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1. Introduction

The gravity equation is probably the most important tool in international economics to

explain and estimate trade flows. In its simplest form, it states that the exports between

any two given countries (say i and j) are a multiplicative function of these countries’

economic size, as measured by GDP, and their bilateral trade costs:

Exportsij =
GDPi ×GDPj

Trade Costsij
. (1.1)

The idea goes back to the pioneering works of Tinbergen (1962) and Pöyhönen (1963),

who developed gravity equations independently of each other. The name comes from the

similarity of equation (1.1) to Isaac Newton’s law of gravity where the attraction force

between two physical bodies equals the product of their masses divided by the squared

distance between the bodies.1

Figure 1.1 illustrates the idea behind the gravity equation with some data. It plots

the export values among world regions. For example, the tallest column in the corner

symbolizes the exports from European countries to European countries. With a value of

$4,243 billion (USD) they account for one third of world trade.2 On the one hand, it

can be seen from this figure that trade activities within regions that contain relatively

large economies (Europe, Asia and North America) are very high. On the other hand,

regions with rich countries seem to attract trade with regions containing poor countries.

For example, the trade between Europe and Africa is higher than the trade inside Africa.

Thus, there are obviously two contrary effects on trade:

• economic size increases trade flows and

• distance or trade costs decrease trade flows.

1 The explicit formulation of Newton’s physical gravity equation to explain the attraction force between
two bodies i and j is:

Attraction Forceij =
Massi ×Massj

Distance2
ij

.

2 Europe has a much higher export value than North America because it consists of multiple large
economies. For North America the USA is treated as one unit. If the individual, American states were
treated separately, such that “interstate trade” were recognized, the value for North American exports
might be closer in magnitude to that of Europe.
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Figure 1.1: Regional Structure of the World Trade.
Source: WTO International Trade Statistics (2008).
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1. Introduction

Gravity equation (1.1) becomes estimable after log-linearizing and parameterizing it. Bi-

lateral export and GDP data are broadly available in several databases. Trade costs are

not directly measurable and are therefore usually proxied by geographic distance and a

set of further proxy variables like: access to the sea, common border, common language,

membership in a certain group of countries, and others. The trade cost proxies can be

subdivided into geographical and political variables. Geographical properties of a country

can hardly be changed by policymakers. If a country is located on a small, remote island

in the ocean or between many industrialized countries on a continent, if it has access to

the sea or not, if it is small or large, must be taken as exogenously given. Yet, policymak-

ers can influence trade costs through tariff rates, currency unions, free trade agreements,

membership in certain country groups and many other measures.

The estimated effects of these policy driven trade cost proxies are frequently used in the

consultation of policymakers. For example, there are numerous studies about the role

of the WTO in fostering trade. This question was raised by Rose (2004) who found no

clear evidence that GATT/WTO members have more trade activities. However, later

studies criticize the Rose study and find that a GATT/WTO membership significantly

improves trade (e.g. Subramanian and Wei, 2007; Tomz, Goldstein, and Rivers, 2007;

Herz and Wagner, 2007).3 In a similar way, the trade effects of currency unions (Rose,

2000; Rose and van Wincoop, 2001; Nitsch, 2002),4 the Group of Eight (Nitsch, 2007a),

the EU-enlargement of 2004 (Fuchs and Wohlrabe, 2008), borders between countries and

states (for USA-Canada-trade McCallum, 1995; Nitsch, 2002, for Eastern-Western Ger-

man trade), state visits (Nitsch, 2007b), terrorism (Nitsch and Schumacher, 2004), mega

events like the Olympics (Rose and Spiegel, 2009) and many other possible influences on

international trade are studied, only to give a few examples of the many possibilities to

use the gravity equation.

However, if the gravity equation is important for political decisions, it is very important to

3 Furthermore, there are studies using the gravity equation to compute trade potentials of a WTO accession
for certain countries, e.g. Babetskaia-Kukharchuk and Maurel (2004) for Russia.

4 See also Baldwin (2006) for a critical review of this literature.
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1. Introduction

achieve reliable results from its empirical application. Thus, it is necessary to employ the

gravity equation using a theoretically and empirically proper methodology. One important

discussion addresses the implausibly high measures for the impact of trade cost proxies on

exports which frequently appear, especially in older works. McCallum (1995) discovered

the effect of the US-Canadian border. He concluded that this border increases trade

between a certain Canadian province and another Canadian province by a factor 22 (2,200

percent) compared to trade between the same Canadian province and a US-state of the

same economic size and the same distance like the other province. Anderson and van

Wincoop (2003) were able to show that this extremely high and unexpected result is wrong

because certain theoretical considerations and empirical implications were not respected

in McCallum’s study.5 They argue that the gravity equation in its basic form (1.1) is

misleading and that trade costs must more exactly be related to the countries’ overall

trade costs with the rest of the world. They derive an index measuring these overall

trade costs and call it multilateral resistances to trade (as bilateral trade costs can be

interpreted as bilateral trade resistances).

The aim of this study is to contribute to the discussion about the suitability of the gravity

equation’s empirical applications. The basic idea is that trade costs between two countries

could additionally depend on the exports between these two countries and not only on

the (more or less) exogenous proxy variables for trade costs, as they are normally used.

Shipping goods from one country to another, overcoming geographic, political and cultural

borders, requires an infrastructure which is likely to yield economies of scale. Per-unit

trade costs of sending a small amount of a certain good to another country are likely to

be more expensive than per-unit trade costs of sending a large amount. In this study,

I show that ignoring this reverse causality problem might overestimate the effects of the

right-hand-side variables on trade if these effects are interpreted as direct effects. Since

trade costs are not directly measurable, I will use a novel index of comprehensive trade

costs (Novy, 2007) to estimate a simultaneous system, first of a gravity equation and

second of a trade cost equation. I find that these scale effects appear and that ignoring

5 See also Baldwin and Taglioni (2006) for a comprehensive discussion of studies using the gravity equations
to estimate the Euro’s trade effect with respect to theoretical and empirical adequacy.

5



1. Introduction

the reverse causality correction systematically increases the estimated coefficients.

A further contribution of this study is in its use of the comprehensive trade cost index

to compute multilateral resistances of countries to trade, introduced in the trend-setting

work by Anderson and van Wincoop (2003). These multilateral resistances are necessary

to retrieve unbiased results from empirical gravity equations. They are defined as a

weighted summation over all countries’ trade costs from a certain country’s view and can

be interpreted as a country’s (adjusted) trade costs with all other countries. The index

contains measurable shares of the countries’ GDPs relative to the world’s GDP as well as

unmeasurable trade costs. Because of this unmeasurable component and because of the

complexity and mutual interaction of the countries’ multilateral resistance term, they are

usually controlled by country or country-pair dummies. In this study, I shall demonstrate

a new way to solve the complex equation system of multilateral resistances and compute

them for a set of 23 OECD countries.

The study is structured as follows. Chapter 2 overviews the basic literature dealing with

the gravity equation. It introduces the most important theoretical foundations of the

gravity equation which appear to be consistent with all three branches of the economic

theory on international trade: the classical/neo-classical theory (Ricardo and Heckscher-

Ohlin), the new trade theory (Krugman, 1979), and the new-new trade theory (Melitz,

2003).6 Subsequently it shows how to deal with three problems which frequently arise:

first, the treatment of unobservable country-specific effects with country and country-pair

dummies; second, the treatment of zero trade flows with non-linear estimators; and third,

the treatment of endogeneity or simultaneity with instrumental variables (IV regression).

After this introduction of the “state of the art”, chapter 3 introduces a simple theory

of endogenous trade costs. Replacing the trade cost measure in a theory-based gravity

equation (in this study the gravity equation by Anderson and van Wincoop, 2003) makes

it possible to show that the direct effect of a right-hand side variable on exports is biased

upward. Chapter 4 tests the persistence of trade cost-related economies of scale and checks

6 For an introduction into the classical/neoclassical trade theory and the new trade theory see the textbook
by Krugman and Obstfeld (2009). For a more detailed description see Feenstra (2004). The new-new
trade theory has not yet gained access into standard textbooks on international economics.

6



1. Introduction

Figure 1.2: Structure of the Study.

the bias of the estimated parameters using a simultaneous equation system (consisting

of a gravity function and a trade cost function) with a comprehensive measure for trade

costs.

Chapter 5 introduces a method to solve the complex system of multilateral resistances

with a numerical program. As a result, values of the multilateral resistances of 23 OECD

countries are computed. Thus, all right-hand side variables of the Anderson/van Wincoop

gravity equation are available and therefore this equation becomes estimable. Chapter

6 presents the results of estimating the gravity equation in the traditional way and in a

simultaneous equation model. Chapter 7 summarizes the outcomes of this study.

Chapters 3 and 4 can be seen as one major section of the study introducing and testing a

theory of endogenous trade costs. Chapters 5 and 6 build another major section, solving

for multilateral resistances and directly estimating a fully theory-based gravity equation.

The single chapters of this study were written in a way such that each chapter can be

read independently from each other. Figure 1.2 illustrates the structure of this study.
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The Gravity Equation: Theory and

Application
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2. The Gravity Equation: Theory and Application

Much work has been done, since Tinbergen (1962) and Pöyhönen (1963) presented the

seminal idea that the economic size of two countries and the distance between these two

countries could explain their bilateral trade volume. In these first studies, bilateral trade

flows were simply regressed on the given countries’ respective incomes and the geographic

distance between the countries as a proxy variable for trade costs using ordinary least-

squares estimators.1 The gravity equation became a useful instrument to study the effects

of trade barriers, especially policy-driven trade barriers, on exports.2 After rising criticism

that the gravity equation was a purely intuitive and not theoretically founded empirical

tool, Anderson (1979) was one of the first who developed a theoretical framework to derive

the gravity equation in its essential form. Over the last 20 years, the gravity equation was

derived from several trade models and appeared to conform with the different branches

of trade theory. These theoretical considerations as well as the technical progress in

econometrics have helped to justify and improve the application of gravity equations as

an instrument to measure the determinants of international trade. This chapter provides

an overview about theoretical foundations of the gravity equation and the requirements

for preferably unbiased empirical results.

2.1 Theoretical Concepts

The current theory of international trade rests on three different foundations. The first

foundation is the classical/neo-classical theory with its well known Ricardo model (com-

parative differences between countries in technology) and Heckscher-Ohlin model (com-

parative differences between countries in factor endowment). This theory traces interna-

1 Tinbergen (1962) additionally included trade cost control dummies for the European Community and
BeNeLux (Belgium, Netherlands and Luxemburg). His PhD-student Linnemann (1966) was the first
who extended the gravity equation with per capita income and more trade cost control variables in his
dissertation. He also tried to derive the gravity equation from a Walrasian general equilibrium model.
However, too many explanatory variables appear for trade flows in his model such that a simple reduction
to the gravity equation is not feasible.

2 Examples for such early studies are Aitken (1973), who studied the trade effects of EEC, EFTA, and
Aitken and Obutelewicz (1976), who studied the trade effects of colonial links between EEC-countries
and former colonies.

9



2. The Gravity Equation: Theory and Application

tional trade flows back to comparative advantages between countries. The statement of

this theory is that countries specialize in goods in whose production they have compar-

ative advantages, and sell these goods in international markets against goods in whose

production they have comparative disadvantages. For example, if France is relatively

better in producing wine and Germany in producing beer, France specializes in wine and

exports a share of the production to Germany while Germany specializes in beer and

exports a share of the production to France.

The second foundation – the new trade theory by Krugman (1979) – criticizes these

classical/neo-classical models because their basis for trade is that countries are (com-

paratively) different, although the highest volume of trade appears between very similar

countries (for example, among EU-countries). Furthermore, these similar countries trade

goods from the same sectors, meaning that France and Germany, for example, export and

import the same goods (like cars) from each other rather than completely different goods.

He argues that the integration of markets makes it possible to realize economies of scale.

They lower per-unit costs of production and therefore prices. Market integration also

increases the available number of product varieties. If consumers value the availability of

many differentiated products (“love of variety”) and each available good gains lower prices

from economies of scale, this is a source for gains from trade between similar countries.

The third and most recent foundation – the new-new trade theory – goes back to Melitz

(2003). His central argument is that it is not countries but firms that export goods to

foreign countries and that these firms are heterogeneous: it depends on their productivity,

whether they will export or not (the so-called “extensive margin”) and how much a certain

firm will export (i.e. the “intensive margin”). A large and highly productive firm is more

likely to overcome trade barriers and export a substantial volume to another country than

a small and less productive firm which perhaps cannot even overcome the trade barriers

to any foreign market and therefore does not export at all.

This section reviews the theoretical literature on the gravity equation with respect to

these different foundations of trade theory. It starts with the pioneering demand side

10



2. The Gravity Equation: Theory and Application

model by Anderson (1979). This model is the basis of several further models which have

in common that trade flows are determined by the demand side. It builds on the assump-

tion of complete specialization of countries. Deardorff (1998) noted that – under certain

conditions presented in this section – the foundation is consistent with the classical/neo-

classical as well as with the new trade theory. Eaton and Kortum (2002) presented a

supply side model where countries have access to different levels of technology to pro-

duce a continual set of goods and derive a gravity-like equation. The setup is compatible

to a Ricardian trade model with a continuum of goods. Very recent literature derives

the gravity equation directly from the new-new trade theory (Chaney, 2008; Melitz and

Ottaviani, 2008).

2.1.1 Demand Side Models

To derive the gravity equation, demand side models act on the assumption that countries

are exogenously endowed with a certain supply of goods. The flows of these goods from

one country to another (the trade flows) are thus driven by the demand of the target

country.

The first models which derive the gravity equation in its characteristic multiplicative form

were presented by Anderson (1979). In the simplest formulation he assumes that each

country (i, j ∈ {1, . . . , C}, where C is the number of all countries) is endowed with a

certain GDP: Yi and Yj, respectively. GDP is hereby assumed to be the endowment of

each country with a certain differentiated, tradeable good which is characteristic for the

respective country. Imagine for example that each country is endowed with a combined

bundle of many goods and consumers distinguish between these bundles by the label

“made in i” or “made in j”. In this simplest form of the model, trade costs are ignored.

The preferences are assumed to be identical over all countries and represented by a Cobb-

Douglas utility function. Therefore, each consumer worldwide will spend the same fraction

of income on a certain (country-differentiated) good. Consequently, the spending on

exports from country i in country j, Xij, can be expressed as the share of country j’s

11



2. The Gravity Equation: Theory and Application

GDP multiplied with the income share si that consumers spend for the composite good

of country i:3

Xij = si · Yj. (2.1)

In a general equilibrium, all exports of country i in all countries j (including the “intra-

country” exports from country i to country i itself, Xii) must equal the GDP, or in other

words, the sales must equal the income:

Yi = si ·
∑
j

Yj = si · Yw, (2.2)

with Yw =
∑

j Yj being the world’s GDP. Combining equation (2.1) and (2.2) yields the

probably simplest form of the gravity equation:

Xij =
Yi · Yj
Yw

, (2.3)

where the world GDP Yw can be treated as a constant. This gravity equation is thus

able to explain bilateral trade flows by the respective countries’ GDPs in a multiplicative

form.

However, this simplistic form is not yet able to account for trade costs. Anderson (1979)

provides several augmentations of this simple model. He introduces non-tradeable goods,

trade costs, many commodity classes of goods, and more general constant elasticity of

substitution (CES) preferences instead of Cobb-Douglas preferences. These augmenta-

tions lead to more complex versions of the gravity equation compared to equation (2.3).

One result of these augmentations is that the effect of trade costs on exports between

two countries increases with the elasticity of substitution between the countries’ specific

goods. The intuition is: if a country’s specific good is more substitutable with the specific

good of any country exporting into this certain country, the probability that consumers

in this country are willing to pay price markups due to trade costs will be lower. They

3 More detailed, this is equivalent to the demand function resulting from the explicit Cobb-Douglas utility
function Uj =

∏
i c
si
ij , with income shares si summing up to one,

∑
i si = 1, and cij being the amount of

consumption of country i’s specific good in country j. The value of exports between country i and j is
then Xij = pi · cij where pi is the price of country i’s good.

12



2. The Gravity Equation: Theory and Application

can substitute the imported goods more easily by the domestic goods in this case. Fur-

thermore, Anderson (1979) derives a version of the gravity equation using a setup with

trade costs and CES preferences. In this version, not only bilateral trade costs affect the

exports between countries but rather the ratio of bilateral trade costs to (an adjusted

measure of) trade costs with all other countries, as represented by a Dixit-Stiglitz price

index over all goods.

Building on this framework, Anderson and van Wincoop (2003) develop a very adaptable

version of the gravity equation using the generalization with CES preferences. They show

that exports in gravity equations do not only depend on bilateral trade costs but rather

on a ratio of bilateral trade costs and the respective two countries’ trade costs to all

countries as well. The index that measures a country’s overall resistance to trade is called

multilateral resistance. Abbreviating this by “mr”, their gravity equation can be displayed

as:4

Xij =
Yi · Yj
Yw

×
(

mri ·mrj
trade barriersij

)elasticity of substitution−1

. (2.4)

This result is in contrast to the traditional gravity equation (1.1) which only considers

bilateral trade barriers. Why should multilateral resistance play a role in explaining

bilateral trade flows? Imagine two countries, 1 and 2, trading with each other and country

2 signs a free trade agreement with a third country 3. If this free trade agreement leads

to a trade diversion effect, the trade volume between countries 1 and 2 is likely to decline.

This is actually the case if trade barriers between countries 1 and 2 and their respective

GDPs are unaffected. For the trade between countries 1 and 2, equation (2.4) is able

to take the free trade agreement between countries 2 and 3 into account, since this free

trade agreement reduces the multilateral resistances – the trade barriers to all countries

of the world – of country 2: Trade between 1 and 2 becomes relatively more expensive for

country 2.

The model by Anderson (1979) was used to bring the gravity equation in line with the

different trade theories. Helpman and Krugman (1985, chapter 8) and Helpman (1987)

4 Since this approach is the conceptual basis for the following chapters, its derivation will be made explicit
in chapter 3. For the calculus see appendix A.

13



2. The Gravity Equation: Theory and Application

conclude that the approach by Anderson (1979) in its simplest form is in accordance with

the new trade theory, which states that relatively similar countries trade more actively

amongst each other. They derive the following version of a gravity equation, whereby

the trade flows inside a group of countries are related to a measure for the dissimilarity

of countries – the so-called index of dispersion. They conclude that if the countries of a

given group are more similar, trade in this group is higher. For illustration, assume that

there is a region A consisting of two countries i and j. The trade volume between these

two countries and therefore the trade volume of this region, TVA = Xij +Xji, can be used

to rewrite (2.3) as:5

TVA = 2 · Yi · Yj
Yw

= 2 · si · sj · Yw. (2.5)

Let the GDP of this region be YA = Yi+Yj, and the share of region A relative to the world

GDP be sA ≡ YA/Yw. Furthermore we can denote the GDP-shares of the two countries

in region A as siA ≡ Yi/YA, country j analogously. This makes it possible to rewrite

equation (2.5) as:6

TVA
YA

= 2 · siA · sjA · sA. (2.6)

Since region A consists of two countries, it must be the case that their shares of the

region’s GDP sum up to one, siA + sjA = 1. Squaring both sides of this condition yields

s2
iA + 2siAsjA + s2

jA = 1 and after rearranging:

2 · siA · sjA = 1− s2
iA − s2

jA.

Substituting this back into equation (2.6) yields:

TVA
YA

= sA ·

(
1−

∑
i∈A

s2
iA

)
. (2.7)

5 Because si ≡ Yi/Yw.

6 The reason is that

TVA
YA

= 2siAsjAsA = 2 · Yi
YA
· Yj
YA
· YA
Yw

= 2
Yi · Yj
YA · Yw

= 2 · Yi
Yw
· Yj
Yw
· Yw
YA

= 2 · si · sj ·
Yw
YA

.

This is equation (2.5) multiplied by 1/YA.
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Equation (2.7) shows that the size-adjusted trade volume inside region A equals the world

share of this region’s GDP multiplied by the so-called index of dispersion, which is the

expression in parentheses. This dispersion index takes higher values if the single income

shares siA are quite similar and it takes lower values if they are more divergent.7 Note that

equation (2.7) also holds for regions with more than two countries (Helpman, 1987). Also

note that region A can contain all countries of the world as a special case.8 The import

of the literature following Helpman and Krugman (1985) is therefore: Similarity of the

countries’ sizes in a region raises the trade volume inside this region. This underlines the

outcomes of the new trade theory, according to which more comparable economies trade

more. Thus, empirical versions of equation (2.7) were used in several empirical studies to

test this context.9

Bergstrand generalizes the model provided by Anderson (1979) and uses production fron-

tiers with constant elasticities of transformation to model the countries endowments with

goods (see Bergstrand, 1985, 1989, 1990).10 Bergstrand (1985) derives a gravity equa-

tion augmented by price indices using a general equilibrium model with differentiated

goods and one production factor (labor). These price indices have a similar logic to the

multilateral resistances from Anderson and van Wincoop (2003): Considering trade costs

in a gravity equation requires their relation to a measure of multilateral prices or trade

costs. Bergstrand (1989) extends this framework by an additional factor (capital). This

latter model thus combines elements of the Heckscher-Ohlin trade theory (two sectors,

two factors) with elements of the new trade theory (monopolistic competition and prod-

uct differentiation between the firms of each sector). The result is a gravity equation

7 For example, in a two-country set, this index takes a value of 0.5 (= 1 − 0.52 − 0.52) if both countries
have the same size and therefore a 50% share of region A’s GDP, respectively. If the countries’ sizes are
completely different, so that hypothetically one country has a 100% share of the region’s output and the
other country 0%, the index takes the value 0 (= 1− 12 − 02).

8 In this special case, YA = Yw, sA = 1 and siA = si.

9 See Helpman (1987) for OECD-countries, as well as Hummels and Levinsohn (1995) and Debaere (2005),
who find contradictions to the new trade theory in an extention for non-OECD-countries. See also
Feenstra (2004, chapter 5, pp. 146 ff.) for an overview of this literature.

10 Although the modeling of production frontiers has characteristics of a supply side model, the production
frontier is not directly derived from factor endowments or production functions. Therefore, Bergstrand’s
models should be taken rather as demand side models.
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augmented by price indices as well as capital-labor ratios. This approach is a theoretical

reason for many empirical studies to include per capita incomes into the gravity equation

to control for capital-labor endowments.11 In Bergstrand (1990) he uses this hybrid model

to study the prevalence of intra-industry trade.

Deardorff (1998) uses the model proposed by Anderson (1979) and gives an intuitive ex-

planation that the assumed specialization of each country in a particular good is also

consistent with classical trade theory, especially with the Heckscher-Ohlin model under

certain circumstances (many goods and fewer factors). His argument is that complete

specialization results from both the Ricardo model as well as the Heckscher Ohlin model

(with many goods and fewer factors) if factor prices are not equalized due to trade costs.

He concludes with emphatic respect to Helpman (1987) that it is dangerous to use the

gravity equation to legitimize the success of a particular trade theory because it is com-

patible with many strands of the different trade theories.12

2.1.2 A Supply Side Model

Eaton and Kortum (2002) pursue an alternative setup compared to the demand side mod-

els following Anderson (1979). They derive a gravity like equation from a Ricardian trade

model with a continuum of goods. The common assumption of the demand side models

is that the production values of goods are exogenously given and that the distribution

over countries results from the consumer preferences. By contrast, in the model by Eaton

and Kortum (2002), the distribution of goods between countries is driven by technology

differences on the supply side rather than by consumer preferences. In their model, each

country can potentially produce each single good in a continual range of goods. However,

only the country with the lowest comparative production costs (inclusive of trade costs) for

11 Note that the inclusion of per capita incomes into empirical gravity equations to control for comparative
differences was already introduced by Linnemann (1966).

12 Notably, Evenett and Keller (2002) use structural implications from the new trade theory model and
the Heckscher-Ohlin model (as they are outlined in Helpman and Krugman, 1985, chapters 7 and 8) to
develop a gravity equation that can distinguish between the different trade structures.
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a certain good will provide all other countries with this good. Production costs depend on

productivity, which is drawn from a probabilistic country-specific Fréchet function. This

distribution function is determined by two parameters:

1. the average productivity level for each respective country i, which varies over the

countries,

2. the productivity differences between all countries, which takes the same value in

each country’s distribution function as it describes a property of the whole (model)

world.

The resulting equation appears to be quite similar to the results of the advanced versions

of the models following Anderson (1979), especially Anderson and van Wincoop (2003).13

In their equation, the effect of trade costs on exports is not explained by the elasticity

of substitution of the traded goods but by the parameter for the productivity differential

between countries. Lower values of this parameter indicate higher productivity differences

between the countries and thus greater opportunities for comparative advantages. More

comparative advantages diminish the negative effects of trade barriers in their equation.

Moreover, trade costs are related to an input price measure over all destination countries,

which is a comparable result to the multilateral resistance approach.

2.1.3 Gravity Equations Derived from New-new Trade Theory

Recently, the so-called new-new trade theory based on Melitz (2003) has attracted a lot

of interest. This theory emphasizes that, above all, firm characteristics and not country

characteristics lead to trade. One important feature of this literature is that there occurs

1. an intensive margin for trade that measures the export value of the heterogeneous

firms,

13 See also Anderson and van Wincoop (2004, p. 709 f.) for a discussion of this model.
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2. an extensive margin that measures how many firms will be productive enough to be

able to export to other countries.

Chaney (2008) expands this theory to derive a gravity equation. In his model, there is

one (reference) sector producing a homogeneous good under constant returns to scale and

a continuum of sectors, each producing a differentiated good under increasing returns to

scale. The firms in the sectors with increasing returns draw their productivity from a

sector-specific Pareto distribution, with a parameter determining the degree of firm het-

erogeneity in each respective sector.14 Trade costs are modeled with a fixed component

for each pair of countries. Chaney (2008) derives a gravity equation wherein the effect

of trade costs on exports increases with the elasticity of substitution. This finding is

consistent with the findings of the demand side literature. In his gravity equation, trade

costs are also relative to a remoteness index comparable with multilateral resistances.

Chaney’s innovation is that the effect of trade costs on exports decreases in firm hetero-

geneity, measured by the parameter of the Pareto distribution, and thus does not only

depend on the elasticity of substitution.

Melitz and Ottaviani (2008) have developed a gravity equation, using a heterogeneous

firms model, replacing the assumption of a constant elasticity of substitution by quasi-

linear preferences. Consequently, the markups of firms are no longer exogenously given

but more generally depend on market size and integration. Similar to Chaney (2008),

in their gravity equation the effect of trade costs on exports is determined by the firm-

heterogeneity parameter. Contrarily, in their framework, trade costs are not related to a

direct measure of remoteness to other countries. Rather, they are related to comparative

advantages in technology of the exporting country and the intensity of competition (in

terms of a marginal cost cut-off) of the importing country.

14 The distribution function for productivity in terms of output per unit of labor is equal for each country,
meaning that all countries have access to the same technology. Country differences enter the model
via differences in the countries’ reference wages from the homogeneous good sector that produces with
constant returns to scale.
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2.2 Empirical Concepts

The insight that the gravity equation is obviously consistent with the theory of interna-

tional trade has effectuated a renaissance of applying the gravity equation to estimate the

effects of trade barriers on the trade volumes between countries. New developments in

econometric modeling have made it possible to improve the explanatory power of these

applications.

This section reviews important results of the econometric literature. It focuses on three

econometrical problems that are likely to appear in empirical applications. These prob-

lems are also relevant in the remainder of this study. I shall introduce the basic empirical

specification of the gravity equation and discuss solutions for the following problems:

1. unobservable country characteristics,

2. the presence of zero trade flows,

3. endogeneity of right-hand side variables or their interdependency with the left-hand

variable (bilateral exports).

2.2.1 The Basic Specification

The first studies use cross-section data. Usually, the common estimation strategy in these

studies was simply to use OLS for the logarithmized values of the variables.15 Because of

the scarce availability of accurate proxies for trade costs besides geographical distance, it

became common to use dummy variables that take the value of 1 if a certain country or

country pair satisfies a certain condition (e.g. membership in the EU, landlocked, common

15 With the notable exception of Pöyhönen (1963), who already used a non-linear estimator in his pioneer
work.
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border) and 0 else. The empirical form of these gravity equations can be displayed as:

lnXij = π1 + π2 lnYi + π3 lnYj + πk4w
k
ij + ηij, (2.8)

where Xij are exports from country i to j, Yi and Yj are the respective countries’ GDPs,

wkij a vector of k trade cost proxies (like log of distance, and dummies like membership in

a certain country group, linguistic and geographical patterns). The π’s are the parameters

which are to be estimated and ηij is the disturbance term.

2.2.2 Dealing with Unobservable Country Characteristics: Fixed

Effects

Mátyás (1997) was one of the first who recognized the requirement of fixed-effect dum-

mies in the empirical application of gravity equations. From an econometrical point of

view, one must control for unmeasurable country characteristics by introducing dummy

variables for each exporting and importing country.16 One of these unobservable country

characteristics are the multilateral resistances. Their importance was highlighted in the

theoretical overview of the previous section with reference to works by Bergstrand (1985)

and Anderson and van Wincoop (2003).17 If the data set has a panel structure and there-

fore a time dimension in addition, it becomes necessary to include time dummies (e.g. for

each year a dummy variable that is 1 if the considered data is from the respective year

and 0 else). They control for special circumstances of a certain time unit, e.g. if there

was an economic boom or depression. Note that there are plenty of arguments that using

panel data yields more advantages than cross-sectional data, since panel data contains

16 It is worth emphasizing that Pöyhönen (1963) already was aware of the presence of specific effects of
the exporting and importing countries on trade. But he used his estimate of the model’s intercept to
disentangle the country characteristics instead of using fixed or random effects as it is common in modern
studies.

17 Bergstrand (1985) uses price indices in his estimation, but they appear to be a weak proxy. Anderson and
van Wincoop (2003) use a non-linear program to solve for multilateral resistances, but the computational
effort is very high. They conclude that results with country fixed-effect dummies are quite similar and
much easier to handle compared to the complex approach.
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much more information (see Baltagi, 2005, chapter 1.2, for a discussion).

Mátyás (1997) argues that ignoring these dummies leads to an estimation bias. In Mátyás

(1998), he argues that under certain circumstances, especially if the data set contains a

large number of countries, it might be better to use a random effects estimator (where

country characteristics are seen as random variables and captured by multiple error terms)

instead of a fixed-effects approach (where country characteristics are controlled by a sep-

arate intercept for each exporting and importing country). However, in most cases fixed-

effects estimators are more appropriate, since using the random effects approach requires

that there is no correlation between the country characteristic and the regressors (Egger,

2000).18

The empirical gravity equation with country and time fixed-effects, as it is suggested by

Mátyás (1997), and augmented by a time index t can be denoted as:

lnXijt = πi1 + πj1 + πt1 + π2 lnYit + π3 lnYjt + πk4w
k
ijt + ηijt, (2.9)

where πi1, πj1 and πt1 are the vectors of the exporting country, importing country, and time

dummies. This specification is known as a two-way model, because it considers country

as well as time characteristics. In comparision, a one-way model would only control

for country characteristics but not for time. A pooled regression model would ignore all

country and time specific effects, as in the basic empirical gravity equation (2.8).

Other papers starting with Hummels and Levinsohn (1995) pursue a three-way model.

They replace export and import country dummies by country-pair dummies. Their model

18 Basically, random effects are preferable if there is a large number of individuals in the data (for example
household-level data like micro census). Whether random effects or fixed-effects are appropriate is usually
tested by Hausman’s specification test.
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therefore has the form19

lnXijt = πij1 + πt1 + π2 lnYit + π3 lnYjt + πk4w
k
ijt + ηijt. (2.10)

Cheng and Wall (1999) as well as Egger and Pfaffermayr (2003) find that the omission

of country-pair fixed-effects is likely to cause an estimation bias. Baltagi, Egger, and

Pfaffermayr (2003) go one step further and augment the three-way model by country-year

interaction terms, which they find to be preferable for panel specifications of the gravity

equation.

Although the three-way approach can be expected to have the best fit, its application has

a heavy disadvantage. The inclusion of country-pair dummies (or the computationally

elegant within-transformation which analyzes the deviations from the variables’ averages

and yields the same results) eliminates all bilateral variables that are characteristic of a

country pair and not varying over time. Among them are variables of very high interest

like: distance, common languages or borders, etc. Direct use of the three-way approach

makes it impossible to estimate the effects of these variables, because they are captured by

the country-pair dummies. Egger (2005) recommends the Hausman-Taylor estimator to

solve this problem. The Hausman-Taylor estimator uses information from the error term

of a fixed-effects estimator to identify the effects of the time-invariant variables. The

technique requires that both time-variant and time-invariant right-hand side variables

can be split into two groups, exogenous and endogenous variables. In contrast to the

exogenous variables, the endogenous variables are correlated with the error term.

19 According to Egger and Pfaffermayr (2003), who refer to Christensen (1987), this specification is equal
to the form

lnXijt = πi1 + πj1 + πij1 + πt1 + π2 lnYit + π3 lnYjt + πk4w
k
ijt + ηijt,

and is therefore controlling via “three ways” for country, country-pair and time effects.
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2.2.3 Dealing with Zero-Trade-Flows: Non-linear Estimators

In its theoretically founded form, the gravity equation requires that trade flows occur

between each pair of countries. This follows immediately from equation (1.1). As long as

the economic size of one or both of the two respective countries is not zero and trade costs

are not infinitely high on the right-hand side, the left-hand side can not be zero in this

formulation. Yet, in reality there are pairs of countries without any bilateral trade flows.

Basically, these countries are small economies in remote regions which do not trade with

other small economies in other remote regions. An example could be a Central-African

development country with a small insular state in the Pacific Ocean.

The extent of the phenomenon of zero trade flows is illustrated in figure 2.1. The black

fractions of the columns show the percentage of country pairs with trade flows in both

directions for the years 1970 to 1997 using data for 158 countries. Trade flows in both

directions, where country i exports to country j and country j also to country i, are

represented by the black fractions. The gray fractions represent country pairs with trade

in only one direction, meaning that country i exports to country j but country j does

not export to country i. The light gray fractions represent the share of country pairs

without any trade. Country pairs without any trade have a share of about 50% relative

to all country pairs. However, over the three displayed decades the share of country pairs

trading in both directions could rise from 30 to roughly 40%.

Helpman, Melitz, and Rubinstein (2008) draw on the new-new trade theory (Melitz,

2003) to derive a theoretical model with firm heterogeneity and trade costs with a fixed

component to explain the presence of zero trade flows.20 Due to firm heterogeneity,

it depends on the firm-specific productivities and the country-pair specific trade costs

wether a firm exports into a certain other country. Moreover, firm heterogeneity implies

that trade flows are not symmetrical, which means that trade flows from i to j need not be

of the same magnitude as trade flows from j to i. Given the presence of firm heterogeneity,

20 Their model is very similar to the approach by Chaney (2008), which was introduced in the previous
section of this chapter. But it concentrates on finding an empirically practical way to handle the zero
trade flow bias at all, while Chaney (2008) concentrates more on theoretical issues.
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Figure 2.1: Distribution of Country Pairs Based on Direction of Trade.
Source: Helpman, Melitz, and Rubinstein (2008), Figure I.

they argue that export data between two countries are subject to a selection bias since

e.g. high productive firms are more likely exporters than low productive firms. Therefore,

the sample is not randomly selected. To correct for this selection bias, they apply the

Heckman estimator. This method consists of two stages. In the first stage, they estimate

the probability that country i exports to country j, using a Probit estimator. They

note that this is possible without firm-level data and derive the probability employing

country-level data. The predicted values are then used in the second stage to estimate a

gravity equation extended by the probability that country i exports to j. They conduct

several robustness checks and conclude that the Heckman method is more consistent and

unbiased compared to the other estimation strategies ignoring this problem.

An earlier approach by Silva and Tenreyro (2006) is motivated by the problem that het-

eroscedasticity is likely to lead to biases using log-linear OLS approach, which is common

practice. They apply a non-linear Poisson estimator to control for this bias and note that

their strategy is furthermore able to solve the zero trade flow bias. Helpman, Melitz, and

Rubinstein (2008, p. 447) explicitly emphasize that the Poisson method yields similar

estimates and is consistent with their findings.
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Felbermayr and Kohler (2006) use a censored data approach to tackle the problem of zero

trade flows. They argue that a transformation of the left-hand side by adding 1 to the

export values is necessary, so that the left-hand side becomes ln(1+Xijt). Otherwise, zero

trade flows disappear due to logarithmizing and are treated as missing values. Because

OLS would yield biased results due to heteroscadasticity using this censored data, they

suggest a Tobit estimator to estimate the gravity equation with zero trade flows.

Heterogeneity and zero trade flows are more likely to occur in data sets that contain a

sample of rather different countries. In this study I will use a set of relatively similar

OECD countries that circumvents these problems. The OECD data set used in the

remainder of this study is completely free of zero trade flows.

2.2.4 Dealing with Endogeneity and Simultaneity: Instrumental

Variables

Considering the right-hand side of a standard gravity equation, one could argue that

many of the regressors are endogenous and therefore depend on variables excluded from

the model. In this case, the respective regressor(s) are correlated with the disturbance

term. The results for the estimated parameters are biased and inconsistent when this

problem is ignored. Furthermore, endogenous right-hand side variables could depend on

the left-hand side variable. This reverse effect is known as simultaneity which also leads

to biased and inconsistent estimates.

The econometric way to handle endogeneity is an instrument variable (IV) regression. This

approach usually consists of two stages, and so it is known as the two stages least-square

estimator (2SLS). In the first stage, the endogenous right-hand side variables are regressed

on all exogenous variables. In the second stage, the estimated values of the endogenous

regressors are used as instruments to run the regression of the gravity equation.21

21 This procedure will be applied in chapter 4. Also see chapter 4 for a more detailed methodological
description.
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Endogeneity and simultaneity in gravity equations have been addressed by several studies.

The literature on trade and growth argues that countries’ GDPs depend on exports. For

instance, Frankel and Romer (1999) run a gravity equation and use the estimated values

to compute “constructed trade shares” for each country. These constructed trade shares

are used as instruments in a further step to regress per capita income on trade shares,

besides population and area. However, they cannot find evidence that controlling for

endogeneity improves the results substantially.22 One reason might be that GDP is a

function of the difference between exports and imports rather than pure exports, and

this difference is normally quite small compared to a country’s GDP. Apart from that,

there should not be much simultaneity between GDP and bilateral exports since GDP

rather depends on multilateral exports. These considerations may help to explain why

taking potential endogeneity of GDPs into account has not prevailed so far in the gravity

literature.

Another literature branch, represented by Baier and Bergstrand (2007) amongst others,

concentrates on the question of whether there is a reverse causality between bilateral

trade flows and free trade agreements (FTA). This literature argues that signing a FTA is

motivated by the notion that the agreement-member countries tend to have considerable

trade flows among each other. Studies addressing this problem basically find evidence for

simultaneity between FTAs and exports.

The literature on endogenous right-hand side variables in gravity equations does not focus

on the endogeneity of overall trade costs, which is the subject of this study. In chapter 4,

a recently developed index for comprehensive trade costs will be employed to analyze the

simultaneity between exports and trade costs as a whole.

22 “As a result, the hypothesis that the IV and OLS estimates are equal cannot be rejected” (Frankel and
Romer, 1999, p. 388).
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2.3 Conclusions

In the 1970s and 80s, several economists raised criticisms that the gravity equation does

not rely on trade theory and is therefore purely intuitive and atheoretic (see e.g. Deardorff,

1984). The lesson from the different contributions presented so far is that versions of the

gravity equation, even with its characteristic log-linear form, can be derived from all three

pillars of the trade theory: classical/neo-classical, new trade theory and new-new trade

theory. The gravity equation is not only consistent with theory in the sense that it can

be justified as an empirical tool. Rather, the gravity equation is the collective result of

different ways to model international trade theoretically.

The empirical application of the gravity equation is not without its share of pitfalls. In

most cases, the simple regression of the basic specification (2.8) is inappropriate. It has

been shown that fixed-effect dummies should be employed to control for unobservable

country characteristics. It has also been shown that the presence of zero trade flows and

heteroscedasticity, which usually appears in data sets with differing countries (e.g. North-

South trade), requires alternative (non-linear) estimation strategies to yield consistent

and unbiased results. Finally, it has been stated that endogeneity of regressors and

simultaneity between right-hand side and left-hand side variables can be handled using

IV estimators.
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A Theory of Endogenous Trade

Costs
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In theoretical foundations of the gravity equation, trade costs are usually assumed to

be exogenously given “iceberg-melting-costs”: If a certain good is sent from one country

to another, this good loses a fixed part of its value (Samuelson, 1954). Iceberg-costs

can be interpreted as an ad valorem tariff equivalent to trade costs. Using them to

model trade costs is very common in theoretical models, because this is quite practicable.

In this chapter I shall argue that trade costs should be treated as endogenous from a

microeconomic point of view. Moreover, they should depend on trade input prices and

the underlying trade volume, since scale effects are likely to appear. My argument is

that trade costs per dollar of trade volume are lower if there is more trade between the

countries. The intuition is that trade costs should come along with a fixed cost intensive

physical and social infrastructure. Thus scale effects should play a role in modeling trade

costs. For example, sending a bottle of wine from one country to another should cost less

in the presence of an established trade-services infrastructure – itself a result of significant

overall trade between the two countries. If trade costs are determined by the trade volume,

and average trade costs are falling with trade volume (e.g. due to economies of scale in

trade sector), the estimated effects of right-hand side variables from gravity equations

might be biased upwards, if they are interpreted as direct effects on exports.

Grossman (1998) criticizes the iceberg-approach in theoretical gravity models as a “tech-

nology for shipping tomatoes”. He raised the suspicion that a poorly-designed inclusion of

trade costs into gravity frameworks could be a reason for what Obstfeld and Rogoff (2001)

later posed as one of their six puzzles1 of international macroeconomics: the problem that

the estimated coefficients of border and distance effects on trade have unexpectedly high

values.2 But important theoretical contributions that help to improve the interpretation

of empirical gravity equation outcomes, like those of Anderson and van Wincoop (2003),

1 Note that the puzzle of overly high estimates of gravity coefficients is related to but not the same as
the distance puzzle by Disdier and Head (2008), who find rising distance parameters over time which
is contra-intuitive to the hypothesis that trade costs were falling over recent decades. See Felbermayr
and Kohler (2006, section 2) or Buch, Kleinert, and Toubal (2004) for a possible solution to this kind of
distance puzzle.

2 Probably, the most cited example is McCallum (1995), who estimated that the border between Canada
and the United States makes trade between a certain Canadian province and another Canadian province
higher by a factor 22 (2,200 percent) than trade between this Canadian province and a U.S.-state of the
same economic size and distance.
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also use the concept of exogenous iceberg-costs to insert trade costs into their model.3

Some new studies are aware of the circumstance that per-unit trade costs might decrease

with greater trade volume. Felbermayr and Kohler (2006) introduce a threshold value

for trade and argue that countries will not trade if the trade volume is lower than this

threshold, because trade requires physical and social infrastructures and maintaining this

infrastructure is related to fixed costs. To bear these fixed costs, a minimum volume of

trade must persist (see Felbermayr and Kohler, 2006, p. 657 f.). Helpman, Melitz, and

Rubinstein (2008), Chaney (2008) as well as Melitz and Ottaviani (2008) model transport

costs as iceberg-costs plus an additional fixed markup for shipping one unit from one

country to another.4 However, the introduction of fixed trade costs into these models has

the purpose to derive extensive margins for firms to export their products.

My intention is to use scale effects in international trade to identify a duality of a general

trade cost function and the gravity function which can lead to simultaneity-biases in

empirical frameworks. Because iceberg-costs can be interpreted as exogenously given and

constant average costs of trade, they are independent from the underlying exports. Yet,

if economies of scale in trade occur, this assumption becomes inadequate: the higher the

exports between two countries, the lower the costs should be of sending one (composite)

unit of the export volume from one country to another, since economies of scale cause

declining average costs. I shall derive this concept from a simple microeconomic model.

The consequence of economies of scale in trade is a simultaneity problem in empirical

gravity equations. This leads to a bias if the estimated parameters are interpreted as

direct effects of the variables on exports. Estimates of traditional gravity equations must

be interpreted as overall effects, resulting from a presumably frictionless and immediate

interaction between trade costs and the gravity equation. Under certain circumstances,

this bias of the direct effects can be a contribution to explain implausibly high estimates

for border effects in gravity frameworks.

3 The innovation by Anderson and van Wincoop (2003) is that trade barriers between two countries must
be seen as relative to the trade barriers with all other barriers of these two countries. Their approach is
the basis for this analysis.

4 As a result, Chaney (2008) yields an endogeneous elasticity of the exports with respect to trade barriers.
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The chapter is structured as follows. Section 3.1 introduces the theoretical derivation

of the gravity equation by Anderson and van Wincoop (2003) with trade costs modeled

as iceberg-costs. Section 3.2 offers an approach to model trade costs endogenously. If

exports are considered as the output of a trade sector, microeconomic theory reveals that

the commensurate trade costs depend on input prices and the volume of exports. The

presence of economies of scale in this trade sector, which according to several empirical

studies may be assumed, leads to decreasing average trade costs in exports. Section

3.3 gives an overview of theoretical arguments to justify why trade should be subject to

scale effects. Since, in traditional specifications of the gravity equation, trade cost proxy

variables are usually directly inserted into the gravity equation, section 3.4 introduces a

more exact modeling by inserting the theory-based trade cost function into the theory-

based gravity equation. Further, it shows the resulting bias. Section 3.5 summarizes the

implications of this chapter.

3.1 A Theory Based Gravity Equation

This section introduces the well known derivation of a theory-based gravity equation

developed by Anderson and van Wincoop (2003), which is the theoretical starting point

of this study.5 Consider a world with many countries {1, . . . , C}. The respective GDP of

each country is exogenously given. Each country i’s total production Yi can be seen as a

specific tradeable good of this country – the so-called Armington assumption (Armington,

1969). The intuition of this assumption is that consumers – to give an example – don’t care

whether it is a car or an apple, but they care where the commodity has been produced.6

Consumers over the world are assumed to have the same preferences. An exporting

country will be denoted with i, an importing country with j.

5 The detailed calculus is documented in appendix A.

6 This assumption is used for simplicity. Anderson and van Wincoop (2004) show the same results with
many goods per country. See also Deardorff (1998) for a discussion of the case of many goods and relaxing
the Armington assumption.
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Following Anderson and van Wincoop (2003) trade costs enter the model as iceberg-costs.

Iceberg-costs are a fixed exogenously given markup (“iceberg-factor”) tij to the factory

price pi, so that the price of the (composite) commodity of country i paid in country j is

pij = tij · pi. The price of the commodity from i is higher in country j by the factor tij

due to trade costs. It is assumed that tij > 1 for all countries j 6= i and that the domestic

trade cost factor tii = 1. This is to ensure that commodities are more expensive abroad

than on the domestic market. Modeling trade costs in this way leads to three properties.

First, since the exports including transport costs (gross exports) are Xij = tij · pi · cij
with quantity cij sent from i to j, the exports can be deconstructed into total trade costs

(tij−1) ·pi ·cij plus (net) exports exclusive transport cost pi ·cij.7 Second, it can be shown

that a fraction (tij−1)/tij of the amount of goods shipped from i to j is lost in transport.8

Finally, iceberg-costs are a measure of average trade costs and not total trade costs. This

property is important for the message of this chapter. Obviously, the iceberg-factor can

be denoted as gross exports divided by net exports:

tij =
pij · cij
pi · cij

.

This implies that tij is nothing more than the tariff-equivalent factor for bringing $1.00

of country i’s composite export good to country j. Therefore, iceberg-cost-factor tij is

nothing more than an average cost of trade.

Keeping these properties of iceberg-costs in mind, we can start to build the trade model.

The procedure follows the work of Anderson (1979), whose develpment of a very sim-

ple form without trade costs was illustrated in the previous chapter, see equation (2.3).

Consider an importing country j. Recall that consumers around the world are assumed

to have identical preferences, so that preferences of the consumers in country j can be

7 To bring this mathematically into one line: Xij = pij · cij = tij · pi · cij = (tij − 1) · pi · cij + pi · cij .
The last expression shows that Xij equals total trade costs (first summand) plus the net exports (second
summand).

8 Assume for simplicity that pi = 1 and cij = 1 and e.g. tij = 1.25. This means, country i must send 1.25
units to j so that one unit arrives. In this case a fraction 0.25/1.25 = 0.2 or 20% of the exports sent by
country i would be lost.

32



3. A Theory of Endogenous Trade Costs

represented by the CES utility function9

Uj =

(∑
i

ϕi · c
σ−1
σ

ij

) σ
σ−1

. (3.1)

Here, cij is the quantity of i’s commodity imported by j (including country j’s domestic

consumption cjj), ϕi is a distribution parameter to weight the preference of the repre-

sentative consumer for country i’s composite good and σ is the elasticity of substitution

between all goods in the world. This elasticity of substitution is assumed to be σ > 1,

meaning that there is a substitutive relationship between individual commodities by the

different countries.10 The budget constraint of country j postulates that its GDP Yj must

equal the expenditure of country j on all goods of all countries i (inclusive of the good of

country j itself, Tjj = pjj · cjj):

Yj =
∑
i

pij · cij =
∑
i

tij · pi · cij, (3.2)

with pij as the price of i’s commodity in country j. The factory price of i’s commodity,

i.e. the price net of all trade costs, will be denoted with pi.

Maximizing country j’s utility function subject to its budget constraint yields the demand

function and multiplying both sides of this demand function by pij yields the import

function11

Xij = ϕσi ·
(
tij · pi
Pj

)1−σ

· Yj, (3.3)

9 Recent work by Melitz and Ottaviani (2008) or Behrens, Mion, Murata, and Suedekum (2008) criti-
cizes the usage of CES utility functions in the theoretical gravity equations and uses a more complex
specification for the utility function where demand elasticity becomes endogenous.

10 In a review of empirical literature, Anderson and van Wincoop (2004) point out that this value of the
elasticity of substitution σ lies between 5 and 10.

11 The individual mathematical steps to achieve this and the following results are documented in appendix
A.
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with Xij = tij · pi · cij being the gross value of imports of j from i and

Pj =

(∑
i

ϕσi t
1−σ
ij p1−σ

i

)1/(1−σ)

(3.4)

being a CES-price-index of country j.

Now, consider an exporting country i. In a general equilibrium with cleared markets, the

GDP of country i must equal the sum of all exports (including the export into i itself –

i’s intra-national trade Tii). Combining this general equilibrium condition with equation

(3.3) yields:

Yi =
∑
j

Xij (3.5)

=
∑
j

ϕσi ·
(
tij · pi
Pj

)1−σ

· Yj

= ϕσi p
1−σ
i ·

∑
j

(
tij
Pj

)1−σ

· Yj

= ϕσi p
1−σ
i · Yw ·

∑
j

(
tij
Pj

)1−σ

· sj

= ϕσi p
1−σ
i · Yw · Π1−σ

i ,

with Yw =
∑

j Yj being the world’s GDP, sj = Yj/Yw being country j’s share of world

GDP and

Πi ≡

(∑
j

(
tij
Pj

)1−σ

· sj

)1/(1−σ)

(3.6)

being a measure for country i’s multilateral resistance. This is an index for mean trade

costs of country i with all countries (summed over j), weighted by country size and

elasticity of substitution.

Solving equation (3.5) for the scaled prices (ϕσi p
1−σ
i ) and using this for the CES-index
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(3.4) yields the multilateral resistence term for country j:

Pj =

(∑
i

(
tij
Πi

)1−σ

· si

)1/(1−σ)

. (3.7)

Substituting the solution of equation (3.5) for the scaled prices (ϕσi p
1−σ
i ) into the import

volume function (3.3) finally gives the theory-based gravity equation

Xij =
Yi · Yj
Yw

·
(

tij
Πi · Pj

)1−σ

. (3.8)

Note, that (3.8) includes trade costs on both sides. It will be useful to consider trade

flows without trade costs. The corresponding gravity equation for net exports follows

from dividing (3.8) by tij:

X0
ij =

Yi · Yj
Yw

· t−σij · (Πi · Pj)σ−1 , (3.9)

where X0
ij denotes trade cost adjusted trade flows (Xij/tij) or net exports while Xij

denotes gross exports.12

As long as the elasticity of substitution between the countries’ goods, σ, is larger than

1, higher bilateral iceberg-trade-costs lower the bilateral exports. Since factor tij can be

interpreted as the cost of bringing a value of $1.00 from country i to j, a kind of average

trade cost, it follows from gravity equation (3.8) and (3.9): the higher the average trade

costs between two countries, the lower the exports. Considering factor tij not as some

undefined measure of trade costs but explicitly as the average trade cost value will be

a central message of this chapter. A higher value for the elasticity of substitution, σ,

increases the impact of trade costs on exports because foreign goods can be substituted

more easily by the composite domestic good.

An important outcome of the Anderson/van-Wincoop-model is that these average trade

12 If trade costs were only costs of insurance and freight, Xij would be the CIF-trade-volume and X0
ij the

FOB-trade-volume, but in the context of this model, trade costs can play a much broader role.
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costs do not simply enter the gravity equation (like in older versions), but they must be

seen as relative to the product of the multilateral resistances of the trading partners: It is

not enough to consider average trade costs between two countries, bilateral average trade

costs relative to all other trading partners must enter the model. Several studies show

that controlling for these multilateral resistances lowers implausibly high border effects

(see Hummels, 1999; Rose and van Wincoop, 2001; Anderson and van Wincoop, 2003,

and others).

3.2 A Micro-founded Form of Trade Costs

In the setup with iceberg-costs of the previous section, tij is a constant factor that repre-

sents average costs of trade. This factor is not directly measurable and is usually proxied

by distance and several control variables (e.g. dummies for common border and common

language). However, since tij denotes average costs of trade, to my knowledge it has never

been modeled as a micro-founded average cost function. From microeconomic theory, it

is well known that an average cost function not only depends on cost factors like factor

prices but also on the quantity produced. Therefore, I argue that average trade costs are

dependent on export values.

Assume that between each pair of countries there is a trade sector or a representative firm

that carries out all services to bring goods from the factories in country i to the consumers

in country j. To keep the model general, we will not assume scale effects or fixed costs

on these services. If the trade sector is able to make profit, it does not account for any

country’s GDP: In the gravity model, GDP is implicitly defined as a country’s output

of (composite) tradable goods while shipping is assumed to be a non-tradable service.

If bilateral net exports are the output of this trade sector’s production function, we can

denote it as a function of input vector xkij = (x1
ij, . . . , x

K
ij ):

X0
ij = X0

ij(x
k
ij). (3.10)
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An input xkij in this context can mean, for example, shipping one good via ocean or air,

paying for tariffs, translating contracts, and so on. Now, let wkij = (w1
ij, . . . , w

K
ij ) be the

vector of input prices. Minimizing trade costs
∑

k w
k
ij · xkij subject to given net exports,

provided that second order conditions hold, yields the trade cost function

TCij = TCij(w
k
ij, X

0
ij). (3.11)

Dividing both sides by X0
ij yields average trade costs,

TCij
X0
ij

= TCij(w
k
ij, X

0
ij) = tij(w

k
ij, X

0
ij)− 1 = τij(w

k
ij, X

0
ij). (3.12)

These average trade costs TCij describe the costs of bringing a value of $1.00 from country

i’s composite exports to country j. Keeping the properties of iceberg-trade-costs in mind,

this is equal to the interpretation of the trade cost markup τij. Thus, trade costs or the

iceberg-factor, respectively, become endogenous. As long as there are economies of scale

in the trading sector, e.g. due to the presence of fixed costs of infrastructure, the average

cost function (3.12) will decline with rising bilateral exports: The more two countries

trade with each other, the lower the average bilateral trade costs are. The result is the

assumption that ∂τij/∂X
0
ij < 0, or ∂tij/∂X

0
ij < 0.

3.3 Economies of Scale in International Commodity

Trade

Why should there be economies of scale in the trade sector? In the context of this

study, trade costs are all costs for providing a foreign market with the products from

the domestic market. This is the international economics interpretation of trade costs.13

13 The spatial economics interpretation concentrates more on the geographical distance and less on the
incidence of a border. Thus it also applies for domestic trade. In international economics trade costs
are more readily outlined as discrete values varying over country pairs, in spatial economics they are
alternately modeled continually.
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Following Anderson and van Wincoop (2004) they can be subdivided into three different

kinds of trade costs: (a) transport costs, (b) border-related trade barriers and (c) costs

for retail and wholesale on the foreign market.

Transport costs are the costs of shipping goods. They can be separated into direct trans-

port costs, the so-called costs of insurance and freight (CIF), and indirect transport costs,

which include holding costs for goods in transit, inventory costs due to buffering the vari-

ability of delivery dates, preparation costs associated with shipment size and other costs.

Hummels (2007) argues that the most important technologies for transporting goods be-

tween countries are ocean and air shipping. As one reason for this, he points out that only

one quarter of the world’s exports takes place between countries that share a common

border. There are several approaches for capturing trade costs with empirical data (see

Hummels, 1999; Limao and Venables, 2001; Redding and Venables, 2002; Hummels, 2007,

for example), although indirect transport costs are particularly difficult to observe. In

gravity equations, transport costs are usually proxied by the distance between the capitals

or economic centers of two trading countries.

Border-related trade barriers are trade impediments which occur between countries due

to political, currency, language, cultural and other reasons. The problem with these

barriers is that there are many unobservable and probably even unknown effects. Some

barriers are observable, e.g. tariffs, currency volatilities and so on. However, there are

data limitations to the political barriers, as Anderson and van Wincoop (2004, section

2.1.1) criticize. Notably, it is very service-intensive to overcome barriers like language,

mentality, bureaucracy and so on. In gravity equations, border-related trade effects are

usually controlled by a set of dummy variables for common properties of the countries.

Costs for wholesale and retail have to be borne by suppliers both foreign and domestic.

Since these costs differ between countries, they are likely to enter the exporter’s decisions.

Wholesale and retail costs are captured in gravity equations via price indices (following

Baier and Bergstrand, 2001, and the earlier work by Bergstrand) or, more commonly, mul-

tilateral resistance terms which are usually controlled by country fixed-effects (Anderson
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and van Wincoop, 2003).

In summary, per-unit costs of bringing goods from one country, tij, into another country

should depend on (a) transport and (b) border effect cost, while (c) costs for wholesale

and retail should be captured by individual country effects (Πi, Pj).

The transport sector typically uses fixed cost intensive infrastructures: harbors, airports,

rail networks, road systems. Limao and Venables (2001) find that infrastructure plays an

important role for the determination of transport costs, especially for landlocked countries.

As market power indicates a presence of fixed costs and economies of scale. For example,

Hummels, Lugovskyy, and Skiba (2009) find evidence for market power and price discrim-

ination in the ocean shipping industry. Furthermore, work by Hummels (and co-authors)

indicates that the usage of fixed iceberg-melting-costs is an inappropriate measure for

transport costs. Hummels and Skiba (2002, pp. 2–6) give a detailed discussion of the

sources of scale effects in the transport sector. As an introductory example, they argue

that shipping goods from Ivory Coast to the U.S. East Coast is twice as costly as shipping

goods from Japan to the U.S. West Coast, although distance is the same in both cases.

Costs for border-related effects are likely to have economies of scale as well. As noted

above, overcoming border-related effects can be closely related to services. Here, social

networks, communication networks and many more factors play an important role (see

Jones and Kierzkowski, 1990, for a discussion of the particular case in which traded goods

are produced in a fragmented industry) and there should be a relationship between costs

for these service networks and the underlying exports, similar to a technology with fixed

costs. If there is more trade, per-unit costs for translations, filling-out forms, overcoming

bureaucracy, and others should be lower.

These arguments lead to the proposition that average trade costs should depend on bi-

lateral exports and that the relationship between them is inverse.
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3.4 Interaction between the Gravity Equation and

Trade Cost Function

If bilateral trade costs depend on the underlying exports, an endogeneity problem may

bias estimations from gravity equations. After inserting the endogenous average trade

costs into the gravity equation, we can extract a functional term that reveals the bias and

discuss it.

The first step is to bring endogenous trade costs into a functional form that is suitable

to empirical studies using the gravity equation. In a critique of modeling trade costs as

iceberg costs, Grossman (1998) suggests a log-linear form to concretize the trade cost

function. Following this suggestion, a logarithmic form is applied to the average trade

cost function (3.12) and, according to the outlined hypotheses, augmented by the exports

X0
ij:

tij(w
k
ij, X

0
ij) = eβ0

(
wkij
)βk (X0

ij

)βX . (3.13)

If there are economies of scale in the trade sector, the elasticity of average trade costs

with respect to net exports, βX , is expected to be lower than 0. The empirical question

of these scale effects will be checked in chapter 4 of this study. Logarithmizing equations

(3.9) and (3.13) yields:

lnX0
ij = K + FEij + lnYi + lnYj − σ ln tij, (3.14)

ln tij = β0 + βk lnwkij + βX lnX0
ij, (3.15)

with a constant K =
[
ln 1

Yw

]
and the fixed-effects FEij = (σ − 1) ln (Πi · Pj).

The second step is to insert the trade cost function into the gravity equation. Substituting

equation (3.15) into equation (3.14) yields:

lnX0
ij = K + FEij + lnYi + lnYj − σ

(
β0 + βk lnwkij + βX lnX0

ij

)
. (3.16)

In equation (3.16), net exports X0
ij appear on both sides and since it has got an impact
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on trade costs (βX 6= 0) it should cause a bias.

The third step is to extract the bias term. Equation (3.16) can easily be solved for lnX0
ij:

lnX0
ij =

1

1 + σβX

(
K ′ + FEij + lnYi + lnYj − σβk lnwkij

)
, (3.17)

with K ′ = K − σβ0. The bias of ignoring endogeneity of trade costs is thus given by the

fraction 1/(1 + σβX).

As noted before, the elasticity of substitution σ is assumed to be larger than 1, based on

empirical evidence (Anderson and van Wincoop, 2004). If there are economies of scale

in the trade sector and per-unit trade costs decrease for exports, βX should be negative.

Thus, the product σβX is expected to be negative. If σβX lies between 0 and −1, the bias

is positive and larger than one. This would imply that coefficients are overestimated as

long as trade costs are not considered to be endogenous. With σβX converging against

−1, the bias grows exponentially toward infinity. At σβX = −1 there is no solution for

the bias. If σβX is smaller than −1, the fraction becomes negative. This would imply that

the signs of the estimated effects are changed – which would lead to implausible estimates

and that would be contradictory to the success of the gravity equation.

According to Anderson and van Wincoop (2004), most studies of the substitutability of

internationally traded goods estimate substitution elasticities σ between 5 and 10. If βX

is exactly −1/5 or −1/10, respectively, the bias would be indefinite. As long as the value

of βX is smaller than these values, the bias would reverse the parameters’ signs and the

gravity equation would not be as famous as it is. Given that βX is higher than these

values, but smaller than 0, estimated parameters are biased upwards. Insofar as βX = 0,

which has been implicitly assumed in gravity works until now, the fraction would be one,

implying that there is no bias. Provided that βX > 0, exports would have an additive

effect on average trade costs which is hard to explain in a sector that is likely to deal

with fixed costs. In this case, standard estimations with the gravity equation would be

underestimated and the discussion about the border puzzle would go the wrong direction.

The bias term as a function of βX with a fixed σ is plotted in figure 3.1.
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Figure 3.1: Plot of the Bias Term with a Given Value for the Elasticity of Substitution σ.

If exports have an impact on per-unit trade costs and if the discussion about the puzzle

of the implausibly high estimates for trade barriers in gravity equations is on the right

track, βX must lie between 0 and the inverse value of −σ. This indicates that average

trade costs’ elasticity with respect to exports should be low, but not zero.

It is important to recognize that this bias only appears if the effects of the right-hand

side variables are interpreted as direct effects on trade. A change in trade cost factors,

e.g. a tariff reduction between two countries, lowers trade costs which leads to more trade

between the two respective countries. This is the direct effect of the cost reduction on

trade. But theoretically, this direct effect would lead to a domino effect: The increased

export value lowers trade costs due to scale effects, the lower trade costs again increase

trade and so on. If we would take the bias-affected gravity function (3.17) and insert it

back into the trade cost function, the newly achieved trade cost function back into the

gravity function, and so on, we would converge to the original gravity function (3.14).

Thus, at the end, the results from traditional estimations must be interpreted as overall
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effects, assuming that the domino effect of trade costs and exports works completely free

of obstructions or time delays.

3.5 Conclusion

The theoretical literature about the gravity equation takes trade costs between two coun-

tries as exogenously given: trade costs affect the volume of bilateral trade. In all these

models, trade costs enter in terms of iceberg costs which can be interpreted as trade costs

per unit of exports. In this chapter, an alternative form of bringing trade costs into a

theory-based gravity equation is presented. The main argument is that, from a microe-

conomic point of view, trade costs should not be independent of the underlying exports.

Further, if we presume economies of scale in the trade sector, average trade costs should

decline with the underlying exports. If this relationship is not controlled in empirical

studies using the gravity equation, the estimated effects must be interpreted as overall

effects and might be biased if they are interpreted as direct effects on exports. The anal-

ysis of the bias suggests that the impact of exports on average trade costs should be very

inelastic, otherwise the results of gravity studies would be hard to explain. Yet, if this

impact is significant, the bias might explain overestimations, which could contribute to

the discussion of the “border-puzzle”.

Another interesting outcome of this model is that input prices of trade factors (denoted as

wkij) play an important role in a micro-founded trade cost function. Usually, trade barriers

are proxied by distance and some dummy-variables. However, micro-founded cost theory

postulates that proxies for input prices should enter the trade cost terms to reflect the

aggregated technology of the trade sector. Notably, Brun, Carrère, Guillaumont, and

de Melo (2005) achieve a higher explanatory power with additional price variables like an

oil price index which controls for such input prices.

Of course, it remains an empirical question whether the propositions of these theoretical

considerations hold. Recent work by Novy (2007) makes it possible to compute a theory-
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based index of bilateral trade costs which is equivalent to the geometric mean of two

countries’ iceberg-factors, tij and tji. Jacks, Meissner, and Novy (2008) use this approach

to regress (average) trade costs on the usual variables, but they still do not control for

exports. In the following chapter, I use this index for bilateral trade costs to test if there

is a simultaneous relationship between the gravity equation and the trade cost function.
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Estimation
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A basic assumption of the gravity equation for international trade is that increasing trade

costs lower exports. Yet, intuition and the theoretical considerations presented in the

previous chapter imply that a high export volume lowers bilateral trade costs as well:

A fixed cost intensive trade sector probably bears lower average costs with more trade.

In this case, standard gravity estimation might be biased due to simultaneity if they

are interpreted as direct effects. The empirical analysis pursued in this chapter finds

an empirical interdependency between exports and trade costs. Using a simultaneous

equation model to address this problem improves the estimates compared to the standard

gravity specification.

The theory introduced in the previous chapter argues that trade costs do not only deter-

mine trade flows, but trade flows also determine trade costs if there are economies of scale

(falling transport costs per dollar of export) in the trade sector, since the trade sector is

likely to be fixed cost intensive. This was shown by combining the gravity derivation from

a general equilibrium model (Anderson and van Wincoop, 2003) with a simple model of

a bilateral trade cost sector that minimizes trade costs with a given volume of export

to derive an endogenous tariff equivalent for trade cost. The consequence is a mutual

causality between trade flows and trade costs which might bias gravity results and thus

has to be checked. This chapter suggests a way to do so. Two empirical questions will be

proposed:

1. Are there economies of scale in the trade sector? This should be the case if trade

costs decline with increasing exports between two countries.

2. How are estimates biased if economies of scale in the trade sector persist, but go

unaddressed? This question will be analyzed by comparing the results of models

with and without the mutual interaction between exports and trade costs.

The chapter is structured as follows. Section 4.1 introduces the econometric estimation

strategy: the estimation of a simultaneous equation model consisting of a gravity equation

and a trade cost equation, where exports and a recently developed index for trade costs

(Novy, 2007) are the endogenous variables. Section 4.2 describes the data used in the
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estimation, section 4.3 presents the results of estimating the simultaneous equation model

and provides a comparison to the standard estimation strategies. Section 4.4 concludes.

4.1 Econometric Model

The traditional strategy to estimate a gravity equation is: take trade as the endogenous

variable and regress it on country sizes and a set of trade cost proxies. Yet our theoretical

considerations suggest, firstly, that these trade cost proxies affect trade costs rather than

exports, and, secondly, that trade costs could be affected by the exports inversely, due

to economies of scale in international trade. If this inverse causality between exports

and trade costs exsists, estimating a simultaneous equation model (SEM) should be the

appropriate strategy.1

Consider equations (3.15) and (3.14). Replace the theoretical coefficients by empirical

parameters, and augment the equations by the residual terms uij and vij to get the

structural equations:2

lnX0
ij = α0 + αYi lnYi + αYj lnYj + αt ln tij + uij, (4.1)

ln tij = β0 + βk lnwkij + βX lnX0
ij + vij, (4.2)

Since equation (4.1) depends on tij and equation (4.2) depends onX0
ij, the gravity equation

becomes a system of interdependent or simultaneous equations. The adequate estimator

is the two-stage-least-squares (2SLS) or three-stage-least-squares (3SLS) estimator. 2SLS

means that, in the first step, all endogenous variables of the equation system (tij and Xij)

1 For an conceptual overview see e.g. Greene (2000, chapter 16).

2 The subscripts for the time dimension are omitted here for simplicity.
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are regressed on all exogenous variables of the equation system (Yi, Yj and wkij):

lnX0
ij = π1 + π2 lnYi + π3 lnYj + πk4w

k
ij + ηij, (4.3)

ln tij = π5 + π6 lnYi + π7 lnYj + πk8w
k
ij + εij, (4.4)

with parameters π(·) and residual terms ηij and εij. These two equations are called reduced

form equations. Note that the reduced form equation (4.3) is identical with the traditional

specification of the gravity equation. In the second step, the estimated values for the

endogenous variables (t̂ij and X̂ij) are used as instruments to estimate the initial structural

equations (4.1) and (4.2).

This procedure is necessary because theory implies that both structural equations, (4.1)

and (4.2), contain endogenous variables. From an econometric point of view, endogeneity

of variables signifies that these variables are correlated with the error terms uij and vij.

The consequence is inconsistent estimates of the parameters. Since there is a correlation

between the error terms uij and vij, using a “feasible generalized least-squares” (FGLS)

estimator (where the estimators are weighted by the variance-covariance-matrix) helps to

improve the results. This procedure is known as 3SLS.

Since a panel data set will be used, certain techniques must be used to achieve consistent

results.3 As a baseline case, a pooled regression model is estimated where the panel

structure of the data is not considered. Anderson and van Wincoop (2003) suggest to

control for the countries’ multilateral resistances. To do so, I shall estimate a least-

square dummy variable (LSDV) model with dummy variables controlling for exporting

and importing countries as well as for the respective year (country-year or two-way fixed

effects). This strategy was first suggested by Mátyás (1997). Most recent studies use the

three-way fixed effects model (or country-pair-year fixed effects model), which controls for

country-pairs and time. This specification appears in most studies as the most appropriate

one.

3 See the explanations of section 2.2 in this study. See also e.g. Cheng and Wall (1999) or Baltagi, Egger,
and Pfaffermayr (2003) for an overview of panel data estimation strategies for gravity equations.
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There are two central questions from an analytical point of view:

Question 1 Are there economies of scale in the trade sector?

This should be the case if, in a SEM specification, the estimated value of βX in equation

(4.2) is significantly lower than 0.

Question 2 How are estimates biased if economies of scale in the trade sector persist,

but go unaddressed?

To analyze this question, I will estimate a restricted version of the equation system (4.1)

and (4.2) using an instrumental variable (IV) regression where αt = 0 for both the gravity

and the trade cost equation. If the theoretical suggestions regarding the bias term are

correct, the estimates for the parameters of the exogenous trade variables wkij should be

systematically higher than in the SEM specification.

4.2 Data

The data set comprises annual data for all 30 OECD countries4 for the years 1995 to 2006.

These countries are the largest economies in the world. They account for roughly 80% of

global GDP. Many studies use broader databases like the IMF’s directions of trade statis-

tics, which provide over 50 years of data for more than 100 countries. In these data sets,

zero trade flows sometimes occur, meaning that very small and remote countries might

have no trade relations with any other (see Helpman, Melitz, and Rubinstein, 2008).5 The

presence of zero trade flows requires alternative non-linear estimation strategies. An ad-

vantage of the OECD data set, apart from the sheer density of data, is that the proposed

estimation of a linear simultaneous equation model remains consistent because there are

no cases of zero trade flows.

The data for bilateral exports is taken from the OECD Database for Structural Analysis

4 Chile as the 31st member is not considered since it joins the OECD not until 2010.

5 This is also discussed in section 2.2 in this study.
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2008 (OECD STAN) and converted into logs (expij). GDP data is taken from the OECD

national account statistics and converted into logs (gdpi and gdpj). The wkij-variables are

performed as follows. Distance is calculated using the great-circle formula between the

capitals or economic centers6 of two countries in kilometers, converted into logs. As it is

a tradition in gravity equations, a set of variables is used to control for country charac-

teristics. These country characteristic variables are distinguished by exporting countries

(suffix i) and importing countries (suffix j). For the measure of common language (lang),

common border (bor), commonwealth of nations (cwn), former east block (ebl), island

(isl), landlocked countries (landl) and EU-membership (eu), dummy variables are used.

These dummy variables take the value 1 if the condition that is controlled by the dummy

applies, and 0 if not. Note that all of these dummy variables, as well as the distance

variable, are constant over time except for the variable for EU-membership (since several

countries became EU-members during the period). The variable trf records the log of the

“Freedom of Trade Index” published by the Heritage Foundation. Exchange rate volatil-

ity is calculated as the monthly standard deviation from the annual mean relative to the

annual mean for each bilateral exchange rate and converted into logs. The monthly data

for the US Dollar exchange rates of the respective countries were taken from the OECD

Financial Indicators database and recalculated into bilateral exchange rates.7

So far, the data set for a standard gravity framework is explained: expij, gdpi, gdpj and

a set of trade cost proxies. Since these trade cost proxies influence exports indirectly

via trade costs, a measure of overall average trade costs is needed. Novy (2007) derives

an index for the geometric mean of the overall trade costs (measured in iceberg costs)

between two countries from the theoretical gravity equation derived by Anderson and van

Wincoop (2003), which is also a starting point for the theoretical considerations of this

6 In the case of: Canada (Toronto), Germany (Frankfurt), Turkey (Istanbul) and United States (Chicago).

7 Because the Euro-countries are taken as one in this database, exchange rate changes between Euro-
countries before the introduction of the Euro were calculated from historical data taken from EUROSTAT.
Because this EUROSTAT database does not cover Greek Drachma and the Slovak Korun (since these
countries introduced the Euro later) monthly data for the Greek Drachma exchange rate was taken from
the US Federal Bank, for the Slovak Korun from the Slovak National Bank.
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study.8 This trade cost index can be computed by the formula:

tij =

(
XiiXjj

XijXji

) 1
2(σ−1)

. (4.5)

The higher the exports inside the respective countries relative to the exports between the

two countries, the higher the bilateral trade costs will be, and vice versa. The exports

within a country (intra-national trade), can be interpreted as the country’s production

minus the sum of the exports into all countries. Since export data are measured in gross

shipments while GDP data are based on value added (and services that are not considered

in the export data) GDP is not suitable to calculate this index. Instead, following Wei

(1996) and Novy (2007), production data for goods extracted from the OECD STAN

Database are used and converted into US Dollars using the OECD Financial Indicators

annual exchange rates.

Unfortunately, production data are not available for 6 of the 30 countries.9 Therefore,

missing values for production were constructed using the following three steps.

In the first step, I assume that in countries with higher productivity (measured by per-

capita-income, source: World Development Indicators, WDI, 2008) the ratio between

value added and production is higher. Thus, I calculate the elasticity of the value

added/production-ratio with respect to per-capita-income using ordinary least-squares.

In the second step, I compute the missing data points from the estimated values of this

regression (if there are no data for production, but data for value added in the OECD

data).

There are still some missing data points because there are no value added data for Mexico,

Turkey, UK or USA available in the OECD database. Hence, in the third step, I take the

value added data from the WDI database and, using an adjusted regression (intercept =

8 The derivation of the index is displayed in appendix B. Novy (2007) shows in the latest version of his
paper (November 2009) that this index can also be derived from a number of other theory-based gravity
equations. Also note that already Head and Ries (2001) and Head and Mayer (2004) have derived versions
of this index using a Dixit-Stiglitz-Krugman model of international trade. This model corresponds to the
gravity equation of Anderson and van Wincoop (2003), used by Novy (2007), as it was shown in chapter
2.

9 These countries are: Australia, Ireland, Mexico, Turkey, UK and US.
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0) between OECD and WDI data, I find that OECD data systematically is 95% of the

WDI values. Consequently, I multiply WDI data for the value added by factor 0.95 and

pursue the same procedure as in the first and the second step to compute missing pro-

duction estimates for cases there are no value added data available in the OECD STAN

database, but in the WDI database. Missing values for the countries’ total exports are

also supplemented from WDI data, where 0.95 turns out to be the adequate adjustment

factor as well. The differences between the resulting total production values and the to-

tal export values reflect the remaining goods produced (and therefore traded) inside the

respective country.

Another crucial issue is the elasticity of substitution between the countries’ composite

goods, σ. In a survey of the empirical literature, Anderson and van Wincoop (2004)

find that this elasticity takes values between 5 and 10. Thus, following Novy (2007), the

elasticity of substitution is set σ = 8.10 Figure 4.1 illustrates the trade costs between

Germany and 8 of her trading partners. The index is measured as a tariff equivalent,

τij = tij − 1. For example, trade costs between Germany and the USA declined from

100% in the early 1990s to 80% in 2006. 100% tariff equivalent means in this context that

the cost for transportation, overcoming national borders and retail/wholesale in the target

market equals 100% of the value of the exported goods. Netherland and Austria have,

compared with other EU-members, relatively low trade costs with Germany. Switzerland

as a non-EU-member, which has a similar economic size and geographic and cultural

distance (or connectivity) to Germany like Austria, has comparatively high trade costs

with Germany. The trade costs with the eastern European countries Czech Republic and

Poland are nearly as high as those with the USA, although they declined faster over the

period. Overall, Germany’s trade costs became lower over the considered period.

Table 4.1 summarizes the data used for the estimation. Notice, that the log of the trade

cost index is negative between Belgium and the Netherlands for the three years from 2004

to 2006 (six observations). This is a counterintuitive number because a negative value

10 A sensitivity analysis using σ = 5 and σ = 10 leads to exactly the same results for the estimated
parameters of the exogenous variables.
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Figure 4.1: Trade cost index for Germany and 8 certain countries measured as tariff equivalent.

implies that the iceberg factor tij would be lower than 1 and thus must be interpreted

as a negative trade cost markup on the export value. The reason for this phenomenon is

probably that the markets of Belgium and the Netherlands are integrated on an extremely

high level. Furthermore, many goods from overseas arrive at the Dutch harbor of Rot-

terdam – the most important harbor of this region – and are then sent to Belgium which

systematically increases the exports compared to the respective national production val-

ues and thus affects the trade cost index. The six observations with negative values for

the log of the trade cost index are excluded from the estimation.

4.3 Results

Table 4.2 shows the estimates of the traditional gravity estimation strategy, where all

determinants of trade costs appear directly in the estimation equation. In column 1,

the results of the pooled regression approach are shown. Only two regressors, namely
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Table 4.1: Summary statistics of the OECD data set, over 12 years.

Variable Mean Std. Dev. Min. Max. Obs.
expij 20.147 2.344 5.323 26.481 9878
tij 0.810 0.256 -0.156 1.893 9418
gdpi/gdpj 26.419 1.532 22.672 30.204 10226
trfi/trfj 4.351 0.069 3.904 4.443 9972
dist 7.962 1.189 4.043 9.895 10226
exvol 0.938 1.144 -12.281 3.537 9428
lang 0.067 0.25 0 1 10226
bor 0.076 0.265 0 1 10226
cwni/cwnj 0.133 0.34 0 1 10226
ebli/eblj 0.133 0.34 0 1 10226
isli/islj 0.2 0.4 0 1 10226
landli/landlj 0.2 0.4 0 1 10226
eui/euj 0.544 0.498 0 1 10226

those of the island location of the importing country (islj) and the EU-membership of the

importing country (euj), do not have a significant impact on bilateral exports. Note that

the freedom of trade index for both, the exporting and the importing countries (trfi and

trfj), has a significantly negative impact on bilateral trade. That means that more liberal

importers have lower imports. This result is counter-intuitive.

Column 2 represents the results of estimating the LSDV model with country-year fixed

effects. In this model, the two freedom of trade variables (trfi and trfj,) the import-

ing country’s commonwealth-of-nations-membership (cwnj,) and the importing country’s

landlocked location (landlj), are not significant. Note that exchange rate volatility seams

to have a significantly positive effect on trade in this specification: More uncertainty

about exchange rates enhances trade. Also note that the signs of some dummies change

compared to the pooled regression specification.

Column 3 of table 4.2 shows the results for the three-way fixed effects estimator with

country-pair-year fixed effects. Here, all time-invariant variables are dropped due to

collinearity. All estimated parameters have got the expected signs: higher trade-freedom

(at least in the exporting country) and membership in the European Union have positive

impacts on trade. Note that the coefficients of the importing country’s freedom of trade

and of the exchange rate volatility are not significant at the 10%-level. A neutral exchange
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Figure 4.2: Residual-Analysis of the Standard Gravity Specification: Pooled Regression,
Country-Year Fixed Effects and Country-pair-Year Fixed Effects.

rate risk is not surprising. First, firms have possibilities to hedge this risk on financial

markets. Second, exchange rate risks are likely to play a higher role in the trade with

less-developed countries rather than those of the OECD.11

To compare the three kinds of specifications, the residuals are plotted in figure 4.2. While

the residuals of the pooled and country-year fixed effects specifications increase with the

logarithmized export volume, in the country-pair-year fixed effect model they are dis-

tributed around zero independently from the export volume. This observation indicates

that the country-pair-year fixed effects model should be preferred. Furthermore the stan-

dard errors of the estimated parameters are lower and the results are more intuitive overall.

Therefore, the three-way fixed effects estimator should be preferred over the other two

estimators.12

11 In an earlier version of this study, where the dummy variables were distiguished by “one country or
both countries” instead of “exporting country or importing country”, the coeffcients of all variables were
significant and had the expected sign.

12 It was also tested whether a random effects model is adequate. The Hausman-test rejects the null-
hypothesis that there are no systematic differences in the parameters of three-way fixed effects and
random effects, which implies that the three-way fixed effects estimator has to be preferred. In the
remaining analysis, the random effects estimator is not further discussed.
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Table 4.2: Basic Case: Results of the Standard Gravity Specification.

Pooled Regression Country-year FE Country-pair-year FE

(1) (2) (3)
gdpi 0.942 0.308 0.408

(0.009)*** (0.089)*** (0.049)***

gdpj 0.858 0.737 0.808
(0.009)*** (0.085)*** (0.040)***

trfi -0.396 0.268 0.252
(0.197)** (0.199) (0.113)**

trfj -0.315 -0.023 -0.063
(0.178)* (0.180) (0.086)

dist -1.034 -1.200 –
(0.014)*** (0.018)*** –

lang 0.655 0.604 –
(0.045)*** (0.048)*** –

bor 0.579 0.417 –
(0.044)*** (0.046)*** –

cwni -0.098 2.045 –
(0.036)*** (0.180)*** –

cwnj 0.370 -0.154 –
(0.037)*** (0.130) –

ebli -0.113 0.683 –
(0.038)*** (0.074)*** –

eblj -0.075 -0.867 –
(0.043)* (0.247)*** –

isli 0.312 3.693 –
(0.031)*** (0.316)*** –

islj 0.025 -0.175 –
(0.034) (0.096)* –

landli 0.057 -0.946 –
(0.030)* (0.187)*** –

landlj -0.425 -0.138 –
(0.034)*** (0.103) –

eui 0.221 0.639 0.603
(0.024)*** (0.052)*** (0.027)***

euj 0.012 0.182 0.181
(0.025) (0.056)*** (0.028)***

exvol -0.042 0.029 -0.005
(0.010)*** (0.009)*** (0.005)

Constant -16.768 -0.734 -13.382
(1.091)*** (3.365) (1.697)***

Observations 8492 8492 8492
Adjusted R2 0.83 0.90 0.98
Note: Robust standard errors in parentheses.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 4.3: Theory-based estimates without economies of scale in trade (IV) and with economies
of scale in trade (SEM).

Instrumental Variable Estimator (IV) Simultaneous Equation Model (SEM)

(1) (2) (3) (1) (2) (3)
3SLS 3SLS 2SLS 3SLS 3SLS 2SLS

gdpi 0.540 0.344 0.378 0.537 0.346 0.378
(0.005)*** (0.043)*** (0.030)*** (0.005)*** (0.042)*** (0.030)***

gdpj 0.513 0.527 0.516 0.516 0.525 0.516
(0.005)*** (0.043)*** (0.030)*** (0.005)*** (0.043)*** (0.030)***

tij -6.251 -7.000 -6.857 -6.252 -7.000 -6.857
(0.037)*** (0.039)*** (0.227)*** (0.037)*** (0.039)*** (0.227)***

Constant -2.613 2.356 2.211 -2.619 3.282 2.180
(0.211)*** (1.421)* (1.371) (0.210)*** (1.843)* (1.371)

expij – – – -0.065 -0.031 -0.036
– – – (0.001)*** (0.010)*** (0.004)***

trfi -0.146 -0.035 -0.028 -0.019 -0.023 -0.014
(0.029)*** (0.021)* (0.009)*** (0.013) (0.017) (0.008)*

trfj -0.156 -0.036 -0.028 -0.024 -0.021 -0.019
(0.029)*** (0.021)* (0.009)*** (0.014)* (0.017) (0.007)**

dist 0.141 0.172 – 0.097 0.134 –
(0.002)*** (0.002)*** – (0.001)*** (0.012)*** –

lang -0.149 -0.086 – -0.066 -0.067 –
(0.009)*** (0.005)*** – (0.004)*** (0.007)*** –

bor -0.103 -0.055 – -0.027 -0.043 –
(0.008)*** (0.005)*** – (0.004)*** (0.006)*** –

cwni -0.032 -0.119 – -0.009 0.055 –
(0.006)*** (0.014)*** – (0.003)*** (0.023)** –

cwnj -0.032 -0.243 – -0.010 -0.122 –
(0.006)*** (0.010)*** – (0.003)*** (0.042)*** –

ebli 0.080 0.057 – 0.019 0.176 –
(0.007)*** (0.011)*** – (0.003)*** (0.041)*** –

eblj 0.080 0.050 – 0.021 -0.004 –
(0.007)*** (0.011)*** – (0.003)*** (0.026) –

isli 0.035 0.029 – -0.013 0.035 –
(0.005)*** (0.010)*** – (0.003)*** (0.008)*** –

islj 0.036 0.146 – -0.011 0.026 –
(0.005)*** (0.014)*** – (0.003)*** (0.008)*** –

landli 0.081 0.136 – 0.011 0.187 –
(0.006)*** (0.008)*** – (0.003)*** (0.064)*** –

landlj 0.079 0.134 – 0.012 -0.012 –
(0.006)*** (0.008)*** – (0.003)*** (0.015) –

eui -0.044 -0.067 -0.061 -0.017 -0.051 -0.037
(0.004)*** (0.006)*** (0.003)*** (0.002)*** (0.009)*** (0.004)***

euj -0.041 -0.067 -0.061 -0.016 -0.048 -0.049
(0.004)*** (0.006)*** (0.003)*** (0.002)*** (0.006)*** (0.003)***

exvol 0.002 -0.004 0.000 0.004 -0.003 0.000
(0.002) (0.001)*** (0.001) (0.001)*** (0.001)*** (0.001)

Constant 1.004 -0.041 1.188 1.559 0.570 1.722
(0.172)*** (0.129) (0.056)*** (0.081)*** (0.285)** (0.086)***

Note: Robust standard errors in parentheses.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 4.3 shows the results after using the instrumental variable and simultaneous equa-

tion model techniques. The left three columns show the results under the restriction that

there are no economies of scale in the trade sector using the IV estimator. The right three

columns comprise the unrestricted case of estimating a SEM specification. Three impor-

tant outcomes can be seen from this table. First, the impact of exports on trade costs is

significantly negative in the three SEM specifications. Second, the signs of the trade cost

variables (wkij) have the expected signs at least in the country-pair-year fixed effects spec-

ification. Third, the estimates for trade cost proxies are lower in the SEM specification

compared to the IV specification. That means that controlling for economies of scales in

the trade sector lowers the estimated direct impacts of the trade cost proxies by 20 to

50% in the three-way specification.

To examine which kind of specification of the SEM estimation has the best fit, the residuals

of the pooled, country-year fixed effects and country-pair-year fixed effects model are

plotted in figures 4.3 (for the gravity equation) and 4.4 (for the trade cost equation). Just

like in figure 4.2, the residuals of the three-way model are distributed around zero, which

indicates that the country-pair-year fixed effects specification makes the best fit. Note

that in the SLS estimation, the deviation of the residuals from zero is lower than in the

OLS estimation.

The Durbin-Wu-Hausman-test is performed to check whether a simultaneity problem ex-

sists. The test consists of two steps. In the first step, tij is regressed on all exogenous

variables in the model to calculate the estimated residual vector ε̂ij – see reduced form

equation (4.4). In the second step, this residual vector is plugged into the structural

equation of interest (4.1) as an additional regressor. The null hypothesis is that the

coefficient of the residuals is 0. If the Wald-test suggests that the coefficient of ε̂ij is

significantly unequal to 0, an interdependent relationship between equations (4.2) and

(4.1) is likely. In the present case, such a relation could be found in all three panel speci-

fications. Estimating the structural form directly via OLS yields biased and inconsistent

results while the results of the simultaneous equation model are at least consistent. In all

three panel specifications, the null hypothesis is rejected and consequently the application
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of the SEM-strategy should be preferred.

However, the Sargan-test rejects the hypothesis that the instrument variables are chosen

adequately. In this test, expij is regressed on gdpi, gdpj and tij instrumented by the trade

cost proxies (and fixed-effects dummies, respectively) to achieve the residual vectors ûIVij .

This is the residual vector from the IV-regression reported in the upper-left part of table

4.3. Then, the obtained residual vector ûIVij is regressed on all exogenous variables in

the model: gdpi, gdpj and all trade cost proxies. From this regression, the Sargan-

test-statistic can be computed as the product of the number of observations and the

coefficient of determination (R-square). R-square close to 0 implies that there is less

correlation between the instruments and the error term, and therefore the instruments

tend to be exogenous. This is the null hypothesis. Under the alternative hypothesis, the

instruments are correlated with the error term and are therefore endogenous. The test

statistic follows a χ2
k−r distribution, where k − r is the difference between the number of

instruments (or trade cost proxies, respectively) minus the number of endogenous variables

on the right-hand side (which is one: tij). The null hypothesis of valid instruments must

be rejected in all three panel specifications, meaning that the results of the instrumental

variable and simultaneous approach should be biased. Note that the instruments used in

these approaches are also used in the traditional gravity equations – like equation (4.3)

– to proxy trade costs. If they are endogenous, they also bias the standard (reduced

form) specification. Consequently, not only is the IV/SEM approach biased, but the

traditional approach to estimate the gravity equation as well, if these variables are not

chosen adequately. It will be a task for future research to find more adequate variables

that help to fit the trade cost function. Especially, those variables which reflect more

direct cost sources, might be a key as it was discussed in the conclusions of the previous

chapter, though there are hardly any data available.

Two central research questions were proposed in section 4.1. In summary, the results

suggest the following answers:

Answer 1 Are there economies of scale in the trade sector?

Evidently yes. The results reported by table 4.3 yield the following conclusions: First, the
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Figure 4.3: Residual-Analysis of the Theory-Based Gravity Equation: Pooled Regression,
Country-Year Fixed Effects and Country-pair-Year Fixed Effects.

Figure 4.4: Residual-Analysis of the Theory-Based Trade Cost Equation: Pooled Regression,
Country-Year Fixed Effects and Country-pair-Year Fixed Effects.
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effect of exports on trade costs is significantly negative in the SEM-specification. Second,

the Hausman-test indicates the presence of simultaneity.

Answer 2 How are estimates biased if economies of scale in the trade sector persist, but

go unaddressed?

Ignoring the endogeneity of trade costs tends to overestimate the effects of trade cost

proxies. This can be seen after comparing the left part of table 4.3 with the right part.

Nearly all of the wkij-variables are considerably lower in the SEM estimation. However,

the results of all estimated models must be interpreted carefully since the Sargan-test

indicates that the wkij-variables are not chosen adequately – a problem that cannot easily

be solved. This is due to the lack of data for variables that better reflect the components

of trade costs rather than of country characteristics.

4.4 Conclusion

Studies that apply the gravity equation take trade costs as exogenously given. However,

theoretical considerations and intuition from chapter 3 suggest that exports between two

countries depend on bilateral trade costs and bilateral trade costs depend on the exports

between the two countries (if there are economies of scale in the trade sector). If this

interdependence between exports and trade costs exists and is not addressed, estimates

might be biased.

The empirical results of this chapter give evidence that economies of scale in international

trade do exist. Using a 3SLS/2SLS regression yields the result that higher trade between

two countries implies lower bilateral trade costs. Comparing the results of this regression

with an assimilable IV approach, where the impact of exports on trade costs is neglected

by assumption, shows that ignoring the interaction of exports and trade costs tends to

result in higher coefficients. This result might be a contribution to the broad discussion

of presumably, overly high coefficient estimates in studies using the gravity equation. It

also shows that purely regressing the trade cost index on its determinants and ignoring
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the effect of exports on the trade cost index in the structural form (4.2) – or similarly the

GDPs in the reduced form trade cost equation (4.4) – should lead to biased results.13

However, it will be a task for future research to find more adequate exogenous variables

for the trade cost function. The Sargan-test shows that these variables are not completely

exogenous. This also implies that they are not appropriate as proxies for trade costs in

the traditional estimation strategy. As a consequence, this leads to biased results for both

the traditional approach and the IV/SEM approach pursued in this study. Using variables

that more exactly reflect trade cost components instead of country characteristics might

help to solve this problem, but such variables are hardly available.

The estimation of a gravity model as a simultaneous equation model with a gravity equa-

tion and a trade cost equation becomes feasible with a comprehensive index for the tariff

equivalents of bilateral trade costs, as it has been proposed by Novy (2007). The presence

of a measure for comprehensive trade costs between country pairs also makes it possible

to compute empirical values for the multilateral resistance terms (that Anderson and van

Wincoop (2003) introduced into the gravity literature). With concrete data for trade costs

and multilateral resistances, we can quantify each variable on the right-hand side of the

gravity equation by Anderson and van Wincoop (2003). This will be the task of the next

two chapters. The following chapter demonstrates a way to compute the concrete values

of multilateral resistances. Chapter 6 presents the results of estimating the theory-based

gravity equation with respect to quantified multilateral resistances.

13 Examples of the application of a trade cost function that ignores exports or country size are: Jacks,
Meissner, and Novy (2008), and Olper and Raimondi (2009).
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This chapter builds on a theoretical derivation of the gravity equation provided by Ander-

son and van Wincoop (2003). They conclude that exports depend not only on bilateral

trade costs, but also on bilateral trade costs relative to a measure of both countries’ trade

costs with all other countries (i.e. the so-called multilateral resistances).

The aim in this chapter is to find a direct computational solution for multilateral resis-

tances. On its right-hand side, the theory-based gravity equation (3.8) has a directly mea-

surable part, containing the GDPs, and an indirectly measurable part, containing trade

costs and multilateral resistances. The indirectly measurable part is usually obtained by

replacing tij via proxy variables (like distance, exchange rate volatilities, membership in a

certain country group and many more) and controlling multilateral resistances by fixed-

effect dummies (country or country-pair dummies). In the previous chapter, I replaced

the indirect method of considering bilateral trade costs by a novel index (Novy, 2007)

that makes it possible to yield direct data for bilateral trade costs. In this chapter, I

use this index to compute numerical values for the multilateral resistances of the trading

countries. Consequently, I achieve data for all the right-hand side variables of Anderson

and van Wincoop’s theory-based gravity equation.

Recent work by Baier and Bergstrand (2009) pursues a similar aim. They use a Taylor-

series expansion to solve for multilateral resistances. However, this approach requires a

normalization of the multilateral resistances to a reference country, so that each computed

multilateral resistance must be interpreted relative to a certain country that has to be

chosen in advance. In contrast, my approach is able to compute direct absolute values for

the multilateral resistances. A normalization to a certain country is not necessary.

This chapter is organized as follows. Section 5.1 explains how multilateral resistances

work in the theory-based gravity equation. The theory-based index for trade costs by

Novy (2007) was already introduced in the previous chapter. The calculation of this

index is briefly repeated in section 5.2. The presence of direct data for bilateral trade

costs makes it possible to solve the multilateral resistance terms. A procedure to do so is

demonstrated in section 5.3. Section 5.4 concludes.
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5.1 Background

In a general equilibrium framework, with many countries trading composite goods that

are differentiated by country of origin, Anderson and van Wincoop (2003) derive the

following gravity equation:

Xij =
Yi · Yj
Yw

·
(

tij
Pi · Pj

)1−σ

. (5.1)

Here, Yi and Yj are the exogenously given GDPs of the countries. Yw symbolizes the GDP

of the whole world. Each country’s GDP is assumed to present a country characteristic

composite good, and σ is the elasticity of substitution between these goods. Moreover,

it is assumed that σ > 1, which is supported by empirical evidence (see Anderson and

van Wincoop, 2004). Trade costs in terms of iceberg trade costs are indicated by tij > 1.

These iceberg costs can be interpreted as a tariff equivalent: selling a good from country

i in country j raises the price on country j’s market by (tij−1)%. Keep in mind that this

modeling of trade costs reflects per-unit trade costs rather than total trade costs. This

means that tij describes the average markup of trade costs on each dollar of transport

value. Furthermore, it is assumed that domestic trade costs are benchmarked to 1, tii =

1, and that transport costs between two countries are symmetric, tij = tji.
1 Pi and

Pj denote the exogenously given multilateral resistances of the exporting or importing

country, respectively. They are derived from a Dixit-Stiglitz price index and can be

1 This assumption of symmetry could be relaxed, but because the empirical trade cost index introduced
in section 5.2 is a geometric mean of trade costs and thus a symmetric measure of trade costs, this
assumption helps to simplify.
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written as:2

Pi =

(∑
j

(
tij
Pj

)1−σ

· sj

)1/(1−σ)

, (5.2)

Pj =

(∑
i

(
tij
Pi

)1−σ

· si

)1/(1−σ)

. (5.3)

Multilateral resistances can be interpreted as an index for the overall accessibility to

trade of a country. In the second multiplier of gravity equation (5.1), bilateral per-unit

trade costs tij appear in relation to the respective countries’ multilateral resistances.3

For illustration, imagine two countries lying isolated from the rest of the world on one

island in the ocean, far away from the next continent. Bilateral average trade costs

measured by iceberg-factor tij might be low and this should guarantee a higher trade

volume between both countries. Yet, the relatively high trade costs with the rest of the

world have an additional, positive effect on the bilateral trade volume. If the same two

island-countries were two small countries in the middle of a huge continent, surrounded

by many large countries, multilateral resistances would probably be much lower and thus

the trade volume between the two countries would be lower, even if for the GDPs and tij

the same levels are chosen.

2 Note that Anderson and van Wincoop (2003) distinguish more precisely between multilateral resistances
of exporting countries on the one hand and multilateral resistances of importing countries on the other
hand, denoted as Πi and Pj in the previous chapters, see equation (3.8). If trade costs are assumed to
be symmetrical between all countries (tij = tji), which is also a relevant assumption for this study, it can
be shown that the export multilateral resistance of a country equals the import multilateral resistance,
so that Πi = Pi (Anderson and van Wincoop, 2003, p. 175).

3 Notably, the effect of multilateral price indices was already stated in the first theoretical derivations of
the gravity equation (see Anderson, 1979; Bergstrand, 1985). But Anderson and van Wincoop (2003)
concentrated this issue on the elegant formulation of equation (5.1) and were able to conclude that
ignoring multilateral resistances leads to biased results.
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5.2 Computing Bilateral Trade Costs

Before we start to solve the multilateral resistance equations (5.2) and (5.3), we need

data for the bilateral trade costs tij. Building on the theoretical framework of the gravity

equation introduced by Anderson and van Wincoop (2003), Novy (2007) derives an index

for the geometric mean of the bilateral trade costs between two countries:

tij =

(
XiiXjj

XijXji

) 1
2(σ−1)

. (3.15)

In this index, trade barriers between two countries are a function of the ratio between

intra-national trade (Xii, Xjj) and international trade (Xij, Xji). The higher the trade

inside a country relative to its exports to the other country, the higher the bilateral trade

costs will be, since σ is assumed to be larger than 1. Note that this index is a comprehen-

sive measure of trade costs. These comprehensive trade costs can be deconstructed into

measurable components and not measurable components.4

As the necessary data are available from several sources, equation (3.15) makes it feasible

to compute a theory-based index for the overall trade costs between two countries. In

this chapter, I use a set of 23 OECD countries for the years 1995 to 2005.5 The data

source for bilateral exports is the bilateral trade statistics of OECD’s Structural Analysis

(OECD STAN). Following Novy (2007), intra-national trade flows are computed as a

country’s total production minus total exports. If it is available, the production data is

taken from the OECD STAN data (converted into US Dollars using the OECD Financial

Indicators annual exchange rates). Since there are many missing observations (e.g. Turkey

is altogether unreported in this data set), I compensate for the missing data by using data

4 See Anderson and van Wincoop (2004) for a comprehensive discussion of trade costs. They decompose
overall trade costs into three classes: transport costs, border-related costs and retail/wholesale costs. See
also section 3.3 of this study.

5 The countries are selected so that the full data for all variables which are necessary to compute multilateral
resistances are available for the considered period. This is necessary to make the resulting values for
multilateral resistances comparable over time. The countries covered by the data set are: Australia,
Austria, Canada, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea,
Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom and the
United States.
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from the World Development Indicators 2008.6

5.3 Computing the Multilateral Resistances

Multilateral resistances, as they are given by equations (5.2) and (5.3), become computable

if there are data for the world GDP shares of the countries i and j, si and sj, as well as for

bilateral trade costs tij. While GDP share data are directly available from several data

sources (like OECD STAN), trade costs can be measured by the index presented in the

previous section. Therefore it is possible to compute multilateral resistances by solving

the equation system given by equations (5.2) or (5.3), respectively.

5.3.1 The Equation System and its Solution

To understand the algebraic structure of the multilateral resistance index, it is useful

to bring (5.2) into a form that shows the equation for each particular country i, j ∈

{1, . . . , C}:
P1 = 1

P1
ϑ11s1 + 1

P2
ϑ12s2 + · · · + 1

PC
ϑ1CsC ,

P2 = 1
P1
ϑ21s1 + 1

P2
ϑ22s2 + · · · + 1

PC
ϑ2CsC ,

...
...

...
. . .

...

PC = 1
P1
ϑC1s1 + 1

P2
ϑC2s2 + · · · + 1

PC
ϑCCsC ,

(5.4)

where C is the number of all countries, Pi ≡ P
(1−σ)
i and ϑij ≡ t

(1−σ)
ij . Note that ϑii = 1

since tii is assumed to be 1 and that ϑij = ϑji due to the symmetric structure of the

trade cost index tij (which is calculated as the geometric mean of bilateral trade costs).

In equation system (5.4), the world income shares (si, sj) are known from GDP data,

transport costs (tij) are constructed and a value for the elasticity of substitution (σ)

can be assumed with reference to empirical studies. Therefore it is possible to define

6 See section 4.2 of the previous chapter for a detailed description of how to calculate the trade cost index.
The procedure used in this chapter is exactly the same. The only difference is that the data set of this
chapter is smaller, since it appears necessary to use a data set without any missing values.
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coefficients bij ≡ ϑijsj. Dividing each equation of system (5.4) by the left-hand side and

denoting each unknown as 1/Pi = zi yields:

1 = z1 · (z1b11 + z2b12 + . . . + zCb1C),

1 = z2 · (z1b21 + z2b22 + . . . + zCb2C),
...

...
...

...
. . .

...

1 = zC · (z1bC1 + z2bC2 + . . . + zCbCC),

(5.5)

or in a compact form:

1 = zi ·

(
C∑
j=1

zjbij

)
∀ i, j ∈ {1, . . . , C}.

Solving this polynomial equation system is not trivial, but possible. Computer algebra

systems offer numerical algorithms for the solution of polynomial equation systems (e.g.

the NSolve[]-statement of Wolfram’s Mathematica). Using such applications with nu-

merical examples has shown that there are many solution vectors. Already in the case

C = 7 there are more than 100 solutions. But only one certain solution vector is of eco-

nomic interest: a solution with only real and positive numbers. The numerical examples

have also shown that there is always exactly one vector that consists strictly of real and

positive components. However, in a computer output with more than 100 solutions it is

hard to find this particular vector. The data set used in this study includes 23 countries,

which makes it useful to construct an alternative approach that finds only the relevant

solution of the equation system.

The idea behind this approach is simple. An equation system is solved if the left-hand

side equals the right-hand side for each equation after inserting numerical values for the

unknowns. If we choose certain values for each P on the right-hand side of equation system

(5.4) which yield the same values for each corresponding P on the left-hand side, these

chosen values must be a solution for the equation system. The method employed to find

these values works as follows. Using equation system (5.4), we choose one singular value

for all the Pj on the right-hand side, call it P(0), and compute Pi(1) =
(

1
P(0)

)
·
(∑

j ϑij · sj
)

in a first round. Note that the value of P(0) is the same for each country j, meaning
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that the start value is independent of the respective country. Then we use the resulting

Pi(1)-vector from this calculation to compute Pj(2) =
(∑

i

(
1
Pi(1)

)
· ϑijsi

)
in a second

round. This procedure is repeated until each Pi converges, meaning that there are no (or

negligibly few) changes after several repeated recalculation rounds. In this case the value

of each P on the right-hand side equals the value of the corresponding P on the left-hand

side: we yield a certain value for each Pi on the left-hand side that is equal to each Pis

plugged in on the right-hand sides of the equations. This must be one solution of the

equation system.

How do we choose the right value, P∗(0)? Running the recalculation of the data sample

with overly small values of P(0) leads to an alternating sequence: the results of the odd

rounds of recalculation are too low, the results of the even rounds are too high and so

on. Running the recalculation of the data sample with overly high values for P(0) leads

to an adverse alternating sequence, where the odd recalculation rounds are too high and

the even recalculations too low. The closer P(0) is to the optimal starting value P∗(0), the

smaller is the amplitude of the recalculated values.

5.3.2 An Illustrative Example

An example shall help to understand this procedure. With a few tricks, a set of three

polynomial equations can easily be transformed into a square linear equation system

solvable with Cramer’s Rule. This direct solution is a reliable benchmark for the results

from the numerical procedure. Although the tricks to achieve the square linear system

do not exactly meet the assumptions of the original model, this example might help one

to understand the mechanics of solving the equations.

Starting from equation system (5.5), define the unknown zij = zi · zj and multiply each

summand in the parentheses on the right-hand side of (5.5) with zi for the case C = 3,
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to get:

1 = z11b11 + z12b12 + z13b13,

1 = z21b21 + z22b22 + z23b23,

1 = z31b31 + z32b32 + z33b33.

(5.6)

Assume that bii = 0. Note that this assumption does not adequately reflect the definition

of multilateral resistances. But it is necessary to get a symmetric linear equation system.

Following the assumptions of the economic model, each bii is strictly greater than 0 because

tii = 1, σ > 1 and 0 < si < 1. More precisely, this changed assumption ignores country

i itself in the summation of all countries to compute multilateral resistances as given by

equation (5.2).7 Since zij = zji, because 1/(PiPj) = 1/(PjPi), it becomes possible to

rewrite equation system (5.6) into a square linear equation system:

1 = z12b12 + z13b13 + 0,

1 = z12b21 + 0 + z23b23,

1 = 0 + z13b31 + z23b32,

(5.7)

or in matrix form: 
1

1

1


︸ ︷︷ ︸

1

=


b12 b13 0

b21 0 b23

0 b31 b32


︸ ︷︷ ︸

B

·


z12

z13

z23


︸ ︷︷ ︸

z

. (5.8)

Using Cramer’s Rule, this square linear equation system can easily be solved for the three

unknowns (z∗12, z
∗
13, z

∗
23):

z∗12 =
1

P1P2

=
−b13b23 + b23b31 + b13b32

b12b23b31 + b13b21b32

, (5.9)

z∗13 =
1

P1P3

=
b12b23 − b12b32 + b21b32

b12b23b31 + b13b21b32

, (5.10)

z∗23 =
1

P2P3

=
b13b21 + b12b31 − b21b31

b12b23b31 + b13b21b32

. (5.11)

7 Equation (5.2) becomes:

Pi =
(∑

j 6=i

(
tij

Pj

)1−σ
· sj
)1/(1−σ)

instead of
(∑

j

(
tij

Pj

)1−σ
· sj
)1/(1−σ)

.

The general theory-based case of transforming the polynomial equation system into a linear equation
system is presented in appendix C.
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Table 5.1: Assumed Data for the Numerical Example.

Country 1 2 3
GDP-share si 40% 35% 25%

Trade Costs tij
1 0 1.2 1.3
2 1.2 0 1.4
3 1.3 1.4 0

From these solutions it is possible to compute the values for the desired multilateral

resistances. Solving the system zij = 1/(PiPj) for each Pi with i, j ∈ {1, 2, 3} yields

P1 = P1/(1−σ)
1 =

(√
z∗23

z∗12z
∗
13

)1/(1−σ)

, (5.12)

P2 = P1/(1−σ)
2 =

(√
z∗13

z∗12z
∗
23

)1/(1−σ)

, (5.13)

P3 = P1/(1−σ)
3 =

(√
z∗12

z∗13z
∗
23

)1/(1−σ)

. (5.14)

Note that a real solution for the multilateral resistances can only be obtained, if there is

no negative z∗ij. This condition depends on the values of the bij-coefficients: tij, sj and

σ.8

Now, we consider a numerical example for the three country model. First we solve the

equations using Cramer’s Rule to get a benchmark and then we apply the numerical

algorithm. We use the data for countries 1, 2 and 3 of table 5.1 as given with an elasticity

of substitution σ = 8 and remember that the impact of a country on its own multilateral

resistances is ignored by assumption (tii = 0) to provide a special case, where a simple

solution of the equation system is possible. Country 1 is the biggest country and has the

lowest trade costs compared to the other two countries. Thus, we expect a low multilateral

resistance. For country 3, the opposite should be the case.

We directly solve the multilateral resistances to obtain a reliable reference. The values for

8 All four determinants used for Cramer’s Rule, the main determinant and the three column-replaced
determinants, must be greater than 0, or all of them must be smaller than 0.
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the coefficients bij = t−7
ij sj can be directly computed from table 5.1. Applying equations

(5.9) to (5.11) yields the solution to the equation system (5.8):

z∗12 = 6.399, (5.15)

z∗13 = 9.412, (5.16)

z∗23 = 12.047. (5.17)

Because no z∗ij is negative, it is possible to find real positive solutions for the multilateral

resistances by applying equations (5.12) to (5.14):

P1 = 1.122 (5.18)

P2 = 1.162 (5.19)

P3 = 1.228 (5.20)

Does the algorithm yield the same numbers for multilateral resistances? Under the as-

sumptions and with the numbers of table 5.1, we can rewrite equation system (5.4) thus:

P1 = 0 + 1
P2
· 0.098 + 1

P3
· 0.040,

P2 = 1
P1
· 0.112 + 0 + 1

P3
· 0.024,

P3 = 1
P1
· 0.064 + 1

P2
· 0.033 + 0,

(5.21)

Now we choose a common value for all multilateral resistances, P(0) ≡ P−7
0 = P−7

1(0) =

P−7
2(0) = P−7

3(0), and insert this value into all the P ’s on the right-hand side of equation

system (5.21) to obtain the values for the P ’s on the left-hand side, P1(1),P2(1) and P3(1).

Next, these values are used on the right-hand side to compute P1(2),P2(2),P3(2) and so on.

The results for different start values P(0) are reported in table 5.2. Four important out-

comes can immediately be seen from the numbers of this table. First, where the start

value P(0) is 1.15 (third line), differences between the individual rounds of recalculation

are relatively small, compared to the other results. These differences grow both if the

value for P(0) shrinks to 1.00 or rises to 1.50. Second, if starting values are lower than
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1.15 (line 1 and 2), results of an odd recalculation round are lower than those of an even

one. If a starting value larger than 1.15 is used (line 4 and 5), the opposite is the case: the

values from the 99th recalculation, for example, are always higher than the values from

the 100th recalculations. Third, after many recalculations the results alternate around

singular values of P1, P2 and P3. The value after 97 recalculations is the same as after

99 recalculations, the value after 98 is the same as after 100 recalculations. And fourth,

after a sufficiently high number of recalculations, the desired values given by the direct

solution of the equation (5.18) to (5.20) always lie between the maximum and minimum

values of the alternating sequences.

Is it possible to find a start value P ∗(0), where no differences between the single recalculation

rounds appear anymore? To face this problem, a search algorithm is used. Start for

example with P(0) = 1.00. The values after 100 recalculations are larger than those after

99 recalculations. Repeat the procedure with P(0) = 1.10 and then with P(0) = 1.20.

In the latter case, the alternating sequence changes: values after 100 recalculations are

lower than after 99. Now go down in steps of 0.01 until the structure changes at 1.15,

go up in steps of 0.001 and stop when the changes between recalculation 99 and 100 are

small enough, i.e. measured by the sum of differences between the values in the last

two recalculation rounds undertaken. This procedure leads to an optimal start value

P ∗(0) ≈ 1.158672. The more exact this start value is chosen, the closer the results of the

numerical simulation fit the results of equations (5.18) to (5.20).
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Figure 5.1: Simulation Results of the Three Country Example (Upward Approximation):
P(0) = 1.125 (light gray, large amplitude), P(0) = 1.15 (gray, small amplitude),
P(0) = P ∗(0) = 1.158672 (black, steady course).

Figures 5.1 and 5.2 finally illustrate the procedure graphically. Figure 5.1 starts with

values P(0) < P ∗(0). The amplitude first goes down, then up. Figure 5.2 starts with values

P(0) > P ∗(0). The amplitude first goes up, then down. In both cases, more distance

from P ∗(0) increases the amplitude between the recalculation results (light gray and gray

alternating sequences). Choosing the optimal value P ∗(0) leads to a steady course (black

bold sequence). Notice that the sequences with the optimal values converge toward the

solutions of the equation system which were detected with Cramer’s Rule.

5.3.3 Multilateral Resistances of the 23 OECD Countries

The numerical procedure is applied to the data set with 23 OECD Countries.9 Because

this panel data set comprises data of 11 years, it is necessary to compute the multilateral

resistances separately for each year. That means, we must separate the data by year and

9 To implement the computation, the programming environment of the software package STATA was
applied to write a custom program. This program is available upon request.
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Figure 5.2: Simulation Results of the Three Country Example (Downward Approximation):
P(0) = 1.175 (light gray, large amplitude), P(0) = 1.165 (gray, small amplitude),
P(0) = P ∗(0) = 1.158672 (black, steady course).

find 11 different start values. The algorithm to find these start values follows the same

idea as described in the example: start with 1, go up in steps of 1 until the amplitude

changes, then go down in steps of 0.1 until the amplitude changes, then go up in steps

of 0.01 and so on.10 The start value of the algorithm is 1. The first step size is 1. After

each change of the amplitude, the step size is set to one tenth of the step size before. The

number of recalculations with a given start value is 100.11

It is necessary to choose a condition when the convergence is sufficient and the program

stops searching for the optimal start value. As a measure of sufficiency, I choose the

sum of all differences between the last and the penultimate recalculation round. We thus

take the differences of all observations between the 100th and 99th recalculation round

and sum it up. If this sum is lower than ±10−6 the accuracy of the simulated values is

10 This algorithm is surely not the most efficient one. For larger data sets more advanced programming
efforts should be applied to minimize the runtime of the program.

11 To check the robustness of the simulation, the number of recalculations was extended up to 150. The
results remain exactly the same. The results also remain robust if other start values or step sizes are
used. The results remained also the same after taking other start values than 1 (e.g. 0 and 10).
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Table 5.3: Amplitude and Convergence of the Simulation.

Difference Mean Std. Dev. Min. Max.
∆1 = Pi(100) − Pi(99) −4.19 · 10−8 7.33 · 10−8 −2.38 · 10−7 1.19 · 10−7

∆9 = Pi(100) − Pi(91) −4.19 · 10−8 7.33 · 10−8 −2.38 · 10−7 1.19 · 10−7

∆2 = Pi(100) − Pi(98) 0 0 0 0
∆10 = Pi(100) − Pi(90) 0 0 0 0

Table 5.4: Descriptive statistics of ∆1 = Pi(100) − Pi(99).

Value Frequency Percentage Cumulation
−2.38 · 10−7 242 4.35 4.35
−1.19 · 10−7 1,650 29.64 33.99

0 3,498 62.85 96.84
1.19 · 10−7 176 3.16 100.00

Total 5,566 100.00

considered to be sufficiently high. For some years a marginal amplitude remains. In these

cases, the algorithm is stopped when the step size obtains a value of 10−9.

Are these conditions for breaking the algorithm adequate? There are two important

requirements on the simulation: first, the amplitude (meaning the difference between odd

and even recalculation rounds) should be zero, and second, the simulation must converge

after less than 100 recalculations. Table 5.3 reports some descriptive statistics over all

5,566 observations12 of the differences between the last (100th) and selected previous

recalculation rounds. The approximately optimal start value P ∗(0) results from the search

algorithm described above. The summary statistics of these differences between each

single realization of the 100th the 99th recalculation round (∆1 ≡ Pi(100) − Pi(99)) are

reported in the first line. If these differences deviate from zero (even if only a very small

number), there is still an amplitude and the start value obtained by the algorithm is

not yet adequate. As can be seen, the mean and standard deviation values are not zero.

However, the values are very low: they do not become relevant before the seventh decimal

place. So if these deviations from zero are due to a remaining amplitude, they are so

small that they can be neglected. It is worthwhile to take a closer look at this amplitude.

12 23 countries × 22 trade partners × 11 years = 5,566 observations.
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Table 5.4 shows that there are only four values taken by ∆1 over the whole 5,566 obser-

vations: −2.38 · 10−7, −1.19 · 10−7, 0 and +1.19 · 10−7. 63% of the obeservations take

exactly the value 0, the relativly “large” amplitude of −2.38 · 10−7 affects only 4% of the

observations. Because −2.38 · 10−7 is two times −1.19 · 10−7 which is the negative value

of +1.19 · 10−7, it is not unlikely that this bias results from a computational problem like

a systematic rounding error caused by the software used.

The second line of table 5.3 shows that over the last 9 recalculation rounds these differ-

ences are the same. This means that the amplitude is constant at least over the last 9

recalculation rounds. Analyzing the amplitude yields the same results as described in ta-

ble 5.4. The two last lines of table 5.3 show that there is no change reported for the 5,566

realizations of the multilateral resistances over the last 2 and the last 10 recalculation

rounds: ∆2 and ∆10 are exactly reported to be zero. This implies that the values have a

sufficiently low amplitude and that the values have attained their full convergence after

less than 90 rounds of recalculation.

Table 5.5 describes the derived multilateral resistance data for the 23 countries of the data

set, taken from the eleven years of observation. The country with the lowest multilateral

resistances is Canada. This result is unsurprising, because trade costs between Canada

and the United States are very low. The United States is the biggest economy in the set

which guarantees for a high weight (sj around 40%) in the summation over all countries. It

has relatively high multilateral resistances. From the definition of multilateral resistances

given by equation (5.2) or (5.3), it becomes obvious that the multilateral resistances of a

country must be low if this country has extremely low trade costs with an extremely large

country that has high multilateral resistances. Additional countries with low multilateral

resistances are the Netherlands, Germany, Ireland and the United Kingdom. Countries

with high multilateral resistances are the mediterranean countries Greece, Portugal and

Turkey, as well as the former Eastern Bloc countries Poland and Hungary. Note that

Poland, Turkey and especially Hungary were able to decrease their multilateral resistances

over the period from 1995 to 2005, while the level of Greece did not change over this time

and Portugal even raised its multilateral resistances. Another country with increasing
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Table 5.5: Summary statistics of the Multilateral Resistances by Country, over 11 years.

Country Min. Mean Max. Std. Dev.
Australia 1.444 1.483 1.519 0.022
Austria 1.371 1.399 1.424 0.017
Canada 1.002 1.041 1.123 0.035
Denmark 1.402 1.424 1.437 0.012
Finland 1.487 1.495 1.516 0.008
France 1.287 1.308 1.342 0.017
Germany 1.209 1.244 1.292 0.027
Greece 1.660 1.679 1.703 0.013
Hungary 1.451 1.510 1.632 0.061
Ireland 1.222 1.276 1.377 0.051
Italy 1.358 1.370 1.386 0.008
Japan 1.322 1.361 1.442 0.033
Korea 1.314 1.345 1.398 0.026
Netherlands 1.151 1.206 1.244 0.028
Norway 1.434 1.448 1.469 0.011
Poland 1.500 1.579 1.640 0.043
Portugal 1.623 1.637 1.651 0.008
Spain 1.418 1.442 1.479 0.018
Sweden 1.337 1.356 1.386 0.016
Switzerland 1.332 1.356 1.389 0.016
Turkey 1.551 1.613 1.703 0.047
United Kingdom 1.241 1.269 1.313 0.020
United States 1.442 1.506 1.542 0.028
Total 1.002 1.406 1.703 0.150

multilateral resistances is the United States which might be caused by the terrorist attacks

of September 11th 2001 for the years following this date. Figures 5.3 to 5.5 show the

development of the multilateral resistances of some OECD countries over the time period

from 1995 to 2005.

It must be stated that these results are a rough measure, because the data do not cover

the whole world but only 23 OECD countries. This leads to a bias of the results. Because

the equation system is a summation, the results must be systematically lower than the

true values as the missing countries do not appear in this summation. Furthermore,

the missing sum of the absent countries differs for each multilateral resistance solution

since the respective bilateral trade costs differ. Therefore, the parameters of the missing

multilateral resistances (bij) are affected accordingly. Yet, since the total GDP share of
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Figure 5.3: Countries with Low Multilateral Resistances 1995 to 2005.
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Figure 5.4: Countries with High Multilateral Resistances 1995 to 2005.
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Figure 5.5: Multilateral Resistances of Australia, Japan, Korea, and the U.S., 1995 to 2005.

the countries is more than 75% of the world GDP (which is the weight in the multilateral

resistance formula), the results should not differ too much from the real values. However,

for forthcoming studies, there might be one solution to this probleme: One could take

values for GDP, production and exports for the whole world and substract the values of

the countries directly used for the computation. These residual numbers make it possible

to compute the parameters for the rest of the word, taken as one composite, additional

country. Adding this to the equations should yield unbiased results.

5.4 Conclusion

In their theoretical foundation of the gravity equation, Anderson and van Wincoop (2003)

found that trade costs in gravity equations must be seen relatively to the trading countries’

multilateral resistances (that reflect the countries’ trade barriers to all other countries in

the model). Neglecting this issue normally leads to (upward) biased estimates. When ap-

plying the gravity equation, it became commonplace in the empirical literature to control
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for multilateral resistances by country or country-pair dummies.

This chapter has shown a way to quantify multilateral resistances. Using an index for

comprehensive bilateral trade costs as proposed by Novy (2007), it becomes possible to

solve the equation system that defines multilateral resistances. Since a direct solution

is neither possible nor feasible, a numerical procedure has been developed to compute

multilateral resistances. The idea of this procedure is to find an optimal common start

value for all countries’ multilateral resistances, so that the equation system converges

after repeated recalculations. This procedure works with OECD data. For all 11 cal-

culations (for the 11 years) the equation systems converge. Since only 23 countries and

not the whole world are considered, the results are biased downwards. But the fact that

these considered countries contain the strongest economies of the world should keep the

bias small. However, the calculated values of the multilateral resistances are plausible

nonetheless.
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With the methodology to yield measures for trade costs (tij) and multilateral resistances

(Pi and Pj) it becomes possible to estimate the gravity equation (5.1) directly. As it was

shown in chapters 3 and 4, direct estimates of equation (5.1) could be biased if there

is evidence that per-dollar trade costs are endogenously affected by policy variables and

natural trade cost barriers; and further, if they are inversely connected to bilateral export

volumes due to economies of scale in the trade sector. In this chapter, I use both the

index for trade costs and the computed index for multilateral resistances to estimate

the theoretically-founded gravity equation and show how the values of the estimated

coefficients shrink.

This chapter is structured as follows. Section 6.1 drafts the estimation strategy and the

data to be used. In section 6.2 the results of the estimation are presented. Section 6.3

concludes.

6.1 Econometric Model and Data

The standard approach of estimating the gravity equation is:

expij = π1 + π2gdpi + π3gdpj +
19∑
k=4

πkw
k−3
ijt + πpipi + πpjpj + εijt, (6.1)

where expij is the log of bilateral exports, gdpi and gdpj are the logs of the exporting and

importing country’s GDP, respectively, as it was described in the previous chapter. The

exporting country is always denoted by i, the importing country by j. Data source for

annual data of exports and GDPs is the OECD Structural Analysis Data Base (OECD

STAN). The logs of the exporting or importing country’s multilateral resistances, as they

are computed in section 5.3, are denoted by pi and pj, respectively. These values result

from the calculations presented in the previous chapter. The vector wkij concludes the

following trade cost proxies: the freedom of trade index by the Heritage Foundation (trfi

and trfj), geographic distance between the trading countries in logs (dist), exchange rate

volatility in logs (exvol), dummies for common language (lang), common border (bor),

85



6. Estimation with Multilateral Resistances

Table 6.1: Summary statistics of the OECD data set, over 11 years.

Variable Mean Std. Dev. Min. Max. Obs.
expij 20.974 1.77 14.9 26.434 5566
tij 0.753 0.195 0.236 1.34 5566
gdpi/gdpj 26.836 1.257 24.548 30.149 5566
trfi/trfj 4.348 0.069 3.904 4.443 5456
dist 7.907 1.074 5.451 9.803 5566
exvol 0.906 1.259 -12.281 3.463 4982
lang 0.057 0.232 0 1 5566
bor 0.079 0.27 0 1 5566
cwni/cwnj 0.13 0.337 0 1 5566
ebli/eblj 0.087 0.282 0 1 5566
isli/islj 0.174 0.379 0 1 5566
landli/landlj 0.13 0.337 0 1 5566
eui/euj 0.589 0.492 0 1 5566

EU membership of the exporting or importing country (eui and euj), landlocked location

(landli and landlj), location on an island (isli and islj), membership in the commonwealth

of nations (cwni and cwnj) and former eastern bloc (ebli and eblj). The data set includes

23 OECD countries for the period from 1995 to 2005, it is summarized in table 6.1.

Estimating this panel data set requires certain techniques to control for the effects of the

countries and the years. Therefore, three specifications will be reported:

1. a pooled regression, where the panel data properties are ignored,

2. a least-squares dummy variable (LSDV) model with 23 dummies for the exporting

countries, 23 dummies for the importing countries, and 11 dummies for the years

(following e.g. Mátyás, 1997; Anderson and van Wincoop, 2003), and

3. a LSDV model with 23 × 22 = 506 country pair dummies plus 11 year dummies

(see Cheng and Wall, 1999; Baltagi, Egger, and Pfaffermayr, 2003, for a discussion

of the adequate panel specification of gravity equations as well as the explanations

in chapter 2).

Since we have constructed data for bilateral trade costs and multilateral resistances, the

estimation of the standard gravity specification is not adequately based on the theory of
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Anderson and van Wincoop (2003). One problem of estimating the theory-based gravity

equation (5.1) directly is that trade costs are exogenous. Changes in policy variables like

freedom of trade or membership in a group of countries like the EU do not affect export

levels between two countries directly. However, they do affect trade costs between the two

countries directly and changes in those bilateral trade costs affect bilateral trade volumes.

Ignoring this endogeneity of trade costs may lead to biased estimates. Following the logic

introduced in chapters 3 and 4, I also estimate the simultaneous equation model:

expij = α0 + αYigdpi + αYjgdpj + αtijtij + αPipi + αPjpj + uijt, (6.2)

tij = β0 + βXexpij +
16∑
k=1

βkw
k
ij + vijt, (6.3)

with the trade cost index tij introduced in 5.2.

As a reference, I first estimate the standard gravity equation (6.1) as a pooled regression,

a country-year fixed effects and a country-pair-year fixed effects model. To study the

impact of introducing the multilateral resistances into the equation system (6.2) and

(6.3), I first estimate both equations simultaneously without multilateral resistances (or

multilateral resistances assumed to be captured by the fixed-effects dummies); then, the

second equation (6.2) with multilateral resistances; and finally, the third equation (6.2)

with adjusted multilateral resistances using a common coefficient for αPi and αPj .

6.2 Empirical Results

Table 6.2 presents the results of estimating the standard gravity equation (6.1). The first

two columns show the pooled regression that ignores the presence of panel data. Columns

3 and 4 show the country-year fixed effects model. Columns 5 and 6 show the country-

pair-year fixed effects model. Columns 1, 3 and 5 display the reference case, where the

effect of the multilateral resistances is assumed to be zero (or assumed to be completely

captured by the fixed-effects, respectively). In the results of columns 2, 4 and 6 the effects
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of the computed multilateral resistances are contained.

An analysis of the residuals shows that in the case of the country-pair-year fixed effects

model, the residuals are closer to zero and that they are distributed rather independently

from the endogenous variable expij in comparison to the other specifications (figures 6.1

and 6.2). This indicates that the model with the country-pair-year fixed effects has the

best properties to fit the model. The estimated coefficients of the multilateral resistances

affect the exports negatively. The coefficient of the exporting country’s multilateral re-

sistances has an especially strong effect on trade flows. A negative value indicates that

higher multilateral resistances tend to lead to lower trade activity with another, particular

country. Note that this result is not directly in line with the theory by Anderson and

van Wincoop (2003), described in section 5.1, which states that higher multilateral resis-

tances of two trading countries enhance their bilateral trade flows because their bilateral

trade costs are then relatively low (ceteris paribus). But the relation between multilateral

and overall bilateral trade costs is not reflected in this reduced form specification at all.

Controlling for the multilateral resistance index lowers the estimated effects of the other

exogenous variables, as can be seen immediately from the comparison of the results in

columns 5 and 6.

Again, note that the standard gravity model does not exactly reflect the theory presented

above, as long as constructed data for bilateral trade costs and multilateral resistances are

available. Table 6.3 shows the results of the theory-based simultaneous equation model

with country-pair-year fixed effects using a 2SLS estimator.1 As a reference case, column

1 displays the results without multilateral resistances. Column 2 displays the case that

multilateral resistances enter the gravity equation (6.2) unrestrictedly. Note that the

multilateral resistances of the importing country (pj) foster trade while the multilateral

resistances of the exporting country (pi) lowers trade in this specification (upper part of

table 6.3). Since the theory of Anderson and van Wincoop (2003) predicts that the effect

1 Using a 3SLS estimator for the country-pair-year fixed effects specification with its 517 dummy variables
was not feasible. Table 6.3 only presents the results of a country-pair-year fixed effects estimation because
this specification has the best fit of the model compared to pooled regression and country-year fixed effects.
The results of the other specifications are available on request.
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Table 6.2: Basic Case: Results of the Standard Gravity Specification.

(1) (2) (3) (4) (5) (6)
gdpi 0.864 0.789 0.368 0.288 0.386 0.324

(0.010)*** (0.010)*** (0.092)*** (0.094)*** (0.040)*** (0.039)***

gdpj 0.818 0.817 0.840 0.808 0.775 0.763
(0.010)*** (0.010)*** (0.106)*** (0.107)*** (0.040)*** (0.039)***

trfi -0.734 -0.816 0.765 0.798 0.710 0.732
(0.223)*** (0.211)*** (0.218)*** (0.216)*** (0.079)*** (0.077)***

trfj -0.378 -0.511 -0.020 -0.004 0.009 0.016
(0.211)* (0.196)*** (0.197) (0.198) (0.079) (0.077)

dist -0.909 -0.875 -1.100 -1.101 – –
(0.015)*** (0.015)*** (0.024)*** (0.024)*** – –

lang 0.500 0.452 0.419 0.414 – –
(0.045)*** (0.050)*** (0.041)*** (0.041)*** – –

bor 0.322 0.341 0.115 0.116 – –
(0.047)*** (0.046)*** (0.042)*** (0.042)*** – –

cwni -0.389 -0.820 -1.464 -1.698 – –
(0.036)*** (0.044)*** (0.146)*** (0.150)*** – –

cwnj 0.282 0.281 -0.024 0.038 – –
(0.043)*** (0.045)*** (0.289) (0.290) – –

ebli -0.503 -0.327 -2.701 -1.045 – –
(0.055)*** (0.054)*** (0.284)*** (0.350)*** – –

eblj -0.152 -0.163 0.426 0.451 – –
(0.054)*** (0.051)*** (0.156)*** (0.154)*** – –

isli 0.405 0.514 -0.013 1.147 – –
(0.031)*** (0.033)*** (0.109) (0.194)*** – –

islj 0.018 0.006 -0.082 0.257 – –
(0.039) (0.038) (0.117) (0.193) – –

landli 0.109 -0.031 -2.511 -1.282 – –
(0.034)*** (0.033) (0.299)*** (0.333)*** – –

landlj -0.194 -0.169 -0.712 -0.229 – –
(0.036)*** (0.034)*** (0.190)*** (0.291) – –

eui 0.088 0.022 0.569 0.397 0.556 0.399
(0.028)*** (0.027) (0.079)*** (0.081)*** (0.027)*** (0.028)***

euj 0.066 0.113 0.084 0.032 0.087 0.063
(0.028)** (0.028)*** (0.075) (0.077) (0.027)*** (0.028)**

exvol -0.037 -0.025 -0.014 -0.014 -0.009 -0.009
(0.010)*** (0.008)*** (0.007)** (0.007)** (0.004)** (0.004)**

pi – -2.853 – -4.668 – -4.251
– (0.132)*** – (0.627)*** – (0.248)***

pj – 0.014 – -1.358 – -0.564
– (0.123) – (0.595)** – (0.255)**

Constant -12.241 -8.569 -4.562 -1.325 -13.767 -10.237
(1.213)*** (1.159)*** (3.803) (3.830) (1.547)*** (1.525)***

Observations 4782 4782 4782 4782 4782 4782
R2 0.81 0.83 0.89 0.90 0.98 0.98
Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
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Figure 6.1: Residual-Analysis of the Standard Gravity Specification: Pooled Regression,
Country-Year Fixed Effects and Country-pair-Year Fixed Effects (without Mul-
tilateral Resistances).

Figure 6.2: Residual-Analysis of the Standard Gravity Specification: Pooled Regression,
Country-Year Fixed Effects and Country-pair-Year Fixed Effects (with Multilat-
eral Resistances).
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Table 6.3: Results of the Simultaneous Equation Model with Country-pair-Year Fixed Effects.

(1) (2) (3)
gdpi 0.350 0.281 0.346

(0.030)*** (0.029)*** (0.030)***

gdpj 0.471 0.560 0.474
(0.030)*** (0.029)*** (0.030)***

tij -6.761 -7.367 -7.379
(0.266)*** (0.371)*** (0.397)***

pi – -1.433 –
– (0.262)*** –

pj – 3.481 –
– (0.271)*** –

pp – – 0.962
– – (0.256)***

Constant 4.023 3.223 3.895
(1.405)*** (1.317)** (1.395)***

expij -0.039 -0.068 -0.081
(0.004)*** (0.003)*** (0.003)***

trfi -0.027 -0.002 0.010
(0.008)*** (0.007) (0.007)

trfj -0.048 -0.037 -0.032
(0.007)*** (0.006)*** (0.006)***

exvol 0.001 0.000 0.000
(0.000) (0.000) (0.000)

eui -0.028 -0.010 -0.002
(0.004)*** (0.003)*** (0.003)

euj -0.044 -0.038 -0.035
(0.003)*** (0.002)*** (0.002)***

Constant 1.929 2.371 2.563
(0.077)*** (0.059)*** (0.061)***

Obs. 4782 4782 4782
Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
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of trade costs tij on exports must be seen in relation to multilateral resistances pi and pj,

we would expect a positive sign for both coefficients and not only for the import country

coefficient.

To adjust the empirical model to the theory of equation (5.1) where multilateral resis-

tances have the same coefficient, I comprise pi and pj to pp = pi · pj. The results of

this restricted model are shown in columns (3). Here, the coefficient of the multilateral

resistances’ product has a highly significant impact on the exports. If the product of mul-

tilateral resistances (the trade barriers of two certain countries to all countries) increases

and everything else (especially the trade costs between the two countries) is kept constant,

exports between these two certain countries increase because it becomes relatively more

expensive for both countries to trade with the rest of the world than with each other.

This is exactly the logic of the multilateral resistances introduced by Anderson and van

Wincoop (2003). What happens to the coefficients of the remaining k exogenous vari-

ables which directly affect trade costs? Controlling directly for unrestricted or restricted

multilateral resistances in columns 2 and 3 clearly reduces the estimated effects of these

variables compared to the estimation without any multilateral resistances in column 1.2

6.3 Conclusion

Constructed data for trade costs and multilateral resistances make it possible to estimate

the theory-based gravity equation by Anderson and van Wincoop (2003) directly. Since

trade costs should be endogenous and also depend on the bilateral exports they explain,

the estimation should be worked out using a simultaneous equation model. The results of

this estimation show that the computed multilateral resistances have a significant influ-

ence on bilateral exports. It also appears that multilateral resistances clearly reduce the

estimated effects of the remaining exogenous variables in the the trade cost equation.

2 As already noted in chapter 4, it is unsurprising that the coefficient of exchange rate volatility is not
significant. Firms can hedge the exchange rate risk, and overall the exchange rate risk should not play
an overly important role between the large OECD economies.
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Again, it is important to note that the computed multilateral resistances are systemat-

ically biased downwards since not all countries of the world are included (see chapter

5). In a robustness check, 0.2 was added to the values of the multilateral resistances in

order to increase these downward biased values. This transformation hardly affects the

parameters of the model variables (except the parameters of the multilateral resistances

themselves).
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Summary
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Gravity Equations are the most used tool to explain the effects of trade costs on export

flows between countries. The estimated coefficients of proxy variables for trade costs are

frequently criticized as being too high. This is very crucial as long as these coefficients

are broadly used to consult policymakers. Recent approaches have helped to improve the

results by considering both theoretical and econometrical aspects. The main objective of

this study was to make a contribution to this discussion by studying possible interactions

between trade costs and exports.

The First Part: The introduction of a theory of endogenous trade costs and an empirical

application.

The theoretical argument introduced in chapter 3 is that there is probably not an uni-

directional effect of trade costs on exports, as it is described by the original gravity

equation (1.1). It is argued that there is rather an interdependency between exports

and trade costs since trade costs presumably bear fixed costs: The more actively two

countries trade with each other, the lower the trade costs will be (per dollar of trade

volume). Intuitive examples for these fixed costs which lead to declining average costs of

trade can be found in transport and social infrastructures. To study the consequences

of this dualism between exports and trade costs, iceberg (or average) trade costs in a

theory-based gravity equation (Anderson and van Wincoop, 2003) are endogenized. Using

a simple microeconomic model of the trade sector, it is shown that bilateral iceberg trade

costs depend on cost components and – if there are economies of scale – on the bilateral

export volume as well.

The consequence is a system of two equations: a gravity equation and a trade cost func-

tion. It is shown that the presence of economies of scale results in an upward bias of

the estimated coefficients, i.e. using the traditional specification of the gravity equation,

if these coefficients are interpreted as direct effects of trade costs on exports. This re-

gards the immediate impact of a ceteris paribus change in a trade cost component like

an import tariff on exports. But the duality of exports and trade costs implies that the

affected exports change the trade costs again and the affected trade costs the exports,
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and so on, like a domino effect. The resulting overall effect is implicitly measured by the

traditional specification of the gravity equation. The direct effect and the overall effect

are only equal, if the interaction between trade costs and exports works immediately and

frictionlessly. It is necessary to re-interpret the outcomes of traditional gravity approaches

as such overall effects.

A theory becomes especially useful if there is empirical evidence for it. This is proposed

in chapter 4. Because the theoretical considerations suggest a dual system of a gravity

equation and a trade cost equation, I estimate a simultaneous equation system using

a three/two stage least-squares (3SLS/2SLS) estimator. Data are basically taken from

OECD data bases covering the 30 OECD member countries (without respect to Chile,

which joins the OECD not before January 2010). Since trade costs are not directly mea-

surable, I use a micro-founded index of comprehensive trade costs (Novy, 2007). The

theoretical implication is confirmed. The estimation strategy pursued provides a signif-

icantly negative effect of exports on trade costs (implying the presence of economies of

scale) and clearly lower estimates for the parameters of interest.

The Second Part: A numerical solution for multilateral resistances and their empirical

application with respect to trade cost endogeneity.

The presence of a measure for comprehensive bilateral trade costs (Novy, 2007) enables

the computation of multilateral trade costs. The theory emphasized by Anderson and

van Wincoop (2003) shows that it is not pure bilateral trade costs but rather bilateral

trade costs relative to multilateral trade costs that matter in gravity equations. Theoreti-

cally, these multilateral trade costs are not pure (weighted) averages. They are a complex

system of equations called multilateral resistances. Chapter 5 offers a convenient method-

ology to solve this equation system. The equation system displays that the unknown

multilateral resistances (right-hand side) depend on all countries’ multilateral resistances

being multiplied by known country-specific parameters (left-hand side). I choose a com-

mon start value for the multilateral resistances on the right-hand side to compute values

for the left-hand side. Then I use these computed values from the left-hand side on the
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right-hand side to compute new values for the left-hand side. I repeat this until the left-

and right-hand side vectors of the unknowns are equal. The adequate start value can be

found by a search algorithm.

It is important to note that the data set does not contain the whole world which should

lead to downward biases. However, the countries involved have such a high share of the

global GDP that this bias should be in a tolerable scale. The resulting measures for the

multilateral resistances appear to be plausible.

Chapter 6 extends the estimation procedure of chapter 4 to the computed multilateral

resistance data. Multilateral resistances have a significant effect on both exports and

trade costs. They again tend to lessen the estimated coefficients.

The Contribution of this Study

What is the contribution of this study? First, a new theory of endogenous trade costs

was provided which shows that iceberg trade costs are likely to depend on exports. An

interaction between exports and trade costs (or the gravity function and a trade cost

function) leads to a simultaneity problem. Second, this theory could be confirmed after

estimating the gravity equation with a new strategy: a simultaneous equation system

using a theory-based index to compensate for the directly immeasurable trade costs.

Third, a methodology was developed to make the heretofore unknown index of multilateral

resistances (Anderson and van Wincoop, 2003) visible. The consequence of the theoretical

considerations and the use of constructed data for bilateral and multilateral trade costs

is that the estimated direct effects of variables influencing trade volumes decrease. This

could achieve more plausible and more reliable results from the gravity equation as the

“workhorse for empirical studies” (Eichengreen and Irwin, 1998) of international trade.

The Limitations of this Study

What are the limitations of this study? One source for criticism might be the usage

of the index for overall trade costs by Novy (2007). This index is derived from the
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gravity equation itself and, by definition, it depends on the trade flows. Of course, from

a theoretical point of view that might be a problem. Yet, from an application-oriented

point of view it is a useful measure for bilateral tariff equivalent overall trade costs and

there is probably no other available data source for this variable.

Another limitation of the study is that the exogenous variables chosen to explain trade

costs turned out to be inadequate (Sargan-test). Consequently, the estimates are biased.

But this bias does not only affect the estimation strategy with the simultaneous equations

pursued in this study. If the variables are not chosen adequately, this should also affect

the traditional strategy to estimate gravity equations. The theory outlined in chapter 3

of this study suggests that appropriate variables for this purpose should reflect the cost

components of trade costs rather than of country characteristics. It will be a task for

future research to find adequate variables, but the requisite data are scarcely available.

A third limitation is related to the solution for the multilateral resistances. Computing

them requires a very high density of data. Countries with insufficient data must be

excluded from the computation and each excluded country biases the results downwards.

For this reason, the computed values for the multilateral resistances must be interpreted

carefully. However, a robustness check has shown that using higher values for multilateral

resistances (with 0.2 added) in the different regression models does not noticeably change

the estimates of the model variables. The problem could be solved in future research by

taking the rest of the world as an additional, composite country into account (computed

as the difference between whole global – or “whole world” – data and the data of the used

countries).

Outlook

This study has provided a new strategy to estimate gravity equations in a simultaneous

model of two equations: a gravity equation and a trade cost function. The model was

estimated using linear instrumental variable approaches. The data set consists of OECD

countries, which are the largest economies of the world and where all countries trade with

each other. Extending the strategy to a data set with more dissimilar economies and zero
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trade flows requires non-linear IV estimators (see the discussion in chapter 2). Future

endeavors could try to find and apply such estimators to make the strategy applicable to

data sets with more heterogeneous countries and zero trade flows.

A major point of interest in this study was the phenomenon of trade costs. Despite the

omnipresence of trade costs in real economic life, there are still many open questions

and much to explore in future research. One aspect is to find explanatory variables and

adequate functional forms to explain trade costs. This study has introduced one simple

approach in a very general form, where trade costs depend on the underlying export

volume and a theoretically unspecified set of cost factors. A more detailed theory-based

insight into the functional form and the theoretical determinants of trade costs would be

desirable.

Finally, I want to draw on Anderson and van Wincoop (2004), who criticize the shortage

of data which reflect the cost factors of trade costs – especially data for political trade

barriers. The availability of such data would help to gain more knowledge about the

determinants of trade costs. This knowledge would improve the validity of the gravity

equation’s results and its implications for policymakers.
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Appendix A

Derivation of the Gravity Equation

by Anderson and van Wincoop

(2003): Calculus

Consider the CES utility function of country j

Uj =

(∑
i

ϕic
(σ−1)/σ
ij

)σ/(σ−1)

(3.1)

and the budget restriction of country j

Yj =
∑
i

tij · pi · cij. (3.2)

Solving the Lagrange Function

max
cij
L =

(∑
i

ϕic
(σ−1)/σ
ij

)σ/(σ−1)

+ λ

(
Yj −

∑
i

tijpicij

)
(A.1)
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yields the first order conditions

∂L
∂cij

= 0 = ϕic
−1/σ
ij ·

(∑
i

ϕic
(σ−1)/σ
ij

)1/(σ−1)

− λtijpi, (A.2)

∂L
∂λ

= 0 = Yj −
∑
i

tijpicij. (A.3)

Solving the first order condition (A.2) for cij yields

cij =

 λtijpi

ϕi

(∑
i ϕic

(σ−1)/σ
ij

)1/(σ−1)


−σ

= (λ)−σ︸ ︷︷ ︸
≡Λ

· (tijpi)−σ ϕσi

(∑
i

ϕic
(σ−1)/σ
ij

)σ/(σ−1)

︸ ︷︷ ︸
=Uj

= Λ · (tijpi)−σ ϕσi · Uj. (A.4)

Multiplying both sides of equation (A.4) with tijpi and summing up over all countries

i ∈ {1, . . . , C} yields country j’s expenditure function

∑
i

tijpicij︸ ︷︷ ︸
Yj

= Λ · Uj ·
∑
i

(tijpi)
1−σ ϕσi , (A.5)

⇒ Λ =
Yj

Uj
∑

i (tijpi)
1−σ ϕσi

.
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Inserting this solution for Λ back into equation (A.4) yields

cij =
Yj (tijpi)

−σ ϕσi∑
i (tijpi)

1−σ ϕσi

=
1

tijpi
Yjϕ

σ
i ·

(tijpi)
1−σ∑

i (tijpi)
1−σ ϕσi

=
1

tijpi
Yjϕ

σ
i

[
tijpi(∑

i (tijpi)
1−σ ϕσi

)1/(1−σ)

]1−σ

=
1

tijpi
Yjϕ

σ
i

[
tijpi
Pj

]1−σ

. (A.6)

with the CES price index

Pj =

(∑
i

(tijpi)
1−σ ϕσi

)1/(1−σ)

. (A.7)

To achieve the gross import function, we multiply both sides of equation (A.6) with tijpi:

Xij = tijpicij = Yjϕ
σ
i

(
tijpi
Pj

)1−σ

. (3.3)

Using equation (3.3) we can extend the budget restriction (3.2):

Yi =
∑
j

Xij

=
∑
j

ϕσi ·
(
tij · pi
Pj

)1−σ

· Yj

= ϕσi p
1−σ
i ·

∑
j

(
tij
Pj

)1−σ

· Yj︸︷︷︸
=sj ·Yw

= ϕσi p
1−σ
i · Yw ·

∑
j

(
tij
Pj

)1−σ

· sj︸ ︷︷ ︸
=Π1−σ

i

= ϕσi p
1−σ
i · Yw · Π1−σ

i , (3.5)
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with the multilateral resistance of country i

Πi ≡

(∑
j

(
tij
Pj

)1−σ

· sj

)1/(1−σ)

. (3.6)

Equation (3.5) can be solved for scaled prices: ϕσi p
1−σ
i = Yi/

(
Yw · Π1−σ

i

)
. Inserting this

solution in the CES price index (A.7) gives the multilateral resistance of country j:

Pj =

(∑
i

(
tij
Πi

)1−σ

· si

)1/(1−σ)

. (3.7)

Inserting the scaled prices ϕσi p
1−σ
i into the gross import function (3.3) yields the gravity

function with gross exports

Xij =
Yi · Yj
Yw

·
(

tij
Πi · Pj

)1−σ

, (3.8)

or, after dividing bot sides by tij, the net gravity function

X0
ij =

Yi · Yj
Yw

· t−σ · (Πi · Pj)σ−1 . (3.9)
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Derivation of the Index for Bilateral

Trade Costs

Starting point to derive the trade cost index suggested by Novy (2007) is the Anderson

and van Wincoop (2003) gravity equation:

Xij =
Yi · Yj
Yw

·
(

tij
Πi · Pj

)1−σ

. (3.8)

Applying this equations for the intra-national trade of country i, meaning the exports

from country i to country i itself, yields:

Xii =
Yi · Yi
Yw

·
(

tii
Πi · Pi

)1−σ

. (B.1)

Solving equation (B.1) for the product of the multilateral resistances yields:

ΠiPi =

(
XiiYw
YiYi

)1/(σ−1)

· tii. (B.2)
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Now, we define a bidirectional gravity equation that is defined as the product of the two

bilateral export flows between countries i and j:

XijXji =

(
Yi · Yj
Yw

)2

·
(

tijtji
ΠiPi · ΠjPj

)1−σ

. (B.3)

Rearranging the last multiplier of equation (B.3) and using the solution for the product

of multiltateral resistances of country i (B.2) and its respective formulation for ΠjPj in

equation (B.3) gives:

XijXji = XiiXjj ·
(
tiitjj
tijtji

)σ−1

. (B.4)

The next step is disentangling trade costs and export values from equation (B.4):

tijtji
tiitjj

=

(
XiiXjj

XijXji

)1/(σ−1)

. (B.5)

Taking the square root of the left-hand side of equation (B.5) is the geometric mean of

the bilateral trade:

t̄ij =

√
tijtji
tiitjj

=

(
XiiXjj

XijXji

) 1
2(σ−1)

. (B.6)

It measures the bilateral trade costs relative to the intra-country trade costs which are

thus implicitly set 1. Thus, it must be interpreted as the international component of

trade costs because trade costs inside a country are faded out. As a geometric mean it

is a symmetric measure of bilateral trade costs between country i and j. It can also be

denoted as a tariff equivalent (τij) after subtracting 1 from both sides of equation (B.6).
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Multilateral Resistances as a Linear

Equation System

In a set of many countries (1, . . . , i, j, . . . , C), the linearized equation system in analogy

to (5.5) gets the following structure:

1 = B · z

with the left-hand side vector of dimension C × 1

1> =
(
11, . . . , 1C

)
,

the vector of the unknowns zij = 1/(PiPj) of dimension C·(C+1)
2
× 1

z> = (z11, z12, . . . , z1C , z22, . . . , z2C , z33, . . . , zCC) ,
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and the coefficient matrix of the dimension C × C·(C+1)
2

:

B =


b11 b12 · · · b1C

b21 b22 · · · b2C

. . . . . . b33 · · ·

bC1 bC2
. . . · · · bCC

 .

This linear equation system consists of more unknowns than equations since C·(C+1)
2

> C.

Thus, this equation system is underdetermined and an underdetermined linear equation

system has usually infinitely many solutions. Therefore, it is not tractable to pursue the

linearization of the polynomial equation system (5.5).
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