per-thread global reply port is used.

2.7.2 Usage Problems and Hints

In [25] Draves identifies problems that became apparent during the long-term usage of
MIG. He names the confusion of users concerning the difference between interfaces and
implementation.

Another problem identified by Draves is the generation of open-code stubs rather
than using closed-code interpretive stubs and generating descriptors for these stubs.
Open-coded stubs are not desired when distributing proprietary services, because the
communication protocol can be analyzed easily. But, generating open-code stubs cannot
be avoided if the generated code should be integrated into the calling client such that
the compiler can optimize its usage.

Additionally, Draves also states that the assignment of message identifiers is a prob-
lem. There exist different approaches: from generating string-based descriptions, as is
done with CORBA, to using integer identifiers assigned by the user in a user-defined
include file, as is done with Flick. Optimizing CORBA implementations, such as TAO,
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one should use hashing functions to have constant lookup times to match string message
identifiers to dispatch functions.

Draves also gives some hints to the users of MIG. Besides others he recommends
to avoid asynchronous messages because the complicated protocol to be used in user-
space. He also does not recommend the usage of inout parameters, that is, parameters
that carry data both ways. This is problematic if optimizations should be applied for
one direction. Dice tries to solve this by providing hints to the compiler which can be
specific for one direction of communication. Draves also suggests declaring used types in
separate files so they can be used by different interfaces without the need to import other
interfaces. This feature is even more rigorously supported by Dice: it allows including
header files which contain type declarations in the target language. Another suggestion
is the usage of a MIG extension to differentiate the generated function at client and
server side.

An implementation problem of Mach mentioned in [26] is reverse port lookup: A
server has to find the reply port for a client request. Using a send-once-right for the
reply messages allows supplying the server with a reply port easily. Also, the send-once-
right avoids multiple replies if the send right is propagated along a line of receivers and
only one of them is allowed to reply.

2.7.3 Optimizations

Barrerra III described in [57] two cases for which IPC should be optimized: small mes-
sages (about 128 bytes) and very large data. The reason for only these two cases is that
applications tend to cache data. Either large chunks of data are exchanged or small
(synchronization) messages. For small messages latency is important, which includes
the costs to set up the message and decode the message. If the communication layer,
i.e., IPC, is fast, encoding and decoding the message is significant. For large messages
the throughput is important. Most of the time of large data transfers is spent copying
data. Message transfer can be optimized by borrowing techniques from the V System
[18], Sprite [82], Amoeba [92], and Firefly [86]. These techniques include context switch
avoidance and minimizing copy operations.

In Mach, copy operations are avoided by using shared buffers. Some problems have
been identified which are outlined shortly: A single shared buffer for all tasks offers no
protection from interfering tasks. Thus a separate shared buffer is required for each
pair of tasks, which limits the shared buffer space. To avoid copies from a shared buffer
into the device memory, the device memory should be shared with the client. But, the
driver is no longer protected from malicious tasks, especially if message headers should
be created inside the shared memory area. This also implies a semantic problem: after
an application signals “message ready, send”, it may still manipulate the data inside
the message. Also, the application will have to copy the data for the message from
somewhere in its address space into the shared buffer. Thus, the work of copying is only
moved from the device driver to the application.

Druschel and Peterson suggest in [28] a mechanisms for shared memory communi-
cation – fbufs. The shared memory region has a write-once semantic. That is, after a
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buffer has been filled no further modifications are allowed. Only the creator of a buffer
has write access to that buffer. All subsequent users have read-only rights to it. If a
component wants to modify or add content, a new buffer has to be allocated. To en-
force security the notion of volatile buffers is introduced. Access to a buffer is revoked
after it has been used. This requires pagetable and TLB modifications and is therefore
expensive on x86 architectures.

To optimize the performance of communication stubs generated by an IDL compiler
Ford, Hibler, and Lepreau describe the usage of interface annotation in [38]. Interface an-
notations are known from DCE IDL, but the paper investigates the specific performance
gain for an adapted version of MIG. The techniques are for instance used for:

• parameter overloading to specialize the description of a parameter,

• user-provided marshalling,

• memory allocation strategies,

• copy semantics or “used by server” (without copy), and

• varying trust parameters (no trust; confidentiality but not integrity; full trust).

Ford et al. also state that the interface description’s main purpose is to specify the
network contract between the client and the server, i.e., what operations can be invoked
at a service and which information has to be passed for the invocation. However, in most
RPC systems the interface description also contains the programmer’s contract, that is,
how parameters are passed to the stub and who allocates memory for the parameters.

The Mach Interface Generator was one of the first stub code generators used in a
microkernel-based system. Many of the mentioned papers describe methods to improve
the performance of the generated stubs or the memory consumption. I will discuss
several ideas in later chapters and extend them where viable.

2.8 Flick - Flexible Interface Compiler Kit

The group of Jay Lepreau at the University of Utah started research of microkernels
by using Mach but later wrote their own microkernel Fluke [40]. Fluke is an interrupt-
driven kernel with an atomic API. It can be configured to be process-based. The main
difference between these two approaches as described in [39] is that interrupt-driven
kernels have one kernel stack and all system calls are atomic and can be restarted or
rolled back. Process-based kernels usually have one kernel stack for each user process.
The performance of interrupt-driven kernels is worse on x86 architectures than process-
based kernels, because the x86 architecture is designed for the process driven design.

The Utah group also developed an IDL compiler for their microkernel called Flick
[29]. Flick has a modular, three layered design: a front-end that parses the IDL file and
generates an Abstract Object Interface (AOI) representation; the presentation generator
that translates the AOI into a target language presentation (PRES); and the back-end,
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which writes target code from the PRES with on-the-wire specific elements. Through
the usage of intermediate layers different optimization approaches are possible.

Flick implements optimizations that are driven by its task domain and del-
egates general-purpose code optimization to the target language compiler
(such as: register allocation, constant folding, and strength reduction).

Such optimizations include for instance that at the server side data is referenced in
the message buffer. Also, the message buffer used to receive data on the server side can
be reused to hold the data for the reply message. Eide et al. state that the annotation
of interfaces with “hints” can lead to performance gains, but the reliance on hints moves
the burden of optimization from the compiler to the programmer, and has the additional
effect of making the interface description language non-portable or useful only within
restricted domains.

Eide et al. identify the problem that distributed applications often require different
communication patterns than local applications of dedicated, synchronous services. To
tackle this problem they propose the usage of decomposed stubs [30], which consist of

1. pickling stubs, which marshal messages (request and reply),

2. unpickling stubs, which unmarshal messages,

3. send stubs, which transmit marshalled messages,

4. server work functions, which handle received requests,

5. client work functions, which handle received replies,

6. continuation stubs, which can postpone message processing, and

7. dispatch function to dispatch messages.

There also exist separate pickling stubs for operation request, operation replies, and
exceptional replies.

Send stubs can be used to asynchronously send messages, that is, to not wait for
a reply. However, applications (or wrapper libs) have to be written to account for
asynchronous communication. Send stubs take two additional arguments: the target of
the message and the communication environment. At the receiver’s side the client is
identified by the reply port. Also, the message has to contain an invocation ID to match
replies with requests. These invocation IDs have to be provided by the application.

The client and server work functions are used to receive pickled requests or replies
and do either unpickle the message and call the server function, forward the message,
or postpone message handling. Postponed messages can be re-injected into the message
queue using continuation stubs.

Eide et al. name some application fields for decomposed stubs:
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Pickling and unpickling stubs provide applications with greater control over
the handling of messages and enable certain application-specific optimiza-
tions that are not possible within a traditional RPC model. For example,
a message can be pickled once and sent to multiple targets; also, common
replies can be pre-marshalled and cached, thus reducing response times: An
especially useful optimization for Khazana1 is that a message can be redi-
rected to another node without the overhead of decoding and re-encoding
the message (assuming that the message data is not needed in order to make
the forwarding decision).

In the context of a multi-tier architecture of servers, that is, servers using other
servers to provide their service, as described in Section 3.2, the usage of decomposed
stubs seems appropriate. The servers, we wrote for DROPS, with such a multi-tier
architecture, all had to manipulate the data they received before propagating the request
to the next server. Typical parameters to be manipulated are session identifier and offsets
into buffers. Because this requires manipulation, i.e., unpickling of the message, a direct
forwarding cannot be applied.

Another scenario mentioned is the preparation of a default answer, which can, for
example, be sent by the server in case of errors. However, the decision if a default
answer can be sent is made in the server implementation functions. By then, a request
has been dispatched and unmarshalled. To speed up this case, the decision when to
send a default message has to be made sooner, for instance, directly after receiving a
request. This requires a precise description of a faulty message and the layout of the
reply message. Such a description will complicate the interface definition and is contrary
to the concept of decomposed stubs.

Also, decomposed stubs allow receiving a message and, without unmarshalling it,
propagating it to the next component in the processing chain. Similar functionality is
provided by Dice: marshalling and unmarshalling functions are already generated as
well as generic message receive functions. Send functions that take a pre-marshalled
message buffer are provided in a generic library.

Another optimization technique implemented in Flick is the usage of chunks: For
every group of similar parameters an extra chunk in the message buffer is used. A chunk
allows accessing the elements of the message buffer using fixed offsets to the start of the
chunk.

Eide defines in [31] three requirements on software development tools for distributed
applications, esp. IDL compilers.

1. minimize human effort required to design, implement, and maintain the (dis-
tributed) application

2. result in efficient and fast application code

3. support the application’s overall design and programming model

1a “global memory service” application based on the Fluke microkernel
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Gefflaut et al. described in [44] their application of Flick to the construction of an
L4-based multi-server operating system. Their conclusion was: Flick generated stubs
are too slow. This is mostly due to the fact that the generated code does not marshal
parameters directly into registers, which would require platform specific optimizations.

As a summary the authors write:

However, it is clear that an improved code generation facility has to be
developed that generates near-optimal code.

2.9 Concert

This section introduces an approach to interface specification by annotating the primary
programming language. The argumentation for the Concert language in [9] is: most
programs or libraries already contain some sort of interface specification, which are
specified with interface definition sub-languages (IDS).

The IDS for the C language is, for instance, the collection of type and function
declarations in a header file. To extract a unambiguous message format from a C function
declaration it has to be annotated. These annotations are equal to IDL attributes and
denote the direction of the parameter transfer, maximum length of arrays, and similar
information.

In [8] Auerbach and his colleagues name some advantages of the Concert approach:
Concert has a one-translator compilation compared to two-translator compilation of
IDL-based systems; also, less annotations are necessary, because obvious annotations
are default; and, the developer does not have to learn a new language, but can write the
IDS in the language he or she is used to.

The usage of IDS was not applicable to our system. The programming language used
the most in our group was C. C allows too many ambiguities. A pointer to an integer, for
instance, can describe a variable sized array of integers or simply the memory location
of an integer. An annotation of these widely used types was necessary. We also used
a C compiler that could not easily be modified. Instead a second, pre-compiler, would
have to be used, which violates one of the arguments of the Concert authors.

2.10 Spec#

Another approach to enrich the target language with additional information is the Spec#
programming system, which is built on top of Singularity [56, 34]. In [10] Barnett et al.
describe the usage of annotations in the programming language to define contracts as
interfaces between components. The main intention of Spec# is to verify the correctness
of a program by using the annotation to build run-time checks into the program or, if
possible, perform compile-time checks. The authors state that “to best influence the
process by which a software engineer works, one can aim to enhance the engineer’s
primary thinking and working tool: the programming language.” Spec# aims are uniting
informal documentation and interface description in the programming language.
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Communication code is automatically generated from the description in Spec# by
the Spec# compiler. In [11] security issues with communication are discussed. More se-
curity implies a more complicated security model and more copy overhead (integrity and
partner verification) during communication. In Singularity [56, 34] data is exchanged
over channels with exactly 2 endpoints where one endpoint can at any point in time
be owned by only one thread. Memory buffers can be transferred by pointers, with the
semantics that the ownership of the memory is transferred. Channel communication is
governed by statically verified channel contracts, which describe the messages, message
parameters, and valid message interaction sequences. To establish communication chan-
nels, channel endpoints can be parameters of a message. Also, sending and receiving
requires no memory allocation and sends are non-blocking and non-failing. By verifying
that a sender does not access memory which it no longer owns, the Spec# compiler can
improve security.

The Spec# approach is also not viable, for reasons mentioned before: The main
development language in our group is C, which is due to the heavy reuse of open-source
code from the Linux kernel. Using a new, secure language would have required to write
many drivers from scratch.

2.11 Barrelfish

Baumann et al. make a strong case in [13] that future operating systems will be struc-
tured as distributed systems. They argue that future hardware will contain many CPUs
of different types accessing different memory. Because of the heterogeneous nature of
this hardware, simply SMP operating systems won’t suffice. Instead many operating sys-
tem kernels run of the different CPUs. To access the services provided on other CPUs,
the kernels send messages as only means of inter-kernel communication. Barrelfish uses
a derivate of URPC as communication mechanism [12]. URPC [15] uses shared mem-
ory and user-level thread management to prevent costly invocations of the kernel. I
will show that shared memory communication is only one special form of communica-
tion. For rights delegation and memory management the involvement of the kernel is
inevitable.

2.12 CORBA

In [46] Gokhale and Schmidt analyze the single parts of generated and hand-written com-
munication stubs to identify bottlenecks. For client side stubs they state: “The analysis
of the performance of the Common Object Request Broker Architecture (CORBA) ver-
sions suggests that presentation layer conversions and data copying are the primary areas
that must be optimized to achieve higher throughput.” Presentation layer conversion
can be ignored in IDL compilers for microkernel-based system, because communication
on the local node does not alter the presentation of the data.

At the servers side the CORBA stubs performed multiple dispatching steps: find the
object and the to-be-called method in the object. The analyzed CORBA implementa-
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tions used strings to specify object type and method. Thus expensive string comparison
is made while dispatching. As an alternative a numeric dispatching is suggested. This
behavior is implemented in Flick, sunrpc, and others. Also, CORBA specifies a variety
of services that should be used and implemented by an IDL compiler and the generated
code, such as naming service or object creation service.

The TAO real-time object request broker and its IDL compiler provide some opti-
mizations to speed up the communication and dispatching. One optimization is using
a hash function to provide a constant-time lookup of the object and the respective
method. Another one is the support for static invocation interface [47] as opposed to
the CORBA default of dynamic invocation interface. Clients use the static invocation
interface, i.e., static stubs, if they know at compile time which object and which method
to call. Dynamic invocation interfaces, on the other hand, are used when the caller has
no compile-time knowledge of the methods it invokes.

To increase flexibility of applications using CORBA, the TAO IDL compiler also
supports Asynchronous Message Invocation (AMI) as described in [7]. The AMI callback
model is defined in the CORBA Messaging Specification [49]. It specifies an alternative
implementation for client stubs in which a client may send a request to a server and
asynchronously handle the reply. In this scenario, the server’s implementation is left
unmodified. There are two ways to handle the asynchronous reply: polling and callbacks.
By polling the client regularly checks for the reply. With callbacks, the client has to
provide an ORB which handles the reply message from the server and dispatches the
message to the appropriate callback function. To identify replies from different servers
Asynchronous Completion Tokens [84] are used. That is, the request to the server has
an additional inout parameter, the ACT.

2.13 Peregrine

In [59] the Peregrine high-performance RPC system is introduced, a system for dis-
tributed and local communication. The paper describes several performance optimiza-
tions integrated in the Peregrine RPC system.

• copy avoidance: this is achieved by mapping the message into the kernel and
either using scatter-gather DMA to transfer the data directly via the network card
for remote communication or copy it into the receiver’s message buffer for local
communication. Mappings on the described target platform (Sun Microcomputers)
are cheap.

• avoid data conversion: when client and server set up the communication session
the server transmits its data encoding format. The client library can then decide
whether data conversion is necessary or not. This is an enhancement compared to
sunrpc where data in a message is always converted to or from the external data
representation.
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• “pre-compiled” headers: on session setup the message headers for Ethernet
and IP protocol stack are configured and reused for subsequent calls.

• reuse of client call stack in server: The message buffer is built around the
parameters placed by the compiler on the client’s stack when invoking the client
stub. At the server the message buffer is mapped into the server’s address space at
a memory page boundary and the server thread is started with this memory page
as stack. This way, the server function can reuse the client’s call stack.

Some of the optimizations mentioned cannot be transferred onto our most common
target architecture, the x86 platform, because mappings are expensive. On x86, the
remapping of a memory page includes flushing the translation look-aside buffer (TLB).

2.14 IDL Compilers for L4 µ-Kernels

There exist several IDL compilers for L4-based systems, which I will shortly introduce
in this section.

One of the first IDL compilers for L4-based systems was a modified version of Flick.
As already described in Section 2.8, Gefflaut et al. describe the impact of the generated
stubs on the overall performance of the Sawmill system. As a result of that work I
developed an IDL compiler for the L4 implementation Fiasco. Parallel to my work
Andreas Haeberlen started to work on IDL4 in Karlsruhe for their L4 implementations
Hazelnut and Pistachio. After the group at University of New South Wales started to
use the L4 kernel from Karlsruhe they also wrote their own IDL compiler, called Magpie.

2.14.1 IDL4

In [51] Haeberlen writes “Because this work is targeted at multi-server operating systems
(and not distributed systems), we assume that interoperability is not required, i.e., that
a client and server run on the same machine, use the same kernel, and that both stubs are
compiled with the same IDL compiler. For the same reason, we assume that no messages
are damaged or lost by the underlying transport mechanism (in this case, RPC). Finally
we restrict ourselves to static invocation, i.e., all interfaces must be known at compile
time. This permits us to use a fixed message layout and eliminates the need for tagging
elements.”

These assumptions allowed Haeberlen to integrate some extensive optimizations into
IDL4, such as direct stack transfer [52]. The sender’s stack is transferred as message
buffer to the receiver, which then uses the stack to invoke the server implementation.
Because client and server use the same target language compiler the same stack layout
can be assumed. Here the stack is copied, as opposed to Peregrine, where it is mapped.

2.14.2 Magpie

Magpie [37] is a template-based IDL compiler. It uses templates written in the target
language and replaces placeholders with values from the IDL. This approach allows to
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easily change the target code. But it also removes some degree of freedom from the
user. The generated code always has to conform to the template. Optimizations, such
as using inline assembly code, require an additional template. For multiple features,
multiple templates have to exist or should be combinable. This makes the template-
based IDL compiler complex.

Magpie achieves some of these features by writing the templates in an interpretive
programming language. Parts of the template can be replaced with code snippets and
the template itself is executed. This allows to recursively apply transformations. As
mentioned in [95], changes to the IDL syntax require changes of the templates and the
IDL compiler.

2.15 DCE++

In [80] Mock extends the DCE communication model, which is a strict client-server
model, to a coherent object model. In a client-server model, the server manages multiple
objects via one interface. The addressable unit in DCE is the server. Thus different
clients using different objects all refer to the same unique entity. Mock proposes the
extension of the C-based DCE concepts to object models, where the addressable unit is
an object.

Also, methods to transparently migrate objects in a distributed environment are
discussed. The explicit notion of a node is introduced. The caller will still be unaware
of the locality of the called object. But objects may request other objects to migrate so
communication will be more efficient.

Even though the addressable unit is no longer a server, but an object, the mechanisms
to communicate with the objects stay the same: remote procedure calls.

2.16 Heidi

Interface Definition Languages, especially CORBA, have a strict specification of its lan-
guage mappings, that is, how the IDL is translated into the target language. If interfaces
should be integrated into existing applications, the defined language mapping is often
not compatible with existing code. Therefore, it should be possible to customize the
language mapping.

In [95] Welling and Ott propose such a customizable IDL by specifying an own
type mapping. They proposed the usage of a template-based IDL compiler for their
system Heidi. The compiler will include a mapping of IDL types to target language
types. Whenever a target type is inserted into the target code, the respective mapping
is selected. This approach allows adapting to new language mappings easily.

An example mentioned in the paper is the naming of classes for client and server
stubs. The server’s side classes often contain suffixes to differentiate them from the
client classes and because there exist more than one server class for an interface. In the
example one of the class types can strip its suffix by modifying the mapping used for
this particular class.
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2.17 Ada

The Ada programming language [91] has some basic integration of communication prin-
ciples. It contains the explicit notion of tasks and consequently has means to express
communication between tasks. Messages are exchanged explicitly by invoking proce-
dures in other tasks. The communication partner can wait for message invocations
using the select statement. With this statement it can wait for one or more procedure
invocations or for timeouts. One specialty of Ada is the combination of the execution
of a message with preconditions. E.g., a select statement can wait for the arrival of a
number of messages. Only if all messages have arrived, the procedure is executed.

In Ada messages are specified in line with the rest of the code. The compiler trans-
parently generates the communication code. This is similar to the IDS of Concert I
discussed earlier.

2.18 Summary

In this chapter I described different communication mechanisms, such as MPI and RPC.
I introduced different projects and their struggle with the same problems in the com-
munication stubs: performance and memory consumption. Several approaches were
discussed, such as static versus interpretive stubs or copy avoidance. I also presented
different approaches to specifying the contracts for the communication between client
and server.

The main focus of this Thesis being the communication in microkernel-based systems,
I focused on the discussion of stub code generators for microkernel-based systems (MIG,
Flick) and especially L4-based systems (IDL4, and Magpie).
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Chapter 3

Forms of Communication

Liedtke motivated in [53, 67], that microkernels should be small and fast to allow reason-
able performance for applications running on top of them. One major implication of his
work is that the interface provided by a microkernel contains only mechanisms but im-
plements no policy. Every service that could be implemented outside of the kernel should
be. As a consequence of this minimalism, mechanisms with similar functionality have
been combined to reuse code and keep the size of the kernel small. These mechanisms
include communication, receiving interrupts, and memory control. User applications
running on L4 use the communication mechanism to implement synchronization or noti-
fications. In addition to that, shared memory is used to reduce copy operations of large
data.

In this chapter I discuss all these different forms of communication starting with
simple message transfer, asynchronous communication, up to shared memory communi-
cation. I will then demonstrate how each can be supported by an IDL compiler.

3.1 Message Passing

Previous work on communication in distributed computing environments was mostly
focused on providing transparent remote procedure invocations. That is, the invocation
of a procedure on a remote node appears as if it is made locally. The procedure invocation
is synchronous, i.e., the invoker waits until it receives a reply from the remote procedure.
Research on remote procedure calls (RPC) focused on error detection in message delivery
and transparent data conversion between representations in the sending and receiving
node.

To standardize the communication in distributed networks two main efforts were
initiated. The Distributed Computing Environment [50] was developed by the Open
Group (formerly Open Software Foundation) and the OMG developed the Common
Object Request Broker Architecture (CORBA) Standard. Both allowed invoking remote
procedure calls at service providers, which could run at any arbitrary location, including
the same node as the caller.

In addition to RPCs, the concept of one-way messages exists. One-way message
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means no return parameters. Yet, the delivery of the message has to be acknowledged
in the communication layer.

As mentioned above, simple messages can be means to synchronize multi-threaded
operations or to signal events. To support these two uses of IPC communication in a
microkernel-based system, I applied the concept of one-way messages to an IDL compiler.

Remote procedure call (RPC) communication is service centric. A client and a
service are not equal communication partners. To receive messages in a RPC scenario, an
application has to implement a service. I discussed this restriction in [4] and proposed the
usage of servers not only as message recipients but also as message sources. I introduced
the notion of an out attribute which is the counterpart of the one-way message. The
Microsoft IDL (MIDL) [74] provides the notion of the callback attribute that can be
associated with functions. In contrast to the out attribute, it does define a static function
at the client that can be called from the server with an RPC whereas the out attribute
specifies simple messages that can be emitted by the server. Notifications to be sent
from a server to a client are implemented by letting clients wait for a message from the
server. If multiple clients wait for the same message, the server iterates over the waiting
clients and sends a reply.

The usage of the out attribute in our group showed, the concept is not intuitive to
developers. A server implementing an interface is usually the sink of messages not the
source.

Let us look at an example from the Comquad project [19]. We implemented a
resource reservation framework where resources are reserved by clients using the reser-
vation interface of resource managers. In our design the availability of a resource may
change. For instance, an application with high priority requests resources, which have to
be revoked from a lower prioritized application. We could have used the out messages of
the resource manager to signal the change. However, we decided to define a notification
interface, which each client has to implement. Thus the client becomes a server itself,
even though the notification interface only provides one function.

Due to the structure of service providers, each server has to implement the mar-
shalling and unmarshalling code for the messages, a server loop that waits for all possible
new messages, and it has to implement a dispatcher that dispatches the messages. For a
client with one function in the notification interface this is undesirable overhead. More
elegant is the specification of an out function in the interface of the resource manager.
A client then waits explicitly for this message.

Combined with one-way messages the out function can also be used without server
loop and dispatch function. This allows the reduction of RPC to simple message passing
primitives.

Simple messages are not equivalent to the interface of a service, but basic blocks of
construction for an interface. The combination of an in and an out message form an
RPC (reply comes from the destination of the request). The combination of one or more
RPCs with a server loop and a dispatch function create a service.

Due to the restrictions of the target language C1 the receipt of multiple in or out

1The C and C++ programming languages are the main programming languages for operating sys-
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messages, requires more consideration. To receive only one message A we can provide
one function recv_A. If we want to receive either a message A or a message B then we
need a function recv_A_or_B. Because we also want to receive only A or only B at other
places, the functions to generate sum up to three. For an additional third message C an
IDL compiler has to generate six receive functions.

To minimize the number of generated functions, the Dice IDL compiler generates one
function to receive a specific message (e.g., recv_A), one function to receive any message
(recv_any) and unmarshalling functions for the specific messages (e.g., unmarshal_A).
This way the number of generated functions is reduced from n! to 2n + 1. Also, the
functions can be used to receive any message and decide what to do: discard the message,
send error reply, or unmarshal and process the message.

With a different motivation–asynchronous communication–, the operating systems
group around Eric Eide and Jay Lepreau designed decomposed stubs [30] that can be
used to do similar message transfers. Decomposed stubs are described in Section 2.8.

If only one message can be received at any given time, the operation identifier is
redundant. To disable its usage the noopcode attribute can be assigned to an operation.
Also, the noexception attribute can be specified to avoid the transmission of system
exceptions from the server to the client. Exceptions and opcode occupy a word in the
message buffer which can be used for payload.

In summary, one-way messages can easily be integrated into an IDL compiler using
attributes. They allow the exchange of signals or to synchronize components. I described
the complexity of distinguishing multiple messages in a programming language, such as
C. I further introduced solutions to identify the correct message at a receiver and how
to minimize a message in case a distinction of messages at the receiver is not required.

3.2 Asynchronous Servers

In microkernel-based operating systems different services reside in different protection
domains (address spaces). A higher level service, such as a file system, may require
functionality of a lower level service, such as a disk driver. The latency of such higher
level services depends on the latency of the lower level services. In a strictly synchronous
setup, the higher level service will not be able to process new request during the time it
idly waits for the lower level services.

To illustrate the problem, let me highlight the L4 version 2 and version 4 APIs. The
target of an IPC is identified by a global thread ID. It is not possible to let multiple
threads wait for requests to the same service. Instead a service thread has to receive the
requests and propagate them to the worker threads. The service thread then waits for
the next request and delegates it appropriately.

A special problem of the L4 version 2 API is that the invoker of an IPC call expects
the reply from the same communication partner. If a service thread forwards a message
to a worker thread, this worker thread cannot reply to the client. The service thread has

tems. Therefore, these two programming languages should mainly be supported by an IDL compiler for
microkernel-based operating systems.
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to collect the replies for the original requests and send them back to the clients. It has to
provide entry points for these reply notification from the worker threads. Because these
functions can be derived from the original interface operation, the Dice IDL compiler
generates these functions automatically if the allow_reply_only attribute is set for a
function.

This mechanism can be used to solve the above mentioned problem of a higher level
server depending on a lower level service. If a request is forwarded to a lower level
service, the state of the request can be stored. The processing function calls the lower
level service asynchronously and then returns to the server loop where it can wait for
(and process) new requests. When the lower level service replies, the original request is
continued and a reply is sent to the client. I call these services asynchronous servers.

Another use of this feature is the possibility to indicate which function in a multi-
threaded server should run in its own thread. Whenever such a function is called, the
generated code starts a new thread and executes the requested function. The thread will
signal the service thread its completion, which then terminates the thread and sends the
reply to the client. This approach has some downside: firstly, the generated code only
starts and stops threads. It does not reuse existing threads. Secondly, the generated
code relies on a thread library. The dependence on external, i.e., not generated, code
should be avoided for a code generator for microkernel-based systems.

To loosen the dependence on external functionality I use a proxy library with Dice.
As an example: Instead of using the C library function malloc the generated code
uses the function _dice_malloc. This function is implemented in the Dice library and
defined as a weak symbol. This allows users to provide their own implementation of
_dice_malloc and link this implementation to the generated code.

With the mentioned proposal of creating threads for single functions of a service,
the thread library has to support starting functions with different numbers and types of
arguments. As a compromise to automated starting and stopping of functions I defined
the function signature of a service dispatch function to match with the start function
required by our thread library. A developer can define an interface for one or more
functions that should be combined in a worker thread. In one of the original component
functions a new thread may be started with the new dispatch function as start function.
This gives the developer the freedom to decide when to start a new worker thread. It
also allows intelligent thread management.

Asynchronous servers solve some of the restriction of the synchronous IPC mech-
anisms provided by the L4 microkernel. The functionality of this feature has been
balanced to give the developer the freedom to decide when to use it and the impact on
performance of the generated stubs. Support for the generation of notification messages
is achieved with the allow_reply_only attribute, as well as worker threads, which can
be created using a nested interface and its dispatch function.
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3.3 Shared Memory

When data is copied between protection domains, it is copied from the source loca-
tion into a temporary storage in the kernel memory region and then to the destination
location. For large amounts of data, these copy operations make up most of the commu-
nication time. To make the communication faster, copy operations should be avoided.
The L4 microkernel eliminates one copy operation by making the source location visible
in the destination’s protection domain (inside the kernel memory area). Thus the mes-
sage can be copied from the source location directly to the target location. However, the
cost of the temporary mapping contributes to the overall communication cost. Also, the
source of the communication copies the parameters of a message into a message buffer
and the destination copies the parameters out of the message buffer.

A mechanism to avoid these copy operations is the shared memory communication.
Instead of copying data into the message buffer, then copying the message buffer from
sender to receiver, and finally copying data out of the message buffer again, the message
buffer can be in a memory region shared by sender and receiver. Access to this shared
message buffer has to be synchronized to avoid corruption of data.

A naive support of shared memory communication in an IDL compiler could result in
establishing and revoking a shared message buffer for each call from a client to the service.
Establishment and revocation of shared memory are costly operations and should rarely
be used.

A more feasible approach is to establish a permanent shared memory region between
a client and a server. Thus the shared memory region becomes part of a session between a
client and a server. To further reduce the number of copy operations, the transferred data
should be generated and consumed directly in the shared memory region. This approach
requires a different application designs than with common RPC communication.

If the usage of shared memory communication cannot be hidden from the user of
a generated communication stub, the support for shared memory communication in an
IDL compiler is questionable. Also, using the session-based approach, the server has
to establish a session with every new client and manage the associated shared memory
region. I instead suggest using RPC to establish a shared memory region and use simple
messages to synchronize the access to this region.

To back my conclusions, I will discuss a possible implementation of support for shared
memory communication in an IDL compiler. I will enumerate all the consequences for
the following example.

In the interface definition language a parameter that should be exchanged via shared
memory receives the shared attribute. The attribute can only be associated with point-
ers. Assuming the shared memory region is already established, the generated stub does
not contain any copy operations for this parameter, but instead checks if the pointer
is inside the specified memory region. It then computes an offset to the start of the
memory region and transfers this offset to the server. The server adds the offset to its
own start address of the shared memory region and uses the resulting pointer as the
parameter.
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For instance:

interface socket {

void write ([in, shared] unsigned char * packet);

};

The interface socket consists of one function that sends data referred to by the
parameter packet to the server via shared memory.

The IDL compiler generates the following functions for this interface at the client
side:

• socket_shared_init – creates the shared memory region

• socket_shared_alloc – allocate memory for parameters in the shared memory
region.

• socket_write_call – the original communication function for the write operation
from the interface

• socket_shared_free – free the memory occupied by parameters in the shared
memory region.

• socket_shared_close – revokes the shared memory region

At the server side, the following functions are generated in addition to the functions
already generated for conventional communication:

• socket_shared_free – free memory allocated for the parameters in the shared
memory region.

• socket_shared_alloc – allocate memory in the shared memory region for param-
eters transferred back to the client.

Functions to establish the shared memory region are not generated for the server.
Instead the code is directly generated into the existing server loop.

To allow the use of different shared memory regions for different parameters the
shared attribute may contain an identifier: shared(<id>). This identifier is used to
suffix the special functions for the shared memory region: socket_shared_<id>_init

etc.

Existing programming models already have data in private memory and have hand
it off to the communication stubs. If a client wants to transfer a parameter in shared
memory, it has to allocate the argument in the shared memory region before filling it with
data. The programming model has to change to support shared memory communication.
An example for this programming model is the use of sk_bufs in the network stack of
the Linux kernel.

Most of these functions, especially the establishment of shared memory region and
the allocation and deallocation of data in that region, are the same for different interfaces.
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They differ only in their name and the size of the shared memory region they establish.
Thus, these functions can also be provided by a library.

Taken all these caveats into account, the integration of shared memory communica-
tion in this form into an IDL compiler is not justified. Instead a library can be used
for managing memory in a shared memory region. Establishment of a shared mem-
ory region can be done using communication stubs generated from an IDL. Notification
messages can also be represented in an IDL. This follows the minimalistic L4 principals:
Only mechanisms to establish a shared memory region are provided; The policy how to
manage that region is left to upper layers.

3.4 Streaming

Another form of communication is stream communication. Here, no concurrent modi-
fication of the same data is performed, but rather data produced by one application is
placed into a buffer and consumed by the other application. The data is exchanged in
packets of the same size. The buffer may contain one or more of these packets.

Usually, the buffer also contains some administrative data indicating the next free
packet for the producer and the next packet to be consumed. It also contains the two
counting semaphores that are used to keep track of the number of free and occupied
packets. Previous work by Löser and Reuther [71, 72] provides an in depth discussion
of an implementation of a streaming interface on top of the L4 microkernel.

When supporting stream communication with an IDL compiler, the basic concepts
are the same as for shared memory communication. The parameter to be transmitted
has to be attributed. The packet to be transmitted has to be allocated in the shared
memory area and the invocation of the generated client stub will commit the packet to
be consumed. The server side generated code gets the available packets from the shared
memory region and after they have been processed, frees them.

Similar to shared memory communication, it is not transparent for the user to use
stream-based communication. A server and its clients have to be specifically designed
for this sort of communication. Therefore, it seems unfeasible to integrate the support
of stream-based communication into an IDL compiler.

3.5 Security

Bishop describes in [17] the three main aspects of computer security as confidentiality,
integrity, and availability. Integrity refers to the trustworthiness of data or resources,
and it is usually phrased in terms of preventing improper or unauthorized change. Con-
fidentiality is the concealment of information or resources. Availability refers to the
ability to use the desired information or resources.

In the context of communication on microkernels, we can assume that some aspects
of security are always fulfilled. The microkernel API ensures that sender and receiver
are authentic. That is, sender and receiver cannot fake their IDs. Also, changing the
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transmitted data is not possible. With respects to confidentiality I will explain possi-
bilities for access control to services. I will also discuss the concealment of services as a
whole. I will however not discuss how to conceal the resource usage of a server or other
covert channels. With respect to availability I shortly discuss denial of service attacks
and robustness but I will not discuss aspects of reliability.

3.5.1 Access Control

The L4 microkernel API versions 2 through X.2 specified that threads are addressed
using global thread IDs. Even though one can hide mapping of a service to a thread
ID by restricting name services, malicious application may guess thread IDs. A possible
solution is to build systems with process local communication endpoints and thus denying
malicious applications the ability to guess thread IDs [61, 42, 22].

Another implementation of access control is to intercept messages to an application
using microkernel mechanisms. The messages are redirected to a communication moni-
tor [58, 32]. This monitor can then either propagate the message to the real service or
deny the communication. In the context of service level access control this method is
very coarse grained. Services often want to control access based on a {subject, object,
operation} matrix. The matrix specifies which operations are permitted for which sub-
ject on which object. Access control based on communication control can only allow or
disallow all operations on all objects by a specific subject. The described methods are
useful to hide services from clients, but not to do fine-grained access control.

An example of one thread providing multiple, distinct services is the implementation
of a dynamic application loader for the Dresden Real-Time Operating System. The
loader provides an interface to start tasks. Access to that interface is restricted to
applications with the right to start new tasks. When the task starts, the loader will
also be the memory manager (i.e., pager) for the newly started task. This implies that
the newly started task requires access to the functionality to map pages. Because the
services to start an application and to provide memory for a newly started application
are implemented in the same thread, the newly started application implicitly gains access
to the task management interface, even though it may not be eligible.

Access control to objects has to be performed at a higher level than the microkernel.
One possible spot to control access to an object is the generated server loop of the
service. The server loop can check incoming messages for a valid sender address and
drop, reject, or allow the request. Using the described access control matrix (allowed
operations on object by subject as described in [48]) a callback routine is called from
the server loop. This callback routine receives the sender’s ID, the message buffer, and
the desired operation as parameters. Missing from the parameter list of the access check
function is the object identifier. Because this could be anything from an integer value
as the first or last parameter, over a string identifier, up to nothing for generic functions
such as open, this information cannot be retrieved in a generic server loop. To allow
the callback routine to obtain object information the message buffer has to be passed
as parameter. However, the internal format of the message buffer is opaque. Therefore,
this approach is impractical.
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Access control is bound too much to the specific implementation of a service: every
application might call, for instance, operation f on any object. Operation g may only
get called by a subset of tasks, e.g. all tasks with a task ID greater than 0xa and less
than 0x2f . Operation h might even be restricted to certain thread IDs. For applications
calling operation i thread or task IDs are irrelevant for access control, but only a subset
of parameter values is allowed. And a combination of task ID and parameter values may
be required for operation j.

Therefore, the most practical solution is the implementation of the access control
in the server’s component functions. All parameters are available including the object
identifier (whichever parameter that currently is) and the sender ID. Because access
control at this level is implemented by the component programmer, it is not generated
by the Dice IDL compiler.

To support some access control on communication level even on L4 APIs with global
thread IDs, I introduced an attribute called dedicated_partner. This attribute can
be associated with an interface. The server loop will then wait for IPC only from
one specific thread. This allows session-based services to establish a closed connection
between a worker thread and a specific client.

3.5.2 Shared Memory Communication

When using shared memory communication, the participating parties have to trust each
other regarding the content of the shared memory. Because of the common mistrust
regarding private data, it is not desired to retype an application’s private memory into
shared memory. The granularity of the memory sharing is often larger than the size of
the data to be shared and sensitive information may be leaked. Also, copying data from
a private memory location into the shared memory location negates the intention of the
shared memory communication: copy avoidance. Therefore, data to be shared should
always be allocated in the dedicated shared memory region.

When using shared memory communication, we have a chain of applications in pro-
tection domains processing the same data. Because the data processing is sequential,
only one application at a time should have write access to the data. Fbufs have been
proposed in [28] as a solution to this problem (also refer to Section 2.7.3). The authors
suggest mapping the shared memory region writable to only one application. When the
next application should process the data, the right to write the shared memory region
has to be transferred. On the x86 architecture, this requires manipulation of at least
two address spaces and TLB flushing, which is a costly operation.

Drushel and Peterson’s assumption, that the same data is processed by more than two
applications in a chain, is true for network requests, where the data to be transmitted is
propagated between the components of the network stack. Only additional information
is added. Other application scenarios of shared memory communication do manipulate
data in every step. Video processing, for instance, alters the exchanged data when
demultiplexing and decoding. For these sorts of applications, simple shared buffers
between two partners are sufficient, where one application has write access and the
second application has read access.
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3.5.3 Robustness

Providing a robust service can, for example, be achieved by ensuring that a service is
robust against invalid parameters. This can be enforced by checking valid values or value
ranges. To help the programmer with this validation, parameters in an IDL file can be
annotated. However, this approach will complicate the description of a constructed type.
Also, the validity of one parameter may depend on the value of another parameter. A
verification of parameters is simpler if the component function tests the parameters itself.
The only test currently implemented in Dice is for NULL pointers and the maximum
size of buffers.

A different kind of robustness is achieved by broadcasting a request to multiple
implementations of the same service. The received results can then be compared and
wrong results can be discarded. Such a wrapper could be generated by an IDL compiler
but implies some problems. If one implementation of the service is corrupted and will
not send a reply, the client wrapper will wait forever for the last outstanding reply.
To be able to live with corrupted services a threshold could be specified, for instance,
70% of the requests have to be answered. To avoid stalling servers when sending replies
to clients, servers send replies with send timeout zero. If a server sends a reply with
timeout zero, the reply may get lost, because the client wrapper is busy sending requests
or receiving the reply of another service. To fulfill the required threshold, servers have to
reply with (potentially infinite) timeout. Because the wrapper will return to the caller
when it received exactly 70% of the replies, following replies from servers will be blocked
unnecessarily. Also, the wrapper might wait forever, because only 69% of the replies
arrive, but the rest was lost. Thus, the wrapper has to combine a timeout with the
threshold: wait for replies until timeout or 70% of replies arrived. The latter approach
will still block servers above the threshold unnecessarily.

All these limitations make it hard to find a generic description and implementation
that suits every user. Therefore, it is left to the developer to implement such feature.

3.5.4 Denial of Service

In [70] Liedtke et al. describe different denial of service attacks on microkernel-based
systems. They identify IPC as the only mechanism provided by the L4 kernel to be
used for Denial of Service attacks. For servers which use open wait to wait for incoming
requests they identify pulsar attacks as problem. The server is attacked by clients that
bombard it with junk requests. As countermeasure dedicated threads are recommended,
that is, server threads, which only service one client (refer to Section 3.5.1).

For servers that have to use open wait, it is recommended to limit the servers buffer
size to limit the time to identify a junk request and thus to limit the time which the
server is not available. Dice generates messages buffer with a size that all parameters
just fit in (at the receiver’s side with a maximum size of the variable sized parameters).
This still may be too large. A countermeasure could be to cascade requests and make
the initial request contain the operation identifier only. The decision if a request is valid
can be made faster, based on the operation identifier. If a valid operation identifier is
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received, the server may then wait for the actual message from the requesting thread.
This again limits the size of the receive buffer. However, such servers can be attacked
more efficiently: a malicious client sends an operation identifier but not the actual
message. The server will block indefinitely.

When using session-based servers, the server may wait only for open session requests.
Subsequent requests are sent to a dedicated worker thread. A denial of service attack
could simply open unused session and thus consume resources. This could be restricted
by allowing only a fixed number of concurrent sessions per client. Determining a maxi-
mum number of sessions or using a different algorithm to restrict access to a service can
be implemented in a component function and does not require support from a stub code
generator.

Another attack scenario is the specification of a message buffer in an unmapped
memory region of the sender. During IPC (after the rendezvous) the kernel will try to
access the message buffer, raise a page fault and the sender should service it. But it is
malicious and ignores the map request. Thus, the receiver is blocked forever. Counter-
measure is suggested to set a timeout of zero for send pagefaults, which is the default
for Dice generated server loops.

One more attack scenario is mentioned in the paper: attack on secondary resources–
resources used by a server. But that can only be handled by carefully designing the
resource managers, which is out of scope for the work described in my Thesis.

3.6 Summary

In this chapter I introduced different forms of communication, which are used in a
microkernel-based operating system. I also showed how these different forms of commu-
nication can be supported by a stub code generator for a microkernel. This included
the ability to use a generic communication framework, yet still exploit platform specific
mechanisms.
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Chapter 4

Portability

Using an IDL compiler to generate the communication stubs in a microkernel-based
operating system has, besides the three requirements mentioned in Section 2.8, another
main motivation: to introduce a level of abstraction into the communication, to gain
independence from the communication platform. This allows migrating applications
easily to different platforms by using a different back-end of the IDL compiler.

The benefit of generality – in this case the ability to deploy to different target plat-
forms – often implies the inability to use specialized features of a single target platform.
This is addressed by applying target specific optimizations to the generated code. The
IDL compiler can generate highly optimized code for a specific platform. This is espe-
cially beneficial for users who are not able to exploit these optimizations otherwise. The
unification of platform independence and specific optimizations will be discussed in this
chapter.

The Concert programming language (refer to Section 2.9) collocates annotations
necessary to generate RPC stubs with the target programming language. The main ar-
gument for this approach is that the programmer does not have to learn a new language
for the interface description. However, the effort to provide support for another pro-
gramming language, e.g. C++ additionally to C, is unequally larger for Concert than
for a standalone IDL compiler. For Concert a new parser for the target language has to
be written, a new set of implicit rules has to be defined, and different annotations have
to be specified and supported. Our experience shows that implicit rules, which should
simplify annotations, according to Concert, are rather confusing. Different developers
tend to assume different implicit rules.

The concept of using interfaces in software design has been widely accepted to provide
structured software. Designing an interface allows to clearly define the communication
contract for an application, which will implement the interface. Using an interface allows
to provide more than one implementation for an interface. Making this step in software
development obsolete by collocating annotations for remote procedure calls with the
target language negates the effort in structured software design.

33
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4.1 Platform Independence

As we mentioned before, microkernels have to be small to be competitive with other
kernel designs. This reflects in the size of the microkernel’s API. If a new feature is
supposed to be added to this API, the whole API has to be redesigned such, that the
overall size stays the same. Otherwise the microkernel would no longer be a microkernel.
As a consequence, applications have to be adapted to these changes.

When comparing the API of a microkernel with the API of a monolithic kernel, the
functions’ signatures of the latter are rather static. When new features are added, these
features are appended instead of redesigning the whole API. This is necessary to provide
compatibility to existing applications, which depend on the API.

As a result, the API of a microkernel changes fundamentally more often than the API
of a monolithic kernel. One example: the first version of the current L4 microkernel was
specified in 1996 [66]. Up to now, in over ten years, the specification underwent several
changes. Because of the aforementioned reasons, major changes expressed themselves in
new versions of the kernel API. These include L4 version 2.2 (also dubbed LN) [68] in
1998, L4 version 2 for MIPS [33] in 1999, L4 version X.0 [69] in 1999, L4 version X.2
[20] with revision 2 dating May 2003 up to revision 6 dating November 2006, L4 N1
[93], L4.Sec [62], and seL4 [21] all in 2005. In the same timespan Linux had (only) 3
major version changes from Linux 2.0 (1998) to Linux 2.6 (2006). The L4 API changed
between the different versions dramatically whereas the Linux API was kept relatively
stable.

The implementation of the L4 version 2 API here in Dresden–Fiasco–has under-
gone several extensions, including kernel info-page (KIP) system calls (2003), real-time
scheduling (2004), absolute timeouts (2004), and IPC monitoring (2006)–to name a few.
These extensions have always been a tradeoff for some other feature, for instance, using
chief bits in the thread ID for absolute timeouts, or have been carefully interwoven with
existing features, such as using the switch-to system call for real-time scheduling.

API stability for applications in microkernel-based operating systems is provided
at a higher level–the system services. The portability of applications is achieved by
using IDL for communication interfaces. The IDL compiler then “hides” the differences
of microkernel APIs. In [45] Murray et al., state that “[Dice] raises the possibility of
portable applications running on both Xen/MiniOS and L4/Fiasco.” Still, the generated
code should exploit available kernel features efficiently.

To achieve the independence of the actual microkernel API but still allowing the pro-
grammer to influence the generation of the code such, that it best suits her requirements,
we have to identify platform dependent features. If a new platform dependent feature
has to be added to the interface definition language, we have to verify, whether this fea-
ture could be realized using already existing features. For example, the ref attribute,
which exists in the DCE IDL, is used to indicate the transmission of an indirect part,
which is an L4 specific feature. The IDL compiler can use these hints where appropriate
or ignore them. The support of the DCE IDL for platform specific annotations in the
form of Application Configuration Files (ACF) was one of the arguments to choose DCE
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IDL as the primary interface definition language for Dice.

4.1.1 Platform Dependent Types and Platform Independent Attributes

As an alternative to annotating parameters with platform specific attributes, such as
ref, platform specific types can be introduced. In the L4 API, a flexpage specifies a
memory region using a start address and size. In the following section I will outline the
pros and cons of various solutions to support the specification of flexpages in an IDL.
Using IDL to express a flexpage the following parameters could be used:

[in , size_is(fp_size)] void* fp_start ,

[in] unsigned long fp_size

The problem with this approach is that different assumptions have to hold for these
parameters: the start address has to be page size aligned, and the size has to be a
power of 2 of page size. These restrictions have to be enforced in the generated code.
Also, the platform specific flexpage type specifies rights for accessing this page, i.e.,
read-only, read-and-write, or execute rights. It also specifies if ownership of the memory
region is transferred to the receiver. To accommodate these additional properties, the
specification has to be expanded to:

[in , page_size(fp_size), rights(write , own)]

void* fp_start ,

[in] unsigned long fp_size

The generated code can then assemble the parameters into the actually transmitted
flexpage type. However, this representation includes too much (or not enough) informa-
tion to be verified, i.e., address alignment, correct size, etc. Instead, an explicit flexpage
type can be used:

[in] flexpage fp

Using the platform specific type provides the correct representation for the commu-
nication. All the constraints for its members are fulfilled when the surrounding code sets
up the argument. On the other hand, using a platform specific type will cause compile
errors for target platforms which don’t support flexpage types. To avoid these errors for
platform dependent types, I chose a compromise between attributing a memory address
and a platform specific type:

[in, mempage] l4_snd_fpage_t fp

Here, a user-defined type, which represents a flexpage on an L4 platform, is used. It
is attributed to identify it as a flexpage. On non-L4 platforms the attribute is ignored
and the argument is transferred as plain data.

Another alternative is to define the flexpage type solely as a user-defined type with
user-provided marshal, unmarshal, allocation, and deallocation routines. This approach
makes this type totally opaque to the IDL compiler and deprives it from any possibility
to recognize and optimize the usage of a flexpage.

To generalize, platform dependent types are capabilities to kernel-provided objects.
A flexpage is the right to access or modify a region in virtual memory. Similarly, a
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scheduling context, which can be transferred to a communication partner, is the right to
use a slice of computation time. Communication rights are also transferred via commu-
nication channels. The code generated by an IDL compiler has to support the transfer
of capabilities to kernel-provided objects. The creation and destruction of these objects
is not part of the communication.

The generalization of flexpages to capabilities changes the presentation in the IDL
annotation to:

[in , cap(memory)] l4_snd_fpage_t fp

At the server’s side a component function is generated, which uses the l4_fpage_t

type. The compiler has to know that the receiver of a flexpage will only see that type.

Accordingly, the notation for computation time and communication rights can be
expressed as:

[in , cap(time)] cpu_time_t time

[in , cap(communication)] endpoint_t ep

This notation allows to be expanded as needed for new kernel objects.

Currently the Fiasco kernel only allows to specify whether the receiver of an IPC
continues to compute on the sender’s time slice (lazy scheduling [64, 65]) or uses its
own time slices. The former is the default behavior; the latter has to be indicated by
setting a bit in the message descriptor. Because every thread can communicate with
every other thread, dependencies between threads of different priorities are likely. The
communication code makes no effort to avoid possible priority inversion, or other priority
related problems.

A first implementation of the computation-time donation used an extra attribute
sched_donate that can be associated with a function. If present, the generated stubs
check a variable in the environment, which is an extra parameter to each generated
function. If the variable is set, the mentioned bit in the message descriptor is set. This
attribute became obsolete with the generalization of access to kernel objects. For the
donation of the current time slice to the receiver of an IPC, aforementioned notation is
extended by:

[in , cap(time_slice)] boolean donate

Discussions with Fiasco kernel developers revealed that an extension of the donation
bit is required in the future. This can easily be achieved by adapting the respective code
generation and using a type for parameter donate that can hold the required values.

4.2 Optimization

One of the main requirements for a tool to be accepted by its users is that it helps
them in their existing work flow. Thus, one of the requirements for an IDL compiler for
microkernel-based systems is to generate code that is almost as good as hand-written and
highly optimized code in relation to size and speed. When comparing the performance
of generated communication stubs to the performance of the communication itself, same
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sized stubs add more overhead to the fast IPC of L4. Therefore, I had to integrate
optimization of the generated code as integral part into the IDL compiler.

Flick, as a different IDL compiler, left optimization to the domain of the target
language compiler. This freed Flick from complexity but also led to bad performing
communication stubs. In [44] Gefflaut et al. identified the Flick generated code as one
major bottleneck in their performance evaluation.

4.2.1 Parameter reordering

To make the generated code faster, the Flick team introduced the concept of chunks. A
chunk is a group of similar parameters. The beginning of a chunk is stored in a pointer
and all members of the chunk are marshalled as fixed offsets from that pointer. This way
the target language compiler could optimize access to the message buffer. The generated
code marshals the parameters in the order they are specified in the function’s parameter
list. Thus, if the first parameter is of variable size, e.g., a string, then the string had to
be marshalled first and then the start of the next chunk had to be calculated from the
length of the string.

Dice generated code reorders parameters. The L4 APIs specify that special message
buffer members, such as flexpages or indirect parts, have to be placed at specific locations
in the message buffer. For the version 2 API, flexpages have to be at the very begin-
ning and indirect parts at the very end of the message buffer. When packing flexpage
parameters for L4 version 2 API, the flexpages have to be terminated by a delimiter–a
zero flexpage. The zero flexpage is used by the kernel to stop interpreting word pairs as
flexpages.

Inside the normal message part, parameter reordering also allows to sort all fixed
sized parameters to the start of the message buffer. Offsets for new chunks only have to
be calculated for variable sized members. Also, the reordering packs the variable sized
parameters densely.

Let me demonstrate this with an example: A function has as parameters one byte,
two short integers (two bytes size), and one word (four bytes size) in that order. When
marshalling densely and keeping the order we will see a message buffer as depicted in
Figure 4.11. The shown order will have access penalties on x86 platforms, because access
is unaligned. For ARM platforms this access is even invalid, that is, unaligned accesses
are not allowed.

Figure 4.1: Position of parameters. Smallest first, without padding.

1The scale indicates the single bytes in the message buffer.
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Figure 4.2: Aligned position of parameters. Smallest first, with padding.

To solve the unaligned access issue, the parameters could be padded, so access is
always aligned to parameter size. This is shown in Figure 4.2. But this will waste space
in the message buffer. By using parameter reordering, we can keep the size minimal and
the access aligned, as shown in Figure 4.3. First the word sized parameter is marshalled,
then the two short integers at two byte aligned offsets and last the byte.

Figure 4.3: Position of parameters. Biggest first.

Because with parameter reordering parameters can appear in arbitrary order in a
message, we need means to specific protocol dependent positions. In the L4 version 2
and version 4 APIs a pagefault message contains the pagefault address in the first word
of the message and the address of the instruction that caused the pagefault in the second.

To ensure that certain parameters of a stub will be assigned to the positions in the
message buffer defined by the microkernel API, I introduced the msgpos attribute. The
attribute is assigned to word sized parameters and contains an index into a word array.
For the pagefault message of L4 version 2 and version 4 API the IDL looks like this:

void pf_handler ([in, msgpos (0)] unsigned long addr ,

[in , msgpos (1)] unsigned long eip ,

[out] flexpage page);

4.2.2 Copy Avoidance

Another problem of communication stubs is that data is often copied. Usually the
generated stubs construct a message on the stack by copying the data from different
locations, such as stack, heap, etc., into the message buffer. Then, the message is
transferred to the server, which in turn copies the data from the message buffer into
local variables. On the return path the same copying happens again. Excessive copying
has been identified as a bottleneck before. One approach is to minimize copy operations
as much as possible using shared memory communication as described in Section 3.3.

Another approach, which I implemented in Dice, is that large sized parameters,
such as strings are referenced at the server side directly in the message buffer (refer to
Section 2.8). Thus, for these parameters no data has to be copied from the message buffer
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into a local variable. This solution bears the problem that a misbehaving or defective
server might overwrite other data in the message buffer. But, the server will only cause
its own failure, or corrupt its own data. Also, a client could transmit an ill formed
message to the server, for instance containing a string that is not zero-terminated. The
server could fail by trying to read the non-zero-terminated string. To avoid these buffer
overruns, the Dice generated code forces zero-termination on such strings, both, when
sending and when receiving. A disadvantage of referencing parameters directly in the
message buffer is: if the server implementation stores these pointers in internal variables,
their content will be overwritten by successive requests. Server implementers have to be
aware of this fact.

Another approach to minimize copy operations has been constructed by Andreas
Haeberlen as direct stack transfer [51] (refer to Section 2.14.1). This approach uses the
stack of the client stubs generated by the target language compiler as message buffer
and avoids copying the parameters from the stack into the message buffer on the same
stack.

Even though techniques exist to avoid copy operations, the IDL compiler still has
to produce code to copy parameters into and out of a message buffer. To make these
necessary copy operations as fast as possible the IDL compiler exploits knowledge about
the target platform and its specific copy operations. Processors often have a set of
specialized copy instruction to speed up multimedia processing. These copy instructions
are used to speed up data copy operations for marshalling and unmarshalling parameters.

4.2.3 Memory Allocation

Generated stubs have to allocate memory for variable sized data send from the server to
the client. The client can avoid the memory allocation by assigning the prealloc_client
attribute to such a variable sized parameter. The generated client code will not allo-
cate memory, but assume that the parameter points to sufficient memory to hold the
transmitted data.

Copy operations can also be reduced by utilizing the ref attribute with parameters.
This attributes hints the IDL compiler to use an indirect part in an IPC. An indirect
part describes a memory range using a pointer and size. The receiver of an indirect part
has to specify into which memory range the data is to be copied. The receiver also uses
an indirect part to describe this memory range.

Because this mechanism requires more work by the microkernel, it is suitable for
large payloads only. The exact point of break-even depends on the implementation of
the microkernel and the platform it runs on.

4.2.4 Target Language Compiler

Modern computer architectures provide speculative execution as means to optimize the
utilization of a processor and thus minimize execution time. Appropriate compilers make
use of this technique by placing special instructions in the instruction stream such, that
probable execution paths are placed in the speculative execution path. Dice makes use
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of this feature by placing hints for the target language compiler into the generated code.
This also allows reducing the cache footprint of a stub, because the most common path is
packed densely in the generated binary and exceptions to this common path are reached
via jumps out of this densely packed code.

As mentioned above, previous IDL compilers rely on the target language compiler
to perform optimization of the generated code. With some empirical measurements
I found that the generated C code did not perform as well as hand-written code in
assembly. Therefore, I extended the back-end for L4 version 2 by some x86 specific
classes to generate assembly communication code. For specific performance numbers
refer to Section 6.3.

4.3 Usability

To be able to understand the benefits of the usage of an IDL compiler in microkernel-
based systems, let me first sketch the work flow of software development before the
introduction of Dice. Building microkernel-based systems without an IDL compiler
meant programmers spending a considerable amount of their time designing communi-
cation protocols and debugging the respective communication code. Murray et al. write
in [45] that an “IDL compiler enables rapid experimentation with different interfaces.”
Thus, a missing IDL compiler severely limited the possibilities of the programmers.

The task of getting comfortable with all the features of the IPC system call and
designing communication protocols was a high hurdle for L4 beginners. The usage of an
IDL compiler lowered that hurdle, thus attracting more users to work with the system.
Also, advanced features become available to beginners right away. One of the first major
operating systems environments for L4–the L4Env–was only build after the introduction
of the first IDL compiler.

Volkmar Uhlig provided a first implementation of an IDL compiler by implementing
a back-end for L4 to Flick. This was extensively used for the SawMill project [6, 44].
It allowed a faster development of applications, because the error-prone task of writing
communication code was replaced with automatic generation of communication stubs.

However, Flick had some disadvantages that had to be addressed:

• performance: the Flick generated code performed badly. A major requirement
was to optimize the generated stubs to be faster and use less resources than existing
stubs.

• integration: we made heavy use of existing code, such as device drivers, from
other projects. Data types of this existing code should be transmitted with gen-
erated stubs. Because Flick did not allow the use of C data types, matching IDL
data types had to be defined. C data types were cast to and from the respective
IDL data types before and after calling generated stubs.

• extendibility: in a research group new ideas should be easy to implement. This
includes alternative approaches to client-server communication then RPC, which
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can be easily achieved by changing the communication back-end of an IDL com-
piler.

• more automation: even though Flick generated the communication code, addi-
tional code had to be written to make the stubs work, including server loops and
operation identifiers. This code was almost always the same.

After analyzing Flick we came to the conclusion, the mentioned goals could only
be integrated into Flick with an effort that was similar to implementing an own IDL
compiler. This led to the development of the Drops IDL compiler (Dice).

A hand-written server loop for Flick stubs has to cover all special and error cases.
Thus, the server loops that deviated from the default server loop were very specific and
could not be reused for other scenarios. In Dice, server loops are generated. Special
and error cases are handled by user-defined callbacks. This way, the generic server loop
code stays the same and specific handlers can be written for the special cases. One such
special case is the handling of unknown operation identifiers. Another callback can be
specific to communication errors. Usually the IPC error is discarded and the IPC is
repeated. Here the developer can intervene and provide an alternative reaction.

The code to be generated automatically also included the operation identifiers (op-
codes). Previous work has several different mechanisms to use operation identifiers:

• sunrpc: opcodes are user-defined and numeric. They have to be present in the IDL
file. The opcodes consisted of an interface identifier, the version of the interface,
and an operation identifier.

• MIG: opcodes are user-defined and numeric, similar to sunrpc opcodes.

• Flick: uses user-defined opcodes. These had to be constants defined in a header
file which is used by the generated stubs. The constant names had to match a
predefined pattern.

• CORBA: opcodes are generated strings, which are aggregated from the interface
name and the operation name. In [46] the usage of strings was identified as perfor-
mance penalty. The authors suggested numeric opcodes to speed up dispatching.

These different approaches allowed either the developer to specify the operation
identifier or the operation identifier was a generated string. Dice generates numeric
opcodes. For more fine-grained control, a developer can assign opcodes to an interface
or operation, which overrides the generated opcodes.

The sunrpc stub code generator rpcgen requires the version of an interface to be
specified. This version is then encoded into the opcode. Thus invocations of mismatching
functions should be avoided. However, sometimes a new version of an interface supports
old operations, or new client libraries can handle older versions of a service. Therefore, I
chose to not include the version number into the opcode, which is used for dispatching,
but instead the version of an interface can be queried using specific functions. A client
library can then decide to invoke the service or not.
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Also, rpcgen has introduced extended features in recent years to overcome some
deficiencies:

• C style argument passing: before, only one parameter could be handed to the
communication stub. Multiple parameters had to be combined into a constructed
type to be transmitted.

• Multithreading-capable communication stubs: before global variables were used in
the communication stub, which hinders multi-threaded programming.

• Timeout handling in client and server stubs.

All these extended features have been available in Dice from the beginning on. For
instance, timeout handling was first implemented by using a parameter in the stub
functions to set the timeout value for the IPC. It turned out that the default behavior
at a client is to send a request with infinite timeout and wait forever for the reply. The
server waits for any requests and sends replies with timeout zero. Now, the timeout
parameter is optional and is added if the timeout attribute is set. For the default
behavior, optimistic stubs are generated.

4.4 Summary

In this section I showed how an IDL can provided platform independence but still plat-
form specific optimizations can be exploited using attributes. I gave examples for using
L4 specific communication mechanisms, such as indirect parts, or the transfer of flex-
pages. I also discussed optimization strategies for communication in generated stubs,
such as parameter reordering or copy avoidance. In the following chapter I will, beside
other topics, discuss the implementation of these approaches in the Dice IDL compiler.
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Integration

There is a wide variety of stub code generators introduced in Chapter 2. Most of them
implement interesting features and ideas. This chapter will show how selected features
have been integrated into the Dice IDL compiler. They range from IDL extensions, over
target code generation to supporting infrastructure.

5.1 IDL Extensions

Existing interface definition languages, especially the DCE IDL, support a variety of
attributes for different tasks. There exist attributes to define properties of pointers,
arrays, types, etc.

Writing applications for L4 requires the specialization of parameter properties, such
as identifying indirect parts or flexpages. Instead of inventing new attributes, I tried to
match existing attributes from the DCE IDL to these requirements. In the following I
will introduce attributes, their origin and their meaning for L4-based systems.

This section will also include newly introduced attributes if they have not been
mentioned before.

5.1.1 Indirect Parts

Microkernels often provide mechanisms to transmit data out-of-line. That is, the message
contains references to memory and not the data itself. The kernel will then copy the data
from the location specified by the sender’s pointer to the memory location indicated by
the receiver’s pointer. For the Mach microkernel this form of communication is called
out-of-line data. The L4 microkernel calls this indirect strings or indirect parts.

The DCE IDL specification [41] contains the attribute ref, which is specified as:

A reference pointer is one that is used for simple indirection. It has the
following characteristics in any language that supports pointers:

• A reference pointer must not have the value NULL. It can always be
dereferenced.

43
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• A reference pointer’s value must not change during a call. It always
points to the same referent on return from the call as it did when the
call was made.

• A referent pointed to by a reference pointer must not be reached from
any other name in the operation; that is, the pointer must not cause
any aliasing of data within the operation.

• For in and in, out parameters, data returned from the callee is written
into the existing referent specified by the reference pointer.

Because the description exactly matches to indirect parts, Dice uses the ref at-
tribute to identify indirect parts. Haeberlen argues in [51] that the decision whether a
parameter should be transmitted as indirect part or not should be made solely by the
IDL compiler. He argues that only the IDL compiler has knowledge about the target
platform and thus, only the IDL compiler can decide if ref can be used. We use ref

as a platform specific attribute. This allows a user who knows the target platform and
wants to benefit from it the freedom to do so. The attribute is ignored on platforms
which don’t support indirect parts.

5.1.2 Aliasing Types

When developing components for DROPS, existing open source code was often reused. A
frequent task then is the introduction of interface specifications for this existing code. In
this process, existing function declarations are often copied into an interface specification,
including the argument types used.

If types cannot be transmitted in their original form, for instance, a void*, they are
aliased with a transmittable type using the transmit_as attribute. The representation
of the parameter in the message buffer uses the alias type. The implementation in Dice
is covering more types than have originally been defined in the DCE IDL specification.
The specification does not allow pointer types. However, the DCE IDL specifies that the
user has to provide conversion routines for types attributed with transmit_as. Dice
implements implicit conversion between the original and the aliased type. Providing
user-defined conversion routines is discussed in Section 5.1.3.

The usage of C types in an interface specification is especially interesting if the
interface specification is automatically generated from existing code. A tool can be used
to extract software modules from existing software, such as drivers from the Linux kernel
and generate interface specifications for them.

5.1.3 User-Defined Types

As mentioned in the previous section, the DCE IDL specification provides the transmit_as
attribute to define an alias for the type of a parameter. According to the specification,
the user has to provide conversion routines to convert the original type into the repre-
sentation in the message buffer and back. With the following IDL definition:
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[in , transmit_as( long)] my_type p1

The user-provided functions are:

long my_type_to_xmit(my_type);

my_type my_type_from_xmit( long);
void my_type_free_inst(my_type *);

void my_type_free_xmit( long*);

The authors of [38] suggest a similar mechanisms to extend the CORBA IDL with an
attribute for user-defined types, which they dubbed special. The user should provide
marshalling and unmarshalling routines for parameters with this attribute.

To allow the usage of user-defined types with the transmit_as attribute, Dice uses
the conversion functions for marshalling and unmarshalling parameters with user-defined
types. Known, simple types are marshalled using type casts.

5.1.4 Concurrent Data Access

Multi-threaded services will most probably operate on some common data. To synchro-
nize access to this data the service can certainly implement or use own synchronization
mechanisms. However, support to serialize the invocation of interface functions that
manipulate the common data is desirable.

The Java programming language allows attributing a function with the synchronized
keyword. This keyword indicates that execution of the function should be monitored.
The monitor will only allow one thread at any time to enter the function.

One can imagine adding a similar feature to the interface definition language. How-
ever, the synchronization of a server function can highly depend on the parameters of
the invoked function. Parameters can determine which part of the common data should
be manipulated or if it should be manipulated at all. Thus, the synchronization strategy
could be completely different for different parameter values. Another caveat is the pos-
sibility of different priorities for different threads accessing the common data. A priority
inversion might be the result of a naive implementation.

Integrating a synchronized attribute into the interface definition language would
not provide a solution for the majority of the application cases, but rather for one spe-
cial case. A user-provided implementation of synchronization can provide much higher
benefit.

5.1.5 Operation Identifiers

Dice automatically generates numeric operation identifiers as mentioned in Section 4.3.
The operation identifier consists of a interface part, identifying the interface, and an
operation part, identifying the operation in the interface. The IDL compiler can only
generate operation identifiers for the scope of its knowledge.

For an interface A, which has no base interface, Dice will generate an interface
identifier with the value 1. Another interface B, also without base interface, will also
get an interface identifier with the value 1. Both interfaces have functions, where Dice
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assigns the operation identifier 1 to the first operation, 2 to the second and so on. Now
an interface C is derived from A and B. It will get an interface identifier with value 2
to distinguish the operations of C from the operation in A and B. But the dispatcher
generated for interface C will have to decide whether a request with interface identifier
1 belongs to interface A or B. Dice cannot just reassign another interface number to
either A or B, because, a client library for interface A compiled independently of C still
has to interact with the server generated for interface C.

For cases like this, Dice generates warning messages. The user has to intervene
and assign interface identifiers or operation identifiers to the interfaces or operations
manually. An existing attribute that comes closest to the idea of assigning an identifier
is the uuid attribute. In DCE IDL uuid is a mandatory interface attribute and is
intended to uniquely identify implementations of the interface. It can be used to assign
disjunctive identifiers to interfaces A and B.

I extended the scope of the uuid attribute to be used for operations as well. This
way, further optimizations are possible. Some error and fault protocols for L4 involve the
specification of special values to designated registers or positions in the message buffer.
For L4 version 2 a pagefault will have the pagefault address at the position where the
operation identifier is stored. This knowledge can be used to build server loops which
can handle pagefaults and normal requests by using operation identifiers that cannot be
used as pagefault addresses, e.g., kernel space addresses.

For L4 version 4 the position of the operation identifier will be assigned a special
value in case of error messages. This way the interface specification can also be used
to define a pagefault handling function. To allow the same interface specification to be
used for L4 version 2 and version 4 the uuid attribute syntax was also extended to allow
the specification of a value range. Using a pre-processor symbol, the interface definition
from Section 4.2.1 looks like this now:

#i fde f L4API_l4v2

#define UUID_PAGEFAULT (0x0 .. 0xc0000000)

#endif

#i fd e f L4API_l4v4

#define UUID_PAGEFAULT (-1)

#endif

...

[uuid(UUID_PAGEFAULT)]

void pf_handler ([in, msgpos (0)] unsigned long addr ,

[in , msgpos (1)] unsigned long eip ,

[out , cap(memory)] l4_fpage_t page);

5.1.6 Array Size

Arrays are represented in the target language C/C++ as continuous bytes in memory.
The size of a fixed sized array is known at compile time. On the other hand, a generated
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stub cannot determine the size of a variable sized array from the parameter it receives.
The DCE IDL provides the attributes size_is, length_is, and max_is for arrays.
These attributes take another parameter as argument. Thus, the IDL compiler can
determine the space required.

A server has to allocate memory for a message before it actually receives the message.
Also, because the server may receive different messages with differently sized indirect
parts, it has to preallocate for the biggest possible indirect part.

I also enabled these attributes in Dice. However, they indicate a much severe prob-
lem for microkernel-based systems: The usage of variable sized parameters whose size is
only known at run-time. A variable sized out parameter implies that: a) the client has
to provide a message buffer of unknown size and b) the sever stub has to be able to free
dynamically allocated memory of a variable sized array.

I solved the first problem by letting the user specify a maximum size for the variable
sized parameter using the max_is attribute. If none is specified, Dice uses a heuristic
to determine the maximum size. The heuristic is based on empirical data for various
array sizes and Dice warns about the usage of the built-in heuristic. The client stub
allocates a message buffer that can hold a maximum sized parameter. The following
example shows that the variable sized array has a maximum size of 255 elements and
contains size elements at run-time.

void send_array ([in] int size ,

[in, size_is(size), max_is (255)]

int array []);

If a server dynamically allocates memory for a variable sized out parameter, the
content of this memory is usually copied to the message buffer and then the memory
is freed. To avoid copy operations, such a parameter can also be specified as out-of-
line data (see Section 4.1). The memory holding the parameter has to be available
during transmission to the client, which is an atomic operation. This leads to the second
problem: memory can only be freed after the next request has been received, i.e., it
is stale until the next request arrives. The next request is most likely for a different
operation and parameters and, thus, the server has no longer a name for the previously
allocated memory. Therefore, the server has to store the address of the dynamically
allocated memory and free it after the next request is received.

This is done by using the Dice support library. It allows storing pointers in the
server local environment. These pointers are not changed by the next request. Another
function iterates over the stored pointers and frees the associated memory. This function
is invoked after receiving the next request from the generated code.

5.2 Target Code Generation

The following section includes different techniques applied to the target code generation
of Dice.
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5.2.1 Factory Concept

To be able to integrate multiple target platforms into Dice, we need a target code
creation process that is independent of the target platform. In [43] the authors describe
a mechanism that helps creating back-ends for specific target platforms using abstract
factories. The indicators for the applicability of an abstract factory are a) independence
of the whole system (Dice) from the way its back-ends are created, b) the system should
be configured with one of multiple back-ends (only one target platform is used at one
time), c) a family of related back-end objects is designed to be used together (only
classes for one target platform are created), and d) the intent to provide a class library
of back-ends, of which only their interfaces, not their implementation, are revealed. All
these indicators apply. Therefore, the usage of an abstract factory is appropriate.

Class Factory To create the classes of the different back-ends, I implemented a class
factory, which provides a method for each class in the back-end. Whenever an instance
of a class is needed, the respective method of the class factory is called and returns a
reference to a newly created object of the requested class. When Dice finishes parsing
the IDL file and starts to create the back-end for the target platform it first creates an
instance of the appropriate class factory. The class factory itself is a singleton, that is,
there exists only one instance of it.

Since concrete back-end classes cannot be initialized generically, a second class-
specific method–CreateBackEnd–has to be called to finish the creation process. For
instance, the CBEFunction class is initialized with a respective CFEOperation, whereas
a CBEClass is initialized with the respective CFEInterface class.

To add a new back-end, the classes in the back-end have to be overloaded. To actually
use these classes, a new class factory for this back-end has to be derived from the base
class factory. The new class factory has to be instantiated when the new back-end is
selected.

This design can be extended to dynamically load alternative back-ends. The class
factories for the different back-ends have to register at a class-factory factory, which
then creates the required class factory as soon as a specific back-end is selected. The
mapping from user-selected option to back-end can be done using maps that match an
option string to the respective instance of the class factory.

Name Factory There exists another factory in Dice: the name factory. It is used
to generate the names of types, functions, classes and the like. Whenever an identifier
in the target language is used, the name factory is queried to provide an appropriate
string. This is used when platform specific types are used and the strings identifying
these types differ: l4_fpage_t versus L4_Fpage_t. If the user selects the usage of a
strict CORBA language mapping, CORBA compliant type names are generated instead
of C type names.

The name factory creates different names for client and server functions. This is
useful if an application implements an interface and uses the client library of the same
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interface, for instance as a proxy. Also, descriptive names of client and server functions
prevent accidental use of the wrong generated functions.

The name factory can also be used to integrate user-provided language mappings.
By dynamically loading back-ends, an alternative name factory can be used to generate
different type or function names. A name factory provides a flexible and extensible way
for different naming schemes. As discussed in Section 2.16 a static language mapping
is not the best solution, especially if the generated stubs have to be integrated with
existing code.

5.2.2 Message Buffer Layout

One representation of a message buffer is a byte array. Marshalling is done by copying
parameter values to a specific offset in the message buffer. This approach has some
limitations. The following code schematically marshals two short integer parameters
and one word parameter into the message buffer. The message buffer is cast to the type
of the parameter and then the parameter is assigned. The message buffer is then used
in the IPC invocation.

1 unsigned char msg_buf [8]; /* 8 bytes size */

/* marshal short int parameter */

3 *( short int *)(& msg_buf [0]) = param_s1;

*( short int *)(& msg_buf [2]) = param_s2;

5 *( long *)(& msg_buf [4]) = param_w;

/* send message */

7 l4_call (server , msg_buf ,

*(unsigned long*)(& msg_buf [0]),

9 *(unsigned long*)(& msg_buf [4]), ...);

The target language compiler sees five accesses to the byte array: Writes at index
zero (line 3), index two (line 4), and index 4 (line 5) and reads at index zero (line 8) and
index four (line 9). Some target compilers try to optimize cache locality and collocate
the two accesses at index zero and index four. So the sequence is now:

write at index 0 with length 2

read at index 0 with length 4

write at index 2 with length 2

write at index 4 with length 4

read at index 4 with length 4

This is evidently incorrect. To overcome it I replaced the byte array message buffer
with a union of constructed types. Here, the parameters for one direction are combined
into a constructed type. The two constructed types for the two directions are integrated
into a union, which allows saving memory, because the two constructed types overlay.
The union additionally contains a constructed type with an array of word sized elements.
The above example looks like this now:

1 union {

struct {

3 short int param_s1;
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short int param_s2;

5 long param_w;

} _in;

7 struct {} _out;

struct {

9 unsigned long _word [2];

} _words;

11 } msg_buf; /* still only 8 bytes size */

/* marshal short int parameters */

13 msg_buf._in.param_s1 = param_s1;

msg_buf._in.param_s2 = param_s2;

15 msg_buf._in.param_w = param_w;

/* send message */

17 l4_call (server , (unsigned long*)&msg_buf ,
msg_buf._words._word[0],

19 msg_buf._words._word[1], ...);

The code is a little longer in C, but has the same memory consumption of the above
example, the same code size in the binary, and is semantically not ambiguous.

f f f s1321 v21vs2

Figure 5.1: Message buffer layout with variable sized members.

Variable sized parameters still have to be unmarshalled from a byte array. This is
necessary, because when receiving a variable sized parameter we don’t know its actual
size in advance. Variable sized members are represented in the message buffer by their
size followed by the actual data. The position of the successive member in the message
buffer is: pos(v2) = roundup(pos(v1) + s1, sizeof(word)).

As pictured in Figure 5.1, all variable sized parameters (v1/2) are placed into a byte
array together with their actual sizes (s1/2).

off

v2f 1 f 2 f 3 v1

f f f s1321 v2

(2)

1v

(1)

s2

Figure 5.2: Unmarshalling with variable sized members.
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Figure 5.2 illustrates unmarshalling of this message buffer, all fixed sized members
f1..3 are copied into local variables. Then the local offset variable is initialized with the
start offset of the first variable sized member of the message buffer (1). When optimizing
access to the message buffer, a local variable for the member will only point to the start
of the variable sized member in the message buffer. No copy operation will occur. The
offset variable is then incremented with the size of the variable sized member s1 and
rounded to the next word aligned address (2). Using a word aligned address to store
the next size variable and variable sized member, can save computation time when using
optimized copy routines.

5.2.3 Tracing

In software development bugs can appear everywhere. Thus debugging is a time con-
suming and major part of it. One approach to debug code is to generate traces, e.g., by
printing current state. To allow the debugging of generated code and to trace the com-
munication between clients and servers, Dice can generate tracing code in the generated
stubs. For this purpose, Dice provides a default tracing facility that simply prints the
state of client and server stubs. This tracing facility can be replaced dynamically, that
is, with a dynamically loaded library. This way arbitrary code can be used to generate
other traces.

The following relevant trace points have been identified [23]:

• before and after a call

• at server initialization

• before starting the server loop

• before and after invoking the dispatch function

• before and after the invocation of reply function

• before and after the reply and wait function

• before and after invoking the component function

• before and after marshalling and unmarshalling a message

Alternatively, tracing code can be injected into the generated stubs using Aspect
Oriented Programming. But Aspect compilers for the C target language did not exist
or were not powerful enough at the time of this writing.

5.2.4 Test Suite Generation

Dice had the feature to automatically generate test suites for the parsed IDL files. The
generated code assumed a run-time environment in which threads could be started and
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terminated as well as output could be generated. Also service registration and discovery
had to exist.

The generated code would then call each function with random values. The trans-
ferred values were also stored in memory shared between client and server so the receiver
could compare the received values with the stored values.

This approach had some major downsides: Firstly, Dice became overly complex. A
detailed analysis of the complexity of the code generating the test suite can be found
in Section 6.4.1. Secondly, using the IDL compiler to generate its own test suite and
thus to verify itself is problematic. Also, testing for a new platform required that the
test-suite generating code had to accommodate the specifics of the new platform. This
basically doubles the effort to integrate a new platform, as the communication code and
the test suite had to be implemented for the new platform.

Therefore, I extracted the test suite into an own software package. The test suite
then uses Dice to generate the communication stubs. The framework for the test was
not generated any longer. This allowed testing more sophisticated scenarios, especially
rare corner cases. Also, tests could be called repeatedly now to detect memory leaks.
Compared to the code extracted from the Dice IDL compiler, the hand-written test
suite was rather small.

5.3 Infrastructure Integration

Generated code often has to use existing infrastructure to provide a service. This has
been motivated in Section 3.2 with the example of a thread library.

5.3.1 Automatic Service Lookup

A reoccurring functionality that has to be implemented in microkernel-based operating
systems is the announcement and lookup of a service. Because the used code is mostly
the same, it is apparent that this code should be generated by an IDL compiler. In
CORBA the naming of services, their announcement, and lookup are an integral part.

The generated code has to utilize functionality that is, similarly to the thread creation
mentioned before, external. The Dice library provides functions to announce a service
and to look it up. An attribute associated with an interface indicates whether the
generated code should contain the statements to use the naming service.

Still, the name of the service has to be defined. The DCE IDL endpoint attribute
could be used for that: L4 services use a new “l4::names” protocol and the socket back-
end uses the TCP/IP protocol.

5.3.2 Resource Accounting

A difficult problem for communication is resource accounting, that is, which party pro-
vides the resources for a service. Usually, the client has to provide the resources to
get its requested service. In a microkernel-based system this includes basic resources
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such as memory and computation time. To delegate resources from client to server, the
generated code has to integrate with a resource accounting framework.

Currently existing servers provide the resources they need to fulfill a service them-
selves. This implies that a client may not be charged for the used resources. This
includes resources which are required to be able to invoke a service and resources which
are used during a request.

Ideally the resources used during a request should be charged to the client invok-
ing the service. The client could provide the resources in the call, e.g., by supplying
capabilities to the resources [88, 36] or economic resource accounting [76, 77, 78].

A naive approach, to provide memory from a client to the server, is to map the
required amount of memory to the server with each request. The memory may already
contain the data for the request and a stack to process the request. Providing memory
for heap memory allocations is more complicated, since memory allocation functions
have to get their memory from the user-provided memory pages.

This approach has some open issues: In a scenario where the invoked service has
to use other services, it has to propagate the resources or a subset thereof to the third
party. Another open question is the reaction on resource revocation by a client or
resource shortage, which means, the provided resources are not enough. One possible
solutions is to use a trusted third party, which manages the resources and is used by
client and server [87]. Also, the mapping of pages is a costly operation.

I already discussed the propagation of computation time from the client to the server
in Section 4.1.

5.3.3 Resource Reservation

In real-time or quality of service scenarios, the used resources have to be reserved in
advance, so that no resource contention degrades the quality of a service or causes
deadline misses. For these scenarios we developed a notation to specify provided quality
of service and required resources. To reserve resources the generated code has to integrate
with an existing resource reservation framework.

Within the Comquad project, we developed means to describe resources associated
with components and consequently services [5, 19]. Resources used by a component are
required to provide a certain quality of service. The higher level description of these
resource mappings can be directly translated into resource descriptions associated with
an interface in an ACF.

If such a resource description is specified, the generated code for the server is extended
by a resource reservation function. The server then uses this function to interact with
the resource reservation framework and reserve resources required for its service.

5.4 Real-Time Communication

Communication with real-time applications has some major implications. One is that
resources for the communication have to be available when needed. The issue of resources
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and their availability has been discussed in Section 5.3.3.
Another implication of real-time communication is that the delivery of a message has

to be bound in time. When analyzing possible communication scenarios with real-time
applications, three interesting scenarios appear.

1. communication between two real-time applications,

2. communication from a non-real-time application to a real-time application, and

3. communication from a real-time application to a non-real-time application.

In the first two scenarios, the actual service is assumed to adhere to timing con-
straints. The timely execution of a request then depends mainly on the time needed to
send and dispatch a message. For dispatching the message an upper bound can be given.
Stubs generated by Dice may depend on dynamic memory allocation. The developer of
a real-time service can use allocation algorithms with bounded execution times for mem-
ory allocation or avoid the usage of dynamically allocated memory. Pointers to these
functions can be stored in the environment, which are used to allocate and free memory
in the generated stubs. Thus, these scenarios can be predictable in their execution time.

The third scenario, however, cannot really be predicted. Because we don’t know
the behavior of the non-real-time application, the sending real-time application may
block forever waiting for the receiver to accept the message. In [83] we discussed this
problem in depth and propose a buffer component, which buffers the messages of the
real-time component. The buffer component decouples the real-time applications from
the non-real-time applications.

The buffer component receives the messages of the real-time application and places
them into a queue. Therefore, the buffer component has a receiver thread for each
connected real-time application. A sender thread will take messages from the queue and
propagate them to the non-real-time applications. A real-time application can no longer
be influenced directly by the non-real-time application. If the non-real-time application
is not ready to receive messages, the buffer component replaces messages in the queue.
It can implement an arbitrary predictable replacement strategy. This will allow the
real-time application to deliver messages, which can be dropped, but it will not block to
wait for the buffer component.

5.5 Summary

In this section I showed how existing designs for interface definition languages and their
compilers can be integrated into an IDL compiler for microkernel-based operating sys-
tems. I also discussed new extensions to the IDL to allow support of platform specific
features. The compiler is flexible to integrate support for different programming envi-
ronments. I gave explicit examples for these different environments, such as resource
accounting or resource reservation. I also discussed how real-time applications can use
generated stubs and still maintain their timing guarantees.
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Evaluation

This chapter will discuss performance measurements and generated code size, as well as,
compare the complexity of the stub code generators used.

The experimental results will show performance of the generated code in a detailed
analysis of different communication forms in micro-benchmarks. Real-life application
benchmarks will show the overall overhead introduced by the IDL compiler.

If not specified otherwise, I use cycles when comparing performance of code. There
are advantages and disadvantages to this method. One advantage is that computing
cycles can show fine-grained differences on fast computers. Being able to compare the
same code on different machines with a simple metric to distinguish performance penal-
ties due to the architecture, is another one. On the other hand, even though the same
code can use more cycles on newer hardware, it can be faster because of higher clock
rates.

6.1 Analyze Method Invocations

Because the measurement of complex setups involves side effects and generates imprecise
results, I first analyzed different setups to gain an understanding of exchanged messages.
Using this knowledge I build a benchmark, which did not involve the complex setups,
but measures only the used messages. This allows me to give precise results for the
generated stubs without the need of investigating side effects of applications running in
parallel.

First I trace the number of differently sized IPC messages in the complex setups with
an extension to the Fiasco kernel. Then I instrumented the generated IDL stubs for all
applications participating in a particular setup using the mechanism mentioned in Sec-
tion 5.2.3. This allowed me to identify the number of invocations of single IDL methods.
Data was logged periodically using the logging service. Because the communication with
the logging service involves IPC, the instrumented stubs of the logging service influenced
the measurements.

The gathered information allowed me to generate a representation of all the IDL
methods involved in different setups. I am able to weight single methods based on the

55
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number of times they have been invoked and their size.
The instrumented scenarios were:

• L4Linux with L4 console

• L4Linux with L4 console and ORe

• L4Linux (3x) with L4 console and ORe (aka. Netfilter scenario)

• L4Linux with DOpE

• Verner

• jtop

• BLAC

The results presented below will show most messages occur at startup of the system.
For some interactive scenarios I split the measurements in startup phase and run-time
phase.

6.1.1 Scenario 1: L4Linux with L4 console

This scenario starts an instance of a para-virtualized Linux on top of L4. L4Env services
are used to access virtualized hardware resources. These services include the log service
to multiplex debug output of different applications, the dataspace manager service (dm)
to virtualize access to memory, the L4 console service (con_vc) to multiplex access to
the screen, the naming service names to locate tasks, and the task service ts to create
and delete tasks.

After booting, multiple tasks are started, which reflects in the invocations of rmgr
service’s get_task and task_new methods, as well as ts’s allocate and create meth-
ods. The memory of the tasks has to be mapped as well. This shows in the number of
invocations of the dm service’s fault and map methods.

interface::method invocations

log::outstring 7334
dm generic::map 12902
dm generic::fault 14578
dm generic::close 22
dm generic::share 6
dm generic::transfer 46
dm mem::open 115
dm mem::size 16
dm mem::resize 28
dm mem::physaddr 4

continued on next page...
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interface::method invocations

dm phys::pagesize 7
dm phys::poolsize 73
names::register 9
names::register thread 43
names::query name 62
rmgr::init ping 22
rmgr::get task 316
rmgr::task new 24
rmgr::get irq 16
rmgr::free fpage 1
rmgr::get page0 1
rmgr::get task id 10
rmgr::set task id 24
ts::allocate 19
ts::create 33
ts::free 14
ts::kill 28
ts::owner 1
con vc::smode 1
con vc::gmode 1
con vc::get rgb 1
con vc::setfb 1
con vc::direct update 1953

Table 6.1: Number of invocations for L4Linux with L4 console
counted with instrumented stubs

interface::method calculated size in word
to server from server

log::outstring 5 (I1: 81) 1
dm generic::map 7 6 (F2)
dm generic::fault 3 6 (F)
dm generic::close 2 2
dm generic::share 4 2
dm generic::transfer 3 2
dm mem::open 13 4
dm mem::size 2 3
dm mem::resize 3 2
dm mem::physaddr 4 4

continued on next page...

1Indirect string used, size in bytes
2Flexpage used
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interface::method calculated size in word
to server from server

dm phys::pagesize 5 3
dm phys::poolsize 2 4
names::register 10 2
names::register thread 11 2
names::query name 10 3
rmgr::init ping 2 2
rmgr::get task 2 2
rmgr::task new 9 3
rmgr::get irq 2 2
rmgr::free fpage 2 2
rmgr::get page0 1 5 (F)
rmgr::get task id 258 3
rmgr::set task id 259 2
ts::allocate 1 3
ts::create 267 3
ts::free 2 2
ts::kill 3 2
ts::owner 3 2
con vc::smode 3 2
con vc::gmode 1 6
con vc::get rgb 1 8
con vc::setfb 3 2
con vc::direct update 3 2

Table 6.2: Size of IDL method calls for L4Linux with L4
console counted with instrumented stubs

In Figure 6.1 I plotted the number of IPC messages that make up 95% of the total
number of IPCs in this scenario. As soon as the scenario starts, the applications establish
their address spaces. The manipulation of the address space of an application is done
using the map and fault methods, which are invoked most. The method with the third
most invocations is the outstring method, followed by the update method for the
console.

To compare not just the number of invocations, but also the amount of data trans-
ferred with these methods, I weighted the number of invocations with the size of the
respective method (refer Table 6.2). The resulting chart is shown in Figure 6.2. As one
can see, the methods fault and map moved to places two and three. The message caus-
ing the most data transfer is outstring. It makes up almost 50% of the data volume.
However, this chart shows only the size of the fault and map messages. These messages
initiate much more work in the kernel than just transferring the data. The kernel has
to establish a memory mapping initiated by these messages.

An important result of this analysis is, that a handful of messages are the source of
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dm_generic::fault
dm_generic::map
log::outstring
con_vc::direct_update
other

Figure 6.1: Portions of message invocations in comparison to overall messages for
L4Linux with L4 console scenario.

dm_generic::fault
dm_generic::map
log::outstring
ts::create
others

Figure 6.2: Weighted message invocations in comparison to overall data volume for
L4Linux with L4 console scenario.
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95% of the data volume transferred in this scenario.
Once this scenario has started, the number of IPC invocations decreases. Then, the

most used service is con_vc to refresh the console output of L4Linux. Also, the rmgr

and dm services are invoked whenever a new Linux task is started.
In this scenario, the messages that can be send using register IPC (short IPC) are

message with a size of 2 or less machine words. 10,367 of the generated messages fall
into this category, which is approximately 14% of all the messages sent with generated
code.

The majority of generated messages without flexpages or indirect strings (63%) is
less than 32 words in size. Another 36% make up the messages containing a flexpage
and less than 0.1% of the messages are larger than 32 words.

The aforementioned kernel extension counted a total of 85,726 register IPC invo-
cations (refer to Table 6.3). The difference to 10,367 messages can be explained with
pagefault messages generated by the microkernel and messages sent using hand-written
IPC code.

Whenever a L4Linux user task is invoking a system call, the Fiasco kernel will gener-
ate an exception message (similar to the pagefault protocol) and send it to the L4Linux
server. This server handles the exception (performs the system call) and replies with an
appropriate reply IPC. An exception message captures the volatile state of the architec-
ture and is 16, 20, or 23 words in size for x86, ARM, and AMD64 respectively. Because
I measured on an x86 architecture the exception messages are 16 words in size. In this
scenario, the kernel extension did not count any exception IPCs.

IPC Sizes in words generated stubs total difference
lower bound upper bound

0 2 10367 85726 75359
3 3 16807 15294 -1513
4 4 202 5691 5489
5 5 8 127 119
6 6 27481 25214 -2267
7 8 12903 11808 -1095
9 16 255 6697 6442

17 24 0 67 67
25 32 7334 0 -7334
33 64 0 0 0
65 96 0 3 3
97 128 0 0 0

129 192 0 0 0
193 256 0 0 0
257 512 67 327 260
513 1024 0 0 0

1025 2048 0 0 0

continued on next page...
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IPC Sizes in words generated stubs total difference
lower bound upper bound

2049 4096 0 0 0
4097 8192 0 0 0

Table 6.3: Number of IPCs sorted by size for L4Linux with
L4 console counted by kernel extension

In Table 6.3 I sorted the number of IPC invocations by message size. The column
generated stubs repeats the number of messages from Table 6.2. The column total shows
the number of invocations counted with the kernel extension. This column includes
messages initiated by generated stubs as well as messages generated by the kernel or
hand-written code.

The message sizes of the generated stubs are maximum sizes. The actual transmitted
size can be smaller. For instance, a simple IDL string without annotations is assumed
to have a maximum size of 512 bytes. When actually transmitted, the string might
contain only 32 or 80 bytes. The difference column shows the difference between these
two numbers. Negative values express more messages derived from the instrumented
stubs. Positive numbers indicate more IPC counted by the kernel extension.

6.1.2 Scenario 2: L4Linux with L4 console and ORe network

Additionally to the setup described in the previous section, this setup virtualizes the
access to the network device using the ore service.

interface::method invocations
Scenario 1 Scenario 2

log::outstring 7334 17765
dm generic::map 12902 16747
dm generic::fault 14578 14809
dm generic::close 22 28
dm generic::share 6 7
dm generic::transfer 46 55
dm mem::open 115 137
dm mem::size 16 12
dm mem::resize 28 26
dm mem::physaddr 4 8
dm phys::pagesize 7 7
dm phys::poolsize 73 179
names::register 9 10
names::register thread 43 50
names::query name 62 111
rmgr::init ping 22 25

continued on next page...
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interface::method invocations
Scenario 1 Scenario 2

rmgr::get task 316 316
rmgr::task new 24 24
rmgr::get irq 16 16
rmgr::free fpage 1 1
rmgr::get page0 1 1
rmgr::get task id 10 11
rmgr::set task id 24 24
ts::allocate 19 19
ts::create 33 33
ts::free 14 14
ts::kill 28 28
ts::owner 1 1
con vc::smode 1 1
con vc::gmode 1 1
con vc::get rgb 1 1
con vc::setfb 1 1
con vc::direct update 1953 2371
ore rxtx::send – 17755
ore rxtx::recv – 17914
ore notify::rx notify – 17759

Table 6.4: Number of invocations for L4Linux with L4 console
and ORe counted by instrumented stubs

In Table 6.4 I compare the number of invocations to the previous scenario (Scenario
1). It shows that a common subset of messages is needed to boot an L4Linux server.
Additionally, we now have a tremendous increase in the share of messages larger than
32 bytes – 18% compared to less than 0.1%. This is due to the network device server,
which exchanges data with its clients using indirect string IPC.

6.1.3 Scenario 3: Netfilter

The Netfilter setup uses three L4Linux instances, which all access the ore network device
service. This setup emulates a networking filter the TU Dresden operating systems group
build for the Mikro-Sina project to securely filter network traffic [54]. One L4Linux
instance has access to the Internet. The second L4Linux instance has access to the local
network. A bridge application connects the two instances and implements a filter that
denies confidential data to be leaked from the intranet to the Internet. It also prevents
unauthorized traffic from the Internet into the intranet. Using the filter setup prevents
the internal L4Linux to be infiltrated, even if the external L4Linux is compromised. I
used a third L4Linux instance to emulate the filter application.
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In this setup I generated network traffic from the L4Linux instance connected to the
intranet. This traffic was routed by ORe to the filtering L4Linux instance, which sends
the allowed traffic on to the L4Linux instance with Internet access. In Table 6.5 I again
compare the number of invocations from scenario 1 with this scenario.

interface::method invocations
Scenario 1 Scenario 3

log::outstring 7334 58634
dm generic::map 12902 35871
dm generic::fault 14578 43900
dm generic::close 22 72
dm generic::share 6 21
dm generic::transfer 46 89
dm mem::open 115 260
dm mem::size 16 14
dm mem::resize 28 76
dm mem::physaddr 4 16
dm phys::pagesize 7 25
dm phys::poolsize 73 615
names::register 9 10
names::register thread 43 73
names::query name 62 126
rmgr::init ping 22 27
rmgr::get task 316 347
rmgr::task new 24 69
rmgr::get irq 16 16
rmgr::free fpage 1 1
rmgr::get page0 1 1
rmgr::get task id 10 12
rmgr::set task id 24 69
ts::allocate 19 45
ts::create 33 69
ts::free 14 27
ts::kill 28 48
ts::owner 1 3
con vc::smode 1 3
con vc::gmode 1 3
con vc::get rgb 1 3
con vc::setfb 1 3
con vc::direct update 1953 16235

continued on next page...
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interface::method invocations
Scenario 1 Scenario 3

ore rxtx::send – 51508
ore rxtx::recv – 52039
ore notify::rx notify – 51533

Table 6.5: Number of invocations for Netfilter startup
counted by instrumented stubs

The output of the measurements generates many IPCs (log::outstring) as does the
periodic update of the console window (con vc::direct update). Once the initial startup
is complete any other IPC activity decreases significantly (see Table 6.6). There is
communication with the dataspace manager whenever a new L4Linux user task is started.
And the console application periodically queries the pool-size at the dataspace manager
to displays the amount of used memory.

The number of IPCs to filter a network stream is relatively low compared to the
number of IPCs that were exchanged for startup. The loader loads binaries and libraries
over the network device that is now managed by ORe. Because three L4Linux instances
are started, the L4Linux binary and dependent libraries have to be loaded three times.
These binaries and libraries caused more network traffic than the data that was filtered
in this scenario.

interface::method invocations

log::outstring 97394
dm generic::map 8
dm generic::fault 18
dm generic::transfer 3
dm mem::open 10
dm phys::poolsize 2564
names::register thread 20
names::query name 18
rmgr::get task 161
rmgr::task new 165
rmgr::get page0 1
rmgr::set task id 165
ts::allocate 85
ts::create 165
ts::free 80
ts::kill 160

continued on next page...
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interface::method invocations

con vc::direct update 399103
ore rxtx::send 494
ore rxtx::recv 606
ore notify::rx notify 139

Table 6.6: Number of invocations for Netfilter running
counted by instrumented stubs

6.1.4 Scenario 4: L4Linux with DOpE

In this scenario the console service is replaced with the DOpE window manager. L4Linux
now opens a window and displays its output in this window. The main difference to the
previous setups is, that L4Linux no longer has to update the screen periodically. Updates
show up immediately. The periodic invocation of con vc::direct update is replaced by
calls to dope::exec cmd and dope::exec req.

interface::method invocations

log::outstring 6802
dm generic::map 11434
dm generic::fault 14848
dm generic::close 23
dm generic::share 6
dm generic::check rights 1
dm generic::transfer 46
dm mem::open 142
dm mem::size 23
dm mem::resize 25
dm mem::physaddr 5
dm phys::pagesize 7
dm phys::poolsize 2
names::register 13
names::register thread 69
names::query name 70
rmgr::init ping 22
rmgr::get task 316
rmgr::task new 24
rmgr::get irq 16
rmgr::free fpage 1
rmgr::get task id 10
rmgr::set task id 24
ts::allocate 19

continued on next page...
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interface::method invocations

ts::create 33
ts::free 14
ts::kill 28
ts::owner 1
dope::init app 1
dope::exec cmd 3152
dope::exec req 1

Table 6.7: Number of invocations for L4Linux + DOpE
counted by instrumented stubs

Because DOpE has been designed to work with both, L4 IPC and Linux sockets, its
interface does not exploit optimization features available for L4. Comparing the size of
dope::exec cmd (259 and 2 words) to the size of con vc::direct update (3 and 2 words)
underlines this statement. The latter is designed to update a console screen with an
interface designed for L4. The former is multiplexing many commands over a simple
interface, one being the update command.

6.1.5 Scenario 5: Verner – video player

This scenario is a video player application [85], which consists of five components, each
running in separate tasks. Figure 6.3 shows that the first component demultiplexes a
video into audio and video streams. These streams are than decoded by audio and video
decoders respectively. The synchronizing component then plays the audio streams and
displays the video in sync. The data streams between the components are exchanged
using shared memory. The fifth component is the controller, which manages the other
four components and provides the graphical user interface (GUI) to the user.

synchronizer

controller

demuxer

audio−decoder

video−decoder

Control

Stream

Figure 6.3: Schema of Verner video player.
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Once the Start button of the player GUI is pressed, the controller sets up the shared
memory regions and invokes the start method of each component. The components will
start consuming packets from the shared memory regions. The setup and management of
the shared memory regions is handled by the DROPS Streaming Interface (DSI) library
[71]. This library communicates using hand-written IPC.

In this scenario I use a 40 MB video file, which is loaded at startup into the address
space of the demultiplexing component. This component copies single frames into the
shared memory regions after demultiplexing the input file.

interface::method invocations

log::outstring 2580
dm generic::map 66569
dm generic::fault 48539
dm generic::close 43
dm generic::transfer 379
dm mem::open 1063
dm mem::size 121
dm mem::physaddr 184
dm phys::pagesize 35643
names::register 13
names::register thread 69
names::query name 70
rmgr::init ping 27
rmgr::get task 64
rmgr::task new 7
rmgr::get irq 16
rmgr::get task id 12
rmgr::set task id 7
ts::allocate 7
ts::create 6
ts::owner 6
dope::init app 1
dope::exec cmd 151

Table 6.8: Number of invocations for Verner startup counted
by instrumented stubs

The high numbers of dm_phys::pagesize calls in Table 6.8 are generated by the
loader when it is paging an application. It first checks if it can send a page as 4MB
page. This check is done on every pagefault. Because the loader loads five binaries in
this scenario, it is the initial pager for all five applications. This amounts in more than
35,000 pagesize calls.

For this scenario I did two consecutive runs. One measured the invocations of the
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generated stubs. The other measured the size and number of IPCs. In both runs I
marked the transition between startup and “running” by hand. This and the fact that
both runs took a different absolute length of time are reasons for the variance in both
measurements.

The invocations of dm_phys::pagesize are followed by calls to dm_generic::map.

interface::method invocations

log::outstring 2056
dm generic::map 14694
dm generic::fault 17249
dm generic::close 4
dm generic::share 98
dm generic::check rights 102
dm generic::transfer 477
dm mem::open 11537
dm mem::size 11413
dm mem::resize 179
dm phys::pagesize 3943
names::register 1
names::register thread 27
names::query name 10
verner::connect 4
verner::start 8
verner::changeQAP 1
verner::getPosition 428
verner::setVolume 5
verner::setPlayback 2
verner::setFxPugin 4
dope::init app 3
dope::exec cmd 1189
dope::exec req 5

Table 6.9: Number of invocations for Verner running counted
by instrumented stubs

6.1.6 Scenario 6: JTop – a DOpE application

JTop is a performance monitor, which makes high use of the DOpE window system. It
repaints its window every second. It is a perfect scenario to demonstrate the communi-
cation pattern of applications using the DOpE windowing system.

interface::method invocations

log::outstring 1767

continued on next page...
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interface::method invocations

dm generic::map 245
dm generic::fault 1169
dm generic::close 3
dm generic::share 2
dm generic::check rights 2
dm generic::transfer 44
dm mem::open 156
dm mem::size 70
dm phys::pagesize 34
names::register 8
names::register thread 50
names::query name 77
names::query id 1329
rmgr::init ping 16
rmgr::get task 64
rmgr::get irq 8
rmgr::get task id 7
dope::init app 2
dope::exec cmd 9668
dope::exec req 1

Table 6.10: Number of invocations for JTop counted by in-
strumented stubs

As shown, the method used most frequently is dope::exec_cmd, which tunnels all
the display commands for the windowing system. Due to the generic design of the
DOpE interface, it is using a maximum sized buffer to transmit the commands. Using
L4 specific attributes to set the actual size of the buffer at run-time would dramatically
reduce the message sizes and consequently improve performance.

6.1.7 Scenario 7: BLAC

The BLAC scenario [89] consists of an L4Linux with hybrid Linux-L4 applications and
L4 services providing a secured transaction mechanism to the hybrid Linux applications.
The L4Linux server relies on some L4 services and some of the L4 services rely on func-
tionality provided by Linux applications. This scenario has complex timing constraints
during startup. The log and dataspace manager interface have not been instrumented
in this scenario, since they interfere too much with these timing constraints.

interface::method invocations

rmgr::init ping 50
rmgr::get task 734

continued on next page...
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interface::method invocations

rmgr::task new 368
rmgr::get irq 27
rmgr::free fpage 1
rmgr::get task id 27
rmgr::set task id 370
ts::allocate 215
ts::create 377
ts::free 178
ts::kill 339
ts::owner 11
ts::exit 1
dopeapp::event 1197
dope::init app 2
dope::exec cmd 116626
dope::exec req 1210
names::register 21
names::register thread 115
names::query name 5275
names::query id 25
nitevent::event 247
overlay::get screen info 1
overlay::open screen 1
overlay::map screen 1
overlay::refresh screen 1092
overlay::input listener 1
overlay::window listener 1
overlay::create window 17
overlay::destroy window 7
overlay::open window 18
overlay::place window 17
overlay::stack window 78
overlay::set background 1
ore rxtx::send 284876
ore rxtx::recv 288612
ore notify::rx notify 271344

Table 6.11: Number of invocations for BLAC counted by
instrumented stubs

6.1.8 Summary

Using the above measurements, I generated a list of used methods and their invocations
per scenario. (1 – L4Linux with L4 console, 2 – L4Linux with L4 console and ORe, 3a –
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Netfilter startup, 3b – Netfilter running, 4 – L4Linux with DOpE, 5a – Verner startup,
5b – Verner running, 6 – JTop, 7 – BLAC)

I sorted the functions by the message size to and from the server. I also highlighted
the functions that make up at least 90% of the total IPCs in the respective scenario.

interface::method 1 2 3a 3b 4

2 words
ore notify::rx notify – 17759 51533 139 –
dm generic::close 22 28 72 – 23
rmgr::init ping 22 25 27 – 22
rmgr::get task 316 316 347 161 316
rmgr::get irq 16 16 16 – 16
rmgr::free fpage 1 1 1 – 1
ts::free 14 14 27 80 14
ts::exit – – – – –
verner::setPlayback – – – – –
verner::setFxPlugin – – – – –
overlay::input listener – – – – –
overlay::window listener – – – – –
overlay::create window – – – – –
overlay::destroy window – – – – –
overlay::open window – – – – –
overlay::set background – – – – –
3 words
dm generic::check rights – – – – 1
dm generic::transfer 46 55 89 3 46
dm mem::size 16 12 14 – 23
dm mem::resize 28 26 76 – 25
ts::allocate 19 19 45 85 19
ts::kill 28 28 48 160 28
ts::owner 1 1 3 – 1
con vc::smode 1 1 3 – –
con vc::setfb 1 1 3 – –
con vc::direct update 1953 2371 16235 399103 –
verner::setVolume – – – – –
4–13 words
dm generic::share 6 7 21 – 6
dm mem::physaddr 4 8 16 – 5
dm phys::poolsize 73 179 615 2564 2
verner::changeQAP – – – – –
verner::getPosition – – – – –
overlay::open screen – – – – –
overlay::refresh screen – – – – –
dm phys::pagesize 7 7 25 – 7
overlay::get screen info – – – – –
overlay::stack window – – – – –
con vc::gmode 1 1 3 – –

continued on next page...
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interface::method 1 2 3a 3b 4

verner::connect – – – – –
overlay::place window – – – – –
con vc::get rgb 1 1 3 – –
nitevent::event – – – – –
names::register 9 10 10 – 13
names::query name 62 111 126 18 70
rmgr::task new 24 24 69 165 24
verner::start – – – – –
names::register thread 43 50 73 20 69
names::query id – – – – 1
dm mem::open 115 137 260 10 142
5 words and an indirect part of 20 words
log::outstring 7334 17765 58634 97394 6802
258–267 words
rmgr::get task id 10 11 12 – 10
rmgr::set task id 24 24 69 165 24
ts::create 33 33 69 165 33
dope::exec cmd – – – – 3152
overlay::map screen – – – – –
dope::exec req – – – – 1
515 words
dope::init app – – – – 1
266 words and an indirect part of 1KB size
dopeapp::event – – – – –
4–5 words and an indirect part of 4KB size
ore rxtx::send – 17755 51508 494 –
ore rxtx::recv – 17914 52039 606 –
5 words including a flexpage
rmgr::get page0 1 1 1 1 –
6 words including a flexpage
dm generic::fault 14578 14809 43900 18 14848
7 words including a flexpage
dm generic::map 12902 16747 35871 8 11434

Table 6.12: Invocations for functions of scenarios (part 1)

interface::method 5a 5b 6 7

2 words
ore notify::rx notify – – – 271344
dm generic::close 43 4 3 –
rmgr::init ping 27 – 16 50
rmgr::get task 64 – 64 734
rmgr::get irq 16 – 8 27
rmgr::free fpage – – – 1
ts::free – – – 178

continued on next page...
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interface::method 5a 5b 6 7

ts::exit – – – 1
verner::setPlayback 1 2 – –
verner::setFxPlugin 1 4 – –
overlay::input listener – – – 1
overlay::window listener – – – 1
overlay::create window – – – 17
overlay::destroy window – – – 7
overlay::open window – – – 18
overlay::set background – – – 1
3 words
dm generic::check rights – 102 2 –
dm generic::transfer 379 477 44 –
dm mem::size 121 11413 70 –
dm mem::resize – 179 – –
ts::allocate 7 – – 215
ts::kill – – – 339
ts::owner 6 – – 11
con vc::smode – – – –
con vc::setfb – – – –
con vc::direct update – – – –
verner::setVolume 1 5 – –
4–13 words
dm generic::share – 98 2 –
dm mem::physaddr 184 – – –
dm phys::poolsize – – – –
verner::changeQAP 1 1 – –
verner::getPosition 1 428 – –
overlay::open screen – – – 1
overlay::refresh screen – – – 1092
dm phys::pagesize 35643 3943 34 –
overlay::get screen info – – – 1
overlay::stack window – – – 78
con vc::gmode – – – –
verner::connect 1 4 – –
overlay::place window – – – 17
con vc::get rgb – – – –
nitevent::event – – – 247
names::register 13 1 8 21
names::query name 70 10 77 5275
rmgr::task new 7 – – 368
verner::start 1 8 – –
names::register thread 69 27 50 115
names::query id – – 1329 25
dm mem::open 1063 11537 156 –
5 words and an indirect part of 20 words
log::outstring 2580 2056 1767 –

continued on next page...
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interface::method 5a 5b 6 7

258–267 words
rmgr::get task id 12 – 7 27
rmgr::set task id 7 – – 370
ts::create 6 – – 377
dope::exec cmd 151 1189 9668 116626
overlay::map screen – – – 1
dope::exec req – 5 1 1210
515 words
dope::init app 1 3 2 2
266 words and an indirect part of 1KB size
dopeapp::event – – – 1197
4–5 words and an indirect part of 4KB size
ore rxtx::send – – – 284876
ore rxtx::recv – – – 288612
5 words including a flexpage
rmgr::get page0 – – – –
6 words including a flexpage
dm generic::fault 48539 17249 1169 –
7 words including a flexpage
dm generic::map 66569 14694 245 –

Table 6.13: Invocations for functions of scenarios (part 2)

As expected, the most messages in all startup scenarios are required to establish
memory mappings in the address spaces of the applications. In all scenarios, the three
most used functions make up at least 50% of the messages. In the scenarios “Netfilter
running” and “Verner startup” almost 100%.

Döbel stated in [23] that 85% of all messages he observed in an configuration similar
to the scenario “L4Linux with DOpE” were 24 words or less in size. The numbers shown
in Tables 6.12 and 6.13 do not take messages into account that were not generated by
an IDL compiler. For IDL compiler generated messages, about a third of all messages
were 24 words or less in size. The scenario “Netfilter running” is an exception. Here all
messages were 24 words or less in size.

For the scenarios “JTop” and “BLAC” I observed about 70% of the messages to be
256 words or larger in size. For the “JTop” scenario this has to be attributed to the
heavy use of DOpE. For the “BLAC” scenario the numbers are distorted, because, as I
mentioned above, I could not measure the invocations of the dataspace manager (mainly
dm generic::map and dm generic::fault) and the logging service. These interfaces make
up a great portion of the invocations.

In Section 2.4 I mentioned that Bershad et al. made the observation that 75% of
all invocations go to 3 procedures and 95% to 10 procedures of the over 350 procedures
present in their system. I made a similar observation with the exception of the scenarios
“L4Linux with L4 console and ORe” and “Netfilter startup”. In these two scenarios,
the network package transport makes up one third of all IDL generated messages. Here,
75% of all invocations go to 5 procedures (instead of the original 3).
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6.2 Performance Benchmark

I used Tables 6.12 and 6.13 to write an IDL file that contains all the methods involved in
the above scenarios. The code generated from this IDL file has then been instrumented
to measure its performance. This section will compare the stubs generated by Dice
with stubs generated by other stub code generators or hand-written code. Further
measurements are made on different architectures or with binaries generated by different
compilers. All numbers are the average of 10,000 invocations of the same method. This
will present results with warm caches.

Even though different methods have the same message sizes, the transmitted types
vary. Different stub code generators generate different code for different types. There-
fore, I kept the signatures (parameter list and types) of the original methods instead of
combining same sized messages into one method.

6.2.1 Comparing Stub Code Generators for Fiasco

Table 6.14 shows the average round-trip time in cycles for the different methods. Mea-
surements were performed on an Intel Celeron processor (Mendocino at 1595 MHz) with
512KB L2 Cache. All generated stubs were compiled using gcc version 3.4. The un-
derlying microkernel is Fiasco. For brevity, I am only showing the ten functions that I
identified as generating 90% of the IPCs. The full list of functions is shown in Table A.1.

Analysis of this data reveals that IDL4 generated code is outperformed by all other
stubs. This can be due to the fact, that IDL4 originally targeted L4 version X.0. The
support for L4 version 2 and L4 version X.2 (or version 4) has been added later and not
much effort was spent on generating fast stubs. Dice generated code is faster than Flick
generated code for most functions and especially for register IPC. For these functions its
full optimization potential is recognizable. To my surprise, outperform Dice generated
stubs dynrpc stubs, even though previous literature [35] suggests otherwise.

Table 6.14 contains only the functions that generate 90% or more of the overall
messages. For the cells without performance numbers, the respective stub code gen-
erators failed to produce working stubs. As the graphical comparison in Figure 6.4
shows, Dice generated code outperforms code generated by other stub code generators.
The two exceptions are dope::exec_cmd with an impact of about 100 cycles or 5% and
ore_rxtx::send with about 700 cycles or 16%. Performance gains of Dice range from
3% (log::outstring) over 31% (con_vc::direct_update) to 64% (ore_rxtx::recv).

6.2.2 Comparing Stub Code Generators for Hazelnut

Table 6.15 shows the round-trip times in cycles for stubs generated by IDL4 and Dice,
compiled with gcc-2.95 and running on Hazelnut (L4 version X.0). The used processor
was an Intel Pentium 4 (Willamette) with 256KB L2 Cache. I compared IDL4 generated
code, which is always inlined, with Dice generated code with non-inlined function calls
and inlined function calls. The code generated by Dice with inlining performs better
than code using function calls, but is still slower than IDL4 generated code. This is due
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interface::method IDL4 Flick dynrpc Dice

ore notify::rx notify 4009 – 2383 1825
dm mem::size 4778 3146 3790 2039
con vc::direct update 4163 3147 3037 2084
dm phys::pagesize 5487 3890 3792 2043
log::outstring 4360 3205 3346 3236
dope::exec cmd 4954 3260 3330 3466
ore rxtx::send 6775 – 4283 4968
ore rxtx::recv 52827 – 50069 17902
dm generic::fault – 7197 – 7093
dm generic::map – 7202 – 7081

Table 6.14: Performance of different stubs compiled with gcc-3.4
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Figure 6.4: Comparison of selected generated stubs from different stub code generators
running on Fiasco.
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to the direct stack transfer optimization used in IDL4 [51]. The gain due to optimization
is about 300 cycles, which is 7%. This shows that architecture specific optimizations have
a noticeable effect on performance.

interface::method IDL4 Dice Dice with inlining

ore notify::rx notify 4091 4303 4175
dm mem::size 4114 4423 4359
con vc::direct update 8889 4463 4378
dm phys::pagesize 9033 9208 9160
log::outstring 9454 9672 9736
dope::exec cmd 9650 10383 10184
ore rxtx::send 19633 19913 19732
ore rxtx::recv – 14361 14468
dm generic::fault 12308 12818 12679
dm generic::map 17623 18020 17869

Table 6.15: Performance of different stubs running on L4 version X.0

L4 kernels that implement the version X.0 specification, transmit three words in a
register IPC. This increases the number of functions able to invoke register IPC from 16
to 27, including two of the functions that make up 90% of the IPCs in one of the scenarios.
A stub code generator that can exploit that knowledge can impact the performance of
the overall system.

6.2.3 Comparing Hardware Architectures

Tables 6.16 and 6.17 compare the round-trip time of Dice generated code on different
hardware architectures. The generated code was compiled using gcc-3.4.

The performance on the used AMD processors is comparable to the Intel Pentium 3.
The Intel Pentium 4 processors perform much worse than any of the other architectures.
This trend was reversed with Intel’s more recent processors, Celeron and CoreDuo. As
can be seen, the choice of the hardware platform has a large impact on the performance
and can counterweight code optimizations performed by a stub code generator. But, as
mentioned before, optimizing for the target architecture provides additional potential
for performance improvements.

To fit the data onto these pages I split the table into one with Intel’s processors and
one with AMD’s processors. As mentioned before, the AMD Opteron processor performs
in the range of the Intel P3 processor. The AMD Athlon64 processor is comparable with
Intel CoreDuo.

6.2.4 Comparing Compiler Versions

After comparing the generated stub code compiled with the same compiler running
on different hardware platforms, I compared the performance of the generated stubs
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interface::method P1 P3 P4 Celeron CoreDuo

rdstc 24 34 84 66 66

ore notify::rx notify 4084 2256 5214 1825 1867
dm mem::size 5364 2629 5502 2039 2045
con vc::direct update 5477 2633 5403 2084 2059
dm phys::pagesize 5221 2649 5541 2043 2059
log::outstring 9811 4160 7460 3236 3294
dope::exec cmd 12035 4723 8059 3466 3468
ore rxtx::send 19377 6947 9757 4968 4937
ore rxtx::recv 41570 20573 50418 17902 17719
dm generic::fault 21963 12227 15231 7093 7644
dm generic::map 22162 12188 15382 7081 6694

Table 6.16: Performance of Dice stubs on different Intel processors

interface::method Opteron Turion Athlon64

rdstc 10 10 9

ore notify::rx notify 2096 2099 1738
dm mem::size 2490 2494 2071
con vc::direct update 2570 2571 2076
dm phys::pagesize 2536 2542 2092
log::outstring 3434 3424 3507
dope::exec cmd 3606 3613 3630
ore rxtx::send 5057 4891 4939
ore rxtx::recv 18012 18563 18024
dm generic::fault 7509 8079 7007
dm generic::map 7239 7960 6913

Table 6.17: Performance of Dice stubs on different AMD processors
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compiled with different versions of the GCC running on the same hardware. The results
are listed in Table 6.18.

interface::method 3.3 3.4 4.1 4.2 4.3

ore notify::rx notify 5254 5252 5184 5221 5081
dm mem::size 5803 5551 5602 5572 5573
con vc::direct update 5698 5399 5598 5503 5612
dm phys::pagesize 5802 5520 5627 5590 5621
log::outstring 7973 7491 7510 7498 7689
dope::exec cmd 8466 8086 7977 7771 8075
ore rxtx::send 10057 9721 9884 9920 9808
ore rxtx::recv 50888 50505 165054 163490 166490
dm generic::fault 15769 15372 15424 15859 15317
dm generic::map 15830 15477 15410 15903 15397

Table 6.18: Performance of stubs compiled with different compiler versions

Dice generated stubs are small and optimized for the target architecture, which
does not leave much room for compiler optimizations. A compiler needs some context
to apply optimization strategies, which is not given for the small stubs.

To better visualize the improvements that different compiler versions can achieve I
plotted a selection of the functions from above. Figure 6.5 shows the number of cycles
of each function for different compiler versions in comparison with gcc-3.3. This figure
points out the most prominent differences in performance for different compiler versions.

As can be seen, the compiler version has some effect on the performance of the
generated stub. For some methods, such as ore_notify::rx_notify, new compiler
versions have some limited benefit. For other methods, such as verner::connect, there
is always an improvement with each new compiler version. There are also functions,
such as ts::exit, where some versions of the compiler improved performance, and
other versions worsened performance.

In contrast to Figure 6.5 I plotted the performance of the previously identified most
used functions in Figure 6.6. Here you can see that the biggest impact is on the
ore_rxtx::recv function. The usage of gcc-4.x brings threefold performance degra-
dation. For the other functions, the effect of a newer compiler version is mostly positive,
especially for function dope::exec_cmd, where gcc-4.2 compiled stubs are 8% faster than
gcc-3.3 compiled stubs. The rest sees performance benefits of around 3%.

Using this data, one can say new compiler versions in general have a positive impact
on the performance of generated stubs. Though, this impact is limited to a few percent
for most of the functions, only.

6.2.5 Comparing Stub Code Generators for Pistachio

In this section I compare the performance of the stub code generated for the Pistachio
microkernel by IDL4 and Dice. The generated stubs were compiled with gcc-3.4 and
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Figure 6.5: Performance of selected functions compiled with different compiler versions
in comparison with version 3.3
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the binaries ran on a Pentium 4. The results are listed in Table 6.19.

interface::method IDL4 Dice

ore notify::rx notify – 6287
dm mem::size 2180 2609
con vc::direct update 2064 2531
dm phys::pagesize 2173 2703
log::outstring 2018 8309
dope::exec cmd – 8472
ore rxtx::send – 17176
ore rxtx::recv – 43993
dm generic::fault – 5237
dm generic::map – 5409

Table 6.19: Performance of different stubs on Pistachio (L4 version X.2)

dm
_m

em
::s

ize

co
n_v

c:
:d

ire
ct

_u
pdat

e

dm
_p

hys
::p

ag
es

ize

lo
g::o

uts
tri

ng

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

IDL4
Dice
20%

Figure 6.7: Performance of Dice generated stubs in comparison to IDL4 generated stubs
for most used functions on Pistachio.

Figure 6.7 only shows the most used functions, but almost all of the stubs generated
by Dice are within 120% of the performance of the optimized stubs generated by IDL4.
There are a few instances, where Dice generated stubs performed better than IDL4

generated stubs. There are several functions not depicted in this graph, for which one
of the compiler could not generate a working stub.

Using indirect parts as mechanism for transport is implicit for stubs generated by
IDL4. The user has no possibility to specify if data should be transferred using indirect
parts. For functions, where IDL4 uses indirect parts and Dice doesn’t, the IDL4 gener-
ated stubs perform worse than the Dice generated ones. The one function, where Dice
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performs worse than IDL4 is the other way around: Dice generated code that uses indi-
rect parts, because the IDL states so, but IDL4 does not. IDL4 can apply optimizations
where Dice is bound to the contract of the IDL.

When comparing Dice to other stub code generators for L4, Dice generated stubs
are almost twice as fast on its “native” platform–Fiasco. On “non-native” platforms the
generated code is 7% to 20% slower. This demonstrates its ability to provide comparable
stubs with its generic optimization framework.

6.2.6 Comparing Stub Code Generators for Linux sockets

The following section shows how I compare the performance of stubs generated for Linux
socket interfaces. The generated code ran on a Pentium 3 and was compiled using gcc-
4.2. This comparison shows that Dice generated stubs as well as dynrpc code perform
worse than rpcgen generated code.

interface::method rpcgen dynrpc Dice

ore notify::rx notify 39284 54105 31434
dm mem::size 39913 44236 43585
con vc::direct update 40858 43022 41985
dm phys::pagesize 40439 42822 45650
log::outstring 42232 43005 43017
dope::exec cmd 41947 43170 54402

Table 6.20: Performance of different stubs for Linux sockets

In Figure 6.8, can be seen that Dice generated stubs and dynrpc stubs have a
performance degradation compared to rpcgen stubs that lies within a 120% margin.
An analysis of the stubs indicates that this difference might be due to the fact, that
rpcgen client stubs are called with the same client object representing the connection
to the server. The Dice generated stubs and the dynrpc stubs, on the other hand,
created client sockets for every call. These two stubs also set the receive timeout before
calling recvfrom. Because the Linux socket back-end in Dice and for dynrpc is for
testing purposes only, no effort was put into tuning the stubs. This figure’s performance
numbers are percentages compared to rpcgen generated stubs, i.e., a stub with 105% is
5% slower than the rpcgen generated stub.

To investigate the difference of performance between the rpcgen generated stubs and
the Dice generated and dynrpc stubs, I implemented the default_timeout functionality
into Dice and dynrpc. The generated stubs do no longer set the receive timeout when
waiting for a message, but use the socket’s default timeout. The resulting comparison
is shown in Figure 6.9. It shows that the performance of Dice and dynrpc generated
stubs barely deviates from the rpcgen generated stubs with a few exceptions.

On average, the dynrpc stubs are faster than the Dice generated stubs. This may
be contributed to a number of factors. Two are: different target languages of Dice and
dynrpc. And: The Dice generated stubs contain elaborate error checking and handling.
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Figure 6.8: Performance comparison of Dice-generated and dynrpc stubs to rpgen-
generated stubs
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When building the dynrpc test, I encountered the limitation that for function specific
features, such as using a default timeout for only one function, one has to either make that
feature a run-time variable of the communication function or build a new communication
class for this feature. The first approach affects all uses of this communication function
by all callers. The second approach makes it hard to share state between functions of
the same interface. In contrast, using attributes in the IDL file will generate code that
is sensitive to the default timeout only for the functions with the attribute.

6.3 Micro-benchmarks

Additionally to measuring the performance of the stubs generated from the sample IDL
file, I compare the performance of some special cases, such as register IPC and indirect
string IPC versus direct IPC.

6.3.1 Short IPC

The fastest communication mechanism involving IPC on L4-based microkernel is register
IPC, also called short IPC. Whenever a stub code generator generates code for short IPC,
the generated stubs should add as little overhead as possible. I investigated different
options of the stub code generation to determine the overhead of stubs generated by
Dice and dynrpc.

I hand coded a scenario, where two threads in different processes exchange short IPC
as fast as possible. Then I added simple dispatch functionality as would be found in a
server. These numbers are compared with a Dice generated short IPC message stub.
This setup includes the generated server loop. The first optimization feature I enabled
was the usage of inlining. The generated client stubs as well as all generated server
functions for which this is possible are inlined. Another feature I enabled was the use
of default timeouts in the client stub. This saves accesses to the user-provided context
(CORBA Environment) containing the timeout value. This value is initialized to the
default timeout and rarely set to a different value. Another optimization that I tested is
the no exceptions attribute. For functions with this attribute, Dice does not generate
exception test and unpack code.

I also measured the performance of dynrpc stubs. For these I wrote a simple client
server call scenario, where the server replies immediately after receiving a message. Then
I enabled the default timeout option for the dynrpc stubs and I implemented a basic
dispatcher like the one I used for the hand written setup.

The Dice generated code for the inlined call stub with default timeouts introduces
an overhead of 35% to the hand-coded dispatch code. Most of this overhead can be
attributed to the fact that the used Dice version relies on the UTCB IPC feature of
Fiasco. The Dice generated stubs at the server side pack and unpack messages from
the UTCB. When a short IPC is sent, the two register values are stored in the UTCB
by the generated code. This is done to unify the packing and unpacking of short IPC
and longer messages.
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scenario cycles

hand-coded 1536
hand-coded dispatch 1512
dice call 2081
dice call inlined 2036
dice call inlined, default timeout 2042
dice call inlined, default timeout, no exceptions 2044
dynrpc call 2047
dynrpc call default timeout 2045
dynrpc call dispatched 2087
dynrpc call dispatched, default timeout 2088

Table 6.21: Performance of different short IPC scenarios.

Using the no_exception attribute does not yield any benefit, because the exception
test and unpack code is already in a pessimistic code path. Dice generated stubs contain
compiler hints as to which code path is the most likely one. This is used to minimize
jumps on this path. Because exceptions are not likely to appear, this path is only taken
when necessary. Eliminating this test and unpacking path does not gain much on the
optimistic path.

The dynrpc test shows that a very short IPC call with a server similar to the hand-
written one without dispatch, performs in the range of an inlined Dice generated call
with full server and dispatcher. A dynrpc setup with a simplistic dispatcher performs in
the range of an unoptimized Dice generated call.

These measurements were performed on a Fiasco kernel with debugging support
enabled and frame pointer support. They are identified as performance critical. However,
disabling these options would bereave the Fiasco kernel of functionality that is required
to run real-world workloads, such as L4Linux. The overhead of 35% which is introduced
by the generated stubs when compared to hand-written stubs is the same as the overhead
identified in previous work.

6.3.2 Indirect string IPC versus direct IPC

Building on the previous identification of common message sizes in Section 6.1.8, I built
a test case that measures the performance of these common message sizes. The key
numbers to remember are 30, 300, 4KB indirect string and 4KB as flexpage. The 30
word sized message spans, what Döbel identified in [23] as 85% of all messages being 24
words or smaller. Also, the UTCB is 32 words in size, which allows for 30 word sized
parameters.

A function transmitting a message of 300 words contains usually a buffer of size 1KB
(256 words). I identified this type of message prevailing for some scenarios (JTop and
BLAC). The 4KB indirect string messages are used by the network stack to transfer
packages. And one page transfers are the means to establish shared memory.

For the transmission of different sized parameters I measured different setups:
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• 30 variables on the stack, passed to the stub in sequential order

• 30 variables on the stack, passed to the stub in random order

• 30 global variables (in memory), passed to the stub in sequential order

• one array of 30 word sized elements

• one structure containing 30 word sized members

• one array of 60 word sized elements (to be larger than the UTCB)

• one array of 300 word sized elements

The measured round-trip times are listed in Table 6.22. As expected, there is a
difference between arguments that are located on the stack to those arguments located
in memory. In the various samples I also noticed that the sequential stack setup was
faster than the random stack setup. On average, both setups use the same number of
cycles.

scenario cycles

30 stack, sequential 2134
30 stack, random 2133
30 memory, sequential 2159
30 array, stack 2568
30 struct, stack 2225
60 array, stack 4017
300 array, stack 4029

Table 6.22: Performance of different sized message transfer scenarios.

What surprised me a little is the fact that one array or a struct of size 30 words takes
longer to pack and unpack than thirty single parameters.

To measure the performance of indirect string transfer, I transmitted indirect strings
of various sizes. The results are shown in Table 6.23. Indirect strings are special in a
way that the sender can specify an arbitrary source address and size to be transferred
to the receiver. The receiver can specify any previously allocated buffer large enough to
hold the message as receive buffer. This allows transferring data directly from a source
location to a destination. With a UTCB IPC, data has to be copied from the stack or
memory location into the UTCB and at the receiver’s side out of the UTCB. To compare
UTCB IPC to indirect string IPC, I measured the costs of copying data in memory (e.g.,
from memory into the UTCB or out of the UTCB).

When adding two times the cost of a copy operation to the time of a UTCB IPC, the
UTCB IPC is faster than indirect string IPC as long as the message fits into the UTCB.
As can be seen in Figure 6.10, when a message is larger than the UTCB, an indirect
string IPC is faster.
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data chunk size memcpy UTCB IPC + copy indirect strings

16 50 2115 3092
32 50 2115 3118
64 57 2129 3130
128 73 2161 3169
256 105 2225 3231
512 153 2321 3266
1024 225 2465 3329
2048 369 2753 3482
4096 658 3331 3874
8192 1233 4481 4631
16384 2543 7101 7360
32768 10162 22339 13806

Table 6.23: Performance of memcpy operation for different sized memory chunks.
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6.3.3 Indirect string IPC versus Shared Memory

An alternative to indirect string IPC for large chunks of data is to establish a shared
memory region between two address spaces. The cost for mapping one page is 10,143 cy-
cles. To exchange data, it could be copied to and from that shared memory region.
Notification about changes in this region could be done using shared locks or short no-
tification IPCs. This setup would result in the onetime costs of setting up the shared
memory region and the cost for copying data and notification for each transfer. I ex-
pressed these costs in Equation 6.1.

costshare = costmap + n (2costcopy + costnotification) (6.1)

To find the number of invocations for which it is faster to use a shared memory region
than indirect string IPC, we use the equation 6.2 as cost function.

costindirect = n costindirect ipc (6.2)

The values of costmap and costnotification are known and constant at 10,143 cycles
and 2,015 cycles respectively. The costcopy and costindirectipc are functions depending on
the size of the transmitted data. As long as 2 ∗ costcopy + costnotification < costindirect ipc

holds, than mapping will be faster. In Table 6.24 I compared the two values for the
various message sizes. It shows, that up to a message size of 16KB it is faster to map
memory, copy the data into this memory, and send a notification message than using
indirect string IPC.

message size in bytes copy plus notification indirect string IPC

16 2115 3092
32 2115 3118
64 2129 3130
128 2161 3169
256 2225 3231
512 2321 3266
1024 2465 3329
2048 2753 3482
4096 3331 3874
8192 4481 4631
16384 7101 7360
32768 22339 13806

Table 6.24: Performance comparison of indirect string transfers to copy plus notification.

To avoid copy operations one could allocate data directly out of the shared memory.
Also, the server can reference data instead of copying it out of the shared memory. At
least the latter optimization is reasonable and would change Equation 6.1 to:

costshare = costmap + n (costcopy + costnotification) (6.3)
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To determine after how many message exchanges mapping actually is faster, we let
costshare = costindirect and determine the n for different message sizes (see Equation 6.4.)

n =
costmap

costindirect ipc − 2costcopy − costnotification
(6.4)

For a message size from 16 to 512 bytes, n is 10. It means, after 11 message exchanges
it is faster to use a shared region than indirect string IPC of the same size. For messages
of 1KB at least 12 messages have to be exchanged, 14 messages for 2KB, 19 messages for
4KB and 136 messages for 8KB (here, two mappings have to be established). If fewer
messages are exchanged, it is faster to use indirect string IPC.

6.4 Code Complexity

Different metrics exist when measuring code complexity. The simplest metric is counting
physical lines of code for which I use sloccount [96]. Counting physical lines of code
allows comparing projects written in different programming languages. Another metric
is counting logical lines of code, which is highly language specific. The advantage of
logical lines of code is different coding styles do not have an effect on the counted number
of lines of code (LOC). One tool that I used to count logical lines of code is CodeCount
[1] from the University of Southern California. Since I often compare projects written
in different languages (IDL4 and Dice in C++, Flick in C, Magpie in Perl) I will use
CodeCount cautiously.

6.4.1 Test Suite

As mentioned in Section 5.2.4, Dice once integrated the generation of a test suite. The
test suite could be used to call generated stubs and verify the correct transmission of
parameters. Over time, the test-suite generation code became almost as complex as
the stub code generation itself. To simplify Dice, I removed the test-suite generation
and wrote a separate test suite instead. This new test suite allowed to integrate test
for corner cases faster and could also repeatedly call stubs to allow easy memory leak
detection.

The test-suite software could also be integrated into our automatic build environ-
ment. Using a user-level implementation of the Fiasco microkernel, I was able to test the
execution of the test suite. Another approach to run the tests is the usage of a hardware
emulator and to integrate its execution into the automatic build and test environment.
This is an alternative if no user-level implementation of the microkernel exists.

When removing the test-suite generation code from Dice it was a little more than
4,300 LOC in size. Adding to that were special cases in parameter handling for the test
suite. The parameter generating code had to know about shared variables, the different
level of pointers to a variable, memory allocation for variables, etc. An array specified
in the IDL as an integer pointer with a size_is attribute had to be translated into an
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array that is allocated as global variable, shared between client and server and had to
be appropriately initialized.

The replacement test suite I wrote, which tested the same functions was almost
3,900 LOC in size. Thus, I traded 4,300 LOC of test-generating code and additional
complexity in Dice for a hand-written test suite of 3,900 LOC in size. The respective
IDL file of the hand-written test suite is 277 LOC.

The current implementation of the hand-written test suite for Dice generated stubs
grew to a little under 6,500 LOC without affecting Dice complexity. The IDL file for this
test suite is 466 LOC big. Because setup and execution of the tests is similar between
most of the functions, macros or templates could be used to further reduce the size of the
test suite. Still, this approach has the freedom to add corner case tests, which require a
specific setup or sequence of method invocations to trigger.

Generating communication stubs and testing communication stubs are two distinct
problems. Trying to solve these two problems in one tool will make the tool overly
complex. The selected solution to separate the stub code generation and the test suite
proved that the IDL compiler becomes simpler.

6.4.2 Tracing

A previous implementation of the tracing framework, which included the generation of
the complete tracing code in the IDL compiler, used 1516 LOC, or 3% of the total code
base. Compared to other features this is a large piece of the compiler. Because of its size
and inflexibility, I abandoned this integrated approach in favor of a plug-in architecture.

Today, the tracing framework in Dice consists of 200 LOC, or 0.4% of the code. This
code sets up the tracing library, and invokes library callbacks at the hooks described in
Section 5.2.3. There are 43 such hooks currently existing in Dice. A tracing library can
be as little as 55 LOC or almost 800 LOC, depending on the objective. The smallest,
currently implemented library adds one line to each client stub. The largest library adds
6 lines to each client stub and almost 20 lines to the server side code, or in other words,
an average of 3 lines at every tracing hook.

6.4.3 Assembly code generation

In previous work [3] I have shown that generated assembler code yields an additional
performance benefit of about 5% when compared to the respective C stub. The Dice
stub code generator used the in-depth knowledge about the mechanism of the L4 IPC
to achieve this performance benefit. Since then, the C/C++ compilers evolved and the
advantage of using assembler stubs diminished. The C compilers were able to generate
binaries from the generated C stubs that performed as good as the generated assembler
code.

The portion of platform specific assembler code for the L4 version 2 API for IA32
architecture is 730 LOC or 1.5%. Table 6.25 contains a summary of the code size in
different directories of the Dice stub code generator. Assembly code is generated by
classes in the src/be/l4/v2/ia32 and src/be/l4/v2/amd64 directories.
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directory LOC C++ LOC yacc/lex total

src 3622 – 3622
src/fe 5657 – 5657
src/parser 1145 – 1145
src/parser/idl 147 3572 3719
src/parser/c-c++ 155 3560 3715
src/be 21764 – 21764
src/be/l4 3913 – 3913
src/be/l4/v2 1022 – 1022
src/be/l4/v2/ia32 730 – 730
src/be/l4/v2/amd64 123 – 123
src/be/l4/fiasco 1758 – 1758
src/be/l4/v4 1899 – 1899
src/be/sock 694 – 694

sum 42629 7132 49761

Table 6.25: Lines of code in subdirectories of Dice.

Dice provides most of its functionality in generic classes. The platform specific
portions are comparatively small. This shows that the implementation of a new back-
end involves little effort.

6.4.4 Indirect String Communication

To support indirect parts or indirect strings, two different sets of changes to the IDL
compiler have to be considered. One is the invisible support as done in IDL4, which
includes knowledge about indirect parts, marshalling strategy, generating code to access
indirect parts, etc. The other set of changes is the user-visible support, such as the
possibility to specify indirect parts in the IDL and appearance of indirect parts in the
generated function interfaces. The second set of changes relies on the first.

Indirect parts have to be supported internally (not visible to the user) to leverage
the benefits of this mechanism. The visibility of this feature is arguable. I think it puts
the optimization potential in the hands of the user. As always, allowing a user more
freedom, also allows more freedom to misuse the feature.

added to existing new total

front-end 0 11 11
back-end 83 501 584

sum 595

Table 6.26: Lines of Code to support indirect strings.

The numbers added to the front-end are solely additions to the parser and the in-
memory representation of ref attributes and belong to the visible set. The changes
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and additions to the back-end consist of both sets described above. Because the inter-
nal representation and back-end code generation cannot be separated completely, these
numbers are combined. These changes combine to about 1% of the total code of Dice.

Giving the user the freedom to specify indirect parts in the IDL in exchange for 11
lines of code in the front-end and maybe 50 more in the back-end is, in my opinion, a
reasonable tradeoff.

6.4.5 Resource Reservation

The support for resource reservation as introduced in Section 5.3.3 was implemented to
inject calls to the resource reservation framework. The extension added support to read
a resource description from the IDL file and generate the calls to the framework.

added to existing new total

front-end 178 141 319
back-end 52 162 214

sum 533

Table 6.27: Lines of Code to support resource reservation.

These changes make up 2.2% of the front-end and 0.7% of the back-end. Overall,
these changes make up 1.7% of the complete source code.

As shown, most of the code was used to parse the resource description in the IDL
file. Putting the resource description next to the interface description allows associ-
ating resource usage and demand with specific – nameable – elements in the interface
description.

As mentioned before, adding more functionality for less than 2% of the code base, or
approx. 550 LOC, is a feasible approach. However, generated code heavily depends on
the existence of the resource reservation framework. The generated stubs will not work
or even compile without it.

6.4.6 Default Timeout

The default timeout support is an optimization feature. I have shown in Section 6.2.6
that this feature improves the performance of Dice generated and dynrpc stubs for
Linux. For dynrpc stubs the performance gain was 5.5% on average and 8.2% for Dice
generated stubs. In Section 6.3.1 I have shown the benefit for L4 stubs of 1.9%.

added to existing new modified total

front-end 11 0 5 16
back-end 3 132 41 176

sum 192

Table 6.28: Lines of Code of modification required to support default timeouts.
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Given that support for this feature makes up 0.4% of the overall code, it shows that
a wisely chosen optimization strategy can yield noticeable benefit.

6.4.7 Generated Code

For an analysis of the generated code I inspected the generated stubs of the scenario
from Section 6.3.1. The generated call stub for a short IPC message is 62 LOC. The
corresponding marshal and unmarshal functions at the server side are 63 LOC. The
generic IPC exchange functions at the server side are 123 LOC. The generated dispatch
function for one IDL method is 52 LOC and the generic server loop is 43 LOC. As one
might suspect, the size of the call stub, the marshal and unmarshal function as well as
the dispatch function depend on the number and type of arguments.

I used the generated stubs from the scenario described in Section 6.3.2 to determine
the size of functions with more parameters. For the function that takes 30 distinct
parameters a call stub of 147 LOC was generated. The corresponding marshal and
unmarshal functions are also 147 LOC in size. These are almost 3 LOC per parameter:
one in the call stub’s parameter list, one in the message buffer type definition and one
line for the actual marshalling.

For the function with one array parameter a call stub of 60 LOC was generated. This
stub is smaller than the short IPC stub, because it receives no return value from the
server. The corresponding marshal and unmarshal functions are also 60 LOC in size.

The server loop for the scenario from Section 6.3.2 is 45 LOC, which is two lines
bigger than the server loop from the first scenario. The bigger server loop has to allocate
a receive buffer for an indirect parameter. The generic IPC exchange functions are
129 LOC. The additional 6 LOC split in two times three additional lines to test for
a received flexpage. This scenario’s dispatch function is with 256 LOC bigger than
the dispatch function of the short IPC scenario. This can be divided into 35 LOC of
generic dispatch code plus code for each function. For a short IPC the function specific
code is 18 LOC. For the function with 30 parameters it is 103 LOC. And the function
with one array parameter uses 16 LOC. The required lines of code for a function in
the dispatcher are 9 LOC of generic code plus the number of [in] parameters for the
unmarshal function, the number of [out] parameters for the marshal function, and the
number of all parameters for the actual function call.

I also measured the total number of lines of code of the scenario to determine the
performance of all functions. The total LOC for Dice generated stubs is 21,906 LOC.
This is an order of magnitude bigger than the hand-written code for dynrpc. However,
these 22,000 LOC are highly tested and widely used code, whereas a dynrpc stub and
server has to be written by hand and tested for each server individually.

I tried to compare the size of Dice generated stubs to the size of interpretive stubs
as described in Section 2.5. The client side stub for a short IPC is almost 400 byte in
size. The call stub for the 30 parameter function is almost 500 byte in size. The values
are larger than the 300 bytes described in [63], so the benefit of using interpretive stubs
should be even larger. However, such an approach trades performance against memory
consumption.
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6.4.8 IDL Compiler

Opposed to Flick, where each stage of the compiler is a separate binary, Dice inte-
grates all stages into one binary. Flick’s approach allows exchanging each single stage
separately.

In Dice, different back-ends and front-ends are selected using run-time options. The
downside of this approach is that the Dice binary has to be recompiled as a whole when
a new front-end or back-end is added or modified. I expect this to be a rare event, and
the associated overhead of recompilation acceptable.

The advantage of placing all stages into one binary is usability. It is easier to learn
the usage of one tool, than three tools.

Front-End

The authors present in [29] numbers on the percentage of code reuse for each specialized
target platform for the Flick IDL compiler. As mentioned above, Flick has three stages.
The first stage–the front-end–corresponds to the Dice front-end, the second and third
stage in Flick correspond to the Dice back-end. The lines of code for the front-end of
Flick version 2.1 are shown in table 6.29. The percentage shown is the percentage of
language specific code compared to the total lines of code of the front-end.

Component Lines

generic library 1973
CORBA 2003 15.3%
ONC RPC 3009 23.0%
MIG 6098 46.6%

total 13083

Table 6.29: Lines of Code for the Flick front-ends

The L4 specific changes to Flick for the front-end are almost negligible. A new type
(flexpage) was added to the IDL.

Table 6.30 shows the lines of code for the Dice front-end. The total number of lines
of code is about the same as for Flick’s front-end. In Dice I combined the various IDL
parsers into one parser and the C/C++ parsers into another. Each of the new parsers
is about the average size of the language specific Flick front-ends. The generic library in
Dice mostly consists of the classes for the in-memory representation of the parsed IDL
file. The grammar files for the language make up a large portion of the parsers.

The IDL4 compiler’s front-end is smaller than Dice’s front-end. Table 6.31 shows
that the grammar for the IDL and C/C++ parsers is smaller than Dice’s grammar.

Table 6.32 shows that the Magpie front-end is by far the largest of the IDL com-
piler’s front-end. But the parsers are written in Python, which might explain their size
compared to the generated parser of the other IDL compilers.
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Component Lines

generic library 6802 47.8%
IDL parser 3719 26.1%
C/C++ parser 3715 26.1%

total 14236

Table 6.30: Lines of Code for Dice front-ends

Component Lines

generic library 6498 56.2%
IDL 2267 19.6%
C/C++ 2791 24.2%

total 11556

Table 6.31: Lines of Code for IDL4 front-ends

Component Lines

generic library 1912 6.0%
C parser 11817 37.2%
IDL parser 14831 46.7%
MIG parser 3218 10.1%

totals 31778

Table 6.32: Lines of Code for MagPie front-ends
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Back-End

The platform specific code generation is done by the Dice back-end. The majority of
the back-end consists of basic infrastructure for all communication platforms and reflects
the client-server architecture.

Currently Dice supports two major back-ends: L4 in different API versions and the
Linux socket back-end. Dice used to support the Common Data Representation (CDR)
format. Because of its missing acceptance, the CDR back-end became obsolete. The
CDR back-end was 590 LOC in size plus 10 lines of code to recognize the respective
command line option and generate the appropriate back-end class factory.

The CDR back-end is about the same size as the Linux socket back-end. Each makes
up for around 2% of the Dice back-end. Thus one can say, that for just 600 LOC you
can get support for a new communication platform in Dice.

In Table 6.33 I combined the numbers of Flick’s presentation generator and back-end
to put them side by side with the back-end of Dice.

Component Lines

generic library 15420
CORBA IIOP 1562 2.1%
IIOP++ 3584 4.8%
Mach 3/MIG 2253 3.0%
Khazana 1555 2.1%
Fluke 1065 1.4%
Trapeze 1578 2.1%

presentation conversion 47124 63.6%

total 74141

Table 6.33: Lines of Code for Flick back-ends

Component Lines

generic library 21764
Linux Socket 694 2.2%
L4 generic 3915 12.3%
L4 V2 API 1875 5.9%
L4.Fiasco API 1759 5.5%
L4 V4 API 1899 6.0%

total 31903

Table 6.34: Lines of Code for Dice back-ends

Table 6.34 shows that the implementation of a back-end for a new communication
platform in Dice requires adding between 2% and 6% to the existing code base, depend-
ing on the conformance with existing communication patterns.

When comparing Tables 6.29 and 6.30 and Tables 6.33 and 6.34 respectively, one can
see that the front-ends of Dice and Flick are about the same size, as are the back-ends.
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Component Lines

basic functionality 1394
generic back-end 6468
architecture generic 1174
L4 V2 API 132 0.8%
L4 X0 API 4271 26.1%
L4 V4 API 2934 17.9%

total 16373

Table 6.35: Lines of Code for IDL4 back-ends

Component Lines

generic back-end 2741
target architectures 995
templates 407

total 4143

Table 6.36: Lines of Code for MagPie back-ends

However, Flick adds the presentation conversion layer with another 47,000 lines of code.
Thus, Dice can be considered moderate in size when compared to Flick.

Table 6.35 shows that the IDL4 back-end is almost half the size of Dice’s back-end.
The smallest back-end of the compared IDL compilers has Magpie. As Table 6.36 shows,
is it a little over 4,100 LOC in size.

The results of adding the size of front-end and back-end of the various compilers is
shown in Table 6.37. When considering the features that each of the compilers supports,
one can derive that more features and supported source language, as well as target
languages, result in a bigger IDL compiler.

Compiler total LOC

Flick 87224
Dice 46139
Magpie 35921
IDL4 27929

Table 6.37: Total Lines of Code for different IDL compilers

6.4.9 dynrpc Code Complexity

A basic marshalling infrastructure for L4 version 2 IPC of the dynrpc framework is 357
lines of C++ code. I wrote a similar infrastructure for Linux network sockets in about
an hour and it had a size of 445 lines of C++ code. This framework is almost negligible
when compared to Dice.
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I also compared the size of the accompanying client and server files for the test
scenarios that I used to measure stub performance. These were 1772 lines of code for
the client side and 2115 lines of code for the server. Additionally some 240 lines of code
in common used header files were required, which totals the dynrpc test scenario to 4127
lines of code.

The message packing and unpacking has to be written by hand, which can lead to
errors in the order of arguments in the message buffer. Also, the whole server loop and
dispatcher has to be written by hand, which is a tedious task, since most server loops
and dispatchers are the same. A server loop has 85 lines of code in average, the smallest
(for one function) 38 lines of code, and the bigger ones adding approximately 13 lines
for each additional function.

I compared this to the size of the test case for the Dice generated stubs. The client
side code was 1272 lines of code; the server side required 1194 lines of code, no common
header files but an IDL file of 363 lines of code. This sums up to 2829 lines of code,
which is 1298 lines less than the dynrpc test, or 50% less to contain possible errors.

As I mentioned before, dynrpc can only be used with C++, whereas Dice supports
C as well. Also, dynrpc relies on the C++ template libraries as trusted computing base.

6.5 Summary

In this chapter I showed that the optimizing IDL compiler I wrote performs better than
non-optimizing and on par with other optimizing IDL compilers. I also showed, that its
design is flexible and allows to add support for new features. This extensible design also
allows implementing new optimization strategies, such as default timeout, easily.

With respect to code complexity, Dice is about the same size or smaller than other
stub code generators for L4. It is bigger than alternative approaches, such as dynrpc,
but also richer in functionality and flexibility.



Chapter 7

Conclusion and Outlook

This chapter provides a summary of my contributions and an outlook on possible exten-
sions of this work.

7.1 Contributions

Communication in microkernel-based operating systems has many different forms. It
is used to signal state, propagate rights, and for RPCs. Because components in a
microkernel-based system often run in their own protection domains, inter-component
communication involves crossing these protection boundaries and requires marshalling
and unmarshalling of messages. With fast communication mechanisms to switch be-
tween protection domains, the stubs that setup, send, and receive messages make up
a large portion of the communication. Stub code generators can be used to generate
the communication code automatically from a small description of the communication
interface. I addressed three concrete challenges for communication code generation in
microkernel-based operating systems.

Forms of Communication

In Chapter 3 I showed that communication in microkernel-based systems is not only used
to call components in other protection domains, but also to signal state changes, send
one-way messages, or transfer rights to resources. When using a stub code generator,
non-RPC forms of communication have to be supported. I discussed how each of the
named forms of communication can be represented in an IDL and that the IDL compiler
can generate well-performing code from it. This included the ability to use a generic
communication framework, yet still exploit platform specific mechanisms.

In the Evaluation Chapter I demonstrated that the generated stubs also performed
as good as or within close range of hand-written code and other stub code generators.
These results show that a tool can be used to generate high-performance stubs.
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Platform Independence

In Chapter 4 I explored how platform independence can be provided with an IDL but
still platform specific optimizations can be exploited using attributes. I gave examples
for using L4 specific communication mechanisms, such as indirect parts, or the transfer
of flexpages. I also discussed optimization strategies for communication in generated
stubs, such as parameter reordering or copy avoidance.

The platform independence allows using the same description of a component inter-
face to generate communication code for different platforms. In the Evaluation Chapter
I was able to give examples for this platform independence.

Feature Integration

Chapter 5 shows how existing designs for interface definition languages and their com-
pilers can be integrated into an IDL compiler for microkernel-based operating systems.
I discuss new extensions to the IDL to allow support of platform specific features, such
as flexpages and indirect parts. I gave explicit examples for these different programming
environments, such as resource accounting or resource reservation and how these can be
supported in an stub code generator. I also discussed how real-time applications can use
generated stubs and still maintain their timing guarantees.

Evaluation

In Chapter 6 I showed that the optimizing IDL compiler I wrote performs better than
non-optimizing and on par with other optimizing IDL compilers. I also showed that its
design is flexible and allows adding support for new features. This extensible design also
allows implementing new optimization strategies, such as default timeout, easily.

With respect to code complexity, Dice is about the same size or smaller than other
stub code generators for L4. It is bigger than alternative approaches, such as dynrpc,
but also richer in functionality and flexibility and requires much less hand-written code.

7.2 Outlook

In the development of a trusted computing base, the tools used to translate part of
the trusted components into binaries or generate communication code for the trusted
components have to be trusted as well. To verify the correctness of the respective
translation process, the tool – in our case the IDL compiler – has to be checked for
correctness. A complete code size of about 50,000 lines of C++ code is hard to verify.

To ease the verification, the size of the compiler can be reduced. This can be done
by removing features that can be implemented by wrapper libraries. Also, the use of
more functionality from the standard libraries of the programming language can help
to reduce the complexity of the compiler’s code. A verification will then base on the
correctness of the used standard library.
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Methods to verify the correctness could be external tools, such as IDL compiler test
tools [90].

Another approach to verify the TCB is to eliminate the use of the IDL compiler.
Feske arguments in [35] along these lines. His approach, however, limits the use of
dynamic RPC marshalling to one language, C++, and puts the burden of writing much
of the boiler plate code of communication, such as marshalling stubs and server loops,
back on the developer.

When I discussed access control in Section 3.5.1 I argued that access control is best
implemented in the component functions. This discussion assumes that access control
is based on a simple subject, object, action matrix. Another form of access control
is to implement a stateful server. In the interface specification a valid sequence of
function calls is defined with syntax similar to regular expressions. The IDL compiler
computes from this valid sequence a state machine. Requests received by a server are
matched to the state machine and allowed or rejected depending on the current state
of the connection. Because a server should service multiple clients in parallel, it has to
identify a connection to track the connection’s state. Still, this approach does not hinder
applications to use different interfaces provided by the same thread.
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Appendix A

Performance Measurement
Results

A.1 Performance of Stub-Code Generator for Fiasco

A.1.1 GCC version 3.4

The following number were measured on an Intel Celeron processor. The stubs have
been compiled using gcc version 3.4 and were running on Fiasco.

interface::method IDL4 Flick dynrpc Dice

2 words

ore notify::rx notify 4009 – 2383 1825
dm generic::close 2059 2430 3104 2058
rmgr::init ping 3167 2463 2339 2058
rmgr::get task 3746 2434 2340 2076
rmgr::get irq 3188 2425 2327 2071
rmgr::free fpage 2577 2469 2315 2074
ts::free 3758 3106 3086 2084
ts::exit 3749 2442 2353 2052
verner::setPlaybackMode 3761 2482 2618 2073
verner::setFxPlugin 3754 2434 2617 2075
overlay::input listener 1989 3107 2334 2088
overlay::window listener 4331 3131 2331 2108
overlay::create window 2576 2425 2336 2081
overlay::destroy window 3735 2427 2331 2098
overlay::open window 3150 2429 2338 2106
overlay::set background 3181 2400 2350 2081

3 words

dm generic::check rights 4177 3170 3100 2080
dm generic::transfer 4178 3143 3092 2079

continued on next page...
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interface::method IDL4 Flick dynrpc Dice

dm mem::size 4778 3146 3790 2039
dm mem::resize 3585 3169 3084 2081
ts::allocate 4170 3125 3053 2062
ts::kill 3550 3115 3074 2055
ts::owner 4153 3149 3057 2097
con vc::smode 3008 3221 3043 2090
con vc::setfb 4160 3177 3072 2087
con vc::direct update 4163 3147 3037 2084
verner::setVolume 4163 3162 3318 2061

4–13 words

dm generic::share 3618 3136 3105 2083
dm mem::physaddr 6095 3890 3802 2065
dm phys::poolsize 4821 3148 3099 2053
verner::changeQAP 5484 3882 3806 2103
verner::getPosition 4141 3139 5277 2073
overlay::open screen 4170 3148 3120 2124
overlay::refresh screen 4162 3128 3070 2075
dm phys::pagesize 5487 3890 3792 2043
overlay::get screen info 4756 3149 3120 2125
overlay::stack window 4142 3095 3069 2089
con vc::gmode 4759 3302 3230 2216
verner::connect 4271 3893 3824 2150
overlay::place window 4728 3103 3069 2121
con vc::get rgb 4811 3274 3120 2175
nitevent::event 5653 3093 3092 1899
names::register 3212 3155 3240 2155
names::query name 6330 4540 3991 2744
rmgr::task new 5452 3859 3860 2078
verner::start 4746 3167 3155 2083
names::register thread 3785 3151 3243 2137
names::query id 5416 3972 4298 2422
dm mem::open 6222 4483 3944 2671

5 words and an indirect part of 20 words

log::outstring 4360 3205 3346 3236

258–267 words

rmgr::get task id 6197 3878 3977 4053
rmgr::set task id 3728 3163 3286 3375
ts::create 6254 3994 4068 4148
dope::exec cmd 4954 3260 3330 3466
overlay::map screen 5381 3351 3977 3614
dope::exec req 6809 3980 4770 5318

continued on next page...
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interface::method IDL4 Flick dynrpc Dice

515 words

dope::init app 5003 3195 3428 4337

266 words and an indirect part of 1KB size

dopeapp::event 4336 3238 3295 3525

4–5 words and an indirect part of 4KB size

ore rxtx::send 6775 – 4283 4968
ore rxtx::recv 52827 – 50069 17902

6 words including a flexpage

dm generic::fault – 7197 – 7093

7 words including a flexpage

dm generic::map – 7202 – 7081

Table A.1: Performance of different stubs compiled with gcc-
3.4

A.1.2 GCC version 2.95

The following number were measured on an Intel Pentium 4. The generated stubs were
running on Fiasco and have been compiled with gcc version 2.95.

interface::method IDL4 Flick Dice

2 words

ore notify::rx notify 10138 – –
dm generic::close 10902 6970 5512
rmgr::init ping 8043 6912 5630
rmgr::get task 19134 14055 13920
rmgr::get irq 9495 7048 5512
rmgr::free fpage 9435 7022 5463
ts::free 9530 10505 10428
ts::exit 9456 6949 5394
verner::setPlaybackMode 10356 7432 6436
verner::setFxPlugin 10327 7432 6333
overlay::input listener 9585 10575 10391
overlay::window listener 8124 10576 10393
overlay::create window 8124 7124 5493
overlay::destroy window 10997 7073 5442
overlay::open window 8109 7017 5441
overlay::set background 8168 7022 5435

3 words

dm generic::check rights 18750 10597 10429
dm generic::transfer 18718 10557 10431
dm mem::size 15887 10654 5552

continued on next page...
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interface::method IDL4 Flick Dice

dm mem::resize 15877 10710 10454
ts::allocate 15917 10665 10412
ts::kill 17147 10500 10432
ts::owner 15816 10456 10372
con vc::smode 17238 10427 10572
con vc::setfb 17145 10555 10582
con vc::direct update 17238 10580 10605
verner::setVolume 18007 11051 11295

4–13 words

dm generic::share 17333 10563 10394
dm mem::physaddr 24706 14126 13829
dm phys::poolsize 17270 10842 10515
verner::changeQAP 21958 14084 14069
verner::getPosition 19225 15808 15761
overlay::open screen 15820 10695 10358
overlay::refresh screen 14298 10631 10413
dm phys::pagesize 21902 14011 10657
overlay::get screen info 15968 10462 10573
overlay::stack window 18802 10595 10321
con vc::gmode 17265 10921 11025
verner::connect 26243 14106 14329
overlay::place window 18620 10524 10389
con vc::get rgb 17184 10956 10916
nitevent::event 19281 10458 9706
names::register 23242 10687 11071
names::query name 32724 15781 16060
rmgr::task new 8015 6737 5507
verner::start 18686 10486 10676
names::register thread 20374 10693 11040
names::query id 26191 14359 14666
dm mem::open 31088 15645 15757

5 words and an indirect part of 20 words

log::outstring 25246 10597 13597

258–267 words

rmgr::get task id 26644 14088 14275
rmgr::set task id 26100 10796 10870
ts::create 28102 14304 14802
dope::exec cmd 24835 10743 11223
overlay::map screen 24706 10960 11929
dope::exec req 34052 14267 15622

515 words

continued on next page...
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interface::method IDL4 Flick Dice

dope::init app 23708 10815 11251

266 words and an indirect part of 1KB size

dopeapp::event – 10828 13906

4–5 words and an indirect part of 4KB size

ore rxtx::send 28100 – –
ore rxtx::recv 38087 – –

6 words including a flexpage

dm generic::fault – 18949 18801

7 words including a flexpage

dm generic::map – 18931 18933

Table A.2: Performance of different stubs compiled with gcc-
2.95

A.2 Performance of Stub-Code Generator for Hazelnut

interface::method IDL4 Dice Dice with inlining

2 words

ore notify::rx notify 4091 4303 4175
dm generic::close 4110 4331 4374
rmgr::init ping 4106 4459 4362
rmgr::get task 4106 4443 4371
rmgr::get irq 4102 4376 4451
rmgr::free fpage 4106 4459 4367
ts::free 4102 4395 4358
ts::exit 4106 4370 4375
verner::setPlayback 4046 4286 4263
verner::setFxPlugin 4046 4379 4219
overlay::input listener 4206 4568 4431
overlay::window listener 4210 4572 4435
overlay::create window 4210 4708 4620
overlay::destroy window 4210 4548 4587
overlay::open window 4206 4548 4503
overlay::set background 4210 4551 4576

3 words

dm generic::check rights 4106 4403 4279
dm generic::transfer 4106 4287 4403
dm mem::size 4114 4423 4359
dm mem::resize 4106 4391 4371
ts::allocate 4110 4387 4258

continued on next page...
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interface::method IDL4 Dice Dice with inlining

ts::kill 4110 4339 4379
ts::owner 4102 4368 4357
con vc::smode 4086 4449 4399
con vc::setfb 8885 4399 4359
con vc::direct update 8889 4463 4378
verner::setVolume 4044 4346 4307

4–13 words

dm generic::share 8895 9078 9080
dm mem::physaddr 13873 14174 14030
dm phys::poolsize 8934 9304 9160
verner::changeQAP 13837 14078 13986
verner::getPosition 13460 – –
overlay::open screen 9126 9460 9354
overlay::refresh screen 9132 9493 9346
dm phys::pagesize 9033 9208 9160
overlay::get screen info 9198 9438 9304
overlay::stack window 9184 9511 9396
con vc::gmode 9064 9258 9227
verner::connect 13885 14272 14103
overlay::place window 9106 9465 9304
con vc::get rgb 8968 9268 9304
nitevent::event 9080 9160 9112
names::register 9450 9871 9741
names::query name 10909 11394 11136
rmgr::task new 9110 9369 9358
verner::start 8980 9158 9305
names::register thread 9281 9692 9580
names::query id 10840 10128 9950
dm mem::open 15693 17292 17163

5 words and an indirect part of 20 words

log::outstring 9454 9672 9736

258–267 words

rmgr::get task id 9435 10354 10208
rmgr::set task id 9441 10278 10321
ts::create 9511 10241 10297
dope::exec cmd 9650 10383 10184
overlay::map screen 28562 11207 10921
dope::exec req 138792 16464 16476

515 words

dope::init app 9623 11037 10997

266 words and an indirect part of 1KB size

continued on next page...
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interface::method IDL4 Dice Dice with inlining

dopeapp::event 9557 11016 11076

4–5 words and an indirect part of 4KB size

ore rxtx::send 19633 19913 19732
ore rxtx::recv – 14361 14468

5 words including a flexpage

rmgr::get page0 7433 12551 12727

6 words including a flexpage

dm generic::fault 12308 12818 12679

7 words including a flexpage

dm generic::map 17623 18020 17869

Table A.3: Performance of different stubs running on L4 ver-
sion X.0

A.3 Comparing Hardware Architecture

interface::method P1 P3 P4 Celeron CoreDuo

rdstc 24 34 84 66 66

2 words

ore notify::rx notify 4084 2256 5214 1825 1867
dm generic::close 5348 2601 5483 2058 2054
rmgr::init ping 5458 2581 5468 2058 2057
rmgr::get task 5205 2613 5581 2076 2080
rmgr::get irq 5196 2659 5526 2071 2058
rmgr::free fpage 5623 2656 5381 2074 2072
ts::free 5250 2653 5770 2084 2082
ts::exit 5355 2696 5822 2052 2049
verner::setPlayback 5605 2668 5498 2073 2074
verner::setFxPlugin 5386 2662 5587 2075 2069
overlay::input listener 5184 2635 5709 2088 2083
overlay::window listener 5208 2694 5613 2108 2107
overlay::create window 5406 2705 5649 2081 2072
overlay::destroy window 5684 2754 5599 2098 2080
overlay::open window 5088 2641 5625 2106 2079
overlay::set background 5221 2669 5639 2081 2055

3 words

dm generic::check rights 5249 2588 5431 2080 2070
dm generic::transfer 5178 2589 5433 2079 2076
dm mem::size 5364 2629 5502 2039 2045
dm mem::resize 5317 2600 5439 2081 2066

continued on next page...
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interface::method P1 P3 P4 Celeron CoreDuo

ts::allocate 5431 2655 5677 2062 2057
ts::kill 5244 2726 5677 2055 2054
ts::owner 5206 2714 5805 2097 2055
con vc::smode 5307 2659 5504 2090 2090
con vc::setfb 5364 2717 5530 2087 2071
con vc::direct update 5477 2633 5403 2084 2059
verner::setVolume 5491 2676 5539 2061 2062

4–13 words

dm generic::share 5437 2666 5508 2083 2046
dm mem::physaddr 5505 2633 5567 2065 2059
dm phys::poolsize 5251 2630 5546 2053 2080
verner::changeQAP 5727 2716 5610 2103 2096
verner::getPosition 5636 2749 5505 2073 2084
overlay::open screen 5048 2692 5595 2124 2117
overlay::refresh screen 5081 2648 5660 2075 2057
dm phys::pagesize 5221 2649 5541 2043 2059
overlay::get screen info 5204 2766 5632 2125 2124
overlay::stack window 5203 2670 5713 2089 2090
con vc::gmode 5397 2853 5674 2216 2220
verner::connect 5709 2750 5568 2150 2107
overlay::place window 5146 2672 5612 2121 2086
con vc::get rgb 5453 2723 5643 2175 2173
nitevent::event 4101 2311 5119 1899 1949
names::register 8466 2959 5892 2155 2297
names::query name 6152 3292 7588 2744 2883
rmgr::task new 5447 2693 5484 2078 2050
verner::start 5808 2741 5491 2083 2077
names::register thread 5758 3019 5926 2137 2276
names::query id 7683 3896 6974 2422 2736
dm mem::open 14313 5867 10857 2671 4559

5 words and an indirect part of 20 words

log::outstring 9811 4160 7460 3236 3294

258–267 words

rmgr::get task id 13801 5562 9447 4053 3998
rmgr::set task id 11642 4734 8117 3375 3394
ts::create 14543 5803 9968 4148 4094
dope::exec cmd 12035 4723 8059 3466 3468
overlay::map screen 11547 5345 8655 3614 3624
dope::exec req 15406 6588 10414 5318 4542

515 words

dope::init app 15013 5610 20061 4337 4507

continued on next page...
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interface::method P1 P3 P4 Celeron CoreDuo

266 words and an indirect part of 1KB size

dopeapp::event 12017 5322 8521 3525 3582

4–5 words and an indirect part of 4KB size

ore rxtx::send 19377 6947 9757 4968 4937
ore rxtx::recv 41570 20573 50418 17902 17719

5 words including a flexpage

rmgr::get page0 19162 11201 14221 6436 6038

6 words including a flexpage

dm generic::fault 21963 12227 15231 7093 7644

7 words including a flexpage

dm generic::map 22162 12188 15382 7081 6694

Table A.4: Performance of Dice stubs on different Intel pro-
cessors

interface::method Opteron Turion Athlon64

rdstc 10 10 9

2 words

ore notify::rx notify 2096 2099 1738
dm generic::close 2472 2474 2056
rmgr::init ping 2685 2513 2072
rmgr::get task 2494 2495 2143
rmgr::get irq 2491 2495 2063
rmgr::free fpage 2496 2499 2063
ts::free 2496 2498 2063
ts::exit 2498 2501 2026
verner::setPlayback 2540 2543 2100
verner::setFxPlugin 2712 2540 2112
overlay::input listener 2560 2568 2071
overlay::window listener 2774 2598 2065
overlay::create window 2539 2547 2068
overlay::destroy window 2583 2589 2069
overlay::open window 2585 2589 2077
overlay::set background 2544 2548 2068

3 words

dm generic::check rights 2476 2478 2061
dm generic::transfer 2475 2481 2055
dm mem::size 2490 2494 2071
dm mem::resize 2482 2486 2059
ts::allocate 2518 2520 2031
ts::kill 2512 2515 2066

continued on next page...
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interface::method Opteron Turion Athlon64

ts::owner 2693 2522 2069
con vc::smode 2607 2612 2078
con vc::setfb 2585 2617 2077
con vc::direct update 2570 2571 2076
verner::setVolume 2568 2569 2101

4–13 words

dm generic::share 2495 2499 2059
dm mem::physaddr 2517 2520 2076
dm phys::poolsize 2502 2508 2077
verner::changeQAP 2613 2613 2177
verner::getPosition 2565 2569 2084
overlay::open screen 2622 2629 2079
overlay::refresh screen 2579 2585 2097
dm phys::pagesize 2536 2542 2092
overlay::get screen info 2790 2619 2092
overlay::stack window 2696 2635 2100
con vc::gmode 2854 2687 2206
verner::connect 2663 2665 2213
overlay::place window 2626 2633 2098
con vc::get rgb 2662 2667 2183
nitevent::event 2354 2352 1899
names::register 2764 2769 2247
names::query name 3056 3063 2490
rmgr::task new 2611 2614 2064
verner::start 2662 2663 2192
names::register thread 2946 2774 2199
names::query id 3389 3394 2737
dm mem::open 4378 5178 4623

5 words and an indirect part of 20 words

log::outstring 3434 3424 3507

258–267 words

rmgr::get task id 4207 4266 4284
rmgr::set task id 3485 3493 3485
ts::create 4227 5173 4485
dope::exec cmd 3606 3613 3630
overlay::map screen 3608 3677 3738
dope::exec req 4696 4789 4692

515 words

dope::init app 4252 4251 4289

266 words and an indirect part of 1KB size

dopeapp::event 3808 3817 3835

continued on next page...



A.4. COMPARING COMPILER VERSIONS 113

interface::method Opteron Turion Athlon64

4–5 words and an indirect part of 4KB size

ore rxtx::send 5057 4891 4939
ore rxtx::recv 18012 18563 18024

5 words including a flexpage

rmgr::get page0 6335 6349 6260

6 words including a flexpage

dm generic::fault 7509 8079 7007

7 words including a flexpage

dm generic::map 7239 7960 6913

Table A.5: Performance of Dice stubs on different AMD
processors

A.4 Comparing Compiler Versions

interface::method 3.3 3.4 4.1 4.2 4.3

2 words

ore notify::rx notify 5254 5252 5184 5221 5081
dm generic::close 5817 5559 5627 5588 5634
rmgr::init ping 5694 5487 5485 5462 5542
rmgr::get task 5864 5596 5655 5547 5791
rmgr::get irq 5629 5528 5472 5412 5643
rmgr::free fpage 5657 5380 5535 5457 5581
ts::free 6011 5776 5791 5731 5780
ts::exit 5702 5841 5670 5630 5716
verner::setPlayback 5657 5480 5548 5387 5550
verner::setFxPlugin 5638 5478 5501 5449 5530
overlay::input listener 5645 5680 5651 5623 5665
overlay::window listener 5661 5611 5602 5683 5660
overlay::create window 5635 5672 5620 5620 5666
overlay::destroy window 5643 5595 5655 5587 5686
overlay::open window 5677 5622 5691 5616 5659
overlay::set background 5649 5620 5683 5572 5688

3 words

dm generic::check rights 5726 5472 5577 5629 5574
dm generic::transfer 5853 5480 5572 5514 5577
dm mem::size 5803 5551 5602 5572 5573
dm mem::resize 5911 5497 5645 5580 5580
ts::allocate 6058 5709 5641 5727 5726
ts::kill 5948 5677 5746 5652 5826

continued on next page...
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interface::method 3.3 3.4 4.1 4.2 4.3

ts::owner 5920 5829 5794 5717 5805
con vc::smode 5729 5479 5491 5497 5674
con vc::setfb 5664 5532 5533 5459 5609
con vc::direct update 5698 5399 5598 5503 5612
verner::setVolume 5641 5494 5494 5430 5487

4–13 words

dm generic::share 5899 5538 5583 5575 5562
dm mem::physaddr 5825 5517 5615 5590 5599
dm phys::poolsize 5254 5570 5554 5617 5657
verner::changeQAP 5775 5544 5454 5414 5602
verner::getPosition 5613 5447 5371 5361 5559
overlay::open screen 5810 5594 5605 5685 5704
overlay::refresh screen 5786 5641 5646 5694 5653
dm phys::pagesize 5802 5520 5627 5590 5621
overlay::get screen info 5832 5640 5717 5655 5686
overlay::stack window 5768 5636 5699 5642 5708
con vc::gmode 5899 5685 5594 5537 5647
verner::connect 5759 5493 5456 5443 5105
overlay::place window 5766 5588 5771 5656 5668
con vc::get rgb 5786 5602 5469 5498 5666
nitevent::event 5188 5146 5038 5203 5525
names::register 6094 6083 6160 6015 5973
names::query name 7686 7675 7518 7654 7584
rmgr::task new 5653 5483 5489 5443 5575
verner::start 5685 5471 5683 5556 5536
names::register thread 6135 5983 6023 6165 6112
names::query id 7295 7057 7171 7135 7153
dm mem::open 11413 11113 10857 10892 10928

5 words and an indirect part of 20 words

log::outstring 7973 7491 7510 7498 7689

258–267 words

rmgr::get task id 9966 9391 9199 9098 9682
rmgr::set task id 8700 8134 7713 7754 8422
ts::create 10060 9993 9974 9932 9829
dope::exec cmd 8466 8086 7977 7771 8075
overlay::map screen 8839 8636 8871 8999 8507
dope::exec req 10632 10457 10453 10275 10071

515 words

dope::init app 14637 20054 8885 8736 9205

266 words and an indirect part of 1KB size

dopeapp::event 8971 8514 8356 8161 8506

continued on next page...
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interface::method 3.3 3.4 4.1 4.2 4.3

4–5 words and an indirect part of 4KB size

ore rxtx::send 10057 9721 9884 9920 9808
ore rxtx::recv 50888 50505 165054 163490 166490

5 words including a flexpage

rmgr::get page0 14627 14289 14522 14504 14482

6 words including a flexpage

dm generic::fault 15769 15372 15424 15859 15317

7 words including a flexpage

dm generic::map 15830 15477 15410 15903 15397

Table A.6: Performance of stubs compiled with different com-
piler versions

A.5 Comparing Stub-Code Generators for Pistachio

interface::method IDL4 Dice

2 words

ore notify::rx notify – 6287
dm generic::close 2150 2567
rmgr::init ping 2239 2541
rmgr::get task 2357 2573
rmgr::get irq 2347 2525
rmgr::free fpage 2347 2551
ts::free 2171 2531
ts::exit 2035 2273
verner::setPlayback 2168 2559
verner::setFxPlugin 2197 2467
overlay::input listener 2065 2435
overlay::window listener 2065 2461
overlay::create window 1992 2435
overlay::destroy window 2059 2423
overlay::open window 2058 2457
overlay::set background 2059 2437

3 words

dm generic::check rights 2177 2577
dm generic::transfer 2187 2607
dm mem::size 2180 2609
dm mem::resize 2178 2655
ts::allocate 2161 2428
ts::kill 2166 2786

continued on next page...
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interface::method IDL4 Dice

ts::owner 2157 2597
con vc::smode 2154 2611
con vc::setfb 2069 2647
con vc::direct update 2064 2531
verner::setVolume 2218 2616

4–13 words

dm generic::share 2179 2627
dm mem::physaddr 2229 2671
dm phys::poolsize 2225 2613
verner::changeQAP 2263 2653
verner::getPosition 8097 5219
overlay::open screen 2133 2606
overlay::refresh screen 2046 2501
dm phys::pagesize 2173 2703
overlay::get screen info 2105 2467
overlay::stack window 2058 2495
con vc::gmode 2150 2615
verner::connect 2210 2654
overlay::place window 2045 2597
con vc::get rgb 2102 2672
nitevent::event – 6550
names::register 7906 3036
names::query name 8387 3230
rmgr::task new 2307 2854
verner::start 2217 2579
names::register thread 8002 2991
names::query id – 3555
dm mem::open 8281 8781

5 words and an indirect part of 20 words

log::outstring 2018 8309

258–267 words

rmgr::get task id 8161 8425
rmgr::set task id 8319 8262
ts::create 8286 9099
dope::exec cmd – 8472
overlay::map screen – –
dope::exec req – –

515 words

dope::init app – 13912

266 words and an indirect part of 1KB size

dopeapp::event – 13651

continued on next page...
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interface::method IDL4 Dice

4–5 words and an indirect part of 4KB size

ore rxtx::send – 17176
ore rxtx::recv – 43993

5 words including a flexpage

rmgr::get page0 – 4962

6 words including a flexpage

dm generic::fault – 5237

7 words including a flexpage

dm generic::map – 5409

Table A.7: Performance of different stubs on Pistachio (L4
version X.2)

A.6 Comparing Stub-Code Generators for Linux sockets

interface::method rpcgen dynrpc Dice

2 words

ore notify::rx notify 39284 54105 31434
dm generic::close 39625 42807 43720
rmgr::init ping 39676 42710 43740
rmgr::get task 40316 42587 46390
rmgr::get irq 39858 42689 43810
rmgr::free fpage 40000 42693 43736
ts::free 41670 42494 44252
ts::exit 39575 42641 44189
verner::setPlayback 39816 42619 41980
verner::setFxPlugin 39610 43068 41949
overlay::input listener 39913 45855 44473
overlay::window listener 39927 44561 44310
overlay::create window 39498 44438 47013
overlay::destroy window 39697 44350 44288
overlay::open window 39503 44401 44281
overlay::set background 41003 44460 44340

3 words

dm generic::check rights 39857 42909 46340
dm generic::transfer 40248 42746 45148
dm mem::size 39913 44236 43585
dm mem::resize 39943 42816 43731
ts::allocate 40230 43100 47119
ts::kill 40598 43260 44127

continued on next page...
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interface::method rpcgen dynrpc Dice

ts::owner 40327 44836 44322
con vc::smode 40326 42944 41928
con vc::setfb 40236 43381 44626
con vc::direct update 40858 43022 41985
verner::setVolume 40023 42688 41865

4–25 words

dm generic::share 40428 43054 43638
dm mem::physaddr 42639 42869 43646
dm phys::poolsize 40089 42723 43602
verner::changeQAP 40677 42741 41941
verner::getPosition 40020 43087 42395
overlay::open screen 41628 44326 45208
overlay::refresh screen 40264 44289 45766
dm phys::pagesize 40439 42822 45650
overlay::get screen info 40275 44172 44390
overlay::stack window 40329 44682 44427
con vc::gmode 42131 42554 42062
verner::connect 41703 42905 46195
overlay::place window 40399 44559 44372
con vc::get rgb 40553 42583 42082
nitevent::event 41120 42977 37369
names::register 42672 43423 43880
names::query name 42084 44643 42471
rmgr::task new 43114 43044 45319
verner::start 41628 44481 42183
names::register thread 42145 43040 44877
names::query id 45513 44155 43387
dm generic::map 41350 42865 43841
dm generic::fault 40586 42709 43732
dm mem::open 42847 43228 47606
log::outstring 42232 43005 43017

258–267 words

rmgr::get task id 42438 43009 48681
rmgr::set task id 42235 44448 51870
ts::create 44757 43082 49074
dope::exec cmd 41947 43170 54402
overlay::map screen 40278 44633 49651
dope::exec req 42748 43780 56457

up to 1024 words

dope::init app 42633 44712 57443
dopeapp::event 42799 42888 60256

continued on next page...
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interface::method rpcgen dynrpc Dice

Table A.8: Performance of different stubs for Linux sockets
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