
Fakultät Informatik - Institut für Software- und Multimediatechnik

�
TECHNICAL REPORTS

ISSN 1430-211X

TUD-Fl12-09 Dezember 2012

Christoff Bürger
Fakultät Informatik, Lehrstuhl Softwaretechnologie

RACR: A Scheme Library for Reference Attribute 
Grammar Controlled Rewriting

Technische Universität Dresden�
Fakultät Informatik�
Institut für Software- und Multimediatechnik�
Lehrstuhl Softwaretechnologie�
01062 Dresden�
Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236366103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Technische Universität Dresden
Institut für Software- und Multimediatechnik
Lehrstuhl Softwaretechnologie

Developer Manual

RACR
A Scheme Library for Reference Attribute Grammar Controlled Rewriting

Christo� Bürger

Christoff.Buerger@gmx.net

December 20, 2012

v0.4.3



Developer Manual for RACR v0.4.3
RACR download and homepage: https://code.google.com/p/racr/



Contents

1. Introduction 7
1.1. RACR is Expressive, Elegant, E�cient, Flexible and Reliable . . . . . . . . 7
1.2. Structure of the Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Library Overview 13
2.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Abstract Syntax Trees 17
3.1. Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3. Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4. Node Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Attribution 27
4.1. Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. Evaluation and Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5. Rewriting 33
5.1. Primitive Rewrite Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2. Rewrite Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6. AST Annotations 39
6.1. Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2. Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7. Support API 41

A. RACR Source Code 45

B. MIT License 71

API Index 72

3





List of Figures

1.1. Analyse-Synthesize Cycle of RAG Controlled Rewriting . . . . . . . . . . . 8
1.2. Rewrite Rules for Integer to Real Type Coercion of a Programming Language 9

2.1. Architecture of RACR Applications . . . . . . . . . . . . . . . . . . . . . . 13
2.2. RACR API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1. Runtime Exceptions of RACR’s Primitive Rewrite Functions . . . . . . . . . 34

5





1. Introduction

RACR is a reference attribute grammar library for the programming language Scheme sup-
porting incremental attribute evaluation in the presence of abstract syntax tree (AST)
rewrites. It provides a set of functions that can be used to specify AST schemes and
their attribution and construct respective ASTs, query their attributes and node information
and annotate and rewrite them. Three main characteristics distinguish RACR from other
attribute grammar and term rewriting tools:

• Library Approach Attribute grammar specifications, applications and AST rewrites
can be embedded into ordinary Scheme programs; Attribute equations can be im-
plemented using arbitrary Scheme code; AST and attribute queries can depend on
runtime information permitting dynamic AST and attribute dispatches.

• Incremental Evaluation based on Dynamic Attribute Dependencies Attribute
evaluation is demand-driven and incremental, incorporating the actual execution paths
selected at runtime for control-flows within attribute equations.

• Reference Attribute Grammar Controlled Rewriting AST rewrites can depend on
attributes and automatically mark the attributes they influence for reevaluation.

Combined, these characteristics permit the expressive and elegant specification of highly
flexible but still e�cient language processors. The reference attribute grammar facilities can
be used to realise complicated analyses, e.g., name, type, control- or data-flow analysis. The
rewrite facilities can be used to realise transformations typically performed on the results
of such analyses like code generation, optimisation or refinement. Thereby, both, reference
attribute grammars and rewriting, are seamlessly integrated, such that rewrites can reuse
attributes (in particular the rewrites to apply can be selected and derived using attributes and
therefore depend on and are controlled by attributes) and attribute values change depending
on performed rewrites. Figure 1.1 illustrates this analyse-synthesize cycle that is at the heart
of reference attribute grammar controlled rewriting.
In the rest of the introduction we discuss why reference attribute grammar controlled rewrit-
ing is indeed expressive, elegant and e�cient and why RACR additionally is flexible and
reliable.

1.1. RACR is Expressive, Elegant, E�cient, Flexible and
Reliable

Expressive The specification of language processors using RACR is convenient, because
reference attribute grammars and rewriting are well-known techniques for the specification

7



1. Introduction

Apply Rewrite Apply Rewrite 

R
ew

rit
e 

R
ul

e 

Time 

Apply Rewrite 

Input AST 
(1. State) 

Attributes 
Evaluated 

2. State Attributes 
Evaluated 

3. State 4. State 

... 

Attributes 
Evaluated 

l-hand r-hand 

1"

2"

3" 1"

2"

3"

3"

1"

2" 3"

4"
1"

2" 3"

4"

4"

1"

2"

3"

4"

2"

3"

4"

3"

Reference Attribute Rewrite Match AST Node AST Parent/Child Edge Legend 

Figure 1.1.: Analyse-Synthesize Cycle of RAG Controlled Rewriting

of static semantic analyses and code transformations. Further, reference attributes extend
ASTs to graphs by introducing additional edges connecting remote AST nodes. The refer-
ence attributes induce an overlay graph on top of the AST. Since RACR rewrites can be
applied depending on attribute values, including the special case of dependencies on refer-
ence attributes, users can match arbitrary graphs and not only term structures for rewriting.
Moreover, attributes can be used to realise complex analyses for graph matching and rewrite
application (i.e., to control rewriting).

Example: Figure 1.2 presents a set of rewrite rules realising a typical compiler construction
task: The implicit coercion of integer typed expressions to real. Many statically typed
programming languages permit the provision of integer values in places where real values are
expected for which reason their compilers must automatically insert real casts that preserve
the type correctness of programs. The RACR rewrite rules given in Figure 1.2 specify such
coercions for three common cases: (1) Binary expressions, where the first operand is a real
and the second an integer value, (2) the assignment of an integer value to a variable of
type real and (3) returning an integer value as result of a procedure that is declared to
return real values. In all three cases, a real cast must be inserted before the expression
of type integer. Note, that the actual transformation (i.e., the insertion of a real cast
before an expression) is trivial. The tricky part is to decide for every expression, if it must
be casted. The specification of respective rewrite conditions is straightforward however, if
name and type analysis can be reused like in our reference attribute grammar controlled
rewriting solution. In the binary expression case (1), just the types of the two operands have
to be constrained. In case of assignments (2), the name analysis can be used to find the
declaration of the assignment’s left-hand. Based on the declaration, just its type and the
type of the assignment’s right-hand expression have to be constrained. In case of procedure
returns (3), an inherited reference attribute can be used to distribute to every statement the
innermost procedure declaration it is part of. The actual rewrite condition then just has to
constraint the return type of the innermost procedure declaration of the return statement
and the type of its expression. Note, how the name analyses required in cases (2) and (3)

8



1.1. RACR is Expressive, Elegant, E�cient, Flexible and Reliable

1"

3"

4"

2"

1"

3"

4"
2" 5"A"

Node Types & Reference Attribute Names 

�  Assignment 
�  Terminal (l-hand) 
�  Expression A" Declaration 

�  Declaration 
�  Real Cast 

l-hand 

r-hand 

Condition  Type(     ) = Pointer(Real)  ��Type(     ) = Integer �    �    A
ss

ig
nm

en
t 

1"

2"

3" A"
l-hand 

r-hand 

1"

2"

3"

4"

Node Types & Reference Attribute Names 

�  Return Statement 
�  Expression 

A" Containing Procedure 

�  Procedure Declaration 
�  Real Cast 

Condition  Return-Type(     ) = Real  ��Type(     ) = Integer �    �    P
ro

ce
du

re
 

R
et

ur
n 

1"
3"2"

1"

3"

2" 4"
l-hand 

r-hand 

Node Types & Reference Attribute Names 

�  Binary Expression 
�  Expression 

�  Expression 
�  Real Cast 

Condition  Type(     ) = Real  ��Type(     ) = Integer �    �    

B
in

ar
y 

E
xp

re
ss

io
n 

Figure 1.2.: Rewrite Rules for Integer to Real Type Coercion of a Programming Language

naturally correspond to reference edges within left-hand sides of rewrite rules. Also note,
that rewrites can only transform AST fragments. The specification of references within
right-hand sides of rewrite rules is not permitted.
Elegant Even if only ASTs can be rewritten, the analyse synthesise cycle ensures, that
attributes influenced by rewrites are automatically reevaluated by the attribute grammar
which specifies them, including the special case of reference attributes. Thus, the over-
lay graph is automatically transformed by AST rewrites whereby these transformations are
consistent with existing language semantics (the existing reference attribute grammar). In
consequence, developers can focus on the actual AST transformations and are exempt from
maintaining semantic information throughout rewriting. The reimplementation of semantic
analyses in rewrites, which is often paralleled by cumbersome techniques like blocking or
marker nodes and edges, can be avoided.
Example: Assume the name analysis of a programming language is implemented using
reference attributes and we like to develop a code transformation which reuses existing or
introduces new variables. In RACR it is su�cient to apply rewrites that just add the new or
reused variables and their respective declarations if necessary; the name resolution edges of
the variables will be transparently added by the existing name analysis.
A very nice consequence of reference attribute grammar controlled rewriting is, that rewrit-
ing benefits from any attribute grammar improvements, including additional or improved
attribute specifications or evaluation time optimisations.
E�cient Rewriting To combine reference attribute grammars and rewriting to reference
attribute grammar controlled rewriting is also reasonable considering rewrite performance.
The main complexity issue of rewriting is to decide for a rewrite rule if and where it can
be applied on a given graph (matching problem). In general, matching is NP-complete for
arbitrary rules and graphs and polynomial if rules have a finite left-hand size. In reference

9



1. Introduction

attribute grammar controlled rewriting, matching performance can be improved by exploiting
the AST and overlay graph structure induced by the reference attribute grammar. It is well-
known from mathematics, that for finite, directed, ordered, labeled tress, like ASTs, matching
is linear. Starting from mapping an arbitrary node of the left-hand side on an arbitrary node
of the host graph, the decision, whether the rest of the left-hand also matches or not,
requires no backtracking; It can be performed in constant time (the pattern size). Likewise,
there is no need for backtracking to match reference attributes, because every AST node
has at most one reference attribute of a certain name and every reference attribute points
to exactly one (other) AST node. The only remaining source for backtracking are left-hand
sides with several unconnected AST fragments, where, even if some fragment has been
matched, still several di�erent alternatives have to be tested for the remaining ones. If we
restrict, that left-hand sides must have a distinguished node from which all other nodes are
reachable (with non-directed AST child/parent edges and directed reference edges), also
this source for backtracking is eliminated, such that matching is super-linear if, and only if,
the complexity of involved attributes is. In other words, the problem of e�cient matching
is reduced to the problem of e�cient attribute evaluation.
E�cient Attribute Evaluation A common technique to improve attribute evaluation e�-
ciency is the caching of evaluated attribute instances. If several attribute instances depend
on the value of a certain instance a, it is su�cient to evaluate a only once, memorise
the result and reuse it for the evaluation of the depending instances. In case of refer-
ence attribute grammar controlled rewriting however, caching is complicated because of the
analyse-synthesise cycle. Two main issues arise if attributes are queried in-between AST
transformations: First, rewrites only depend on certain attribute instances for which rea-
son it is disproportionate to use (static) attribute evaluation strategies that evaluate all
instances; Second, rewrites can change AST information contributing to the value of cached
attribute instances for which reason the respective caches must be flushed after their appli-
cation. In RACR, the former is solved by using a demand-driven evaluation strategy that
only evaluates the attribute instances required to decide matching, and the latter by tracking
dependencies throughout attribute evaluation, such that it can be decided which attribute
instances applied rewrites influenced and incremental attribute evaluation can be achieved.
In combination, demand-driven, incremental attribute evaluation enables attribute caching
– and therefore e�cient attribute evaluation – for reference attribute grammar controlled
rewriting. Moreover, because dependencies are tracked throughout attribute evaluation, the
actual execution paths selected at runtime for control-flows within attribute equations can
be incorporated. In the end, the demand-driven evaluator of RACR uses runtime information
to construct an AST specific dynamic attribute dependency graph that permits more precise
attribute cache flushing than a static dependency analysis.
Example: Let att-value be a function, that given the name of an attribute and an AST
node evaluates the respective attribute instance at the given node. Let n1,...,n4 be arbitrary
AST nodes, each with an attribute instance i1,...,i4 named a1,...,a4 respectively. Assume,
the equation of the attribute instance i1 for a1 at n1 is:

(if (att-value a2 n2)

(att-value a3 n3)

(att-value a4 n4))

10



1.1. RACR is Expressive, Elegant, E�cient, Flexible and Reliable

Obviously, i1 always depends on i2, but only on either, i3 or i4. On which of both depends
on the actual value of i2, i.e., the execution path selected at runtime for the if control-flow
statement. If some rewrite changes an AST information that influences the value of i4, the
cache of i1 only has to be flushed if the value of i2 was #f.

Besides automatic caching, a major strong point of attribute grammars, compared to other
declarative formalisms for semantic analyses, always has been their easy adaptation for
present programming techniques. Although attribute grammars are declarative, their at-
tribute equation concept based on semantic functions provides su�cient opportunities for
tailoring and fine tuning. In particular developers can optimise the e�ciency of attribute
evaluation by varying attributions and semantic function implementations. RACR even im-
proves in that direction. Because of its tight integration with Scheme in the form of a library,
developers are more encouraged to "just program" e�cient semantic functions. They benefit
from both, the freedom and e�ciency of a real programming language and the more ab-
stract attribute grammar concepts. Moreover, RACR uses Scheme’s advanced macro- and
meta-programming facilities to still retain the attribute evaluation e�ciency that is rather
typical for compilation- than for library-based approaches.

Flexible RACR is a Scheme library. Its AST, attribute and rewrite facilities are ordinary
functions or macros. Their application can be controlled by complex Scheme programs that
compute, or are used within, attribute specifications and rewrites. In particular, RACR spec-
ifications themselves can be derived using RACR. There are no limitations on the interactions
between di�erent language processors or the number of meta levels. Moreover, all library
functions are parameterised with an actual application context. The function for querying
attribute values uses a name and node argument to dispatch for a certain attribute instance
and the functions to query AST information or perform rewrites expect node arguments des-
ignating the nodes to query or rewrite respectively. Since such contexts can be computed
using attributes and AST information, dynamic – i.e., input dependent – AST and attribute
dispatches within attribute equations and rewrite applications are possible. For example, the
name and node arguments of an attribute query within some attribute equation can be the
values of other attributes or even terminal nodes. In the end, RACR’s library approach and
support for dynamic AST and attribute dispatches eases the development and combination
of language product lines, metacompilers and highly adaptive language processors.

Reliable RACR specified language processors that interact with each other to realise a
stacked metaarchitecture consisting of several levels of language abstraction can become
very complicated. Also dynamic attribute dispatches or user developed Scheme programs
applying RACR can result in complex attribute and rewrite interactions. Nevertheless, RACR
ensures that only valid specifications and transformations are performed and never outdated
attribute values are used, no matter of application context, macros and continuations. In
case of incomplete or inconsistent specifications, unspecified AST or attribute queries or
transformations yielding invalid ASTs, RACR throws appropriate runtime exceptions to in-
dicate program errors. In case of transformations influencing an AST information that has
been used to evaluate some attribute instance, the caches of the instance and all instances
depending on it are automatically flushed, such that they are reevaluated if queried later on.
The required bookkeeping is transparently performed and cannot be bypassed or disturbed

11



1. Introduction

by user code (in particular ASTs can only be queried and manipulated using library functions
provided by RACR). There is only one restriction developers have to pay attention for: To
ensure declarative attribute specifications, attribute equations must be side e�ect free. If
equations only depend on attributes, attribute parameters and AST information and changes
of stateful terminal values are always performed by respective terminal value rewrites, this
restriction is satisfied.

1.2. Structure of the Manual

The next chapter finishes the just presented motivation, application and feature overview
of this introduction. It gives an overview about the general architecture of RACR, i.e., its
embedding into Scheme, its library functions and their usage. Chapters 2-6 then present
the library functions in detail: Chapter 2 the functions for the specification, construction
and querying of ASTs; Chapter 3 the functions for the specification and querying of at-
tributes; Chapter 4 the functions for rewriting ASTs; Chapter 5 the functions for associating
and querying entities associated with AST nodes (so called AST annotations); and finally
Chapter 6 the functions that ease development for common cases like the configuration of
a default RACR language processor. The following appendix presents RACR’s complete im-
plementation. The implementation is well documented. All algorithms, including attribute
evaluation, dependency graph maintenance and the attribute cache flushing of rewrites, are
stepwise commented and therefore provide a good foundation for readers interested into the
details of reference attribute grammar controlled rewriting. Finally, an API index eases the
look-up of library functions within the manual.

12



2. Library Overview

2.1. Architecture

To use RACR within Scheme programs, it must be imported via (import (racr)). The
imported library provides a set of functions for the specification of AST schemes, their
attribution and the construction of respective ASTs, to query their information (e.g., for
AST traversal or node type comparison), to evaluate their attributes and to rewrite and
annotate them.
Every AST scheme and its attribution define a language – they are a RACR specification.
Every RACR specification can be compiled to construct the RACR language processor it
defines. Every RACR AST is one word in evaluation by a certain RACR language processor,
i.e., a runtime snapshot of a word in compilation w.r.t. a certain RACR specification. Thus,
Scheme programs using RACR can specify arbitrary many RACR specifications and for every
RACR specification arbitrary many ASTs (i.e., words in compilation) can be instantiated
and evaluated. Thereby, every AST has its own evaluation state, such that incremental
attribute evaluation can be automatically maintained in the presence of rewrites. Figure 2.1
summarises the architecture of RACR applications. Note, that specification, compilation
and evaluation are realised by ordinary Scheme function applications embedded within a
single Scheme program, for which reason they are just-in-time and on demand.
The relationships between AST rules and attribute definitions and ASTs consisting of nodes
and attribute instances are as used to. RACR specifications consist of a set of AST rules,
whereby for every AST rule arbitrary many attribute definitions can be specified. ASTs

Figure 2.1.: Architecture of RACR Applications

13



2. Library Overview

consist of arbitrary many nodes with associated attribute instances. Each node represents
a context w.r.t. an AST rule and its respective attributes.

2.2. Instantiation

Three di�erent language specification and application phases are distinguished in RACR:
• AST Specification Phase
• AG Specification Phase
• AST construction, query, evaluation, rewriting and annotation phase (Evaluation

Phase)
The three phases must be processed in sequence. E.g., if a Scheme program tries to construct
an AST w.r.t. a RACR specification before finishing its AST and AG specification phase,
RACR will abort with an exception of type racr-exception incorporating an appropriate
error message. The respective tasks that can be performed in each of the three specification
phases are:

• AST Specification Phase Specification of AST schemes
• AG Specification Phase Definition of attributes
• Evaluation Phase One of the following actions:

– Construction of ASTs
– Querying AST information
– Querying the values of attributes
– Rewriting ASTs
– Weaving and querying AST annotations

The AST query and attribute evaluation functions are not only used to interact with ASTs
but also in attribute equations to query AST nodes and attributes local within the context
of the respective equation.
Users can start the next specification phase by special compilation functions, which check
the consistency of the specification, throw proper exceptions in case of errors and derive an
optimised internal representation of the specified language (thus, compile the specification).
The respective compilation functions are:

• compile-ast-specifications: AST => AG specification phase
• compile-ag-specifications: AG specification => Evaluation phase

To construct a new specification the create-specification function is used. Its application
yields a new internal record representing a RACR specification, i.e., a language. Such records
are needed by any of the AST and AG specification functions to associate the specified AST
rule or attribute with a certain language.

14



2.3. API

Figure 2.2.: RACR API

2.3. API

The state chart of Figure 2.2 summarises the specification and AST and attribute query,
rewrite and annotation API of RACR. The API functions of a certain specification phase
are denoted by labels of edges originating from the respective phase. Transitions between
di�erent specification phases represent the compilation of specifications of the source phase,
which finishes the respective phase such that now tasks of the destination phase can be
performed.
Remember, that RACR maintains for every RACR specification (i.e., specified language)
its specification phase. Di�erent RACR specifications can coexist within the same Scheme
program and each can be in a di�erent phase.

15





3. Abstract Syntax Trees

This chapter presents RACR’s abstract syntax tree (AST) API, which provides functions for
the specification of AST schemes, the construction of respective ASTs and the querying of
ASTs for structural and node information. RACR ASTs are based on the following context-
free grammar (CFG), Extended Backus-Naur Form (EBNF) and object-oriented concepts:

• CFG Non-terminals, terminals, productions, total order of production symbols
• EBNF Unbounded repetition (Kleene Star)
• Object-Oriented Programming Inheritance, named fields

RACR ASTs are directed, typed, ordered trees. Every AST node has a type, called its node
type, and a finite number of children. Every child has a name and is either, another AST
node (i.e., non-terminal) or a terminal. Non-terminal children can represent unbounded
repetitions. Given a node, the number, order, types, names and information, whether they
are unbounded repetitions, of its children are induced by its type. The children of a node
type must have di�erent names; children of di�erent node types can have equal names. We
call names defined for children context names and a node with type T an instance of T.
Node types can inherit from each other. If a node type A inherits from another type B, A

is called direct subtype of B and B direct supertype of A. The transitive closure of direct
sub- and supertype are called a node type’s sub- and supertypes, i.e., a node type A is a
sub-/supertype of a type B, if A is a direct sub-/supertype of B or A is a direct sub-/supertype
of a type C that is a sub-/supertype of B. Node types can inherit from atmost one other
type and must not be subtypes of themselves. If a node type is subtype of another one,
its instances can be used anywhere an instance of its supertype is expected, i.e., if A is a
subtype of B, every AST node of type A also is of type B. The children of a node type are
the ones of its direct supertype, if it has any, followed by the ones specified for itself.
Node types are specified using AST rules. Every AST rule specifies one node type of a
certain name. The set of all AST rules of a RACR specification are called an AST scheme.
In terms of object-oriented programming, every node type corresponds to a class; its children
are fields. In CFG terms, it corresponds to a production; its name is the left-hand non-
terminal and its children are the right-hand symbols. However, in opposite to CFGs, where
several productions can be given for a non-terminal, the node types of a RACR specification
must be unique (i.e., must have di�erent names). To simulate alternative productions, node
type inheritance can be used.
RACR supports two special node types besides user specified ones: list-nodes and bud-nodes.
Bud-nodes are used to represent still missing AST parts. Whenever a node of some type is
expected, a bud-node can be used instead. They are typically used to decompose and reuse

17



3. Abstract Syntax Trees

decomposed AST fragments using rewrites. List-nodes are used to represent unbounded
repetitions. If a child of type T with name c of a node type N is defined to be an unbounded
repetition, all c children of instances of N will be either, a list-node with arbitrary many
children of type T or a bud-node. Even if list- and bud-nodes are non-terminals, their type
is undefined. It is not permitted to query such nodes for their type, including sub- and
supertype comparisons. And although bud-nodes never have children, it is not permitted
to query them for children related information (e.g., their number of children). After all,
bud-nodes represent still missing, i.e., unspecified, AST parts.

3.1. Specification

(ast-rule spec symbol-encoding-rule)

Calling this function adds to the given RACR specification the AST rule encoded in the
given symbol. To this end, the symbol is parsed. The function aborts with an exception,
if the symbol encodes no valid AST rule, there already exists a definition for the l-hand of
the rule or the specification is not in the AST specification phase. The grammar used to
encode AST rules in symbols is (note, that the grammar has no whitespace):

Rule ::= NonTerminal [":" NonTerminal] "≠>" [ProductionElement {"≠" ProductionElement}];
ProductionElement := NonTerminal [⇤] [< ContextName] | Terminal;
NonTerminal ::= UppercaseLetter {Letter} {Number};
Terminal ::= LowercaseLetter {LowercaseLetter} {Number};
ContextName ::= Letter {Letter} {Number};
Letter ::= LowercaseLetter | UppercaseLetter;
LowercaseLetter ::= "a" | "b" | ... | "z";
UppercaseLetter ::= "A" | "B" | ... | "Z";
Number ::= "0" | "1" | ... | "9";

Every AST rule starts with a non-terminal (the l-hand), followed by an optional supertype
and the actual r-hand consisting of arbitrary many non-terminals and terminals. Every non-
terminal of the r-hand can be followed by an optional Kleene star, denoting an unbounded
repetition (i.e., a list with arbitrary many nodes of the respective non-terminal). Further,
r-hand non-terminals can have an explicit context name. Context names can be used to
select the respective child for example in attribute definitions (specify-attribute, ag-rule)
or AST traversals (e.g., ast-child or ast-sibling). If no explicit context name is given,
the non-terminal type and optional Kleene star are the respective context name. E.g., for a
list of non-terminals of type N without explicit context name the context name is ’N*. For
terminals, explicit context names are not permitted. Their name also always is their context
name. For every AST rule the context names of its children (including inherited ones) must
be unique. Otherwise a later compilation of the AST specification will throw an exception.
Note: AST rules, and in particular AST rule inheritance, are object-oriented concepts. The
l-hand is the class defined by a rule (i.e., a node type) and the r-hand symbols are its
fields, each named like the context name of the respective symbol. Compared to common

18



3.2. Construction

object-oriented languages however, r-hand symbols, including inherited ones, are ordered and
represent compositions rather than arbitrary relations, such that it is valid to index them
and call them child. The order of children is the order of the respective r-hand symbols and,
in case of inheritance, "inherited r-hand first".

(ast-rule spec ’N->A-terminal-A*)

(ast-rule spec ’Na:N->A<A2-A<A3) ; Context≠names 4’th & 5’th child: A2 and A3

(ast-rule spec ’Nb:N->)

(ast-rule spec ’Procedure->name-Declaration*<Parameters-Block<Body)

(compile-ast-specifications spec start-symbol)

Calling this function finishes the AST specification phase of the given RACR specification,
whereby the given symbol becomes the start symbol. The AST specification is checked for
completeness and correctness, i.e., (1) all non-terminals are defined, (2) rule inheritance
is cycle-free, (3) the start symbol is defined, (4) the start symbol is start separated, (5)
no non-terminal inherits from the start symbol, (6) the start symbol does not inherit from
any non-terminal and (7) all non-terminals are reachable and (8) productive. Further, it is
ensured, that (9) for every rule the context names of its children are unique. In case of any
violation, an exception is thrown. An exception is also thrown, if the given specification is
not in the AST specification phase. After executing compile-ast-specifications the given
specification is in the AG specification phase, such that attributes now can be defined using
specify-attribute and ag-rule.

3.2. Construction

(ast-node? scheme-entity)

Given an arbitrary Scheme entity return #t if it is an AST node, otherwise #f.

(create-ast spec non-terminal list-of-children)

Function for the construction of non-terminal nodes. Given a RACR specification, the name
of a non-terminal to construct (i.e., an AST rule to apply) and a list of children, the function
constructs and returns a parentless AST node (i.e., a root) whose type and children are the
given ones. Thereby, it is checked, that (1) the given children are of the correct type for
the fragment to construct, (2) enough and not to many children are given, (3) every child
is a root (i.e., the children do not already belong to/are not already part of another AST)
and (4) no attributes of any of the children are in evaluation. In case of any violation an
exception is thrown.
Note: Returned fragments do not use the list-of-children argument to administer their
actual children. Thus, any change to the given list of children (e.g., using set-car! or
set-cdr!) after applying create-ast does not change the children of the constructed frag-
ment.

19



3. Abstract Syntax Trees

(create-ast spec ’N

; List of children :

(list

...

; For non≠terminal children an AST node is expected:

(create-ast ...)

...

; For terminals , not an AST node, but their value is expected:

"value for a terminal"

...

; For non≠terminal children with unbounded cardinality (Kleene closure )

; a list≠node containing their elements is expected:

(create-ast-list ...)

...))

(create-ast-list list-of-children)

Given a list l of non-terminal nodes that are not AST list-nodes construct an AST list-node
whose elements are the elements of l. An exception is thrown, if an element of l is not an
AST node, is a list-node, already belongs to another AST, has attributes in evaluation or at
least two elements of l are instances of di�erent RACR specifications.
Note: It is not possible to construct AST list-nodes containing terminal nodes. Instead
however, terminals can be ordinary Scheme lists, such that there is no need for special AST
terminal lists.

(create-ast-bud)

Construct a new AST bud-node, that can be used as placeholder within an AST fragment
to designate a subtree still to provide. Bud-nodes are valid substitutions for any kind of
expected non-terminal child, i.e., whenever a non-terminal node of some type is expected,
a bud node can be used instead (e.g., when constructing AST fragments via create-ast or
create-ast-list or when adding another element to a list-node via rewrite-add). Since
bud-nodes are placeholders, any query for non-terminal node specific information of a bud-
node throws an exception (e.g., bud-nodes have no type or attributes and their number of
children is not specified etc.).
Note: There exist two main use cases for incomplete ASTs which have "holes" within their
subtrees that denote places where appropriate replacements still have to be provided: (1)
when constructing ASTs but required parts are not yet known and (2) for the deconstruction
and reuse of existing subtrees, i.e., to remove AST parts such that they can be reused for
insertion into other places and ASTs. The later use case can be generalised as the reuse
of AST fragments within rewrites. The idea thereby is, to use rewrite-subtree to insert
bud-nodes and extract the subtree replaced.

3.3. Traversal

20



3.3. Traversal

(ast-parent n)

Given a node, return its parent if it has any, otherwise thrown an exception.

(ast-child index-or-context-name n)

Given a node, return one of its children selected by context name or child index. If the
queried child is a terminal node, not the node itself but its value is returned. An exception
is thrown, if the child does not exist.
Note: In opposite to many common programming languages where array or list indices start
with 0, in RACR the index of the first child is 1, of the second 2 and so on.
Note: Because element nodes within AST list-nodes have no context name, they must be
queried by index.

(let ((ast

(with-specification

(create-specification)

(ast-rule ’S->A-A*-A<MyContextName)

(ast-rule ’A->)

(compile-ast-specifications ’S)

(compile-ag-specifications)

(create-ast

’S

(list

(create-ast

’A

(list))

(create-ast-list

(list))

(create-ast

’A

(list)))))))

(assert (eq? (ast-child ’A ast) (ast-child 1 ast)))

(assert (eq? (ast-child ’A* ast) (ast-child 2 ast)))

(assert (eq? (ast-child ’MyContextName ast) (ast-child 3 ast))))

(ast-sibling index-or-context-name n)

Given a node n which is child of another node p, return a certain child s of p selected by
context name or index (thus, s is a sibling of n or n). Similar to ast-child, the value of s,
and not s itself, is returned if it is a terminal node. An exception is thrown, if n is a root or
the sibling does not exist.

(ast-children n . b1 b2 ... bm)

Given a node n and arbitrary many child intervals b1,b2,...,bm (each a pair consisting of
a lower bound lb and an upper bound ub), return a Scheme list that contains for each

21



3. Abstract Syntax Trees

child interval bi = (lb ub) the children of n whose index is within the given interval (i.e.,
lb <= child index <= ub). The elements of the result list are ordered w.r.t. the order of
the child intervals b1,b2,...,bm and the children of n. I.e.:

• The result lists returned by the child intervals are appended in the order of the intervals.
• The children of the list computed for a child interval are in increasing index order.

If no child interval is given, a list containing all children of n in increasing index order is
returned. A child interval with unbounded upper bound (specified using ’* as upper bound)
means "select all children with index >= the interval’s lower bound". The returned list is a
copy – any change of it (e.g., using set-car! or set-cdr!) does not change the AST! An
exception is thrown, if a child interval queries for a non existent child or n is a bud-node.

(let ((ast

(with-specification

(create-specification)

(ast-rule ’S->t1-t2-t3-t4-t5)

(compile-ast-specifications ’S)

(compile-ag-specifications)

(create-ast ’S (list 1 2 3 4 5)))))

(assert

(equal?

(ast-children ast (cons 2 2) (cons 2 4) (cons 3 ’*))

(list 2 2 3 4 3 4 5)))

(assert

(equal?

(ast-children ast)

(list 1 2 3 4 5))))

(ast-for-each-child f n . b1 b2 ... bm)

; f : Processing function of arity two: (1) Index of current child , (2) Current child

; n: Node whose children within the given child intervals will be processed in sequence

; b1 b2 ... bm: Lower≠bound/upper≠bound pairs (child intervals)

Given a function f, a node n and arbitrary many child intervals b1,b2,...,bm (each a
pair consisting of a lower bound lb and an upper bound ub), apply for each child interval
bi = (lb ub) the function f to each child c with index i with lb <= i <= ub, taking into
account the order of child intervals and children. Thereby, f must be of arity two; Each
time f is called, its arguments are an index i and the respective i’th child of n. If no child
interval is given, f is applied to each child once. A child interval with unbounded upper
bound (specified using ’* as upper bound) means "apply f to every child with index >= the
interval’s lower bound". An exception is thrown, if a child interval queries for a non existent
child or n is a bud-node.
Note: Like all RACR API functions also ast-for-each-child is continuation safe, i.e., it is
alright to apply continuations within f, such that the execution of f is terminated abnormal.

(ast-find-child f n . b1 b2 ... bm)

; f : Search function of arity two: (1) Index of current child , (2) Current child

22



3.3. Traversal

; n: Node whose children within the given child intervals will be tested in sequence

; b1 b2 ... bm: Lower≠bound/upper≠bound pairs (child intervals)

Given a search function f, a node n and arbitrary many child intervals b1, b2,...,bm, find
the first child of n within the given intervals which satisfies f. Thereby, the children of n

are tested in the order specified by the child intervals. The search function must accept two
parameters – (1) a child index and (2) the actual child – and return a truth value telling
whether the actual child is the one searched for or not. If no child within the given intervals,
which satisfies the search function, exists, #f is returned, otherwise the child found. An
exception is thrown, if a child interval queries for a non existent child or n is a bud-node.
Note: The syntax and semantics of child intervals is the one of ast-for-each-child, except
the search is aborted as soon as a child satisfying the search condition encoded in f is found.

(let ((ast

(with-specification

(create-specification)

; A program consists of declaration and reference statements :

(ast-rule ’Program->Statement*)

(ast-rule ’Statement->)

; A declaration declares an entity of a certain name:

(ast-rule ’Declaration:Statement->name)

; A reference refers to an entity of a certain name:

(ast-rule ’Reference:Statement->name)

(compile-ast-specifications ’Program)

(ag-rule

lookup

((Program Statement*)

(lambda (n name)

(ast-find-child

(lambda (i child)

(and

(ast-subtype? child ’Declaration)

(string=? (ast-child ’name child) name)))

(ast-parent n)

; Child interval enforcing declare before use rule :

(cons 1 (ast-child-index n))))))

(ag-rule

correct

; A program is correct , if its statements are correct :

(Program

(lambda (n)

(not

(ast-find-child

(lambda (i child)

(not (att-value ’correct child)))

(ast-child ’Statement* n)))))

23



3. Abstract Syntax Trees

; A reference is correct , if it is declared :

(Reference

(lambda (n)

(att-value ’lookup n (ast-child ’name n))))

; A declaration is correct , if it is no redeclaration :

(Declaration

(lambda (n)

(eq?

(att-value ’lookup n (ast-child ’name n))

n))))

(compile-ag-specifications)

(create-ast

’Program

(list

(create-ast-list

(list

(create-ast ’Declaration (list "var1"))

; First undeclared error :

(create-ast ’Reference (list "var3"))

(create-ast ’Declaration (list "var2"))

(create-ast ’Declaration (list "var3"))

; Second undeclared error :

(create-ast ’Reference (list "undeclared-var")))))))))

(assert (not (att-value ’correct ast)))

; Resolve first undeclared error :

(rewrite-terminal ’name (ast-child 2 (ast-child ’Statement* ast)) "var1")

(assert (not (att-value ’correct ast)))

; Resolve second undeclared error :

(rewrite-terminal ’name (ast-child 5 (ast-child ’Statement* ast)) "var2")

(assert (att-value ’correct ast))

; Introduce redeclaration error :

(rewrite-terminal ’name (ast-child 1 (ast-child ’Statement* ast)) "var2")

(assert (not (att-value ’correct ast))))

3.4. Node Information

(ast-child-index n)

Given a node, return its position within the list of children of its parent. If the node is a
root, an exception is thrown.

(ast-num-children n)

Given a node, return its number of children. If the node is a bud-node an exception is
thrown.

24



3.4. Node Information

(ast-node-type n)

Given a node, return its type, i.e., the non-terminal it is an instance of. If the node is a list-
or bud-node an exception is thrown.

(ast-list-node? n)

Given a node, return whether it represents a list of children, i.e., is a list-node, or not. If
the node is a bud-node an exception is thrown.

(ast-bud-node? n)

Given a node, return whether is is a bud-node or not.

(ast-subtype? a1 a2)

Given at least one node and another node or non-terminal symbol, return if the first argument
is a subtype of the second. The considered subtype relationship is reflexive, i.e., every type
is a subtype of itself. An exception is thrown, if non of the arguments is an AST node, any
of the arguments is a list- or bud-node or a given non-terminal argument is not defined (the
grammar used to decide whether a symbol is a valid non-terminal or not is the one of the
node argument).

; Let n, n1 and n2 be AST nodes and t a Scheme symbol encoding a non≠terminal:

(ast-subtype? n1 n2) ; Is the type of node n1 a subtype of the type of node n2

(ast-subtype? t n) ; Is the type t a subtype of the type of node n

(ast-subtype? n t) ; Is the type of node n a subtype of the type t

25





4. Attribution

RACR supports synthesised and inherited attributes that can be parameterised, circular and
references. Attribute definitions are inherited w.r.t. AST inheritance. Thereby, the subtypes
of an AST node type can overwrite inherited definitions by providing their own definition.
RACR also supports attribute broadcasting, such that there is no need to specify equations
that just copy propagate attribute values from parent to child nodes. Some of these features
di�er from common attribute grammar systems however:

• Broadcasting Inherited and synthesised attributes are broadcasted on demand.

• Shadowing Synthesised attribute instances dynamically shadow inherited instances.

• AST Fragment Evaluation Attributes of incomplete ASTs can be evaluated.

• Normal Form / AST Query Restrictions Attribute equations can query AST infor-
mation without restrictions because of attribute types or contexts.

• Completeness It is not checked if for all attribute contexts a definition exists.

Of course, RACR also di�ers in its automatic tracking of dynamic attribute dependencies
and the incremental attribute evaluation based on it (cf. Chapter 1.1: E�cient Attribute
Evaluation). Its di�erences regarding broadcasting, shadowing, AST fragment evaluation,
AST query restrictions and completeness are discussed in the following.

Broadcasting If an attribute is queried at some AST node and there exists no definition for
the context the node represents, the first successor node with a definition is queried instead.
If such a node does not exist a runtime exception is thrown. In opposite to most broadcasting
concepts however, RACR makes no di�erence between synthesised and inherited attributes,
i.e., not only inherited attributes are broadcasted, but also synthesised. In combination with
the absence of normal form or AST query restrictions, broadcasting of synthesised attributes
eases attribute specifications. E.g., if some information has to be broadcasted to n children,
a synthesised attribute definition computing the information is su�cient. There is no need
to specify additional n inherited definitions for broadcasting.

Shadowing By default, attribute definitions are inherited w.r.t. AST inheritance. If an
attribute definition is given for some node type, the definition also holds for all its subtypes.
Of course, inherited definitions can be overwritten as used to from object-oriented program-
ming in which case the definitions for subtypes are preferred to inherited ones. Further,
the sets of synthesised and inherited attributes are not disjunct. An attribute of a certain
name can be synthesised in one context and inherited in another one. If for some attribute
instance a synthesised and inherited definition exists, the synthesised is preferred.

27



4. Attribution

AST Fragment Evaluation Attribute instances of ASTs that contain bud-nodes or whose
root does not represents a derivation w.r.t. the start symbol still can be evaluated if they are
well-defined, i.e., do not depend on unspecified AST information. If an attribute instance
depends on unspecified AST information, its evaluation throws a runtime exception.

Normal Form / AST Query Restrictions A major attribute grammar concept is the local
definition of attributes. Given an equation for some attribute and context (i.e., attribute
name, node type and children) it must only depend on attributes and AST information
provided by the given context. Attribute grammar systems requiring normal form are even
more restrictive by enforcing that the defined attributes of a context must only depend on
its undefined. In practice, enforcing normal form has turned out to be inconvenient for
developers, such that most attribute grammar systems abandoned it. Its main application
area is to ease proofs in attribute grammar theories. Also recent research in reference
attribute grammars demonstrated, that less restrictive locality requirements can considerably
improve attribute grammar development. RACR even goes one step further, by enforcing no
restrictions about attribute and AST queries within equations. Developers are free to query
ASTs, in particular traverse them, however they like. RACR’s leitmotif is, that users are
experienced language developers that should not be restricted or patronised. For example,
if a developer knows that for some attribute the information required to implement its
equation is always located at a certain non-local but relative position from the node the
attribute is associated with, he should be able to just retrieve it. And if a software project
emphasises a certain architecture, the usage of RACR should not enforce any restrictions,
even if "weird" attribute grammar designs may result. There are also theoretic and technical
reasons why locality requirements are abandoned. Local dependencies are a prerequisite for
static evaluation order and cycle test analyses. With the increasing popularity of demand-
driven evaluation, because of much less memory restrictions than twenty years ago, combined
with automatic caching and support for circular attributes, the reasons for such restrictions
vanish.

Completeness Traditionally, attribute grammar systems exploit attribute locality to proof,
that for every valid AST all its attribute instances are defined, i.e., an equation is specified for
every context. Because of reference attributes and dynamic AST and attribute dispatches,
such a static attribute grammar completeness check is impossible for RACR. In consequence,
it is possible that throughout attribute evaluation an undefined or unknown attribute instance
is queried, in which case RACR throws a runtime exception. On the other hand, RACR
developers are never confronted with situations where artificial attribute definitions must be
given for ASTs that, even they are valid w.r.t. their AST scheme, are never constructed,
because of some reason unknown to the attribute grammar system. Such issues are very
common, since parsers often only construct a subset of the permitted ASTs. For example,
assume an imperative programming language with pointers. In this case, it is much more easy
to model the left-hand side of assignments as ordinary expression instead of defining another
special AST node type. A check, that left-hands are only dereference expressions or variables,
can be realised within the concrete syntax used for parsing. If however, completeness is
enforced and some expression that is not a dereference expression or variable has an inherited
attribute, the attribute must be defined for the left-hand of assignments, although it will
never occur in this context.

28



4.1. Specification

4.1. Specification

(specify-attribute spec att-name non-terminal index cached? equation circ-def)

; spec : RACR specification

; att≠name: Scheme symbol

; non≠terminal: AST rule R in whose context the attribute is defined .

; index: Index or Scheme symbol representing a context≠name. Specifies the

; non≠terminal within the context of R for which the definition is .

; cached?: Boolean flag determining, whether the values of instances of

; the attribute are cached or not.

; equation: Equation used to compute the value of instances of the attribute .

; Equations have at least one parameter ≠ the node the attribute instance

; to evaluate is associated with ( first parameter).

; circ≠def : #f if not circular , otherwise bottom≠value/equivalence≠function pair

Calling this function adds to the given RACR specification the given attribute definition.
To this end, it is checked, that the given definition is (1) properly encoded (syntax check),
(2) its context is defined, (3) the context is a non-terminal position and (4) the definition is
unique (no redefinition error). In case of any violation, an exception is thrown. To specify
synthesised attributes the index 0 or the context name ’* can be used.

Note: There exist only few exceptions when attributes should not be cached. In general,
parameterized attributes with parameters whose memoization (i.e., permanent storage in
memory) might cause garbage collection problems should never be cached. E.g., when
parameters are functions, callers of such attributes often construct the respective arguments
– i.e., functions – on the fly as anonymous functions. In most Scheme systems every time
an anonymous function is constructed it forms a new entity in memory, even if the same
function constructing code is consecutively executed. Since attributes are cached w.r.t.
their parameters, the cache of such attributes with anonymous function arguments might
be cluttered up. If a piece of code constructing an anonymous function and using it as an
argument for a cached attribute is executed several times, it might never have a cache hit
and always store a cache entry for the function argument/attribute value pair. There is
no guarantee that RACR handles this issue, because there is no guaranteed way in Scheme
to decide if two anonymous function entities are actually the same function (RACR uses
equal? for parameter comparison). A similar caching issue arises if attribute parameters can
be AST nodes. Consider a node that has been argument of an attribute is deleted by a
rewrite. Even the node is deleted, it and the AST it spans will still be stored as key in the
cache of the attribute. It is only deleted from the cache of the attribute, if the cache of the
attribute is flushed because of an AST rewrite influencing its value (including the special
case, that the attribute is influenced by the deleted node).

(specify-attribute spec

’att ; Define the attribute att ...

’N ; in the context of N nodes their ...

’B ; B child (thus, the attribute is inherited ). Further, the attribute is ...

#f ; not cached ,...

(lambda (n para) ; parameterised (one parameter named para) and...

29



4. Attribution

...)

(cons ; circular .

bottom-value

equivalence-function)) ; E.g., equal?

; Meta specification : Specify an attribute using another attribute grammar:

(apply

specify-attribute

(att-value ’attribute-computing-attribute-definition meta-compiler-ast))

(ag-rule

attribute-name

; Arbitrary many, but at least one, definitions of any of the following forms:

((non-terminal context-name) equation) ; Default: cached and non≠circular

((non-terminal context-name) cached? equation)

((non-terminal context-name) equation bottom equivalence-function)

((non-terminal context-name) cached? equation bottom equivalence-function)

(non-terminal equation) ; No context name = synthesized attribute

(non-terminal cached? equation)

(non-terminal equation bottom equivalence-function)

(non-terminal cached? equation bottom equivalence-function))

; attribute≠name, non≠terminal, context≠name: Scheme identifiers , not symbols!

Syntax definition which eases the specification of attributes by:
• Permitting the specification of arbitrary many definitions for a certain attribute for

di�erent contexts without the need to repeat the attribute name several times
• Automatic quoting of attribute names (thus, the given name must be an ordinary

identifier)
• Automatic quoting of non-terminals and context names (thus, contexts must be ordi-

nary identifiers)
• Optional caching and circularity information (by default caching is enabled and at-

tribute definitions are non-circular)
• Context names of synthesized attribute definitions can be left

The ag-rule form exists only for convenient reasons. All its functionalities can also be
achieved using specify-attribute.
Note: Sometimes attribute definitions shall be computed by a Scheme function rather than
being statically defined. In such cases the ag-rule form is not appropriate, because it expects
identifiers for the attribute name and contexts. Moreover, the automatic context name
quoting prohibits the specification of contexts using child indices. The specify-attribute

function must be used instead.

(compile-ag-specifications spec)

Calling this function finishes the AG specification phase of the given RACR specification,
such that it is now in the evaluation phase where ASTs can be instantiated, evaluated,

30



4.2. Evaluation and Querying

annotated and rewritten. An exception is thrown, if the given specification is not in the AG
specification phase.

4.2. Evaluation and Querying

(att-value attribute-name node . arguments)

Given a node, return the value of one of its attribute instances. In case no proper attribute
instance is associated with the node itself, the search is extended to find a broadcast solution.
If required, the found attribute instance is evaluated, whereupon all its meta-information
like dependencies etc. are computed. The function has a variable number of arguments,
whereas its optional parameters are the actual arguments for parameterized attributes. An
exception is thrown, if the given node is a bud-node, no properly named attribute instance
can be found, the wrong number of arguments is given, the attribute instance depends on
itself but its definition is not declared to be circular or the attribute equation is erroneous
(i.e., its evaluation aborts with an exception).

; Let n be an AST node:

(att-value ’att n) ; Query attribute instance of n that represents attribute att

(att-value ’lookup n "myVar") ; Query parameterised attribute with one argument

; Dynamic attribute dispatch :

(att-value

(att-value ’attribute-computing-attribute-name n)

(att-value ’reference-attribute-computing-AST-node n))

31





5. Rewriting

A very common compiler construction task is to incrementally change the structure of ASTs
and evaluate some of their attributes in-between. Typical examples are interactive editors
with static semantic analyses, code optimisations or incremental AST transformations. In
such scenarios, some means to rewrite (partially) evaluated ASTs, without discarding already
evaluated and still valid attribute values, is required. On the other hand, the caches of
evaluated attributes, whose value can change because of an AST manipulation, must be
flushed. Attribute grammar systems supporting such a behaviour are called incremental.
RACR supports incremental attribute evaluation in the form of rewrite functions. The rewrite
functions of RACR provide an advanced and convenient interface to perform complex AST
manipulations and ensure optimal incremental attribute evaluation (i.e., rewrites only flush
the caches of the attributes they influence).
Of course, rewrite functions can be arbitrary applied within complex Scheme programs. In
particular, attribute values can be used to compute the rewrites to apply, e.g., rewrites
may be only applied for certain program execution paths with the respective control-flow
depending on attribute values. However, RACR does not permit rewrites throughout the
evaluation of an attribute associated with the rewritten AST. The reason for this restriction
is, that rewrites within attribute equations can easily yield unexpected results, because the
final AST resulting after evaluating all attributes queried can depend on the order of queries
(e.g., the order in which a user accesses attributes for their value). By prohibiting rewrites
during attribute evaluation, RACR protects users before non-confluent behaviour.
Additionally, RACR ensures, that rewrites always yield valid ASTs. It is not permitted to
insert an AST fragment into a context expecting a fragment of di�erent type or to insert a
single AST fragment into several di�erent ASTs, into several places within the same AST
or into its own subtree using rewrites. In case of violation, the respective rewrite throws
a runtime exception. The reason for this restrictions are, that attribute grammars are not
defined for arbitrary graphs but only for trees.
Figure 5.1 summarises the conditions under which RACR’s rewrite functions throw runtime
exceptions. Marks denote exception cases. E.g., applications of rewrite-add whereat the
context l is not a list-node are not permitted. Rewrite exceptions are thrown at runtime,
because in general it is impossible to check for proper rewriting using source code analyses.
Scheme is Turing complete and ASTs, rewrite applications and their arguments can be
computed by arbitrary Scheme programs.

5.1. Primitive Rewrite Functions

33



5. Rewriting

(

r

e

w

r

i

t

e

-

t

e

r

m

i

n

a

l

n

i

v

)

(

r

e

w

r

i

t

e

-

r

e

f

i

n

e

n

t

.

c

)

(

r

e

w

r

i

t

e

-

a

b

s

t

r

a

c

t

n

t

)

(

r

e

w

r

i

t

e

-

a

d

d

l

e

)

(

r

e

w

r

i

t

e

-

i

n

s

e

r

t

l

i

e

)

(

r

e

w

r

i

t

e

-

d

e

l

e

t

e

n

)

(

r

e

w

r

i

t

e

-

s

u

b

t

r

e

e

n

n

2

)

Co
nt

ex
t

Not AST Node ◊ ◊ ◊ ◊ ◊ ◊ ◊
Bud-Node ◊ ◊ ◊ ◊ ◊ ◊
List-Node ◊ ◊ ◊ ◊
Not List-Node ◊ ◊
Not Element of List-Node ◊

Ne
w

No
de

(s
) Wrong Number ◊

Do not fit ◊ ◊ ◊ ◊
No Root(s) ◊ ◊ ◊ ◊
Context is in Subtree ◊ ◊ ◊ ◊

Ne
w

Ty
pe

Not AST Node Type ◊ ◊
Not Subtype of Context ◊
Not Supertype of Context ◊

Attribute(s) in Evaluation ◊ ◊ ◊ ◊ ◊ ◊ ◊
Child does not exist ◊ ◊
Child is AST Node ◊

Context: n, l New Nodes: c, e, n2 New Type: t

1

Figure 5.1.: Runtime Exceptions of RACR’s Primitive Rewrite Functions

(rewrite-terminal i n new-value)

Given a node n, a child index i and an arbitrary value new-value, change the value of n’s
i’th child, which must be a terminal, to new-value. Thereby, the caches of any influenced
attributes are flushed and dependencies are maintained. An exception is thrown, if n has
no i’th child, n’s i’th child is no terminal or any attributes of the AST n is part of are in
evaluation.

(rewrite-refine n t . c)

Given a node n of arbitrary type, a non-terminal type t, which is a subtype of n’s current
type, and arbitrary many non-terminal nodes and terminal values c, rewrite the type of
n to t and add c as children for the additional contexts t introduces compared to n’s
current type. Thereby, the caches of any influenced attributes are flushed and dependencies
are maintained. An exception is thrown, if t is no subtype of n, not enough or to much
additional context children are given, any of the additional context children does not fit, any
attributes of the AST n is part of or of any of the ASTs spaned by the additional children
are in evaluation, any of the additional children already is part of another AST or n is within
the AST of any of the additional children.

Note: Since list-, bud- and terminal nodes have no type, they cannot be refined.

34



5.1. Primitive Rewrite Functions

(let* ((spec (create-specification))

(A

(with-specification

spec

(ast-rule ’S->A)

(ast-rule ’A->a)

(ast-rule ’Aa:A->b-c)

(compile-ast-specifications ’S)

(compile-ag-specifications)

(ast-child ’A

(create-ast

’S

(list

(create-ast ’A (list 1))))))))

(assert (= (ast-num-children A) 1))

(assert (eq? (ast-node-type A) ’A))

; Refine an A node to an Aa node. Note, that Aa nodes have two

; additional child contexts beside the one they inherit :

(rewrite-refine A ’Aa 2 3)

(assert (= (ast-num-children A) 3))

(assert (eq? (ast-node-type A) ’Aa))

(assert (= (- (ast-child ’c A) (ast-child ’a A)) (ast-child ’b A))))

(rewrite-abstract n t)

Given a node n of arbitrary type and a non-terminal type t, which is a supertype of n’s
current type, rewrite the type of n to t. Superfluous children of n representing child contexts
not known anymore by n’s new type t are deleted. Further, the caches of any influenced
attributes are flushed and dependencies are maintained. An exception is thrown, if t is not
a supertype of n’s current type or any attributes of the AST n is part of are in evaluation. If
rewriting succeeds, a list containing the deleted superfluous children in their original order
is returned.
Note: Since list-, bud- and terminal nodes have no type, they cannot be abstracted.

(let* ((spec (create-specification))

(A

(with-specification

spec

(ast-rule ’S->A)

(ast-rule ’A->a)

(ast-rule ’Aa:A->b-c)

(compile-ast-specifications ’S)

(compile-ag-specifications)

(ast-child ’A

(create-ast

’S

(list

(create-ast ’Aa (list 1 2 3))))))))

(assert (= (ast-num-children A) 3))

35



5. Rewriting

(assert (eq? (ast-node-type A) ’Aa))

; Abstract an Aa node to an A node. Note, that A nodes have two

; less child contexts than Aa nodes:

(rewrite-abstract A ’A)

(assert (= (ast-num-children A) 1))

(assert (eq? (ast-node-type A) ’A)))

(rewrite-subtree old-fragment new-fragment)

Given an AST node to replace (old-fragment) and its replacement (new-fragment) replace
old-fragment by new-fragment. Thereby, the caches of any influenced attributes are flushed
and dependencies are maintained. An exception is thrown, if new-fragment does not fit,
old-fragment is not part of an AST (i.e., has no parent node), any attributes of either
fragment are in evaluation, new-fragment already is part of another AST or old-fragment is
within the AST spaned by new-fragment. If rewriting succeeds, the removed old-fragment

is returned.

Note: Besides ordinary node replacement also list-node replacement is supported. In case
of a list-node replacement rewrite-subtree checks, that the elements of the replacement
list new-fragment fit w.r.t. their new context.

(rewrite-add l e)

Given a list-node l and another node e add e to l’s list of children (i.e., e becomes an element
of l). Thereby, the caches of any influenced attributes are flushed and dependencies are
maintained. An exception is thrown, if l is not a list-node, e does not fit w.r.t. l’s context,
any attributes of either l or e are in evaluation, e already is part of another AST or l is
within the AST spaned by e.

(rewrite-insert l i e)

Given a list-node l, a child index i and an AST node e, insert e as i’th element into l.
Thereby, the caches of any influenced attributes are flushed and dependencies are maintained.
An exception is thrown, if l is no list-node, e does not fit w.r.t. l’s context, l has not enough
elements, such that no i’th position exists, any attributes of either l or e are in evaluation,
e already is part of another AST or l is within the AST spaned by e.

(rewrite-delete n)

Given a node n, which is element of a list-node (i.e., its parent node is a list-node), delete it
within the list. Thereby, the caches of any influenced attributes are flushed and dependencies
are maintained. An exception is thrown, if n is no list-node element or any attributes of
the AST it is part of are in evaluation. If rewriting succeeds, the deleted list element n is
returned.

36



5.2. Rewrite Strategies

5.2. Rewrite Strategies

(perform-rewrites n strategy . transformers)

Given an AST root n, a strategy for traversing the subtree spaned by n and a set of trans-
formers, apply the transformers on the nodes visited by the given strategy until no further
transformations are possible (i.e., a normal form is established). Each transformer is a func-
tion with a single parameter which is the node currently visited by the strategy. The visit
strategy applies each transformer on the currently visited node until either, one matches
(i.e., performs a rewrite) or all fail. Thereby, each transformer decides, if it performs any
rewrite for the currently visited node. If it does, it performs the rewrite and returns a truth
value equal to #t, otherwise #f. If all transformers failed (i.e., non performed any rewrite),
the visit strategy selects the next node to visit. If any transformer matched (i.e., performed
a rewrite), the visit strategy is reseted and starts all over again. If the visit strategy has no
further node to visit (i.e., all nodes to visit have been visited and no transformer matched)
perform-rewrites terminates.
Perform-rewrites supports two general visit strategies, both deduced form term rewriting:
(1) outermost (leftmost redex) and (2) innermost (rightmost redex) rewriting. In terms
of ASTs, outermost rewriting prefers to rewrite the node closest to the root (top-down
rewriting), whereas innermost rewriting only rewrites nodes when there does not exist any
applicable rewrite within their subtree (bottom-up rewriting). In case several topmost or bot-
tommost rewritable nodes exist, the leftmost is preferred in both approaches. The strategies
can be selected by using ’top-down and ’bottom-up respectively as strategy argument.
An exception is thrown by perform-rewrites, if the given node n is no AST root or any
applied transformer changes its root status by inserting it into some AST. Exceptions are
also thrown, if the given transformers are not functions of arity one or do not accept an
AST node as argument.
When terminating, perform-rewrites returns a list containing the respective result returned
by each applied transformer in the order of their application (thus, the length of the list is
the total number of transformations performed).
Note: Transformers must realise their actual rewrites using primitive rewrite functions; They
are responsible to ensure all constraints of applied primitive rewrite functions are satisfied
since the rewrite functions throw exceptions as usual in case of any violation.
Note: It is the responsibility of the user to ensure, that transformers are properly imple-
mented, i.e., they return true if, and only if, they perform any rewrite and if they perform
a rewrite the rewrite does not cause any exception. In particular, perform-rewrites has no
control about performed rewrites for which reason it is possible to implement a transformer
violating the intension of a rewrite strategy, e.g., a transformer traversing the AST on its
own and thereby rewriting arbitrary parts.

37





6. AST Annotations

Often, additional information or functionalities, which can arbitrarily change or whose value
and behaviour depends on time, have to be supported by ASTs. Examples are special node
markers denoting certain imperative actions or stateful functions for certain AST nodes.
Attributes are not appropriate in such cases, since their intension is to be side-e�ect free,
such that their value does not depend on their query order or if they are cached. Further, it
is not possible to arbitrarily attach attributes to ASTs. Equal contexts will always use equal
attribute definitions for their attribute instances. To realise stateful or side-e�ect causing
node dependent functionalities, the annotation API of RACR can be used. AST annotations
are named entities associated with AST nodes that can be arbitrarily attached, detached,
changed and queried. Thereby, annotation names are ordinary Scheme symbols and their
values are arbitrary Scheme entities. However, to protect users against misuse, RACR does
not permit, throughout the evaluation of an attribute, the application of any annotation
functionalities on (other) nodes within the same AST the attribute is associated with.

6.1. Attachment

(ast-annotation-set! n a v)

Given a node n, a Scheme symbol a representing an annotation name and an arbitrary value
v, add an annotation with name a and value v to n. If n already has an annotation named a,
set its value to v. If v is a function, the value of the annotation is a function calling v with
the node the annotation is associated with (i.e., n) as first argument and arbitrary many
further given arguments. An exception is thrown if any attributes of the AST n is part of
are in evaluation.
Note: Since terminal nodes as such cannot be retrieved (cf. ast-child), but only their
value, the annotation of terminal nodes is not possible.

(let ((n (function-returning-an-ast)))

; Attach annotations :

(ast-annotation-set! n ’integer-value 3)

(ast-annotation-set!

n

’function-value

(lambda (associated-node integer-argument)

integer-argument))

; Query annotations:

(assert

39



6. AST Annotations

(=

(ast-annotation n ’integer-value)

; Apply the value of the ’function≠value annotation. Note, that

; the returned function has one parameter (integer≠argument). The

; associated≠node parameter is automatically bound to n:

((ast-annotation n ’function-value) 3))))

(ast-weave-annotations n t a v)

Given a node n spanning an arbitrary AST fragment, a node type t and an annotation name
a and value v, add to each node of type t of the fragment, which does not yet have an
equally named annotation, the given annotation using ast-annotation-set!. An exception
is thrown, if any attributes of the AST n is part of are in evaluation.
Note: To annotate all list- or bud-nodes within ASTs, ’list-node or ’bud-node can be
used as node type t respectively.

(ast-annotation-remove! n a)

Given a node n and an annotation name a, remove any equally named annotation associated
with n. An exception is thrown, if any attributes of the AST n is part of are in evaluation.

6.2. Querying

(ast-annotation? n a)

Given a node n and an annotation name a, return whether n has an annotation with name
a or not. An exception is thrown, if any attributes of the AST n is part of are in evaluation.

(ast-annotation n a)

Given a node n and an annotation name a, return the value of the respective annotation of
n (i.e., the value of the annotation with name a that is associated with the node n). An
exception is thrown, if n has no such annotation or any attributes of the AST it is part of
are in evaluation.

40



7. Support API

(with-specification

expression-yielding-specification

; Arbitrary many further expressions :

...)

Syntax definition which eases the use of common RACR library functions by providing
an environment where mandatory RACR specification parameters are already bound to a
given specification. The with-specification form defines for every RACR function with
a specification parameter an equally named version without the specification parameter
and uses the value of its first expression argument as default specification for the newly
defined functions (colloquially explained, it rebinds the RACR functions with specification
parameters to simplified versions where the specification parameters are already bounded).
The scope of the simplified functions are the expressions following the first one. Similarly to
the begin form, with-specification evaluates each of its expression arguments in sequence
and returns the value of its last argument. If the value of the last argument is not defined,
also the value of with-specification is not defined.

(assert

(=

(att-value

’length

(with-specification

(create-specification)

(ast-rule ’S->List)

(ast-rule ’List->)

(ast-rule ’NonNil:List->elem-List<Rest)

(ast-rule ’Nil:List->)

(compile-ast-specifications ’S)

(ag-rule

length

(S

(lambda (n)

(att-value ’length (ast-child ’List n))))

(NonNil

(lambda (n)

(+ (att-value ’length (ast-child ’Rest n)) 1)))

(Nil

(lambda (n)

0)))

41



7. Support API

(compile-ag-specifications)

(create-ast ’S (list

(create-ast ’NonNil (list

1

(create-ast ’NonNil (list

2

(create-ast ’Nil (list))))))))))

2))

(specification-phase spec)

Given a RACR specification, return in which specification phase it currently is. Possible
return values are:

• AST specification phase: 1

• AG specification phase: 2

• Evaluation phase: 3

(let ((spec (create-specification)))

(assert (= (specification-phase spec) 1))

(ast-rule spec ’S->)

(compile-ast-specifications spec ’S)

(assert (= (specification-phase spec) 2))

(compile-ag-specifications spec)

(assert (= (specification-phase spec) 3)))

42



Appendix

43





A. RACR Source Code

1 ; This program and the accompanying materials are made available under the
2 ; terms of the MIT license (X11 license) which accompanies this distribution.
3
4 ; Author: C. Bürger
5
6 #!r6rs

7
8 (library

9 (racr)

10 (export

11 ; Specification interface:
12 (rename (make-racr-specification create-specification))

13 (rename (racr-specification-specification-phase specification-phase))

14 with-specification

15 (rename (specify-ast-rule ast-rule))

16 (rename (specify-ag-rule ag-rule))

17 specify-attribute

18 compile-ast-specifications

19 compile-ag-specifications

20 ; AST annotation interface:
21 ast-weave-annotations

22 ast-annotation?

23 ast-annotation

24 ast-annotation-set!

25 ast-annotation-remove!

26 ; AST & attribute query interface:
27 create-ast

28 create-ast-list

29 create-ast-bud

30 (rename (node? ast-node?))

31 ast-node-type

32 ast-list-node?

33 (rename (node-bud-node? ast-bud-node?))

34 ast-subtype?

35 ast-parent

36 ast-child

37 ast-sibling

38 ast-child-index

39 ast-num-children

40 ast-children

41 ast-for-each-child

42 ast-find-child

43 att-value

44 ; Rewrite interface:
45 perform-rewrites

46 rewrite-terminal

47 rewrite-refine

48 rewrite-abstract

49 rewrite-subtree

50 rewrite-add

51 rewrite-insert

52 rewrite-delete

53 ; Utility interface:
54 print-ast

55 racr-exception?)

56 (import (rnrs) (rnrs mutable-pairs))

57
58 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
59 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Internal Data Structures ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
60 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
61
62 ; Constructor for unique entities internally used by the RACR system
63 (define-record-type racr-nil-record (sealed #t) (opaque #t))

64 (define racr-nil (make-racr-nil-record)) ; Unique value indicating undefined RACR entities
65
66 ; Record type representing RACR compiler specifications. A compiler specification consists of arbitrary
67 ; many AST rule, attribute and rewrite specifications, all aggregated into a set of rules stored in a
68 ; non≠terminal≠symbol ≠> ast≠rule hashtable, an actual compiler specification phase and a distinguished
69 ; start symbol. The specification phase is an internal flag indicating the RACR system the compiler’s
70 ; specification progress. Possible phases are:
71 ; 1 : AST specification
72 ; 2 : AG specification

45



A. RACR Source Code

73 ; 3 : Rewrite specification
74 ; 4 : Specification finished
75 (define-record-type racr-specification

76 (fields (mutable specification-phase) rules-table (mutable start-symbol))

77 (protocol

78 (lambda (new)

79 (lambda ()

80 (new 1 (make-eq-hashtable 50) racr-nil)))))

81
82 ; INTERNAL FUNCTION: Given a RACR specification and a non≠terminal, return the
83 ; non≠terminal’s AST rule or #f if it is undefined.
84 (define racr-specification-find-rule

85 (lambda (spec non-terminal)

86 (hashtable-ref (racr-specification-rules-table spec) non-terminal #f)))

87
88 ; INTERNAL FUNCTION: Given a RACR specification return a list of its AST rules.
89 (define racr-specification-rules-list

90 (lambda (spec)

91 (call-with-values

92 (lambda () (hashtable-entries (racr-specification-rules-table spec)))

93 (lambda (key-vector value-vector)

94 (vector->list value-vector)))))

95
96 ; Record type for AST rules; An AST rule has a reference to the RACR specification it belongs to and consist
97 ; of its symbolic encoding, a production (i.e., a list of production≠symbols) and an optional supertype.
98 (define-record-type ast-rule

99 (fields specification as-symbol (mutable production) (mutable supertype)))

100
101 ; INTERNAL FUNCTION: Given two rules r1 and r2, return whether r1 is a subtype of r2 or not. The subtype
102 ; relationship is reflexive, i.e., every type is a subtype of itself.
103 (define ast-rule-subtype?

104 (lambda (r1 r2)

105 (and

106 (eq? (ast-rule-specification r1) (ast-rule-specification r2))

107 (let loop ((r1 r1))

108 (cond

109 ((eq? r1 r2) #t)

110 ((ast-rule-supertype r1) (loop (ast-rule-supertype r1)))

111 (else #f))))))

112
113 ; INTERNAL FUNCTION: Given a rule, return a list containing all its subtypes except the rule itself.
114 (define ast-rule-subtypes

115 (lambda (rule1)

116 (filter

117 (lambda (rule2)

118 (and (not (eq? rule2 rule1)) (ast-rule-subtype? rule2 rule1)))

119 (racr-specification-rules-list (ast-rule-specification rule1)))))

120
121 ; Record type for production symbols; A production symbol has a name, a flag indicating whether it is a
122 ; non≠terminal or not (later resolved to the actual AST rule representing the respective non≠terminal), a
123 ; flag indicating whether it represents a Kleene closure (i.e., is a list of certain type) or not, a
124 ; context≠name unambiguously referencing it within the production it is part of and a list of attributes
125 ; defined for it.
126 (define-record-type (symbol make-production-symbol production-symbol?)

127 (fields name (mutable non-terminal?) kleene? context-name (mutable attributes)))

128
129 ; Record type for attribute definitions. An attribute definition has a certain name, a definition context
130 ; consisting of an AST rule and an attribute position (i.e., a (ast≠rule position) pair), an equation, and
131 ; an optional circularity≠definition needed for circular attributes’ fix≠point computations. Further,
132 ; attribute definitions specify whether the value of instances of the defined attribute are cached.
133 ; Circularity≠definitions are (bottom≠value equivalence≠function) pairs, whereby bottom≠value is the value
134 ; fix≠point computations start with and equivalence≠functions are used to decide whether a fix≠point is
135 ; reached or not (i.e., equivalence≠functions are arbitrary functions of arity two computing whether two
136 ; given arguments are equal or not).
137 (define-record-type attribute-definition

138 (fields name context equation circularity-definition cached?))

139
140 ; INTERNAL FUNCTION: Given an attribute definition, check if instances can depend on
141 ; themself (i.e., be circular) or not.
142 (define attribute-definition-circular?

143 (lambda (att)

144 (attribute-definition-circularity-definition att)))

145
146 ; INTERNAL FUNCTION: Given an attribute definition, return whether it specifies
147 ; a synthesized attribute or not.
148 (define attribute-definition-synthesized?

149 (lambda (att-def)

150 (= (cdr (attribute-definition-context att-def)) 0)))

151
152 ; INTERNAL FUNCTION: Given an attribute definition, return whether it specifies
153 ; an inherited attribute or not.
154 (define attribute-definition-inherited?

155 (lambda (att-def)

156 (not (attribute-definition-synthesized? att-def))))

157
158 ; Record type for AST nodes. AST nodes have a reference to the evaluator state used for evaluating their

46



159 ; attributes and rewrites, the AST rule they represent a context of, their parent, children, attribute
160 ; instances, attributes they influence and annotations.
161 (define-record-type node

162 (fields

163 (mutable evaluator-state)

164 (mutable ast-rule)

165 (mutable parent)

166 (mutable children)

167 (mutable attributes)

168 (mutable attribute-influences)

169 (mutable annotations))

170 (protocol

171 (lambda (new)

172 (lambda (ast-rule parent children)

173 (new

174 #f

175 ast-rule

176 parent

177 children

178 (list)

179 (list)

180 (list))))))

181
182 ; INTERNAL FUNCTION: Given a node, return whether it is a terminal or not.
183 (define node-terminal?

184 (lambda (n)

185 (eq? (node-ast-rule n) ’terminal)))

186
187 ; INTERNAL FUNCTION: Given a node, return whether it is a non≠terminal or not.
188 (define node-non-terminal?

189 (lambda (n)

190 (not (node-terminal? n))))

191
192 ; INTERNAL FUNCTION: Given a node, return whether it represents a list of
193 ; children, i.e., is a list≠node, or not.
194 (define node-list-node?

195 (lambda (n)

196 (eq? (node-ast-rule n) ’list-node)))

197
198 ; INTERNAL FUNCTION: Given a node, return whether is is a bud≠node or not.
199 (define node-bud-node?

200 (lambda (n)

201 (eq? (node-ast-rule n) ’bud-node)))

202
203 ; INTERNAL FUNCTION: Given a node, return its child≠index. An exception is thrown,
204 ; if the node has no parent (i.e., is a root).
205 (define node-child-index

206 (lambda (n)

207 (if (node-parent n)

208 (let loop ((children (node-children (node-parent n)))

209 (pos 1))

210 (if (eq? (car children) n)

211 pos

212 (loop (cdr children) (+ pos 1))))

213 (throw-exception

214 "Cannot access child-index; "

215 "The node has no parent!"))))

216
217 ; INTERNAL FUNCTION: Given a node find a certain child by name. If the node has
218 ; no such child, return #f, otherwise the child.
219 (define node-find-child

220 (lambda (n context-name)

221 (and (not (node-list-node? n))

222 (not (node-bud-node? n))

223 (not (node-terminal? n))

224 (let loop ((contexts (cdr (ast-rule-production (node-ast-rule n))))

225 (children (node-children n)))

226 (if (null? contexts)

227 #f

228 (if (eq? (symbol-context-name (car contexts)) context-name)

229 (car children)

230 (loop (cdr contexts) (cdr children))))))))

231
232 ; INTERNAL FUNCTION: Given a node find a certain attribute associated with it. If the node
233 ; has no such attribute, return #f, otherwise the attribute.
234 (define node-find-attribute

235 (lambda (n name)

236 (find

237 (lambda (att)

238 (eq? (attribute-definition-name (attribute-instance-definition att)) name))

239 (node-attributes n))))

240
241 ; INTERNAL FUNCTION: Given two nodes n1 and n2, return whether n1 is within the subtree spaned by n2 or not.
242 (define node-inside-of?

243 (lambda (n1 n2)

244 (cond

47



A. RACR Source Code

245 ((eq? n1 n2) #t)

246 ((node-parent n1) (node-inside-of? (node-parent n1) n2))

247 (else #f))))

248
249 ; Record type for attribute instances of a certain attribute definition, associated with a certain
250 ; node (context), dependencies, influences, a value cache, a cycle cache and an optional cache for the last
251 ; arguments with which the attribute has been evaluated.
252 (define-record-type attribute-instance

253 (fields

254 (mutable definition)

255 (mutable context)

256 (mutable node-dependencies)

257 (mutable attribute-dependencies)

258 (mutable attribute-influences)

259 value-cache

260 cycle-cache

261 (mutable args-cache))

262 (protocol

263 (lambda (new)

264 (lambda (definition context)

265 (new

266 definition

267 context

268 (list)

269 (list)

270 (list)

271 (make-hashtable equal-hash equal? 1)

272 (make-hashtable equal-hash equal? 1)

273 racr-nil)))))

274
275 ; Record type representing the internal state of RACR systems throughout their execution, i.e., while
276 ; evaluating attributes and rewriting ASTs. An evaluator state consists of a flag indicating if the AG
277 ; currently performs a fix≠point evaluation, a flag indicating if throughout a fix≠point iteration the
278 ; value of an attribute changed and an attribute evaluation stack used for dependency tracking.
279 (define-record-type evaluator-state

280 (fields (mutable ag-in-cycle?) (mutable ag-cycle-change?) (mutable att-eval-stack))

281 (protocol

282 (lambda (new)

283 (lambda ()

284 (new #f #f (list))))))

285
286 ; INTERNAL FUNCTION: Given an evaluator state, return whether it represents an evaluation in progress or
287 ; not; If it represents an evaluation in progress return the current attribute in evaluation, otherwise #f.
288 (define evaluator-state-in-evaluation?

289 (lambda (state)

290 (and (not (null? (evaluator-state-att-eval-stack state))) (car (evaluator-state-att-eval-stack state)))))

291
292 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
293 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Utility ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
294 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
295
296 ; INTERNAL FUNCTION: Given an arbitrary Scheme entity, construct a string
297 ; representation of it using display.
298 (define object->string

299 (lambda (x)

300 (call-with-string-output-port

301 (lambda (port)

302 (display x port)))))

303
304 (define-condition-type racr-exception &non-continuable make-racr-exception racr-exception?)

305
306 ; INTERNAL FUNCTION: Given an arbitrary sequence of strings and other Scheme entities, concatenate them to
307 ; form an error message and throw a special RACR exception with the constructed message. Any entity that is
308 ; not a string is treated as error information embedded in the error message between [ and ] characters,
309 ; whereby the actual string representation of the entity is obtained using object≠>string.
310 (define-syntax throw-exception

311 (syntax-rules ()

312 ((_ m-part ...)

313 (raise

314 (condition

315 (make-racr-exception)

316 (make-message-condition

317 (string-append

318 "RACR exception: "

319 (let ((m-part* m-part))

320 (if (string? m-part*)

321 m-part*

322 (string-append "[" (object->string m-part*) "]"))) ...)))))))

323
324 ; INTERNAL FUNCTION: Procedure sequentially applying a function on all the AST rules of a set of rules which
325 ; inherit, whereby supertypes are processed before their subtypes.
326 (define apply-wrt-ast-inheritance

327 (lambda (func rules)

328 (let loop ((resolved ; The set of all AST rules that are already processed....
329 (filter ; ...Initially it consists of all the rules that have no supertypes.
330 (lambda (rule)

48



331 (not (ast-rule-supertype rule)))

332 rules))

333 (to-check ; The set of all AST rules that still must be processed....
334 (filter ; ...Initially it consists of all the rules that have supertypes.
335 (lambda (rule)

336 (ast-rule-supertype rule))

337 rules)))

338 (let ((to-resolve ; ...Find a rule that still must be processed and...
339 (find

340 (lambda (rule)

341 (memq (ast-rule-supertype rule) resolved)) ; ...whose supertype already has been processed....
342 to-check)))

343 (when to-resolve ; ...If such a rule exists,...
344 (func to-resolve) ; ...process it and...
345 (loop (cons to-resolve resolved) (remq to-resolve to-check))))))) ; ...recur.
346
347 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
348 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Support API ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
349 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
350
351 ; Given an AST, an association list L of attribute pretty≠printers and an output port, print a
352 ; human≠readable ASCII representation of the AST on the output port. The elements of the association list
353 ; L are (attribute≠name pretty≠printing≠function) pairs. Every attribute for which L contains an entry is
354 ; printed when the AST node it is associated with is printed. Thereby, the given pretty printing function
355 ; is applied to the attribute’s value before printing it. Beware: The output port is never closed by this
356 ; function ≠ neither in case of an io≠exception nor after finishing printing the AST.
357 (define print-ast

358 (lambda (ast attribute-pretty-printer-list output-port)

359 (letrec ((print-indentation

360 (lambda (n)

361 (if (> n 0)

362 (begin

363 (print-indentation (- n 1))

364 (my-display " |"))

365 (my-display #\newline))))

366 (my-display

367 (lambda (to-display)

368 (display to-display output-port))))

369 (let loop ((ast-depth 0)

370 (ast ast))

371 (cond

372 ((node-list-node? ast) ; Print list nodes
373 (print-indentation ast-depth)

374 (print-indentation ast-depth)

375 (my-display "-* ")

376 (my-display

377 (symbol->string

378 (symbol-name

379 (list-ref

380 (ast-rule-production (node-ast-rule (node-parent ast)))

381 (ast-child-index ast)))))

382 (for-each

383 (lambda (element)

384 (loop (+ ast-depth 1) element))

385 (node-children ast)))

386 ((node-bud-node? ast) ; Print bud nodes
387 (print-indentation ast-depth)

388 (print-indentation ast-depth)

389 (my-display "-@ bud-node"))

390 ((node-non-terminal? ast) ; Print non≠terminal
391 (print-indentation ast-depth)

392 (print-indentation ast-depth)

393 (my-display "-\\ ")

394 (my-display (symbol->string (ast-node-type ast)))

395 (for-each

396 (lambda (att)

397 (let* ((name (attribute-definition-name (attribute-instance-definition att)))

398 (pretty-printer-entry (assq name attribute-pretty-printer-list)))

399 (when pretty-printer-entry

400 (print-indentation (+ ast-depth 1))

401 (my-display " <")

402 (my-display (symbol->string name))

403 (my-display "> ")

404 (my-display ((cdr pretty-printer-entry) (att-value name ast))))))

405 (node-attributes ast))

406 (for-each

407 (lambda (child)

408 (loop (+ ast-depth 1) child))

409 (node-children ast)))

410 (else ; Print terminal
411 (print-indentation ast-depth)

412 (my-display "- ")

413 (my-display (node-children ast)))))

414 (my-display #\newline))))

415
416 (define-syntax with-specification

49



A. RACR Source Code

417 (lambda (x)

418 (syntax-case x ()

419 ((k spec body ...)

420 #‘(let* ((spec* spec)

421 (#,(datum->syntax #’k ’ast-rule)

422 (lambda (rule)

423 (specify-ast-rule spec* rule)))

424 (#,(datum->syntax #’k ’compile-ast-specifications)

425 (lambda (start-symbol)

426 (compile-ast-specifications spec* start-symbol)))

427 (#,(datum->syntax #’k ’compile-ag-specifications)

428 (lambda ()

429 (compile-ag-specifications spec*)))

430 (#,(datum->syntax #’k ’create-ast)

431 (lambda (rule children)

432 (create-ast spec* rule children)))

433 (#,(datum->syntax #’k ’specification-phase)

434 (lambda ()

435 (racr-specification-specification-phase spec*)))

436 (#,(datum->syntax #’k ’specify-attribute)

437 (lambda (att-name non-terminal index cached? equation circ-def)

438 (specify-attribute spec* att-name non-terminal index cached? equation circ-def))))

439 (let-syntax ((#,(datum->syntax #’k ’ag-rule)

440 (syntax-rules ()

441 ((_ attribute-name definition (... ...))

442 (specify-ag-rule spec* attribute-name definition (... ...))))))

443 body ...))))))

444
445 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
446 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Annotations ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
447 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
448
449 (define ast-weave-annotations

450 (lambda (node type name value)

451 (when (evaluator-state-in-evaluation? (node-evaluator-state node))

452 (throw-exception

453 "Cannot weave " name " annotation; "

454 "There are attributes in evaluation."))

455 (when (not (ast-annotation? node name))

456 (cond

457 ((and (not (node-list-node? node)) (not (node-bud-node? node)) (ast-subtype? node type))

458 (ast-annotation-set! node name value))

459 ((and (node-list-node? node) (eq? type ’list-node))

460 (ast-annotation-set! node name value))

461 ((and (node-bud-node? node) (eq? type ’bud-node))

462 (ast-annotation-set! node name value))))

463 (for-each

464 (lambda (child)

465 (unless (node-terminal? child)

466 (ast-weave-annotations child type name value)))

467 (node-children node))))

468
469 (define ast-annotation?

470 (lambda (node name)

471 (when (evaluator-state-in-evaluation? (node-evaluator-state node))

472 (throw-exception

473 "Cannot check for " name " annotation; "

474 "There are attributes in evaluation."))

475 (assq name (node-annotations node))))

476
477 (define ast-annotation

478 (lambda (node name)

479 (when (evaluator-state-in-evaluation? (node-evaluator-state node))

480 (throw-exception

481 "Cannot access " name " annotation; "

482 "There are attributes in evaluation."))

483 (let ((annotation (ast-annotation? node name)))

484 (if annotation

485 (cdr annotation)

486 (throw-exception

487 "Cannot access " name " annotation; "

488 "The given node has no such annotation.")))))

489
490 (define ast-annotation-set!

491 (lambda (node name value)

492 (when (evaluator-state-in-evaluation? (node-evaluator-state node))

493 (throw-exception

494 "Cannot set " name " annotation; "

495 "There are attributes in evaluation."))

496 (when (not (symbol? name))

497 (throw-exception

498 "Cannot set " name " annotation; "

499 "Annotation names must be Scheme symbols."))

500 (let ((annotation (ast-annotation? node name))

501 (value

502 (if (procedure? value)

50



503 (lambda args

504 (apply value node args))

505 value)))

506 (if annotation

507 (set-cdr! annotation value)

508 (node-annotations-set! node (cons (cons name value) (node-annotations node)))))))

509
510 (define ast-annotation-remove!

511 (lambda (node name)

512 (when (evaluator-state-in-evaluation? (node-evaluator-state node))

513 (throw-exception

514 "Cannot remove " name " annotation; "

515 "There are attributes in evaluation."))

516 (node-annotations-set!

517 node

518 (remp

519 (lambda (entry)

520 (eq? (car entry) name))

521 (node-annotations node)))))

522
523 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
524 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Specifications ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
525 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
526
527 (define specify-ast-rule

528 (lambda (spec rule)

529 ; ;; Ensure, that the RACR system is in the correct specification phase:
530 (when (> (racr-specification-specification-phase spec) 1)

531 (throw-exception

532 "Unexpected AST rule " rule "; "

533 "AST rules can only be defined in the AST specification phase."))

534 (letrec* ((rule-string (symbol->string rule)) ; String representation of the encoded rule (used for parsing)
535 (pos 0) ; The current parsing position
536 ; Support function returning, whether the end of the parsing string is reached or not:
537 (eos?

538 (lambda ()

539 (= pos (string-length rule-string))))

540 ; Support function returning the current character to parse:
541 (my-peek-char

542 (lambda ()

543 (string-ref rule-string pos)))

544 ; Support function returning the current character to parse and incrementing the parsing position:
545 (my-read-char

546 (lambda ()

547 (let ((c (my-peek-char)))

548 (set! pos (+ pos 1))

549 c)))

550 ; Support function matching a certain character:
551 (match-char!

552 (lambda (c)

553 (if (eos?)

554 (throw-exception

555 "Unexpected end of AST rule " rule ";"

556 "Expected " c " character.")

557 (if (char=? (my-peek-char) c)

558 (set! pos (+ pos 1))

559 (throw-exception

560 "Invalid AST rule " rule "; "

561 "Unexpected " (my-peek-char) " character.")))))

562 ; Support function parsing a symbol, i.e., retrieving its name, type, if it is a list and optional context≠name.
563 ; It returns a (name≠as≠scheme≠symbol terminal? klenee? context≠name≠as≠scheme≠symbol?) quadrupel:
564 (parse-symbol

565 (lambda (location) ; location: l≠hand, r≠hand
566 (let ((symbol-type (if (eq? location ’l-hand) "non-terminal" "terminal")))

567 (when (eos?)

568 (throw-exception

569 "Unexpected end of AST rule " rule "; "

570 "Expected " symbol-type "."))

571 (let* ((parse-name

572 (lambda (terminal?)

573 (let ((name

574 (append

575 (let loop ((chars (list)))

576 (if (and (not (eos?)) (char-alphabetic? (my-peek-char)))

577 (begin

578 (when (and terminal? (not (char-lower-case? (my-peek-char))))

579 (throw-exception

580 "Invalid AST rule " rule "; "

581 "Unexpected " (my-peek-char) " character."))

582 (loop (cons (my-read-char) chars)))

583 (reverse chars)))

584 (let loop ((chars (list)))

585 (if (and (not (eos?)) (char-numeric? (my-peek-char)))

586 (loop (cons (my-read-char) chars))

587 (reverse chars))))))

588 (when (null? name)

51



A. RACR Source Code

589 (throw-exception

590 "Unexpected " (my-peek-char) " character in AST rule " rule "; "

591 "Expected " symbol-type "."))

592 (unless (char-alphabetic? (car name))

593 (throw-exception

594 "Malformed name in AST rule " rule "; "

595 "Names must start with a letter."))

596 name)))

597 (terminal? (char-lower-case? (my-peek-char)))

598 (name (parse-name terminal?))

599 (klenee?

600 (and

601 (not terminal?)

602 (eq? location ’r-hand)

603 (not (eos?))

604 (char=? (my-peek-char) #\*)

605 (my-read-char)))

606 (context-name?

607 (and

608 (not terminal?)

609 (eq? location ’r-hand)

610 (not (eos?))

611 (char=? (my-peek-char) #\<)

612 (my-read-char)

613 (parse-name #f)))

614 (name-string (list->string name))

615 (name-symbol (string->symbol name-string)))

616 (when (and terminal? (eq? location ’l-hand))

617 (throw-exception

618 "Unexpected " name " terminal in AST rule " rule "; "

619 "Left hand side symbols must be non-terminals."))

620 (make-production-symbol

621 name-symbol

622 (not terminal?)

623 klenee?

624 (if context-name?

625 (string->symbol (list->string context-name?))

626 (if klenee?

627 (string->symbol (string-append name-string "*"))

628 name-symbol))

629 (list))))))

630 (l-hand (parse-symbol ’l-hand)); The rule’s l≠hand
631 (supertype ; The rule’s super≠type
632 (and (not (eos?)) (char=? (my-peek-char) #\:) (my-read-char) (symbol-name (parse-symbol ’l-hand))))

633 (rule* ; Representation of the parsed rule
634 (begin

635 (match-char! #\-)

636 (match-char! #\>)

637 (make-ast-rule

638 spec

639 rule

640 (append

641 (list l-hand)

642 (let loop ((r-hand

643 (if (not (eos?))

644 (list (parse-symbol ’r-hand))

645 (list))))

646 (if (eos?)

647 (reverse r-hand)

648 (begin

649 (match-char! #\-)

650 (loop (cons (parse-symbol ’r-hand) r-hand))))))

651 supertype))))

652 ; Check, that the rule’s l≠hand is not already defined:
653 (when (racr-specification-find-rule spec (symbol-name l-hand))

654 (throw-exception

655 "Invalid AST rule " rule "; "

656 "Redefinition of " (symbol-name l-hand) "."))

657 (hashtable-set! ; Add the rule to the RACR system.
658 (racr-specification-rules-table spec)

659 (symbol-name l-hand)

660 rule*))))

661
662 (define compile-ast-specifications

663 (lambda (spec start-symbol)

664 ; ;; Ensure, that the RACR system is in the correct specification phase and...
665 (let ((current-phase (racr-specification-specification-phase spec)))

666 (if (> current-phase 1)

667 (throw-exception

668 "Unexpected AST compilation; "

669 "The AST specifications already have been compiled.")

670 ; ... i� so proceed to the next specification phase:
671 (racr-specification-specification-phase-set! spec (+ current-phase 1))))

672
673 (racr-specification-start-symbol-set! spec start-symbol)

674 (let* ((rules-list (racr-specification-rules-list spec))

52



675 ; Support function, that given a rule R returns a list of all rules directly derivable from R:
676 (derivable-rules

677 (lambda (rule*)

678 (fold-left

679 (lambda (result symb*)

680 (if (symbol-non-terminal? symb*)

681 (append result (list (symbol-non-terminal? symb*)) (ast-rule-subtypes (symbol-non-terminal? symb*)))

682 result))

683 (list)

684 (cdr (ast-rule-production rule*))))))

685
686 ; ;; Resolve supertypes and non≠terminals occuring in productions and ensure all non≠terminals are defined:
687 (for-each

688 (lambda (rule*)

689 (when (ast-rule-supertype rule*)

690 (let ((supertype-entry (racr-specification-find-rule spec (ast-rule-supertype rule*))))

691 (if (not supertype-entry)

692 (throw-exception

693 "Invalid AST rule " (ast-rule-as-symbol rule*) "; "

694 "The supertype " (ast-rule-supertype rule*) " is not defined.")

695 (ast-rule-supertype-set! rule* supertype-entry))))

696 (for-each

697 (lambda (symb*)

698 (when (symbol-non-terminal? symb*)

699 (let ((symb-definition (racr-specification-find-rule spec (symbol-name symb*))))

700 (when (not symb-definition)

701 (throw-exception

702 "Invalid AST rule " (ast-rule-as-symbol rule*) "; "

703 "Non-terminal " (symbol-name symb*) " is not defined."))

704 (symbol-non-terminal?-set! symb* symb-definition))))

705 (cdr (ast-rule-production rule*))))

706 rules-list)

707
708 ; ;; Ensure, that inheritance is cycle≠free:
709 (for-each

710 (lambda (rule*)

711 (when (memq rule* (ast-rule-subtypes rule*))

712 (throw-exception

713 "Invalid AST grammar; "

714 "The definition of " (ast-rule-as-symbol rule*) " depends on itself (cyclic inheritance).")))

715 rules-list)

716
717 ; ;; Ensure, that the start symbol is defined:
718 (unless (racr-specification-find-rule spec start-symbol)

719 (throw-exception

720 "Invalid AST grammar; "

721 "The start symbol " start-symbol " is not defined."))

722
723 ; ;; Ensure, that the start symbol has no super≠ and subtype:
724 (let ((supertype (ast-rule-supertype (racr-specification-find-rule spec start-symbol))))

725 (when supertype

726 (throw-exception

727 "Invalid AST grammar; "

728 "The start symbol " start-symbol " inherits from " (ast-rule-as-symbol supertype) ".")))

729 (let ((subtypes (ast-rule-subtypes (racr-specification-find-rule spec start-symbol))))

730 (unless (null? subtypes)

731 (throw-exception

732 "Invalid AST grammar; "

733 "The rules " (map ast-rule-as-symbol subtypes) " inherit from the start symbol " start-symbol ".")))

734
735 ; ;; Ensure, that the CFG is start separated:
736 (let ((start-rule (racr-specification-find-rule spec start-symbol)))

737 (for-each

738 (lambda (rule*)

739 (when (memq start-rule (derivable-rules rule*))

740 (throw-exception

741 "Invalid AST grammar; "

742 "The start symbol " start-symbol " is not start separated because of rule " (ast-rule-as-symbol rule*) ".")))

743 rules-list))

744
745 ; ;; Resolve inherited production symbols:
746 (apply-wrt-ast-inheritance

747 (lambda (rule)

748 (ast-rule-production-set!

749 rule

750 (append

751 (list (car (ast-rule-production rule)))

752 (map

753 (lambda (symbol)

754 (make-production-symbol

755 (symbol-name symbol)

756 (symbol-non-terminal? symbol)

757 (symbol-kleene? symbol)

758 (symbol-context-name symbol)

759 (list)))

760 (cdr (ast-rule-production (ast-rule-supertype rule))))

53



A. RACR Source Code

761 (cdr (ast-rule-production rule)))))

762 rules-list)

763
764 ; ;; Ensure context≠names are unique:
765 (for-each

766 (lambda (rule*)

767 (let loop ((rest-production (cdr (ast-rule-production rule*))))

768 (unless (null? rest-production)

769 (let ((current-context-name (symbol-context-name (car rest-production))))

770 (when (find

771 (lambda (symb*)

772 (eq? (symbol-context-name symb*) current-context-name))

773 (cdr rest-production))

774 (throw-exception

775 "Invalid AST grammar; "

776 "The context-name " current-context-name " is not unique for rule " (ast-rule-as-symbol rule*) "."))

777 (loop (cdr rest-production))))))

778 rules-list)

779
780 ; ;; Ensure, that all non≠terminals can be derived from the start symbol:
781 (let* ((to-check (list (racr-specification-find-rule spec start-symbol)))

782 (checked (list)))

783 (let loop ()

784 (unless (null? to-check)

785 (let ((rule* (car to-check)))

786 (set! to-check (cdr to-check))

787 (set! checked (cons rule* checked))

788 (for-each

789 (lambda (derivable-rule)

790 (when (and

791 (not (memq derivable-rule checked))

792 (not (memq derivable-rule to-check)))

793 (set! to-check (cons derivable-rule to-check))))

794 (derivable-rules rule*))

795 (loop))))

796 (let ((non-derivable-rules

797 (filter

798 (lambda (rule*)

799 (not (memq rule* checked)))

800 rules-list)))

801 (unless (null? non-derivable-rules)

802 (throw-exception

803 "Invalid AST grammar; "

804 "The rules " (map ast-rule-as-symbol non-derivable-rules) " cannot be derived."))))

805
806 ; ;; Ensure, that all non≠terminals are productive:
807 (let* ((productive-rules (list))

808 (to-check rules-list)

809 (productive-rule?

810 (lambda (rule*)

811 (not (find

812 (lambda (symb*)

813 (and

814 (symbol-non-terminal? symb*)

815 (not (memq (symbol-non-terminal? symb*) productive-rules))))

816 (cdr (ast-rule-production rule*)))))))

817 (let loop ()

818 (let ((productive-rule

819 (find productive-rule? to-check)))

820 (when productive-rule

821 (set! to-check (remq productive-rule to-check))

822 (set! productive-rules (cons productive-rule productive-rules))

823 (loop))))

824 (unless (null? to-check)

825 (throw-exception

826 "Invalid AST grammar; "

827 "The rules " (map ast-rule-as-symbol to-check) " are not productive."))))))

828
829 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
830 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Attribute Grammar Specifications ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
831 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
832
833 (define-syntax specify-ag-rule

834 (lambda (x)

835 (syntax-case x ()

836 ((_ spec att-name definition ...)

837 (and (identifier? #’att-name) (not (null? #’(definition ...))))

838 #’(let ((spec* spec)

839 (att-name* ’att-name))

840 (let-syntax

841 ((specify-attribute*

842 (syntax-rules ()

843 ((_ spec* att-name* ((non-terminal index) equation))

844 (specify-attribute spec* att-name* ’non-terminal ’index #t equation #f))

845 ((_ spec* att-name* ((non-terminal index) cached? equation))

846 (specify-attribute spec* att-name* ’non-terminal ’index cached? equation #f))

54



847 ((_ spec* att-name* ((non-terminal index) equation bottom equivalence-function))

848 (specify-attribute spec* att-name* ’non-terminal ’index #t equation (cons bottom equivalence-function)))

849 ((_ spec* att-name* ((non-terminal index) cached? equation bottom equivalence-function))

850 (specify-attribute spec* att-name* ’non-terminal ’index cached? equation (cons bottom equivalence-function)))

851 ((_ spec* att-name* (non-terminal equation))

852 (specify-attribute spec* att-name* ’non-terminal 0 #t equation #f))

853 ((_ spec* att-name* (non-terminal cached? equation))

854 (specify-attribute spec* att-name* ’non-terminal 0 cached? equation #f))

855 ((_ spec* att-name* (non-terminal equation bottom equivalence-function))

856 (specify-attribute spec* att-name* ’non-terminal 0 #t equation (cons bottom equivalence-function)))

857 ((_ spec* att-name* (non-terminal cached? equation bottom equivalence-function))

858 (specify-attribute spec* att-name* ’non-terminal 0 cached? equation (cons bottom equivalence-function))))))

859 (specify-attribute* spec* att-name* definition) ...))))))

860
861 (define specify-attribute

862 (lambda (spec attribute-name non-terminal context-name-or-position cached? equation circularity-definition)

863 ; ;; Before adding the attribute definition, ensure...
864 (let ((wrong-argument-type ; ...correct argument types,...
865 (or

866 (and (not (symbol? attribute-name))

867 "Attribute name : symbol")

868 (and (not (symbol? non-terminal))

869 "AST rule : non-terminal")

870 (and (not (symbol? context-name-or-position))

871 (or (not (integer? context-name-or-position)) (< context-name-or-position 0))

872 "Production position : index or context-name")

873 (and (not (procedure? equation))

874 "Attribute equation : function")

875 (and circularity-definition

876 (not (pair? circularity-definition))

877 (not (procedure? (cdr circularity-definition)))

878 "Circularity definition : #f or (bottom-value equivalence-function) pair"))))

879 (when wrong-argument-type

880 (throw-exception

881 "Invalid attribute definition; "

882 "Wrong argument type (" wrong-argument-type ").")))

883 (unless (= (racr-specification-specification-phase spec) 2) ; ...that the RACR system is in the correct specification phase,...
884 (throw-exception

885 "Unexpected " attribute-name " attribute definition; "

886 "Attributes can only be defined in the AG specification phase."))

887 (let ((ast-rule (racr-specification-find-rule spec non-terminal)))

888 (unless ast-rule ; ...the given AST rule is defined,...
889 (throw-exception

890 "Invalid attribute definition; "

891 "The non-terminal " non-terminal " is not defined."))

892 (let* ((position ; ...the given context exists,...
893 (if (symbol? context-name-or-position)

894 (if (eq? context-name-or-position ’*)

895 0

896 (let loop ((pos 1)

897 (rest-production (cdr (ast-rule-production ast-rule))))

898 (if (null? rest-production)

899 (throw-exception

900 "Invalid attribute definition; "

901 "The non-terminal " non-terminal " has no " context-name-or-position " context.")

902 (if (eq? (symbol-context-name (car rest-production)) context-name-or-position)

903 pos

904 (loop (+ pos 1) (cdr rest-production))))))

905 (if (>= context-name-or-position (length (ast-rule-production ast-rule)))

906 (throw-exception

907 "Invalid attribute definition; "

908 "There exists no " context-name-or-position "’th position in the context of " non-terminal ".")

909 context-name-or-position)))

910 (context (list-ref (ast-rule-production ast-rule) position)))

911 (unless (symbol-non-terminal? context) ; ...it is a non≠terminal and...
912 (throw-exception

913 "Invalid attribute definition; "

914 non-terminal context-name-or-position " is a terminal."))

915 ; ... the attribute is not already defined for it:
916 (when (memq attribute-name (map attribute-definition-name (symbol-attributes context)))

917 (throw-exception

918 "Invalid attribute definition; "

919 "Redefinition of " attribute-name " for " non-terminal context-name-or-position "."))

920 ; ;; Everything is fine. Thus, add the definition to the AST rule’s respective symbol:
921 (symbol-attributes-set!

922 context

923 (cons

924 (make-attribute-definition

925 attribute-name

926 (cons ast-rule position)

927 equation

928 circularity-definition

929 cached?)

930 (symbol-attributes context)))))))

931
932 (define compile-ag-specifications

55



A. RACR Source Code

933 (lambda (spec)

934 ; ;; Ensure, that the RACR system is in the correct specification phase and...
935 (let ((current-phase (racr-specification-specification-phase spec)))

936 (when (< current-phase 2)

937 (throw-exception

938 "Unexpected AG compilation; "

939 "The AST specifications are not yet compiled."))

940 (if (> current-phase 2)

941 (throw-exception

942 "Unexpected AG compilation; "

943 "The AG specifications already have been compiled.")

944 (racr-specification-specification-phase-set! spec (+ current-phase 1)))) ; ...if so proceed to the next specification phase.
945
946 ; ;; Resolve attribute definitions inherited from a supertype. Thus,...
947 (apply-wrt-ast-inheritance ; ...for every AST rule R which has a supertype...
948 (lambda (rule)

949 (let loop ((super-prod (ast-rule-production (ast-rule-supertype rule)))

950 (sub-prod (ast-rule-production rule)))

951 (unless (null? super-prod)

952 (for-each ; ...check for every attribute definition of R’s supertype...
953 (lambda (super-att-def)

954 (unless (find ; ...if it is shadowed by an attribute definition of R....
955 (lambda (sub-att-def)

956 (eq? (attribute-definition-name sub-att-def) (attribute-definition-name super-att-def)))

957 (symbol-attributes (car sub-prod)))

958 (symbol-attributes-set! ; ...If not, add...
959 (car sub-prod)

960 (cons

961 (make-attribute-definition ; ...a copy of the attribute definition inherited...
962 (attribute-definition-name super-att-def)

963 (cons rule (cdr (attribute-definition-context super-att-def))) ; ...to R.
964 (attribute-definition-equation super-att-def)

965 (attribute-definition-circularity-definition super-att-def)

966 (attribute-definition-cached? super-att-def))

967 (symbol-attributes (car sub-prod))))))

968 (symbol-attributes (car super-prod)))

969 (loop (cdr super-prod) (cdr sub-prod)))))

970 (racr-specification-rules-list spec))))

971
972 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
973 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Attribute Evaluator ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
974 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
975
976 ; INTERNAL FUNCTION: Given a node n find a certain attribute associated with it, whereas in case no proper
977 ; attribute is associated with n itself the search is extended to find a broadcast solution. I� the
978 ; extended search finds a solution, appropriate copy propergation attributes (i.e., broadcasters) are added.
979 ; I� no attribute instance can be found or n is a bud node, an exception is thrown. Otherwise, the
980 ; attribute or its respective last broadcaster is returned.
981 (define lookup-attribute

982 (lambda (name n)

983 (when (node-bud-node? n)

984 (throw-exception

985 "AG evaluator exception; "

986 "Cannot access " name " attribute - the given node is a bud."))

987 (let loop ((n n)) ; Recursively...
988 (let ((att (node-find-attribute n name))) ; ...check if the current node has a proper attribute instance....
989 (if att

990 att ; ... I� it has, return the found defining attribute instance.
991 (let ((parent (node-parent n))) ; ...I� no defining attribute instance can be found...
992 (if (not parent) ; ...check if there exists a parent node that may provide a definition....
993 (throw-exception ; ...I� not, throw an exception,...
994 "AG evaluator exception; "

995 "Cannot access unknown " name " attribute.")

996 (let* ((att (loop parent)) ; ...otherwise proceed the search at the parent node. I� it succeeds...
997 (broadcaster ; ...construct a broadcasting attribute instance...
998 (make-attribute-instance

999 (make-attribute-definition ; ...whose definition context depends...
1000 name

1001 (if (eq? (node-ast-rule parent) ’list-node) ; ...if the parent node is a list≠node or not....
1002 (cons ; ... I� it is a list≠node the broadcaster’s context is...
1003 (node-ast-rule (node-parent parent)) ; ...the list≠node’s parent node and...
1004 (node-child-index parent)) ; ...child position.
1005 (cons ; ... I� the parent node is not a list≠node the broadcaster’s context is...
1006 (node-ast-rule parent) ; ...the parent node and...
1007 (node-child-index n))) ; ...the current node’s child position. Further,...
1008 (lambda (n . args) ; ...the broadcaster’s equation just calls the parent node’s counterpart. Finally,...
1009 (apply att-value name (ast-parent n) args))

1010 (attribute-definition-circularity-definition (attribute-instance-definition att))

1011 #f)

1012 n)))

1013 (node-attributes-set! n (cons broadcaster (node-attributes n))) ; ...add the constructed broadcaster and...
1014 broadcaster)))))))) ; ...return it as the current node’s look≠up result.
1015
1016 (define att-value

1017 (lambda (name n . args)

1018 (let* (; The evaluator state used and changed throughout evaluation:

56



1019 (evaluator-state (node-evaluator-state n))

1020 ; The attribute instance to evaluate:
1021 (att (lookup-attribute name n))

1022 ; The attribute’s definition:
1023 (att-def (attribute-instance-definition att))

1024 ; The attribute’s value cache entry for the given arguments:
1025 (vc-hit

1026 (if (attribute-definition-cached? att-def)

1027 (hashtable-ref (attribute-instance-value-cache att) args racr-nil)

1028 racr-nil)))

1029 (if (not (eq? vc-hit racr-nil)) ; First, check if the attribute’s value is cached....
1030 (begin ; ... I� it is ,...
1031 ; maintaine attribute dependencies, i.e., i� this attribute is evaluated throughout the evaluation
1032 ; of another attribute, the other attribute depends on this one. Afterwards,...
1033 (add-dependency:att->att att)

1034 vc-hit) ; ...return the attribute’s cached value.
1035 ; ... I� the attribute is not cached it must be evaluated. Therefore, prepare a few support values and functions:
1036 (let* (; The attribute’s computed value to return:
1037 (result racr-nil)

1038 ; The attribute’s cycle cache entry for the given arguments:
1039 (cc-hit (hashtable-ref (attribute-instance-cycle-cache att) args #f))

1040 ; Boolean value; #t i� the attribute already is in evaluation for the given arguments:
1041 (entered? (and cc-hit (cdr cc-hit)))

1042 ; Boolean value; #t i� the attribute is declared to be circular:
1043 (circular? (attribute-definition-circular? att-def))

1044 ; Boolean value; #t i� the attribute is declared to be circular and is the starting point for a
1045 ; fix≠point evaluation:
1046 (start-fixpoint-computation? (and circular? (not (evaluator-state-ag-in-cycle? evaluator-state))))

1047 ; Support function that checks if the attribute’s value changed throughout fix≠point evaluation and
1048 ; updates its and the evaluator’s state accordingly:
1049 (update-cycle-cache

1050 (lambda ()

1051 (attribute-instance-args-cache-set! att args)

1052 (unless ((cdr (attribute-definition-circularity-definition att-def))

1053 result

1054 (car cc-hit))

1055 (set-car! cc-hit result)

1056 (evaluator-state-ag-cycle-change?-set! evaluator-state #t)))))

1057 ; Now, decide how to evaluate the attribute dependening on whether the attribute is circular, already in evaluation
1058 ; or starting point for a fix≠point evaluation:
1059 (cond

1060 ; EVALUATION≠CASE (1): Circular attribute starting point for a fix≠point evaluation:
1061 (start-fixpoint-computation?

1062 (let (; Flag indicating abnormal termination of the fix≠point evaluation (e.g., by implementation
1063 ; errors within applied attribute equations and respective exceptions or the application of
1064 ; a continuation outside the fix≠point evaluation’s scope):
1065 (abnormal-termination? #t))

1066 (dynamic-wind

1067 (lambda ()

1068 ; Maintaine attribute dependencies, i.e., i� this attribute is evaluated throughout the evaluation
1069 ; of another attribute, the other attribute depends on this one and this attribute must depend on
1070 ; any other attributes that will be evaluated through its own evaluation. Further,..
1071 (add-dependency:att->att att)

1072 (evaluator-state-att-eval-stack-set! evaluator-state (cons att (evaluator-state-att-eval-stack evaluator-state)))

1073 ; ... update the evaluator state that we are about to start a fix≠point evaluation and...
1074 (evaluator-state-ag-in-cycle?-set! evaluator-state #t)

1075 ; ... mark, that the attribute is in evaluation and construct an appropriate cycle≠cache entry.
1076 (set! cc-hit (cons (car (attribute-definition-circularity-definition att-def)) #t))

1077 (hashtable-set! (attribute-instance-cycle-cache att) args cc-hit))

1078 (lambda ()

1079 (let loop () ; Start fix≠point evaluation. Thus, as long as...
1080 (evaluator-state-ag-cycle-change?-set! evaluator-state #f) ; ...an attribute’s value changes...
1081 (set! result (apply (attribute-definition-equation att-def) n args)) ; ...evaluate the attribute,...
1082 (update-cycle-cache) ; ...update its cycle cache and...
1083 ; ... check if throughout its evaluation the value of any attribute it depends on changed....
1084 (when (evaluator-state-ag-cycle-change? evaluator-state) ; ...I� a value changed,
1085 (loop)) ; ...trigger the attribute’s evaluation once more, until a fix≠point is reached. Finally,...
1086 (set! abnormal-termination? #f))) ; ...indicate that the fix≠point evaluation terminated normal.
1087 (lambda ()

1088 ; Mark that the fix≠point evaluation is finished and...
1089 (evaluator-state-ag-in-cycle?-set! evaluator-state #f)

1090 ; ... update the caches of all circular attributes evaluated throughout it. To do so,...
1091 (let loop ((att att))

1092 (if (not (attribute-definition-circular? (attribute-instance-definition att)))

1093 ; ... ignore non≠circular attributes and just proceed with the attributes they depend on (to
1094 ; ensure all strongly connected components within a weakly connected one are updated)....
1095 (for-each

1096 loop

1097 (attribute-instance-attribute-dependencies att))

1098 ; ... In case of circular attributes not yet updated,...
1099 (when (> (hashtable-size (attribute-instance-cycle-cache att)) 0)

1100 (when (and ; ...check...
1101 (not abnormal-termination?) ; ...if the fix≠point evaluation terminated normal and...
1102 (attribute-definition-cached? (attribute-instance-definition att))) ; ...caching is enabled....
1103 (hashtable-set! ; ...I� so...
1104 (attribute-instance-value-cache att) ; ...each such attribute’s fix≠point value to cache...

57



A. RACR Source Code

1105 (attribute-instance-args-cache att) ; ...is the value computed during its last invocation. Further,...
1106 (car (hashtable-ref (attribute-instance-cycle-cache att) (attribute-instance-args-cache att) #f))))

1107 (hashtable-clear! (attribute-instance-cycle-cache att)) ; ...ALWAYS clear the attribute’s cycle and...
1108 (attribute-instance-args-cache-set! att racr-nil) ; ...most recent arguments cache....
1109 (for-each ; ...Then proceed with the attributes the circular attribute depends on....
1110 loop

1111 (attribute-instance-attribute-dependencies att)))))

1112 ; ... Finally, pop the attribute from the attribute evaluation stack.
1113 (evaluator-state-att-eval-stack-set! evaluator-state (cdr (evaluator-state-att-eval-stack evaluator-state)))))))

1114
1115 ; EVALUATION≠CASE (2): Circular attribute, already in evaluation for the given arguments:
1116 ((and circular? entered?)

1117 ; Maintaine attribute dependencies, i.e., the other attribute throughout whose evaluation
1118 ; this attribute is evaluated must depend on this one. Finally,...
1119 (add-dependency:att->att att)

1120 ; ... the result is the attribute’s cycle cache entry.
1121 (set! result (car cc-hit)))

1122
1123 ; EVALUATION≠CASE (3): Circular attribute not in evaluation and entered throughout a fix≠point evaluation:
1124 (circular?

1125 (dynamic-wind

1126 (lambda ()

1127 ; Maintaine attribute dependencies, i.e., i� this attribute is evaluated throughout the evaluation
1128 ; of another attribute, the other attribute depends on this one and this attribute must depend on
1129 ; any other attributes that will be evaluated through its own evaluation. Further,..
1130 (add-dependency:att->att att)

1131 (evaluator-state-att-eval-stack-set! evaluator-state (cons att (evaluator-state-att-eval-stack evaluator-state)))

1132 ; ... mark, that the attribute is in evaluation and construct an appropriate cycle≠cache entry if required.
1133 (if cc-hit

1134 (set-cdr! cc-hit #t)

1135 (begin

1136 (set! cc-hit (cons (car (attribute-definition-circularity-definition att-def)) #t))

1137 (hashtable-set! (attribute-instance-cycle-cache att) args cc-hit))))

1138 (lambda ()

1139 (set! result (apply (attribute-definition-equation att-def) n args)) ; Evaluate the attribute and...
1140 (update-cycle-cache)) ; ...update its cycle≠cache.
1141 (lambda ()

1142 ; Mark that the evaluation of the attribute is finished and...
1143 (set-cdr! cc-hit #f)

1144 ; ... pop the attribute from the attribute evaluation stack.
1145 (evaluator-state-att-eval-stack-set! evaluator-state (cdr (evaluator-state-att-eval-stack evaluator-state))))))

1146
1147 ; EVALUATION≠CASE (4): Non≠circular attribute already in evaluation:
1148 (entered?

1149 ; Maintaine attribute dependencies, i.e., the other attribute throughout whose evaluation
1150 ; this attribute is evaluated must depend on this one. Then,...
1151 (add-dependency:att->att att)

1152 (throw-exception ; ...thrown an exception because we encountered an unexpected dependency cycle.
1153 "AG evaluator exception; "

1154 "Unexpected " name " cycle."))

1155
1156 (else ; EVALUATION≠CASE (5): Non≠circular attribute not in evaluation.
1157 (dynamic-wind

1158 (lambda ()

1159 ; Maintaine attribute dependencies, i.e., i� this attribute is evaluated throughout the evaluation
1160 ; of another attribute, the other attribute depends on this one and this attribute must depend on
1161 ; any other attributes that will be evaluated through its own evaluation. Further,..
1162 (add-dependency:att->att att)

1163 (evaluator-state-att-eval-stack-set! evaluator-state (cons att (evaluator-state-att-eval-stack evaluator-state)))

1164 ; ... mark, that the attribute is in evaluation, i.e.,...
1165 (set! cc-hit (cons racr-nil #t)) ; ...construct an appropriate cycle≠cache entry and...
1166 (hashtable-set! (attribute-instance-cycle-cache att) args cc-hit)) ; ...add it to the attribute’s cycle≠cache.
1167 (lambda ()

1168 (set! result (apply (attribute-definition-equation att-def) n args)) ; Evaluate the attribute and...
1169 (when (attribute-definition-cached? att-def) ; ...if caching is enabled...
1170 (hashtable-set! (attribute-instance-value-cache att) args result))) ; ...cache its value.
1171 (lambda ()

1172 ; Mark that the attribute’s evaluation finished, i.e., clear its cycle≠cache. Finally,...
1173 (hashtable-clear! (attribute-instance-cycle-cache att))

1174 ; ... pop the attribute from the attribute evaluation stack.
1175 (evaluator-state-att-eval-stack-set! evaluator-state (cdr (evaluator-state-att-eval-stack evaluator-state)))))))

1176 result))))) ; Return the computed value.
1177
1178 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1179 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Access Interface ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1180 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1181
1182 (define ast-node-type

1183 (lambda (n)

1184 (when (or (node-list-node? n) (node-bud-node? n)) ; Remember: (node≠terminal? n) is not possible
1185 (throw-exception

1186 "Cannot access type; "

1187 "List and bud nodes have no type."))

1188 (add-dependency:att->node-type n)

1189 (symbol-name (car (ast-rule-production (node-ast-rule n))))))

1190

58



1191 (define ast-list-node?

1192 (lambda (n)

1193 (if (node-bud-node? n)

1194 (throw-exception

1195 "Cannot perform list node check; "

1196 "Bud nodes have no type.")

1197 (node-list-node? n))))

1198
1199 (define ast-subtype?

1200 (lambda (a1 a2)

1201 (when (or

1202 (and (node? a1) (or (node-list-node? a1) (node-bud-node? a1)))

1203 (and (node? a2) (or (node-list-node? a2) (node-bud-node? a2))))

1204 (throw-exception

1205 "Cannot perform subtype check; "

1206 "List and bud nodes cannot be tested for subtyping."))

1207 (when (and (not (node? a1)) (not (node? a2)))

1208 (throw-exception

1209 "Cannot perform subtype check; "

1210 "At least one argument must be an AST node."))

1211 ((lambda (t1/t2)

1212 (and

1213 (car t1/t2)

1214 (cdr t1/t2)

1215 (ast-rule-subtype? (car t1/t2) (cdr t1/t2))))

1216 (if (symbol? a1)

1217 (let* ((t2 (node-ast-rule a2))

1218 (t1 (racr-specification-find-rule (ast-rule-specification t2) a1)))

1219 (unless t1

1220 (throw-exception

1221 "Cannot perform subtype check; "

1222 a1 " is no valid non-terminal (first argument undefined non-terminal)."))

1223 (add-dependency:att->node-super-type a2 t1)

1224 (cons t1 t2))

1225 (if (symbol? a2)

1226 (let* ((t1 (node-ast-rule a1))

1227 (t2 (racr-specification-find-rule (ast-rule-specification t1) a2)))

1228 (unless t1

1229 (throw-exception

1230 "Cannot perform subtype check; "

1231 a2 " is no valid non-terminal (second argument undefined non-terminal)."))

1232 (add-dependency:att->node-sub-type a1 t2)

1233 (cons t1 t2))

1234 (begin

1235 (add-dependency:att->node-sub-type a1 (node-ast-rule a2))

1236 (add-dependency:att->node-super-type a2 (node-ast-rule a1))

1237 (cons (node-ast-rule a1) (node-ast-rule a2))))))))

1238
1239 (define ast-parent

1240 (lambda (n)

1241 (let ((parent (node-parent n)))

1242 (unless parent

1243 (throw-exception "Cannot access parent of roots."))

1244 (add-dependency:att->node parent)

1245 parent)))

1246
1247 (define ast-child

1248 (lambda (i n)

1249 (let ((child

1250 (if (symbol? i)

1251 (node-find-child n i)

1252 (and (>= i 1) (<= i (length (node-children n))) (list-ref (node-children n) (- i 1))))))

1253 (unless child

1254 (throw-exception "Cannot access non-existent " i (if (symbol? i) "’th" "") " child."))

1255 (add-dependency:att->node child)

1256 (if (node-terminal? child)

1257 (node-children child)

1258 child))))

1259
1260 (define ast-sibling

1261 (lambda (i n)

1262 (ast-child i (ast-parent n))))

1263
1264 (define ast-child-index

1265 (lambda (n)

1266 (add-dependency:att->node n)

1267 (node-child-index n)))

1268
1269 (define ast-num-children

1270 (lambda (n)

1271 (when (node-bud-node? n)

1272 (throw-exception

1273 "Cannot access number of children; "

1274 "Bud nodes have no children."))

1275 (add-dependency:att->node-num-children n)

1276 (length (node-children n))))

59



A. RACR Source Code

1277
1278 (define-syntax ast-children

1279 (syntax-rules ()

1280 ((_ n b ...)

1281 (reverse

1282 (let ((result (list)))

1283 (ast-for-each-child

1284 (lambda (i child)

1285 (set! result (cons child result)))

1286 n

1287 b ...)

1288 result)))))

1289
1290 (define-syntax ast-for-each-child

1291 (syntax-rules ()

1292 ((_ f n b)

1293 (let* ((f* f)

1294 (n* n)

1295 (b* b)

1296 (ub (cdr b*)))

1297 (when (node-bud-node? n*)

1298 (throw-exception

1299 "Cannot visit children; "

1300 "No valid operation on bud nodes."))

1301 (if (eq? ub ’*)

1302 (let ((pos (car b*))

1303 (ub (length (node-children n*))))

1304 (dynamic-wind

1305 (lambda () #f)

1306 (lambda ()

1307 (let loop ()

1308 (when (<= pos ub)

1309 (f* pos (ast-child pos n*))

1310 (set! pos (+ pos 1))

1311 (loop))))

1312 (lambda ()

1313 (when (> pos ub)

1314 (ast-num-children n*))))) ; BEWARE: Access to number of children ensures proper dependency tracking!
1315 (let loop ((pos (car b*)))

1316 (when (<= pos ub)

1317 (f* pos (ast-child pos n*))

1318 (loop (+ pos 1)))))))

1319 ((_ f n)

1320 (ast-for-each-child f n (cons 1 ’*)))

1321 ((_ f n b ...)

1322 (let ((f* f)

1323 (n* n))

1324 (ast-for-each-child f* n* b) ...))))

1325
1326 (define-syntax ast-find-child

1327 (syntax-rules ()

1328 ((_ f n b ...)

1329 (let ((f* f))

1330 (call/cc

1331 (lambda (c)

1332 (ast-for-each-child

1333 (lambda (i child)

1334 (when (f* i child)

1335 (c child)))

1336 n

1337 b ...)

1338 #f))))))

1339
1340 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1341 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Construction Interface ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1342 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1343
1344 (define create-ast

1345 (lambda (spec rule children)

1346 ; ;; Ensure, that the RACR system is completely specified:
1347 (when (< (racr-specification-specification-phase spec) 3)

1348 (throw-exception

1349 "Cannot construct " rule " fragment; "

1350 "The RACR specification still must be compiled."))

1351
1352 (let ((ast-rule* (racr-specification-find-rule spec rule)))

1353 ; ;; Ensure, that the given AST rule is defined:
1354 (unless ast-rule*

1355 (throw-exception

1356 "Cannot construct " rule " fragment; "

1357 "Unknown non-terminal/rule."))

1358
1359 ; ;; Ensure, that the expected number of children are given:
1360 (unless (= (length children) (- (length (ast-rule-production ast-rule*)) 1))

1361 (throw-exception

1362 "Cannot construct " rule " fragment; "

60



1363 (length children) " children given, but " (- (length (ast-rule-production ast-rule*)) 1) " children expected."))

1364
1365 ; ;; Construct the fragment, i.e., (1) the AST part consisting of the root and the given children and (2) the root’s
1366 ; ;; synthesized attribute instances and the childrens’ inherited ones.
1367 (let (;;; For (1) ≠ the construction of the fragment’s AST part ≠ first construct the fragment’s root. Then...
1368 (root

1369 (make-node

1370 ast-rule*

1371 #f

1372 (list))))

1373 (node-children-set! ; ...ensure, that the given children fit and add them to the fragment to construct. Therefore,...
1374 root

1375 (let loop ((pos 1) ; ...investigate every...
1376 (symbols (cdr (ast-rule-production ast-rule*))) ; ...expected and...
1377 (children children)) ; ...given child....
1378 (if (null? symbols) ; ...If no further child is expected,...
1379 (list) ; ...we are done, otherwise...
1380 (let ((symb* (car symbols))

1381 (child (car children)))

1382 (if (symbol-non-terminal? symb*) ; ...check if the next expected child is a non≠terminal....
1383 (let ((ensure-child-fits ; ...If we expect a non≠terminal we need a function which ensures, that...
1384 (lambda (child)

1385 ; ... the child either is a bud≠node or its type is the one of the
1386 ; expected non≠terminal or a sub≠type....
1387 (unless (or

1388 (node-bud-node? child)

1389 (ast-rule-subtype? (node-ast-rule child) (symbol-non-terminal? symb*)))

1390 (throw-exception

1391 "Cannot construct " rule " fragment; "

1392 "Expected a " (symbol-name symb*) " node as " pos "’th child, not a " (ast-node-type child) ".")))))

1393 (unless (node? child) ; ...Then, check that the given child is an AST node,...
1394 (throw-exception

1395 "Cannot construct " rule " fragment; "

1396 "Expected a " (symbol-name symb*) " node as " pos "’th child, not a terminal."))

1397 (when (node-parent child) ; ...does not already belong to another AST and...
1398 (throw-exception

1399 "Cannot construct " rule " fragment; "

1400 "The given " pos "’th child already is part of another AST fragment."))

1401 ; ... non of its attributes are in evaluation....
1402 (when (evaluator-state-in-evaluation? (node-evaluator-state child))

1403 (throw-exception

1404 "Cannot construct " rule " fragment; "

1405 "There are attributes in evaluation."))

1406 (if (symbol-kleene? symb*) ; ...Now, check if we expect a list of non≠terminals...
1407 (if (node-list-node? child) ; ...If we expect a list, ensure the given child is a list≠node and...
1408 (for-each ensure-child-fits (node-children child)) ; ...all its elements fit....
1409 (throw-exception

1410 "Cannot construct " rule " fragment; "

1411 "Expected a list-node as " pos "’th child, not a "

1412 (if (node? child)

1413 (string-append "single [" (symbol->string (ast-node-type child)) "] node")

1414 "terminal")

1415 "."))

1416 (ensure-child-fits child)) ; ...If we expect a single non≠terminal child, just ensure that the child fits....
1417 (node-parent-set! child root) ; ...Finally, set the root as the child’s parent,...
1418 (cons

1419 child ; ...add the child to the root’s children and...
1420 (loop (+ pos 1) (cdr symbols) (cdr children)))) ; ...process the next expected child.
1421 (cons ; If we expect a terminal,...
1422 (make-node ; ...add a terminal node encapsulating the given value to the root’s children and...
1423 ’terminal

1424 root

1425 child)

1426 (loop (+ pos 1) (cdr symbols) (cdr children)))))))) ; ...process the next expected child.
1427 ; ... When all children are processed, distribute the new fragment’s evaluator state:
1428 (distribute-evaluator-state (make-evaluator-state) root)

1429
1430 ; ;; The AST part of the fragment is properly constructed so we can proceed with (2) ≠ the construction
1431 ; ;; of the fragment’s attribute instances. Therefore,...
1432 (update-synthesized-attribution root) ; ...initialize the root’s synthesized and...
1433 (for-each ; ...each child’s inherited attributes.
1434 update-inherited-attribution

1435 (node-children root))

1436
1437 root)))) ; Finally, return the newly constructed fragment.
1438
1439 (define create-ast-list

1440 (lambda (children)

1441 (let* ((child-with-spec

1442 (find

1443 (lambda (child)

1444 (and (node? child) (not (node-list-node? child)) (not (node-bud-node? child))))

1445 children))

1446 (spec (and child-with-spec (ast-rule-specification (node-ast-rule child-with-spec)))))

1447 (let loop ((children children) ; For every child, ensure, that the child is a...
1448 (pos 1))

61



A. RACR Source Code

1449 (unless (null? children)

1450 (when (or (not (node? (car children))) (node-list-node? (car children))) ; ...proper non≠terminal node,...
1451 (throw-exception

1452 "Cannot construct list-node; "

1453 "The given " pos "’th child is not a non-terminal, non-list node."))

1454 (when (node-parent (car children)) ; ...is not already part of another AST,...
1455 (throw-exception

1456 "Cannot construct list-node; "

1457 "The given " pos "’th child already is part of another AST."))

1458 ; ... non of its attributes are in evaluation and...
1459 (when (evaluator-state-in-evaluation? (node-evaluator-state (car children)))

1460 (throw-exception

1461 "Cannot construct list-node; "

1462 "The given " pos "’th child has attributes in evaluation."))

1463 (unless (or ; ...all children are instances of the same RACR specification.
1464 (node-bud-node? (car children))

1465 (eq? (ast-rule-specification (node-ast-rule (car children)))

1466 spec))

1467 (throw-exception

1468 "Cannot construct list-node; "

1469 "The given children are instances of different RACR specifications."))

1470 (loop (cdr children) (+ pos 1)))))

1471 (let ((list-node ; ...Finally, construct the list≠node,...
1472 (make-node

1473 ’list-node

1474 #f

1475 children)))

1476 (for-each ; ...set it as parent for every of its elements,...
1477 (lambda (child)

1478 (node-parent-set! child list-node))

1479 children)

1480 (distribute-evaluator-state (make-evaluator-state) list-node) ; ...construct and distribute its evaluator state and...
1481 list-node))) ; ...return it.
1482
1483 (define create-ast-bud

1484 (lambda ()

1485 (let ((bud-node (make-node ’bud-node #f (list))))

1486 (distribute-evaluator-state (make-evaluator-state) bud-node)

1487 bud-node)))

1488
1489 ; INTERNAL FUNCTION: Given an AST node update its synthesized attribution (i.e., add missing synthesized
1490 ; attributes, delete superfluous ones, shadow equally named inherited attributes and update the
1491 ; definitions of existing synthesized attributes.
1492 (define update-synthesized-attribution

1493 (lambda (n)

1494 (when (and (not (node-terminal? n)) (not (node-list-node? n)) (not (node-bud-node? n)))

1495 (for-each

1496 (lambda (att-def)

1497 (let ((att (node-find-attribute n (attribute-definition-name att-def))))

1498 (cond

1499 ((not att)

1500 (node-attributes-set! n (cons (make-attribute-instance att-def n) (node-attributes n))))

1501 ((eq? (attribute-definition-equation (attribute-instance-definition att)) (attribute-definition-equation att-def))

1502 (attribute-instance-definition-set! att att-def))

1503 (else

1504 (flush-attribute-cache att)

1505 (attribute-instance-context-set! att racr-nil)

1506 (node-attributes-set!

1507 n

1508 (cons (make-attribute-instance att-def n) (remq att (node-attributes n))))))))

1509 (symbol-attributes (car (ast-rule-production (node-ast-rule n)))))

1510 (node-attributes-set! ; Delete all synthesized attribute instances not defined anymore:
1511 n

1512 (remp

1513 (lambda (att)

1514 (let ((remove?

1515 (and

1516 (attribute-definition-synthesized? (attribute-instance-definition att))

1517 (not (eq? (car (attribute-definition-context (attribute-instance-definition att))) (node-ast-rule n))))))

1518 (when remove?

1519 (flush-attribute-cache att)

1520 (attribute-instance-context-set! att racr-nil))

1521 remove?))

1522 (node-attributes n))))))

1523
1524 ; INTERNAL FUNCTION: Given an AST node update its inherited attribution (i.e., add missing inherited
1525 ; attributes, delete superfluous ones and update the definitions of existing inherited attributes.
1526 ; If the given node is a list≠node the inherited attributes of its elements are updated.
1527 (define update-inherited-attribution

1528 (lambda (n)

1529 ; ;; Support function updating n’s inherited attribution w.r.t. a list of inherited attribute definitions:
1530 (define update-by-defs

1531 (lambda (n att-defs)

1532 (for-each ; Add new and update existing inherited attribute instances:
1533 (lambda (att-def)

1534 (let ((att (node-find-attribute n (attribute-definition-name att-def))))

62



1535 (cond

1536 ((not att)

1537 (node-attributes-set! n (cons (make-attribute-instance att-def n) (node-attributes n))))

1538 ((not (attribute-definition-synthesized? (attribute-instance-definition att)))

1539 (if (eq?

1540 (attribute-definition-equation (attribute-instance-definition att))

1541 (attribute-definition-equation att-def))

1542 (attribute-instance-definition-set! att att-def)

1543 (begin

1544 (flush-attribute-cache att)

1545 (attribute-instance-context-set! att racr-nil)

1546 (node-attributes-set! n (cons (make-attribute-instance att-def n) (remq att (node-attributes n))))))))))

1547 att-defs)

1548 (node-attributes-set! ; Delete all inherited attribute instances not defined anymore:
1549 n

1550 (remp

1551 (lambda (att)

1552 (let ((remove?

1553 (and

1554 (attribute-definition-inherited? (attribute-instance-definition att))

1555 (not (memq (attribute-instance-definition att) att-defs)))))

1556 (when remove?

1557 (flush-attribute-cache att)

1558 (attribute-instance-context-set! att racr-nil))

1559 remove?))

1560 (node-attributes n)))))

1561 ; ;; Perform the update:
1562 (let* ((n* (if (node-list-node? (node-parent n)) (node-parent n) n))

1563 (att-defs (symbol-attributes (list-ref (ast-rule-production (node-ast-rule (node-parent n*))) (node-child-index n*)))))

1564 (if (node-list-node? n)

1565 (for-each

1566 (lambda (n)

1567 (unless (node-bud-node? n)

1568 (update-by-defs n att-defs)))

1569 (node-children n))

1570 (unless (node-bud-node? n)

1571 (update-by-defs n att-defs))))))

1572
1573 ; INTERNAL FUNCTION: Given an AST node delete its inherited attribute instances. I� the given node
1574 ; is a list node, the inherited attributes of its elements are deleted.
1575 (define detach-inherited-attributes

1576 (lambda (n)

1577 (cond

1578 ((node-list-node? n)

1579 (for-each

1580 detach-inherited-attributes

1581 (node-children n)))

1582 ((node-non-terminal? n)

1583 (node-attributes-set!

1584 n

1585 (remp

1586 (lambda (att)

1587 (let ((remove? (attribute-definition-inherited? (attribute-instance-definition att))))

1588 (when remove?

1589 (flush-attribute-cache att)

1590 (attribute-instance-context-set! att racr-nil))

1591 remove?))

1592 (node-attributes n)))))))

1593
1594 ; INTERNAL FUNCTION: Given an evaluator state and an AST fragment, change the
1595 ; fragment’s evaluator state to the given one.
1596 (define distribute-evaluator-state

1597 (lambda (evaluator-state n)

1598 (node-evaluator-state-set! n evaluator-state)

1599 (unless (node-terminal? n)

1600 (for-each

1601 (lambda (n)

1602 (distribute-evaluator-state evaluator-state n))

1603 (node-children n)))))

1604
1605 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1606 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Rewrite Interface ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1607 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1608
1609 (define perform-rewrites

1610 (lambda (n strategy . transformers)

1611 (define find-and-apply

1612 (case strategy

1613 ((top-down)

1614 (lambda (n)

1615 (and

1616 (not (node-terminal? n))

1617 (or

1618 (find (lambda (r) (r n)) transformers)

1619 (find find-and-apply (node-children n))))))

1620 ((bottom-up)

63



A. RACR Source Code

1621 (lambda (n)

1622 (and

1623 (not (node-terminal? n))

1624 (or

1625 (find find-and-apply (node-children n))

1626 (find (lambda (r) (r n)) transformers)))))

1627 (else (throw-exception

1628 "Cannot perform rewrites; "

1629 "Unknown " strategy " strategy."))))

1630 (let loop ()

1631 (when (node-parent n)

1632 (throw-exception

1633 "Cannot perform rewrites; "

1634 "The given starting point is not (anymore) an AST root."))

1635 (let ((match (find-and-apply n)))

1636 (if match

1637 (cons match (loop))

1638 (list))))))

1639
1640 ; INTERNAL FUNCTION: Given an AST node n, flush all attributes that depend on information of
1641 ; the subtree spaned by n but are outside of it.
1642 (define flush-depending-attributes-outside-of

1643 (lambda (n)

1644 (let loop ((n* n))

1645 (for-each

1646 (lambda (influence)

1647 (unless (node-inside-of? (attribute-instance-context (car influence)) n)

1648 (flush-attribute-cache (car influence))))

1649 (node-attribute-influences n*))

1650 (for-each

1651 (lambda (att)

1652 (for-each

1653 (lambda (influenced)

1654 (unless (node-inside-of? (attribute-instance-context influenced) n)

1655 (flush-attribute-cache influenced)))

1656 (attribute-instance-attribute-influences att)))

1657 (node-attributes n*))

1658 (unless (node-terminal? n*)

1659 (for-each

1660 loop

1661 (node-children n*))))))

1662
1663 (define rewrite-terminal

1664 (lambda (i n new-value)

1665 ; Before changing the value of the terminal ensure, that...
1666 (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...no attributes are in evaluation and...
1667 (throw-exception

1668 "Cannot change terminal value; "

1669 "There are attributes in evaluation."))

1670 (let ((n

1671 (if (symbol? i)

1672 (node-find-child n i)

1673 (and (>= i 1) (<= i (length (node-children n))) (list-ref (node-children n) (- i 1))))))

1674 (unless (and n (node-terminal? n)) ; ...the given context is a terminal. If so,...
1675 (throw-exception

1676 "Cannot change terminal value; "

1677 "The given context does not exist or is no terminal."))

1678 (unless (equal? (node-children n) new-value)

1679 (for-each ; ...flush the caches of all attributes influenced by the terminal and...
1680 (lambda (influence)

1681 (flush-attribute-cache (car influence)))

1682 (node-attribute-influences n))

1683 (node-children-set! n new-value))))) ; ...rewrite its value.
1684
1685 (define rewrite-refine

1686 (lambda (n t . c)

1687 ; ;; Before refining the non≠terminal ensure, that...
1688 (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...non of its attributes are in evaluation,...
1689 (throw-exception

1690 "Cannot refine node; "

1691 "There are attributes in evaluation."))

1692 (when (or (node-list-node? n) (node-bud-node? n)) ; ...it is not a list or bud node,...
1693 (throw-exception

1694 "Cannot refine node; "

1695 "The node is a " (if (node-list-node? n) "list" "bud") " node."))

1696 (let* ((old-rule (node-ast-rule n))

1697 (new-rule (racr-specification-find-rule (ast-rule-specification old-rule) t)))

1698 (unless (and new-rule (ast-rule-subtype? new-rule old-rule)) ; ...the given type is a subtype,...
1699 (throw-exception

1700 "Cannot refine node; "

1701 t " is not a subtype of " (ast-node-type n)))

1702 (let ((additional-children (list-tail (ast-rule-production new-rule) (length (ast-rule-production old-rule)))))

1703 (unless (= (length additional-children) (length c)) ; ...the expected number of new children are given,...
1704 (throw-exception

1705 "Cannot refine node; "

1706 "Unexpected number of additional children."))

64



1707 (let ((c

1708 (map ; ... each child...
1709 (lambda (symbol child)

1710 (cond

1711 ((symbol-non-terminal? symbol)

1712 (unless (node? child) ; ...fits,...
1713 (throw-exception

1714 "Cannot refine node; "

1715 "The given children do not fit."))

1716 (when (node-parent child) ; ...is not part of another AST,...
1717 (throw-exception

1718 "Cannot refine node; "

1719 "A given child already is part of another AST."))

1720 (when (node-inside-of? n c) ; ...does not contain the refined node and...
1721 (throw-exception

1722 "Cannot refine node; "

1723 "The node to refine is part of the AST spaned by a given child."))

1724 (when (evaluator-state-in-evaluation? (node-evaluator-state child)) ; ...non of its attributes are in evaluation.
1725 (throw-exception

1726 "Cannot refine node; "

1727 "There are attributes in evaluation."))

1728 (if (symbol-kleene? symbol)

1729 (if (node-list-node? child)

1730 (for-each

1731 (lambda (child)

1732 (unless

1733 (or

1734 (node-bud-node? child)

1735 (ast-rule-subtype? (node-ast-rule child) (symbol-non-terminal? symbol)))

1736 (throw-exception

1737 "Cannot refine node; "

1738 "The given children do not fit.")))

1739 (node-children child))

1740 (throw-exception

1741 "Cannot refine node; "

1742 "The given children do not fit."))

1743 (unless

1744 (and

1745 (node-non-terminal? child)

1746 (not (node-list-node? child))

1747 (or (node-bud-node? child) (ast-rule-subtype? (node-ast-rule child) (symbol-non-terminal? symbol))))

1748 (throw-exception

1749 "Cannot refine node; "

1750 "The given children do not fit.")))

1751 child)

1752 (else

1753 (when (node? child)

1754 (throw-exception

1755 "Cannot refine node; "

1756 "The given children do not fit."))

1757 (make-node ’terminal n child))))

1758 additional-children

1759 c)))

1760 ; ;; Everything is fine. Thus,...
1761 (for-each ; ...flush the influenced attributes, i.e., all attributes influenced by the node’s...
1762 (lambda (influence)

1763 (when (or

1764 (and (vector-ref (cdr influence) 1) (not (null? c))) ; ...number of children,...
1765 (and (vector-ref (cdr influence) 2) (not (eq? old-rule new-rule))) ; ...type,...
1766 (find ; ...supertype or...
1767 (lambda (t2)

1768 (not (eq? (ast-rule-subtype? t2 old-rule) (ast-rule-subtype? t2 new-rule))))

1769 (vector-ref (cdr influence) 3))

1770 (find ; ...subtype. Afterwards,...
1771 (lambda (t2)

1772 (not (eq? (ast-rule-subtype? old-rule t2) (ast-rule-subtype? new-rule t2))))

1773 (vector-ref (cdr influence) 4)))

1774 (flush-attribute-cache (car influence))))

1775 (node-attribute-influences n))

1776 (node-ast-rule-set! n new-rule) ; ...update the node’s type,...
1777 (update-synthesized-attribution n) ; ...synthesized attribution,...
1778 (node-children-set! n (append (node-children n) c (list))) ; ...insert the new children,...
1779 (for-each

1780 (lambda (child)

1781 (node-parent-set! child n)

1782 (distribute-evaluator-state (node-evaluator-state n) child)) ; ...update their evaluator state and...
1783 c)

1784 (for-each ; ...update the inherited attribution of all children.
1785 update-inherited-attribution

1786 (node-children n)))))))

1787
1788 (define rewrite-abstract

1789 (lambda (n t)

1790 ; ;; Before abstracting the non≠terminal ensure, that...
1791 (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...no attributes are in evaluation,...
1792 (throw-exception

65



A. RACR Source Code

1793 "Cannot abstract node; "

1794 "There are attributes in evaluation."))

1795 (when (or (node-list-node? n) (node-bud-node? n)) ; ...the given node is not a list or bud node and...
1796 (throw-exception

1797 "Cannot abstract node; "

1798 "The node is a " (if (node-list-node? n) "list" "bud") " node."))

1799 (let* ((old-rule (node-ast-rule n))

1800 (new-rule (racr-specification-find-rule (ast-rule-specification old-rule) t))

1801 (num-new-children (- (length (ast-rule-production new-rule)) 1)))

1802 (unless (and new-rule (ast-rule-subtype? old-rule new-rule)) ; ...the given type is a supertype.
1803 (throw-exception

1804 "Cannot abstract node; "

1805 t " is not a supertype of " (ast-node-type n) "."))

1806 ; ;; Everything is fine. Thus,...
1807 (let ((children-to-remove (list-tail (node-children n) num-new-children)))

1808 (for-each ; ...flush the caches of all influenced attributes, i.e., (1) all attributes influenced by the node’s...
1809 (lambda (influence)

1810 (when (or

1811 (and (vector-ref (cdr influence) 1) (not (null? children-to-remove))) ; ...number of children,...
1812 (and (vector-ref (cdr influence) 2) (not (eq? old-rule new-rule))) ; ...type...
1813 (find ; ...supertype or...
1814 (lambda (t2)

1815 (not (eq? (ast-rule-subtype? t2 old-rule) (ast-rule-subtype? t2 new-rule))))

1816 (vector-ref (cdr influence) 3))

1817 (find ; ...subtype and...
1818 (lambda (t2)

1819 (not (eq? (ast-rule-subtype? old-rule t2) (ast-rule-subtype? new-rule t2))))

1820 (vector-ref (cdr influence) 4)))

1821 (flush-attribute-cache (car influence))))

1822 (node-attribute-influences n))

1823 (for-each ; ...(2) all attributes depending on, but still outside of, an removed AST. Afterwards,...
1824 flush-depending-attributes-outside-of

1825 children-to-remove)

1826 (node-ast-rule-set! n new-rule) ; ...update the node’s type and...
1827 (update-synthesized-attribution n) ; ...synthesized attribution and...
1828 (for-each ; ...for every child to remove,...
1829 (lambda (child)

1830 (detach-inherited-attributes child) ; ...delete its inherited attribution,...
1831 (node-parent-set! child #f) ; ...detach it from the AST and...
1832 (distribute-evaluator-state (make-evaluator-state) child)) ; ...update its evaluator state. Further,...
1833 children-to-remove)

1834 (unless (null? children-to-remove)

1835 (if (> num-new-children 0)

1836 (set-cdr! (list-tail (node-children n) (- num-new-children 1)) (list))

1837 (node-children-set! n (list))))

1838 (for-each ; ...update the inherited attribution of all remaining children. Finally,...
1839 update-inherited-attribution

1840 (node-children n))

1841 children-to-remove)))) ; ...return the removed children.
1842
1843 (define rewrite-add

1844 (lambda (l e)

1845 ; ;; Before adding the element ensure, that...
1846 (when (or ; ...no attributes are in evaluation,...
1847 (evaluator-state-in-evaluation? (node-evaluator-state l))

1848 (evaluator-state-in-evaluation? (node-evaluator-state e)))

1849 (throw-exception

1850 "Cannot add list element; "

1851 "There are attributes in evaluation."))

1852 (unless (node-list-node? l) ; ...indeed a list≠node is given as context,...
1853 (throw-exception

1854 "Cannot add list element; "

1855 "The given context is no list-node."))

1856 (when (node-parent e) ; ...the new element is not part of another AST,...
1857 (throw-exception

1858 "Cannot add list element; "

1859 "The element to add already is part of another AST."))

1860 (when (node-inside-of? l e) ; ...its spaned AST does not contain the list≠node and...
1861 (throw-exception

1862 "Cannot add list element; "

1863 "The given list is part of the AST spaned by the element to add."))

1864 (when (node-parent l)

1865 (let ((expected-type

1866 (symbol-non-terminal?

1867 (list-ref

1868 (ast-rule-production (node-ast-rule (node-parent l)))

1869 (node-child-index l)))))

1870 (unless (or (node-bud-node? e) (ast-rule-subtype? (node-ast-rule e) expected-type)) ; ...it can be a child of the list≠node.
1871 (throw-exception

1872 "Cannot add list element; "

1873 "The new element does not fit."))))

1874 ; ;; When all rewrite constraints are satisfied,...
1875 (for-each ; ...flush the caches of all attributes influenced by the list≠node’s number of children,...
1876 (lambda (influence)

1877 (when (vector-ref (cdr influence) 1)

1878 (flush-attribute-cache (car influence))))

66



1879 (node-attribute-influences l))

1880 (node-children-set! l (append (node-children l) (list e))) ; ...add the new element,...
1881 (node-parent-set! e l)

1882 (distribute-evaluator-state (node-evaluator-state l) e) ; ...initialize its evaluator state and...
1883 (when (node-parent l)

1884 (update-inherited-attribution e)))) ; ...any inherited attributes defined for its new context.
1885
1886 (define rewrite-subtree

1887 (lambda (old-fragment new-fragment)

1888 ; ;; Before replacing the subtree ensure, that...
1889 (when (or ; ... no attributes are in evaluation,...
1890 (evaluator-state-in-evaluation? (node-evaluator-state old-fragment))

1891 (evaluator-state-in-evaluation? (node-evaluator-state new-fragment)))

1892 (throw-exception

1893 "Cannot replace subtree; "

1894 "There are attributes in evaluation."))

1895 (unless (and (node? new-fragment) (node-non-terminal? new-fragment)) ; ...the new fragment is a non≠terminal node,...
1896 (throw-exception

1897 "Cannot replace subtree; "

1898 "The replacement is not a non-terminal node."))

1899 (when (node-parent new-fragment) ; ...it is not part of another AST...
1900 (throw-exception

1901 "Cannot replace subtree; "

1902 "The replacement already is part of another AST."))

1903 (when (node-inside-of? old-fragment new-fragment) ; ...its spaned AST did not contain the old≠fragment and...
1904 (throw-exception

1905 "Cannot replace subtree; "

1906 "The given old fragment is part of the AST spaned by the replacement."))

1907 (let* ((n* (if (node-list-node? (node-parent old-fragment)) (node-parent old-fragment) old-fragment))

1908 (expected-type

1909 (symbol-non-terminal?

1910 (list-ref

1911 (ast-rule-production (node-ast-rule (node-parent n*)))

1912 (node-child-index n*)))))

1913 (if (node-list-node? old-fragment) ; ...it fits into its new context.
1914 (if (node-list-node? new-fragment)

1915 (for-each

1916 (lambda (element)

1917 (unless (or (node-bud-node? element) (ast-rule-subtype? element expected-type))

1918 (throw-exception

1919 "Cannot replace subtree; "

1920 "The replacement does not fit.")))

1921 (node-children new-fragment))

1922 (throw-exception

1923 "Cannot replace subtree; "

1924 "The replacement does not fit."))

1925 (unless (and

1926 (not (node-list-node? new-fragment))

1927 (or (node-bud-node? new-fragment) (ast-rule-subtype? (node-ast-rule new-fragment) expected-type)))

1928 (throw-exception

1929 "Cannot replace subtree; "

1930 "The replacement does not fit."))))

1931 ; ;; When all rewrite constraints are satisfied,...
1932 (detach-inherited-attributes old-fragment) ; ...delete the old fragment’s inherited attribution,...
1933 (flush-depending-attributes-outside-of old-fragment) ; ...flush all attributes depending on it and outside its spaned tree,...
1934 (distribute-evaluator-state (node-evaluator-state old-fragment) new-fragment) ; ...update both fragments’ evaluator state,...
1935 (distribute-evaluator-state (make-evaluator-state) old-fragment)

1936 (set-car! ; ...replace the old fragment by the new one and...
1937 (list-tail (node-children (node-parent old-fragment)) (- (node-child-index old-fragment) 1))

1938 new-fragment)

1939 (node-parent-set! new-fragment (node-parent old-fragment))

1940 (node-parent-set! old-fragment #f)

1941 (update-inherited-attribution new-fragment) ; ...update the new fragment’s inherited attribution. Finally,...
1942 old-fragment )) ; ...return the removed old fragment.
1943
1944 (define rewrite-insert

1945 (lambda (l i e)

1946 ; ;; Before inserting the element ensure, that...
1947 (when (or ; ...no attributes are in evaluation,...
1948 (evaluator-state-in-evaluation? (node-evaluator-state l))

1949 (evaluator-state-in-evaluation? (node-evaluator-state e)))

1950 (throw-exception

1951 "Cannot insert list element; "

1952 "There are attributes in evaluation."))

1953 (unless (node-list-node? l) ; ...indeed a list≠node is given as context,...
1954 (throw-exception

1955 "Cannot insert list element; "

1956 "The given context is no list-node."))

1957 (when (or (< i 1) (> i (+ (length (node-children l)) 1))) ; ...the list has enough elements,...
1958 (throw-exception

1959 "Cannot insert list element; "

1960 "The given index is out of range."))

1961 (when (node-parent e) ; ...the new element is not part of another AST,...
1962 (throw-exception

1963 "Cannot insert list element; "

1964 "The element to insert already is part of another AST."))

67



A. RACR Source Code

1965 (when (node-inside-of? l e) ; ...its spaned AST does not contain the list≠node and...
1966 (throw-exception

1967 "Cannot insert list element; "

1968 "The given list is part of the AST spaned by the element to insert."))

1969 (when (node-parent l)

1970 (let ((expected-type

1971 (symbol-non-terminal?

1972 (list-ref

1973 (ast-rule-production (node-ast-rule (node-parent l)))

1974 (node-child-index l)))))

1975 (unless (or (node-bud-node? e) (ast-rule-subtype? (node-ast-rule e) expected-type)) ; ...it can be a child of the list≠node.
1976 (throw-exception

1977 "Cannot insert list element; "

1978 "The new element does not fit."))))

1979 ; ;; When all rewrite constraints are satisfied...
1980 (for-each ; ...flush the caches of all attributes influenced by the list≠node’s number of children. Further,...
1981 (lambda (influence)

1982 (when (vector-ref (cdr influence) 1)

1983 (flush-attribute-cache (car influence))))

1984 (node-attribute-influences l))

1985 (for-each ; ...for each tree spaned by the successor element’s of the insertion position,...
1986 ; ... flush the caches of all attributes depending on, but still outside of, the respective tree. Then,...
1987 flush-depending-attributes-outside-of

1988 (list-tail (node-children l) (- i 1)))

1989 (node-children-set! ; ...insert the new element,...
1990 l

1991 (let loop ((l (node-children l)) (i i))

1992 (cond

1993 ((= i 1) (cons e (loop l 0)))

1994 ((null? l) (list))

1995 (else (cons (car l) (loop (cdr l) (- i 1)))))))

1996 (node-parent-set! e l)

1997 (distribute-evaluator-state (node-evaluator-state l) e) ; ...initialize its evaluator state and...
1998 (when (node-parent l)

1999 (update-inherited-attribution e)))) ; ...any inherited attributes defined for its new context.
2000
2001 (define rewrite-delete

2002 (lambda (n)

2003 ; ;; Before deleting the element ensure, that...
2004 (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...no attributes are in evaluation and...
2005 (throw-exception

2006 "Cannot delete list element; "

2007 "There are attributes in evaluation."))

2008 (unless (and (node-parent n) (node-list-node? (node-parent n))) ; ...the given node is a list≠node element.
2009 (throw-exception

2010 "Cannot delete list element; "

2011 "The given node is not element of a list."))

2012 ; ;; When all rewrite constraints are satisfied, flush the caches of all attributes influenced by
2013 ; the number of children of the list≠node the element is part of. Further,...
2014 (for-each

2015 (lambda (influence)

2016 (when (vector-ref (cdr influence) 1)

2017 (flush-attribute-cache (car influence))))

2018 (node-attribute-influences (node-parent n)))

2019 (detach-inherited-attributes n) ; ...delete the element’s inherited attributes and,...
2020 (for-each ; ...for each tree spaned by the element and its successor elements,...
2021 ; ... flush the caches of all attributes depending on, but still outside of, the respective tree. Then,...
2022 flush-depending-attributes-outside-of

2023 (list-tail (node-children (node-parent n)) (- (node-child-index n) 1)))

2024 (node-children-set! (node-parent n) (remq n (node-children (node-parent n)))) ; ...remove the element from the list,...
2025 (node-parent-set! n #f)

2026 (distribute-evaluator-state (make-evaluator-state) n) ; ...reset its evaluator state and...
2027 n)) ; ... return it.
2028
2029 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2030 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Dependency Tracking Support ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2031 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2032
2033 ; INTERNAL FUNCTION: Given an attribute, flush its and its depending attributes’ caches and dependencies.
2034 (define flush-attribute-cache

2035 (lambda (att)

2036 (let ((influenced-atts (attribute-instance-attribute-influences att))) ; Save all attributes influenced by the attribute,...
2037 (attribute-instance-attribute-influences-set! att (list)) ; ...remove the respective influence edges and...
2038 (hashtable-clear! (attribute-instance-value-cache att)) ; ...clear the attribute’s value cache. Then,...
2039 (for-each ; ...for every attribute I the attribute depends on,...
2040 (lambda (influencing-att)

2041 (attribute-instance-attribute-influences-set! ; ...remove the influence edge from I to the attribute and...
2042 influencing-att

2043 (remq att (attribute-instance-attribute-influences influencing-att))))

2044 (attribute-instance-attribute-dependencies att))

2045 (attribute-instance-attribute-dependencies-set! att (list)) ;...the attribute’s dependency edges to such I. Then,...
2046 (for-each ; ...for every node N the attribute depends on...
2047 (lambda (node-influence)

2048 (node-attribute-influences-set!

2049 (car node-influence)

2050 (remp ; ...remove the influence edge from N to the attribute and...

68



2051 (lambda (attribute-influence)

2052 (eq? (car attribute-influence) att))

2053 (node-attribute-influences (car node-influence)))))

2054 (attribute-instance-node-dependencies att))

2055 (attribute-instance-node-dependencies-set! att (list)) ; ...the attribute’s dependency edges to such N. Finally,...
2056 (for-each ; ...for every attribute D the attribute originally influenced,...
2057 (lambda (dependent-att)

2058 (flush-attribute-cache dependent-att)) ; ...flush D.
2059 influenced-atts))))

2060
2061 ; INTERNAL FUNCTION: See "add≠dependency:att≠>node≠characteristic".
2062 (define add-dependency:att->node

2063 (lambda (influencing-node)

2064 (add-dependency:att->node-characteristic influencing-node (cons 0 racr-nil))))

2065
2066 ; INTERNAL FUNCTION: See "add≠dependency:att≠>node≠characteristic".
2067 (define add-dependency:att->node-num-children

2068 (lambda (influencing-node)

2069 (add-dependency:att->node-characteristic influencing-node (cons 1 racr-nil))))

2070
2071 ; INTERNAL FUNCTION: See "add≠dependency:att≠>node≠characteristic".
2072 (define add-dependency:att->node-type

2073 (lambda (influencing-node)

2074 (add-dependency:att->node-characteristic influencing-node (cons 2 racr-nil))))

2075
2076 ; INTERNAL FUNCTION: See "add≠dependency:att≠>node≠characteristic".
2077 (define add-dependency:att->node-super-type

2078 (lambda (influencing-node comparision-type)

2079 (add-dependency:att->node-characteristic influencing-node (cons 3 comparision-type))))

2080
2081 ; INTERNAL FUNCTION: See "add≠dependency:att≠>node≠characteristic".
2082 (define add-dependency:att->node-sub-type

2083 (lambda (influencing-node comparision-type)

2084 (add-dependency:att->node-characteristic influencing-node (cons 4 comparision-type))))

2085
2086 ; INTERNAL FUNCTION: Given a node N and a correlation C add an dependency≠edge marked with C from
2087 ; the attribute currently in evaluation (considering the evaluator state of the AST N is part of) to N and
2088 ; an influence≠edge vice versa. If no attribute is in evaluation no edges are added. The following six
2089 ; correlations exist:
2090 ; 1) Dependency on the existence of the node (i.e., existence of a node at the same location)
2091 ; 2) Dependency on the node’s number of children (i.e., existence of a node at the same location and with
2092 ; the same number of children)
2093 ; 3) Dependency on the node’s type (i.e., existence of a node at the same location and with the same type)
2094 ; 4) Dependency on whether the node’s type is a supertype w.r.t. a certain type encoded in C or not
2095 ; 5) Dependency on whether the node’s type is a subtype w.r.t. a certain type encoded in C or not
2096 (define add-dependency:att->node-characteristic

2097 (lambda (influencing-node correlation)

2098 (let ((dependent-att (evaluator-state-in-evaluation? (node-evaluator-state influencing-node))))

2099 (when dependent-att

2100 (let ((dependency-vector

2101 (let ((dc-hit (assq influencing-node (attribute-instance-node-dependencies dependent-att))))

2102 (and dc-hit (cdr dc-hit)))))

2103 (unless dependency-vector

2104 (begin

2105 (set! dependency-vector (vector #f #f #f (list) (list)))

2106 (attribute-instance-node-dependencies-set!

2107 dependent-att

2108 (cons

2109 (cons influencing-node dependency-vector)

2110 (attribute-instance-node-dependencies dependent-att)))

2111 (node-attribute-influences-set!

2112 influencing-node

2113 (cons

2114 (cons dependent-att dependency-vector)

2115 (node-attribute-influences influencing-node)))))

2116 (let ((correlation-type (car correlation))

2117 (correlation-arg (cdr correlation)))

2118 (vector-set!

2119 dependency-vector

2120 correlation-type

2121 (case correlation-type

2122 ((0 1 2)

2123 #t)

2124 ((3 4)

2125 (let ((known-args (vector-ref dependency-vector correlation-type)))

2126 (if (memq correlation-arg known-args)

2127 known-args

2128 (cons correlation-arg known-args))))))))))))

2129
2130 ; INTERNAL FUNCTION: Given an attribute instance A, add an dependency≠edge from A to the attribute currently
2131 ; in evaluation (considering the evaluator state of the AST A is part of) and an influence≠edge vice≠versa.
2132 ; If no attribute is in evaluation no edges are added.
2133 (define add-dependency:att->att

2134 (lambda (influencing-att)

2135 (let ((dependent-att (evaluator-state-in-evaluation? (node-evaluator-state (attribute-instance-context influencing-att)))))

2136 (when (and dependent-att (not (memq influencing-att (attribute-instance-attribute-dependencies dependent-att))))

69



A. RACR Source Code

2137 (attribute-instance-attribute-dependencies-set!

2138 dependent-att

2139 (cons

2140 influencing-att

2141 (attribute-instance-attribute-dependencies dependent-att)))

2142 (attribute-instance-attribute-influences-set!

2143 influencing-att

2144 (cons

2145 dependent-att

2146 (attribute-instance-attribute-influences influencing-att))))))))

70



B. MIT License

Copyright (c) 2012 by Christo� Bürger
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

71





API Index

ag-rule, 30
ast-annotation, 40
ast-annotation?, 40
ast-bud-node?, 25
ast-child, 21
ast-child-index, 24
ast-children, 21
ast-find-child, 22
ast-for-each-child, 22
ast-list-node?, 25
ast-node-type, 24
ast-node?, 19
ast-num-children, 24
ast-parent, 20
ast-rule, 18
ast-sibling, 21
ast-subtype?, 25
ast-weave-annotations, 40
att-value, 31

compile-ag-specifications, 30
compile-ast-specifications, 19
create-ast, 19
create-ast-bud, 20
create-ast-list, 20

perform-rewrites, 37

rewrite-abstract, 35
rewrite-add, 36
rewrite-delete, 36
rewrite-insert, 36
rewrite-refine, 34
rewrite-subtree, 36
rewrite-terminal, 33

specification-phase, 42

specify-attribute, 29

with-specification, 41

73


