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1 Summary (English/French/German)

Abstract

The presented thesis investigates the role of bryophytes in the deadwood and carbon (C)
cycle of boreal black spruce forests in Labrador, Canada. All major forest C pools (live-
tree, standing and downed deadwood, organic layer, mineral soil) were quantified for three
old-growth, nine clearcut harvested, and three burned forest stands in order to characterize
forest C dynamics of a high-latitude humid boreal forest ecosystem. Tree and aboveground
deadwood C dynamics of Labrador black spruce forests were similar to those of drier or
warmer boreal forests. However, due to bryophyte-driven processes such as woody debris
(WD) burial and paludification, the studied forests contained high organic layer, mineral
soil, and buried wood C stocks.

The comprehensive field-measured data on C stocks was used to evaluate the CBM-CFS3,
a Canadian national-scale C budget model, with respect to its applicability to Labrador
black spruce and humid boreal forests elsewhere. After selected biomass estimation and
deadwood decay parameters had been adjusted, the CBM-CFS3 represented measured live-
tree and aboveground deadwood C dynamics well. The CBM-CFS3 was initially designed
for well-drained upland forests and does not reflect processes associated with bryophytes and
high forest floor moisture content, thus not capturing the large amounts of buried wood and
mineral soil C observed in the studied forests. Suggestions are made for structural changes
to the CBM-CFS3 and other forest ecosystem C models to more adequately represent the
bryophyte-regulated accumulation of buried wood, organic layer, and mineral soil C.

Accuracy of forest C models could be further improved by differentiating WD decomposition
rates by disturbance history, because WD respiration reflects disturbance-induced changes
in temperature and moisture regimes. In Labrador, WD respiration was limited by low WD
moisture levels and high temperatures in burned stands, and by high WD moisture con-
tents and low temperatures in old-growth stands. Following harvesting, residual vegetation
prevents the desiccation of WD, resulting in significantly higher WD respiration compared
to old-growth and burned stands. Moreover, the bryophyte layer recovers faster following
harvest than following fire, which reduces WD desiccation due to moisture retention, water
transfer, and moisture-induced cooling and results in higher WD decomposition rates.

Bryophytes are thus a key driver of the deadwood and C cycle of humid boreal Labrador
black spruce forests. The author recommends to classify these and similar boreal forests

1



1 Summary (English/French/German)

as a functional ecosystem group called “humid boreal forests”, preliminarily defined as “bo-
real forest ecosystems featuring a bryophyte-dominated ground vegetation layer associated
with low soil temperatures, high moisture levels, low dead organic matter decomposition
rates, and subsequently (in the absence of stand-replacing disturbances) an accumulation
of buried wood embedded in a thick organic layer”. Bryophytes are also an integral com-
ponent of many coniferous forests outside the boreal biome. Bryophyte-regulated processes
such as WD burial or paludification are thus likely significant to the global C cycle. The
potential climate change-induced release of large amounts of CO2 from buried wood and soil
C pools necessitates an increased understanding of how bryophyte productivity and decom-
position constraints will change with increasing temperature and varying moisture regimes.
Ecosystems such as humid boreal forests with potentially high C losses to the atmosphere
may thus be identified and counteractive forest management strategies can be developed and
implemented.

Résumé

Cette thèse de doctorat s’intéresse à l’influence qu’exercent les mousses sur les cycles du bois
mort et du carbone (C) dans des pessières noires boréales humides du Labrador, Canada.
Toutes les réservoirs majeurs de C (arbres vivants, bois mort sur pied et éffondré, l’horizon
de matière organique, sol minéral) de trois pessières vierges, neuf coupes à blanc et de
trois pessières brûlées ont été quantifiés pour caractériser le cycle du C des forêts humides
boréales du nord. Les dynamismes de C des arbres vivants et du bois mort supraterrestre
ressemblaient à ceux des forêts boréales plus sèches ou aux températures plus chaudes. À
cause des processus régulés par les mousses (l’enterrement du bois mort ou la paludification),
les forêts étudiées contenaient des stocks élevés de C au sein de l’horizon de matière organique,
le sol minéral et le bois enterré.

Les données ont aussi été utilisées pour évaluer le MBC-SFC3, un modèle national canadien
du bilan du C, concernant son applicabilité aux pessières boréales humides de Labrador et
d’ailleurs. Suite à l’ajustement de quelques paramètres, p.ex. des taux de décomposition,
le MBC-SFC3 reproduisait bien le dynamisme mesuré des arbres vivants et du bois mort
supraterrestre. Le MBC-SFC3 a initialement été développé pour les sites bien drainés et
ne considère pas les processus associés avec les mousses ou l’humidité élevée du sol. Con-
séquemment, le MBC-SFC3 ne représentait pas les stocks élevés de C mesurés pour le bois
enterré et pour le sol. Les modifications structurelles du MBC-SFC3 et d’autres modèles du
C forestier sont nécessaires pour représenter adéquatement l’accumulation du C au sein de
ces réservoirs.

La précision des modèles du C forestier pourrait encore être améliorée par une différenciation
des taux de décomposition selon le régime de perturbations, parce que la respiration du bois
mort reflète les changements de la température et d’humidité associés avec une perturbation

2



1 Summary (English/French/German)

spécifique. Dans les pessières brûlés du Labrador, la respiration du bois mort était limitée
par a faible humidité du bois et des températures élevées; dans les pessières vierges, par l’
humidité élevée du bois et des températures basses. Dans les coupes à blanc, la végétation
résiduelle empêchait le dessèchement du bois mort. Il s’y ensuivit que la respiration du bois
mort y est nettement plus élevée en comparaison avec des pessières brûlés ou vierges. La
décomposition du bois mort après coupe à blanc est aussi favorisée par la récupération plus
rapide de la couche de mousses, diminuant conséquemment le dessèchement du bois mort par
la conservation d’humidité, les transports vertical et horizontale d’eau et le refroidissement
induit par l’humidité.

Ainsi, les mousses sont les facteurs clés dans les cycles du bois mort et du C des pessières
noires boréales au Labrador. L’auteur préconise la classification de ces pessières et des forêts
semblables comme un groupe fonctionnel d’écosystèmes nommé : « pessières boréales hu-
mides » ; provisoirement définies comme « des écosystèmes forestiers avec une végétation
terrestre dominée par les mousses et par conséquent associée avec des températures basses du
sol, une humidité élevée, des taux de décomposition faibles et (en l’absence de perturbations)
l’accumulation du bois enterré dans des couches organiques epaisses ». En outre, les mousses
sont des éléments principaux des nombreuses forêts résineuses n’appartenant pas au biome
boréal. Les processus régulés par les mousses tels l’enterrement du bois mort ou la paludi-
fication sont probablement importants pour le cycle global de C. La libération potentielle
de grandes quantités de CO2 des réservoirs « bois enterré » et « sol » à la suite des change-
ments climatiques exige une meilleure compréhension des transformations de la productivité
des mousses et des limitations de la décomposition dues aux températures plus élevées et
au taux d’humidités variables. Ainsi, les écosystèmes aux pertes potentielles de C élevées
(p.ex. les pessières boréales humides) peuvent être identifiés et des mesures d’aménagement
antagonistes peuvent être développées et implémentées.

Traduction assistée par : Karl-Heinrich von Bothmer, Géry van der Kelen

Zusammenfassung

Die vorliegende Arbeit untersucht die Einflüsse von Moosen auf den Totholz- und Kohlenstoff-
(C)-Kreislauf in borealen Schwarzfichtenwäldern in Labrador, Kanada. Um den C-Kreislauf
dieses humiden borealen Waldökosystems zu charakterisieren, wurden alle bedeutenden C-
Speicher (lebende Bäume, stehendes und liegendes Totholz, organische Auflage, Mineral-
boden) von drei Primärwald-, neun Kahlschlags- und drei Brandflächen quantifiziert. Die
C-Dynamiken der Bäume und des oberiridischen Totholzes der Untersuchungsflächen ähnel-
ten denen von trockeneren und/oder wärmeren borealen Wäldern, während die organische
Auflage, der Mineralboden und das begrabene Totholz bedingt durch von Moosen regulierte
Prozesse wie Totholzeinlagerung und Paludifizierung besonders hohe C-Vorräte aufwiesen.

3



1 Summary (English/French/German)

Mit dem umfangreichen C-Datensatz wurde das CBM-CFS3, das nationale kanadische C-
Modell, am Beispiel Labradors im Hinblick auf seine Anwendbarkeit in humiden borealen
Wäldern evaluiert. Nach Anpassung ausgewählter Parameter, z.B. der Totholzabbauraten,
wurden die gemessenen C-Dynamiken der Bäume und des oberiridischen Totholzes vom
Modell abgebildet. Das CBM-CFS3 wurde ursprünglich für staunässefreie, terrestrische
Waldstandorte entwickelt und berücksichtigt keine mit Moosen oder hoher Bodenfeuchte
assoziierten Prozesse, so dass es die hohen C-Vorräte des begrabenen Totholzes und des
Bodens nicht widerspiegelte. Eine adäquate Abbildung der Akkumulation von C in diesen
Speichern erfordert strukturelle Änderungen des CBM-CFS3 und anderer Wald-C-Modelle.

Die Genauigkeit von Wald-C-Modellen könnte darüber hinaus durch eine Differenzierung der
Totholzabbauraten in Abhängigkeit vom Störungsregime verbessert werden, da störungsspezi-
fische Veränderungen von Temperatur und Feuchte von der Totholzatmung widergespiegelt
werden. Im Untersuchungsgebiet limitierten geringe Holzfeuchten und hohe Holztempera-
turen die Totholzatmung auf Brandflächen. In Primärwäldern wirkten dagegen hohe Holz-
feuchten und geringe Holztemperaturen hemmend. Auf Kahlschlägen verhinderte die verblei-
bende Vegetation die Austrockung des Totholzes, was zu signifikant erhöhten Atmungsraten
im Vergleich zu Brand- und Primärwaldflächen führte. Zudem wird der Totholzabbau auf
Kahlschlen durch eine schnellere Erholung der Moosdecke als auf Brandflächen gefördert, da
Moose durch ihr hohes Wasserspeichervermögen, vertikalen und horizontalen Wassertrans-
port und feuchte-induzierte Kühlung der Austrockung des Totholzes entgegenwirken.

Moose sind somit ein Schlüsselfaktor im Totholz- und C-Kreislauf der humiden borealen
Schwarzfichtenwälder Labradors. Die Autorin empfiehlt die Klassifikation dieser und ähn-
licher borealer Wälder als eine funktionelle Ökosystemgruppe namens “humid boreal forests”;
vorläufig definiert als “boreale Waldökosysteme mit durch Moose dominierter Bodenvege-
tation und damit assoziierten niedrigen Bodentemperaturen, hohen Bodenfeuchten, gerin-
gen Abbauraten und (in Abwesenheit großflächiger Störungen) der Akkumulation von be-
grabenem Totholz in mächtigen organischen Auflagen”. Auch außerhalb des borealen Bioms
sind Moose ein wesentlicher Bestandteil vieler Nadelwälder. Durch Moose regulierte Prozesse
wie Totholzeinlagerung und Paludifizierung sind daher wahrscheinlich relevant für den globa-
len C-Kreislauf. Die durch den Klimawandel bedingte potentielle Freisetzung von großen
Mengen CO2 aus begrabenem Totholz und dem Boden macht ein besseres Verständnis der zu
erwartenden Veränderungen von Mooswachstum und Abbauhemmnissen als Folge erhöhter
Temperaturen und variabler Feuchteverhältnisse erforderlich. Somit können Ökosysteme
mit potentiell hohen C-Verlusten, wie z.B. humide boreale Wälder, identifiziert und diesen
entgegenwirkende Bewirtschaftungsmaßnahmen entwickelt und umgesetzt werden.
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2 Introduction

2.1 Background

Forests contain large amounts of carbon (C) in biomass, dead organic matter (DOM), and
soil, and contribute significantly to annual C exchanges between terrestrial ecosystems and
the atmosphere (Denman et al. 2007). All signatory countries of the United Nations
Framework Convention on Climate Change (UNFCCC; UNFCCC 1992, Brown 2002),
including Canada, must report on emissions and removals of carbon dioxide (CO2) and
non-CO2 greenhouse gases due to afforestation and reforestation, with the option to elect re-
porting on C stock changes resulting from forest management. Canada encompasses ∼40% of
the global boreal forest biome (Burton et al. 2003), which in its entirety contains ∼25%
and ∼60% of the global terrestrial C stored in vegetation and soil, respectively (Fyles
et al. 2002). The boreal forest has been identified as particularly sensitive to changes
in temperature and moisture regimes resulting from climate change (Malhi et al. 1999,
IPCC 2007, Kurz et al. 2008a). Apart from changes in the energy and water exchange
between land and atmosphere, climate change is expected to significantly increase the oc-
currence of disturbances such as forest fire and insect outbreaks in large parts of the boreal
forest (Burton et al. 2003). Anthropogenic pressures on boreal forests will likely also be
enhanced by the combined impacts of population growth and climate change, resulting in de-
forestation in the course of agricultural expansion for food production, forest fragmentation,
and intensification of forest management to meet an increased demand for wood (Fyles
et al. 2002, Burton et al. 2003).

Sophisticated models such as the Carbon Budget Model of the Canadian Forest Sector (CBM-
CFS3) may help to evaluate the impacts of the expected changes (Kurz et al. 2009), but
they require a thorough understanding of ecosystem processes and must be evaluated using
adequate field data. While large parts of the Canadian boreal forest are well-studied, e.g.,
in British Columbia, Saskatechewan, Manitoba, and Québec (Gower et al. 1997, Vogel
and Gower 1998, Bond-Lamberty et al. 2003, Manies et al. 2005, Boulanger
and Sirois 2006), relatively few studies have investigated the humid Eastern boreal forests
in Newfoundland and Labrador (Sturtevant et al. 1997, Moroni 2006). Studies of
ecosystem processes related particularly to the C cycle of disturbed and undisturbed humid
boreal forests are thus required to increase the understanding of management and climate
change-induced effects on these forests, and to effectively simulate the observed processes.
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2.2 Boreal Forest Carbon Cycle

In mature boreal forests, aboveground biomass C stocks are estimated at 54–64 Mg C ha−1

(Malhi et al. 1999, Bhatti et al. 2003), contributing significantly less C to total
ecosystem C stocks than in temperate forests (Fyles et al. 2002). In contrast, soil C
stocks in boreal forests range between 62 and 274Mg C ha−1 and may amount to 90% of to-
tal ecosystem C stocks (Bhatti et al. 2003). Total ecosystem C stocks generally increase
from drier to wetter boreal forest sites due to the accumulation of DOM in the organic layer
and mineral soil resulting from reduced decomposition rates and long fire return intervals
(Bhatti et al. 2003). Boreal forests are currently considered a small terrestrial sink for at-
mospheric C, sequestering a total of 0.6–0.7 Pg C yr−1 in the 1990s (Goodale et al. 2002).
Although the projected climatic changes may increase C sequestration by enhancing plant
growth due to higher temperatures, longer growing seasons, and CO2 fertilization (Nemani
et al. 2003, Canadell et al. 2007, Körner et al. 2007), augmented decomposition
rates and disturbance frequencies may result in increased C emissions (Kirschbaum 1995,
Kurz and Apps 1999, Rustad et al. 2000, Canadell et al. 2007), thus possibly
converting boreal forests from a net sink to a net souce (Harden et al. 2000, Canadell
et al. 2007, Kurz et al. 2008a).

2.2.1 Focus: Humid Northern Boreal Forests

The boreal forest is often treated as a homogenous entity, but it really is a mosaic of upland
forests, true wetlands, and more or less poorly drained black spruce forests on the gradient
between these (Apps et al. 1993, Bhatti et al. 2006, Bond-Lamberty et al. 2007a).
These more or less poorly drained forests are poorly mapped (Peckham et al. 2009) and
have so far received little scientific attention despite their large extent (Bhatti et al. 2006).
Forested wetlands and peatlands cover at least 250 Mio. ha globally (Bond-Lamberty
et al. 2007a), and account for up to 102 Mio. ha in Canada (Vitt et al. 2001), in
addition to a large but unmapped area of poorly drained humid black spruce forests.

These poorly drained humid boreal black spruce forests often feature primary production
rates similar to or even higher than their upland neighbours (Harden et al. 1997, Vitt
et al. 2001, Turetsky et al. 2010), but are characterized by bryophyte-dominated
ground vegetation (Bourgeau-Chavez et al. 2000, Turetsky 2003), low decomposi-
tion rates (Foster 1985, Bond-Lamberty et al. 2007a), and a thick layer of mostly
bryophyte-derived DOM at the soil surface (Fenton et al. 2005, Hollingsworth et al.
2008). Consequently, organic layer and mineral soil C stocks are considerably higher than
in well-drained upland boreal forests (Shaw et al. 2005, Bhatti et al. 2006, Car-
rasco et al. 2006), due to the balance between high tree and bryophyte productivity and
low DOM decomposition rates — processes that determine organic layer C accumulation
(Bond-Lamberty et al. 2004b, Hollingsworth et al. 2008). Slight changes in wa-
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ter table, soil temperature, and/or the disturbance regime may break this balance, possibly
resulting in the release of large amounts of C to the atmosphere (Bhatti et al. 2006).
Understanding the C dynamics of more or less poorly drained humid boreal forests is thus
important; particularly, because they are considered highly sensitive to changing climate,
disturbance, and management regimes (Bhatti et al. 2006, O’Neill et al. 2006).

Apart from the high water table, the C cycle of humid boreal forests is mainly driven by
a bryophyte-dominated ground cover composed of functional groups such as feathermosses
(Pleurozium schreberi (Brid.) Mitt., Ptilium crista-castrensis (Hedw.) De Not., and Hylo-
comium splendens (Hewd.) BSG.) and Sphagnum spp. (Hollingsworth et al. 2008,
Peckham et al. 2009). Mosses influence the C cycle by contributing significantly to
ecosystem net primary productivity (Bisbee et al. 2001, Harden et al. 1997, Gower
et al. 2001, O’Neill et al. 2006, Turetsky et al. 2010), producing recalcitrant
litter (Aerts et al. 1999, Hobbie et al. 2000, Turetsky et al. 2010), increasing soil
water holding capacity and moisture content (Skre and Oechel 1981), regulating organic
matter consumption during wildfire (Shetler et al. 2008), and lowering soil thermal
conductivity and temperature (Turetsky 2003), thus limiting decomposition (Carrasco
et al. 2006). Mosses are also associated with the processes of topographic and successional
paludification (Simard et al. 2009), during which the accumulation of DOM gradually
reduces plant-available nutrients (Simard et al. 2007), increases waterlogging (Fenton
and Bergeron 2006), and changes the composition of the bryophyte community from
feathermoss to Sphagnum dominance (Fenton et al. 2007), resulting in a decline of for-
est productivity, an increase in FRI, and possibly a conversion to peatland (Harden et al.
2000, Fenton et al. 2005, Simard et al. 2007).

Conclusions and general research needs: In order to improve boreal forest C budgets,
it is necessary i) to quantify the spatial coverage and functional composition of bryophytes
throughout the boreal biome, preferably using remote sensing (Peckham et al. 2009),
ii) to identify and map poorly drained boreal forests such as Labrador humid boreal black
spruce forests and to clearly differentiate them from upland boreal forests and true wetlands,
iii) to increase scientific understanding of the functional role of bryophytes in decomposition
processes, iv) to determine the impact of disturbances on bryophytes and their ecology, and
v) to introduce bryophytes into forest C models used to simulate boreal forest C stocks and
dynamics (Bond-Lamberty et al. 2007a, Turetsky et al. 2010).

2.2.2 Disturbance Impacts on Carbon Stocks and Dynamics

Although being subjected to disturbances at different spatial and temporal scales, the bo-
real forest biome has been classified as a disturbance type 3 biome, characterized primarily
by ecosystems with frequent stand-initiating disturbance events such as wildfire, insect out-
breaks, or clearcut harvesting (McCarthy 2001, Parminter 1995). These large-scale dis-
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turbances not only change the forest ecosystem with respect to species composition, age class
distribution, and vertical and horizontal structure, but also alter C fluxes between ecosys-
tem components and the atmosphere (e.g., photosynthesis, autotrophic and heterotrophic
respiration) for considerable time periods and are often associated with significant gaseous
emissions, thus exerting a strong and possibly long-term influence on the forest C cycle
(Kurz et al. 2008b).

Stand-replacing wildfire is the dominant natural disturbance controlling the dynamics of
boreal forests (Harden et al. 2000, McCarthy 2001), characterized by fire size, severity,
season, and frequency (Bourgeau-Chavez et al. 2000, Certini 2005). Fire frequency,
commonly expressed as the fire return interval (FRI; Payette 1992), depends on local and
regional climate, topography, amount and condition of fuel, and tree species (McCarthy
2001, Certini 2005, Bond-Lamberty et al. 2007b). It varies greatly from 40–100
years in western Canada and Alaska (Yarie 1981, Neff et al. 2005), to ∼100–250
years in Québec (Boulanger and Sirois 2006, Bouchard et al. 2008), to 300–500
years in southeastern Labrador (Foster 1984). Over the past 20–40 years, fire frequency
has increased steadily in parts of the boreal forest (Kasischke and Turetsky 2006,
Canadell et al. 2007, Greene et al. 2007), and is expected to increase further in
the course of a changing climate (Flannigan et al. 2005, Bond-Lamberty et al.
2007b), resulting in significantly larger amounts of CO2 released to the atmosphere annually
(Kasischke 2000).

Forest fire generally kills most or all trees, and converts tree regeneration, shrubs, ground
vegetation, and a large proportion of the organic layer to gaseous forms (mainly CO2, some
carbon monoxide (CO) and methane (CH4)) and to pyrogenic or black C (Harden et al.
2000, Certini 2005, Preston and Schmidt 2006). In consequence, photosynthesis and
autotrophic respiration drastically decline until succession is initiated (O’Neill et al.
2006), heterotrophic soil respiration typically declines for the first years post-fire then in-
creases again (O’Neill et al. 2002, Bond-Lamberty et al. 2004a), and stands may
turn into moderate C sources for 1–2 decades following fire (Bond-Lamberty et al.
2004b, Gough et al. 2007). In addition to the immediate release of C stored in vegeta-
tion and DOM, fire can influence ecosystem C fluxes for decades by reducing organic layer
thickness and physically and chemically altering DOM (Certini 2005), thus changing tem-
perature and moisture regimes, microbial community size and composition, decomposition
rates, and successional pathways (Johnstone and Kasischke 2005, Neff et al. 2005,
Greene et al. 2007, O’Donnell et al. 2009b). The proportion of the organic layer
consumed during a fire event is determined by the moisture content of the organic layer at
the time of the fire, the duration of the combustion period, and other factors such as land-
scape characteristics and fire history (Kasischke and Johnstone 2005). The degree of
organic layer combustion decreases with increasing organic layer moisture content; therefore,
residual organic layer thickness following fire is generally greater in more humid northern
boreal forests (Greene et al. 2007).
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Clearcut harvesting is the dominant anthropogenic disturbance in boreal forests, currently
affecting up to 1 million ha of Canadian forests annually (McRae et al. 2001). The area
of managed boreal forest is likely to increase as the global demand for wood products rises,
thus increasing the contribution of harvesting to total disturbance effects on the boreal C
cycle (Howard et al. 2004). In general, clearcutting removes most or all merchantable
trees, results in disturbances of the organic layer and possibly the mineral soil, and thereby
considerably changes the forest microclimate (Jandl et al. 2007). However, depending
on the harvesting technique and legal regulations, differences in residual vegetation and
environmental impacts between individual cuts may be large (McRae et al. 2001).

Live tree C stocks are reduced considerably following harvesting, and slowly recover as first
ground vegetation and later tree biomass accumulate (Howard et al. 2004). Substantial
amounts of harvest residue C are generated directly following harvest (Pedlar et al.
2002, Moroni 2006), and added to organic layer C stocks (Howard et al. 2004, Jandl
et al. 2007, Diochon et al. 2009). However, organic layer C stocks have been reported
to increase (Mattson and Swank 1989, Howard et al. 2004, Smith et al. 2000),
remain unchanged (Peltoniemi et al. 2004), or decrease following harvest (Olsson
et al. 1996, Norris et al. 2009), reflecting difficulties in measurement due to high spatial
variability (Diochon et al. 2009) and varying effects of harvesting on decomposition rates
(McRae et al. 2001). Soil temperatures and soil moisture typically increase following
harvest (Keenan and Kimmins 1993), which may increase decomposition rates in the short-
term (Prescott 1997) or only below the organic layer surface (Binkley 1984). Other
studies have observed unchanged or decreased decomposition rates following clearcutting (cf.
Keenan and Kimmins 1993, McRae et al. 2001). Mineral soil C stocks are generally
little affected by harvesting (Johnson and Curtis 2001, Norris et al. 2009), although
some studies have observed decreasing mineral soil C stocks post-harvest, for example in
humid coniferous forests in Nova Scotia (Diochon et al. 2009).

Conclusions and general research needs: Carbon stocks and dynamics of humid northern
boreal forests have received relatively little attention so far, despite the fact that they cover
large areas throughout the Canadian and circumpolar boreal region. Studies of boreal forest
C dynamics have mostly focused on dry cold-continental boreal forests in North America,
Russia, and Scandinavia (Krankina and Harmon 1995, Howard et al. 2004, Martin
et al. 2005) or one stage of forest development (Harvey et al. 1981, Thompson
et al. 2003, Zielonka 2006), or investigated specific DOM C pools such as woody
debris (WD; downed dead wood; Bond-Lamberty et al. 2003, Boulanger and Sirois
2006). Deadwood, organic layer, and mineral soil C dynamics in cool and humid northern
boreal forests are expected to differ from those of drier or warmer boreal forests, because
accumulation of ecosystem C is higher in regions with low average temperatures (Shaw
et al. 2005), high soil moisture contents (Neff et al. 2005), insulating moss layers
on top of the organic layer and mineral soil (Hollingsworth et al. 2008), and long
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fire return intervals (Simard et al. 2009). Research is thus required to examine the
impact of disturbance history and time since disturbance on biomass, DOM, and mineral
soil C of humid northern boreal forests and to develop forest management strategies aimed
at decreasing C sources and increasing C sinks (Canadell et al. 2007).

2.2.3 Carbon Modelling and Accounting

The long-term effects of disturbances and climate change impacts on disturbance regimes can
hardly be assessed by means of field studies alone. Experimental databases from regional,
chronosequence, and process studies may be used to develop, validate, and calibrate forest
ecosystem models (Chertov et al. 2009). Forest ecosystem C stocks and dynamics can be
simulated using numerous complex models such as Biome-BGC (Bond-Lamberty et al.
2007a), EFIMOD (Chertov et al. 2009), TRIPLEX (Peng et al. 2002), YASSO (soil C
stocks; Liski et al. 2005), FORCARB (Smith and Heath 2001), CARBINE (Matthews
and Broadmeadow 2003), and CBM-CFS3 (Kurz et al. 2009). Few of these models
comply with the Tier 3 methodology of the Good Practice Guidance (GPG) for Land Use,
Land-use Change and Forestry (LULUCF; IPCC 2006), and may be used as tools to account
for forest C stocks and C stock changes in compliance with international agreements such
as the UNFCCC (UNFCCC 1992).

The CBM-CFS3 is a comprehensive forest ecosystem model which implements Tier 3 GPG
standards (Kurz et al. 2009), and is the core component of Canada’s National Forest
Carbon Monitoring, Accounting and Reporting System (NFCMARS; Kurz and Apps 2006).
NFCMARS follows the “one inventory plus change” approach (IPCC 2006), which requires
a forest and land inventory, data on land-use change, forest management, and disturbances,
as well as models (i.e. the CBM-CFS3) for estimating inter-annual variation within the
observation period (Kurz et al. 2009). The CBM-CFS3 is a stand-, landscape-, and
national-level model of upland forest dynamics that tracks C stocks, C stock changes, and
emissions and removals of CO2, CH4, and CO (Kurz and Apps 1999, Kurz et al. 2002)
by simulating the impacts of disturbances, including harvesting, insect outbreaks, and fire,
on forest C stocks (Kurz and Apps 1999, Kurz et al. 2009). Models such as the CBM-
CFS3 can be used to assess the future net greenhouse gas balance of a particular region
or country accounting for the expected changes in climate and disturbance regime (Kurz
et al. 2008b). However, they should be validated and calibrated using representative field
data, which is particularly important for Tier 3 estimates (Köhl et al. 2008).

Conclusions and general research needs: Estimates of organic layer and soil C stocks in
particular are linked to high uncertainty due to the high spatial variability associated with
organic layer and mineral soil C content (Diochon et al. 2009). With increasing soil
water content, bryophyte productivity, and organic layer thickness, the uncertainty of soil C
estimates derived from upland forest C models such as CBM-CFS3 is expected to increase
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(Bhatti et al. 2002, Bond-Lamberty et al. 2007a). In contrast, wetland C models
such as the Peatland Carbon Simulator (PCARS) are optimized for bryophyte-dominated
peatlands and incorporate the hydrological complexities of peatlands (Frolking et al.
2002), but yield higher levels of uncertainty for forested peatlands (Bond-Lamberty et al.
2007a). The applicability of the CBM-CFS3 to humid northern boreal forests — located on
a gradient between well-drained upland boreal forests and forested peatlands with respect
to soil moisture and organic layer thickness — therefore needs to be assessed; particularly
regarding the effects of natural and anthropogenic disturbance history on forest DOM and
soil C stocks.

2.3 Deadwood in Boreal Forests

Deadwood is an integral component of the forest C cycle (Kurz and Apps 1993, Bond-
Lamberty et al. 2003), which is not only a potentially large source of CO2 (Krankina
and Harmon 1995, Manies et al. 2005, Liu et al. 2006), but also a mid- to long-term
C store (Kueppers et al. 2004, Boulanger and Sirois 2006). It also provides habitat
for a range of plant and animal species (Feller 2003, Harmon et al. 2004, Schwab
et al. 2006), and contributes to forest structure (Harmon et al. 2004), nutrient cycling
(Laiho and Prescott 2004), and soil development (Feller 2003). In ecosystems such as
the boreal forest, where decomposition is limited by low average temperatures (Apps et al.
1993), the C storage function of deadwood is more important than in ecosystems with high
turnover rates.

Numerous studies have therefore assessed the contribution of deadwood to the C budget of
dry cold-continental boreal forests in Russia (Krankina and Harmon 1995), Scandinavia
(Vávřová et al. 2009), and North America (Bond-Lamberty et al. 2003, Manies
et al. 2005, Boulanger and Sirois 2006). In contrast to other boreal regions, however,
deadwood stocks and dynamics of cold-oceanic forests, e.g., in Labrador, are likely different,
because decomposition rates may be limited at high substrate moisture contents despite
favourable substrate temperatures (Progar et al. 2000, Laiho and Prescott 2004),
while deadwood creation is expected to be similar in small-treed boreal forests with low tree
growth rates.

2.3.1 Disturbance Impacts on Deadwood

Abundance and characteristics of deadwood in forest ecosystems, e.g., of woody debris (WD),
snags (standing dead trees), and stumps (dead trees <1.3 m in height), are strongly influ-
enced by disturbance history (Krankina et al. 2002, Harmon et al. 2004). In boreal
forests, small- and large-scale disturbances play an important role in the creation of dead-
wood (Pedlar et al. 2002, Boulanger and Sirois 2006, Moroni 2006). While
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small-scale wind disturbance and senescence constantly create small amounts of deadwood
in old-growth boreal forests (McCarthy 2001, Bergeron et al. 2002), stand-replacing
fires and clearcut harvesting produce large amounts of deadwood in single events (Harden
et al. 2000, Bergeron et al. 2002, Roberts et al. 2006). However, fire and har-
vesting differ considerably with respect to structural and temporal deadwood characteristics
(McRae et al. 2001).

Wildfire generates little WD and large amounts of snags (McRae et al. 2001), which
can remain standing for up to ∼30 years (Boulanger and Sirois 2006, Moroni 2006).
Snag decomposition rates are usually very low due to low moisture content, charred sur-
faces, and delayed microbial colonization (Boulanger and Sirois 2006, Remsburg and
Turner 2006, Zhou et al. 2007), resulting in small C losses from fire-generated snags
(Boulanger and Sirois 2006). Woody debris accumulates throughout the first two to
three decades following fire for as long as inputs from falling snags exceed decomposition
rates of WD (Bond-Lamberty et al. 2003, Manies et al. 2005, Boulanger and
Sirois 2006). Fire-generated WD often features a charred surface, which can be trans-
formed into a decay-resistant shell (“case-hardening phenomenon”) as a result of below-fibre
saturation WD moisture levels and excessively high air temperatures observed on burned
sites (Marra and Edmonds 1996, McRae et al. 2001, Mackensen and Bauhus
2003, Manies et al. 2005), possibly leading to slower decomposition of fire-generated WD
compared to harvest-generated WD (Wei et al. 1997).

Clearcut harvesting generates substantial amounts of logging debris, i.e. WD, directly fol-
lowing harvest (Pedlar et al. 2002, Moroni 2006), dominated by smaller and shorter
WD pieces than wildfire (Densmore et al. 2004, Stevenson et al. 2006). Although
harvesting changes the WD decay class distribution by adding mainly undecomposed WD
(Stevenson et al. 2006), harvest-generated WD generally decomposes within 20–40 years
depending on tree species due to its high surface to volume ratio and its susceptibility to
mechanical damage and microbial colonization (Fridman and Walheim 2000, Moroni
2006). Clearcut harvesting also produces small amounts of stumps (Pedlar et al. 2002,
Moroni 2006) and snags as a result of the removal of merchantable trees and the post-
disturbance death of uncut trees (Fridman and Walheim 2000, McRae et al. 2001,
Pedlar et al. 2002), respectively.

Decomposition rates of WD are required for accurately modelling forest deadwood and C
dynamics, and are commonly estimated by assessing mass loss or density change over time
(Chambers et al. 2001, Howard et al. 2004, Jomura et al. 2008). However, these
variables can generally only be determined by destructive measurements over long time
periods (Boddy 1983b,a), and their relation to the individual decomposition processes (i.e.
leaching, fragmentation, and respiration) is subject to scientific discussion (Brown 2002),
making it important to investigate the decomposition processes separately (Jomura et al.
2008). Woody debris respiration rates are a direct measure of the amount of C released to
the atmosphere during decomposition (Herrmann and Bauhus 2008), thus distinguishing
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between actual WD decomposition rates and WD mass loss due to fragmentation and/or
leaching (Marra and Edmonds 1994, Liu et al. 2006). In a boreal black spruce forest
in central Canada, WD respiration amounted to 54% of soil respiration – the second-largest
C flux in terrestrial ecosystems (Rustad et al. 2000, Bond-Lamberty et al. 2003,
Peng et al. 2008) – making WD respiration an important component of the forest C
cycle.

Conclusions and general research needs: Previous studies on deadwood in boreal forests
have mostly focused on old-growth forests (Thompson et al. 2003), or the impacts of a
single disturbance such as fire (Bond-Lamberty et al. 2003, Manies et al. 2005) or
harvesting (Sturtevant et al. 1997) on deadwood stocks. Few studies have contrasted
the effects of wildfire and harvesting (e.g., Moroni 2006), but none have focused on humid
northern boreal forests. Several studies have investigated C fluxes of disturbance-generated
WD, e.g., in mature or old-growth forests (Yoneda 1975, Marra and Edmonds 1994,
Progar et al. 2000, Chambers et al. 2001, Jomura et al. 2008), or following
wildfire (Wang et al. 2002, Bond-Lamberty et al. 2003), selective logging (Liu
et al. 2006), or clearcut harvesting (Marra and Edmonds 1996). However, studies
comparing respiration rates of WD with different disturbance origins are lacking, which has
been identified as an important research objective (Zhou et al. 2007). In addition, few
studies have measured WD and soil respiration concurrently (Marra and Edmonds 1994,
1996, Richard and Woodtli 2006), resulting in few estimates of the magnitude of WD
respiration compared to soil respiration.

2.4 General research questions

Based on the general research needs identified in the previous sections using current scientific
literature, the following general research questions can be formulated:

. How do C and deadwood stocks in humid boreal forests differ from those of drier or
warmer boreal forests?

. What are the effects of clearcut harvesting and wildfire on C and deadwood stocks in
humid boreal forests, and do they differ from those observed in other boreal forests?

. How does disturbance history influence the respiration rate of woody debris? How
does woody debris respiration compare to soil respiration in undisturbed and disturbed
humid boreal forests?

. Can C budget models such as the CBM-CFS3 that were developed using data for
well-drained upland forests be successfully applied to accurately simulate C stocks and
dynamics of humid boreal forests? If not, can the observed differences be captured by
calibrating selected model parameters or are structural changes required?
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2.5 Objectives

Derived from the identified research needs, the overall objectives of this thesis are therefore:

1. to quantify C and deadwood stocks of undisturbed and disturbed humid boreal forests
in Labrador and compare it to those of drier or warmer boreal forests;

2. to assess the impact of harvesting and wildfire on C and deadwood cycles in humid
boreal forest ecosystems and identify components and processes differentiating humid
boreal forests from drier or warmer boreal forests;

3. to investigate the impact of disturbance history on woody debris respiration rates and
to determine the magnitude of woody debris respiration with respect to soil respiration;

4. to evaluate the applicability of the CBM-CFS3 to humid boreal forests and, if required,
make recommendations for the modification of model components to more accurately
reflect C dynamics of these forest ecosystems.

The data generated during the biomass and C inventory (Section 3.3.1) showed that the
selected study sites contained unexpectedly large amounts of woody debris buried in the
organic layer (buried wood). The following study objectives were therefore added:

5. to determine amounts and characteristics of buried wood in humid boreal forests;

6. to investigate the burial process with respect to changing decomposition conditions;

7. to determine the age of selected buried wood samples.

The detailed objectives and hypotheses of each individually published study are presented
in the introduction section of the respective scientific articles (Section 2.6).
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2.6 Structure and Strategy

This manuscripts contains five peer-reviewed scientific articles in their published or accepted
form as separate subsections. They are not listed chronologically by time of publication, but
in a logical order with respect to subject, data acquisition, and data analysis. The articles
contain the majority of data, results, and conclusions generated in the course of this project.
While each article includes its respective reference list, references cited in the introduction
(Section 2), methodology (Section 3), and discussion section (Section 5) are presented in a
separate reference list at the end of this manuscript. The published articles are either cited
(e.g., discussion section) or referred to by their roman number (e.g., section titles).

2.6.1 Scientific Articles

I. Hagemann, U., Moroni, M., and Makeschin, F. 2009. Deadwood abundance in
Labrador high-boreal black spruce forests. Canadian Journal of Forest Research 39(1):
131–142, doi:10.1139/X08-166 (Impact Factor 1.434)

II. Hagemann, U., Moroni, M., Gleißner, J., and Makeschin, F. 2010. Disturbance
history influences woody debris and soil respiration. Forest Ecology and Management
(in press) (Impact Factor 1.950)

III. Hagemann, U., Moroni, M., Shaw, C., Makeschin, F., and Kurz, W. 2010. Compar-
ing measured and modelled forest carbon stocks in high-boreal forests of harvest and
natural-disturbance origin in Labrador, Canada. Ecological Modelling 221: 825–839,
doi:10.1016/j.ecolmodel.2009.11.024 (Impact Factor 2.176)

IV. Hagemann, U., Moroni, M., Gleißner, J., and Makeschin, F. 2010. Accumulation
and preservation of dead wood upon burial by bryophytes. Ecosystems 13(4): 600–611,
doi:10.1007/s10021-010-9343-4 (Impact Factor 3.376)

V. Moroni, M., Hagemann, U., and Beilman, D.W. 2010. Dead wood is buried and
preserved in a Labrador boreal forest. Ecosystems 13(3): 452–458, doi:10.1007/s10021-
010-9331-8 (Impact Factor 3.376)

2.6.2 Other Publications

Selected data subsets have been included in the the following Diploma theses, which were
submitted to the Dresden University of Technology, Institute of Soil Science and Site Ecology
(Reviewers: Prof. Dr. habil. Franz Makeschin; Martin Moroni, Ph.D.) and co-supervised
by Ulrike Hagemann:

I. Diekamp, M. 2009. Moss and lichen decomposition in old-growth and recently harvested
high-boreal black spruce (Picea mariana) forest stands in Labrador, Canada; Thesis
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II. Gleißner, J. 2009. Deadwood and soil respiration rates in clearcut, burned, and old-
growth high-boreal black spruce forest ecosystems in Labrador, Canada; Thesis
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3 Methodology

3.1 General Approach

The study encompasses i) data collection in selected field sites along a post-disturbance
chronosequence (Section 3.3.1), ii) manipulative field experiments to investigate ecological
processes (Section 3.3.2), and iii) subsequent modelling exercises (Section 3.4).

3.2 Study Sites

3.2.1 Study Area

The field study was conducted in central Labrador in the “High-boreal Forest–Lake Melville”
Ecoregion (Ecoregion 6; Ecoregions Working Group 1989), which represents the east-
ern extent of the Boreal Shield Ecozone and is a narrow extension of the boreal forest into
the Taiga Shield Ecozone. Mean annual temperatures (MAT) range between -2.4°C and
-1.0°C (McKenney et al. 2007), and receive approximately 1000 mm of precipitation
distributed evenly throughout the year, making it one of the wettest North American bo-
real forests (Foster 1985, Environment Canada 2010a). Soils are mainly classified as
Humo-Ferric and juvenile Ferro-Humic Podzols (Soil Classification Working Group
1998) (Table 3.1, Fig. 3.1), and support the most productive forests of Labrador, which are
dominated by black spruce mixed with balsam fir (Abies balsamea (L.) Mill.) and white
birch (Betula papyrifera Marsh.; Rowe 1972), and have been subject to commercial harvest
since 1969 (Roberts et al. 2006).

3.2.2 Site Selection and Description

Investigating the effects of disturbances on forest deadwood and C stocks over a time span
of ∼200 years post-disturbance required a space-for-time substitution, or chronosequence,
approach (Pickett 1989), which relies on minimizing variability between selected study
sites with respect to all attributes other than age (Yanai et al. 2003). The uncertainty
of chronosequences may, for example, be decreased by site replication (spatial replication;
Yanai et al. 2003, Diochon et al. 2009).
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Table 3.1: Selected characteristics of a soil profile typical of the study sites: an Ortstein humo-ferric podzol
(Cape Caribou V site). Charactéristiques d’un profil de sol typique pour les sites d’échantillonage: un podzol
humo-ferrique orthique (site Cape Caribou V)

Horizon abbreviation

CSSCa WRBb AG Bodenc Depth [cm] Description %C %N C:N

LOf O LOf 16–5 Undecomposed and semi-decomposed or-
ganic matter; fibric; dominantly originat-
ing from feathermoss and wood; abundant
fine roots; diffuse boundary

51.8 0.77 68

OmOh O OfOh 5–0 Semi-decomposed organic matter; mesic
and humic; dominantly originating from
feathermoss and wood; very abundant fine
and coarse roots; sharp smooth boundary

51.2 0.73 71

Ae E (albic) Ahe 0–3 Light grey (7.5YR 7/1) and reddish brown
(5YR 5/4); moderately silty sand; sub-
polyeder structure; low compaction; few
round blocks (>63 mm); abundant fine
and coarse roots; sharp boundary

1.16 0.04 32

Bfc B (spodic) Bhms 3–14 Strong brown (7.5Y 5/8) and dark dusty
red (10R 2.5/2); moderately silty sand; ce-
mented sub-polyeder structure (ortstein);
high to very high compaction; abundant
round gravel (2-63 mm) and few round
blocks (>63 mm); few fine and very few
coarse roots; undulating diffuse boundary

4.92 0.13 38

Bfj Bs Bs 14–33 Light olive brown (2.5Y 5/6) and yellowish
brown (10YR 5/8); very silty sand; sub-
polyeder structure; high to very high com-
paction; some round gravel (2–63 mm) and
numerous round blocks (>63 mm); no fine
and very few coarse roots; diffuse bound-
ary with pockets into underlying horizon

0.94 0.04 26

BC C Sw-Cv 33+ Light olive grey (5Y 6/2) bleached ma-
trix; prominent dark reddish brown (5YR
3/4) and yellowish red (5YR 5/8) mottles;
sandy-loamy silt; coherent structure; high
compaction; few round blocks (>63 mm);
no fine or coarse roots

0.11 0.01 19

a Ortstein Humo-Ferric Podzol; (Agriculture Canada Expert Committee on Soil Survey 1998)
b Haplic Podzol; (IUSS Working Group WRB 2006); c Pseudogley-Podsol; (Ad-Hoc-AG Boden 2005)

A replicated chronosequence of harvested sites was selected for study, composed of i) three
sites harvested in 2005 (recently harvested stratum), ii) three sites harvested in 1989 (middle-
aged harvested stratum), and iii) three sites harvested in 1970–72 (older harvested stratum;
Table 3.2). As no suitable sites were found to complete a corresponding post-fire chronose-
quence, measurements were restricted to iv) three sites killed by fire in 1985 (burned stra-
tum); and v) three old-growth sites of unknown disturbance history (old-growth stratum).
Because past disturbances have the potential to leave a legacy of deadwood in the current
rotation (Krankina and Harmon 1994), all disturbed sites were selected to represent
stands that were old-growth spruce-dominated forests at the time of the last stand-replacing
disturbance, and had regenerated to spruce-dominated stands. Regeneration had failed in all
burned sites, but sites were expected to eventually regenerate to spruce (Roberts et al.
2006). Burned sites were not salvage logged. Harvesting removed all stems with a diameter
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at breast height (DBH) ≥9 cm, by chainsaw in the middle-aged and older harvested stratum,
and by short-wood mechanical harvester in the recently harvested stratum.

As site productivity greatly affects dead organic matter stocks through varying input rates,
the fifteen selected sites featured the same pre-disturbance or current forest stand type,
bS842M, with the exception of the Echo Lake I site, which contained a spatial mix of
medium and poor site productivity classes (Table 3.2). Stand type bS842M s dominated
by black spruce (>75%) older than 140 years featuring an average height of 12–15 m and a
crown closure of 50%-75% on sites of medium productivity. It is the most common produc-
tive forest type in Labrador, with stands reaching a maximum gross merchantable volume
(GMV) of ∼140 m3ha−1 at stand ages of ∼110–150 years, before going into gap dynamics at
an average GMV of ∼113 m3ha−1 (de Grandpré et al. 2000, Government of New-
foundland and Labrador 2006a). Where pre-disturbance stand type was unknown
(i.e., burned stratum), stand type was assessed based on the knowledge of local foresters,
relief, vegetation, soil type, and adjacent stands. Stand ages of the old-growth and harvested
sites were determined from harvesting records and increment bores, respectively, following
the methods described in Hagemann et al. (2009).

a ) Old-growth b ) Harvested c ) Burned

Figure 3.1: Ortstein humo-ferric podzols at a) Cape Caribou V, b) Forkin’ Brook I, and c) Cape Caribou IV
sites. Podzol humo-ferrique au site a) Cape Caribou V, b) Forkin’ Brook I, et c) Cape Caribou IV.

Strata are generally labeled such that the letter denotes the disturbance origin (H–harvest,
B–wildfire, and OG–old growth, likely established following fire), and the number (range)
represents the year of disturbance (harvested and burned strata, only). Different notations
have been used in publications I to IV due to journal preferences and are explained in the
respective methodology sections.
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3 Methodology 3.2 Study Sites

Figure 3.2: Distribution of Labrador study sites by stratum. Les sites d’échantillonage au Labrador distribués
par strate.

Figure 3.3: Plot distribution in an exemplary study site. Distribution des plots dans un site d’échantillonage.
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Table 3.2: Characteristics of Labrador black spruce study sites. Charactéristiques des sites d’échantillon-nage dans les pessières noires au Labrador.
Forest agea (years) Forest typeb UTM coordinatesc Climate and topography Stand characteristics

Stratum and
site

Year of dis-
turbance

Pre-
disturbance

Current Pre-
disturbance

Current Easting Northing Mean an-
nual temp.d

[°C]

Elevation
[m a.s.l.]

Median
DBHe

[cm]

Av. tree
heighte

[m]

Basal
area
[m2ha−1]

Merch.
volume
[m3ha−1]

Recently harvested stratum
Forkin’ Brook I 2005 >140 naf bS842Mg nah 647716 5934376 -2.1 281 <9.0 <5.0 0.0±0.0 0.0±0.0
Forkin’ Brook II 2005 >140 naf bS842Mg nah 647403 5934116 -2.0 264 11.3 6.7 0.3±0.2 0.0±0.0
Echo Lake I 2005 >140 naf bS842M/Pg nah 653971 5904365 -1.1 81 9.3 6.1 0.0±0.0 0.0±0.0
Middle-aged harvested stratum
Cape Caribou I 1989 >140 16±5 bS842Mg nah 653873 5942346 -2.4 321 14.4 9.3 0.2±0.1 0.8±0.6
Arrowhead I 1989 >140 15±5 bS842Mg nah 639244 5943596 -2.1 260 <9.0 <5.0 0.0±0.0 0.0±0.0
Arrowhead II 1989 >140 15±5 bS842Mg nah 639290 5942753 -2.2 230 9.2 5.0 0.0±0.0 0.1±0.1
Older harvested stratum
Echo Lake II 1970–1972 >140 32±5 bS842Mg bSbF110Mi 660374 5911564 -1.0 100 11.3 8.0 5.1±0.8 19.7±5.1
Echo Lake III 1970–1972 >140 32±5 bS842Mg bSbF110Mi 660415 5911470 -1.1 108 11.0 7.9 5.6±0.8 22.3±5.3
Echo Lake IV 1970–1972 >140 30±5 bS842Mg bSbF110Mi 656681 5909639 -1.2 134 10.2 6.8 1.9±0.4 6.7±2.2
Middle-aged burned stratum
Cape Caribou II 1985 >140 naf bS842Mg nah 653657 5938075 -1.3 99 <9.0 <5.0 0.0±0.0 0.0±0.0
Cape Caribou III 1985 >140 naf bS842Mg Scsh 653558 5937764 -1.6 194 <9.0 <5.0 0.0±0.0 0.0±0.0
Cape Caribou IV 1985 >140 naf bS842Mg Scsh 655909 5934525 -1.6 188 <9.0 <5.0 0.0±0.0 0.0±0.0
Old-growth stratum; unknown disturbance origin
Cape Caribou V naj naj 204±20 naj bS842Mg 652723 5937344 -1.8 161 14.1 11.2 16.2±0.9 88.1±11.4
Arrowhead III naj naj 146±20 naj bS842Mg 641393 5941739 -2.0 223 15.1 11.5 31.1±3.3 164.2±24.6
Arrowhead IV naj naj 148±20 naj bS842Mg 643224 5944172 -2.2 257 12.8 10.3 27.7±1.2 138.4±9.1
a Forest age determined in 2006
b Newfoundland and Labrador forest inventory data (Government of Newfoundland and Labrador 2006a)
c Map datum NAD83; UTM Zone 21N
d Site-specific data; refer to (McKenney et al. 2007)
e For all trees with DBH >9.0 cm
f Regeneration too small for classification
f >75% black spruce; older than 140 years; average height 12–15 m; crown closure 50%–75%; medium (M) or poor (P) site productivity
h No current forest type classification; Scs = softwood scrub
i >50% black spruce with >25% balsam fir; older than 20 years; average height <6 m; crown closure <25%; medium site productivity; determined from neighboring stands, site conditions, and ground vegetation
j unknown

21



3 Methodology 3.3 Field Measurements

3.3 Field Measurements

The following section presents an overview of all conducted field measurements (Table 3.3,
Fig. 3.3). Comprehensive descriptions of the applied measurement methods are given in the
respective publications. Measurement methods which are unpublished to date are explained
in full detail.

Table 3.3: Overview of strata, measurement periods, and conducted measurements. Vue d’ensemble des strates,
des périodes d’échantillonage, et du mesurage et d’échantillonage effectués.

Strata Measurement period Measurements

Recently, midle-aged, and older harvested;
Middle-aged burned;
Old-growth June–September 2006 Forest biomass and carbon inventorya

Recently harvested;
Old-growth July–August 2007 Ground vegetation cover and biomassa

Recently harvested;
Middle-aged burned;
Old-growth July–September 2008 Aboveground woody debris and soil respirationb

Recently harvestedd;
Middle-aged burned;
Old-growth July–September 2008 Buried wood abundance and environmentc

a Section 3.3.1; b Section 3.3.2; c Sections 3.3.1 and 3.3.2
d For these measurements, the Echo Lake I site was replaced with a similar site near Forkin’ Brook I and II to allow for completion
of one measurement cycle within a day.

3.3.1 Disturbance Chronosequence

Biomass and Carbon Inventory (Art. I, III ): Measurements were conducted from June
to September 2006, and followed the National Forest Inventory (NFI) Ground Sampling
Guidelines (Gillis et al. 2005, Natural Resources Canada 2010a). Four inventory
plots were located randomly within each site, each consisting of two concentric circular
subplots (radius 11.28 m and 3.99 m, respectively), two perpendicular 40-m line transects
crossing at their mid-point at the plot center, and a 1-m2 subplot located at the end of one
randomly selected transect. Diameter at breast height (DBH) and height of live trees and
snags (standing dead trees with height ≥1.3 m) with DBH ≥9 cm were measured within the
11.28-m radius subplot. Diameter and height of live trees and snags with DBH <9 cm and
stump (standing dead trees with height <1.3 m ) height and top diameter inside bark were
measured within the 3.99-m radius subplot (Natural Resources Canada 2010a). Live
individual-tree and snag aboveground biomass were estimated from regional NFI biomass
equations for Ecozone 6 differentiated by site productivity class based on species, tree height,
DBH (Lambert et al. 2005), and decay class (Natural Resources Canada 2010a).
Stump volume was calculated assuming a cylindrical shape. Live-tree, snag and stump C
stocks were estimated by multiplying oven-dry biomass by 0.5 (Matthews 1993, Lamlom
and Savidge 2003).
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Volume of WD was determined using the line intersect method of van Wagner and Olsen
(1964). For >7.5 cm WD, individual diameters were measured and decay classes assigned,
but only frequencies were recorded for ≤7.5 cm WD. Fine woody debris (≤1.0 cm) was
sampled from the 1-m2 subplot. All ≤7.5 cm WD was assigned an average decay class per
diameter class and plot. Biomass of WD was estimated by multiplying WD volume by
species and decay class with corresponding WD densities (Natural Resources Canada
2010a). Carbon stocks of snags, stumps, and WD were estimated by multiplying oven-dry
biomass by 0.5; for <1 cm WD, laboratory-determined C content was used. All C analysis
was done using a LECO CNS-2000 combustion analyzer (LECO Corporation 2003).

Thickness of the organic layer and buried wood (BW; WD incorporated more than 50% into
the organic layer) was measured at 2-m intervals along each transect. The volume of BW and
organic layer was estimated from the average thickness of each multiplied by the area of the
plot it occupied. Volume of BW was multiplied with the density of decay class 4 black spruce
to estimate BW biomass. Buried wood C content was assumed to be 50%. Organic layer
bulk density was estimated from the volume and oven-dry mass of a sample taken from a 20
x 20 cm area in the 1-m2 subplot. Organic layer samples were oven-dried, sieved (850 µm),
and analyzed for C content. Mineral soil samples were taken from 0–15 cm (all four plots),
15–30 cm (two randomly selected plots), and 30–45 cm depths (one randomly selected plot).
Sample volume was estimated by measuring the volume of glass beads required to fill the
hole. Mineral soil samples were air-dried, sieved (2 mm), oven-dried, and weighed. Bulk
density of <2 mm mineral soil was estimated based on sample volume and dry weight. A
sub-sample was sieved (850 µm) and analyzed for C content.

Ground Vegetation (Thesis I ): In old-growth and recently harvested sites, five vegetation
plots were placed every 5 m along two randomly placed 20-m transects. At each plot,
coverage of eight cover types was estimated to 5% accuracy within a 50 x 50 cm wooden
frame: Pleurozium schreberi, Ptilium crista-castrensis, Sphagnum spec. (mainly S. rusowii
Warst. Hs and S. capillifolium (Ehrh.) Hedw.), dead moss, foliose ground lichen (mainly
Peltigera aphtosa (L.) Willd. and Nephroma arcticum (L.) Torss.), dead lichen, vascular
plants, and woody debris/bare soil/rock. At every 2nd plot, live aboveground vegetation
parts of each ground cover type were clipped, oven-dried, and weighed. Biomass per hectare
[kg ha−1] was calculated based on cover [%] and dry mass [kg m−2].

Buried Wood Abundance (Art. IV ): Three BW inventory plots were located randomly
within the old-growth sites, each comprising a 9-m equilateral triangle transect. Along each
triangle transect, a trench was dug down to the mineral soil. All BW intersecting the transect
was measured using the line intersect method (van Wagner and Olsen 1964). Decay
classes were assigned to individual BW pieces (Natural Resources Canada 2010a),
and BW biomass was estimated by multiplying BW volume with wood density for the
corresponding black spruce decay class. Buried wood C stocks were calculated by multiplying

23



3 Methodology 3.3 Field Measurements

BW biomass with 0.5. Presence of bark, charring, and ingrown roots, and organic layer
thickness above and below each BW piece were recorded from the center of the BW piece.

Buried Wood 14C Age Determination (Art. V ) Within each BW inventory plot, sam-
ples of ∼150 cm3 were taken from the approximate centre of 3–4 individual buried stems
located near the interface of the organic layer and mineral soil. Care was taken to avoid con-
tamination of samples with modern C, as stems were often mixed with organic or mineral soil
material and penetrated by roots and fungal hyphae. Charcoal was identified on the surface
of some buried wood from all sites. Excavated samples were air dried and ingrown fungal
mycelia and roots were removed by hand under a stereo microscope before three or four
individual small wood fragments per sample were randomly combined for 14C measurement.

Potential carbonate and humic acid contamination was removed from the composited samples
by Acid-Base-Acid pretreatment (65°C, 0.5 N HCl for 1 hr, 0.5 N NaOH for 1 hr, 0.5 N
HCl for 4 hr) at the CHRONO Centre of Climate, Queen’s University, Belfast. Samples
were combusted to CO2 at 900°C for 6 h in the presence of CuO and Ag in evacuated quartz
tubes. An aliquot of CO2 was cryogenically purified, then converted to graphite by hydrogen
reduction for analysis by AMS. 14C ages were calibrated to calendar ages using the IntCal04
curve and CALIB 5.1 (Reimer et al. 2004, Stuiver and Reimer 1993). Ages are
reported as years before excavation and measurement (before 2008 AD) and rounded to the
nearest decade. Calendar age of one buried wood sample with greater than modern 14C
content (bomb carbon) was determined using CaliBomb.

3.3.2 Manipulative Field Experiments

Aboveground WD Respiration (Art. II, Thesis II ): Fourty-five black spruce decay
class 2 (Natural Resources Canada 2010a) sample logs were selected from the WD
present within recently harvested, middle-aged burned, and old-growth sites, cut to 30.6 ±
0.5 cm length, and sealed at both ends. Decay class 2 logs were chosen for their i) high
abundance in all strata (Hagemann et al. 2009), ii) low expected variability in wood
density, iii) high structural integrity, and iv) higher absolute respiration rates than more
advanced decay classes (Hicks et al. 2003). A 20-m transect was placed randomly at
each site, along which five respiration plots were located every 5 m. At each respiration plot,
one sample log was placed on the ground ∼2 weeks prior to the first sampling to allow for
equilibration.

Respiration, wood and air temperatures, and log mass were measured nine times from July 12
to September 01, 2008, every 5-8 days. Respiration was measured for 180 s by placing sample
logs into a clear acrylic closed chamber connected to an EGM-4 infrared gas analyzer (PP
Systems; Amesbury, MA, USA). Woody debris respiration was calculated as CO2 concentra-
tion increment in the system volume (corrected for log volume) per unit of emitting (lateral)
wood surface and time. Four WD temperatures were recorded in pre-drilled holes (� 4 mm)
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using digital type K thermocouple probes (DP8811WP; Mannix, NY, USA): surface tem-
perature, top sapwood temperature at 2 cm depth, heartwood temperature at 7 cm depth,
and bottom sapwood temperature at 2 cm depth from below. Between measurements, holes
were sealed with wooden dowels to avoid equilibration with ambient air. Simultaneously to
WD respiration, organic layer temperature at 3 cm depth below each sample log as well as
ambient air temperature and relative humidity at 30 cm above the forest floor were recorded.
Log mass was determined using a digital hanging scale. Gravimetric WD moisture content
was calculated using date-specific field mass and absolute dry mass determined following
completion of the last measurement. Log density was calculated as dry mass [kg] to volume
[m3] ratio.

Measured WD respiration rates per emitting surface area were converted to per-hectare WD
respiration rates to allow for comparison to per-hectare soil respiration rates. For each WD
diameter class (Section 3.3.1), we calculated the total length of WD with the mid-point
diameter of the respective class required to have a cylinder volume equivalent to the WD
volume estimates [m3ha−1] of the respective WD diameter class. Based on the calculated
total WD length and the respective diameters, the total WD surface area for each WD
diameter class was calculated and summed up to total WD surface area per hectare [m2ha−1].
Estimated per-hectare WD respiration rates for each measurement date were calculated by
multiplying measured WD respiration rates of decay class 2 sample logs with total WD
surface area per hectare, assuming all WD diameter classes to have similar WD respiration
rates (Bond-Lamberty et al. 2003) and all WD to be decay class 2.

Soil Respiration (Art. II, Thesis II ): At each respiration plot, a PVC collar (� =

10.3 cm) was inserted 2 cm into the organic layer next to each sample log. Soil respiration
was measured for 120 s simultaneously to WD respiration measurements using an SRC-
1 chamber connected to an EGM-1 infrared gas analyzer (PP Systems; Amesbury, MA,
USA). Organic layer temperature and moisture potential at 10 cm depth were measured
concurrently to soil respiration. Organic layer thickness was measured below each collar
following the last measurement.

Burial Environment (Art. IV, Thesis II ): In the three old-growth sites, twelve decay
class 2 sample logs were selected from the WD present within each site, cut to 30.7± 0.2 cm

length, and sealed at both ends. A 25-m transect was placed randomly within each site,
along which three burial plots were located at the beginning, center, and end. At each burial
plot, four sample logs were placed at four different positions relative to the surface of the
forest floor: P1 – on top of the live moss layer, P2 – half-buried in the organic layer but
not moss-covered, P3 – completely buried in the organic layer and covered by live moss,
and P4 – completely buried in the organic layer and in contact with the mineral soil (Fig.
3.4). A plastic mesh (∼10 cm) was inserted below the live moss layer or the sample piece at
plots P3 and P4, respectively, to facilitate handling and reduce disturbance of the organic
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layer material. In each site, a LogIT LT2 data logger (Supco Inc; Allenwood, NJ, USA)
was installed at the center burial plot with two probes recording organic layer temperatures
every 15 minutes at 2 and 20 cm depth (T1/2; Fig. 3.4). At each plot, a corrodible steel rod
of 1.2 m length was implanted into the forest floor to assess oxygen availability (Fenton
et al. 2006).

Figure 3.4: Burial positions of standardized sample logs. Organic layer and soil horizon terminology according to
Soil Classification Working Group (1998). Positions d’enterrement des bûches standardisées. L’horizon
de matière organique et les horizons du sol minéral sont déterminés selon (. . . )

Respiration, wood and air temperatures, and log mass were measured seven times from
13 July to 27 August 2008, every 7-10 days. Logs were unearthed, cleaned from attached
organic material, and respiration rates were measured following the methods described for
WD respiration. Organic layer temperature below each sample log, organic layer moisture
potential, top sapwood and heartwood temperature, air temperature, relative humidity, and
log mass were also measured following the methods outlined above.

3.4 Carbon Modelling (Art. III)

The CBM-CFS3 model was applied to single theoretical stands 1 ha in size, each repre-
sentative of one of the 15 sites of the field study (Section 3.2). The Labrador adminis-
trative boundary and the Boreal Shield East Ecozone were selected during data import.
Stands were assumed to follow the growth curves of the respective forest types (Table 3.2)
(Government of Newfoundland and Labrador 2006b) adapted to field-measured
species composition. For stand ages exceeding the existing growth curves, the volume of the
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last available age class (190–200 years) was maintained, assuming forest stands to continue
under a gap-replacement system (McCarthy 2001). In annual time steps, yield curve-
derived merchantable volume is converted into aboveground biomass components based
on the volume-to-biomass conversion equation used to estimate Canada’s national forest
biomass (Boudewyn et al. 2007). Belowground biomass is predicted from aboveground
biomass using stand-level regression equations for softwood and hardwood species (Li et al.
2003). Biomass components can be transferred to DOM pools through litterfall, tree mor-
tality, and disturbance impacts. Litterfall and other turnover rates for each biomass pool
are defined by regional default parameter sets. Disturbance impacts are modelled through
“disturbance matrices” (Kull et al. 2007) that define the impacts of each disturbance
type for each biomass and DOM pool in the stand.

During initialization, the CBM-CFS3 uses a spin-up procedure (Kurz and Apps 1999,
Kurz et al. 2009) to estimate the quantity of C in soil and DOM pools before simulating
scenarios. It requires user-specified assumptions about historic disturbance-return intervals,
the historic disturbance type occurring during the spin-up procedure (wildfire), and the
type of the last disturbance that preceded the establishment of the current stand (wildfire
or clearcut harvest). During the spin-up procedure, stands are grown to the age of the
disturbance-return interval and disturbed using the stand’s historic disturbance type. At
the end of each disturbance-return interval, the CBM-CFS3 compares the slow pool DOM
C stocks between the current and previous rotations. If the difference in the stocks is <1%,
then the DOM C stocks are assumed to be in a quasi-equilibrium state determined by inputs
(a function of net primary productivity, site productivity, disturbance type, and species)
and losses from decomposition (a function of MAT) and disturbances (direct losses only
from wildfires). Once equilibrium is reached, the CBM-CFS3 simulates one more rotation
with the known disturbance and stand history.

Four modifications were made to the regional CBM-CFS3 default settings to better represent
conditions at the scale of the studied field sites: i) 1970–2001 MAT values were estimated
based on McKenney et al. (2007) rather than using the regional default value of 3.4°C;
ii) the post-fire regeneration delay was set to 20 years, because black spruce regeneration
in Labrador establishes slower than in central and western Canada (Foster 1985); iii)
the regional default FRI (125 years) was changed to 300 years (Foster 1984); and iv) the
volume-to-biomass conversion parameters used to predict biomass components were modified
to better reflect measured biomass components.

Three sets of model simulations were executed: one set using the model’s default param-
eters for the Boreal Shield East Ecozone in Labrador, a FRI of 300 years, and a 20-year
regeneration delay after fire (‘Default’); one set using the ‘Default’ parameters along with
modified volume-to-biomass conversion parameters, 300-year FRI, and 20-year regeneration
delay (‘Modified A’ parameter set); and another set to test if modelled estimates could be
improved by using an alternative parameter set that included all the changes described for
‘Modified A’, plus modified fall rates for snag stem and snag branches, and modified base
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decay rates of WD C pools recommended by previously published C modelling studies, plus
modifications to account for the contribution of BW (‘Modified B’ parameter set). Details
and the comprehensive rationale for modification and parameterization of the CBM-CFS3
are given in Hagemann et al. (2010c) (II ).

3.5 Statistical Analysis

All statistical analyses were carried out using SPSS, release 15.0.1 (SPSS Inc.). Graphs were
designed using SPSS and SigmaPlot 11.0 (Systat Software, Inc.). This document has been
created using MiKTeX 2.8, TeXnicCenter 7.01 (Open Source), and Citavi Pro 2.5 (Swiss
Academic Software GmbH).

Forest Biomass and Carbon Inventory: Volume and biomass data was square-root trans-
formed to meet normality and homoscedasticity assumptions when grouped by strata, WD
type, WD diameter class, and WD decay class. No departures from normality were observed
for C stock data within data grouped by stratum and C pool (SW-Test). Deadwood stocks
of harvested and old-growth strata were analyzed with hierarchical nested linear mixed mod-
els (LMM) and variance components were calculated using Restricted Maximum Likelihood
(REML). Differences in deadwood (e.g., grouped by size or decay class) and C stocks between
old-growth, harvested, and burned strata were analyzed using one-way nested ANOVA, with
stratum (or size class, or decay class, respectively) as a fixed factor (k = 5), site nested
within stratum as a random factor (n = 3), and plot nested within site (s = 4). Where
differences were significant (P < 0.05), pairwise comparisons were tested for significance
using the pGH-Test. In analogy to single-parameter exponential decay models (Wieder
and Lang 1982), a single-parameter negative exponential volume reduction function was
fitted to harvest-generated WD volume using nonlinear regression, as explained in detail in
Hagemann et al. (2009).

Ground Vegetation: Due to non-normal data distribution, differences in ground vegetation
cover [%] and biomass [kg ha−1] between strata were determined using the MWU-Test.

Aboveground Deadwood and Soil Respiration: Differences in WD respiration, air tem-
perature, WD temperatures, WD moisture content, organic layer (OL) temperatures, and
OL moisture potential between strata were analyzed using univariate nested ANOVA with
stratum (k = 3) and the respective variable as fixed factors, and site nested within stratum
as a random factor (n = 3). Significance thresholds for multiple comparisons were adjusted
using Bonferroni’s equation. Differences between WD respiration and soil respiration within
strata were calculated using the Wsr-Test. Correlations between WD respiration, soil respira-
tion, air temperature, WD temperatures, WD moisture content, OL temperatures, moisture
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potential and thickness were calculated using Spearman’s ρ. Factor analysis was employed
to aggregate all environmental variables. The influence of all variables on WD and soil res-
piration was determined using a hierarchical nested LMM with stratum and environmental
variables as fixed factors, measurement day as a repeated fixed factor, and site nested within
stratum as a random factor. Random variance components were calculated using REML.

Buried Wood Abundance: Associations between interval (e.g., BW depth), ordinal (e.g.,
decay class), and nominal (e.g., presence of charring) variables were determined using Spear-
man’s ρ, the χ2-Test, and Kendall’s τ , respectively.

Burial Environment: Differences in BW respiration, air temperature, BW temperatures
and moisture content, OL temperatures and moisture potential between burial positions were
analyzed using univariate nested ANOVA with position (k = 4) and the respective variable as
fixed factors, and site nested within position as a random factor (n = 3). Correlations among
BW respiration, air temperature, BW temperatures, moisture content, and density, OL
temperatures, moisture potential, and thickness were calculated using Spearman’s ρ. Factor
analysis, LMM analysis, and REML were applied as described above for WD respiration.

Comparison of Measured and Modelled Data: The inventory data (Section 3.3.1) was
used to recalculate pools that could be directly compared to the CBM-CFS3 pools prior
to comparison of modelled and field-measured estimates. Statistical model evaluation was
based on four goodness-of-fit statistics (Smith and Smith 2007) and Theil’s unequality
coefficient (Theil 1966), which were used to assess model accuracy for nine C pools. Field-
measured estimates were compared to those from three CBM-CFS3 simulations. Details on
goodness-of-fit statistics and model parameterization are presented in Hagemann et al.
(2010c).
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4 Results

4.1 Live Tree Abundance

Live tree merchantable volume measured in the NFI plots ranged between 0 m3ha−1 in the
recently harvested and 88.1–164.2 m3ha−1 in old-growth sites, and was generally in range
with the volume predicted by the appropriate regional yield curve (Fig. 4.1). Variability of
merchantable volume between sites was highest for the old-growth stratum, encompassing
sites with considerably lower and higher merchantable volume than predicted by the yield
curve. Hardwoods were negligible in all strata.

Figure 4.1: Measured merchantable volume of study sites compared to merchantable volume predicted by yield
curves. Volume marchand net des sites d’échantillonage en comparaison avec le volume marchand net selon le
table de rendement.

4.2 Ground Vegetation Abundance

Ground vegetation in the old-growth stratum was dominated by feathermosses (69%), par-
ticularly by Pleurozium schreberi (Fig. 4.2a), which covered significantly more area in the
old-growth than in the recently harvested stratum (P ≤ 0.05). Occurrence of Sphagnum and
foliose ground lichen was low (6%), but while Sphagnum occurred in patches, foliose ground
lichen were distributed relatively evenly throughout the sites. Compared to the old-growth
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stratum, the recently harvested stratum featured less live and more dead moss (P ≤ 0.05)
and considerably more bare mineral soil, rock, or logging slash (P ≤ 0.05). Vascular plant
cover was low (8-10%) and did not differ significantly between strata.

In the old-growth stratum, live mosses (Pleurozium, Ptilium, and Sphagnum) contained
> 0.7 Mg C ha−1, almost twice as much as vascular plants (∼ 0.37 Mg C ha−1; Fig. 4.2b).
After harvesting, live feathermoss C stocks decreased significantly (P ≤ 0.05). Sphagnum
and foliose ground lichen biomass tended to be lower in the recently harvested than in the
old-growth stratum, while vascular plant biomass tended to increase (P > 0.05).

a ) b )

Figure 4.2: a) Cover percent and b) C stocks (±1.0 SE) of ground cover vegetation types of the old-growth and
recently harvested strata. a) Pourcentage de couverture et b) quantité de C (±1.0 SE) des types de végétation
au sol des strates ‘pessière vierge’ et ‘coupe récente’ (n = 3; ∗ α = 0.05).

4.3 Deadwood Abundance

The NFI Ground Sampling Guidelines (Natural Resources Canada 2010a) allow for
detailed assessement of deadwood abundance by stratum, size class, and decay class. The
following scientific article presents a detailed analysis of deadwood stocks in the selected
Labrador humid boreal forest sites and discusses the impact of disturbance on these dead-
wood stocks.
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4.3.1 Hagemann U, Moroni M, and Makeschin F. 2009. Deadwood
abundance in Labrador high-boreal black spruce forests. Can.
J. For. Res. 39(1): 131–142

Extended Abstract

Aboveground deadwood abundance in Labrador humid black spruce was similar to values
observed in other boreal forests experiencing drier or warmer climates, but less than in
larger-treed forests such as Scots pine (Pinus sylvestris)-Norway spruce (Picea abies) forests
in Scandinavia with climatic conditions similar to central Labrador. Consequently, forest
diameter structure is likely more important in determining WD abundance than climate.

Clearcut harvest generated large amounts of WD, which had almost completely decomposed
34-36 years following harvesting, with a fitted volume reduction rate of -0.058 yr−1. Total
WD in all harvested stands was predominantly composed of <10 cm pieces, which contributes
significantly to deadwood C stocks. Smaller than 10 cm WD should therefore be included
in deadwood inventories of disturbed forests, particularly of small-treed coniferous boreal
forests.

Post-fire WD likely peaked ∼20 years following disturbance due to the collapse of an esti-
mated 87% of fire-generated snags. Woody debris stocks in the burned stratum were dom-
inated by large amounts of recently collapsed (decay class 2), medium-sized (10.0–19.9 cm)
snags. Snag longevity and fall rates in humid black spruce forests were thus similar to other
boreal forests, with most snags falling within 25-33 years following disturbance.

Volume of BW exceeded total aboveground deadwood volume by 30–457% in all but the re-
cently harvested and middle-aged burned strata. Old-growth stands contained 179.3 m3ha−1

of buried wood (BW), which largely exceeded most values reported in the literature. The
large amounts of BW indicate that a significant proportion of aboveground WD generated
by senescence and stand-replacing disturbances must be buried by the vigorously growing
moss layer. The long-term accumulation of BW in the organic layer requires significantly
depressed rates of WD decomposition following burial and is potentially not significantly
interrupted by stand-replacing disturbances such as wildfire. Calculating WD decay rates
based on aboveground measurements of WD abundance may, therefore, overestimate decay
rates. A combination of climate, micro-topography, ground vegetation, and stand distur-
bance history may initiate and facilitate the accumulation of BW, likely resulting in high
BW abundance in cool and moist coniferous forests with a vigorous moss layer and long fire-
return intervals. If BW is excluded from deadwood inventories in these forest ecosystems,
total deadwood stocks could be significantly underestimated.
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Deadwood abundance in Labrador high-boreal
black spruce forests

Ulrike Hagemann, Martin T. Moroni, and Franz Makeschin

Abstract: Deadwood (woody debris (WD), standing dead trees (snags), stumps, and buried deadwood) abundance was esti-
mated in Labrador humid high-boreal black spruce (Picea mariana (Mill.) BSP) forests regrown following natural and
anthropogenic disturbances. Aboveground deadwood (DW) abundance in Labrador was similar to values observed in other
boreal forests experiencing drier or warmer climates. Clear-cut harvest generated large amounts of WD, which had almost
completely decomposed 34–36 years following harvesting, with a fitted volume reduction rate of –0.058 year–1. Total WD
in all harvested stands was composed of predominantly <10 cm pieces, which should be included in DW inventories of
disturbed coniferous boreal forests. Postfire WD likely peaked *20 years following disturbance, as a result of the collapse
of snags, and was dominated by large amounts of medium-sized logs (10.0–19.9 cm). Buried DW stocks considerably ex-
ceeded total aboveground DW stocks in old-growth, middle-aged, and older harvested stands. Old-growth stands contained
179.3 m3�ha–1 of buried DW, a vast amount indicative of long-term accumulation requiring significantly depressed rates of
WD decomposition following burial. DW stocks could be significantly underestimated if buried DW is excluded from DW
inventories in cool and moist coniferous forests with long fire-return intervals.

Résumé : L’abondance du bois mort (débris ligneux (DL), arbres sur pied (chicots), souches et bois mort enterré) a été
estimée dans les forêts boréales supérieures humides d’épinette noire (Picea mariana (Mill.) BSP) du Labrador qui ont re-
poussé à la suite de perturbations naturelles et anthropogéniques. L’abondance du bois mort aérien (BM) au Labrador était
similaire aux valeurs observées dans d’autres forêts boréales soumises à des conditions climatiques plus sèches et plus
chaudes. La coupe à blanc a généré de grandes quantités de DL qui s’étaient presque complètement décomposés 34–36 ans
après la coupe avec un taux de diminution du volume calculé de –0,058 an–1. Les DL totaux dans tous les peuplements réc-
oltés étaient surtout composés de pièces de bois de moins de 10 cm qui devraient être incluses dans les inventaires de BM
dans les forêts boréales perturbées de conifères. Les DL présents après un incendie ont vraisemblablement atteint un maxi-
mum *20 ans après la perturbation à cause de la chute au sol des chicots, dominés par une grande quantité de billes de di-
mension moyenne (10,0–19,9 cm). Les stocks de BM enterré excédaient considérablement les stocks de BM aérien dans les
peuplements mûrs, d’âge moyen et plus vieux qui avaient été coupés. Les peuplements mûrs contenaient 179,3 m3�ha–1 de
BM enterré, vraisemblablement le résultat d’une accumulation à long terme due à un faible taux de décomposition des DL
après leur enfouissement. Les stocks de BM pourraient être sous-estimés de façon significative si le BM enterré est exclus
de l’inventaire du BM dans les forêts de conifères fraı̂ches et humides où l’intervalle entre les feux est long.

[Traduit par la Rédaction]

Introduction

Deadwood (DW) — consisting of woody debris (WD;
downed deadwood), snags (standing dead trees), stumps, and
buried DW — is an important component of forest structure.
DW is integral to a range of ecosystem functions (Harmon et
al. 2004), including carbon and nutrient cycles (e.g., Kurz
and Apps 1993; Laiho and Prescott 2004; Manies et al.

2005), and provides habitats for a range of species (e.g.,
Harmon et al. 2004), including small mammals and birds in
Labrador (Simon et al. 2000, 2002; Schwab et al. 2006). Dis-
turbance history strongly influences DW stocks (Harmon et
al. 2004; Krankina et al. 2002). Interest in impacts of natural
and anthropogenic disturbances on DW dynamics in boreal
forests has grown as the area under management increases
and expands into the last remaining boreal regions without
significant development, such as boreal Labrador (Roberts et
al. 2006). In contrast to other boreal regions, the high-boreal
black spruce (Picea mariana (Mill.) BSP) forest in Labrador
features a perhumid high-boreal ecoclimate (Ecoregions
Working Group 1989), with an average annual precipitation
of *1000 mm (Environment Canada 2008), resulting in gen-
erally high soil moisture levels (Wilton 1964; Roberts et al.
2006). Although tree size and growth rate in these forests are
similar to those in other boreal regions, we expect DW abun-
dance in Labrador to differ from that in drier boreal forests
such as those in Manitoba and Quebec (Bond-Lamberty et
al. 2003; Manies et al. 2005; Boulanger and Sirois 2006), be-
cause high wood moisture levels and cool temperatures can
suppress decomposition rates (Progar et al. 2000).
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Table 1. Characteristics of Labrador black spruce sites.

Forest age (years) Forest type UTM coordinates{

Site, site group,
and forest area

Year of
disturbance Predisturbance* Current* Predisturbance* Current* Northing Easting

Mean annual
temp. (8C){

Elev.
(m a.s.l.)

Sites harvested 1 year before measurement (H01)
Forkin’ Brook I 2005 >140 na§ bS842M|| na} 353131 5934094 –2.1 281
Forkin’ Brook II 2005 >140 na§ bS842M|| na} 352812 5933840 –2.0 264
Echo Lake I 2005 >140 na§ bS842M/P|| na} 358754 5903956 –1.1 81

Sites harvested 17 years before measurement (H17)
Cape Caribou I 1989 >140 16±5 bS842M|| na} 359455 5941933 –2.4 321
Arrowhead I 1989 >140 15±5 bS842M|| na} 344854 5943491 –2.1 260
Arrowhead II 1989 >140 15±5 bS842M|| na} 344882 5942647 –2.2 230

Sites harvested 34–36 years before measurement (H34–36)
Echo Lake II 1970–1972 >140 32±5 bS842M|| bSbF110M**,{{ 365307 5911019 –1.0 100
Echo Lake III 1970–1972 >140 32±5 bS842M|| bSbF110M**,{{ 365346 5910925 –1.1 108
Echo Lake IV 1970–1972 >140 30±5 bS842M|| bSbF110M**,{{ 361574 5909172 –1.2 134

Sites killed by wildfire 21 years before measurement (B21)
Cape Caribou II 1985 >140{{ na§ bS842M|| na} 359143 5937667 –1.3 99
Cape Caribou III 1985 >140{{ na§ bS842M|| Scs} 359044 5937358 –1.6 194
Cape Caribou IV 1985 >140{{ na§ bS842M|| Scs} 361326 5934070 –1.6 188

Old-growth forest sites of unknown disturbance origin (OG)
Cape Caribou V na na 204±20 na bS842M|| 358200 5936956 –1.8 161
Arrowhead III na na 146±20 na bS842M|| 346964 5941589 –2.0 223
Arrowhead IV na na 148±20 na bS842M|| 348846 5943983 –2.2 257

*Newfoundland and Labrador forest inventory data (Newfoundland and Labrador Provincial Forest Service, Data Dictionary for District Library).
{Map datum NAD83; UTM Zone 20.
{Site-specific data; refer to McKenney et al. (2007).
§Regeneration too small for classification.
||>75% black spruce; older than 140 years; average height 12–15 m; crown closure 50%–75%; medium site productivity.
}No current forest type classification. Scs, softwood scrub.
**>50% black spruce with >25% balsam fir; older than 20 years; average height <6 m; crown closure <25%, medium site productivity.
{{Determined from neighboring stands, site conditions, and ground vegetation.

132
C

an.
J.

For.
R

es.
V

ol.
39,

2009

Published
by

N
R

C
R

esearch
Press

4
R

esults
4.3

D
eadw

ood
A

bundance34



Clear-cut harvest is the major anthropogenic forest disturb-
ance in Labrador, with a total cut area of roughly 21 000 ha
in the central regions since the start of commercial harvesting
in 1969, most of which have regenerated to black spruce and
balsam fir (Abies balsamea (L.) Mill.) (Roberts et al. 2006).
The major natural disturbance is wildfire (Wilton 1964), but
the fire-return interval for central and southeastern Labrador
is uncertain, with estimates ranging from 250 to 500 years —
longer than the fire-return interval for other boreal forests
(Foster 1983; McRae et al. 2001). Although large-scale
clear-cut harvesting and wildfire are both stand-replacing dis-
turbances, they differ with respect to a wide range of ecolog-
ical implications, such as postdisturbance stand structure,
nutrient cycling, and DW dynamics (McRae et al. 2001;
Pedlar et al. 2002).

Immediately following disturbance, harvesting generates
large amounts of WD (Pedlar et al. 2002; Moroni 2006),
generally dominated by small-diameter WD, which will de-
compose quickly because of its high surface to volume ratio
and its susceptibility to mechanical damage and desiccation
(Fridman and Walheim 2000; Moroni 2006). Unlike harvest-
ing, wildfire generates little WD and large amounts of snags,
which remain standing for as long as 20–30 years because of
low snag decomposition rates (Moroni 2006; Zhou et al.
2007; Zielonka 2006). WD accumulates throughout the first
two decades following fire for as long as inputs from falling
snags exceed decomposition rates (Manies et al. 2005;
Boulanger and Sirois 2006). Previous studies on DW in bor-
eal forests have mostly focused on the impacts of a single
disturbance such as fire (Bond-Lamberty et al. 2003) or har-
vesting (Sturtevant et al. 1997). Few studies have contrasted
the effects of wildfire and harvesting.

Study objectives were threefold: (i) to quantify DW stocks
in the humid high-boreal spruce stands of Labrador and com-
pare them with those reported for boreal forests elsewhere,
(ii) to analyze the impact of clear-cut harvesting on DW
stocks in Labrador, accounting for the influence of DW de-
cay and size class, and (iii) to contrast DW stocks in har-
vested sites with those in old-growth stands aged >140 years
and sites burned 21 years before measurement.

Materials and methods

Site selection and description
The study area is situated near Goose Bay, Labrador, in

Ecodistrict 452 in the High-boreal Forest – Lake Melville

Ecoregion (Ecoregion 6; Ecoregions Working Group 1989),
which represents the eastern extent of the Boreal Shield
Ecozone and is a narrow extension of the boreal forest into
the Taiga Shield Ecozone. Mean annual temperatures range
between –2.4 and –1.0 8C (McKenney et al. 2007). Annual
precipitation of *1000 mm is well distributed throughout
the year and is among the highest rates for the North Amer-
ican boreal forest (Foster 1985; Environment Canada 2008).
The upland forests, the most productive forests of Labrador,
are dominated by black spruce mixed with balsam fir and
white birch (Betula papyrifera Marsh.) (Rowe 1972) and
have been subject to commercial harvesting since 1969
(Roberts et al. 2006).

Fifteen forest sites located near Happy Valley – Goose
Bay, central Labrador, supporting black spruce dominated
forests and regenerating following harvesting and fire, were
selected for study (Table 1). As site productivity greatly af-
fects dead organic matter stocks through varying input rates,
the selected sites supported forests of the same stand type,
bS842M; i.e., dominated by black spruce (>75%), older
than 140 years, featuring an average height of 12–15 m and
a crown closure of 50%–75%, and growing on sites of me-
dium productivity (Government of Newfoundland and Lab-
rador 2006). The forest type bS842M is the most common
productive forest type in Labrador, with stands reaching a
maximum gross merchantable volume of *140 m3�ha–1 at
stand ages of *110–150 years, before going into gap dy-
namics at an average gross merchantable volume of
*113 m3�ha–1 (Table 2). Only Echo Lake I contained a spa-
tial mix of medium and poor site productivity classes
(Table 1). Where predisturbance stand-type data were un-
available (i.e., burned sites), the stand type was assessed
based on the knowledge of local forestry professionals, on
site-specific relief and vegetation, on soil type, and on char-
acteristics of adjacent stands. Stand age of old-growth and
harvested stands was determined from increment bores
(Table 1). All disturbed stands had regenerated or were re-
generating to forests dominated by black spruce.

Sites are labeled such that the letter denotes the disturb-
ance origin (H, harvest; B, fire or burn; OG, old growth,
likely originating following fires), followed by a numerical
that represents the years since disturbance. Harvested sites
were selected to form a chronosequence consisting of three
site groups replicated three times for a total of nine sites:
(1) three sites harvested 1 year before measurement (H01);
(2) three sites harvested 17 years before measurement

Table 2. Gross merchantable volume (GMV) for forest type bS842M based on regional yield
curve (stand volume development with stand age), measured GMV, and measured total live tree
wood volume (includes stem, top, bark, and branches) for harvested and old-growth sites.

GMV (m3�ha–1){ Total volume (m3�ha–1){

Age-class GMV* Site group Site 1 Site 2 Site 3 Site 1 Site 2 Site 3
0–10 0.0 H01 0.0 0.0 0.0 0.5 2.6 0.8

11–20 0.0 H17 0.8 0.0 0.1 3.0 0.8 1.0
31–40 28.4 H34 19.7 22.3 6.7 40.9 41.5 17.8

141–150 137.6 OG 164.2 138.4 258.5 216.5
>181 113.6 OG 88.1 133.6

*GMV from yield curve (Newfoundland and Labrador Department of Natural Resources 2008).
{Measured GMV calculated according to Warren and Meades (1986) for District 19, Labrador.
{Measured total volume calculated according to Natural Resources Canada (2008).
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(H17); and (3) three sites harvested 34–36 years before
measurement (H34–36). H01 sites are referred to as ‘‘re-
cently disturbed’’, H17 sites as ‘‘middle-aged’’, and H34–36
sites as ‘‘older’’. No suitable sites were found to complete a
corresponding postfire chronosequence, thus postfire meas-
urements were restricted to sites temporally equivalent to
the H17 sites: three sites killed by fire 21 years before meas-
urement (B21). Harvesting removed all stems with a diame-
ter at breast height (DBH) ‡9 cm to a top diameter of 8 cm,
by chainsaw in the H17 and H34–36 sites, and by short-
wood mechanical harvester in the H01 sites. All fires were
stand replacing, and the sites were not salvage logged.

Because of the clustered nature of harvesting operations
and wildfire, all sites are located within one of four forest
areas: Arrowhead Lake, Forkin’ Brook, Cape Caribou, and
Echo Lake (Table 1). The data hence included three hier-
archical levels of clustering: forest area, site group, and site.
Four sample plots were located randomly within each site.
Each plot contained two concentric circular subplots (radius
11.28 and 3.99 m, respectively) with two 40 m line trans-
ects, perpendicular to each other, crossing at their midpoint
at the plot center. At the end of one randomly selected trans-
ect, a square subplot (1 m2) was established. All field meas-
urements were conducted from June to September 2006.

Field measurements
Field measurements were based on the National Forest In-

ventory Ground Sampling Guidelines (Natural Resources
Canada 2008). The diameter and height of snags (standing
dead trees ‡1.3 m in height) with DBH ‡9 cm and
DBH <9 cm were measured within the 11.28 and 3.99 m ra-
dius circular subplots, respectively. Where snag tops had
fallen, intact snag heights were estimated, and the proportion
of snag volume remaining was determined from stem vol-
ume distribution equations (Honer 1965). Stump (dead
stems <1.3 m in height) volume was estimated from stump
height and top diameter inside bark for all stumps located
within the 3.99 m radius subplot, assuming a cylindrical
stump shape (Natural Resources Canada 2008).

At the point of intersection with the line transect, WD di-
ameters were measured across the full length of each transect
to calculate WD volumes using the line intersect method
(van Wagner and Olsen 1964; eq. 8 in Marshall et al. 2000)
along the 40 m transects. Individual diameters were recorded
for >7.5 cm diameter WD, but only the frequency of 1–3,
3–5, and 5–7.5 cm WD diameter classes was recorded. Large
slash piles (accumulation) of WD were visually compressed
to measure the actual rectangular cross-sectional area of wood
(Natural Resources Canada 2008). All 0–1.0 cm diameter
WD lying above the litter layer was sampled from the
1 m2 plot, dried in a forced air oven at 55 8C for 4 days,
and weighed.

Decay classes (Table 3; Natural Resources Canada 2008)
were assigned to individual snags, stumps, and >7.5 cm WD.
Snag branch and bole biomass (dry mass) estimates were
based on regional biomass equations for Ecozone 6 differ-
entiated by site productivity class (Lambert et al. 2005).
Decay class 1 snags were assumed to have retained all
bark and branches, whereas decay class 2 snags retained
all bark and 50% of original branch volume. Based on vis-
ual observations from the study sites, older snags were as-
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sumed to have no bark or branches. Woody debris biomass
was estimated by multiplying WD volume by species and
decay class with corresponding WD densities (Table 3;
Natural Resources Canada 2008). Unidentifiable DW and
0–7.5 cm diameter WD were assumed to be black spruce.
All 1–7.5 and <1 cm diameter WD were assigned an aver-
age decay class per plot. Average decay classes were esti-

mated from visual observation of all 1–7.5 and <1 cm WD
encountered along the line transects within each plot.

At 2 m intervals along each transect, a shovel was driven
into the surface of the forest floor to observe buried DW and
to measure organic layer depth. We defined buried DW as
WD that is more than half buried in the organic layer, and
measured the organic layer depth range occupied by buried

Table 4. Summary statistics of hierarchical nested linear mixed models describing the influence of site
group, forest area, and site on the volume of aboveground deadwood (DW), buried DW, total woody
debris (WD), <10 cm WD, and snags.

Factor type F Wald Z p Variance (%)

Aboveground DW volume
Intercept 549.726 <0.001*
Site group F 30.702 <0.001* 82.6
Forest area(site group) R na{ na{ 0.0
Site(forest area(site group)) R 1.267 0.205 5.4
Error 4.243 <0.001* 12.0

Buried DW volume
Intercept 42.750 0.030*
Site group F 1.201 0.471 2.1
Forest area(site group) R 0.301 0.763 15.1
Site(forest area(site group)) R 0.862 0.389 17.9
Error 4.243 <0.001* 64.9

Total WD volume
Intercept 444.466 <0.001*
Site group F 29.737 <0.001* 4.0
Decay class F 64.119 <0.001* 14.1
Size class F 38.210 <0.001* 5.4
Site group � decay class F 15.150 <0.001* 18.8
Site group � size class F 4.846 <0.001* 3.1
Decay class � size class F 7.592 <0.001* 6.6
Forest area(site group) R na{ na{ 0.0
Site(forest area(site group)) R 0.258 0.797 0.1
Error 18.385 <0.001* 47.9

<10 cm WD volume
Intercept 123.863 0.008*
Site group F 6.184 0.103 0.0
Decay class F 97.788 <0.001* 13.5
Size class F 1.795 0.128 0.0
Site group � decay class F 37.930 <0.001* 30.5
Site group � size class F 1.182 0.291 0.2
Decay class � size class F 2.627 <0.001* 1.5
Forest area(site group) R 0.482 0.669 0.5
Site(forest area(site group)) R 0.848 0.397 0.5
Error 23.875 <0.001* 53.4
Snag volume
Intercept 3.822 0.110
Site group F 454.121 <0.001* 8.4
Decay class F 3.808 0.037* 3.5
Site group � decay class F 454.121 <0.001* 12.9
Forest area(site group) R 0.831 0.406 0.8
Site(forest area(site group)) R na{ na{ 0.0
Error 15.069 <0.001* 74.4

Note: All data were square-root transformed. Site group is a fixed factor (F); forest area nested within site group
and site nested within forest area nested within site group are random factors (R). Snag and WD analyses include decay
class and its interaction with site group as a fixed factor; WD analyses also include size class and its interaction. Statis-
tics shown include individual test statistics, significance, and variance partitioning among fixed and random factors.

*Significant at a = 0.05
{This parameter is redundant. Test statistic could not be calculated.
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DW. The area of the forest floor overlaying DW was deter-
mined from the proportion of 2 m observations that encoun-
tered buried wood. The average depth of DW and the area of
forest floor overlaying DW were used to determine DW vol-
ume per plot. The majority of buried wood observed in this
study had maintained wood structure and was thus assumed to
have the average density of decay class 4 black spruce wood
(Table 3), enabling the calculation of DW mass per plot.

Statistical analyses
Statistical analysis was carried out using SPSS, release

16.0.2 (SPSS Inc., Chicago, Illinois). Departures from nor-
mality within data groups were examined using a Shapiro–
Wilk test (Bortz 1999). All data had to be square-root trans-
formed to meet normality and homoscedasticity assumptions.
DW stocks along the harvesting chronosequence, including
old-growth reference sites, were analyzed with hierarchical
nested linear mixed models using the SPSS MIXED proce-
dure. Models were set up with site group as a fixed factor,
and forest area, site, and plot as random factors (Piepho et
al. 2003). Models analyzing WD stocks additionally included
decay class and size class as well as their interactions with
site group as fixed factors. Variance components were calcu-
lated using restricted maximum likelihood.

As forest area nested within site was never a significant
random factor, contrasting of old-growth, harvested, and
burned sites with respect to size class and decay class was
done using mixed ANOVA, with site group (or size class or
decay class, respectively) as a fixed factor (k = 5), site
nested within site group as a random factor (n = 3), and
plot nested within site (s = 4; Box et al. 1978). Where dif-
ferences were significant (P < 0.05), pairwise comparisons
were tested for significance using the Games–Howell test.

Harvesting was assumed to have generated all above-

ground WD in decay classes 1 and 2 for H01 sites, in decay
classes 2 to 4 for H17 sites, and in decay classes 3 to 5 for
H34–36 sites. In analogy to single-parameter exponential de-
cay models (Wieder and Lang 1982), a single-parameter
negative exponential volume reduction function was fitted
to harvest-generated WD volume using nonlinear regression
(SPSS), where Vt is WD volume at time t after clear-cut har-
vest, and kV is an empirically derived volume reduction con-
stant (Mackensen and Bauhus 1999):

½1� Vt ¼ V0ðekV tÞ

Table 5. Volume and biomass of deadwood observed in the study sites.

Postharvest stands

Variable H01 H17 H34–36 Postfire stand, B21 Old-growth stand, OG

Volume (m3�ha–1)
Woody debris 144.0 (126.1–162.5)Aa 61.5 (34.6–91.9)Ab 6.4 (3.8–9.3)ADc 91.5 (83.3–100.0)Ad 46.9 (34.8–59.8)Ab
Snags

DBH‡9 cm 1.0 (0.4–1.7)a 2.3 (1.4–3.2)a 0.6 (0.2–1.0)a 12.9 (3.3–25.1)b 37.6 (22.8–54.1)c
DBH<9 cm 0.2 (0.0–0.5)a 0.0 (0.0–0.0)b 0.0 (0.0–0.0)b 0.5 (0.0–1.2)a 0.0 (0.0–0.0)ab
Total snags 1.2 (0.7–1.8)Ba 2.3 (1.4–3.2)Ba 0.6 (0.3–1.0)BCa 13.5 (3.5–25.9)Bb 37.6 (22.8–54.1)Ac

Stumps 7.6 (4.9–10.6)Ca 8.9 (8.0–9.9)Ca 3.3 (0.2–7.8)ACb 2.2 (1.0–3.6)Cb 1.2 (0.0–3.1)Bb
Aboveground total 152.9 (137.0–169.2)a 72.7 (54.9–102.3)b 10.3 (4.5–17.1)c 107.2 (102.3–112.2)a 85.7 (57.8–116.0)ab
Buried wood 57.5 (12.6–115.3)Cab 94.3 (35.6–164.9)ACab 57.4 (32.4–85.5)Dab 46.4 (10.7–92.0)BCa 179.3 (49.0–342.7)Ab
Total 210.4 (143.2–283.5)a 167.0 (84.4–261.9)a 67.7 (37.7–101.5)b 153.6 (110.8–199.3)a 264.9 (118.5–436.2)a

Biomass (Mg�ha–1)
Woody debris 50.9 (45.4–56.6)Aa 16.7 (9.6–24.6)Ab 1.6 (0.9–2.3)ADc 28.0 (25.0–31.2)Ad 12.7 (9.5–16.2)Ab
Snags

DBH‡9 cm 0.3 (0.1–0.6)a 0.6 (0.3–0.9)a 0.2 (0.0–0.4)a 4.2 (1.0–8.3)b 11.0 (6.6–16.1)c
DBH<9 cm 0.1 (0.0–0.2)ac 0.0 (0.0–0.0)b 0.0 (0.0–0.0)b 0.2 (0.0–0.4)c 0.0 (0.0–0.0)ab
Total snags 0.4 (0.2–0.6)Ba 0.6 (0.3–0.9)Ba 0.2 (0.1–0.4)BCa 4.4 (1.0–8.6)Bb 11.1 (6.6–16.1)Ac

Stumps 2.8 (1.6–4.0)Ca 2.6 (2.1–3.2)Ca 0.7 (0.1–1.6)ABb 0.5 (0.3–0.8)Cb 0.2 (0.0–0.7)Bb
Aboveground total 54.1 (49.5–58.8)a 9.9 (13.0–27.5)b 2.5 (1.1–4.0)c 32.9 (30.8–35.0)d 24.0 (16.0–32.7)bd
Buried wood 11.7 (2.6–23.4)Cab 19.2 (7.2–33.5)ACab 11.6 (6.6–17.4)Dab 9.4 (2.2–18.7)BCa 36.4 (9.9–69.6)Ab
Total 65.7 (50.5–82.0)a 39.0 (21.5–58.9)a 14.0 (7.8–21.1)b 42.3 (32.9–52.2)a 60.4 (31.0–94.0)a

Note: Values are means with 95% confidence intervals in parentheses; lowercase letters denote significant differences within rows; uppercase letters
denote significant differences between biomass or volume of woody debris, total snags, stumps, roots, and buried wood within column; nested ANOVA;
n = 3, k = 5; s = 4; post-hoc Games–Howell; P < 0.05.

Fig. 1. Relative contribution of woody debris, snags, and stumps to
total aboveground deadwood biomass by disturbance history and
years since disturbance. *, old growth of unknown origin.

136 Can. J. For. Res. Vol. 39, 2009

Published by NRC Research Press

4 Results 4.3 Deadwood Abundance

38



Results
Statistical independence of sites was not violated, with

forest area never being a significant explanatory variable in
hierarchical nested linear mixed models analyses of above-
ground DW, WD, snag, and buried DW volume (Table 4).
Nevertheless, the variable forest area has been retained in
the analyses to account for data variability due to forest
area.

Aboveground and belowground deadwood
Recently harvested sites (H01) and older harvested sites

(H34–36) contained the largest and smallest aboveground
DW volume, respectively (Table 5), with H34–36 total
aboveground DW volumes amounting to <7% of H01 total
aboveground DW volume (Fig. 1). Volume reduction of har-
vest-generated WD at H01, H17, and H34–36 sites followed
a single-parameter negative exponential function, decreasing
at a rate kV of –0.058 ± 0.011 (SE) year–1 (r2 = 0.89; p =
0.001).

Table 6. Woody debris volume and biomass by size class and decay class in the study sites.

Postharvest stands

Variable H01 H17 H34–36 Postfire stand, B21 Old-growth stand, OG

Volume (m3�ha–1)
Diameter range (cm)
‡20 8.1 (1.0–17.9)Cab 12.4 (10.6–14.2)a 0.0 (0.0–0.0)Bb 6.0 (3.4–8.9)ACab 8.3 (4.3–12.7)Bab
10 to <20.0 22.3 (17.1–27.8)Bab 13.8 (9.6–18.3)b 1.5 (1.2–1.8)Bc 46.2 (36.4–56.5)Ba 23.3 (17.3–29.6)ABa
0 to <10.0 38.2 (35.3–41.1)Aa 21.3 (9.8–34.8)b 4.9 (2.5–7.6)Ac 31.8 (28.3–35.5)Aa 13.1 (8.7–17.9)Ab
Accumulations–piles 28.1 (19.0–38.1)Aa 75.3 (49.4–103.9)Aa 0.0 (0.0–0.0)Bb 7.7 (2.3–14.2)Cc 0.6 (0.2–1.0)Bbc

<10 cm diam. WD (cm)
>7.5 to <10.0 3.9 (3.5–4.4)Ca 3.6 (1.0–6.8)a 0.4 (0.1–1.1)ABb 9.9 (7.1–12.9)Bc 3.9 (2.2–5.8)Aa
>5.0 to 7.5 6.9 (5.7–8.2)ABa 5.6 (1.5–10.7)ac 1.1 (0.4–1.9)ABb 8.1 (7.1–9.2)Ba 2.3 (0.8–4.1)ABbc
>3.0 to 5.0 4.7 (3.3–6.1)Ca 2.5 (0.9–4.3)b 0.7 (0.4–1.0)Bc 5.3 (3.7–6.9)Aa 1.5 (0.7–2.3)Bbc
>1.0 to 3.0 9.0 (8.0–10.1)Ba 4.4 (2.3- 0.9)bd 1.0 (0.3–1.8)ABc 4.9 (3.5–6.5)Ad 2.4 (1.7–3.1)ABb
£1.0 13.7 (12.7–14.6)Aa 5.3 (4.0–6.7)b 1.7 (0.9–2.6)Ac 3.6 (3.2–4.0)Ab 3.1 (2.5–3.8)Ab

Decay class
1 54.1 (50.3–57.9)ABa 0.0 (0.0–0.0)ABDbc 0.1 (0.0–0.2)Ab 0.0 (0.0–0.0)ADbc 1.6 (0.5–2.8)Ac
2 74.8 (61.1–89.1)Aa 13.3 (1.4–29.7)Bb 0.3 (0.1–0.7)Bc 59.0 (46.5–72.1)Ba 13.3 (6.4–21.2)BCc
3 9.8 (9.4–10.1)Ba 40.7 (12.3–75.7)Cb 3.5 (1.9–5.4)Ca 19.2 (11.6–27.7)Ca 25.6 (18.9–32.8)Ca
4 5.4 (1.4–10.3)Cab 7.6 (3.6–12.3)ACa 2.5 (1.1–4.3)Bb 13.4 (9.8–17.3)ACb 6.5 (2.1–11.8)ABab
5 0.0 (0.0–0.0)D 0.0 (0.0–0.0)D 0.0 (0.0–0.0)D 0.0 (0.0–0.0)D 0.0 (0.0–0.0)D

Biomass (Mg�ha–1)
Diameter range (cm)
‡20 2.7 (0.2–6.4)Cab 3.5 (3.2–3.7)a 0.0 (0.0–0.0)Bb 1.5 (1.1–1.9)ACab 2.1 (0.9–3.5)Bab
10 to <20.0 6.8 (4.9–8.8)Bab 3.6 (2.2–5.1)b 0.3 (0.2–0.4)Bc 13.9 (113–16.6)Ba 6.6 (4.9–8.5)ABab
0 to <10.0 13.5 (12.3–14.7)Aa 6.4 (2.6–11.0)b 1.3 (0.6–2.0)Ac 10.5 (9.5–11.5)Aa 3.7 (2.4–5.0)Ab
Accumulations–piles 28.1 (19.0–38.1)Aa 3.8 (0.1–9.6)bc 0.0 (0.0–0.0)Bb 2.2 (0.7–4.0)Cc 0.6 (0.2–1.0)Bbc

<10 cm diam. WD (cm)
>7.5 to <10.0 1.2 (1.1–1.3)Da 1.0 (0.3–1.9)a 0.1 (0.0–0.3)b 3.2 (2.2–4.2)Bc 1.0 (0.6–1.5)a
>5.0 to 7.5 2.5 (2.0–3.0)BCa 1.7 (0.4–3.4)ab 0.3 (0.1–0.5)c 2.7 (2.3–3.2)Ba 0.7 (0.2–1.2)bc
>3.0 to 5.0 1.7 (1.2–2.3)CDa 0.8 (0.3–1.4)b 0.2 (0.1–0.3)c 1.7 (1.3–2.2)Aa 0.4 (0.2–0.7)bc
>1.0 to 3.0 3.3 (2.8–3.8)ABa 1.4 (0.6–2.2)bd 0.3 (0.1–0.5)c 1.7 (1.1–2.2)Ad 0.7 (0.5–0.9)b
£1.0 4.8 (4.3–5.2)Aa 1.5 (1.0–2.1)b 0.4 (0.3–0.6)c 1.2 (1.1–1.3)Abc 0.9 (0.7–1.1)bc

Decay class
1 22.2 (20.6–23.7)Aa 0.0 (0.0–0.0)ACb 0.0 (0.0–0.1)Ab 0.0 (0.0–0.0)Ab 0.6 (0.2–1.1)Ac
2 25.3 (20.7–30.2)Aa 4.5 (0.5–10.0)BCb 0.1 (0.0–0.2)BCc 20.1 (15.9–24.6)Ba 4.3 (2.2–6.8)Bc
3 2.4 (2.2–2.6)Ba 10.8 (3.3–20.1)Bb 0.9 (0.5–1.5)Bc 5.2 (3.1–7.5)Cac 6.7 (4.9–8.6)Bc
4 1.0 (0.2–2.0)Cab 1.5 (0.7–2.4)ABa 0.5 (0.2–0.9)Cab 2.7 (2.0–3.5)Db 1.1 (0.4–1.9)Aab
5 0.0 (0.0–0.0)D 0.0 (0.0–0.0)C 0.0 (0.0–0.0)D 0.0 (0.0–0.0)E 0.0 (0.0–0.0)C

Note: Values are means with 95% confidence intervals in parentheses; lowercase letters denote significant differences within rows; uppercase letters de-
note significant differences in biomass or volume between diameter classes, <10 cm diameter classes, or decay classes within column; nested ANOVA; n =
3, k = 5; s = 4; post-hoc Games–Howell; P < 0.05.

Fig. 2. Distribution of snag biomass by disturbance history, years
since disturbance, and decay class. *, old growth of unknown origin.
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More than 82% of the variability in total aboveground
DW volume was explained by site group, whereas below-
ground (i.e., buried) DW variability was not accounted for
by site group, forest area, or site (Table 4). Buried DW vol-
ume ranged from 46.4 to 179.3 m3�ha–1 (Table 5), exceeding
total aboveground DW volume in all but the recently har-
vested (H01) and middle-aged burned sites (B21) by 30%–
457%. The lowest and greatest volumes of buried DW were
found in middle-aged burned sites (B21) and old-growth
sites (OG), respectively, whereas harvested sites had inter-
mediate amounts of buried wood.

Woody debris
Abundance of WD was as follows: recently harvested sites

(H01) > middle-aged burned sites (B21) > middle-aged har-
vested = old-growth sites (H17 and OG) > older harvested
sites (H34–36) (Table 5). Site group accounted for a signifi-
cant but small portion of the variability in total WD volume
(<5%; Table 4). Recently harvested sites contained a signifi-
cantly larger proportion of WD biomass (93%) in decay
classes 1 and 2 than all other stands (Table 6). Seventeen
years after harvest, the majority of WD was in decay class 3
(64%), whereas 21 years after fire (B21), WD was less de-
cayed (71% in decay class 2). Old-growth sites featured the
most balanced WD decay class distribution. No aboveground
decay class 5 WD was encountered in this study.

Woody debris at all sites was dominated by <20 cm de-
bris, but almost half the WD in the middle-aged burned
(B21) sites was >10 cm (Table 6). In recently harvested sites
(H01), WD piles and <10 cm WD combined accounted for
more than 88% and 78% of WD biomass and volume, re-
spectively, and <10 cm WD was mainly <3 cm (Table 6).
The contribution of WD to total amounts of aboveground
DW significantly decreased from recently harvested (H01)
to older harvested (H34–36) to old-growth sites (94% to
54%; Fig. 1).

Snags and stumps
Old-growth forest sites contained the largest amount of

snags (Table 5). All harvested sites had significantly fewer
snags than middle-aged burned sites (B21). Outside of site
variability, variability in snag volume was most strongly ex-

plained by site group, decay class, and their interaction
(Table 4). The contribution of snags to total aboveground
DW volume significantly increased from <1% in recently
harvested (H01) to *44% in old-growth (OG) sites
(Fig. 1). Snag volume was significantly smaller than WD
volume in all but old-growth sites (Table 5). Mean snag
numbers per hectare were 63, 17, and 19 for recently (H01),
middle-aged (H17), and older (H34–36) harvested stands,
and 232 and 388 for middle-aged burned (B21) and old-
growth (OG) stands, respectively. In recently harvested
(H01) sites, 74% of all snags were in decay classes 1 and 2,
indicating their recent creation either during or shortly fol-
lowing harvesting (Fig. 2). Seventeen years following har-
vest (H17), no decay class 1 snags remained, but decay
class 2 and 3 snags predominated (11% and 89%, respec-
tively). In contrast, this ratio was reversed in middle-aged
burned sites (81% and 18%; Fig. 2).

All harvested sites had significantly greater stump than
snag volume, in contrast to middle-aged burned and old-
growth sites, but stump volume never exceeded 8.9 m3�ha–1

(Table 5). Recently (H01) and middle-aged (H17) harvested
sites featured significantly greater stump biomass than the
other sites. The biomass of stumps in decay classes 1 and 2
decreased from 87% in recently harvested (H01) to 69% in
middle-aged (H17) harvested and 0% in older harvested
(H34–36) sites.

Discussion

Woody debris (WD) abundance in humid high-boreal old-
growth forests of Labrador was similar to values reported
for other old-growth and mature small-treed boreal forests
elsewhere (Table 7). However, larger-treed old-growth for-
ests such as Scots pine (Pinus sylvestris L.) – Norway
spruce (Picea abies (L.) Karst.) forests in Scandinavia with
climatic conditions similar to those of central Labrador had
considerably larger amounts of WD, in particular >10 cm
WD (110–201 m3�ha–1; Linder et al. 1997; Siitonen et al.
2000), and higher snag volumes, dominated by >10 cm
DBH snags (40.1–56.3 m3�ha–1; Karjalainen and Kuuluvai-
nen 2002; Rouvinen et al. 2002), than small-treed Labrador
black spruce. We conclude that climate is less important in

Table 7. Selected studies of woody debris (WD), snags, and buried deadwood in subboreal and boreal forests of North America.

Study* Location Species
Stand age
(years) Stand origin

Mean annual
precipitation
(mm)

Bond-Lamberty et al. 2003 MB Boreal black spruce 130 Wildfire 536
Brais et al. 2005 QC Jack pine 43–81 Wildfire 890
Clark et al. 1998 BC Subalpine boreal black spruce 150–200 Wildfire 440–900
Harvey et al. 1981 MN Douglas-fir 250 Unknown 787
Lang et al. 1981 NH Subalpine balsam fir <90 Senescence 1600
Macadam 1987 BC Subboreal black spruce <2 Clear-cutting 440–900
Manies et al. 2005 SK Black spruce <154 Wildfire 518
Moroni 2006 NL Boreal black spruce – balsam fir 68–109 Wildfire 1100–1500
Moroni 2006 NL Boreal black spruce – balsam fir 2–3 Clear-cutting 1100–1500
Payer and Harrison 2000 MA Balsam fir – hardwood 13–21 Clear-cutting 940
Pedlar et al. 2002 ON Boreal mixedwood 5 Clear-cutting 735
Sturtevant et al. 1997 NL Boreal black spruce – balsam fir <110 Unknown 1200–1300

*Studies are listed in alphabetical order.
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Mean annual
temp. (8C)

WD volume
or biomass

Snag volume,
biomass, or density

Buried DW
volume or biomass

–3.4 10.5 Mg�ha–1 0.3 Mg�ha–1

0.7 4.3 Mg�ha–1 0.2–15.0 Mg�ha–1

<5.0 <70 m3�ha–1 *600 ha–1

5.3 373–430 m3�ha–1

0.0 0.4–8.1 Mg�ha–1

<5.0 33.2–75.0 Mg�ha–1

–3.2 6.9–13.0 Mg�ha–1

>3.3 30.3–114.3 m3�ha–1 7.3–22.6 Mg�ha–1 <7.8 Mg�ha–1

>3.3 96.2–119.5 m3�ha–1 52.2–62.3 Mg�ha–1 5.0–5.6 Mg�ha–1

3.7 22.1–94.1 m3�ha–1 0.7 m3�ha–1

0.0 *110 m3�ha–1 <3 m3�ha–1

4.0 *70 m3�ha–1 *1000 ha–1

determining WD abundance than forest diameter structure,
as previously speculated by Harmon et al. (2004).

The amount of woody debris produced after clear-cutting
in Labrador black spruce forests, which is approximated by
the initial modelled WD volume V0 (138.6 ± 11.9 m3�ha–1),
was similar to that in other forests composed of similar-
sized trees (p < 0.001, Table 7). Particularly in small-treed
forests such as Labrador black spruce, clear-cut harvesting
produces large proportions of <7 and <10 cm WD, as has
been observed for black spruce in British Columbia and cen-
tral Newfoundland (Macadam 1987; Moroni 2006); how-
ever, WD of this size is usually not tallied (e.g., Sturtevant
et al. 1997; Payer and Harrison 2000; Pedlar et al. 2002).
Smaller than 10 cm WD not only provides essential growing
and breeding substrate for numerous saproxylic plants,
fungi, and animals (Kruys and Jonsson 1999; Nordén et al.
2004), but must also be accounted for if estimates of total
DW stocks are needed, e.g., for carbon accounting (Kurz
and Apps 1993).

In addition, clear-cut harvesting in Labrador produced
small amounts of snags (1.2 m3�ha–1) as a result of the post-
disturbance death of uncut trees (McRae et al. 2001); these
amounts are similar to those reported for Canadian boreal
mixedwoods 5 years after clear-cut harvest (Pedlar et al.
2002; Table 7) and for managed coniferous and mixedwood
forests in northern Sweden (1.2–2.0 m3�ha–1; Fridman and
Walheim 2000). Stumps constituted a minor DW pool in
harvested Labrador high-boreal forests. Stump biomass in
this study was similar to that found in clear-cut Newfound-
land black spruce (3.3 Mg�ha–1; Moroni 2006), but stump
volume was less than that reported for more productive On-
tario black spruce forests (*15 m3�ha–1; Pedlar et al. 2002).

Unlike harvesting, wildfire generates large amounts of
snags (McRae et al. 2001), some of which can remain stand-
ing for up to *30 years (Boulanger and Sirois 2006). A
peak of WD *20 years following fire has repeatedly been
observed for small-treed boreal forests (e.g., Bond-Lamberty
et al. 2003; Boulanger and Sirois 2006) and is attributable to
the postfire collapse of snags (Moroni 2006). If snag abun-
dance in recently burned Labrador sites is assumed to be
equivalent to that of old-growth sites (*1400 stems�ha–1;
data not shown), 21 years following fire an estimated 87%

of all snags had fallen, and WD was dominated by large
amounts of recently collapsed (decay class 2), medium-sized
(>10 cm) snags. Snag longevity and fall rates in humid high-
boreal spruce forests are thus similar to those in other boreal
and high-boreal forests, with most snags falling within 25–
33 years following disturbance (Manies et al. 2005; Bou-
langer and Sirois 2006; Moroni 2006), and thus measured
WD abundance 21 years following fire likely approximates
the maximum amounts of postfire WD fire at B21 resulting
from the collapse of snags.

The large amounts of buried DW observed in Labrador
high-boreal black spruce, particularly in the old-growth
sites, largely exceeded most values reported in the literature
(Table 7). Larger amounts of buried DW have only been ob-
served in Rocky Mountain Douglas-fir (Pseudotsuga men-
ziesii (Beissn.) Franco) stands (Harvey et al. 1981), which
contain much larger trees producing considerably more DW
for burial than Labrador black spruce. For such large buried
DW stocks to occur in Labrador black spruce forests, a sig-
nificant amount of aboveground WD generated in old-
growth stands must be buried. The lack of decay class 5
aboveground WD (Table 3) indicates that as WD collapses
to the ground it is buried before reaching the most advanced
stages of decay. The volume reduction of DW with time re-
sults from the combined processes of decomposition, leach-
ing, and fragmentation (Mackensen and Bauhus 1999; Zhou
et al. 2007), as well as burial. Thus, assuming that harvest-
ing generated similar amounts of slash at all sites, and de-
composition rates in cool, humid high-boreal Labrador
black spruce are similar to or lower than estimated decom-
position rates for boreal black spruce in warmer and drier
boreal climates in Manitoba and Quebec (0.016 to
0.045 year–1; Bond-Lamberty et al. 2003; Manies et al.
2005; Boulanger and Sirois 2006), the relatively high vol-
ume reduction rates of aboveground DW following harvest-
ing (0.058 year–1) are also indicative of significant burial of
harvest slash in these humid high-boreal forests.

Burial of aboveground DW in deep organic layers is due
to the vigorous growth of the moss layer (Sturtevant et al.
1997; Moroni 2006), typical of many humid or wet boreal
forests (Wilton 1964; Bisbee et al. 2001). Although moss
growth is initially slowed because of exposure following
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harvesting, moss cover and growth potentially recover
*5 years following harvest (Palviainen et al. 2005), ena-
bling the burial of harvest slash. In Labrador the forest floor
is snow covered from October–November until May–June,
which, combined with an average May–September precipita-
tion of 397 mm (Environment Canada 2008), results in ex-
tended periods with low soil temperatures and elevated soil
moisture levels, commonly associated with anaerobic condi-
tions. The cool, wet conditions likely persist for significant
periods of the growing season under the insulating effects
of the moss layer (Foster 1985; Kasischke and Johnstone
2005), likely resulting in buried DW decay rates that are
dramatically lower than decay rates of unburied wood, as
previously suggested by Foster (1985) and Manies et al.
(2005). Calculating WD decay rates based on aboveground
measurements of WD abundance may, therefore, overesti-
mate decay rates, as WD is being buried but not decayed.

The enormous amounts of buried DW observed in Labra-
dor old-growth stands indicate that WD in the organic layer
of maturing and old-growth gap-driven Labrador forests
must have accumulated over a very long time period, poten-
tially without significant interruptions as a result of stand-
replacing disturbances such as wildfire. Wildfires often
consume only a portion of the organic layer — and wood
buried within it — especially when organic layers are wet
(Kasischke and Johnstone 2005; Manies et al. 2005). Thus,
buried DW may accumulate over several stand generations.
Moreover, where the moss layer recovers quickly following
fire, a likely occurrence in humid conditions such as those
encountered in Labrador, wildfires generate large amounts
of DW for burial. The accumulation of buried DW appears
to depend on a combination of climate (e.g., temperature
and precipitation), microtopography (e.g., drainage), ground
vegetation (e.g., moss growth), and stand disturbance his-
tory (e.g., fire intensity and return interval), and buried
DW abundance can thus be expected to be highest in cool
and moist coniferous forests with a vigorous moss layer
and long fire-return intervals. Excluding buried DW from
DW inventories in these forests can result in massive
underestimates of DW stocks and carbon stored in DW.

Based on the reduction of DW volume along the post-
harvest chronosequence, we assume harvest slash in Labrador
will completely disappear *40–50 years following harvest-
ing. As DW abundance in Labrador is similar to that re-
ported elsewhere, we assume postfire DW will completely
disappear within *70 years of burning, as has been observed
in Newfoundland black spruce (Moroni 2006), when DW
stocks in stands originating from wildfire and harvesting
will converge at low levels. Fire-generated DW persists
longer than harvest slash because of low snag decomposi-
tion rates (Boulanger and Sirois 2006) and larger initial
DW abundance (Moroni 2006). Following the decomposi-
tion of disturbance-generated DW, regeneration produces
little DW until senescence (Harmon et al. 2004; Hély et al.
2000; Moroni 2006), particularly in low-density black spruce
forests with little self-thinning (Wilton 1964; Roberts et al.
2006). The rotation age for the studied forests is 120 years
(Newfoundland and Labrador Department of Natural Resour-
ces 2008) — beyond the life-span of DW — so amounts
of DW will not significantly decline following the second
managed rotation. Following the harvesting of old growth,

there will be a decline in DW in the second rotation, be-
cause managed stands are typically harvested before senes-
cence generates DW that is inherited by the next rotation.
Also, the conversion of forest landscapes from unmanaged
to managed stands will reduce landscape-level DW stocks
because of reductions in the area of senescent forest and
the suppression of natural disturbances generating large
amounts of DW. Disturbances produce very transient sour-
ces or stores of carbon, nutrients, habitat, and fuel for fires
in forests with small-diameter trees (McRae et al. 2001),
even in the cold, humid high boreal. Without fresh addi-
tions of DW, middle-aged to mature regenerated stands fol-
lowing stand-replacing disturbance will contain little DW.
Where DW is an important consideration for forest man-
agement, harvested stands should retain living trees as fu-
ture sources of DW and associated sources or stores of
carbon, nutrients, and habitat, or a portion of the managed
forest could be allowed to become senescent.

Black spruce in high-boreal Labrador is longer lived and
slower growing than that in most other boreal and subboreal
regions (Newfoundland and Labrador Department of Natural
Resources 2008), delaying the onset and progression of sen-
escence. Hence, postharvest DW stocks in Labrador likely
remain below old-growth levels for significantly longer peri-
ods than elsewhere, and significantly longer periods follow-
ing harvest will be required to replenish DW stocks to old-
growth levels. Deadwood management is thus more difficult
in the high-boreal than in more productive boreal forests. In
addition, the rapid burial of DW in Labrador must be ac-
counted for in habitat (e.g., Simon et al. 2002) and forest
carbon models (Kurz et al. 2008).
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4 Results 4.4 Woody Debris and Soil Respiration

4.4 Woody Debris and Soil Respiration

Analysis of WD stocks confirmed that WD abundance is significantly influenced by distur-
bance type and time since disturbance (Hagemann et al. 2009). Although stand-replacing
fires and clearcut harvesting create large amounts of WD in single events (Harden et al.
2000, Bergeron et al. 2002), temporal dynamics of WD abundance differ consider-
ably between these disturbance types (Pedlar et al. 2002, Moroni 2006), with maxi-
mum amounts of WD occurring 20–30 years following fire and immediately after harvesting
(Bond-Lamberty et al. 2003, Moroni 2006). As WD characteristics (size, colour,
etc.) and WD decomposition environment (e.g., temperature and moisture) are altered to a
different degree by fire and harvesting (Section 2.2.2 and 2.3.1), decomposition rates of WD
are expected to differ between sites of different disturbance origin.

4.4.1 Hagemann U, Moroni M, Gleißner J, and Makeschin F. 2010.
Disturbance history influences woody debris and soil
respiration. For. Ecol. Manage. (in press)

Extended Abstract

Woody debris moisture content was the dominant environmental control of WD respiration,
followed by WD temperature. Moisture levels were lower in the disturbed strata, particularly
in the burned stratum (24.1–35.5%), where respiration was limited by low WD moisture
content. Within-log differences in WD moisture resulted from drying of the log surface and
water transfer from the live moss layer to the lower log parts, illustrating the potential impact
of an intact moss layer or its absence on decomposition dynamics.

The disturbed strata featured higher WD temperatures than the old-growth stratum. Within-
log temperatures generally decreased from the top WD surface to the bottom sapwood. In
the disturbed stands, however, top surface and top sapwood WD temperatures exceeded
ambient air temperatures resulting in desiccation particularly in the burned stratum, where
wind is not slowed by vegetation and the WD surface receives unimpeded insolation.

In the old-growth stratum, high WD moisture contents combined with mainly low WD
temperatures resulted in low summer WD respiration rates. In contrast, WD respiration
in the burned stratum was limited by low WD moisture levels in combination with high
temperatures. The harvested stratum featured a combination of high WD temperatures
and moderate WD moisture content and consequently higher WD respiration rates than the
other strata. While WD temperature limited WD respiration at lower temperatures (i.e. old-
growth stratum), WD moisture limited WD respiration at higher temperatures (i.e. burned
stratum). Disturbance-induced changes in forest temperature and moisture regimes are thus
reflected by WD respiration rates, and accuracy of forest C models would be improved by
differentiating decomposition rates of WD by disturbance history.
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Compared to soil respiration, WD respiration (based on estimate WD surface area per
hectare) reached similar (83%; following fire) or equal (100%; following harvest) rates in
disturbed sites (P < 0.05), but considerably lower rates in old-growth sites (9%; P ≤ 0.001).
Soil respiration rates were highest in the old-growth stratum where a high contribution of
root respiration to total soil respiration was expected. In the harvested stratum, soil res-
piration was 30-50% lower compared to the old-growth stratum, reflecting partial losses of
root respiration after tree removal. Compared to soil respiration, WD respiration is thus an
important component of the forest C cycle particularly in recently harvested sites with large
amounts of decaying woody residues.
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Abstract 

In boreal forests, disturbances such as stand-replacing fires and clearcut harvesting create large amounts of 
downed woody debris (DWD), which release considerable amounts of CO2 to the atmosphere during 
decomposition. Harvesting and fire differ with respect to DWD characteristics (e.g., size), decomposition 
environment (temperature and moisture), and abundance; hence, differences in piece- and stand-level DWD 
respiration rates between stands of different disturbance at origin can be expected. From July to September 2008 
(every 5–9 days), we measured temperatures, moisture content, weight, and respiration of 45 standardized black 
spruce logs placed in three old-growth (>140 years), three clearcut harvested (3 years prior), and three burned (23 
years prior) black spruce forest stands in Labrador, Canada. Concurrently, soil temperatures, soil moisture 
potential, and soil respiration were measured next to each log. Moisture content was the dominant environmental 
control of DWD respiration, followed by temperature. Within-log differences in moisture and temperature 
resulted from drying of the log surface and water transfer from the live moss layer to the lower log parts. Downed 
woody debris temperatures and respiration rates were higher in harvested and burned stands compared to old-
growth stands, and piece-level DWD respiration rates were highest in harvested stands. Downed woody debris 
moisture levels were lower in disturbed stands, particularly in burned stands, where respiration was limited by low 
moisture content. Compared to soil respiration, stand-level DWD respiration (based on estimated DWD surface 
area per hectare) reached similar (83%; following fire) or equal (100%; following harvest) rates. Disturbance-
induced changes in forest temperature and moisture regimes are reflected by DWD respiration rates; hence, for 
purposes of forest C modeling, decomposition rates of DWD should be differentiated by the decomposition 
environment created by different disturbance types. 

Keywords: downed woody debris respiration; soil respiration; clearcut harvesting; wildfire; decomposition 

 

1. Introduction 

Downed woody debris (DWD) is an integral component of boreal forest ecosystems, contributing to carbon (C) 
and nutrient cycles (Kurz and Apps 1993, Laiho and Prescott 2004), structural integrity (Debeljak 2006), and 
habitat availability (Harmon et al. 2004). Small and large-scale disturbances play an important role in the creation 
of DWD in boreal forests (Pedlar et al. 2002, Boulanger and Sirois 2006, Moroni 2006). Small-scale wind 
disturbance and senescence constantly create small amounts of DWD in old-growth boreal forests (McCarthy 
2001, Bergeron et al. 2002). In contrast, a considerable portion of boreal forest is periodically affected by stand-
replacing fires and clearcut harvesting (Harden et al. 2000, Bergeron et al. 2002, Roberts et al. 2006) which create 
large amounts of deadwood (snags and/or DWD) in single events. Recent studies have shown harvest-generated 
and fire-generated DWD to differ with respect to several attributes, such as abundance, diameter and length, 
colour, and decay class distribution (McRae et al. 2001, Lloyd and Todd 2003, Stevenson et al. 2006). Clearcut 
harvesting generates substantial amounts of DWD directly following harvest (Pedlar et al. 2002, Moroni 2006), 
whereas fire-generated DWD peaks 20–30 years after fire following the collapse of fire-generated snags (standing 
dead trees; Bond-Lamberty et al. 2003, Moroni 2006, Hagemann et al. 2009). Clearcut harvesting generally 
produces smaller and shorter DWD pieces than wildfire (Lloyd and Todd 2003, Densmore et al. 2004), resulting 
from the input of small short logging debris (Stevenson et al. 2006). Unlike logging debris, fire-generate DWD 
features a charred surface, which can be transformed into a decay-resistant shell as a result of below-fibre 
saturation moisture levels and excessively high air temperatures (“case-hardening phenomenon”; Marra and 
Edmonds 1996, Mackensen and Bauhus 2003, Manies et al. 2005). 

While DWD amounts (C stocks) and characteristics following harvesting and wildfire are well-studied, few 
studies have investigated post-disturbance DWD respiration rates (C flux). Documented studies of wood 
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respiration rates are limited to those following wildfire (Wang et al. 2002, Bond-Lamberty et al. 2003), selective 
logging (Liu et al. 2006), and clearcut harvesting (Marra and Edmonds 1996). Similar to studies examining DWD 
abundance, most respiration studies have focused on mature forests, e.g., old-growth coniferous forests (Marra 
and Edmonds 1994, Progar et al. 2000), old growth Amazon forests (Chambers et al. 2001), secondary broad-
leaved forests (Yoneda et al. 1975, Jomura et al. 2008), and alpine floodplain forests (Richard and Woodtli 2006). 
Wei et al. (1997) studied mass loss and nutrient dynamics in harvested and burned pine forests, but we are 
unaware of any study comparing respiration rates of DWD with different disturbance origins, which has been 
identified as an important research objective (Zhou et al. 2007). 

Deadwood respiration rates are a direct measure of the amount of C released to the atmosphere during 
decomposition (Herrman and Bauhus 2008). Unlike other methods, e.g. mass loss or density change studies, 
DWD respiration measurements distinguish between decomposition rates and mass loss due to fragmentation 
and/or leaching (Marra and Edmonds 1994, Bond-Lamberty et al. 2003, Liu et al. 2006), and thus provide 
valuable data on the contribution of DWD decomposition to the global C cycle (Chambers et al. 2001, Howard et 
al. 2004, Jomura et al. 2008). In a boreal black spruce forest in central Canada, stand-level DWD respiration 
amounted to 54% of soil respiration – the second-largest C flux in terrestrial ecosystems (Rustad et al. 2000, 
Bond-Lamberty et al. 2003, Peng et al. 2008). Thus, DWD respiration is an important component of the forest C 
cycle, but few studies have measured DWD and soil respiration concurrently (Marra and Edmonds 1994, 1996, 
Richard and Woodtli 2006). 

Temperature and moisture have been identified as the main drivers of the decomposition process for woody and 
non-woody litter (Rustad et al. 2000, Bond-Lamberty et al. 2003, Liu et al. 2006). In general, DWD respiration 
increases with increasing temperature (Peng et al. 2008), but it exhibits an inverse U response curve to moisture 
content, becoming inhibited at both low and high moisture levels (Boddy 1983, Progar et al. 2000, Jomura et al. 
2007). Both temperature and moisture can be influenced by disturbances (McRae et al. 2001, Devine and 
Harrington 2007). Forest floor temperatures generally increase post-disturbance due to canopy removal, but the 
increase is typically more pronounced for wildfire than for clearcut harvesting due darkened charred surface 
colour (McRae et al. 2001). Soil moisture levels generally decrease post-fire following the reduction of organic 
layer mass and increased evaporation (McRae et al. 2001). Following harvesting, soil moisture levels can increase 
due to less plant transpiration (Adams et al. 1991, Elliott et al. 1998), or decrease due to increased evaporation 
(Londo et al. 1999), depending on factors such as forest type, aspect, or slope (McRae et al. 2001). 

Based on expected differences in DWD characteristics (e.g., size) and decomposition environment (temperature 
and moisture), differences in piece-level respiration rates can be expected between sites of different disturbance 
origin. At the stand-level, differences in respiration rates will be further influenced by differences in abundance 
and state of DWD. Objectives of this study are i) to determine the impact of disturbance history on piece-level 
DWD respiration and its driving environmental variables, hypothesizing respiration rates in disturbed Labrador 
stands to be higher than in old-growth stands due to increased temperatures and decreased moisture levels, ii) to 
compare piece-level DWD respiration rates to soil respiration rates, expecting a) DWD respiration to be lower 
than soil respiration, and b) smaller differences between DWD and soil respiration in disturbed stands than in old-
growth stands due to discontinued root respiration, and iii) to compare estimated stand-level DWD and soil 
respiration rates. 

2. Materials and methods 

2.1. Site selection and description 

The study area is situated near Goose Bay, Labrador in the “High-boreal Forest–Lake Melville” Ecoregion 
(Ecoregions Working Group 1989), an extension of the Boreal into the Taiga Shield. Mean annual temperatures 
are -2.4°C to -1.0°C (McKenney et al. 2007). The region receives ~1000 mm of precipitation evenly distributed 
throughout the year, making it one of the wettest North American boreal forests (Foster 1985). The upland soils 
are mainly classified as Humo-Ferric Podzols (Soil Classification Working Group 1998) or as Typic Haplorthods 
(Soil Survey Staff 2006), and support the most productive forests of Labrador (Roberts et al. 2006).  

Nine previously studied forest sites (Table 1 in Hagemann et al. 2009) were investigated in greater detail from 
July to September 2008. Sites support (or supported prior to disturbance) forests dominated by black spruce 
(>75%) older than 140 years featuring an average height of 12–15 m and a crown closure of 50%–75% on sites of 
medium productivity (Government of Newfoundland and Labrador 2006). Sites had three different disturbance 
origins (stand types): three 146–204 year-old old-growth stands likely of wildfire origin (OG), three stands 
clearcut 3 years prior to sampling (H), and three stands subject to wildfire 23 years prior to sampling (B). 
Disturbed stands were selected to have DWD amounts typical of Labrador old-growth black spruce stands (35–
60 m3 ha-1; data from Hagemann et al. 2009), or near-maximum amounts of disturbance-generated DWD, i.e. 
shortly following clearcut (126–163 m3 ha-1) and ~20 years following wildfire (83–100 m3 ha-1). Detailed 
information on the studied stands is presented by Hagemann et al. (2009). 
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2.2. Field measurements 

2.2.1. Woody debris respiration 

Forty-five black spruce decay class 2 (Natural Resources Canada 2010) sample logs with a middle diameter of 
13.9±0.2 cm were selected from the DWD present within each stand, cut to 30.6±0.5 cm length, and sealed at the 
ends with Water Stop polymer paint (MEM Bauchemie, Leer, Germany). Decay class 2 logs were chosen for 
several reasons: i) high abundance in all stand types (Hagemann et al. 2009), and ii) low expected variability in 
wood density, iii) high structural integrity which reduces the risk of fragmentation during handling, and iv) higher 
absolute respiration rates than more advanced decay classes (Natural Resources Canada 2010) as a result of 
sufficient resource quality and fungal colonization (Hicks et al. 2003). Each stand contained a randomly placed 
20-m transect, along which five plots were located every 5 m. One sample log was placed on the ground at each 
plot and its position marked to avoid inadvertent relocation after measurements. Plots were prepared 2 weeks prior 
to the first sampling to allow for equilibration with ambient conditions. 

Piece-level respiration, wood and air temperatures, and log weight were measured nine times from July 12 to 
September 01, 2008, every 5–8 days. Measurements could not be conducted simultaneously at all sites; hence, the 
order of measurement for the three stand types (morning 900-1200h, noon 1200-1500h, afternoon 1500-1800h) 
and the sites within stand types was rearranged for each measurement day to avoid temporal sampling bias. 
Respiration of sample logs was measured for 180 s using a clear acrylic, closed chamber (19385 cm3; Newell 
Rubbermaid Inc., Freeport, IL, USA) connected to an EGM-4 infrared gas analyzer (PP Systems, Amesbury, MA, 
USA). Piece-level DWD respiration (RDWD) was calculated as CO2 concentration increment in the system volume 
per unit of emitting (lateral) wood surface and time. System volume was determined by deducting average log 
volume per stand from the volume of the chamber and gas analyzer. Wood temperatures were recorded in pre-
drilled 4-mm holes using waterproof digital type K thermocouple probes (DP8811WP, Mannix, NY, USA): 
TDWDsurface

 at the wood surface, TDWDtop
 at 2 cm depth in the top sapwood, TDWDheart

 at 7 cm depth in the heartwood, 
and TDWDbottom at 2 cm depth in the bottom sapwood. Between measurements, all holes were sealed with wooden 
dowels to avoid equilibration with ambient air. Organic layer temperature (TOL3) 3 cm below each sample log was 
measured simultaneously to DWD respiration using a temperature probe connected to the EGM-4. Ambient air 
temperature (TAir) and relative humidity (RH%) were recorded at 30 cm above the forest floor using a digital 
hygro-thermometer (SPER Scientific). Log masses were determined using a digital hanging scale. Gravimetric 
woody debris moisture content (uDWD) for each sampling date was calculated as water mass (date-specific field 
mass minus absolute dry log mass) divided by dry log mass (105°C) determined on completion of the last 
measurement. Log density (DDWD) was calculated as dry log mass to log volume ratio. 

Measured piece-level DWD respiration rates per emitting surface area were converted to per-hectare stand-level 
respiration rates to allow comparison with per-hectare soil respiration rates. Data on total DWD volume (m3 ha-1) 
per diameter class (≤1.0 cm; >1.0–3.0 cm; >3.0–5.0 cm; >5.0–7.5 cm; >7.5–<10.0 cm; 10.0–<20.0 cm; ≥20.0 cm; 
piles) measured on the same study sites was taken from Hagemann et al. (2009). For each diameter class, we 
calculated the total length of DWD with the mid-point diameter of the diameter class required to produce a 
cylinder with a volume equivalent to the total diameter class volume. Based on the calculated total length and the 
respective diameters, we estimated the total per-hectare DWD surface area for each diameter class (cylinder 
shape) and summed all diameter class surface areas to estimate total DWD surface area per hectare (m2 ha-1). 
Estimated stand-level respiration rates were calculated by multiplying measured piece-level respiration rates per 
unit surface area of decay class 2 sample logs with total DWD surface area per hectare for each measurement date, 
assuming all diameter classes to have similar respiration rates (Bond-Lamberty et al. 2003) and all DWD to be 
decay class 2 due to the lack of measured respiration data for other decay classes. 

2.2.2. Soil respiration 

At each plot, a PVC collar (Ø = 10.3 cm) was inserted 2 cm in the organic layer next to each sample log 2 weeks 
prior to sampling. Soil respiration (RS) was measured for 120 s simultaneously to DWD respiration measurements 
using an SRC-1 chamber connected to an EGM-1 infrared gas analyzer (PP Systems, Amesbury, MA, USA). 
Organic layer temperature (TOL10) and moisture potential (

�
OL) at 10 cm depth were measured concurrently to soil 

respiration using a temperature probe connected to the EGM-1 and a 2900F1 Quick Draw Tensiometer (Soil 
Moisture Equipment Corp., Santa Barbara, CA, USA), respectively. Organic layer thickness (OLT) was measured 
below each PVC collar following the last measurement. 

2.3. Statistical analyses 

Differences in RDWD, TAir, TDWDsurface, TDWDtop, TDWDheart, TDWDbottom, TOL3, TOL10, uDWD, and 
�

OL between strata were 
analyzed using univariate nested ANOVA with stand type (k = 3) and the respective variable as fixed factors, and 
site nested within stand type as random factor (n = 3). Significance thresholds for multiple comparisons were 
adjusted using Bonferroni’s equation. Differences between RDWD and RS within stand types were calculated using 
the Wilcoxon signed-rank test. Correlations between RDWD, RS, TAir, TDWDsurface, TDWDtop, TDWDheart, TDWDbottom, TOL3, 
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TOL10, uDWD, �OL, and OLT were calculated using Spearman’s � . A factor analysis was employed to aggregate the 
environmental variables. The influence of all variables on DWD and soil respiration was determined using a 
hierarchical nested linear mixed model with stand type and environmental variables as fixed factors, measurement 
day as a repeated fixed factor, and site nested within stand type as random factor. Time of measurement was 
considered as an individual fixed factor in the LMM analysis accounting for bias due to measurement time. 
Random variance components were calculated using Restricted Maximum Likelihood. Statistical analyses were 
conducted and figures created using SPSS 15.0.1 and SigmaPlot 7.1 (SPSS Inc.). All abbreviations used are listed 
in Table 1. 

3. Results 

3.1. Temperature 

The range of average air temperatures at time of measurement increased from the old-growth (OG; 14.5–28.2˚C) 
to the harvested (H; 16.6–33.2˚C) to the burned (B; 14.6–34.7˚C) stands (Fig. 1). Downed woody debris and 
organic layer temperatures also followed the order OG < H < B (Fig. 1). For example, top and bottom sapwood 
temperature were highest for the burned stands on seven of nine measurement dates. In all stands, differences 
between the different substrate temperatures (air, DWD, and organic layer) were considerably less pronounced on 
days with lower absolute temperatures, e.g. 01/08 (Fig. 1). 

Downed woody debris temperatures decreased in the order TDWDsurface > TDWDtop > TDWDheart > TDWDbottom in the old-
growth and harvested stands, while TDWDtop mostly exceeded TDWDsurface in the burned stands (Fig. 1). Wood 
surface and top sapwood temperatures exceeded air temperatures in the disturbed stands, but not in the old-growth 
stands.  

All DWD temperatures were highly correlated with air temperature (�  > 0.74; P ≤ 0.001; Table 2a), featuring 
decreasing correlation strength with increasing depth, i.e., from TDWDsurface to TDWDbottom. Correspondingly, 
correlation strength between DWD and organic layer temperatures increased from TDWDsurface to TDWDbottom 
(�  > 0.51; P ≤ 0.001; Table 2a). All DWD temperatures were strongly correlated (�  > 0.79; P ≤ 0.001), hence only 
TDWDtop and TDWDbottom were analyzed subsequently unless stated otherwise. 

3.2. Moisture 

The range of average DWD moisture content at time of measurement was significantly lower in the burned stands 
(24.1–35.5%) compared to the harvested (46.3–58.7%) and old-growth (48.8–60.3%) stands (Fig. 2a). The range 
of average organic layer moisture potential was also significantly lower in the burned stands (7.5–23.7 kPa) than 
in harvested (5.0–11.8 kPa) and old-growth (3.8–10.1 kPa) stands (Fig. 2b). Differences in uDWD and �OL between 
the old-growth and harvested stands were small and generally non-significant.  

Downed woody debris moisture content and organic layer moisture potential were significantly correlated 
(�  = 0.38; P ≤ 0.001; Table 2b), but between-measurement date variability was more pronounced for �OL. Organic 
layer moisture potential was more responsive to temperature increases and precipitation events than uDWD 
(Fig. 1, 2), e.g. very low �OL on a warm day following a drier period (26/07) and high �OL on a cool day 
following heavy precipitation (01/08). This effect was particularly pronounced in the burned stands, which 
generally featured the highest variability of �OL (Fig. 2). The variability of �OL between sample pieces decreased 
in the order OG ≥ H > B, whereas the opposite was observed for uDWD (Fig. 1, 2).  

3.3. Respiration 

The range of average piece-level DWD respiration tended to decrease in the order harvested (0.16–0.34 g CO2 m
-

2 h-1) > burned (0.11–0.27 g CO2 m
-2 h-1) ≥ old-growth (0.09–0.19 g CO2 m

-2 h-1), whereas the range of average 
soil respiration significantly decreased from old-growth  (0.55–0.91 g CO2 m

-2 h-1) > harvested (0.26–
0.55 g CO2 m

-2 h-1) > burned (0.11–0.19 g CO2 m
-2 h-1; Fig. 3) stands. Downed woody debris respiration was 

highest in harvested stands on almost half of the measurement dates (Fig. 3a), and tended to be lowest in old-
growth stands. In contrast, soil respiration rates in old-growth stands considerably exceeded soil respiration rates 
in disturbed stands on all measurement dates (Fig. 3b). Between-stand type patterns of measured variables 
differed: RDWD (H > B ≥ OG), RS (OG > H > B), uDWD (OG > H > B), �OL (OG ≥ H > B), and DWD temperatures 
(B > H > OG). 

Soil respiration steadily increased from early July until early August in old-growth and – to a lesser degree – in 
harvested stands, which was not the case for organic layer temperatures or organic layer moisture potential 
(Fig. 1–3). The variability of soil respiration decreased strongly in the order OG > H > B, whereas the variability 
of DWD respiration did not differ between stand types. Measured soil respiration rates were significantly higher 
than piece-level DWD respiration rates in old-growth and harvested stands (P ≤ 0.001), whereas in burned stands 
RDWD was similar or slightly higher than RS (P = 0.076).  
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Stand-level (kg CO2 ha-1 h-1) and piece-level (g CO2 m
-2 h-1) respiration rates, previously measured total and 

≤3.0 cm volume (Hagemann et al. 2009), and surface area of DWD decreased by stand type in the same order 
(H > Β ≥ OG; Table 3). When compared with soil respiration at the stand-level, DWD respiration was equivalent 
in harvested stands (mean 100%; range 73–127%), slightly lower in burned stands (83%; 44–115%) (P < 0.05), 
and considerably lower in old-growth stands (9%; 6–13%) (P ≤ 0.001). 

Downed woody debris respiration was significantly correlated to TDWDtop (�  = 0.26; P ≤ 0.001) and uDWD (�  = 0.29; 
P ≤ 0.001), while TDWDtop and uDWD were negatively correlated (�  = -0.303; P ≤ 0.001). Aggregation of all 
independent environmental factors yielded three components which explained 78.2% and 77.0% of total variable 
variance for RDWD and RS, respectively (Tables 4a, 5a). For RDWD, the first and second component accounted for 
62.2% and 16.0% of total variance, respectively. Factors dominating each component were (1) TAir, TDWDsurface, 
TDWDtop, TDWDheart, TDWDbottom, and TDWWheart, TOL3, TOL10, �OL, and RH%, and (2) uDWD and DDWD (Table 4a). For 
RS, the first and second component accounted for 57.1% and 19.9% of total variance, respectively. Factors 
dominating each component were (1) TAir, TOL3, TOL10, �OL, and RH%, and (2) OLT (Table 5a).  

The hierarchical nested LMM showed uDWD and TDWDbottom to be the most influential environmental variables in 
determining RDWD, followed by TDWDtop, DDWD, and stand type (Table 4b). For RS, the most influential 
environmental variables were stand type and TAir, followed by RH%, TOL10, and TOL3. The interactions between 
TOL10 and �OL or OLT also significantly influenced RS, whereas �OL and OLT as individual factors had no 
measurable influence (Table 5b). Random variance was mainly attributed to error. 

4. Discussion 

4.1. Ecological drivers of DWD respiration 

Moisture content was the strongest correlate with piece-level DWD respiration in this study (Table 4b), although 
temperature is often most strongly correlated with decomposition processes (Wang et al. 2002, Mackensen and 
Bauhus 2003). Downed woody debris respiration rates were low at moisture contents <40%, mainly encountered 
in burned stands, which is similar to the black spruce fibre saturation point (43%; Griffin 1977) and values 
reported by Bond-Lamberty et al. (2003) (43%). Decomposition can be limited at moisture contents below the 
fibre saturation point, because many wood-rotting fungi cannot access water below this point (Griffin 1977, Wang 
et al. 2002, Laiho and Prescott 2004, Boulanger and Sirois 2006). As pore volume gradually increases during the 
decay process (Boddy 1983, Christensen 1984, Chambers et al. 2001, Bond-Lamberty et al. 2003), and influences 
DWD water retention capacity, living conditions for the decomposer community change (Boddy 1983, Sollins et 
al. 1987, Chambers et al. 2001). The interaction between moisture content and density is thus critical in 
understanding DWD respiration (Chambers et al. 2001, Barker 2008, Jomura et al. 2008), as indicated by the 
grouping of both internal variables during factor analysis (Table 4a), setting them apart from external variables 
such as temperatures or relative humidity. 

The drying and wetting of DWD proceeds slower than these processes in the bryophyte-dominated organic layer, 
as DWD moisture content was less responsive to precipitation events and changes in temperature than organic 
layer moisture potential. Short-term fluctuations of atmospheric relative humidity and amounts of water added in 
precipitation events only influence the wood surface, because of its smaller surface area available for water 
exchange compared to mosses (Beringer et al. 2001). Although the thermal diffusivity of wood (1.5–1.6 x 10-

7 m2 s-1; Simpson and TenWolde 1987; TenWolde et al. 1988) and dead moss (peat: 0.92–1.37 x 10-7 m2 s-1; 
Zuidhoff 2003) are fairly similar, water transport is slower in DWD than in mosses, which are characterised by 
high hydraulic conductivity and a high degree of surface infiltration (Simpson and TenWolde 1987; Beringer et al. 
2001). 

Temperature limited DWD respiration at lower temperatures, while moisture likely limited DWD respiration at 
higher temperatures. In contrast to moisture, DWD respiration increased steadily with increasing temperature, 
similar to observations by Peng et al. (2008). Variability in DWD respiration also increased with increasing 
temperature, suggesting that, as temperature increases, other factors such as moisture (Boddy 1983, Progar et al. 
2000), decay class (Bond-Lamberty et al. 2003), or fungal colonization (Barker 2008) limit respiration. For 
example, due to the higher demand of decomposers for respirable oxygen at higher temperatures, the limiting 
impact of high wood moisture contents may become apparent earlier at high temperatures than at low 
temperatures (Boddy 1983). 

Bryophytes are important factors in regulating within-log differences in moisture content and temperature, thus 
influencing DWD respiration. Although wood temperature and surface moisture content are mainly regulated 
from above, i.e. by radiation and air temperature, moisture retention in the lower log parts is favoured by contact 
with moisture-retaining bryophytes – the dominant ground vegetation cover of the studies old-growth black spruce 
sites (>82%; unpublished data) – resulting in heartwood and bottom sapwood temperatures that were up to 10°C 
lower than top sapwood and surface temperatures, and showed stronger correlations with 3-cm organic layer 
temperature (Table 2). In contrast to standing dead trees (snags) or suspended deadwood, moisture is generally 
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retained below DWD (Devine and Harrington 2007, Jomura et al. 2007), resulting in decreased evaporation rates, 
increased moisture content through vertical and lateral water transfer, and thus lower bottom sapwood 
temperatures, as observed for logs buried in the organic layer (Hagemann et al. 2010). Differences in DWD 
moisture and temperature are thus particularly pronounced when comparing stands with partly or fully intact 
bryophyte layers (e.g., harvested stands) to stands where the live bryophyte and most of the organic layer have 
been combusted (e.g., burned stands). 

4.2. Impact of disturbance history on DWD respiration 

Disturbance history strongly influenced DWD temperature and moisture, which were the key to explaining the 
effect of stand type (i.e., disturbance) on DWD respiration. However, the factor ‘stand’ was barely significant 
(P = 0.043; Table 4b), because it is characterized by a combination of environmental factors such as temperature 
and moisture. The introduction of moisture and temperature as individual explanatory variables to a basic linear 
mixed model (data not shown) caused a shift in significance from stand type to these variables (P ≤ 0.0001; 
Table 4b). Between-stand type differences in DWD respiration rates can thus be largely explained by differences 
in temperature and moisture regimes, despite small but significant contributions of variability arising from plots, 
measuring day, and time. 

In old-growth Labrador black spruce stands, low summer DWD respiration rates resulted from high moisture 
contents combined with mainly low temperatures. Measured old-growth air (13.9–29.0˚C), and DWD (5.8–
26.9˚C) temperatures were typical of growing season temperatures in boreal forests, e.g. air temperatures of ~10–
34˚C (Bond-Lamberty et al. 2003; Dannoura and Jomura 2006), and wood temperatures of ~7–18˚C (Wang et al. 
2002). Downed woody debris moisture content in high-boreal Labrador black spruce (29–127%) was comparable 
to values reported for drier black spruce forests in Manitoba (~40–120%; Bond-Lamberty et al. 2003). However, 
in situ DWD respiration rates in Labrador (0.01–0.30 g CO2 m

-2 h-1, equiv. to 0.0007–0.0204 g CO2 kg-1 h-1) are in 
the lower range of values reported for decay class 2 black spruce wood in laboratory analyses at various 
temperatures (0–0.0586 g CO2 kg-1 h-1; Wang et al. 2002, Bond-Lamberty et al. 2003). 

As expected, air, DWD, and soil temperatures in burned Labrador black spruce were significantly higher and more 
temporally variable than in old-growth stands (Devine and Harrington 2007). High post-fire organic layer and 
wood temperatures (McRae et al. 2001, Dannoura and Jomura 2006) lead to decreased post-fire wood moisture 
contents due to increased evaporation rates and the partial combustion of the moisture-regulating organic layer 
(Mattson et al. 1987, McRae et al. 2001). Downed woody debris moisture levels in burned stands (12–48%) were 
thus less variable than in unburned stands (34–127%) and mostly below fibre saturation point. Low moisture 
levels in combination with high temperatures therefore likely limited summer DWD respiration in burned stands. 
However, at similar moisture levels (18±5%), DWD respiration rates in Labrador 23 years post-fire (0.05–
0.38 g CO2 m

-2 h-1, equiv. to 0.003–0.026 g CO2 kg-1 h-1), were higher than in Alaskan black spruce 2 years post-
fire (0.0004±0.00026 g CO2 kg-1 h-1; Jomura and Dannoura 2006), reflecting progressing decomposition, albeit 
slow, despite limitations to decomposition during summer months. 

In contrast to burned and old-growth stands, where DWD respiration was limited by low moisture content and 
temperature, respectively (Fig. 1, 2), high respiration rates in harvested stands resulted from high temperatures 
and moderate moisture contents. While organic layer and DWD temperatures generally increase following 
harvesting (McRae et al. 2001), moisture levels may increase or decrease after canopy removal depending on site 
factors such as climate, slope, or litter quality (cf. McRae et al. 2001, Yanai et al. 2003). If post-harvesting 
moisture levels are sufficiently high for DWD to support decay fungi, respiration and decomposition rates can be 
expected to increase under warmer post-harvest compared to pre-harvest conditions (Progar et al. 2000). The 
decomposition of harvest residues is often desired to ensure nutrient availability for the regenerating stand, e.g., in 
forests limited by nitrogen or phosphorus availability (Laiho and Prescott 2004). In drier regions, decomposition 
of DWD and the release of associated nutrients can be enhanced by measures such as retention harvesting or slash 
retention, which decrease wind movement and summer warming of the organic layer. In consequence, the 
evaporation and desiccation of the organic layer surface and DWD and the associated decrease in decomposition 
rates are reduced (Prescott et al. 2004, Devine and Harrington 2007, Moroni et al. 2009). 

4.3. Soil respiration 

Measured soil respiration rates in old-growth and disturbed Labrador black spruce (0.02–1.07 g CO2 m
-2 h-1) were 

within the range reported for other boreal black spruce forests, e.g. in Newfoundland (3-13 µmol CO2 m
-2 s-1, 

equiv. to 0.2–2.1 g CO2 m
-2 h-1; Moroni et al. 2009), Saskatchewan (0.01–1.81 g CO2 m

-2 h-1; Singh et al. 2008), 
and Alaska (0.34–0.92 g CO2 m

-2 h-1; O’Neill et al. 2003). Except for burned stands, soil respiration showed a 
seasonal pattern with maximum rates recorded in early August, but measured peak soil temperatures (26/07) did 
not coincide with high soil respiration rates (Fig. 1, 3b). This seemingly temperature-independent seasonal pattern 
has previously been reported by O’Neill et al. (2003), and can be explained by seasonal patterns of photosynthate 
flux to the roots, which is a more important driver of autotrophic soil respiration than soil temperature (Högberg et 
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al. 2001, Gaumont-Guay et al. 2008). Hence, this pattern was most pronounced and soil respiration rates were 
highest in the old-growth stands where a high contribution of root respiration to total soil respiration could be 
expected due to closed tree canopy (up to 74%; Vogel et al. 2005, Gaumont-Guay et al. 2008). Soil respiration 
rates in harvested stands were 30-50% lower compared to old-growth stands, reflecting partial losses of root 
respiration after tree removal (Hanson et al. 2000), which masked any potential increases in microbial respiration 
due to higher soil temperatures and freshly input litter and dead roots (Moroni et al. 2009). 

The studied burned stands featured low soil respiration rates and were mostly non-vegetated (Hagemann et al. 
2009), thus neither showing signs of elevated microbial respiration nor of recovery of root respiration 23 years 
after disturbance. While clearcut harvesting removes most trees leaving their roots for decomposition, fire kills 
most or all trees and combusts part of the organic layer, the main rooting zone for boreal black spruce (Strong and 
La Roi 1983), and the roots and microbes located within it (Harden et al. 2000, McRae et al. 2001). Root 
respiration drastically decreases immediately following fire (O’Neill et al. 2003, Bergner et al. 2004), but 
increases in microbial respiration due to higher soil temperatures and decomposition of dead roots have been 
shown to last only a few months to years following disturbance (O’Neill et al. 2003, 2006, Singh et al. 2008). 

4.4. DWD and soil respiration 

Our estimates of stand-level DWD respiration reflect the actual abundance and diameter distribution of DWD at 
the studied sites thus accounting for disturbance-related differences of volume and size, and the higher surface-to-
volume ratio of small-diameter DWD. They are based on the a) realistic assumption that DWD respiration (i.e. 
density loss, not fragmentation) is not influenced by diameter class (Mattson et al. 1987, Marra and Edmonds 
1996, Bond-Lamberty et al. 2003); and b) the unrealistic assumption that all DWD was in decay class 2, which is 
due to the lack of respiration data for decay classes other than 2. Several studies have shown wood respiration 
rates to increase slightly (Marra and Edmonds 1996) or significantly (Wang et al. 2002, Bond-Lamberty et al. 
2003) with progressing decay status. If decay class were accounted for, stand-level DWD respiration rates would 
increase relative to our values, which are therefore conservative estimates of daytime summer respiration rates in 
undisturbed and disturbed Labrador black spruce forests. 

Compared to soil respiration, DWD respiration contributes significantly to the forest-atmosphere C exchange, 
particularly in sites with large amounts of decaying DWD and low soil respiration rates. In old-growth stands, 
stand-level DWD respiration amounted to only 9% of the high, autotrophic-dominated soil respiration (Table 3), 
resulting from low piece-level DWD respiration rates and volume, and a high proportion of >10 cm DWD with 
low surface-to-volume ratio. In alpine riverine-forest systems, DWD respiration was 40–74% of soil respiration 
(Richard and Woodtli 2006). Following clearcut harvest, soil respiration rates decreased and stand-level DWD 
respiration increased to 100% of soil respiration (Table 3; Fig. 3), reflecting high piece-level respiration rates and 
abundance of harvest-generated DWD, particularly of <3.0 cm DWD with extremely high surface-to-volume 
ratio. Similarly, average monthly DWD respiration partly exceeded average monthly soil respiration in clearcut 
Western hemlock-Douglas fir forests (Marra and Edmonds 1994, 1996). In contrast, piece-level DWD and soil 
respiration rates in burned stands were very low, but stand-level DWD respiration amounted to 83% of soil 
respiration due to moderate abundance of DWD. 

5. Conclusions 

Disturbance-induced changes in the temperature and moisture regime are reflected by DWD and soil respiration 
rates. In cool humid Labrador black spruce, clearcut harvest and wildfire resulted in higher DWD temperatures 
and respiration rates compared to old-growth stands, but the increase in respiration was more pronounced 
following harvesting. Downed woody debris moisture levels decreased following disturbance, particularly in 
burned sites, where respiration was limited by low moisture contents. In forest C modeling, decomposition rates 
of DWD should therefore be differentiated by the disturbance-specific decomposition environment to adequately 
reflect post-disturbance C dynamics. Compared to soil respiration, DWD respiration is particularly important in 
disturbed forest ecosystems, where it can release similar (following fire) or equal (following harvest) amounts of 
CO2 to the atmosphere. 
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Figure captions 

Fig. 1. Air, downed woody debris, and organic layer temperatures (˚C) by measurement date and stand. Error bars 
indicate ±1 SE. 

Fig. 2. Daily precipitation (10/07–04/09/2008) and a) downed woody debris moisture content (%) and b) organic 
layer moisture potential (kPa) by measurement date and stand. Significant differences are indicated as follows, * 
H, OG > B; ° OG > B; ^ OG > H (α = 0.05). Error bars indicate ±1 SE. 

Fig. 3. a) Downed woody debris and b) surface respiration rates (g CO2 m
-2 h-1) by measurement date and stand. 

Significant differences are indicated as follows, a) * H > B; ° H > OG; b) ^ OG > H > B; ~ OG > B (α = 0.05). 
Error bars indicate ±1 SE. 
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Tables 

 

Table 1. List of abbreviations. 
Abbreviation Explanation 
B Burned stand type 
C Carbon 
CO2 Carbon dioxide 
DDWD DWD density 
H Harvested stand type 
OLT Organic layer thickness [cm] 
OG Old-growth stand type �

OL Organic layer moisture potential [cbar] 
RS Soil respiration [g CO2 m

-2 h-1] 
RDWD WD respiration [g CO2 m

-2 h-1] 
RH% Relative humidity [%] 
TAir Air temperature [˚C] 
TOL3 Organic layer temperature below log (3 cm) [˚C] 
TOL10 Organic layer temperature (10 cm) [˚C] 
TWDsurface DWD surface temperature [˚C] 
TDWDtop DWD top sapwood temperature (2 cm) [˚C] 
TDWDheart DWD heartwood temperature (7 cm) [˚C] 
TDWDbottom DWD bottom sapwood temperature (2 cm) [˚C] 
uDWD Gravimetric DWD moisture content [%] 
DWD Downed woody debris 

  

 

Table 2. Pair-wise correlations* between a) air, downed woody debris and organic layer 
temperatures and b) relative humidity, downed woody debris moisture content, and organic layer 
moisture potential and thickness. 

  
DWD temperature 

[˚C] 
 

Organic layer 
temperature 

[˚C] a)                     Variables 

 

Air 
temperature 

[˚C] 
 Surface 

Top 
sapwood 

Heart-
wood 

Bottom  
sapwood 

 3 cm 10 cm 

           
Air temperature [˚C]  1  .873 ‡ .821 ‡ .769 ‡ .743 ‡  .547 ‡ .483 ‡ 

           
Surface  .873 ‡  1 .924 ‡ .821 ‡ .797 ‡  .595 ‡ .505 ‡ 

Top sapwood  .821 ‡  .924 ‡ 1 .936 ‡ .899 ‡  .677 ‡ .581 ‡ 

Heartwood  .769 ‡  .821 ‡ .936 ‡ 1 .953 ‡  .715 ‡ .615 ‡ 

DWD 
temperature 

[˚C] 
Bottom sapwood  .743 ‡  .797 ‡ .899 ‡ .953 ‡ 1  .778 ‡ .665 ‡ 

            
3 cm  .547 ‡  .595 ‡ .677 ‡ .715 ‡ .778 ‡  1 .826 ‡ Organic layer 

temperature [˚C] 10 cm  .483 ‡  .505 ‡ .581 ‡ .615 ‡ .665 ‡  .826 ‡ 1 
            
            

    Organic layer 

b)                     Variables 
 

RH 
[%]  

DWD moisture 
content 

[%]   
Moisture potential 

[cbar] 
Thickness 

[cm] 

            
 RH [%]  1  .259 ‡   .399 ‡ .092 
            

DWD moisture content [%]  .259 ‡  1   .377 ‡ .384 † 
            

Moisture potential [cbar]  .399 ‡  .377 ‡   1 .524 † Organic 
layer Thickness [cm]  .092  .384 †   .524 † 1 

            
* Correlation strength given by Spearman’s � . 
† Significant at α = 0.001. 
‡ Significant at α = 0.01.  
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Table 3. a) Downed woody debris volume (Hagemann et al. 2009) and estimated surface area; and b) per-hectare values of soil and 
downed woody debris respiration accounting for total downed woody debris surface area. 

 

a)  DWD Volume [m3 ha–1] a  DWD surface area [m2 ha–1] b  

Diameter 
class [cm] c 

Average d 

diameter [cm] 
Harvested Burned Old–growth  Harvested Burned Old–growth 

 

20.0–≤37.0 27.5 8.1 (1.0–17.9) 6.0 (3.4–8.9) 8.3 (4.3–12.7)  118 (15–260) 87 (49–129) 121 (63–185)  
10.0–<20.0 15.0 22.3 (17.1–27.8) 46.2 (36.4–56.5) 23.3 (17.3–29.6)  595 (456–741) 1232 (971–1507) 621 (461–789)  
>7.5–<10.0 8.8 3.9 (3.5–4.4) 9.9 (7.1–12.9) 3.9 (2.2–5.8)  177 (159–200) 450 (323–589) 177 (100–264)  
>5.0–7.5 6.3 6.9 (5.7–8.2) 8.1 (7.1–9.2) 2.3 (0.8–4.1)  438 (362–521) 514 (451–584) 146 (51–260)  
>3.0–5.0 4.1 4.7 (3.3–6.1) 5.3 (3.7–6.9) 1.5 (0.7–2.3)  459 (322–595) 517 (361–673) 146 (68–224)  
>1.0–3.0 2.1 9.0 (8.0–10.1) 4.9 (3.5–6.5) 2.4 (1.7–3.1)  1714 (1524–1924) 933 (667–1238) 457 (324–590)  
≤1.0 0.5 13.7 (12.7–14.6) 3.6 (3.2–4.0) 3.1 (2.5–3.8)  10960 (10160–11680) 2880 (2560–3200) 2480 (2000–3040)  
Piles (≤30.0) 15.0 28.1 (19.0–38.1) 7.7 (2.3–14.2) 0.6 (0.2–1.0)  749 (507–1016) 205 (61–379) 16 (5–37)  

Total 144.0 (126.1–162.5) 91.5 (83.3–100.0) 46.9 (34.8–59.8)  15210 (13504–16937) 6819 (5443–8297) 4165 (3072–5380)  

          

b)  Soil respiration [kg CO2 ha–1 h–1]  DWD respiration [kg CO2 ha–1 h–1]  

Measurement date Harvested Burned Old–growth  Harvested Burned Old–growth  

12/07  3.7 (2.9–4.6) 1.4 (0.3–2.2) 5.5 (4.7–6.4)  4.7 (4.2–5.3) 1.1 (0.9–1.3) 0.7 (0.5–0.9)  
20/07  4.1 (3.3–5.0) 1.6 (0.8–2.4) 6.2 (5.4–7.0)  4.9 (4.3–5.4) 1.8 (1.5–2.2) 0.8 (0.6–1.0)  
26/07  5.0 (3.5–6.3) 1.9 (0.5–3.4) 7.4 (6.0–8.8)  5.2 (4.6–5.8) 1.4 (1.1–1.7) 0.6 (0.5–0.8)  
01/08  4.6 (3.4–5.8) 1.7 (0.5–2.9) 8.3 (7.1–9.5)  3.3 (3.0–3.7) 0.8 (0.6–0.9) 0.6 (0.4–0.8)  
07/08  4.6 (3.0–6.2) 1.8 (0.2–3.4) 9.1 (7.5–10.7)  3.5 (3.1–3.9) 1.6 (1.3–1.9) 0.7 (0.5–0.9)  
14/08  5.1 (3.9–6.2) 1.7 (0.8–2.9) 8.0 (6.9–9.2)  4.9 (4.3–5.4) 1.1 (0.9–1.3) 0.7 (0.6–1.0)  
21/08  4.3 (3.4–5.1) 1.3 (0.4–2.1) 5.8 (5.0–6.6)  5.2 (4.6–5.8) 1.0 (0.8–1.2) 0.4 (0.3–0.5)  
26/08  2.6 (2.0–3.3) 1.1 (0.4–1.7) 6.2 (5.5–6.9)  2.4 (2.2–2.7) 1.2 (1.0–1.5) 0.5 (0.4–0.6)  
01/09  5.5 (4.5–6.5) 1.6 (0.6–2.6) 7.4 (6.4–8.4)  5.2 (4.6–5.8) 1.5 (1.2–1.8) 0.5 (0.4–0.6)  

Note:  95% confidence intervals in parentheses 
a  Data from Table 6 in Hagemann et al. (2009)  
b  DWD surface per diameter class calculated based on total volume and average diameter assuming cylindrical shape 
c  DWD diameter class (Hagemann et al. 2009); largest measured diameter 37 cm 
d  Assumed average diameter for each diameter class 

 

  

 

 

Table 4. Summary statistics for (a) factor analysis showing component matrix and 
explained variance, and (b) hierarchical nested linear mixed model (LMM) analysis 
describing the influence of the listed variables on downed woody debris respiration. 

 

(a) Factor analysis Component  
Variable 1  2  

Communalities 
Extraction  

Air temperature TAir  0.870 0.255  0.822  
DWD temperature      

TDWDsurface 0.896 0.245  0.862  
TDWDtop 0.946 0.166  0.923  
TDWDheart 0.942   0.897  
TDWDbottom 0.951   0.906  

Organic layer temperature      
TOL3 0.868   0.758  
TOL10 0.781 -0.161  0.637  

Organic layer moisture potential �OL 0.633 -0.208  0.443  
Relative humidity RH% -0.781 -0.202  0.651  
DWD moisture content uDWD -0.393 0.842  0.864  
DWD density DDWD 0.256 -0.879  0.839  

      
 Variance   

Component Total % Cumulative %   
1 6.841 62.2 62.2   
2 1.761 16.0 78.2   
      

      
(b) LMM analysis      

Variable FT* F Wald Z P Variance [%]  
Intercept  62.227 na† ≤0.001 ‡   
Stand type F 7.858 na† 0.043 ‡   
Site(Stand type) R na† 1.120 0.263 7.5  
Plot(Site) R na† 2.533 0.011 ‡ 35.0  
Measuring day Frep 4.732 na† 0.031 ‡   
Measuring time F 36.341 na† ≤0.001 ‡   
TDWDtop F 19.227 na† ≤0.001 ‡   
TDWDbottom F 24.536 na† ≤0.001 ‡   
uDWD F 76.321 na† ≤0.001 ‡   
DDWD F 16.207 na† ≤0.001 ‡   
Error    57.5  

Note for (b): Stand type, measuring day (repeated), measuring time, DWD top sap temperature (TDWDtop),  DWD bottom sap 
temperature (TDWDbottom), DWD moisture content (uDWD), and DWD density (DDWD) are fixed factors; site nested within stand type and 
plot nested within site are random factors. 
* FT = factor type; fixed (F) and random (R) factors. 
† The statistic is not applicable to this factor type. 
‡ Significant at α = 0.05. 
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Table 5. Summary statistics for (a) factor analysis showing component matrix and 
explained variance, and (b) hierarchical nested linear mixed model (LMM) analysis 
describing the influence of the listed variables on soil respiration. 

 

(a) Factor analysis Component  
Variable 1 2  

Communalities 
Extraction  

Air temperature TAir 0.818 0.391  0.821  
Organic layer temperature      

TOL3 0.881 0.020  0.776  
TOL10 0.844 -0.022  0.713  

Organic layer moisture potential �OL 0.766 -0.415  0.760  
Relative humidity RH% -0.751 -0.388  0.715  
Organic layer thickness OLT -0.346 0.845  0.834  

      
 Variance   

Component Total % Cumulative %   
1 3.428 57.1 57.1   
2 1.191 19.9 77.0   
      

      
(b) LMM analysis      

Variable FT* F Wald Z P Variance [%]  
Intercept  242.332 na† ≤0.001 ‡   
Stand type F 42.219 na† ≤0.001 ‡   
Site(Stand type) R na† 1.370 0.171 10.7  
Plot(Site) R na† 1.995 0.047 ‡ 7.4  
Measuring day Frep 0.000 na† 0.992   
Measuring time F 5.581 na† 0.019 ‡   
TAir  F 18.886 na† ≤0.001 ‡   
TOL3 F 7.378 na† 0.007 ‡   
TOL10 F 9.182 na† 0.003 ‡   �OL F 0.013 na† 0.909   
RH% F 13.455 na† ≤0.001 ‡   
OLT F 2.309 na† 0.130   
TOL10 *  �OL F 5.717 na† 0.018 ‡   
TOL10 *  OLT F 5.681 na† 0.018 ‡   
Error    81.9  

Note for (b): Stand type,  measuring day (repeated), measuring time, air temperature (TAir), organic layer temperature (TOL3 &  TOL10), 
organic layer moisture potential ( 

�
OL ), relative humidity (RH%), and organic layer thickness (OLT) are fixed factors; site nested within 

stand type and plot nested within site are random factors. 
* FT = factor type; fixed (F) and random (R) factors. 
† The statistic is not applicable to this factor type. 
‡ Significant at α = 0.05.
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4.5 Measured and Modelled Carbon Stocks

Carbon dynamics of DOM, organic layer, and mineral soil in small-treed, cool and humid bo-
real forests such as Labrador black spruce are expected to differ from those of drier or warmer
boreal forests (Section 2.2.1). Although deadwood abundance and aboveground residence
times in Labrador were similar to other boreal forests (Section 4.3), processes such as palud-
ification (Simard et al. 2009) and the burial of WD by overgrowing moss (Hagemann
et al. 2009) are likely more pronounced in regions with low average temperatures, vigorous
moss layers, and long FRI. The applicability of C budget models particularly to northern
boreal forests remains unclear despite efforts to comprehensively model post-disturbance
boreal forest C stocks at the stand-level, because studies generally focussed on regional to
large-scale representation of C stocks and fluxes (Beer et al. 2006), one disturbance type
(Balshi et al. 2007), or a specific C pool (Ju and Chen 2008).

The biomass and C content data collected in Labrador black spruce using the NFI Ground
Sampling Guidelines (Natural Resources Canada 2010a) allow estimates of C stored
in live trees, aboveground and belowground deadwood, organic layer, and mineral soil, and
permits estimates of the effect of disturbance history and time since disturbance on these C
pools. In addition, measured C stocks of the different strata can be mapped to CBM-CFS3
modelled pools thus providing a unique opportunity to evaluate and, if required, calibrate
the CBM-CFS3 to northern boreal forests.

4.5.1 Hagemann U, Moroni M, Shaw C, Makeschin F, and Kurz W.
2010. Comparing measured and modelled forest C stocks in
high-boreal forests of harvest and natural- disturbance origin
in Labrador, Canada. Ecol. Model. 221: 825–839

Extended Abstract

Live-tree C stocks increased with tree age from 0.4 Mg C ha−1 in the recently harvested to
46.9 Mg C ha−1 in the old-growth stratum, and are in the lower range of values reported
for the closed-canopy boreal forest. Snags C stocks in the gap-driven old-growth stratum
amounted to 5.5 Mg C ha−1, and exceeded those of harvested and middle-aged burned
strata, where few snags were created by the post-harvest death of uncut trees or most fire-
generated snags had collapsed, respectively. Woody debris was the largest aboveground
deadwood C pool (0.8–25.8 Mg C ha−1) and significantly decreased with time since harvest.
Buried deadwood C stocks were highest in the old-growth stratum (18.2 Mg C ha−1), and
ranked higher than aboveground WD C pools in all but the recently harvested and middle-
aged burned strata. Organic layer C stocks (30.4–47.4 Mg C ha−1) were within the range
reported for other boreal forests, but mineral soil C stocks (121.5–208.1 Mg C ha−1) were
considerably higher than observed in drier or warmer upland boreal forests and comparable
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to values reported for poorly-drained forested Podzol and peatland sites. Buried deadwood,
organic layer, mineral soil, and total ecosystem C (185.6–279.7Mg C ha−1) showed no trend
with disturbance history or forest age.

Although the CBM-CFS3 represented measured live-tree C dynamics in all strata well, ad-
justments to the volume-to-biomass conversion and partitioning parameters were required
for the non-merchantable and branch C pools to accurately capture live-tree C stocks in
the studied black spruce ecosystem. Default CBM-CFS3 parameters overestimated non-
merchantable biomass particularly in the old-growth stratum, where tree productivity and
regeneration decline as a result of paludification, and may not be appropriate for all regions
due to allometric crown plasticity and within-species variability. Both yield curves and VBC
parameters must therefore be considered when modelling forest C stocks using CBM-CFS3,
as uncertainty of live-tree C estimates will affect all DOM C pools.

Default CBM-CFS3 modelled snag and WD C dynamics reflected the expected decrease with
time since fire or harvest, respectively, but measured snag fall rates and old-growth >10
cm WD stocks were considerably underestimated. Accuracy of the modelled estimates of
dead organic matter and subsequently soil C pools was improved relative to regional default
parameters by increased snag fall (0.10 yr−1) and >10 cm WD base decay (0.06 yr−1) rates.

The incorporation of BW and bryophyte dynamics into the CBM-CFS3 requires structural
changes to the model. Recommendations are to (a) develop a module to account for the C
dynamics of a bryophyte pool that provides parameters to express the physical burial of WD
and impacts on its decay, or – in the absence of a bryophyte module – either (b) calibrate
a >10 cm WD to organic layer C pool transfer rate based on field-measured rates of moss
growth and WD burial and modify organic layer base decay rates in cool humid ecosystems
based on field-measured decay rates of BW, or (c) introduce a belowground medium (i.e.,
BW) C pool into the CBM-CFS3 to represent the lower decay rates of BW.

As the CBM-CFS3 was initially designed for well-drained upland forests, the uncertainty
of modelled organic layer and mineral soil C stocks increases with increasing bryophyte
productivity and average soil moisture levels. Modelled estimates of organic layer C stocks
in Labrador black spruce improved after reducing the default organic layer base decay rate
to 0.0075 yr−1, reflecting the combination of decay-resistant feathermoss and sphagnum
litter and wood-derived lignified litter typical of boreal forests. Modelled mineral soil C
estimates were improved by applying a preliminary belowground slow C pool base decay
rate (0.00207 yr−1) optimized for the soil type of the studied sites, Humo-Ferric Podzols,
indicating that the incorporation of soil type-specific decay rates will likely improve the
CBM-CFS3 estimates of mineral soil C stocks.

The CBM-CFS3 modifications recommended above will need to be tested further using new
plot-level data collected as part of Canada’s NFI. However, the NFI only measures >10 cm
BW and provides no data on bryophyte dynamics, making it difficult to adequately capture
BW and bryophyte-dominated organic layer dynamics in cool wet boreal forests.
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a b s t r a c t

Understanding the effects of disturbance regimes on carbon (C) stocks and stock changes is a prereq-
uisite to estimating forest C stocks and fluxes. Live-tree, dead-tree, woody debris (WD), stump, buried
wood, organic layer, and mineral soil C stock data were collected from high-boreal black spruce (Picea
mariana (Mill.) B.S.P.) stands of harvest and fire origin and compared to values predicted by the Carbon
Budget Model of the Canadian Forest Sector (CBM-CFS3); the core model of Canada’s National Forest
Carbon Monitoring, Accounting and Reporting System. Data comparing the effect of natural and anthro-
pogenic disturbance history on forest C stocks are limited, but needed to evaluate models such as the
CBM-CFS3. Results showed that adjustments to the CBM-CFS3 volume-to-biomass conversion and par-
titioning parameters were required for the non-merchantable and branch C pools to accurately capture
live-tree C stocks in the studied black spruce ecosystems. Accuracy of the CBM-CFS3 modelled estimates
of dead organic matter and soil C pools was improved relative to regional default parameters by increased
snag fall and >10 cm WD base decay rates. The model evaluation process also highlighted the importance
of developing a bryophyte module to account for bryophyte C dynamics and the physical burial of woody
debris by bryophytes. Modelled mineral soil C estimates were improved by applying a preliminary below-
ground slow C pool base decay rate optimized for the soil type of the studied sites, Humo-Ferric Podzols.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Forests contain large amounts of carbon (C) in biomass, dead
organic matter (DOM), and soil and contribute to significant annual
C exchanges with the atmosphere (Denman et al., 2007). The
importance of Canada’s extensive forest resource to the global C
cycle is being recognized, and efforts are being made to quan-
tify the biomass resource and its C dynamics (e.g., Kurz and Apps,
1999; Chen et al., 2000; Kurz et al., 2008, 2009). As a signatory
to the United Nations Framework Convention on Climate Change
(UNFCCC, 1992) Canada must report on emissions and removals of
carbon dioxide (CO2) and non-CO2 greenhouse gases in the man-
aged forest.

∗ Corresponding author.
E-mail addresses: uhageman@nrcan.gc.ca (U. Hagemann),

martin.moroni@forestrytas.com.au (M.T. Moroni), cshaw@nrcan.gc.ca (C.H. Shaw),
wkurz@nrcan.gc.ca (W.A. Kurz), makesch@forst.tu-dresden.de (F. Makeschin).

1 Current address: Forestry Tasmania, GPO Box 207, Hobart, Tasmania 7001,
Australia.

The Carbon Budget Model of the Canadian Forest Sector (CBM-
CFS3) is the core model of Canada’s National Forest Carbon
Monitoring, Accounting and Reporting System (NFCMARS, Kurz and
Apps, 2006). The CBM-CFS3 simulates the impacts of disturbances,
including harvesting, insect outbreaks, and fire, on forest C stocks
(Kurz and Apps, 1999; Kurz et al., 2009). Understanding the effects
of different disturbance regimes on C stocks and stock changes is a
prerequisite for modelling Canadian boreal forest dynamics (Li and
Apps, 1995) and for estimating forest C stocks and fluxes (Kurz et
al., 1998). Data on the effects of natural and anthropogenic distur-
bance history on forest DOM and soil C stocks are limited, however,
in particular for the northern boreal forest.

Small-treed, short-lived northern boreal forests such as high-
boreal Labrador black spruce (Picea mariana (Mill.) B.S.P.) forests
cover large areas throughout the Canadian and circumpolar boreal
region and—in the form of oroboreal forests—in mountain ranges,
but dead wood and C dynamics in these forests have received rela-
tively little attention so far. Studies of boreal and oroboreal forest C
dynamics have mostly focused on one disturbance type (e.g., post-
fire; Manies et al., 2005) or one stage of development (e.g., mature
or old growth; Harvey et al., 1981; Thompson et al., 2003; Zielonka,

0304-3800/$ – see front matter. Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2009.11.024
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2006), or investigated specific DOM C pools such as woody debris
(Bond-Lamberty et al., 2003), snags (Smith et al., 2008), or dead
wood (Moroni, 2006). Dead organic matter, organic layer, and min-
eral soil C dynamics in cool and humid northern boreal forests
such as in central Labrador are expected to differ from those of
drier or warmer boreal forests, because processes such as woody
debris (WD) burial within the organic layer by overgrowing moss
(Hagemann et al., 2009) and paludification (Simard et al., 2009)
are more pronounced in regions with low average temperatures,
vigorous moss layers, and long fire-return intervals (FRI). Research
is thus required to examine the impact of disturbance history and
time since disturbance using a comprehensive data set of biomass,
DOM, and mineral soil C of high-boreal forests, to develop forest
management strategies aimed at decreasing C sources and increas-
ing C sinks (Canadell et al., 2007), and to evaluate models such as
the CBM-CFS3 for northern boreal forest ecosystems.

To date, few efforts have been made to comprehensively model
boreal forest C stocks at the stand-level after different disturbances.
Studies generally focussed on a regional to large-scale representa-
tion of C stocks and fluxes (Beer et al., 2006; Balshi et al., 2007), one
disturbance type (Jiang et al., 2002; Balshi et al., 2007), or a specific C
pool such as organic layer or soil C (Yurova and Lankreijer, 2007; Ju
and Chen, 2008). However, the applicability of models to the north-
ern boreal forest remains unclear. The dataset of this study provides
a unique opportunity to evaluate the performance of the CBM-CFS3
in high-boreal Labrador black spruce forests for three reasons. First,
the sampling design focused on black spruce, a species of major
economic and ecological significance in Labrador and throughout
the North American boreal forests. Second, it assessed impacts
of two dominant forest disturbance types in Labrador (harvest
(H) and burned (B)). The major anthropogenic disturbance in
Labrador black spruce is clearcut harvesting, with a total cut area
of roughly 21,000 ha in the central region since 1969 (Roberts et
al., 2006). The major natural disturbance in Labrador is wildfire
(Wilton, 1964), with estimates of the FRI ranging from 300 to 500
years—longer than for most other boreal forests (Foster, 1984). And
third, the very detailed sampling design enabled comparison of
most CBM-CFS3 pools to measured data, thus allowing for identifi-
cation of model components that might be improved to increase

the model’s accuracy when applied to northern boreal forest
ecosystems.

The objectives of the research reported here were to (1) char-
acterize forest C dynamics of central Labrador high-boreal black
spruce forest regrown after clearcut harvesting and to contrast C
stocks in harvested sites with those in old-growth stands aged >140
years and with stands burned 21 years before measurement, and
(2) compare field-measured C stocks with those predicted using
the CBM-CFS3 with emphasis on (a) the impact of harvesting and
wildfire on forest C stocks, (b) changes in forest C pools with time
since disturbance, and (c) identification of model components that
could be modified to more accurately reflect C dynamics of these
forest ecosystems.

2. Materials and methods

2.1. Field study

The field study was conducted in central Labrador in the Lake
Melville Ecoregion, which represents the eastern extent of the
Boreal Shield Ecozone and is a narrow extension of the boreal
forest into the Taiga Shield Ecozone (Ecoregions Working Group,
1989). Study sites experience mean annual temperatures (MAT) of
−2.4 ◦C to −1.0 ◦C (Table 1), and receive approximately 1000 mm
of precipitation evenly distributed throughout the year, making it
one of the wettest North American boreal forests (Foster, 1985;
Environment Canada, 2008). Soils are mainly Humo-Ferric and
juvenile Ferro-Humic Podzols (Soil Classification Working Group,
1998). An overview of the field study design is described below. For
details, please refer to Hagemann et al. (2009).

2.1.1. Site selection
Sites were selected to represent five populations, hereafter

strata, classified by disturbance type (harvest (H), burned (B), or
unknown origin (U)) and stand age (recently disturbed (D), young
(Y), middle-aged (M), and old (O)). Three sampling sites were
located for each of the five strata for a total of 15 sites (Fig. 1;
Table 1); all located within 50 km north to northwest of Goose Bay.
Because past disturbances have the potential to leave a legacy of

Table 1
Characteristics of Labrador black spruce sites.

Disturbance history/stand age classa

Variables H/D H/Y H/M B/Y U/O

Year of last disturbance 2005 1989 1970–72 1985 n.a.b

Forest age (years)
Pre-disturbancec >140 >140 >140 >140 n.a.b

Currentc n.a.b 15–16 30–32 n.a.b 146–204

Forest type
Pre-disturbancec bS842M/Pd bS842Md bS842Md bS842Md n.a.b

Currentc n.a.e n.a.e bSbF110Mf Scse bS842Md

Stand characteristics
Median DBH [cm] 6.9 ± 3.5 7.9 ± 4.2 10.8 ± 0.3 0.0 ± 0.0 14.0 ± 0.7
Mean tree heightg [m] 6.1 ± 1.8 5.1 ± 2.4 7.6 ± 0.4 0.0 ± 0.0 11.0 ± 0.4
Basal area [m2 ha−1] 0.1 ± 0.1 0.1 ± 0.0 4.2 ± 0.7 0.0 ± 0.0 25.0 ± 2.6
Merchantable volume [m3 ha−1] 0.0 ± 0.0 0.3 ± 0.3 16.2 ± 4.8 0.0 ± 0.0 130.2 ± 22.3

Climate and topography
Mean annual temp.h [◦C] −2.1 to −1.1 −2.4 to −2.1 −1.2 to −1.0 −1.6 to −1.3 −2.2 to −1.8
Elevation [m asl] 81–281 230–321 100–134 99–194 161–257

a Disturbance history – clear-cut harvest (H), burned (B), unknown origin (U); stand age class – recently disturbed (D), young-aged (Y), middle-aged (M), old-aged (O).
b Unknown or regeneration too small for classification.
c Newfoundland and Labrador forest inventory data (NL Provincial Forest Service, Data Dictionary for District Library).
d >75% black spruce; older than 140 yrs; average height 12–15m; crown closure 50–75%; medium (M) or poor (P) site productivity.
e No current forest type classification. Scs = Scrub.
f >50% black spruce with >25% balsam fir; older than 20 yrs; average height <6m; crown closure <25%, medium site productivity.
g For all trees with DBH >9 cm.
h Site-specific data; refer to McKenney et al. (2007).
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Fig. 1. Distribution of the Labrador study sites by strata. H/D: 1 year after harvest; H/Y: 17 years after harvest; H/M: 36–36 years after harvest; B/Y: 21 years after fire; U/O:
old-growth of unknown origin.

dead wood in the current rotation (Krankina and Harmon, 1994), all
recently disturbed, young, and middle-aged sites were selected to
represent stands that were old-growth spruce-dominated forests
at the time of the last stand-replacing disturbance, and had regen-
erated or were regenerating to stands dominated by spruce. At the
time of measurement, regeneration had failed in the young burned
stratum (B/Y), but stands were expected to eventually regenerate
to black spruce-dominated stands (Roberts et al., 2006).

Harvested sites were selected to form a chronosequence com-
prising nine sites: (1) three harvested 1 year before measurement
(H/D); (2) three harvested 17 years before measurement (H/Y); and
(3) three harvested 34–36 years before measurement (H/M). No
suitable sites were found for a corresponding post-fire chronose-
quence, thus post-fire measurements were restricted to sites
temporally equivalent to the H/Y sites: three sites killed by fire
21 years before measurement (B/Y). Sites regenerating after har-
vesting and fire are referred to as harvested and burned sites,
respectively.

Old-growth stands and, for disturbed strata, stands of the
pre-disturbance rotation were classified as the most common
productive forest type in Labrador (bS842M; Government of
Newfoundland and Labrador, 2006a). This forest type is dominated
by black spruce (>75%) older than 140 years with an average height
of 12–15 m, crown closure of 50–75%, and of medium productiv-

ity (for merchantable yield). This criterion could not be met at the
H/D Churchill River site, which supports a stand of type bS842
that is a spatial mix of medium and poor site-productivity classes
(Table 1). Average live-tree diameter at breast height (DBH), height,
basal area, and merchantable volume for all strata are presented
in Table 1. Harvested strata were either regenerating to or were
expected to regenerate to black spruce-dominated forests (Roberts
et al., 2006).

Where pre-disturbance stand-type data were unavailable (B/Y),
the stand type was assessed based on the knowledge of local
forestry professionals, on site-specific relief and vegetation, soil
type, and characteristics of adjacent stands. Stand age was
determined from increment-core ring counts at the stem base. Har-
vesting removed all stems with a DBH ≥9 cm to a top diameter of
8 cm, by chainsaw in the H/Y and H/M sites, and by short-wood
mechanical harvester in the H/D sites. All fires were stand replacing
and the sites were not salvage logged.

2.1.2. Sampling design
All field measurements were conducted from June to Septem-

ber 2006. The plot design and field measurements were based on
the National Forest Inventory (NFI) Ground Sampling Guidelines
(Natural Resources Canada, 2009). Four sample plots were located
randomly within each site. Each plot comprised two concentric cir-
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cular subplots (radius 11.28 m and 3.99 m, respectively) with two
40-m line transects, perpendicular to each other, crossing at their
mid-point at the plot center. At the end of one randomly selected
transect, a square subplot (1 m2) was established.

Data on live-tree, mineral, and organic soil horizon C were col-
lected concurrent with dead wood data reported by Hagemann et al.
(2009). Diameter and height of live trees and snags (dead standing
trees) with DBH ≥9 cm were measured within the 11.28-m radius
circular subplot. Diameter and height of live trees and snags with
DBH <9 cm and stump (<1.3 m rooted bole portion of dead trees)
height and top diameter inside bark were measured within the
3.99-m radius circular subplot. Live individual-tree aboveground
biomass was estimated from regional NFI biomass equations for
Ecozone 6 differentiated by site productivity class based on species,
tree height, and DBH (Lambert et al., 2005). Live-tree C stocks
were estimated by multiplying live-tree oven-dry biomass by 0.5
(Matthews, 1993; Lamlom and Savidge, 2003). Snag biomass was
estimated from regional NFI biomass equations (Lambert et al.,
2005; Natural Resources Canada, 2005, unpublished report) and
corrected for dead wood density based on decay class (Hagemann
et al., 2009). Where snag tops had fallen, intact snag heights
were estimated, and the proportion of snag biomass remaining
was determined from stem volume distribution equations (Honer,
1965). Stump volume was calculated assuming a cylindrical stump
shape (Natural Resources Canada, 2009) and converted to biomass
by assigning dead wood density by decay class (Hagemann et al.,
2009). Carbon stocks of snags and stumps were estimated by mul-
tiplying oven-dry biomass by 0.5 (Matthews, 1993; Lamlom and
Savidge, 2003). For a more detailed description of snag, stump, and
WD estimation see Hagemann et al. (2009).

The diameters of WD were measured at their point of inter-
section along the 40-m transects. Volumes of WD were calculated
using the line intersect method equation 8 (Marshall et al., 2000),
and biomass was estimated by assigning dead wood densities by
species and decay class. Woody debris <1 cm in diameter was sam-
pled in the 1-m2 subplot (Hagemann et al., 2009). Carbon stocks
of snags, stumps, and WD were estimated by multiplying oven-dry
biomass by 0.5, for <1 cm WD, laboratory-determined C contents
were used (0.57 ± 0.002%). All C analysis was done using a LECO
CNS-2000 combustion analyzer following the method of LECO
Corporation (2003).

Thickness of the soil organic horizons and buried dead wood
(BW; WD incorporated more than 50% into the organic layer) were
measured at 2-m intervals along each transect by driving a shovel
into the surface of the forest floor. Woody debris was defined as
BW if it was more than half buried in the organic layer. The area of
the plot occupied by BW or organic horizons was determined from
the proportion of 2-m observations that encountered these tissues.
The volume of BW or soil organic horizons was estimated from the
average thickness of each multiplied by the area they occupied in
the plot. Volume of BW was multiplied by species and decay class
specific densities (Hagemann et al., 2009) to estimate BW biomass.
Half of the BW biomass was assumed to be C. Organic horizon bulk
density was estimated from the volume and oven-dry mass of a
sample taken from a 20 × 20 cm area to the top of the mineral soil
in the 1-m2 subplot. Organic horizon samples were dried at 55 ◦C for
4 days, sub-sampled, and passed through an 850-�m mesh before
C analysis (LECO).

From each site, 0.75–1.5 dm3 soil samples, which included
coarse fragments (>2 mm diameter), were taken from 0 to 15, 15 to
30, and 30 to 45 cm depths. Depth samples were taken from all four
plots at 0–15 cm; from two randomly selected plots at 15–30 cm,
and from one randomly selected plot at 30–45 cm. The volume of
each hole excavated during soil sampling was measured by plac-
ing a plastic bag into the hole and measuring the volume of glass
beads required to fill the hole. Mineral soil samples were air dried

and passed through a 2-mm mesh, dried at 55 ◦C for 4 days, and
weighed. Bulk density of <2 mm mineral soil was estimated based
on <2 mm dry weight and the volume excavated. A sub-sample of
<2 mm mineral soil was passed through an 850-�m mesh before C
analysis (LECO).

2.2. Carbon Budget Model of the Canadian Forest Sector 3
(CBM-CFS3)

2.2.1. Overview
Here, we provide an overview of the CBM-CFS3, a stand- and

landscape-level model of forest dynamics that tracks C stocks, stock
changes, and emissions and removals of CO2, methane (CH4), and
carbon monoxide (CO) (Kurz et al., 1992, 2002; Kurz and Apps,
1999). The CBM-CFS3 (version 1.0) used in this analysis is a substan-
tially advanced version of the model that, among other changes,
includes a detailed presentation of DOM dynamics (Kurz et al.,
2009). To meet the requirements of an operational-scale forest C
budget model (Kurz et al., 2002), the model has been made more
accessible through a graphical user interface, data pre- and post-
processing tools, and a detailed user’s guide (Kull et al., 2006).
The model and documentation are available on the internet at
www.carbon.cfs.nrcan.gc.ca. A detailed description and a concep-
tual diagram of the model are provided in Kurz et al. (2009).

Biomass C dynamics in the CBM-CFS3 are simulated in annual
time steps using yield curves (defining merchantable volume as a
function of stand age) that are provided by the user. Merchantable
volume is converted into aboveground biomass components based
on the volume-to-biomass conversion (VBC) equation used to esti-
mate Canada’s national forest biomass (Boudewyn et al., 2007).
Belowground biomass is predicted from aboveground biomass
using stand-level regression equations for softwood and hardwood
species (Li et al., 2003).

To improve the representation of C dynamics in dead standing
trees, four additional C pools have been added to the earlier version
of the model (Kurz and Apps, 1999). These contain standing dead
stemwood (snags) and the dead branches associated with standing
dead trees for the softwood and the hardwood stand components
(Kurz et al., 2009). Moreover, to facilitate comparison between
modelled and measured DOM and soil C pools, the model’s DOM
pools have been partitioned into above- and belowground compo-
nents (along the interface between the forest floor and the mineral
soil).

As in the earlier versions of the model, each biomass com-
ponent can be transferred to DOM pools through litterfall, tree
mortality, and disturbance impacts. Litterfall and other turnover
rates for each biomass pool are defined by regional parameter
sets. Annual biomass turnover rates are used to represent mor-
tality that occurs for most stand development to the point of
stand break-up. When the merchantable volume over age curve
indicates declining volume at higher stand ages (stand break-
up), biomass transfer to DOM pools is the sum of biomass loss
(declining volume) plus annual turnover. Disturbance impacts of
each disturbance type are modelled through “disturbance matri-
ces” (Kurz et al., 1992) that define the impacts of each disturbance
type for each biomass and DOM pool in the stand. For example,
stand-replacing wildfire consumes some biomass pools, kills the
remainder of the biomass (and transfers it to the DOM pools),
and releases greenhouse gases (CO2, CH4, and CO) to the atmo-
sphere through the partial combustion of biomass and DOM
pools.

2.2.2. Initialization
The CBM-CFS3 uses a spin-up procedure (Kurz and Apps, 1999;

Kurz et al., 2009) to estimate the quantity of C in soil and DOM pools
before simulating scenarios. It requires user-specified assumptions
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Table 2
‘Default’ CBM-CFS3 parameters used (without parentheses) and ‘Modified B’ parameters tested (in parentheses) in dead organic matter (DOM) dynamics simulations of the
black spruce study sites.

CBM-CFS3 C pool Decay parameters Physical transfer parameters

Base decay rate (yr−1) Q10 Patm Pt Pool receiving, Pt Transfer rate (yr−1) Pool receiving transfer

Snag stems 0.0187 2 0.83 0.17 AG slow 0.032 (0.10a) Medium
Snag branches 0.0718 2 0.83 0.17 AG slow 0.10 (0.20b) AG fast
Medium 0.0374 (0.06a) 2 0.83 (0.70) 0.17 (0.30) AG slow N/A N/A
AG fast 0.1435 2 0.83 0.17 AG slow N/A N/A
AG very fast 0.355 2.65 0.815 0.185 AG slow N/A N/A
AG slow 0.015 (0.0075) 2.65 1.0 0.0 N/A 0.006 BG slow
BG fast 0.1435 2 0.83 0.17 BG slow N/A N/A
BG very fast 0.5 2 0.83 0.17 BG slow N/A N/A
BG slow 0.0033 (0.00207) 1 1.0 0.0 N/A N/A N/A

Decomposition parameters include the base decay rate at a temperature of 10 ◦C, sensitivity to temperature (Q10), and the proportion of decay C released to the atmosphere
(Patm) versus transferred to a slow DOM pool (Pt), where Patm + Pt = 1. AG = aboveground, BG = belowground, N/A = not applicable.

a Recommended by Moroni et al. (submitted for publication) and this study.
b Recommended by Moroni et al. (submitted for publication), but not by this study.

about historic disturbance-return intervals, the type of disturbance
occurring during the spin-up procedure, and the type of the last
disturbance that preceded the establishment of the current stand.
To initialize the DOM pools for the simulations in this study, we
assumed a 300-year historic FRI. Stands were assumed to follow
growth curves for previous rotation forest types where known, and
for current rotation forest type where the previous rotation forest
type was not known (Table 1).

During the spin-up procedure, stands were grown to the age of
the disturbance-return interval (300 years), and disturbed using the
stand’s historic disturbance type. At the end of each disturbance-
return interval, the CBM-CFS3 compares the slow pool DOM C
stocks between the current and previous rotations. If the differ-
ence in the stocks is <1%, then the DOM C stocks are assumed
to be in a quasi-equilibrium state determined by inputs (which
are a function of net primary productivity, site productivity,
disturbance type, and species) and losses from decomposition
(rates are a function of MAT) and disturbances (direct losses
only from wildfires). Once this equilibrium is reached, the CBM-
CFS3 simulates one more rotation with the known disturbance
history.

In this study, where the forest type and age before the last stand-
replacing disturbance were known, the CBM-CFS3 simulated the
previous rotation to the age of disturbance and applied the last
known disturbance to the stand. The CBM-CFS3 then simulated for-
est growth of the current stand to the age of stand measurement.
Where the previous rotation length was unknown, the final 300-
year rotation from the historic DOM C estimation was assumed to
be the previous rotation, and the stand was simulated from the last
disturbance to the current age.

2.2.3. Model simulations, assumptions, and parameterization
In this study, the model was applied to single theoretical stands

1 ha in size, each representative of one of the 15 sites in the field
study. The Labrador administrative boundary and the Boreal Shield
East Ecozone were selected during data import, providing default
parameters for decay rates, litter fall rates, snag fall rates (Table 2),
disturbance matrices, and VBC parameters. Growth curves spe-
cific to forest type and site productivity class were taken from the
Department of Natural Resources (Government of Newfoundland
and Labrador, 2006b). The field-measured percentages of black
spruce and balsam fir (Abies balsamea (L.) Mill.) were used to
guide yield curve selection, and stands were modelled identify-
ing black spruce as the lead species. For stand ages exceeding the
existing growth curves, the volume of the last available age class
(190–200 years) was maintained, assuming the forest continues
under a gap-replacement system (McCarthy, 2001). The historical
disturbance type used for model initialization was assumed to be

100% fire mortality for all sites that were assumed to regenerate to
black spruce-dominated forest types with a regeneration delay of
20 years. All disturbance types simulated (historic and last) were
assumed to be stand replacing.

Four modifications were made to the regional default settings
so the model would better represent conditions at the scale of the
sites. First, 1970–2001 MAT values were estimated by McKenney
et al. (2007) rather than using the single regional default value of
3.4◦ C; second, the post-fire regeneration delay was set to 20 years,
because black spruce regeneration in Labrador establishes slower
than in central and western Canada (Foster, 1985), usually where
snags have been uprooted (Simon and Schwab, 2005), and most
snags had fallen in the B/Y stratum (Hagemann et al., 2009); third,
the regional default FRI was changed from 125 years (Kull et al.,
2006) to 300 years (Foster, 1984; McRae et al., 2001); and four, the
parameters used to predict biomass components were modified
to better reflect measured biomass components. The rationale and
analyses leading to the latter two modifications are provided in
Sections 3 and 4.

Three sets of model simulations were executed: one set using
the model’s default parameters for the Boreal Shield East Ecozone
in Labrador, a FRI of 300 years, and a 20-year regeneration delay
after fire (‘Default’; Table 2); one set using the ‘Default’ parame-
ters along with the previously described VBC parameter changes,
FRI, and regeneration delay modifications (‘Modified A’ parame-
ter set); and another set to test if modelled estimates could be
improved by using an alternative parameter set that included all
the changes described for ‘Modified A’, plus modified fall rates for
snag stem and snag branches, and modified base decay rates of WD
C pools recommended by previously published C modelling stud-
ies, plus modifications to account for the contribution of BW based
on results from this study (‘Modified B’ parameter set; Table 2).
Further rationale for the ‘Modified B’ modifications is developed in
the results section, where these changes and their implications are
described.

2.3. Statistical analyses

2.3.1. Field data
No departures from normality were observed for C stock data

within data grouped by stratum and C pool (Shapiro–Wilk test).
Differences in C stocks among or within site types were deter-
mined using one-way nested ANOVA with site type or C pool as
a fixed factor, site as a random factor, and plot nested within
site. Where differences were significant (P < 0.05), pair-wise com-
parisons were tested for significance using the Games–Howell
test. Statistical analysis was carried out using SPSS, release 15.0.1
(SPSS Inc.).
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2.3.2. Comparison between field-measured and
CBM-CFS3-modelled C pools

Before comparing output from the CBM-CFS3 to measured esti-
mates, the field data reported here and in Hagemann et al. (2009)
were combined and used to recalculate pools that could be directly
compared to the CBM-CFS3 pools (Table 3). Therefore, comparisons
of measured and modelled C pools are based on pools defined in
the CBM-CFS3, and should not be confused with field-measured
pools (Table 4) that were defined for the purposes of the field
study.

Statistical model evaluation was based on four goodness-of-
fit (GOF) statistics (Smith and Smith, 2007) and Theil’s unequality
coefficient (Theil, 1966). These statistics were used to assess model
accuracy for nine pools by comparing field estimates with those
from the CBM-CFS3 simulations using ‘Default’, ‘Modified A’, and
‘Modified B’ parameter sets. The correlation r was calculated to
assess the degree of association between modelled and measured
estimates. The correlation was considered significant if the F-value
for r was greater than the critical F(p=0.05). The mean difference M
and the percent relative error E were calculated to assess model
bias. The bias was considered significant if tM > t(p=0.05) or E > E(95%),
respectively (Smith and Smith, 2007). The LOFIT (lack-of-fit) statis-
tic was calculated based on our replicate field data to evaluate
differences between model estimates and measurements excluding
variability due to field measurements. To determine its significance
the LOFIT F-value was calculated and compared with the critical
F(p=0.05). The lack of fit between modelled and measured values was
considered not significant if the LOFIT F-value was less than the crit-
ical F. The value of Theil’s inequality coefficient U can range from 0
(perfect fit) to greater than 1 (lack of model fit; Theil, 1966).

‘Modified B’ parameters were applied where any of the GOF and
inequality statistics indicated a significant error, bias, or inequality,
to determine if modelled estimates could be improved with mini-
mal adjustment. Once parameters were altered, GOF and inequality
statistics were run again on all pools to determine if model accuracy
was improved (Table 2).

3. Results

3.1. Field-measured C stocks

Live-tree C stocks significantly increased with tree age from
0.4 Mg ha−1 (H/D) to 46.9 Mg ha−1 (U/O; Table 4), reaching 19% of
old-growth levels 34–36 years after harvest. In the old-growth stra-

tum (U/O), live trees were the largest non-soil C pool. The burned
stratum contained no measurable live-tree C stocks 21 years after
disturbance, indicating that a long post-fire regeneration delay is
applicable to the study region, whereas stands regenerate faster
after harvest (H/Y; H/M). Hardwood C stocks were negligible in all
strata.

Woody debris was the largest dead wood (WD, snags, stumps,
and BW) C pool in the H/D and B/Y strata, and significantly
decreased with time since harvest (H/D > H/Y > H/M; Table 4). Sev-
enteen to 21 years after disturbance, the H/Y stratum contained
less WD C than the B/Y stratum. Woody debris C stocks in all strata
were dominated by small-diameter (<20 cm) WD (Hagemann et al.,
2009).

The U/O stratum contained the highest snag C stocks (Table 4).
The H/D, H/Y, H/M strata, regardless of age, contained significantly
less snag C than the B/Y stratum. The contribution of snags to total
dead wood C stocks significantly increased from 1% in the recently
harvested stratum to 46% in the old-growth stratum. Stumps con-
tributed as much as 25% to total dead wood C stocks, but never
exceeded 1.4 Mg ha−1. The highest stump C stocks were observed
in the H/D and H/Y strata.

Buried dead wood C stocks were highest in the old-growth stra-
tum, and ranked higher than aboveground WD C pools in all but the
H/D and B/Y strata (Table 4). Most strata contained more C in the
organic layer than in any other pool except mineral soil, with the
exceptions of the U/O and H/D strata, where the size of the live-tree
and WD C pools was similar to the organic layer C stocks (Table 4).
Mineral soil was by far the largest C pool in all strata, exceeding
all other C pools by a factor of 3.5–5.1 (Table 4). There were no
obvious trends in BW, organic layer, mineral soil, and total ecosys-
tem C with disturbance history or forest age; however, mineral soil,
organic layer, and total ecosystem C stocks were lowest in H/D sites
(Table 4).

3.2. Comparison of field-measured and CBM-CFS3 estimated
ecosystem C pools

3.2.1. ‘Default’ CBM-CFS3 initialization, fire-return interval, and
biomass C calibration

In order to determine the sensitivity of DOM initialization to
using a 125- (CBM-CFS3 default), 300-, or 500-year FRI (range
of regional FRI), we compared ‘Default’ estimates of ecosystem C
pools resulting from each FRI. Most ‘Default’ C pools were rel-
atively insensitive to changing the FRI from 125 to 300 years,

Table 3
Mapping of CBM-CFS3 C pools to measured C pools and recommended modifications.

CBM-CFS3 poolsa Measured pools

Live biomass pools
Softwood merch. + bark, other wood + bark, foliage Softwood aboveground live biomass
Softwood fine + coarse roots Not measured
Hardwood merch. + bark, other wood + bark, foliage Hardwood aboveground live biomass
Hardwood fine + coarse roots Not measured

Dead organic matter (DOM) pools
Snag stems >9 cm DBH snag stems + bark
Snag branches ≤9 cm DBH snags + bark, snag branches, tops + butt ends
Aboveground very fast and slow Organic L, F, H, and O2 horizons incl. dead fine roots
Aboveground fast ≤10 cm woody debris and stumps
Medium >10 cm woody debris and buried DW
Below ground very fast and slow Mineral soil to 45 cm depth incl. dead fine roots
Below ground fast Dead coarse roots; not measured

Recommended modifications of DOM pools
Aboveground very fast and slow Organic L, F, H, + Ob horizons and buried DW
Medium >10 cm woody debris

The CBM-CFS3 does not simulate non-woody vegetation or shrubs.
a For detailed description of CBM-CFS3 pools refer to Kurz et al. (2009).
b Soil Classification Working Group (1998).
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Table 4
Carbon content (Mg ha−1) of black spruce study sites.

Measured C pools Strata

H/D H/Y H/M B/Y U/O

Live biomass
Live tree dbh ≥9 cm 0.2 (0.2) a 0.2 (0.1) a 6.7 (1.8) b 0.0 (0.0) a 46.4 (8.4) c

<9 cm 0.2 (0.0) c 0.4 (0.1) c 2.0 (0.3) b 0.0 (0.0) a 0.5 (0.2) c
Total live tree 0.4 (0.2) ab A 0.5 (0.2) b A 8.7 (1.8) c C 0.0 (0.0) a A 46.9 (8.5) d C

DOM
Snags 0.2 (0.0) a A 0.3 (0.1) a A 0.1 (0.0) a A 2.2 (0.8) b B 5.5 (1.1) c B
Woody debris 25.8 (1.4) d C 8.4 (2.0) b C 0.8 (0.2) a B 14.1 (0.8) c C 6.4 (0.8) b B
Stumps 1.4 (0.3) b B 1.3 (0.1) b B 0.3 (0.2) a AB 0.3 (0.1) a A 0.1 (0.1) a A
Buried dead wood 5.8 (2.9) a AB 9.6 (3.3) a BC 5.8 (1.4) a BC 4.7 (2.1) a AB 18.2 (8.2) a B
Organic layer 30.4 (4.2) a C 46.8 (6.0) bc D 47.4 (3.4) b D 32.8 (3.1) ac D 39.8 (1.0) bc C
Mineral soila 121.5 (18.7) a D 208.1 (38.4) b E 186.4 (20.5) b E 168.4 (19.3) ab E 162.7 (37.5) ab D

Total ecosystem 185.6 (20.2)a 275.0 (33.9) b 249.7 (20.4) b 222.4 (22.9) ab 279.7 (54.8) b

a 0–45 cm depth.
Note: Standard error in parentheses; lower case letters denote significant differences within rows; capital letters denote significant differences between bolded numerals
within columns; nested ANOVA; n = 3, k = 5, s = 4, post-hoc Games-Howell; P < 0.05. Strata—H/D: 1 year after harvest; H/Y: 17 years after harvest; H/M: 36–36 years after
harvest; B/Y: 21 years after fire; U/O: old-growth of unknown origin.

but modelled mineral soil (belowground very fast plus slow) and
total ecosystem C pool estimates increased 7–12% and 3.8–4.6%,
respectively (Table 5). However, changing the FRI from 300 to
500 years resulted in an insignificant increase of the modelled
mineral soil and total ecosystem C pools (≤2.0%; Table 5). There-
fore, we used a 300-year FRI for all subsequent model runs,
because it more accurately reflects the regional FRI (Roberts
et al., 2006) and measured mineral soil and total ecosystem C
pools.

‘Default’ estimates of some live-tree components exceeded
measured stocks in H/M and U/O strata, where considerable
amounts of live-tree C were observed. The overestimated live-
tree C was mainly due to the high modelled estimates for the
non-merchantable (‘other wood and bark’), branch, and foliage
C sub-pools of the live-tree C pool (Fig. 2). A significant overes-
timate of the live biomass C pools could result in errors in the
estimation of DOM pools. Therefore, before comparing DOM and
soil C pools, we modified five ‘Default’ stand-level VBC parame-
ters (Boudewyn et al., 2007) affecting mainly non-merchantable
stem wood, branch, and foliage biomass, to yield live-tree C pool
estimates similar to those we calculated based on individual-
tree field measurements and individual-tree biomass component
equations (Lambert et al., 2005) summed to give stand-level
estimates (Table 6). These modified VBC parameters were used
in all subsequent model runs, identified as ‘Modified A’ and
‘Modified B’.

3.2.2. ‘Modified A’ CBM-CFS3-modelled C stocks
Measured live-tree C stocks and dynamics were well captured

by ‘Modified A’ estimates, in particular the increase in live-tree
C after harvest, as well as the absence of live-tree C 21 years
after fire due to the regeneration delay of 20 years observed
for burned sites in Labrador (Tables 6 and 8). Modifications of
the VBC parameters decreased live-tree C stocks (Fig. 2), thus
reflecting observed black spruce allometry in Labrador, and error
(LOFIT), bias (M, E), and inequality (U) statistics were improved
compared with ‘Default’ (Table 8). Modifications to the VBC param-
eters particularly decreased estimates of non-merchantable C
and subsequently branch C, resulting in a reduced C transfer to
the snag branch, ≤10 cm WD (aboveground fast), organic layer
(aboveground very fast and slow), and mineral soil (belowground
very fast and slow) C pools (Table 7), as expected. Although
‘Modified A’ belowground C stocks were significantly underesti-
mating measured mineral soil C stocks, ‘Modified A’ estimated
snag branch, ≤10 cm WD, and organic layer C stocks captured
the measured data better than the ‘Default’ estimates, as reflected
by a reduction of error (LOFIT), bias (E), and inequality (U;
Table 8).

Measured and ‘Modified A’ snag stem C stocks were well corre-
lated in all strata except the B/Y stratum, indicating that CBM-CFS3
generally captured the collapse of snags as indicated by high B/Y
>10 cm WD C stocks (Table 7). However, modelled B/Y snag stem
C stocks considerably exceeded measured snag stem C stocks
(Tables 7 and 8), indicating that the CBM-CFS3 default snag fall

Table 5
‘Default’ CBM-CFS3 modelled estimates of the belowground very fast + slow C pool (Mg ha−1) for 125-year (default), 300-year and 500-year fire return intervals (FRI).

Strata

Modelled C pool [Mg ha−1] H/D H/Y H/M B/Y U/O

Belowground very fast and slow DOM
FRI 125 122.2 (2.1) 122.2 (0.5) 117.9 (0.6) 116.2 (0.3) 103.6 (2.9)
FRI 300 132.4 (2.7) 132.4 (0.6) 126.5 (0.8) 124.9 (0.4) 116.3 (2.7)
FRI 500 134.4 (3.0) 134.4 (0.6) 128.1 (0.9) 126.3 (0.4) 118.6 (2.7)
Differencea +1.5% +1.6% +1.2% +1.1% +2.0%

Total ecosystem
FRI 125 271.8 (7.4) 220.7 (0.9) 201.6 (2.4) 199.0 (0.7) 278.7 (4.4)
FRI 300 282.1 (8.0) 230.9 (1.0) 210.2 (2.5) 207.7 (0.7) 291.6 (4.2)
FRI 500 284.0 (8.3) 233.0 (1.1) 211.8 (2.6) 209.1 (0.8) 293.9 (4.1)
Differencea +0.7% +0.9% +0.7% +0.7% +0.8%

a Difference between FRI 300 and FRI 500.
Note—H/D: 1 year after harvest; H/Y: 17 years after harvest; H/M: 36–36 years after harvest; B/Y: 21 years after fire; U/O: old-growth of unknown origin.
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Fig. 2. Total live softwood and CBM-CFS3 live softwood sub-pool C stocks estimated from field measurements and from CBM-CFS3 using ‘Default’ and ‘Modified A’ parameters.
Please note axis break for total live softwood C stocks. Strata: H/D: 1 year after harvest; H/Y: 17 years after harvest; H/M: 36–36 years after harvest; B/Y: 21 years after fire;
U/O: old-growth of unknown origin.

rate of 0.032 yr−1 underestimates the measured snag fall rate. We
therefore increased the CBM-CFS3 snag and snag branch fall rates
to 0.1 yr−1 and 0.2 yr−1, respectively (‘Modified B’; Moroni et al.,
submitted for publication). Snag fall rates of 0.111 yr−1 (Manies et

al., 2005) and 0.094 yr−1 (Carrasco et al., 2006) have previously been
used in boreal forest C modelling.

‘Modified A’ and measured ≤10 cm WD (aboveground fast)
C stocks decreased with time since harvest (H/D > H/Y > H/M;

Table 6
Original ‘Default’ (Boudewyn et al., 2007) and ‘Modified A’ (in bold) volume-to-biomass conversion and extension parameters for black spruce in Ecozone 6, Newfoundland
and Labrador.

Parameter ‘Default’ Original value ‘Modified A’ Modified value

Merchantable stem wood biomass
model

a 0.82921 n/ca

b 0.88429 n/ca

Non-merchantable stem wood
biomass model

a 8.53874 38.53874
b −0.82173 −1.68217
k 1.01392 n/ca

cap 5.12500 n/ca

Sapling biomass model a 0.29205 n/ca

b −1.19977 n/ca

k 1.00083 n/ca

cap 1.01500 n/ca

Proportion model a1 −1.50326 n/ca

a2 −0.00014 n/ca

a3 −0.06497 n/ca

b1 −0.36910 n/ca

b2 0.00102 n/ca

b3 −0.18018 −0.28018
c1 0.86531 0.79531
c2 0.00052 n/ca

c3 −0.39713 −0.49713

a No change.
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Table 7
Mean C pool stocks (Mg C ha−1) estimated by field-measurements and by CBM-CFS3 using ‘Default’, ‘Modified A’a, and ‘Modified B’b parameter sets (stratum abbreviation in
parentheses).

Originating disturbance

Harvest (H) Burned (B) Unknown (U)

Years since last disturbance Years since last
disturbance

Stand age

1 (H/D) 17 (H/Y) 34–36 (H/M) 21 (B/Y) 146–204 (U/O)

C Pools Estimate Mean SE Mean SE Mean SE Mean SE Mean SE

Live tree biomass Measured 0.4 (0.2) 0.5 (0.2) 8.7 (1.8) 0.0 (0.0) 46.9 (8.5)
Modelled (‘Default’) 0.0 (0.0) 2.1 (0.1) 15.1 (1.4) 0.0 (0.0) 74.7 (2.2)
Modelled (‘Modified A’)c 0.0 (0.0) 1.6 (0.1) 9.2 (0.7) 0.0 (0.0) 50.7 (2.0)

Snag stems Measured 0.1 (0.1) 0.3 (0.1) 0.1 (0.0) 2.0 (0.8) 5.1 (1.1)
Modelled (‘Default’) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 12.1 (0.0) 5.3 (0.5)
Modelled (‘Modified A’) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 12.1 (0.0) 5.4 (0.6)
Modelled (‘Modified B’)c 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 2.6 (0.0) 2.0 (0.0)

Snag branches Measured 0.1 (0.0) 0.0 (0.0) 0.0 (0.0) 0.2 (0.1) 0.4 (0.1)
Modelled (‘Default’) 0.0 (0.0) 0.0 (0.0) 0.4 (0.0) 1.0 (0.0) 2.0 (0.1)
Modelled (‘Modified A’) 0.0 (0.0) 0.0 (0.0) 0.2 (0.0) 0.4 (0.0) 0.8 (0.0)
Modelled (‘Modified B’)d 0.0 (0.0) 0.0 (0.0) 0.2 (0.0) 0.0 (0.0) 0.4 (0.0)

Medium DOM (>10 cm
WD)

Measured 10.5 (2.7) 12.9 (3.3) 6.0 (1.4) 12.4 (1.5) 22.4 (8.1)
Modelled (‘Default’) 12.9 (0.7) 10.6 (0.1) 7.1 (0.1) 16.5 (0.1) 9.0 (1.0)
Modelled (‘Modified A’) 13.0 (0.6) 10.7 (0.1) 7.2 (0.1) 16.6 (0.1) 9.2 (1.1)
Measured (‘Remapped’)c 4.7 (1.2) 3.3 (0.4) 0.2 (0.0) 7.7 (0.6) 4.2 (0.7)
Modelled (‘Modified B’)c 7.7 (0.4) 5.5 (0.0) 3.1 (0.1) 18.8 (0.1) 7.2 (1.2)

AG fast DOM (≤10 cm WD) Measured 22.5 (1.9) 6.5 (2.2) 1.0 (0.4) 6.7 (0.6) 2.3 (0.3)
Modelled (‘Default’) 37.8 (1.3) 15.7 (0.2) 6.1 (0.1) 6.2 (0.1) 15.1 (0.2)
Modelled (‘Modified A’) 14.8 (0.6) 6.2 (0.1) 2.8 (0.0) 2.3 (0.0) 6.0 (0.1)

AG very fast + slow
DOM (organic layer)

Measured 30.4 (4.2) 46.7 (6.0) 47.4 (3.4) 32.8 (3.1) 39.8 (1.0)
Modelled (‘Default’) 82.6 (2.6) 63.3 (0.3) 52.9 (0.5) 42.9 (0.2) 64.5 (2.5)
Modelled (‘Modified A’) 46.0 (1.5) 35.3 (0.2) 29.8 (0.2) 24.5 (0.1) 36.4 (0.5)
Measured (‘Remapped’)c 36.3 (4.1) 56.3 (5.1) 53.3 (2.0) 37.5 (3.6) 58.0 (8.8)
Modelled (‘Modified B’)c 57.4 (1.6) 46.8 (0.2) 40.5 (0.3) 36.0 (0.1) 46.0 (0.9)

BG very fast + slow
DOM (mineral soil)

Measured 121.5 (18.7) 208.1 (38.4) 186.4 (20.5) 168.4 (19.3) 162.7 (37.5)
Modelled (‘Default’) 132.4 (2.7) 132.4 (0.6) 126.5 (0.8) 124.9 (0.4) 116.3 (2.7)
Modelled (‘Modified A’) 87.5 (1.8) 86.3 (0.4) 82.3 (0.5) 81.5 (0.2) 76.8 (1.5)
Modelled (‘Modified B’)c 169.9 (3.3) 169.5 (0.7) 163.4 (1.0) 161.7 (0.3) 156.0 (1.5)

Total ecosystem Measured 185.6 (20.2) 275.0 (33.9) 249.7 (20. 6) 222.4 (22.9) 279.7 (53.5)
Modelled (‘Default’) 282.1 (8.0) 230.9 (1.0) 210.2 (2.5) 207.7 (0.7) 291.6 (4.2)
Modelled (‘Modified A’) 171.9 (5.1) 144.6 (0.7) 132.8 (1.3) 140.0 (0.5) 188.4 (1.5)
Modelled (‘Modified B’) 255.7 (6.3) 228.2 (1.0) 218.1 (1.9) 221.4 (0.5) 267.4 (1.6)

In all cases except Medium and AG very fast + slow DOM measured values are compared with modelled ‘Default’, ‘Modified A’ and ‘Modified B’ values. For the Medium and
AG very fast + slow DOM measured values are compared with modelled ‘Default’ and ‘Modified A’ values, and then measured ‘Remapped’ values are compared with ‘Modified
B’ values.

a Changed volume-to-biomass conversion and expansion parameters as indicated in Table 6.
b Changed volume-to-biomass conversion and expansion parameters as indicated in Table 6; changed transfer rates: snag stem fall 0.1 yr−1, snag branch fall 0.2 yr−1,

medium to AG slow 0.30 yr−1 (Table 2); changed base decay rates: medium 0.06 yr−1, AG slow 0.0075 yr−1, BG slow 0.00207 yr−1 (Table 2).
c Change recommended.
d Change not recommended.

Note—H/D: 1 year after harvest; H/Y: 17 years after harvest; H/M: 36–36 years after harvest; B/Y: 21 years after fire; U/O: old-growth of unknown origin.

Table 7), but measured amounts of ≤10 cm WD C were consid-
erably underestimated in the H/D stratum. ‘Modified A’ >10 cm
WD (medium) C stocks also decreased after harvest, but measured
>10 cm WD C stocks showed no consistent trend with time since
disturbance (Table 7). Goodness-of-fit statistics indicated no corre-
lation between measured and ‘Modified A’ values for the medium C
pool (Table 8), largely because measured old-growth (U/O) medium
C stocks were considerably underestimated by the ‘Modified A’
CBM-CFS3 (Table 7), where burial of WD is particularly prevalent
due to a continuous ground cover of vital bryophytes (Hagemann et
al., 2009). Buried dead wood is embedded in the organic layer, but,
by default, the CBM-CFS3 includes any >10 cm BW in the medium
C pool, assuming it belongs to the coarse WD pool (Table 3; Kurz et
al., 2009). To test the potential impact of the WD burial process in
the current model structure, we remapped measured BW C stocks
(‘Remapped’; Table 7), i.e. we deducted the measured BW C stocks

from the >10 cm WD (medium) C pool and added it to the organic
layer (aboveground slow) C pool.

Measured ‘Remapped’ and ‘Modified A’ medium C stocks were
highly correlated (Tables 7 and 8), and showed a decrease with
time since harvest as well as large amounts of >10 cm WD 21 years
after fire. However, ‘Modified A’ CBM-CFS3 considerably overesti-
mated measured ‘Remapped’ medium C stocks in all strata (Table 7),
indicating that the CBM-CFS3 default medium C pool base decay
rate of 0.0374 yr−1 (at 10 ◦C) possibly underestimates the >10 cm
WD decay rate. We therefore increased the medium C pool base
decay rate to 0.06 yr−1 (‘Modified B’) recommended by Moroni et
al. (submitted for publication) for Newfoundland black spruce. This
rate is at the upper range of the rates observed by Bond-Lamberty
et al. (2003) and corresponds to a 6% reduction of >10 cm WD C
per year. The current model structure does not have a bryophyte
C pool (and associated inputs/outputs/production/decay) making it
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Table 8
Goodness-of-fit and inequality statistics for live tree, DOM, soil, and total ecosystem C pools (n = 3).

Error (LOFIT) Bias

Parameter set CBM-CFS3 C pool Mean difference (M) Relative error (E) Correlation (r) Theil’s inequality coefficient

LOFIT Fa M Tb E 95% CI r Fc Ud

Default’ Live tree biomass 2451 0.13 −7.1 1.33 −62 241.94 *1.00 4671.87 0.12
Snag stems 311 1.23 −2.0 0.95 −129 330.07 0.52 1.14 0.57
Snag branches *10 5.52 −0.5 1.77 −396 400.48 *0.97 55.17 3.65
>10 cm WD 1058 0.08 5.0 1.52 31 316.78 0.26 0.21 0.13
≤10 cm WD 1523 0.33 −8.4 2.99 −107 174.63 *0.91 14.09 0.26
Organic layer 11,197 0.18 −21.8 2.64 −55 114.10 −0.26 0.22 0.12
Mineral soil 40,474 0.03 *42.9 4280.82 25 201.65 0.02 0.00 0.04
Total ecosystem 39,515 0.02 −2.0 0.08 −1 158.36 −0.05 0.01 0.01

‘Modified A’ Live tree biomass 47 0.00 −1.0 1.35 −9 241.94 *1.00 4579.04 0.05
Snag stems 311 1.23 −2.0 0.97 −131 330.08 0.54 1.21 0.57
Snag branches 1 0.39 −0.2 1.93 −110 400.48 *0.94 24.78 1.92
>10 cm WD 616 0.07 1.5 0.49 12 316.78 0.02 0.00 0.09
≤10 cm WD 285 0.06 1.4 0.66 18 174.63 *0.90 13.13 0.11
Organic layer 2298 0.04 5.0 0.89 13 114.10 −0.27 0.24 0.06
Mineral soil 12,5227 0.11 *86.5 5.89 51 201.65 −0.10 0.03 0.05
Total ecosystem 13,7981 0.06 *87.0 4.30 36 158.37 0.02 0.00 0.04

‘Modified B’ Live tree biomass 47 0.00 −1.0 1.35 −9 241.94 *1.00 4579.04 0.05
Snag stems 31 0.12 0.6 0.91 39 330.08 0.75 3.84 0.31
Snag branches 0 0.10 0.0 0.06 2 400.48 0.76 4.16 0.29
>10 cm WD 462 0.54 −4.4 2.64 −110 184.52 *0.91 15.29 0.45
≤10 cm WD 285 0.06 1.4 0.66 18 174.63 *0.90 13.13 0.11
Organic layer 2536 0.03 3.0 0.47 6 124.18 −0.15 0.07 0.03
Mineral soil 13,367 0.01 5.3 0.36 3 201.65 −0.03 0.00 0.01
Total ecosystem 24,792 0.01 4.3 0.21 2 158.37 −0.01 0.00 0.01

*Statistical significance at P ≤ 0.05 for LOFIT, M, and r.
a Critical F-value = 2.95.
b Critical t-value = 3.18.
c Critical F-value = 10.13.
d U = 0 indicates a perfect model; U > 1 indicates lack of model fit.

impossible to accurately test burial of WD by bryophytes. Currently,
an amount of C determined by the pool’s decay rate is removed from
the medium (>10 cm WD) C pool. By default, 83% of that amount is
released to the atmosphere (i.e., decayed) and 17% is transferred to
the aboveground slow C pool (Table 2). As a surrogate for the pro-
cess of WD burial we increased the transfer of C from the medium
C pool to the organic later from 17% to 30% (‘Modified B’).

‘Modified A’ organic layer C stocks slowly decreased after har-
vest, although there was no trend in the measured data with time
since harvest (Table 7). Measured organic layer C stocks of the
H/D stratum were lower than those observed in all other strata,
whereas the CBM-CFS3 predicted H/D to have the highest organic
layer C stocks. ‘Modified A’ and measured organic layer C stocks
were uncorrelated (Table 8), and ‘Modified A’ organic layer C
stocks were up to 37% lower than measured values in most strata
(Table 7), indicating that the decomposition of mainly wood- and
bryophyte-derived organic layer material is overestimated by the
CBM-CFS3 default aboveground slow C base decay rate. Therefore,
we reduced the aboveground slow base decay rate to 50% of default
(0.0075 yr−1; Table 2), which falls in the lower range of the shal-
low C pool decay rate (0.004–0.0182 yr−1) reported by Harden et
al. (2000) and Manies et al. (2005).

‘Modified A’ mineral soil C stocks were predicted to slowly
decrease with time since harvest, with no trend observable for the
measured data (Table 7). ‘Modified A’ and measured mineral soil
C stocks were uncorrelated, and GOF statistics showed a signif-
icant bias (M) (Table 8). ‘Modified A’ mineral soil C stocks in all
strata were 27–58% lower than measured values, suggesting either
an underestimate of the aboveground slow to belowground slow
transfer rate, a leaching process (out of the system) not accounted
for by the CBM-CFS3, or an overestimate of the belowground slow
base decay rate (default 0.0033 yr−1; Table 2). To reflect the pedo-
genesis of Humo-Ferric Podzols, the soil type of the study sites,

we applied a belowground slow base decay rate of 0.00207 yr−1

optimized for this soil type (‘Modified B’; Cindy Shaw, Canadian
Forest Service, personal communication). As mineral soil C stocks
dominated total ecosystem C stocks, ‘Modified A’ total ecosystem
C stocks were also predicted to slowly decrease with time since
harvest (Table 7). Statistics showed a lack of correlation between
‘Modified A’ and measured values as well as a significant bias (M)
(Table 8).

3.3. ‘Modified B’ CBM-CFS3-modelled C stocks

Following the increase of the snag stem and branch fall rates,
‘Modified B’ snag stem C stocks were reduced compared with pre-
vious parameter sets, and >10 cm WD (medium) C stocks of the
B/Y stratum were increased due to higher snag fall rates (Table 7).
Agreement between measured and ‘Modified B’ snag stem C esti-
mates was improved, as indicated by lower LOFIT, E, and U values
(Table 8). However, ‘Modified B’ old-growth snag stem C stocks
underestimated measured U/O snag stem C stocks by 3.1 Mg C ha−1,
and modelled snag branch C estimates and their respective statis-
tics were not generally improved by the higher snag branch fall rate
(Tables 7 and 8).

The increased medium C base decay and surrogate for medium
to aboveground slow transfer rates improved the correlation
between measured ‘Remapped’ and ‘Modified B’ >10 cm WD
(medium) C stocks (Tables 7 and 8). ‘Modified B’ >10 cm WD C stocks
in all strata were lower than estimated by ‘Modified A’, except for
the B/Y stratum, where the expected decrease was masked by an
increased transfer from the snag stem C pool due to the proposed
higher snag fall rate.

The surrogate increased C transfer rate from the medium to
the aboveground slow C pool also resulted in higher ‘Modified A’
aboveground very fast plus slow C stocks, but measured ‘Remapped’
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organic layer C stocks were still underestimated by 34–44% for
all strata (interim results; not shown in Table 8). Reducing the
aboveground slow (organic layer) base decay rate increased ‘Mod-
ified B’ aboveground very fast plus slow C stocks to the magnitude
of measured values (Table 7), but GOF and inequality statistics
showed little improvement (M, E, U) and correlations remained
poor (Table 8). Although measured organic layer C stocks showed
no observable trend that the CBM-CFS3 could be expected to
reflect, differences between measured and ‘Modified B’ values
were particularly pronounced for the H/D and U/O strata. For
H/D, this may result from the mix of site productivity classes at
the Churchill River site, whereas for the old-growth stratum this
may result from the high variability of measured BW C stocks
(Table 4).

Modelled mineral soil C stocks increased following the reduc-
tion of the belowground slow base decay rate. Goodness-of-fit
LOFIT and M statistics clearly improved for ‘Modified B’ mineral
soil C stocks (Tables 7 and 8) when compared with ‘Modified A’
and ‘Default’ estimates, but the correlation between measured and
‘Modified B’ soil C values remained poor. Unlike measured val-
ues, ‘Modified B’ belowground slow C stocks decreased with time
since disturbance. Estimates of total ecosystem C stocks improved
in correspondence with ‘Modified B’ belowground slow C stocks,
because total ecosystem C stocks are dominated by mineral soil C
stocks.

4. Discussion

4.1. Field-measured C stocks

Measured live-tree C stocks of the old-growth stratum fall
within the lower range of values reported for the closed-canopy
boreal forest (Bhatti et al., 2003; Wang et al., 2003; McCarthy and
Weetman, 2006). Measured U/O live-tree C stocks reflect maximum
to equilibrium live-tree biomass, as live black spruce stand biomass
peaks at ∼125 years (Government of Newfoundland and Labrador,
2006b), then stabilizes at ∼185 years when stands enter the gap
dynamics phase (Harper et al., 2005).

Measured dead wood abundance in the humid high-boreal
forests of Labrador was also in the lower range of values reported for
old-growth and disturbed boreal forests composed of similar-sized
trees (cf. Hagemann et al., 2009), e.g., in Manitoba (Bond-Lamberty
et al., 2003; Manies et al., 2005), Quebec (Brais et al., 2005),
and Newfoundland (Moroni, 2006). Snags constituted a minor
C pool in gap-driven old-growth Labrador black spruce, similar
to pre-senescent and senescent black spruce in Newfoundland
(Moroni, 2006) and Quebec (Drapeau et al., 2002), but far less
than reported for senescent balsam fir forests in Newfoundland
(Moroni, 2006). Harvested strata contained little snag C retained
from pre-disturbance stands or created as a result of the post-
disturbance death of uncut trees, as previously observed (McRae
et al., 2001; Pedlar et al., 2002). Unlike harvesting, wildfire gen-
erates large amounts of snags (McRae et al., 2001), but almost all
snags had fallen 21 years after fire (B/Y). Previous studies indicate
that snag longevity depends on tree size rather than climatic factors
such as temperature and moisture (Moroni, 2006; Hagemann et al.,
2009), and is thus similar in boreal and high-boreal forests, with
most snags falling within 25–33 years after disturbance (Manies
et al., 2005; Boulanger and Sirois, 2006; Moroni, 2006). Mea-
sured WD stocks 21 years after fire (B/Y) were dominated by large
amounts of little decayed, medium-sized (>10 cm) logs (data not
shown; Hagemann et al., 2009), and thus likely reflected maximum
amounts of post-disturbance WD C resulting from the collapse of
snags (Bond-Lamberty et al., 2003; Boulanger and Sirois, 2006;
Hagemann et al., 2009).

Woody debris C stocks generated by clearcut harvesting (H/D)
exceeded WD C stocks 21 years after fire, and were dominated
by small-diameter WD remaining after harvest (Hagemann et al.,
2009). Harvest-generated WD had almost completely decomposed
or fragmented 34–36 years after harvest (H/M; Table 4), and is
expected to completely disappear ∼40–50 years after harvesting
(Hagemann et al., 2009). Woody debris C stocks created by har-
vesting and natural disturbances are thus expected to converge at
low levels after the disappearance of fire-generated WD ∼70 years
after disturbance (Moroni, 2006; Hagemann et al., 2009), because
little dead wood—both WD and snags—is created in the course of
self-thinning in the slow-growing, low-density young to mature
black spruce forests of Labrador (Government of Newfoundland
and Labrador, 2006b; Roberts et al., 2006). Newly created WD in
the humid high-boreal forest is not only decreasing by decomposi-
tion and fragmentation but also by burial, thus further reducing
aboveground WD C stocks compared to drier or warmer boreal
forests.

The burial of WD by bryophytes is a process that has been
observed by some studies in boreal and oroboreal coniferous forests
(Harvey et al., 1981; Brais et al., 2005; Manies et al., 2005; Moroni,
2006), but it is neither well documented nor currently captured
in forest C models (e.g., the CBM-CFS3; Kurz et al., 2009). In high-
boreal Labrador black spruce, measured BW C stocks were equal
to or higher than unburied WD C stocks in all but the H/D and B/Y
strata (Table 4), and largely exceeded most values reported in the
literature for boreal coniferous forests (0.1–7.5 Mg C ha−1; Brais et
al., 2005; Manies et al., 2005; Moroni, 2006). Larger amounts have
only been observed in mountain Douglas-fir (Pseudotsuga men-
ziesii (Mirb.) Franco) stands containing trees considerably larger
than Labrador black spruce (volume of 370–430 m3 ha−1; Harvey
et al., 1981). As production of new WD in Labrador black spruce is
low, the large amounts of dead wood C buried within the organic
layer of these forests are indicative of long-term accumulation of
BW and of BW decay rates that are dramatically lower than decay
rates of unburied WD, and possibly of the same magnitude as
organic layer decay rates (Manies et al., 2005; Hagemann et al.,
2009).

With the exception of WD burial, which seems to be more
pronounced in high-boreal Labrador, post-disturbance dead wood
dynamics were thus similar to those reported by other studies for
sub-boreal and boreal forests (Bond-Lamberty et al., 2003; Brais
et al., 2005; Manies et al., 2005; Moroni, 2006). Measured organic
layer, mineral soil, and total ecosystem C pools did not show a clear
influence of disturbance history (Table 4), but organic layer C stocks
of the burned stratum tended to be lower than those of middle-aged
and older harvested and old-growth sites. A reduction in organic
layer C stocks after wildfire has been reported by several studies
reviewed in McRae et al. (2001).

Measured organic layer, mineral soil, and total ecosystem C
pools also showed no consistent trend with forest age. Possible
trends in these C pools, e.g., as reported by Mattson and Swank
(1989) or Diochon et al. (2009), may have been masked by site
effects and the high spatial variability of organic layer and mineral
soil C stocks (Conen et al., 2004; Diochon et al., 2009). For example,
the significantly lower values observed in the recently harvested
stratum for these pools are likely attributable to the spatial mix of
medium and poor site productivity of the H/D Churchill River site,
thus illustrating the influence of site productivity on net primary
productivity, and subsequently biomass input into the DOM C pools
(Kane et al., 2005). The influence of site productivity on organic
layer and mineral soil C stocks thus likely masked any impact of
disturbance history.

Organic layer C stocks were within the range reported for
other boreal forests (Smith and Heath, 2002; Howard et al., 2004;
Martin et al., 2005). Conversely, mineral soil C stocks in cool humid
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Labrador contributed 58–76% to total ecosystem C stocks and were
considerably higher than observed in other upland boreal forests
in drier (mean annual precipitation 400–500 mm; Howard et al.,
2004; Martin et al., 2005), or warmer (MAT 3.3–5.8 ◦C; Diochon
et al., 2009; Moroni et al., submitted for publication) regions, but
similar to values reported for black spruce on poorly drained sites
throughout North America (Bhatti et al., 2002; Kane et al., 2005).
Although soils at the study sites were classified as Humo-Ferric and
juvenile Ferro-Humic Podzols (Soil Classification Working Group,
1998), their mineral soil C stocks (Table 4) are closer to estimates
for Canadian Ferro-Humic (182 ± 17.4 Mg C ha−1) than Canadian
Humo-Ferric (97 ± 5.0 Mg C ha−1) Podzols (Shaw et al., 2008). Low
soil temperatures, high soil moisture levels, and pedogenic pro-
cesses associated with Podzolic B horizon formation are known to
favour accumulation of soil organic C (Kane et al., 2005; Simard et
al., 2007; Shaw et al., 2008); hence higher than average mineral soil
C stocks can be expected in forests with cool wet climates and Pod-
zolic soils such as Labrador high-boreal black spruce, oceanic boreal
forests (e.g., in Norway; Kjønass et al., 2000), or coniferous moun-
tain forests (e.g., Tatra Mountains, Poland; Zielonka and Niklasson,
2001).

4.2. ‘Default’ CBM-CFS3 modelled C stocks

Modelling C dynamics of Labrador black spruce with ‘Default’
parameters resulted in overestimates of some live-tree and
WD C pools (Tables 3 and 6), possibly because the CBM-CFS3
currently does not account for the impact of successional palud-
ification (Simard et al., 2007, 2009) and the VBC conversion
parameters for Labrador (Boudewyn et al., 2007) overestimate
non-merchantable and branch biomass. Paludification is a process
that encompasses the gradual colonization of forests by peat-
mosses (Sphagnum spec.) followed by organic matter accumulation,
a decrease in soil temperature, a rise in water table, and a sub-
sequent decline in tree productivity and regeneration (Simard et
al., 2009), which could account for the low amount of measured
non-merchantable biomass in the old-growth stratum. Estima-
tion of non-merchantable C pools based on the merchantable C
pool should account for tree productivity, particularly in systems
featuring a gradual productivity decline with stand age, such as
small-diameter black spruce forests (Simard et al., 2007, 2009).

4.2.1. Volume-to-biomass conversion parameters
Overestimates of the “other wood and bark” C pool may be

due to the overestimated non-merchantable C stocks or due to the
allometric crown plasticity of black spruce (Raulier et al., 1996;
Pereg and Payette, 1998; Bégin and Filion, 1999). In particular,
biomass equations and VBC parameters applicable to medium-
size merchantable trees in one region may not be appropriate (i)
for trees in other regions as within-species variability may exceed
between-species variability (Jenkins et al., 2003; Miao and Li, 2007),
and (ii) for small (DBH <5 cm) and very large trees (Penner et al.,
1997; Jenkins et al., 2003; Miao and Li, 2007). Overestimates of the
“other wood and bark” C pool may be expected for other species
exhibiting large variability in small-tree biomass estimates, such
as trembling aspen (Miao and Li, 2007). During modelling, biomass
production and allocation in selected sites must, therefore, be rep-
resented as accurately as possible; not only through appropriate
choice of yield curves with respect to species and merchantable
volume as suggested by Moroni et al. (submitted for publication),
but also in terms of allometric equation applied to estimate stand-
level biomass components such as non-merchantable and branch
volume. Where detailed data are available, ‘Default’ biomass esti-
mates of live-tree components could be checked against observed
biomass components.

4.3. ‘Modified A’ and ‘Modified B’ CBM-CFS3 modelled C stocks

4.3.1. Snag stem and snag branch fall rate
Large amounts of snags are generated after wildfire (McRae et

al., 2001) and are expected to fall within 25–33 years in boreal
forests (Boulanger and Sirois, 2006; Moroni, 2006). ‘Modified A’ and
‘Default’ parameters captured the creation and collapse of snags
following wildfire, but underestimated the observed snag stem fall
rate. Our field data thus support findings of Manies et al. (2005),
Carrasco et al. (2006), and Moroni et al. (submitted for publication),
that the default CBM-CFS3 snag stem fall rate of 0.032 yr−1 is
too low for small-diameter boreal forests, at least after wildfire.
Although snag stem dynamics were well captured by ‘Modified
B’ parameters, measured U/O snag stem C stocks were underesti-
mated by 3.1 Mg C ha−1; possibly because the higher post-fire snag
stem fall rate is not applicable for snags originating from senes-
cence during stand transition to the gap-dynamics phase (Lieffers
et al., 2003; Harper et al., 2005), or because CBM-CFS3 parameters
underestimate mortality in the gap-dynamics phase. Increasing
the snag branch fall rate along with the snag stem fall rate did
not improve modelled snag branch C estimates (Tables 7 and 8),
because ‘Default’ snag branch C stocks were already reduced by
‘Modified A’ VBC parameters as a result of modified live-tree
biomass distribution. An increased snag branch fall rate is thus not
recommended for Labrador high-boreal black spruce.

4.3.2. WD decay rates
As snag stems and snag branches fall, C from the snag stem

and branch pools is transferred to the aboveground DOM C pools
(Kurz et al., 2009). Post-harvest dynamics of the aboveground fast
C pool containing ≤10 cm WD and harvest-created stump C were
fairly well captured by the default aboveground fast base decay
rate of 0.1435 yr−1 (Table 2), which is similar to the decay rates
observed for fine woody debris of pine and spruce in northern
Finland (0.066–0.128 yr−1; Vávřová et al., 2009). Increasing the
aboveground fast base decay rate as recommended by Moroni et
al. (submitted for publication) for Newfoundland is thus not con-
sidered appropriate for modelling the studied forests.

Unlike for ≤10 cm WD, ‘Modified A’ CBM-CFS3 did not accurately
reflect >10 cm WD dynamics of the studied forests. After reducing
>10 cm WD C stocks by measured BW C stocks, ‘Remapped’ and
‘Modified A’ medium C stocks generally reflected the decomposi-
tion, fragmentation, and burial of harvest residues as well as the
post-fire collapse of snags (Bond-Lamberty et al., 2003; Boulanger
and Sirois, 2006; Hagemann et al., 2009). However, the ‘Modified
A’ CBM-CFS3 consistently overestimated measured >10 cm WD C
stocks, which were better captured by an increased medium C
pool base decay rate of 0.06 yr−1 (Moroni et al., submitted for
publication). Decay rates of >10 cm WD in cool and humid high-
boreal Labrador black spruce are thus at the upper range of rates
observed in drier boreal regions, i.e. Manitoba (Bond-Lamberty et
al., 2003). A change in the terminology of WD dynamics may be
required for northern forests differentiating between ‘decay rates’
which describe mass or C loss by decay, fragmentation, and leach-
ing, and ‘reduction rates’ which additionally include mass or C loss
by WD burial.

4.3.3. Buried dead wood
The burial of WD results in an increased transfer of C from the

medium (>10 cm WD) to the aboveground slow (organic layer)
C pool relative to the decomposition process (Kurz et al., 2009).
The increased annual transfer rate from the ‘decayed’ medium
to the aboveground slow C pool applied in this study (30%) was
merely used as a surrogate to test the concept of WD burial and
is a rather conservative estimate given the enormous amounts of
BW C (Hagemann et al., 2009). We are not recommending that
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this approach be used to represent WD burial by bryophytes in
future modelling applications, because it would lead to potentially
inaccurate and untested reductions in CO2 emission estimates, par-
ticularly if applied to larger scales.

The burial of large amounts of WD observed in high-boreal
Labrador may also occur in other cool and humid forests and may
require special attention in forest C models. When incorporated
into the organic layer by bryophytes, BW experiences a micro-
climate different from that of unburied WD. Decay rates of BW
are thus expected to be significantly lower than decay rates of
unburied WD (Manies et al., 2005; Hagemann et al., 2009). How-
ever, unlike the recommended parameter changes with respect
to live-tree C estimates or snag fall rates, the incorporation of
BW and bryophyte dynamics into the CBM-CFS3 requires struc-
tural changes to the model. We propose to (a) develop a module
to account for the C dynamics of a bryophyte pool that provides
parameters to express the physical burial of WD and impacts on
its decay, or—in the absence of a bryophyte module—either (b) cal-
ibrate a medium to aboveground slow C pool transfer rate based
on field-measured rates of moss growth and WD burial and modify
aboveground slow base decay rates in cool humid ecosystems based
on further knowledge about the decay dynamics of BW, or (c) intro-
duce a belowground medium (i.e., BW) C pool into the CBM-CFS3
to represent the lower decay rates of buried wood.

Representation of BW in the CBM-CFS3 could be further
improved by differentiating medium (>10 cm WD) to aboveground
slow (organic layer) C pool transfer rates by disturbance type and
time since disturbance. For example, fire can interrupt the burial of
WD and the subsequent accumulation of BW for 30–70 years due
to the consumption and slow recovery of the live moss layer, parts
of the organic layer and the wood buried within it (Nguyen-Xuan
et al., 2000; O’Neill et al., 2006). In contrast, clearcut harvesting
has a lesser impact on organic layer and BW stocks (McRae et al.,
2001), and feathermoss cover potentially recovers within 5 years
after harvest (Palviainen et al., 2005).

4.3.4. Organic layer decay rate
CBM-CFS3 estimates of mainly wood- and bryophyte-derived

organic layer C stocks improved after reducing the default above-
ground slow base decay rate to 0.0075 yr−1 (‘Modified B’; Table 2).
This rate is within the range of decay rates estimated by Harden
et al. (2000) and Manies et al. (2005) for black spruce-feathermoss
stands in Manitoba and reflects the specific litter quality of boreal
forests (Ise and Moorcroft, 2006): decay-resistant feathermoss and
sphagnum litter (Ise and Moorcroft, 2006), and wood-derived lig-
nified litter (Berg, 2000; Vávřová et al., 2009) of high bulk density.
Large amounts of the organic layer and soil C stocks can be derived
from wood: up to a third (10–31%) of the measured organic layer C
in Labrador black spruce (Hagemann et al., 2009), and 39–74% of the
deep C stocks in Manitoba black spruce (Harden et al., 2000). How-
ever, the CBM-CFS3 was designed for upland sites and currently
does not include specific decomposition rates for slow-decaying
BW and bryophyte-derived litter (Kurz et al., 2009). Moreover,
currently available data on BW and bryophyte dynamics are insuffi-
cient to parameterize the CBM-CFS3 to adequately capture BW and
bryophyte-dominated organic layer dynamics in cool wet boreal
forests.

4.3.5. Mineral soil decay rate
The poor correlation between measured and ‘Modified B’ mod-

elled mineral soil C stocks results from the lack of significant trends
observed for the measured data. The remaining deviation between
measured and ‘Modified B’ modelled mineral soil C stocks reflects
the high site variability, the site productivity mix (H/D), and the
generally small impact of harvesting and wildfire on the min-
eral soil C pool (Johnson and Curtis, 2001). Possibly, differences

between measured and modelled mineral soil C stocks could also
arise from the fact that CBM-CFS3 was designed for well-drained
upland forests, and currently does not account for the accumula-
tion of soil organic C in the course of successional paludification
(Simard et al., 2007; Kurz et al., 2009).

The decrease of ‘Modified B’ estimates of mineral soil C stocks
with time since disturbance (Table 7) indicates that paludifica-
tion and the subsequent DOM C accumulation in Podzolic soils,
particularly in the B horizon, is not accounted for by the CBM-
CFS3. Reducing the default belowground slow base decay rate from
0.0033 yr−1 to a soil-type specific rate of 0.00207 yr−1 improved
agreement between measured and ‘Modified B’ mineral soil C
stocks. The decomposition rate of mineral soil C in humid high-
boreal Labrador black spruce (Humo-Ferric Podzol) is thus at
the lower range of deep C decay rates reported for drier, more
continental black spruce-feathermoss stands (Gray Luvisol) in
Manitoba (0.002–0.004 yr−1; Harden et al., 2000; Manies et al.,
2005). Considering the strong link between temperature, precip-
itation, soil moisture, geological parent material, and soil type, soil
type-specific decay rates may generally improve the CBM-CFS3
estimates of mineral soil C stocks (Shaw et al., 2008).

New plot-level data collected as part of Canada’s new National
Forest Inventory (NFI; Natural Resources Canada, 2009) will be used
to further test all above-recommended modifications to the CBM-
CFS3. However, according to the NFI Ground Sampling Guidelines
(Natural Resources Canada, 2009), BW is only measured if >10 cm,
potentially leading to a systematic underestimate of the C stocks
of ecosystems containing BW. Acknowledging that BW sampling
is very time consuming, we would like to stress the importance
of developing reliable sampling methods for BW estimation, pos-
sibly to be included in Canada’s NFI and to parameterize the WD
burial process in forest C models such as CBM-CFS3. The CBM-CFS3
predicted changes in forest biomass and DOM C stocks will thus
become more accurate.

5. Conclusions

Measured live-tree, dead wood, and organic layer C stocks in
high-boreal Labrador black spruce were in the lower range of
those observed in other upland boreal forests. Although the CBM-
CFS3 (version 1.0) represented measured live-tree C dynamics in
harvested, burned, and old-growth high-boreal forests well, VBC
parameters for calculating non-merchantable and branch C stocks
in the Labrador black spruce sites had to be adjusted to accurately
capture measured live-tree C stocks. Increases to the default CBM-
CFS3 snag stem fall (0.10 yr−1) and >10 cm WD (0.06 yr−1) base
decay rates improved agreement between measured and modelled
DOM data, whereas the snag branch fall and ≤10 cm WD base decay
rates did not need to be changed because modified VBC parameters
decreased the non-merchantable and branch biomass C stocks and,
therefore, modelled snag branch and ≤10 cm WD C stocks matched
measured amounts. Both yield curves and VBC parameters must
be considered when modelling forest C stocks using CBM-CFS3, as
uncertainty of live-tree C estimates will affect all DOM C pools.

Mineral soil C stocks in high-boreal Labrador black spruce were
high and comparable to those reported for forested Podzols and
peatland sites. Higher than average organic layer and mineral soil
C stocks can also be expected in other forests with cool wet climates
such as coastal oceanic boreal forests (e.g., in Norway; Kjønass et al.,
2000), or coniferous mountain forests (e.g., in the Tatra Mountains,
Poland; Zielonka and Niklasson, 2001). The CBM-CFS3 was initially
designed for well-drained upland forests; thus, the uncertainty of
modelled organic layer and mineral soil C stocks increases with
increasing bryophyte productivity and average soil moisture lev-
els. In Labrador black spruce, organic layer and mineral soil DOM
likely decays at lower rates than assumed by CBM-CFS3 default
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parameters. Modelled organic layer C stock estimates in Labrador
black spruce were improved by reducing the aboveground slow
base decay rate 50% of default (0.0075 yr−1) reflecting the impact of
bryophyte cover on organic layer decay rates. Mineral soil C stocks
modelled using a preliminary belowground slow base decay rate
(0.00207 yr−1) optimized for Humo-Ferric Podzols were in better
agreement with field-measured values than default estimates.
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4.6 Buried Deadwood

Buried deadwood stocks observed in the selected study sites ranged between 9.4–36.4Mg ha−1

(corresponding to 4.7–18.2 Mg C ha−1), and considerably exceeded aboveground deadwood
stocks in all but the recently harvested and middle-aged burned strata (Section 4.3). More-
over, BW volume exceeded live-tree volume in all strata by up to 93.5 m3 ha−1; even the old-
growth stratum contained more BW (179.3 m3 ha−1) than live trees (88.1-164.2 m3 ha−1).
However, the data on BW abundance presented in (Hagemann et al. 2009) features large
coefficients of variation (41–86%) and wide 95% confidence intervals (x̄− 72.8%; x̄+ 92.2%),
which is related to the sampling design associated with the acquisition of this data.

According to the NFI Ground Sampling Guidelines, BW is assessed based on point sam-
pling along the two perpendicular 40-m line transects at each plot (Natural Resources
Canada 2010a). This sampling scheme is optimized for sampling organic layer depth,
a rather continuous variable which only gradually changes with distance. In contrast, the
distribution of BW is likely similar to the distribution of aboveground WD, and thus spa-
tially highly variable. The line intersect method of van Wagner and Olsen (1964) and its
modifications are scientifically established methods for sampling the spatially discontinuous
variable WD. It is therefore necessary to reassess BW abundance in the selected Labrador
study sites using an appropriate sampling method, such as multiple triangular trenches em-
ployed in the following study to validate BW estimates provided by Hagemann et al.
(2009).

In addition to improved BW abundance estimates, questions concerning the formation of
BW need to be answered. Rates of WD burial likely depend on the balance between moss
growth and WD decomposition rates. However, mosses are an omnipresent but little-studied
component of boreal ecosystems (Bisbee et al. 2001, Turetsky 2003, O’Neill et al.
2006), and data on moss growth is limited (Turetsky et al. 2010). The effects of the moss
layer on organic layer conditions and its role in the paludification process are increasingly
investigated, but data on decay rates of WD debris after burial by moss are lacking. So
far, knowledge on BW dynamics is based on inferences and – to some degree – speculation
(Hagemann et al. 2009, 2010c). Field experiments analyses, like the ones presented
in the following scientific articles, are thus needed to monitor WD conditions after burial
associated changes in decay dynamics.
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4.6.1 Hagemann U, Moroni M, Gleißner J, and Makeschin F. 2010.
Accumulation and preservation of dead wood upon burial by
bryophytes. Ecosystems 13(4): 600–611

Extended Abstract

Abundance of preserved deadwood buried by bryophytes in the organic layer of old-growth
Labrador black spruce stands in this study exceeded estimates of a previous study on the
same sites by >100% (389±39 vs. 179±46 m3 ha−1) (Hagemann et al. 2009). Sampling
errors of the data collected by trenching of triangular line transects in this study were
considerably lower compared to the point sampling of the Hagemann et al. (2009) study.
Alternative sampling methods are needed to facilitate accurate and efficient quantification
of BW abundance and to allow for the inclusion of BW in deadwood and C inventories.

Stand-replacing wildfires consumed the organic layer and killed the previous stands, produc-
ing snags, which subsequently fell and became buried by moss, resulting in large amounts of
wood buried in the lower half in the current organic layer. As new forest stands developed,
self-thinning and senescence continuously produced minor amounts of WD for burial, most
of which was located in the upper half of the organic layer. Accumulation of BW continues
until the next stand-replacing fire kills most of the live trees and consumes part of the or-
ganic layer and wood buried within it. In regions with long FRI, such as humid Labrador,
BW accumulation can thus proceed for much longer periods of time resulting in the vast
amounts of BW observed in Labrador black spruce.

The experimental burial of standardized sample logs at various depths in the organic layer
showed that burial significantly decreased WD temperature, increased WD moisture content,
and tended to decrease WD respiration rates, indicative of reduced decomposition activity.
Preservation of WD is likely initiated by a thin layer of fast-growing bryophytes overgrowing
the WD surface before WD reaches advanced stages of decay, and before WD is entirely
enveloped by organic layer material. This live bryophyte cover provides thermal insulation
and moisture retention, and generates an environment unfavourable to decomposition. Two
phases of the burial process may therefore be differentiated: i) the initialization phase,
during which decomposition rates considerably decrease after the surface of WD located on
top of the organic layer has been colonized by a thin layer of live moss, and ii) the burial
phase, during which the WD is slowly enveloped in litter and dead moss as the organic layer
accumulates.

As bryophytes are a vital component of many coniferous ecosystems throughout the circum-
polar boreal and oroboreal forests, conditions conducive to WD burial are likely widespread.
Buried wood may thus be more common than (Hagemann et al. 2009) suggested and
may be of global relevance as habitat for bryophytes, fungi, or insects and a large mid- to
long-term C store.
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ABSTRACT

Large amounts (389 ± 39 m3 ha-1) of preserved

dead wood buried by bryophytes were found in the

organic layer (OL) of overmature (146- to 204-year-

old) black spruce (Picea mariana (Mill.) B.S.P.) forests

in the high-boreal forest of eastern Canada. Stand-

replacing wildfires consumed the organic layer and

killed the previous stands, producing snags, which

subsequently fell and became buried by moss,

resulting in large amounts of wood buried deep in the

current organic layer. As new forest stands devel-

oped, self-thinning and senescence continuously

produced minor amounts of woody debris (WD) for

burial, most of which was located in the upper half of

the organic layer. The experimental burial of stan-

dardized sample logs at various depths in the organic

layer showed that burial significantly decreased WD

temperature, increased WD moisture content, and

tended to decrease WD respiration rates, indicative of

reduced decomposition activity. WD preservation

may be initiated by a live bryophyte cover, providing

thermal insulation and moisture retention, gener-

ating an environment unfavorable to decomposi-

tion. As bryophytes are a vital component of many

coniferous ecosystems throughout the circumpolar

boreal and mountain forests, conditions conducive

to WD burial are likely widespread. Buried wood

may thus be of global relevance as habitat and a large

mid- to long-term carbon store.

Key words: woody debris; feathermoss; organic

layer; Pleurozium; necromass; carbon cycling; bur-

ied dead wood.

INTRODUCTION

Dead wood and bryophytes are two important

components of forest ecosystems (Harmon and

others 2004; O’Neill and others 2006), but the

ecological significance of bryophytes has received

considerably less scientific attention than that of

dead wood. Dead wood is integral to carbon (C)

and nutrient cycles (Kurz and Apps 1993; Laiho

and Prescott 2004), provides habitat for a range of

species (Harmon and others 2004), and is an

important component of forest structure (Debeljak

2006). Bryophytes are little studied components of

forest ecosystems despite their widespread occur-

rence and functional importance in soil tempera-

ture, moisture, and nutrient regimes (Bisbee and
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others 2001; O’Neill and others 2006), particularly in

boreal and oroboreal forests where they form a

continuous layer (Foster 1985; Simard and others

2009). In these ecosystems, bryophytes also play a

key role in C cycling by (i) contributing considerably

to net primary productivity and litter C input

(O’Neill and others 2006), (ii) reducing organic layer

(OL; O horizon; Soil Survey Staff 2006) temperature

and nutrient availability while increasing organic

layer moisture levels and acidity (Bisbee and others

2001), (iii) promoting paludification through the

accumulation of a thick organic layer composed of

poorly decomposable bryophyte and vascular plant

substrates (Fenton and others 2005), and (iv) over-

growing and burying downed woody debris (WD;

Hagemann and others 2009). Therefore, we expect

WD that becomes buried in the organic layer to have

lower temperatures, higher moisture content, and

thus lower decay and respiration rates than unbur-

ied WD, resulting in the preservation and accumu-

lation of buried dead wood (BW; Manies and others

2005; Hagemann and others 2009).

The incorporation of WD into the accumulating

organic layer by vigorously growing bryophytes

links the dead wood and bryophyte cycles, and

results in the formation of a BW biomass and C

pool (Boudreault and others 2002; Moroni 2006).

Buried wood has received little research attention

so far and has yet to be incorporated in forest

models (Hagemann and others 2009). It was first

observed in mountain forests dominated by yellow

birch (Betula alleghaniensis Britton), red spruce (Pi-

cea rubens Sarg.), balsam fir (Abies balsamea

L. (Mill.)), and Douglas-fir (Pseudotsuga menzie-

sii (Mirb.) Franco) (McFee and Stone 1966; Harvey

and others 1981; Lang and others 1981). Recent

studies have also found BW in various North

American boreal forests (Brais and others 2005;

Manies and others 2005; Moroni 2006), including

overmature high-boreal black spruce (Picea mariana

(Mill). B.S.P.) forests in Labrador, Canada (Hage-

mann and others 2009), where particularly large

amounts of BW ( £ 179 m3 ha-1; exceeding

unburied WD by up to 280%) were reported.

However, all studies reported a high uncertainty of

BW abundance, likely because study designs were

not focused on assessing the abundance of BW.

Several factors indicate that a large proportion of

the BW found in Labrador black spruce forests

originates from the last stand-replacing wildfire,

which predates the 146- to 204-year-old forests.

Buried wood volume exceeded the live-tree vol-

ume of overmature stands; some of the deeply

buried WD was charred, and pieces of it were up to

about 250 years dead (515 years old; Hagemann

and others 2009; Moroni and others 2010). A

smaller proportion of BW likely originates from

self-thinning and senescence, as both processes

generate minor amounts of WD in slow-growing,

low-density black spruce forests (Roberts and oth-

ers 2006). With the organic layer slowly accumu-

lating throughout stand development, WD

generated from wildfires centuries before mea-

surement is expected to occur as a deep cohort of

BW pieces. Buried wood originating from self-

thinning is expected to be distributed in low den-

sities above the fire-generated cohort, and, being

younger wood, is expected to be less decayed.

As the process of WD burial reduces above-

ground WD stocks, it must be included with the

three widely recognized WD volume reduction

processes: decomposition, fragmentation, and

leaching (Harmon and others 2004; Zhou and

others 2007). However, unlike the above processes,

WD burial is poorly documented with little to no

data available on the abundance, characteristics,

and dynamics of BW. The objectives of this study

are to (i) accurately quantify the abundance of BW

in old-growth high-boreal Labrador black spruce

forests and confirm previously reported amounts,

(ii) describe BW characteristics, that is, burial

depth, size, decay and charring status, and test the

assumption that a large proportion of BW volume

originated from wildfire, and (iii) determine the

impact of WD burial on BW temperature, moisture,

and respiration rates, hypothesizing BW (a) to be

cooler and wetter and (b) to have reduced respi-

ration rates compared with unburied WD.

MATERIALS AND METHODS

Site Selection and Description

The study area is situated near Goose Bay, Labrador

in the High-boreal Forest–Lake Melville Ecoregion

(Ecoregions Working Group 1989), an extension of

the Boreal into the Taiga Shield. Mean annual

temperatures are -2.4 to -1.0�C (McKenney and

others 2007), with approximately 1000 mm of

precipitation evenly distributed throughout the

year (Roberts and others 2006). The upland soils

are mainly classified as Humo-Ferric Podzols (Soil

Classification Working Group 1998) or as Typic

Haplorthods (Soil Survey Staff 2006), and support

the most productive forests of Labrador (Roberts

and others 2006).

Three previously studied overmature forest sites

(Table 2 in Hagemann and others 2009) were

investigated in greater detail from July to August

2008. Sites are of medium productivity and support
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forests, likely of wildfire origin, dominated

(>75%) by black spruce older than 140 years

featuring an average height of 12–15 m and a

crown closure of 50–75% (Government of New-

foundland and Labrador, unpublished report).

Ground vegetation cover consisted of feathermoss

(56–84%; mainly Pleurozium schreberi, Ptilium crista-

castrensis), foliose ground lichen (3–10%; mainly

Peltigera aphtosa, Nephroma arcticum), and peatmoss

(0–7%; mainly Sphagnum russowii, S. capillifolium).

Detailed information on the study sites is presented

in Hagemann and others (2009).

Field Measurements

Abundance

Three inventory plots were located randomly within

each site, each comprising a 9-m equilateral triangle

transect. Along each transect, a trench was dug

exposing a vertical cross-section of the organic layer

down to the mineral soil. All BW (WD buried >50%

in the organic layer) intersecting the transect was

measured using the line intersect method (Marshall

and others 2000). The cross-sectional area of BW

pieces was calculated as a circle for round, an ellipse

for oval, and a rectangle for odd-shaped pieces. Odd-

shaped pieces were not included in the size analysis

due to unknown BW diameter, but were only found

in small numbers. A decay class of 1 to 5 was assigned

to each BW piece (Table 1; Natural Resources Can-

ada 2010), and BW biomass was estimated by mul-

tiplying BW volume with wood density for the

corresponding black spruce decay class (Table 1).

Buried wood C stocks were calculated by multiplying

BW biomass with 0.5 (Hagemann and others 2010).

Presence of bark, charring, and ingrown roots, and

organic layer thickness above (to live moss) and

below (to mineral soil) each BW piece were recorded

from the center of the BW piece.

Burial Environment

Twelve decay class 2 sample logs with a middle

diameter of 13.8 ± 0.1 cm were selected from the

WD present within each site and cut to

30.7 ± 0.2 cm length. The ends were sealed with

Water Stop polymer paint (MEM Bauchemie, Leer,

Germany). Three burial plots were located along a

25-m transect placed randomly within each site. At

each burial plot, four sample logs were placed at

four different positions relative to the surface of

the forest floor: P1—on top of the live moss

layer, P2—half-buried in the organic layer but not

moss-covered, P3—completely buried in the

organic layer and covered by live moss, and
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P4—completely buried in the organic layer and in

contact with the mineral soil (Figure 1). For plots

P3 and P4, a plastic mesh (�10 cm) was inserted

below the live moss layer or the sample piece,

respectively, to facilitate handling and reduce the

disturbance of the organic material covering the

sample piece. In each site, a LogIT LT2 data logger

(Supco Inc, Allenwood, New Jersey, USA) was in-

stalled at the center burial plot with two probes

recording organic layer temperatures every 15 min

at 2 and 20 cm depth (T1/2; Figure 1). At each plot,

a corrodible steel rod (1.2 m) was implanted into

the forest floor to assess oxygen availability (Fenton

and others 2006).

Respiration, wood and air temperatures, and log

mass were measured seven times from 13 July to

27 August 2008 every 7–10 days. After unearthing,

logs were cleaned from attached organic material

and handled carefully to avoid detachment of bark.

Buried wood respiration was measured for 180 s

using a clear acrylic closed chamber (19385 cm3;

Rubbermaid Inc.) connected to an EGM-4 infrared

gas analyzer (PP Systems, Amesbury, Massachu-

setts, USA). Buried wood respiration (RBW) was

calculated as CO2 concentration increment in the

system volume per unit of emitting (lateral) wood

surface and time. System volume was determined

by deducting average log volume from the volume

of the chamber and gas analyzer.

The temperature (TOL) below each sample log

was measured simultaneously with BW respiration

using a temperature probe connected to the EGM-

4. Organic layer moisture potential (WOL) was

measured at the depth corresponding to the center

log position using a 2900F1 Quick Draw Tensiom-

eter (Soil Moisture Equipment Corp., Santa Bar-

bara, California, USA). Wood temperatures were

recorded in pre-drilled holes (Ø 4 mm) using wa-

terproof digital type K thermocouple probes

(DP8811WP, Mannix, New York, USA): TBWsap at

2 cm (top sapwood) and TBWheart at 7 cm depth

(heartwood). Between measurements, holes were

sealed with wooden dowels to avoid equilibration.

Ambient air temperature (TAir) and relative

humidity (RH%) were recorded 30 cm above the

forest floor using a digital hygro-thermometer

(SPER Scientific, Scottsdale, Arizona, USA). Log

mass was taken using a digital hanging scale. Wood

moisture content (uBW) for each sampling date was

calculated using date-specific field mass and abso-

lute dry mass (105�C) determined on completion of

the last measurement. Log density (DBW) was cal-

culated as dry mass (kg) to volume (m2) ratio.

Statistical Analyses

Abundance

Associations between interval (for example, BW

depth), ordinal (for example, decay class), and

nominal (for example, charring) variables were

determined using Spearman’s q, the v2-test, and

Kendall’s s, respectively.

Burial Environment

Differences in RBW, TAir, TBWsap, TBWheart, TOL, uBW,

and WOL among burial positions were analyzed

using univariate nested ANOVA with position

(k = 4) and the respective variable as fixed factors,

and stand nested within position as random factor

(n = 3). Differences in TOL at 2 and 20 cm depth

were compared using the paired Wilcoxon signed-

rank test. Correlations among RBW, TAir, TBWsap,

TBWheart, TOL, uBW, WOL, DBW, and OLT were

calculated using Spearman’s q. A factor analysis

was employed to aggregate the environmental

Figure 1. Burial positions

of standardized sample

logs. Organic layer and

soil horizon terminology

according to Soil

Classification Working

Group (1998).
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variables. The influence of all variables on BW

respiration was determined using a hierarchical

nested linear mixed model with position and

environmental variables as fixed factors, and stand

nested within position as random factor. Random

variance components were calculated using Re-

stricted Maximum Likelihood. Statistical analyses

were conducted using SPSS 15.0.1 (SPSS Inc.,

Chicago, Illinois, USA).

RESULTS

Buried Dead Wood Abundance

Volume of BW in the three stands amounted to

419.1 ± 92.1 (standard error of three triangle tran-

sects), 486.9 ± 46.7, and 261.1 ± 104.6 m3 ha-1,

corresponding to C stocks of 40.7 ± 7.6, 46.7 ± 22.2,

and 24.5 ± 10.5 Mg C ha-1, respectively (Table 1).

Variability in BW abundance was high both between

and within stands.

Most BW was located in the lower half of the or-

ganic layer, which was largely less than 30 cm deep

at all sites (Table 2). Distribution of BW volume by

relative depth (burial depth as proportion of organic

layer thickness) showed that 53–66% of the BW

volume was located at relative depths of greater than

50% (Figure 2). Most BW pieces (73–78%) were

also located in the lower half of the organic layer

(Figure 2), with about 40% of all BW pieces in the

lowest 25%. Large BW pieces (diameter ‡15 cm)

were concentrated at 30–80% relative to organic

layer thickness, equivalent to burial at 10–20 cm

depth. Large WD pieces located higher within the

organic layer were not counted as BW because they

would not be buried greater than 50%.

Table 2. Buried Dead Wood Volume and Carbon Stocks, and Organic Layer Depth by Site

Variable Site

OG-1 OG-2 OG-3

Mean SE Mean SE Mean SE

Volume (m3 ha-1) 419.1 92.1 486.9 214.5 261.2 104.6

Carbon stocks (Mg C ha-1) 40.7 7.6 46.7 22.2 24.5 10.5

Organic layer depth (cm) 24.3 0.6 22.3 0.8 18.4 0.8

Min Max Min Max Min Max

Volume (m3 ha-1) 287.3 596.5 162.7 892.2 53.1 384.1

Carbon stocks (Mg C ha-1) 28.6 54.7 14.6 89.3 4.3 39.4

Organic layer depth (cm) 11.0 41.0 7.0 47.0 5.5 34.0

SE standard error; n = 3.

Figure 2. Buried dead wood volume by diameter class: A volume and B pieces.

604 U. Hagemann et al.

4 Results 4.6 Buried Deadwood

84



The proportion of BW pieces in decay classes 1–5

was 0, 4, 21, 38, and 37%, respectively. The above

proportions correspond to 0, 7, 15, 45, and 33% of

BW volume. Decay status was more advanced for

BW located lower in the soil profile, that is, at

higher relative depths (v2 = 563.8; s = 0.294;

P £ 0.001). Of the 16% of all BW pieces that

showed charring, 74.5% were located in the lower

half, and 43.1% in the lowest quarter of the

organic layer. Most BW pieces had no bark (76%)

and featured ingrown roots (72%).

Burial Environment

Soil and Dead Wood Temperature

Organic layer and wood temperatures and their

variability decreased with depth as the impact of

surface air temperatures declined. Average daily

TOL at 2 cm depth (5.3–19.9�C) were significantly

higher and more variable than at 20 cm depth

(4.1–12.1�C; P £ 0.05). Although no trend with

time was observed for TOL at 2 cm depth, TOL at

20 cm depth increased steadily over the measure-

ment period. In contrast, there was typical diurnal

temperature variability at 2 cm depth, which was

not observed for 20 cm TOL.

Buried sample log (P3 and P4) temperatures

TBWsap and TBWheart were generally significantly

lower than recorded for unburied (P1) and half-

buried (P2) sample logs (P £ 0.05; Figure 3A, B).

Moreover, sample logs at the mineral soil surface

(P4) were significantly cooler than sample logs

buried just below the organic layer surface (P3) on 2

days (13/07, 22/08; P £ 0.05; Figure 3A, B). Buried

log temperatures TBWsap and TBWheart were highly

correlated, but correlation strength decreased with

burial depth (from P1 to P4; r = 0.939 to r =

0.857; P £ 0.01). Correlation of TBWsap and TAir

decreased with burial (r = 0.922 to r = 0.299; P £
0.05), whereas correlation of TBWheart and TOL

increased (r = 0.294 to r = 0.739; P £ 0.05).

Dead Wood, Organic Layer Moisture, and Aeration

Buried sample log moisture content (uBW) tended to

increase with burial depth, but variability in indi-

vidual sample log moisture levels was high within

burial position (Figure 4). On more than half of the

measurement dates, uBW of sample logs touching

the mineral soil (P4) were significantly higher than

for those not in contact with the mineral soil (P1–

P3; P £ 0.05). Buried wood moisture content uBW

was correlated to wood density DBW (r = -0.644;

P £ 0.01) and TOL (r = -0.228; P £ 0.01), but

not to WOL, except for P3 (r = -0.354; P £ 0.01).

Steel rods featured black rust at depths 29 cm or

greater, indicating limited oxygen availability

(Fenton and others 2006).

Buried Dead Wood Respiration

Respiration RBW of sample logs was highly variable

with averages ranging from 0.11–0.22, 0.13–0.23,

0.11–0.16, and 0.09–0.15 g CO2 m-2 h-1 for posi-

tions P1, P2, P3, and P4, respectively (Figure 5). On

Figure 3. Buried dead

wood A top sap, and B

heart temperature by

position and

measurement date;

ambient air and soil

temperature (20 cm

depth) at the time of

measurement are shown

for comparison.

* Significant differences

between P1/2 and P3/4,
� significant differences

between P3 and P4;

P £ 0.05.
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two measurement days (13/07, 22/08), RBW of

buried samples logs (P3/P4) was significantly lower

than recorded for unburied and half-buried logs

(P1/P2; P £ 0.05). Correlation between RBW and

TAir, TBWsap, and TBWheart decreased with burial

depth from P1 (r = 0.505, 0.596, 0.631, respec-

tively; P £ 0.01) to P4 (r = n.s., 0.263, 0.279,

respectively; P £ 0.05), whereas the correlation

with TOL tended to increase (r = n.s. to r = 0.288;

P £ 0.05).

Aggregation of independent environmental fac-

tors yielded three components that explained

68.4% of total variable variance (Table 3a). The

first, second, and third component accounted for

32.5, 22.7, and 13.2% of total variance, respec-

tively. Components 1, 2, and 3 were dominated by

the following factors: (1) TAir, TBWsap, and TBWheart,

(2) TOL and RH%, and (3) uBW and DBW. The

hierarchical nested Linear Mixed Model showed

TBWsap to be the main influential environmental

variable in determining RBW, followed by OLT, the

interaction between uBW and DBW, whereas burial

position was not an explanatory variable (Ta-

ble 3b). Random variance was mainly attributed to

within-site (that is, plot) variability.

DISCUSSION

Buried Dead Wood Abundance

Abundance of BW measured in overmature Lab-

rador black spruce stands in this study exceeded

estimates of a previous study on the same sites by

more than 100% (389 ± 39 vs. 179±46 m3 ha-1;

Hagemann and others 2009). Measured amounts of

BW are thus similar to amounts observed in

mountain Douglas-fir stands containing trees con-

siderably larger than Labrador black spruce (370–

430 m3 ha-1; Harvey and others 1981). Compared

with this study, the point sampling of Hagemann

and others (2009) underestimated BW abundance

and produced higher sampling errors (coefficient of

variation 77 vs. 30%). Unlike unburied WD, BW

cannot be visually assessed, making its abundance

difficult to quantify. Trenching allows for a more

detailed inventory of BW, but is a very time-con-

suming technique. Moreover, trench location is

crucial as BW is characterized by high spatial vari-

ability, due to the spatial variability of WD (Manies

and others 2005) and organic layer consumption by

Figure 4. Buried dead wood gravimetric moisture con-

tent by position and measurement date. * Significant

differences between P1/2 and P3/4. ^ Significant differ-

ence between P1 and P4; P £ 0.05.

Figure 5. Buried dead

wood respiration rates (in

g CO2 m-2 h-1) by

position and

measurement date.
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fire (Shetler and others 2008). Thus, alternative

sampling methods could greatly facilitate accurate

and efficient quantification of BW abundance, as

recommended earlier by Shaw and others (2008)

for sampling forest soils. Buried wood could then

be included in dead wood and C inventories as

suggested previously by Hagemann and others

(2009).

Abundance of BW, particularly of 15 cm or

greater diameter logs in advanced decay stages, and

percentage of charred BW pieces were highest in

the lower half of the organic layer, indicating that

most BW originated from the last or previous

stand-replacing wildfires, and supporting earlier

assertions of post-fire BW preservation (Hagemann

and others 2009). Wildfires produce large numbers

of snags that mostly fall within 25–33 years in the

boreal forest (McRae and others 2001; Moroni

2006), thereby creating large amounts of 10 cm or

greater WD around 20 years following fire (Moroni

2006). Although feathermoss is often completely

consumed by wildfire (Smith and others 2000), it

can recolonize burned sites within 30–70 years

following fire (O’Neill and others 2006; Longton

2009), with recolonization occurring faster follow-

ing low-intensity fires or under moist conditions

Table 3. Summary Statistics for (a) Factor Analysis Showing Component Matrix and Explained Variance,
and (b) Hierarchical Nested Linear Mixed Model (LMM) Analysis Describing the Influence of the Listed
Variables on Buried Dead Wood Respiration

(a) Factor analysis Variance

Component Total % Cumulative %

1 2.600 32.5 32.5

2 1.813 22.7 55.2

3 1.059 13.2 68.4

Component

Variable 1 2 3 Communalities extraction

TAir 0.684 -0.543 -0.135 0.780

TBWsap 0.982 0.047 0.107 0.979

TBWheart 0.895 0.269 0.200 0.914

TOL 0.359 0.747 0.288 0.769

WOL -0.028 0.301 0.052 0.094

uBW -0.177 -0.453 0.620 0.621

DBW 0.095 0.394 -0.667 0.609

RH% -0.443 0.660 0.273 0.707

(b) LMM analysis

Variable FTa F Wald Z P Variance (%)

Intercept 40.101 na� £ 0.001�

Burial position F 0.137 na� 0.741

Site(Burial position) R na� 1.003 0.316 2.8

Plot(site) R na� 1.841 0.066 73.1

Measuring day Frep 0.099 na� 0.754

TBWsap F 52.510 na� £ 0.001�

uBW F 4.869 na� 0.030�

DBW F 4.595 na� 0.035�

uBW 9 DBW F 8.091 na� 0.006�

OLT F 11.147 na� 0.001�

Error 24.1

Note for (b): Position, BW top sap temperature (TBWsap), BW moisture content (uBW), BW density (DBW), and organic layer thickness (OLT) are a fixed factor; site nested within
position and plot nested within site are random factors; measuring day accounted for repeated measurements.
aFT factor type; fixed (F) and random (R) factors; Frep = repeated.
�The statistic is not applicable to this factor type.
�Significant at a = 0.05.
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(Kershaw and others 1994), as are prevalent in the

humid high-boreal forest. In Labrador, WD created

by wildfire can persist up to 70 years after fire, thus

being available for burial as feathermoss recovers

(Hagemann and others 2009). Given the large

volume of deeper, that is older, BW in Labrador,

moss recolonization and subsequent burial of fire-

derived WD appears to be fairly efficient up to five

decades after fire at these sites.

The large amount of BW found at the interface of

the organic layer and mineral soil indicates that

preservation of WD is initiated by moss cover be-

fore a piece of WD is entirely enveloped in organic

layer material. Any BW piece located at the inter-

face of the organic layer and mineral soil (Figure 2)

must have fallen on either bare soil or a sparse moss

layer that had recently recolonized the site fol-

lowing the dead wood-generating disturbance. In

either case, the rate of organic layer accumulation

at this time would have been low (Fenton and

others 2005; O’Neill and others 2006). If BW

preservation depended on complete burial, envel-

oping of the mostly 15 cm or greater logs would

have taken a long time, and a large portion of WD

would thus have decayed before being entirely

buried, which is in contrast with the large amount

of BW located at the interface of the organic layer

and mineral soil. More likely, preservation was

initiated by a thin layer of fast-growing bryophytes

overgrowing the WD surface before WD reached

advanced stages of decay (Bisbee and others 2001;

Manies et al. 2005), and before WD was entirely

enveloped by organic layer material.

In addition to stand-replacing disturbances, self-

thinning and senescence also contribute to BW

accumulation. In general, little WD is created in the

course of self-thinning in slow-growing, low-den-

sity Labrador black spruce (Government of New-

foundland and Labrador, unpublished growth

curves), but tree mortality increases when these

forests enter the gap dynamics phase at the age of

about 185 years (Harper and others 2005). How-

ever, annual mortality in Labrador black spruce is

likely less than in more dense balsam fir and black

spruce stands in Newfoundland, where 2.1–2.4%

of stems larger than 9 cm die and fall down per year

(Moroni and Harris 2010). As a considerable

amount of BW volume (�48%) was located in the

upper half of the organic layer, the burial process in

these gap-driven Labrador spruce stands is likely be

very efficient, that is, most coarse WD generated by

senescence must be buried rather than decayed to

explain the large amounts of WD found in the

upper half of the organic layer. All evidence sug-

gests that the burial process encompasses two

phases: (i) a considerable decrease in the decom-

position rate after the surface WD located on top of

the organic layer has been colonized by a thin layer

of live moss (initialization phase), and (ii) the slow

enveloping of the WD in dead moss as the organic

layer accumulates (burial phase).

Senescence continuously produces WD for burial

until the next stand-replacing fire kills most of the

live trees and consumes part of the organic layer

and the wood buried within it (McRae and others

2001; Fenton and others 2005). However, the fire-

return interval for central Labrador is estimated at

300 to 500 years—longer than for other boreal

forests (Foster 1985; McRae and others 2001)—and

BW accumulation can, therefore, proceed for much

longer periods of time resulting in the vast amounts

of BW observed in Labrador black spruce.

Buried Dead Wood Environment

Burial significantly alters both the temperature and

moisture regime of WD. As WD is buried deeper

within the organic layer, its temperature and mois-

ture regime are increasingly regulated by the organic

layer, which is characterized by minimal diurnal

temperature variability, low temperatures, and high

moisture contents at a depth of only 20 cm. Even in

the late summer, daytime BW temperatures can thus

be up to 8�C lower than unburied WD temperatures

(Figure 3A, B), due to the temperature buffering ef-

fect of the thick moss-derived organic layer (Fenton

and others 2005; O’Neill and others 2006). High or-

ganic layer moisture contents not only increase the

specific heat capacity of BW (Yu and others 2002) and

BW moisture content compared with unburied WD

(Figure 4), but also result in the formation of oxygen-

depleted zones at 29 cm or greater depth, which

corresponds to the mineral A horizon or to the lowest

layers of the organic layer and wood buried within it

(Table 1). In Labrador high-boreal black spruce, cool,

wet, anaerobic, and antimicrobial conditions can,

therefore, prevail in the organic layer throughout the

summer, resulting in low BW decomposition rates.

Low BW respiration rates are indicative of min-

imal decomposition activity (Chambers and others

2001). Measured BW respiration rates (0.09–

0.23 g CO2 m-2 h-1) in Labrador black spruce are

similar to rates of WD respiration in Manitoba

(Bond-Lamberty and others 2003), but consider-

ably lower than soil surface efflux in Labrador

(0.55–0.91 g CO2 m-2 h-1; data not shown) and

Alaska (0.92 g CO2 m-2 h-1; O’Neill and others

2006). Buried wood respiration rates tended to be

lowest for completely buried logs (P3/4; Figure 5).

The expected significant reduction in respiration

608 U. Hagemann et al.

4 Results 4.6 Buried Deadwood

88



rates with burial depth may have been masked by

measurement errors due to the unearthing of the

sample logs. Removing sample logs from the CO2-

elevated organic layer environment changed the

pressure and CO2 concentration gradient and likely

resulted in an initial CO2 flush and an overestimate

of the BW respiration rate (Bain and others 2005).

Long-term mass loss and fragmentation studies

may thus provide more accurate data of the BW

decay and preservation than short-term respiration

measurements.

Unlike Hagemann and others (2009), we suggest

that BW preservation may be initiated by the col-

onization of the WD surface by live moss rather

than the enveloping of WD in organic layer mate-

rial (Figure 5). The largest decrease of WD tem-

perature and increase of WD moisture content

occurred between partially buried but not moss-

covered (P2), and entirely buried and moss-covered

BW pieces (P3; Figures 3, 4). Bryophytes feature

high water absorption and retention capacities as

well as low thermal conductivity under dry and

high thermal capacity under wet conditions (Bisbee

and others 2001; O’Neill and others 2006). An

insulating, poikilohydric, and antimicrobial live

bryophyte layer may therefore exert an influence

on WD similar to that of the organic layer, thus

initiating changes in WD temperature and moisture

regime, and consequently facilitating BW preser-

vation.

The live-tree biomass of the studied humid high-

boreal black spruce forests in Labrador falls within

the lower range of values for closed-canopy boreal

forest (compare Hagemann and others 2010).

Accordingly, abundance of aboveground WD was

also in the lower range of values reported for old-

growth boreal forests composed of similar-sized

trees (compare Hagemann and others 2009), for

example, in Manitoba (Bond-Lamberty and others

2003; Manies and others 2005), Quebec (Brais and

others 2005), and Newfoundland (Moroni 2006).

Although the studied forests were mostly older than

old-growth or mature forests of other studies (81–

155 years; Bond-Lamberty and others 2003; Brais

and others 2005; Manies and others 2005) and their

fire return interval is considerably longer than that

of other boreal forests (Foster 1985; McRae and

others 2001), organic layer stocks and depths were

similar to those reported for other boreal forests

(Smith and Heath 2002; Howard and others 2004;

Martin and others 2005; compare Hagemann and

others 2010). Buried wood stocks largely exceeded

most values reported in the literature (Brais and

others 2005; Manies and others 2005; Moroni

2006), but most studies reporting BW were not fo-

cused on assessing the abundance of BW resulting

in high uncertainty of BW abundance.

Given the similarities of various boreal forest

types with respect to climate, live tree, WD, and

organic layer stocks, and bryophyte ground cover,

we speculate that—depending on disturbance re-

gime and stand age—BW can be found in differing

amounts in cool coniferous ecosystems with sus-

tained moss growth around the world, both

throughout the circumpolar boreal forests (Ahti

and others 1968; Hämet-Ahti and others 1974;

Ecoregions Working Group 1989) and in elevated

regions south of the boreal (Zielonka and Niklasson

2001). Burial of WD would thus be more common

than Hagemann and others (2009) suggested and

BW likely forms a globally important mid- to long-

term C store (Moroni and others 2010). However,

data on global BW abundance, the impact of dis-

turbances on BW, and its ecological significance,

for example, for bryophytes, fungi, or insects, is

lacking. Further studies of BW stocks and the burial

process will contribute to the understanding and

modelling of dead wood and C cycles of coniferous

forests and the possible habitat functions of BW.
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Paludification dynamics in the boreal forest of the James Bay

Lowlands: effect of time since fire and topography. Can J For

Res 39:546–52.

Smith JE, Heath LS. 2002. A model of forest floor carbon mass

for United States Forest Types. Research Paper NE-722.

Newton Square (PA): USDA Forest Service, Northern Forestry

Center. 42 p.

Smith CK, Coyea MR, Munson AD. 2000. Soil carbon, nitrogen,

and phosphorus stocks and dynamics under disturbed black

spruce forests. Ecol Appl 10(3):775–88.

Soil Classification Working Group. 1998. The Canadian system

of soil classification. Publication 1646 (rev.). Ottawa, ON:

Agriculture and Agri-Food Canada, NRC Research Press.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edn.

Washington, DC: USDA Natural Resources Conservation

Service.

Yu Z, Apps MJ, Bhatti JS. 2002. Implications of floristic and

environmental variation for carbon cycle dynamics on boreal

forest ecosystems of central Canada. J Veg Sci 13:327–40.

610 U. Hagemann et al.

4 Results 4.6 Buried Deadwood

90



Zhou L, Dai L, Gu H, Zhong L. 2007. Review on the decompo-

sition and influence of coarse woody debris in forest ecosys-

tem. J For Res 18:48–54.

Zielonka T, Niklasson M. 2001. Dynamics of dead wood and

regeneration pattern in natural spruce forest in the Tatra

Mountains, Poland. Ecol Bull 49:159–63.

Dead Wood Preservation upon Burial by Bryophytes 611

4 Results 4.6 Buried Deadwood

91



4 Results 4.6 Buried Deadwood

4.6.2 Moroni M, Hagemann U., and Beilman D W. 2010. Dead
wood is buried and preserved in a Labrador boreal forest.
Ecosystems 13(3): 452–458

Extended Abstract

Radiocarbon-derived ages of black spruce stems buried near the bottom of the organic soil
horizon ranged between 54 and 515 years before 2008. Calibrated 14C age uncertainties
are large and range between 50–380 years before 2008 due to sharp increases and variable
amounts of atmospheric 14CO2. Constraining the minimum age of buried stems by the cur-
rent stand age, buried stems had been dead for more than 250 years, with some well-preserved
wood having been formed up to 450 years ago. Estimates are considered conservative due
to potential contamination with younger C.

Charcoal was identified on buried wood at all sites, indicating that buried wood likely orig-
inated from intense stand replacing fires that consumed the organic layer allowing snags to
fall to the mineral soil surface, where they were subsequently overgrown by moss. While
most aboveground dead wood decays or becomes fragmented within 70 years of tree death
in the studied forests, the presence of old yet well-preserved buried wood suggests that de-
cay rates are greatly reduced when downed deadwood is quickly overgrown by moss. The
clearly discernible wood structure in several samples (similar to Decay Class 4; Natural
Resources Canada 2010a) indicates a surprising degree of preservation given the long
time span since deadwood creation. The process of deadwood burial and its resultant addi-
tion to a large and long-enduring belowground C pool should be considered when estimating
dead wood abundance for habitat or forest C accounting and cycling in coniferous forests
with dominant bryophyte ground cover.
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ABSTRACT

Large amounts (36.4 Mg ha-1 or 179 m3 ha-1) of

buried dead wood were found in overmature (146–

204-year-old) black spruce (Picea mariana (Mill.)

B.S.P.) forests in the high boreal region of eastern

Canada. Amounts of this size indicate that burial

reduces rates of wood decay producing an impor-

tant component of long-term carbon (C) storage.

Radiocarbon-derived ages of black spruce stems

buried near the bottom of the organic soil horizon

at three old-growth sites were up to 515 years old.

Together with information on current stand age,

this suggests that the stems have been dead for

more than 250 years. Most aboveground dead

wood decays or becomes fragmented within about

70 years of tree death in these forests. The presence

of old yet well-preserved buried wood suggests that

decay rates are greatly reduced when downed dead

wood is quickly overgrown by moss. Thus, the

nature and type of ground-layer vegetation influ-

ences the accumulation of organic matter in these

forests. This process of dead wood burial and the

resultant addition to a large and long-enduring

belowground C pool should be considered when

estimating dead wood abundance for habitat or

forest C accounting and cycling.

Key words: biomass; black spruce; carbon; nec-

romass; Picea mariana; snags; woody debris.

INTRODUCTION

Dead wood (DW) is integral to a range of ecosystem

functions, including provision of habitat for

numerous species (for example, Harmon and oth-

ers 2004; Simon and others 2002) and carbon (C)

and nutrient cycling (for example, Kurz and Apps

1993; Laiho and Prescott 2004; Harmon and others

2004; Manies and others 2005). The few studies

that report buried wood abundance show a wide

range of buried downed DW biomass storage, 0.2–

36.4 Mg ha-1, amounts often equivalent to or

greater than unburied downed DW (3–1674%;

Brais and others 2005; Hagemann and others

2009; Lang and others 1981; Manies and others

2005; Moroni 2006), with the largest amounts

(36.4 Mg ha-1 or 179 m3 ha-1; 23–725% unbur-

ied downed DW biomass; Figure 1) from boreal

black spruce (Picea mariana (Mill.) B.S.P.) forests in

Labrador, Canada (Hagemann and others 2009).

Large amounts of buried wood in Labrador black

spruce forests is indicative of long-term storage

where rates of decay appear suppressed (Hagemann

and others 2009). Burial of woody debris in the

organic layer is promoted by the vigorous growth of

bryophytes in the groundcover layer (Hagemann
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and others 2009), typical of many coniferous forests

(Wilton 1964; Bisbee and others 2001). Labrador

experiences a cold wet environment (Environment

Canada 2010) producing a cold wet organic layer,

conditions enhanced by the presence of a bryophyte

layer (Foster 1985; Kasischke and Johnstone 2005),

likely resulting in buried DW decay rates that are

dramatically lower than decay rates of unburied DW

as suggested by other authors (Foster 1985; Manies

and others 2005). Calculating decay rates of woody

debris based on aboveground measurements of

woody debris abundance may, therefore, overesti-

mate decay rates as the potentially large component

of DW that is quickly buried would be missed.

In this study, we measure the radiocarbon (14C)

age of buried wood excavated from the organic

layer at the boundary between mineral and organic

soil horizons in old-growth Labrador black spruce

forests. We hypothesize that suppressed decay rates

allow for substantial necromass to accumulate

belowground, which would be evident in well-

preserved buried wood that is centuries old.

MATERIALS AND METHODS

Site Selection and Description

The study area is near Goose Bay, Labrador, Can-

ada in the ‘‘High-boreal Forest–Lake Melville’’

Ecoregion (Ecosdistrict 452, Ecoregion 6; Ecore-

gions Working Group 1989), which is the eastern-

most extent of the Boreal Shield Ecozone and a

narrow extension of the boreal forest into the Taiga

Shield Ecozone. Forests on well-drained sites in the

region are the most productive local forests and are

dominated by black spruce mixed with balsam fir

(Abies balsamea (L.)) and white birch (Betula papy-

rifera Marsh.) (Rowe 1972).

Three old-growth forest sites of stand type

bS842M (Government of Newfoundland and Lab-

rador, unpublished), the most common productive

forest type in the region, were selected for study

(Table 1). This forest type is dominated by black

spruce (>75%) older than 140 years with an

average height of 12–15 m, crown closure of 50–

75%, and of medium productivity (for merchant-

able yield). The bS842M stand type typically attains

a maximum gross merchantable volume (GMV) of

about 140 m3 ha-1 at stand ages of around 110–

150 years, before going into gap dynamics at an

average GMV of about 113 m3 ha-1 (Table 2). Site

elevation ranges from 161 to 257 m, and mean

annual temperature is between -2.2 and -1.8�C
(McKenney and others 2007). Mean annual pre-

cipitation of approximately 1,000 mm is well dis-

tributed throughout the year and is among the

highest amounts for boreal North America (Foster

1985; Environment Canada 2010). Stand age at our

study sites was estimated to be 146–204 years

based on tree-ring counts from increment bores

(Hagemann and others 2009).

Field and Laboratory Measurements

Field measurements and sampling were conducted

in August 2008. Within each of the three forest

sites, a 27-m-long trench was excavated to the

bottom of the organic horizon to expose a vertical

cross section of the organic layer and buried DW.

Organic layer depth was measured every 27 cm

within each trench. From each excavation, three or

four individual buried stems (for a total of 10

stems) located near the interface of the organic

layer and mineral soil with minimum diameters of

10 cm were sampled (Figure 2). Samples of

approximately 150 cm3 were excavated from the

approximate center of each stem. Care was taken to

avoid the exterior of the stem to prevent contami-

nation of samples with modern C, as stems were

often mixed with organic or mineral soil material

and penetrated by roots and fungal hyphae.

Excavated 150 cm3 stem samples were returned

to the laboratory and air dried. Charcoal was

identified on the surface of some buried wood from

Figure 1. 14C-derived age of buried tree stems compared

to the buried wood C pool in three old-growth black

spruce sites in central Labrador, Canada. Horizontal bars

show 2r age uncertainties (Stuiver and Reimer 1993)

and open squares are the medians of each 2r age dis-

tribution (Table 1). Solid bars show ages older than cur-

rent mean stand age (indicated) and filled bars show ages

younger than current mean stand age.
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all sites and was visible on the Cape Caribou Va

sample (Figure 2). Ingrown fungal mycelia and

roots were removed by hand from buried wood

under a stereo microscope before individual wood

fragments were selected for 14C measurement.

14C Measurement

From each 150 cm3 stem sample, three or four small,

randomly selected fragments of wood (about 100–

200 mg each) were composited. Potential carbonate

and humic acid contamination was removed from

the composited wood by standard acid–base–acid

pretreatment (65�C, 0.5 N HCl for 1 h, 0.5 N NaOH

for 1 h, 0.5 N HCl for 4 h) at the 14CHRONO Centre,

Queen’s University, Belfast. Samples were com-

busted to CO2 at 900�C for 6 h in the presence of CuO

and Ag in evacuated quartz tubes. An aliquot of CO2

was cryogenically purified, then converted to

graphite by hydrogen reduction for analysis by AMS.
14C ages were calibrated to calendar ages using the

IntCal04 curve and CALIB 5.1 (Reimer and others

2004; Stuiver and Reimer 1993). We report buried

stem ages as years before excavation and measure-

ment (before 2008 AD) and rounded off to the

nearest decade. The buried wood sample Arrowhead

IVc had greater than modern 14C content (bomb

carbon), and the calendar age corresponding to this

level of 14C was determined using CaliBomb (http://

intcal.qub.ac.uk/CALIBomb/frameset.html).

RESULTS

The depth of the organic layer ranged from 17 to

25 cm (Table 1). The deepest organic layer was

encountered at Cape Caribou V, which supported

the oldest trees (204 ± 20 years). Arrowhead III

and Arrowhead IV organic layer depth ranged from

17 to 21 cm deep under forests of similar age (146–

148 ± 20 years). Portions of wood sampled from

Cape Caribou Va and b were composed of small

blocky pieces with clearly discernable wood struc-

ture (for example, rings; Figure 2) consistent with

the description of wood of Decay Class 4 (Table 2).

The probability distributions for the 14C-derived

age of buried stems spanned 54–515 years before

2008, but were typically older than 200 years be-

fore 2008 (Table 1; Figure 1). Calibrated 14C age

uncertainties are particulary large between 50 and

380 years before 2008 owing to sharp increases

and variable amounts of atmospheric 14CO2 (Rei-

mer and others 2004). To constrain age estimates,

we conservatively assumed that buried DW is older

than the living trees at these sites, and assigned a

minimum age for buried stems at the current stand

age. The median age of the remaining probability

distribution, the constrained age, for each stem

was between 240 and 450 years before 2008 (Ta-

ble 1). Buried wood at the Cape Caribou V site was

clearly very old, with some wood having been

formed about 450 years ago. In contrast, the

Figure 2. Wood buried at

Cape Caribou V showing

(A) the sampled Cape

Caribou Va buried stem

laying on the mineral soil

surface in a more than

20-cm-deep organic layer,

(B) large amounts of

wood buried in the

organic layer, and (C)

450-year-old wood from

Va and Vb; the three left

most samples are charred.

In all the samples, annual

growth rings and blocky

wood structure are clearly

visible.
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Arrowhead IVc sample was found to contain

anthropogenic bomb C (Table 1) indicating C fixed

since 1952. Because this stem was located at the

bottom of a well-developed 22-cm-deep organic

layer in a stand with 148-year-old living trees, this

sample is suspected to have been buried more than

50 years ago and subsequently contaminated with

recently formed tissues, such as ingrown roots. If

other stem ages were similarly influenced by

younger C, then our 14C-derived ages of buried

wood are conservative. Well-preserved buried

stems at old-growth black spruce sites in Labrador

were likely fixed from atmospheric CO2 200–

450 years before 2008.

DISCUSSION

Radiocarbon measurements, tree demographics,

and the presence of stems and charcoal near the

interface of the organic and mineral soils provide

evidence that wood buried has been dead for 250–

500 years (Figure 1). Such buried DW longevity is

far longer than aboveground DW is expected to

persist. Following stand replacing natural distur-

bance of mature balsam fir or black spruce in

Newfoundland and Labrador, dead trees fall to

become woody debris that typically decays and

fragments completely within 70 years (Moroni

2006; Hagemann and others 2009). Buried wood

dead for 250–500 years is indicative of DW pres-

ervation upon burial.

The 14C ages of buried DW reflect the time since

wood C was photosynthetically fixed from atmo-

spheric CO2, which our results indicate was up to

515 years before sampling. The average maximum

lifespan of black spruce trees is about 200 years,

but trees as old as 280 years have been reported

(Fowells 1965; Vincent 1965). The oldest buried

stems at Cape Caribou V have been dead for at least

170 years (450 years median age (Table 1)—280

years maximum black spruce age; Table 2), but

probably not less than 250 years (450 years median

age—200 years average maximum black spruce

age). However, only wood removed from the cen-

ter of the base of a buried tree would have been

part of the living tree for its entire lifetime. At our

study sites, all samples were taken from 10–15-cm-

diameter horizontal-lying stems (Figure 2), that is,

wood fixed sometime after the tree began to grow.

In addition, buried trees of this stem size are not

likely to have achieved their maximum age. Thus,

buried trees from the Cape Caribou Va and b forests

are likely to have been dead for more than

250 years and potentially as long as 515 years

(Table 1).

Charcoal was identified on buried DW at all three

sites, and was found on the surface of Cape Caribou

V samples (Figure 2). Charred wood that is buried

for centuries is indicative of significant original

charring that likely resulted from intense stand-

replacing fires that consumed the organic layer and

allowed snags to fall to the mineral soil surface.

These snags likely form much of the enormous

abundance of buried wood encountered in the

study sites (Table 1; Figure 1). The timing before

present of the last stand-replacing fire at Cape

Caribou V is clearly older than the age of the cur-

rent forest (204 years). In addition, regeneration

delays of decades are not unusual following intense

fires in Labrador (compare Hagemann and others

2009). These forest dynamics support the 14C-age

evidence that buried wood has been dead for more

than 250 years.

A surprising degree of preservation is required for

wood that has been dead more than 250 years to

remain at Decay Class 4 (Table 2). Further to this,

rates of buried wood decay are likely slower than

those indicated by this decay class and time since

death, because DW probably decayed before it fell

to the ground and became buried.

Snag longevity for black spruce is about 25 years

in Labrador (Hagemann and others 2009) where a

snag is likely to stand until it begins to lose struc-

tural integrity at approximately Decay Class 3

(Table 2). Once DW falls, burial appears to result

from bryophyte groundcover overgrowth in Lab-

rador (Hagemann and others 2009), a process

requiring woody debris to make ground contact.

Initially, fallen woody debris is often elevated

from the forest floor and does not sag to the ground

until it has significantly decomposed (Decay Class

3 or greater, Natural Resources Canada (2009);

Table 2). Thus, even if DW fell relatively unde-

cayed, it likely progressed to a higher Decay Class

before burial. Cape Caribou Va and b samples likely

progressed from Decay Class 1 to 3 in the first

few decades following tree death as unburied DW,

and from decay class 3 to 4 or higher in the fol-

lowing 2–5 centuries as buried wood.

In humid boreal forests, a combination of factors

appears to favor enhanced preservation of buried

wood including a cool growing season, high annual

precipitation, microtopography that enhances

moist conditions, a long fire-return interval, and

vigorous bryophyte growth in the ground layer

(Hagemann and others 2009). Bryophytes form a

dense mat of groundcover in many boreal forests

(Larsen 1980), which has been long recognized to

decrease temperatures, increase moisture content,

and reduce nutrient availability in soils (Tamm
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1953; Oechel and van Cleve 1986). Vigorous moss

growth is required to overgrow downed DW, which

is further optimized in cool wet climates (Wilton

1964; Bisbee and others 2001). Microbial activity is

slowed in cool conditions and wet bryophyte

groundcover can further promote soil heat loss

(Oechel and van Cleve 1986; Prescott and others

2000; Hermann and Prescott 2008). In addition, a

wet organic layer can act as a fire retardant (Kas-

ischke and Johnstone 2005; Manies and others

2005), increasing fire-return intervals and pro-

moting DW preservation between fire events. Hu-

mid coniferous forests are common throughout the

circumpolar boreal forests (Ahti and others 1968;

Hämet-Ahti and others 1974; Ecoregions Working

Group 1989) and at higher elevations south of the

boreal biome (Clark and others 1998; Zielonka and

Niklasson 2001). Thus, DW burial and long-term

belowground persistence may be more common

than previously considered. The presence or ab-

sence of a bryophyte ground layer and its associ-

ated characteristics may be overlooked as an

important soil C stabilization factor (Swift and

others 1979; Moore and others 1998; Prescott

2000).

In coniferous forests with small-diameter trees,

DW is commonly reported to be a short-term C

pool (for example, Moroni 2006). However, in cool

humid coniferous ecosystems downed DW may

become an important C store following burial. This

mechanism and C pool have received little atten-

tion to date and the transfer of unburied woody

debris stocks to buried DW has been previously

attributed to decay and atmospheric flux. It may be

important to consider the loss of aboveground DW

habitat to burial in habitat availability studies (for

example, for small birds in Labrador; Simon and

others 2002), and to examine the role of buried

wood as habitat for soil fauna or burrowing

organisms, which to the authors’ knowledge is yet

to be described. We suggest that accounting for DW

burial in black spruce forests and similar forest

ecosystems would be a step toward accurate

accounting and modeling of forest C cycles (Kurz

and others 2009) in forests where buried wood is a

potentially large and long-lived C pool.
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5 Synthesis and Discussion

5.1 Critical Review of Study Methodology

5.1.1 Site Selection

All selected sites are located within independent forest polygons distributed throughout
Ecozone 6, Ecodistrict 452, with a maximum distance between sites of <50 km, and were
selected based on a number of criteria: forest type, disturbance history, level of maturity at
disturbance, and productivity range, thus decreasing between site variability. The relative
proximity of the sites adds strength to comparisons between sites of different disturbance
history, especially when compared with the geographical distribution of sites in other studies.
For example, Sturtevant et al. (1997) examined WD in NL balsam fir-dominated forests
following harvesting, sampling sites from western to central NL, and crossing recognized
ecozones and climate gradients, and Krankina and Harmon (1995) examined dynamics
of deadwood in Russian boreal forests by combining data collected from closed forests of
medium to high productivity. The range in site conditions and subsequently the climatic
and geological variability of this study is thus comparable to or lower than that of similar
studies, aiming to minimize unavoidable but undesired site effects. Nevertheless, to ensure
independence of observations, effects of clustering of the selected study sites were analyzed
by introducing a clustering variable (‘Forest Area’) into the hierarchical nested linear mixed
model analysis of deadwood stocks along the harvesting chronosequence (Hagemann et al.
2009). ‘Forest Area’ was not a significant explanatory variable, indicating that site clustering
did not introduce artefacts.

One of the selected study sites featured a spatial mix of medium and poor site productivity
classes (Echo Lake I; Table 3.2), possibly associated with lower live tree biomass prior to
harvesting than at the other recently harvested sites. In consequence, deadwood, organic
layer, and mineral soil C stocks were expected to be lower compared to the other sites of
this stratum, because of lower input rates of dead organic matter. Collected C data of the
Echo Lake I site reflected the expected differences, particularly with respect to organic layer,
mineral soil, and total ecosystem C stocks (Hagemann et al. 2010c). This illustrates the
long-term effect of site productivity on net primary productivity and biomass input into the
DOM C pools (Kane et al. 2005), and subsequently the need to select study sites with
more or less identical site productivity levels for studying the forest C cycle.
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5.1.2 Chronosequence Approach

Chronosequences, i.e. series of similar sites differing in time since disturbance, are often used
in ecological studies when investigating long-term temporal dynamics that are difficult to
identify through short-term experiments at individual sites (Pickett 1989, Yanai et al.
2000, Fukami and Wardle 2005). Chronosequences created by direct space-for-time
substitution are built on the assumption of site similarity with respect to all factors (Yanai
et al. 2000, 2003; e.g., in this study, slope, climate, geology, soil type, and stand structure)
but the factor being examined, i.e. time since disturbance (Diochon et al. 2009). The
most serious limitation and source of error of this particular chronosequence approach is
thus the effect of unknown variation in any of the above-mentioned factors on the temporal
dynamics of interest (Yanai et al. 2000, Fukami and Wardle 2005). The weaknesses
of direct space-for-time substitution may be counteracted by (i) site replication (spatial
replication),(ii) resampling (temporal replication) or long-term observation, (iii) multi-region
or multi-species comparison, and (iv) sampling design accounting for within-site spatial
variability (Yanai et al. 2003, Diochon et al. 2009).

Chronosequences of forest stands are often not replicated due to a lack of comparable sites
(e.g., Wang et al. 2003, Bond-Lamberty et al. 2004b, Howard et al. 2004, Bond-
Lamberty et al. 2006, Boulanger and Sirois 2006, Czimczik et al. 2006); particu-
larly sites supporting mature or old-growth stands unaffected by recent disturbances used as
reference (Diochon et al. 2009). Benefiting from the remote location of central Labrador,
this study was based on a threefold-replicated chronosequence of harvested stands and three
replicates of old-growth reference stands. Three accessible and comparable burned sites cor-
responding to the recently and older harvested sites could not be identified, therefore limiting
the originally planned post-fire chronosequence to three middle-aged burned sites. The site
replication captured the spatial variability at the landscape level, thus reducing possible
erroneous inferences from the chronosequence due to between-site differences. Within-site
variability was captured by multiple replicates of all plots and transects.

Temporal replication, i.e. resampling of the chronosequence, or long-term observation of the
study sites may be the most powerful tool to minimize errors related to the chronosequence
approach (Fukami and Wardle 2005), but cannot be implemented within a 4-year project.
In anticipation of follow-up studies, precise GPS coordinates of all sites have been recorded
and selected study sites have been permanently marked to allow for resampling. An extension
of the chronosequence to other ecoregions would also have exceeded the scope and resources
of this study. However, the current study was developed as a counterpart to a similar
chronosequence study of deadwood and C stocks in insular Newfoundland (Moroni 2006).
Another study was recently completed in Nova Scotia (Moroni and Ryan 2010). Selected
results of this study can thus be directly compared to more southerly ecoregions and to
other species (e.g., balsam fir, sugar maple (Acer saccharum Marsh.), yellow birch (Betula
alleghaniensis Britt.), beech (Fagus grandifolia Ehrh.), and red maple (Acer rubrum L.).
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5.1.3 Buried Wood Sampling

The triangular-trench sampling design employed to assess buried wood abundance in the
Hagemann et al. (2010a) study was based on the line intersect method originally devel-
oped by Warren and Olsen (1964), which is considered a reliable method for assessing
downed linear structures such as woody debris (van Wagner and Olsen 1964, Affleck
2010). Various modifications of the original method have been tested, particularly with
respect to the number, length, and layout of the transects (Marshall et al. 2000,
Oehmichen 2007, Affleck 2010). It cannot be assumed that all woody debris ori-
entation angles are equally present within a site, because windfall or logging may result in
an orientation bias, i.e. a predominant direction of alignment (Marshall et al. 2003).
van Wagner (1982) emphasizes that equilateral triangle transects with a random starting
point and initial direction significantly reduce maximum errors due to orientation bias while
minimizing walking distance during sampling. The application of a sampling methodology
chosen in consideration of the characteristics of the studied ecosystem component (buried
wood) rather than the NFI point-sampling method resulted in a significant reduction of the
coefficient of variation from 77% (Hagemann et al. 2009) to 30% (Hagemann et al.
2010a), and thus reliable estimates of buried wood abundance.

5.1.4 Deadwood Respiration Measurements

Representative measurements of woody and buried wood respiration in the selected sites
would ideally have included samples from all decay and size classes, which would have re-
sulted in reduced replications or measurements spread over several days. Therefore, stan-
dardized sample pieces were used to minimize between-log variability and allowed for the
detection of disturbance-induced differences in respiration. Although prior to sampling, all
logs were classified as black spruce decay class 2 logs, wood densities calculated based on
absolute dry weight (307–517 kg m−3; data from Gleißner 2009) after measurements had
terminated considerably exceeded the average density of NFI decay class 2 black spruce wood
(340 kg m−3; Natural Resources Canada 2010a). The range of wood densities deter-
mined for logs visually classified by several professionals as having the same decay status
raises questions regarding the accuracy of visual decay classifications and their assessment
attributes with respect to the representation of ther actual deadwood decay status (Brown
2002). Previously, Campbell and Laroque (2007) reported that the visually assessed de-
cay status is not related to time since tree death, likely due to large variability in live wood
density and/or the considerable heterogeneity of within-log decay progress observed by Pyle
and Brown (1999). The use of ex situ standardized samples (e.g., non-decayed wood stakes
or cellulose sticks) in future deadwood respiration studies may minimize between- and within-
log variability of wood density and decay status, but will require long, possibly multi-year
incubation times to allow for the colonization of sample logs by site-specific decomposer
communities.
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Woody debris respiration measurements themselves were an additional source of variability.
First, the unearthing of buried wood sample logs was associated with changes in the CO2 con-
centration gradient, because the air entrapped in organic layer pores (580–780 µmol mol−1)
features considerably higher CO2 concentrations than ambient air (385 µmol mol−1; Pumpa-
nen et al. 2003). A sudden increase in the CO2 concentration gradient may result in short
flushes of CO2, i.e. high initial respiration rates (Davidson et al. 2002). At the same
time, buried wood sample logs are subjected to drastically warmer temperature regimes dur-
ing measurement, which may artificially enhance respiration rates; an effect which becomes
more pronounced with increasing measurement duration. As initially high respiration rates
and subsequent tapering off were not observed in 5-minute test measurements, measurement
duration was set to 3 minutes and logs were replaced in their original position as quickly as
possible (‘just-in-time’) to minimize changes in log temperature and associated respiration
artefacts.

Measurements of woody debris and buried wood respiration could not be conducted syn-
chronously at all sites due to logistic constraints. Although the woody debris or buried
wood plots of all strata were measured within one day, respectively, time of measurement
introduced a measurement bias due to diurnal temperature dynamics. Sampling order of the
three strata and the sites within the strata was therefore changed for each measurement date,
aiming to ensure that each stratum was measured similar times in the morning (9:00–12:00
h), noon (12:00–15:00 h), or afternoon (15:00–18:00 h; Gleißner 2009). Bias due to sam-
pling order was thus minimized, and a maximum range of environmental parameters (e.g.,
temperatures) was captured throughout the measurement season. Between-strata differences
were likely enhanced on some dates while being masked on others. Significant differences
between the strata are considered reliable and conservative, because the remaining time-
of-measurement bias increased data variability, thus decreasing the likelihood of stochastic
differences to be statistically significant. In order to clearly separate effects of disturbance
history from sampling biases, ‘Time of measurement’ was included as an independent fac-
tor in the linear mixed model analysis, thus separating impacts of disturbance history and
environmental variables from confounding impacts of measurement time.
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5.2 Humid Boreal Forests - A Rare Ecosystem Group?

Results of this study show that more or less poorly drained humid black spruce forests in
Labrador feature certain ecological processes, such as the bryophyte-driven burial of woody
debris, which distinguish this forest type from other boreal and non-boreal forests. Certain
moss species have been recognized as “ecosystem engineers” due to their controls on soil
climate and decomposition processes (Shetler et al. 2008, Lindo and Gonzalez 2010)
and receive increasing scientific attention (Vitt et al. 2001, Turetsky 2003, Harden
et al. 2009, O’Donnell et al. 2009b). However, few studies in boreal forests have
reported on buried wood (Brais et al. 2005, Manies et al. 2005, Moroni 2006),
which was first observed in mountain forests dominated by yellow birch, red spruce (Picea
rubens Sarg.), balsam fir, and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco; McFee
and Stone 1966, Harvey et al. 1981, Lang et al. 1981). However, studies linking the
presence of buried wood to the presence of vital bryophytes, climate, soil characteristics, or
ecosystem type in general are lacking. The question thus arises as to how far the results of
this study are applicable to other ecosystems within (e.g., forests dominated by balsam fir
or jack pine) and outside (e.g., mountain forests) the boreal biome, and as to how far they
can be extrapolated to a larger scale.

Independent of latitude, species composition, or soil type, some boreal forest types exhibit
common features, such as an extensive ground cover of bryophytes, elevated organic layer
and soil moisture contents. These are indicative of the occurrence of processes such as
woody debris burial and/or paludification, thus justifying the classification of these boreal
forests as a functional ecosystem group, i.e. a group of ecosystems from various ecoprovinces,
ecoregions, or ecodistricts exhibiting similar dynamics (Environment Canada 2010b).
The control of bryophytes on soil climate and decomposition dynamics takes effect mostly
via elevated moisture levels (Turetsky 2003, Lindo and Gonzalez 2010). Hence, this
functional ecosystem group could be termed “humid boreal forests”, similar to the termi-
nology used to describe the climate of the Labrador study sites as a perhumid, i.e. very
humid, high-boreal ecoclimate (Environment Canada 2010b). A national Canadian
forest ecosystem classification scheme is still under development (Natural Resources
Canada 2010b). However, various provincial forest ecosystem classification systems exist
(e.g., for Newfoundland and Labrador by Wilton 1964 and Meades and Roberts 1992),
classifying the Canadian boreal forest into specific forest types based on vegetation and soil
characteristics. Similarly, Russian spruce forests have been classified into five main spruce
communities, of which the three most common ones feature continuous carpets of bryophytes
as relevant ecological components (Sukachev 1928). However, to the author’s knowledge,
humid boreal forests are not a separately defined entity in any of these provincial, national,
or international classification schemes, and potentially encompass various coniferous forest
types across moist, wet, and very wet ecosystem series (e.g., Sukachev 1928, Meades and
Roberts 1992).
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Based on the results from Labrador and a comprehensive literature review, humid boreal
forests may be tentatively defined as “boreal forest ecosystems featuring a bryophyte-
dominated ground vegetation layer associated with low soil temperatures, high
moisture levels, low dead organic matter decomposition rates, and subsequently
– in the absence of stand-replacing disturbances – an accumulation of buried
wood embedded in a thick organic layer”. The following ecosystem characteristics
could be possible parameters for refining this definition in the course of future research by
means of quantitative classification thresholds:

. Ground vegetation: The ground vegetation layer of humid boreal forests is dominated
by vital bryophytes, which alter the moisture and temperature regime of the organic
layer and mineral soil, contribute considerably to ecosystem productivity, nutrient and
C cycling, and decrease organic matter decomposition rates (Harden et al. 1997,
Turetsky 2003, Lindo and Gonzalez 2010). Bryophytes are also components of
less humid systems (Lindo and Gonzalez 2010), possibly resulting in the occurence
of bryophyte-driven processes outside of the boreal biome.

. Moisture regime: Humid boreal forests feature high organic layer and soil moisture
levels resulting from (a) high annual precipitation, as typical of oceanous climates
(e.g., Atlantic Coast of Canada and Norway), (b) poor soil drainage due to soil type
or topography (e.g., podzols or Canadian Clay Belt), or (c) a combination of these, as
found in Newfoundland and Labrador.

. Temperature regime: Humid boreal forests feature low mean annual temperatures re-
sulting in short growing seasons, possibly discontinuous permafrost, moderate forest
productivity, and dead organic matter accumulation (Swanson et al. 2000, Turet-
sky et al. 2005).

. Organic layer: As a result of the moisture and temperature regime and the presence
of bryophytes, humid boreal forests feature a thick organic layer which, in the absence
of large-scale disturbances, continuously accumulates, thus driving the paludification
process and decreasing site productivity (Simard et al. 2007, 2009).

The studied black spruce sites in Labrador can thus be considered a typical example of the
above-defined humid boreal forest ecosystem group, featuring high annual precipitation, low
mean annual temperature, moderately well-drained podzols, bryophyte-dominated ground
vegetation, and thick organic layers. It must be noted that certain mountain, i.e. oroboreal,
forests may also feature the characteristics listed above (Lang et al. 1981, Zielonka
2006), and could therefore be considered humid boreal forests. Following an accepted defini-
tion of humid boreal forests as a functional ecosystem group, its distribution can be mapped
and its national and global relevance evaluated in the context of land cover or C cycling.
The parametrization of forest C models may be thus improved, and the implementation of
management recommendations developed in consideration of the characteristics of this new
ecosystem group can be initiated (e.g., Hagemann et al. 2010b).
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Humid boreal forests could be mapped based on a combination of climate and bryophyte dis-
tribution maps identifying ecosystems where bryophytes contribute considerably to ecosys-
tem primary productivity (Peckham et al. 2009). However, bryophyte cover is not
continuously estimated in most forest inventories, e.g., the Canadian NFI (Natural Re-
sources Canada 2010a). Although differences in spectral properties between feather-
mosses and Sphagnum have been reported (Bubier et al. 1997), bryophyte mapping
based on airborne sensors is still under development (Rapalee et al. 2001, Peckham
et al. 2009). In Canada, the distribution of humid boreal forests can be approximated us-
ing the Advanced Very High Resolution Radiometer (AVHRR) Land Cover Map of Canada
(Rapalee et al. 2001; Figure 5.1). Based on the descriptions of the AVHRR land cover
classes (Steyaert et al. 1997), classes featuring a ground cover dominated by mosses can
be identified and mapped, as previously done for the BOREAS Southern Study Area (Ra-
palee et al. 2001). For example, in Figure 5.1, bryophyte ground cover is associated with
AVHRR classes 1–5, 7–9, and 13–15. Although insufficient spectral and spatial data reso-
lution limits the applicability of the derived bryophyte distribution data at smaller scales,
maps with a 1-km to 10-km resolution will provide crucial information for forest ecosys-
tem modelling at regional and national scales (Rapalee et al. 2001, Peckham et al.
2009). The bryophyte distribution map could be further refined by incorporating digital
elevation models and soil type or drainage maps, which add spatially explicit information on
topography, wetland cover, permafrost distribution, and hydrological controls on vegetation
(Bisbee et al. 2001, Turetsky et al. 2005). Despite limited fine-scale resolution, it
is obvious that bryophytes cover large parts of the boreal landscape, e.g., more than 60% of
the 11,298-km2 BOREAS Southern Study Area (Rapalee et al. 2001), thus influencing
C cycling at large scales (Lindo and Gonzalez 2010). A similar extent of bryophyte oc-
currence can be expected for Scandinavia and Russia, because the boreal biome is a mosaic
of variably drained forests, upland forests, and true wetlands (Apps et al. 1993, Bhatti
et al. 2006). Therefore, humid boreal forests are potentially an ecosystem group of global
relevance with respect to land cover and C cycling (Bond-Lamberty et al. 2007a).

5.3 The Fate of Deadwood in Humid Boreal Forests

Deadwood dynamics are linked to the most important processes operating in forest ecosys-
tems. Amounts and characteristics of deadwood depend on tree net primary productivity,
mortality, and breakage due to self-thinning, senescence, and disturbances, while deadwood
residence time is mainly influenced by deadwood characteristics such as species or dimen-
sions, by climate, and by decomposer abundance and activity (Harmon et al. 2004,
Laiho and Prescott 2004). A potential classification of humid boreal forests as a sep-
arate ecosystem group thus ought to be justified by deadwood dynamics that differ from
those of other boreal forests, e.g., the accumulation of large amounts of buried wood.
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5.3.1 Deadwood Creation

Forest diameter structure is likely more important in determining aboveground deadwood
abundance than climate (Harmon et al. 2004, Hagemann et al. 2009). Small-treed
old-growth and mature boreal forests throughout North America featured similar amounts of
aboveground deadwood (Bond-Lamberty et al. 2003, Moroni 2006), while larger-treed
old-growth forests in Scandinavia composed of Scots pine (Pinus sylvestris) or Norway spruce
(Picea abies) contained considerably larger amounts of woody debris and snags (Linder
et al. 1997, Siitonen et al. 2000, Karjalainen and Kuuluvainen 2002, Rouvinen
et al. 2002). Abundance of aboveground deadwood in Labrador was in the lower range
of values reported for old-growth boreal forests composed of similar-sized trees (Bond-
Lamberty et al. 2003, Manies et al. 2005, Brais et al. 2005, Moroni 2006,
Hagemann et al. 2009), because of the relatively low live tree biomass (Bhatti et al.
2003, Wang et al. 2003, Hagemann et al. 2010c) and the low stand density typical
of Labrador black spruce, which is associated with the creation of very small amounts of
deadwood in the course of self-thinning (Roberts et al. 2006).

Similar to other boreal forests, stand-replacing disturbances are the main drivers of dead-
wood creation in humid boreal forests, creating large amounts of deadwood in single events.
Clearcut harvesting, for example, generally produces large amounts of <10 cm woody debris
in small-treed boreal forests (Mattson et al. 1987, McRae et al. 2001, Moroni 2006,
Hagemann et al. 2009). Contrarily, wildfire typically generates large amounts of snags
which subsequently collapse, thus contributing to a peak of fire-generated woody debris 20–
30 years after fire (McRae et al. 2001, Pedlar et al. 2002). Harvest-generated woody
debris is generally smaller and shorter than woody debris originating from fire-generated
snags (Densmore et al. 2004, Stevenson et al. 2006), which often retains little bark
and features charred surfaces (Mackensen and Bauhus 2003, Manies et al. 2005).
Differences in deadwood creation and its characteristics are thus more pronounced between
disturbance types than between humid and other boreal forests.

5.3.2 Deadwood Reduction

In contrast, processes of deadwood reduction such as fragmentation, leaching, decomposition,
and burial are influenced by disturbance and ecosystem type, i.e. by climate. Decomposition
is a microbially-driven process that intensifies with increasing temperature (Boddy 1983a,
Liu et al. 2006, Peng et al. 2008), resulting in generally lower deadwood decomposition
rates in colder regions (Coûteaux et al. 1995, Kirschbaum 1995). Moisture has
been identified as the second main driver of the decomposition process, inhibiting it at
low and high moisture levels (Boddy 1983b, Progar et al. 2000, Jomura et al.
2008). Given similar temperature regimes and tree species, deadwood decomposition rates
are therefore reduced where deadwood moisture content is either too low or too high to
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sustain the biological activity of a vital decomposer community (Griffin 1977, Boddy
1983b, Sollins et al. 1987, Chambers et al. 2001). For example, snags generally
feature low moisture contents and thus low decomposition rates (Wei et al. 1997, Naesset
1999, Boulanger and Sirois 2006). Median snag falldown rates vary between 16 and 40
years regardless of ecosystem type (Lee 1998, Storaunet and Rolstad 2004, Aakala
et al. 2008), but with a tendency towards lower falldown rates in dry post-fire conditions
(Boulanger and Sirois 2006). At the other end of the moisture scale, respiration rates
of moist to wet woody debris in old-growth Labrador humid boreal forests were lower than
reported for similar but drier woody material in field and laboratory analyses at various
temperatures (Wang et al. 2002, Bond-Lamberty et al. 2003, Hagemann et al.
2010b). In the absence of stand-replacing disturbances, humid boreal forests therefore likely
feature lower deadwood decomposition rates than warmer and drier boreal forests.

Disturbances such as clearcut harvesting and wildfire alter ecosystem temperature and mois-
ture regimes and thus the decomposition environment. Organic layer temperatures generally
increase post-disturbance due to canopy removal, while moisture levels can increase due to
lower plant transpiration (Elliot et al. 1998) or decrease due to higher evaporation
(Londo et al. 1999), depending on factors such as forest type, aspect, or slope (McRae
et al. 2001). Despite generally high ecosystem moisture levels, summer respiration of
woody debris in burned Labrador black spruce forests was limited by high woody debris
temperatures and moisture contents below the fibre saturation point (Hagemann et al.
2010b), reflecting increased forest floor temperatures and evaporation rates following canopy
removal by wildfire (McRae et al. 2001, Jomura and Dannoura 2006). In drier
boreal forest types, such as found in Alaska, this moisture-induced limitation of woody de-
bris respiration is likely even more pronounced (Jomura and Dannoura 2006). Fire
also changes the wood decomposability by charring the wood surface, which is subsequently
transformed into a decay-resistant shell, i.e. “case-hardened”, due to below-fibre saturation
moisture levels and excessively high air temperatures following fire (Marra and Edmonds
1996, Mackensen and Bauhus 2003, Manies et al. 2005). Although charcoal is very
resistant to decomposition (Zackrisson et al. 1996, Kane et al. 2007), evidence of the
effect of charring on the decomposition of woody debris is ambiguous (Shorohova et al.
2008). While decomposers that penetrated the charred wood surface through cracks may be
favoured by increased wood temperatures (Mackensen and Bauhus 1999), wood desicca-
tion due to increased evaporation limits decomposer activity, resulting in low decomposition
rates of burned wood and/or bark (Shorohova et al. 2008). Woody debris decomposi-
tion rates in burned boreal forests may therefore be considerably lower than in comparable
old-growth forests.

Clearcut harvesting also removes the forest canopy, resulting in higher forest floor and woody
debris temperatures (McRae et al. 2001, Progar et al. 2000, Hagemann et al.
2010b). However, individual mature trees, tree regeneration, and vascular plants remain-
ing on site provide shading and decrease wind movement (Keenan and Kimmins 1993),

109



5 Synthesis and Discussion 5.3 The Fate of Deadwood in Humid Boreal Forests

thus reducing the heating and drying of woody debris and the organic layer (Prescott
et al. 2004, Devine and Harrington 2007, Moroni et al. 2009). The higher degree
of preservation of the bryophyte layer during harvesting and its rapid recovery following
harvesting also counteract the desiccation of woody debris by means of moisture retention,
vertical and lateral water transfer, and moisture-induced cooling (Devine and Harring-
ton 2007, Jomura et al. 2008, Hagemann et al. 2010a). In clearcut humid Labrador
black spruce, post-harvest woody debris respiration rates were therefore significantly higher
than in old-growth stands (Hagemann et al. 2010b). This effect will be less pronounced
in drier boreal forests where woody debris is more likely to dry out due to lower ecosystem
moisture levels. The impacts of disturbances on deadwood decomposition thus mainly de-
pend on the disturbance type, but the magnitude of these effects differs between different
ecosystem types depending on the prevalent temperature and moisture regime.

5.3.3 Bryophyte-driven Burial of Woody Debris

Aboveground woody debris stocks in humid Labrador black spruce stands not only decrease
by the commonly acknowledged pathways of decomposition, fragmentation, and leaching
(Mackensen and Bauhus 1999, Zhou et al. 2007), but also by bryophyte-driven burial
(Hagemann et al. 2009, 2010a). Although woody debris burial is a poorly documented
process (Section 4.6) that has been observed in boreal and oroboreal forests globally (McFee
and Stone 1966, Harvey et al. 1981, Lang et al. 1981, Brais et al. 2005, Manies
et al. 2005, Moroni 2006), evidence suggest that the burial process encompasses two
phases: I) a considerable decrease in the woody debris decomposition rate and thus the
initiation of preservation after its surface has been colonized by a thin layer of live moss
(initialization phase), and II) the slow enveloping of woody debris in dead moss and tree
litter as the organic layer accumulates (burial phase; Figure 5.2; Hagemann et al. 2010a).

Figure 5.2: Simplified graph of the two phases of the woody debris burial process. Illustration simplifiée des deux
stages du processus de l’enterrement de bois mort.

The occurrence of buried wood principally requires the presence of a vital bryophyte layer
which can overgrow woody debris before it has completely decomposed (Hagemann et al.
2010a). Woody debris burial can thus occur only under temperature and moisture conditions
that increase bryophyte growth and decrease woody debris decomposition rates to the point
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where bryophyte colonization and growth rates exceed woody debris decomposition rates.
These conditions are typical of humid boreal forest ecosystems featuring expansive bryophyte
ground cover, low decomposition rates, and paludification dynamics (Preston et al. 2006,
Simard et al. 2009, Lindo and Gonzalez 2010). However, they may also occur in other
less cool and humid forest ecosystems outside of the boreal biome, resulting in different
degrees of burial efficiency and buried wood preservation.

The efficiency of the burial process likely increases with increasing bryophyte productiv-
ity, decreasing decomposition rates, and increasing abundance of woody debris available
for burial (Hagemann et al. 2010a, Moroni et al. 2010). The amounts of buried
wood observed in Labrador humid boreal black spruce forests may thus be among the high-
est possible, due to the combination of low annual temperature, high moisture levels, low
decomposition rates, high bryophyte productivity, and abundance of woody debris (Hage-
mann et al. 2010a). Ecosystems which are drier, warmer, or significantly colder will likely
have less buried wood due to lower bryophyte productivity, higher decomposition rates and
vascular plant dominance, or less abundant woody debris, respectively. Future studies should
therefore investigate sites located along gradients of the most important factors determining
occurrence and efficiency of woody debris burial, e.g., from humid to dry. In the absence of
recent disturbances, the presence of large amounts of buried wood may thus help in defining
humid boreal forests as a functional ecosystem group by means of quantitative tempera-
ture and moisture-related variables, because the presence of buried wood is indicative of
bryophyte-regulated deadwood, organic layer and soil C cycles (Botting and Fredeen
2006, Simard et al. 2007, Turetsky et al. 2010).

The duration of buried wood preservation will likely also differ between ecosystems along
temperature or moisture gradients. While buried wood preservation appears to be initiated
by a live moss cover, the degree of preservation is expected to not only depend on tempera-
ture and moisture regimes, but also on disturbance frequency (Hagemann et al. 2010a,
Moroni et al. 2010). Cool and moist organic layer conditions result in low buried wood
respiration and decomposition rates (Hagemann et al. 2010a), and subsequently long-
term accumulation and preservation of buried wood over several centuries (Moroni et al.
2010). Disturbances, however, may interrupt the process of buried wood accumulation, thus
integrating the process of woody debris burial into the post-disturbance forest succession
cycle (Figure 5.3). Stand-replacing fires, for example, can combust most of the live moss
layer – particularly feathermosses – and a large portion of the organic layer and wood buried
within it (Smith et al. 2000, Fenton et al. 2005, Hagemann et al. 2010a).

Apart from regulating woody debris burial and preservation, bryophytes can also play a
critical role in forest succession. For example, by lowering organic layer temperatures,
bryophytes initiate the self-reinforcing paludification process leading from decreased decom-
position rates to organic matter accumulation, elevated organic layer moisture contents, in-
creased bryophyte productivity, and thus to lower organic layer temperatures; consequently
resulting in lower tree density and a decline of forest productivity (Fenton et al. 2005,
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Figure 5.3: Simplified post-fire forest succession cycle and the accumulation of buried wood in humid boreal
forests. Cycle simplifié de la succession de forêt après feu et l’accumulation du bois enterré dans les forêts boréales
humides.

Simard et al. 2007, 2009). Moreover, bryophytes reduce organic layer consumption dur-
ing wildfire by increasing organic layer moisture content, thus influencing seedbed conditions
for post-fire tree reestablishment (Greene et al. 2007, Shetler et al. 2008). Poten-
tially enhanced by charcoal (Wardle et al. 1998), feathermosses recolonize burned sites
within 30–70 years following fire (O’Neill et al. 2006, Longton 2009), by trend faster
under moist conditions (Kershaw et al. 1994). Fire-created woody debris can persist up
to 70 years (Bond-Lamberty et al. 2003, Moroni 2006, Hagemann et al. 2009).
Hence, large amounts of case-hardened woody debris are available for burial several decades
following fire (Figure 5.3).

Following clearcut harvesting, moss cover and growth potentially recover within 5 years fol-
lowing harvest (Nguyen-Xuan et al. 2000, Fenton et al. 2003, Palviainen et al.
2005a). In Labrador, where post-harvesting woody debris moisture levels were sufficient
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for woody debris to support decay fungi, woody debris respiration rates were higher un-
der warmer post-harvest than under pre-harvest old-growth conditions (Hagemann et al.
2010b). Higher woody debris decomposition rates post-harvest (Progar et al. 2000,
Hagemann et al. 2010b) are thus balanced by a faster recovery of the bryophyte layer
(Palviainen et al. 2005a). Therefore, burial likely considerably contributes to the disap-
pearance of harvest-generated woody debris in less than 50 years following harvest in humid
Labrador black spruce (Hagemann et al. 2009). In humid boreal forests, the two domi-
nant disturbance types therefore produce large amounts of woody debris available for burial,
accumulation, and preservation over several fire return intervals (Hagemann et al. 2010a,
Moroni et al. 2010).

5.4 Attributes of the Humid Boreal Forest Carbon Cycle

5.4.1 Bryophyte-regulated Carbon Dynamics

In addition to altering the deadwood cycle, bryophytes also significantly influence forest
ecosystem C cycling by contributing to net primary productivity, sequestering C in highly
recalcitrant litter, regulating soil climate, and influencing disturbance severity (Turetsky
2003, Manies et al. 2005, Shetler et al. 2008, Lindo and Gonzalez 2010, Turet-
sky et al. 2010). Live bryophyte C stocks are generally small compared to total ecosystem
C stocks (Vogel and Gower 1998, O’Connell et al. 2003). E.g., humid Labrador
black spruce contained live moss C stocks of ∼0.7Mg C ha−1 (Figure 4.2) vs. total C stocks
of 186–280 Mg C ha−1 (Hagemann et al. 2010c).

Despite being a relatively small-sized C pool, the live bryophyte layer contributes consid-
erably to the forest–atmosphere CO2 exchange (Goulden and Crill 1997, Morén and
Lindroth 2000, Botting and Fredeen 2006, Kolari et al. 2006), and has a dis-
proportional effect on organic layer, buried wood, and mineral soil C stocks. By increasing
moisture levels, decreasing temperature, and adding recalcitrant litter, bryophytes reduce
organic layer and mineral soil decomposition rates (Hobbie et al. 2000, O’Donnell
et al. 2009a, Turetsky et al. 2010), thus determining patterns of soil C storage at
landscape and regional scales (Turetsky et al. 2005) and driving the accumulation of
organic matter C in a “globally significant magnitude” (Simard et al. 2007, Lindo and
Gonzalez 2010). Consequently, organic layer C stocks in humid Labrador black spruce
stands were in the upper range of values reported for drier and warmer boreal forests, and
mineral soil C stocks of moderately well-drained black spruce forests in Labrador largely
exceeded values observed in drier upland boreal forests (Howard et al. 2004, Martin
et al. 2005). The effects of bryophytes on organic layer and mineral soil C stocks become
more pronounced with deteriorating soil drainage, eventually resulting in the conversion
of humid boreal forests to peatlands by progressing successional paludification (Harden
et al. 2000, Fenton et al. 2005, Simard et al. 2009).
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Apart from altering organic layer and mineral soil C stocks, bryophytes also initiate the
formation of the buried wood C pool, which to date has been considered in few forest
ecosystem C studies (Moroni 2006, Hagemann et al. 2009, 2010c). Buried wood C
stocks may amount to more than half of organic layer C stocks (Hagemann et al. 2009,
2010c), thus likely contributing significantly to the humid boreal forest C budget at a larger
scale. The aboveground deadwood C pool is commonly reported to be a short-term C
pool in small-treed coniferous forests (Bond-Lamberty et al. 2003, Moroni 2006).
In contrast, buried wood is a mid- to long-term C pool, because radiocarbon-derived ages
of up to 515 years and lower respiration rates following bryophyte colonization of the wood
surface indicate significantly slowed decomposition rates compared to unburied woody debris.
Moreover, the moisture-retaining bryophyte layer acts as a fire retardant (Kasischke and
Johnstone 2005, Shetler et al. 2008), thus promoting the accumulation of buried
wood C over the course of several forest generations (Hagemann et al. 2010a, Moroni
et al. 2010). Accounting for woody debris burial will likely improve the accuracy of C
accounting in ecosystems featuring low mean annual temperatures, high ecosystem moisture
levels, a long fire-return interval, and vigorous bryophyte growth, i.e. in humid boreal forests.

5.4.2 Carbon Modelling of Humid Boreal Forests

The particularities of the humid boreal forest C cycle, i.e. the bryophyte-regulated accu-
mulation of buried wood, organic layer, and mineral soil C, are not adequately captured in
current forest ecosystem C models (Section 2.2.3; Bond-Lamberty et al. 2007a, Simard
et al. 2007). Default CBM-CFS3 estimates, for example, attributed the reduction of woody
debris C stocks to decomposition and atmospheric flux instead of transfer to buried wood C
and considerably underestimated organic layer and mineral soil C stocks in humid Labrador
black spruce (Hagemann et al. 2010c). Similarly, the dynamic soil model YASSO largely
underestimated soil C stocks in Norway, because differential decomposition rates due to
high soil moisture levels in the subsoil were not accounted for (de Wit et al. 2006).
Given the ecological evidence provided in the previous sections, the interactive effects of
bryophytes, temperature, and moisture on forest ecosystem C pools must be considered to
more accurately model humid boreal forest C dynamics.

Water table, flow, and drainage could be introduced into forest C models from traditional
wetland models such as the Peatland Carbon Simulator (PCARS; Frolking et al. 2002).
However, these models require large sets of spatially explicit parameters that are often not
available for forest ecosystems (Bond-Lamberty et al. 2007a). Instead of modelling
water table depth and its effects on organic layer and mineral soil DOM decomposition,
soil type-specific dead organic matter decomposition rates may considerably improve model
estimates of soil C stocks (Shaw et al. 2008) while balancing the typical modelling tradeoff
between accurate complexity and uncertain simplicity (Bond-Lamberty et al. 2007a,
Kimmins et al. 2008).
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Similarly, forest C models may not need to include the small-sized bryophyte C pool as a
separate pool, which would be difficult to parameterize due to extensive uncertainties with
respect to the growth rates of various functional bryophyte groups under various moisture
and light regimes (Turetsky et al. 2010). Rather, for the CBM-CFS3 and other models,
the presence of a vital bryophyte layer in a given forest ecosystem could be captured by
adding a bryophyte module, which regulates the transfer of woody debris C to a newly
introduced buried wood C pool, reduces organic layer and mineral soil decomposition rates,
and potentially decreases tree growth rates and the likelihood of wildfire occurrence with
simulated time since disturbance (Simard et al. 2007, 2009, Hagemann et al. 2010c).

The suggested alterations of existing forest C models such as the CBM-CFS3 can only be
implemented based on adequate field data and sufficient understanding of the ecological
processes. As woody debris burial is a poorly-documented process, knowledge about the
underlying mechanisms, the chemical properties of buried wood, and the dynamics of the
buried wood C pool is limited (Harvey et al. 1981, Klinka et al. 1995, Hagemann
et al. 2010a, Moroni et al. 2010). The impacts of climate change and the associated
changes in natural and anthropogenic disturbance regimes (Section 2.1) on the long-lived
buried wood C pool and on the bryophyte layer that regulates buried wood dynamics are of
particular interest. As temperatures rise, the recovery of bryophytes following harvesting may
take longer due to increasing desiccation (Preston et al. 2006), thus possibly resulting
in higher CO2 emissions from decomposing harvest residues (Chertov et al. 2009). At
the same time, fire frequency and intensity are predicted to rise (Burton et al. 2003,
Flannigan et al. 2005, Bond-Lamberty et al. 2007b), potentially combusting a
larger portion of the C stored in the organic layer and wood buried within it. Based on
adequate data, forest C models may be used to simulate the effects of climate change and
altered disturbance regimes on buried wood and and other forest C pools, thus offering the
opportunity to develop forest management strategies aimed at minimizing C losses from and
maximizing C sequestration in humid boreal forests.
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5.5 Conclusions

The estimation of the global forest C balance for purposes of policy development relies on
accurately modelled estimates of C fluxes and pools, which in turn must be based on field-
measured data from various forest ecosystem types (Chen et al. 2000, Smith and Heath
2001). This study has investigated all major forest C pools in old-growth and disturbed high-
latitude boreal forest ecosystems that have rarely been the focus of scientific research despite
being considered highly sensitive to climate change (Davidson and Janssens 2006). The
comprehensive C stock data set of the studied forest stands was used to evaluate the CBM-
CFS3, a national-scale C budget model, with respect to its applicability to Labrador black
spruce forests and other forest types of the (yet to be defined) functional ecosystem group
of humid boreal forests. While tree and aboveground deadwood C dynamics of Labrador
black spruce were similar to those of drier or warmer boreal forests, processes related to the
C cycle of the bryophyte-dominated ground vegetation, the organic layer, and the mineral
soil differentiate these humid boreal forests from other forest ecosystems. In particular, the
large amounts of buried wood observed in the studied stands were not captured by the CBM-
CFS3, an indication of the existence of little-studied ecological processes, e.g., woody debris
burial, which are not incorporated in current forest C models.

In terms of C modelling, the burial of woody debris by vigorously growing bryophytes cor-
responds to a transfer of C from the relatively short-lived aboveground woody debris C pool
to a potentially very long-lived C pool, which is embedded in the organic layer C pool and
currently not assessed by most forest C inventories. Buried wood is thus also not included
in current forest C models, despite its potentially high abundance throughout large parts of
the boreal biome. The site-specific combination of factors that favour vigorous bryophyte
growth while limiting decomposition rates (e.g., low mean annual temperatures, short grow-
ing seasons, high ecosystem moisture levels due to high precipitation and/or insufficient
drainage, and long fire return intervals) determines the degree to which the woody debris
burial process operates in forest ecosystems. Basically, the burial of woody debris is condi-
tional upon the presence of a vital bryophyte layer that can overgrow downed woody debris
before it has entirely decomposed. Similar to the paludification process (Simard et al.
2009), bryophytes are therefore the key driver of the woody debris burial process.

Bryophytes are not only the most common ground cover type in boreal forests, but are
an integral component of many coniferous forest systems outside the boreal biome (Lindo
and Gonzalez 2010), having formed partial interdependencies with individual coniferous
tree species (Carleton and Read 1991, Kershaw et al. 1994). Many carpet-forming
bryophytes feature a high photosynthetic light-use efficiency (Whitehead and Gower
2001), thus thriving in well-shaded conditions below year-round foliated coniferous canopies
(Kershaw et al. 1994, Vogel and Gower 1998, Bisbee et al. 2001). Buried wood
may thus not only be common in the circumpolar boreal forest and at higher elevations south
of the boreal biome where bryophytes dominate the ground vegetation layer, but potentially

116



5 Synthesis and Discussion 5.5 Conclusions

also occurs in micro-habitats of mixed forests where micro-climatic conditions are favourable
for bryophyte growth and limit deadwood decomposition, e.g., on leaf-litter free hummocks,
logs, and around tree bases (Kershaw et al. 1994). The bryophyte-driven burial of woody
debris and the associated sequestration of C in a long-lived buried wood C pool thus likely
occur over a wider range of environmental conditions than previously expected (Figure 5.4)
and potentially are significant to the global C cycle.

Figure 5.4: Potential occurrence of buried wood (shaded) with respect to temperature, moisture, and selected
variables (schematic). Occurrence potentielle du bois enterré (ombré) au niveau de la température, l’humidité et
d’autres variables selectionnés (schématisé).

The contribution of the buried wood C pool to the global forest C budget can be assessed once
the distribution of forests with bryophyte-regulated deadwood, organic layer, and mineral
soil C dynamics has been determined. However, in light of changing climate and disturbances
regimes, the dynamics of the buried wood C pool and the bryophyte layer regulating its mag-
nitude will be more important than their static magnitude. The balance between bryophyte
growth and wood decomposition required for buried wood formation and preservation to oc-
cur is closely associated with forest temperature, moisture, and disturbance regimes, which
are affected by climate change, particularly at higher latitudes (Malhi et al. 1999, IPCC
2007, Kurz et al. 2008a). As a result of increased mean annual temperatures, the transi-
tion zone between boreal conifer and deciduous forests is expected to shift north (men hapin
III et al. 2000, Soja et al. 2007, Bonan 2008), likely reducing bryophyte ground cover
due to the increased input of moss-smothering leaf litter and unfavourable light conditions
during winter (Kershaw et al. 1994). Also, organic layer and buried wood decomposi-
tion rates may be enhanced (Davidson and Janssens 2006), potentially releasing large
amounts of CO2 to the atmosphere. Small changes of the forest micro-climate may thus
result in significant changes of bryophyte growth and dead organic matter decomposition,
and thus possibly altered forest CO2 emissions. At the same time, however, the northern
limit of the boreal forest zone is also expected to shift north due to altered temperature and
moisture regimes (Soja et al. 2007, Bonan 2008), potentially expanding the area of
bryophyte-dominated forest ecosystems.
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The likelihood and magnitude of changes in forest CO2 emissions from bryophyte-regulated
forest ecosystems due to changing climate and disturbance regimes may be determined using
C budget models. However, the uncertainties of these models with respect to the so-called
secondary effects of climate change (e.g., increased growing season length, CO2 fertilization,
or shifting water table) are very large. The insufficiently quantified contribution of ground
vegetation to the global C budget has also been identified as a major limitation to accurate
forest C modeling (Sellers et al. 1997). As the C balance (sink or source) is calculated as
the relatively small difference between several large C fluxes, its value may be considerably
exceeded by these uncertainties (Chen et al. 2000). In addition, existing models are of
limited use for modelling forests with bryophyte-regulated buried wood, organic layer, and
mineral soil dynamics, because the impacts of bryophytes are currently not accounted for
in most C budget models (Bond-Lamberty et al. 2007a). The adaptation of forest C
models to more accurately reflect C dynamics of bryophyte-regulated forests is thus a major
challenge.

Future research therefore needs to investigate the interaction between climate, bryophytes,
and the forest C cycle. Based on current scientific knowledge, Figure 5.4 schematically
illustrates relationships between selected variables and temperature or moisture, respec-
tively. However, numerous other factors such as topography, light regime, or tree species
composition interact with the shown variables in a highly complex biophysical system. In
addition, the relationships between these environmental variables are not overlapping in
two dimensions, but their interactions are spatially explicit and three dimensional, thus fur-
ther contributing to uncertainty in forest C stock estimates (Smith and Heath 2001).
Investigating individual processes such as woody debris burial by studying the interaction
between climate, moss productivity, and buried wood abundance by means of temperature
and moisture gradients will likely provide important impulses to improve the accuracy of
forest C models. In light of climate change, it should particularly be a research priority
to understand how bryophyte productivity and decomposition constraints will change with
increasing temperature and varying moisture regimes. This understanding will allow for the
identification of ecosystems such as humid boreal forests with the risk of potentially high
C losses to the atmosphere, and the subsequent development of counteractive management
strategies.
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5.6 Condensed Research Perspectives

While the research objectives of this study formulated in Section 2.5 have been fully ad-
dressed, study results have led to numerous other research questions. The following presents
an overview of issues that are insufficiently investigated and need to be addressed by future
research (Figure 5.5).

. Buried wood

• Sampling: Inventory methods such as point sampling or trenching are unsatis-
factory with respect to either data accuracy or sampling time and effort, respec-
tively (Hagemann et al. 2010a). Alternative, possibly non-destructive sam-
pling techniques are required and could greatly facilitate accurate and efficient
quantification of buried wood, particularly for purposes of C modelling.

• Ecology: The loss of aboveground woody debris to burial may reduce habitat
availability for certain species (e.g., Simon et al. 2002). At the same time,
buried wood may serve as habitat for a wide range of soil fauna and fungi, a yet
uninvestigated function of buried wood (Hagemann et al. 2010a, Moroni
et al. 2010).

• Mechanisms of creation: The physical and chemical processes occurring that are
initiated when the wood surface is colonized by mosses need to be investigated
in more detail to better understand the associated decrease in woody debris de-
composition rates (Phase I; Hagemann et al. 2010a). The accumulation rate
of the organic layer, i.e. the balance of dead moss and tree litter input and
decomposition rates, may help to determine woody debris burial rates (Phase II).

• Preservation: Radiocarbon-dating of selected buried wood samples from various
depths can provide further information about the origin, the stratification, and
the preservation of buried wood (Moroni et al. 2010).

• Disturbances: The impacts of disturbances such as wildfire and clearcut harvest-
ing on amounts, characteristics, and dynamics of buried wood are largely unknown
(Hagemann et al. 2010a).

• Climate change: Rising temperatures will increase forest floor temperatures and
decrease bryophyte vitality and forest floor moisture content (Preston et al.
2006, O’Donnell et al. 2009b), thus potentially increasing buried wood de-
composition rates and subsequently forest CO2 emissions while decreasing the
input of new buried wood due to decreasing bryophyte productivity.

. Bryophytes

• Sampling: Numerous methodologies exist for sampling bryophyte growth, e.g.,
cranked wire (Clymo 1970), mesh screen ingrowth (Gower et al. 1997,

119



5 Synthesis and Discussion 5.6 Condensed Research Perspectives

Vogel and Gower 1998), innate growth markers (Russell 1988, Oakland
1995), nylon thread markers (Asada et al. 2003), oil paint markers (Pouliot
et al. 2010), fluorescent dye (Russell 1988, Harden et al. 2009), or
gas exchange measurements (Russell 1988, Botting and Fredeen 2006),
but not all of these methods have been compared exhaustingly. Advantages and
disadvantages and the applicability of these methods to various functional moss
groups or individual moss species need to be investigated further.

• Distribution: The distribution of forests with ecologically-relevant bryophyte lay-
ers needs to be determined by a) appropriate inventories, b) estimation based on
factors such as forest type or drainage, or c) remote sensing methods (Rapalee
et al. 2001, Preston et al. 2006, Peckham et al. 2009).

• Productivity: Although the available dataset on moss growth is currently in-
creasing (Harden et al. 2009, Turetsky et al. 2010), information on the
relationship between moss growth and various factors such as soil type, climate,
or stand density is insufficient to adequately model moss productivity at large
scales.

• Decomposition: While mass loss rates of certain bryophyte species or groups
have been studied in different boreal ecosystems (Hobbie 1996, Moroni et al.
2005, Turetsky et al. 2010), reasons for the generally low decomposability
of bryophytes still remain partially unclear (Preston et al. 2006). Potential
causes include low nitrogen content and high content of phenolic compounds and
structural carbohydrates (Lindo and Gonzalez 2010).

• Disturbances: The effects of disturbances such as wildfire or harvesting on the
composition of the bryophyte layer have been studied (e.g., Fenton et al.
2003, Palviainen et al. 2005b). Little is known, however, about the impact of
disturbances on the regulatory ecosystem functions of the bryophyte layer.

. Carbon modelling

• Bryophytes: The interactive effects of bryophytes, temperature, and moisture
on forest ecosystem C pools must be introduced into forest C models to more
accurately model humid boreal forest C dynamics (Bond-Lamberty et al.
2007a, Hagemann et al. 2010c).

• Buried wood: This mid- to long-term C pools needs to be accounted for in forest C
models, e.g., by (a) developing a bryophyte module regulating the decomposition
rates of woody debris, organic layer and mineral soil, (b) calibrating a woody
debris to organic layer C pool transfer rate based on field-measured rates of moss
growth and woody debris burial and modifying organic layer decomposition rates
in humid boreal forests based on field-measured decomposition rates of buried
wood, or (c) introducing a buried wood C pool (Hagemann et al. 2010c).
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Figure 5.5: Knowledge gaps in humid boreal forest ecosystems. Wider arrows indicate larger lack of knowledge.
Les lacunes des forêts boréales humides. Des flèches plus larges démontrent des lacunes plus grandes.

• Soil: In light of climate change, research is needed regarding the interaction be-
tween bryophyte-dominated organic layers, the temperature, and the moisture
regime of the soil profile (Chertov et al. 2009), which determines the degree
of C sequestration in boreal forest soils (Carrasco et al. 2006).
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