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A B S T R A C T

The centrosome is a dynamic organelle found in all animal cells that serves as

a microtubule organizing center during cell division. Most of the centrosome

components have been identified by genetic screens over the last decade, but

little is known about how these components interact with each other to form

a functional centrosome. Towards a better understanding of the molecular

organization of the centrosome, we investigated the mechanism that regulates

the size of the centrosome in the early C. elegans embryo.

For this, we monitored fluorescently labeled centrosomes in living embryos

and developed a suite of image analysis algorithms to quantify the centro-

somes in the resulting 3D time-lapse images. In particular, we developed a

novel algorithm involving a two-stage linking process for tracking centro-

somes, which is a multi-object tracking task. This fully automated analysis

pipeline enabled us to acquire time-resolved data of centrosome growth in

a large number of embryos and could detect subtle phenotypes that were

missed by previous assays based on manual image analysis.

In a first set of experiments, we quantified centrosome size over develop-

ment in wild-type embryos and made three essential observations. First, cen-

trosome volume scales proportionately with cell volume. Second, beginning

at the 4-cell stage, when cells are small, centrosome size plateaus during the

cell cycle. Third, the total centrosome volume the embryo gives rise to in any

one cell stage is approximately constant. Based on our observations, we pro-

pose a ‘limiting component’ model in which centrosome size is limited by the

amounts of maternally derived centrosome components.

In a second set of experiments, we tested our hypothesis by varying cell

size, centrosome number and microtubule-mediated pulling forces. We then

manipulated the amounts of several centrosomal proteins and found that the

conserved centriolar and pericentriolar material protein SPD-2 is one such

component that determines centrosome size.
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1
I N T R O D U C T I O N

1.1 automated image analysis in biology

Recent advances in imaging and fluorescent labeling techniques have enabled

the visualization of structures and processes on all biological scales ranging

from the whole organism level to the intra-cellular level. Often combined with

systematic perturbations, for example by decreasing or increasing gene activ-

ity, large amounts of image data containing rich biological information are

being produced in various research projects. The common goal in all of them

is to convert the raw images into biological knowledge. To do so automated

computational methods are needed because manual image analysis introduces

subjectivity, often misses subtle phenotypes and/or the sheer amount of im-

age data renders manual analysis impractical. Research and development of

these methods are driven by the specific applications [1] which may belong to

one of the following categories.

(1) In studies of animal behavior the goal is to understand the genetic and

neuronal circuit bases that generate these behaviors. For example, Dankert

et al. [2] have developed an automated assay that recognizes aggression and

courtship behavior such as lunging and wing extension in pairs of fruit flies

(Drosophila melanogaster) filmed from above at 30 frames per second. Thou-

sands of fly lines in which different sets of neurons are activated (and fluores-

cently labeled) are screened with the goal to discover which neurons trigger or

inhibit specific behaviors. Similarly, Schafer and collaborators have developed

1
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assays for the widely studied worm Caenorhabditis elegans for automatically

scoring egg-laying [3] and foraging [4] behaviors.

(2) Much effort is currently being put into tracing neurons [5, 6, 7] in 3-

dimensional light and electron microscopic images in order to reconstruct the

wiring diagram of the fly and mouse brain on the neuronal and the synaptic

level, respectively. One of the major computational challenges in understand-

ing the brain anatomy is the development of registration methods. Registra-

tion spatially transforms images of individual brains that differ in size and

exact morphology in order to match them to a common reference brain.

(3) Studies of embryonic development aim at understanding how the in-

formation encoded in the genome leads to the development of a single cell

into a complex organism. New imaging and image processing methods are

jointly being developed to allow in toto imaging [8, 9], an approach to moni-

tor and digitally reconstruct the development of an entire organism with non-

stereotypic development such as Drosophila [10, 11, 12] and Zebrafish [13, 14].

Besides giving insights into the cell positioning and migration patterns, such

reconstructions are used to monitor gene expression on the single cell level in

developing embryos [15, 16] as well as in adults [17, 18].

(4) To identify genes or chemical reagents that cause a specific cellular phe-

notype, large-scale, often genome-wide screens are being carried out. These

screens are used to determine gene function [19], protein-protein interaction

[20] and subcellular protein localization [21, 22] as well as for drug discovery

[23, 24]. For example, one goal of the Mitocheck Project [25] is to identify all

human genes involved in mitosis [26]. To this end, each of the about 21,000

protein-coding genes has been silenced by RNA-interference [27] in cells with

fluorescently labeled chromosomes. The resulting images are then classified

automatically into one of 16 predefined morphological classes using support

vector machines [28]. By clustering genes according to their phenotypic simi-

larity, gene function can be predicted based on the genes in a cluster that have

previously been characterized.

(5) Studies of intracellular dynamics try to decipher the molecular mecha-

nisms that generate complex, fundamental processes within the cell such as
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the assembly and positioning of the mitotic spindle, transport of organelles

and vesicles or establishment of polarity axes. Such studies are often hypothesis-

driven and the goal is to describe the time-dependent behavior, interactions

and biophysical properties of the involved proteins. Fluorescently tagged pro-

teins are monitored in single living cells to visualize the process under study

at relatively high temporal resolution. The purpose of image analysis here is

to achieve an accurate phenotypic description under various genetic and en-

vironmental conditions in terms of quantitative physical measurements such

as velocity and motion direction, growth and diffusion rates, size, life-time,

protein amount or force.

For example, Brangwynne et al. [29] studied the mechanism by which P

granules localize preferably to the posterior half in the C. elegans one-cell

embryo. Tracking the motion paths and measuring the size of fluorescently

labeled P granules in time-lapse images showed that the mechanism is in-

dependent of cytoplasmic flow and is instead regulated by dissolution and

condensation of the P granules in a liquid-like fashion. Another intensively

studied intracellular structure is the microtubule, a constantly growing and

shrinking tubular component of the cytoskeleton that is involved in chromo-

some segregation and cytokinesis during cell division (mitosis) and transport

events throughout the cell cycle. To quantify the growth and shrinkage rates,

the length, or the number of microtubules in fluorescence images, the com-

putational problem of tracing entire microtubules or tracking fluorescently

labeled microtubules tips has been addressed in [30, 31, 32, 33].

Automated image analysis in the context of biological studies is rarely just

a matter of choosing an appropriate existing method or ready-to-use tool.

Rather, active research to develop these computational methods is being car-

ried out in the context of the specific applications and their associated image

data. Therein, the two most fundamental challenges are (1) image segmenta-

tion, the partitioning of an image into semantically meaningful regions, and

(2) in the case of time-lapse images, tracking of objects.

In this thesis we will study the process of centrosome formation and mat-

uration in C. elegans embryos, which is an instance of the fifth category, in-

tracellular dynamics. For this we will develop an analysis pipeline to track



4 1 introduction
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Figure 1.1: A typical example of a wild-type C. elegans embryo with γ-Tubulin::GFP

labeled centrosomes in the 4-cell stage (maximum intensity projection). The centro-

somes are tracked in 3D over time, annotated in terms of cell names and anterior/-

posterior position and registered in time by the nuclear envelope breakdown (NEBD)

as shown in the upper left corner with the algorithms developed in this thesis.

centrosomes in, and extract quantitative measurements from, 3-dimensional

fluorescence time-lapse images (see Figure 1.1) in a fully automated manner.

The upcoming sections will discuss the biological background of centrosomes

and our specific question.

1.2 the centrosome in c. elegans

The centrosome, discovered by Edouard Van Beneden in 1883 [34] and named

in 1888 by Theodor Boveri [35], is a dynamic organelle found in all animal

cells. It plays important roles during mitosis and duplicates exactly once per

cell cycle. This section reviews our current understanding of the function and

structure of the C. elegans centrosome and describes its life-cycle with respect

to the images to be analyzed in this thesis.

1.2.1 Functions and Roles

Often referred to as microtubule organizing center (MTOC), the centrosome’s

primary function is the organization of microtubules by controlling their num-
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ber, length, orientation and dynamics [36]. Anatomically, centrosomes consti-

tute the poles of the mitotic spindle and are involved in the assembly [37]

and positioning [38] of the spindle as well as in segregation of the chromo-

somes [39]. In C. elegans the centrosome is essential for spindle assembly as

the depletion of many centrosome components leads to severe spindle defects

[40, 41, 42, 43, 44, 45] and thus to embryonic lethality. In other systems such as

Xenopus and Drosophila, bipolar spindles can form in some cells in the absence

of centrosomes [46, 47, 48], but not in all [49].

The centrosome is further discussed to play an active role in cytokinesis

[39, 50] and also has functions independent of its microtubule organizing ca-

pacity. The location of the centrosome defines a symmetry breaking cue that

initiates polarity establishment in one-cell C. elegans embryo [51, 39]. Moreover,

signaling proteins have been found to localize to centrosomes and promote

timely entry into mitosis [52]. The general role of the centrosome in cell cycle

progression is however still subject to debate [53].

Given its diverse cellular functions, it is not surprising that human diseases

have been linked to centrosome abnormalities. For instance, in many cancer

cells, an increased number of centrosomes is observed. Extra centrosomes re-

sult in the assembly of multi-polar spindles, which leads to chromosome segre-

gation errors [39]. Whether this phenotype is the cause of genomic instability

and therefore cancer is an open question [54]. Other studies argue that it is

a failure in the centrosome function during asymmetric cell division, rather

than genomic instability, that causes cancer [55].

1.2.2 Structure

The centrosome is a non-membrane bound, approximately spherical organelle

composed of two domains. At the center it harbors a pair of orthogonally ar-

ranged centrioles which are surrounded by a mass of pericentriolar material

(PCM) [39] (Figure 1.2). The centriole is a tubular structure with a nine sin-

glet1 array of microtubules [56] and recruits an initial small pool of PCM

1 The centrioles in many other organisms are composed of nine doublet or triplet arrays of

microtubules.
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Microtubule

PCM

Centriole

Figure 1.2: Schematic drawing of a centrosome.

components [57]. In this way, centrioles define the site of centrosome assem-

bly [56] and thus the number of centrioles controls the number of centrosomes

[58, 59]. The PCM is an electron-dense proteinaceous matrix [60], and is often

described as an amorphous cloud [39], owing to the fact that its precise struc-

ture and physical properties are still poorly understood. Upon entry into mi-

tosis, the PCM dramatically increases in size by the recruitment of additional

components, a process termed maturation [61] that depends in parts on the

aurora-A kinase AIR-1 [41]. Accompanied with the increase in size of the PCM

is an increase of the number of microtubules that nucleate from the PCM in

a γ-TUB dependent manner [62]. The review in [39] argues that the PCM can

be further divided into two sub-domains, a core PCM and a peripheral PCM;

fluorescence imaging showed that some of the PCM components localize in a

more outer region of the PCM, giving them a donut-shaped appearance.

As stated above, centrosome assembly depends on the presence of centri-

oles. Conversely, work by Dammerman et al. [57] suggests that the PCM is in

turn essential for centriole duplication because depletion of PCM components

such as γ-TUB and SPD-5 impaired daughter centriole formation. However,

the initial level of PCM present before maturation occurs, was sufficient for

centriole duplication.

Thanks to fluorescent labeling, RNA interference (RNAi), as well as yeast

two hybrid techniques, many centrosome components in C. elegans could be

identified and their localization dependencies and interactions studied. A

rough centrosome assembly pathway mainly based on the interactome in [63]

is depicted in Figure 1.3. This pathway is essentially a collection of the results
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PLK-1

ZYG-1

SAS-4

TBG-1

AIR-1

ZYG-9

SPD-2

TPXL-1

CeGrip-1

TAC-1

RSA-1

RSA-2

LET-92 PAA-1KLP-7

SZY-20

Localization Dependency Interaction

SAS-6

SAS-5

SPD-5

EBP-1

TAG-201

Centrioles

Pericentriolar 

Material

Effectors

Spindle

Assembly

Microtubule

Stabilization

Microtubule
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Microtubule
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Microtubule

Growth

coimmunoprecipitation
complexes

Figure 1.3: Assembly pathway of the centrosome. The hierarchy is based on localiza-

tion and function of the known centrosome components. Adapted from the diagram

in [63].

found by the work of several group in C. elegans over the last decade. The PCM

is in parts composed of large coiled-coil proteins that are thought to form a

scaffold for other proteins, so-called effectors, that subsequently dock to this

scaffold in order to carry out the actual function of the centrosome [64, 65]. In

C. elegans the centrosome components SPD-2 [66, 60, 40] and SPD-5 [42], two

coiled-coil proteins that take a central position in Figure 1.3, could play this

scaffolding role. It should be noted, however, that with the current pieces of

information it remains difficult to get a complete picture of the mechanisms

underlying centrosome assembly and maturation. Due to the complex interac-

tions and mutual dependencies of the centrosome components, it is often not
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1. Centriole 

Disengagement

2. Centriole Duplication 

Initiation of PCM Assembly

3. Centriole Elongation

Centrosome Migration

PCM Maturation

4. Nuclear Envelope Breakdown

Spindle Assembly

5. Chromosome Segregation

6. Cytokinesis 

Centrosome Disintegration

Figure 1.4: Life cycle of a centrosome.

possible to distinguish between direct and indirect functions of the individual

components. For example, upon depletion of SPD-5 not only does centrosome

maturation fail, but spindle assembly and polarization defects also occur [42].

However, the direct role of SPD-5 might be restricted to centrosome matura-

tion, with spindle assembly and polarization defects being a secondary conse-

quence of the absence of structurally intact centrosomes.

1.2.3 The Centrosome Cycle

The highly dynamic nature of the centrosome underlies a life cycle [67, 54, 49]

that is coupled to the cell cycle in a mutually dependent manner [68, 49]. This

section describes the centrosome cycle (see Figure 1.4) in conjunction with the

events that are important for the images to be analyzed in this thesis.

Centrosomes are formed temporarily to orchestrate the organization of the

microtubule fibers that segregate two copies of the DNA complement of the

cell. The process of centrosome formation and eventual dissolution is broadly
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outlined as follows. At the beginning of each round of the cell cycle the cell

starts out with a pair of disengaged centrioles inherited from the mother cell.

Each centriole begins to duplicate with a newly born, tightly engaged procen-

triole [54]. As the procentrioles elongate to form full length centrioles, more

PCM begins to assemble around each centriole pair. The immature centro-

somes, located next to the nucleus, then separate from one another and move

to opposite poles of the nucleus while now continuously increasing in size. At

the same time, the centrosome-nucleus complex positions itself at the center

of the cell by means of the microtubules that grow outwards from the cen-

trosome and attach to the cell cortex. As the nuclear envelope breaks down,

additional microtubules grow towards and attach to the condensing chromo-

somes, assembling the mitotic spindle. Thereafter the centrosomes are pulled

apart, toward opposite sides of the cell, by means of these fibers. As the cen-

trosomes do so, they pull copies of each chromosome toward them to form the

DNA content of each emerging daughter cell. Finally, the centrosomes come to

a stop and rapidly disintegrate by releasing the PCM from the centrioles. The

disintegration is in part due to cortical microtubule-mediated pulling forces

that tear the PCM apart. This appears in the images to be analyzed as either

an explosion into several pieces that then rapidly dissolve or as a dissolving of

the entire centrosome. After completion of cytokinesis, a new nucleus forms

in each daughter cell and another round of the cycle can begin.

1.3 biological question : what sets the size of a centrosome?

The previous section showed that functional centrosomes are essential for the

cells to properly divide and ultimately for the organism’s survival. Yet their

precise structure and the molecular mechanisms of centrosome assembly, mat-

uration and disintegration are poorly understood. One aspect of these open

problems is the size of the centrosome. As the C. elegans one-cell embryo, con-

strained by the eggshell, goes through rapid rounds of cell divisions, its cells

become smaller with each division. By the 8-cell stage, for instance, the cells

are only between 10 and 20 per cent of the original volume. As a consequence,

the embryo also scales down the size of its intracellular structures during de-
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velopment including the mitotic spindle and the centrosome. For the spindle

this has the simple reason that a large one-cell spindle is too big to fit into

a small cell later in development. The length of the mitotic spindle is in part

set by the size of the centrosome [69]. A reduction in centrosome size leads

to a consequent reduction in spindle length. However, how centrosome size is

regulated is only vaguely known.

In this thesis we will investigate the molecular mechanism that sets the size

of the centrosome in early C. elegans embryos. This is an important problem

for two reasons. First, the general problem of how a cell adjusts the size of its

dynamic structures is largely unsolved [70]. For instance, understanding how

centrosome size is controlled might reveal a general size regulation mecha-

nism. Second, a detailed study of centrosome size might give new insights

into its structure and the assembly and maturation process.

Recent work has identified several components that influence centrosome

size. While characterizing the centriole duplication factor SAS-4, Kirkham et

al. [44] find that partial depletion of SAS-4 leads to incomplete centriole as-

sembly and that these incomplete centrioles organize less PCM. Song et al.

[45] identify the putative RNA-binding protein SZY-20 as a negative regulator

of centrosome size. They show that in the absence of SZY-20, centrosomes are

bigger than in wild-type and that the levels of centriolar and pericentriolar

components including ZYG-1, SPD-2, SPD-5 and γ-TUB (see Figure 1.3) are

increased. They also find that the centriole duplication factor SAS-6 influences

centrosome size. In summary, from previous work it appears that the centriole

plays a role in determining the size of the PCM but what this role is remains

unclear. While these studies describe aspects of the molecular pathway that is

important for centrosome size regulation, its underlying physical principle is

not discussed.

In these studies centrosome size was assayed only in one- and two-cell em-

bryos. For this, a single time point (e.g. metaphase) was chosen from live-cell

recordings or the embryos were fixed. In either case, temporal information

on how centrosomes grow during the cell cycle was ignored. Moreover, cen-

trosome size is often described only qualitatively or, if quantitatively, coarse

manual methods have been used. In this thesis we will overcome these short-
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comings by developing an assay for computationally quantifying the kinetics

of centrosome size in multi-cellular C. elegans embryos. Supported by the so-

acquired time-resolved data in wild-type and several mutant embryos, we pro-

pose a limiting component hypothesis. In this simple model, the size of the

centrosome is limited through the available amount of centrosomal protein

in the cytoplasm. Proportionately distributing the cytoplasm, and therefore

the centrosome components, to the daughter cells ensures that centrosome

size scales down with cell size through embryonic development. We provide

evidence that one component that limits centrosome size is the conserved cen-

triolar and pericentriolar protein SPD-2 [66, 60, 40].

1.4 aims of this thesis

The overall goal of this work is to develop an assay for quantifying the dy-

namics of centrosomes in C. elegans embryos and apply it to the question of

how the size of a centrosome is regulated. This is an interdisciplinary area of

research in computer vision and molecular biology.

Towards the biological question the goal is to quantitatively characterize

how centrosomes grow throughout embryonic development, how this is af-

fected under various genetic manipulations and how centrosome size corre-

lates with cell size and the amount of protein in the cytoplasm.

Computationally, the goal is to develop and implement a suite of algorithms

to analyze 3D time-lapse images of fluorescently labeled centrosomes and cell

membranes in C. elegans embryos. This includes

• detecting and tracking centrosome positions

• a definition and measuring method for centrosome size that is robust to

imaging artifacts

• determining cell identities within C. elegans’ invariant cell lineage

• registering the tracked centrosomes in time

• a segmentation algorithm for fluorescently labeled cell membranes to

quantify cell volumes.
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Estimating the size of centrosomes, which appear as blurred spots in the

images, is a task at which humans are prone to misjudgements. As a result,

manual measurements are biased towards a desired outcome of the respective

experiment or miss subtle but important phenotypes. Although no automatic

method can compute the perfectly error-free measurement in the presence

of imaging noise and artifacts, the overall system that we develop should al-

leviate both of these problems. Additionally, our goal is to increase the low

throughput inherent to manual or semi-automatic methods by fully automat-

ing all analysis steps.



2
A U T O M AT E D I M A G E A N A LY S I S F O R A N A S S AY O F

C E N T R O S O M E S I Z E

This chapter describes the assay we have developed for quantifying centro-

some size and other parameters over time in wild-type and mutant C. elegans

embryos. We first explain the imaging procedure (Section 2.1) and then the

algorithms to analyze the resulting 3D time-lapse images. Figures 1.1 and 2.1

show several example images. The primary steps are centrosome tracking (Sec-

tion 2.2) and measurement (Section 2.3). Based on the established tracks, our

system also determines the biological identities of the centrosomes within C.

elegans’ invariant cell lineage (Section 2.4) and recognizes the nuclear envelope

breakdown [71] in each cell division (Section 2.5). The idea is to convert a set

of centrosome movies into aligned time series of centrosome statistics ready

for biological interpretation.

2.1 imaging centrosomes in living embryos

The first step in setting up the centrosome assay is to figure out an optimal

imaging protocol. This includes selection of an appropriate microscope and

careful experimentation with its parameters in order to obtain the best possi-

ble images for automated analysis while keeping the embryo alive and viable

during the imaging process. To monitor centrosomes in living embryos we

chose to use spinning disk confocal microscopy, a fluorescence microscopy

technique that provides a good trade-off between acquisition speed and sensi-

tivity for our application. We will briefly review the fundamentals of fluores-

13
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10  µm(a) (b)

(c) (d)

Figure 2.1: Examples of C. elegans embryos with different centrosome markers. Images

are maximum intensity projections of confocal time-lapse stacks. (a) Wild-type, RSA-

1::GFP (b) Wild-type, SPD-2::GFP at approximately the same stage as the embryo in

(a). The SPD-2 signal is strong at the centriole (bright tiny dot at the centrosome

center) and weak at the PCM. (c) Wild-type, AIR-1::GFP. The AIR-1 signal is also

visible on microtubules. (d) 2-Cell mutant embryo (ani-2(RNAi)) that is smaller than

wild-type with a neighbouring older embryo, γ-TUB::GFP.

cence microscopy, discuss its limitations and describe the protocol for imaging

centrosomes.

Fluorescence microscopy is the de-facto standard in biology to visualize

structures that are too small to be resolved by the human eye. Fluorescence is

the emission of light by certain molecules, called fluorophores. By exciting a

fluorophore with light of a characteristic wavelength produced by a laser its

energy level rises to an unstable, excited state [72]. As the fluorophore returns

to the ground state it emits the absorbed energy in parts as heat and the

remaining energy as light of a longer wavelength. By blocking the excitation

light with wavelength dependent light filters only the light emitted from the

fluorescent structures will contribute to the image. A protein of interest can be

visualized using this principle by genetically fusing it to a fluorophore. There

are thousands of different fluorophores available for this purpose [73] with

green fluorescent protein (GFP) and its variants being the most common ones.
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There is a fundamental limit on the spatial resolution in all light microscopy

techniques due to diffraction of light by the sample and the microscope lenses.

Diffraction causes a light point source to appear as a blurred spot in the image.

This response of an imaging system to a light point defines its point spread

function (PSF) and therewith its resolution. Two point objects closer to each

other than the achievable resolution will appear as a single spot in the image.

For confocal microscopy the best achievable resolution in the x/y-direction is

about 180 nm and in the z-direction about 500 nm [74]. However, the resolu-

tion limit caused by diffraction can be overcome. One reason for this is that the

location of a single point object can be determined with much higher precision

than the optical resolution. This principle is used in super-resolution imaging

approaches such as photoactivated localization microscopy (PALM) [75] and

stochastic optical reconstruction microscopy (STORM) [76]. Although the first

super-resolution microscopes are now commercially available, it is still an ex-

perimental field. Often special fluorophores that can be switched on and off

are required, the imaging depth is very limited and time-lapse imaging is not

yet done on a standard basis.

The excitation of the fluorophores with a laser beam not only causes the

desired emission of light from the tagged protein molecules, but also has neg-

ative effects that have to be minimized. High energy doses are lethal or at least

toxic for the embryo (photo-toxicity), resulting in abnormal development. An-

other problem is photo-bleaching. Each fluorophore molecule can fluoresce

only a finite number of times, because it will eventually be destroyed by the

excitation light [72]. This results in loss of image intensity over time and hence

lower image quality. Therefore, the laser power, the exposure time, imaging

interval, z-spacing and number of z-planes have to be adjusted so that the

embryo develops normally and photo-bleaching is minimized. On the other

hand, to increase the signal-to-noise ratio of the images higher laser power or

longer exposure time is necessary.

Several variants of fluorescence microscopy techniques exist. They differ

in acquisition speed, penetration depth, resolution and detection sensitivity.

Laser scanning confocal and two-photon microscopy are too slow for live-

cell imaging of centrosomes, while wide-field fluorescence microscopy does
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not allow optical sectioning. Spinning disk confocal microscopy provides the

best trade-off among the available fluorescence imaging techniques for our

application. A spinning disk confocal microscope consists of a rotating disk

with multiple pinholes, which makes it possible to scan many points of the

sample at the same time. The photon counts are recorded by a charge-coupled

device (CCD) camera to produce an image of a 2-dimensional plane and a

piezo stage moves the sample with nanometer precision in the z-direction for

optical sectioning. To image centrosomes in the developing embryo we use

worm strains in which one of the centrosomal proteins, such as γ-TUB, SPD-

2 or SPD-5, is fused to GFP or YFP. Imaging takes up to about two hours

to capture embryonic development from the one- to 16-cell stage. In most

experiments, however, we image only to the end of the one- or four-cell stage.

An often encountered practical problem is to find one-cell embryos at the

beginning of the centrosome cycle. Although it takes only about 6 seconds

to acquire a 3D stack, we image only at time intervals between 20 and 50

seconds, depending on the total number of stacks and the number of planes

per stack, to minimize laser induced damage of the embryo as well as said

photo-bleaching. Typically, a 3D stack consists of about 50 z-planes with 512

× 512 pixels and 100 time points are sampled resulting in roughly 2 gigabytes

of data per experiment. The pixel size in x and y is 133 nm and the distance

between two z-planes is set to 500 or 600 nm. All these settings are chosen

so that the embryo appears to develop normally; however a relatively small

increase in total laser exposure would be harmful for the embryo. The embryo

is usually stationary, but small movements cannot be excluded and manual

adjustments of the focus between two time point samplings are sometimes

necessary to account for drifts in the z-direction.

2.2 centrosome tracking

2.2.1 Tracking Challenges and Simplifying Properties

The task to automatically track fluorescently labeled centrosomes in a develop-

ing C. elegans embryo is a multiple-object tracking problem with an unknown,
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time-varying number of objects. Due to the asynchrony of the cell divisions

and the fact that we wish also to track mutational variants, we cannot assume

that the number of centrosomes is a power of two at any given time. While

many of the difficulties in solving this problem are common to any tracking

task in fluorescent imagery, the force driven movement of the centrosomes as

well as the relative large thickness of C. elegans embryos impose additional

challenges.

1. Low laser exposure to minimize photo-toxicity and photo-bleaching re-

sults in high noise and low contrast.

2. The signal attenuates significantly towards the bottom of the embryo.

This can cause a more than 10-fold contrast difference between two cen-

trosomes with equal amounts of fluorescent protein. Some of the centro-

somes close to the bottom of the embryo are therefore extremely dim

and hardly detectable by the human eye.

3. Auto- and off-target fluorescence results in disturbing background struc-

tures and non-centrosome particles. In particular, the polar body [77],

which is extruded from the embryo after meiosis, remains inside the

eggshell and is often visible as a fluorescent object.

4. At the beginning of the centrosome cycle (see Section 1.2.3) the distance

between the two centrosomes of a cell is below or close to the optical

resolution. Especially in the z-direction, this complicates the detection

and accurate measurement of two close centrosomes.

5. Microtubule-mediated pulling forces can induce sudden accelerations

and changes in motion direction leading to large frame-to-frame dis-

placements. Pulling forces also result in the disruption of the centrosome

into many pieces at the end of its life cycle.

6. Structures in the surroundings of the embryo such as remains of the

embryo’s parent or a neighboring embryo represent additional disturb-

ing objects. This is especially the case for some mutant embryos with a

desired phenotype that occurs only with low probability. For these valu-
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able mutants it is not always possible to ensure the highest achievable

image quality.

7. Small movements of the whole embryo in the x- and y-direction and

significant movements in the z-direction occasionally occur.

8. Some of the centrosome markers also label microtubules or the centrioles

resulting in additional local maxima in a centrosome’s intensity profile.

On the other hand, there are also properties that simplify the tracking prob-

lem. Once starting to migrate to opposite poles of the nucleus, the centrosomes

are big enough and well separated so that they do not merge or split. The great

range in centrosome size and brightness is challenging for the detection, but

provides valuable information to resolve object correspondence. Monitoring

the centrosome cycle up to the 16-cell stage means that no more than 32 ob-

jects need to be tracked simultaneously (in wild-type embryos). Furthermore,

a centrosome is roughly ellipsoidal shaped (almost perfectly spherical before

onset of disintegration) with approximately Gaussian intensity distribution,

its size either increases or stays constant with time up to its disintegration and

there is a biophysical limit on its maximum velocity.

2.2.2 Related Work

Tracking of objects in image sequences is of great interest for many practi-

cal applications. Beyond the analysis of live-cell microscopy images examples

include robotics, video analysis of sport games or radar surveillance in air

traffic control. The proposed solutions in each of these fields rely on different

assumptions. In air traffic control, for instance, well-defined motion models

can be used to predict the position of the object at the next time point [78]. For

the analysis of sport games, views from multiple cameras can help to resolve

ambiguities [79]. The large number of publications indicates that no general

solution for object tracking exists and so we will here concentrate on tracking

approaches with application to fluorescence microscopy images.

There are two broad classes of tracking methods, probabilistic methods and

distance based methods. Most of the proposed techniques divide the tracking
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problem into two independent stages. First, in the detection stage the objects

are located in each individual frame. In the second stage those detections that

correspond to the same physical object are linked into trajectories, referred

to in the literature as the correspondence problem, object linking, trajectory

establishment or data association. Approaches that simultaneously perform ob-

ject detection and linkage include a method based on dynamic programming

[80] that can track one single particle at a time as well as the microtubule

tip tracker [81] that can rely on linear motion patterns. Simultaneous detec-

tion and linkage directly allows the detection to take temporal information

into account, but it is conceptually and computationally complex. Separat-

ing detection and linkage simplifies the problem by decoupling two difficult

problems. The achievable tracking performance then depends on how much

irrelevant information can be filtered and how much useful information can

be preserved by the detection method.

Probabilistic methods formulate the tracking task as a state estimation prob-

lem [81]. The state xt of an object is a vector of object properties that includes

position and often velocity and intensity. A measurement zt can be a set of

detected object positions, extracted features thereof or the entire image. A

measurement model p(zt|xt) expresses the likelihood of observing the mea-

surement zt given the current state xt and a state evolution model p(xt|xt−1)

predicts the state xt given the previous state xt−1. If the state vector only con-

tains information derived from object position, the state evolution model is a

physical motion model of the objects to be tracked. The goal then is to derive

the posterior distribution p(xt|z1:t) of the current state given all measurements

up to time t [82]. Intuitively speaking, the idea is to directly describe the imag-

ing process and the dynamic behavior of the objects by probabilistic models

(i.e., the measurement and the state evolution model, respectively) and then

to inverse the model in order to infer the hidden state of the system from

the sequence of noisy measurements. Analytically inverting the model is of-

ten not possible but approximations can be obtained by numerical simulation

methods, in particular sequential Monte Carlo methods [83] (also known as

particle filters).
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These methods have been applied for tracking of endocytic vesicles labeled

with quantum dots [84], microtubule tip tracking [81, 85], virus particles [86],

single membrane-associated molecules [87] and centrosomes in C. elegans em-

bryos [88]. The concept of probabilistic methods is very appealing because

it allows to directly formulate prior knowledge. Concrete implementations,

however, suffer from a number of drawbacks. First, numerical simulation is

computationally demanding in time and space. As a result, the size of the

images and the number of objects that can be handled is limited [87]. For ex-

ample, in [85] a manually specified region of interest containing 10-20 objects

is used for 2D image sequences with 20 time points. Second, the reported

tracking performance is not always satisfying. The virus tracking algorithm in

[86] achieves an average tracking performance of about 80 per cent based on

three movies, and for the centrosome tracking algorithm in [88] a considerable

decrease in performance is reported when the embryo has passed the two-cell

stage. Finally, while all tracking methods depend on a number of parameters

that need to be adjusted, probabilistic methods are especially prone to param-

eters without physical meaning such as the number of (simulation) particles,

the choice of the importance density function [83], probability thresholds for

track initialization and termination [81] or the gain parameter in case of the

Kalman filter [89].

Distance based methods are based on defining a distance measure (or cost

function) that reflects the chance that two detected objects belong to the same

physical object and a strategy to assign objects to each other based on the dis-

tance measure. While conceptually often simpler than probabilistic methods,

the tracking performance critically depends on how well the objects can be de-

tected and how effectively prior knowledge about the objects can be encoded

via the distance measure and the assignment strategy.

One widely used technique is the nearest neighbor strategy due to its sim-

plicity and low computational demand. The pair of objects p at time t and

q at time t+ 1 with the smallest spatial distance are linked. Then, excluding

all associations involving p or q, the pair with the second smallest distance

is linked, and so on. For instance, this approach has been used for tracking

lipoprotein receptor molecules [90]. In general, it is applicable when the ob-
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jects move sufficiently separated from each other, but quickly brakes down

under high object density (relative to the frame-to-frame displacement of the

objects) or in the presence of near-by false detections. Bao et al. [16] have de-

veloped an extended version of the nearest neighbor algorithm for tracking

nuclei / chromosomes in C. elegans embryos via Histone::GFP. Their goal was

to trace the cell lineage up to hundreds of cells in one color channel and use a

second color channel to monitor gene expression. Instead of only the nearest

neighbor they consider a small number of potential matches with comparable

distance as the nearest neighbor. To resolve conflicting situations, they exploit

the fact that sister nuclei have similar intensity and size and can distinguish

between young and older nuclei based on their shape. To accurately detect

the nuclei they additionally take advantage of the fact that due to small frame-

to-frame movement a nucleus in the current frame significantly overlaps with

itself in the previous frame.

Sbalzarini and Koumoutsakos [91] present a more generic tracking algo-

rithm for tracking fluorescent particles in 2D images with applications to

studies of lipoprotein molecules, virus particles and quantum dots. Object

detection begins by finding all local intensity maxima above a user-defined

intensity percentile threshold and subsequently classifies between false and

true positive calls based on zero-th and second order moments of the spot

intensities. The zero-th order moment is the total intensity of the spot and

the second order moment corresponds to the width of the spot. Two assump-

tions are made in this approach. First, the true positives form a dense cluster

in the 2-dimensional momentum space (i.e., they all have similar momentum

values) while the false positives are more spread around this main cluster.

This essentially means that the true objects must be relatively uniform in their

appearance. Second, the majority of the calls are true positives. Under these

two assumptions there will be many other calls nearby a true positive in the

momentum space that contribute to a score defined as a sum over the set of all

calls. For a false positive on the other hand there are much fewer supporting

calls, hence giving a lower score. A threshold on this score is then used to

make the distinction between true and false positives. To link the detected ob-

jects into trajectories a cost function that includes object displacement and the
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difference of the two intensity moments is defined. Interestingly, it includes

no normalization for the different ranges of values of these measures of object

coherence. The linking strategy then is to minimize the total linking cost un-

der the constraint that each object must be linked either to another detected

object or to a dummy object, which is a linear assignment problem [92]. To

handle missed detections and object occlusions the linking is done not only

between frames t and t+ 1 but for multiple frames ahead, i.e., for all pairs of

frames t and t+ r for r = 2 . . . R and R being a user-defined value. However, in

a tracking scenario with disappearing and newly emerging objects like centro-

somes, this multi-frame linking strategy gives a higher chance to incorporate

false positives into in the trajectories even with modest false positive rates.

While the approaches discussed above establish the trajectories in a single

pass, Jaqaman et al. [93] do so in two steps, also utilizing the linear assignment

problem. They first link objects between consecutive frames. The cost function

here is the squared Eucledian distance between the objects and conservative

thresholds on this distance are used to lower the risk of false assignments.

This results in many short track segments. In the second step, the track seg-

ments are linked to form complete trajectories. For this, problem-dependent

cost functions and thresholds for gap closing and merge and split events are

defined for pairs of track segments and globally minimized for all track seg-

ments and event types simultaneously. Thus, the second step innately takes

temporal information into account. They demonstrate the applicability of the

method for characterizing the motion behavior of single receptor molecules

and for life-time analysis of endocytic structures. This tracking framework

requires the object detection method, the assignment cost functions and the

threshold parameters to be specified for the problem at hand.

In some of the tracking applications, it is sufficient to select a subset of

(largely) error-free trajectories for the subsequent analysis. For example, to

compute a velocity distribution of tracked microtubules, a good estimate does

not require that all microtubules present in the image sequence be considered.

Whenever it is valid to assume that a sufficiently large subset of the tracked

objects is statistically identical to the entire population, biologically useful re-

sults can be obtained despite incomplete tracking. For the centrosome assay
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incomplete or inaccurate tracking is not tolerable, because each centrosome

in a C. elegans embryo has a distinct biological fate and the centrosome track-

ing algorithm is part of a fully automated image analysis pipeline in which

subsequent steps depend on the established trajectories.

In summary, the use of problem-specific prior knowledge (and appropriate

parameter settings) is indispensable for any of the discussed tracking meth-

ods and determines to a high degree the concrete implementation within the

context of the respective biological study. One generally applicable and com-

putationally efficient but abstract framework for object tracking is the linear

assignment problem, which can be equivalently formulated as bipartite graph

matching. In the next section we will use this framework for our application.

2.2.3 Overview of the Tracking Algorithm

Core Trajectory Forward Extension Backward Extension

Figure 2.2: A typical centrosome trajectory established by first finding the core trajec-

tory and then forward and backward extending the core trajectory.

Automated tracking of centrosomes is the computational core component

of our assay to study the dynamics of centrosomes in developing C. elegans

embryos. To robustly solve this problem, we formulate it as a graph matching

problem and incorporate prior knowledge of the centrosome cycle (see Section
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1.2.3). In that we use the novel approach of first reliably finding those subseg-

ments of a trajectory in which the centrosome is bright and large, and then

extending these ’core’ trajectories backward in time to catch the initiation of

the centrosome where it is very small and dim, and forward in time to catch

the disappearance of the centrosome when it appears to ‘explode’ or dissolve

(Figure 2.2).

Find embryo contour

in maximum-projection

Over-detect spot-like objects

Establish ‘core tracks’

(=middle part of each track 

where centrosome is bright)

Extend backwards

Stitch broken tracks

Extend forward

Merge

Figure 2.3: Workflow of the centrosome tracking algorithm.

The workflow of our algorithm is illustrated in Figure 2.3. It first finds the

contour of the embryo and proceeds by detecting spot-like objects within the

embryo region. In contrast to other tracking approaches, the object detection

step is tuned to very high sensitivity so that missing detections (false nega-

tives) virtually do not occur; however, this may result in a significant rate of

false detections (false positives). We then link the objects between consecutive

frames into trajectories with a two-stage approach. In the first stage we find
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the core (sub-)trajectories that we are confident are correct, in that the object

assignments based on appearance and displacement are mutually consistent

and the individual spot calls used are clearly not noise. Every core trajectory,

which is invariably the middle portion of a complete trajectory, is then ex-

tended in the second stage to find the best set of complete trajectories over the

set of all called objects. Occasionally, two non-overlapping core trajectories

are found for a given complete trajectory in which case, after the extension

step, they abut in time. In a final phase, we recognize these situations and

concatenate the trajectories involved. The key idea is to first understand what

is certain, and then extrapolate the rest around that.

2.2.4 Object (Over-)Detection

We first over-detect possible centrosomes in each 3D stack by finding all ob-

jects that are to first approximation a Gaussian spot of some radius. Each

stack I is first smoothed slightly to give IS by applying a 3D-Gaussian filter

of radius 0.6 pixels chosen as per [94]. We consider there to be an object at

position p if (i) the value at p in IS is locally maximal, and (ii) the normalized

cross-correlation [95] of the raw image I with a Mexican hat filter with stan-

dard deviation σ centered at p is greater than τ. Several discrete values of σ

are used and we find that setting τ to 0.70 (Figure 2.4) gives a very low false

negative rate (i.e., it is rare to not detect a centrosome) while leaving us with

a manageable number of false positive signals (e.g., noise and autofluorescent

‘spots’).

We then refine the center (x(p),y(p)) of each putative centrosome and com-

pute its radius ρ(p), its mean-illumination-to-background ratio η(p), as well

as its total illumination ι(p), by finding the best least squares fit of the spot at

p to an elliptical 2D-Gaussian model with a (background) offset b(p) using the

trust-region-reflective algorithm [96] implemented in Matlab. We do so only

in the 2D plane with the same z-value as p, primarily because 3D statistics

are less reliable due to the relatively poor z-resolution of confocal microscopy

as well as movement of the centrosome while it is imaged. All parameters are

free and real-valued so that in the end we have a sub-pixel center (x(p),y(p)),
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Figure 2.4: Response of Mexican hat filters of various sizes to centrosome and back-

ground image patches.
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(b)(a)Figure 2.5: Measuring radius, total intensity and background level by Gaussian fit-

ting. (a) An image of a centrosome and its intensity profile. (b) Gaussian fit (colored

surface) overlaid on the centrosome intensity profile (meshed surface).

angle θ(p) of the principle axis, standard deviations σp(p), σm(p) along the

principal and minor axes, peak height h(p) and background offset b(p). Fig-

ure 2.5 shows an object intensity profile and the fitted Gaussian, respectively.

From this Gaussian, we then have radius ρ(p) = 2
√
σp(p) · σm(p), η(p) =

mean intensity within ρ(p) divided by b(p), and ι(p) = volume under the

Gaussian without b(p).

Occasionally, when centrosomes are very small and near each other, they

are recognized as a single object. The signature of these cases are that the

ratio r = σp(p)/σm(p) is large and σm(p) is small. In these cases, we try
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fitting the signal to two Gaussian models and if we have a better residual and

both σ-ratios are smaller than r then we accept the two spots scenario and

associated Gaussian models.

Using a series of sized Mexican filters and a fixed threshold τ will detect

the same centrosome multiple times at slightly different radii and different

positions. To solve this problem, in a post-processing step we iteratively de-

tect pairs of objects p and q that are closer together than the sum of their

radii ρ(p) + ρ(q) and discard the dimmer object (i.e., the one with the smaller

η-value). This eliminates on average 54%± 10% (s.d.) (n=40 movies) of the ini-

tially detected objects and is clearly conservative as two centrosomes do not

intersect in space.

Another problem that may cause tracking errors are objects outside the em-

bryo such as the polar body or remains of the embryo’s parent. We remove

these by first detecting the contour of the embryo in the maximum intensity

projection. Our contour detection algorithm starts with finding a rough esti-

mate of the embryo region in the first frame of the movie using Otsu thresh-

olding [97] and then applies marker-controlled watershed segmentation [98]

to each frame to find the actual embryo contour. In this, we propagate the

segmentation of the previous frame as marker for the next frame through

time (see also Section 3.1). We then discard all object calls that are outside the

convex hull of the detected embryo contour. Using the convex hull instead of

the originally detected contour minimizes the risk of discarding centrosome

objects close to the embryo boundary, which might be imperfectly segmented.

This step eliminates on average 28%± 19% (s.d.) (n=40) of the objects from the

last step.

We now have a set of possible centrosome centers and an estimate of their

radius. Empirically, it is exceeding rare for a centrosome to not be in this

set, and anywhere from 0 to 90% (average: 34% ± 14% (s.d.), n=40) of the

remaining spots are false positive signals (e.g., noise, etc.) depending on the

time point and acquisition conditions.
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Figure 2.6: Illustration of a radius hysteresis situation. Two trajectories A and B have

been established up to time t. Object c on trajectory A is larger than rinit (700 nm).

The edges (e,h) and (e, i) that are associated with trajectory A and involve objects

smaller than rcont (600 nm) are thus radius hysteresis edges and will be removed

from the matching hypothesis graph.

2.2.5 The Bipartite Graph Matching Paradigm

After the sensitive detection of putative centrosomes in all frames as described

in the previous section, the next step is to link those objects that correspond

to the same physical centrosome into trajectories and filter out false positives.

We break this problem down into two steps. In the first step we establish only

a segment of each centrosome’s full trajectory where the centrosome is sig-

nificantly brighter than the background and hence easy to distinguish from

noise objects. We refer to this part of the trajectory as the ‘core’ trajectory. In

the second step we extend the core trajectories backward and forward in time

to obtain each centrosome’s full trajectory. Both steps are implemented in the

same bipartite graph matching framework for which we define an assignment

cost function based on object displacement and appearance. Bipartite graph

matching as used here has the property of maximizing the number of one-

to-one object assignments between consecutive time points while minimizing

the total assignment cost. This section describes the framework and how we

incorporate prior knowledge. The next two sections then show how we use

the framework to find reliable core trajectories and extend the core trajectories

to full trajectories.
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Let Vt = {pt1,pt2, . . . ,ptmt
} be the set of detected objects at time point t =

1 . . . n and V = V1 ∪ . . . ∪ Vn be the set of all objects. Note that for each time

point the numbermt of objects can be different. We define a weighted directed

graph G = (V ,E,w) where the set of edges represents all possible matching

hypotheses between objects detected at successive time points. There is an

edge (p,q) between objects p ∈ Vt and q ∈ Vt+1 if and only if:

1. ‖p− q‖ 6 dmax: dmax models the biophysical limit on centrosome ve-

locity (300 nm/sec) and also takes into account cell movement within

the embryo as well as movement of the entire embryo.

2. if ρ(p) > rinit then ρ(q) > rcont: Biologically the centrosome is always

increasing or constant in size with time up to the beginning of its dissolu-

tion, but due to measurement and estimation error the computed radius

varies. Empirically, we have observed that once the radius exceeds rinit

= 700 nm (well above the resolution limit), it never becomes smaller than

rcont = 600 nm. We call this criterion radius hysteresis and in what fol-

lows we require that it not only be true of edges but also of sequences of

edges, i.e., once a centrosome becomes larger than rinit on a trajectory

it does not then become smaller than rcont later in the trajectory (Figure

2.6).

These two simple conditions eliminate a large number of potential corre-

spondences that are certainly incorrect.

The weight w(p,q) of an edge of the graph is intended to reflect the chances

that p and q represent the same centrosome. Biologically we know that centro-

somes move in a relatively smooth manner and that facets of their appearance

such as their radius and intensity also change gradually. Thus we expect p and

q to be close together and for their appearance to be similar. We formalize this

by defining the weight or ‘distance’ between p and q as:

w(p,q) = (1−α) dS(p,q) +α dA(p,q) (2.1)
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where

dS(p,q) = ‖p− q‖ /σS (2.2)

and

dA(p,q) =
m∑
a=1

∣∣∣∣ ϕa(p) −ϕa(q)

min(ϕa(p),ϕa(q))
− µa

∣∣∣∣ /mσa (2.3)

where dS is a normalized spatial (Euclidean) distance, dA is a normalized

relative-appearance distance and α ∈ [0, 1] is a free parameter (to be selected

by the algorithm) that weights the contributions of these two aspects of coher-

ence; µa are the means and σa and σS the standard deviations of the frame-

to-frame differences of the respective feature. In our implementation we use

two appearance features. ϕ1(p) is the radius of p and ϕ2(p) is the total in-

tensity of p. The distances are normalized using the concept of a z-score [99]

wherein the measure is the number of standard deviations above or below the

mean value of a distribution of ‘raw’ scores. In our case, the set of edges D

contributing to the distribution (and therewith to µa, σa and σS) is decided

dynamically during the algorithm and so will be described later. Note that we

do not subtract the mean of the spatial distance, µS, in dS because this would

favor links between objects that move by µS over links where the objects do

not move significantly.

A solution S to the tracking problem is a set of edges in G that form a num-

ber of vertex-disjoint paths, each corresponding to a centrosome’s lifespan. We

could add additional constraints on these paths for wild-type data, but since

we want solutions for mutants as well, we can in general not require more

structure than this. However, suppose that there were no false-positive objects

in the graph, that is, every vertex truly represents a centrosome. Then our so-

lution in this special case is the set of paths that involves the maximal number

of edges, and if there are several, then we want the set of edges with mini-

mum sum weight. This is equivalent to finding a minimum-weight bipartite

matching between Vt and Vt+1 for each time t, and we can do so using the

Hungarian algorithm [100]. It is a standard technique to use bipartite match-

ing even when there are false positive objects, and we will do so numerous

times with different parameter settings as a way of discovering these false pos-
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itives. Moreover, as we solve each bipartite matching for successive value of

t, we eliminate any edges between Vt and Vt+1 whose addition to the trajec-

tories up to time t would result in a trajectory with radius hysteresis (Figure

2.6).

2.2.6 Finding Reliable Core Trajectories

The first step is to find the middle part of each centrosome’s trajectory where

the centrosome is large and bright. We refer to this part of a trajectory as the

core trajectory. While it is desirable to establish as much of each trajectory as

possible, it is more important that the core trajectories be error-free.

For several thresholds ω ∈ Ω, we consider the subgraph of G restricted to

the objects that are brighter than ω, i.e., V(ω) = {p ∈ V | η(p) > ω} (η(p) is

the mean-illumination-to-background-ratio, see Section 2.2.4 for the definition

of η(p)). Note that the larger the threshold ω, the fewer false-positive objects

there are in V(ω) until at some value, not yet known to us, practically no false-

positives remain. We first apply the bipartite matching heuristic described

above with α = 0 and σS = 1 on V(ω) yielding a solution S(ω) that is the set of

edges in the optimal matching at each time point. This solution is solely based

on the spatial distances dS between the objects. Given S(ω), we let it be the set

of edges D for computing the means and standard deviations of the spatial

and appearance feature differences that then determine normalized scores for

dS and dA. For a series of different values of α > 0.5, we then apply the

bipartite matching heuristic where the weights of each edge are determined

by D = S(ω) and α. We refer to this solution as S(ω,α) and observe that it

takes object appearance into account as well.

Our key idea is that if S(ω) = S(ω,α) or nearly so, and also the larger that

α is, then the more likely it is that the edges in S(ω) ∩ S(ω,α) are all correct.

In the ideal case S(ω) would equal S(ω, 1) for some ω. So for a set of choices

(ω,α) ∈ Ω×A we compute a table of the number of conflicts between S(ω)

and S(ω,α) as K(ω,α) = |S(ω) − S(ω,α)| and find the smallest value K∗ =

min{K(ω,α)}. Almost always K∗ = 0 and there are multiple choices ofω and α

that give the value K∗. Among these we select (ω∗,α∗) where α∗ is the largest
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α that gives us K∗ for some ω, i.e., α∗ = max{α | ∃ω : K(ω,α) = K∗}, and ω∗ is

the lowest possible brightness threshold ω, among those at blending factor α∗

that give K∗, i.e., ω∗ = min{ω | V(ω,α∗) = K∗}. To conclude, we let the edges

in χ = S(ω∗)∩S(ω∗,α∗) be our core trajectories and in most cases α∗ > 0.8. In

effect we have found the levelω∗ that minimizes the possibility of having false

positives in V(ω∗) and hence the solution to the bipartite matching heuristic

is most likely to be correct. The so established core trajectories include on

average 86% ± 11% (s.d.) (n=40) of the centrosome objects of the complete

trajectories that we wish to establish.

2.2.7 Extending Core Trajectories to Full Trajectories

Given the core trajectory of each centrosome we now go back to the full set

of called objects and extend the trajectories forward and backward in time to

obtain the full trajectories. To this end, we apply the same core procedure of

our tracking algorithm with edge weights that combine spatial distance and

appearance distance as described above with the weighting factor α = 0.3 and

D = χ. The choice of α was empirically chosen and indicates a slight prefer-

ence towards minimizing distance changes over appearance changes during

the extension phase. Moreover, we compute the mean µχ and standard devi-

ation σχ of the weights of all the edges in the core trajectories and eliminate

from E− χ all edges whose weight is more than 4 standard deviations above

the mean, i.e., µχ + 4σχ, as being implausible (E is the set of all edges as

defined in Section 2.2.5).

In the following we will describe the track extension algorithm for the back-

ward case. Forward extension is analogous. We extend core tracks backward

iteratively starting with t = n and working backward to 1. Suppose we have

already iteratively extended backward to time t and let B(t) be the set of

edges in our current set of tracks where the induction starts with B(n) = χ,

the set of core tracks computed in the previous subsection. Note that all edges

(a,b) ∈ B(t) with b ∈ Vt ′6t are core trajectory edges.

To extend to time t− 1 we first find a bipartite matching between Vt−1 (i.e.,

the set of all objects at time t− 1) and U(t) = {b ∈ Vt | ∃a : a ∈ Vt−1 ∧ (a,b) ∈
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B(t)} ∪ {b ∈ Vt | ∃c : c ∈ Vt+1 ∧ (b, c) ∈ B(t)} (i.e., the set all objects at time

t that are adjacent to an edge in B(t)) using the Hungarian algorithm with

the weights and edges described in the previous paragraph. We remove from

consideration any edge whose addition to the established trajectories would

result in a trajectory with radius hysteresis (Figure 2.6).

Suppose the algorithm returns the set of edges Ht as the best matching

between Vt−1 and U(t). We must reconcile these edges against the core tra-

jectory edges χt = (Vt−1 × Vt)∩ B(t) that are currently connecting time t− 1

and t. An edge e = (a,b) ∈ Ht is compatible (with B(t)) if either e ∈ χt (i.e., e

is also a core edge) or there are no edges adjacent to a and no edges between

any vertex at t− 1 and b in B(t) (i.e., a is not in any core trajectory and b is

not already matched to another object at t− 1). There is only one situation in

which we will accept non-compatible edges in Ht as part of the new extension

B(t− 1). A pair of edges (a,b) and (c,d) in Ht is an exchange (w.r.t. B(t)) if

and only if (a,d) ∈ B(t) and there are no edges adjacent to c or between any

vertex at t− 1 and b in B(t). This scenario typically arises when a centrosome

pair first forms and their spots are so dim that at time t − 1 c is not above

threshold ω∗ and so a is inadvertently paired with d instead of b. During the

extension phase c is present and the exchange straightens the problem out.

Figure 2.7 illustrates an exchange. In conclusion, we add to our current set of

edges all the compatible and exchange edges in Ht and remove those (core)

edges that are replaced by an exchange edge to arrive at B(t− 1), formally:

B(t− 1) = B(t)∪ {e ∈ Ht | e is compatible or an exchange edge} (2.4)

− {e ∈ χt | e is replaced by an exchange edge}.

We apply the same procedure forward in time to obtain a sequence F(1) =

χ ∩ B(1), F(2), . . . , F(n) of forward extensions. Note carefully that we start the

forward induction from χ ∩ B(1) (i.e., the set of all core trajectory edges that

have not been replaced by an exchange edge during the backward extension

phase) and not B(1). So it may be that B(1) and F(n) are not mutually compat-

ible exactly as defined above, that is, B(1)∪ F(n) may have tracks with radius

hysteresis or tracks that split or merge. First, we resolve every such fork in

the merged result by eliminating the edge, which depends on whether it is in

B(1) or F(n), with the higher weight. When such an elimination is required



34 2 automated image analysis for an assay of centrosome size

a b

c d

t-1 t
Core Trajectory, B(t) Backward Extension, Ht

a b

c d

t-1 t

η(c) < ω*

Figure 2.7: Illustration of an exchange during the backward extension phase (the

edges are drawn in the opposite direction only to illustrate that we work backward

in time). The core trajectory edge (a,d) ∈ B(t) is replaced by the exchange edges

(a,b) ∈ Ht and (c,d) ∈ Ht.

we want to be sure that the extension procedure whose edge is eliminated

would not have made a different extension in light of this. So we rerun the

forward and backward extensions with the incompatible edges removed. We

repeatedly do this until B(1) and F(n) are compatible, typically one or two

iterations. We then further remove from B(1) and F(n) those extension edges

with highest weight that would link (non-overlapping) core trajectories in the

merged result in order to prevent introducing edge sequences with radius hys-

teresis. The result of the extension phase is the set of tracks T = B(1)∪ F(n).

2.2.8 Trajectory Stitching

Occasionally, two or more non-overlapping core trajectories are found for a

given centrosome, in which case, after the extension step, the trajectory is bro-

ken into several parts that abut in time. In a final phase we search to exhaus-

tion for edges that link two trajectories fulfilling the three conditions below

and add the edge, effectively ’stitching’ together two trajectories.

1. The stitched trajectory must not be longer than a generous maximum

bound of 45 minutes on the duration of the centrosome cycle.

2. The differences in position, radius, and integrated intensity across the

stitching edge must not be greater than the respective maximum differ-

ence over all trajectories established so far.
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3. The stitched trajectory must not have radius hysteresis (rinit = 700 nm,

rcont = 600 nm).

We then repeat the stitching process with less strict conditions for (a) tra-

jectories that are shorter than a minimum of 10 minutes on the duration of

the centrosome cycle, and (b) trajectories with initial radius greater than 600

nm. For these rare cases of certainly broken trajectories we allow twice the

respective maximum difference (condition 2) and relax the radius hysteresis

to rinit = 1000 nm and rcont = 550 nm (condition 3).

2.2.9 Tracking Performance

Our corpus of centrosome movies comprises several hundred embryos be-

tween the 1- and the 16-cell stage with various centrosome markers and ge-

netic conditions. To quantify the tracking performance we randomly selected

10 movies of multi-cell embryos for detailed visual inspection. Due to the

small number of movies that cover the 8- and 16-cell stage in our corpus, we

additionally inspected 3 random examples of such movies. Many papers on

tracking systems including [16] identify three types of errors: failure to incor-

porate an object, incorporation of a false-positive object, and incorporation of

an incorrect object in a given track. We use a finer error categorization because

some kinds of errors are more severe than others. For example, a completely

missed centrosome is a more severe tracking error than a trajectory that misses

only a couple of frames at the beginning of the cycle when the centrosome is

a tiny dim spot. We use the following error categories that cover the space of

all observed errors.

• Short track. The track is correct but misses a few frames at either end.

• Long track. The track is correct but has a few extra frames at either end.

• Broken track. A centrosome is completely tracked but the trajectory is

broken into two or more pieces. Stitching the involved tracks would

correct the problem.



36 2 automated image analysis for an assay of centrosome size

Table 1: Minor and major tracking error rates in per cent of the total number of tracks.

The tracking results of randomly selected centrosome movies starting at different cell

stages were analyzed.

Cell n Minor errors Major errors

stage Short Long Broken Fused Chimera Missing Particle

1 8 0 0 0 0 0 0 0

2 32 0 3.1 0 0 0 0 0

4 48 10.4 2.1 0 0 0 0 0

8 48 10.4 2.1 0 0 0 0 0

16 64 17.2 3.1 1.6 0 1.6 3.1 0

• Fused track. Two or more centrosomes are in a track but splitting the track

would correct the problem.

• Chimera track. The track contains more than one centrosome or non-

centrosome object and it is not a long or fused track.

• Missing track. A centrosome is not tracked at all.

• Particle track. A non-centrosome object is tracked but involves no centro-

somes.

Table 1 summarizes the evaluation results. Tracks that are a few frames too

short are the most prevalent error, but it is also the least severe because it

only involves faint, tiny centrosomes at the very beginning of the cycle or

diffuse, disassembled centrosomes at the very end of the cycle. Fusion errors

and particle tracks never occurred. More severe errors occurred only in the

16-cell stage. For example, two missed centrosomes were due to their being so

deep in the stack, and hence so dim, that they were not picked up in the core

trajectory extraction step.
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2.3 measuring centrosome size

2.3.1 Definition of Centrosome Size and Measuring Algorithm

The total fluorescence is often used as a measure for the size of spot-like

objects, which in principle is proportional to the amount of the fluorescently

labeled protein. Given a Gaussian fit of the centrosome’s 2D intensity profile

(see Section 2.2.4), the total fluorescence above background can accurately be

obtained as the full integral under the Gaussian. Unfortunately, as a measure

for centrosome size it is only useful for a limited number of cases because it is

severely affected by the centrosome’s z-position. Figure 2.8 shows an extreme

example. While the two marked centrosomes are identical in terms of protein

amount, they appear in the image with a 10-fold intensity difference. The

reason for this is that the light that comes from the centrosome closer to the

bottom of the embryo has to travel a longer distance through the densely

packed embryo before it reaches the microscope. As a result much more light

is lost on the way and so the object appears significantly dimmer although the

total protein amounts are the same. It is extremely difficult to computationally

correct for this artifact because the optical properties of the embryo constantly

change due to additional cell membranes when the cells divide as well as

polarization events within the cells.

As an alternative measure for centrosome size that is much more robust

against this imaging artifact we use the radius of the centrosome. Under

the reasonable assumption that the centrosome is spherical (this is for exam-

ple less the case for centrosomes in Drosophila) the radius can then readily

be converted to volume in order to obtain a 3-dimensional estimate of cen-

trosome size. In Section 2.2.4 we compute an approximation for the radius

ρG(p) of object p as twice the geometrical mean1 of the standard deviations

σp(p) and σm(p) along the principal and minor axes of the fitted Gaussian,

i.e. ρG(p) = 2
√
σp(p) · σm(p). At the resolution of light microscopy, however,

there is no clear boundary between a centrosome and the background. There-

1 The geometrical mean of the two semi-axes of an ellipse is the radius of a circle with the same

area as the ellipse.
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Figure 2.8: The intensity of the centrosomes strongly depends on the distance to the

embryo surface. Centrosomes deeper down in the stack (green) appear dimmer than

those close to the top of the embryo (blue). If the embryo was imaged flipped over

the green centrosome would appear brighter than the blue one.

fore, the radius of the fitted Gaussian is actually only a measure that is relative

to an unknown but fixed scaling constant. We empirically chose this constant

to be 2 based on human perception of centrosome size. Note, that this con-

stant cancels out when comparing the size of centrosomes relative to each

other. Furthermore, while the model above is sufficient for the purposes of

computationally inferring centrosome tracks, for the biological analysis of the

data we undertake the following two refinements to obtain as accurate a mea-

surement of centrosome size as is possible.

In the late stages of a centrosome’s trajectory the intensity profile of the

spot is often not Gaussian, typically having a dip in the center as illustrated

in Figure 2.9(a). To more accurately measure the radius of the object in these

cases, we assume to first approximation that the illumination of the spot is

symmetric with respect to the sub-pixel center and elliptical iso-contours of

the fitted Gaussian, and compute the radial intensity profile of the spot as a

function of ellipse radius. That is for each ellipse centered about (x(p),y(p))
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Figure 2.9: Refining centrosome radius. (a) A non-Gaussian centrosome intensity pro-

file together with its Gaussian fit. A dip at the center of the profile results in a slight

over-estimation of the object’s radius. (b) Final centrosome radius is measured in a

radial intensity profile based on the Gaussian fit.

with skew σp(p)/σm(p) and angle θ(p), we compute the mean intensity along

this ellipse. This is illustrated in Figure 2.9(b) along with the radial intensity

profile of the fitted Gaussian. The spot radius ρS(p) is then estimated as that

value for which the radial intensity of the raw image equals the radial intensity

of the fitted Gaussian at ρG(p).

Finally, we correct for image distortion caused by the convolution of each

light point with the point spread function of the microscope, which makes ob-

jects to appear bigger in the images than they actually are. An approximation

is given by ρ(p) =
√
ρS(p)2 − ρ

2
PSF (convolution of a Gaussian object with a

Gaussian PSF) where ρPSF is the width of the point spread function and ρ(p)

is our final estimate of the radius of p.

2.3.2 Validation of the Measuring Accuracy

To estimate the accuracy of our radius measuring algorithm we tested it against

fluorescent beads of known size. Since the embryo has significantly different

optical properties than a clear solution such as water or oil, we injected beads

into embryos.2 This is a rather delicate procedure and thus we did not select

embryos in a specific cell-stage. The biggest beads that we could inject had a

radius of 550 nm which is about half the size of centrosomes in the 4-cell em-

bryo. A bead has a sharp physical boundary and so its intensity profile only

2 This work was done in a collaboration with Horatio Fantana.
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Figure 2.10: Imaging beads inside C. elegans embryos. (a) The setup for imaging beads

is identical to imaging centrosomes. (b) Side view of an embryo with γ-Tubulin la-

beled centrosomes. (c) Side view of an embryo with injected beads of 550 nm radius.

appears Gaussian-like in the image because of the convolution with the point

spread function. It is unknown whether the same is true for centrosomes, or

whether additionally a non-uniform distribution of the labeled protein within

the PCM determines its intensity profile. Nonetheless, a bead injected into

an embryo should be accurate enough an approximation to analyze how the

measured radius depends on the z-position of the object.

Figure 2.10(a) shows the imaging setup. It is identical for centrosomes and

beads. To determine the z-position of an object relative to the coverslip / em-

bryo interface, we need to recognize where this interface is. For embryos with

fluorescently labeled centrosomes this can be done directly with an accuracy

of one or two z-planes because the cytoplasm fluoresces as well, as shown in

Figure 2.10(b). For beads that we injected into N2 worms (i.e., no fluorescent
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Figure 2.11: The measured radius of injected beads increases slightly with increasing

z-position. The line is a least-square fit of all data points with z-position not greater

than 15 µm which is the maximum relevant z-position of centrosomes up to the four-

cell stage in our actual experiments.

labeling) and imaged with only about 10 to 20 per cent of the laser power

used for imaging centrosomes, the cytoplasm is not visible. We therefore in-

stead labeled the coverslip by adding Alexa Fluor 488 to the M9 buffer which

non-specifically binds to the coverslip, see Figure 2.10(c).

We automatically identified all beads in a total of 46 embryos, measured the

radius of each bead with the algorithm described above and computed the

z-position relative to the coverslip / embryo interface. Beads that were very

close to each other were discarded manually. Figure 2.11 shows that most of

the beads were measured within 50 nm of the actual radius of 550 nm and

that there is a slight tendency to over-estimate the radius with increasing z-

position. We suspect that the reason for this is the eggshell around the embryo

that could have the effect of an optical lens. The line fit extrapolated to z-

position = 0 shows that the measured radius without the lens effect would be

548.7 nm, corresponding to a measurement error of less than one per cent.
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We did not use this result to correct for the slight radius over-estimation

for two reasons. First, it is unclear how this over-estimation depends on the

size of the beads. Unfortunately, it was not possible to inject beads bigger than

550 nm radius. Second, for fluorescently labeled centrosomes, the correction

would require the location of the embryo / coverslip interface in each stack.

This is not always possible because the imaged z-range of the embryo often

does not contain the embryo / coverslip interface (due to minimizing the

number of z-planes) and for some centrosome markers the contrast between

embryo and background is too low.

2.4 biological identities of the tracked centrosomes

It is often necessary to know the biological identities of the tracked centro-

somes, that is, the identity in the C. elegans lineage [101, 102] of the cell in

which it is located and whether it is the anterior or the posterior associated

pole of the spindle. We determine these identities by establishing a binary tree

of trajectories representing the pair and parent/child relationships between

the tracked centrosomes as follows.

1. For centrosome movies that start at the 1-cell stage the anterior/poste-

rior orientation of the embryo is easily determined as the sperm always

enters on the posterior side of the embryo [103]. Thus, the pole closest to

the centrosomes detected in the first frame of the movie is the posterior

pole. For movies that start at later cell stages, we additionally take into

account the stereotypical timing of the cell divisions to figure out where

the posterior pole is. For example, in the 4-cell stage, the cells ABa and

ABp divide before EMS, and EMS divides before P2

2. The centrosomes are paired by finding an optimal bipartite matching

between their trajectories. There is an edge between trajectory k and

h if and only if (a) they overlap in time by at least 6 minutes, (b) the

distance between the centrosomes is positively correlated with time (i.e.,

they tend to separate), and (c) their minimum centrosome separation

distance is less than 12 µm. The weight w(k,h) between k and h is the
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Figure 2.12: C. elegans’ invariant cell lineage.

product of (a) the minimum centrosome separation distance in the first

half of the trajectories and (b) the absolute difference in radii averaged

over time. Intuitively, we expect a pair to be near each other and for their

centrosomes to be at the same growth stage. For the pairs so established,

we label the one closer to the posterior pole at the end of its trajectory

as the posterior child and the other as the anterior child.

3. In the last step, we determine for each centrosome pair its (common) par-

ent centrosome, again by computing a minimum-weight bipartite match-

ing on trajectories where the edge weight is the distance between the last

location of a potential parent and the first location of a potential child.

Edges are only present between trajectories where the parent ends no

later than 3 minutes after the child’s begin, and the child begins no later

than 15 minutes after the parent’s end.

Given the invariant cell lineage of C. elegans (Figure 2.12) and its canonical

naming scheme with respect to anterior/posterior localization, we then only

need to traverse the resulting tree level by level to assign a cell name to each

centrosome.

2.5 detection of the nuclear envelope breakdown

In order to compare the time series of centrosome statistics with each other we

need to register them in time. It is common practice in biology to define such

a registered time axis relative to a cell cycle event. We use nuclear envelope
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Figure 2.13: Typical time vs. nuclear intensity curve computed by the nuclear envelope

breakdown detection algorithm.

break down (NEBD) [104] because it can be observed in our images without an

additional marker. The nucleus is free of centrosomal proteins and so appears

as a dark, circular region in the cytoplasm. As the nucleus breaks down, there

is an inflow of GFP-labeled molecules from the cytoplasm into the nuclear

region and its fluorescent intensity increases. The NEBD is the time point for

which the rate of this inflow of luminosity is maximal.

As the dark nuclear region is difficult to delineate based purely on signal,

we take advantage of prior knowledge. The nucleus is located roughly halfway

between the two centrosomes and in the early stages its diameter is in the

range of 5 to 8 µm. We thus have an estimate of an image region in which

the darkest pixels correspond to the nucleus and can compute a time versus

nuclear intensity curve.

Given a pair of centrosomes we consider a circle half way between them

in the xy-dimension and consider the minimum intensity projection of the

z-planes between them within that region. We estimate the intensity of the

nucleus as the average of the darkest half of the pixels in this circle. Plotting

this value through time yields a curve illustrated in Figure 2.13. We first find

the time of the maximum intensity of the curve and then set as the NEBD the

time of the maximum rate of change of the intensity in the preceding three

minutes.
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2.5.1 Accuracy of NEBD detection

To evaluate the performance of our automatic NEBD detection method we

manually determined the NEBD for 30 randomly selected movies containing

a total of 95 cells. During manual NEBD detection, we experienced that it was

often ambiguous as to the exact frame in which NEBD occurred. Therefore, we

considered automatic NEBD detection to be correct if it was within 1 frame

of the manually determined NEBD. We measured exact agreement for 64 per

cent and agreement within 1 frame for 34 per cent of the cases, yielding 98 per

cent accuracy for NEBD detection.
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3 D - S E G M E N TAT I O N O F P H - D O M A I N : : G F P I M A G E S

To determine how centrosome size correlates with cell size, we marked cell

membranes with GFP fused to a PH domain [105] and took z-stacks of em-

bryos between the one and the four-cell stage. To quantify the volume of each

cell type, the resulting 3D images needed to be segmented. For image acqui-

sition we used two different techniques, spinning disk confocal and single

plane illumination microscopy (SPIM) [106, 107], which differ in the time and

effort needed for imaging as well as in the quality of the resulting images.1

This chapter describes the two segmentation pipelines we have developed

for PH-domain::GFP images. Both are based on marker-controlled watershed

[98]. This extension of the watershed algorithm handles the problem of over-

segmentation by defining one marker for each object to be segmented, i.e., a

set of connected pixels within the respective object. The input image is then

modified so that it has local minima only at each marker position. The seg-

mentation obtained by the watershed transform of this image depends on the

exact choice of the markers but has exactly as many regions as markers that

were specified. In our case there is one marker for each cell and one marker

for the background.

3.1 spinning disk confocal microscopy images

For segmentation of PH-Domain::GFP [105] images acquired with a spinning

disk confocal microscope, we have developed a completely automatic algo-

rithm based on plane-by-plane segmentation using 2D marker-controlled wa-

1 SPIM imaging was done in collaboration with Stephan Preibisch.
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tershed. Figure 3.1 shows several planes of a typical z-stack together with the

segmentation result. The following problems complicate the segmentation.

1. The membrane signal almost completely attenuates towards the bottom

of the embryo.

2. The resolution is highly anisotropic.

3. While in most parts of the images, the membranes have sharp, peak-like

profiles, some membrane parts in the lower half of the stack, especially

those at the outer embryo contour, are very blurred and their profiles

are step-like.

4. Small bright objects may be present inside the cells.

One important thing that simplifies the segmentation task is that the cells

do not lie on top of each other up to the 4-cell stage. The segmentation is

performed in 2D plane-by-plane and based on two main ideas.

First, the signal changes relatively little between two subsequent z-planes.

We exploit this by propagating the segmentation of one z-plane as marker to

the next. The segmentation begins with the image Iz half way through the

embryo (plane #8 in Figure 3.1). For Iz we compute the 2D watershed segmen-

tation Wz (i.e., a binary image) from an externally provided marker Mz. For

all other planes we automatically derive a marker from the respective adja-

cent plane that is already segmented. That is, for the plane Iz+1, we compute

a marker Mz+1 by slightly shrinking the binary regions in Wz using mor-

phological erosion. For Iz+1 we then compute the watershed segmentation

Wz+1 from Mz+1. This process continues until the top of the stack is reached

or no cell marker remains as a result of the erosion. The same procedure is

applied towards the bottom of the stack. We refer to this procedure as marker-

controlled watershed with marker propagation.

The second idea is to perform the segmentation in a hierarchical manner.

We first only separate the embryo from the background, i.e., we find the outer

contour of the embryo. Here, the marker has only two regions, one for the em-

bryo that extends over all cells and one for the background. In the second step,

we impose the detected embryo contour on the input image and then segment
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Figure 3.1: Spinning disk confocal stack of an embryo with PH-domain::GFP labeled

cell membranes. Montage showing every fourth plane of the stack. (a) Original im-

ages. (b) Cell contours detected with our hierarchical plane-wise watershed segmen-

tation algorithm.

the individual cells in this modified image. The rationale behind the two-step

segmentation is that the intensity profiles of the membranes at the outer em-

bryo contour are different from those in the interior of the embryo. Both steps

use marker-controlled watershed with marker propagation as described in the

previous paragraph.

The complete workflow of the algorithm is illustrated in Figure 3.2. As pre-

processing steps, we apply background subtraction and noise reduction. Back-

ground subtraction is based on fitting a two-dimensional third-order polyno-

mial through background sample points. To reduce noise while largely pre-

serving edge information we perform anisotropic diffusion [108]. Addition-

ally, for the detection of the outer embryo contour a Sobel filter amplifies

edge information. The algorithm then proceeds with the actual hierarchical
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Figure 3.2: Workflow of the segmentation algorithm for PH-domain::GFP images ac-

quired with spinning disk confocal microscope.
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watershed segmentation as described above. The right part of the workflow

computes a marker for each cell in the center plane to automatically initialize

the watershed cascade. This will be described in the next subsection.

3.1.1 Automatic initialization

Automatic initialization of the segmentation pipeline requires finding the cen-

ter plane, i.e., the plane half way through the embryo, and computing a marker

for each cell in this image. To determine the center plane we perform a rough

segmentation of the embryo region using Otsu thresholding [97] and find the

center plane as the plane in which the embryo area is maximal. In this im-

age the membrane signal is usually significantly above background but small

weak parts may occur. To amplify the membrane signal in these regions we

compute the maximum-intensity projection of the sub-stack that contains the

center plane and a few planes above and below it. On this projection we then

apply the seven filtering and thresholding steps illustrated in Figure 3.3 to

compute a marker for each cell.

3.2 single plane illumination microscopy images

Thanks to the isotropic resolution of the PH-domain::GFP images acquired

with single plane illumination microscopy (SPIM), we can directly perform

the watershed segmentation in 3D; marker propagation and hierarchical seg-

mentation are not necessary. The higher image quality comes at the cost of

a more time-consuming imaging procedure in which it is much more diffi-

cult to find early embryos. Figure 3.4 shows several planes of a typical SPIM

stack together with the segmentation result. One difficulty with these images

is the high degree of blur caused by small morphological changes of the cells

while multiple views are acquired. The registration and fusion process that

combines these views into one isotropic image cannot fully correct for these

changes. Figure 3.5 illustrates the workflow of the segmentation algorithm. It

consists of a series of pre-processing steps to amplify the membrane signal and

then applies marker-controlled 3D watershed. The marker is supplied manu-
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ally, which requires one click for each cell. The SPIM image segmentation

pipeline is also applicable for embryos after the 4-cell stage when the cells lie

on top of each other. Figure 3.6 shows volume renderings of the segmentation

result for a 4-cell and an 8-cell embryo, respectively.

(a)

(b)

Figure 3.4: Registered and fused single plane illumination stack of a 4-cell embryo

with PH-domain::GFP labeled cell membranes. Montage showing every eighth plane

of the stack. (a) Original images. (b) Cell contours detected with our algorithm based

on marker-controlled 3D watershed segmentation.

3.3 cell volumes in c . elegans embryos

While both segmentation pipelines, for spinning disk and SPIM images, pro-

duce minor segmentation errors the overall segmentation accuracy is well-

suited for the biological analysis. Imperfect segmentation mainly occurred at

the lower and upper end of the stacks and for the case of SPIM images when
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Figure 3.5: Workflow of the segmentation algorithm for PH-domain::GFP images ac-

quired with single plane illumination microscope.

(a) (b)

Figure 3.6: 3D view of the segmentation results for PH-domain::GFP images acquired

with SPIM. (a) 4-cell embryo. (b) 8-cell embryo.
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a bead (required for registration of the different views) was directly adjacent

to the embryo.

To quantify the volume of each segmented cell, we model the volume en-

closed between two adjacent z-planes as a prismatoid. Thus, the total volume

of a cell is

V =
1

2

∑
i

∆z · (A(zi) +A(zi+1)) ·∆2xy (3.1)

where A(zi) is the area in pixels of the cell in plane zi, ∆z is the distance

between to adjacent z-planes and ∆xy the pixel size in x and y. Figure 3.7

shows a graph of cell volumes for each cell type in the one- to the four-cell

stage.
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Figure 3.7: Graph showing the computed volumes for all cell types between the 1-

and 4-cell stage. Three embryos using SPIM and two embryos using spinning disk

confocal microscope (SD) were filmed at 1-minute intervals. Embryo 1 and 2 were

filmed only in the 4-cell stage; embryo 3, 4 and 5 from the 1- to 4-cell stage. For each

individual embryo multiple samplings (i.e., 3D stacks) of the same cell stage were

segmented with the respective segmentation algorithm described in Section 3.1 and

3.2, respectively, and the computed cell volumes averaged. The images shown in the

right are selected planes of SPIM stacks (embryo3) together with the identified cell

boundaries.
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4
W H AT S E T S T H E S I Z E O F A C E N T R O S O M E ?

The ways in which cells set the size of their intracellular structures is an im-

portant but largely unsolved problem [70]. To approach this problem we set

out to investigate the mechanisms by which the centrosome scales in size dur-

ing early embryonic divisions in C. elegans. The assay that we described in

Chapter 2 allows us to obtain quantitative, time-resolved data of centrosome

growth. In this chapter we will first examine how centrosomes grow in wild-

type C. elegans embryos over multiple rounds of cell division. We will then

use genetic perturbation techniques to alter parameters such as cell size, cen-

trosome number per cell or the amounts of centrosome components to study

how these parameters affect centrosome size. Supported by our data, we pro-

pose a limiting component hypothesis in which the available amount of one

or more structural centrosome components dictates centrosome size.

4.1 centrosome disintegration begins at the metaphase-ana-

phase transition

We first looked at centrosome growth in one-cell embryos labeled with γ-

TUB::GFP. The P0 wild-type growth curve in Figure 4.1(a) shows that after

an initiation phase that starts at about 650 seconds before nuclear envelope

breakdown (NEBD) the centrosome continuously increases in size through

the cell cycle, before it eventually disintegrates by loss of PCM material. Such

a kinetic profile complicates the quantification of centrosome size, because it

does not suggest a clearly defined time point at which the centrosome reaches

its final size. The disintegration of the centrosome in C. elegans is in part due
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Figure 4.1: Centrosome growth in wild type and in the absence of cortical force gen-

eration. (a) Centrosome radius over time in P0 from an average of 20 wild type and

7 gpr-1/2(RNAi) embryos. Note that the radius in the initiation phase is slighty above

the resolution limit. Error bars are standard error of the mean. Scale bar in centrosome

clipping is 3 µm. Image sequence are maximum projections of an embryo express-

ing γ-Tubulin::GFP and Histone::GFP, illustrating that metaphase correlates with the

transition from maturation to disintegration. (b) Centrosome radius over time in ABp

from an average of 20 wild type and 7 gpr-1/2(RNAi) embryos.
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cortical pulling forces mediated by microtubules that tear the PCM apart. To

identify the onset of disintegration we looked at centrosome growth in the

absence of cortical pulling forces using gpr-1/2(RNAi) [109]. This showed that

centrosome growth in P0 (Figure 4.1(a)) and ABp (Figure 4.1(b)) are almost

identical with and without force generation until about 150 seconds after nu-

clear envelope breakdown for P0 and 120 seconds for ABp. Thus, any increase

in size after this point might be a consequence of pulling forces and not an

active recruitment of new PCM components. We then manually scored the

time point of metaphase relative to nuclear envelope breakdown in wild-type

Histone::GFP-γ-Tubulin::GFP embryos. Because the metaphase time point co-

incided with the divergence point of the wild-type and gpr-1/2(RNAi) growth

curves for the respective cell type, we defined final centrosome size as the

size at metaphase. Microtubule-mediated pulling forces are activated at the

metaphase-anaphase transition to segregate the chromosomes. One possibil-

ity is that the same mechanism is also involved in disintegration of the centro-

somes.

4.2 the growth kinetics of centrosomes in wild-type embryos

change through development

We next tracked and measured the centrosomes through development up to

the 16-cell stage in γ-TUB::GFP embryos. Figure 4.2 shows the growth curves

averaged over the centrosomes within each cell stage. As expected, final cen-

trosome size continuously decreases from one cell stage to the next. Moreover,

our time-resolved data reveals two important features of how centrosomes

grow. First, as cells become smaller the centrosomes grow slower. Second,

starting at the four-cell stage, centrosome size plateaus before onset of cen-

trosome disintegration.
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Figure 4.2: Centrosome growth through development. Growth rate and final centro-

some volume decrease from the 1- to the 16-cell stage. The data is comprised of an

average of 25 embryos imaged from the 1- to 4-cell stage, and 6 embryos imaged from

the 8- to 16-cell stage, all expressing γ-Tubulin::GFP. Error bars are standard error of

the mean. (*) Due to signal attenuation along the z-axis, not all 16 centrosomes of

an embryo in the 8-cell stage contribute to the graph. (**) Similarly, not all 32 cen-

trosomes of an embryo in the 16-cell stage contribute to the graph; only AB-Lineage

centrosomes were analyzed.

4.3 centrosomes become smaller in each round of cell divi-

sion

To see whether the decrease in centrosome size continues after the 16-cell

stage, we monitored centrosomes in a dividing embryo until all 558 embry-

onic cells are present. Proceeding from the one to the 558-cell stage takes

about 7 hours. Unfortunately, imaging the embryo over such a long period

was only possible by increasing the imaging interval from 40 seconds to 5

minutes as otherwise the laser exposure was lethal for the embryo (see also

Section 2.1). At this low temporal resolution is was not possible to reliably

track all centrosomes and determine the nuclear envelope breakdown in each

cell. However, we could still use our centrosome detection algorithm (see Sec-

tion 2.2.4) to identify and measure the centrosomes in each stack individually.

To exclude noise objects and inaccurate radius measurements of extremely
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Figure 4.3: Centrosomes become smaller throughout embryonic development. An

embryo with SPD-5::YFP labeled centrosomes was imaged from the 1- to the 558-

cell stage at 5-minute intervals. The dashed orange line indicates the mean radius

measured for sub-resolution beads injected into embryos. The solid green line is a

manually drawn trend line of the maximum centrosome radius over time taking into

account that some of the identified centrosomes are at the disintegration phase. Snap-

shots of embryos are maximum projections.

dim centrosomes we discarded all detected objects with peak intensity less

than 1.5 times above background intensity. The remaining objects are all cen-

trosomes that are either growing, plateauing or being pulled apart (disintegra-

tion). Although only an approximation and keeping in mind the resolution

limit of the microscope, this result suggest that centrosome size decreases con-

tinuously throughout entire embryonic development (Figure 4.3).
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Figure 4.4: Centrosome volume versus respective cell volume for three different cen-

trosome markers. Linear fits are least square fits. Final centrosome size was measured

at metaphase time depending on cell type (e.g., 150 s after NEBD for P0). Volume mea-

surements for individual cell types were obtained as described in Chapter 3 (n=5).

Inset images showing reconstructions of an embryo in the 2- and 4-cell stage.

4.4 centrosome volume scales proportionately with cell vol-

ume

To see in more detail how the decrease in cell size and centrosome size through

development correlate with each other we marked cell membranes with GFP

fused to a PH domain [105] and quantified the cell volumes using the seg-

mentation algorithms described in Chapter 3. For three different centrosome

markers, γ-TUB::GFP [110, 62, 111], RSA-1::GFP [112] and SPD-5::YFP [42] we

computed final centrosome size (i.e., size at metaphase) in each cell. Plotting

cell volume against centrosome volume (Figure 4.4) showed that the relation-

ship between cell volume and centrosome volume is approximately propor-

tionate.
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Figure 4.5: Centrosome size plateaus in AB cells of ani-2(RNAi) embryos (n = 8)

that are 42%± 5% (s.d.) of wild-type (n = 20) size. Assuming ellipsoidal shape, em-

bryo volume was estimated by measuring the embryo area in maximum intensity z-

projections and the embryo thickness in maximum intensity y-projections. Snapshot

images are maximum projections.

4.5 centrosome size is independent of lineage

One possibility is that centrosome growth is controlled in a developmental

manner, i.e., it depends on the cell type. The alternative is that centrosome

growth is independent of cell type, but is instead an (indirect) consequence

of cell size. To distinguish these possibilities, we varied the size of embryos

using ani-2(RNAi) [113]. ani-2 encodes a C. elegans anilin, which is required

for precise determination of oocyte size. Smaller embryos make smaller cells,

allowing us to compare the size of centrosomes in a varied range of cell sizes

for any particular cell type. In AB cells of embryos that are 42%± 5% (s.d.)

of wild type size as shown in Figure 4.5, centrosomes initially grow slower

than centrosomes in wild-type cells. After this initial growth, the size then

reaches a plateau, which is never seen in centrosomes of AB cells of wild

type size. All other cells (P0, P1, ABa, ABp, EMS and P2) showed a similar

variation in growth rates upon depletion of ANI-2 (data not shown). Inter-

estingly, the changes in centrosomal growth rate during development, and

changes in growth rate in smaller ani-2(RNAi) cells are similar. We measured
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the maximum growth rates (see Materials and Methods, Chapter 7) of centro-

somes through development, and after ani-2(RNAi). This yielded a maximum

growth rate of centrosomes in two-cell wild-type embryos of 0.022 µm3/sec,

while centrosomes in four-cell embryos grow at 0.017 µm3/sec. Centrosomes

in two-cell ani-2(RNAi) embryos that are 42% ± 5% (s.d.) of wild-type size

grow at 0.018 µm3/sec. These experiments show that centrosome size is in-

dependent of cell type. The plateau in growth that occurs in later divisions is

thus a consequence of cell size and not of a developmental shift.
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Figure 4.6: Centrosomes in AB and P1 are approximately equal in size when P0 di-

vides symmetrically. Bar chart showing centrosome volume at metaphase in AB and

P1 for 20 wild-type and 7 gpr-1/2(RNAi) embryos. Two-sided t-test: Null hypothe-

sis: P1 and AB have equal means and equal but unknown variance. Alternative: the

means are not equal. Wild-type: p-value = 3.116e-006 ⇒ highly significant difference

between P1 and AB. gpr-1/2(RNAi): p-value = 0.129 ⇒ no significant difference be-

tween P1 and AB.

How sensitively centrosome size responds to changes in cell size can be seen

by looking at AB and P1 cells that are equal in size. In wild-type embryos, P0

divides asymmetrically into a bigger AB cell and a smaller P1 cell. Accordingly,

the centrosomes in AB are bigger than in P1 (Figure 4.6). Symmetric division of
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P0 occurs upon gpr-1/2(RNAi) [109]. gpr-1 and gpr-2 are two extremely similar

genes that encode proteins in C. elegans required for the posterior displace-

ment of the spindle, the position of which defines the division axis. In two-cell

gpr-1/2(RNAi) embryos, not only are the AB and P1 cells approximately equal

in size but their centrosomes are as well (Figure 4.6).

4.6 total centrosome volume is constant across cell stages
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Figure 4.7: Total centrosome volume is conserved through development. Comparison

of the total sum of centrosome volumes between the 1-, 2- and 4-cell stages. Cen-

trosome volume was determined in each individual cell at metaphase. γ-TUB: n =

17/17/17, SPD-5: n = 9/10/5, RSA-1: n = 12/10/4, SPD-2: n = 7/3/5 for 1-/2-/4-cell

embryos.

The data presented in the previous sections, in particular the fact that centro-

somes tend to plateau when the cells are small, suggests that centrosome size

is limited by the availability of one or more of its components. Simplistically

speaking, like a brick house that cannot be built any bigger once all avail-

able bricks are used up, a centrosome cannot further increase in size when

no more of its structural components are available. Assuming a uniform dis-

tribution of these components in the PCM, this model implies that the total

volume of all centrosomes in any one cell stage should be constant as the cy-

toplasm is partitioned into many cells during development. To test this idea,

we quantified total centrosome volume up to the four-cell stage (Figure 4.7).

These measurements show that for the four centrosomal components we mea-
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sured, total centrosome volume stays constant in the embryo. In other words,

the volumes of the individual centrosomes approximately half in each round

of cell division. The graph additionally shows that the measured centrosome

size depends on the marker with RSA-1 taking up significantly more volume

than the other three markers. Beyond the four-cell stage, the attenuation of the

fluorescent signal along the z-direction does not allow reliable measurement

of all centrosomes. We could therefore neither prove nor disprove whether the

conservation of centrosome volume is also true for higher cell stages. However,

the following theoretical consideration leaves the possibility that this could in-

deed be the case up to the 558-cell stage when all embryonic cells are present.

A necessary condition for this is that the centrosomes must then still be big

enough to accommodate the centriole pair in the PCM. Assuming a radius

of 1500 nm for a centrosome in the one-cell stage and ignoring cell death

events during development, each cell divides on average about nine times.

This means that after halving centrosome volume nine times, its radius would

be about 190 nm. This is indeed still big enough accommodate the centriole

pair.

4.7 total centrosome volume is independent of centrosome

number

A second consequence of the limiting component idea is that the total centro-

some volume should also stay constant if one increases or decreases the num-

ber of centrosomes per cell. The individual centrosomes should hence become

accordingly smaller or bigger, respectively. We were able to manipulate the

number of centrosomes using two mutant alleles of ZYG-1. ZYG-1 is a kinase

that determines the number of centrioles per cell, and thereby the number of

centrosomes [43]. Using the temperature-sensitive mutant allele zyg-1(b1) [43],

we could decrease the number of centrosomes to one in one-cell embryos (Fig-

ure 4.8(d)). This resulted in centrosomes of twice the volume as in wild-type

embryos with two centrosomes in P0 (Figure 4.8(a)).

Conversely, with the mutant allele zyg-1(it29) (unpublished line by Kevin F.

O’Connell) we could randomly increase the number of centrosomes in the two-
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cell stage (Figure 4.8(d)). As expected, the more centrosomes there are in a cell,

the smaller their final size and the slower the centrosomes grow (Figure 4.8(b)).

Again, all centrosomes together add up to the same volume at metaphase as

the centrosomes in wild-type embryos, independent of centrosome number

(Figure 4.8(c)).
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Figure 4.8: Total centrosome volume is independent of the number of centrosomes per

cell. (a) Total centrosome volume at metaphase in 1-cell wild-type (n = 12) versus zyg-

1(b1) embryos (n = 15). (b) Centrosome growth in 2-cell wild type versus zyg-1(it29)

embryos. Each curve is an average of all centrosomes in the 2-cell stage. Wild-type: 10

embryos, zyg-1(it29): 7/2/1/1 embryos with 6/8/9/12 centrosomes in the 2-cell stage.

Error bars are standard error of the mean. (c) Total centrosome volume at metaphase

in the same embryos as in (b). (d) Representative images of the respective embryos

are maximum projections.

Finally, we also examined centrosome size in cells in which we varied the

relative size of the two centrosomes by depleting the centriolar protein SAS-4

[44]. SAS-4 is a centriole duplication factor [44] and thus becomes crucial after

the one-cell stage when two new centrioles are required for normal devel-

opment in C. elegans. Depending on the duration of sas-4(RNAi) this results

either in a partial phenotype with two centrosomes of different size or in a

full phenotype with only one centrosome per cell (Figure 4.9). In the case

of unequal centrosomes the smaller centrosome harbors a defective daughter
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centriole while the other centrosome inherits the intact mother centriole [44].

Again the total centrosome volume is approximately the same as in wild-type

embryos with two equally big centrosomes (Figure 4.9(a)) per cell.
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Figure 4.9: Total centrosome volume is independent of centrosome number per cell.

(a) Total centrosome volume in AB and P1 at metaphase in sas-4(RNAi) embryos

with partial (bipolar spindle but unequally sized centrosomes) and full phenotype

(monopolar spindle). Wild type: 20 embryos, sas-4(RNAi) partial phenotype: 16 em-

bryos, sas-4(RNAi) full phenotype: 16 embryos. (b) Representative images of the re-

spective embryos are maximum projections.

Taken together these three experiments clearly show that the total centro-

some volume remains constant independent of the number of centrosomes

per cell.

4.8 several components are required for a full size centro-

some

The results of the previous sections strongly support our idea of a limiting

component. We thus tried to identify which proteins could set centrosome

size by altering the amounts of several proteins in γ-TUB::GFP embryos. We

were particularly interested in the proteins SPD-2 [60, 40], SPD-5 [42] and AIR-
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Figure 4.10: Three potential candidates may act limiting on centrosome size. Graph

showing centrosome growth in 1-cell embryos expressing γ-Tubulin::GFP and sub-

jected to RNAi against the respective endogenous gene. air-1: n = 18/16/10 embryos,

spd-2: n = 12/5/5/3, spd-5: 6/4/4/6 (order of the given numbers corresponds to the

order in the legend of the respective graph). Error bars are standard error of the mean.

1 [41] as these have previously been shown to be required for the localization

of all other proteins to the centrosome. Indeed, partial knock down of these

three components by RNAi decreases the rate of centrosome growth in similar

ways (Figure 4.10).
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Figure 4.11: Centrosome growth in P0 in the absence of long microtubules (tac-

1(RNAi), 6 embryos) is identical to wild-type (24 embryos) up to centrosome dis-

integration at 150 sec after NEBD. Error bars are standard error of the mean.

We also tested TAC-1, a centrosomal protein that is required for long astral

and long spindle microtubules [114], and found that centrosome size in P0

is not affected by loss of TAC-1 (Figure 4.11) up to the onset of centrosome
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disintegration at about 150 seconds after nuclear envelope breakdown. Thus,

centrosome size is independent of microtubule length.

To see whether transcription of a potential limiting component plays a role

for centrosome size we inhibited transcription using ama-1(RNAi). ama-1 [115,

116, 117] encodes the large subunit of RNA polymerase II which catalyses the

transcription of DNA to mRNA. In one- to four-cell ama-1(RNAi) embryos,

the centrosome growth curves are identical to wild-type (Figure 4.12). This

suggests that centrosome growth, at least up to the four-cell stage, entirely

relies on maternally provided mRNA amounts. Unfortunately, we could not

investigate whether translation of a potential limiting component plays a role

for centrosome size without affecting cell cycle progression.
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Figure 4.12: Inhibiting transcription (ama-1(RNAi), 4/5/4 embryos for P0/P1/P2) does

not affect centrosome growth in the one- to four-cell stage (wild-type: 5/9/8 embryos

for P0/P1/P2). Error bars are standard error of the mean.

4.9 over-expression of spd-2 leads to bigger centrosomes

If the amount of a protein directly determines centrosome size, then one

would expect bigger centrosomes upon raising the amount of the protein. One

technique to increase protein levels is to introduce a GFP transgene into the

genome. The total amount of the protein is then the sum of the expression of

the endogenous and the additionally introduced exogenous gene. There are

two possible effects on centrosome size. (1) Either centrosome size remains the
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Figure 4.13: Centrosome size is sensitive to SPD-2::GFP. (a) Bar chart showing total

centrosome intensity before and after partial RNAi against GFP. All values are nor-

malized to the mean of the respective control embryos. AIR-1: n = 4/4, SPD-5: n = 9/7,

SPD-2: n = 5/8 control/gfp(RNAi) embryos. Images underneath the bar chart repre-

sent metaphase centrosomes all at the same magnification and each displayed at its

individual minimum-to-maximum intensity range. Scale bar is 3 µm. (b) Line scans

(see Chapter 7) through centrosomes with and without RNAi against GFP. Error bars

are standard error of the mean. (c) Western blots indicating the expression levels of

the endogenous and respective exogenous gene. While AIR-1 levels are significantly

increased in the presence of the respective transgene, SPD-5 levels are not. (*) RNAi

against GFP is also effective against YFP.
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same despite the availability of additional protein, or (2) the centrosomes be-

come bigger. We cannot measure centrosome size in embryos that have only

the endogenous protein (i.e., N2) as their centrosomes are not fluorescently

labeled. Nonetheless, we can distinguish between the two possible effects by

partially depleting only the exogenous protein using RNAi against GFP so

that the centrosomes are still bright enough to be measurable. If centrosome

size remains the same, then RNAi against the GFP tagged protein will have

no effect on centrosome size. In the case of bigger centrosomes, RNAi against

the GFP tagged protein will result in smaller centrosomes.

Figure 4.13 shows the results of this experiment for the three proteins AIR-1,

SPD-2 and SPD-5. Since RNAi against GFP resulted in dramatically dimmer

centrosomes (Figure 4.13 (a)), there was significantly more spread in the radii

computed by our measuring algorithm (Section 2.3) than for the control em-

bryos with bright centrosomes. We therefore decided to score centrosome size

qualitatively by computing line scans through the sub-pixel accurate centro-

some centers determined by the Gaussian fit (Figure 4.13 (b)). This clearly

showed that for AIR-1 and SPD-5 the additional transgene had no effect on

centrosome size, while for SPD-2 centrosome size was affected in the pres-

ence of the transgene. To test the significance of this result, we quantified

the amounts of endogenous and exogenous protein by western blotting (Fig-

ure 4.13 (c)). Introducing the respective GFP transgene almost doubled the

total amount of AIR-1 in the embryo, but the levels of SPD-5 increased by

only about 10 to 20 per cent. We conclude that the amount of AIR-1 does not

directly determine centrosome size. For SPD-5 we cannot make a definitive

statement.

Interestingly, for SPD-2 we found a compensation mechanism that tightly

regulates the total amount of SPD-2 protein, even in the presence of an ad-

ditional SPD-2::GFP transgene. Unlike AIR-1, the embryo down-regulates the

amount of endogenous SPD-2 to keep the total amount of SPD-2 constant (Fig-

ure 4.14). We could, however, employ a second over-expression technique to

overcome this regulation. By optimizing transgene codon usage [118] we could

raise SPD-2 protein expression beyond wild type levels (Figure 4.15(a)). Briefly,

codon optimization exploits the fact that the same amino acid can be encoded
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Figure 4.14: SPD-2 amounts are tightly regulated in the embryo. Worms expressing

a SPD-2::GFP fosmid (TH231) were subjected to increasing times of gfp(RNAi). Each

lane was loaded with lysate corresponding to 40 gravid adult hermaphrodites. A SPD-

2 antibody was used for blotting that recognizes both endogenous and transgene.

α-Tubulin was used as a loading control.

by more than codon (i.e., a series of three nucleotides on the DNA) and that

different codons are expressed at different levels. By designing a transgene

with a more frequent usage of optimal codons than in wild-type the protein

can be over-expressed. We then tracked and measured centrosomes in one-

and four-cell embryos of the over-expression line (SPD-2::GFP[CAI0.37]) and

found that increasing SPD-2 protein amount indeed increased centrosome size

(Figure 4.15 (b) - (f)). For the four-cell stage the growth curve in Figure 4.15(f)

additionally shows that the increase in centrosome size is due to an increased

growth rate, i.e., the centrosome grows faster but then plateaus at the same

time as the wild-type centrosome. For the one-cell stage an alternative inter-

pretation of the growth curve in Figure 4.15(d) is that the centrosome becomes

bigger because it starts to grow earlier in the presence of additional SPD-2.

Taken together, the experiments in this and the previous section demon-

strate a direct role of SPD-2 in regulating centrosome size.

4.10 cytoplasmic intensity analysis

If the amount of SPD-2 depleted from the cytoplasm dictates the size of the

centrosome, we would expect that centrosome growth correlates with the cy-

toplasmic concentration of SPD-2. As long as the centrosome grows the con-

centration should drop and as soon as centrosome size plateaus so should the
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Figure 4.15: The size of centrosomes is sensitive to total SPD-2 amounts. (a) West-

ern blot illustrating that codon-optimization of SPD-2 (SPD-2::GFP[CAI0.37]) results in

higher amounts of SPD-2 transgene compared to non-optimized SPD-2 (SPD-2::GFP).

α-Tubulin was used as a loading control. (b) Representative images (maximum projec-

tions) of centrosomes at metaphase in 1- and 4-cell embryos expressing different levels

of SPD-2::GFP. (c) Centrosome volume in P0 at metaphase in SPD-2::GFP embryos ex-

pressing different levels of SPD-2. Green bar: embryos expressing endogenous SPD-2

and a SPD-2::GFP transgene with native codon sequence, n = 7 embryos. Blue bar:

embryos expressing endogenous SPD-2 and a SPD-2::GFP transgene with codon opti-

mized sequence, n = 4 embryos. (d) Centrosome growth in P0 for the same embryos

as in (c). Error bars are standard error of the mean. (e)/(f) equivalent to (c)/(d) for

centrosomes in ABp with n = 4 / 4 embryos for native / codon optimized SPD-2::GFP.
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concentration. The cytoplasmic concentration is in principle proportional to

the cytoplasmic intensity in the images. Unfortunately, due to imaging limita-

tions, in particular photo-bleaching and signal attenuation in the z-direction,

our data does not allow us to show a correlation between centrosome grow

and cytoplasmic concentration.

To check whether there is any detectable depletion of SPD-2 (i.e., a de-

cline in cytoplasmic SPD-2::GFP intensity), we performed the following ex-

periment. Instead of taking time-lapse movies, we imaged one-cell embryos

only once at the beginning of the centrosome cycle and once at the end. We

refer to these time points as the early and the late time point, respectively.

This should prevent almost any photo-bleaching. To measure and correct for

auto-fluorescence we also imaged N2 worms. Firstly, this showed that autoflu-

orescence makes up about 85 per cent of the entire cytoplasmic signal (Figure

4.16 (a)). As a consequence, even if the entire amount of SPD-2 was depleted

from the cytoplasm, the intensity decline would at most be 15 per cent. Pre-

sumably, however, due to the binding constant of SPD-2 only a fraction of

cytoplasmic SPD-2 can be recruited to the centrosome. Moreover, there is high

variability in the measured intensity decline from the early to the late time

point of the individual embryos (Figure 4.16 (b)). Therefore, it seems that the

noise level in our images does not allow reliable quantification of how much

the cytoplasmic concentration drops as the centrosome grows.

4.11 fluorescence recovery after photo-bleaching experiments

In an effort to understand where within the PCM new molecules are incorpo-

rated we conducted FRAP experiments. FRAP is a technique that allows one

to investigate the diffusion and motion of fluorescently labeled molecules. The

idea is to deliberately destroy the fluorophores in a region of interest with a

short laser impulse (photo-bleaching) and then to analyze the recovery of flu-

orescence in that region. Recovery occurs due to molecules from outside the

photo-bleaching region that are still fluorescent.

Upon photo-bleaching of the entire centrosome, there are three possible

ways how the fluorescence could recover: from inside out, from outside in
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Figure 4.16: Cytoplasmic intensity in N2 (caused by autofluorescence) and SPD-

2::GFP one-cell embryos. The embryo area has been identified by automatic segmen-

tation based on background subtraction and thresholding of every single plane of

the z-stack. The plane with maximum area was selected to compute the cytoplasmic

intensity as the average intensity within the embryo but outside the centrosomes. (a)

Autofluorescene makes up about 85 per cent of the cytoplasmic SPD-2::GFP signal.

The absolute SPD-2::GFP intensities differ only slighty between the beginning (early)

and the end (late) of the centrosome cycle. N2: n = 7, SPD-2::GFP: n = 13. (b) Cyto-

plasmic intensity decline from early to late time point for the 13 imaged SPD-2::GFP

embryos after subtracting mean autofluorescence. (c) Maximum embryo-area planes

of an embryo at the early and the late time point overlayed with the identified embryo

and centrosome contours.
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or evenly all over the centrosome region. Note that only the fluorophores

are destroyed but the actual centrosome structure is (hopefully) not affected

by photo-bleaching. Recovery from inside out would suggest that molecules

are incorporated only at the center of the PCM (possibly via an interaction

with the centrioles), whereas recovery from outside in would suggest that

molecules are incorporated only at the ‘surface’ of the PCM (and then possibly

internally reorganized to get to the interior of the PCM). Recovery evenly all

over the centrosome is more problematic. The obvious interpretation is that

molecules can be incorporated anywhere in the PCM. However, incorporation

only at the center or only at the ‘surface’ is also possible in this scenario

because we cannot exclude internal re-organization of the PCM on time scales

that are not captured in our images.

We performed FRAP experiments for SPD-2::GFP one-cell embryos (Figure

4.17). To maximize the temporal resolution the embryos were not imaged in

their full depth but only a sufficiently large subregion containing the centro-

somes (19 z-planes at 500 nm steps), which allowed us to image at 4 second

intervals. The image sequence of a single photo-bleached centrosome is shown

in Figure 4.17(a). To quantify the recovery behavior we computed for circular

regions of various radii centered at the centrosome center how long it takes for

each region to recover to one third of its fluorescence before photo-bleaching

(Figure 4.17(b)-(d)). This showed that recovery speed is independent of the

distance to the centrosome center (Figure 4.17(d)), suggesting that recovery

occurs evenly all over the centrosome. Thus, we cannot make a definite state-

ment as to where molecules are incorporated into the PCM. In further FRAP

experiments the temporal resolution will need to be further increased and

ways to correct for the superposition of fluorescence recovery with the actual

centrosome maturation process should be explored.
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Figure 4.17: Fluorescence recovers evenly over the centrosome after photo-bleaching.

(a) Images (z-planes through the center) of a photo-bleached SPD-2::GFP centrosome

imaged at 4 second intervals. (b) Measuring local fluorescence within the centrosome

for quantification of fluorescence recovery after photo-bleaching. (c) Fluorescence re-

covery curves computed as illustrated in (b) for the centrosome shown in (a). The

pixel size of the images is 133 nm. Each intensity curve is normalized by its mean

intensity at the last three time points before photo-bleaching and fitted with an expo-

nential function I(t) = A · (1− e−τ·t). (d) Recovery time for each centrosome region

measured as the time it takes to recover to one third of its fluorescence before photo-

bleaching (n=3). Error bars are standard error of the mean.
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S U M M A RY A N D D I S C U S S I O N

In animal cells, the centrosome is a dynamic organelle with several important

functions. Towards a more detailed understanding of the molecular organiza-

tion of the centrosome, we investigated the mechanism by which the size of

the centrosome is regulated in C. elegans embryos. The key idea to improve

upon previous studies of this problem was to quantitatively describe how the

centrosome grows during the cell cycle over multiple rounds of cell divisions

in the early embryo. To facilitate this study, we designed an image-based assay

for centrosomes in C. elegans embryos which required the development and

implementation of several computer algorithms for:

• detecting and tracking fluorescently labeled centrosomes in 3D time-

lapse images

• measuring the size of the centrosomes

• detecting the nuclear envelope break down

• determining the identity of the cells within C. elegans’ invariant cell lin-

eage

• characterizing protein amounts via intensity analysis, which required

segmenting centrosome images into background, embryo and centro-

some region

• segmenting cells in images of fluorescently labeled cell membranes (PH-

domain::GFP).

In combination with genetic perturbation techniques this assay allowed us

to systematically study the influence on centrosome size of individual centro-

79
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some components and several parameters such as cell size, centrosome num-

ber or microtubule behavior. The analysis of the image data was completely

automated apart from determining cell identities and the nuclear envelope

breakdown in embryos with non-wild-type morphology (i.e., not exactly two

centrosomes per cell). However, uncertainties in the data still arises due to

biological variance, imaging artifacts that we could not correct for as well as

measurement errors. This made it often necessary to manually inspect the im-

ages and verify all analysis results in detail to identify outliers and biological

side effects such as cell cycle delay, which can be a time-consuming procedure.

Nonetheless, the development of the centrosome assay made it possible to col-

lect much more and less biased quantitative data of centrosome growth than

would have been possible with manual analysis. The following sections first

summarize and discuss the algorithmic aspects of the centrosome tracker and

then the important biological observations and conclusions derived from the

tracking data.

5.1 tracking algorithm

The centrosome tracking algorithm (Section 2.2) is the computational core

component of the assay developed in this thesis. It was designed with the

goal of robustly tracking fluorescently labeled centrosomes in 3D image se-

quences of multi-cellular wild-type and mutant C. elegans embryos. This goal

has been achieved; the tracking results for about one thousand centrosome

movies required only minimal manual corrections and/or parameter adjust-

ments.

The tracking algorithm first detects all spots that possibly correspond to cen-

trosomes. It then links the detected objects between consecutive time points

in a novel two-step approach. In the first step only objects bright enough to

clearly not be noise are linked into trajectories. This yields one or more seg-

ments of each centrosome’s full trajectory. In the second step these partial

trajectories are extended forward and backward in time. In this respect our

algorithm is most similar to the approach by Jaqaman et al. [93]. They also

first assemble track segments that they are confident are correct; however, by



5 summary and discussion 81

using user-defined thresholds on the edge weights rather than restricting the

set of detected objects to a certain subset as in our case. In the second step,

we iteratively extend the track segments and then only stitch broken tracks

that abut in time to obtain full trajectories, whereas they bridge gaps by link-

ing track segments end-to-start or end/start-to-middle into full trajectories to

handle missed objects as well as objects that split or merge. In both methods

user-defined thresholds on the edge weights are used in the second linking

step.

One important aspect to obtain reliable track segments is the use of two

competing measures of object coherence, the spatial distance and changes

in appearance between consecutive time points. An object assignment in the

first linking step is accepted only if the assignment occurs for both distance

measures, i.e., the assignment is stable under the two different distance mea-

sures. This greatly minimizes the risk of false assignments. The use of two

distance measures also enabled us to adaptively determine suitable values

(from a range of given values) for two of the most crucial parameters for

finding truly reliable track segments. Another important aspect is the choice

of minimum-weight bipartite matching as the strategy to compute these as-

signments. Minimum-weight bipartite matching guarantees spatially minimal

total assignment cost under a maximal number of unique object assignments

between two consecutive time points. To handle a variable number of objects

we rely on heuristics to prune the matching hypothesis graph so that a max-

imal number of assignments usually does not result in wrong assignments.

However, this is not guaranteed. By considering only bright objects in the first

linking step, virtually all false positive calls are removed from consideration

but also true positive calls may temporally be filtered. In combination with

computing a maximal number of object assignments, this can lead to serious

assignment errors. Fortunately, many of these errors can be corrected during

the track extension phase by the concept of exchange edges (see Section 2.2.7).

Overall, the tracking performance relies on three principles. First, in our

layered approach we initially focus on sub-problems that can be solved with

higher confidence than the tracking problem as a whole. These reliable partial

solutions are then incrementally refined until the overall tracking problem
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is solved. However, while the general idea of a layered approach could also

be applied to other tracking problems, our concrete approach is tailored to

the problem of centrosome tracking. Second, we make extensive use of prior

knowledge but rely only on properties that are also valid for mutants. One

example of this is the concept of the radius hysteresis (see Section 2.2.5), which

implements the centrosome’s tendency to increase or stay constant in size

over time. Through this concept object assignments are made not only based

on two consecutive time points, but instead, one aspect of the entire history

(or future in the case of backward tracking) of the centrosome is taken into

account. Third, our object detection algorithm is tuned so that false negative

calls are extremely rare and occur at most at the very beginning and end of

the centrosome cycle. As a consequence, however, the number of false positive

calls is relatively high. This detection philosophy is in contrast to many other

approaches such as [91, 119] that try to adjust the detection parameters so as to

minimize the overall detection error by trading-off the number of false positive

and false negative calls. We deal with false positive object calls through the

two-step linking approach. In the first step, false positives (and some true

positives) are temporarily filtered out based on their static properties, in this

case the peak-to-background ratio. In the second step, now having statistical

knowledge about the frame-to-frame behavior of the objects (i.e., dynamic

properties), the matching graph can be pruned, thereby isolating virtually all

false positives.

5.2 detection of subtle phenotypes invalidates hypotheses in

previous studies

The development and use of computational methods was an important part in

this project. Beyond organizing the huge amount of image data and automat-

ing the creation of thousands of graphs, our centrosome assay has brought

crucial advantages over previous studies with manual data analysis. First,

due to the complete automation of the image analysis pipeline, including

cell naming and detection of the nuclear envelope breakdown, we could pro-

cess a much larger number of embryos. Second, although limited by imag-
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ing artifacts and variations in imaging conditions, the Gaussian fitting based

quantification method (see Section 2.3) provided consistent and objective mea-

surements of centrosome size. Taken together, this made it possible to detect

subtle phenotypes that were often not obvious to the human eye. For example,

in two-cell sas-4(RNAi) embryos one centrosome assembles around a defective

centriole and is smaller than in wild-type, while the other centrosome assem-

bles around an intact centriole. Based on this observation made by Kirkham et

al. in [44], they discuss that “the amount of SAS-4 at centrioles proportionally

dictates the amount of centrosomal PCM”. What they missed is that the other

centrosome with the intact centriole becomes bigger than in wild-type. In fact,

the volumes of the two sas-4(RNAi) centrosomes add up to the same total

volume as the two wild-type centrosomes (see Figure 4.9). While the centriole

might still have a role in setting centrosome size, this means that SAS-4 does

not proportionally dictate the amount of centrosomal PCM, thus invalidating

the hypothesis proposed in [44].

5.3 limiting component hypothesis for centrosome size

Tracking centrosome growth in wild-type embryos has yielded several inter-

esting results. Based on measurements up to the 16-cell stage, we found that

• beginning at the four-cell stage, centrosomes size plateaus before meta-

phase

• centrosomes grow slower in smaller cells.

Based on measurements up to the 4-cell stage, we found that

• centrosome volume scales proportionately with cell volume.

• the total volume of all centrosomes at metaphase is constant at any one

cell stage.

These observations suggest an attractively simple mechanism by which cen-

trosome size is controlled by the availability of one or more structural cen-

trosome components in the cytoplasm. In this limiting component model, the

embryo is initially provided with a fixed amount of each protein including
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the limiting component(s) by the mother. The centrosome grows by recruiting

the limiting component(s) from the cytoplasm. As a consequence, the con-

centration of the limiting component(s) in the cytoplasm drops. When this

concentration reaches a certain level, defined by the binding constant of the

limiting component(s), there will be an equilibrium between molecules being

incorporated into the PCM and molecules being released from the PCM. Thus

centrosome size plateaus. At the end of the cell cycle, when the centrosome

disintegrates, all PCM components are released back to the cytoplasm and cy-

tokinesis will divide the cytoplasmic bag proportionately to cell volume. As

a result, the total amount of the limiting component(s) is distributed propor-

tionately to the volume of the daughter cells.

The rate at which the PCM grows is likely be determined by the cytoplasmic

concentration of one or more centrosome components. The concentration in

turn is determined by the total amount of the component and the volume of

the cell. This could explain why the centrosomes grow slower in smaller cells.

As a consequence of proportionately distributing the limiting component(s) to

the daughter cells, the total amount in each daughter cell will be lower than

in the mother cell but the initial concentration will be the same. However, re-

moving one molecule from a small volume will result in a larger concentration

decline than removing one molecule from a bigger volume. Thus, over time

the concentration drops more quickly in small cells and hence the PCM grows

slower.

Our experiments have shown that SPD-2 is one such component that de-

termines centrosome size. Not only does partial depletion of SPD-2 result in

smaller centrosomes, but - as one would expect from a limiting component

- increasing the amount of SPD-2 indeed results in bigger centrosomes. Our

finding that the embryo keeps tight control over SPD-2 levels by a compensa-

tion mechanism (see Figure 4.14), and the role of SPD-2 in centriole duplica-

tion and PCM assembly [45], are further evidence that SPD-2 has a direct role

in determining centrosome size. This is also consistent with previous work

that suggest a role of the centriole in determining PCM size [45, 44].

In P0, AB and P1 centrosome size does not plateau. The centrosomes con-

tinuously grow until disintegration at anaphase (see Figure 4.1). This might
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be because the available amount of the limiting component(s) in these cells is

higher than can be recruited to the centrosomes and thus the cytoplasmic con-

centration does not drop to the critical level where centrosome size plateaus.

Supporting this idea, in smaller two-cell ani-2(RNAi) embryos (see Figure 4.5),

as well as in two-cell embryos with more centrosomes (see Figure 4.8(b)), cen-

trosome size does plateau. Contradictory to this idea, however, is our observa-

tion that the total centrosome volume is independent of centrosome number

(see Figures 4.7, 4.8(a)/(c) and 4.9(a)). An abundance of the limiting compo-

nent(s) in the one- and two-cell stage would imply that the total centrosome

volume increases when the number of centrosomes increases (up to a level

where the component actually becomes limiting). In line with this, one would

also expect that centrosome size plateaus upon sufficiently long RNAi against

the limiting component, but we have never seen a plateau in P0 under such

conditions (see Figure 4.10).

The difference between making cells smaller and RNAi against a selected

centrosome component is that in the former case the amount of all components

is reduced while in the latter case only the amount of the selected component

is reduced. One possibility is that SPD-2 is not the only component that di-

rectly controls centrosome size. In a scenario with multiple limiting compo-

nents, the amount of SPD-2 could only limit the growth rate, but the centro-

some would eventually run out of another component. Supporting this idea,

increased amounts of SPD-2 result in increased growth rate in 4-cell embryos

while centrosome size still plateaus (see Figure 4.15(f)). Moreover, SPD-2 is not

the only component required for a full-size centrosome (see Figure 4.10). How-

ever, there cannot be more than one component of which increased amounts

are required for bigger centrosomes, because increasing SPD-2 amounts alone

was sufficient for bigger centrosomes (see Figure 4.15) despite all other pro-

teins remaining at their wild-type levels.

Alternatively, cell size could be a crucial factor in the process that transports

PCM components to the centrosome. In a scenario with SPD-2 being the only

limiting component, SPD-2 could indeed be present in excessive amounts in

P0, AB and P1 but the supply to the centrosome depends on cell size. We know

little about the diffusion behavior of the individual centrosome components
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and possibly involved active transport mechanisms via microtubules that are

important for PCM assembly and maturation. A more detailed study of the

cytoplasmic protein concentrations, and in particular their local distributions,

will be necessary to evolve the simple idea of a limiting component to a more

complex model that explains these conflicting observations.

Centrosomes are not the only organelle whose size scales with cell size. In

C. elegans embryos mitotic spindle length also responds to changes in cell size

[69, 120], and examples in other systems include the nucleus and mitochon-

dria for which the organelle-to-cell volume ratio is held constant [121, 122]. A

limiting component could be a general mechanism to ensure that the size of

intracellular structures adapts to cell size in a simple and robust way. It ab-

stracts the problem of regulating organelle size to the problem of controlling

the amounts of the organelle’s structural component(s).
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D I R E C T I O N S F O R F U T U R E W O R K

6.1 tracking algorithm

The tracking algorithm developed in this thesis was specifically designed for

centrosomes in C. elegans embryos. One generally applicable idea thereby was

to find a set of object links that are stable under two different measures of

object coherence. For a more general tracking algorithm, this idea could be

extended to other dimensions of the algorithm such as the linking strategy.

Reliable track segments could then be established using only links that are

stable under both, different measures of object coherence and different link-

ing strategies. Moreover, specifically to further improve the establishment of

centrosome core trajectories linking errors might be avoided by finding links

that are stable under different subsets of the detected objects.

6.2 automated image acquisition and genome-wide screen

Our centrosome assay is automated in terms of image analysis, computing

statistics over the extracted features and visualization of the results in the

form of graphs and animations. Image acquisition, however, is done manu-

ally and represents the rate-limiting step in our experiments. Increasing the

throughput by (semi-)automated image acquisition would improve the assay

in two ways. First, the data quality could be improved by imaging control

embryos in each individual imaging session. This would exclude imaging pa-

rameters such as the laser power or the room temperature as source of any

spread in the data. Second, the number of experiments could be increased
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and even a genome-wide screen could be setup to obtain a complete picture

of which genes affect centrosome size.

One of the most time-consuming imaging steps is finding an embryo in

the right developmental stage, usually an early one-cell embryo. This step

is independent of the fluorescent centrosome label as it is performed using

transmitted light microscopy. Automatically finding suitable embryos is thus

one step towards automated image acquisition that would also be of interest

for many other C. elegans research projects.

6.3 imaging with single plane illumination microscopy

One limitation in quantifying centrosome dynamics over development was

that accurate quantification of all centrosomes was possible only up to the

four-cell stage due to the attenuation of the signal in the z-direction. More-

over, imaging with sufficient time-resolution was possible only up to the 16-

cell stage due to limited laser exposure the embryo can cope with. Both limita-

tions might be overcome by using single plane illumination microscopy (SPIM)

[106] in conjunction with the multi-view registration and fusion method de-

scribed in [107]. In Chapter 3, we used this method to image PH-domain::GFP

embryos. In SPIM, the embryos are placed in a glas capillary rather than on a

microscope slide. One practical problem is therefore that finding a suitable em-

bryo is even more time-consuming because a larger volume has to be searched.

6.4 experiments in the context of the limiting component hy-

pothesis

One of the most important questions in the context of the limiting component

hypothesis is whether only one or several components are directly involved

in regulating centrosome size. Based on our over-expression experiments (see

Section 4.9) we could rule out AIR-1 as a potential limiting component, but

not SPD-5. This was because introducing a SPD-5 transgene increased the total

amount of SPD-5 protein only slightly. Increasing the levels of SPD-5 by codon

optimization is a promising alternative.
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For SPD-2 and SPD-5 we have seen that RNAi against either component

leads to smaller centrosomes but that centrosome size does not plateau in one-

cell embryos (see Figure 4.10). It would thus be worthwhile to perform double

RNAi against SPD-2 and SPD-5 as this might create similar conditions as in

embryos of smaller size where centrosome size plateaus (see Figure 4.5).

One question we could not address is: How does centrosome size depend

on the time it has to grow? One could examine centrosome growth at differ-

ent temperatures, but this affects the dynamics of all processes in the embryo

at the same time. Another possibility would be to initiate centrosome growth

earlier, or to delay the disintegration process. The disintegration of the cen-

trosome is one aspect of the centrosome cycle that is currently only poorly

understood. Our centrosome assay could be used to identify regulators of cen-

trosome disintegration and then investigate to what extent centrosome growth

depends on time.

Finally, whether the idea of a limiting component holds true for other or-

ganelles could be investigated by systematically increasing and decreasing

the amounts of the components of which they are assembled.



90



7
M AT E R I A L S A N D M E T H O D S

worm strains and rna interference

Maintenance of C. elegans worm strains was carried out according to standard

protocols [123]. The following worm strains were used: Wild-type Bristol N2,

TH27 (γ-Tubulin::GFP), OD58 (PH-domain::GFP) [105], TH97 (SPD-5::YFP),

TH225 (Air-1::GFP ; fosmid), DH1 (zyg-1(b1)), zyg-1(it29), TH257 (SPD-2::GFP ;

CAI0.27), TH303 (SPD-2::GFP CAI 0.37), TH231 (SPD-2::GFP ; CAI0.27 fosmid).

The three SPD-2::GFP lines used in this study (TH231, TH257 and TH303) dif-

fer in their codon adaptation index (CAI). The N-terminus of the spd-2 trans-

gene in TH303 was codon optimized (Geneart) with respect to the codon bias

in C.elegans, so that the overall CAI score increased from the native value of

0.27 (TH231 and TH257) to 0.37. In addition, in TH257 and TH303, the trans-

genic spd-2 sequences feature a 551 bp C-terminal stretch that was also sub-

jected to codon optimization. However, for this fragment, codons were chosen

in a way that would not increase the CAI score but simply achieve maximal di-

vergence to the native codons. In this way, respective lines were made resistant

to the spd-2(RNAi) feeding clone that was used in this study (see below).

All genes with the exception of TH225 (Air-1::GFP ; fosmid) and TH231

(SPD-2::GFP ; CAI0.27 fosmid), were cloned into a tagging plasmid (pAZ132),

and expression was driven by the pie-1 promotor. TH225 and TH231 were

generated by recombineering in a fosmid containing air-1 or spd-2, respec-

tively, under its endogenous promotor, tagged with GFP at the C-terminus

[124]. All transgenic lines were created by microparticle bombardment as de-

scribed [125]. Worms were subjected to both RNAi by injection, and RNAi by
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feeding as previously described [126, 127]. The RNAi method used for each

gene, as well as the region targeted is indicated in the following list:

RNAi by injection

Primer sequences for the regions targeted are as follow, with T3/T7 extensions

underlined:

ani-2:

TAATACGACTCACTATAGGGAGACCA CCAACGACTCCAAACGTCAGATA

AATTAACCCTCACTAAAGGGTCTCGTCCG TTTCTTGTTTCT

Template: N2 genomic DNA

RNAi by feeding

The regions targeted by the feeding clone are flanked by the following primers:

sas-4:

Forward primer: AAACTGGTGGCACTGGATTC

Reverse primer: ATGAACGATTTAGGCGTTGG

gfp:

Forward primer: ATGAGTAAAGGAGAAGAACT

Reverse primer: TTTGTATAGTTCATCCATGC

Template: TH303

spd-2:

Forward primer: GAATGCATCAATGGCAGATG

Reverse primer: AATTTTGTGCCGGTACTTCG

live cell imaging

For live imaging of centrosomes and cell boundaries, worms were dissected

on glass cover slips in M9 buffer and then mounted on 2 % agar pads. Imag-

ing was conducted at 25
◦C and carried out on a spinning disk confocal system
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consisting of an Olympus IX8 inverted stand microscope body equipped with

a Prior NanoScanZ, a Yokogawa CSU-X1 spinning disk head, a 488 nm solid-

state laser Coherent Sapphire (50mW) and an Andor iXon EM+ DU-897 BV

back illuminated EMCCD camera for detection. The lens used was an Olym-

pus UPlanSApo 60x 1.20 W. The microscope was controlled by the iQ 1.10.2

software.

For live-cell imaging of cell boundaries with SPIM, worms expressing a

fusion between GFP and a PH-domain (OD58) were dissected on glass cover

slips in M9 buffer and embryos mounted in a capillary filled with 1% low

melting point agarose in PBS with 0.1 % Tween. Z-Stacks (x/y pixel size: 0.365

µm, z-step size: 1 µm) from three different views (0°, 120° and 240°) were

acquired at 1-minute intervals using a prototype selective plane illumination

microscope developed by Carl Zeiss MicroImaging and equipped with a Zeiss

40×/0.8 Achroplan objective. The individual views were registered and fused

into single views as described in [107] to give a final pixel size of 0.365 µm in

all three dimensions.

centrosome growth rates

An approximation to the time-derivative at each sampling time point of the

centrosome growth curves was computed by locally fitting a straight line to

the curve in a window of ± 60 seconds centered at the respective time point.

line scans

The line scan of each individual centrosome is an average over various scan-

ning lines angled at 0 to 90 degrees in 10 degree steps through the sub-pixel

accurate center of the centrosome spot. The average of such line scans was

then computed over several centrosomes. To account for different overall in-

tensity levels of the centrosomes each average line scan was divided by its

maximum intensity.
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western blotting

For comparing expression levels, 40 adult gravid hermaphrodites were picked

into 10 µl of water and snap frozen in liquid nitrogen, then thawed, mixed

with 10 µl sample buffer (125 mM Tris, pH 6.8, 6% SDS wt/vol, 10% vol, 20%

glycerol vol/vol) and loaded onto a NuPage 3-8% Tris-Acetate gel (for SPD-2)

or a NuPage Novex 4-12% Bis-Tris gel (for AIR-1) from Invitrogen. Antibod-

ies recognizing both endogenous and the respective exogenous protein were

used. A nonspecific band produced by the antibody was used as a loading

control for AIR-1::GFP and SPD-5::YFP. Immunoblots were probed using pri-

mary antibodies at 1µg/ml and detected using a HRP-conjugated secondary

antibody (1:10,000; Bio-Rad Laboratories).
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