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Abstract

Early developed non-bulk Fe-based glasses, e.g. Fe-Cr(-Mo)-metalloid(s), exhibit extraor-

dinary corrosion resistance, but low glass formation ability (GFA). Newly developed bulk

glass-forming Fe-based alloys have on the contrary high GFA, but also very different

compositions and therefore their corrosion behaviour is expectedly not similar. Fundamental

investigations regarding corrosion behaviour were performed for one of the most prominent

bulk glassy alloy, namely (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5. Particularly, the

free corrosion and the anodic polarization behaviour, the passivation ability and the pitting

susceptibility have been assessed in electrolytes with varying pH values and anion species

concentrations. Due to its monolithic single phase microstructure this alloy has a much

lower corrosion rate in acids than a two-phase conventional steel (DIN X210Cr12) with

much higher content of passivating Cr, i.e. 11.4 at. %. However, the high concentration of

electrochemically active Mn and B as well as the unfavourably high Mo to Cr concentration

ratio determine a higher corrosion rate of this bulk glassy alloy in strong alkalis and also a

very poor passivation ability in acids. On the contrary, the high content of Mo has a positive

influence on the pitting resistance by inhibiting very effectively the propagation of pits

occurring at Y2O3 inclusions. Detailed microscopic analysis investigations by HRSEM and

in-situ AFM revealed the formation of characteristic morphological features at the micro-

and nanometre scale on the surface of samples exposed to acidic solutions. These were

explained by selective dissolution of active elements, e.g. Mn, B. This study demonstrated

the necessity to investigate the corrosion properties of newly developed bulk glass-forming

Fe-based alloys - they are not per-se highly corrosion resistant, but their corrosion behaviour

depends on their particular chemical composition.

Kurzfassung

Früh entwickelte, nicht-massive amorphe Eisenbasislegierungen, z.B. Fe-Cr(-Mo)-

Metalloid(e), zeigen bemerkenswerte Korrosionsbeständigkeit, aber niedrige Glasbil-

dungsfähigkeit (englisch: glass-forming ability, GFA). Neu entwickelte massiv-glasbildende

Eisenbasislegierungen haben im Gegenteil eine höhere GFA, aber auch sehr unterschiedliche

Zusammensetzungen und deshalb ist ihr Korrosionverhalten wie zu erwarten nicht änlich.

Grundlegende Untersuchungen des Korrosionsverhaltens einer der bekanntesten mas-

siven amophen Legierung, nämlich (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5, wurden



vorgenommen. Insbesondere wurde das Augenmerk auf das freie Korrosions- und das anodis-

che Polarisationsverhalten, die Passivierungseigenschaften und die Anfälligkeit gegenüber

Lochfraß in Elektrolyten mit verschiedenen pH-Werten und Anionenkonzentrationen

gerichtet. Aufgrund ihres einphasig monolitischen Gefüges zeigt diese Legierung in Säuren

eine viel niedrigere Korrosionsgeschwindigkeit als die eines zweiphasigen herkömmlichen

Stahls (DIN X210Cr12) mit viel höherem Gehalt an passivierendem Cr, d.h. 11.4 at. %.

Der höhere Gehalt an electrochemisch aktivem Mn und B sowie das nachteilige Verhältnis

von Mo zu Cr Konzentration sind für eine höhere Korrosionsgeschwindigkeit dieser massiven

amorphen Legierung in konzentrierten Alkalien sowie eine geringere Passivierungsfähigkeit

in Säuren verantwortlich. Der hohe Gehalt an Mo hat jedoch einen positiven Einfluss auf die

Lochfraßbeständigkeit - er hindert sehr wirksam das Wachstum der an Y2O3-Einschlüssen

gebildeten Löcher. Detaillierte mikroskopische Untersuchungen durch HRSEM und in-situ

AFM zeigten die Bildung charakteristischer Morphologien im Mikrometer- und Nanometer-

bereich auf der Oberfläche von Proben, die starken Säure ausgesetzt waren. Dieses wurde

durch selektive Auflösung aktiver Elemente, z.B. Mn, B, erklärt. Diese Arbeit unterstreicht

die Notwendigkeit, die Korrosionseigenschaften der neu entwickelten, massivglasbildenden

Eisenbasislegierungen zu untersuchen - diese sind nicht per-se ‘hochkorrosionsbeständig’,

stattdessen hängt ihr Korrosionsverhalten vielmehr von ihrer besonderen chemischen

Zusammensetzung ab.
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1 Introduction

Fe-based bulk metallic glasses (BMGs) are regarded as having a high potential for industrial

applications due to the high availability and relatively low cost of the main alloying element,

Fe, and their outstanding properties, e.g. high strength, elastic modulus and hardness, in

part very good magnetic properties, and expected high corrosion resistance, which are not

achievable by conventional crystalline alloys [1–6]. Recently, their previous size limitation has

been greatly overcome by the discovery, that minor additions of rare earth elements signif-

icantly improve their glass formation ability (GFA) [1, 7, 8]. Furthermore, by adding small

amounts of rare earth elements, commercial raw materials and low vacuum conditions (even

air atmosphere) may be used to successfully fabricate some Fe-based bulk glassy alloys [7, 9–

12]. These practical advantages contribute to further lowering of the costs of these alloys

[13]. However, limited environmental stability can dramatically determine the applicability

of any material, but this aspect was so far scarcely assessed for this new class of Fe-based

bulk glassy alloys. One of the most prominent examples at the time of beginning of this work

(2007), (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5, also entitled as ‘structural amorphous

steel’, was chosen to fundamentally study the corrosion behaviour. This glassy alloy with

maximum sample thickness of 12 mm has high thermal stability (T g = 804 K), high strength

(∼ 3 GPa) and hardness (1224 HV), and is non-ferromagnetic at ambient temperatures (T c

= ∼ 55 K) [1].

In the early days of amorphous metals, a large number of research studies had been devoted

to the development of Fe-based amorphous alloys with excellent corrosion-resistant properties

[14]. It was especially observed that several of those can exhibit corrosion resistance superior

to that of stainless steels. For example, exceptional resistance was demonstrated for amor-

phous Fe-Cr-Mo-metalloid alloys with distinct compositions which passivate spontaneously

even in hot concentrated hydrochloric acid [14] or Fe-Ni-Cr-Mo-B alloys which exhibit ex-

cellent passivation behaviour in acid solutions up to 250°C [15]. But this first generation of

amorphous Fe-based alloys possessed only low glass forming ability and thus, could be ob-

tained only as thin or small products e.g. ribbons, foils, flakes, powders or films. In order

to overcome the size limitation of this first generation, the second generation of alloys that

are bulk glass-formers was recently developed. However, most of them were predominantly

designed for attaining other properties, e.g. for combining high GFA and excellent mechanical
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performance, rather than for corrosion resistance. Therefore, these alloys have substantially

different compositions compared to earlier ones, e.g. they contain reactive Mn, and have usu-

ally lower concentrations of beneficial Cr and P [16]. Although those compositional variations

are expected to have quite a critical influence on long term stability under applicative condi-

tions, the corrosion behaviour of bulk glassy Fe-based alloys has been scarcely studied so far.

The global aim of this work was to fundamentally analyze the corrosion behaviour of the

bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy in different aqueous environ-

ments at room temperature. More specifically, the following aspects have been considered:

free corrosion, anodic polarization behaviour, passivation ability and pitting susceptibility.

Additionally, as explained in the next two paragraphs, some more detailed investigations

were performed.

Ideally, amorphous alloys are regarded as being structurally and chemically homogeneous, i.e.

they are free from secondary phases or inclusions which could initiate galvanic or localized

corrosion processes [17]. However, in practice the presence of defects in cast samples can not

be completely avoided, at least in commercial production. Not surprisingly, several studies re-

vealed that some BMGs have high pitting susceptibility and pits are initiated at the interface

between such defects and the surrounding matrix [18]. Furthermore, amorphous alloys can

be regarded as single-phase solid solutions, often exceeding the solubility limits of alloying

elements at equilibrium. Obviously, this characteristic yields differences in their behaviour

compared to equilibrium crystalline alloys. Also, their higher concentration of metalloids

compared to conventional crystalline alloys can significantly alter their corrosion behaviour,

depending on the nature of the metalloids and on the other constituent elements of the alloy

[19]. Therefore, in order to identify the corrosion performance of a glassy alloy clearly, a direct

comparison to that of relevant crystalline states is indispensable. The following aspects were

considered for comparison: anodic polarization behaviour, passivation ability and pitting be-

haviour.

For classical crystalline metals and alloys, the morphology of corroded surfaces is strongly

influenced by structural factors such as crystal orientation, grain boundaries, precipitates etc.

The surface morphology is determined by locally varying corrosion rates. Sites which are cor-

roding at a higher rate will appear as valleys, while those corroding at a lower rate will appear

as hills. Depending on their orientation, grains of polycrystalline alloys have different corro-

sion rates. Grain boundaries and precipitates can also exhibit different corrosion rates [20]. In

addition to determining the morphology of corroding surfaces, heterogeneities in the material

are often recognized as preferential sites for initiation of corrosion, especially pitting corrosion

[21]. Contrary to crystalline alloys, amorphous alloys are principally missing those structural

particularities and therefore, they are thought as chemically and structurally homogeneous

materials. The questions arise then: how is an active corrosion process on the surface of such

a homogeneous amorphous alloy initiated and how does the morphology of such a corroding
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surface evolve? In order to analyze this, morphological studies by using in-situ and ex-situ

observation techniques are required. Only few such studies have been reported for metallic

glasses so far. For example, Green et al. [22] studied in-situ the initial stages of pitting on

Zr50Cu40Al10 surfaces with the help of optical microscopy. In another study, Wang et al.

[23] used atomic force microscopy (AFM) to characterize and compare the morphology of

amorphous and crystalline Ni50Nb50 surfaces in order to understand the breakdown of pas-

sive films. In the case of Fe-based glasses, observations of morphology evolution of corroded

surfaces have been limited to ex-situ SEM investigations of alloy surfaces mainly subjected to

pitting or crevice corrosion [24–30]. In a separate chapter, it will be demonstrated, based on

newly established in-situ AFM studies, that active dissolution reactions yield characteristic

morphological features of the glassy alloy surface on the micro- and nanometre scale.

This way a comprehensive description of the active dissolution behaviour, the passivation

ability and the pitting behaviour of this new bulk-glass forming Fe-based alloy will be given

and the underlying reaction mechanisms will be discussed. This case study allows to draw

some generalized conclusions of the principal corrosion activity of new Fe-based BMGs –

and problems related to that – and to evaluate their corrosion performance and application

potential as long term stable engineering material in comparison to conventional Fe-based

alloys.
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2 Theoretical background

2.1 Metallic glasses

2.1.1 Fundamental considerations on glass formation

Crystalline alloys are characterized by an ordered arrangement of atoms which extends much

beyond one unit cell. It is therefore said to have short, medium and long range order (SRO,

MRO and LRO). When a crystalline alloy melts, it loses its LRO and usually the packing of

atoms becomes less dense and the mobility of atoms increases. Correspondingly, the volume

is higher while the viscosity is lower in the liquid state than in the solid crystalline state. In

the case of pure metals, the variation of these properties with temperature as well as of other

properties such as enthalpy and entropy is discontinuous [31]. Above the melting temperature,

the liquid is in a state of equilibrium. When cooled, the liquid will crystallize again after it

undercooled below the equilibrium crystallization temperature necessary to overcome the

energy barrier for formation of nuclei. Properties such as volume and viscosity will vary

discontinuously upon crystallization as shown in Fig. 2.1. However, some metallic melts, if

cooled rapidly enough, will not undergo crystallization, but instead they will freeze in a liquid-

like structural state known as amorphous or glassy state. In this case, as the liquid is cooled

to lower and lower temperatures, the driving force for nucleation is continuously increasing

while the mobility of atoms is continuously decreasing which is reflected in the continuous

increase of viscosity as shown in Fig. 2.1(b). The decrease in mobility accompanies a decrease

of free volume of the liquid which is reflected by a continuous decrease of volume as shown in

Fig. 2.1(a). Below the equilibrium melting temperature, the liquid – now called supercooled

liquid, is no longer in stable equilibrium, but in metastable equilibrium. If crystallization is

prevented long enough, the liquid will eventually ‘freeze’. In this regime, the temperature

dependence of volume and viscosity will change its trend (Fig. 2.1). Conventionally, it is

considered that the undercooled melt becomes a glass when its viscosity reaches the value

of 1012 Pa·s. Below this freezing regime, called the glass transition, the structure remains

virtually unchanged and volume and viscosity depend only slightly on temperature. The glass

transition does not take place at a distinct temperature, but in a temperature interval called

glass transition range. The glass transition temperature, Tg, is determined by the intersection
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2.1 Metallic glasses

crystal
TmTg

Vg

Vl

Vx

Temperature

V
o
lu

m
e

glass

undercooled
liquid

(a)

TmTg

Temperature

V
is

c
o
s
it
y

glass

undercooled
liquid

crystal

(b)

Figure 2.1: Dependency of (a) volume and (b) viscosity of an alloy in the undercooled liquid, glassy
and crystalline states.

point of the extrapolated dependencies of some properties, e.g. volume, in the undercooled

liquid region and in the glass region as shown by the dotted lines in Fig. 2.1(a). Tg is not a

thermodynamically defined temperature and it depends on the cooling rate. The higher the

cooling rate is, the higher the Tg value will be. According to Fig. 2.1(a) it is deduced that

the volume of the glass, Vg, will be higher when produced with a higher cooling rate and

more free volume remains trapped in the atomic structure. This means that also the final

structural state of the glass depends on the cooling rate. It also results that the glass does

not have a fixed free enthalpy, but this depends also on the cooling rate. The glass will then

tend to release the extra-energy that it stored and achieve a reference glassy state which has

minimum energy. This reference glassy state corresponds to the minimum cooling rate for

which the undercooled liquid can be vitrified.

2.1.2 Glass forming ability of metallic alloys

The ability of an alloy to be obtained in a glassy state during undercooling of a melt is

called the glass forming ability (GFA). It results from the discussion in section 2.1.1 that

the ability to form a glass is higher, the more the undercooled liquid is stabilized against

crystallization. From a fundamental perspective, this can be analyzed under severals aspects

which are addressed in the following.

Thermodynamic aspects Figure 2.2 shows a schematic representation of the temperature

dependence of the free enthalpy for a liquid alloy (L) and for the corresponding crystalline

solid (S). Upon cooling the liquid alloy, it will solidify as a crystalline solid at the melting
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2.1 Metallic glasses
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Figure 2.2: Schematic representation of free enthalpy of the liquid and crystalline solid states in
dependence of temperature at constant external pressure.

temperature Tm. With further decrease of temperature the free enthalpy will follow curve S.

However, for some conditions e.g. rapid cooling, the liquid state of the alloy will persist at

temperatures below the melting temperature (the undercooled liquid state). This state has a

higher energy than the crystalline state. Therefore the system naturally tends to achieve the

crystalline state. In order to prevent this and to maintain the undercooled liquid state to lower

temperatures, the driving force for crystallization ∆Gl−s must be low. As the temperature

of the system decreases, the undercooled liquid will eventually freeze in a solid glassy state

as explained in section 2.1.1. In conclusion, it is more favourable to have lower ∆Gl−s for

achieving higher undercooling and therefore high GFA. By definition, ∆Gl−s = ∆Hf − T ·

∆Sf , where ∆Hf is the enthalpy of fusion and ∆Sf is the entropy of fusion. It results that

∆Gl−s is small when ∆Hf is small and ∆Sf is large. ∆Hf is low for low melting temperatures

and therefore, for compositions at and close to deep eutectics. ∆Sf is high for alloys with

many constituent elements.

Kinetic aspects Crystallization takes place by crystal nucleation followed by crystal growth.

In order to minimize the tendency for crystallization and therefore, increase the GFA, the rate

of nucleation should be low. Turnbull [32] derived an equation for the nucleation rate, I, in

the case of homogeneous nucleation from an undercooled melt assuming identical composition

of melt and nuclei and spherical shape of nuclei:

I =
k

η
exp

−bα3β

Tr(∆Tr)2
eq. (2.1)
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2.1 Metallic glasses

where k is a kinetic constant, η is the viscosity of the undercooled melt, b is a geometric

constant, α and β are parameters related to the solid/liquid interfacial energy γs−l, and to

the entropy of fusion Sm, respectively, Tr is the reduced temperature T
Tm

, and ∆Tr is the

reduced undercooling Tm−TTm . When the term α3β is large, the nucleation rate, I, will be low.

This is so when the interfacial energy, γs−l, is large, the fusion enthalpy, δHf , is low and the

fusion entropy, δSm, is large. It also results from eq. (2.1) that the higher the undercooling

is, the higher the nucleation rate and therefore, the tendency for crystallization. Finally, the

nucleation rate I depends on the viscosity of the undercooled melt, η, which changes dramat-

ically during undercooling. In accordance with eq. (2.1), if the viscosity of the undercooled

melt, η, is high, the tendency for nucleation is lower and therefore, the GFA is high.

Another way of expressing the kinetics of glass formation is with the help of time-temperature-

transformation (TTT) diagrams which are determined isothermally or with the help of

continuous-cooling-transformation (CCT) diagrams. Such a diagram is shown schematically

in Fig. 2.3. When a melt is cooled below the melting temperature, Tm, it becomes an un-

melt

undercooled
melt

glass

crystal

Time, t

T
e
m

p
e
ra

tu
re

,
T

Tg

Tm

GFA increase

Figure 2.3: Schematic TTT/CCT diagram with cooling curve.

dercooled melt as shown in Fig. 2.3. This domain is limited on the right-hand side by the

crystallization ‘nose’, which limits at its left-hand side the domain of crystalline phases. In

order to prevent crystallization, the cooling has to be done as fast as to avoid intersecting

the cooling curve with the domain for crystalline phases. Depending on the position of the

crystallization nose with respect to the time axis, the required cooling rates for preventing

crystallization can be very different. The more the nose is shifted to longer time scales, the

higher is the GFA. Glassy alloys of the first generation require very high cooling rates, e.g.

106 K/s, and are produced by rapid quenching techniques, while new bulk glass formers do
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2.1 Metallic glasses

not require very high cooling rates, e.g. 1 K/s, and can be produced by slow cooling like Cu

mould casting.

Structural aspects As stated in section 2.1.1 the atomic arrangement of a glass is similar

to that of the undercooled melt. It was stated by several authors that in order to stabilize

this arrangement and to prevent rearrangements to an ordered crystalline structure, size mis-

matches between the constituent atoms over certain values are necessary. Actually, Cahn and

Greer stated that the atomic size is the single factor that plays the major role in determining

GFA [33]. Already in the sixties, it was discovered that a sufficient atomic size mismatch is

necessary for preventing the formation of a crystalline structure [34]. A critical value of ∼15%

was found to fit the results [33]. This value was later confirmed by Simpson and Hodkinson

in their simulation study [35]. Calculations of the microscopic stress level at the scale of

individual atom groups in dependence of solute concentration showed that, while the strain

energy in a crystalline phase increases steadily with solute concentration, it does not vary

much in a glass [33]. It was concluded that beyond a critical solute content, a glassy phase

would be more favourable than a crystalline one. Another approach takes into consideration

the free volume which supports atomic motion. Therefore, the less free volume is present

in the undercooled melt, the least atomic motion takes place which is necessary for crystal

growth. Thus, according to Yavari [36], if the volume change during melting is low, the melt

contains little free volume and consequently, the GFA is higher.

Empirical rules Stabilization of the supercooled liquid state to the disadvantage of crys-

talline phases, meaning higher GFA, involves, according to a summary of Inoue [37], three

empirical rules: (i) the alloy has to be multi-component consisting of more than three ele-

ments, (ii) significant atomic size mismatches of over ∼12 % among the main three elements,

and (iii) negative heats of mixing among the main three elements.

GFA criteria High GFA ability enables a glass to be formed from the melt with a relatively

slow cooling rate. However, as explained above, if the melt cools too slowly crystallization oc-

curs. The minimum cooling rate for which a glass can still be obtained is called critical cooling

rate Rc. It follows that the lower the critical cooling rate, Rc, the larger is the thickness of a

glassy sample that could be obtained. The largest thickness of the sample that is still glassy

is called maximum sample thickness, Dmax. However, using two parameters for evaluating

GFA in the empirical search for new alloy compositions with high GFA is a lengthy and

costly way because it requires several casting trials with various cooling rates. Therefore, to

quantify the GFA several criteria derived from the thermal properties of known systems have

been proposed [38]. The most frequently used criteria are: (i) the reduced glass transition

8



2.1 Metallic glasses

temperature, Trg = Tg/Tl, (ii) the supercooled liquid range, ∆Tx = Tx − Tg, and (iii) the

parameter γ = Tx/(Tg + Tl), where Tg, Tx, and Tl are the glass transition temperature, the

onset of crystallization temperature and the liquidus temperature, respectively. The higher

the reduced glass transition temperature Trg is, the higher is the GFA. The value of this

parameter takes values in the interval 0.4–0.7 for known metallic glasses [39]. For bulk glass

forming alloys, defined as having a Dmax>1 mm, Trg is >0.5. A high ∆Tx simply means a

higher resistance of a glassy state/undercooled liquid to crystallization. Typical values for

recent Fe-based BMGs are in the interval 40–50 K [38]. However these two criteria, Trg and

∆Tx, are limited in thoroughly expressing the GFA. The Trg criterion reflects the formation

conditions of a glass, but not the thermal stability of that glass. On the contrary, the ∆Tx cri-

terion considers only the thermal stability, but not the formation conditions. The γ-parameter

instead considers both these aspects. Typical γ values for BMGs are in the interval 0.35–0.5.

Table 2.1 shows exemplarily the values of these three parameters for several BMGs including

some Fe-based alloys. It can be seen that the Fe-based BMGs together with the Co-based

ones have the highest Tg and Tx values meaning that they are stable and can be used in a

larger temperature interval. However, Fe-based BMGs do not have the best GFA, e.g. they

have lower Dmax values than some Pd- and Zr-based BMGs and lower Trg and γ values than

most of the other BMG systems. Their resistance to crystallization expressed by ∆Tx can be

classified as average.

Table 2.1: Values of the three criteria, Trg, ∆Tx and γ, for selected BMGs [38].

Alloy composition Tg, Tx, Tl, Dmax, Trg ∆Tx, γ

K K K mm K
Cu50Zr43Al7 721 792 1176 4 0.6131 71 0.4175

Mg58.5Cu30.5Y11 422 496 762 9 0.5538 74 0.4189
La62Cu12Ni12Al14 423 452 744 12 0.5686 29 0.3873
Pd40Cu30Ni10P20 577 656 836 72 0.6901 79 0.4642

Ti50Zr15Cu9Ni8Be18 622 662 1009 6 0.6165 40 0.4059
Co48Cr15Mo14C15B6Er2 848 933 1394 10 0.6083 85 0.4162

Zr41.2Ti13.8Cu12.5Ni10Be22.5 623 672 996 50 0.6255 49 0.4151
[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 820 870 1397 5 0.5870 50 0.3924

Fe41Co7Cr15Mo14C15B6Y2 838 875 1436 16 0.5836 37 0.3848
Fe48Cr15Mo14C15B6Er2 844 880 1446 8 0.5837 36 0.3843

Fe65.5Cr4Mo4Ga4P12C5B5.5 745 806 1322 3 0.5635 61 0.3899

(Fe44.3Cr5Co5Mo12.8Mn12 813a 861a 1410a 12b 0.5766 48 0.3873
C15.8B5.9)98.5Y1.5

a From Ref. [40]. b From Ref. [1]
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2.1 Metallic glasses

2.1.3 Structure of metallic glasses

The atomic arrangement of metallic glasses does not exhibit any long range order (LRO) with

translational symmetry as it is characteristic for conventional crystalline materials. However,

they do have short- to medium-range ordered states (SRO, MRO). SRO develops over the first

coordination shell in distance which is usually <0.5 nm. MRO refers to over-next neighbour

arrangements and extends further to distances of over 1 nm [41]. In the case of a monolithic

glass, the SRO and MRO control its properties, such as the initiation of plastic flow. Un-

derstanding how the atoms are packed in metallic glasses is not straightforward. Initially,

structural models were proposed in order to describe the arrangement of atoms in metal-

lic glasses. However, these models, like Bernal’s dense random packing of hard spheres [42]

or Gaskell’s model based on trigonal prismatic structural units [43], have many limitations

and are now regarded as unsatisfactory. The present understanding is that, at the atomic

level, glasses are organized in cluster-like structural units [44, 45]. These are geometrically

different, not identical in topology. Although there are more possibilities for the geometry of

these ‘clusters’ (topological SRO), their chemical order is clearly defined, namely they are

centred in a solute atom. As an example, Fig. 2.4 shows the packing of several neighbouring

solute-centered quasi-equivalent clusters sharing one or more atoms for three metallic glasses.

It can be seen that although the various clusters are topologically different, they all have a

solute atom at the center.

Ni B81 19 Ni P80 20 Zr Pt84 16

Figure 2.4: The packing of the solute-centred quasi-equivalent clusters in Ni81B19, Ni80P20 and
Zr84Pt16. FS, ES and VS denote face-sharing, edge-sharing and vertex-sharing, respec-
tively. The red dashed circles delineate the clusters [44].

Going further, in the medium-range scale, these quasi-equivalent clusters form a superior

level packing giving rise to MRO. There is not yet complete agreement on the type of pack-

ing of clusters in metallic glasses. For example, for systems with icosahedral SRO units, e.g.

Zr-based, Miracle proposed f.c.c and h.c.p. MRO packing [45], while Sheng et al. stated that

an icosahedral packing of SRO clusters is more favourable [44].
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2.1 Metallic glasses

According to Inoue [5], the atomic configurations differ among the metal-metal, metal-

metalloid and Pd-metalloid type alloys. The glassy structure in the case of metal-metal

type glasses in Zr-, Hf- and Ti-based systems is composed of icosahedral clusters, while

the metal-metalloid-type glassy alloys in Fe-TM(Ln)-B and Co-TM-B (TM = Zr, Hf, Nb,

Ta) systems have a long-range network-like structure consisting of trigonal prisms [39]. As

shown in Fig. 2.5, the trigonal prisms that form the network-like structure are connected

densely with each other in an edge-sharing mode through multi-bonding atoms of TM or

Ln. The atomic arrangement of metal-metalloid type glasses is addressed here in more detail

since the alloy studied in this work is of this type. One of the first studies in this regard

Figure 2.5: Schematic illustration of atomic configurations in Fe-Ln-B and Fe-TM-B (TM = Zr,
Hf, Nb, Ta) glassy alloys [39].

was conducted by Gaskell [43], who proposed an atomic structural model based on trigonal

prismatic units which have a metalloid atom at the centre and six metal atoms at the ver-

tices. Further, these units are connected randomly sharing edges. This structure is similar

to that of crystalline borides, carbides, phosphides and silicides which form when typical

metal-metalloid glasses are provoked to crystallize. This is an argument which sustains the

validity of this model. However, since that time compositions of metal-metalloid glasses have

become increasingly more complex and therefore, more evolved descriptions than Gaskell’s

model were required. Nakamura et al. [46], investigated the structure of Fe70M10B20 (M =

Cr, W, Nb, Zr and Hf) amorphous alloys by X-ray diffraction, anomalous X-ray scattering

and extended X-ray absorption fine structure, and concluded that the local atomic structure

consists of similar structural units as in Gaskell’s model. B atoms sit at the centre of the

prisms and Fe atoms sit at the vertices while M atoms replace some of the Fe atoms. Another

study focused on the more complex alloy composition Fe70-xCo10LnxB20 (x = 0 and 3, Ln

= Sm, Tb and Dy) [47]. This study agrees on the trigonal prism-like ordering proposed by

Nakamura et al. for the Fe70M10B20 glasses. However, it was additionally stated that the Ln
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2.1 Metallic glasses

atoms determine a disordering of the larger range network formed by these prisms. The Ln

atoms are expected to sit between the prisms, but further experimental studies regarding

especially the neighborhood of Ln atoms are required to clarify this. Experimental structural

studies of the more recent bulk metallic glasses like the one studied in this work are very

difficult because of their high number of component elements. A simplified application of

the present knowledge of the atomic structure of metal-metalloid glasses to the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy would give the following: the structure is

formed of trigonal prisms which have Fe, Cr, Co, Mo and Mn at their vertices, C or B atoms

at the centre and neighboring prisms share edges to form a network-like structure while Y

atoms sit between the prisms. Having a principle idea about the atomic structure of the glass

under investigation is an important prerequisite for the explanation of corrosion phenomena

at the nanoscale as it will be demonstrated at the end of this work.

2.1.4 Properties of metallic glasses

As shown in section 2.1.3, amorphous alloys have unique structural features. Additionally,

they have unusual compositions with constituent concentrations often beyond the solubility

limits of the related crystalline phases. It is therefore expected, and this is actually the case,

that they exhibit unusual properties. In the following, thermal, mechanical and soft magnetic

properties are addressed. Their corrosion behaviour is considered in more detail in a separate

section (see section 2.2).

Thermal behaviour Upon continuous heating, metallic glasses exhibit a reverse of under-

cooling events which took place during their formation (see section 2.1.1). One experimental

method frequently used to study the thermal behaviour of metallic glasses is differential scan-

ning calorimetry (DSC). In this experiment the sample is continuously heated with a given

rate and the difference in the amount of heat required to increase the temperature of the

sample and that of a reference sample is measured as a function of temperature. In this way,

endo- and exothermic events can be detected. Figure 2.6 shows a schematic DSC curve for

a metallic glass. An endothermic event sets in at a certain temperature regime which is at-

tributed to the glass transition into the state of an undercooled melt. The mostly considered

onset temperature is a characteristic temperature and it is called the glass transition tem-

perature Tg. The undercooled liquid state will be stable until crystallization will occur which

is marked in the DSC curve by an exothermic event, as seen in Fig. 2.6, starting at the onset

temperature Tx. Crystallization may take place sequentially meaning that more crystalline

phases are formed and this is marked by the presence of more exothermic peaks in the DSC

curve. Nevertheless, a single peak does not mean that a single crystalline phase was crystal-

lized. One peak can correspond to the crystallization of more phases. The temperature range

12
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Figure 2.6: Schematic DSC curve for a metallic glass.

in which the undercooled liquid state is present is called the supercooled liquid region and is

usually denoted by the symbol ∆Tx (∆Tx = Tx − Tg). A large ∆Tx value can mean that the

undercooled liquid state is highly resistant against crystallization which in turn indicates a

high GFA (see section 2.1.1). Further heating of the metallic glass leads to its melting which

is detectable in the DSC curve as one or more endothermic peak(s) (Fig. 2.6). This knowledge

of the thermal behaviour of metallic glasses can be utilized, e.g. for the development of BMG

composites with crystalline phase(s) formed by heat treatment of the BMG, for thermoplastic

forming of BMG samples on the macro- and microscale utilizing the softening effect which

occurs in the supercooled liquid regime [48].

Mechanical properties Metallic glasses exhibit a very different mechanical behaviour de-

pending on their viscosity which in turn depends on temperature as explained in 2.1.1. While

at temperatures below the glass transition temperature (T < Tg) the viscosity is very high

and the deformation is inhomogeneous via shear band formation, at temperatures higher than

the glass transition temperature (but lower than the first crystallization temperature) defor-

mation takes place by a homogeneous flow mechanism [49]. At T ≪ Tg metallic glasses exhibit

very high strength values, a relatively low Young’s modulus and a high elastic strain limit.

Figure 2.7 shows fracture strength and E-modulus values for a series of bulk glassy alloys and

comparatively, for some conventional alloys [50]. As it can be seen, Fe-based BMGs have a

much higher strength than conventional crystalline Fe-based alloys, e.g. super high-strength

steels. As well, it can be seen that BMGs have an elastic strain limit of around 0.02 which
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Figure 2.7: Relationship between tensile or compressive fracture strength and E-modulus for some
bulk glassy alloys and comparatively for some conventional crystalline alloys [50].

is higher than the one corresponding to conventional crystalline alloys, i.e. 0.0065. However,

a big disadvantage of metallic glasses in general is their lack of macroscopic plasticity at

temperatures below the glass transition temperature which severely limits their application.

There is however microscopic plastic deformation occurring in metallic glasses. The fracture

surfaces of metallic glasses usually exhibit a vein-like morphology which is typical for ‘ductile

fracture’, but this is on a much finer scale than in materials which fracture after significant

macroscopic deformation. On the contrary, at T > Tg (and < Tx), considerable macroscopic

plastic deformation is observed and this aspect is benefited from in thermoplastic forming

as mentioned in the previous paragraph. Contrary to the inhomogeneous mechanism at low

temperature where strain is concentrated locally in shear bands, in the case of a homogeneous

flow mechanism each volume element undergoes the same strain [49].

Soft magnetic properties Ferromagnetism is characterized by spontaneous magnetization,

i.e. the spins of all magnetic electrons in a material are spontaneously aligned parallel due

to exchange interaction between neighbouring magnetic atoms which are in close contact. As

the short range order of amorphous alloys does not significantly differ from that of crystalline

alloys (see section 2.1.3), it follows that parallel alignment of electronic spins on a long
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2.1 Metallic glasses

range scale is possible although there is no long range order of atoms. Some amorphous

alloys have remarkable soft magnetic properties such as very low coercivity and losses. In

general, the magnetic behavior of soft magnetic materials is governed by domain wall pinning

at heterogeneities such as grain boundaries, precipitates and inclusions [51]. This explains

the very low coercivity of some amorphous alloys which principally lack all of the above

heterogeneities. Values of coercivity, Hc, for several Fe-based BMGs are given in Table 2.2.

Additionally, values of Curie temperature, TC , and saturation polarization, Js, are given.

2.1.5 Recent Fe-based bulk metallic glasses

Compared with most other bulk glassy alloy systems such as Zr- and Pd-based bulk metallic

glasses, the Fe-based ones offer some important advantages: much lower material costs, higher

strength, better corrosion resistance, and higher thermal stability (the glass transition temper-

atures, Tg, are close to or above 900 K) [1]. The first Fe-based BMG, i.e. Fe73Al5Ga2P11C5B4,

was developed in 1995 by Inoue et al. [52]. But up to 2004, a major obstacle to the feasi-

bility of Fe-based bulk glasses was their limited GFA, i.e. the maximum diameter achievable

at that time by Cu-mold casting was 4 mm [53]. This was greatly overcome by the discov-

ery, that minor additions of rare earth elements significantly improve their GFA [1, 7, 8].

This improvement has several reasons: Y adjusts the composition closer to an eutectic [7], Y

scavenges the O (oxygen) impurity from the alloy via the formation of yttrium oxides [7], Y

destabilizes the metastable Fe23C6 phase which usually forms firstly when Fe-based BMGs

devitrify [8]. Furthermore, by adding small amounts of rare earth elements, commercial raw

materials and low vacuum conditions (even air atmosphere) may be used to successfully fab-

ricate some Fe-based bulk glassy alloys [7, 9–12]. These practical advantages contribute to

further lowering the cost of these alloys [13]. Due to these positive aspects, their potential

for engineering applications significantly increased. At present, one major inconvenient of

Fe-based bulk glasses remains their relatively high brittleness. Efforts are made to improve

their ductility [54]. Table 2.2 shows a list of selected Fe-based bulk glasses and some main

thermal, mechanical and magnetic characteristics. As it can be seen in the table, the alloy

investigated in this work has one of the largest critical diameter. Still, up to the present, only

one alloy, i.e. Fe41Co7Cr15Mo14C15B6Y2, has a larger critical diameter, i.e. 16 mm. In terms

of thermal and mechanical characteristics, the (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5

alloy has medium values compared to other Fe-based bulk glasses except for the elastic

modulus which is the highest among the selected compositions. Depending on their com-

position their Curie temperature takes values in a large interval, i.e. 55− 732 K, meaning

that at room temperature Fe-based BMGs can be soft-magnetic or non-ferromagnetic. The

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 bulk metallic glass, which was subject of this

study, is non-ferromagnetic at room temperature.
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2.1 Metallic glasses

The bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy In 2004, Lu et al. [1]

reported firstly on the bulk glass forming (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy.

This was the most prospective among the first Fe-based glassy alloys of the so-called bulk

amorphous steels family (BAS). Table 2.2 shows comparatively values for some characteris-

tics of this alloy and other Fe-based bulk glassy alloys. For this particular composition a

maximum amorphous sample thickness of 12 mm was obtained by Cu mold casting express-

ing its extremely high GFA. Its thermal behaviour was investigated by differential scanning

calorimetry (DSC) and showed that at a heating rate of 0.33 K/s the glass transition tem-

perature T g is as high as 804 K [1] which was confirmed subsequently by Siegel, i.e. 813 K

[40] and by Gostin et al. [55], i.e. 814.8 K (both measured at 0.33 K/s as well). Further ther-

mal parameters are given in Table 2.2. Figure 2.8 shows the DSC curve of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy [55]. As seen in Fig. 2.8 the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy has a complex crystallization sequence in-

dicating that it devitrifies in multiple crystalline phases. Siegel conducted a systematic study

Figure 2.8: DSC curve of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy [55].

consisting of structural analysis by XRD and TEM of this bulk glassy alloy after various

annealing treatments at temperatures above Tx1 [40].
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Table 2.2: Thermal, mechanical and magnetic properties of selected Fe-based bulk glasses.
(a) and (b) reported as 12 and 11.7 GPa, respectively. Transformed to HV considering a factor of 0.009807.

composition, Dmax, T g, ∆T x, T x, Tm, T l, σy, σf , E, ǫpl, HV TC , Js, Hc, Publ. Ref.

at% mm K K K K K GPa GPa GPa % K T A/m Year

Fe73Al5Ga2P11C5B4 1 732 53 785 - - - - - - - 606 1.26 82 1995 [52]

Fe65.5Cr4Mo4Ga4P12C5B5.5 3 757 60 817 1251 - 2.82 2.8 161 0.15 - - 0.78 62 2002 [56, 57]

Fe30Cr30Mo15C15B10 1 940 69 1009 - - extraordinary corrosion resistance 2002 [58]

corrosion rate <10µm/year in 12M HCl

Fe41Co7Cr15Mo14C15B6Y2 16 838 50 888 1387 1437 - 3.5 - - 1253 - - - 2005 [9]

[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 7.7 822 41 863 - - - - - - 1223a 732 1.13 ≤20 2006 [59, 60]

Fe66Nb4B30 2 845 31 876 - 1451 - 3.8 - - 1193b 550 1 1.5 2006 [61, 62]

Fe48Cr15Mo14C15B6Er2 12 843 50 893 - 1443 - 4.2 213 0 - - - - 2007 [54]

(Fe0.432Co0.288B0.192Si0.048Nb0.04)96Cr4 3 833 41 874 1416 3.9 4.01 200 0.70 1038 - 0.811 0.6 2008 [63]

(Fe0.76Si0.096B0.096P0.048)96Cr4 3 773 54 827 1250 1370 - - - - - - 1.29 2.4 2008 [64]

Fe74Mo4P10C7.5B25Si2 5 729 37 766 1211 1266 2.8 3.2 - 4.3 - - 1.19 - 2009 [65]

(Fe44.3Cr5Co5Mo12.8Mn12C15.8B5.9)98.5Y1.5 12 804 - - 1344 1411 3000 257 - 1224 55 2004 [1]

(Fe44.3Cr5Co5Mo12.8Mn12C15.8B5.9)98.5Y1.5 - 813 48 861 1349 1410 - 1200-1400 226 0 1218 - - - 2010 [40]

(Fe44.3Cr5Co5Mo12.8Mn12C15.8B5.9)98.5Y1.5 - 814.8 47.2 861 - - - - - - - - - - 2009 [55]
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When the annealing treatment is performed at a temperature above all crystallization

events, e.g. 1273 K, so that the sample is completely devitrified, mainly three phases were

detected: M23(B,C)6, Mo3(Co,Fe)3C and Mo12(Co,Fe)22C10. According to the original paper

[1], at room temperature this alloy has a compressive strength of ∼3 GPa. Subsequent

measurements performed on as many as 30 samples revealed that its compressive strength

takes values in a wide interval, i.e. 1.2− 4 GPa [40]. Furthermore, this bulk glassy alloy is

very hard (1224 HV). However, a big disadvantage of this alloy is that it is very brittle. Rod

samples with cross-section >3 mm diameter produced by Cu-mold injection break apart

when taken out of the mold due to strong internal stresses which may be caused by cooling

rate gradients [40]. This effect is more pronounced at larger diameters of the rod. The rods

with diameter of 3 mm as the one used in this work, did not have this problem. Although its

extreme brittleness severely limits its applicability, due to its unusual composition and high

GFA, this BMG is a very interesting target for fundamental studies of properties.

2.2 Corrosion of amorphous and crystalline alloys

The environmental stability of a material is a determining factor for its applicability. Without

stability in the environment to which the material is exposed during service, no otherwise

useful property can be exploited. Degradation of materials can be brought about by various

processes such as dry oxidation, aqueous corrosion, a combination of these and mechanical

stresses, etc. [66]. Among these, this thesis will address exclusively aqueous corrosion reac-

tions at room temperature. The compositional and structural particularities of glassy alloys as

compared to the crystalline ones, can determine significant differences in corrosion rates and

mechanisms. These will be discussed fundamentally in this section. The main particularities

that can affect corrosion processes of metastable alloys are: thermodynamic metastability,

particular composition, e.g. metalloid content, and chemical homogeneity and defect struc-

ture. Firstly, a basic approach is done in terms of mixed potential theory. In this theory

[67], any electrochemical corrosion reaction can be divided in partial oxidation and reduc-

tion reactions which occur delocalized at the electrode surface. Under free corrosion or open

circuit conditions, meaning that no polarization is applied to the electrode, the rate of the

oxidation reactions must be equal to the rate of the reduction reactions. In Fig. 2.9, this is

shown for the simple case of an unnoble metal, M, immersed and actively dissolving in an

acid electrolyte. In this example, there are two electrode reactions: one is eq. (2.2), the metal

electrode reaction, and the other one is eq. (2.3), the hydrogen electrode reaction.

M
ox.
−−⇀↽−−
red.

M z+ + ze− eq. (2.2)
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Figure 2.9: Schematic i-E curves for partial reactions of charge transfer type and resulting mixed
corrosion reaction (dashed dot line) for an unnoble metal in an acid solution.

H2

ox.
−−⇀↽−−
red.

2 H+ + 2 e− eq. (2.3)

where z is the valence of the metal ion. Both reactions are characterized by equilibrium

potentials EoM/Mz+ and EoH+/H2
, and exchange current densities iM/Mz+

o and iH
+

/H2

o . At

equilibrium, each reaction will take place at equal rates in both directions, oxidation and

reduction, and this rate is called exchange current density. When two reactions with different

equilibrium potential take place on the same electrode, as is the case in corrosion, the po-

tential of that electrode will self-regulate to a value between the equilibrium values of those

reactions. This potential is called corrosion potential, Ecorr. Since the potential is no longer

equal to the equilibrium potential of either of the component reactions, either oxidation or

reduction of each component reaction will be enhanced while the other one is retarded. In

the above given example of an unnoble metal, M, immersed in an acid electrolyte, schemati-

cally illustrated in Fig. 2.9, the equilibrium potential of the metal reaction is less noble than

the one of the hydrogen reaction, i.e. EoM/Mz+ < E
o
H+/H2

. Therefore, metal oxidation and

hydrogen reduction will be favored. In accordance with the principle of charge conservation,

no charge can be accumulated on the freely immersed electrode (free corrosion or open cir-

cuit condition). Therefore, the current density of metal oxidation has to be equal to that of

hydrogen reduction. This value is the corrosion current density, icorr.

2.2.1 The effect of metastability

The rate at which the metal oxidation reaction takes place as a function of polarization

(the difference between the applied potential and the equilibrium potential) can be expressed

according to the Tafel law [67]:

ianodic = io · exp
β · z · F · η

R · T
eq. (2.4)
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Figure 2.10: a) Schematic representation of the free energy at the interface metal/electrolyte for
crystalline and glassy alloys; b) schematic i-E curves for glassy and crystalline alloys
when ∆G∗ is the predominant factor.

where β is the symmetry factor, z is the valence of the metal ion, F is the Faraday constant,

η represents the overpotential, R is the gas constant, and T represents the temperature. The

exchange current density of the metal charge transfer reaction, io, is in turn expressed as [68]:

io = z · F ·
k · T

h
·
α ·Ns

NA
· exp(−

∆G∗

R · T
) eq. (2.5)

where k·Th is a frequency factor (about 1012 sec−1), k is the Boltzmann constant, h is the

Plank constant, ∆G∗ is the electrochemical free energy of activation, Ns the number of atoms

per unit surface area (about 1015 sec−2), NA is Avogadro’s number, and α is the fraction

of the total number of surface atoms which are considered to be electrochemically active

sites, i.e. sites which are likely to be candidates for removal by dissolution. In crystalline

metals, α is a function of the crystallographic orientation (ledge and kink density, etc.), the

density of dislocations emerging at the free surface, the grain size, etc. According to basic

considerations of Latanision et al. [68], when comparing a glassy and a crystalline alloy with

the same composition, the glass may be expected to have a smaller α value. Additionally, ∆G∗

may be lower for a glassy metal surface than for a crystalline alloy. As shown schematically

in Fig. 2.10(a), the atoms at a glassy metal surface are in non-equilibrium configuration

and, therefore, sit on higher energy levels than corresponding atoms on a crystalline alloy

surface. This ultimately translates to a lower free energy of activation, ∆G∗, for glassy alloys.

Figure 2.10(b) shows the effect on the polarization curve, if ∆G∗ is the dominant factor.

According to eq. (2.5) a lower ∆G∗ value determines a higher exchange current density, io,

which in turn determines a higher corrosion current density, icorr. This can be expected for

many glassy alloys with AN unnoble main component, but it is hard to detect experimentally
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2.2 Corrosion of amorphous and crystalline alloys

because crystalline counterparts of glassy alloys comprise mostly multiple crystalline phases

and therefore galvanic effects will be superimposed. Heusler and Huerta proved this for Ni2B

and Co3B which they managed to produce in both the glassy and the single-crystalline states

[69]. However, for few alloys, e.g. FeCrPC, the opposite was observed. This is arguably due

to α playing the major role [68]. But no clear proof is given for the assumed smaller α of

glassy alloys as compared to crystalline ones. It is also noted in Fig. 2.10(b) that the corrosion

potential, Ecorr is shifted to less noble values.

2.2.2 The effect of metalloids

Cathodic kinetics can also be different in the case of glassy alloys as compared to crystalline

ones. Similarly to anodic reactions, assuming Tafel behaviour, the rate of cathodic reduction

can be described by [67]:

icathodic = io · exp
(1− β) · z · F · η

R · T
eq. (2.6)

and [68]:

io = z · F ·
k · T

h
·Cs · Vs · exp(−

∆G∗

R · T
) eq. (2.7)

where Cs is the concentration of the electroactive species in the double layer per unit volume

and Vs is the volume of the double layer. No information regarding the influence of structure

on the free energy of activation for reduction reactions was found in the literature. Perhaps

more important for the cathodic kinetics is a high content of metalloids which is typical for

metal-metalloid glasses rather than their metastable state. The exchange current density for

the hydrogen reduction reaction is much lower on metalloid surfaces (typically 10−13 A · cm−2)

than on noble (typically 10−3 A · cm−2) or transition metal surfaces (10−6 A · cm−2) [68]. As

shown in Fig. 2.11, the corrosion rate of a metalloid-containing glass is expected to be lower

than that of a similar crystalline alloy without metalloids. In consequence, the corrosion

potential is expected to be more active.

The increased reactivity of the glassy state may also be responsible for a better passivating

ability [17]. In general, for passive film formation prior active dissolution is necessary for the

accumulation of beneficial metallic ions and anions like OH− at the alloy/electrolyte interface

which precipitate as solid oxides or hydroxides when the solubility limit is reached. Indeed,

starting with the revolutionary finding of Naka et al. in 1974 [70], it was repeatedly found

that in order to passivate, glassy Fe-based alloys require lower concentrations of passivating

elements than conventional crystalline alloys [17].
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Figure 2.11: Schematic i-E curves for glassy and crystalline alloys showing the influence of metal-
loids.

As it is stated at the beginning of this section, when making an approach in terms of the

mixed potential theory, the particular high concentration of metalloids of many metallic

glasses can play a major role for cathodic kinetics. Additionally, the metalloids can have an-

other important effect. The hydrogen evolution reaction occurs in two main steps [68]: firstly,

atomic hydrogen (adatoms) is formed at the electrode surface by an electrochemical reduc-

tion reaction and, secondly, molecular hydrogen is formed by the combination of hydrogen

adatoms. The metalloids inhibit the combination reaction and, therefore, an increased amount

of adsorbed atomic hydrogen remains on the glassy alloy surface [68]. This in turn might dra-

matically enhance the probability of hydrogen being absorbed by the alloy. Not surprisingly,

studies show that some metallic glasses are susceptible to severe hydrogen embrittlement [68].

Finally, metalloids affect the kinetics of passivation and the passive film composition. Various

metalloids, e.g. P, C, B, Si, have different contributions to these aspects of passivity. Many

studies have been performed in this direction, but since most of these focused on Fe-based

alloys, details will be given in the next section dedicated entirely to the corrosion of Fe-based

glasses.

2.2.3 The influence of chemical homogeneity

A well-known often used argument for an expected high corrosion resistance of metallic glassy

alloys is their single-phase nature. Ideally, metallic glasses are regarded as being physically and

chemically homogeneous, i.e. free from structural defects like grain boundaries or dislocations,

secondary phases or inclusions. This idealized image of metallic glasses was argued to cause

benefits such as the formation of laterally uniform passive films and the absence of active

surface sites which could act as preferential spots for localized corrosion initiation [17]. As
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2.2 Corrosion of amorphous and crystalline alloys

well, the absence of secondary phases excludes the possibility of galvanic corrosion, a type

of corrosion often observed for multiphase alloys [71]. However, in practice the presence

of heterogeneities in cast samples cannot be completely avoided especially in commercial

production. Examples comprise gas pockets formed by entrapment of gas bubbles during

production [72] and small crystallites formed due to the presence of oxygen in the melt [73].

Several studies revealed that these heterogeneities or their interface with the glassy matrix

act as pit initiation sites [27, 74–76]. In addition to the above mentioned heterogeneities,

Vishwanadh et al. reported in a recent study [75] that there is a gradient of MRO in the

cross-section of a rod sample of the bulk glassy Zr52Ti6Al10Cu18Ni14 alloy and this also

influences the corrosion behaviour. The gradient of MRO is due to the cross-sectional cooling

rate gradient. The degree of MRO was determined by fluctuation microscopy. It was observed

that the periphery of the cross-section of the rod has a lower degree of MRO than the centre.

Microcell measurements in 0.25 M H2SO4 + 0.025 M NaCl and in 0.025 M HCl at three

locations along the cross-section of the rod showed a decreasing anodic current density with

increasing distance from the centre. It was stated that this can be an effect of the degree of

MRO, i.e. the lower the degree of MRO, the lower the anodic current density.

Corrosion morphology Another interesting aspect regarding the corrosion of glassy alloys

is their corrosion morphology. For classical crystalline metals and alloys, the morphology

of corroded surfaces is strongly influenced by structural factors such as crystal orientation,

grain boundaries, precipitates, etc. The surface morphology is determined by locally varying

corrosion rates. Zones which are corroding at a higher rate will appear as valleys, while

those corroding at a lower rate will appear as hills. Depending on their orientation, grains

of polycrystalline alloys have different corrosion rates as well as grain boundaries and

precipitates corresponding to their varying active dissolution tendency [20]. In addition,

heterogeneities in crystalline materials are often recognized as preferential sites for the

initiation of localized corrosion, especially pitting corrosion [21]. As mentioned earlier,

contrary to crystalline alloys, amorphous alloys are principally missing those structural

particularities and therefore, the questions arise: (i) how is an active corrosion process on

the surface of such a homogeneous glassy alloy initiated and (ii) how does the morphol-

ogy of such a corroding surface evolve? In order to analyze this, morphological studies

using in-situ and ex-situ observation techniques with high resolution are required. Only

few such studies have been reported for metallic glasses. For example, Green et al. [22]

studied in-situ the initial stages of pitting on a glassy Zr50Cu40Al10 surface by optical

microscopy. In another study, Wang at al. [23] used atomic force microscopy (AFM) to

characterize and compare the morphology evolution of amorphous and crystalline Ni50Nb50

surfaces in order to understand the breakdown of passive films. In the case of Fe-based

glasses, morphology observations of corroded surfaces have been limited to ex-situ SEM
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(a) (b)

Figure 2.12: (a) Corrosion rates of the amorphous Fe-10Cr-13P-7C alloy and the grade 304 stain-
less steel in HCl of various concentrations at room temperature [70], and (b) Critical
concentrations of Cr and Mo necessary for spontaneous passivation of glassy Fe-Cr-
Mo-metalloid alloys in HCl of various concentrations and temperatures [14].

investigations of alloys like Fe70Cr10P13C7 and Fe50-xCr16Mo16C18Bx (B = 4, 6 and 8),

mainly subjected to pitting or crevice corrosion in chloride-containing solutions [24–30].

The present work addresses this important issue. Detailed investigations regarding the

evolution of surface morphology during active dissolution have been conducted for the bulk

glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy studied in this work (see section 4.5.

2.3 Corrosion of Fe-based glasses

Among all known metallic glasses, the Fe-based systems have been investigated most in-

tensively regarding their corrosion behaviour. The first fundamental study in the field of

corrosion of metallic glasses was done on Fe-based glasses [70]. In this initial study, it was

discovered that some amorphous alloys can achieve corrosion resistance superior to that of

stainless steels. As it can be seen in Fig. 2.12(a) the glassy Fe-10Cr-13P-7C alloy did not cor-

rode in 10−2–100 M HCl solutions while the conventional stainless steel grade 304 exhibited

significant corrosion rates. Moreover, a similar glassy alloy with only 8 at.% of the passivating

element Cr passivates spontaneously in 2 M HCl and does not suffer from pitting corrosion

by anodic polarization [70]. Due to this initial encouraging finding, much effort was dedicated

to further improving the passivation ability of those glassy alloys through composition opti-

24



2.3 Corrosion of Fe-based glasses

mization. As a result, exceptional corrosion resistance was demonstrated for some alloys, e.g.

Fe-Ni-Cr-Mo-B alloys which exhibit excellent passivating behaviour in acid solutions up to

250◦C [15], or Fe-Cr-Mo-metalloid alloys (metalloids = P, C) with certain compositions which

passivate spontaneously even in hot concentrated HCl [14]. As it can be seen in Fig. 2.12(b),

given sufficient additions of Cr(25 at.%) and Mo (15 at.%), some glassy Fe-Cr-Mo-metalloid

alloys passivate spontaneously even in 12 M HCl at 60◦C. This is remarkable as no commer-

cial crystalline metal except Ta can passivate spontaneously in HCl more concentrated than

1 M (at room temperature) [17]. But this first generation of glassy Fe-based alloys possesses

low glass forming ability and thus, can be obtained only as thin or small products (thickness

≪ 1 mm), e.g. ribbons, foils, flakes, powders or films. In order to overcome the size limita-

tion of this first generation, a second generation of alloys that are bulk glass-formers with

thickness > 1 mm was recently developed. However, they were predominantly designed for

other properties, e.g. for combining high GFA and excellent mechanical performance, rather

than for corrosion resistance. Therefore, these alloys have substantially different compositions

compared to the earlier ones, e.g. many of them contain Mn and have lower concentrations

of Cr and P [16]. Although those compositional variations can have quite a critical influence,

their corrosion behaviour was scarcely studied so far. Therefore, the present work focuses on

one of the alloys of the newest generation as an example case and provides a starting point in

understanding the complex behaviour of these multicomponent high-performance Fe-based

bulk glassy alloys.

In the following, a summary of the previous research done in the field of corrosion of mainly

non-bulk Fe-based glasses is given. In general, studies in this area comprise structural char-

acterization of alloy samples, determination of corrosion and electrochemical parameters by

weight-loss and polarization measurements, surface analytical studies to determine passive

film compositions and some observations of local corrosion damage morphology.

In general, compared to pure Fe, simple Fe-metalloid glasses without a second metallic ele-

ment, e.g. Fe80B20, Fe75B25-xSix, Fe80P13C7, have lower corrosion resistance and also tend to

show poorer ability to passivate during anodic polarization [17, 19, 77]. However, addition

of many metallic elements, except Mn, improves their corrosion resistance. Figure 2.13 shows

the effect of selected alloying element types and concentrations on the corrosion rate of the

Fe80P13C7 glass in 0.1 N HCl and 0.1 N H2SO4 solutions [24]. Hashimoto [17] stated that,

depending on the role they play in increasing the corrosion resistance, they can be classified

in three groups. The first group comprises Cr and Ti which form their own passive film and

contribute to increased corrosion resistance by supporting a stable passive film. The second

group includes elements which are more active than Fe, e.g. V, Mo, W. Their passive region is

less pronounced than that of Fe and their passive films are less stable than those of Fe or Cr.

Accordingly, passive films on Fe-based glasses contain a very low amount of oxidized species of

those elements. They are however beneficial for passivation. In the active potential region of
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2.3 Corrosion of Fe-based glasses

Figure 2.13: Influence of metallic element type and concentration on the corrosion rate of glassy
Fe80P13C7 in 0.1 N HCl and 0.1 N H2SO4 at 30◦C [24].

these alloys, those elements decrease the active dissolution rate because they form corrosion

product films which act as a diffusion barrier against dissolution. Moreover, they assist the

accumulation of passivating species e.g. Fe, Cr, below the above mentioned corrosion product

films, which results in improved passivation ability. However, as will be demonstrated later

for the case of Mo, excess addition of those elements is sometimes detrimental. The third

group includes metallic elements which are more noble than the main element Fe. These are

Ni, Co, Cu, Ru, Rh, Pd, Pt, etc. In principle, upon immersion into a corrosive media, selec-

tive enrichment of the noble metals occurs on the surface which in turn decreases the overall

anodic activity and dissolution rate of the glassy alloy. Also the cathodic activity increases.

Consequently, both the free corrosion resistance and the passivation ability are increased by

alloying with those elements.

The role of Cr A frequently used alloying element in Fe-based glasses, especially in those

designed for corrosion resistance, is Cr. This element was found to be the most effective in

improving the corrosion resistance by causing spontaneous passivation [17]. In general, com-

pared to stainless steels which require at minimum 13 at.% Cr, glassy alloys require a smaller

Cr content for achieving stable passivity. This was principally explained by the chemical ho-

mogeneity of the underlying alloy. In order to better understand the nature of these more

stable passive films, numerous surface analytical investigations have been performed. The

passive film on Cr-rich Fe-based glassy alloys, i.e. with ≥ 10 at.% Cr, was found to consist

mainly of hydrated Cr oxyhydroxide, i.e. CrOx(OH)3-2x · nH2O, where n and x depend on the

alloy composition and the conditions of formation. It is known that the film formed in air on

Fe-Cr alloys, crystalline or glassy, is composed of an outer Fe-rich layer and an inner Cr-rich
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2.3 Corrosion of Fe-based glasses

layer. Anodic passivation leads to dissolution of Fe from the outer layer leaving the passive

film enriched in Cr. The stability of a passive film is often related to its ratio of Cr and Fe

species concentrations which depends on the concentration of Cr in the underlying alloy. For

conventional stainless steels a significant enrichment of Cr species in the passive film occurs

for concentrations of Cr in the alloy above 13 at.%. Remarkably, glassy Fe-Cr based alloys

were observed to have a much higher ability to accumulate Cr species in their passive films,

e.g. 97 % Cr 3+ of cations in the passive film of the Fe70Cr10P13C7 alloy formed in 1 N HCl

[14]. Addition of other metallic elements to Fe-Cr-metalloid glassy alloys can further improve

the corrosion behaviour in some respects. Mo is often used to improve passivity and pitting

resistance [78, 79]. Adding Mo does not change the concentration of Cr-oxyhydroxide in the

passive film. However, it does assist passivation by favouring the accumulation of Cr species

at the surface. In fact, as shown by Habazaki et al. [80], higher concentrations of Mo deter-

mine higher passivation rates and lower quantities of dissolved Cr during passivation. When

a sufficient quantitity of Mo is added, i.e. 7 at.%, almost no Cr is dissolved when the alloy

is potentiostatically polarized in the passive region. The passive film is formed directly from

the air-formed film as a result of selective dissolution of a small quantity of Fe. However, an

excess addition of this otherwise beneficial element can be detrimental [81, 82]. As it can be

seen in Fig. 2.14, passive current density values of bulk glassy Fe75-x-yCrxMoyC15B10 alloys

in 1 N HCl depend dramatically on the concentration of Cr and Mo. As well, it can be seen

Figure 2.14: Anodic polarization curves of bulk glassy Fe75−x−yCrxMoyC15B10 alloys in 1 N HCl
solution open to air at 298 K [82].

that, for constant Cr concentrations, higher Mo concentrations leads to higher passive cur-
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2.3 Corrosion of Fe-based glasses

rent densities meaning poorer protective ability of films. W has a similar beneficial influence

at low concentrations [83]. There are however no data available for higher concentrations to

confirm the detrimental effect at excess additions as it is the case for Mo.

The role of other metallic elements Additions of other metallic elements are especially

beneficial in improving corrosion resistance when a small amount of Cr is present in Fe-P-C

type glasses. This indicates that there is a synergistic effect between Cr and other metallic

elements. It was shown that when replacing a few percents of Fe with Ti, Mn, Nb, V, W or Mo

in the Fe77Cr3P13C7 glass the corrosion rate can become several times lower. Very interesting

in this respect is that additions of 2 at.% of Mo, W, Ti or V to the above mentioned glass

enable the measurement of a complete anodic polarization curve in 1 N HCl, i.e. up to and

beyond the onset of the oxygen evolution reaction (otherwise, the glass with no extra alloying

element is unstable in 1 N HCl). In order to have this ability, ferritic stainless steels require

at least 30 at.% Cr, i.e. 10 times more than the glass [24].

Some attention was paid to the role of Co on corrosion reactions of Fe glasses, since Fe-Co-

based glasses exhibit good soft magnetic properties [30, 50]. As shown in Fig. 2.13, an addition

of Co to the glassy Fe80P13C7 alloy is not as effective as an addition of Cr or other metallic

elements such as V, Ni or Mo. On the contrary, Angelini et al. [30] found that Co increases

the corrosion resistance of Fe80−xCoxB10Si10 glasses presumably due to the formation of

protective films containing Co oxides. The increase is more pronounced when the pH value

of the aggressive medium is lower. Another interesting finding of the same study is that

increasing concentrations of Co determine an increase in the amount of B released into the

solution.

It is obvious from Fig. 2.13 that Mn is the only element which actually deteriorates the

corrosion resistance of the Fe80P13C7 glass. Therefore, not much further effort was devoted

to the investigation of the role Mn plays in corrosion reactions of those early glassy alloys.

Surprisingly, a recent report dedicated to the study of the influence of Mn on magnetism and

corrosion behaviour of the bulk glassy (Fe44Cr10Mo12.5Mn11C15B6Y1.5)100−xMnx (x=0, 2,

4, 8) alloy showed that increasing the Mn content improves the corrosion resistance in 1 M

HCl, e.g. it increases the corrosion potential and lowers the corrosion current density [84].

Recently, it was discovered, as explained already in section 2.1.5 that the GFA of Fe-based

glasses can be greatly improved by small additions of rare earth elements. Consequently,

most of the recently developed Fe-based glassy alloys contain a few percents of those ele-

ments. Their effect on the corrosion behaviour of Fe-based BMGs was so far only scarcely

studied. Recently, it was demonstrated that the stability of passive films grown on bulk glassy

Fe50−xCr15Mo14C15B6Yx (x = 0, 0.5, 1, 1.5, 2) alloys is moderately influenced by the Y con-

centration. Addition of 2 at.% Y increases the open circuit potential by 100 mV and decreases
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the passive current density more than 3 times [85, 86]. Y was found by X-ray photoelectron

spectroscopy (XPS) to be present in the passive film of those alloys. It was also found by

Mott-Schottky measurements that the semiconducting properties of the passive films vary

with the Y content of the alloy. The effect of Y was therefore explained on the basis of dop-

ing theory. It was also suggested that Y can indirectly influence corrosion. Due to its high

affinity for O it is often found to be segregated as Y oxide rich particles in the bulk glassy

Fe48Cr15Mo14C15B6Y2 alloy [26]. These particles in turn act as initiation points for pitting.

However, the dissolution of the alloy matrix was limited to the particle-near regions and did

not propagate further as it is the case for typical pitting corrosion.

The role of metalloids In addition to the metallic constituents, most Fe-based glasses of the

metal-metalloid type contain also a considerable amount (usually 15-25 at.%) of metalloids,

e.g. B, C, Si and P. These elements are necessary for forming/stabilizing the glassy structure.

But, besides this, they are of course expected to play an important role for corrosion since

they have chemical properties which are principally different from those of metals. Compared

to most conventional crystalline Fe-based alloys (steels), the concentration of metalloids in

Fe-based glasses is much higher. As well, conventional steels are usually multiphase while the

glasses are single phase materials. Therefore, the role of metalloids in corrosion reactions at

such high metalloid concentrations was virtually unknown before the development of the first

cast metallic glasses. In consequence, many reports on the topic were published especially in

the 70-80’s [87–90]. These focused mainly on the role of metalloids on the free corrosion rate,

kinetics of passivation, composition of passive films and pitting corrosion. In the following,

each common metalloid is discussed in detail.

One of the first studies compared the influence of B, C, Si and P on the corrosion rate of glassy

Fe70Cr10B13X7 and Fe70Cr10P13X7 alloys [88]. As it can be seen in Fig. 2.15, the corrosion

rate of the glassy Fe-Cr alloys progressively decreases by the addition of Si, B, C and P in 0.1

N H2SO4. Therefore, among the mentioned metalloids, P is the most effective for improving

the corrosion resistance of Fe-based glasses containing Cr. It was revealed that this happens

by promoting passivity [17, 89]. According to Naka et al. [88], P enhances the passivation

ability by accelerating the dissolution rate in the active range and, therefore, promotes the

enrichment of passivating species in the passive film. Later, Virtanen et al. and Elsener et al.

[89, 90] discovered that P facilitates the active-passive transition by forming a porous FePO4

pre-passive film on the alloy surface in the active domain. This pre-passive film blocks the

active sites of the surface and accelerates the hydrogen evolution reaction. The formation of

the actual passive Cr oxide layer takes place in the pores of the pre-passive layer. Phosphates

are also incorporated in small concentrations in the passive film improving its stability against

both dissolution and penetration of aggressive chlorides. It was also argued that the beneficial

effect of P can be attributed to the enrichment of P underneath the passive film. This leads
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(a) (b)

Figure 2.15: Average corrosion rates estimated from the weight loss of amorphous (a)
Fe70Cr10B13X7 and (b) Fe70Cr10P13X7 alloys in 0.1 N H2SO4 at 30 ◦C [88].

to a reduction of the ionic conductivity of the interface film/alloy, therefore enhancing the

stability of the passive film. This sub-film enrichment in P was observed for example by

Chattoraj et al. [91], and Elsener and Rossi [92].

According to Hashimoto [17], C does not greatly accelerate the formation of passive films on

glassy alloys. However, it is not incorporated in the surface film since metal carbonates are

generally soluble in aqueous solutions. Accordingly, C is considered to be the second most

effective metalloid element in improving the corrosion resistance of glassy alloys if they contain

a sufficient amount of passivating element. The ability of Si and B to accelerate the formation

of a passive film is not high. These elements are usually present in the passive film as silicates

and borates [17, 90]. Consequently, the passive film will have a lower concentration of Cr ions

resulting in a lower protective ability. In the potential region of the active/passive transition

the oxidized metalloids (SiO2−
4 , BO−2 ) together with cations form a more or less adherent, gel-

like film with a high ionic conductivity which blocks the dissolution as a membrane inhibitor

[90]. However, two studies were found to contradict the above stated general opinion. In the

case of Si, it was observed that when replacing B in Fe-B and Fe-Ni-B, it actually enhances

the stability of the passive film [77, 93, 94]. More recently, Pang et al. [25], performed a study

on a series of Fe50−xCr16Mo16C18Bx glassy alloys and observed that, although oxidized B is

present in the surface layer, it actually improves the passivation of these alloys by promoting

Cr enrichment in the passive layer.

Pitting corrosion One of the most impressive characteristics of some metallic glasses is their

very high resistance to localized corrosion. Particularly those Fe-Cr glasses which are resistant

to general corrosion and especially those which contain both Cr and P exhibit excellent

resistance to pitting corrosion. Furthermore, Mo improves the pitting resistance of both glassy
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alloys and crystalline steels. Addition of 4 at.% Mo to glassy Fe-MoxP13C7 prevents pitting

in 1 N HCl. It was argued that due to the enhanced reactivity of the amorphous state, rapid

reformation of the passive film at regions, where it is damaged, takes place [95].

An important aspect regarding pitting corrosion is noted here with respect to the maximum

attainable dimensions of glassy samples. In the case of the early Fe-based metallic glasses

which were attainable only as samples with limited thickness (≪ 1 mm), e.g. ribbons, foils,

films, investigations of pitting processes were affected by the fact that the pit growth in depth

is prematurely stopped when the pit tip reaches the opposite surface. In the case of the more

recent Fe-based bulk metallic glasses, pitting investigations can be confidently conducted

because these alloys can be formed in samples with much larger thickness and, therefore,

pitting processes are not affected by size limitations.

Finally, most of the fundamental corrosion studies on Fe-based glasses have been done on

the earlier type. As explained above, the more recent type, the bulky Fe-based glasses, are

different from their earlier versions in some respects, e.g. composition or thickness (affecting

pitting). Therefore, corrosion processes of these newer alloys are expected to be different

from those of their earlier versions. In consequence, new fundamental studies are required to

understand the corrosion processes of Fe-based bulk glasses.

2.4 Corrosion of the constituent elements

A first approximate prediction of the corrosion behaviour of an alloy can be made starting

from fundamental considerations on the corrosion behaviour of its individual constituent

elements. A classical tool frequently employed in the study of corrosion in aqueous media are

the potential-pH diagrams (Pourbaix diagrams) [96]. These diagrams are constructed on a

thermodynamic basis for a given element and allow the prediction of the equilibrium states of

all the possible reactions between this element, its ions and its solid and gaseous compounds in

the presence of water. When the advantages and limitations of such diagrams are understood,

valuable information can be made regarding corrosion reactions. Since these diagrams are

based purely on thermodynamic considerations, additional information regarding the kinetics

is necessary for a more realistic picture.

Fe As it can be seen in Fig. 2.16, the stability domain of Fe has no portion in common

with that of H2O and it is therefore a base metal. Its equilibrium potential is below that

of hydrogen at all pH values and, consequently, it is unstable in the presence of H2O and

many aqueous non-oxidizing solutions. Upon immersion, Fe will corrode releasing Fe+
2 with

the evolution of hydrogen as a cathodic reaction. The dissolution reaction of Fe and other

relevant reactions of this element and of other constituent elements are given in Table 2.3 (at
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Figure 2.16: Potential-pH equilibrium diagram for the system Fe-H2O, at 25◦C (considering as
solid substances only Fe, Fe3O4 and Fe2O3) [96].

the end of this chapter). This reaction is very vigorous in acid solutions, but its rate will

decrease as the pH value of the solution increases. It will almost cease at pH values of

10-13 and Fe will become covered with a film of Fe oxides. At very high pH values, above

13, Fe will corrode in solutions free from oxidizing agents. As the equilibrium diagram in

Fig. 2.16 shows, in the presence of oxidizing agents or upon application of an external anodic

potential, Fe can passivate in acid solutions and in solutions with pH values higher than 13

if its potential is brought to values which are positive enough [96].

In acid solutions, e.g. 0.5 M H2SO4, the anodic polarization curve of Fe appears as the

typical curve for an electrode with active-passive transition [71], as will be also shown later

in this thesis (see section 3.3 and Fig. 3.1): starting with the corrosion potential, Ecorr, there

is an active dissolution range in which the current density, i, increases until it reaches the

diffusion limit followed by a rapid decrease corresponding to passivation and then an increase

corresponding to the oxygen evolution reaction and to transpassivation. With increasing pH

value, both the passive and critical current densities, ipass and icrit, are decreasing gradually

until, at pH 11.5, the active domain disappears completely and iron passivates spontaneously.

However, the mechanism of passivation as well as the structure and composition of passive

films on Fe depend on whether the solution is acid, neutral or alkaline [71]. While in
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acid solutions Fe passivates in spite of the thermodynamic instability of its oxides by the

incidental kinetic effect of slow dissolution of γ-Fe2O3 [97], Fe oxides are scarcely soluble

in neutral and alkaline solutions. In acid solutions, the passive film is 3− 5 nm in thickness

and its composition is at best described as being disordered magnetite, Fe3− ∆
O4, with an

Fe deficit, ∆, varying from ∆ = 0 at the Fe/oxide interface, where the oxide is magnetite,

to ∆ = 0.33 at the oxide/solution interface, where it is maghemite, γ-Fe2O3 [98]. This

oxide film is formed from a precursor salt layer, e.g. ferrous sulphate FeSO4 layer. The

mechanism of its formation is similar to the mechanism of direct growth of high-temperature

oxide films. In weakly acid, neutral and alkaline solutions, the passive oxide film is formed

stepwise: Fe −−→ FeOH −−→ Fe(OH)2 −−→ γ-Fe2O3 [71]. The alternative to this mechanism is

rusting, producing, instead of protective barrier oxide films, non-protective porous layers of

rust (simplified formula: FeOOH). Which of the two possibilities will occur depends on the

solution composition, especially on the nature of the anions. In weakly acid solutions, the

film has the same composition as the one formed in acid, but it is thickened by an outer

porous hydroxide layer. In neutral and alkaline solutions a single inner Fe3O4 film with an

additional outer hydroxide layer (Fe(OH)3) is assumed [99].

Cr From Fig. 2.17, it is obvious that Cr is a very base metal since its domain of stability lies

at much more negative potentials than that of H2O. In acid solutions, it tends to decompose

water with the evolution of hydrogen, releasing chromous ions, Cr 2+. In neutral and alkaline

solutions, it tends to cover itself with chromic oxide, Cr2O3, or hydroxide, Cr(OH)3 ·nH2O

(when this is considered instead of the oxide). In the presence of very alkaline non-oxidizing

solutions, it tends to dissolve as chromite ions CrO –
2 and CrO 3 –

3 . In solutions containing

chloride ions, Cr is more easily attacked by both acid and alkaline solutions because the hy-

droxide Cr(OH)3 ·nH2O has a higher solubility in such solutions (diagram not shown here).

An essential point is that Cr establishes two clearly different states: an active state in which

it is an extremely corrodible metal and a passive state in which it behaves similarly to a noble

metal. This ability to strongly and stably passivate is what makes Cr so attractive as alloying

element, e.g. for stainless steels. In this case ∼ 13 at.% Cr are at least required to attain

complete coverage of surface with Cr oxide films. A change from one state to the other can be

realized by modifying the oxidizing power of the contact solution or by anodic polarization.

The oxidizing action of air is sufficient to bring Cr in the passive state [96].

Similar to Fe, in acid solutions Cr exhibits the typical anodic polarization curve of a pas-

sivable metal with a distinctly marked active-passive transition and a passive plateau with

very low passive current density followed by a steep transpassive increase in current density

due to metal dissolution and/or O2 evolution. With increasing pH value, the active-passive

transition shifts to less noble potentials. The thickness of the passive film in acid solutions
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2.4 Corrosion of the constituent elements

Figure 2.17: Potential-pH equilibrium diagram for the system Cr-H2O, at 25◦C (figure established
considering anhydrous Cr2O3) [96].

is estimated to be 1− 2 nm. The passive film is supposed to be the oxide Cr2O3 or the

hydrated hydroxide Cr(OH)3 · 0.3H2O. Since passivation was observed to be complete at

potentials considerably more noble than the Cr/Cr2O3 equilibrium potential, it was con-

cluded that passivation may be achieved by the oxidation of an oxidic precursor of lower

valence. On pure Cr, anodic oxygen evolution cannot be observed, because of an early onset

of transpassive rapid dissolution of the oxide Cr2O3 to hexavalent chromate ions, e.g. at pH

8, Cr −−→ Cr(OH)2 −−→ Cr2O3 −−→ CrO 2 –
4 .

Co The domain of thermodynamic stability of Co, as seen in Fig. 2.18, has an area in com-

mon with that of H2O. Therefore, Co is considered to be a slightly noble metal, appreciably

more noble than Fe. According to the diagram, the corrosion resistance of Co depends on the

pH and the presence of oxidizing agents. Co is stable in neutral and alkaline solutions free

from oxidizing agents, slightly corrodible in acid solutions free from oxidizing agents and very

corrodible in acid or very alkaline solutions containing oxidizing agents. Neutral and slightly

alkaline oxidizing solutions will cover Co with a film of oxide or hydroxide, e.g. Co(OH)2,

Co3O4. In practice, due to its large hydrogen overpotential, it is practically uncorroded by

non-oxidizing acids [96]. Systematic investigations regarding the polarization behaviour and
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2.4 Corrosion of the constituent elements

Figure 2.18: Potential-pH equilibrium diagram for the system Co-H2O, at 25◦C [96].

the composition of passive films on Co were conducted by Badawy et al. [100]. The native

passive film on Co consists mainly of CoO or CoO ·H2O. The passive film is unstable in acidic

solutions. In neutral solutions the CoO is more stable. In basic solutions, anodic oxidation of

Co results in the formation of Co(OH)2, which is then further oxidized to Co3O4 and CoOOH

at more noble potentials.

Mo As it can be seen in Fig. 2.19, Mo is a base metal as its domain of stability lies below

that of H2O at any pH value. In alkaline solutions, it has a weak tendency to decompose H2O,

dissolving in the hexavalent state as molybdate ions MoO 2 –
4 . In acid solutions, it tends to

dissolve as Mo 3+ ions under the evolution of hydrogen. In the presence of neutral and slightly

acid or alkaline solutions, it tends to cover itself with tetravalent dioxide MoO2 [96]. Mo is

a vital alloying element in stainless steels used for applications in very aggressive corrosive

environments. This is mainly due to its notorious ability to diminish the susceptibility to

pitting and crevice corrosion. However, the mechanism through which this element promotes

localized corrosion resistance is still not fully understood. Several mechanisms were proposed

to explain the observed localized corrosion behavior of Mo containing stainless steels [79, 101,

102]. The formation of Mo salts in the oxide film has been suggested to improve the localized

corrosion resistance of Mo containing stainless steels by lowering the solubility of the layer.
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2.4 Corrosion of the constituent elements

Figure 2.19: Potential-pH equilibrium diagram for the system Mo-H2O, at 25◦C [96].

Also, the repassivation of pits may be facilitated by the decreased chloride activity within

the pit caused by the formation of compounds such as MoO2Cl2 and precipitation of Mo

chlorides [103].

Mn According to Fig. 2.20, the whole domain of thermodynamic stability of Mn lies well

below that of water which means it is a very base reducing metal. It is therefore very unstable

in the presence of water and tends to react with it with the evolution of hydrogen. However,

in practice, this reaction occurs slowly, probably due to the large hydrogen overpotential

of the metal. Mn can easily be dissolved by acid and neutral oxidizing solutions with the

release of Mn 2+ ions. Applying further oxidizing action can lead to the formation of solid

oxides such as MnO2, Mn2O3 or Mn3O4. At even more oxidizing conditions manganate ions,

MnO 2 –
4 (at very high pH values), or permanganate ions, MnO –

4 , can be formed. In alkaline

solutions, Mn will cover itself with Mn(OH)2 since the anhydrous oxide MnO is, at 25◦C,

thermodynamically unstable. In very alkaline solutions, the manganous hydroxide is very

slightly soluble to give dimanganite ions HMnO –
2 . Several studies were dedicated to studying

the influence of Mn on the corrosion behaviour of stainless steels. It was found that high

concentrations of Mn in the alloy composition diminish the ability of passive film formation,

e.g. it yields an increase of the critical current density and of the critical passivation potential

36



2.4 Corrosion of the constituent elements

Figure 2.20: Potential-pH equilibrium diagram for the system Mn-H2O, at 25◦C (considering β
-MnO2) [96].

[104]. For some alloys it also determines a decrease of the passive film protection ability which

was explained by a decrease in Cr concentration in the passive film [105].

C, B and Y Pure C can exist in the form of diamond, graphite and amorphous carbon.

Based on its thermodynamic stability domain, it is theoretically easy to cause C to react,

but any possible reaction is highly irreversible and cannot actually be brought about under

normal conditions of temperature and pressure. According to thermodynamic calculations,

B is a very powerful reducing agent. It tends to decompose water with the formation of boric

acid or borates. In practice, this high reactivity is observed only for the amorphous variety

of B. Crystalline B is much more resistant. For example, it is not attacked by hydrochloric

acid, even when boiling. Y has a very large negative equilibrium potential. As its entire

domain of stability lies well below that of water, Y is very unstable in the presence of

aqueous solutions of any pH. While in acid and neutral solutions, it dissolves as yttric ions,

Y3+, in the presence of alkaline solutions, it covers itself with yttrium hydroxide Y(OH)3 [96].

For easy referencing, Table 2.3 summarizes important reactions of the constituent ele-

ments in water solutions in dependence of the pH value.
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Table 2.3: Important reactions of elemental Fe, Cr, Co, Mo and Mn in water solutions in dependence of pH value.

acid solutions near neutral solutions alkaline solutions

Fe Fe = Fe 2+ + 2 e – Fe = Fe 2+ + 2 e – 3 Fe + 4 H2O = Fe3O4 + 8 H + + 8 e –

2 Fe 2+ + 3 H2O = Fe2O3 + 6 H + + 2 e – 2 Fe3O4 + H2O = 3 Fe2O3 + 2 H + + 2 e – 2 Fe3O4 + H2O = 3 Fe2O3 + 2 H + + 2 e –

Cr Cr = Cr 2+ + 2 e – 2 Cr + 3 H2O = Cr2O3 + 6 H + + 6 e – Cr + 3 H2O = CrO 3 –
3 + 6 H + + 3 e –

2 Cr 2+ + 3 H2O = Cr2O3 + 6 H + + 2 e – Cr2O3 + 5 H2O = 2 CrO 2 –
4 + 10 H + + 6 e –

2 Cr + 7 H2O = Cr2O 2 –
7 + 14 H + + 12 e –

Cr2O3 + 4 H2O = Cr2O 2 –
7 + 8 H + + 6 e –

Co Co = Co 2+ + 2 e – Co + H2O = CoO + 2 H + + 2 e – Co + 2 H2O = HCoO –
2 + 3 H + + 2 e –

Co 2+ + 2 H2O = CoO2 + 4 H + + 2 e – 2 Co 2+ + 3 H2O = Co2O3 + 6 H + + 2 e – 3 HCoO –
2 = Co3O4 + 2 H2O + 2 e –

Mo Mo = Mo 3+ + 3 e – Mo + 2 H2O = MoO2 + 4 H + + 4 e – Mo + 4 H2O = MoO 2 –
4 + 8 H + + 6 e –

Mo + 2 H2O = MoO2 + 4 H + + 4 e – MoO2 + 2 H2O = MoO 2 –
4 + 4 H + + 2 e –

Mo 3+ + 3 H2O = MoO3 + 6 H + + 3 e –

MoO2 + H2O = MoO3 + 2 H + + 2 e –

Mn Mn = Mn 2+ + 2 e – Mn = Mn 2+ + 2 e – Mn + H2O = MnO + 2 H + + 2 e –

Mn 2+ + 2 H2O = MnO2 + 4 H + + 2 e – 2 Mn 2+ + 3 H2O = Mn2O3 + 6 H + + 2 e – Mn + 2 H2O = HMnO –
2 + 3 H + + 2 e –

MnO2 + 2 H2O = MnO –
4 + 4 H + + 3 e – MnO2 + 2 H2O = MnO –

4 + 4 H + + 3 e – 3 HMnO –
2 + H + = Mn3O4 + 2 H2O + 2 e –

MnO2 + 2 H2O = MnO –
4 + 4 H + + 3 e –
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3 Experimental

3.1 Materials

Besides the main material of the present study, the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy, two other materials were used in

this study. One was a crystalline (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy which

was investigated in order to analyze the effect of structure on the corrosion behavior. The

other material was the commercial steel X210Cr12 which was used as a reference to compare

with the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy. Ingots of nominal

compositions (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 were prepared by induction

melting of high purity elements under purified Ar atmosphere and subsequent casting into

a copper mold. The melting was repeated several times for homogenization. A section of a

resulting rod with 10 mm diameter was investigated in this form and it was denominated

‘crystalline (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5’ or ‘crystalline counterpart’. As it

will be shown later, the denomination ‘crystalline’ is correct as this rod is composed entirely

of crystalline phases attributable to the particular casting conditions. Another section

of the rod was fragmented and the fragments were remelted. The melt was subjected to

injection casting into a water-cooled copper mould in Ar atmosphere. The resulting rod

was 3 mm in diameter and 50 mm in length. This diameter was chosen in order to prevent

disintegration of the rod as explained in section 2.1.5. This constitutes the bulk glassy

alloy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5. The bulk glassy alloy and the crystalline

counterpart samples were produced by Dr. U. Siegel at IFW Dresden. The X210Cr12

commercial steel (hereafter called ‘conventional steel’) was used in the as-received state

without any subsequent treatments (1 mm thick plate). Its nominal chemical composition

is given in Table 3.1. As compared to the glassy alloy, the conventional steel has higher Fe

and Cr concentration while the C concentration is lower. It is also missing Co, Mo, B and Y,

while Mn has a very low concentration. Additionally, the conventional steel contains a low

amount of Si while the glassy alloy is Si-free.
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3.2 Characterization techniques

Table 3.1: Nominal chemical composition of the commercial steel X210Cr12 (atomic concentrations
derived from weight concentrations considering the mean value).

Element Cr C Si Mn Fe

weight % 11.00–12.00 1.90–2.20 0.10–0.40 0.15–0.45 balance

atomic % ∼ 11.40 ∼ 8.80 ∼ 0.46 ∼ 0.28 ∼ 79.06

3.2 Characterization techniques

In order to characterize the microstructure of the three materials selected for the corrosion

study, several techniques were employed as will be described in the following.

XRD In the field of amorphous alloys research, X–ray diffraction (XRD) is a very useful

tool for evaluating the amorphicity of a sample. While diffractograms of fully crystalline

samples comprise distinct sharp reflections which broaden when the grain size decreases

to the nanometre range, those of amorphous samples will exhibit broad and shallow peaks

corresponding to the SRO and MRO structural state (see section 2.1.3). Samples that contain

both crystalline and amorphous phases will provide patterns with a combination of broad and

sharp peaks. In the case of crystalline phases, X-rays are diffracted by the crystalline lattice

and the distance between atomic planes can be determined with Bragg’s relation:

n · λ = 2 · d · sin θ eq. (3.1)

where n is the diffraction order, λ is the radiation wavelength, d is the distance between

atomic planes and θ is the diffraction angle. Analysis of diffraction peaks and comparison

with values from specialized databases allows the identification of the phases in many cases

if the chemistry of the investigated sample is known. In the case of multiphase samples, the

analysis is more difficult as diffraction peaks may overlap. In this case, the Rietveld method is

often used [106]. In this method, a least squares approach is used to refine a calculated pattern

until it matches the measured pattern. As a result, a volume ratio of the constitutive phases

is obtained. In this study, the PowderCell software was used for post-measurement analysis

including Rietveld analysis. Details regarding the crystalline structure of various phases were

extracted from the ICSD database (Inorganic Crystal Structure Database) [107].

The XRD measurements were performed with a XPertPro Phillips diffractometer using CoKα1

radiation. The measurements were done in step mode with a step size of 0.05◦ and 42 s per step

from 20◦ to 120◦. The bulk glassy alloy and its crystalline counterpart were prepared as follows
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3.2 Characterization techniques

for the XRD analysis: a volume of approximately 140 mm3 of each has been fragmented and

the resulting powder was glued to an amorphous silica holder with Zapon lacquer (cellulose

nitrate in amyl acetate solvent). In the case of the conventional steel, a 1 mm thick plate with

10x10 mm cross-section was used.

HRSEM High resolution scanning electron microscopy (HRSEM) investigations of the bulk

glassy alloy sample were performed in order to identify possible crystalline inclusions or other

defects, e.g. pores. For the crystalline counterpart and the conventional steel HRSEM was

used for observing and characterizing their microstructure. The principle of the SEM is rather

simple: an electron beam scans the sample surface and various kinds of radiation emitted as

a result are collected in suitable detectors and used for image formation [108]. The most

popular techniques are the secondary electron mode which reveals surface topography (and

in some situations also atomic-number and crystal-orientation contrast) and the backscattered

electron mode which gives both topographic and materials contrast. In the present study, the

secondary electrons mode was used. The low energy secondary electrons are formed as a result

of the interaction between the primary electrons and loosely bound atomic electrons. In the

present study, HRSEM investigations were performed with a Gemini Leo 1530 instrument.

The acceleration voltage was 1–20 kV and all the images were done in the secondary electron

mode. Energy dispersive x-ray analysis (EDX) was also performed. This technique is based

on the fundamental principle that each element has a unique atomic structure which allows

its characteristic X-rays to be used for its identification [109]. The electrons of the incident

beam excite inner shell electrons of atoms in the analyzed sample, determining their ejection

and resulting in the formation of electron holes within the electronic structure of those atoms.

Electrons from an outer shell then fill these holes and the excess energy of those electrons is

released in the form of X-ray photons. The release of these X-rays creates spectral lines that

are specific to individual elements. This way the X-ray spectrum can be analyzed to identify

the constituent elements of the analyzed sample and also to determine their concentration.

In order to reveal its microstructure, a cross-section of the crystalline counterpart was polished

to 0.04 µm SiO2 suspension (OP-U, Struers) and then etched for 5 s with Nital 3%. The

glassy alloy and the conventional steel were only polished (same polishing procedure as for

the crystalline counterpart sample).

TEM In order to further check the bulk glassy alloy sample for any crystalline inclusions

at higher magnification transmission electron microscopy (TEM) was applied. In principle,

similarly to SEM, TEM is also using an electron beam to probe the sample. However, the

energy of the primary electrons is higher, e.g. typically 200 kV, and most of the analysis

is done in transmission mode. The most common contrast used in TEM is the bright field
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3.3 Corrosion related methods

contrast. A bright field image is formed when only the diffracted beam is used for imaging

[110]. Electron diffraction patterns and the chemical composition of selected areas in the

samples can also be obtained in the TEM. TEM investigations were performed by Ms. C.

Mickel at IFW Dresden with a Tecnai T20 instrument. An acceleration voltage of 200 kV was

used and bright field images as well as diffraction patterns and EDX spectra were acquired.

The samples for TEM were prepared from the original rod by cutting thin slices (approx. 1

mm) which were subsequently thinned by mechanical polishing and then by ion milling.

AES In addition to the above described techniques, Auger electron spectroscopy (AES)

was used. AES was performed on bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5

alloy samples in the as-polished state and after selected electrochemical tests. This technique

allows the determination of concentration–depth profiles in surface-near regions which serve

for the characterization of surface films, e.g. native or anodically formed passive films, and

the sub-film region. In AES the sample is irradiated with electrons which cause the core

electrons of atoms in the sample to be ejected [111]. In order for the so ionized atom to

return to its ground state, it is possible that another electron from a higher level fills the

core hole. The energy released in this process is used for the ejection of another electron out

from the atom which is called an Auger electron. The kinetic energy of the Auger electrons is

measured by a detector. Each element has a characteristic spectrum. When a multielement

sample is analyzed, the relative intensities of peaks are analyzed and are the basis for the

calculation of atomic concentrations. In order to determine a concentration–depth profile,

AES spectra are recorded in combination with intermediate sputtering. The measurements

and the subsequent determination of the concentration–depth profiles were performed by Dr.

S. Baunack at IFW Dresden. The investigations were carried out using an Auger microprobe

PHI 660. The sputtering was done with Ar ions impinging under 60◦ with an energy Eion =

1.5 keV. The thickness of oxide layers was estimated using the reference sputter rate of SiO2

which is approximately 2.8 nm·min−1. The interface film/alloy was considered to correspond

to the point where the oxygen concentration is reduced to 50% of its maximum. Because of

the multitude of constitutive elements, Auger peaks strongly overlap and were separated by

data analysis techniques (linear least squares fit to standard spectra and factor analysis)

3.3 Corrosion related methods

For fundamental corrosion investigations, weight loss tests and various electrochemical polar-

ization methods were employed. Before presenting details about these techniques, the elec-

trolytes used are given.
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Electrolytes The electrolytes used for these tests are shown in Table 3.2.

Table 3.2: The electrolytes used for the weight loss and electrochemical tests.

pH Solution

0.1 1 M HCl

0.3 0.5 M H2SO4

5 0.00001 M H2SO4

0.1 M Na2SO4
a

0.5 M Na2SO4
a

0.5 M phthalate buffer

8.4 0.1 M Na2SO4
b

0.3 M borate buffer

11 0.001 M NaOH

14 1 M NaOH

7 0.01 M NaClc

0.1 M NaClc

0.6 M NaClc

a pH value was adjusted with H
2
SO

4
.

b pH value was adjusted with NaOH.
c electrolytes used for pitting tests.

The 0.5 M phthalate buffer solution was prepared by mixing 240 mL of 0.1 M NaOH with

760 mL bi-distilled water and 1 L of 0.1 M potassium hydrogen phthalate C8H5O4K solution.

To prepare 1L of 0.3 M borate buffer solution, 9.25 g boric acid (H3BO3) and 14.3 g borax

(Na2B4O7 · 10 H2O) were dissolved in bi-distilled water. Additionally, three other solutions

were used for the pitting investigations: 0.01, 0.1 and 0.6 M NaCl.

For the weight loss tests, 1 mm thick disc samples of the glassy alloy (3 mm in diameter)

and 9x7x1 mm samples of the conventional steel were used. For electrochemical testing, the

samples were electrically connected and embedded in epoxy resin so that only their cross-

section was exposed to the electrolyte. Before every test, the sample surface was ground with

emery paper down to grid 4000 and then polished with 1 µm diamond suspension.

Weight loss In order to determine the free corrosion rate of the bulk glassy alloy relative to

that of the conventional steel, weight loss tests were performed under four different conditions:
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very acidic (0.5 M H2SO4), very basic (1 M NaOH), neutral aggressive chloride solution

(0.6 M NaCl) and a less aggressive neutral solution (0.1 M Na2SO4). Immersion tests were

not performed for the crystalline counterpart alloy because those samples were difficult to

handle due to extreme brittleness leading to an uncontrolled loss of material. The samples

were immersed in the respective solutions and periodically emerged (see next chapter for the

periods), rinsed with distilled water, weighed, microscopically investigated and re-immersed.

For the weight measurements a Mettler Toledo XS205 analytical balance was employed. The

weight loss, ∆m, was calculated with respect to the starting surface area of the samples.

Electrochemical methods The electrochemical measurements were carried out with a So-

lartron SI 1287 electrochemical interface connected to a cell with a three electrode arrange-

ment using a Pt net as counter electrode and a saturated calomel electrode (SCE) (E = 241

mV vs. SHE) as reference electrode. The electrolytes were purged with N2 for one hour before

and during each test. After monitoring the open circuit potential (OCP) for 1 hour, poten-

tiodynamic polarization measurements in the anodic regime were performed. The dynamic

polarization was started from the cathodic regime (about -100 mV vs. OCP) and linearly

swept in the anodic direction at a rate of 0.2 mV·s−1 until O2 evolution set in or the current

became excessively high. In order to achieve a high reliability of the results, all electrochemical

measurements were repeated at least two times. After selected potentiodynamic polarization

tests in NaCl electrolytes, SEM images were taken from the surface of the glassy alloy and

of its crystalline counterpart. In order to remove the corrosion products from the surface,

prior to SEM investigations, the samples were immersed for 2 h into an agitated saturated

Chelaplex C6H9O6N solution. In the case of the conventional steel, light optical microscopy

(LOM) was used. Cleaning with Chelaplex was not done in order to prevent losing the weakly

bonded carbides (due to excessive dissolution of the surrounding matrix).

For the analysis of the anodic polarization curves, a number of corrosion-related param-

eters were evaluated. These parameters are identified in the schematic polarization curve

(Fig. 3.1) for an electrode in acid solution exhibiting typical active-passive behaviour [71].

The plot demonstrates the dependence of the potential versus the logarithm of current den-

sity, whereby the current density is the measured external-circuit current divided by the area

of the sample surface exposed to electrolyte. The sample potential is controlled by a poten-

tiostat. It can be regarded as the driving force for corrosion, while the anodic current density

is related to the specimen dissolution rate. Only in a few cases, the measured current density

reflects other additional reactions such as the oxygen evolution reaction as shown in Fig. 3.1.

The potential scan is started at potentials more negative than the corrosion potential, Ecorr,

i.e. in the cathodic regime where reduction reactions occur which cause a cathodic current,

e.g. the hydrogen reduction reaction (HER) or metal deposition. It is, however, possible that

metal dissolution occurs even at these potentials though not visible in the potential-current
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Figure 3.1: Schematic current-potential curve for a passivating electrode. Solid curve: total current-
potential curve. Dotted: partial current-potential curve for metal dissolution [71]. Inset:
schematic illustration of the graphical method used in this thesis for determining the
corrosion current density, icorr.

diagram because of the superimposed high cathodic reaction current. At Ecorr the external

measured current goes to zero meaning not that no corrosion is taking place, but that the

anodic current is equal to the cathodic current. In order to determine the corrosion current

density, icorr, the graphical extrapolation method was used [112], shown schematically in the

inset of Fig. 3.1. For this, the intersection point of the vertical line corresponding to Ecorr

with the tangents on the anodic and cathodic branches at overpotentials of about ±70 mV

was determined. Furthermore, with increasing anodic potential, the current density increases

indicating that the metal dissolution rate increases. The alloy undergoes active dissolution

up to a potential where it reaches a short plateau at high current densities corresponding to a

pre-passivation state. This limiting current density is the critical passivating current density,

icrit, because it corresponds to the situation of accumulation of passivating species at the

electrode surface in concentrations sufficient for the formation of a passive film composed of

solid oxides, hydroxides or salts. This leads in turn to a transfer into the passive state of the

surface clearly indicated by a rapid decrease in current density by several orders of magnitude.

The potential at which this decrease begins is termed the passivation potential, Epass. The

potential at which the current density stops to decrease rapidly is the activation potential

or the Flade potential, EF . This potential is also observed as a temporary arrest when an

electrode passivated previously is left to activate spontaneously [71]. From this potential, the
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alloy is in the passive state as it is covered by a protective film which acts as a barrier for

metal ion release and thus, allows only a very small dissolution rate. The permeability of

the film is measurable in terms of the passive current density, ipass, a value corresponding to

the current density plateau. At potentials higher than the equilibrium potential of the water

decomposition reaction, E0(H2O/O2), oxygen evolution will set in and this will cause an

increase in current density. The level of the current density for this reaction is determined

by the porosity of the passive layer when H2O oxidation takes place on the metal surface,

and by the electron conductivity of the passive film when H2O oxidation takes place on the

film surface. However, parallel to this reaction, transpassivation may occur meaning that the

passive film breaks down and further metal reactions are possible. The potential at which

this happens is termed the transpassive or breakdown potential, Etp. As seen in Fig. 3.1, this

potential is not always detectable as it can be superposed by the water oxidation reaction. If

the investigated alloy undergoes pitting corrosion as for example in environments containing

halide ions (F – , Cl – , Br – ), a somewhat different scenario occurs. Halide ions are known

to locally destabilize the passive film. In this case, the passive film may break down at a

potential lower than the transpassive potential. This breakdown is often clearly marked by

a sudden increase in current density as shown by the dashed line in Fig. 3.1. The slope of

this increase relates to the pit growth rate. The potential at which stable pits are nucleated

is the pitting potential, Epit. However, prior to Epit, metastable pitting may occur and this

is reflected in a more or less pronounced noise-like shape of the i−E curve (not shown in

Fig. 3.1).

3.4 Ex situ and in situ AFM

In order to better understand the global corrosion reaction mechanism, local corrosion analysis

at high magnification by techniques such as atomic force microscopy (AFM) are necessary.

AFM is a scanning probe microscopy (SPM) technique, which utilizes a sharp tip mounted

onto a cantilever spring to scan the sample surface and to monitor its topography [108].

Principally, when the AFM tip approaches the sample surface, it will experience forces which

can be schematically represented as in Fig. 3.2. When the tip is very close to the sample

surface, i.e. below ∼0.5 nm, it will be repulsed due to electrostatic repulsion of the electron

clouds of the atoms of tip and sample. This is where the tip is operated in contact mode. At

larger tip-sample distances, the tip will be attracted towards the sample due to long-range

van der Waals forces. This is where the non-contact mode is operated. As the tip scans the

surface, it will be deflected depending on the surface topography. A simplified diagram of

an AFM device is shown in Fig. 3.2. A laser source is used to emit a laser beam which is

directed on the backside of the cantilever where it is reflected and subsequently detected by a
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3.4 Ex situ and in situ AFM

Figure 3.2: Left: force versus distance curve for sample-probe interaction in AFM [113]. Right:
block diagram of AFM [114].

4-quadrant photodetector. The signal of this detector is fed into a feed-back regulator which

will dictate the Z-piezo movement.

AFM has several modes of operation such as contact mode, non-contact mode and tapping

mode. In this work, contact mode was used for the in situ measurements. In contact mode,

as the tip scans the surface, it is deflected by the surface corrugation. The tip is constantly

adjusted to maintain a constant deflection and, therefore, a constant height above the surface.

It is this adjustment that is displayed as data. For the ex-situ measurements, non-contact

mode was used. In non-contact mode, a stiff cantilever is oscillated in the attractive regime,

consequently the tip is quite close to the sample surface, but does not touch it (hence, ‘non-

contact’). The detection scheme is based on measuring changes in the resonant frequency or

amplitude of the cantilever.

One of the advantages of AFM is that it can be operated in air at atmospheric pressure

and also in liquids. This is a major benefit for corrosion science as it allows in situ imaging

of surface morphology changes during corrosion processes as they occur in the environment

of interest and, thus, eliminating any artefacts related to the removal of the sample from

the environment. A Park XE-100 instrument (Fig. 3.3) was used for both ex situ and in situ

measurements on the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy. The ex

situ measurements were performed in air at room temperature after 200 days of exposure to

0.5 M H2SO4. The in situ tests were performed in order to study the initial stages of dissolution

in the same solution, 0.5 M H2SO4. The cell used for these tests is shown in Fig. 3.3. The

typical three electrode setup was used in conjunction with an external potentiostat in order to

realize similar conditions as in the ‘bulk’ electrochemical cell used for the polarization studies.

A Teflon capillary was the link between the cell and the SCE used as reference electrode.

As counter electrode a Pt wire was used. During the measurements, the cantilever was fully

immersed in the electrolyte. In order to be able to observe the very small initial topography

changes, a very flat original surface is required. For this, the sample was ground with emery
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3.4 Ex situ and in situ AFM

cantilever

platinum
wire

capillary
to RE

sample

Figure 3.3: Left: photograph of the AFM Park XE-100 instrument employed in this study. Right:
photographs of modified electrochemical cell used for the in situ AFM investigations.
Top: sample is visible. Bottom: position of cantilever as during actual measuring is
visible.

SiC paper from grit 400 down to grit 4000 and then polished using 1 µm diamond, 0.2 µm and

0.04 µm SiO2 suspensions. Finally, the sample was cleaned similarly as for the electrochemical

tests.
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4 Results and discussion

Generally, the microstructure of an alloy sample has a strong influence on the corrosion

behaviour. Therefore, this chapter begins with a section on the microstructure characteriza-

tion of the three subject materials. The following sections focus on the analysis of the free

corrosion, the anodic polarization behaviour and the passivation ability of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy in dependence of the pH value of the elec-

trolyte. A separate section is devoted to the evaluation and description of its pitting behaviour.

For some particular aspects, a comparison is made with the crystalline counterpart alloy and

with the commercial steel X210Cr12. As described in the introduction the morphology of

a corroding surface strongly depends on the structure of the corroding material. While this

aspect was thoroughly studied for crystalline alloys, only few studies with respect to this were

done for amorphous alloys. In the final section of this chapter results of detailed investiga-

tions regarding active dissolution in acid solutions with a special focus on the morphology

evolution are presented.

4.1 Microstructure characterization

4.1.1 The bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy

The microstructure of the cast sample with 3 mm diameter was investigated by XRD, SEM

and TEM which were presented in section 3.2. Figure 4.1(a) represents the XRD pattern

of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 sample. In this pattern only

broad diffuse maxima can be observed indicating that the sample has a mainly amorphous

structure. However, local observations of the structure at the nanoscale performed by TEM

investigations revealed the presence of crystalline polyhedral particles which are embedded in

the glassy matrix. Two TEM micrographs of such particles are shown in Fig. 4.2. Typically,

these particles are smaller than 200 nm in size. Their crystalline nature was clearly evidenced

by electron diffraction. Two electron diffractograms are shown in the inset of Fig. 4.2(a).

They provide clear evidence of the amorphous and crystalline state of the matrix and of the

particle, respectively. In order to measure the chemical composition of these particles, EDX
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4.1 Microstructure characterization

(a)

(b)

(c)

Figure 4.1: XRD patterns of: a) the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5

alloy sample with 3 mm diameter, b) the crystalline
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 sample, and c) the commercial steel
X210Cr12 sample.
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4.1 Microstructure characterization

200 nm

(a)

200 nm

1 2

(b)

Figure 4.2: TEM micrographs of sections of the bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy. a) crystalline polyhedral par-
ticle of Y2O3 embedded in the matrix. Inset: electron diffraction patterns of the
amorphous matrix (left) and of the crystalline particle (right); b) indication of two
locations where EDX analysis was performed; see Table 4.1.

investigations have been performed. Details of a representative measurement are summarized

in Fig. 4.2(b) and in Table 4.1.

Table 4.1: TEM-EDX analysis of crystalline polyhedral particles in a bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sample (concentrations given in
at.%).

Location index Fe Cr Co Mo Mn Y O

1 (particle) 1.60 0.00 0.00 1.49 0.10 43.18 53.61

2 (matrix) 57.03 5.90 3.74 20.03 12.14 1.13 0.00

As it can be seen, the particle consists mainly of Y and O. As the stoichiometry is close to

Y:O = 2:3, it was concluded that the particle is composed of yttrium oxide, Y2O3. A series

of particles was also analyzed and similar results were obtained. Only in the case of a few

particles some other elements, e.g. Mo, Fe, were also enriched in the Y2O3 particles.

As revealed by SEM which enables the analysis of a wider cross-sectional area of the sample,

the 3 mm diameter rod contains only a low fraction of Y2O3 polyhedral particles. Due to the

low fraction of these particles, they could not be detected by XRD. These particles usually

reside in groups and the distance between such groups is on average in the order of tens

of microns. Figure 4.3(a) shows a SEM image of such a group. These particles could have

been formed during the preparation process due to the high affinity of Y to O (∆fG
o(Y2O3)
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500 nm

(a)

10 µm

(b)

10 µm

(c)

Figure 4.3: SEM images of the cross-sectional area of: a) the cast bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy rod sample with 3 mm diame-
ter, b) the cast crystalline (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 rod sample
with 10 mm diameter, and c) the commercial steel X210Cr12 sample.

52



4.1 Microstructure characterization

= −1932 kJ·mol−1 [115]) and the unavoidable presence of minimal O contents in the melt

during casting. SEM investigations on a 3 mm diameter sample of the same alloy performed

by Siegel [40] also revealed the presence of Y2O3 particles. Their volume fraction was under

1 % which explained, as in the case of the present study, the lack of sharp peaks in the

x-ray diffraction pattern. However, the sample studied by Siegel contained, besides the sub-

micrometre particles as in the case of the samples in the present study, also larger particles,

i.e. micrometer sized, and, additionally, more particles were found in agglomerations. Y oxide

particles with size in the micrometre and sub-micrometre range were also found in a bulk

glassy Fe61Y2Zr8Co6Al1Mo7B15 alloy sample with l5 mm diameter by Lu et al. [7].

4.1.2 The crystalline (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy

An XRD pattern of the crystalline counterpart is shown in Fig. 4.1(b). Due to the numer-

ous peaks corresponding to the multitude of stable and metastable intermetallic compounds

that could be formed in this system, it is difficult to clearly identify the phase composition

of this sample. However, taking into account the B and C affinity of the constitutive ele-

ments, some phases appear to be more favourable than others. The main phase, identified

as of the Cr23C6 type, can be designated by the general formula (Fe,Cr,Mn,Co,Mo)23(B,C)6.

There is another set of peaks which can not be related to the same compounds. They were

found to match the η-carbide structure-type [116]. This secondary phase can be for example

Co3Mo3C or Mn3Mo3C. According to the Rietveld analysis the volume fraction of this phase

is 16 %. However, if we consider that only these two phases constitute the microstructure,

the ratio of metal to metalloid atoms (M:Me=4.08:1) would be higher than the actual value

(M:Me=3.68:1). To account for this, a third phase, rich in metalloids, should be present.

Considering also the strong lanthanide-metalloid interactions [3] and the very probable low

solubility of Y in M23(B,C)6 and in the η-carbide phases, it might be expected that this phase

is a Y-metalloid compound such as FeY2C4. However, peaks of this phase do not appear in

the diffraction pattern of this alloy, but its concentration can be below the detection limit of

the XRD method, i.e. ∼ 5 vol.%.

Previous work related to similar alloys suggested different phase compositions, but they all

agree on M23(B,C)6 (M = Fe,Cr,Mo,Mn) as the main phase [3, 8, 117, 118]. However, besides

the M6C (η-carbide), Miller et. al. [117] observed a third phase enriched with Y which they

assigned as Fe14Y2B (for the alloy in their study M:Me=3.93:1). As stated in section 2.1.5,

annealing a bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sample at 1273 K

leads to complete devitrification. As XRD investigations show, the microstructure after this

treatment comprises three phases: M23(B,C)6, Mo3(Co,Fe)3C and Mo12(Co,Fe)22C10 [40]. The

Mo12(Co,Fe)22C10 phase was not found in the present study to be part of the microstructure

of the crystalline counterpart while the FeY2C4 phase which is possibly in the microstructure
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4.1 Microstructure characterization

of the crystalline counterpart was not stated to be found in the annealed sample (see Ref.

[40]). This difference is believed to be due to the thermal history of the samples, e.g. during

the annealing treatment of the glassy sample, firstly the M23(B,C)6 and the Mo3(Co,Fe)3C

phases are formed and only subsequently the Mo12(Co,Fe)22C10 is formed from the proba-

bly not-yet-crystallized remaining phase with modified chemical composition (different from

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 ), however, in the case of the crystalline coun-

terpart sample, this phase, i.e. Mo12(Co,Fe)22C10, probably can not form directly from the

melt, because there is not yet a domain with the required chemical composition for its for-

mation as in the case of the annealed sample.

In Fig. 4.3(b) a SEM image of the crystalline counterpart is shown. The microstructure is

mainly composed of lamellar grains. There is also another phase located at the intergran-

ular region which is preferentially dissolved during etching. It is reasonable to expect the

intergranular phase to be η-carbide as detected by XRD and the grains to be the M23(B,C)6

phase. In order to clarify the composition of each phase, EDX point analysis was performed.

Unfortunately, the differences in the measured concentration values were very low and con-

sequently, considered to be insignificant. This should be due to the rather low dimension of

the interdendritic phase(s) (< 200 nm), lower than the spatial resolution limit of the EDX

setup used.

4.1.3 The commercial steel X210Cr12

In Fig. 4.1(c), an XRD pattern of the X210Cr12 steel sample is shown. This pattern can

be indexed by assuming two phases: an αFe-based solid solution with Cr as solute and the

carbide (Fe,Cr)7C3. This phase composition corresponds to the equilibrium situation [119]. A

SEM image of the conventional steel sample is shown in Fig. 4.3(c). The microstructure of this

alloy is composed of equiaxed grains with an average size of 10 µm and particles with a wide

size distribution from tens of nanometres to tens of micrometres. An EDX analysis (carbon

was not included in the analysis) shows that the particles, which are obviously the carbide,

contain 51 at. % Fe and 49 at. % Cr and the grains 94 at. % Fe and 6 at. % Cr. Nevertheless,

the concentration of Fe and Cr in the grains (the αFe(Cr) solid solution) as measured by EDX

might not represent the real values because fine particles of carbides are very closely present

and the measurement might be influenced by these. In consequence, the concentration of Cr

in the matrix should be considered to be less than 6 at. %. For the refinement of the XRD

pattern, the Fe based solid solution is considered to contain 5 at. % Cr.

Summary For the cast bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sam-

ples with 3 mm diameter a mainly single phase glassy state was confirmed, but also the
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4.2 Free corrosion behaviour

presence of a few dispersed nanometre-sized yttrium oxide Y2O3 particles. On the contrary,

its crystalline counterpart obtained by casting with slower cooling rate (10 mm diameter

rod sample) and the conventional steel X210Cr12 have multi-phase crystalline microstruc-

tures. Mainly M23(B,C)6 dendrites, an interdendritic η-carbide as a secondary phase and

probably FeY2C4 as a third phase, compose the crystalline counterpart. In the conventional

steel, (Fe,Cr)7C3 particles are surrounded by an αFe(6 at.%Cr) solid solution matrix phase.

While both the crystalline counterpart and the conventional steel are crystalline alloys, what

differentiates them from each other with regard to microstructure is the volume fraction of

carbides: the crystalline counterpart sample is comprised entirely of (boro-)carbides while the

conventional steel contains a limited amount of carbides. i.e. ∼ 29%. This particular steel was

chosen as a reference material for this study because it has a high content of C which is closer

to that of the bulk glassy alloy than that of most other steels.

4.2 Free corrosion behaviour

For determining the free corrosion rate of the bulk glassy alloy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 weight loss tests were performed in four

different solutions: very acidic (0.5 M H2SO4), very basic (1 M NaOH), neutral aggressive

chloride solution (0.6 M NaCl) and a less aggressive neutral solution (0.1 M Na2SO4).

Additionally, the same tests were performed for the conventional steel as a reference. Weight

loss tests were not performed for the crystalline counterpart alloy because this sample was

difficult to handle due to its extreme brittleness leading to an uncontrolled loss of material.

Figure 4.4 shows the weight loss curves of the bulk glassy alloy and the conventional steel

in the above given solutions. In general, the bulk glassy alloy showed much lower corrosion

rates than the reference steel in all electrolytes. Remarkably, the behaviour of the two

alloys in 0.5 M H2SO4 is very different: while the glassy alloy lost 6 mg·cm−2 after 100

days, the conventional steel sample lost 200 mg·cm−2 after only 0.83 days. In 0.6 M NaCl,

0.1 M Na2SO4 and 1 M NaOH solutions, the glassy alloy had an insignificant weight loss

even after 100 days proving a very high resistance in these solutions. Comparatively, the

conventional steel exhibited appreciable weight losses in 0.6 M NaCl and 0.1 M Na2SO4, but

an insignificant weight loss in 1 M NaOH. As shown in Fig. 4.4, the bulk glassy alloy exhibits

slightly negative weight changes, i.e. weight gains, in 0.1 M Na2SO4 and in 1 M NaOH. This

is attributed to the formation of corrosion products attached to the surface. In the case of

the sample immersed in 0.1 M Na2SO4, the presence of corrosion products is also evidenced

by a change in colour of the surface.

In order to better understand the remarkable difference in the corrosion rate between the

glassy alloy and the conventional steel in 0.5 M H2SO4, SEM investigations were performed
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Figure 4.4: Weight loss measurement results of the bulk glassy alloy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 and of commercial steel X210Cr12
samples in 0.5 M H2SO4, 0.1 M Na2SO4, 0.6 M NaCl and 1 M NaOH.

on the surface of the samples after the aforementioned periods of immersion. The attack of

the glassy alloy is initiated by near-hemispherical regions (see Fig. 4.5(a)). Their uniform

distribution and round shape prove the purely electrochemical nature of the dissolution

process without any influence from possible microstructural irregularities. Figure 4.5(c) shows

a SEM image of the conventional steel sample after immersion for 0.83 days. The α-Fe(Cr)

matrix was preferentially dissolved. This implies that the matrix and the carbide particles

have significantly different nobility which causes a strong galvanic coupling between the two

phases. Considering the similar multiphase nature of the crystalline counterpart, galvanic

coupling is expected also in the case of this alloy. In contrast, the monolithic single-phase

glassy alloy sample does obviously not exhibit this effect. In conclusion, the single-phase

nature of the glassy alloy, as contrary to the multiphase nature of the crystalline counterpart

and the conventional steel, is responsible for the much higher corrosion resistance in 0.5 M

H2SO4. SEM investigations of the bulk glassy alloy surface after immersion in the other

three solutions, i.e. 0.1 M Na2SO4, 0.6 M NaCl and 1 M NaOH, did not reveal morphologies

similar to the one after treatment in 0.5 M H2SO4. As expected when considering the

insignificant weight loss, the surface morphology after immersion in these three solutions

remained mostly unchanged with the exception of a limited roughening due to the presence

of a thin layer of corrosion products. As an example Fig. 4.5(b) shows a SEM image of the

bulk glassy alloy surface after 100 days in 1 M NaOH.
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50 µm

(a)

1 µm
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Figure 4.5: SEM images of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sur-
face after 100 days in (a) 0.5 M H2SO4 and (b) 1 M NaOH. (c) Surface of commercial
steel X210Cr12 after 20 h in 0.5 M H2SO4.
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4.3 Effect of pH value on anodic polarization behaviour

Preferential dissolution of the α-Fe(Cr) matrix in the conventional steel, similar to that

occurring in 0.5 M H2SO4 (though not as strong), was observed after corrosion in the 0.6

M NaCl and 0.1 M Na2SO4 solutions. However, in 1 M NaOH, no selective dissolution

was indicated by the SEM studies as may be expected when considering the insignificant

weight loss. It can be concluded that, with increasing pH value, galvanic coupling becomes

decreasingly significant in the corrosion behaviour of the conventional steel.

Summary Weight loss measurements coupled with SEM investigations have been performed

for the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy and commercial steel

X210Cr12 in 0.5 M H2SO4, 0.1 M Na2SO4, 0.6 M NaCl and 1 M NaOH solutions. After 100

days, the bulk glassy alloy exhibits a significant weight loss indicating a high corrosion rate

only in the acid solution. On the contrary, the conventional steel sample used as reference

demonstrated a much higher weight loss in all test solutions, except in 1 M NaOH. This large

difference in corrosion stability is explained by the microstructure. While the bulk glassy

alloy is single-phase, the conventional steel is multi-phase enabling by this galvanic coupling

between the constituent phases resulting in increased corrosion rates. Attack of the bulk glassy

alloy in 0.5 M H2SO4 causes the formation of micron-sized round pits uniformly distributed

on the surface. This aspect will be presented in more detail in section 4.5.

4.3 Effect of pH value on anodic polarization behaviour

4.3.1 Anodic polarization measurements

In order to characterize the free corrosion and the anodic passivation behaviour of the bulk

glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy in halide free aqueous solutions with

pH values in the interval 0.3-14, potentiodynamic anodic polarization measurements were con-

ducted. Typical curves recorded in electrolytes with selected pH values are shown in Fig. 4.6.

From these results, corrosion potentials, Ecorr, and current densities, icorr, were determined

and plotted against the pH value of the electrolyte (Fig. 4.7). The corrosion current densities

were determined by graphical extrapolation in the potential range close to the current den-

sity minimum as explained in section 3.3. The two dashed lines in Fig. 4.7 correspond to the

equilibrium conditions of the oxygen and hydrogen reduction reactions for partial pressures

of 5 ·10−6 and 1 atm, respectively. As it can be seen, the corrosion potential, Ecorr, of this

alloy is in all electrolytes nobler than the equilibrium potential of the hydrogen reduction re-

action and, in general, it decreases with increasing pH value. Consequently, at free corrosion

conditions, depolarization is not achieved by reduction of hydrogen ions. The only possible
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Figure 4.6: Anodic polarization curves of the bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy recorded in 0.5 M H2SO4 (pH
0.3), 0.1 M Na2SO4 (pH 5 and 8.4), 0.001 M NaOH (pH 11), and 1 M NaOH (pH 14).

depolarization reaction in the electrolytes used for testing is the reduction of dissolved oxy-

gen. The corrosion current densities are low, i.e. below 3 µA · cm−2 at any pH value in the

interval 0.3–14. A comparison between this alloy and the conventional steel X210Cr12 re-

garding corrosion current density values is given later in this section. Between pH 5 and 11,

the corrosion potential does not follow the expected trend of decreasing with increasing pH

value. Similarly, the corrosion current density does not follow the expected trend of increasing

with increasing pH value. Instead, in this pH value interval the corrosion potential is nearly

constant and the corrosion current density is decreasing, e.g. at pH 11 it is lower by one order

of magnitude than at pH 0.3, 5 or 8.4. This is attributed to the formation of passive films

already under open circuit conditions, i.e. during exposure prior to the polarization tests.

Anodic polarization tests were performed in five different solutions with pH values

of 0.3, 5, 8.4, 11 and 14. The potentiodynamic curves of the bulk glassy alloy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 recorded at each pH value are shown in Fig. 4.6.

Upon anodic polarization at pH 0.3 the alloy generally exhibits high active dissolution rates of

1–3 mA·cm−2 which indicate that this alloy is characterized by a very poor passivation ability

in very acidic solutions. With increasing pH value of the electrolyte the overall anodic current

density level decreases by two orders of magnitude at near neutral pH values (pH 5 and 8.4),

i.e. to ∼ 20 µA · cm−2, and by another one at pH 11, i.e. to ∼ 2 µA · cm−2, indicating that

the passivation ability is remarkably improved with increasing pH value. At pH 11, the alloy

passivates spontaneously. The corrosion potential, Ecorr, establishes during pre-exposure un-
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Figure 4.7: Corrosion current density, icorr, and corrosion potential, Ecorr, of the bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy in dependence of the pH value.
Dashed lines: equilibrium potentials of oxygen and hydrogen reduction reactions at
the experimental conditions.

der OCP conditions at potentials nobler than the passivation potential, Epass. Consequently,

the polarization curve does not show an active-passive transition. It is passive already at the

beginning of the polarization test and it remains passive for at least 920 mV. The current

density is not constant in the passive domain. Its logarithm increases linearly with potential

(with a slope of 5.4·10−4 A·V−1). In very basic electrolytes, i.e. at pH 14, although the alloy

exhibits a passive behaviour similar as at pH 11, the mean passive current density is higher,

i.e. ∼ 7 µA · cm−2 (at E = –150 mV), which reveals that the passive film is less protective.

Two domains can be distinguished in the anodic polarization curve: one at lower polarization,

from Ecorr up to –70 mV vs. SCE, where the passive current decreases slowly with potential

and another one at more anodic potentials than –70 mV, where the current density decreases

faster with increasing potential.

For the pH value interval 0.3-8.4, at low anodic polarization there is an active dissolution

domain followed by an active-passive transition (peaks at 360 mV for pH 0.3 and at 60 mV

for pH 5 and 8.4, respectively) which is marked by a decrease in current density of almost

one order of magnitude. At higher anodic potentials, at pH 0.3 there is a second oxidation

peak at 1110 mV. At pH 5 and 8.4, instead of this second oxidation peak there is a plateau

with small fluctuations which begins at 560 mV after a domain in which the current density

increases slowly. However, the mean ‘passive’ current density measured in 0.5 M H2SO4 (pH

0.3) is quite high. This is mainly explained by the much higher thermodynamic stability of
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4.3 Effect of pH value on anodic polarization behaviour

the ionic state as compared to the oxide state for some of the alloy constituent elements, e.g.

Fe, Cr, Co, Mn, Y [96] (see section 2.4). Because these elements tend to be more stable as

ionic species, they do most probably not form oxides on the alloy sample surface to protect

it from active dissolution. The decay in current density after the first peak indicates the

formation of a ‘passive’ film which is not very protective as the recorded current density is

still quite high, i.e. 0.8 mA · cm−2. The decay in current density after the second oxidation

peak can be attributed to the formation of MnO2 (see the reaction in Table 2.3). According

to the Pourbaix diagram for pure Mn, the equilibrium potential for the 10−6 M Mn2+/MnO2

transition is 1320 mV vs. SHE which is very close to the potential corresponding to the peak

maximum (1350 mV vs. SHE). With increasing pH value (up to ∼ 11), the stability domains

of the oxide species of the alloy constituents become wider (see Pourbaix diagrams of con-

stituent elements in section 2.4 and Ref. [96]) gaining more stability with respect to the ionic

state. Therefore, the dissolution rates are lower with increasing pH value of the electrolyte

up to pH ∼ 11. However, with a further increasing pH value towards very basic conditions,

the potential domains in which the oxide species are stable shrink and as expected, a higher

passive current level is registered in the solution with pH 14 compared to the one with pH

11.

4.3.2 Influence of sulphate concentration

During the pitting studies which will be presented later (section 4.4) it was observed that

sulphate ions can act very deteriorating on passivity — in some cases even more than chloride

ions. Therefore, it was decided to dedicate special attention to systematically investigate

the influence of sulphate ions on the anodic passivation ability. In order to do this for the

bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy, a series of potentiodynamic

polarization measurements was performed in solutions with various concentrations of Na2SO4,

and additionally in 0.5 M phthalate buffer, all with the same pH value of 5. As it can be seen

in Fig. 4.8, the nature and the concentration of the anions in the electrolyte have a significant

influence on the anodic polarization behaviour of this alloy.

In 0.5 M phthalate buffer, the alloy has the least noble corrosion potential and the anodic

potential corresponding to the critical passivation current is also less noble than the cor-

responding ones recorded in the sulphate containing solutions. The kind of anions of the

electrolyte does not drastically influence the active dissolution regime and the critical pas-

sivation current density (compare anodic polarization curves in 0.5 M phthalate buffer and

in 0.5 M Na2SO4, respectively). But the concentration of the sulphate ions in the electrolyte

has a dramatic influence on the active dissolution process, e.g. at E=−50 mV the current

density in 10−5 M H2SO4 is 4.2 µA · cm−2 while in 0.1 M Na2SO4 it is increased by one order
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Figure 4.8: Anodic polarization curves of the bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy recorded in various solutions
with pH 5. Inset: free electrode potential versus time curves after the polarization
tests.

of magnitude to 20 µA · cm−2. The active-passive transition does not occur suddenly at a

certain potential as shown in Fig. 3.1, but gradually in a potential interval. There is a strong

influence of the sulphate ion concentration on the passive current density of this alloy. On

average, a one order of magnitude higher passive current density is observed for an increase

of the sulphate ion concentration from 0.1 to 0.5 M. In order to investigate the influence of

the sulphate ion concentration on the stability of the anodically formed passive films, the

self-regulating electrode potential was measured after the potentiodynamic tests. In the inset

of Fig. 4.8 selected parts of the free electrode potential vs. time curves determined immedi-

ately after the linear polarization tests are shown. In the electrolytes with high sulphate ion

concentration, after the polarization is stopped, the self-regulating electrode potential under

open circuit conditions drops rapidly to a potential close to the open circuit potential (the

one measured before the linear polarization test), while for the sulphate free and low con-

centrated electrolytes the free electrode potential firstly tends to reach a constant value of

200 mV corresponding to an anodic potential close to the equilibrium potential of the passive

film/electrolyte system and then, as this film is dissolved, rapidly decays to the initial OCP

value. It results from the above described observations that the sulphate anions deteriorate
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the protective effect and the stability of the passive films on this alloy in solutions with a pH

value of 5.

4.3.3 Auger electron spectroscopy investigations

The analysis of the composition of the thin passive films formed on the bulk glassy alloy

surface was performed by Auger electron spectroscopy (AES). This is very challenging due

to the expected superposition of the Auger peaks of the numerous constituent elements.

Sputter depth profiles were recorded after exposure of the cross-sectional areas of the rod

samples to air, to 0.1 M Na2SO4 (pH 5) under free corrosion conditions and after anodic

potentiostatic polarization in 0.1 M Na2SO4 (pH 5) at 280 mV and to 0.001 M NaOH (pH

11) under polarization at 400 mV. Typical profiles are shown in Fig. 4.9. In order to prevent

a subsequent modification of the passive films formed by potentiostatic polarization, the

samples were removed from the electrolyte and cleaned with ethanol immediately after the

polarization was stopped.

In the Auger electron spectra of all surfaces (not shown here), oxide species of only Cr and

Fe were detected. However, by sputtering oxidized species can be reduced. Therefore the

possibility that other elements are present in the oxidized state in the passive film should

not be excluded. For C, in the Auger electron spectra two peaks corresponding to different

bonding states were identified: one which is similar to that measured in carbides, and another

one similar to that measured in graphite (the usual peak shape of the surface contamination

C species). The concentration of C with graphite-like bonding is very small, i.e. 0.5 at.%, at

the substrate. Therefore, the carbide-like peak shape is assumed to be characteristic for C in

the alloy. B could not be clearly identified in the AES spectra due to partial superposition of

its Auger transition (K-VV) with those of other elements like Mo (M45-NN) and S (L-VV).

Y could not be detected at all neither in the bulk of the alloy nor in the covering passive

films.

For all samples, a slight enrichment in C is observed in the bulk alloy close to the surface

layer/alloy interface. It is also observed that the passive layers are strongly depleted in C as

obvious from Fig. 4.9. This suggests that either C is not easily dissolved at the potentials at

which the polarization tests were performed or that the transport of C through the passive

layer, from the inner alloy/film to the outer film/electrolyte interface, is slower than the

transport of other constituents.

On the surface of a sample that is exposed to air for one week, a thin layer of Fe and Cr

oxides with an estimated thickness of 2-3 nm is formed (see Fig. 4.9(a)). This layer has a

non-uniform composition, i.e. it consists mainly of Fe oxide in the outer region and of a

mixture of Fe and Cr oxides in almost equal proportions in the inner region close to the alloy.

All the other elements are drastically depleted in the surface layer. Polished samples exposed
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Figure 4.9: Concentration depth profiles from AES investigations of the surface of bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 samples after various treatments: a) one
week in laboratory air, b) 19 h immersion in 0.1 M Na2SO4 with pH 5, c) 19 h poten-
tiostatic polarization at 280 mV in 0.1 M Na2SO4 with pH 5, and d) 19 h potentiostatic
polarization at 400 mV in 0.001 M NaOH. Main species are represented in the upper
plots and minor species are represented in the lower plots.
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4.3 Effect of pH value on anodic polarization behaviour

to laboratory atmosphere for 18 months are still shiny. This shows that the passive film

formed in air is protective enough to insure an excellent resistance to atmospheric corrosion

(at 40% humidity level).

A much thicker oxide layer (estimated thickness ∼ 22 nm) is formed on the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy after exposure to a solution of 0.1 M

Na2SO4 with pH 5 (see Fig. 4.9(b)) for 19 h. This layer is mainly composed of Cr oxide and

contains small amounts of oxidized Fe, metallic Mo, and C. Neither Co nor Mn is detected

in the oxide layer. S is also present in the passive layer in a small concentration, which is

relatively constant over the thickness of the surface layer.

The surface layer formed by potentiostatic polarization at 280 mV for 19 h in the same

solution (0.1 M Na2SO4 with pH 5) is thinner (estimated thickness ∼ 15 nm). It is also

mainly composed of Cr oxide (see Fig. 4.9(c)). This film comprises small amounts of C and

metallic Mo. The Mo concentration is not uniform over the thickness of the oxide layer, but

increases with distance from the outer surface. S is again present in the oxide layer in small

concentrations.

The AES investigations reveal that the layers formed in sulphate electrolytes contain

S, most probably as metal sulphates since the sulphate SO 2 –
4 anions which are already

in the electrolyte are very stable. Another indication that the surface layers formed in

sulphate electrolytes contain metal sulphates is that the passive current density increases

with sulphate concentration (see Fig. 4.8). Most probably the layer consists mainly of Cr

oxide/oxyhydroxide and a variable fraction of various sulphate compounds depending on the

sulphate anion activity in the electrolyte. The ratio of the oxide-to-sulphate concentrations

in the layer may decrease with increasing activity of sulphate anions, rendering the surface

film less resistant to the transport of species to and from the electrolyte/film interface.

Potentiostatic anodic polarization in 0.001 M NaOH (pH 11) at 400 mV for 19 h results in

the formation of a film with similar composition as the one formed in air (see Fig. 4.9(d)),

though it is two times thicker (estimated thickness ∼ 5 nm). The outer layer additionally

(to the one formed in air) contains a small amount of metallic Cr and Mn. Mn was not

depleted nor enriched in the oxide film, it has the same concentration as in the bulk of the

alloy. Of all the metal components of this alloy, only Mo dissolves actively at this pH value

[96]. All the other metals form stable oxides or hydroxides which can contribute to passivity.

As obvious from the AES results, Mo is indeed strongly depleted in the surface layer, but

unexpectedly also Co. It is known that pure Co forms in basic solutions upon increasing

anodic polarization compounds like Co(OH)2, Co3O4 and CoOOH [100].

The poor passivation ability of the bulk glassy alloy in acidic solutions is explained

by the insufficient concentration of passivating constituents. Mainly, the concentration of

Cr is considered to be insufficient for the formation of a complete Cr oxide rich layer. The
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4.3 Effect of pH value on anodic polarization behaviour

Cr concentration of this alloy (4.93 at.%) is much lower than the minimum value which is

regarded to be necessary to form a complete Cr-oxyhydroxide film on conventional Fe-Cr

alloys, i.e. (13 at.%). It is also lower than the Cr content of earlier Fe-based amorphous

alloys notable for their excellent corrosion resistance, e.g. Fe-10Cr-13P-7C (concentrations

in at.%) [14] (see section 2.3). Compared to the above mentioned alloys with optimized

composition, the alloy under investigation contains also a relatively high concentration of

elements that are electrochemically very active in acidic solutions, namely Mn and Co. Their

oxides are only stable at high anodic potentials (see section 2.4). For example, at pH 0.3 the

equilibrium potential of the 10−6 M Mn2+/MnO2 couple is 1320 mV (vs. SHE) and that of

10−6 M Co2+/CoO2 is 1750 mV (vs. SHE) (for reactions see Table 2.3). Therefore, at lower

potentials (which are of interest for usual corrosion conditions), they can not participate

effectively in the passivation process based on oxide formation. It is concluded, with respect

to these thermodynamic considerations, that in acidic solutions Mn and Co can have a

detrimental effect on the passivation of the glassy alloy at pH 0.3. Mn was already proven

to show this effect in the case of stainless steels [104, 105]. Mo is known to have a beneficial

effect on the pitting resistance of stainless steels and also to ease their passivation by altering

the active-passive transition [78]. However, when its concentration, or more precisely, the

ratio of its concentration to that of Cr is high, it yields a poor protective effect of the growing

passive films. It was clearly shown for the glassy FeCrMoCB system that excessive Mo to

Cr concentration ratios cause a dramatic increase of the anodic passive current density

[82]. In consequence, also for this alloy, the Mo content is regarded to be detrimental for

passivation. Furthermore, as suggested by Hashimoto [17], C is expected to dissolve rapidly

as carbonates. According to thermodynamic considerations, in acidic solutions, Y is also

expected to easily dissolve (as Y3+ ions) [96].

At higher pH values, as shown by the potentiodynamic polarization measurements (Fig. 4.6),

the passivation ability of the glassy alloy is higher. The main constituents of the passive films

are Fe and Cr oxides. Cr is strongly enriched in the passive film. For example, it reaches

more than 50 at.% of the cationic species at pH 5, although its fraction in the composition

of the bulk alloy is only 4.93 at.%. Another interesting observation is that C is enriched

underneath the passive film. To the author’s knowledge, this enrichment of C was not noted

in previous studies on other Fe-based amorphous alloys. But there are studies that report an

enrichment of another metalloid, P, underneath the passive layer [91, 92]. This sub-surface

enrichment was not observed for B or Si. As explained in section 2.3, the metalloids have

a marked effect on the corrosion resistance and passivation ability of Fe-based glasses. The

corrosion resistance was found to increase with the order: B and Si < C < P [92]. It was

argued that the beneficial effect of P might be attributed to the enrichment of P underneath

the film reducing the ionic conductivity of the interface. Since a similar enrichment in C is

observed for the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy, it may be
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4.3 Effect of pH value on anodic polarization behaviour

concluded that C has a similar effect as P.

Y is known to have some beneficial effects, for instance, to improve the stability of

passive films for the Fe50−xCr15Mo14C15B6Yx bulk glass [85]. However, as the AES

results indicate, Y species are not present in the passive films of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy. Still, this observation might be an

artefact, as any Y present could be removed during the sputtering process. Below the passive

film, in the bulk of the sample, the AES results reveal that there is no Y, but they should

show the nominal composition of 1.5 at.%. This sustains the idea that Y might be originally

present in the passive film. To clarify whether this is a sputtering effect, AES should be

performed on the bare surface of the alloy (sample broken inside the vacuum chamber of the

spectrometer). The same discussion is applicable to B. In conclusion, a discussion regarding

the influence of the minor constituents B and Y on corrosion-related modifications of the

surface-near regions would be irrelevant here due to the low reliability of the analysis data

for these two species.

4.3.4 Comparison with the crystalline counterpart and the conventional

steel

In order to compare the anodic polarization behaviour of the bulk glassy alloy with that of

its crystalline counterpart and that of the conventional steel, a series of anodic polarization

curves have been recorded for all three alloys in electrolytes with pH values in the range

0.3–14. Exemplary potentiodynamic curves measured in 0.5 M H2SO4 (pH 0.3) are shown

in Fig. 4.10. In agreement with the results of the weight loss tests it is obvious that in this

acid electrolyte the glassy alloy exhibits a much lower corrosion current rate than the con-

ventional steel sample. As in the case of the immersion tests, also in the case of the linear

polarization tests galvanic coupling between the (Fe,Cr)7C3 particles and the αFe(Cr) matrix

is responsible for the high corrosion activity of the steel. As mentioned in section 4.2, due

to its multiphase nature also the crystalline counterpart, similar to the conventional steel,

suffers from galvanic coupling between the main phase (M23(B,C)6) and the interdendritic

phase(s). This is expected to be the reason for the higher corrosion current density of both

crystalline alloys compared to that of the single-phase glassy alloy.

The anodic behaviour of the three alloys in this acidic solution is quite different. Opposite to

the low corrosion current, upon anodic polarization, the glassy alloy exhibits high dissolution

rates proving a very low ability to passivate in this electrolyte (the origin of this behaviour

was discussed in the sections 4.3.1 and 4.3.3). Similarly, the crystalline counterpart exhibits

low passivation ability. Only the conventional steel sample shows an appreciable tendency to

passivate, i.e. a clear active-passive transition is visible at Epass = 280 mV vs. SCE.

Potentiodynamic measurements for the three alloys were also conducted in other electrolytes
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Figure 4.10: Potentiodynamic anodic polarization curves of the bulk glassy alloy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5, of its crystalline counterpart and
of commercial steel X210Cr12 recorded in 0.5 M H2SO4 (pH 0.3).

with various pH values: 5, 8.4, 11 and 14. Characteristic quantitative corrosion parameters

determined from these curves are plotted versus the pH value in Fig. 4.11. Their determi-

nation is explained in section 3.3. As obvious from Fig. 4.11(b), both the glassy alloy and

its crystalline counterpart, have significantly nobler corrosion potentials than the steel in

acidic solutions and behave slightly more noble in near neutral acidic solutions. This could

be explained by the formation of Mo-oxide(s)-rich films on the multicomponent alloy surfaces

proceeding already during the 1 h period of exposure in the electrolyte prior to the beginning

of the potentiodynamic measurements. It was previously noted that, in acidic conditions,

Mo determines the ennoblement of Fe [120] and also of glassy Fe-Cr based alloys [81] by the

formation of a Mo oxide film. In neutral and slightly basic solutions, all constitutive metallic

elements except Mo form stable oxides or hydroxides [96] (see section 2.4). Only at pH 11 the

conventional steel exhibits a more noble corrosion potential, Ecorr, than that of the crystalline

counterpart, and at pH 14 the potential value is higher than that of both multicomponent

alloys. This is explained by the chemical composition difference: additionally to Fe, Cr and

C (the main elements of the conventional steel) the multicomponent alloys contain elements

like Mo, Mn and Co in significant concentrations. In very basic solutions, those components

can be dissolved as complex ions and only at higher potentials Mn and Co form oxide or

hydroxide films [96] (see section 2.4).

As seen in Figs. 4.10 and 4.11(a), at pH 0.3 the corrosion current density values of the three

alloys are very different. As already discussed, this is a direct effect of their phase composi-
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Figure 4.11: Characteristic corrosion parameters of the bulk glassy alloy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5, of its crystalline counterpart and
of commercial steel X210Cr12 in dependence of pH value: (a) corrosion current
density icorr, (b) corrosion potential Ecorr, (c) critical current density icrit, (d)
passivation potential Epass, (e) passive current density ipass, and (f) transpassivation
potential Etp. Values determined from potentiodynamic measurements.

tion. However, at higher pH values, in near neutral solutions, these differences are smaller. As

described in section 4.2, with increasing pH value the galvanic coupling between the αFe(Cr)

matrix and the (Fe,Cr)7C3 particles plays a less and less important role and, as it will be

seen later in this section, the overall passivation (of both phases) dominates its behaviour. A

similar behaviour is to be expected from the crystalline counterpart. In very basic solutions,

at pH 14, the difference in corrosion current densities are again as high as in the acidic solu-

69



4.3 Effect of pH value on anodic polarization behaviour

tions. But in these basic solutions the conventional steel is very corrosion resistant, while the

multicomponent alloys have higher corrosion current densities. The corrosion current densi-

ties of the multicomponent alloys are very similar, indicating that the phase composition has

an insignificant influence on this parameter in this electrolyte. Altogether, it results that in

very basic solutions the phase composition plays an insignificant role, while the elemental

composition dominates the overall behaviour. As explained for the Ecorr dependency on pH

value, Mo, Mn and Co are also assumed to be responsible for the higher corrosion current

densities of the multicomponent alloys as compared to those of the conventional steel.

Figures 4.11(c) and (d) show the pH value dependencies of the critical current density and of

the passivation potential, respectively, corresponding to the three studied alloys. The miss-

ing points in these curves correspond to those cases of spontaneous passivation which did

not allow the aforementioned parameters to be determined. Compared to the conventional

steel, the multicomponent alloys exhibit, in acid solutions, lower critical current densities

and nobler passivation potentials, while in base electrolytes they have higher critical current

densities and less noble passivation potentials. As in the case of corrosion current densities

and potentials, a Mo oxide film would explain the reduced critical current in acid solutions.

The free dissolution of Mo, Mn and Co at low potentials (see section 2.4) would explain the

higher values of critical current density and of passivation potential for the multicomponent

alloys compared to the conventional steel.

Furthermore, the passive current density values of the three alloys were evaluated compar-

atively. It is obvious from Fig. 4.11(e) that the passive films formed on the X210Cr12 steel

are the most protective (except at pH 5, where its passive current density is very close to

that of the glassy alloy). This is explained by the alloy composition. It was shown that the

carbide particles (Fe,Cr)7C3 in the conventional steel consist of approximately 35 at.% Cr.

Additionally, the C in these particles further contributes to a lowering of the passive current

[121]. In contrast, the αFe(Cr) matrix contains only 6 at.% Cr or less and an insignificant

concentration of C (its solubility in this phase is very limited [119]). In consequence, it is

expected that the matrix forms less protective passive films than the carbide phase and so

the overall passive current density (the measured one) is determined by the passive film on

the matrix. The single-phase glassy alloy has a relatively similar content of Cr, i.e. 5 at.%

compared to the matrix phase of the conventional steel, i.e. 6 at.%. However, as mentioned

earlier, the higher content of C in this glassy alloy, compared to that in the matrix phase

of the conventional steel, is expected to result in lower ipass values. Nevertheless, the effect

of the other reactive alloying elements of the glass dwarfs the effect of Cr and C. As AES

investigations on the glassy alloy revealed [55], some of the alloying elements can have a

detrimental effect on the passivity of this alloy (see section 4.3.3). For example, Mo does not

participate in the composition of the anodic passive films. As well, Co is not present in the

passive films formed on this glassy alloy. Furthermore, Mn was seen to participate only in
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those passive films which are formed in basic electrolytes [81].

As derived from Fig. 4.11(e), the passive films on the glassy alloy are more protective than

those on the crystalline counterpart. However, it cannot be clearly concluded that this is a

particular intrinsic effect of the amorphous nature of the single-phase glassy alloy. In contrast,

the crystalline counterpart alloy, like the conventional steel, is of multiphase nature. There-

fore, the crystalline counterpart is covered with a passive film that is laterally non-uniform.

Thus, it is believed that the segregation of various elements in the constitutive phases leads

to a passive film that is locally less protective than that on the glassy alloy. Unfortunately,

as mentioned earlier, due to the low dimension of the interdendritic phase(s), the measure-

ment of its elemental composition provided insignificant differences compared to the overall

composition of the alloy.

As it can be seen in Fig. 4.11(f), the difference in phase composition between the glassy alloy

and its crystalline counterpart has almost no influence on the transpassivation potential. On

the contrary, the X210Cr12 steel has lower transpassivation potentials, except at extreme

pH values (0.3 and 14) which indicates that the additional elements of the multicomponent

alloys (with respect to the conventional steel) extend the stability domain of the passive film

to higher potentials. This could be explained by the fact that in addition to Fe or Cr oxides

that can form on the conventional steel, on the multicomponent alloys, Mn and Co oxides

(which are stable up to higher potentials) can also form.

In conclusion, as a consequence of its single-phase nature, in acid solutions the glassy alloy

exhibits a high free corrosion stability compared to its crystalline counterpart and the conven-

tional steel. However, by anodic polarization, the single-phase glassy alloy (with passivating

Cr and Fe contents lower than those of the conventional steel) exhibits lower passivation

tendency, but higher compared to its multiphase crystalline counterpart. With increasing pH

value, the passivation ability of all three alloys is improved and the galvanic coupling effect

becomes weaker. In very basic solutions, the influence of the galvanic coupling is minimal

and, instead, the elemental alloy composition dominates the free corrosion and the anodic

behaviour.

4.3.5 Summary

The influence of the pH value of an electrolyte on the anodic polarization behaviour and

the passivation ability of bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 has been

investigated. For this, anodic polarization tests and AES investigations of grown surface films

have been performed. In a large pH value interval (0.3–14), the bulk glassy alloy shows corro-

sion potential values nobler than the equilibrium potential of the hydrogen evolution reaction

and it yields corrosion current densities below 3 µA · cm−2. Its passivation ability is poor in

acidic solutions. However, with increasing pH value of the electrolyte, the passivation ability
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is dramatically improved due to the formation of protective surface layers mainly composed

of Fe and Cr compounds, for example, oxides/salts. Sulfate ions present in the solution neg-

atively influence the protective effect of the passive layer most probably by incorporation of

sulfate anions in the film which reduces the fraction of the more effective oxides. The poor

passivation ability of the glassy alloy in acidic solutions is explained by the alloy composition:

mainly the Cr concentration is considered to be insufficient for the formation of a complete

Cr-oxide-rich layer and at the same time, the concentration of Mn, which is electrochemically

active in very acidic solutions (see section 2.4), is too high. The passivation ability may be

improved by further development of the alloy composition in the limits allowed for obtaining

a sufficient GFA. Particularly suggested are (i) an increase of the concentration of Cr to a

level that enables the formation of complete, very protective surface films, (ii) a decrease of

Mo concentration to a value enabling an optimal Mo/Cr ratio (this has to be found out by

trial) and (iii) a decrease of the concentration of Mn, which deteriorates the protective effect

of a passive film (see section 2.4), to a necessary minimum.

In acid electrolytes the crystalline counterpart and the conventional steel exhibit much higher

corrosion rates than the glassy alloy. This is a consequence of galvanic coupling between the

M23(B,C)6 dendrites and the η-carbide interdendritic phase, causing the preferential dissolu-

tion of the η-carbide in the case of the crystalline alloy, and between the (Fe,Cr)7C3 particles

and the αFe(Cr) matrix causing preferential dissolution of the αFe(Cr) matrix in the case

of the conventional steel. However, by anodic polarization, the single-phase bulk amorphous

steel exhibits a passivation tendency lower than that of the conventional steel due to its lower

content of passivating elements Cr and Fe. But compared to the crystalline counterpart, the

glassy alloy has higher tendency to passivate. With increasing pH value, the passivation abil-

ity of all three alloys is improved and the galvanic coupling effect aforementioned becomes

weaker. In very basic solutions, the influence of the galvanic coupling is minimal, and, instead,

the elemental composition dominates the free corrosion and the anodic behaviour.

4.4 Pitting corrosion

In order to study the pitting corrosion behaviour of the bulk glassy alloy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 and to compare it with that of its crystalline

counterpart and of the conventional steel, anodic potentiodynamic polarization measurements

were performed in neutral aqueous solutions with various NaCl concentrations. Some repre-

sentative curves are shown in Fig. 4.12. The corrosion current density values of the glassy alloy

are similar in all three electrolytes and similar to the one in a chloride-free neutral electrolyte

(0.1 M Na2SO4 — corresponding polarization curve not shown here), i.e. 0.6 µA · cm−2. The

corrosion potentials of the glassy alloy are not as similar to each other as the corrosion current
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Figure 4.12: Potentiodynamic anodic polarization curves of the bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy, of its crystalline counterpart
and of the commercial steel X210Cr12 in neutral 0.001, 0.1 and 0.6 M NaCl
electrolytes.

density values, but the corrosion potential value in 0.1 M NaCl, i.e. -250 mV vs. SCE, is very

close to the value in 0.1 M Na2SO4, i.e. -256 mV vs. SCE. It can be concluded therefore,

that Cl ions, Cl – , do not have a significant influence on the dissolution reaction of the glassy

alloy at low polarization conditions. The low anodic current densities, e.g. at 300 mV vs.

SCE, ∼10 µA · cm−2, indicate that a stable passive layer is initially formed on the bulk glassy

alloy surface at all three chloride concentrations. Nevertheless, the potential Epit at which

the passive film becomes unstable, which is marked by an increasing deviation of the current

density from the passive plateau, is less noble for higher chloride concentrations. Compared

to the glassy alloy, the crystalline counterpart alloy exhibits (in similar electrolytes) less

noble corrosion potentials, i.e. Ecorr ∼−425 mV, and higher corrosion current densities, i.e.

icorr ∼2 µA · cm−2, revealing a poorer free corrosion behaviour. At low anodic polarization

(in the range ±250 mV vs. SCE), the crystalline counterpart also forms stable passive films

in all the electrolytes as evident from the current plateau region (considering the high value

of this plateau, i.e. ∼200 µA · cm−2, a more proper denomination would be pseudo-passive

films). However, these are much less protective than those grown on the glassy alloy, since

the passive current densities are more than one order of magnitude higher. Similarly to the

glassy alloy, the films on the crystalline counterpart become unstable at lower potentials Epit

with increasing chloride concentration. However, the conventional reference steel X210Cr12

does not form a passive film in these Cl – -containing environments, not even in the lowest
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concentrated electrolyte. Only a small anodic polarization is needed to dramatically increase

its dissolution rate. At free corrosion conditions, the diffusion-controlled oxygen reduction

reaction limits its corrosion rate to a relatively low value. These significant differences in the

anodic polarization behaviour clearly reveal a much better corrosion resistance of the bulk

glass-forming Fe-based alloy than that of the conventional alloy.

As obvious from Fig. 4.12, there is no marked sudden increase of the anodic current density

for the bulk glass-forming alloy samples, which was found to be specific for pitting initiation

and rapid propagation on surfaces of Zr-based [122] or Mg based bulk glassy alloys [123]. In

order to clarify the corrosion mode related to the gradual current density increase, micro-

scopic investigations were performed on the alloy surfaces after potentiodynamic polarization

tests. These were conducted similar to those shown in Fig. 4.12, but the scans were stopped

when the anodic current density reached a value of 1 mA · cm−2. Light optical microscopy

(LOM) and SEM images of polarized samples are shown in Fig. 4.13. On the surface of the

glassy alloy sample even when exposed to 0.6 M NaCl, no signs of pitting corrosion were

found. Instead, without cleaning with Chelaplex, a porous film was present on the surface. It

is believed that the increase in current density at 500 mV vs. SCE corresponds to a transfor-

mation of the real thin and compact protective passive film to the observed porous film, which

is not as protective. After cleaning the surface with Chelaplex, as shown in Fig. 4.13(a), pores

were observed which have the same distribution, size and shape as the Y2O3 particles (see

Fig. 4.3(a)). Moreover, only a few Y2O3 particles were found on the surface after this test. It is

now evident that these pores were formed at the sites of the former particles. However, these

pores do not grow further than the initial size of the pre-existing particles. In conclusion,

although the Y2O3 particles provide a prerequisite for local breakdown of the passive film,

and indeed, local dissolution occurs, pitting propagation does not take place. This proves

a high pitting resistance of this alloy, or more specifically, a high repassivation ability. Re-

ferring to the small sharp current density peaks within the anodic region prior to the large

current density increase beginning at the pitting potential, Epit, which were recorded in the

0.01 and 0.1 M NaCl electrolytes (Fig. 4.12), it becomes clear that these correspond to the

aforementioned local events. The small increase in current density at the beginning of a small

peak corresponds to a local dissolution event close to a Y2O3 particle exposing the bare alloy

surface when the particle is removed. The decrease in current density at the end of the small

peak corresponds to repassivation of the respective spot at the surface. These peaks appear in

the 0.01 M NaCl solution at more noble potentials than in 0.1 M NaCl and are not present at

all in the 0.6 M NaCl electrolyte. Most probably, due to the higher concentration of aggressive

chloride ions, they appear at less noble potentials. It follows then that the majority of these

local events takes place in 0.6 M NaCl during the 1 h period before the polarization test

and this is the reason for which no small peaks are seen on the corresponding polarization

curve. This high repassivation ability could be caused by the relatively high content of Mo in
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Figure 4.13: Surface images after potentiodynamic anodic polarization up to 1 mA · cm−2 of: (a)
(SEM) bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sample in 0.6 M
NaCl (inset: higher magnification of a dissolving yttrium oxide particle), (b) (SEM)
crystalline (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sample in 0.6 M NaCl
(inset: higher magnification of the marked area), and (c) (LOM) image of commercial
steel X210Cr12 sample after potentiodynamic anodic polarization in 0.01 M NaCl.

75



4.4 Pitting corrosion

the (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy. Alloyed Mo is known to significantly

improve the repassivation ability of stainless steels [124] (see also section 2.4). With respect

to the formation of those pores at the sites of the former Y2O3 particles in the Fe-based

BMG, it is not clear yet whether they were formed by dissolution of the particles or by dis-

solution of the surrounding matrix leading to an excavation and subsequent detachment of

the particles. The inset of Fig. 4.13(a) shows a higher magnification SEM image of a particle

at an intermediate stage of dissolution. It can be seen that the local dissolution initiates at

the interface. However, it is not evident whether it is the matrix, the particle, or both that

dissolve(s).

A SEM image of the surface of the crystalline counterpart sample taken after the same po-

larization treatment in 0.6 M NaCl is shown in Fig. 4.13(b). Also in this case, no pits were

observed. Instead, preferential dissolution of the secondary phase(s) takes place. SEM inves-

tigations performed on the surface of this alloy after 1 h of OCP immersion in the same

electrolyte, 0.6 M NaCl, revealed no preferential dissolution. Therefore, it was concluded

that the dissolution process is initiated under anodic conditions, i.e. at −300 mV vs. SCE

where the significant increase in current density is observed (Fig. 4.12). Following this idea,

the pseudo-passive plateau observed at more noble potentials than this significant increase

in current density, would then correspond to the dissolution of the interdendritic phase(s)

(see the microstructure description in section 4.1.2). This is limited by the diffusion of ions

in the electrolyte residing in the channels created in the place of the former phase(s). The

subsequent increase in current density might correspond to the initiation of the attack on the

main phase, M23(B,C)6.

As the LOM image in Fig. 4.13(c) shows, on the surface of the conventional steel polarized in

0.01 M NaCl, two corrosion zones were identified: one which maintains the shiny metallic ap-

pearance and contains pits (left hand side in Fig. 4.13(c)), and one which is severely corroded,

similarly as in the case of the immersion test in 0.5 M H2SO4 (see Fig. 4.5(c)). In-between the

two aforementioned zones, multiple neighbouring pits reside. These observations lead to the

following interpretation: as seen in Fig. 4.11(e), in borate buffer (pH 8.4) this alloy exhibits a

very low passive current density which indicates that a passive film is formed at this pH value.

The formation of a passive film is expected also in the neutral 0.01 M NaCl electrolyte which

has a pH value, i.e. 7, close to the one of the borate buffer. However, due to the chloride ions,

this passive film is broken at weak sites, e.g. at the interface between the (Fe,Cr)7C3 phase

and the αFe(Cr) matrix. Pits are formed at the respective breakdown site. Subsequently, due

to their lateral growth along the matrix phase, they coalesce and form large corroded areas

as observed on the right hand side of the SEM image in Fig. 4.13(c).

A comparison of the polarization behaviour in Cl – -containing electrolytes of the bulk

glassy alloy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 to most of the other Fe-based

bulk glasses can not be done in a rigorous manner because of the dissimilar test elec-
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trolytes used by various authors, e.g. very acidic 1 N HCl [82], 1 and 6 N HCl

[125]. However, in two of the reported works [91, 126], anodic polarization tests of

an Fe-based bulk glass, Fe65.5Cr4Mo4Ga4P12C5B5.5, were done in electrolytes similar

to the ones used in this study, i.e. Cl – -containing 0.1 M acetate buffer electrolytes

(pH ∼ 5) [91] and 1 N NaCl (pH 7) [126]. In the buffer electrolyte with 0.1 M

NaCl, the bulk glassy Fe65.5Cr4Mo4Ga4P12C5B5.5 alloy has the same passive current

density as the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy has in the

0.1 M NaCl electrolyte, i.e. ipass =∼10 µA · cm−2. However, the pitting potential Epit

of Fe65.5Cr4Mo4Ga4P12C5B5.5 is 1200 mV vs. SCE which is higher than that of the

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy, i.e. 730 mV vs. SCE in the same elec-

trolytes. Also the pitting potential Epit of the Fe65.5Cr4Mo4Ga4P12C5B5.5 alloy, in 1 N NaCl,

i.e. 700 mV vs. SCE, is higher than that of the (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5

alloy in the less aggressive electrolyte 0.6 M NaCl, i.e. 520 mV vs. SCE. These last two ob-

servations indicate that the (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy investigated

in this study has a lower pitting resistance than the Fe65.5Cr4Mo4Ga4P12C5B5.5 alloy. How-

ever, the pitting susceptibility of the latter alloy exhibits a very high sensitivity to material

defects manifested in much lower pitting potentials, Epit, when defects are present at the

exposed surface as compared to when there are no defects. On the contrary, defects at the

surface of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy, i.e. Y2O3 inclu-

sions, have no effect on the pitting behaviour, i.e. they do not originate pits. Leaving aside

this sensitivity, the difference in pitting resistance of the two alloys is explained by their

composition differences. The Fe65.5Cr4Mo4Ga4P12C5B5.5 alloy would be expected to have a

lower pitting resistance due to its lower Mo concentration. However, the P in its composi-

tion is stabilizing the passive film as stated by Chattoraj et al. [91] and consequently it is

improving its resistance against breakdown. At the same time, the Mn in the composition

of the (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy can destabilize the passive film and

adversely affect the pitting resistance [104].

Summary and conclusion The bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 al-

loy has a higher stability in Cl – -containing solutions under OCP and anodic conditions than

the crystalline counterpart and the commercial steel X210Cr12. The Fe-based BMG does

not suffer from pitting corrosion under the test conditions. However, Cl – ions determine the

deterioration of the passive film resulting in poorly protective porous films. At the same time,

local dissolution events occur at the Y2O3 inclusions which, however, are stopped after the

inclusions are removed due to repassivation. Pitting corrosion in the test conditions does

not occur also in the case of the crystalline counterpart. Instead, anodic polarization of this

crystalline alloy in Cl – -containing electrolytes results in preferential dissolution of the in-

terdendritic phases, e.g. Co3Mo3C, FeY2C4. In the case of the conventional steel X210Cr12,
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pitting easily takes place and may lead to severe dissolution on extended areas of the surface

with minimal Cl – concentration and anodic polarization. The lower pitting susceptibility of

the glass and of its crystalline counterpart as compared to the conventional steel is explained

mainly by the presence of Mo. Mo is also thought to be responsible for the ‘self healing’ effect

at the Y2O3 inclusions.

4.5 Active dissolution in acid solutions

As mentioned in section 4.2, when exposed to 0.5 M H2SO4 the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy corrodes under formation of characteris-

tic morphological features on the micrometre scale. Therefore detailed microscopic surface

investigations have been carried out in order to thoroughly analyze the surface morphology

evolution mechanism during reaction with acid solutions both in the initial and the late

stages.

4.5.1 Corrosion under open circuit conditions

Firstly, a disc sample of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy

was used for long term weight loss tests in the 0.5 M H2SO4 solution. The sample has been

periodically emerged for weight measurements and for surface analyses by SEM and AFM.

The weight loss values were calculated with respect to the initial surface area of the samples.

As Fig. 4.14 shows, the weight loss increases linearly with time indicating that the corrosion

rate is constant.

A series of representative SEM images is shown in Fig. 4.15. The as-polished surface is

very smooth except for some scratches that were generated during the polishing process

(Fig. 4.15(a)). After one day of exposure in 0.5 M H2SO4 (Fig. 4.15(b)) numerous nano-sized

pores are observed. Their mean size is 12 nm. After 100 days, as shown in Fig. 4.15(c), round-

shaped micrometer-sized pits are visible on the surface of the glassy alloy. Their maximum

size is around 10 µm while their minimum size could not be determined precisely because

of the presence of corrosion products. These pits are clearly distinguishable from the nano-

sized pores visible in Fig. 4.15(b). After this exposure time, a change in the colour of the

surface from shiny metallic to brown was observed. This indicates the presence of a corro-

sion product layer. However, at this stage, the layer is electron-transparent which allows the

visualization of the underlying morphology with SEM. After 200 days of exposure, the al-

loy surface changed to black colour corresponding to an increase of the layer thickness which

made it completely opaque. At this stage the corrosion product layer is not only light-opaque,
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Figure 4.14: Weight loss measurement of bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5

alloy in 0.5 M H2SO4 and 1 M HCl.

but also electron-opaque. Figure 4.15(d) shows a SEM image of the surface at this stage. The

corrosion product layer is not continuous, but contains many cracks. The cracks might form

as a consequence of the drying process of the originally hydrated layer after removal from

the electrolyte. Measurements with SEM revealed a mean thickness of the corrosion product

layer after 200 days of approximately 2 µm.

More detailed SEM investigations of the exposed sample have been performed after removal

of the corrosion product layer in order to better characterize the morphology of the corroded

glassy alloy surface. As Fig. 4.16(a) shows, after 200 days in 0.5 M H2SO4 the surface of the

sample is completely covered with round-shaped pits of size ranging from 0.2 to 12 µm. This

large interval of values suggests that while early formed larger pits grow, new smaller pits

form implying a progressive nucleation process. New pits appear at random locations; there

are apparently no preferred sites for the nucleation of new pits. At higher magnification it

is obvious that, as visible in Fig. 4.16(b), the surface exhibits a nano-porous structure. This

substructure occurs similarly on the walls of all the larger micron-sized pits. The mean pore

size of the substructure is 15 nm which is similar to the mean pore size determined after

one day of exposure, i.e. 12 nm (Fig. 4.15(b)). It is therefore concluded that the same process

which initially generated this nano-porous structure continues to take place in the later stages

when the micron-sized pits start to form and grow. These observations suggest that although

the two processes, i.e. the one causing the nano-porous structure and the one causing the

micron-sized pits, take place simultaneously, they are independent from each other.
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Figure 4.15: SEM images of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy
sample: (a) before immersion; after immersion in 0.5 M H2SO4 (b) for 1 day, (c)
for 100 days and (d) for 200 days.
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Figure 4.16: SEM images of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy
sample surface after 200 days in 0.5 M H2SO4. The corrosion layer was removed
by ultrasonic treatment in Chelaplex. (a) low magnification, and (b) higher magnifi-
cation.
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Additional investigations of the corroded surface morphologies were conducted by atomic

force microscopy (AFM). Figure 4.17(a) shows an AFM image of a glassy alloy surface which

was exposed for 200 days in 0.5 M H2SO4 and subsequently cleaned from corrosion products.

As also observed by SEM (Fig. 4.16(a)), round-shaped pits with various sizes exist. The di-
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Figure 4.17: (a) Non-contact AFM image of the bulk glassy alloy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 sample after 200 days in 0.5 M
H2SO4, (b) line scan corresponding to the line indicated on the image, and (c) depth
versus width of 30 pits of which some can be seen in (a).

ameter of the pits as measured by AFM is between 200 nm and 6 µm. As compared to SEM,

AFM provides much more detailed information on the surface topography. Pit dimensions

are determined more accurately, especially in the vertical direction [127]. Indeed, as it can be

seen in the line profile in Fig. 4.17(b), the shape of the pits in the vertical direction is very

well defined. In order to characterize the general shape of the pits, the diameter and depth

of 30 pits representing the whole size interval, i.e. 0.2–6 µm, were determined from such line

profiles as the one shown in Fig. 4.17(b). Figure 4.17(c) shows a plot in which the diameter

and the depth of those pits are represented. In order to compare their shape to that of a per-

fect hemisphere a line corresponding to this is also represented. It is evident that the shape

of the majority of pits is semi-ellipsoidal, the short axis being perpendicular to the surface

plane, i.e. the depth. This indicates that the corrosion front propagates on the glassy alloy

surface more laterally than in depth resulting in shallow pits. Unfortunately, the nano-porous

substructure visible in the SEM image in Fig. 4.16(b) could not be satisfactorily imaged with
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AFM due to tip-sample convolution.

In order to determine the elemental composition of the corrosion product layer (Fig. 4.15(d))

and of the region adjacent to this, i.e the substrate, EDX investigations were carried out.

For comparison, EDX analysis was also performed on the bulk glassy alloy in the as-polished

state. The EDX results for the sample immersed for 200 days in 0.5 M H2SO4 are shown

comparatively in Fig. 4.18. The corrosion product layer contains nearly all the constituent
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Figure 4.18: Elemental concentrations as measured by EDX of the corrosion products layer and
of the underlying alloy after 200 days in 0.5 M H2SO4, and of the as-polished bulk
glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy.

elements of the bulk glassy alloy and additionally O indicating that nearly all constituents

participate in layer formation. Unfortunately, B cannot be measured by EDX because of its

low atomic mass. However, B is not expected to be present in the corrosion product layer

since it is known to dissolve rapidly from various Fe-based glassy alloys and therefore not to

be present in their passive films [26, 30, 55, 128]. Very clearly, the corrosion product layer is

much richer in C while poorer in every metallic element with respect to both the substrate

and the as-polished sample. Although it may be argued that the measured concentrations

are not exact because the corrosion product layer is only 2 µm in thickness, and therefore,

the EDX measurement can be affected by the substrate, without doubt the layer is richer in

C than the underlying bulk glassy alloy. Also the substrate is enriched in C with respect to

the as-polished sample, i.e. 4 at.% higher. This slight enrichment in C in the substrate zone

can be an artefact due to the presence of remnant corrosion products on the surface after

cleaning with Chelaplex. If this is not the case, and indeed SEM images as those in Fig. 4.16
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do not show any remaining corrosion products, it can be concluded that also the substrate is,

though only slightly, enriched in C. Interestingly, a similar C enrichment was observed under

passive films formed at higher pH values as shown in section 4.3.3.

Another obvious aspect is that the corrosion product contains O in a significant amount,

i.e. almost 10 at.%, in addition to C. Unfortunately, it can not be stated what the bonding

states of O and C are. For example, they could form compounds with the metallic elements,

e.g. oxides, hydroxides, carbides, carbonates. Furthermore, sulphur, S, which is present in

the electrolyte, is not present in the corrosion products layer which was expected since metal

sulphates are very soluble in acid aqueous solutions. In order to (perspectively) clarify which

compounds constitute the corrosion products layer, experimental techniques which have the

capability to detect the valence states of atoms, e.g. XPS, or the bond-types, e.g. FTIR,

should be employed. The reason why the composition of the corrosion products layer and

of the substrate was compared to the composition of the (as-polished) glassy alloy mea-

sured by EDX and not to its nominal composition is because EDX can give relatively high

error. In order to minimize the influence of such an error on the analysis of concentration

differences between the layer, the substrate and the as-polished glassy alloy, all EDX measure-

ments were done with the same instrument and in a single measurement session. However,

in order to assess the reliability of the measurements, the composition of the as-polished

sample measured by EDX was compared to the nominal composition (re-normalized without

B concentration)(Fig. 4.18). Except for the Co concentration which shows a deviation of 38

% from the nominal one, all the other concentrations have deviations in the range ±16 %.

4.5.2 Corrosion under anodic polarization conditions

In order to analyze anodic corrosion processes in direct relation to the surface morphology evo-

lution of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy, potentiodynamic

and potentiostatic polarization measurements in conjunction with microscopic observations

have been performed. Potentiodynamic polarization tests were conducted in 0.5 M H2SO4

(pH 0.3) and 1 M HCl (pH 0.1) and typical curves are shown in Fig. 4.19. In 1 M HCl, the

corrosion potential is more negative than in 0.5 M H2SO4, i.e. EHClcorr=−198 mV compared to

EH2SO4

corr =−37 mV. Also, the corrosion current density is higher, i.e. iHClcorr=10 µA · cm−2 com-

pared to EH2SO4

corr =0.23 µA · cm−2. This indicates that the bulk glassy alloy exhibits higher

reactivity in 1 M HCl than in 0.5 M H2SO4. However, during anodic polarization at potentials

more positive than 200 mV, the alloy exhibits a quite similar response in both electrolytes.

The overall anodic current density level is high, i.e. it reaches values of 2 and 8 mA · cm−2 at

1000 mV in 0.5 M H2SO4 and 1 M HCl, respectively. This indicates that the alloy dissolves

actively in both electrolytes. Additionally, for the bulk glassy alloy a potentiostatic test was

performed at 600 mV for 1 hour in 0.5 M H2SO4. The resulting potentiostatic curve is shown
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Figure 4.19: Potentiodynamic polarization curves of the bulk glassy alloy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 in 0.5 M H2SO4 and in 1 M HCl.
Inset: potentiostatic polarization curve of the same alloy at 600 mV vs. SCE in 0.5
M H2SO4.

in the inset of Fig. 4.19. The average value of current density during this potentiostatic test,

i.e. 1.17 mA · cm−2, corresponds very well to the value registered during the potentiodynamic

test at the same potential (600 mV), i.e. 0.85 mA · cm−2. The current density value varies in

a small range during the 1 hour test period, i.e. 1.10–1.23 mA · cm−2. This variation can be

regarded as insignificant, but an overall trend of increase with time can be claimed after 2400

sec. This increase in current density is explained by the increase of the reactive surface area.

As it will be seen later, this increase is the result of roughening of the exposed surface.

Light optical microscopy (LOM) investigations of the alloy surface performed after the

complete polarization in the 0.5 M H2SO4 electrolyte (Fig. 4.20(a)) revealed a similar type

of surface morphology as observed in the case of corrosion under open circuit conditions

(Fig. 4.15(c)), i.e. after 100 days of exposure to 0.5 M H2SO4, where uniformly distributed

round-shaped pits were found to be characteristic. This is similarly the case after complete

polarization in 1 M HCl (see Fig. 4.20(b)) and after 1 hour potentiostatic polarization at

600 mV in 0.5 M H2SO4 (see Fig. 4.20(c)). There are fewer pits formed after potentiostatic po-

larization in 0.5 M H2SO4 than after complete potentiodynamic polarization in either of the

two electrolytes. This is because less charge is consumed in this potentiostatic test. However,

the principal pit morphology is similar as in all the other cases. These observations lead to

the conclusion that the morphology of the actively corroded surface is not determined by the

electrolyte or by the potential regime. The same (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5

84



4.5 Active dissolution in acid solutions

50 µm
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Figure 4.20: LOM images of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy
sample after: (a) complete polarization cycle in 0.5 M H2SO4 (b) complete polar-
ization cycle in 1 M HCl, and (c) 1 h potentiostatic polarization at 600 mV vs. SCE.
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alloy, but in the shape of a melt-spun ribbon was also potentiodynamically polarized and a

very similar corrosion morphology was developed in this case as well. Compared to the bulk

glassy alloy sample which was polished before each experiment, the ribbon sample surface

was initially used in the as-quenched state. The similarity of the surface morphology of these

two samples after the corrosion tests indicates that the initial surface state is also not a

decisive factor for the corrosion mode.

In conclusion, the surface morphology evolution of the bulk glassy alloy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 during corrosion is not determined by the

kind of the acid electrolyte nor by the initial surface state or the applied potential regime.

It is therefore concluded that the corrosion morphology is most likely determined by

material-specific characteristics such as alloy structure and/or composition.

4.5.3 Initial corrosion stages

In order to analyze the initial stages of pit formation during metallic glass corrosion in acid

solutions, in-situ AFM investigations were performed in 0.5 M H2SO4. For this the glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 sample was firstly exposed for 1 hour under open

circuit conditions in the in-situ AFM cell and then an anodic potential of 600 mV vs. SCE was

applied. AFM images were taken before applying the anodic potential and then periodically

after every 10 min during polarization up to a total polarization time of 60 min. During the

AFM imaging, the anodic polarization was interrupted. Selected AFM images are shown in

Fig. 4.21. It can be seen that already before applying the anodic potential, i.e. after 1 hour

under open circuit conditions, single small pits with a diameter of about 200 nm and a mean

depth of only about 5 nm are visible (Fig. 4.21(a)). After 10 min of polarization at 600 mV vs.

SCE, the same pit (it appears at a different site in the image because the sample drifts with

time) has grown both in diameter and in depth. It can be seen in Fig. 4.21(b) that at this

time the pit is 280 nm wide and 14 nm deep. An additional small pit appeared at the rim of

this one. After 60 min (Fig. 4.21(c)) the same pit grew further reaching 800 nm in diameter

and 143 nm in depth. Furthermore, new pits appear progressively at other surface sites. It

is noticed that the initially very flat pits, e.g. depth:diameter=5:200 nm (Fig. 4.21(a)) grow

faster in depth than in diameter resulting in nearly hemispherical shapes, e.g. 143:800 nm

(Fig. 4.21(c)). As revealed by ex-situ AFM (Fig. 4.17), after 200 days under OCP conditions,

the whole surface of the glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy is attacked

by pits and these have a round shape as the ones observed by in-situ AFM. Another sim-

ilar aspect is that both modes, in-situ and ex-situ, show that the bigger pits, i.e. > 1 µm,

have a shape tending to hemispherical. However, in the case of the smaller pits, while ex-

situ AFM reveals a similar shape, in-situ AFM reveals much flatter shapes. This could be

caused by the partial filling of the newly created pit with corrosion products. In-situ AFM
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Figure 4.21: In-situ AFM images of a bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 al-
loy sample surface in 0.5 M H2SO4(a) at the beginning of the polarization test (after
60 min at OCP), (b) after 10 min at 600 mV vs. SCE, and (c) after 60 min at 600 mV
vs. SCE.

enabled the capability of observing in detail the evolution of the corroding surface of the

glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sample at a fixed location without

emerging the sample from the test electrolyte. Ex-situ investigations with AFM or SEM would

require much more effort and would have the additional problem of emerging the sample from

the test solution for every investigation.

In order to further analyze the very initial stages of active corrosion processes of the bulk

glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy at the nano-scale TEM investiga-

tions were conducted. Figure 4.22(a) shows a bright field TEM image of the as-prepared state
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50 nm

(a)

50 nm

(b)

Figure 4.22: TEM images of a bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sur-
face (a) before immersion and (b) after immersion in 0.5 M H2SO4 for 24 h. Insets:
electron diffraction patterns of corresponding sample states.

of the glassy alloy. No indications of crystallinity were found with either bright or dark field

imaging (dark field images not shown here). This, as well as electron diffraction patterns

made at various locations (see inset of Fig. 4.22(a) for a representative electron diffraction

pattern), proved the glassy nature of this sample. The same TEM foil was then immersed

in 0.5 M H2SO4 for 24 hours and investigated again by TEM. Figure 4.22(b) shows a repre-

sentative bright field image after this treatment. As it can be seen, the initially featureless

sample has undergone changes that lead to the generation of characteristic features on nano-

scale dimension. These have various sizes in the interval from 5 to 30 nm. Interestingly, high

resolution SEM investigations reveal similar features as the ones identified by TEM (see

Fig. 4.15(b) showing a SEM image of the bulk glassy alloy surface after 24 hours in 0.5 M

H2SO4). Therefore, it is thought that the contrast in TEM images is due to the same features

seen in Fig. 4.15(b). Further electron diffraction analysis of the sample immersed for 24 hours

in 0.5 M H2SO4 indicates that these features are amorphous as is the alloy itself (see inset of

Fig. 4.22(b)). Probably these features are initial corrosion products which later evolve in the

much thicker film as observed by SEM (see for example Fig. 4.15(d)). EDX analysis indicated

no significant difference in composition between the observed features and the surroundings.

4.5.4 Further discussion

Based on the experimental observations, a description of the evolution of the surface mor-

phology of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy during active

corrosion in acid solution can be given. This process is regarded to occur in both cases, i.e.

under open circuit conditions and during anodic dissolution, and to be independent of the
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nature of the electrolyte, i.e. H2SO4 or HCl. A schematic representation of the surface mor-

phology evolution is given in Fig. 4.23. Upon immersion in the electrolyte, firstly two processes

take place as shown in the second cartoon for t = 1 day. On the one hand, as oxidation of

constituent elements takes place, a part of them is dissolved in the electrolyte, while another

part is not dissolved and participates in the formation of corrosion products which precipitate

at the surface. On the other hand, the surface of the alloy (beneath the corrosion products

layer) undergoes transformation from the smooth as-polished state to a rough nano-porous

morphology. The presence of the corrosion products layer and the nano-porous surface mor-

phology were revealed by SEM and TEM investigations (see Fig. 4.15(b) and Fig. 4.22(b)).

Later on, larger pits with diameters in the micrometer range form, as shown in the third

cartoon in Fig. 4.23 for t = 100 days. These are initially some hundred of nanometres in

diameter, but very shallow as revealed by in-situ AFM studies (Fig. 4.21). They subsequently

grow in size mainly in depth and tend to a hemispherical shape, but in general they have

a semi-ellipsoidal shape. With time the number of pits increases indicating progressive pit

nucleation. Eventually the entire surface is covered by pits as shown in the fourth cartoon in

Fig. 4.23 for t = 200 days. The nano-porous morphology persists in this late stage when the

micrometre-sized pits develop and it is present on the whole surface including inside the pits

on their walls. The corrosion products layer continues to grow in thickness in the late stages

as well.

A very similar surface morphology evolution was observed by Shan et al. in the case of the

bulk glassy SAM 1651 alloy (Fe48Cr15Mo14C15B6Y2) in a crevice corrosion test in 4 M NaCl

at 100◦C at a potential of 150 mV vs. SCE [26]. In that case, the growth of larger pores was

explained to be initiated at the location of the Y2O3 particles. Y2O3 particles are also present

in the alloy studied in the present work (see section 4.1.1 and [55, 112]), but their number is

much lower than the number of observed pits. This leads to the conclusion that the described

surface morphology evolution during acid corrosion is not directly related to the presence

of those secondary phase particles, as stated in the study by Shan et al.. Moreover, it was

observed that most of these particles located at the surface were removed during the surface

polishing process [112].

As it was demonstrated, the surface morphology evolution during corrosion of the bulk

glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy is very likely due to material

characteristics. Especially, the multi-component composition of this alloy is thought to

be responsible for the generation of those characteristic features. The bulk glassy alloy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 comprises eight elements with different electro-

chemical behaviour. For example, while Mn is easily dissolved in acid electrolytes in a po-

tential regime ranging from its equilibrium potential up to relatively high overpotentials, Cr

is passive and, therefore, it exhibits very low dissolution currents. As well, while B is readily

dissolved, C is virtually inert. It is therefore believed that, at the glassy alloy surface, selec-
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Figure 4.23: Schematic representation of the surface morphology evolution of the bulk glassy
(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy during dissolution in acid solu-
tions.

tive dissolution of the more active elements takes place while the more noble elements are

enriched. For example, it was detected by EDX analysis that there is a slight enrichment in

C at the surface after 200 days of immersion in 0.5 M H2SO4 (see section 4.5.1). The forma-

tion of the nano-porous surface is then explained similarly as in the case of the well known

selective dissolution of ‘higher-melting’ crystalline alloys (implying a low diffusivity at room

temperature) [129]. In the case of crystalline alloys the dissolution of atoms produces vacan-

cies at the surface which subsequently agglomerate forming the so-called ‘dissolution nuclei’

[71]. In the case of amorphous alloys a similar process can be expected to take place noting

that the ‘vacancy’ created by the removal of one atom from the surface can not be called

‘vacancy’ since this is a term defined for crystalline materials. Therefore, the initial pores

which are created as a consequence of selective dissolution are expected to be very small,

i.e. to be at the atomic level in the case of dissolution of a single atom or at the nanometre

level in the case of agglomeration of several ‘vacancies’. However, as shown in Fig. 4.16(b), the

pores identified by SEM have a much larger size, i.e. a mean size of 15 nm. Unfortunately, the

resolution of SEM is not sufficient to visualize those expected pores with a size in the nano-
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and sub-nanometre range. The formation of larger pores observed by SEM with a mean size

of 15 nm can be explained in terms of Wagner’s theory [130]. A description of the mechanism

in Wagner’s theory which was developed for crystalline alloys is given in Ref. [71]. Figure 4.24

shows a schematic representation of the mechanism of surface roughening of an alloy in ac-

cordance with this theory. Initially, selective dissolution of alloy constituents depletes the

Figure 4.24: Surface roughening of an alloy by selective dissolution of less noble constituents with
rate-determining volume diffusion [71].

surface concentration of the more active elements. Therefore, an inter-diffusion zone with

thickness δ1 develops. When a pore is formed as explained above, the inter-diffusion zone will

be thinner at the bottom of the pore since it is fresher. However, the concentration difference

across the inter-diffusion layer at the bottom of the pore will be the same as elsewhere. It

follows that the concentration gradient across this layer will be higher at the bottom of the

pore and, therefore, the diffusion rate of less noble constituents will be higher. This means

that, if volume diffusion (and not the dissolution) is rate determining, the pore will tend to

deepen, i.e. reach depths δ ≫ δ1. This is the reason, according to Wagner, for which pores

will tend to grow in depth. On the contrary, owing to the Gibbs-Thomson effect pores will

tend to flatten [131]. This is due to the dependence of the chemical potential of an element

on the curvature of the surface favoring flat surfaces. The formation of the larger pits, i.e. >

200 nm, can also be explained by the same competition of the two tendencies, i.e. roughening

due to selective dissolution and flattening due to the Gibbs-Thomson effect. However, it is

not yet clear why there are no pores with diameters in the interval 15 to 200 nm.
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Summary It was demonstrated that active dissolution reactions of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy in acidic solutions yield characteristic mor-

phological features of the glassy alloy surface on the micro- and nanometre scale. These mor-

phological features are independent of the kind of electrolyte and, therefore, are thought of

depending on the material characteristics. A corrosion product layer rich in C is formed on

the surface which thickens with time of corrosion. For the first time, it was shown that in-situ

AFM is a powerful method to study corrosion phenomena for metallic glasses. The observed

morphology evolution, nano- and micro-porous structures, was explained by extrapolating se-

lective dissolution concepts already known for crystalline alloys to this particular bulk glassy

alloy. In principle, the corrosion morphology evolution is governed by the interplay between

selective dissolution tending to roughen the surface and the Gibbs-Thomson effect tending

to flatten the surface.
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5 Summary and outlook

Recently (2004), breakthroughs in the development of Fe-based bulk glasses led to the

development of new alloy compositions with remarkable glass forming ability (GFA) [1].

Considering also their relatively inexpensive cost, ease of fabrication and outstanding me-

chanical properties, e.g. high strength and hardness, their applicability was greatly increased.

Their high brittleness is now the only drawback for their use as structural materials, but

much effort is nowadays dedicated to improving their plasticity [54]. However, environmental

stability is yet another decisive factor for their applicability (as for the applicability of any

material), but this aspect was scarcely studied. The corrosion behaviour of their predecessors

was intensely investigated (see section 2.3 for a review). But, since their composition is very

different, the knowledge already acquired from the previous non-bulk glasses can not be

extended to these newly developed bulk glasses. Therefore, new studies are required for the

fundamental understanding of the corrosion behaviour of the recently developed Fe-based

bulk glasses. One of the most prominent alloys of this class at the time of beginning of

this work (2007), (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5, also entitled as ‘structural

amorphous steel’ was chosen to fundamentally study the corrosion behaviour. This glassy

alloy with a maximum sample thickness of 12 mm has a high thermal stability (T g = 804 K),

a high strength (∼ 3 GPa) and hardness (1224 HV), and it is non-ferromagnetic at ambient

temperatures (T c = ∼ 55 K) [1].

The aim of this work was to fundamentally investigate the corrosion behaviour of the

bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy. Particularly, the free cor-

rosion and the anodic polarization behaviour, the passivation ability and the pitting

susceptibility have been assessed in electrolytes with varying pH values and anion species

concentrations. For some particular aspects, a comparison was made with the crystalline

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 counterpart alloy and with the commercial

steel X210Cr12. Additionally, detailed microscopic investigations for the clarification

of active dissolution mechanisms in acid solutions were conducted for the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy.

Firstly, the microstructure of the three metallic materials used in this study was investigated

because the particular microstructure determines decisively the corrosion behaviour. The

Cu-mould cast (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy sample with 3 mm diame-

ter is composed of a single glassy phase with a few dispersed nanometre-sized Y2O3 particles.
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On the contrary, its crystalline counterpart obtained by Cu-mould casting (10 mm diameter)

and the conventional steel X210Cr12 have multi-phase microstructures. Mainly M23(B,C)6

dendrites, an interdendritic η-carbide as a secondary phase and probably FeY2C4 as a

third phase compose the crystalline counterpart. In the conventional steel, micrometre-sized

(Fe,Cr)7C3 particles are surrounded by an αFe(6 at.%Cr) solid solution matrix phase.

Weight loss measurements have been performed for the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy and the commercial steel X210Cr12

in 0.5 M H2SO4, 0.1 M Na2SO4, 0.6 M NaCl and 1 M NaOH. After 100 days, the bulk

glassy alloy had a significant weight loss only in the acid solution while it was very stable

in all the other solutions. On the contrary, the conventional steel sample used as reference

exhibited much higher weight loss values in all solutions except in 1 M NaOH. This strongly

deviating behaviour of the two alloys is explained by their very different microstructure,

i.e. phase composition. While the bulk glassy alloy is single-phase, the conventional steel is

multi-phase enabling galvanic coupling between adjacent constituent phases which strongly

increases the total corrosion rate.

A major part of the study was dedicated to the analysis of the influence of the electrolyte

pH value on the anodic polarization behaviour and the passivation ability of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy. For this, anodic polarization tests in

combination with surface analytical studies, i.e. AES depth profiling, of surface films have

been performed. In a wide pH value interval (0.3–14) the corrosion potential of the bulk glassy

alloy has values nobler than the equilibrium potential of the hydrogen evolution reaction.

This indicates that at free corrosion conditions depolarization is not achieved by reduction

of hydrogen ions but by other reactions, e.g. reduction of dissolved oxygen. The corrosion

current densities are in the pH value interval 0.3–14 relatively low, i.e. below 3 µA · cm−2.

Its passivation ability is rather poor in acidic solutions. However, with increasing pH value

of the electrolyte, the passivation ability improves dramatically due to the formation of

protective surface layers mainly composed of Fe and Cr compounds, e.g. oxides/salts. Sulfate

ions present in the solution negatively influence the protective effect of the passive layer

most probably by incorporation of sulfate anions in the film which reduces the fraction of

the more protective oxides. The poor passivation ability of the glassy alloy in acidic solutions

is explained by the particular alloy composition: mainly the Cr concentration of 4.93 at.% is

considered to be insufficient for the formation of a complete protective Cr-oxide-rich layer.

At the same time, the concentration of Mn of 11.03 at.%, which is electrochemically active in

very acidic solutions, is too high. This is a major drawback of this glassy alloy with high GFA

in comparison to the early generation of Fe-based glasses with low GFA, but composition

which made them highly corrosion-resistant. The passivation ability of the bulk glassy alloy

may be improved by further development of the alloy composition in the limits allowed for

obtaining a sufficient GFA. Particularly suggested is an increase of the concentration of Cr
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to a level that enables the formation of complete, very protective oxide films and a decrease

of the concentration of Mn, which deteriorates the protective effect of a passive film, to a

necessary minimum.

The anodic polarization behaviour and the passivation ability of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy as function of the pH value was compared

to those of its crystalline counterpart and of the commercial steel X210Cr12. In acid

electrolytes the glassy alloy exhibits much lower free corrosion rates than the crystalline

counterpart and the conventional steel despite the higher Cr content in the steel. This is

a consequence of galvanic coupling between the M23(B,C)6 dendrites and the η-carbide

interdendritic phase in case of the counterpart alloy, causing the preferential dissolution of

the η-carbide. Also in the case of the conventional steel galvanic coupling occurs between the

(Fe,Cr)7C3 particles and the αFe(Cr) matrix causing preferential dissolution of the αFe(Cr)

matrix. However, during anodic polarization in acid electrolytes the single-phase bulk

amorphous steel, with passivating Cr and Fe contents lower than those of the conventional

steel, exhibits a lower passivation tendency (but higher compared to its multiphase crystalline

counterpart). With increasing pH value, the passivation ability of the glassy alloy and of

the two reference materials is improved and the galvanic coupling effects abovementioned

become weaker. In very basic solutions, the influence of the galvanic coupling is minimal, and,

instead, the elemental composition dominates the free corrosion and the anodic behaviour.

Consequently, due to the lower passivating Fe and Cr concentration, the passive film on the

glassy alloy is less protective than the one on the reference steel and equally protective to

the one on the counterpart.

In chloride containing near-neutral electrolytes, the single-phase bulk glassy alloy exhibits the

highest pitting resistance as compared to its crystalline counterpart and to the conventional

steel. Although the Y2O3 particles provide favourable surface sites for pit formation and,

indeed, local dissolution is initiated at their interface with the glassy matrix, pit propagation

does not occur from those special sites. Therefore, these particles can be considered as

mostly ‘inert’. The glassy alloy exhibits a high repassivation ability in chloride electrolytes

which is mainly attributed to the high content of the beneficial Mo in its composition.

Compared to the bulk glassy Fe65.5Cr4Mo4Ga4P12C5B5.5 alloy [91, 126], the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy exhibits a lower pitting resistance, but

also a lower sensitivity to pitting propagation from inclusions. The difference in pitting

resistance is explained by Mn destabilizing the passive film on Fe65.5Cr4Mo4Ga4P12C5B5.5

and by P stabilizing the passive film on Fe65.5Cr4Mo4Ga4P12C5B5.5. The lower sensitivity

of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy to pitting propagation

from the Y2O3 inclusions is due to its high repassivation ability brought by the presence of

Mo in its composition.

It was demonstrated that active dissolution reactions of the bulk glassy

95



(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy in acidic solutions yield characteris-

tic morphological features at the surface on micro- and nanometre scale dimensions. The

features on the micro-scale dimension are not originating at the Y2O3 inclusions as stated

by Shan et al. [26] for another Fe-based bulk glass, i.e. Fe48Cr15Mo14C15B6Y2. It was shown

that these morphological features occur independently of the kind of electrolyte and the

polarization conditions. Therefore, their appearance is assumed to be strongly related to

characteristics of the alloy. A corrosion product layer rich in C is formed on the surface

which thickens with corrosion time. The observed morphology evolution is explained by

extrapolating selective dissolution concepts already known for crystalline alloys to this

particular glassy alloy. In principle, the corrosion morphology evolution is governed by the

interplay between the Gibbs-Thomson effect tending to flatten the surface and selective

dissolution tending to roughen the surface.

Outlook This study has demonstrated the necessity of very detailed analyzing the corro-

sion properties of newly developed bulk glass-forming Fe-based alloys. They are not per-se

‘highly corrosion resistant’, but their corrosion behaviour depends on their particular chem-

ical composition. Following the findings of this study several compositional modifications of

the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy are suggested. First of all,

an increase in Cr concentration would be very beneficial for the formation of more protective

passive films. Secondly, Mn is known to destabilize passive films on stainless steels and to

increase their pitting susceptibility. A similar effect is predicted in the case of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy and, therefore, decreasing its concentra-

tion is recommended. Lastly, Mo is considered. On the one hand it increases the permeability

of passive films on Fe-based BMGs when present in too high concentrations. On the other

hand, it has a beneficial influence on the pitting resistance. It is therefore recommended to

decrease its composition to an optimal value considering both aspects. However, modifying

the composition of this alloy will bring also a modification in its GFA and of course this

aspect has to be taken into consideration.

In order to have a more complete understanding of the corrosion behaviour of the bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy and to better assess its applicability, fur-

ther investigations should be conducted, e.g. crevice corrosion, corrosion under mechanical

load, stress corrosion cracking, corrosion with contact materials, thermal oxidation.

In-situ AFM was for the first time used to study corrosion processes for a metallic glass and it

successfully proved its high capability. This method can be applied also to other glass systems

or nanostructured materials.
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