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Summary

Transcriptional regulation refers to the molecular systems that control the concentration of mRNA species

within the cell. Variation in these controlling systems is not only responsible for many diseases, but also

contributes to the vast phenotypic diversity in the biological world. There are powerful experimental ap-

proaches to probe these regulatory systems, and the focus of my doctoral research has been to de-

velop and apply effective computational methods that exploit these rich data sets more completely. First,

I present a method for mapping genetic regulators of gene expression (expression quantitative trait loci,

or eQTL) using Random Forests. This approach allows for flexible modeling and feature selection, and

results in eQTL that are more biologically supportable than those mapped with competing methods. Next,

I present a method that finds interactions between genes that in turn regulate the expression of other

genes. This is accomplished by finding recurring decision motifs in the forest structure that represent de-

pendencies between genetic loci. Third, I present a method to use distributional differences in eQTL data

to establish the regulatory roles of genes relative to other disease-associated genes. Using this method,

we found that genes that are master regulators of other disease genes are more likely to be consistently

associated with the disease in genetic association studies. Finally, I present a novel application of Random

Forests to determine the mode of regulation of toxin-perturbed genes, using time-resolved gene expres-

sion. The results demonstrate a novel approach to supervised weighted clustering of gene expression

data.
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Chapter 1

Introduction

1.1 Motivation

Traits that impact our everyday lives – like sickness, obesity, mental illness, or addiction – are an outward

manifestation of the hidden systems of interactions taking place within and between our personal biology

and the environment we live in. The more we understand the hidden systems that underlie these traits,

the better equipped we are to design interventions to treat them.

One such hidden system that has an appreciable impact on physical traits like disease is transcrip-

tional regulation. Transcriptional regulation refers to the molecular systems in the cell that dictate which

pieces of information (in the form of mRNA) are emitted from the nucleus of a cell, the timing of their

emission, and the intensity of the emission (concentration of mRNA). In short, transcriptional regulation

determines the usable information content of the cell. A cell’s information content determines whether it is

capable of performing its assigned task. If information content is disregulated and the cell cannot perform

its designated task, disease often ensues.

Because of its far-reaching role in connecting molecular biology to macroscopic biology, transcrip-

tional regulation has been a booming field over the past decade. There are many tools to study it, but

perhaps none more ubiquitous than the DNA microarray. With microarrays, one can get a snapshot of the

expression of all genes in a sample of cells. Microarrays have been used to look at gene expression in ex-

perimental studies (e.g. how does compound XYZ change gene expression?) and observational studies

(e.g. variation of gene expression across a population).

One application of microarrays is of particular importance to my work: eQTL studies. eQTL (expres-

sion quantitative trait locus) studies are usually performed in genetically well-defined populations of model

organisms, where snapshots of gene expression are taken in a specific tissue (brain, for example), across

the genetically distinct individuals of the population. Since all the animals were raised in the same condi-

tions, whatever variation in gene expression is observed must be due to the genetic differences between

the individuals. From a computational perspective, the task is to model mRNA expression (the response

vector) in terms of the genetic (DNA) variation (the matrix of predictors). The genetic loci that contribute

to the model of mRNA expression are called eQTL, and they represent the genomic location of probable

regulators of the expressed gene in question. Consequently, the latent information in eQTL studies is very

valuable, but requires the appropriate computational methodology to be fully exploited.

In my research, I have developed and applied methods to uncover transcriptional regulatory relation-

ships in genetic and environmental studies. Here I have divided my work into four parts, the first three
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dealing with methods and applications for eQTL studies, and the last dealing with prediction of the mode

of transcriptional induction in an environment-centric study.

1.1.1 Description of Random Forests

Much of the work in this dissertation applies and extends Random Forests (RF) (Breiman, 2001), a ma-

chine learning method that has seen a wide variety of applications in the decade since its introduction. To

provide context for my doctoral work, an overview of Random Forests is presented here.

Random Forests are ensembles, or collections, of decision trees. The individual trees are either re-

gression or classification trees, depending on whether the modeled response is continuous or categorical,

respectively. The decision trees within the forest differ from one another in two important ways. First, each

tree is fit to a different bootstrap sample of the original data. Because of the bootstrap sampling (i.e. sam-

pling with replacement), some observations will be left out of the sample, while others are replicated more

than once in the sample. The left out samples (called out-of-bag data) form an implicit test set and are

used to calculate an unbiased estimate of the classification or regression error of the forest. Second, each

split in each tree is selected not as the overall best split, but rather the best of a randomly selected subset

of predictor variables. Because of these two elements of stochasticity – bootstrap sampling and selection

of the optimal split from a random subset of variables – each tree represents a slightly different solution

to the same problem.

The combined prediction of all trees in the forest is a more reliable prediction than any of the indi-

vidual trees, since it accounts for (or rather utilizes) variations in the sampling distribution of the data. In

classification forests, a new observation is run down all the trees in the forest, and each tree casts a vote

for the class it predicts for the new observation. The forest prediction for the new observation is the class

with the majority of votes. For regression forests, the prediction for a new observation is the average of

the individual tree predictions.

Random Forests have several practical advantages over other competing machine learning methods.

It is generally difficult to overfit with RF, it makes no distributional assumptions about the data, it can han-

dle correlations among the predictor variables, and can handle mixtures of continuous and categorical

predictor variables. In addition to its utility in making predictions, it provides measures of variable impor-

tance for the predictors, and provides a proximity measure that indicates the (weighted) similarity of the

observations. Both of these features of RF have led to applications beyond mere prediction, and they are

described in the following sections.

Variable importance

In the context of RF, variable importance refers to any of three measures of a predictor’s contribution to

the success of the forest. Perhaps the most widely used is the permutation importance, which assesses

the impact of randomly permuting the values of the variable in question. This importance measure is the

average degradation of the forest’s predictive accuracy upon permutation of the variable. Thus, a positive

value represents an important variable, whereas a negative value or value close to zero indicates an

unimportant variable. The second variable importance measure indicates the average increase in node

"purity" as the result of a split on a variable. This is the reduction of residual sum of squares (RSS) in the

regression context, and the Gini index in the classification context. Finally, the number of times a variable

is used to split in the forest can be used as an indicator of variable importance. This is called selection
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frequency. Clearly, this measure is not as sophisticated as the others, but may still be useful in some

situations.

These importance measures are often used when the goal of analysis is not prediction, but rather

to determine which features (e.g. genes) are relevant to the process being modeled. This is particularly

useful when there are many irrelevant predictor variables, which is often the case in high-throughput data.

Proximity

The RF proximity is a measure of how frequently two observations end up in the same terminal node,

throughout the decision trees of the forest. This leads to an N ×N matrix, whose values are between

0 and 1 and represent the frequency of co-occurrence in terminal nodes of the i th and j th observations

(the diagonal of the matrix is 1). A high proximity value indicates that observations frequently take the

same decision path to their ultimate classifications. This measure provides implicit weighting of features,

since only features with discriminatory power are used repeatedly in the RF. Since the proximity matrix is

square and contains values that indicate the similarity of two subjects, it can be transformed to a distance

matrix and be used in a variety of clustering algorithms. This can be especially useful since RF can be

used to integrate information from a mixture of continuous and categorical data, which cannot be done

with traditional distance measures such as the Euclidean and Manhattan distances. In addition, since RF

can be run in either a supervised or unsupervised mode, the resulting proximity measure can be either a

supervised or unsupervised measure.

Applications

Because of its flexibility and many features, RF has been widely applied since its introduction, espe-

cially in the biological sciences. It has been used in association studies and GWAS (Lunetta et al., 2004;

Motsinger-Reif et al., 2008; Kim et al., 2009b; Goldstein et al., 2010), in QTL studies (Bureau et al., 2003;

Lee et al., 2008), and for finding gene-gene interactions (Bureau et al., 2005; Wang et al., 2010c). It has

also been used in pathway analysis (Pang et al., 2006; Pang and Zhao, 2008; Chang et al., 2008; Xiao and

Segal, 2009; Pang et al., 2010) and modeling medical diagnostic data (Han, 2006). The proximity mea-

sure has also been used to cluster tumor samples in an unsupervised setting (Shi and Horvath, 2006)

and to reconstruct regulatory networks in yeast (Xiao and Segal, 2009) in a supervised setting.

1.2 Definition of open problems

1.2.1 Open problem 1: Mapping expression quantitative trait loci (eQTL)

Context

Since the dawn of modern genetics, geneticists have striven to link observable traits to causal genes, in

the hopes of learning enough to enhance desirable traits and prevent or treat detrimental ones. Some

traits are categorical, for example, the presence or absence of some developmental disorder. Other traits

are quantitative: height, blood pressure, cholesterol levels, etc. In the case of quantitative traits, geneti-

cists have used a strategy called quantitative trait locus (QTL) mapping to expose the underlying genetic

architecture that controls the trait. At its simplest, this works by breeding and thoroughly characterizing a

small population of animals, then looking for correlations between variation in the trait of interest and allelic
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variation across the same population at genotyped loci. Genetic loci that correlate strongly with a trait are

thought to be the causal source of the trait, since from the trait’s perspective the genome is "read-only";

in other words, the trait does not cause the genetic variation, but the genetic variation can influence the

trait, thus establishing a causal relationship.

In the last decade, molecular biology underwent a rebirth due to the introduction of high throughput

molecular technologies such as the DNA microarray. These technologies gave researchers access to

thousands of new molecular traits, including gene (mRNA) expression measurements for all genes in an

organism’s genome. Traditional genetics approaches, such as QTL mapping, were then applied to these

new genome-wide expression traits, giving rise to the expression quantitative trait locus, or eQTL. eQTL

are genetic loci that influence gene expression. In this sense, mapping eQTL for all genes probed on a

microarray can give a global view of transcriptional regulation. Increased understanding of transcriptional

regulation will lead to a better understanding of the molecular mechanisms that underlie organismal traits

of interest.

In order to correctly identify the loci (and subsequently the genes) that contribute to variation in gene

expression, an appropriate statistical method must be used. Traditional QTL mapping methods are in effect

univariate tests that test the trait-locus association one-by-one, ignoring all other loci in the genome. Such

an approach will fail to capture the combinatorial effects of multiple loci responsible for complex traits such

as gene expression. Methods should be used that can account for multiple additive and conditional effects.

These methods should be thoroughly tested to demonstrate their effectiveness not only on simulated data,

but on real data as well. Such proven methods will lead to improved accuracy of the conclusions reached

from the mapped eQTL data.

Open problem

How can the performance of eQTL mapping methods be tested using measured data? Can modifications

of these methods produce improved results?

1.2.2 Open problem 2: Finding epistasis in systems genetics data

Context

Epistasis is a genetic-phenotypic phenomenon where a gene’s contribution to a trait does not occur in

isolation; rather, it is dependent on the genetic background of the organism (Carlborg and Haley, 2004).

This is in contrast to the prevailing public perception of genes conferring traits unilaterally, e.g. media

reports of the "cheating gene", the "fat gene", or the "gay gene". Epistasis is usually interpreted as an

interaction between genes, meaning that the effect of one gene can be changed depending on the state

of another gene. It is a relationship that suggests a more intimate molecular connection between genes

than additivity (independent contributions to a trait) does. Indeed, researchers have used it as a tool to

reconstruct molecular pathways in model organisms (Phillips, 2008; Tong et al., 2004; Schuldiner et al.,

2005; Hannum et al., 2009; Costanzo et al., 2010). In addition, epistasis has received increased attention

with the advent of high-throughput human genetics, and offers a framework for interpreting immense vari-

ation, such as with personal genetics (Moore and Williams, 2009), as well as for understanding complex

diseases (Shao et al., 2008; Carlborg and Haley, 2004). As we come to better understand epistasis and

its meaning, we will be better able to diagnose and treat disease on a personal level.
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Open problem

How can epistasis be efficiently discovered among millions of locus pairs and tens of thousands of traits?

How can competing methods be benchmarked using real data?

1.2.3 Open problem 3: Finding transcriptional regulatory contexts for
phenotype-linked genes

Context

Because of their multigenic nature, complex diseases frequently have hundreds or even thousands of

genes associated with them in the literature. Often a precise molecular etiology of these complex diseases

is lost in the long list of risk genes. Further, directly testing hypothetical disease pathways is complicated

by the infeasibility of the requisite experiments in humans. Because of this, eQTL studies in mice and rats

have become an attractive means for investigating transcriptional regulation in tissues and conditions that

are difficult to acquire in humans. The regulatory programs found in these model organisms can shed light

on the potential roles of their orthologs in human disease (Chen et al., 2008; La Merrill et al., 2010).

Open problem

Which disease-associated genes are most likely to be causal, and which are likely to be symptomatic?

How can systems genetics data be used to give clues about the etiology of a disease or the drivers of a

phenotype?

1.2.4 Open problem 4: Classifying direct and indirect transcriptional targets using time-
resolved gene expression data

Context

The aryl hydrocarbon receptor (Ahr ) is a ligand-activated transcription factor that has generated interest

because of its role in mediating the cellular response to toxins in the environment. Exposure of mam-

malian cells to the environmental contaminant B[a]P (benzo-[a]-pyrene) initiates a complex transcriptional

response via Ahr. Part of this response is not due to direct regulation by Ahr, but rather by the cellular

stress induced by the conversion of B[a]P to more toxic metabolites, such as anti-benzo(a)pyrene-trans-7,

8-dihydroxy-9,10-epoxid (BPDE). Distinguishing the response that is directly mediated by Ahr from the

secondary response is a fundamental step in reconstructing the Ahr pathway.

Open problem

Given an extensive transcriptional response upon induction of a transcription factor, how can direct targets

be distinguished from indirect effects? How can the responding genes be clustered in functional groups

in a way that accounts for individual transcript differences in synthesis and degradation?
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1.3 Thesis outline

Each of the open problems described here will be presented in an individual chapter. Chapter 2 deals with

open problem 1 and explores both legacy and modern methods for mapping expression quantitative trait

loci (eQTL). Chapter 3 deals with open problem 2 and builds on the findings in chapter 2 as it presents a

new and effective method for detecting epistasis (genetic interactions). Chapter 4 addresses open problem

3 and can be seen as the practical culmination of the work in the previous two chapters, specifically by

presenting a novel method for using eQTL data to infer the regulatory context (e.g. transcriptional regulator

or target) of disease risk genes. Finally, chapter 5 deals with open problem 4 and presents an application

of Random Forests for predicting direct vs. indirect targets of an inducible transcription factor. It also

demonstrates how the Random Forests proximity measure can be used as an effective weighted distance

measure for time course expression data.

The appendix complements the theory and applications presented in the body of the dissertation by

including tutorials designed to familiarize readers with the use of the methods and approaches presented

here. Readers are then equipped to be able to apply and build on the methods for their own purposes.



Chapter 2

Mapping expression quantitative trait loci

(eQTL)

The following publications and presentations relate to the work presented in this chapter:

1. Loguercio, S., Overall, R., Michaelson, J.J., Wiltshire, T., Pletcher, M.T., Miller, B.H., Walker, J.,

Kempermann, G., Su. A., and Beyer, A. Integrative analysis of low- and high-resolution eQTL. PLoS

ONE 2010. 5(11): e13920.

2. Michaelson, J.J., Alberts, R., Schughart, K., and Beyer, A. Data-driven assessment of eQTL map-

ping methods. BMC Genomics 2010. 11:502.

3. Michaelson, J.J., Loguercio, S. and Beyer, A. Detection and interpretation of expression quantita-

tive trait loci (eQTL). Methods 2009. 48, 265-276.

4. Michaelson, J.J., Alberts, R., Schughart, K., and Beyer, A. Exploring the genetics of gene expres-

sion with Random Forests. ISMB 2009, Stockholm, Sweden.

5. Michaelson, J.J. and Beyer, A. Random Forests for eQTL analysis: a performance comparison.

useR! 2008, Dortmund, Germany.

2.1 Introduction

For decades scientists have used a variety of analytical techniques to relate allelic inheritance patterns

in the genome to variation in continuous physical traits of interest. The goal of such analyses is often to

locate quantitative trait loci (QTL), or genomic locations that exert an influence on the manifested trait.

Understanding the genomic location of these genetic control points may provide insight into the genetic

and molecular framework responsible for enabling the trait.

In the past decade, the advent of the DNA microarray and other high-throughput molecular technolo-

gies has updated the paradigm of the QTL. A QTL where mRNA expression is the complex trait of interest

is generally referred to as an expression QTL or eQTL (Rockman and Kruglyak, 2006). By using DNA mi-

croarrays eQTL can be measured for basically all genes in the genome, rendering eQTL data information

rich and potentially very powerful. eQTL have been studied in yeast, mouse, rat, human, and plants (Brem

et al., 2005; Kempermann et al., 2006; Petretto et al., 2006; Veyrieras et al., 2008; Druka et al., 2008) and
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eQTL have proven to be useful for elucidating the molecular mechanisms of human diseases (Sieberts

and Schadt, 2007; Chen et al., 2008; Schadt and Lum, 2006; Michaelson et al., 2009).

Although complex traits are by definition controlled by the coordination of multiple genes, the prevailing

techniques for mapping them have been deeply rooted in univariate thinking – testing for genetic asso-

ciation to a trait one locus at a time, ignoring combinatorial effects and interactions. In contrast, Broman

and Speed (Broman and Speed, 2002) defined the QTL problem as one of multivariate variable selection,

where ideally all loci and their combinations are allowed to enter and exit the model as the data dictate.

Viewing eQTL mapping as a variable selection problem opens the door to using a host of machine learn-

ing algorithms which have rarely, if at all, been applied to QTL and eQTL studies (Chun and Keles, 2009;

Huang et al., 2009; Lee et al., 2008; Bureau et al., 2005). Such a fresh look at the QTL problem may help

to uncover latent and meaningful information in otherwise underexploited data.

A systematic comparison of eQTL mapping approaches is necessary to inform the research commu-

nity which methods work best and in which contexts. Toward that goal, the purpose of this work is twofold.

First, we establish a framework for comparing available eQTL mapping methods based on the tendency of

each method to map eQTL that are systematically supported by external biological data. This is important

because methods papers proposing new (e)QTL mapping techniques often draw their conclusions either

solely or largely on the basis of simulated data (Broman and Speed, 2002; Chun and Keles, 2009; Lee

et al., 2008; Benjamini and Yekutieli, 2005; Bureau et al., 2003; Jiang and Zeng, 1995; Zeng, 1994; Haley

and Knott, 1992; Lander and Botstein, 1989). This is perhaps understandable in the case of earlier work

with QTL, where only a limited number of phenotypes were available and external knowledge about their

context and probable genetic regulators was not available in a systematic form, making biology-based

benchmarking difficult. However, this is not the case in the era of eQTL. Although some genes remain

uncharacterized, there are rich sources of data for many genes that give insight about their role and con-

text within the cell. Such knowledge is often contained in databases like the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa and Goto, 2000), which makes using it as a basis for a benchmark

easier. Our battery of knowledge-driven benchmarks consists of 1) assessing the proportion of cis-eQTL

recovered by each method, 2) testing each method’s high-scoring eQTL for enrichment of loci related to

the target by KEGG pathway information, and 3) agreement of each method’s high-scoring eQTL with

systematic loss-of-function studies. In this framework we tested three variable importance measures from

Random Forests (RF) (Breiman, 2001) as well as sparse partial least squares (SPLS) (Chun and Ke-

les, 2009), the lasso (Tibshirani, 1996), the elastic net (Zou and Hastie, 2005), Haley-Knott regression

(HK) (Haley and Knott, 1992), and composite interval mapping (CIM) (Zeng, 1994). We also performed

simulations to complement the findings of the knowledge-driven benchmarking framework. We show that

multi-locus methods in general (Random Forests, SPLS, lasso, elastic net) are better at recovering bio-

logically meaningful loci than traditional QTL mapping methods such as HK and CIM.

Second, we demonstrate that based on both simulations and the knowledge-driven benchmarks, RF

shows superior performance as an eQTL mapping method. RF has previously been applied to genome-

wide association studies (GWAS) and QTL studies (Bureau et al., 2003; Lunetta et al., 2004; Bureau

et al., 2005; Motsinger-Reif et al., 2008; Lee et al., 2008). The contribution of our work, however, lies in

the discovery that the most naive measure of variable importance in RF, the variable selection frequency

(RFSF), actually performs much better than the more popular permutation importance (RFPI) in this con-

text. Since RFSF has been ignored in all previous works using RF in the QTL or GWAS context, its use

here represents a novel eQTL mapping method with demonstrated superior performance.
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Definition of open problem

How can the performance of eQTL mapping methods be tested using measured data? Can modifications

of these methods produce improved results?

2.2 Materials and Methods

2.2.1 eQTL mapping

We used expression data from four eQTL studies in four different tissues in recombinant inbred BXD

mouse strains: regulatory T-cell, lung, hematopoietic stem cells (Bystrykh et al., 2005), and hippocampus

(Overall et al., 2009). We used only probe sets that mapped unambiguously to Ensembl gene IDs with

KEGG annotations (Kanehisa and Goto, 2000). This resulted in a set of 6,121 probe sets for studies using

the Affymetrix Mouse 430 2.0 array (lung, regulatory T-cell, and hippocampus) and 3,051 probe sets for

the hematopoietic stem cell study, which used the Affymetrix U74Av2 array. Genotype data for the BXD

recombinant inbred strains of mice used in these studies consisted of 3,794 markers and was downloaded

from the GeneNetwork database (Wang et al., 2003). In addition to the mouse data, we used the yeast

eQTL study previously published in (Brem and Kruglyak, 2005). After filtering out probes with missing or

otherwise ambiguous data, we were left with 4,501 gene expression measurements and 2,914 markers.

Random Forests

We used the reference implementation of Random Forests (Liaw and Wiener, 2002) in R for all mapping

discussed in this work. We grew forests with 5,000 trees, the mtry parameter was set to the default

(one third of the total number of markers) and the node size was also the default of 5, unless otherwise

noted. We then extracted unscaled permutation importance measures (RFPI), residual sums of squares

importance measures (RFRSS), and selection frequencies (RFSF) from the forests for use as the scores

for each marker.

We estimated and accounted for bias in RFSF as follows. Using the actual genotype data as predic-

tors, we fit 500 10-tree forests to independent draws from Gaussian noise. This resulted in 5,000 trees,

equal in size to the forests used in this work. We collected the selection frequencies for each marker

and subtracted the mean selection frequency to yield a vector of correction factors — one value for each

marker. Subtracting this vector of correction factors from the observed selection frequencies (from the

observed data) gives bias-corrected selection frequencies (Fig. 2.8). In the context of results in this work,

all references to RFSF imply the bias-corrected RFSF, as described here.

Sparse partial least squares

Chun and Keles (Chun and Keles, 2009) recently introduced a method of eQTL mapping using sparse

partial least squares, which included an R package and a thorough tutorial available online. We used

the spls R package to map eQTL, performing cross-validation on every target to determine the optimal

parameters for each fit. eta, the thresholding value, was allowed to vary between 0.3 and 0.7, to prevent

both overfitting and a model that was too sparse to score multiple loci. The number of hidden components

was allowed to vary from 1 to 5. A final fit was performed with the optimal parameters, and the absolute

value of the coefficients was used as the score for each marker.
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The lasso

The lasso (Tibshirani, 1996), a regression shrinkage method, has previously been applied to QTL mapping

(Foster, 2007), but to our knowledge has never been tested against competing mapping methods in the

context of an eQTL study. For this work, we used the lasso as implemented in the elasticnet package for

R. The lasso is a special case of the elastic net with lambda equal to (or very near) 0. For each target gene

examined, we took the absolute value of the lasso coefficients for a fit performed with the s parameter

determined by 10-fold cross-validation, with an imposed minimum of 0.5. These coefficients were used as

the score for each marker.

The elastic net

The use of the elastic net (Zou and Hastie, 2005) was the same as above for the lasso, except that lambda

was set to 1. We found this value of lambda to be optimal after testing a sample of target genes over a

range of lambda values (0.5,1,10,100).

Haley-Knott regression

We used the implementation of Haley-Knott regression (Haley and Knott, 1992) available in the qtl pack-

age for R. LOD scores were calculated at the marker locations.

Composite interval mapping

To perform composite interval mapping (Zeng, 1994) we used the implementation in the qtl package for

R, with the method argument set to "EM", and all other arguments set to their default. LOD scores were

calculated at the marker locations.

2.2.2 Simulations

To simulate eQTL with known underlying models, we used the full BXD genotype matrix, available from the

GeneNetwork (Wang et al., 2003). This matrix consists of 89 strains and 3,794 markers. Using this geno-

type data, we randomly selected one, two, or three markers (depending on the model to be simulated),

and then simulated a trait by using a linear combination of the markers directly, or of logical operations

on the markers (in the case of epistasis). All traits started with a baseline value of 9, before adding in

the genetic effects. Genetic effects were added as follows: in the single locus model, a single marker was

selected at random, and its vector of genotypes (where 1=BB and 0=DD) was multiplied by a coefficient,

in this case 1. For the two-locus epistatic model, two marker vectors were selected at random, with each

being multiplied by 0.25 and then summed. The epistatic component was added by applying the AND log-

ical operation to the genotype vectors (where a 1 is a TRUE and a 0 is a FALSE) and then multiplying the

result by a coefficient, in this case 1, and then adding to the additive component. Three locus additive and

epistatic traits were constructed in a similar fashion. Gaussian noise with mean 0 was then added to the

traits, over 8 levels of increasing standard deviation, which corresponded to 2.5, 5, 7.5, 10, 12.5, 15, 17.5,

and 20% of the trait mean. The resulting distributions are comparable to the distributions of expression

values that are observed in real data.
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Each model type (i.e. single locus, two locus epistatic, etc.) was simulated independently 50 times,

and each mapping method was applied to the same data. For each simulation and for each mapping

method, the maximum (i.e. worst) rank among the set of causal markers was recorded in each noise

level. The median of these values (over the 50 simulations) was used to reflect the performance of a given

mapping method over the increasing levels of noise. Lower values represent the ability of a method to

assign high scores to all causal loci.

2.2.3 cis-eQTL counts

Performance based on the proportion of recovered cis-eQTL was assessed by counting the number of

expression traits where a marker within 500 kb (for mouse) or 50 kb (for yeast) of the midpoint of the

target gene’s genomic location had a score in the 99th percentile of the scores for the respective target

gene. These cutoffs, though arbitrary, reflect the difference in complexity between the yeast and mouse

genomes – the conclusions drawn from the benchmark are not heavily influenced by this choice. This

number was then divided by the number of total expression traits examined for the respective data set.

2.2.4 KEGG enrichment

Each expression trait we tested mapped to at least one KEGG pathway, and each gene found in the

KEGG pathway was mapped to the nearest marker. If no marker fell within 5 Mb of a gene, the gene was

omitted. For each expression trait, the markers having scores in the 99th percentile were selected for the

enrichment test. The hypergeometric test was used to test this set for the enrichment of markers mapping

to genes participating in the same KEGG pathway as the target gene. If multiple pathways existed for any

expression trait, all were tested and the minimum P value was used as the representative P value.

In the case of the yeast eQTL data, we additionally assessed enrichment of pathways in which tran-

scription factors binding to the target gene participate. As a basis for mapping transcription factors to their

targets, we used (Beyer et al., 2006). We did not attempt this test with the mouse data because of the lack

of dense and reliable TF-target data for mouse.

Since in this test even randomly selected markers yield P values that deviate somewhat from the uni-

form distribution, we calculated an empirical null distribution of P values. To construct this distribution, we

assigned scores to the markers, drawn randomly from a Gaussian distribution with mean 0 and standard

deviation of 1. We then took the markers in the 99th percentile and performed the proposed enrichment

test. This was performed for an equivalent number of expression traits contained in the actual data sets.

The actual enrichment P values were corrected against this empirical null distribution of enrichment P

values.

We plotted the empirical cumulative distribution function (ECDF) of the corrected enrichment P values

for each method. As a summary measure for each method’s deviation from the uniform distribution, we

used the D-statistic as given by the Kolmogorov-Smirnov test. The test was one-sided with the alternative

hypothesis that the observed cumulative distribution function accumulated faster than the reference (i.e.

uniform) distribution.
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2.2.5 Mutant expression change enrichment

Systematic loss of function data in yeast (Hughes et al., 2000; Mnaimneh et al., 2004) was used to as-

sess which eQTL mapping method tended to agree most with the regulatory relationships suggested by

experimentally deactivating upstream regulators. We mapped each repressed gene to its nearest marker.

Then, for each expression trait from the yeast eQTL study, we looked at markers in the 99th percentile

of scores for that target. For markers mapping to experimentally repressed regulator genes, we collected

the maximum absolute log2 expression ratio (repressed expression divided by wild-type expression) for

the appropriate target gene, aggregating them over the whole set of mapped expression traits. We then

compared the distribution of the selected maximum absolute log2 ratios generated by each eQTL map-

ping method by the Kolmogorov-Smirnov (KS) test, collecting the associated P value and D statistic. As a

reference distribution in the KS test, a null distribution was constructed by a similar aggregation of maxi-

mum absolute fold changes, only with the association between scores and markers randomized for each

target gene. The test was one-sided with the alternative hypothesis that the observed cumulative distri-

bution function accumulated slower than the reference distribution. Distributions with a tendency toward

higher scores and deviating significantly from the reference distribution suggest an agreement between

the eQTL and loss-of-function studies.

2.2.6 Variation of tree depth

To assess the impact of tree depth on each RF importance measure, we used the yeast eQTL data and

recomputed eQTL maps for all expression traits, varying the nodesize argument to 5, 15, 29, 57, and 114.

The nodesize argument dictates whether or not a node may be split — if the number of observations in

the node under consideration is greater than nodesize, the node may be split. Otherwise the node is not

split and is marked as a terminal node. The default value of nodesize is 5 — this is the value used in the

main body of the study. By selecting a nodesize of 114 (the number of samples in the yeast study), we

ensure that splitting stops after the first split. The other values are intermediate steps, each about half the

size of the last. We then assessed the improvement in the enrichment of KEGG pathway members and

proportion of cis-eQTL identified when growing the trees deeper, using the forest with nodesize 114 as

the baseline.

2.3 Results

In order to evaluate the performance of the eQTL mapping methods in a comprehensive way, we used

both simulated data and a variety of published and previously unpublished experimental data from mouse

and yeast. The mouse data sets include gene expression data from four tissues of recombinant inbred

(RI) BXD mouse strains: regulatory T-cell (H. Chen, RA, and KS, unpublished data), lung (RA, L. Lu, R.

Williams, and KS, unpublished data), hematopoietic stem cells (Bystrykh et al., 2005), and hippocampus

(Overall et al., 2009). The yeast data were taken from (Brem and Kruglyak, 2005). Further details are

available in the methods section.

We note here that one of the goals of this comparison is to determine how susceptible each method is

to the effects of linkage disequilibrium. In light of this goal we used all genotype data as-is, without prefilter-

ing or fusing markers, or assigning surrogate eQTL post-hoc. This enables a straightforward comparison

across all mapping methods.
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Figure 2.1 Results of the simulated eQTL models. Each method-noise level combination where all of the causal
loci were contained in the 99th percentile of scores is marked with a ’+’. Ranking within the 99th percentile (of the
worst-ranking of the causal loci) is indicated by the shade of gray, with lighter shades indicating better ranking.

2.3.1 Simulations

We first set out to examine the performance of each method when the underlying model generating the

data was known completely. We used the actual BXD genotypes and generated traits based on four

models: single causal locus, two epistatic causal loci, three additive causal loci, and three epistatic loci.

These configurations were sufficient to clearly distinguish the performance of the methods. Further details

of the construction of the simulated data are given in the methods section. The goal of this investigation

was to determine how well each method performed at placing all causal loci in the 99th percentile of

scores, over a range of increasing Gaussian noise in the trait. The results are given in Figure 2.1. In the

single locus scenario, the performance gap between the newer multi-locus methods (RF, SPLS, the lasso,

and the elastic net) and the legacy methods (HK and CIM) is quite apparent. In the single locus case, HK

and CIM are unable to correctly identify causal loci in traits with more than 7.5% noise, and fail almost

completely at pinpointing causal loci in the more complex two and three locus models. The elastic net and

RF deliver comparable performance in the more complex models, with RF performing better in epistatic

scenarios and the elastic net performing slightly better in the three-locus additive model. It should be

noted that while SPLS, the lasso, and the elastic net do not explicitly search for interactions, they may still

find loci participating in epistasis due to small but detectable marginal effects of the interaction.
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Figure 2.2 Percentage of expression traits with a recovered cis-eQTL. For each experimental data set, we cal-
culated the percentage of transcripts which had a marker scoring in the 99th percentile that co-localized with the
genomic location of the target gene.

2.3.2 cis-eQTL counts

A "back of the envelope" approach for gauging the practical performance of a mapping method is the

proportion of cis-eQTL found among all target transcripts in experimental data. Since promoter regions

are often polymorphic, one would expect under optimal conditions to be able to recover an eQTL at the

genomic location of many of the examined target transcripts. In this sense, the "external information" used

in the benchmark is the knowledge of the genomic location of the gene — which, when compared to QTL

in general, is information unique to eQTL. The results of this assessment are shown in Figure 2.2. Taken

individually, no single method dominated the others. However, the legacy methods (HK and CIM) again

showed poor performance when compared to their more modern counterparts. A relationship between

study size and proportion of recovered cis-eQTL is also uncovered, with the larger studies (yeast, mouse

hippocampus and mouse lung with 114, 67, and 44 observations, respectively) generally yielding higher

proportions of cis-eQTL than smaller studies (mouse regulatory T-cell and mouse hematopoietic stem cell

with 33 and 22 observations, respectively).

2.3.3 KEGG enrichment

We used the pathway information available in the KEGG database to establish relationships between

target genes and potential regulators. KEGG was chosen because of its position as a standard in pathway

information and because it is generally a better reflection of the molecular relationships between genes

(compared to GO for instance). However, in principle other sources of pathway information could be used.

One would not expect to recover an entire pathway in every eQTL map, but on a large scale there should

be some overlap between the eQTL and the relationships contained in KEGG. We assert that methods

that show higher agreement with the information in KEGG are more desirable for eQTL mapping. We
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Figure 2.3 Comparison of eQTL profiles. An example eQTL profile for microarray probe set 1426838_at (Pold3)
from the hippocampus data set, using RFSF (A) as the importance measure. Loci near genes participating in the
same pathway (DNA replication) as the target gene (Pold3 - a DNA polymerase) are marked with circles. The 99th

percentile of the values in this profile is marked with a dashed line. (B) The same target probe set, using HK as the
eQTL mapping method. The traditional mapping methods based on the LOD score tend to have very broad, blunt
peaks, sometimes spanning most of a chromosome. Random Forests, on the other hand, produces very sharp,
narrow peaks.

formalize this by assessing the enrichment of high-scoring eQTL for loci near genes known to participate

in the same pathways as the gene whose expression trait is being mapped. A graphical depiction of this

idea is given in Figure 2.3 and further details on the enrichment test are given in the methods section.

We tested pathway enrichment in yeast and mouse eQTL separately. For yeast, we included an ad-

ditional enrichment test, which connected target genes not to pathways in which they participate, but to

pathways in which the target’s known transcription factors participate. We used the distributional proper-

ties of the enrichment P values to compare the eQTL mapping methods, with results for the yeast data

shown in Figure 2.4. It should be noted that HK did not deviate significantly from the uniform distribution

in either the pathway member or the TF-centric enrichment tests (P = 0.72 and P = 0.07, respectively,

by the Kolmogorov-Smirnov test). In contrast, RFSF showed superior performance on the yeast data

(P = 1.56× 10−133 and P < 10−324 for the pathway member and TF-centric KEGG enrichment tests,

respectively).

The mouse data showed more modest enrichment across all tissues and with all methods, suggesting

perhaps that larger studies are needed to better recover the complex regulatory systems present in higher

eukaryotes (Fig. 2.5). All methods yielded significant deviation from the uniform distribution in each tissue
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Figure 2.4 Empirical cumulative distribution functions (ECDF) of enrichment P values. The P values show the
degree of enrichment among high-scoring yeast eQTL for genes that map to the same KEGG pathway as the target
gene (A) and genes that map to the same pathway as the known transcription factors for the target gene (B). In both
scenarios RFSF achieved the best performance in recovering loci enriched for pathway-related genes.

(P < 0.05 by the KS test). Again, RFSF yielded the greatest degree of enrichment in all tissues.

SPLS, the lasso, and the elastic net produce sparse models, which means that not all loci are assigned

a coefficient as a score. This had the effect that for a small minority of expression traits, the 99th percentile

of scores contained a small number loci with scores of 0. We examined whether this effect put these

sparse methods at a disadvantage for the enrichment tests. We found no systematic relationship between

enrichment P value and the number of 0 scores in the 99th percentile.

2.3.4 Mutant expression change enrichment

Finally, we combined data from two systematic loss of function studies (Hughes et al., 2000; Mnaimneh

et al., 2004) to see which method produced eQTL that agreed most with the mutant data.

In this test, we collected the maximum absolute expression change observed for each target gene

when genes co-localized with eQTL in the 99th percentile are mutated. These values were aggregated

over all target genes, forming a distribution for each eQTL mapping method. We compared these distribu-

tions to a null distribution (see methods for details) via the Kolmogorov-Smirnov test. We assert that the

method that yields eQTL that are enriched for large changes in expression in the mutant study is the most

desirable method.

All methods produced score distributions that deviated significantly from the null distribution, suggest-

ing that there is indeed consistency between the yeast eQTL data and independent mutant data. Although

all methods showed significant deviation from the null, the magnitude of enrichment varied widely (Fig.

2.6). RFSF showed the most significant enrichment, followed closely by HK.
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Figure 2.5 Enrichment of KEGG pathway members in top-scoring loci in mouse tissues hippocampus, lung, reg-
ulatory T-cell, and hematopoietic stem cell. The enrichment test procedure is the same as shown in Figure 2.4, but
here the performance is summarized as the D statistic (maximum deviation from the uniform distribution) obtained
from the Kolmogorov-Smirnov test.
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Figure 2.6 Enrichment of high-scoring eQTL for mutant expression changes. We used large-scale loss-of-function
gene expression studies in yeast to determine whether high-scoring eQTL were near genes that, when mutated,
perturbed the expression of the target gene. All methods showed significant enrichment for eQTL causing large
expression changes when genes proximal to the eQTL are mutated, though the degree of enrichment varied widely.
RFSF showed the most significant enrichment with P = 1.03×10−99.
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2.4 Discussion

2.4.1 High-throughput data make functional benchmarking of eQTL mapping methods
possible

Augmenting eQTL with independent information has been done previously to strengthen hypotheses sug-

gested by the eQTL data (Wessel et al., 2007; Wu et al., 2008; Ghazalpour et al., 2006; Suthram et

al., 2008). Although these applications demonstrate a certain degree of correspondence between eQTL

data and external data sources, and imply that such correspondence is desirable in an eQTL mapping

method, no benchmarks based on the systematic recovery of biological information have been proposed

and applied to a wide variety of mapping methods and data sets.

Validating the performance of mapping methods is important not only for those whose analysis ends

with an eQTL map, but also for more sophisticated algorithms such as Lirnet (Lee et al., 2009) and

Geronemo (Lee et al., 2006) which build on top of basic mapping concepts. Our analysis, combined with

previously cited works that integrate eQTL with other data, show that there is indeed agreement among

eQTL and data from different sources. Maximizing this agreement should be a core objective of future

mapping techniques. We hope that this approach to benchmarking, in addition to traditional simulated

benchmarks, will help practitioners find the appropriate method now, and lead to the development of

better mapping methods in the future.

2.4.2 Multi-locus eQTL mapping methods outperform legacy methods

With few exceptions, the legacy methods — HK and CIM — stood out as the poor performers, particularly

in the simulations, cis-eQTL proportions, and enrichment for KEGG pathway relationships. In preliminary

analyses, we found related univariate mapping methods such as EM interval mapping (Lander and Bot-

stein, 1989) and ANOVA to have performance almost indistinguishable from HK (data not shown). This

observation is important because even at the time of this writing there are still eQTL papers being pub-

lished that use legacy mapping methods for their analysis (La Merrill et al., 2010; Chen et al., 2010; Wang

et al., 2010b; Viñuela et al., 2010), ostensibly because the more modern methods are not as accessible.

In light of our results, we expect that these studies have not exploited the full potential of the collected

data. This represents a challenge for the computational community of working to promote not just the

development, but also the adoption of these more advanced methods.

There is a fundamental difference in how the legacy linear methods (HK, CIM) and the multi-locus

linear methods (SPLS, lasso, elastic net) score loci. The univariate mapping methods rely on a LOD

score (or a P value in the case of one-way ANOVA) that expresses the significance of the estimated

correlation between a single marker and the trait, resulting in thousands of individual modeling attempts

per expression trait. The multi-locus methods, in contrast, assign coefficients to multiple loci in a single

final model. These coefficients are then used as locus scores. The disparity in performance between the

two classes of methods is likely a result of scoring by contribution to the model (multi-locus approach),

rather than scoring by significance (univariate approach).

RF offers a third paradigm for scoring that is conceptually similar to the coefficient approach of the

multi-locus linear methods, though distinct in implementation. Each of the three importance measures

derived from RF measures a locus’ average contribution in an ensemble of models. This differs from the

coefficient approach in that it is a summary of multiple models, each including multiple loci, rather than
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Figure 2.7 Agreement between methods expressed as the overlap of selected loci, over all experimental data
sets. In general, the multi-locus approaches showed much more consistency with each other. The average percent
overlap among RFPI, RFRSS, RFSF, SPLS, lasso, and elastic net was 49% (ranging from 31% to 67%), while HK
and CIM had 17% of top loci in common (99th percentile).

a summary of a single model including multiple loci. Additionally, the multi-locus linear methods do not

implicitly allow for the inclusion of epistatic interactions in the locus scoring process, while RF does.

It should be noted that the benchmarking process described in this work did not focus on the methods’

abilities for statistical inference, that is, determining whether a locus significantly explains an expression

trait. Instead, our benchmarks focused on which methods prioritized the loci with the greatest degree of

effectiveness over a large panel of data. If statistical inference is desired, appropriate permutation of the

data can be performed to obtain a null distribution of scores for the chosen method, which can then be

used to assess significance of the scores.

We evaluated all experimental data sets and compared the loci that each method scored in the 99th

percentile. In general, the multi-locus approaches showed agreement amongst themselves, with an av-

erage 49% overlap. Figure 2.7 highlights the lack of consistency between the legacy methods and the

multi-locus methods, and amongst themselves.

2.4.3 Random Forests selection frequency maps the most biologically consistent eQTL

Random Forests (RF) (Breiman, 2001) is a classification and regression algorithm based on fitting an

ensemble of trees. When mapping eQTL, RF fits decision trees by using markers as predictor variables,

i.e., each node in a tree corresponds to a split of the population based on the genotype at the selected

marker. By combining an ensemble of many diverse decision trees, RF guards against overfitting and

also provides several measures of predictor variable importance. In this work, these measures of variable

importance are used to map eQTL.
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Although multi-locus methods in general outperformed the legacy methods HK and CIM, RFSF showed

the most consistent performance overall. In the simulations and cis-eQTL proportion test it was among

the best, and in the KEGG and mutant enrichment tests it outperformed the competitors. This finding is

somewhat surprising because RFSF is virtually ignored as a variable importance measure in most appli-

cations of RF, including QTL and GWAS (Bureau et al., 2003; Lunetta et al., 2004; Bureau et al., 2005;

Motsinger-Reif et al., 2008; Lee et al., 2008). Avoiding RFSF may have several explanations. For instance,

it has been shown previously that RFSF can be biased. This bias manifests itself in the case of continuous

or categorical predictors that vary widely in their scales or number of categories (Strobl et al., 2007). This

is typically not an issue in the case of genotype data, where all predictors are categorical with the same

number of categories. However, RFSF can also be biased when there is a significant degree of correlation

between predictors, which is the case with genotype data. Under these conditions, RFSF preferentially

selects variables (markers) with low correlation to other variables; markers in linkage disequilibrium are

under-selected. In order to estimate and account for this bias, we add or subtract the deviation from the

mean selection frequency observed under the null hypothesis (no association between trait and genotype

data). See methods and Figure 2.8 for details.

We decided to investigate further the potential reasons why RFSF performed better than the more

typically used RFPI or RFRSS. We hypothesized that perhaps RFSF picked up on smaller effects near

the leaves of the trees, i.e. it is able to detect loci with very subtle effects on the trait. To demonstrate

this, we use the largest data set (yeast) and grew several RFs with different characteristic tree depths. We

then tested these forests with the cis-eQTL proportion test and the KEGG enrichment test (see methods

for details). We found that increasing the depth of the trees had a modest effect on the performance of

RFPI and RFRSS, with an increase in percentage of cis-eQTL from 22.4% to 23.5% and 24.1% to 25.6%,

respectively, and an increase in D statistic (for the KEGG enrichment test) from 0.186 to 0.225 and 0.241

to 0.318, respectively. Conversely, RFSF benefited more from the deeper forests, with an increase in

percentage of cis-eQTL from 24.3% to 27.4% and an increase in D statistic (for the KEGG enrichment

test) from 0.241 to 0.361 (Fig. 2.9). In addition, we found that agreement with the linear methods (SPLS,

lasso, elastic net, HK, and CIM) was at its highest when the tree growth was stopped early; similarity

decreased with increasing tree depth. This effect was more pronounced for RFSF than for the other RF

importance measures, which further suggests that the effects found near the leaves of the trees are

connected to RFSF’s superior performance (Fig. 2.10).

To further explore this idea, we performed simulations where the expression trait was a function of

eight loci, two with strong effects, and six with small effects. As expected, the loci with the stronger effects

were used in splits closer to the root node. The causal loci with weaker effects were used to split closer

to the leaves. In these simulations, RFSF scored the weak causal loci in the 99th percentile 18.3% of the

time, while RFPI scored the same loci in the 99th percentile only 10% of the time. These simulations also

showed that RFPI is tightly coupled to a variable’s proximity to the root node, while RFSF can give high

scores even if the variable is not used close to the root node.

From these investigations we conclude that RFPI and RFRSS both essentially determine variable

importance near the roots of the trees, and that biologically important splits further down the tree are not

adequately reflected in the overall importance scores. RFSF on the other hand, recovers more biologically

meaningful predictor variables (loci) when trees are grown deep, suggesting that even splits far down

the tree can be reflected in this importance measure. Epistatic effects are an example of where this

phenomenon is important — often genetic interactions are weak and only present in a subset of the
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Figure 2.8 Bias estimation and correction in RFSF. Under the null hypothesis (no association between trait and
genotypes), RFSF is biased towards variables with low correlation to others (top panel). The bias is estimated by
fitting a forest to Gaussian noise, and a correction factor is derived by determining how much more or less frequently
a marker is selected than the mean (middle panel). By subtracting the correction factor from the observed RFSF,
the selection bias is removed (compare top panel to bottom panel).
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Figure 2.9 Effect of varying Random Forests tree depth on performance. The effect of varying Random Forests
tree depth on performance as measured by the distributional deviation of the enrichment P values from the uniform
distribution (A) and the percentage of expression traits with a cis-eQTL (B). Smaller node sizes correspond to deeper
trees. The permutation importance and RSS importance improve modestly with deeper trees, whereas selection
frequency shows more marked improvement with deeper trees. The improvement is measured with respect to
forests that stop after the root split (nodesize 114).
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Figure 2.10 Overlap of RF and linear methods while increasing RF tree depth. In general, deeper trees caused
the RF importance measures to diverge from the linear methods in terms of which loci were given the top scores.
The effect is particularly pronounced for RF selection frequency (RFSF).

population. Such conditional effects are likely to manifest themselves deeper in the trees. RFSF is an

attractive measure in these situations.

Because of its demonstrated performance advantages in finding biologically relevant loci, its ability to

implicitly consider epistatic interactions, as well as its straightforward and readily available implementation,

we recommend using Random Forests for eQTL mapping. We have prepared a short tutorial and example

R code demonstrating mapping eQTL with the bias-corrected selection frequency at http://cellnet.biotec.

tu-dresden.de/RFSF.

2.4.4 Marker density and analysis strategy

In this work we examined studies with genotype data in the range of thousands of markers. With the

advent of next-generation sequencing and other ultra high-throughput methods, we expect to see more

and more studies with hundreds of thousands, millions, or even tens of millions of SNPs. We wish to put

the presented work in context by drawing a distinction between filtering methods, mapping methods, and

explicit models (Fig. 2.11).

The state of computer hardware at the time of this writing makes the multi-locus methods presented

here impractical for exhaustive evaluations of data sets with millions of SNPs and tens of thousands of

expression traits. The current solution to this problem is to filter the SNPs to a more tractable number

using univariate tests or expert knowledge (Rudd et al., 2005; Jegga et al., 2007; Chan et al., 2009).

Considering the joint effects of markers at this point is generally a fruitless effort, given the astronomical

number of potential combinations and the problem of dealing with false positives.

http://cellnet.biotec.tu-dresden.de/RFSF
http://cellnet.biotec.tu-dresden.de/RFSF
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Figure 2.11 Relationship between SNP density and analysis strategy for eQTL data. The current state of computer
hardware allows little if any consideration of joint effects of markers when millions of SNPs are considered for tens
of thousands of expression traits. Simple univariate tests or expert knowledge are often employed to reduce the
number of considered SNPs to a range where mapping methods may be used and increased attention may be given
to the interplay between loci. In the optimal case, successful application of mapping methods in many populations
will yield an explicit model of the expression trait in terms of a smaller number of genetic loci, optionally including
environmental effects.

As the number of markers considered falls into the tens of thousands, the problem transitions from

filtering to mapping. Mapping is a combination of modeling and feature selection, and the methods we

explored in this work address the mapping problem. Here the interplay between loci becomes important

for accurately identifying the causal regions that should be included in an explicit model of the trait.

Once causal loci have been identified reliably and the relationships between them have been char-

acterized (additive vs. dominant, epistatic vs. additive, etc.), one can construct a linear model, usually

consisting of a handful of terms, that accurately describes the trait as a function of the genetic state of the

organism. Such an explicit model, though desirable, is rarely attained.

2.4.5 Implications for related mapping problems

Most of the conclusions from our work have implications beyond eQTL mapping. Ideally, the concept of

a knowledge-driven benchmark could be used for any physiological trait, but our approach depends on a

fairly detailed knowledge of the molecular mechanisms underlying the mapped trait. Neither our notion of

measuring the enrichment of regulator-target gene groups in common pathways, nor our counting of cis-

eQTL is immediately extendable to physiological traits. Still, taken together, the evidence from this study

indicates that QTL mapping — whatever the trait — should be performed using a multi-locus method.

Using univariate methods such as HK will lead to severe underexploitation of the data.

Some of the more specific conclusions from our work will need further validation in other organisms

and populations. For example, the study populations used here all had roughly a 50/50 distribution of

two possible alleles at each marker. Human populations are characterized by very uneven distributions

of SNPs, where minor alleles can be extremely rare in a given population. Such a change in the char-
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acteristics of the data could influence the ranking of the individual methods. However, such fluctuations

in the individual rankings are still unlikely to affect the general conclusion that multi-locus methods pro-

duce more informative results than univariate methods, even in GWAS and linkage studies in outbred

populations (Cordell, 2009; Phillips, 2008; Carlborg and Haley, 2004; Moore, 2003; Schadt et al., 2005).

Finally, in this work we observed the expected relationship between study size and power to detect

biologically interesting loci. We explored this phenomenon explicitly by taking subsets of decreasing sam-

ple size from the hippocampus study, and then comparing two representative methods – here RFSF and

HK – using the cis-eQTL and KEGG enrichment benchmarks. The results are depicted in Figure 2.12

and clearly show that while both methods show improvements with additional samples, it is RFSF, the

multi-locus method, that shows consistently better performance, regardless of the sample size. This sug-

gests that even in studies with small sample sizes, multi-locus approaches are preferable to single-locus

methods.

2.5 Author contributions and acknowledgements
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Figure 2.12 Relationship between sample size and ability to recover biologically relevant loci. Subsets of decreas-
ing size (67, 34, 17, and 10 strains) were taken from the hippocampus eQTL study and eQTL were mapped using
RFSF and HK. Performance was evaluated with the cis-eQTL and KEGG enrichment benchmarks. Both RFSF and
HK improved performance when additional strains were added, though the performance RFSF was consistently
better than HK in both benchmarks for all sample sizes.



Chapter 3

Epistasis controlling gene expression

The following publications and presentations relate to the work presented in this chapter:

1. Michaelson, J. J. and Beyer, A. Transcriptional regulatory contexts and epistasis among schizophre-

nia risk genes. (in preparation)

2. Michaelson, J.J. and Beyer, A. Transcriptional regulation in schizophrenia. Systems Biology: Net-

works 2010, Hinxton, UK.

3. Michaelson, J.J. and Beyer, A. Molecular mechanisms in schizophrenia uncovered with systems

genetics. Systems Biology of Human Disease 2010, Boston, USA.

4. Michaelson, J.J. and Beyer, A. Identifying genetic interactions involved in adult neurogenesis.

CRTD Bioinformatics Symposium 2009, Dresden, Germany.

5. Michaelson, J.J., Ackermann, M., and Beyer, A. Uncovering interactions with Random Forests.

useR! 2009, Rennes, France.

6. Michaelson, J.J. and Beyer, A. Exploring the regulatory architecture of neurotransmitter receptors

with Random Forests. INCF 2009, Pilsen, Czech Republic.

3.1 Introduction

Epistasis is a genetic-phenotypic phenomenon where a gene’s contribution to a trait does not occur in iso-

lation; rather, it is dependent on the genetic background of the organism (Carlborg and Haley, 2004). This

is in contrast to the prevailing public perception of genes conferring traits unilaterally, e.g. media reports

of the "cheating gene", the "fat gene", or the "gay gene". Epistasis is usually interpreted as an interaction

between genes, meaning that the effect of one gene can be changed depending on the state of another

gene (Fig. 3.1). It is a relationship that suggests a more intimate molecular connection between genes

than additivity (independent contributions to a trait) does. Indeed, researchers have used it as a tool to

reconstruct molecular pathways in model organisms (Phillips, 2008; Tong et al., 2004; Schuldiner et al.,

2005; Hannum et al., 2009; Costanzo et al., 2010). In addition, epistasis has received increased attention

with the advent of high-throughput human genetics, and offers a framework for interpreting immense vari-

ation, such as with personal genetics (Moore and Williams, 2009), as well as for understanding complex
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diseases (Shao et al., 2008; Carlborg and Haley, 2004). As we come to better understand epistasis and

its meaning, we will be better able to diagnose and treat disease on a personal level.

Concurrent with the increased interest in epistasis on the experimental side, a wide variety of methods

to detect epistasis has been developed by computational scientists (Nelson et al., 2001; Ritchie et al.,

2001; McKinney et al., 2006; Dong et al., 2008; McKinney et al., 2009). A core challenge for any epistasis

detection method is that the required runtime (and storage) for an exhaustive test for all pairs of genes/loci

is proportional to the square of the number of genes/loci. This is trivial for problems involving thousands

of loci, but is intractable for much larger problems, particularly when multiple traits are investigated, as is

the case with eQTL. Most methods necessarily try to circumvent this challenge by using either greedy or

stochastic search strategies without sacrificing the recovery of interesting interactions.

Another methodological challenge lies in reconciling the statistical and biological meanings and in-

terpretation of epistasis (Cordell, 2002). Because of the relatively small amount of high-throughput data

on epistasis, most methods are developed for and benchmarked with synthetic data. These toy models

generally reflect the statistical definition of epistasis, though their generalizability to real data is debatable.

The result is that while many methods perform well on paper, their performance in practice is hard to

estimate.

We have previously found Random Forests (RF) (Breiman, 2001) to be quite effective in mapping

quality eQTL (Michaelson et al., 2010). In this work, we propose an extension to RF to explicitly define

epistatic interactions. RF has been used previously in similar contexts because of its ability to capture

(with its importance measure) variables involved in interactions (García-Magariños et al., 2009; Kim et

al., 2009b; McKinney et al., 2009). Our approach aims to go beyond merely identifying loci involved in

interactions, but identifying the interactions themselves. This is accomplished by examining the forest

structure for decision motifs that suggest dependence between splitting variables. A similar approach was

taken using RF with binary traits, using contingency tables at nodes in the forest (Wang et al., 2010c). Our

approach uses regression RFs (i.e. the trait is quantitative), and though similar in aim, differs appreciably

in the implementation. The result is an approach that shows superior performance both in simulated data

and in real data, compared to an exhaustive LOD-based method. Finally, we apply this method to find

examples of epistasis regulating the expression of schizophrenia risk genes.

Definition of open problem

How can epistasis be efficiently discovered among millions of locus pairs and tens of thousands of traits?

How can competing methods be benchmarked using real data?

3.2 Materials and Methods

3.2.1 RF split asymmetry

In the work presented here, epistatic relationships are found in the structure of a regression Random

Forest (RF) by looking for a phenomenon we call split asymmetry (Fig. 3.2). Consider a sequence of two

decision splits in a tree, involving two variables, first XA and then XB. This sequence may occur anywhere

in the tree – near the root, leaves or somewhere in the middle – and its location may vary from tree to

tree. After splitting on XB, there will be some difference in means between the values in its left and right
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Figure 3.1 Conceptual comparison of epistasis and additivity. In this example we assume only two alleles: 0 and
1. If the effect of a locus on expression depends on the state of another locus, these loci interact, or are said to be
in epistasis. Conversely, if the loci make contributions to the trait independently of one another, these loci have an
additive effect. Both interactions and additivity can be viewed in a tabular or a decision tree paradigm, and both are
shown here.
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Figure 3.2 Searching Random Forest structure for splits showing asymmetry. In this representation, the decision
sequences XA → XBr and XA → XBl lead to different characteristic slopes, hence the split sequence XA → XB is
asymmetric. The matrices Mr and Ml are used as described in equations 3.1 through 3.5, resulting in a score that
indicates epistasis between loci.

daughter nodes. We can view this difference between means as a slope. If the mean of the right daughter

is greater than that of the left daughter, the slope is positive, and in the opposite case the slope is negative.

If there is no dependency between XA and XB when considering the response values, we would expect

that the slope after splitting on XB would be the same regardless of whether XB splits on data in the left

or right daughter node of the XA split. On the other hand, if there is a dependency between XA and XB,

we expect that the decision at XA will influence the outcome of the split at XB, thus resulting in different

slopes for XBl (split on left daughter of XA) vs. XBr (split on right daughter of XA). Given this context, we

say that a split is asymmetric in a sequence of variables with dependencies, and a split is symmetric in a

sequence of variables with no dependencies.

All such slopes involving all 2-variable decision sequences encountered in the forest are summed

according to their "sidedness", leading to two square matrices: Ml for the sequence corresponding to XA→
XBl , the "left" matrix, and Mr for the sequence corresponding to XA→ XBr , the "right" matrix (Fig. 3.2). In

both matrices, the row indicates the first variable in the decision sequence, and the column indicates the

second variable in the sequence.

In cases of extreme dependencies, XBr (for example) might be used frequently, yet XBl might never

be suitable as a splitting variable, and therefore might not occur at all in the forest (leading to an entry of 0

in Ml ). It should also be noted that the individual slopes will be influenced by the stochastic characteristics

of RF – in particular the bootstrap sample of data used to fit the tree in question. However, the aggregated

slope for a variable pair will be more robust. In any case, the magnitude of the absolute difference of the

aggregated slopes (a matrix D) is an indicator of the strength of the dependency between the involved

splitting variables. Note: while |M| traditionally denotes the determinant of M when M is a matrix, for
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convenience we use it here to mean the matrix resulting from taking the absolute values of the entries in

M.

D = |Mr −Ml | (3.1)

We introduce a few modifications to D to further refine the score it represents. First, we’ll subtract as

a penalty the mean absolute slope, here the matrix S:

S =
|Mr |+ |Ml |

2
(3.2)

D′ = D−S (3.3)

We additionally constrain negative values to be 0, so that only pairs whose difference in slope exceeds

the average magnitude are considered.

D′′ ij =

0 for D′ ij ≤ 0

D′ ij for D′ ij > 0
(3.4)

Finally, we will take the minimum of the corresponding values D′′ ij and D′′ ji , since purely interacting

variables (i.e. without an additive effect), will be "order-agnostic", meaning that the sequences XA→ XB

and XB → XA should both be asymmetric; we take the minimum of the two scenarios to be conservative.

In practice, this has reduced the number of false positives encountered. This final epistasis score is stored

in a (symmetric) matrix E :

Eij = min{D′′ ij ,D′′ ji} (3.5)

Significance of the values in E may be computed by obtaining a null distribution (either empirical or

parametric). Functions implementing these operations can be found in Appendix A and a detailed tutorial

of their use can be found in Appendix C. In addition, we modified the reference implementation of Random

Forests such that the mean of the out-of-bag (OOB) data at each node in the forest is recorded, to facilitate

the calculation of split asymmetry using test set data.

3.2.2 Simulations

Three epistatic scenarios were simulated: 2-way XOR, 2-way AND, and 3-way AND. Logical combinations

of the genotypes from the yeast data from (Brem and Kruglyak, 2005) were constructed according to the

type of epistasis to be simulated. Traits were simulated using the simtrait function (see Appendix A). For

each type of epistatic model, 50 traits were simulated, with each trait using different randomly selected

markers from the yeast genotype data.

Random Forests were constructed using 5,000 trees, and a node size of 3 was used. All other param-

eters were left at their default values.

Performance in recovering the causal loci was assessed with ROC curves (Fig. 3.3) for both RF split

asymmetry and a 2-dimensional scan as implemented in the qtl package for R (Broman et al., 2008).

The LOD score (for interaction) was used to score the exhaustive search, and 1−P was used in the case

of RF split asymmetry (where P is the P value of the RF split asymmetry score, obtained by using an
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empirical null distribution).

3.2.3 Yeast data

Yeast eQTL data from (Brem and Kruglyak, 2005) was used and interaction scores were calculated using

RF split asymmetry and the pairwise eQTL scan available in the qtl package for R. In both cases, the

scores for a pair of markers were maximized (for LOD scores in the case of the exhaustive search) or

minimized (for P values from RF split asymmetry) over the transcripts. Thus the final square matrix for

each approach represented the best score over all transcripts for each pair of markers. For RF split

asymmetry, a bias correction similar to (Michaelson et al., 2010) (i.e. bias correction on the matrix rather

than a vector of eQTL scores) was applied to the matrix result of each transcript, before significance was

calculated.

Two reference sets were used as standards to generate ROC curves for the two epistasis scoring

approaches: (Costanzo et al., 2010) and (Schuldiner et al., 2005). For the purposes of our comparison,

we made no distinction between so-called positive and negative genetic interactions (indeed, preliminary

tests showed no appreciable difference in performance between these classes when handled individually).

Since the eQTL data maps to locus (i.e. marker) resolution and the gold standard sets map directly to

genes, we mapped genes to their closest marker. Thus, a pair of markers interact if any of their mapped

genes interact with each other as demonstrated in the previous studies.

3.2.4 Mouse hippocampus eQTL data

RF split asymmetry was applied to eQTL data from a study of the murine hippocampus (Overall et al.,

2009) to find epistatic interactions relevant to schizophrenia. Human schizophrenia-associated genes

were selected based on a combination of expression and text association evidences (see Chapter 4 meth-

ods for details), and their murine orthologs were used here as both targets and (with their corresponding

genetic loci) as potential interacting regulators. Scoring was performed as described for the yeast data,

and interactions with an FDR < 0.05 were considered as significant.

3.3 Results

3.3.1 Simulations

We examined three models of epistatic interactions: 2-way XOR, 2-way AND, and 3-way AND. Each

configuration was repeated 50 times, each time using different (randomly selected) causal markers from

the yeast genotype data (Brem and Kruglyak, 2005). As a baseline method for comparison, we selected an

exhaustive two-locus approach, implemented via the scantwo function in the qtl package for R (Broman

et al., 2008). This resulted in a square matrix of LOD scores, indicating the strength of the evidence for

interaction between the i th and j th markers.

The results (Fig. 3.3) indicate that the exhaustive approach outperforms RF split asymmetry in the

XOR scenario, while RF split asymmetry fares better in both the 2-way and 3-way AND scenarios.
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Figure 3.3 Performance comparison of RF split asymmetry vs. an exhaustive all-pairs approach. Three different
interaction scenarios were investigated: 2-way XOR, 2-way AND, and 3-way AND. RF split asymmetry performed
better in both AND scenarios, while the exhaustive approach performed better in the XOR scenario.
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Figure 3.4 Performance comparison of RF split asymmetry on yeast eQTL data, vs. an exhaustive all-pairs ap-
proach. Here we investigated how well each method was able to recover interactions found in engineered networks
(Schuldiner et al., 2005; Costanzo et al., 2010) using data from a natural diversity study (Brem and Kruglyak, 2005).
In both methods, the recovery of interactions was very small, however, RF split asymmetry peformed better in both
data sets.

3.3.2 Epistasis in yeast eQTL data

To make a more biologically meaningful comparison between methods, we used yeast eQTL data from

(Brem and Kruglyak, 2005), together with interaction data from (Costanzo et al., 2010) and (Schuldiner

et al., 2005) as the gold standard sets (Fig. 3.4), to see which method could better recover the known

interactions using the eQTL data. Here RF split asymmetry shows better recovery of interacting locus

pairs, though in general it shows only very modest agreement with the studies of "engineered" epistasis.

The exhaustive approach leads to scoring that is comparable to random scoring.

3.3.3 Regulatory epistasis among schizophrenia risk genes

To assess whether RF split asymmetry could find interesting interactions in practice, we examined the

transcriptional regulation of 334 murine orthologs of human genes with evidence suggesting a role in

schizophrenia. We used eQTL data (expression and genotypes) from (Overall et al., 2009), and looked for
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Figure 3.5 Two examples of epistasis between loci harboring schizophrenia risk orthologs that control the expres-
sion of mouse orthologs of schizophrenia risk genes. Expression of the dopamine receptor Drd4 (top) is significantly
regulated by an interaction between loci containing other genes with known connections to dopamine signaling:
Med12 and Slc18a2. Likewise we found that expression of the glutamate receptor Grik2 (bottom) was significantly
regulated by an interaction between the Nrn1 locus and the locus containing Ywhag and Stx1a. Both glutamate and
dopamine signaling pathways have been implicated in the etiology of schizophrenia, as well as its treatment.

interactions between loci containing one or more of these 334 genes. In this way we treated the 334 genes

as both targets and potential epistatic regulators. We found significant (FDR < 0.05) epistatic regulation

for 14 targets (Table 3.1). Of these, we found two that were of particular interest (Fig. 3.5).

3.4 Discussion

3.4.1 Performance in simulations and yeast data

In order to judge how well a new method performs, it is helpful to first look at simulated examples of

obvious models. Simulations, though always an oversimplification of the actual biology at work, offer the

most pure form of ground truth, since it is synthesized. We selected three types of interactions, 2-way

XOR, 2-way AND and 3-way AND. The XOR and AND refer to how the 0/1 genotypes from the yeast data

were combined (with a coefficient and gaussian noise) to form a quantitative trait. Examples of these types

of interactions are depicted in Figure 3.1. XOR interactions present a problem for greedy and stochastic

searches (such as RF) because there is no main effect in either of the interactors that could be used to

guide the search in the right direction. Since RF recursively selects the best marker of a random subset,

there needs to be at least a small main effect to warrant the selection of the first marker involved in an
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target interactor 1 interactor 2 P
Kcnn3 Hcrtr1 Opn5 P < 10−9

Htr6 Opn5 1.43×10−6

Nts Glul|Rgs16 Chl1 P < 10−9

Rgs9 Tac1 Rgs9 7.15×10−7

Ace Strn 1.43×10−6

Rgs9 Strn 2.67×10−6

Slc1a1 Uqcrc1 Adra2a 7.80×10−7

Atp5a1 Slc6a4 Adra2a P < 10−9

Drd4 Slc18a2 Med12 9.75×10−7

Slc18a2 Pcdh11x 1.50×10−6

Nr4a2 Chrna4 Grm7 P < 10−9

Adra2a Sirpb1a|Sirpb1c|Gm5150|Gm9733 Wwc1 7.80×10−7

Slc32a1 A2bp1 7.15×10−7

Zdhhc14 Tuba1b|Tuba1a Med12 6.50×10−8

Sirt5 Uqcrc1 D15Ertd621e 7.80×10−7

Grik2 Stx1a|Ywhag Nrn1 6.50×10−8

Immp2l Hivep2 Npas3 9.75×10−7

Ahi1|Fam54a Npas3 9.75×10−7

Csf2ra Il10 Slc1a4 1.24×10−6

Rtn4 Olig2 1.43×10−6

Ddo Il10 Apba2 P < 10−9

Table 3.1 Mouse orthologs of schizophrenia risk genes whose expression is regulated by epistasis between ge-
netic loci harboring schizophrenia risk genes. All interactions had FDR < 0.05.

interaction. After the first marker in an interaction is selected, finding the second is more likely since it

will be an optimal split (i.e. when conditioned on the first marker). If there is no main effect, it is less

likely that RF will "stumble upon" the interaction. This is where an exhaustive approach performs well,

as shown in Figure 3.3. However, although XOR interactions make frequent appearances in simulations

(Dong et al., 2008; McKinney et al., 2009) , evidence of their prevalence in biological organisms remains

scarce. On the other hand, AND-type interactions are the type typically encountered in the literature when

biological epistasis is presented. RF split asymmetry outperformed the exhaustive search in the 2 and

3-way AND interaction simulations (Fig. 3.3). These results suggest that there are scenarios where RF

split asymmetry is likely to miss certain types of interactions, but in the types of interactions encountered

in biology, it outperforms the exhaustive approach, both in terms of CPU runtime and accurate scoring of

interactions.

While simulations can give a first impression of how well a method performs, a comparison using real

data is more helpful in showing which method is better in practice. Hannum and colleagues (Hannum

et al., 2009) compared "natural" and "engineered" genetic interaction networks in yeast, where "natural"

refers to interactions derived from eQTL data (Brem and Kruglyak, 2005) and "engineered" networks refer

to interactions discovered in reverse-genetics studies such as (Schuldiner et al., 2005; Costanzo et al.,

2010). We drew on this idea and used it as a benchmark to compare methods, that is, whichever method

can better recover the engineered interactions using the natural data is a better method for detecting

epistasis in real data. The results of our investigation using the yeast eQTL data show that RF split

asymmetry outperforms the exhaustive approach (Fig. 3.4), consistent with the results of the AND-type

simulations. However, neither method showed a large degree of overlap with the engineered interactions,

which is not surprising considering the differences in experimental approaches and measured traits.

While these two benchmarks suggest that RF split asymmetry performs better than the exhaustive

LOD-based approach, there are limitations to the method. As discussed previously, it has difficulty reliably

finding interactions in which neither interactor has a main effect. Also, because of its stochastic nature,

results are not exactly reproducible, and enough trees need to be used in RF construction so that results
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are at least stable.

3.4.2 Epistatic transcriptional regulation among schizophrenia genes

Schizophrenia is an incredibly complex psychiatric disorder with a strong but ill-defined genetic compo-

nent. Over 1,600 genetic association studies have been performed, involving almost 1,000 genes (Allen

et al., 2008). Results are almost universally mixed – significant association in one population, but not

reproducible in another. This lack of reproducibility across different populations fits the definition of epis-

tasis given in (Carlborg and Haley, 2004), that the effect of a genotype on the phenotype depends on the

genetic background of the organism. Indeed, epistasis is already recognized as a factor in schizophrenia

(Braff et al., 2007), but it is typically explored as it affects the trait directly (e.g. in association studies) but

not how it affects the transcriptional regulation of schizophrenia risk genes. Here we explore this facet of

the disease by looking at eQTL data for mouse orthologs of human schizophrenia risk genes.

In our investigation of 334 genes with evidence for a role in schizophrenia, we found that 14 had signif-

icant regulation by epistasis between two or more schizophrenia loci (i.e. genetic loci containing a murine

ortholog of a human schizophrenia gene). These are shown in Table 3.1. Particularly interesting are the

examples of epistatic regulation of two neurotransmitter receptors: Drd4 and Grik2 (Fig. 3.5), because

of their connections to dopamine and glutamate signaling (respectively), both pathways implicated in the

etiology and treatment of schizophrenia.

The dopamine receptor Drd4 showed significant regulation from an interaction between loci containing

the risk orthologs Med12 and Slc18a2, respectively. Slc18a2 is a dopamine transporter and Med12 is a

subunit of the mediator transcriptional complex, shown to regulate the generation of dopaminergic neurons

in vertebrates (Wang et al., 2006). These common connections to dopamine signaling (a critical part of

the etiology of schizophrenia) among the target and its regulators further support the biological reality of

this interaction.

The glutamate receptor Grik2 was found to be significantly regulated by an interaction between a

locus containing Nrn1 and a locus containing both Ywhag and Stx1a. Nrn1 has been shown to promote

the maturation of glutamatergic synapses, and is itself regulated by glutamate neurotransmitter signaling

(Naeve et al., 1997). The fact that we find it here as a regulator of a glutamate receptor suggests the

existence of a regulatory loop. Stx1a has been shown to inhibit glutamate transport (Yu et al., 2006). As

with Drd4, we found here evidence of functional relatedness of the target and regulators. These uncovered

relationships constitute potential molecular mechanisms in the etiology of schizophrenia, and warrant

further experimental investigation to better pinpoint the nature of their connections.
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Chapter 4

Trait-specific transcriptional regulatory

hierarchies

The following publications and presentations relate to the work presented in this chapter:

1. Michaelson, J. J. and Beyer, A. Transcriptional regulatory contexts and epistasis among schizophre-

nia risk genes. (in preparation)

2. Michaelson, J.J. and Beyer, A. Transcriptional regulation in schizophrenia. Systems Biology: Net-

works 2010, Hinxton, UK.

3. Michaelson, J.J. and Beyer, A. Molecular mechanisms in schizophrenia uncovered with systems

genetics. Systems Biology of Human Disease 2010, Boston, USA.

4.1 Introduction

Because of their multigenic nature, complex traits like disease frequently have hundreds or even thou-

sands of genes associated with them in the literature. Often a precise molecular etiology of these com-

plex diseases is lost in the long list of risk genes. Further, directly testing hypothetical disease pathways is

complicated by the infeasibility of the requisite experiments in humans. Because of this, eQTL studies in

mice and rats have become an attractive means for investigating transcriptional regulation in tissues and

conditions that are difficult to acquire in humans. The regulatory programs found in these model organ-

isms can shed light the potential roles of their orthologs in human disease (Chen et al., 2008; La Merrill

et al., 2010).

Schizophrenia is psychiatric disorder that has a strong but ill-defined genetic component. It has been

studied extensively, and has accumulated a long list of genes associated with it (Allen et al., 2008). Despite

the extensive study of the disease, a definitive molecular etiology remains elusive. In our work, we used

eQTL data from the mouse brain (Overall et al., 2009) to determine what regulatory roles orthologs of hu-

man schizophrenia risk genes play in relation to each other. In this way, it becomes possible to learn which

risk genes are likely to be causal, and which are likely to be symptomatic of schizophrenia. This analy-

sis was made possible by a method we developed based on the ideas behind the Kolmogorov-Smirnov

test for distributional differences. We derived measures of regulatory "upstreamness" and "centrality" of

schizophrenia risk genes, defining the orientation of genes within the underlying schizophrenia regulatory
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Figure 4.1 Using eQTL data and the KS test to derive regulatory upstreamness (U) and centrality (C).

network. We found that of those genes that showed a significant orientation, there was a significant corre-

lation between their upstreamness and the reproducibility of their association to schizophrenia in different

populations. This suggests that transcriptional regulators of schizophrenia genes have a more central role

in the etiology of the disease, and as such deserve focused attention.

Definition of open problem

Which disease-associated genes are most likely to be causal, and which are likely to be symptomatic?

How can systems genetics data be used to give clues about the etiology of a disease or the drivers of a

phenotype?

4.2 Materials and Methods

4.2.1 Definition of schizophrenia-associated genes

Association of genes with schizophrenia in the literature was determined by using mappings from NCBI

Entrez gene IDs to PubMed IDs, as obtained in the gene2pubmed file available at ftp://ftp.ncbi.nlm.nih.gov/

gene/DATA/. PubMed IDs of literature matching the search term "schizophrenia" were cross-referenced

with the PubMed IDs in the gene2pubmed file, and matches were used to construct 2×2 contingency tables

for each matching gene. The contingency tables evaluate the significance of the co-occurence of the gene

with "schizophrenia" in the literature, given the overall number of times the gene appears in the literature

at large. The significance of the contingency tables was assessed with Fisher’s exact test.

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ 
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ 
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Post-mortem brain gene expression data from (Narayan et al., 2008; Maycox et al., 2009) was com-

bined and a Random Forests (RF) classifier (Breiman, 2001) was trained to distinguish schizophrenia

patients from controls, based on the expression values of the genes measured. RF permutation impor-

tance values for each gene were obtained, and their significance was determined by constructing a null

distribution of importance values by permuting the classification labels and fitting an RF.

The P values from the literature search and the expression studies were combined using Fisher’s

method for combining P values (i.e. the product of the P values follows a χ2 distribution under the null

hypothesis). This final P value represents a gene’s association with schizophrenia. We selected all genes

with FDR < 0.01 for further analysis. We mapped these genes to their mouse orthologs and were left with

334 genes.

4.2.2 eQTL mapping

eQTL data from (Overall et al., 2009) were mapped using Random Forests selection frequency, as de-

scribed in Chapter 2.

4.2.3 Deriving upstreamness and centrality

Our novel approach for using the Kolmogorov-Smirnov (KS) test to derive regulatory upstreamness and

centrality is covered thoroughly in Appendix E. Here we refer to Figure 4.1 as a conceptual representation

of how upstreamness and centrality are derived.

Given a matrix of eQTL scores, where genes are rows and markers (loci) are columns, the matrix

A is defined by the genes we are interested in (in this case, the schizophrenia-associated genes) and

their corresponding loci. The rows in this matrix are target genes, and the columns are genomic loci (i.e.

markers), thus, Aij represents the effect of the j th locus on the transcription of the i th gene. The matrix A′

is defined by the eQTL scores of all non-schizophrenia target genes at schizophrenia loci. Conversely, the

matrix A′′ contains eQTL scores of schizophrenia target genes at non-schizophrenia loci. We first define

a statistic, Du, that represents the tendency of a genetic locus to be an upstream regulator of genes in

our group of interest:

Du
j = DA′ j ,Aj = sup

x
{FA′ j (x)−FAj (x)} (4.1)

Where FA′ j (x) is the empirical cumulative distribution function of the values in the j th column of A′,

and FAj (x) is the empirical cumulative distribution function of the values in the j th column of A. If Du
j is

large, it suggests that the locus corresponding to j (and by extension, the gene at that locus) is upstream

of the genes defining A, but not the genes defining A′ (genes not belonging to our group of interest). We

note here that if multiple genes map to a locus (marker), each of the genes is assigned the corresponding

value of Du
j .

Next, we define a statistic Dd , representing the tendency of a gene to be downstream of genes in our

group of interest:

Dd
i = DA′′ i ,Ai = sup

x
{FA′′ i (x)−FAi (x)} (4.2)

Where FA′′ i (x) is the empirical cumulative distribution function of the values in the i th row of A′′, and
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FAi (x) is the empirical cumulative distribution function of the values in the i th row of A. If Dd
i is large, it

suggests that the gene corresponding to i tends to be downstream of the loci defining A, but not the loci

defining A′′ (genes not belonging to our group of interest).

From these two statistics, we define "upstreamness", which will be positive for regulators, negative for

targets, and close to zero for less well-defined genes.

upstreamnessi = Du
j −Dd

i (4.3)

In this case, the subscript j corresponds to the locus containing the gene i .

If we have a gene that has substantial values for both Du and Dd , upstreamness will be close to zero.

Nevertheless, we would like to capture this as an interesting gene. We define centrality to be the sum of

Du and Dd , with the absolute value of upstreamness subtracted as a penalty.

centralityi = Du
j + Dd

i −|upstreamnessi | (4.4)

Again, the subscript j corresponds to the locus containing the gene i .

In practice, we use the ks.test function in R to acquire Du and Dd , which are simply the D-statistics

from the corresponding KS test. Upstreamness and centrality are then quite straightforward to compute.

All of this is wrapped in the function ucScores, which takes as arguments eqtl (the named eQTL matrix),

genes (a named logical vector indicating which genes are in the group of interest), markers (a named

logical vector indicating which loci correspond to the genes of interest), and cis.map (a character vector

with gene names as names and marker names as entries in the vector, indicating the mapping from

genes to markers). The ucScores function has a logical switch, nulldist, that, when true, calculates

upstreamness and centrality scores under the null hypothesis (genes not functionally related, but rather

sampled randomly from the data).

We plot the upstreamness and centrality values for the schizophrenia genes, and then overlay the

density of values under the null hypothesis (estimated by 10 runs of ucScore, each time randomly selecting

334 genes), as shown in Figure 4.2. Values that lie far outside of this density are unlikely to occur by

chance, and so represent genes with significant positions in the regulatory hierarchy of schizophrenia-

associated genes.

4.2.4 Schizophrenia association studies

We used data from (Allen et al., 2008) to determine the reproducibility of the genes that showed significant

(P < 0.05) positioning in the regulatory hierarchy. Reproducibility was calculated as the number of popu-

lations that showed a positive association of the gene with schizophrenia, divided by the total number of

populations where the gene was tested for association. Eight genes with positioning P < 0.05 had been

tested in association studies. We regressed the genes’ upstreamness values on the reproducibility using

a simple linear regression, and then extracted the R2 and associated P value.
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4.3 Results

4.3.1 Schizophrenia genes have significantly defined regulatory roles

We assessed regulatory roles in the transcriptional hierarchy of 334 schizophrenia genes by first com-

puting their upstreamness and centrality, then determining the significance of their position by using an

empirical 2-dimensional null distribution (Fig. 4.2). 14 of these genes showed a significant (P < 0.05)

position in the regulatory hierarchy (Fig. 4.1). The positioning of each gene within this 2D map gives an

indication as to whether it tends to be an upstream regulator relative to other genes in the map, whether it

is central relative to the other genes, or whether it is a downstream transcriptional target of other genes in

the map. If the gene’s role does not involve many of the other genes, its position on the map will fall well

within the null distribution.

MGI symbol description upstreamness centrality P
Numbl numb-like 0.104 0.002 1.61×10−8

Olig2 oligodendrocyte transcription factor 2 -0.024 0.184 2.04×10−4

Gls glutaminase -0.114 0.003 9.71×10−4

Spnb4 spectrin beta 4 0.075 0.059 1.16×10−3

Cacna1c calcium channel, voltage-dependent, L type, alpha 1C subunit 0.034 0.120 5.40×10−3

Gabrb3 gamma-aminobutyric acid (GABA) A receptor, subunit beta 3 0.086 0.023 5.67×10−3

Zdhhc8 zinc finger, DHHC domain containing 8 -0.112 0.011 6.54×10−3

Rnh1 ribonuclease/angiogenin inhibitor 1 -0.108 0.048 1.17×10−2

Cck cholecystokinin -0.102 0.004 1.66×10−2

Hivep2 human immunodeficiency virus type I enhancer binding protein 2 0.050 0.092 1.80×10−2

Apba2 amyloid beta (A4) precursor protein-binding, family A, member 2 0.028 0.122 1.87×10−2

Arrb2 arrestin, beta 2 -0.101 0.039 1.98×10−2

Rtn4r reticulon 4 receptor -0.093 0.011 4.43×10−2

Gclc glutamate-cysteine ligase, catalytic subunit 0.053 0.065 4.68×10−2

Table 4.1 Upstreamness and centrality values for schizophrenia risk genes with a significant regulatory context.

4.3.2 Significant relationship between reproducibility and upstreamness

Of the 14 genes with a significant position on the regulatory map, eight of them had been previously inves-

tigated in genetic association studies for schizophrenia. We assessed reproducibility of the association for

each gene by dividing the number of successful associations by the total number of populations investi-

gated. We found a significant positive relationship between the upstreamness of significantly positioned

genes and their reproducibility in association studies (Fig. 4.3).

4.4 Discussion

Perhaps the most popular approach to high-level analysis of eQTL data is the construction of an ex-

plicit network (Bing and Hoeschele, 2005; Keurentjes et al., 2007; Liu et al., 2008; Suthram et al., 2008;

Ghazalpour et al., 2006). Network approaches work best when there is little noise in the data, so that

the distinction between real and spurious network edges is clear when the requisite thresholding is per-

formed. However, if there is an appreciable amount of noise in the data, or if the signal is weak, much

information about the regulatory roles of genes may be lost after a threshold is applied. In this work, we

propose a novel network-free approach for inferring important regulatory roles of genes within a specific

functional context – here schizophrenia risk genes. The method utilizes the dense eQTL data without ap-

plying a threshold, relying instead on distributional enrichment of eQTL scores within the functional group
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Figure 4.2 Transcriptional regulatory hierarchy for schizophrenia risk genes. Values of upstreamness and central-
ity expected under the null hypothesis are approximated with contour lines. Examples of highly significant regulatory
positioning are shown: Numbl as a regulator (high upstreamness), Olig2 as a router of regulatory information (high
centrality), and Gls as a target (negative upstreamness).
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Figure 4.3 Eight of the schizophrenia genes with significant positioning within the regulatory hierarchy have been
previously investigated for links to schizophrenia in association studies. We found a significant relationship between
upstreamness (in mouse) and reproducibility of association (in human), suggesting that mutations in transcriptional
regulators result in higher penetrance of schizophrenia.
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to give information about the gene’s position within a regulatory hierarchy. The method yields an intuitive

2-dimensional map (Fig. 4.2), where the coordinates of a gene on the map give information about the

gene’s probable placement within a regulatory hierarchy. While we have found the method to be more

sensitive than network approaches in some settings (see for example the motivating simulation in Ap-

pendix E), it should be noted that one drawback of the method is that it gives no information about specific

connections between regulators and their targets, and focuses instead on the probable role of each gene

within a contextual group of genes. Therefore, the specific goals of an analysis need to be considered

carefully to choose the appropriate method.

As an application of this method, we sought to pinpoint transcriptional regulatory roles of genes as-

sociated with schizophrenia – a well-studied psychiatric disorder whose molecular etiology is still unclear.

Of the 334 schizophrenia genes investigated, 14 of them had a significant (P < 0.05) role in the regula-

tory hierarchy. Caution must be exercised in interpretation of specific genes, because this is around the

number expected under the null hypothesis (i.e. with no correction for multiple testing). Nevertheless, the

top 2 genes, Numbl and Olig2 had FDR < 0.05, and the top 4 genes were significant at FDR < 0.1. We

found that Numbl had the highest upstreamness of all schizophrenia genes, suggesting a crucial role in

the transcriptional regulation of other schizophrenia genes. Polymorphisms in Numbl have been found to

be significantly associated with schizophrenia in Danish and Brazilian cohorts (Passos Gregorio et al.,

2006). Among other roles, Numbl is a regulator of Notch signaling, a pathway that influences cell fate

and differentiation (Yoon and Gaiano, 2005), with particular importance in the maintenance of neural pro-

genitors. Notch signaling also has a role in determining whether oligodendrocytes – cells responsible for

myelination of neurons – continue to proliferate or exit the cell cycle. Recent research has drawn specific

connections between notch signaling, regulation of oligodendrocytes, and the etiology of schizophrenia

(Kerns et al., 2010). The connection of Numbl to the control of the oligodendrocyte population is especially

interesting in light of the fact that Olig2 – oligodendrocyte transcription factor 2 – was found to have a sig-

nificantly central role in the schizophrenia transcriptional hierarchy. Like Notch signaling, Olig2 also has a

regulatory role in controlling the fate of oligodendrocytes (Jakovcevski and Zecevic, 2005), and has been

shown to directly affect myelination phenotypes (Hwang et al., 2009). It and other oligodendrocyte-related

genes have been implicated in schizophrenia (Georgieva et al., 2006), though the results of association

studies have been mixed (Allen et al., 2008). Taken together, these genes with significant roles in the

transcriptional regulatory hierarchy suggest an important role for the proper maintenance of the pool of

myelinating oligodendrocytes in both the etiology of schizophrenia and the proper transcriptional regula-

tion of schizophrenia risk genes.

In addition to the specific conclusions about the regulatory importance of genes relating to myelina-

tion and control of the pool of oligodendrocytes, we were able to find a suggestive general relationship

between upstreamness of significant genes (in mouse) and the reproducibility of their human orthologs

in schizophrenia association studies (Fig. 4.3). This supports the notion that is increasingly appearing

in the literature (Nicolae et al., 2010) that eQTL underlie disease loci. This implies that it may be the

disruption of transcriptional regulatory programs, rather than a direct functional mutation, that underlies

many genetic diseases. Our data suggest two things: first, that this particular transcriptional regulatory

hierarchy is conserved between mouse and human. This may not be true in an exact sense, but at least

the general priority of these genes is preserved. Secondly, the relationship suggests – intuitively – that

mutations of risk genes that are also transcriptional regulators are likely to lead to higher penetrance of

schizophrenia, compared to mutations in genes that exist as transcriptional targets in the regulatory hier-
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archy of schizophrenia genes. Naturally, since this relationship is based on only eight data points, caution

must be exercised, and this relationship must be replicated before these suggestions can be taken as

conclusive and generalizable. It is also important to emphasize that the polymorphisms in mouse causing

eQTL are not directly comparable to the polymorphisms in human that lead to schizophrenia; the mouse

polymorphisms can only inform us about the relationship between genes. The correlation observed in

Figure 4.3 is further complicated by the fact that we can only see effects in the mouse data for genes

that are actually polymorphic in the population. We may be missing the roles of some genes because of

insufficient genetic diversity in the mouse panel.

4.5 Author contributions and acknowledgements

I conceived of and implemented the idea of upstreamness and centrality. I performed the analysis and

wrote the manuscript. Andreas Beyer contributed to the refinement of the idea and contributed in an

editorial fashion to the manuscript.





Chapter 5

Direct and indirect transcriptional targets

The following publications and presentations relate to the work presented in this chapter:

1. Michaelson, J. J., Trump, S., Rudzok, S., Gräbsch, C., Madureira, D., Dautel, F., Schirmer, K., von

Bergen, M., Lehmann, I., and Beyer, A. Transcriptional signatures of regulatory and toxic responses

to chemical exposure. (submitted)

2. Dautel, F., Kalkhof, S., Trump, S., Michaelson, J.J., Beyer, A., Lehmann, I., and von Bergen, M.

DIGE-based protein expression analysis of B[a]P-exposed hepatoma cells reveals a complex stress

response at toxic and subacute concentrations. J. Proteome Res. 2010.

3. Michaelson, J. J., Trump, S., Madureira, D., Dautel, F., von Bergen, M., Schirmer, K., Lehmann,

I., and Beyer, A. The Ahr transcriptional cascade. Helmholtz Alliance on Systems Biology – Status

Meeting 2009, Heidelberg, Germany.

5.1 Introduction

The aryl hydrocarbon receptor (Ahr ) is a ligand-dependent transcription factor that is activated by a wide

range of xenobiotic and endogenous compounds. The Ahr resides in the cytoplasm in a chaperone com-

plex together with Xap2 (Aip, Ara9) and Hsp90. After ligand binding, the receptor translocates to the

nucleus where it associates with its cofactor Arnt (Ahr nuclear translocator) yielding a competent tran-

scription factor. This heterodimer binds to so-called xenobiotic response elements (XREs) that function

as cis-acting enhancers in the regulatory domain of a wide range of genes commonly referred to as the

Ahr gene battery (Nebert et al., 1993; Nebert et al., 2004). Given the role of Ahr in mediating the tran-

scriptional response to environmental pollutants, it is not surprising that the best defined subset of genes

activated by Ahr includes genes involved in Phase I/II metabolism like the cytochrome P450 enzyme

Cyp1a1, NAD(P)H:quinine oxidoreductase (Nqo1) or aldehyde dehydrogenase (Aldh3a1). Activation of

metabolizing enzymes through Ahr may lead to the formation of toxic metabolites of the activating lig-

and itself. This is particularly true for benzo(a)pyrene (B[a]P), a classical Ahr agonist. Only after the

self-induced metabolism of this procarcinogen is the ultimate genotoxic metabolite anti-benzo(a)pyrene-

trans-7, 8-dihydroxy-9,10-epoxid (BPDE) formed.

DNA microarray technology offers an appealing approach to investigate transcriptional changes on a

genome-wide scale. Several studies have already been undertaken to examine the effects of Ahr activa-
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tion in different species and cell types (Kim et al., 2009a; Carlson et al., 2009; Gohlke et al., 2009; Carney

et al., 2006). However, deciphering the Ahr -specific transcriptional response is not a trivial task consider-

ing that Ahr activation might trigger the activation of other transcription factors or the generation of toxic

metabolites which will add secondary effects to the observed differential gene expression. Therefore, the

overall transcriptional response directly related to Ahr binding is incompletely elucidated, and the number

of well-defined Ahr specific genes still remains small.

One strategy to assess Ahr -dependence is to compare gene expression of cells or tissues that have

the wild type Ahr with those of Ahr -null cells in a matched genetic background as was shown by Tijet et

al. (Tijet et al., 2006). In their study they compared the effect of TCDD in Ahr +/+ and Ahr -/- mice after

long term exposure. This experimental setup, as the authors themselves conceded, bears the problem

that although an involvement of the Ahr might be necessary for the observed differential gene expression,

the influence of secondary effects increases over time.

In an elegant experimental setup, Hockley et al. (Hockley et al., 2006; Hockley et al., 2007) sought to

separate the direct effects of Ahr activation from the secondary effect caused by the genotoxic metabolite

BPDE. They compared the effects of B[a]P, BPDE and TCDD exposure in two different human cell lines.

Unfortunately, the first time point they investigated was not until six hours after exposure. Considering that

it was shown previously that Ahr translocation and nascent transcription is already induced 1h after TCDD

exposure (Elbi et al., 2002), we believe that identification of direct Ahr targets is only possible by including

early time points of exposure in gene expression studies to identify direct Ahr targets.

A machine learning approach offers an alternative to relying on basic comparisons in a sophisticated

experimental design. For example, it is probable that the direct targets of Ahr share expression charac-

teristics distinct from genes that are part of a secondary response. This difference could be learned from

time-resolved expression data, given an appropriate training set, and the learned patterns could be used

to predict the roles of responding genes. This general strategy of using time course gene expression data

to predict transcriptional regulatory roles has been previously explored (Segal et al., 2003; Bansal et al.,

2006; Redestig et al., 2007; Ruan et al., 2009), particularly in lower organisms such as bacteria and yeast.

We expect that because such learning methods are less encumbered by methodological assump-

tions (compared to traditional statistical comparisons), they are more able to find subtle but meaningful

patterns in the data. For example, an important assumption of previous attempts to cluster Ahr -centric

expression data (Dere et al., 2006; Frericks et al., 2008; Kim et al., 2009a; Boutros et al., 2009) is that

co-regulated genes should also be co-expressed. Hence, clustering of genes based on expression pat-

terns should identify sets of genes subject to the same regulatory program. However, in time courses such

co-expression may only be present during certain phases. In the case of Ahr we expect co-expression

during early time points, whereas expression may diverge later when the influence of Ahr diminishes. The

analysis presented here anticipates and effectively deals with this scenario.

Here we employ machine learning techniques coupled to a straightforward yet robust experimental

design in order to more clearly define genes that are under the direct transcriptional control of Ahr. This is

accomplished by training a Random Forest (Breiman, 2001) (RF) classifier to learn the difference between

genes responding to B[a]P exposure and secondary effects caused by the B[a]P metabolite BPDE. The

trained classifier is then applied to all genes found to be significantly differentially expressed as a result

of B[a]P exposure, and their roles as direct targets or secondary effects are predicted. In addition, the

patterns learned by the classifier are used as a basis for performing weighted clustering. These clusters

facilitate a better understanding of the functional relatedness of the perturbed genes. Finally, we support
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predictions with our own experimental follow-up, as well as with data from independent studies.

Definition of open problem

Given an extensive transcriptional response upon induction of a transcription factor, how can direct targets

be distinguished from indirect effects? How can the responding genes be clustered in functional groups

in a way that accounts for individual transcript differences in synthesis and degradation?

5.2 Materials and Methods

5.2.1 Cell culture and sample preparation

Murine hepatoma cells, Hepa1c1c7 as well as the mutant tao BpRc1 cells (both LG Standards GmbH,

Wesel, Germany), deficient in endogenous Ahr, were used for all experiments. Cells were cultured in

phenol red-free DMEM supplemented with 7% FCS, 1% glutamine and 1% penicillin/streptomycin. Cells

were stimulated with different concentrations of benzo(a)pyrene (B[a]P; Sigma Aldrich, Steinheim, Ger-

many), BPDE (Midwest Research Institute, NCI Chemical Repository, Kansas City, MO, USA) and TCDD

(Sigma-Aldrich, Steinheim, Germany) respectively.

5.2.2 Microarrays

To investigate the differential kinetic behavior of the transcriptome after B[a]P exposure, and to identify

the Ahr -specific response, we used two different setups: (1) short term exposure, Hepa1c1c7 cells were

treated with 50nM B[a]P for 0, 1, 2, and 4 hours and (2) long term exposure, Hepa1c1c7 cells were treated

with 50nM or 5uM B[a]P for 2, 4, 12 and 24h. Time-matched vehicle controls were generated with a DMSO

concentration of 0.05%. All experiments were performed in triplicates. Cells were lysed in Trizol reagent

(Invitrogen, Darmstadt, Germany) and RNA extracted using RNAeasy kits (Qiagen, Valencia, CA, USA).

RNA was quantified and integrity verified on a Bioanalyzer (Agilent Technologies, Palo Alto, CA). Sample

preparation for Affymetrix GeneChip Mouse Exon 1.0 ST arrays (Affymetrix, Santa Clara, CA, USA) was

performed following the manufacturer’s recommendations.

5.2.3 Detection of differential expression

Microarrays were normalized using RMA and the University of Michigan custom CDF file (version 12.1.0)

with mappings to Ensembl exon IDs. After normalization, but before proceeding with the analysis, we

subtracted the (log2) DMSO expression values from the corresponding time point and batch of each of

the B[a]P treatments. Exon expression values were then summarized to their corresponding Ensembl

gene IDs, with the summarized gene expression value being the mean of its constituent exons. A 2-

way ANOVA analysis was performed on each gene, with time and concentration as the factors. We then

corrected for multiple testing by using the FDR. We considered only genes with an FDR < 0.05 for any of

the main effects or time*concentration interaction. In addition, we admitted genes with an FDR < 0.05 from

a simple t-test each B[a]P concentration (all time points pooled) vs. DMSO. Of these, we only considered

genes that achieved 2-fold (or greater) differential expression at at least one time point. This left us with a

total of 2,338 genes. We interpolated the expression between the measured time points by averaging the
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simple linear interpolation with the spline interpolation. Since we have no measurement at time 0 hours,

we assume equivalent expression with the DMSO samples, i.e. the expression ratio at time 0 hours is 0

on the log2 scale. The interpolation gave us a total of 25 values per gene, 1 value every hour from 0 to 24

hours.

5.2.4 Classification with Random Forests

We used the R implementation of Random Forests (Liaw and Wiener, 2002) to perform the two-class

classification (Ahr direct vs. indirect regulation), using the time course expression measurements of sig-

nificantly regulated genes as predictors. To derive training labels (Fig. 5.2), we used data available from

two BPDE studies in human cell lines (Lu et al., 2009; Lu et al., 2010), combining the P values from the

studies using Fisher’s method. We labeled mouse orthologs of genes with BPDE-perturbed expression

(FDR < 0.05) as "Ahr -indirect" since BPDE does not bind Ahr, but indicates affected genes further down-

stream of Ahr. We labeled genes as "Ahr -dependent" that showed differential expression (FDR < 0.05)

in an independent gene expression time course of cells exposed to 50nM B[a]P from 0 to 4 hours, with

the additional condition that they were not significantly regulated in the BPDE data (i.e. orthologs had

FDR > 0.05). These criteria led to 28 "Ahr -direct" labeled genes and 559 "Ahr -indirect" labeled genes.

With this training set we ran RF with mtry set to 5, and ntree set to 5,000. We used the built-in outlier

measure and removed genes in the 95th percentile of outlier scores (resulting in 27 direct and 530 indirect

training cases), then re-ran RF, this time with 1,000 trees. In both cases, to avoid biased predictions

(since there are far more "Ahr -indirect" samples) we randomly sampled 20 genes from each class for the

construction of each tree in the forest. The overall misclassification rate for the final forest was 7% (out of

bag error estimate).

Predictions were made for all 2,338 differentially expressed genes, and genes with a proportion of

class votes greater than 80% were retained for further analysis. This cutoff was chosen because when

the training labels were permuted randomly and a RF trained, no prediction had a proportion of votes

greater than 80%. Using these criteria, a total of 82 genes were predicted to be responding to Ahr directly,

and 1,365 genes were predicted to be indirectly regulated by Ahr (e.g. through the presence of B[a]P

metabolites). In addition to predictions, the RF proximity measure was calculated for all significant and

confidently classified genes, yielding a 1,447 by 1,447 matrix.

5.2.5 Clustering

The RF proximity matrix was used as a distance measure by the transformation D =
√

1−P, where P

is the original proximity matrix and D is the distance matrix. This distance matrix was then used as the

input for PAM clustering, available in the R cluster package. We tested a range of k values and found

that specifying 3 clusters gave the best average silhouette.

To assess the degree of confidence in cluster assignment for each gene, an RF was fit to predict

cluster label using the gene expression measurements. The proportion of votes for the correct cluster is

an indication of how well a gene fits in the cluster. Genes that were given a lower proportion of votes

for the correct class than expected under the null hypothesis (labels permuted randomly) were excluded.

When including this additional filtering criterion, the final number of genes classified as direct targets was

81, with 1,308 genes as secondary effects. In addition, the importance measurements obtained in the
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construction of this RF give an indication of which time points and which concentrations are important

parts of the cluster’s identity.

GO enrichment was performed for each cluster using the topGO package (Alexa et al., 2006). En-

richment of the clusters for genes perturbed by an Ahr mutation was performed using the Kolmogorov-

Smirnov test, using P values derived from differential expression of genes from (Tijet et al., 2006; Sartor

et al., 2009). P values were calculated for each study separately, then combined using Fisher’s method.

Genes used to train the RF classifier were removed prior to calculation of enrichment, to ensure that the

results reflected the actual predictive ability of the classifier.

5.2.6 qPCR

In a separate experiment Hepa1c1c7 and tao BpRc1 cells were exposed to B[a]P (50, 5uM), BPDE (50nM,

5uM) and 1nM TCDD for 0.5, 1, 2, and 4h. mRNA was extracted and isolated using the MagNA Pure

LC System (Roche Diagnostics GmbH, Mannheim, Germany). 50ng of mRNA was reverse transcribed

according to the protocol provided with the AMV reverse transcriptase (Promega, Madison, WI, USA).

Resulting cDNA was diluted 1:5 and 4ul of template used in a 12ul PCR reaction. qPCRs were per-

formed for the following example genes: Cyp1a1, Tnfaip2, Tiparp, Cdkn1b, Mpp2, Nfe2l2, Nfkb1, Agfg1,

Blvrb, Cox7a1, Cdc6, Parp1, 18S rRNA, and Gapdh. All qPCR experiments were carried out on a LightCy-

cler®480 system (Roche Diagnostics GmbH, Mannheim, Germany) with the following settings: touchdown

amplification with an initial step of 960 C for 10 min; followed by the first cycle at 950 C for 10 sec. The

annealing step started at 680 C for 20 sec (decrease of 0.50 C/cycle with a step delay of 1 cycle) and

reaching the annealing temperature of 580 C for the last 25 cycles, followed by 720 C for 20 sec for

extension. A total of 45 cycles were performed in each experiment.

5.2.7 ChIP

Hepa1c1c7 cells were grown in 15 cm dishes. 20,000 cells/cm2 were seeded and treatment started 48h

thereafter. Cells were exposed to 50nM B[a]P or DMSO as the vehicle control for 1h respectively. Sub-

sequently cells were cross-linked for 10 min at 37 C in 1% formaldehyde followed by a quenching step

for 10 min with 150 mM glycine. After cross-linking, chromatin DNA was sheared into 200-500 bp frag-

ments by sonication using a Bioruptor®Next Gen (UCD-300, Diagenode SA, Liege, Belgium). Sonicated,

soluble chromatin was immune-precipitated with 2.5 ug of an anti-Ahr antibody (Enzolifesciences/Biomol,

Lörrach, Germnay) or anti-Pol II (Millipore, Billerica, MA, USA). Control IPs were performed using rabbit

IgG (Millipore, Billerica, MA, USA) corresponding to our specific antibodies. All ChIP experiments were

performed at least two times.

study organism ligands timepoints # DE genes
Hockley, et al. (Hockley et al., 2007) H. sapiens TCDD, B[a]P, BPDE 6h, 24h 1,207
Hockley, et al.(Hockley et al., 2006) H. sapiens B[a]P, B[e]P 6h, 24h, 48h 202
Kim, et al. (Kim et al., 2009a) H. sapiens TCDD 1h, 2h, 4h, 8h, 12h, 24h, 48h 144
Dere, et al. (Dere et al., 2006) M. musculus TCDD 1h, 2h, 4h, 8h, 12h, 24h, 48h 285
Frericks, et al. (Frericks et al., 2008) M. musculus TCDD 2h, 4h, 6h 201
Michaelson & Trump, et al. M. musculus B[a]P 2h, 4h, 12h, 24h 2,338

Table 5.1 Overview of Ahr -centric time-resolved microarray studies. A brief description of the experimental factors
is given, along with the total number of differentially expressed genes resulting from exposure. If multiple cell lines
were tested, the maximum number of differentially expressed genes is reported.
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Figure 5.1 Framework for predicting Ahr direct targets and secondary effects using gene expression time course
data.

5.3 Results

5.3.1 Extensive transcriptional response

A total of 2,338 genes were perturbed significantly (FDR < 0.05) by exposure to B[a]P and had at least

a 2-fold change (with respect to DMSO-exposed cells) at some point over the course of the experiment.

Compared to previous studies of Ahr -mediated temporal gene expression, this represents a very sub-

stantial transcriptional response (see Table 5.1). These genes were highly enriched for a host of biological

processes (summarized in Table 5.2), including mRNA transport, control of the cell cycle, apoptosis, and

development.

5.3.2 Prediction of direct vs. indirect targets of Ahr

The overall analytical framework used here is summarized in Figure 5.1. Using a matrix of time-resolved

gene expression values as predictors (interpolated as described in methods), we trained a Random Forest

classifier in a two-class scenario (Ahr direct and indirect effect). Training labels were assigned based on

the significant perturbation of a gene in conditions that suggest being either a direct Ahr target or respon-

sive to the presence of BPDE (secondary or indirect effect). This yielded 28 genes as direct examples and

559 genes as indirect examples (Fig. 5.2), before filtering for outliers. The final classifier had an estimated

misclassification rate of 7%. Performance of the classifier on out-of-bag (OOB) data is depicted as a ROC

curve in Figure 5.3, panel A.
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Figure 5.2 Defining the training set. We used perturbation by BPDE (FDR < 0.05) as an evidence of a secondary
effect, since BPDE does not activate Ahr but at the same time is a metabolite of B[a]P. Accordingly, perturbation
by B[a]P (FDR < 0.05) but not by BPDE (FDR > 0.05) was taken as evidence for direct regulation by Ahr. A total
of 1,663 genes of the 2,338 differentially expressed genes were examined as potential training examples, and 587
genes were then assigned to the training set.
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Figure 5.3 Performance and confidence of predictions of the Random Forest classifier. Performance of the clas-
sifier predicting out-of-bag (OOB) data, depicted as a ROC curve (A). Confidence in class predictions can be ex-
pressed as the proportion of votes cast for the class (B). Here we show the actual proportions of votes of all
differentially expressed (DE) genes (blue), and the proportions when the training labels are permuted (red). The
classifier’s predictions are more reliable for genes that have a proportion of votes outside of the overlapping region.
Note that since this is a two-class scenario, a proportion close to 0 in this figure corresponds to a high proportion of
votes for the gene being perturbed as a secondary effect.
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ID Term Annotated Significant Expected P
GO:0051028 mRNA transport 54 18 5.99 1.1e-05
GO:0051301 cell division 264 57 29.30 2.6e-05
GO:0001701 in utero embryonic development 213 44 23.64 3.3e-05
GO:0007050 cell cycle arrest 54 17 5.99 4.6e-05
GO:0043065 positive regulation of apoptosis 265 57 29.41 4.6e-05
GO:0008285 negative regulation of cell proliferatio... 212 43 23.53 6.3e-05
GO:0000059 protein import into nucleus, docking 15 8 1.66 7.1e-05
GO:0032318 regulation of Ras GTPase activity 78 21 8.66 8.3e-05
GO:0045944 positive regulation of transcription fro... 345 62 38.29 8.4e-05
GO:0006468 protein amino acid phosphorylation 802 131 89.01 9.6e-05
GO:0007169 transmembrane receptor protein tyrosine ... 212 48 23.53 0.00011
GO:0051130 positive regulation of cellular componen... 111 26 12.32 0.00016
GO:0051726 regulation of cell cycle 269 50 29.86 0.00017
GO:0043066 negative regulation of apoptosis 241 52 26.75 0.00017
GO:0006511 ubiquitin-dependent protein catabolic pr... 156 33 17.31 0.00019
GO:0001525 angiogenesis 159 33 17.65 0.00027
GO:0007067 mitosis 205 48 22.75 0.00028
GO:0016477 cell migration 298 52 33.07 0.00062
GO:0046777 protein amino acid autophosphorylation 67 17 7.44 0.00081
GO:0015813 L-glutamate transport 20 8 2.22 0.00083
GO:0006309 DNA fragmentation involved in apoptosis 12 6 1.33 0.00095
GO:0008286 insulin receptor signaling pathway 40 12 4.44 0.00096
GO:0006915 apoptosis 812 156 90.12 0.00099

Table 5.2 Enrichement of GO biological processes among 2,338 DE genes (with an enrichment P value of less
than 0.001).

We then used this trained classifier to predict on all of the 2,338 differentially expressed genes. The

predictions have varying degrees of confidence, indicated by the proportion of votes cast for the predicted

class. To establish a threshold above which we could be confident that the classifier was predictive, we

permuted the original training labels randomly, trained a Random Forest with these labels, and predicted

on all 2,338 genes. In general we found that in this "null" scenario, the Random Forest did not predict with

a proportion of votes greater than 0.8. Therefore, we consider a class prediction with a proportion of votes

greater than 0.8 to be a reliable prediction (Figure 5.3, panel B). After filtering, 81 genes were predicted

as direct targets of Ahr (Table 5.3), 1,308 genes were predicted as secondary responders, and 949 genes

could not be reliably classified.

5.3.3 Characterization of transcriptional response programs

To characterize the expression patterns that underlie the classifier’s decision rules, we used the RF prox-

imity measure as an input to PAM clustering. This yielded three coherent clusters, depicted in Figure 5.4.

Clusters 1 and 2 are comprised of genes predicted to be secondary effects of Ahr activation by B[a]P,

while cluster 3 contains genes predicted to be direct targets of Ahr. Clusters 1 and 2 are characterized by

undulating expression profiles in the low (50 nM) B[a]P exposure, with the mean behavior of each clus-

ter strongly anticorrelated to the other. The high (5 µM) B[a]P exposure shows less cohesive expression

patterns, but with the same general trend of anitcorrelation between clusters 1 and 2. In both cases, time

points in the 50 nM B[a]P series are more important for the identity of the clusters than time points in the

5 µM B[a]P series. Cluster 3 is characterized by punctuated expression induction at 3 hours in the 50 nM

B[a]P time series, and a slightly extended phase of induction in the 5 µM B[a]P time series. Other time

points are unimportant for the cluster’s identity; indeed, the expression of these genes is fairly divergent

outside of the common phase of induction. Although cluster 3’s "identity phase" is generally between 3-4

hours after exposure, where all genes in the cluster show elevated expression, several genes (such as
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MGI ID cluster votes target votes train/test MGI ID cluster votes target votes train/test
Hspa4l 1.00 0.98 test Ccng2 0.98 0.9 test
2410066E13Rik 1.00 0.98 test Fam198b 0.98 0.9 test
Arl6ip5 1.00 0.98 test Ddit4 0.98 0.9 test
Plscr2 1.00 0.98 test Ubl3 0.98 0.87 test
Mpp2 1.00 0.98 training Nqo1 0.98 0.87 test
Tiparp 1.00 0.98 training Trp53inp1 0.98 0.87 test
Sdpr 1.00 0.98 test Cyp1a1 0.98 0.86 test
Ndrg1 1.00 0.97 test Abca6 0.98 0.86 test
Nrn1 1.00 0.97 test Hmox1 0.98 0.83 test
Cyp2s1 1.00 0.97 test Aldh4a1 0.98 0.81 test
Tnfaip2 1.00 0.97 test Npffr1 0.97 0.91 test
Cpox 1.00 0.97 training Btg2 0.97 0.89 test
Osbpl2 1.00 0.97 test Nr3c1 0.97 0.87 test
Rbks 1.00 0.96 test Gm10122 0.97 0.87 test
Ppard 1.00 0.96 training Snx30 0.96 0.96 training
Tbc1d16 1.00 0.95 test Cdkn1b 0.96 0.92 test
Arrdc3 1.00 0.95 training Slc26a2 0.96 0.88 test
Lpin1 1.00 0.95 test Plk2 0.96 0.85 test
Id2 1.00 0.94 test Zscan29 0.96 0.83 test
Xdh 1.00 0.94 test Zfp608 0.95 0.92 training
Gramd3 1.00 0.94 test Nrg1 0.95 0.91 test
Serpine1 1.00 0.93 test Abcd2 0.95 0.8 test
Pfkfb3 0.99 0.98 training Klf9 0.94 0.94 test
Jub 0.99 0.97 test Dusp1 0.94 0.92 training
Ddx58 0.99 0.97 training Tnfaip8 0.94 0.88 test
Zfp418 0.99 0.95 test 9330175E14Rik 0.94 0.82 test
Sgk1 0.99 0.94 test Lrrc30 0.93 0.89 test
Jun 0.99 0.93 test Eda2r 0.93 0.85 test
Cdkn1a 0.99 0.92 test Bmf 0.92 0.93 test
Abcc4 0.99 0.91 test Rnf39 0.91 0.92 training
Slc6a9 0.99 0.91 test St6gal1 0.9 0.94 training
Adh7 0.99 0.90 test Zfp36l1 0.89 0.83 test
Usp18 0.99 0.90 test Nr1d1 0.86 0.91 training
Npc1 0.99 0.88 test Irs2 0.86 0.91 test
Casp3 0.99 0.87 test Ets2 0.84 0.86 training
Aldh3a1 0.99 0.86 test Nfe2l2 0.78 0.86 test
Slc35d1 0.99 0.85 test Irf1 0.76 0.91 training
Cyp1b1 0.98 0.97 test Cib2 0.71 0.84 test
Intu 0.98 0.95 training S1pr1 0.7 0.89 training
Pitpnc1 0.98 0.95 training Traf5 0.59 0.89 training
Sesn2 0.98 0.92 training

Table 5.3 List of predicted direct targets of Ahr transcriptional regulation. Confidence scores of both membership
in cluster 3 (cluster votes) and as an Ahr direct target (target votes) are given. Known transcriptional regulators
(annotated with GO terms GO:0045449, GO:0006350, GO:0003700, GO:0008134, GO:0003712, or GO:0030528)
are bolded. Additionally, assignment to either the training or test set is indicated for each gene.

Cyp1a1 and Tiparp) in the cluster are highly expressed well before this window.

We evaluated the clusters for enrichment of genes perturbed by an Ahr mutation (Fig. 5.5). By using

data from previous studies (Tijet et al., 2006; Sartor et al., 2009), we performed a 2-way ANOVA and took

P values from the genotype*ligand interaction; these P values were used as indicators of genes under the

direct influence of Ahr. Only genes belonging to the test set were used when calculating the enrichment.

Cluster 3 showed extreme significance, and was the only cluster to show enrichment for genes perturbed

by an Ahr mutation. This result further supports the assertion that cluster 3 contains true Ahr direct

targets, and that the classifier is predictive in practice.

5.3.4 Experimental confirmation of Ahr dependency

Two independent experimental approaches were chosen to confirm Ahr -dependency for a subset of rep-

resentative genes: direct comparison of the transcriptional response of Ahr -expressing Hepa1c1c7 and
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Figure 5.4 Clustering with the RF proximity measure. PAM clustering was performed with a supervised, weighted
distance measure, derived during the classification of Ahr direct targets and secondary effects. Three distinct pro-
grams were found, depicted here as clusters. Color saturation indicates the importance of the time points for the
identity of the cluster. To further emphasize these important time points, this same information is shown again for
each cluster (black to yellow scale). The classification of each gene is shown as the proportion of RF votes.



C H A P T E R 5 . D I R E C T A N D I N D I R E C T T R A N S C R I P T I O N A L TA R G E T S 73

1 2 3

cluster

A
hr

 K
O

 e
nr

ic
hm

en
t (

D
 s

ta
tis

tic
)

0.
0

0.
2

0.
4

0.
6

0.
8

P = 0.65 P = 0.99

P < 10−17

Figure 5.5 Enrichment of each cluster for Ahr mutant-perturbed genes. Using data from previous Ahr mutant
studies (Tijet et al., 2006; Sartor et al., 2009), we assessed whether each cluster was enriched (relative to the other
clusters) for genes perturbed by an Ahr mutation. Only genes not used in the training of the classifier were used in
the calculation of enrichment. Cluster 3 was highly enriched for perturbed genes, suggesting that it is enriched for
Ahr targets.
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mutant tao BpRc1 cells deficient in endogenous Ahr, as well as confirmation of binding of Ahr in the

corresponding promoter regions by ChIP.

Differential expression of Tiparp, Tnfaip2, Cdkn1a, Cdkn1b, Cyp2s1, Nfe2l2, Mpp2 after treatment

with B[a]P or TCDD at different concentrations was investigated by qPCR. After B[a]P and TCDD expo-

sure, the expression of all genes was induced as soon as 1h after the start of treatment in Hepa1c1c7

cells, while there was no significant induction compared to vehicle control samples detectable in tao BpRc1

cells up to four hours after exposure (Fig. 5.6).

Enrichment of Ahr binding in the promoter region of all chosen genes could be confirmed by ChIP,

with fold changes (compared to vehicle control samples) ranging from 5.9-113.9 (Table 5.4).

5.4 Discussion

Activation of Ahr induces a complex transcriptional response. This change in gene expression is a mixture

of direct effects, due to Ahr binding to gene regulatory sequences, and a secondary response, due in part

to stress caused by an active metabolite of the Ahr ligand, in our case the B[a]P metabolite BPDE. In

addition, other transcription factors might themselves be Ahr target genes, leading to regulation of further

pathways as a result of Ahr activation.

Our approach aimed to predict the direct Ahr targets using our time course gene expression data of

Hepa1c1c7 cells exposed to different concentrations of B[a]P. From the overall 2,338 genes regulated, 81

were predicted to be direct Ahr targets. Among those are 11 transcriptional regulators that are involved in

a variety of biological functions.

5.4.1 Ahr target genes

Previously well-described members of the Ahr gene battery like Cyp1a1, Nqo1 Cyp2s1, Aldh3a1, Aldh4a1

and Cyp1b1 (Liu et al., 1994; Nebert et al., 1993; Nebert et al., 2000) were predicted as direct targets

of Ahr. In addition to this qualitative confirmation of the effectiveness of our computational approach, we

could demonstrate Ahr dependency experimentally by ChIP and qPCR.

The experimental strategy to confirm our findings is based on comparing the transcriptional response

of wild type hepatoma cells (Hepa1c1c7) to the response of corresponding mutants deficient in endoge-

nous Ahr (tao BpRc1) by quantitative real time PCR (qPCR). In addition, a representative subset of genes

was chosen and Ahr binding in corresponding promoter regions was confirmed by ChIP assays (Table

5.4).

As previously mentioned, B[a]P is likely to induce secondary effects independent of Ahr activation,

therefore we included TCDD – known as an exclusive, non-metabolized Ahr ligand – in our confirmation

experiments. All of the genes chosen for the qPCR verification showed the expected results (Fig. 5.6) and

confirmed our predicted Ahr -dependency.

For a functional evaluation of the predicted target genes we performed a GO enrichment analysis.

The regulated genes in cluster 3 were enriched for 15 different biological functions including endoge-

nous functions like "lipid transport" or "blood vessel morphology". Moreover, two biological process terms

pointed to the influence of Ahr on cell cycle control, namely "cell cycle arrest" and "negative regulation of

cell proliferation". Experimental confirmation of two of these genes, the cyclin-dependent kinase inhibitors

Cdkn1a and Cdkn1b, showed an exclusive induction in wild type cells by qPCR, together with an en-



C H A P T E R 5 . D I R E C T A N D I N D I R E C T T R A N S C R I P T I O N A L TA R G E T S 75

Figure 5.6 Confirmation of predicted targets of Ahr. A subset of predicted Ahr target genes was confirmed by
qPCR. Hepa1c1c7 (+Ahr ) and tao BpRc1 (-Ahr ) were exposed to two different concentrations of B[a]P or TCDD
respectively. Significant differential expression of Tiparp (A), Tnfaip2 (B), Mpp2 (C), Cyp2s1 (D), Nfe2l2 (E), Cdkn1a
(F) and Cdkn1b (G) was detected exclusively in Ahr -expressing cells.



76 C H A P T E R 5 . D I R E C T A N D I N D I R E C T T R A N S C R I P T I O N A L TA R G E T S

Gene FC Enrichment
Tiparp 113.9±30.2
Tnfaip2 5.9±4.7
Mpp2 15.5±1.5
Cyp2s1 41.6±11
Nfe2l2 8.6±6.5
Cdkn1a 55.8±18.0
Cdkn1b 6.8±2.1

Table 5.4 Binding of Ahr after exposure to B[a]P to promoter sequences of selected predicted targets, assayed by
ChIP. Fold change is relative to vehicle control.

richment for Ahr binding to the corresponding promoter sites. Another gene known to be involved in cell

cycle regulation, but less well-defined, is the palmitoylated membrane protein 2 (Mpp2). Mpp2 was also

strongly induced by TCDD and B[a]P in Ahr -expressing cells, while no differential expression was elicited

in the mutant tao BpRc1 cells. A more indirect effect on cell cycle regulation originates from the TNF alpha

activated signaling cascade. Five genes (Tnfaip2, Tnfaip8, Traf5, Casp3, Ddx58) involved in this pathway

were predicted to be direct targets of Ahr. Tnfaip2 and Casp3 were investigated in our independent ex-

perimental confirmation. For both genes induction of expression was only detectable in Hepa1c1c7 cells,

while the Ahr -deficient counterparts showed no significant differential regulation. Actual binding of Ahr to

the promoter sites could be confirmed by ChIP. Direct regulation by Ahr of the important regulators of the

cell cycle Cdkn1a, Cdkn1b as well as Mpp2 together with targeting of the TNF alpha signaling pathway

emphasizes the impact of this Ahr on endogenous cellular functions outside of xenobiotic metabolism.

5.4.2 An Ahr transcriptional cascade

Eleven of the genes in cluster 3 (i.e. the Ahr target cluster) are known transcriptional regulators. These

regulators could constitute a transcriptional cascade that begins with the activation of Ahr.

Ahr has been connected to hormone-induced signaling as was reinforced by our GO enrichment

analysis that identified "regulation of hormone levels" as one of the biological functions. Crosstalk with the

estrogen receptor has been studied extensively (DuSell et al., 2010; Wihlén et al., 2009; Swedenborg and

Pongratz, 2010) and glucocorticoid receptor (GR)/Ahr crosstalk has also been suggested (Wang et al.,

2009; Vrzal et al., 2009). Our classifier predicted the glucocorticoid receptor (Nr3c1) itself as an Ahr target

together with Sgk1, a GR-regulated kinase. In addition, the transcription factor Klf9 known to be induced by

GR and involved in adipogenesis, was predicted to be a direct Ahr target. Besides Klf9, further Ahr targets

were predicted with an involvement in lipid synthesis and lipid transport, i.e. the transcriptional regulators

Ppard and Lpin play a role in mammary lipid synthesis, and Npc1, Osbpl2, and Pitpnc1 are involved in

lipid transport. The role of GR in lipid homeostasis and metabolism is well-established (Michailidou et al.,

2008; Marissal-Arvy et al., 2010; Hoppmann et al., 2010). From our analysis we can deduce a possible

Ahr -activated network of genes directly influencing lipid status and its regulation by the glucocorticoid

receptor.

The interaction of Ahr with another transcription factor Nfe2l2 (aka Nrf2) might also have an influence

on lipid status, specifically on adipogenesis (Shin et al., 2007). A bidirectional regulation of these two

pathways has been described previously (Köhle and Bock, 2007). Both transcription factors have been

shown to bind in the other’s promoter region, thereby directly influencing transcription (Miao et al., 2005;

Shin et al., 2007). Therefore, the prediction of Nfe2l2 being an Ahr target is very well corroborated by
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previous studies and was indeed verified by our experimental follow-up. In addition, a recently described

interaction of Nfe2l2 and Ahr confirms one other predicted Ahr target gene: Abcc4. Xu et al. showed that

this multidrug resistant protein is directly activated by Ahr and Nfe2l2 in liver (Xu et al., 2010).

Overall, our GO enrichment analysis together with a more detailed functional analysis of the predicted

direct Ahr targets supported the accuracy of our classifier and subsequent weighted clustering. Moreover,

we experimentally verified Ahr involvement for a representative subset of genes by differential expression

as well as by binding analysis of Ahr to the corresponding promoter regions.

cluster ID Term Annotated Significant Expected P
1 GO:0051301 cell division 35 32 21.83 9.1e-05
1 GO:0019941 modification-dependent protein catabolic... 57 47 35.55 0.00064
1 GO:0006468 protein amino acid phosphorylation 81 63 50.52 0.00162
1 GO:0006260 DNA replication 13 13 8.11 0.00207
1 GO:0007067 mitosis 30 26 18.71 0.00299
1 GO:0016568 chromatin modification 26 23 16.22 0.00301
1 GO:0065002 intracellular protein transmembrane tran... 12 12 7.48 0.00334
1 GO:0016043 cellular component organization 202 155 125.99 0.00678
1 GO:0007265 Ras protein signal transduction 27 23 16.84 0.00841
1 GO:0006606 protein import into nucleus 10 10 6.24 0.00869
1 GO:0051128 regulation of cellular component organiz... 34 28 21.21 0.00924
2 GO:0007186 G-protein coupled receptor protein signa... 71 40 22.04 4.3e-06
2 GO:0015672 monovalent inorganic cation transport 19 12 5.90 0.0036
2 GO:0006952 defense response 30 16 9.31 0.0083
3 GO:0050793 regulation of developmental process 104 16 6.84 0.00064
3 GO:0042221 response to chemical stimulus 82 17 5.40 0.00070
3 GO:0010033 response to organic substance 42 9 2.76 0.00107
3 GO:0043086 negative regulation of catalytic activit... 14 5 0.92 0.00135
3 GO:0055114 oxidation reduction 54 10 3.55 0.00184
3 GO:0048522 positive regulation of cellular process 129 17 8.49 0.00262
3 GO:0010817 regulation of hormone levels 10 4 0.66 0.00268
3 GO:0008285 negative regulation of cell proliferatio... 24 6 1.58 0.00343
3 GO:0007050 cell cycle arrest 11 4 0.72 0.00400
3 GO:0046942 carboxylic acid transport 12 4 0.79 0.00570
3 GO:0032879 regulation of localization 36 7 2.37 0.00709
3 GO:0070887 cellular response to chemical stimulus 20 5 1.32 0.00763
3 GO:0006974 response to DNA damage stimulus 28 6 1.84 0.00777
3 GO:0006869 lipid transport 13 4 0.86 0.00783
3 GO:0048514 blood vessel morphogenesis 29 6 1.91 0.00929

Table 5.5 Enrichment of clusters for GO biological processes. Enrichment was calculated against the pooled
annotations of all genes assigned to any of the three clusters (i.e. not against genome-wide annotations).

5.4.3 Secondary effects

Genes in clusters 1 and 2 are predicted to be perturbed not as a result of Ahr regulation, but by the

presence of the metabolite BPDE. This genotoxic metabolite of B[a]P is known to cause DNA damage

by DNA-adduct formation (Jack and Brookes, 1980; Mattsson et al., 2009). DNA damage is followed by

initiation of DNA replication (GO:0006260), one of the eleven GO categories enriched in Cluster 1. Further,

in the overall set of significantly regulated genes, many different MAP kinases are found, and all of these

kinases are members of cluster 1 or 2. The idea that MAP kinases are Ahr -independent is supported by

(Tan et al., 2002), who could show that Ahr ligands were equally effective activating MAPKs in cells that

express Ahr and those deficient in the receptor.

To further support the predictions of our classifier, we selected some representative genes from clus-

ters 1 and 2 (Agfg1, Anapc1, Nfkb, and Parp1) and measured their expression in response to exposure

to B[a]P or BPDE in wild type (Hepa1c1c7) or mutant (tao BpRc1) cells (Fig. 5.7). These experiments

demonstrate that BPDE causes differential expression with and without Ahr, while B[a]P only perturbs
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expression in the presence of Ahr, i.e. when metabolism of B[a]P to BPDE is made more efficient by a

functional Ahr pathway. These results demonstrate, as predicted, that these genes are regulated by the

presence of BPDE and not directly by Ahr, further supporting the predictive power of our classifier.

5.4.4 Utility of weighted clustering

One unique and desirable aspect of the type of learning approach applied here is a side effect of the

learning process – the proximity measure. The RF proximity is a type of similarity measure between

subjects (in this case genes), based on how often two genes take the same path down the decision

trees of the forest. It is in effect a weighted similarity measure because only time points that are useful

in the learning process are used in the calculation of the proximity. This is in contrast to the widely used

Euclidean distance, in which all features make an equal contribution.

A weighted (dis)similarity measure is advantageous in clustering gene expression time series, es-

pecially in complex transcriptional responses of higher eukaryotes, as presented in this work. Additional

systems are present in higher eukaryotes that influence the synthesis, stabilization, and degradation of

mRNA. These additional systems make it less likely that functionally related genes share precisely the

same characteristic expression profile over time. For instance, functionally related genes, induced by a

common transcription factor, may share similar expression patterns shortly after induction, but may then

diverge as other factors come into play, such as microRNAs. A supervised, weighted metric such as RF

proximity could de-emphasize the diverging time points while emphasizing the common phase of induc-

tion, finally resulting in the grouping of the functionally related genes together. Conversely, such expres-

sion profiles are unlikely to fall into the same cluster when using e.g. the Euclidean distance, and could be

a contributing factor to the mixed success of past attempts (Dere et al., 2006; Frericks et al., 2008; Kim

et al., 2009a; Boutros et al., 2009) to cluster Ahr -induced gene expression time courses in a way that is

biologically interpretable.

One technique that is frequently used to address problems such as those described here is bicluster-

ing (Supper et al., 2007; Gonçalves et al., 2009; Madeira and Oliveira, 2009; Madeira et al., 2010; Wang

et al., 2010a). Briefly, biclustering is a strategy that seeks to cluster in two dimensions simultaneously, e.g.

genes and time points. The goal is to find genes that show similar expression in some (though not nec-

essarily all) conditions. There are many algorithms and heuristics that implement biclustering. Strengths

and weaknesses of the approach vary by implementation, but in general most biclustering methods are

unsupervised and are non-deterministic. Without alleviating assumptions the problem is NP-hard. It can

be difficult to judge the quality of the resulting clusters, and clusters are often redundant. In the work pre-

sented here, clustering with the RF proximity presented fewer potential pitfalls compared to biclustering,

since we had a means of performing supervised learning and the RF proximity was obtained "for free"

since it was part of the learning process. In addition, the clusters were non-redundant and judging their

quality was fairly straightforward by using another Random Forest to predict the assigned cluster labels

of the genes (as described in the methods section). In addition to the work presented here, clustering of

genomic data with an RF proximity has been described in (Breiman and Cutler, 2003; Allen et al., 2003;

Shi et al., 2005; Shi and Horvath, 2006), and an example using multivariate response Random Forests

to examine transcriptional programs in yeast can be found in Xiao and Segal (Xiao and Segal, 2009). We

have found that PAM clustering with the RF proximity measure works well in scenarios where weighted

clustering is desirable, and is an alternative to biclustering that is worth considering. However, one ob-
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Figure 5.7 Confirmation of predicted BPDE-perturbed genes. qPCRs for Agfg1 (A), Anapc1 (B), Nfkb (C), Parp1
(D) were performed in Ahr expressing (Hepa1c1c7, +Ahr ) and in Ahr deficient cells (tao BpRc1, -Ahr ). Cells were
exposed to B[a]P or its active metabolite BPDE. Transcriptional response to BPDE was comparable in both cell
types. However, since B[a]P will be metabolized to BPDE only in +Ahr, but not in -Ahr cells, no differential expression
of these genes was detectable in -Ahr cells for B[a]P exposure, while in +Ahr cells differential expression was
observed with a time lag (∆t) compared to exposure to the BPDE itself.
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vious limitation for any supervised method – including our use of RF here – is the need for a training

set. In some situations a training set may be difficult or impossible to assemble – this is an important

consideration when selecting a clustering method.
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Chapter 6

Conclusion and outlook

6.1 Contributions of this dissertation

The work presented in this dissertation led to several specific contributions that are of particular im-

portance to researchers studying transcriptional regulation and its role in disease and responses to the

environment. These contributions are presented here in response to the open problems that motivated

their development.

6.1.1 Open problem 1 revisited

Open problem How can the performance of eQTL mapping methods be tested using measured data?

Can modifications of these methods produce improved results?

Key contributions

We presented a battery of three data-driven benchmarks to assess the performance of competing eQTL

mapping methods: the proportion of cis-eQTL recovered, the enrichment of eQTL for genes involved in

the same pathway as the target, and the enrichment of eQTL for genes causing expression perturbation in

the target when mutated. These benchmarks suggested that multi-locus modeling methods are better at

pinpointing loci that are supportable by real data. Specifically, Random Forests (RF) were shown to have

the best performance overall, and selection frequency, a novel method for mapping eQTL, was shown to

be the most effective RF importance measure in this context.

6.1.2 Open problem 2 revisited

Open problem How can epistasis be efficiently discovered among millions of locus pairs and tens of

thousands of traits? How can competing methods be benchmarked using real data?

Key contributions

Because we found Random Forests to be a good performer for mapping eQTL, we were motivated to find

a way to extract epistatic relationships between loci from the forest structure. In this way, we could essen-

tially find interactions "for free" while performing a conventional eQTL map. We introduced the concept

of RF split asymmetry which finds dependencies between splitting variables in the structure of the forest.



82 C H A P T E R 6 . C O N C L U S I O N A N D O U T L O O K

Split asymmetry is caused by epistasis, and is therefore a means to detect it. To demonstrate the method’s

utility, we were not satisfied with simulated data alone; we devised a test using several genetic interaction

data sets in yeast and showed that RF split asymmetry did a better job of recovering engineered interac-

tions using eQTL data than the competing linear model-based approach. Encouraged by these results, we

looked for epistasis controlling the expression of mouse orthologs of schizophrenia risk genes. The result-

ing epistatic interactions made intuitive sense, based on what is known about the processes underlying

schizophrenia.

6.1.3 Open problem 3 revisited

Open problem Which disease-associated genes are most likely to be causal, and which are likely to be

symptomatic? How can systems genetics data be used to give clues about the etiology of a disease or

the drivers of a phenotype?

Key contributions

Network approaches are frequently used to interpret eQTL data and construct transcriptional regulatory

networks. However, their ability to recover the regulatory roles of genes is impaired when the data are

noisy. We developed a network-free approach that uses distributional enrichment of eQTL scores, rather

than an arbitrary threshold, to define the nature of a gene’s regulatory role relative to other disease-related

genes. This approach can be more sensitive than an explicit network. We demonstrated its use in connec-

tion with schizophrenia risk genes, and derived a regulatory hierarchy based on systems genetics data

in mouse. We found that the measure of how upstream a gene was in the mouse hierarchy was a good

indicator of how reproducible an association with schizophrenia would be in human studies, suggesting

that genes that are higher in the hierarchy are more likely to be causal. In addition, the most significant of

the genes had a very suggestive role in the molecular etiology in schizophrenia that is well-supported by

the literature.

6.1.4 Open problem 4 revisited

Open problem Given an extensive transcriptional response upon induction of a transcription factor, how

can direct targets be distinguished from indirect effects? How can the responding genes be clustered in

functional groups in a way that accounts for individual transcript differences in synthesis and degradation?

Key contributions

The data from our Ahr experiments comprised an enormous transcriptional response – 2,338 genes. We

used data from independent studies to derive training labels so that we could train an RF classifier to

recognize the difference between direct targets of Ahr and secondary effects caused by toxic metabolites.

Predictions were then made for all differentially expressed genes. This was a crucial step in making sense

of the enormous transcriptional response. In addition, the training of the classifier led to a supervised and

weighted distance measure that was used to cluster the genes. The fact that a weighted distance was used

was vital because the direct targets of Ahr were only co-expressed during the induction phase, diverging

noticeably at later time points. Thus, these early time points of induction are given more weight in the
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distance calculation, leading to a more appropriate clustering of functionally related genes. This demon-

stration of weighted clustering is especially useful for researchers working on time course gene expression

data, where functionally related genes might not always show consistent co-regulation throughout the time

series.

6.2 Outlook

The methods presented in this work show promise beyond the applications demonstrated. For instance,

our method for mapping regulatory hierarchies could be applied to large-scale screen data, such as that

from RNAi screens. An approach similar to our demonstration of expression time course classification

coupled with weighted clustering could be used with data relating to stem cell differentiation – this could

establish which time points are crucial for which functional gene groups.

New applications of our methods will undoubtedly expose further weaknesses in their implementation

and provide an opportunity for their improvement. Indeed, there are already some well-known limitations

of methods based on Random Forests (RF). For instance, because it is a stochastic method, its results

are not strictly reproducible. Biologists are often incredulous when told that a particular method does not

give the same answer each time you run it. The following "philosophical note" by Leo Breiman and Adele

Cutler provides a good perspective on the practical use of RF:

RF is an example of a tool that is useful in doing analyses of scientific data. But the cleverest algo-

rithms are no substitute for human intelligence and knowledge of the data in the problem. Take the

output of random forests not as absolute truth, but as smart computer generated guesses that may be

helpful in leading to a deeper understanding of the problem.

In this way, RF can be seen as a tool that, when properly applied, can point the researcher in the

right direction. However, it might not always be appropriate as a final result in and of itself. Although we

repeatedly found that RF performed very well when applied to real biological datasets, we still recom-

mend careful interpretation of specific results, and where possible, corroboration of interesting results

with complimentary methods and data.

Perhaps nothing has become more clear to me through the course of my doctoral work than the fact

that there are veritable mountains of biological data available, and that we have only scratched the surface

of what they have to tell us about how life works. The sheer breadth of what a modern high-throughput

experiment collects almost always exceeds the scope of the question that motivated its investigation. Our

ability to generate data is not yet matched by our ability to fully interpret it. This represents a challenge and

an opportunity for computational biologists to both continue to develop sophisticated analytical methods,

and to work more effectively in promoting their adoption and use among non-computational biologists.

This will not only ensure many more new discoveries from old data, but will improve the balance between

newly acquired data and newly acquired understanding.





Appendix A

Selected functions

The following R functions are used in the tutorials included in this appendix. All functions were written by

the author.

A.1 Simulate genotypes

1 ###############################################################################

2 ### a function to simulate (0,1) genotype markers with tunable

3 ### linkage disequilibrium

4 ### n=number of individuals

5 ### nmarkers=number of markers

6 ### recombprob=probablities of recombination; at each successive locus, one of

7 ### these values is sampled randomly to determine how many of the individuals

8 ### will "flip" their genotype; the more '0' values in this vector, the more

9 ### LD there will be in the markers. Higher values will result in more

10 ### recombination.

11 ###############################################################################

12

13 simgeno = function(n,nmarkers=1000,recombprob=c(0,0,0,0,0.01,0.3)){

14 geno = matrix(0,n,nmarkers)

15 xn = sample(c(0,1),n,replace=T)

16 geno[,1] = xn

17 draw = ceiling(recombprob*n)

18 for(i in 2:nmarkers){

19 these = sample(1:n,sample(draw,1))

20 xn[these] = !xn[these]

21 geno[,i] = xn

22 }

23 return(geno)

24 }
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A.2 Simulate a trait

1 ###############################################################################

2 ### a function to simulate traits, given an input logical vector and an effect

3 ### size for those "with" the trait (i.e. TRUE)

4 ### logic=a logical vector indicating which samples "have" the trait (TRUE) and

5 ### which do not (FALSE)

6 ### effect=effect size (separation between those that have the trait and those

7 ### that don't)

8 ### spread=value that controls the spread (SD) of the distributions

9 ###############################################################################

10

11 simtrait = function(logic,effect=1,spread=0.1){

12 spread = spread*abs(effect)

13 logic = as.logical(logic)

14 out = numeric(length(logic))

15 out[!logic] = rnorm(sum(!logic),0,spread)

16 out[logic] = rnorm(sum(logic),effect,spread)

17 return(out)

18 }

A.3 Extract selection frequencies

1 ##############################################################################

2 ### function for extracting selection frequencies from an RF

3 ### rf=the RF from which selection frequencies are desired

4 ##############################################################################

5 rfsf = function(rf){

6 vu = randomForest::varUsed(rf)

7 sf = vu/sum(vu)

8 names(sf) = rownames(rf$importance)

9 return(sf)

10 }
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A.4 Estimate score bias in RFSF

1 ##############################################################################

2 ### function to estimate the selection bias in RF when the null hypothesis is

3 ### true (i.e. no association between response and predictors)

4 ### x=predictor matrix (genotype matrix)

5 ### ntree=number of trees

6 ### verbose=print progress?

7 ### ...=additional arguments to be passed to 'randomForest'

8 ##############################################################################

9

10 estBias = function(x,ntree,verbose=TRUE,mult=FALSE,...){

11 if(ntree%%10!=0) stop("ntree must be a multiple of 10")

12 vu = numeric(ncol(x))

13 ni = ntree/10

14 for(i in 1:ni){

15 rf = randomForest::randomForest(y=rnorm(nrow(x)),x=x,ntree=10,...)

16 vu = vu + randomForest::varUsed(rf)

17 if(i%%10==0 && verbose){

18 cat(round(100*i/ni,0),"percent complete")

19 cat("\n")

20 }

21 }

22 vu = vu/sum(vu)

23 if(mult){

24 return(mean(vu)/vu)

25 }else{

26 return(vu-mean(vu))

27 }

28 }

A.5 Plot a density with data points

1 ######################################################################

2 ### plot density with data points

3 ######################################################################

4 pdens = function(x,...){

5 plot(density(x),...)

6 points(x,rep(0,length(x)),col='red',pch="|")

7 }
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A.6 Extract Ml and Mr from a Random Forest

1 ######################################################################

2 ### compile information needed for EPI() from an rfdev randomForest

3 ### object

4 ### rf=randomForest object (must be created with rfdev package)

5 ### testset=logical indicating whether the testset (OOB) predictions

6 ### or the training predictions should be used

7 ######################################################################

8 predsymm = function(rf,testset=TRUE){

9 l = matrix(0,nrow=nrow(rf$importance), ncol=nrow(rf$importance))

10 colnames(l) = rownames(rf$importance)

11 rownames(l) = rownames(rf$importance)

12 r = l

13 ct = l

14

15 xx = rf$forest$bestvar

16 rr = rf$forest$rightDaughter

17 ll = rf$forest$leftDaughter

18 if(testset){

19 pred = rf$forest$oobpred

20 }else{

21 pred = rf$forest$nodepred

22 }

23 xx[xx==0]=NA

24 rr[rr==0]=NA

25 ll[ll==0]=NA

26

27 for(i in 1:ncol(xx)){

28 if(all(is.na(xx[,i]))) next

29 p = pred[ll[,i],i] - pred[rr[,i],i]

30 ind = 1:nrow(xx)

31 parents = xx[ifelse(ind%%2==0,match(ind,ll[,i]),match(ind,rr[,i])),i]

32 ind = cbind(1:nrow(xx),parents,xx[,i],p)

33 ind = ind[apply(ind,1,function(x) all(!is.na(x))),]

34

35 if(is.null(nrow(ind))) next

36 p = ind[,4]

37 side = ind[,1]

38 ind = ind[,2:3]

39

40
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41 il = side%%2!=0

42 ir = !il

43 l[ind[il,]] = l[ind[il,]] + p[il]

44 r[ind[ir,]] = r[ind[ir,]] + p[ir]

45 ct[ind] = ct[ind] + 1

46 }

47 return(list(l=l/rf$ntree,r=r/rf$ntree,counts=ct/sum(ct)))

48

49 }

A.7 Score epistasis with RF split asymmetry

1 ######################################################################

2 ### score epistasis using the output from predsymm()

3 ### x=output from predsymm()

4 ######################################################################

5 EPI = function(x){

6 d = abs(x$l-x$r)

7 m = (abs(x$l)+abs(x$r))/2

8 out = d-m

9 out = out

10 out = pmin(out,t(out))

11 out[out<0] = 0

12 return(out)

13

14 }
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A.8 Plot an eQTL map with epistatic connections

1 ######################################################################

2 ### plot eQTL map with epistatic connections

3 ### rf=randomForest object (must be created with rfdev package)

4 ### P=matrix of P values

5 ### cutoff=FDR threshold to be used

6 ### main=title of plot

7 ######################################################################

8 plotEpi = function(rf,P,cutoff=0.01,main=""){

9 P[!upper.tri(P)] = NA

10 P = as.data.frame(as.table(P))

11 P = as.matrix(P[!is.na(P[,3]) & p.adjust(P[,3],'fdr')<cutoff,1:2])

12 mode(P) = 'numeric'

13 yl = max(rf$importance[,1])

14 yl = c(-0.25*yl,1.1*yl)

15 plot(rf$importance[,1],type='h',ylim=yl,axes=F,ylab='importance',

16 main=main,col=grey(0.2))

17 if(nrow(P)>0){

18 apply(P,1,function(x) arc(min(x[1:2]),max(x[1:2]),0.7*yl[1],col='coral1'))

19 }

20 axis(1)

21 axis(2,at=pretty(c(0,yl[2]),4))

22 }

23 ## function to draw the connections

24 arc = function(x1,x2,depth=-1,col){

25 x = c(x1,0.5*(x2-x1)+x1,x2)

26 y = c(0,depth,0)

27 lines(spline(x,y,x2-x1),col=col)

28 }
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A.9 Get upstreamness and centrality from eQTL data

1 ######################################################################

2 ### get upstreamness and centrality scores from eQTL data

3 ### eqtl=a matrix of eQTL scores (with row and column names)

4 ### genes=a named logical vector indicating which genes

5 ### are interesting

6 ### markers=a named logical vector indicating which markers map to the

7 ### interesting genes

8 ### cis.map=a named character vector of marker names, whose names are

9 ### gene names; this indicates the mapping from genes to markers

10 ### nulldist=logical; indicates if null distribution values should

11 ### be obtained

12 ######################################################################

13 ucScores = function(eqtl,genes,markers,cis.map,nulldist=FALSE){

14 if(nulldist){

15 genes = structure(sample(genes),names=names(genes))

16 markers = colnames(eqtl)%in%cis.map[names(genes)[genes]]

17 names(markers) = colnames(eqtl)

18 }

19 dwn = apply(scale(eqtl[genes,]),1,

20 function(x) ks.test(x[markers],x[!markers],alternative='less')$stat)

21 up = apply(eqtl[,markers],2,

22 function(x) ks.test(x[genes],x[!genes],alternative='less')$stat)

23 up = up[cis.map[names(genes)[genes]]]

24 names(up) = names(genes)[genes]

25 s = up-dwn

26 centrality = (up+dwn)-abs(s)

27 return(list(upstreamness=s,centrality=centrality))

28 }
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A.10 Get P values from a 2D empirical null distribution

1 ######################################################################

2 ### get P values from a 2D empirical null distribution

3 ### x=observed x values

4 ### y=observed y values

5 ### xn=x values under the null

6 ### yn=y values under the null

7 ### ...=additional arguments to be passed to kde2d

8 ######################################################################

9 p2d = function(x,y,xn,yn,...){

10 require(MASS)

11 rgy = range(c(y,yn))

12 rgx = range(c(x,xn))

13 kd = kde2d(xn,yn,lims=c(rgx,rgy),...)

14 z = numeric(length(x))

15 names(z) = names(x)

16 for(i in 1:length(z)){

17 z[i] = kd$z[which.min(abs(x[i]-kd$x)),which.min(abs(y[i]-kd$y))]

18 }

19 p = numeric(length(x))

20 names(p) = names(x)

21 for(i in 1:length(p)) p[i] = sum(kd$z[kd$z<z[i]])/sum(kd$z)

22 return(p)

23 }
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A.11 Get quantiles of a 2D density

1 ######################################################################

2 ### get quantiles of a 2D density (used to draw contour lines)

3 ### x=x values

4 ### y=y values

5 ### quant=quantile desired

6 ### ...=additional arguments to be passed to kde2d

7 ######################################################################

8 q2d = function(x,y,quant=0.05,...){

9 require(MASS)

10 kd = kde2d(x,y,...)

11 dens = sort(as.numeric(kd$z))

12 cdens = cumsum(dens)/sum(dens)

13 out = numeric(length(quant))

14 names(out) = as.character(quant)

15 for(i in 1:length(quant)){

16 ind = max(which(cdens <= quant[i]))

17 out[i] = dens[ind]

18 }

19 return(out)

20 }
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A.12 Retrieve PubMed IDs via NCBI’s eUtils

1 ######################################################################

2 ### function to retrieve PMIDs associated with a search term

3 ### term=text to search for (character vector of length 1)

4 ### retmax=number of IDs to return (default all)

5 ######################################################################

6 getIDs = function(term,retmax=NULL){

7 require(XML)

8 if(!is.null(retmax)){

9 ct = retmax

10 }else{

11 ct = getCount(term)

12 }

13 term = gsub(" ","+",term,fixed=T)

14 uri = "http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&usehistory=y"

15 uri = paste(uri,"&term=",term,"&retmax=",ct,sep="")

16 webenv = XML::xmlTreeParse(uri)

17 r = XML::xmlRoot(webenv)

18 out = XML::xmlSApply(r[["IdList"]],xmlValue)

19 return(out)

20 }
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A.13 Assessment of topic-specific gene citation significance

1 ######################################################################

2 ### Construct 2x2 contingency tables and run Fisher's exact test,

3 ### given:

4 ### gene=vector of Entrez gene IDs cited in target publications

5 ### dat=3-column matrix: Taxonomy ID, Gene ID, PubMed ID

6 ### wgene=vector of PMIDs that cite at least one gene of interest

7 ######################################################################

8

9 fetSpec = function(gene,dat,wgene){

10 gene = as.integer(gene)

11 if(length(gene)==1){

12 y1 = dat[,2]==gene

13 y2 = dat[,3]%in%wgene

14 tt = ftable(y1,y2)

15 out = list(table=tt,test=fisher.test(tt,alternative="g"))

16 }else{

17 y2 = dat[,3]%in%wgene

18 out = vector("list",length(gene))

19 names(out) = gene

20 for(i in 1:length(gene)){

21 y1 = dat[,2]==gene[i]

22 tt = ftable(y1,y2)

23 out[[i]] = list(table=tt,test=fisher.test(tt,alternative="g"))

24 if(i%%100==0) print(i)

25 }

26 }

27 return(out)

28 }

29

30 ### a 'fast' 2x2 table

31 ftable = function(y1,y2){

32 m = matrix(c(0,0,0,0),2,2)

33 colnames(m) = c("F","T")

34 rownames(m) = c("F","T")

35 m[1,1] = sum(!y1 & !y2)

36 m[1,2] = sum(!y1 & y2)

37 m[2,1] = sum(y1 & !y2)

38 m[2,2] = sum(y1 & y2)

39 return(m)

40 }





Appendix B

Tutorial: Using the bias-corrected RFSF to

map eQTL

B.1 Introduction

As described in Chapter 2, we found that Random Forests mapped the most biologically-supportable

eQTL, when compared to other available methods. It has previously been demonstrated that Random

Forests importance scores, including RFSF, are biased when there is strong correlation in the predictors

(in the case of eQTL, genotype data) (Strobl et al., 2007; Altmann et al., 2010; Goldstein et al., 2010).

Here we present a method and strategy for harnessing RF’s usefulness in mapping eQTL while at the

same time correcting for the bias induced in the importance scores by the correlations in the genotype

data.

B.2 Simulating data

All that is needed to map eQTL with Random Forests is a matrix of genotypes and a vector of gene

expression values. Although there are many publicly available expression and genotype data sets (see

the GeneNetwork website, for instance), for convenience, we simulate these data here.

First we simulate the genotypes for 100 individuals:

> source("functions.R")

> set.seed(2341)

> x = simgeno(100)

Then we simulate a trait that is the additive effect of three loci (the 200th marker, the 500th marker,

and the 750th marker):

> set.seed(213756)

> y = simtrait(x[, 200], 1, 0.4) + simtrait(x[, 500], 0.75) - simtrait(x[,

+ 750], 1.5, 0.3)

> pdens(y, main = "distribution of quantitative trait")
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B.3 Mapping eQTL with RFSF

Next we map the eQTL with Random Forests, and extract the selection frequencies:

> library(randomForest)

> rf = randomForest(y = y, x = x, ntree = 2000)

> sf = rfsf(rf)

B.4 Estimating and accounting for selection bias

Now we estimate the marker-specific selection bias when we know the null hypothesis to be true (no

association between genotypes and trait). The more trees we use, the more stable the estimate — here

we use 10,000 trees. Also note that whatever additional or non-default arguments (e.g. mtry or nodesize)

are used when mapping should also be passed to estBias().

> corr = estBias(x, 10000, verbose = F)

> plot(corr, type = "h", ylab = "selection frequency bias",

+ main = "bias correction factor")
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At this point we can just subtract corr from sf to get the corrected selection frequencies. Notice the

peaks that vanish after the correction. Here we have fit a synthetic trait with a moderate amount of noise.

When fitting traits with a high signal to noise ratio, the effect of bias (and hence its correction) is less

noticable — the background effects of the bias are very small in comparison to the signal.

> sf.corr = sf - corr

> sf.corr[sf.corr < 0] = 0

> par(mfrow = c(2, 1))

> plot(sf, type = "h", ylab = "selection frequency", main = "RFSF, uncorrected")

> points(c(200, 500, 750), sf[c(200, 500, 750)], col = "red", lwd = 1.5)

> plot(sf.corr, type = "h", ylab = "adj. selection frequency",

+ main = "RFSF, corrected")

> points(c(200, 500, 750), sf[c(200, 500, 750)], col = "red", lwd = 1.5)
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The estimated selection bias is independent of the response — it is only a function of the predictors

(genotypes). This means that the same bias correction can be used for each new expression trait — it

does not need to be re-estimated.

B.4.1 Multiplicative bias correction

In the paper where this idea was first presented, the bias correction was introduced as an additive cor-

rection. The utility of this approach was validated through simulations as well as on real data, where

bias-corrected results were compared to results of an approach that had a separate empirical null distri-

bution for each marker – results were essentially the same. A new, experimental approach suggests that

a multiplicative correction – instead of the additive correction previously introduced – might perform bet-

ter in some situations. This correction factor is calculated with the estBias function using the mult=TRUE

argument:

> corr = estBias(x, 10000, verbose = F, mult = T)

The correction is then applied via multiplication, rather than subtraction:

> sf.corr = sf * corr

This correction factor uses ratios relative to the mean selection frequency (under the null hypothesis)

as coefficients. That is, if a marker is selected at a frequency of half the mean selection frequency, it is

multiplied by 2 in order to correct.
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This approach is experimental and needs further validation using both simulated and real data sets –

use it at your own risk.

B.5 Significance

The bias-adjusted RFSF can be useful as-is for ranking markers for further analysis. However, if P values

are desired, a few more steps must be taken. First, we need to get an idea of what kind of selection

frequencies we can expect under the null hypothesis:

> sf.null = numeric()

> for (i in 1:10) {

+ rf.null = randomForest(y = sample(y), x = x, ntree = 2000)

+ tmp = rfsf(rf.null) - corr

+ tmp[tmp < 0] = 0

+ sf.null = c(sf.null, tmp)

+ print(i)

+ }

> hist(sf.null, main = "selection frequency under null hypothesis",

+ xlab = "selection frequency", breaks = 100)
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We now have an empirical null distribution of the selection frequencies. Using the ecdf() function, we can

get estimates of P values. Note, however, that since we only have 10,000 data points in our null distribu-

tion, any P value less than 0.0001 will be 0. In other words, we cannot estimate P values between 0.0001

and 0 without adding more data points to the null distribution. An alternative might be to fit a parametric

distribution (such as a mixture of beta densities) to the empirical null distribution, but for simplicity’s sake,

we’ll use the empirical null distribution to get P values.

> pnull = ecdf(sf.null)

> P = 1 - pnull(sf)

Adjust for multiple testing and check what the FDR is at our "causal markers" (your numbers may vary

since we did not use set.seed() when generating the null distribution).

> Q = p.adjust(P, "fdr")

> sum(Q < 0.05)

[1] 11

> Q[c(200, 500, 750)]

[1] 0.02727273 0.06923077 0.06923077

B.6 Running RF in parallel

Running RF over tens of thousands of expression traits can be time consuming. However, it is quite

straightforward to take advantage of multi-core hardware to make the problem tractable. We use the snow

package to create a cluster that distributes the workload over several processors or cores.

> library(snow)

> cl = makeSOCKcluster(8)

> clusterExport(cl, "rfsf")

Next, we write a small wrapper function that will run RF given a response (expression) and a matrix of

predictors (markers), and then return the selection frequencies.

> ff = function(y, x, ntree) {

+ rf = randomForest::randomForest(y = y, x = x, ntree = ntree)

+ sf = rfsf(rf)

+ }

As an example here, we create a toy matrix expr of expression traits, where each row corresponds to

a gene and the columns to individuals.

> expr = matrix(rnorm(8 * 100), 8, 100)

Finally, we use the parApply function to parallelize the mapping of eQTL with RF. This distributes the

mapping tasks as evenly as possible across the available processors (which were determined when we

called makeSOCKcluster).



C H A P T E R B . T U T O R I A L : U S I N G T H E B I A S - C O R R E C T E D R F S F T O M A P E Q T L 103

> sf = parApply(cl, expr, 1, ff, x, 1000)

Now that we have the selection frequencies, we apply the bias correction:

> sf = t(sf - corr)





Appendix C

Tutorial: Finding epistasis in Random

Forests

C.1 Introduction

Epistasis – interactions between genetic loci – is an important contributing factor to complex traits such as

disease susceptibility (Carlborg and Haley, 2004). Observation of epistatic relationships between genes

has been used as a means to infer molecular pathways and functional networks (Costanzo et al., 2010;

Schuldiner et al., 2005; Hannum et al., 2009). Defining these epistatic relationships is a desirable feature

for eQTL mapping methods, as it may serve to better clarify the regulatory relationships between targets

and regulators. We previously found that Random Forests (RF) map the most biologically-supportable

eQTL (Michaelson et al., 2010). Further work led to the development of a method to extract epistatic

relationships between loci from information available in the forest structure, all with minimal additional

computational cost compared to the basic eQTL mapping with RF. This method and its use are presented

in this tutorial.

C.2 Setup

We’ll generate some simulated data (genotype and expression) that we can use to demonstrate how

interactions can be found in the structure of Random Forests (RF). We will create a variety of traits (purely

additive, purely epistatic, and mixed).

> set.seed(1337)

> source("functions.R")

> library(rfdev)

> x = simgeno(100)

> x = x[,sort(sample(1:1000,200))] ## keep small for speed

## a purely additive trait

> y1 = simtrait(x[,50]==1,0.5,0.3) + simtrait(x[,75]==1,0.5,0.3)

## a purely epistatic (2-way) trait

> y2 = simtrait(x[,50]==1 & x[,75]==1,,0.3)

## a 3-way epistatic interaction
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> y3 = simtrait(x[,50]==1 & x[,75]==1 & x[,150]==1,,0.2)

## mixed additive and epistatic

> y4 = simtrait(x[,25]==1 & x[,75]==1,,0.2) -

+ simtrait(x[,180]==1,1.8,0.3)

C.3 Fitting a Random Forest

Next we will fit an RF to each of the traits we created. We’ll do this with a special modified version of the R

package randomForest, called rfdev. This package includes modifications to the regression version of RF

to enable some bookkeeping features we will need, such as collecting the OOB (out-of-bag) predictions at

each decision node of each tree. The OOB prediction of each node is simply the mean of the OOB values

at each decision node in the trees of the forest. This is needed for our demonstration of split asymmetry

later on.

> rf1 = randomForest(y=y1,x=x,ntree=1000,mtry=50,nodesize=2)

> rf2 = randomForest(y=y2,x=x,ntree=1000,mtry=50,nodesize=2)

> rf3 = randomForest(y=y3,x=x,ntree=1000,mtry=50,nodesize=2)

> rf4 = randomForest(y=y4,x=x,ntree=1000,mtry=50,nodesize=2)

C.4 Split asymmetry

The basis of this approach of detecting variable interactions (here in the context of epistasis) is what we

call split asymmetry. Consider a sequence of two decision splits in a tree, involving two splitting variables,

first XA and then XB. After splitting on XB, there will be some difference in means between the values in

its left and right daughter nodes (Fig. C.1). We can view this difference in means as a slope. If the mean

of the right daughter is greater than that of the left daughter, the slope is positive, and in the opposite

case the slope is negative. If there is no dependency between XA and XB when considering the response

values, we would expect that the slope after splitting on XB would be the same regardless of whether XB

splits on data in the left or right daughter node of the XA split. On the other hand, if there is a dependency

between XA and XB, we expect that the decision at XA will influence the outcome of the split at XB, thus

resulting in different slopes for XBl (split on left daughter of XA) vs. XBr (split on right daughter of XA).

Given this context, we say that a split is asymmetric in a sequence of variables with dependencies, and a

split is symmetric in a sequence of variables with no dependencies.

All such slopes involving all 2-variable decision sequences encountered in the forest are summed

according to their "sidedness", leading to two square matrices: Ml for the sequence corresponding to

XA→ XBl , the "left" matrix, and Mr for the sequence corresponding to XA→ XBr , the "right" matrix (Fig.

C.1). In both matrices, the row indicates the first variable in the decision sequence, and the column

indicates the second variable in the sequence. We can use the function predsymm to build the Ml and Mr

matrices:

> ps1 = predsymm(rf1)

> ps2 = predsymm(rf2)

> ps3 = predsymm(rf3)

> ps4 = predsymm(rf4)
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Figure C.1 Searching a forest structure for indications of split asymmetry. In this representation, the decision
sequences XA → XBr and XA → XBl lead to different characteristic slopes, hence the split sequence XA → XB is
asymmetric.
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Figure C.2 Comparison of values in D when the two variables in question are additive and independent (left) and
interacting and dependent (right).

In cases of extreme dependencies, XBr (for example) might be used frequently, yet XBl might never

be suitable as a splitting variable, and therefore might not occur at all in the forest (leading to an entry of

0 in Ml ). In any case, the magnitude of the absolute difference of the aggregated slopes (a matrix D) is

an indicator of the strength of the dependency between the involved splitting variables. Note: while |M|
traditionally denotes the determinant of M when M is a matrix, for convenience we use it here to mean

the matrix resulting from taking the absolute values of the entries in M.

D = |Mr −Ml | (C.1)

The simulated traits y1 and y2 involve the same causal "loci" – the 50th and 75th markers (we’ll call

them X50 and X75 here). However, the models generating the traits are quite different, with y1 being a linear

combination of X50 and X75, and y2 being the result of an interaction of the two. From our description of

the matrix D, we expect that D50,75 (also D75,50) should have higher values when X50 and X75 interact (as

is the case for y2) than if they are additive and independent (as is the case for y1). This is indeed the case,

since an interaction leads to large split asymmetry, whereas additivity will not (Fig. C.2).

We’ll now introduce a few modifications to D to further refine the score it represents. First, we’ll subtract

as a penalty the mean absolute slope, here the matrix S:

S =
|Mr |+ |Ml |

2
(C.2)

D′ = D−S (C.3)
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Figure C.3 Comparison of values in E when the two variables in question are additive and independent (left)
and interacting and dependent (right). The operations performed via the EPI function mitigate false positives in
comparison to the D matrix (Fig. C.2).

We will additionally constrain negative values to be 0, so that only pairs whose difference in slope

exceeds the average magnitude are considered.

D′′ ij =

0 for D′ ij ≤ 0

D′ ij for D′ ij > 0
(C.4)

Finally, we will take the minimum of the corresponding values D′′ ij and D′′ ji , since purely interacting

variables (i.e. without an additive effect), will be "order-agnostic", meaning that the sequences XA→ XB

and XB → XA should both be asymmetric; we take the minimum of the two scenarios to be conservative.

In practice, this has reduced the number of false positives encountered. This final epistasis score is stored

in a (symmetric) matrix E :

Eij = min{D′′ ij ,D′′ ji} (C.5)

These operations (equations C.1-C.5) have been combined into a single function, EPI, for conve-

nience. This function takes the output of predsymm as its argument, and returns the matrix corresponding

to E as described above. Let’s look at how E compares to the original D when we look at the additive vs.

interacting scenarios (Fig. C.3).

In Figure C.3 we can see that any indication of an interaction in the additive scenario vanishes (left),

while the indication of an interaction in the epistatic scenario remains (right). Additionally, the values for

E50,75 and E75,50 are the same (i.e. the matrix is symmetric).
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C.5 Scoring interactions

In this section we will look at the ability of RF split asymmetry to recover the known models that we

embedded in the traits.

C.5.1 Significance

Before we score each trait looking for epistasis, we’ll want to have appropriate null distributions so that we

can calculate P values for the interactions.

## null distributions for each trait

> rfn1 = randomForest(y=sample(y1),x=x,ntree=1000,mtry=50,nodesize=2)

> psn1 = predsymm(rfn1)

> N1 = EPI(psn1)

> rfn2 = randomForest(y=sample(y2),x=x,ntree=1000,mtry=50,nodesize=2)

> psn2 = predsymm(rfn2)

> N2 = EPI(psn2)

> rfn3 = randomForest(y=sample(y3),x=x,ntree=1000,mtry=50,nodesize=2)

> psn3 = predsymm(rfn3)

> N3 = EPI(psn3)

> rfn4 = randomForest(y=sample(y4),x=x,ntree=1000,mtry=50,nodesize=2)

> psn4 = predsymm(rfn4)

> N4 = EPI(psn4)

## pool the null values

> n = c(N1[N1>0],N2[N2>0],N3[N3>0],N4[N4>0])

The null distribution closely resembles a beta density (Fig. C.4). We can fit parameters for such a density

so that we have a parametric null distribution rather than an empirical one, which would lead to inaccurate

P values for extreme values in E .

## fit the parameters of a beta distribution

> b.obj = function(p,x){

+ e = dbeta(x,p[1],p[2])

+ -sum(log(e))

+ }

## parameter guesses

> p = c(1,10000)

## optimize

> est = nlm(b.obj,p,n)

## parameters for parametric null dist

> est = est$est
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Figure C.4 Empirical null distribution for E , with fitted beta density (red line).

C.5.2 Results

With the parametric null distribution in hand, we can compute P values and look for cases of significant

epistasis in each of the four Random Forests we fit. We will take those relationships that have FDR < 0.01

to be examples of epistasis.

> E1 = EPI(ps1)

> E2 = EPI(ps2)

> E3 = EPI(ps3)

> E4 = EPI(ps4)

> P1 = ifelse(E1>0,1-pbeta(E1,est[1],est[2]),1)

> P2 = ifelse(E2>0,1-pbeta(E2,est[1],est[2]),1)

> P3 = ifelse(E3>0,1-pbeta(E3,est[1],est[2]),1)

> P4 = ifelse(E4>0,1-pbeta(E4,est[1],est[2]),1)

Figure C.5 shows that in our example traits, epistatic relationships were recovered as they were sim-

ulated. Additionally, in these examples no false positive epistatic relationships were found.

In this tutorial, we’ve demonstrated that RF split asymmetry can be an effective means for pinpointing

epistatic relationships between loci. The needed information is contained in the forest structure, and only

minimal additional effort (beyond fitting the forest) is required to extract these relationships.



112 C H A P T E R C . T U T O R I A L : F I N D I N G E P I S TA S I S I N R A N D O M F O R E S T S

> par(mfrow=c(2,2))

> plotEpi(rf1,P1,,"additive")

> plotEpi(rf2,P2,,"2-way epistatic")

> plotEpi(rf3,P3,,"3-way epistatic")

> plotEpi(rf4,P4,,"additive and 2-way epistatic")
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Figure C.5 eQTL profiles for the four simulated traits are shown here, with epistatic relationships recovered via
RF split asymmetry shown in orange.



Appendix D

Tutorial: Using the RF proximity measure

D.1 Introduction

Clustering algorithms rely on a distance measure to indicate the (dis)similarity of objects to be clustered.

There are many such measures, such as the familiar Pearson correlation, the Euclidean distance, and

the Manhattan distance, among many others. Another such measure, produced during the construction

of a Random Forest (RF), is the RF proximity measure. Briefly, this is a measure of how frequently two

observations end up in the same terminal node, throughout the decision trees of the forest. A high prox-

imity value indicates that observations take the same decision path to their ultimate classifications. This

measure provides implicit weighting of features, since only features with discriminatory power are used

repeatedly in the RF. For further treatment of the topic, see Shi and Horvath (Shi and Horvath, 2006), who

present a case study thoroughly describing the use of RF proximity for unsupervised clustering. In addi-

tion, Xiao and Segal (Xiao and Segal, 2009) present the use of the proximity measure to detect regulatory

programs in yeast.

D.2 Setup

In this tutorial we will look at some basic examples of using the RF proximity measure as a basis for

clustering time course gene expression data, and compare it to other distance measures such as the

Euclidean and Manhattan distances.

First, we will synthesize some data that reflects some of the characteristics of time course gene

expression data. We will include elements of periodicity in the expression, segments of correlation and

divergence within the synthetic clusters, and noise.

> library(cluster)

> library(randomForest)

> ## a function to simulate periodic data

> ff = function(n=100,x=0,y=10){

+ sin(seq(0,runif(1,min(x,y),max(x,y)),length.out=n))

+ }

> set.seed(114399)

> W1 = matrix(runif(400,0.5,3),400,120) ## vary amplitude
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> W2 = matrix(rnorm(400*120,0,1),400,120) ## noise

> M = matrix(0,400,120)

> ## true cluster labels

> truth = rep(1:4,each=100)

> ## first three clusters

> M[1:100,21:120] = t(replicate(100,ff(100,4.9*pi,5.1*pi)))

> M[101:200,21:120] = t(replicate(100,ff(100,5.9*pi,6.1*pi)))

> M[201:300,21:120] = t(replicate(100,ff(100,3.9*pi,4.1*pi)))

> ## a more difficult cluster...

> M[301:400,21:120] = t(replicate(100,ff(100,pi,7*pi)))

> ## ...that has a common initial phase

> M[301:400,1:20] = t(replicate(100,ff(20,0.9*pi,pi)))

> ## diverging initial phases for other clusters

> M[1:300,1:20] = t(replicate(300,ff(20,pi,3*pi)))

> ## incorporate the noise elements

> M = (M*W1)+W2

Now let’s look at the results (Fig. D.1):

> cc = colorRampPalette(c(grey(0.1),grey(0.95)))

> img(M,col=cc(256),ylab="genes",xlab="time")

> abline(h=c(100,200,300),lwd=2.5,lty=2,col='firebrick')

D.3 Comparing performance of distance measures

Here we will compare the ability of several distance measures in recovering the known clusters we em-

bedded in the data. We will look at the Euclidean and Manhattan distances, as well as unsupervised and

supervised versions of the RF proximity measure.

> ## try the Euclidean distance

> d1 = dist(M)

> ## try the Manhattan distance

> d2 = dist(M,'manhattan')

> ## try the (unsupervised) RF proximity

> rf = randomForest(M,proximity=T,ntree=1000)

> d3 = as.dist(sqrt(1-rf$prox))

For the last test we’ll perform supervised learning with RF. This can be helpful if we have some external

information (for instance from experiments) about the genes that we could incorporate as training labels.

In this example, we will simply select a handful of the genes that we know to be "in" cluster 4 and some

that we know to be "out" of cluster 4, then train an RF classifier on these examples. We’ll then use the

classifier to predict on all genes, telling us which genes are likely to be "in" cluster 4 and which are not.

We can extract the proximity during the prediction step, as shown here.
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Figure D.1 The synthesized data, arranged by cluster.
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> ind = c(sample(1:300,100),sample(301:400,33)) ## training set

> X = M[ind,]

> y = as.factor(c(rep("out",100),rep("in",33)))

> rf = randomForest(y=y,x=X,sampsize=c(25,25),replace=T,strata=y,ntree=2000,

+ importance=T,mtry=3)

> prd = predict(rf,M,proximity=T)

> d4 = as.dist(sqrt(1-prd$prox))

Let’s check to see to what degree each distance measure can recapitulate the actual cluster assign-

ments:

> ## real cluster labels

> actual = matrix(0,400,400)

> actual[1:100,1:100] = 1

> actual[101:200,101:200] = 2

> actual[201:300,201:300] = 3

> actual[301:400,301:400] = 4

> cl = pam(d1,4)

> m1 = outer(cl$clust,cl$clust,'==')

> cl = pam(d2,4)

> m2 = outer(cl$clust,cl$clust,'==')

> cl = pam(d3,4)

> m3 = outer(cl$clust,cl$clust,'==')

> cl = pam(d4,4)

> m4 = outer(cl$clust,cl$clust,'==')

Now we can visualize these results to help us get a feeling for which distance measure gives the

"cleanest" and most accurate clustering (Fig. D.2).

> par(mfrow=c(2,2),mar=c(2,2,2,2)+0.1)

> img(m1,col=grey.colors(2))

> mtext("Euclidean",1,0.5)

> img(m2,col=grey.colors(2))

> mtext("Manhattan",1,0.5)

> img(m3,col=grey.colors(2))

> mtext("RF unsupervised",1,0.5)

> img(m4,col=grey.colors(2))

> mtext("RF supervised",1,0.5)

We can also look at the proportions of recovered true cluster assignments as a barplot (Fig. D.3):

> x = matrix(0,4,4)

> rownames(x) = c("Euclidean","Manhattan",

+ "RF unsupervised","RF supervised")

> colnames(x) = 1:4
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Figure D.2 Ability of each distance measure to recover true cluster assignments. A matrix entry has a lighter gray
if the corresponding row and column have the same cluster assignment.
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> for(i in 1:4) x[1,i] = sum(m1[actual==i])/1e4

> for(i in 1:4) x[2,i] = sum(m2[actual==i])/1e4

> for(i in 1:4) x[3,i] = sum(m3[actual==i])/1e4

> for(i in 1:4) x[4,i] = sum(m4[actual==i])/1e4

> cc2 = c("olivedrab4","olivedrab3","paleturquoise4","paleturquoise3")

> barplot(x,beside=T,border=NA,col=cc2,legend=T,

+ args.legend=list(x="topright",bty='n'),

+ xlab="cluster",

+ ylab="proportion recovered",

+ ylim=c(0,1.2))
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Figure D.3 Proportions of cluster members correctly identified when clustering with each distance measure.

The Euclidean, Manhattan and unsupervised RF proximity all perform comparably. The clusters can be

resolved much more clearly when some additional information is available that can turn the unsupervised

task into a supervised one. Note that we did not need information about the identity of each of the four

clusters to accomplish this. We only had a small sample from cluster 4, and a sample of the others were

labeled "not 4", leading to a two-class learning problem. This information was enough to lead to an RF

proximity that clearly performs better at recovering the true clustering identities.

D.4 PAM Clustering

Here we’ll demonstrate some basic steps that might be taken in a typical cluster analysis with the RF

proximity measure.
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First, if we don’t know a priori how many clusters to look for, we need some justification for our choice

of k, the number of clusters in the data. Here we’ll test a range of k and evaluate the silhouette for each

value. In addition, we’ll perform a Kolmogorov-Smirnov (KS) test, comparing the distribution of silhouette

values at each value of k against that of the previous value of k , looking for significant increases. Since

we’re comparing against previous values of k , our first test takes place at k = 3. The results are shown in

Figure D.4.

> K = sapply(2:10,function(k) silhouette(pam(d4,k))[,3])

> colnames(K) = 2:10

> Pk = sapply(1:8,function(i) ks.test(K[,i+1],K[,i],alternative='l')$p.v)

> layout(matrix(c(1,2),2,1),heights=c(2,1))

> par(mar=c(5,5,4,2)+0.1)

> boxplot(as.data.frame(K),xlab='k',ylab='silhouette',col='olivedrab3')

> par(mar=c(5,5,0,2)+0.1)

> barplot(c(NA,-log10(Pk)),beside=T,ylab="-log10 P \n (KS test)")
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Figure D.4 Finding a suitable value of k . The distribution of the silhouette values for each value of k is shown (top),
along with a corresponding P value (bottom) indicating whether the distribution represents a significant improvement
over the predecessor.

Our intuition from the boxplot is confirmed by performing the KS test: 4 clusters is a significant im-

provement over 3 clusters, and 5 clusters is no better than 4. Therefore, a k of 4 is optimal (as we would

hope to see). Notice that the silhouette distribution at k = 2 is noticably higher than those at other values

of k . This is likely an artifact that can be traced back to the fact that this distance is derived from a 2-class

classification; these clusters likely represent these two classes, and not the full extent of the structure in

the data.
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Now we can perform the actual clustering using PAM, which is described in detail in (Kaufman and

Rousseeuw, 1990).

> cl = pam(d4,4)

We can use these cluster labels as a response variable when training a Random Forest with the

original data. By using an outlier measure derived from the RF proximity matrix, we can get an estimate

of the confidence in the predicted cluster label.

> y = as.factor(cl$clust)

> rf = randomForest(y=y,x=M,ntree=1000,importance=T,proximity=T)

Before we look at the observed outlier measures, it will be helpful to get an idea of what we can expect

when the null hypothesis is true (no meaning of cluster assignments).

> yn = sample(y)

> rfn = randomForest(y=yn,x=M,ntree=1000,importance=T,proximity=T)

> cutoff = max(outlier(rfn))

> cutoff

[1] 2.029517

Let’s take a look at the results (Fig. D.5):

> ol = outlier(rf)

> plot(ol,col=c("darkorange","lightskyblue4","olivedrab","firebrick")[y],

+ pch=16,ylab="outlier measure")

> abline(h=cutoff,col='grey',lty=2,lwd=2)

We’ll drop genes that have an outlier measure that is greater than what we observed under the null

hypothesis.

> yhat = rf$predict

> yhat[yhat=="1" & ol > cutoff] = NA

> yhat[yhat=="2" & ol > cutoff] = NA

> yhat[yhat=="3" & ol > cutoff] = NA

> yhat[yhat=="4" & ol > cutoff] = NA
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Figure D.5 The outlier measure. Each point is colored according to the cluster to which it was predicted to belong.
The maximum outlier value observed under the null hypothesis is shown with a horizontal line.

Now let’s look at the predicted clustering and overlay some information about which features were impor-

tant for defining each class (Fig. D.6).

> these = which(!is.na(yhat))

> M1 = M[these,]

> img(M1[order(yhat[these]),],col=cc(256),

+ ylab="genes",xlab="time",cex.lab=3)

> imp = apply(rf$importance,2,function(x) x/max(x))[,1:4]

> ct = table(yhat)

> imp = matrix(c(rep(imp[,1],ct[1]),rep(imp[,2],ct[2]),

+ rep(imp[,3],ct[3]),rep(imp[,4],ct[4])),

+ length(yhat),120,byrow=T)

> pal = rgb(1,0.55,0,seq(0,0.5,length.out=100))

> img(imp,col=pal,add=T)

> abline(h=cumsum(ct)[-4],lwd=8,lty=1,col='white')

This figure shows us that the RF clustering recapitulates the original grouping fairly well. In addition,

the overlaid color gives us an idea about the identifying features of each cluster.
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Figure D.6 Importance of features for cluster identity. Features are colored according to their contribution to a
cluster’s identity.



Appendix E

Tutorial: Finding trait-specific

transcriptional hierarchies

E.1 Introduction

One common aim of eQTL studies is to find regulatory relationships of genes that underlie disease (Chen

et al., 2008; La Merrill et al., 2010). Often eQTL data are used to derive a network, and the roles of genes

are inferred by their placement within this network. Genes with well-defined roles are then implicated in

the etiology of the disease. This approach will work well when the role of the gene is defined by multiple

regulatory relationships of high significance. However, a network approach is less effective when the

regulatory relationships are subtle and do not individually meet the threshold requirement for the creation

of edges in the network.

We have developed an approach that elucidates regulatory roles of genes using distributional proper-

ties of eQTL data. This method does not require the thresholding of the eQTL scores, and is sensitive to

small eQTL score enrichments that cannot be effectively accounted for in a network-centric approach to

eQTL analysis. In this tutorial, we demonstrate the use of this method on simulated data and compare it

to a graph-theoretic approach.

E.2 Setup

First we’ll set up a matrix of synthetic data that imitates eQTL data – we’ll draw values randomly from a

beta density.

> source("functions.R")

> set.seed(1492)

> M = matrix(rbeta(1e7,1,1e3),1e4,1e3)

> rownames(M) = paste("G",1:10000,sep="")

> colnames(M) = paste("M",1:1000,sep="")

Next we’ll take the first 100 rows and columns and give them values that tend to be slightly higher than

the background. We do this in a particular way such that 5 genes are "upstream" of the other 95 (i.e. these

columns have enriched scores), 5 genes are "downstream" of the other 95 (i.e. these rows have enriched
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scores), and 5 genes are "central" to the other 95 (i.e. both these rows and corresponding columns are

enriched compared to background).

> up = sample(1:100,5)

> dwn = sample((1:100)[-up],5)

> ctr = sample((1:100)[-c(up,dwn)],5)

> M[1:100,up] = rbeta(500,1.5,1e3)

> M[dwn,1:100] = rbeta(500,1.5,1e3)

> M[1:100,ctr] = rbeta(500,1.5,1e3)

> M[ctr,1:100] = rbeta(500,1.5,1e3)

This set of "spike in" data imitates what we would want to find among a set of functionally related

genes (e.g. the schizophrenia genes as presented in Chapter 4), that is, in terms of transcription, some

genes tend to be regulators, some tend to be targets, and some tend to be fixed somewhere in the middle

of the hierarchy.

Knowing the roles that these genes play in transcriptional regulation can give us crucial insight into

how the genes affect the disease or process that ties them together. This insight can help to focus research

in the right areas, leading to more accurate diagnosis and more effective treatment.

E.3 Graph-theoretic approach

Perhaps the most obvious approach to finding the regulatory roles of our genes of interest would be to

construct a directed graph from the eQTL data, and then look at the placement of the genes within the

graph for insight about their roles. Since the eQTL data are dense, we need to sparsify the data (i.e. apply

a threshold) before the graph structure can become helpful.

In our toy example, we know that the background distribution is a beta density with parameters 1 and

1000. Let’s use this knowledge to get P values for our subgraph of interest:

> library(graph)

> G = M[1:100,1:100]

> G = 1-pbeta(G,1,1e3)

How many edges have an FDR < 0.05?

> sum(p.adjust(G,'fdr')<0.05)

[1] 0

So at this point we could say that the graph-theoretic approach failed to help us because we don’t

have any edges we can use reliably – they all look like values we would expect from the null distribution.

For the sake of the tutorial we’ll proceed a bit further, but would exercise caution if we were working with

real data. Let’s just use P < 0.05 as a threshold for the edges, then construct the graph object and get

the node degrees.

> G = G<0.05

> colnames(G)=1:100
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> rownames(G)=1:100

> G = as(t(G),'graphAM')

> dg = degree(G)

Probably the most obvious metric to use when inquiring about the regulatory role of a gene (node)

in a directed graph is the (in and out) degree. We would hope that our upstream spike-ins would have

systematically higher out degrees than in degrees. Likewise we would want our downstream spike-ins to

have higher in degrees than out degrees. We would want our central spike-ins to have high total degrees.

Let’s look at how this works out with the graph approach (Fig. E.1).

> par(mfrow=c(3,1))

> plot(1:100,dg$out-dg$inD,col=ifelse(1:100%in%up,'red','black'),

+ ylab="outD-inD",xlab='gene')

> plot(1:100,dg$inD-dg$out,col=ifelse(1:100%in%dwn,'red','black'),

+ ylab="inD-outD",xlab='gene')

> plot(1:100,dg$inD+dg$out,col=ifelse(1:100%in%ctr,'red','black'),

+ ylab="outD+inD",xlab='gene')
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Figure E.1 Ability of degree measures to properly prioritize the spike-ins (red dots). The upstream spike-ins are
not well-recovered (top), while the downstream (middle) and central (bottom) spike-ins are recovered with minimal
false-positives.

The upstream spike-ins show very little departure from the genes who were not given any regulatory

role. This would make it very difficult to infer master regulators using this approach. Downstream and

central spike-ins are somewhat easier to discern from the background.
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Figure E.2 Using eQTL data and the KS test to derive regulatory upstreamness (U) and centrality (C).

E.4 Distributional approach

The graph-theoretic approach had difficulties recovering the regulatory roles of our spike-ins. Here we’ll

present an alternative approach that looks at distributional differences, rather than thresholded binary

values, to infer regulatory roles.

The question we are asking in this case is nuanced: we are interested in the role of a gene with

respect to functionally related genes. This implies a few things. First, we are not interested in specific

connections to other genes, but rather tendencies over a number of genes. Thus, we might be better off

examining distributional properties than specific values (as we did in the graph approach). Second, we

are focusing on roles within a subset of all genes, meaning that we can compare a role among functionally

related genes to a role among non-related genes. Since the role should be specific to a group of genes,

we can use all genes not belonging to that group as a reference distribution.

In this context, the ideas behind the Kolmogorov-Smirnov test become quite useful. First let’s divide

up the eQTL matrix into several smaller matrices (Fig. E.2). The matrix A is defined by our genes of

interest (rows) and their genetic loci, here represented by the closest genetic marker (columns), thus,

Aij represents the effect of the j th locus on the transcription of the i th gene. The matrix A′ has the same

columns as A, but as rows has all genes not found in A. Likewise, A′′ has the same rows as A, but as

columns has all genetic loci (i.e. markers) not found in A. We first define a statistic, Du, that represents

the tendency of a genetic locus to be an upstream regulator of genes in our group of interest:

Du
j = DA′ j ,Aj = sup

x
{FA′ j (x)−FAj (x)} (E.1)
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Where FA′ j (x) is the empirical cumulative distribution function of the values in the j th column of A′,

and FAj (x) is the empirical cumulative distribution function of the values in the j th column of A. If Du
j is

large, it suggests that the locus corresponding to j (and by extension, the gene at that locus) is upstream

of the genes defining A, but not the genes defining A′ (genes not belonging to our group of interest). We

note here that if multiple genes map to a locus (marker), each of the genes is assigned the corresponding

value of Du
j .

Next, we define a statistic Dd , representing the tendency of a gene to be downstream of genes in our

group of interest:

Dd
i = DA′′ i ,Ai = sup

x
{FA′′ i (x)−FAi (x)} (E.2)

Where FA′′ i (x) is the empirical cumulative distribution function of the values in the i th row of A′′, and

FAi (x) is the empirical cumulative distribution function of the values in the i th row of A. If Dd
i is large, it

suggests that the gene corresponding to i tends to be downstream of the loci defining A, but not the loci

defining A′′ (genes not belonging to our group of interest).

From these two statistics, we define "upstreamness", which will be positive for regulators, negative for

targets, and close to zero for less well-defined genes.

upstreamnessi = Du
j −Dd

i (E.3)

In this case, the subscript j corresponds to the locus containing the gene i .

If we have a gene that has substantial values for both Du
j and Dd

i , upstreamness will be close to

zero. Nevertheless, we would like to capture this as an interesting gene (since this is the scenario that

fits our "central" spike-ins). We define centrality to be the sum of Du and Dd , with the absolute value of

upstreamness subtracted as a penalty.

centralityi = Du
j + Dd

i −|upstreamnessi | (E.4)

Again, the subscript j corresponds to the locus containing the gene i .

In practice, we use the ks.test function in R to acquire Du and Dd . Upstreamness and centrality

are then quite straightforward to compute. All of this is wrapped in the function ucScores, which takes as

arguments eqtl (the named eQTL matrix), genes (a named logical vector indicating which genes are in

the group of interest), markers (a named logical vector indicating which loci correspond to the genes of

interest), and cis.map (a character vector with gene names as names and marker names as entries in

the vector, indicating the mapping from genes to markers). The ucScores function has a logical switch,

nulldist, that, when true, calculates upstreamness and centrality scores under the null hypothesis (genes

not functionally related, but rather sampled randomly from the data).

We can plot the upstreamness and centrality values for our data, and then overlay the density of

values under the null hypothesis. Values that lie outside of this density are unlikely to occur by chance,

and so represent genes with significant positions in the regulatory hierarchy of our genes of interest (Fig.

E.3).

## cis.map

> cm = structure(sample(colnames(M),1e4,replace=T),names=rownames(M))

> cm[1:100] = colnames(M)[1:100]
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## genes

> genes = structure(logical(1e4),names=rownames(M))

> genes[1:100] = TRUE

## markers

> markers = structure(logical(1e3),names=colnames(M))

> markers[1:100] = TRUE

## actual values

> uc = ucScores(M,genes,markers,cm)

## 20x null distribution

> null = lapply(1:20,function(i) ucScores(M,genes,markers,cm,TRUE))

> x = do.call('c',lapply(null,'[[',2))

> y = do.call('c',lapply(null,'[[',1))

## significance and FDR

> P = p2d(uc[[2]],uc[[1]],x,y,n=100)

> these = p.adjust(P,'fdr')<0.05

## plot the results

> plot(uc[[2]],uc[[1]],pch=16,col='grey',cex=0.75,ylab="upstreamness",

+ xlab="centrality")

> points(uc[[2]][these],uc[[1]][these],col='black',pch=1,cex=1.6)

> points(uc[[2]][up],uc[[1]][up],col='red2',pch=16,cex=1.1)

> points(uc[[2]][dwn],uc[[1]][dwn],col='steelblue',pch=16,cex=1.1)

> points(uc[[2]][ctr],uc[[1]][ctr],col='gold2',pch=16,cex=1.1)

> lv = q2d(x,y,c(0.05,seq(0.1,0.9,0.1)))

> contour(kde2d(x,y,n=100),levels=lv,labels=names(lv),add=T,lwd=0.75)
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Figure E.3 Upstreamness and centrality, with their joint null distribution shown with contour lines. Upstream, down-
stream, and central spike-ins all had significant regulatory tendencies (FDR < 0.05).

We can see that our upstream spike-ins have positive upstreamness, the downstream spike-ins have

negative upstreamness, and the central spike-ins have high centrality. In addition, all spike-ins are well-

separated from the 2D null distribution, and all have FDR < 0.05, in contrast to our attempt with the graph

theoretical attempt. There is one false positive, which can be seen near the upstream spike-ins.

In this exercise we have demonstrated that our approach can perform quite well on data where regu-

latory roles are determined more by distributional enrichment than by individual connections.





Appendix F

Tutorial: Finding topic-related genes in

PubMed

F.1 Introduction

It is often quite useful to know which genes are cited to a significant degree in connection with a concept,

medical condition, or other phenotype. There are several online tools which make this possible, such

as GOPubMed, but here we demonstrate a simple and low-level way to accomplish essentially the same

thing. Doing this programmatically, rather than through a GUI or web interface, makes it easier to integrate

the results into a larger workflow.

Here we make use of two valuable resources that NCBI provides: the genes2pubmed file, which is a

semi-curated mapping between genes and the PubMed IDs (PMIDs) of papers where they are mentioned,

and the eUtils web service API, which allows us to perform PubMed queries programmatically.

F.2 Setup

Download the gene2pubmed file from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/, uncompress it, and place it in

your current working directory. Then use the source function to load the functions needed for this tutorial,

and read in the contents of gene2pubmed.

> source("functions.R")

> dat = read.table("gene2pubmed", sep = "\t", skip = 1)

> head(dat)

V1 V2 V3

1 9 1246500 9873079

2 9 1246501 9873079

3 9 1246502 9812361

4 9 1246502 9873079

5 9 1246503 9873079

6 9 1246504 9873079

The gene2pubmed file contains three columns: taxonomy ID, Entrez Gene ID, and PMID.

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
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F.3 Retrieving PubMed IDs of interest

Now that we have mappings between genes and papers where they are cited, we would like to retrieve

a list of PMIDs related to a search term, and then cross-reference the two lists of publications. As an

example, we will retrieve PMIDs of papers dealing with schizophrenia. We’ll use a few R wrapper functions

that interface with NCBI’s eUtils platform.

> sz.pprs = getIDs("schizophrenia")

F.4 Cross-referencing the lists

First let’s decide which organism we’re interested in. Look at http://www.ncbi.nlm.nih.gov/Taxonomy/ to

get your organism’s taxonomy ID, then you can reduce the number of records you’re dealing with.

> dat = as.matrix(dat[dat[, 1] == "9606", ])

Now get papers that cite at least one gene:

> wgene = sz.pprs %in% dat[, 3]

> wgene = sz.pprs[wgene]

Look at it the other way around – find genes that are cited at least once:

> genes = dat[dat[, 3] %in% wgene, 2]

How many genes are cited in connection with schizophrenia? What are the top 5 most-cited genes?

> length(unique(genes))

[1] 2198

> sort(table(genes), dec = T)[1:5]

genes

1312 1813 3084 84062 27185

209 129 115 99 93

F.5 Significance of association

We now know which are the most frequently cited genes in connection with schizophrenia. Unfortunately at

this point we don’t know which genes are significantly associated with schizophrenia, based on literature

citation. Some of the frequently-cited genes might just be genes that are frequently cited in the literature

in general, regardless of the context.

We can get at the question of significance if we construct a 2×2 contingency table and then perform

Fisher’s exact test, which will tell us if the frequency of citation in schizophrenia papers is significant, given

the overall citation frequency of a gene. Such a use of contingency tables in text mining is intuitive and

has been treated previously (Pedersen, 1996). Here we use a convenience wrapper function to simplify

http://www.ncbi.nlm.nih.gov/Taxonomy/
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the process of repeatedly constructing and testing the contingency tables. This will take several minutes,

and mostly depends on the number of genes tested (length of genes vector) and the number of rows in

dat. The fetSpec function prints its progress, which will help you gauge how long it will take to complete.

> schizo.specific = fetSpec(names(sort(table(genes), dec = T)),

+ dat, wgene)

> P = sapply(schizo.specific, function(x) x$test$p.v)

> OR = sapply(schizo.specific, function(x) x[[2]]$est)

The P vector now contains P values indicating the significance of association between a gene and

schizophrenia, as determined by citation frequencies. The OR vector contains the corresponding odds

ratios. These results may be used together with other evidences to develop a list of genes relevant to

schizophrenia.





Appendix G

Performance notes for Random Forests

Here we’ll look at the runtime of Random Forests and how it is affected when the most important argu-

ments are changed. The hardware used here is an 8-core workstation (Intel Xeon X5472 at 3 GHz) with

12 GB RAM.

G.1 Setup

> source("functions.R")

> library(randomForest)

> X = list()

> X[[1]] = simgeno(200)

> X[[2]] = simgeno(400)

> X[[3]] = simgeno(600)

> X[[4]] = simgeno(800)

> X[[5]] = simgeno(1000)

> X[[6]] = simgeno(1500)

> X[[7]] = simgeno(2000)

> X[[8]] = simgeno(3000)

> Y = list()

> Y[[1]] = rnorm(200)

> Y[[2]] = rnorm(400)

> Y[[3]] = rnorm(600)

> Y[[4]] = rnorm(800)

> Y[[5]] = rnorm(1000)

> Y[[6]] = rnorm(1500)

> Y[[7]] = rnorm(2000)

> Y[[8]] = rnorm(3000)

G.2 Sample size

Let’s take a look at how the number of observations influences the runtime of Random Forests. The

number of variables is 1,000, ntree is 1,000 and mtry and nodesize are set to their defaults of p
3 and 5,
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Figure G.1 Effect of data dimension and RF arguments on wall time performance. Unless noted, arguments were
left at their default values.

respectively.

> t1 = sapply(1:8,function(i) system.time(randomForest(y=Y[[i]],x=X[[i]],ntree=1000))[3])

Changing n influences the depth of the trees grown. If n is higher, deeper trees are needed to reach

the specified value of nodesize. Increasing tree depth leads to a near exponential increase in splits.

G.3 Number of features

Here we will fix the number of observations (n) at 400. ntree will be 1,000 and all other arguments will be

set to default values. We will vary p from 200 to 1000, with increments of 200.

> p = seq(200,1000,200)

> t2 = sapply(1:5,function(i)

+ system.time(randomForest(y=Y[[2]],x=X[[2]][,1:p[i]],ntree=1000))[3])

Changing p leads to a roughly proportional change in runtime.
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G.4 Varying mtry

Here we will keep the number of observations (n) and variables (p) fixed at 400 and 1,000, respectively.

ntree will be 1,000 and all others will be set to default values. We will vary mtry from 10% to 100% of p.

> mt = seq(0.1,1,length.out=5) * 1000

> t3 = sapply(1:5,

+ function(i) system.time(randomForest(y=Y[[2]],x=X[[2]],ntree=1000,mtry=mt[i]))[3])

As seen in Figure G.1, changing mtry essentially causes proportional changes in runtime. This is not

surprising as changing mtry is similar to changing p. Note: we’ll skip looking at ntree because it’s fairly

trivial to see that runtime will be linear with the number of trees.

G.5 Varying nodesize

We’ll now try varying nodesize, which is the argument that controls how deep trees are grown.

> ns = 2^(1:7)

> t4 = sapply(1:7,

+ function(i) system.time(randomForest(y=Y[[2]],x=X[[2]],ntree=1000,nodesize=ns[i]))[3])

Of all of the parameters probes so far, nodesize shows the most extreme nonlinear behavior. This

makes sense, since it controls the depths of the trees, which in turn influences the number of splits to be

performed in a near-exponential way.

G.6 Scalability of RF across multiple processors

Until this point, all calculations have been performed on a single processor. Since the individual trees in a

Random Forest are independent of each other, they can be easily spread across multiple processors to

improve performance. Let’s take a look at how performance scales up to 8 processors (Fig. G.2).

> parRF = function(ntree,x,y,cl){

+ require(randomForest)

+ ssplit = function(x,ngroups){

+ structure(split(x,cut(x,ngroups)),names=NULL)

+ }

+ clusterEvalQ(cl,library(randomForest))

+ ntree = ssplit(1:ntree,length(cl))

+ ntree = unlist(lapply(ntree,length))

+ rf = parLapply(cl,ntree,

+ function(i,y,x) randomForest(y=y,x=x,ntree=i,mtry=0.9*ncol(x)),

+ y,

+ x)

+ rf = do.call('combine',rf)
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Figure G.2 Parallel scalability of RF when run across multiple processors.

+ return(rf)

+ }

> cl = lapply(1:8,makeSOCKcluster)

> t5 = numeric(8)

> t5[1] = system.time(randomForest(x=X[[1]],y=Y[[1]],ntree=5000,mtry=900))[3]

> t5[2] = system.time(parRF(5000,X[[1]],Y[[1]],cl[[2]]))[3]

> t5[3] = system.time(parRF(5000,X[[1]],Y[[1]],cl[[3]]))[3]

> t5[4] = system.time(parRF(5000,X[[1]],Y[[1]],cl[[4]]))[3]

> t5[5] = system.time(parRF(5000,X[[1]],Y[[1]],cl[[5]]))[3]

> t5[6] = system.time(parRF(5000,X[[1]],Y[[1]],cl[[6]]))[3]

> t5[7] = system.time(parRF(5000,X[[1]],Y[[1]],cl[[7]]))[3]

> t5[8] = system.time(parRF(5000,X[[1]],Y[[1]],cl[[8]]))[3]

As shown in figure G.2, performance scales as we would expect, which is close to linear. There is a

noticeable dip in efficiency at 5 cores, perhaps due to uneven loading when the number of threads "spills

over" to occupy two of the physical processors. However, speedup and efficiency are nearly recovered at

8 cores.
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