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ABSTRACT 

Artificial 137Cs has been introduced into the environment for more than half a century. Its 

first appearance in central European lake sediments corresponds to the nuclear weapons 

testing in the 1960s. The largest contamination of European lakes and rivers occurred as a 

consequence of the fallout after the Chernobyl accident in spring 1986. In this work the 

migration behaviour of artificial 137Cs in Lago Maggiore and other pre-alpine lakes as a 

consequence of these fallouts was studied.  

Lago Maggiore is one of the largest drinking water reservoirs in the south of the Alps. 

After the Chernobyl accident roughly 20 kBq·m-2 of 137Cs were deposited onto the lake 

surface. From 2003 to 2005 bottom sediment cores and water samples were collected at 7 

different locations of Lago Maggiore. Data on the 137Cs distribution in tributaries, lake 

water, suspended matter, bottom sediments, and the 137Cs association to different 

geochemical fractions are presented in this work.  

To model the run-off of 137Cs from the watershed into the lake a compartment model was 

used. For modeling the input of 137Cs into and the vertical distribution within the 

sediment a diffusion–convection type model was developed. This model takes into 

account the uptake of activity by sedimentation, fixation and redissolution, retarded 

diffusion, the influence of competing ions on the retarded diffusion within the sediments, 

and compaction of sediments. The results of the parameter optimization – mainly the 

sedimentation rate and the 137Cs distribution coefficient Kd, which determines the uptake 

of activity into the sediment – are discussed and compared with those of other European 

lakes characterized by similar 137Cs deposition levels but different limnological 

properties. 

To estimate the bioavailability of 137Cs, its activity concentrations in fish samples from 

Lago Maggiore were measured. Combining the existing data with our measurements, 
137Cs fish–water concentration ratios were calculated and compared with those for other 

lakes which were affected by similar 137Cs contamination. 
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ZUSAMMENFASSUNG 

Das künstliche Radionuklid 137Cs wurde seit über einem halben Jahrhundert in die Natur 

eingebracht. Sein erstes Erscheinen in Sedimenten der zentraleuropäischen Seen 

korrespondiert mit den Nuklearwaffentests in den 60er-Jahren des 20. Jahrhunderts. Die 

stärkste Kontaminierung der europäischen Seen und Flüsse entstand als Folge des 

radioaktiven Niederschlags nach dem Unfall in Tschernobyl im Frühjahr 1986. In dieser 

Arbeit wurde das Migrationsverhalten des künstlichen 137Cs im Lago Maggiore und 

anderen Seen im Alpenvorland als Folge dieses Niederschlags untersucht.  

Der Lago Maggiore zählt zu den größten Trinkwasserreservoiren südlich der Alpen. Nach 

dem Unfall in Tschernobyl gingen ungefähr 20 kBq·m-2 des 137Cs auf die Oberfläche des 

Sees nieder. Im Zeitraum von 2003 bis 2005 wurden Sedimentkerne und Wasserproben 

an sieben unterschiedlichen Stellen des Lago Maggiore entnommen. Diese Arbeit 

beschäftigt sich mit Daten über die Verteilung des 137Cs in den Zuflüssen, dem Wasser 

des Sees, in Schwebstoffen und Bodensedimenten und mit der Assoziierung von 137Cs 

mit verschiedenen geochemischen Fraktionen.  

Um den Abfluss des 137Cs aus dem Wassereinzugsgebiet in den Fluss zu modellieren, 

wurde ein Compartmentmodell verwendet. Zur Modellierung der Aufnahmemenge von 
137Cs im Sediment und der vertikalen Verteilung innerhalb dessen wurde ein Diffusions-

Konvektions-Modell entwickelt. Dieses Modell berücksichtigt die Aufnahme von 

Aktivität durch Sedimentation, Fixierung und Rücklösung, retardierte Diffusion, die 

Verdichtung des Sediments sowie den Einfluss konkurrierender Ionen auf die retardierte 

Diffusion innerhalb des Sediments. Die Ergebnisse der Parameteroptimierung – im 

Wesentlichen die Sedimentationsrate und der 137Cs-Verteilungskoeffizient Kd, welcher 

die Aufnahme der Aktivität in das Sediment determiniert – werden erörtert und mit denen 

anderer europäischer Seen, die eine ähnliche 137Cs-Deposition, aber unterschiedliche 

limnologische Eigenschaften aufweisen, verglichen. 

Zur Beurteilung der Bioverfügbarkeit von 137Cs wurde die 137Cs-

Aktivitätskonzentrationen von Fischproben aus dem Lago Maggiore gemessen. Aus 

bereits existierenden Daten und unseren Messergebnissen wurden 137Cs Fisch-Wasser 

Konzentrations-Verhältnisse errechnet und mit denen für andere Seen, die von ähnlichen 
137Cs-Kontaminationen betroffen sind, verglichen.  
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LIST OF SYMBOLS 

This list contains the most important symbols, notations, and abbreviations used. The 

dimension is indicated in square brackets [ ].  

 

αααα  – experimentally measured portion of exchangeable radioactivity [1]; 

αCs, βCs, γCs – empirically determined constants of AQUASCOPE model [m-1]; 

A (x) – activity concentration of unsupported 210Pb at a depth x  [Bq·g-1]; 

(((( ))))tA 0  – initial activity concentration of unsupported 210Pb in the sediment [Bq·g-1]; 

(((( ))))xA r  – total residual activity concentration of unsupported 210Pb in the sediment below 

the depth x  [Bq·cm-2]; 

EC  – exchangeable part of radioactivity in the sediment [Bq·m-2·cm-1]; 

Cf – 137Cs activity concentration in fish [Bq kg-1]; 

FC  – fixed part of radioactivity in the sediment [Bq·m-2·cm-1]; 

CIC – constant initial concentration; 

CL – 137Cs activity concentration in the lake water [Bq·m-3]; 

CL(0) – initial mean 137Cs activity concentration in the lake water [Bq·m-3]; 

CR – 137Cs activity concentration in the runoff water, CR [Bq·m-3]; 

CR )CF( – concentration ratio (concentration factor) of 137Cs in fish [l kg-1]; 

CRS – constant rate of supply; 

d – mean depth of the lake [m]; 

D  – diffusion coefficient of Cs+ ions [cm2·a-1]; 

DC – average deposition to the catchment area [Bq·m-2]; 

ED  – retarded constant of 137Cs+ diffusion [cm2·a-1]; 

physD  – combined bio- and physical turbation acting only in the top layers of the 

sediment [cm2·a-1]; 

DL – average deposition to the lake surface [Bq·m-2]; 

CT
D o , 

C25
D o  – diffusion coefficients of Cs+ ions at temperature T [°C] and 25 °C, 

respectively [cm2·a-1]; 

εεεε  – porosity of the sediment [1]; 
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xii 

ΕΕΕΕ  – emission probability [%]; 

f  – first order fixation rate [a-1]; 

F  – diffusion flux, in [Bq·cm-2·a-1]; 

physF  – diffusion flux which describes physical turbation [Bq·cm-2·a-1]; 

θθθθ  – volumetric water content [1]; 

k1, k2, k3 – empirically determined constants of AQUASCOPE model [a-1]; 

kb – backward rate constant describing the excretion of radioactivity from fish [a-1]; 

dK  – distribution coefficient which relates the concentration of adsorbed 137Cs activity to 

its activity in the liquid phase [1·kg-1]; 

ex
dK  – exchangeable distribution coefficient [1·kg-1]; 

ex
d_difK  – distribution coefficient which controls the diffusion within the sediment [1·kg-

1]; 

tot
dK  – total distribution coefficient [1·kg-1]; 

kf – rate constant describing the transfer of 137Cs from water to fish [l·kg-1
·a-1]; 

λλλλ  – radioactive decay constant of a radionuclide [a-1]; 

MDA – minimum detectable activity which is defined as the smallest amount of activity 

that can be quantified; 

CT
M o , 

C25
M o  – viscosities of water at temperature T [°C] and 25 °C, respectively, [cp]; 

r  – first order redissolution rate [a-1]; 

R  – retardation factor, a dimensionless parameter characterizing the retarding effect of 

adsorption on solute transport [1]; 

0ρρρρ  – density of the top layer of the sediment [g·cm-3]; 

bρρρρ  – experimentally measured bulk density of the dry sediment [g·cm-3]; 

pρρρρ  – mean particle density [g·cm-3]; 

SR  – sedimentation rate [g·cm-2·a-1]; 

t  – time [a]; 



List of symbols 
 

xiii 

ττττ  ( τ <1) – tortuosity factor which describes the decrease of ED  due to tortuous flow 

along the pores of the sediment; it is a measure of the path length of a pore over a 

given length of a sediment [1]; 

τs – time constant of 137Cs transfer to the sediments [a]; 

τw – water residence time of the lake [a]; 

2/1T  – half-life of a radionuclide [a]; 

Sv  – sedimentation speed [cm·a-1]; 

x  – depth of the sediment profile [cm]. 
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GLOSSARY 

Allochthonous – originating from outside (used to characterize materials transported 

from the catchment area to a lake). 

Amorphous silicates – structure material of diatomic algae. 

Benthos – organisms living on, or in, the bottom material of lakes and streams. 

Catchment area (=watershed=drainage basin) – area that contains water that drains into 

a stream or river or lake. 

Cryptodepression – the part of a lake basin that is below sea level. 

Drainage basin– see Catchment area. 

Epilimnion – the upper, well-mixed, freely circulating surface water of a nearly 

isothermal region of a stratified lake. 

Eutrophic lake – very productive lake rich in plant nutrients.  

Eutrophication – a gradual increase in the productivity of a lake ecosystem due to 

enrichment with plant nutrients, leading to changes in the biological community as well 

as physical and chemical changes.  

Fulvic acid – a yellow to yellow-brown humic substance that is soluble in water under all 

pH conditions. 

Humic acid – a dark-coloured humic substance that is insoluble in acid. 

Humic substances – are major components of the natural organic matter formed in soils 

and sediments by the decay of dead plants, microbes and animals. 

Hypolimnion – dark, cold, bottom waters of a lake that are thermally separated from the 

warmer surface waters when a lake is stratified. 

Insubric line – a major tectonic line which marks the northern and western boundary of 

the Southern Alps. 

Isobath – a subsurface contour line connecting points of equal temperature. 

Limnology – the study of freshwater ecosystems. 

Lithology – the study of rocks. 

Mesotrophic lake – lake which is characterized by moderate concentrations of nutrients, 

algae, and water transparency. A mesotrophic lake is not as rich in nutrients as a 

eutrophic lake, but richer in nutrients than an oligotrophic lake. 
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Monomictic – a term used to describe lakes which undergo one period of complete 

mixing during the year separated by one period of thermal stratification. Monomictic 

lakes are also relatively deep and do not freeze over completely in winter. 

Oligotrophic lake – relatively unproductive lake which is characterized by low 

concentrations of nutrients and algae resulting in good water transparency.  

Organic matter –material containnig carbon, a basic component of all living matter. 

Relief – change in elevation of a land surface between two points.  

Residence time – the average time required to completely renew a lake's water volume. 

Runoff – natural drainage of water away from an area  

Secchi depth – measure of transparency of water obtained by lowering a 20-25 cm black 

and white disk into water until it is no longer visible. 

Sediment – solid material including both soil particles and organic matter which is 

suspended in the water and gradually deposited in the bottom of a lake. 

Stratification – the arrangement of water into distinct layers which differ by temperature 

and density (occurs in the ocean and deep lakes especially). 

Thalweg – a line drawn to join the lowest points along the entire length of a streambed or 

valley. 

Turbidity flow (turbidite) – the flow which takes place mostly in deep lakes, it is 

responsible for the redistribution of large amounts of sediment from the steep slopes of 

the lake basin. 

Turnover – a complete mixing of the lake due to spring warming and autumn cooling of 

surface water which increases density, and gradually makes temperature and density 

uniform from top to bottom. This allows wind and wave action to mix the entire lake. 

Mixing allows bottom waters to contact the atmosphere, raising the water's oxygen 

content.  

Watershed – see Catchment area. 

 



 

1 

INTRODUCTION 

According to its location in the relief and system of runoff, lakes serve as accumulators of 

substances which circulate within the drainage basin and as a result get into lake water 

itself. The subsequent “fate” of the chemical elements including radionuclides which are 

forthcoming into the lake, can be determined by complex physical, chemical and 

biological processes leading to the considerable redistribution between different 

components of aqueous ecosystem (Ostapenya et al., 1999). There are no destruction 

mechanisms of technogenic radionuclides in the environment. Therefore, the studies of 

radionuclides distribution in the bottom sediments allow us not only to specify the dating 

of certain events but they also promote the development and implementation of complex 

investigations of the lake as a whole. In addition, extended studies of lake sedimentation 

processes in the conditions of radioactive contamination allow to observe and to follow 

the regularities of radionuclides migration in the catchment areas and within the distinct 

lacustrine basins.  

The largest contamination of most European lakes and rivers with radiocaesium – 137Cs 

(half-life 30.07 years) and 134Cs (half-life 2.07 years) – occurred as a consequence of the 

fallout after the accident at the Nuclear power plant in Chernobyl (Ukraine) in spring 

1986. Before the Chernobyl accident, the deposition of 137Cs on the territory of Europe 

was mainly due to global fallout from the atmospheric testing of nuclear weapons in 

1960s.  

There are two forms of 137Cs – sorbed and dissolved –present in water of tributaries and 

lakes. 137Cs sorbed onto solid particles (suspended matter) can settle down to the bottom 

of the lake being removed by this way from the water column. Such processes as 

sedimentation and diffusion result in transport of 137Cs within the sediment as well as 

exchange between the sediment and the overlaying water. 

Artificial radionuclides, in particular 137Cs and 210Pb (half-life 22.3 years, introduced into 

the lake with a constant rate from the atmosphere), disappear from the environment only 

by radioactive decay with known half-lives. Thus, knowledge on the distribution of these 

radionuclides in the lake allows to date certain events and to explore the main processes 

in the lake. 
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A large number of studies on the behaviour of radionuclides in European lakes have been 

carried out during past decades (Davidson et al., 1993; Dominik and Span, 1992; Ilus and 

Saxén, 2005; Kaminski et al., 1998; Konoplev et al., 2002; Monte et al., 2005; Rezzoug 

et al., 2006; Robbins et al., 1992; Santschi et al., 1990; Schertz et al., 2006; Spezzano et 

al., 1993; Zibold et al., 2002). These studies showed that in lakes with different 

limnological character 137Cs behaves differently and depends on many physical, 

geochemical and biological factors. However, taking these characteristics in mind, a 

common theoretical description valid for 137Cs in many European lakes could be achieved 

(Håkanson, 2004; Monte et al., 2003; Smith and Beresford, 2005). 

Modeling of migration processes in the lake can give the possibility not only to estimate 

the general characteristics and peculiarities of sediment accumulation, but also to reveal 

typical and irregular parameters such as compaction of sediments, sedimentation rates, 

and distribution coefficients. These parameters and others can be useful to establish the 

correlation between different components, to determine the prevalent processes, and to 

make prognosis for the future of the investigated ecosystem. 

As an object of our investigations an Italian lake (Lago Maggiore) was chosen. It is one 

of the largest drinking water reservoirs in the south of the Alps. After the Chernobyl 

accident in 1986 roughly 20 kBq·m-2 of 137Cs (Czarnecki et. al, 1986) were deposited 

onto the lake surface, about the same amount as onto the neighboring Lago di Lugano 

(24 kBq·m-2 according to Santschi et al., 1990). Lago Maggiore is the most thoroughly 

investigated lake in Italy in terms of the number of key biogeochemical parameters 

measured and the duration of their monitoring. However, nearly no research studies with 

respect to radionuclide distribution in this lake were performed so far. Only some data 

about radionuclide activity concentrations in surface lake water are available (Cazzaniga 

et al., 1996–1998; Cazzaniga et al., 1997; D’Alberti, 2001–2002; D’Alberti, 2003; 

D’Alberti and Osimani, 1995; Dominici, 1989–1990; Dominici and Risposi, 1990–1993; 

Osimani et al., 1994; Radioactivity Environmental Monitoring (REM) Database, 2005). 

The aims of this work are the investigation and modeling of migration processes of 137Cs 

in the water and bottom sediments of Lago Maggiore. According to these aims the 

following tasks have been performed during the research: 
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• in order to determine the distribution coefficient Kd which is an important parameter 

describing sorption process in the lake, 137Cs activity concentrations in the water 

column of Lago Maggiore and its main tributaries (Toce, Ticino and Verzasca) as 

well as in the suspended matter were measured; additionally, other water parameters 

such as pH, K+ and NH4
+ concentrations, temperature and oxygen content were 

evaluated;  

• to get the information about vertical distributions of 137Cs and 210Pb in the sediment 

gamma-spectrometric analysis of sediment samples was performed;  

• to identify turbidites in Lago Maggiore sediments, the photos of sediment cores 

together with the information on the bulk density and radionuclides concentration in 

the sediments were used; 

• to study the association of 137Cs to the different geochemical fractions (exchangeable 

ions, organic matter, amorphous silicates, clay minerals, etc.) a set of sequential 

extractions was performed; 

• to describe migration processes of 137Cs and it’s distribution in the sediment of Lago 

Maggiore, a model based on sedimentation-diffusion equations was developed;  

• additional features such as compaction of sediments, deposition of turbidites, 

influence of competing ions on the retarded diffusion within the sediments were 

introduced. The model can cover the time period from the nuclear weapon testing to 

the present. 

• to solve the system of differential equations a finite element method (FEM) was used; 

• to introduce an independent time scale and to determine the age of sediment layers, 

two different versions of the 210Pb method were used: Constant input concentration 

(CIC) and Constant rate of supply (CRS); 

• finally, to estimate the bioavailability of 137Cs, fish samples from Lago Maggiore 

were measured. Subsequently, combing the existing data with our measurements, 
137Cs concentration ratios were calculated. 
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This study is divided into six chapters. Chapter 1 gives an overview on the main chemical 

properties of radiocaesium and the sources of its appearance in European lakes. Chapter 2 

contains the literature review of the present radioecological situation and different 

characteristics of Lago Maggiore. In Chapter 3 the description of the experimental work, 

of the equipment and procedure followed to accomplish the task are given. Chapter 4 

gives the description of obtained results concerning the measurements and monitoring of 

the studied object. In Chapter 5 the mathematical modeling is discussed in details; main 

results of modeling are shown and compared to those for other European lakes. Finally, 

in Chapter 6, the results of radiocaesium activity concentration in fish in Lago Maggiore 

are discussed; fish–water concentration ratios of 137Cs are calculated and compared with 

those for other lakes which were affected by similar contamination with radiocaesium. 

The last part of the thesis summarizes the obtained results and gives general conclusions.  
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1. RADIOCAESIUM IN THE ENVIRONMENT 

 

1.1 Sources of radiocaesium in the environment 

Radiocaesium – 137Cs (half-life 30.07 years) and 134Cs (half-life 2.07 years) – does not 

occur naturally on earth, it is exclusively anthropogenic in origin through nuclear fission. 
137Cs has a special significance due to its long half-live and due to the fact that it behaves 

in the environment like the important element potassium. 

Global fallout 

The first appearance of 137Cs in central European lake sediments corresponds to the 

beginning of the nuclear weapons testing with maxima in 1959 and 1963 (Magnini et al., 

1990). Radioactive materials were released, basically in vapor form, to an altitude of up 

to 12000 m and due to air flows spread in the atmosphere. When condensed, these 

materials led to radioactive contamination of vast territories in the Northern Hemisphere 

(UNSCEAR, 2000).  

As a result of the atmospheric atomic bomb testing in the 1950’s and 1960’s the 

radioactive isotope 137Cs is even today present in the environment worldwide. 

Chernobyl fallout 

The largest contamination of most European lakes and rivers with radiocaesium occurred 

as a consequence of the fallout after the accident at the Nuclear power plant in Chernobyl 

(Ukraine) in April 1986. Although a wide spectrum of radionuclides was released to the 

environment and deposited over Europe during this accident, for the long term 

radioactive contamination 137Cs has the largest significance and radioecological impact. 

About half of the released radioactivity settled out within 60 km of the accident site 

(IAEA, 1991), while the remainder was spread unevenly over all of Europe (Fig. 1.1).  
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Fig. 1.1. Map of 137Cs distribution after the Chernobyl fallout (from Atlas of caesium 
deposition on Europe after the Chernobyl accident, 1998). 
 

During the first period after the Chernobyl accident radionuclides were deposited both on 

soil and water surfaces. Later on, a redistribution of radionuclides took place where such 

processes as runoff from the catchment area, transport of radionuclides into the sediments 

and their migration within the sediments, play the most important role (Hilton, 2001; 

Warner and Harrison, 1993).  
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1.2 Chemical properties of radiocaesium 

Being deposited once on the soil or sediment surface, radiocaesium is very fast and very 

strong sorbed onto soil particles (Konoplev et al., 2002; Owens et al., 1996). This 

behaviour can be explained by its chemical properties. Caesium is soluble, existing in 

dissolved form as the monovalent cation Cs+. It belongs to the alkali metals and it is the 

least inert and, therefore, the most reactive element in this group.  Its chemical reactions 

are similar to those of potassium (Davis, 1963).  

Sediments are a complex mixture of organic and inorganic components in which there are 

a variety of physical sites available for radiocaesium association. The most commonly 

analyzed geochemical fractions are: exchangeable, bound to carbonates, reducible, 

oxidizable and residual (Tessier et al., 1979; Blanco et al., 2004).  One experimental 

approach commonly used to identify the speciation of a given radionuclide in a specific 

sample is the use of selective sequential extraction procedures. The most widely used 

technique for radionuclides extraction is the Tessier’s method (Tessier et al., 1979). In 

this work a modified Tessier’s method (Robbins et al., 1992) was applied (see chapter 

3.5.2). It is based on the assumption that in sediments radiocaesium can be associated 

with such geochemical fractions as exchangeable ions; organic matter; oxides and 

hydroxides of iron and manganese which are formed in the lake as coatings of particles; 

carbonates; and amorphous silicates which are the remnants of diatomic algae and occur 

in the waters of the world. The remaining residue mainly consists of clay minerals, 

feldspars, and quartz. Knowledge of where 137Cs resides within sediments can help to 

predict its impact because some sites hold it more tenaciously than others. If 137Cs is 

loosely bound to sediment, it is generally more biologically mobile. In Kaminski et al. 

(1998) it is shown that the mobility of 137Cs in fresh water lakes depends on the 

limnological characteristics of the lakes, sometimes even of the different basins of one 

lake.  

 

1.2.1 Binding of radiocaesium on clay minerals 

Numerous studies showed that the behaviour of the artificial caesium isotopes in the 

aquatic environment is controlled by sorption on solid particles and depends on the clay 
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mineral composition of sediments. Clay minerals (< 2 µm) are primarily crystalline 

aluminum or magnesium silicates with stacked-layer structures. Each unit layer is in turn 

a sandwich of silica and gibbsite or brucite sheets (Stumm, 1981).  

There are many different types of clay minerals, but the major part of them can be 

grouped into four main categories: montmorillonites, illites, kaolinites, and the 

vermiculites (Stevenson, 1994). As natural inorganic exchangers, montmorillonites, illites 

and vermiculites belong to the 2:1 clay family and their basic structural unit is composed 

of two tetrahedrally coordinated sheets of silicon ions surrounding a sandwiched 

octahedrally coordinated sheets of aluminum ions; they are also called three-layer clays. 

Kaolinites belong to the 1:1 clay family and have two-layer crystals (silicon-oxygen 

tetrahedral layer joined to alumina octahedral layer). Because of their structure 

characteristics, 1:1 clay minerals have excellent sorption properties and possess available 

sorption sites within its interlayer space (Wu et al., 2009). 

The potential for specific sorption and fixation of cations is typical for vermiculite, 

montmorillonite and other clay minerals with a 2:1 crystal lattice. Regarding Cs sorption, 

the group of illites is of special importance. Illites contain (in weight %) about 50–56 % 

SiO2, 18-31 % Al2O3, and Fe2O3 (2 –5 %), TiO2 (0–0.8 %), CaO (0–2 %), MgO (1–4 %), 

K2O (4–7 %) and Na2O (0–1 %) (Schachtschabel et al., 1989). They have a strong 

potential for selective sorption of Cs from aqueous solution and for almost irreversible 

incorporation at specific interlayer sites of their crystalline structure (Alexakhin and 

Krouglov, 2001; Comans at al., 1991; Cremers et al., 1988). This is one of the reasons for 

the strong fixation of Cs in the sediment of many lakes (Kaminski et al., 1998).  

Sediment clay content is important because Cs sorption is largely a surface area 

phenomenon: the greater the proportion of fine-grained clay particles, the more surface 

area there is for Cs to be sorbed to. However, there are several different binding sites in 

soils which have different selectivity and energies of sorption (Cremers et al., 1988).  

A simplified model of an illic clay mineral particle is shown in Fig. 1.2.  
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Fig. 1.2. A model of an illic clay mineral particle.  
 

In Fig. 1.2 the brown lines represent the silicate layers and the light blue balls depict the 

potassium cations. The Regular Exchange Sites (RES) are located on the external planar 

surfaces of crystal lattice of the clay particle and are characterized by low selectivity. The 

highly selective sorption sites are located on the internal surfaces of crystal lattice of a 

clay particle. They are characterized by the presence of wedge-shaped zone with partially 

expanded edges and are called Frayed Edge Sites (FES). High-Affinity Sites (HAS) are 

located in the interlayer space of a clay mineral particle. 

Cations such as Cs+, K+, and NH4
+ have low hydration energy, therefore, they can easily 

loose their hydration sheath and enter the frayed edge sites. Only these cations are 

competitive for exchange on these sites, because divalent cations such as Ca2+ and Mg2+, 

which are surrounded by a large and stable hydration shell, cannot enter the FES zone. 

Even for cations with low hydration energies, the sorption of Cs+ by the FES is favorable 

(Kaminski et al., 1998). The sorption selectivity of monovalent ions declines in the 

following order: Cs+ > Rb+ > NH4
+ > K+ > H+ > Na+. 

Caesium ions can be desorbed from frayed edge sites by ion exchange described by the 

following reaction (Cremers et al., 1988): 

 
FES-M+ + Cs+ <=> FES-Cs+ + M+,  
 
where the major metal (M+) competing for ion-exchange sites is generally K+ in soils 

(Cremers et al., 1988) and NH4
+ in anoxic sediments (Comans et al., 1991). However, in 

FES

HAS

RES

K+

K+

NH4
+

Cs+

Ca2+

H2O
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natural environment the influence of NH4
+ is more important because the affinity to the 

selective sorption sites of NH4
+ cations is about 5 times higher than the affinity of K+ (De 

Preter, 1990; Wauters et al., 1996).  

The process of Cs exchanging with the competing ions is considered to be responsible for 

the redissolution from sediments in some lakes, especially NH4
+ (Kaminski et al., 1998). 

 

1.2.2 Binding of radiocaesium on humic substances 

Clay minerals under natural conditions are associated with varying amounts of organic 

matter. Humic substances are major components of the natural organic matter in lake 

sediments. They are complex and heterogeneous mixtures of polydispersed materials 

formed by biochemical and chemical reactions during the decay and transformation of 

plant and microbial remains. Humic substances are very important components that affect 

physical and chemical properties of the aquatic systems, e.g. pH and alkalinity, as well as 

bioavailability of chemical elements (Hessen and Tranvik, 1998). They act as soil 

stabilizers, sorbents for toxic metal ions and radionuclides; when leached into surface 

water, they bind and transport metal ions (Celebi et al., 2009). 

In soils and sediments humic substances usually can be divided into three main fractions 

distinguished by their solubility and adsorption properties: humic acids (soluble in alkali 

but insoluble in acid), fulvic acids (soluble in both alkali and acid) and humin (insoluble 

under the full range of pH). Structurally the three fractions are similar, they appear to 

differ in molecular weight and functional group content (Stumm and Morgan, 1981). The 

elemental composition of humic substances is approximately 50 % of carbon, 4–5 % 

hydrogen, 35–40 % oxygen, 1–2 % nitrogen, < 1% sulfur plus phosphorus (Tipping, 

2002). 

Despite a very high exchange capacity of humic substances, organic fraction of soils and 

sediments has a low capacity to fix Cs and similar cations (Alexakhin and Krouglov, 

2001). Even though the negatively charged groups of humic substances sorb Cs ions via 

the ion-exchange mechanism, this sorption is much weaker as compared to the sorption 

of Cs by clay minerals. Caesium adsorption on clay minerals is strongly specific, whereas 

adsorption on humic substances is non-specific (Cremers et al., 1988). Therefore, even if 
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organic matter is responsible for a large proportion of soil exchange capacity, 

radiocaesium will be preferentially adsorbed on clay minerals and its association with 

organic matter will be relatively unimportant (Alexakhin and Krouglov, 2001).  

One of the main reasons for slow fixation of Cs in organic soils is their high content of 

humic substances. On the one hand, being adsorbed on the surface of clay particles, 

molecules of humic substances hinder sorption of Cs ions on the FES and their diffusion 

into the interlayer positions. On the other hand, being adsorbed on the edges of the 

mineral crystal lattices or in the edge-expanded zones, humic molecules stabilize the 

layers in an expanded state and this prevents interlayer collapse. If interlayer collapse 

does not occur, Cs ions adsorbed in the FES are strongly retained on the internal surfaces 

of layered minerals but are not immobilized.  

Several investigations were done to study the effect of humic substances on the fixing 

capacity of clay minerals (Maguire et al., 1992; Staunton, S. and Rouband, M., 1997). It 

was shown that the addition of humic substances to the reference clays decreased their 

affinity for radiocaesium, and no differences were revealed between the actions of humic 

and fulvic acids. The presence of humic substances in soil and sediments could 

potentially inhibit Cs sorption onto clay minerals by blocking ion-exchange sites, or, 

alternatively, the functional groups of the organic matter could themselves participate in 

ion-exchange processes.  
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2. CHARACTERISTICS OF LAGO MAGGIORE 

 

2.1 Origin and morphology 

Lago Maggiore, also called Lago Verbano, with a surface area of 212.5 km2 is the 

second largest pre-alpine lake after Lake Garda. It is located in the southern rim of the 

Alps. The maximum length of the lake along its thalweg (a line drawn to join the lowest 

points along the entire length of a streambed or valley) is 66 km, the maximum breadth 

is 12 km, with a perimeter of 170 km. Lago Maggiore lies at a latitude of 45°57' North, 

at a longitude of 8°33' West (Greenwich) and at an altitude of 193.5 m above sea level 

(Bonomi et al., 1970). The most important morphometric characteristics of Lago 

Maggiore are presented in Table 2.1.  

Table 2.1. Main morphometric and hydrological characteristics of Lago Maggiore. 

 

Catchment area (km2) 6 599 
Mean altitude of catchment (m a.s.l.) 1 283 
Lake area (km2) 212.5 
Percentage of glacial areas (%) 1.06 
Ice cover in catchment area (km2) 7.3 
Lake length (km) 54 
Length along the thalweg (km) 66 
Mean width (km) 4 
Maximum breadth (km) 12 
Shoreline length (km) 170 
Lake volume (km3) 37.7 
Maximum depth (m) 370 
Mean depth (m) 177.4 
Depth of cryptodepression (m) 177 

 

The most interesting feature of all the basins of the sub-alpine lakes is the effect of 

glacial divergence. Thus, Lago Maggiore was formed over a period of about 100 000 

years through excavation by two Würmian glaciers which moved down from the Alps 

and along the valleys of the rivers Ticino and Toce (de Bernardi et al., 1984). The 

erosive power of these glaciers (approximately 1200-1500 m thick, moving at a speed of 



Chapter 2 
 

14 

5-10 m per day) is well shown by the depth of the lake (mean value 177.4 m; maximum 

value 370 m, corresponding to a cryptodepression – the deepest point of the lake bottom 

below sea level – of 177 m). However, the Toce glacier, the smaller of the two, was less 

effective in scouring out its own valley which consequently overhangs the valley of the 

Ticino by about 160 m (Barbanti et al., 1963). 

The lake is approximately 15 000 years old and it is a typical, very elongate piedmont 

lake. In Table 2.2 data about the areas corresponding to, and volumes between, successive 

isobaths are presented, which shows a U-shaped transverse profile. 

Table 2.2. Areas corresponding to, and volumes between, successive isobaths of Lago Maggiore 
(Bonomi et al., 1970). 

 
Isobath Area in km2 Volume in km3 

 
+ 193 
+ 175 
+ 150 
+ 125 
+ 100 
+  75 
+  50 
+  25 
      0 
-  25 
-  50 
-  75 
- 100 
- 125 
- 150 
- 175 
- 177 

 

 
212.5115 
193.5276 
177.2445 
163.9275 
147.2500 
125.5525 
112.5000 
100.8800 
 91.8925 
 85.0050 
 76.2510 
 64.7650 
 49.1350 
 35.1550 
 30.5400 
1 8850 

 
 

 
 
 
 
 
 
 
 

 

3.653 
4.633 
4.262 
3.888 
3.406 
2.974 
2.666 
2.409 
2.210 
2.015 
1.761 
1.419 
1.297 
0.821 
0.276 
0.0019 

 

Total volume, km3                                        37.692 

 

The southern end of Lago Maggiore is dammed by chains of moraines which account for 

bottom irregularities not present elsewhere in the lake bed. Small islands in the lake are 

remnants of a few rocky hills which were not planed away by the glaciers (de Bernardi et 

al., 1984). The abundant amount of clastic or detrital materials is carried into the lake by 

the main tributaries which have modified the original shoreline (de Bernardi et al., 1984).  
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2.2 Hydrological and geological features of the drainage basin 

The drainage basin of Lago Maggiore covers 6 599 km2. As much as 50 % of this area lies 

above 1283 m above sea level, and 1.1 % of it is composed of glaciers. The drainage basin 

belongs to Italy (3229 km2) and to Switzerland (3370 km2) in equal shares, while 80 % of the 

lake belongs to Italy and 20 % to Switzerland.  

The basin of the lake is divided into sub-basins which consist of several lakes and 

reservoirs, nine of them having an area exceeding 0.5 km2. There are 32 reservoirs and lakes 

with the total capacity more than half a million cubic meters formed by damming a valley, 

and five (Lago Ghirla, Lago d’Orta, Lago di Varese, Lago Comabbio and Lago Monate) 

have to be considered as natural lakes. The largest of these lakes – Lake Lugano and Lago 

di Varese – are eutrophic. Lago d’Orta has been studied for several decades due to severe 

industrial pollution by copper and ammonia (de Bernardi et al., 1984). 

Lago Maggiore is divided into two parts by the so-called ‘Insubric line” which is the most 

important tectonic line crossing the southwestern part of the Alpine system and marks the 

northern and western boundary of the Southern Alps. This is the result of the collision 

between the African and the Eurasian plates which formed the Alps. Thus, eastern and 

western shores of the lake, south of the Insubric line, differ from one another in relation 

to their lithological features. The catchment area of Lago Maggiore is represented by a 

mosaic of eruptive rocks, in particular mostly granites, gneiss, phyllads and calcareous 

rocks which are the main component of the central part of the catchment area, where the 

eastern part of the lake and Lake Lugano are situated (Bonomi et al., 1970). The 

lithological and geomorphological characterization of the catchment area is the background 

of the chemical characteristics of the waters reaching Lago Maggiore through the 

tributaries and surface washing of the watershed. 

Originally, Lago Maggiore was an oligotrophic lake with a poor supply of nutrients and 

organic production but during the 1960s it was rapidly eutrophied which caused a shift to 

a mesotrophic state a decade later; Since the beginning of 1990s, it became oligotrophic 

again (Calderoni and Mosello, 1996; Prepas and Charette, 2003). See also Viel and 

Damiani (1985). 
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Major tributaries to Lago Maggiore are the rivers Ticino (drainage basin 1616.31 km2), 

Toce (1550.84 km2), Maggia (926.10 km2), and Tresa (754.20 km2) (see Fig. 2.1). 

They cover nearly 62 % of the whole drainage basin of the lake and bring to the lake 

waters coming from a basin reaching its greatest altitudes in the mountainous massifs 

of Monte Rosa and St. Gotthard (Bonomi et al., 1970).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 2.1. Lago Maggiore and its watershed (Barbieri et al., 1999). 
 

The flows of the main tributaries entering Lago Maggiore are represented in Table 2.3, 

from which it appears that the mean annual water discharge of the Ticino river (for the 

period 1921-2000) is 71.1 m3·s-1, of Toce (1936-2000) 80.2 m3·s-1, of Verzasca (1990-

2003) 10.8 m3·s-1, while the flow of the river Ticino at the outlet is (1921-1961) 317.8 

m3·s-1. 

Ticino 



Characteristics of Lago Maggiore 
 

17 

Table 2.3. Surface area and mean annual water discharge of the main rivers from the watershed of 
Lago Maggiore (Commisione Internationale per la protezione delle Aque Italo-
Svizzere, 2001; Bonomi et. al., 1970; Swiss FOWG). 

 

River 
Surface in 

km2 

Mean annual water 

discharge in m3·s-1 

Verzasca 263.8 10.8 

Tresa 754.2 28.3 

Maggia 926.1 40.0 

Toce 1550.8 80.2 

Ticino 1616.2 71.1 

Ticino outlet 6599.0 317.8 

 

The maximum flows correspond to late spring – early summer which is the period of 

snow melting and of heavy rainfalls. This is connected to the fact that the mean altitude 

of the catchment area is rater high and that during the winter the bulk of precipitations is 

captured on the mountains in the form of snow or ice. Consequently, the possibility of a 

regular and uniform flow of waters into the lake is cut off (Bonomi et al., 1970). 

The outlet river Ticino is regulated by a dam which was built in 1942 at a distance of 

about 6 km from the outflow of the river from the lake. It is a dam with adjustable 

openings which can be operated horizontally allowing the control of the quantity of 

outflowing water.  
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2.3 Climatic and meteorological characteristics 

Lago Maggiore belongs to the region which is characterized by high humidity and rather 

mild winters due to the presence of the lake itself and the Alps, which provide protection 

from northerly winds. The lowest temperatures are reached in January, with an average of 

2.58°C (Barbanti, 1975). Maximum temperatures take place in July, with an average of 

21.95°C. Prevailing winds are north-westerly.  

From a recent analysis of the meteorological data collected by the Observatory of the 

Isituto Italiano di Idrobiologia at Pallanza during the period 1950 – 1966 it has been 

observed that the mean yearly value of precipitations is 1816 mm ranging between 1226 

mm (1952) and 3352 mm (1960). At the same time the mean precipitation value for the 

Italian territory is only about 1000 mm which means that particularly heavy precipitations 

take place mostly in the catchment area of Lago Maggiore in Switzerland (Bonomi et al., 

1970). 

Annual variations of the lake temperature are very limited due to the large volume of water. 

However, thermal conditions do change along the axis of the lake, with higher temperatures 

at the southern end (mean difference is about 2°C) (Tonolli, 1961). Maximum surface 

temperatures are reached during July-August.  

Due to the location in the temperate zone, the large deep lakes in the pre-alpine areas to the 

south and north of the Alps are considered as warm monomictic lakes. That means that, in 

theory, a complete vertical mixing occurs only once a year, at the end of the limnological 

winter (Ambrosetti et al., 2002). However, due to the great depth of the lake, as well as to the 

peculiar climatic conditions of the area a complete vertical homogenization of the waters of 

Lake Maggiore reaching the bottom before the new process of the thermal stratification 

begins at the surface, does not occur every year. That is why Lago Maggiore can be 

classified as a holo-oligomictic lake (Ambrosetti et al., 2002). According to de Bernardi 

(1984), the layer usually involved in the winter overturn is 100 to 150 m deep, whereas a 

complete mixing occurs only every five to seven years. In studies of Ambrosetti and 

Barbanti, 1999, it is revealed that the 7-years cycles recorded up to 1970 were followed by 

period of 28 years (until 1999) during which the winter mixed layer only once (1981) 

reached a depth of 200 m, with only shallow depths (between 50 and 150 m) being reached 
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in the other years. The complete circulation of 1999 occurred as a result of a double 

mechanism with the motions down to a depth of 200 m, and the penetration of colder and 

more oxygenated waters of outside provenance into the layers below this level. The last 

complete turnover of Lago Maggiore was in winter 2004 – 2005 (Guilizzoni, personal 

communication). 

If the mixing is complete, a mass of new water is formed with defined chemical and 

physical characteristics. This newly-formed water mass can retain its properties for several 

years or for a few months, the duration of its life depending on its initial state and on the 

kind of external forces that can bring about a change in its properties. This duration has 

been revealed for Lago Maggiore by an analysis of the heat content below 200 m depth. 

For example, after the complete vertical mixings of 1963 the water mass retained its 

properties for 4 years; and after the mixing of 1970, which was much less intense than the 

earlier one, this maintained only for 14 months (Ambrosetti and Barbanti, 1999).  

The theoretical renewal time of the lake water which is calculated form the ratio between 

the volume of the lake and the outlet water discharge, for Lago Maggiore equals to 4 

years. This time depends largely on the morphometric characteristics of the individual 

basins and of the lake watershed, as well as on the volume of precipitation over the whole 

area. However, Tonolli (Piontelli and Tonolli, 1964) after analyzing the thermal cycles 

reached the conclusion that the mean residence time of water in Lago Maggiore was 

around 14.5 years (Ambrosetti et al., 2002). The same results are reported in the studies 

of Bonomi et al., 1970. 
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2.4 Knowledge on the present radioecological situation 

After the Chernobyl accident roughly 20 kBq·m-2 of 137Cs were deposited onto the lake 

surface, about the same amount as onto the neighboring Lake Lugano. But in contrast to 

Lake Lugano or Lake Constance the fate of 137Cs in Lago Maggiore was still practically 

non-investigated. 

With the CNR – Institute of Ecosystem Study (ISE) on its shore, Lago Maggiore has the 

privilege of being the most thoroughly investigated lake in Italy in terms of the number of 

key biogeochemical parameters measured and the duration of their monitoring. However, 

nearly no research studies were performed in respect to radionuclide distribution in Lago 

Maggiore. Only some data about radionuclides activity in the lake water measured by the 

Joint research center in Ispra are available (D’Alberti, 2003; D’Alberti 2001–2002; 

Cazzaniga et al., 1996–1998; Cazzaniga et al., 1997; D’Alberti and Osmani, 1995; 

Osmani et al., 1994; Dominici and Risposi, 1990–1993; Dominici, 1989 – 1980).  

Therefore, in order to examine the 137Cs balance in Lago Maggiore and, in particular, its 

migration behavior in the sediments by determination of the vertical distribution of 137Cs 

and its association to the different geochemical fractions, water samples and sediment 

cores were taken in 2003 – 2005 from different positions and basins of the lake. Our 

measurements helped to get a more or less complete picture of the present 

radioecological situation of Lago Maggiore which is a rather complicated ecosystem.  

An analysis of soil erosion in the alpine watersheds, of colloidal activity transport and 

colloid coagulation in river and lake water, as well as Cs activity associated with living 

objects was outside the scope of this work. 
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Position 1

Position 2

Position 3
Position 4

Position 5

Position 7

Position 6

110 m

290 m

370 m

34 m 

150 m

160 m

29.3 m

Position 1

Position 2

Position 3
Position 4

Position 5

Position 7

Position 6

110 m

290 m

370 m

34 m 

150 m

160 m

29.3 m

3. MATERIALS AND METHODS 

 

3.1 Description of sampling positions 

Bottom sediment cores from Lago Maggiore were collected at 7 locations (Fig. 3.1) in 

2003–2005. At each location three cores of about 70 cm length were taken and stored at 

4 ºC in the refrigerator. One of these cores was used for the determination of radionuclide 

distribution (137Cs, 134Cs, 210Pb, 241Am), another for the 137Cs sequential extractions (see 

chapter 3.5.2), and the third core was archived.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Sampling position (1–7) and main tributaries (in blue) of Lago Maggiore. 

 

Table 3.1 gives the detailed description of sampling sites including the information about 

geographical position, date of sampling, lake depth, core length and also about the 

measurements which were performed for the particular sediment core.  
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Table 3.1. Description of the sampling positions on Lago Maggiore. 

 

Additionally, at three positions (2, 5 and 7) large volume water samples were collected 

from different depths including the maximum depth of 370 m.  

In spring and autumn of 2004, and also in spring of 2005 surface water samples were 

taken from three tributaries (Ticino, Toce and Verzasca) of Lago Maggiore. 

Position / 
Core 

Date of 
sampling 

Coordinates Lake depth 
in m 

Core length 
in cm 

Description of the 
position 

Position 1 
Core 11) 
Core 41) 
Core 62) 

12.05.03 
46° 10.03 N 
   8° 50.20 E 

 
110 
96 
110 

 
53 
54 
64 

In front of the mouths 
of the rivers Verzasca 
and Ticino 

Position 2*  
Core 11) 
Core 21) 
Core 32) 

12.05.03 
46° 05.18 N 
   8° 42.73 E 

 
285 
290 
290 

 
71 
75 
83 

In the middle of the 
basin of Cannobio 

Position 3 
Core 12) 
Core 22) 
Core 31) 

26.04.04 
45° 54.37 N 
   8° 30.86 E 

 
34 
34 
34 

 
35 
33 
36 

In front of the inflow 
of the river Toce, 
close to the city 
Baveno 

Position 4 
Core 21) 
Core 32) 

26.04.04 
45° 54.84 N 
   8° 33.02 E 

 
150 
146 

 
93 
89 

Behind the small 
island Madre  

Position 5* 
Core 22)  
Core 31) 

26.04.04 
45° 50.49 N 
   8° 35.15 E 

 
160 
160 

 
80 
65 

In the middle of the 
southern basin of the 
lake 

Position 6 
Core 12) 
Core 31) 

18.04.05 
45° 44.55 N 
   8° 35.11 E 

 
26.3 
29.3 

 
39 
38 

To the south of the 
city Arona, close to 
the outlet of the lake 

Position 7* 
Core 11) 
Core 22) 

18.04.05 
45° 56.70 N 
   8° 37.76 E 

 
370 
370 

 
88 
74 

Deepest position of 
the lake  

 

1)  – measurement of radionuclides vertical distribution and modeling 
2)  – extraction experiments and grain-size distribution  
*   – large volume water samples 
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3.2 Lake water sampling 

 

3.2.1 Sampling of water and suspended matter with the “Midiya” system 

Large volume water samples were collected at positions 2, 5 and 7 from Lago Maggiore 

and its tributaries Ticino, Toce and Verzasca using the “Midiya” filtration system 

developed in SPA “Typhoon” (Makhonko, 1990) which enables to determine the content 

of 137Cs both in water solution and in suspended material.  

As shown in Fig. 3.3 the “Midiya” system consists of a vibrating submerged pump 

(315 W electric power), a filter block (with 10 parallel filter sets), a chamber for 

adsorber, and a flow meter. All these units are coupled by flexible pipes. A transformer 

regulates the speed of water pumping via the “Midiya” filter unit. The speed of water 

pumping is varying between 6 and 9 l·min-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Large volume water sampler “Midiya” with a pump (in front), a block for filters (in the 
middle), a chamber for adsorber (left); and a transformer (right). 
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In this system water samples of several hundred liters were filtered through 10 filter sets 

working in parallel with the total filtering area of 0.18 m2. Each composite filter set 

consists of 2 paper filters (diameter of 150 mm) – a fast “black ribbon” paper filter 

(Schleicher & Schuell Company) with pore size of 7-12 µm on top and a slow “blue 

ribbon” paper filter with an initial pore size of 2 µm below.  

In Fig. 3.4 the photo of the “Midiya” system preparation is shown. 

 

 

 

 

 

 

 

 

 

Fig. 3.4. Installation of filter sets for large volume water sampling using the “Midiya” system. 

 

Dissolved 137Cs was fixed using an ANFEZH coarse-grained sorbent based on wood 

cellulose coated with potassium ferrohexacyanoferrate. This sorbent material is highly 

selective for cesium, and sorption is controlled by an ion exchange mechanism (Lehto et 

al., 1990). The capacity of the ANFEZH exceeds the concentration of radioisotopes 

found in natural waters by many orders of magnitude. An important attribute of this 

sorbent is that it has very low distribution coefficients for the major and minor salts (i.e., 

Na+, K+, Mg++, Ca++) commonly present in lake water. This means that large volumes of 

water can be processed to extract radioisotopes without loading the sorbent with 

unwanted salts.  
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In Semizhon (2005) the 137Cs sorption efficiency (determined from the ratio of its activity 

measured in the sorbent to its activity in the solution being passed through the sorbent) of 

the ANFEZH material was tested. For the lake water it was determined as > 90 % which 

is rather high and is in agreement with the value asserted by the producers. This result is 

also comparable with the values reported in Bandong et al. (2001) which are  

(96.2 ± 0.8) % and (97.9 ± 1.4) % for river and sea water, respectively.  

Steinmann et al. (1999) showed with 7Be as an example that colloids play an important 

role in the scavenging of metal-ions from lake surface waters. With a “Midiya-system” 

the dissolved activity and the activity bound to colloids could not be separated. It has to 

be kept in mind that in this work the dissolved activity always includes the colloidal 

activity. 

 

Description of handling, storage and measurement of sample 

The quantity of the particulate material (suspended matter) can be estimated by the 

difference in mass of the filter before and after sampling. To get proper results, a special 

treatment of the filters and sorbent material is required.  

Before the measurement each set of filters is dried separately at 60°C for 12 hours and 

afterwards kept in an exiccator for 1 day to reach an equilibrium in their weight. Ready 

filters are placed one by one into the sections of the filter column in the way that they are 

set out in parallel to the water flow. After sampling the composite filters, once delivered 

in the laboratory, are dried at 60°C for 24 hours and afterwards kept in the exiccator for 1 

day. In fact, weighing of the filter before and after sampling (with regard to humidity 

absorption, accidental dust inclusion) brings the largest uncertainty in the calculation of 

the specific 137Cs activity.  

The preparation of the adsorber is provided immediately before sampling and consists in 

the saturation of the sorbent with water. Thus, in a 1 litre plastic beaker which is filled 

with a 200 g portion of dry adsorber (preliminary measured gamma-spectrometrically for 
137Cs-background), hot water (90–100 °C) is poured in small portions, while constantly 

mixing. Afterwards, the wet adsorber is put into the chamber. After sampling the wet 

adsorber is put back into the 1 litre plastic beaker. 
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Both filters and used adsorber are measured gamma-spectrometrically for 137Cs using 

HPGe detectors as described in chapter 3.5. 

 

3.2.2 Pore water sampling 

The top 20 cm sediment layer of a sediment core was used for the pore water separation 

at each sampling position of the lake. The lake water left above the sample in the corer 

was carefully removed. Subsequently, the pore water was filtered (0.45 µm) and brought 

to the laboratory for the measurement of potassium and ammonium concentrations. 

 

3.2.3 Temperature, pH, oxygen concentration measurements 

For the determination of temperature, pH, dissolved oxygen content and concentration of 

main competing ions, water samples were taken from different depths of the lake using 

Niskin-bottles (Niskin, 1962) shown in Fig. 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. Niskin-bottles used for water sampling from different depths of Lago Maggiore. 
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Such water parameters as temperature, pH and oxygen content were measured directly on 

the boat. For the oxygen concentration analysis a sensor (Mettler Toledo MO128) with 

automatic temperature balancing was used. During the measurement, the sample should 

be stirred with constant speed of about 20 cm·s-1. Due to a low accuracy of the oxygen 

meter application, the oxygen concentration values appeared to be somewhat lower than 

they really were (see chapter 4.1). 

The pH values were determined using a pH-sensor (Mettler Toledo MP120) with a 

silicaglass membrane. The automatic temperature balancing is controlled by integrated 

temperature sensors.  

 

3.2.4 Distribution coefficient and competing ions 

The partitioning of 137Cs between solid and liquid phases in the lakes is often described 

by the distribution coefficient, Kd, which is an equilibrium parameter and can be given as 

a ratio of the concentration of adsorbed activity to the activity in the solution (pore 

water): 

 

)phaseliquidinl/Bq(Cs

)phasesolidinkg/Bq(Cs
K

137

137

d = .    (3.1) 

 

The distribution coefficient varies depending on cationic composition of the water. 

Potassium and ammonium are the main competitive ions for Cs exchange, especially on 

frayed edge sites as described in chapter 1.  

The measurements of the concentrations of K+ and +
4NH  in the lake and pore water were 

performed in the chemistry laboratory of the Hochschule Ravensburg-Weingarten, 

(Germany) and in the Spiez laboratory (Switzerland).  

The concentration of +
4NH  was measured in the laboratory using a spectrophotometric 

technique (Krom, 1980). Such analysis is based on the formation of a dyes which is 

produced in the reaction of +
4NH  with hypochlorite and sodium salicylate at a pH=12.6 



Chapter 3 
 

28 

(in the presence of sodium nitroprussid as a catalyst). The extinction of light in the dye 

solution is a measure for the +
4NH  concentration. 

Potassium was determined using ICP-emission spectrometry (Spiez laboratory, 

Switzerland) and chromatography methods (Radioecological laboratory, Weingarten). 
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3.3 Sediment sampling  

3.3.1 Sampling of sediments with a gravity corer 

Bottom sediment cores from Lago Maggiore were collected at 7 locations (Fig. 3.6.A) in 

2003–2005 using a gravity sampler (Meischner and Rumohr, 1974) with an inner 

diameter of 5.8 cm or 6.0 cm. The boat from CNR-Instituto per lo Studio degli 

Ecosystemi (Verbania Pallanza, Italy) was equipped with a revolving crane with a steel 

rope where the gravity corer was fixed (Fig. 3.6.B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. A: Gravity sampler with a PVC-tube. B: Crane with a steel rope used for the bottom 
sediment sampling on Lago Maggiore.  

 

The length of the rope and the lake depth are indicated, and when the corer is about 1–5 

meters above the ground (depending on the sediment state), the crane is stopped and 

brought then on maximal speed so that the sediment gravity corer can bore itself into to 

the ground. While boring the valve on the upper part of the corer is opened so that the 

water can pass the PVC-tube without hindrance. After the sampler got into the sediment 

A B 
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the valve will be closed. The mechanism of closing the valve is performed by an extra 

weight which is transported down along the steel rope. Being closed, the valve prevents 

the sediment material of moving out of the PVC-tube while lifting. Directly after 

emerging the lower end of the tube is closed with a plastic tube cap. To keep the sediment 

core undisturbed it is fixed on the top with a soft foam material which absorbs the water 

and keeps the sediment material in position (Fig. 3.7).  

Afterwards, both ends of the PVC-tube are secured additionally with adhesive tape.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Closing the PVC-tube with the sampled sediment material using a soft foam material 
with absorbing properties.  

 

3.3.2 Sediment samples preparation for gamma-spectrometry 

In order to determine the vertical distribution of radionuclides in the sediment, first each 

sediment core was split longitudinally. For this purpose, an empty PVC-tube was cut 

lengthwise in advance. To keep both halves together some adhesive tape was used.  
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After careful pushing the sediment material out of the tube into one prepared half, it 

should be tightly closed with the second half. Using two thin metal sheets the sediment 

core is cut as it is shown in Fig. 3.8. Afterwards, the divided parts are photographed.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. Preparation of the sediment samples: lengthwise cut of the sediment core using metal 
sheets.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. Sediment slicing device.  
 

Before slicing the sediment core, the longitudinally cut parts should be left for 1–2 days 

at open air to make the material drier which makes the further sample preparation easier. 

Later, using the sediment slicing device (Fig. 3.9), the sediment core was sliced in layers 
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of 1 cm thickness as shown in Fig .3.10. Each sample was placed in polyethylene boxes 

(50 ml), freeze dried, and homogenized by grinding in a mortar. Before analyses, the dry 

weight and accordingly the bulk density of the samples were determined. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10. Cutting the sediment core into 1 cm thickness layers using the sediment slicing device.  
 

Afterwards, each milled sample was mixed with paraffin powder (1 part of sediment 

material and 10 parts of paraffin). After thorough mixing, each sample was pressed to a 

pellet (diameter of 105 mm) as can be seen in Fig. 3.11 (A–C). 

Each pellet was wrapped and glued in aluminum foil (Fig. 3.12) in order to obtain 

equilibrium between 222Rn and 214Pb (see chapter 3.6) and to prevent the diffusion of 

gaseous 222Rn out of the sample. Afterwards, pellets were stored for a period of more 

than five half-lives of 222Rn (half-life 3.8 days) in order to obtain equilibrium between 
222Rn and 214Pb.  

The described method of sample preparation has several advantages: low amounts of 

sediments are distributed homogeneously into a known geometry, self absorption in the 

sample can be calculated as the main material is paraffin and due to the radioactive 

equilibrium there is a choice of radionuclides which can be detected gamma-

spectrometrically (see next subchapter 3.4). 



Materials and methods 
 

33 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11. Paraffin pellet preparation: pressing the sample (A, B), ready pallet (C).  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12. Photo of an opened paraffin pellet which was wrapped and glued into aluminium foil.  
 
 
At each position only one core was studied for the vertical distribution of radionuclides. 

At positions 1 and 2, additional sediment cores were opened and dried and homogenized 

samples were measured γ-spectrometrically for 137Cs in polyethylene boxes (50 ml) 

without further treatment.  

B A C 
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3.4 Gamma-spectrometric analyses with BEGe detectors and LabSOCS 

All water and sediment samples from Lago Maggiore were analyzed γ-spectrometrically 

with Broad Energy Germanium (BEGe-5030) detectors of Canberra-Eurysis. The 

detectors have an active surface area of 50 cm2 and a thickness of 30 mm. They are 

characterized by large detection efficiency over a wide range of energies (from 5 keV up 

to 2 MeV). This allows detecting radionuclides with low energies such as 210Pb or 241Am 

(see Table 3.2) as well as nuclides with high energies such as 40K or 214Bi at the same 

time.  

Table 3.2. Radionuclides measured in the sediment samples of Lago Maggiore, their half-lives, 
energies and emission probabilities (yield). 

 

Nuclide name Half-live in a Energy in keV Yield in % 
7Be 0.15  477.60 10.5 

134Cs 2.07 
569.32 
604.70 
795.85 

15.4 
97.6 
97.6 

137Cs 30.07 661.65 85.1 
210Pb 22.3 46.52 4.05 

214Bi 1.7 
609.13 
1120.29 
1764.49 

46.3 
15.1 
15.8 

214Pb 2.2 
77.11 
295.21 
351.92 

10.7 
19.2 
37.2 

241Am 432.86 59.54 36.3 
 

The measuring times of water samples (adsorber and filters) varied between 48 and 72 

hours (for some samples as much as 96 hours) depending on the 137Cs activity 

concentration. Counting times for the surface layers of the sediment were shorter (≤ 24 

hours) than those for the deeper layers.  

The gamma spectrum analysis was done with the Genie 2000 Spectroscopy Software 

(Version 3.0).  

A Minimum Detectable Activity (MDA) was always calculated for both the radionuclides 

which have not been found in the spectrum and those that have been found. 
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Calculation of single photon peak efficiency of the detector 

The single photon peak efficiency of the detector is calculated with the Laboratory 

Source-less Calibration Software (LabSOCS). It takes into account the self-absorption of 

γ-rays in samples and beakers, and consequently produces accurate quantitative gamma 

analysis of samples mostly of any type and size.  

The single photon efficiency for specified energies and geometries is calculated by Monte 

Carlo method. It is based on the simulation of the individual photon path (from its origin 

inside the source through the material and into the detector). The relative uncertainty of 

the calculated efficiency is in the order of 5 %.  

The LabSOCS program requires a number of characteristics of both sample and beaker as 

input parameters. Thus, i.e. the geometric form of the beaker (cylinder, box, Marinelli 

beaker, etc.) has to be determined together with such parameters as the wall thickness of 

the container and density of the material which this container is made of. The presence of 

absorbers between the source and detector, multiple layers of sources or non-sources 

within a container, variable sample densities and distance from the sample to the detector 

active surface are also taken into account. 

Thus, during the single photon peak efficiency calculation LabSOCS takes into account 

the self-absorption effect of gamma-rays both in sample and beaker, by combining the 

detector characterization with parameters of the sample and beaker where in the samples 

are measured. 

Using this information the LabSOCS program generates an efficiency calibration file for 

the specified sample characteristics. This file is used in the analysis of the acquired 

spectra.  

Efficiency calibration was verified with a mixed radionuclide standardized solution 

(QCYB12064, AEA Technology QSA GmbH). 
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3.5 Particle-size analysis and sequential extraction of 137Cs 

 

3.5.1 Grain-size distribution analysis 

Grain size is the most fundamental property of sediment particles, affecting their 

entrainment, transport and deposition. Therefore, grain size analysis provides important 

information about the sediment provenance, transport history and depositional conditions 

(Blott and Pye, 2001).  

There are various methods and techniques employed in grain size determination (by laser 

granulometry, dry and wet sieving, hydrometer method, pipette method, etc.), but the 

results obtained using different methods may not be directly comparable as they describe 

different aspects of particle size. However, all techniques involve the division of the 

sediment sample into a number of size fractions, enabling a grain size distribution to be 

constructed from the weight or volume percentage of sediment in each size fraction. 

Fine soil (< 2 mm sieved sample) can be generally grouped into three different soil 

fractions such as sand, silt, and clay, but there are different standards for the classification 

of the soil by grain size group (Table 3.3).  

Table 3.3. Classification of the soil by grain size group according to different standards. 

 
USDA (US Department  

of Agriculture) 
ISSS (International  

Soil Society) 
DIN 4022 (German  

Standard) 
Sand, mm 0.05 – 2 0.02 – 2 0.063 – 2 
Silt, mm 0.002 – 0.05 0.002 – 0.02 0.002 – 0.063 
Clay, mm < 0.002 < 0.002 < 0.002 

 

In the present study the hydrometer method according to Gee and Bauder (Klute, 1992) 

was used. This method is based on a measurement of the soil solution density at different 

times. In a soil suspension, sedimentation of the different particles takes place with 

varying sinking speeds depending on their grain size. According to Stoke’s law, larger 

particles sediment first. Hence, the density of the suspension is measured after first sand 

then silt have settled down below the immersion depth of the hydrometer. Sedimentation 

time of sand particles in a special 1 liter cylinder (see Klute, 1992) is between 40 s and 



Materials and methods 
 

37 

80 s (depending on temperature and density). Measurements with the hydrometer are 

carried out at these times. The percentage of sand in the sample is determined by 

interpolation between the two measuring points. Sedimentation time of silt particles is 

between 2.5 hours and 24 hours. Accordingly, measurements with the hydrometer are 

taken at these times as well, and the percentage of clay in the sample is determined by 

interpolation between these measured points. Finally, the percentage of silt results from 

the difference between sand plus clay and 100 %.  

The described method was applied to wet sediments.  

 

3.5.2 Sequential extraction of caesium 

Sequential extraction experiments attempt to identify where 137Cs is residing within 

sediments giving in that way an explanation for the mobility of the radionuclide. 

However, it is known that co-extraction from different phases and incomplete extraction 

in the single steps might occur (Förster, 1985). But, at least the dominant geochemical 

associations and differences between sediments from different positions in the lake can 

be determined. For modeling the vertical distribution (chapter 5) the results from 

sequential extractions are very informative, first of all for the determination of the 

fraction of exchangeable and fixed 137Cs. 

In 1979 Tessier et al. suggested an analytical procedure consisting of chemical 

extractions for the partitioning of particulate trace metals and radionuclides into five 

different fractions: the exchangeable fraction, the ones associated to carbonates, to oxides 

and hydroxides of iron and manganese, to organic matter and the residual fraction. The 

procedure has been applied to bottom sediments (Tessier et al., 1979). Once the first four 

fractions have been removed, the residual solid should contain mainly minerals, which 

may hold radionuclides within their crystal structure.  

In Robbins et al. (1992) a 5-step extraction procedure is described, in which dissolution 

of amorphous silicates as an additional step is applied. Caesium radionuclides are soluble, 

cationic species, which can be readily taken up from solution by biological organisms. As 
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the amorphous silicates are produced by dying diatoms (microalgae) they could 

incorporate radionuclides within their structure. 

In this work extraction experiments were performed on wet samples using a modified 

five step extraction procedure according to Robbins et al. (1992). The procedure 

suggested by Robbins et al. (1992) was applied to sediments of Lake Constance and Lake 

Lugano (Kaminki et al., 1998; Klemt et al., 2000). In our research we reordered the step 

where 137Cs is extracted with oxides and hydroxides of iron and manganese, and the step 

where 137Cs is extracted with organic matter. The reason of such reordering was to 

prevent the decomposition of Fe- and Mn-oxides and hydroxides together with organic 

matter. The modified procedure was successfully used for the treatment of sediments 

from the river Yenisei (Spasova, 2003). The generalized sequential extraction method 

employed is given in Table 3.4. 

 

Table 3.4. 5-step sequential extraction procedure. 

 
 Chemical Reagent Treatment Phases with target ions 

1. CH3COONH4 (1 mol·l -1) 24 hours shaking Exchangeable ions 

2. 
CH3COONH4 (1 mol·l -1) +  
HNO3 (1 mol·l-1), pH ≥ 5 Shaking to equilibrium Carbonates 

3. NH2OH-HCl (0.2  mol·l-1) 
in CH3COOH (25 %) 

3 hours shaking 
Oxides and hydroxides of 

iron and manganese 

4. H2O2 (35 %) + HNO3 (1 mol·l-1) 3 hours stirring at 75–80 ºC Organic matter 

5. NaOH (0.2 mol·l-1) 40 minutes stirring at 80 ºC Amorphous silicates 

 

The directly exchangeable 137Cs is displaced by ammonium ions (Step 1), carbonates 

were dissolved by the addition of hydrochloric acid (Step 2), Fe- and Mn-oxides and 

hydroxides were extracted by the addition of hydroxylammonium chloride (NH2OH-HCl) 

in acetic acid (Step 3), organic matter was decomposed by hydrogen peroxide (Step 4), 

and amorphous silicates were dissolved in sodium hydroxide (Step 5). The remaining 

residue mainly consists of clay minerals, feldspars, and quartz.  
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After each of the extraction steps, the treated sediment samples were centrifuged for 

30 min, the supernatant liquid was decanted and then pressure filtered through a 0.45 µm 

cellulose acetate filter. All prepared extracts were put into plastic beakers (Fig. 3.13) for 

further gamma spectrometric analyses (see chapter 3.4). 

 

 

 

 

 

 

 

Fig. 3.13. Extracts obtained after the 5-step sequential extraction procedure. 

 

The extraction degree was determined as a ratio between the 137Cs activity concentration 

in the extract and its concentration in the sediment.  

Step 1          Step 2      Step 3           Step 4      Step 5 



Chapter 3 
 

40 

3.6 Determining the age of sediments using 210Pb method  

Lake sediments can be considered as the “diary” of a lake: Each year a new layer is 

deposited on top of the sediment. The particles that have settled on the bottom are 

covered by new sediment layers and are gradually buried in deeper and deeper sediment 

layers. The deposited particles form undisturbed lamina in a certain sequence on the 

bottom, creating in that way an archive recording the history of the lake.  

The migration behavior of radionuclides can be analyzed by modeling the input into and 

the vertical distribution within the sediment. For this purpose a proper depth-age relation 

has to be established. Often the 210Pb method is used to determine the age of sediment 

layers from the last 50 to 100 years (Robbins, 1978). By determination of the 

accumulation rate, the age of sediment from a particular depth in the sediment column 

can be estimated. 

Following the decay of 226Ra which is originally derived from 238U (T1/2 = 4.5·109 a) 
210Pb is produced. The 226Ra chain can be presented as following:  

226Ra (T1/2=1600 a)        222Rn (3.8 d)       218Po (3.1 m)       214Pb (27 m)       214Bi (20m)        
214Po (160 s)          210Pb (22.3 a) 

There are two different ways in which 210Pb can be supplied to the sediments.  

• Deposition from the atmosphere  

When radioactive 226Ra decays (see Fig. 3.14), it produces the radioactive inert gas 222Rn 

(T1/2 = 3.8 d). From all over the world radon gas can emanate from the soils into the 

atmosphere. Radon concentration integrated over the year is rather constant and it 

depends mainly on the latitude. After several days residence time in the atmosphere, 
222Rn finally decays in the radioactive chain to 210Pb (T1/2 = 22.3 years). Minute quantities 

of 210Pb fall constantly onto land and water surfaces. This material accompanies and 

mixes with sediments which settle down and accumulate at the bottom of the lake. Here it 

decays with a 22.3 years half-life and is used for dating. This is the unsupported (or 

‘excess’) part of 210Pb.  
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Fig. 3.14. Pathways in which 210Pb can reach lake sediments (by Oldfield and Appleby, 1984). 

 

• Production within the sediment 

Another part, the supported 210Pb, is produced within the sediment. Here, it is in 

radioactive equilibrium with 226Ra that has been directly washed into the lake as part of 

eroded material. By this way 210Pb is continuously produced and causes a background 

activity which must be subtracted from the total measured 210Pb activity.  

Hence, the unsupported 210Pb activity concentration is obtained by subtraction of the 

supported 210Pb (estimated from 226Ra or its daughters, in particular, by 214Pb) from the 

total measured 210Pb at its gamma-line at 46.539 keV (Ε  = 4.25%). 

If the sample is sealed so that 222Rn cannot emanate from the sample (see chapter 3.3.2) 

in the decay chain 222Rn, 218Po, 214Pb, 214Bi, and 214Po due to their short half-lives are in 

radioactive equilibrium. That means that the members of the radioactive chain have the 

same activity concentration in the sediment layers and each of these radionuclides can be 

chosen for the measurement of the supported 210Pb activity concentration. The best 

candidate for γ-spectrometry is 214Pb with its major gamma lines 295.2 keV (emission 

probability Ε  = 19.3 %) and 351.9 keV (Ε  = 37.6 %). It can be measured with high 

detection efficiency and the summation effect is low as compared to the other candidate 
214Bi. 
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In this study two modeling methods are used to estimate the sedimentation history from 

the unsupported 210Pb: (1) the “constant rate of supply” (CRS) model; (2) the “constant 

initial concentration” (CIC) model.  

 

 3.6.1 CRS and CIC approaches  

The CRS model assumes that the same amount of unsupported 210Pb per time interval is 

deposited onto the sediments. So, this model does not require the rate of sediment 

accumulation to be constant over time. In the calculation of the sediment age at a certain 

depth, first described in 1978 by Appleby and Oldfield, the cumulative unsupported 210Pb 

below that depth in a core has to be compared to the total unsupported 210Pb in the core. 

A series of these age calculations can be used to develop a graph of age versus depth for 

the core. 

( )
( )xA

0A
ln

1
t

r

r⋅
λ

= ,      (3.2) 

where ( )xA r  is the residual (cumulated) unsupported 210Pb in the sediment below the 

depth x  in Bq·cm-2; λ  is the radioactive decay constant for 210Pb. 

In the case of a constant sediment deposition rate CRS model becomes equivalent to CIC  

model which assumes that there is a constant initial concentration of 210Pb from the 

atmosphere in the top layer of lake sediments. If the flux of 210Pb to the sediment-water 

interface has remained constant over time and no post-depositional migration of 210Pb has 

occurred, it is reasonable to suppose that each layer of the sediment will have the same 

initial unsupported 210Pb activity. 

Here the age of sediment layers can be calculated as: 

( )
( )xA
0A

ln
1

t ⋅
λ

= ,      (3.3) 

where ( )0A  and ( )xA  are the initial and present activity concentration of the 

unsupported 210Pb in the layer at depth x . 

The detailed calculations are given in Appendix E.  
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 3.6.2 137Cs and 241Am method 

A complementary method of sediment dating is provided by the fallout nuclides 137Cs 

and 241Am with their known deposition pattern resulting from extensive testing of the 

nuclear weapons in the atmosphere in the late 1950s and early 1960s with maxima in 

1959 and 1963. An additional more pronounced peak can be found in the upper part of 

the 137Cs profile, caused by the accident in Chernobyl in 1986. There is no corresponding 

peak in the 241Am profile, which in fact was not transported in measurable quantities 

from Chernobyl to Western Europe. The two 137Cs maxima in the fallout related to the 

years 1963 and 1986 are usually well preserved in sediment profiles and they can be used 

as time markers. 

This method of dating requires complete recovery of the top sediment layers. 7Be with 

the half-life of 53 days is produced in the atmosphere by cosmic rays and it is expected to 

be present only in the uppermost sediment layers. The presence of 7Be in the sediments 

thus ensures complete core recovery. If no mixing occurs, the upper layers in the 

sediment must be younger than the layers below. 

While the 210Pb dating method gives an average accumulation rate for the past 50–100 

years, 137Cs is only applicable for the period beginning from the 1960s. 
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4. MONITORING OF WATER AND SEDIMENTS IN LAGO 

MAGGIORE 

 

4.1 Water measurements  

To have a representative picture of the water body of Lago Maggiore, three deep 

positions from the center of the northern (position 2), southern (position 5) and middle 

basins (position 7) of the lake were chosen for water sampling (see chapter 3.2). In the 

water column at each position dissolved 137Cs, pH, temperature, oxygen, +K  and +
4NH  

concentrations were measured. The concentration of +K  and +
4NH  as main competitors 

to 137Cs+ ions on the selective sorption sites (e.g. frayed edge sites (FES), at clay mineral 

particles) were determined both in the lake water and in the pore water of the top 20 cm 

sediment layer.  

To get the information about the inflow of 137Cs to the lake via tributaries, its activity 

concentration was analyzed in water and transported suspended material of the rivers 

Ticino, Toce and Verzasca.  

The distribution coefficients dK  which relate the 137Cs activity concentration in 

suspended matter to the concentration in water and pore water are discussed in this 

chapter. 

Additionally, a survey on measurements of 137Cs in water of Lago Maggiore done by the 

Joint Research Centre (JRC) in Ispra, Italy, during the period from 1986 till 2002 is 

given. These data in combination with our measurements are compared to the predictions 

of a model for the runoff from the catchment area (Håkanson, 2004) which was applied to 

the conditions of Lago Maggiore watershed (Semizhon, 2005).  
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 4.1.1 Concentration of dissolved and particulate 137Cs in Lago Maggiore and its 

tributaries 

The concentration of dissolved 137Cs activity in water and the specific 137Cs activity of 

suspended particles was determined both, in the lake and its tributaries, with the Midiya 

system described in chapter 3.2.1. 

137Cs in lake water 

At position 2 (Fig. 4.1) the 137Cs activity concentration in the lake water increases slightly 

with depth from 0.56 to 1.47 mBq·l-1 (Table 3.1). At other positions it stays rather 

constant (Fig. 4.2 and Fig. 4.3) and is less than 1 mBq·l-1 (Table 4.1).  

Table 4.1. 137Cs activity concentrations in water and suspended matter at positions 2, 5, and 7 of 
Lago Maggiore in 2003–2005. 

 

Location Date of 
sampling 

Depth 
in m 

Sampled 
volume 

in l 

137Cs act. conc. 
in water in 

mBq·l-1 

137Cs act. 
conc. in 

susp. matter 
in Bq·kg-1 

Mass of susp. 
matter in  
g·(100 l)-1 

5 606 0.56 ± 0.05 18.7 ± 2.1 0.26 

50 564 0.58 ± 0.05 36.9 ± 16.0 0.03 

100 540 0.80 ± 0.05 180.2 ± 49.4 0.01 
13.05.03 

196 402 1.00 ± 0.06 116.6 ± 33.7 0.02 

200 401 0.96 ± 0.08 114.5 ± 22.9 0.02 

Pos 2 

3.11.03 
275 403 1.47 ± 0.12 130.1 ± 22.2 0.03 

5 423 0.58 ± 0.07 16.8 ± 3.1 0.01 

51 582 0.74 ± 0.06 205.4 ± 39.1 0.01 

110 600 0.84 ± 0.05 505.7 ± 63.5 0.01 
Pos 5 27.04.04 

154 693 0.69 ± 0.05 217.1 ± 43.2 0.22 

2 408 0.66 ± 0.07 - - 

160 402 0.70 ± 0.07 - - 

300 398 0.93 ± 0.08 - - 
Pos 7 19.04.05 

369 410 0.63 ± 0.06 - - 

 

137Cs in river water 

The 137Cs activity concentration in tributaries is in the same order as in the lake as can be 

seen in Table 4.2. The highest value (1.4 mBq·l-1) is observed in the river Verzasca 
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whereas the lowest concentration (0.2 mBq·l-1) is found in the Toce. A minimum in 137Cs 

activity concentration in the rivers is related to autumn season whereas a maximum is 

observed in spring. Such seasonal variations can be explained by the snow melting 

period, when the transport of caesium from land to water is rather large. 

 
137Cs in suspended matter 

At positions 2 and 5 sampled in 2003 and 2004, the 137Cs activity concentration of 

suspended matter varies from 17 Bq·kg-1 up to 500 Bq·kg-1 (Table 4.1). A similar 

situation is observed in tributaries of Lago Maggiore. Particularly, in the Ticino, a 137Cs 

activity concentration of about 30 Bq·kg-1 was measured in a high amount of trapped 

suspended material. In contrast, in the river Verzasca only 0.02 g of suspended material 

per 100 liters of water was trapped. Probably, this suspended material has finer grain size 

which explains the increase of the 137Cs activity concentration there up to a factor of 10. 

 

Table 4.2. 137Cs activity concentrations in the water and suspended material from tributaries of 
Lago Maggiore in 2004–2005 (according to Semizhon, 2005). 

 

Tributary Date of 
sampling 

Total 
volume 

in l 

137Cs act. conc. 
in water in 

mBq·l-1 

137Cs act. conc. on 
suspended material 

in Bq·kg-1 

Mass of susp. 
material in 
g·(100 l)-1 

26.03.04 410 0.50 ± 0.06  79.0 ± 5.0 0.25 

13.10.04 405 0.71 ± 0.07  33.1 ± 2.2 0.85 Ticino 

16.04.05 217 1.18 ± 0.13 101.9 ± 6.7 0.45 

24.03.04 406 0.83 ± 0.07   78.3 ± 3.2 0.73 

14.10.04 411 0.86 ± 0.07   128.9 ± 11.6 0.18 Toce 

17.10.05 137 0.20 ± 0.13   87.2 ± 5.4 1.17 

14.10.04 401 1.14 ± 0.08   297.6 ± 74.1 0.02 
Verzasca 

20.04.05 400 1.39 ± 0.10     70.0 ± 11.9 0.05 
 

Sampling at position 7 was done in spring 2005 after the complete turnover of the lake in 

winter 2004–2005. There, it was not possible to collect enough suspended material on the 

paper filters for the determination of the mass and activity concentration of the suspended 

matter even by pumping of large volumes of water (about 400 liters). 
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 4.1.2 Temperature, pH and dissolved oxygen concentration 

At position 2 (Fig. 4.1) in the upper 30 m of the lake there is a warm water layer, the 

epilimnion, with a temperature of 11–12 ºC and 12–13 ºC in autumn and spring, 

respectively. In the layer below, the hypolimnion, the water temperature is about 8 ºC for 

both seasons and it decreases slightly with depth. The thickness of the epilimnion varies 

during the season due to the ambient air temperature, wind and internal wave activities. 

In our measurements the thickness of the epilimnion is about 20–30 m. At position 5 

(Fig. 4.2) the temperature in the surface water is 10–11 ºC and it decreases down to 7 ºC 

in the hypolimnion. At position 7 lower temperatures of 7–9 ºC in the epilimnion were 

measured (Fig. 4.3).  

The dissolved oxygen concentration is rather high throughout the water column at all 

positions (Fig. 4.1 to 4.3). Lago Maggiore is an oligotrophic lake, so there is only little 

organic matter or other material that could consume oxygen for decomposition or other 

oxidizing processes. The oxygen concentration varies between 6 mg·l-1 and 11 mg·l-1 with 

higher values in the epilimnion. These values are not very accurate and probably a bit too 

low due to the low accuracy of the application of the oxygen meter used for our in-situ 

measurements, but they clearly show that we have oxic conditions throughout the water 

column. 

The pH value (about 7) stays rather constant through the entire water column. However, 

there is a tendency that the pH value slightly decreases with depth which is equal to an 

increase of the H+ concentration. This increase of [H+] could possibly control the small 

increase of the 137Cs+ concentration with depth (Albrecht, 1998). 

 

 4.1.3 Competing ions 

At all positions the concentration of competing ions [ +K ] and [ +
4NH ] within the water 

column stays nearly constant (Fig. 4.1 to 4.3). The values of about 1.5 mg·l-1 for [ +K ] 

and less than 0.03 mg·l-1 for [ +
4NH ] are very small. With the transition from the lake 

water to the pore water at position 2 these values are substantially increased to 5.2 mg·l-1 
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for +K  and more than 9 mg·l-1 for +
4NH . At the other two positions (5 and 7) the increase 

of potassium is not so pronounced, it is a factor of 2 higher in the pore water than in the 

lake water. But the concentration of +
4NH  in the pore water is a factor of more than 50 

larger than in the lake water and comparable to the +K  concentration (Table 4.3).  

 

Table 4.3. The concentrations of competing ions +K  and +
4NH  (in mg·l-1) in lake water (several 

meters above the sediment) and pore water (top 20 cm sediment layer) from different positions of 
Lago Maggiore. 

 
Competing ion Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 6 Pos 7 

lake water – 1.4 – – 2.0 – 1.6 
K+ (mg·l-1) 

pore water 5.3 5.2 4.6 2.9 2.6 2.3 3.9 

lake water – 0.003 – – 0.025 – < 0.013 
NH4

+ (mg·l-1) 
pore water 8.6 9.6 1.6 1.1 1.2 1.4 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Position 2. Vertical distributions of +K  (green), 137Cs (brown), +
4NH  (red) and oxygen 

(yellow) concentrations, pH (blue) and temperature (pink) in the lake and pore water of 
Lago Maggiore. Dashed lines – water sampling on 13.05.2003; full lines – water 
sampling on 3.11.2003.  
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Fig. 4.2. Position 5. Vertical distributions of +K  (green), 137Cs (brown), +
4NH  (red) and oxygen 

(yellow) concentrations, pH (blue) and temperature (pink) in the lake and pore water of 
Lago Maggiore. Date of water sampling is 27.04.2004. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Fig. 4.3. Position 7. Vertical distributions of +K  (green), 137Cs (brown), +
4NH  (red) and oxygen 

(yellow) concentrations, pH (blue) and temperature (pink) in the lake and pore water of 
Lago Maggiore. Dashed lines – water sampling on 11.04.2005 (P. Guilizzoni, personal 
communication), full lines – water sampling on 19.04.2005. 
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The main competing ion at all positions is potassium. A negligible +
4NH  concentration is 

the result of the rather large oxygen concentration. However, the increased +K  and +
4NH  

concentrations in the pore water have an influence on the 137Cs migration by increasing 

the retarded diffusion in the sediment (see chapter 5). 

 

4.1.4 Measured distribution coefficient Kd 

Since the activity concentration of 137Cs at positions 2 and 5 was determined both in 

water and in suspended matter (Table 4.1) the distribution coefficient Kd in the water 

column can be estimated (Table 4.4).  

In the surface water (upper 5 m) the value of the distribution coefficient is about 

30 000 l/kg for both positions while the weighted average over the rest of the water 

column at position 5 – (328 000 ± 110 000) l·kg-1 – is a factor 4 higher than at position  

2 – (98 000 ± 12 000) l·kg-1. Low Kd values of the upper layer could be explained by a 

non-reached equilibrium between the 137Cs activity concentration of settling particles and 

dissolved 137Cs activity in the lake water.  

 

Table 4.4. 137Cs distribution coefficients (Kd) for suspended matter and top layer of the sediment 
of Lago Maggiore. 
 

 Position 2 Position 5 

surface water 
(top 5 m) 

33 000 ± 5 000 29 000 ± 6 000 

water column 

50 m 
100 m 
196 m 
200 m 
275 m 

  63 000 ± 28 000 
226 000 ± 64 000 
117 000 ± 35 000 
119 000 ± 26 000 
  88 000 ± 17 000 

51 m 
110 m 
154 m 

 
 

278 000 ± 57 000 
602 000 ± 84 000 
315 000 ± 67 000 

 
 

K d 
(l·kg-1) 

top 1 cm layer 
of sediment / 

lake water 
72 000 ± 7 000 136 000 ± 10 000 

 
 

Calculating a Kd as the ratio between the activity concentration in the top layer of the 

sediment and in the deep water results in (72 000 ± 7 000) l·kg-1 and (136 000 ± 
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10 000) l·kg-1 at positions 2 and 5, respectively. This is in a rough agreement with the 

distribution coefficients measured in the water column. As the concentration of both, +K  

and +
4NH , is clearly larger within the sediment than in the water, lower Kd values are 

expected there as compared to those in the lake water. The direct measurements of the 
137Cs distribution coefficient Kd of about 105 l·kg-1 in the water column will later be 

compared to the distribution coefficient which is one of the free parameters of the model 

described in chapter 5. 

Table 4.5 gives the calculated 137Cs distribution coefficients for the tributaries of the lake.  

 

Table 4.5. 137Cs distribution coefficients (Kd) for suspended material in the tributaries of Lago 
Maggiore. 
 

Tributary Date of sampling 
K d  

(l·kg-1) 

26.03.04 161 000 ± 22 000 

13.10.04   46 300 ± 5 500 Ticino 

16.04.05   86 000 ± 10 800 

24.03.04   95 000 ± 8 700 

14.10.04 150 000 ± 18 000 Toce 

17.10.05 435 000 ± 230 000 

14.10.04 262 000 ± 68 000 
Verzasca 

20.04.05   50 500 ± 9 300 

 

Rather strong variations are observed within each river which might be connected with 

the fluctuations in the water flow which influences the transported particle size fraction. 

 

 4.1.5 Other measurements of 137Cs in water of Lago Maggiore and its tributaries 

A compartment model of Håkanson (2004) which predicts the run-off of radiocaesium 

after the direct single-pulse deposition from the catchment area to the lake via tributaries 

was applied for the conditions of Lago Maggiore. This model comprises two 

compartments which describe the catchment area:  
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• Outflow areas or wetlands (upstream lakes, rivers, mires, bogs) with relatively 

fast turnover of substances and a horizontal transport of 137Cs from land to surface 

water; 

• Inflow areas or dry land dominated by much slower vertical transport processes 

(first through the soil horizons, then ground water transport, and finally tributary 

transport to the lake).  

A detailed description of the application of the model to Lago Maggiore can be found in 

the work of Semizhon (2005).  

There is a good agreement between empirical data and the model predictions of the 137Cs 

activity concentration in the tributaries Ticino, Toce and Versasca.  

Calibrating the model with the measured data the main parameters were defined for 

different tributaries and for the whole catchment: 

- the initial inventory of 137Cs in the catchment area; 

- the percentage of outflow areas in the catchment; 

- the soil permeability factor (SPF), which describes the processes of fixation and 

radiocaesium retention in soil by taking into account soil grain size characteristics; 

- the seasonal moderator for the water flow in the tributaries, which creates a seasonal 

variability in the outflow rate and gives an increased transport of 137Cs from land to 

the lake during peaks in water flow; 

- the average precipitation. 

A rather low average 137Cs inventory in the catchment area of 3000 Bq·m-2 was 

determined. However, this value is in agreement with that which is required for other 

models describing the activity concentration in lake water and sediment (chapter 5.2.2). 

The fraction of outflow areas in the catchment equals to 5 % and according to Håkanson 

(2004) can be used for large cultivated catchment areas with a low percentage of 

wetlands. The default value for soil permeability factor SPF is 40 but it can vary greatly 

between 1 and 80 (Håkanson, 2000). The more permeable the soil is, the smaller the SPF-
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value, the larger the fixation of 137Cs which consequently leads to the fewer amounts of 
137Cs remained in soils. The mean annual precipitation is (1830 ± 100) mm per year. 

Using these parameters a run-off model was applied also to the conditions of the whole 

Lago Maggiore watershed. Figure 4.4. shows a comparison between the measured 137Cs 

activity concentration in the lake surface water (our data in combination with 

measurements performed by the Joint Research Center (JRC) in Ispra, D’Alberti, 2003; 

D’Alberti 2001–2002; Cazzaniga et al., 1996–1998; Cazzaniga et al., 1997; D’Alberti 

and Osmani, 1995; Osmani et al., 1994; Dominici and Risposi, 1990–1993; Dominici, 

1989 – 1980) and the catchment area predictions for the run-off (Semizhon, 2005).  

During the first year after the accident fallout the prominent difference between run-off 

model predictions and measured 137Cs activity concentration in the surface water is 

observed. The higher radiocaesium activity concentration in the surface water during that 

period can be explained by the fact that the input of 137Cs into the lake (in the epilimnion 

layer) was not only due to the water flow from the tributaries but also due to the direct 
137Cs deposition through the surface of the lake itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. Comparison between measured data (red points) of 137Cs activity concentration in the 
surface water of Lago Maggiore and the run-off model predictions (blue line with 
seasonal variations). 
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A good agreement between measured 137Cs activity concentration in the lake surface 

water and run-off model predictions is observed during the subsequent years. Here, 

distinct seasonal variations in the tributaries can be seen which are not so clearly 

observed in the whole lake (Fig. 4.4).  
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4.2 Vertical 137Cs and 210Pb distributions in the sediments 

In the following chapter the measured vertical distributions of radionuclides and bulk 

density in sediment cores taken in spring 2003, 2004 and 2005 from 7 different positions 

of Lago Maggiore are discussed. The measured radionuclides are: 137Cs, unsupported 
210Pb, 134Cs and 241Am. Whereas 137Cs came into the sediment from the Chernobyl and 

after nuclear weapons testing fallouts, the unsupported 210Pb (see chapter 3.6) is put into 

the sediment continuously after 222Rn decay in the atmosphere. 134Cs is related to the 

Chernobyl fallout in 1986, 241Am to the peaks of the nuclear weapons testing fallouts in 

the 1960’s. Additionally, in all sediment cores the activity concentration of 7Be (which is 

a cosmogenic radionuclide with the half-life of 53.12 days) was measured for the top 0–

0.5 cm or 0–1 cm layers.  

The total inventories were determined by summing up the contribution of all sediment 

layers using the decay-corrected (1.05.1986) specific activity of 137Cs and the 

corresponding specific weight of each layer. The measured vertical distribution of the 

bulk density is given in Appendix B. 

A general classification of the sediment profiles from different positions will be 

performed. 

 

 4.2.1 Measured vertical distributions of activity concentration and bulk density of 

sediment cores from different positions 

Position 1 

Fig. 4.5 and Fig. 4.6 show the vertical distribution of 137Cs in sediment cores taken at 

position 1 influenced by the rivers Ticino, Verzasca and Maggia. On the right side the 

photos and vertical distributions of the 137Cs activity concentration within the sediment is 

shown. The consistence of the sediment material is rather hard so that the gravity corer 

could sample only 45 cm depth and the total 137Cs inventory was not completely reached 

(inventory > 33 kBq·m-2, decay-corrected to the 1.05.1986).  
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In the top layer 137Cs has an activity of up to 100 Bq·kg-1. Only one maximum with more 

than 600 Bq·kg-1 of 137Cs is observed at the depth of 24–26 cm for core 1 (Fig. 4.5) and 

17–18 cm for core 4 (Fig. 4.6). In the same layers traces of 134Cs (not plotted) were found 

(2.1 Bq·kg-1) whereas its activity concentration elsewhere was below the detection limit. 

At the depth of 45 cm the nuclear weapons testing fallout is probably not yet reached, 

while the 137Cs activity concentration continues to increase with depth.  

In both sediment cores the vertical distribution of 137Cs is not a smooth function and 

substantial scattering of the 137Cs activity concentration along to the profile can be seen. 

In Fig. 4.6 one can find light layers (photo) between 3 cm and 7 cm (2 sequential) or one 

between 32.5 cm and 36 cm which are characterized not only by constant 137Cs activity 

concentration but also by different bulk density as compared to the neighboring layers. In 

Fig. 4.5 similar layers can be found between 4 cm and 8 cm (2 sequential) and one 

between 37 cm and 40 cm with constant 137Cs and clearly different 210Pb activity 

concentrations. 

The bulk density practically does not vary with depth within both sediment cores. The 

activity concentration of unsupported 210Pb decreases exponentially with depth (the 

dashed line in Fig. 4.5 for ‘Unsupported’ 210Pb is an exponential fit to the measured data) 

from 150 Bq·kg-1 down to 50 Bq·kg-1. No 7Be was measured in the top 1 cm layer. Its 

activity concentration is less than MDA (< 29.5 Bq·kg-1).  

Position 2 

The position 2 in the basin of Cannobio with 290 m lake depth is presented by two 

sediment cores. The vertical distributions of 137Cs, and bulk density (cores 1 and 3) and 

unsupported 210Pb (core 1) are shown in Fig. 4.7 and Fig. 4.8.  

Two maxima of 137Cs are recognizable which can be assigned to the fallouts after the 

Chernobyl accident and the atmospheric nuclear weapon testing fallouts in the 1960’s. 

The 137Cs activity concentration in the Chernobyl peak (6–8 cm for both cores) exceed 

the value of 1200 Bq·kg-1 as compared to that of the maxima after nuclear weapon testing 

peaks (39–43 cm) where its concentration with about 100 Bq·kg-1 is an order of 

magnitude less. Also 241Am with the activity concentration of 3.5 Bq·kg-1was detected in 
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the layer 38–39 cm. The total inventory of 137Cs for both sediment cores is about 30 

kBq·m-2 (decay-corrected to 1.05.1986).  

Between 13 cm and 32 cm depth for both cores there is one layer with uniform colour. In 

Fig. 4.7 the activity concentrations of 137Cs and unsupported 210Pb as well as the bulk 

density within this layer are constant, and from that we can conclude that this layer 

corresponds only to one single event. A similar situation is observed in the sediment core 

3 (Fig. 4.8).  

Excluding the large layer between 13 cm and 32 cm from the common fit, the bulk 

density is linearly increasing with depth (Fig. 4.7 and 4.8). In the upper 1 cm layer 7Be 

activity concentration was 29.1 Bq·kg-1 and 16.9 Bq·kg-1 for core 1 and core 3, 

respectively. 

Position 3 

The vertical distributions of 137Cs, 210Pb and bulk density of the sediment core taken at 

position 3 at depth of 46 m are shown in Fig. 4.9. One clear peak in the 137Cs activity 

concentration (10–4 cm) is recognized which can be related to the Chernobyl fallout in 

1986. This maximum is characterized by rather low specific activity of 137Cs (450  

Bq·kg-1). The layer between 2 cm and 5 cm is characterized by very low 137Cs and 210Pb 

specific activities, and rather high bulk density. There is another layer between 18.5 cm 

and 20.5 cm (dark layer in the photo) which appears below the Chernobyl peak. Within 

this particular layer the bulk density has a sudden decrease while the unsupported 210Pb 

activity concentration increases as compared with the neighboring layers. That is why it 

appears to be questionable whether this layer can be assigned to the Chernobyl or nuclear 

weapon testing fallout. 241Am was not detected as its activity concentration is below 

MDA (3 Bq·kg-1). This is not surprising as the 137Cs activity concentration is only about 

100 Bq·kg-1. Below 30 cm the 137Cs activity concentration decreases to zero, and from 

this we conclude that the layer 20–22 cm can be related to the nuclear weapons testing 

fallout. The total 137Cs inventory of the sediment core is 20 kBq·m-2 (decay-corrected to 

1.05.1986).  
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The bulk density stays nearly constant within the sediment profile. The light brown color 

of the top 0.5 cm indicates that no sediment was lost during sampling although no 7Be 

was detected. 

Position 4 

Two distinct 137Cs peaks in the sediment core taken at position 4 can clearly be seen in 

Fig. 4.10. One occurs at a depth of 7–9 cm with a maximum value of more than 900 

Bq·kg-1. Some traces of 134Cs (up to 2 Bq·kg-1) were measured in this layer, so it can be 

related to the Chernobyl fallout. Another peak with a broader shape is observed in the 

layer between 15 cm and 20 cm. This layer is due to the nuclear weapon testing fallouts 

which is proved by the presence of 241Am (6.8 Bq·kg-1). No 137Cs was found at depths 

larger than 26 cm. In the top 3 cm (light layer in the photo) the bulk density is higher and 
137Cs activity concentration is constant. The specific activity in the top layer is not much 

larger than in the layers between the Chernobyl and nuclear weapons testing maxima. 

The total inventory is 15 kBq·m-2 (decay-corrected to 1.05.1986). 

The bulk density is linearly increasing with depth. In the vertical distribution of 

unsupported 210Pb some variations of activity concentration are observed in the upper 20 

cm. Down to 45 cm it decreases exponentially. No 7Be was measured in the top 0.5 cm; 

nonetheless, the upper layer is well recognized in the photo by a distinguished light 

brown colour.  

Position 5 

In the sediment core 3 of position 5 taken from 160 m depth, the 137Cs maxima – 2500 

Bq·kg-1 and 190 Bq·kg-1 – can be found in the layers between 10 – 11 cm and 23 – 24 cm 

for Chernobyl and nuclear weapon testing fallouts, respectively (Fig. 4.11). A very sharp 

maximum representing the input in 1986 is followed by a tail of enhanced specific 

activity of 137Cs towards the sediment surface where it is in the same order as the 

maximum of the nuclear weapon testing peak. 241Am was found only in one layer (24 cm) 

where its specific activity is 10 Bq·kg-1. The total 137Cs inventory is 19 kBq·m-2 (decay-

corrected to 1.05.1986). 
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Although there is a clear distinction between different sediment layers (photo), there is no 

clear distribution of unsupported 210Pb and bulk density in the upper 20 cm. Downwards 

from 20 cm to 45 cm a clear exponential decrease is observed in 210Pb concentrations 

while the bulk density is increasing linearly.  

The activity concentration of 7Be in the layer 0–1 cm was less than MDA (20.1 Bq·kg-1), 

nevertheless, in the photo of the sediment in Fig. 4.11 it can be seen that the top layer was 

not lost. 

Position 6 

The sediment core taken at position 6 (Fig. 4.12) at 29 m depth is characterized by a 

considerable broadening of both the nuclear weapon testing peak (10–16 cm) and the 

Chernobyl peak (2–7 cm). Very low specific 137Cs activities (< 330 Bq·kg-1) are apparent 

at that position. No 134Cs was measured whereas at a depth of 11 cm 241Am was detected 

with an activity concentration of about 7 Bq·kg-1 which is in the order of the MDA. The 

total 137Cs inventory of 7 kBq·m-2 (decay-corrected to 1.05.1986) is very low. 

The unsupported 210Pb is decreasing with depth and can be well-described by an 

exponential function. The bulk density is increasing down the sediment profile. In the 

upper 0–1 cm layer the specific 7Be activity was measured. Here, it is about 100 Bq·kg-1.  

Position 7 

The vertical profiles from the deepest position 7 with 370 m lake depth are shown in  

Fig. 4.13. The activity maxima of the Chernobyl 137Cs with about 1400 Bq·kg-1 (21 cm) 

and of the nuclear weapon testing 137Cs with 160 Bq·kg-1 (35 cm) are well-separated. The 

Chernobyl peak is very sharp and it is broadened towards the sediment surface with some 

visible variations in the activity concentration of 137Cs. At a depth of 36 cm the specific 
241Am activity is about 7 Bq·kg-1. The total 137Cs inventory at this position is about 33 

kBq·m-2 (decay-corrected to 1.05.1986). 

The vertical distribution of unsupported 210Pb is varying substantially. Some layers  

(10–12 cm, 15.5 – 18.5 cm, and 53–66 cm) can be found with very low specific 210Pb 

activity and high bulk density at the same time. 7Be was measured in the top layer (0–

1cm) and its activity is about 11 Bq·kg-1.  
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Fig. 4.5. Position 1, from left to right: Photo of the sediment core 1 (0-52 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 12.05.03), unsupported 
210Pb, and bulk density.  
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Fig. 4.6. Position 1, from left to right: Photo of the sediment core 4 (0-53 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 12.05.03), and bulk 
density.  
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Fig. 4.7. Position 2, from left to right: Photo of the sediment core 1 (0-41 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 12.05.03), unsupported 
210Pb, and bulk density.  
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Fig. 4.8. Position 2, from left to right: Photo of the sediment core 3 (0-46 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 12.05.03), and bulk 
density. 
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Fig. 4.9. Position 3, from left to right: Photo of the sediment core 3 (0-35 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 26.04.04), unsupported 
210Pb, and bulk density.  
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Fig. 4.10. Position 4, from left to right: Photo of the sediment core 2 (0-45 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 26.04.04), unsupported 
210Pb, and bulk density.  
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Fig. 4.11. Position 5, from left to right: Photo of the sediment core 3 (0-45 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 26.04.04), unsupported 
210Pb, and bulk density.   
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Fig. 4.12. Position 6, from left to right: Photo of the sediment core 3 (0-39 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 18.04.05), unsupported 
210Pb, and bulk density. 
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Fig. 4.13. Position 7, from left to right: Photo of the sediment core 1 (0-39 cm), the vertical 
distributions of 137Cs (decay-corrected to the date of sampling 18.04.05), unsupported 
210Pb, and bulk density.  

 
 

 4.2.2 Introduction of turbidites  

One peculiarity of deep lakes, and in particular of Lago Maggiore, is the presence of so 

called ‘turbidite layers’ in the sediment profiles. Turbidity flows can be described as 

“underwater avalanches” of sliding sediments from the steep slopes of lake basins which 

are responsible for the distribution of vast amounts of sediment into the deep lake (Fig. 

4.14, A).  

 

 

 

 

 
Fig. 4.14. Different ways of turbidite appearance in the deep lakes: A - due to steep slopes of the 

lake, B – with the incoming allochthonous material. 
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In Lago Maggiore the distinctive feature of the turbidite layers is that usually they have 

higher bulk density in comparison with the neighbouring layers and a rather constant 

activity concentration of 137Cs and unsupported 210Pb within this particular layer. Larger 

turbidites can be seen in photos of sediment profiles where the layers of the turbidites 

have a uniform colour. An example of such large turbidite layer is shown in Fig. 4.15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.15. A photos of alternating turbidite layer (T) and “normal” (N) sediments of the northern 
basin of Lago Maggiore.  
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(Voitsekhovitch, personal communication), where the slope is not as steep and 

underlying layers are mixed heavily by the turbidity flow. In that case, the density within 

the turbidite layer increases with depth.  

Another reason of the turbidity flow appearance might be a very heavy rain which often 

resides in the region of the Southern Alps and which supplies large quantities of 

allochthonous material into the lake via frequent river floods (Fig. 4.14, B). Such 

incidents may take place every year or sometimes several times in a year causing regions 

of ‘mini-turbidites’ in the vertical sediment profiles (Marchetto and Musazzi, 2001). The 

presence of such ‘mini-turbidites’ brings additional uncertainties in the model and makes 

it difficult to establish correctly the depth-age relation in the sediment profile.  

 

 4.2.3 Discussion on the vertical distributions 
 
In most cores the lamination of the profile due to the seasonal variations in the 

sedimentation process or due to specific events can be well recognized. For example, in 

sediment cores from positions 2 (Fig. 4.7 and 4.8), 4 (Fig. 4.10), 5 (Fig. 4.11) and 7 (Fig. 

4.13) in the upper 1–4 cm layer a distinct white layer is observed. According to 

Guilizzoni (2003) this layer corresponds to a large inundation in the year 2000.  

 
In this chapter four factors which are used to classify the profiles of Lago Maggiore will 

be discussed: 

• the shape and position of the Chernobyl peak; 

• 137Cs inventories in the sediment; 

• bulk density; 

• the appearance of turbidite layers. 

 

Shape and position of the Chernobyl peak 

According to the shape of the Chernobyl maximum, the profiles from the lake can be 

grouped into three different types.  
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The first group is characterized by a clear maximum which is observed in the upper 10 

cm with relatively high specific activities. The peak is followed by a monotonously 

decreasing 137Cs activity concentration towards the sediment surface. Cores of position 2 

(Fig. 4.7 and 4.8) and position 5 (Fig. 4.11) can be designated to this group. They are 

located in the center of the northern and southern basins of Lago Maggiore, respectively, 

with water depths larger than 150 m. A similar situation is observed in the sediment 

profile of position 4 (Fig. 4.10). That position is located behind the small island Madre 

where there is no influence of inflowing or outflowing water.  

The second type is introduced by a very sharp Chernobyl maximum occurred at a larger 

depth (below 17 cm). This group is depicted by the sediment profiles of positions 1 (Fig. 

4.5, 4.6), 3 (Fig. 4.9) and 7 (Fig. 4.13). Profiles of that type are found in front of 

tributaries of the lake: Toce for position 3, Ticino and Verzasca for position 1. The 

exception is the deepest position 7 which is located in the middle of the central part of the 

lake. There, the larger depth of the Chernobyl peak and variations in the specific 137Cs 

activities above it might be due to some allochthonous material which is transported not 

only by tributaries, but also with heavy rains. A low activity in the Chernobyl peak as 

compared with those from the first group is typical for these positions.  

The third type is represented by a very broad Chernobyl peak which can be observed in 

the sediment profile of position 6 (Fig. 4.12). The core was taken at a water depth of less 

than 30 m close to the outlet of the lake. An enhanced diffusion of 137Cs acting at that 

location can lead to such a broad structure (see chapter 5.1.3).  

137Cs inventories in the sediment 

According to the total inventories of 137Cs Lago Maggiore can be divided into three parts:  

1. northern basin with values exceeding 30 kBq·m-2; 

2. central part with the inventories varying between 15 and 20 kBq·m-2; 

3. southern basin near the outflow area with 7 kBq·m-2. 

Here, a clear tendency of a decrease in total 137Cs inventories from the northern basin to 

the southern part of the lake can be observed (Fig. 4.16, A).  
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Fig. 4.16. A:  Arial distribution of total 137Cs inventories (kBq·m-2) in the sediments of Lago 
Maggiore, decay-corrected to 1.05.1986. B: The ratios of Chernobyl to nuclear 
weapons testing 137Cs inventories calculated at 1.05.1986. 

 

Positions 1, 2 and 7 belong to the first group, whereas positions 3–5 describe the second 

group; the third part is presented by position 6. 

Additionally, the ratios of Chernobyl to nuclear weapons testing 137Cs inventories (both 

decay-corrected to 1.05.1986) were determined (Fig. 4.16, B). The ratio of Chernobyl to 

nuclear weapons testing 137Cs is about 2 throughout the lake, except for positions 3, 4 and 

5 which are influenced by the inflow of the river Toce and where the position of 

Chernobyl 137Cs is increased by up to a factor of 4.  

Bulk density 

The bulk density of the sediment cores varies from 0.2 g·cm-3 up to more than 1 g·cm-3 at 

different positions in Lago Maggiore. However, two groups of profiles can be 

distinguished:  
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• with a density linearly increasing with depth. 
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Thus, sediments taken at positions 2, 4 to 7 are characterized by linearly increasing bulk 

density. At the same time positions 1 and 3 are represented by harder material with 

constant density down the sediment profile. 

Turbidite layer appearance 

In all sediment profiles, except those taken at positions 2 and 6, many small turbidite 

layers appear due to the transport of allochthonous material after heavy rain falls. 

Large variations in vertical distributions of 137Cs and unsupported 210Pb activity 

concentrations are typical for the layers above the Chernobyl peak at positions 1 and 7 

which is probably due to appearance of ‘mini-turbidite’ layers that are rather difficult to 

identify and handle.  

Positions 3 to5 are characterized by a turbidite deposition with a thickness of 2–3 cm in 

the upper sediment layer (Fig. 4.9 to 4.11). These positions belong to one basin and 

probably provide similar records of the sedimentation history.  

A very large turbidite (a single layer with a sickness of about 20 cm) at position 2 (Fig. 

4.7 and 4.8) was easily identified in the photo as well as from vertical distributions of 
137Cs, unsupported 210Pb and bulk density. This layer is the result of turbidity flows which 

bring a large amount of material from the steep slopes of the lake basin.  

The variations of the bulk density and unsupported 210Pb specific activities, as observed 

in the layer 19–21 cm in profile of position 3 (Fig. 4.9), may be explained by changes in 

sedimentation conditions in the lake. In that case this layer is not assigned as a turbidite. 

Turbidites have a problematic influence on the establishment of depth-age relation in the 

sediment profile (see chapter 4.4) and bring additional uncertainties to the parameters 

used for modeling the vertical distribution (see chapter 5.6). 
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4.3 Association of radiocaesium to different geo-chemical fractions 

In the following subchapters the results of grain-size distribution analysis and of 

sequential extractions of 137Cs from sediments of Lago Maggiore are described and 

summarized.  

The knowledge of binding of 137Cs to the different geo-chemical fractions of the sediment 

is important as the amount of exchangeable and fixed caesium will be used in the model 

of the vertical migration of 137Cs within the sediment (chapter 5).  

 

 4.3.1 Grain-size distribution of sediments and organic matter content 

In Fig. 4.17 the percentage of organic matter and the particle fractions sand (> 0.05 mm), 

silt (2–50 µm), and clay (< 2 µm) of the sediment profiles from the seven positions of 

Lago Maggiore is shown. The experiments are performed on wet sediments, whereas all 

values are related to the total mass of the dry samples including the organic matter 

content. The fraction of organic matter is of great interest especially due to rather large 

percentage of extractable 137Cs associated with organic matter as will be shown in 

subchapter 4.3.2.  

The results of grain-size distribution analysis are given in a table in Appendix C. 

Silt content 

The prevalent fraction mostly at all positions is silt. It varies between 50 % and 80 % in 

most of the sediments, except at position 2 where it is in the order of 20 % increasing 

with depth up to 40 %.  

Sand fraction 

The sediment of position 2 is characterized by a rather high percentage of sand (65 %) in 

the top layer. In the layers below down to 50 cm it is a factor of 2 less. The opposite 

situation is observed at position 4 where the sand fraction increases with depth from 1 % 

to 10 %. At other positions the percentage of sand is in the order of 10–20 %. 
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Clay minerals 

A clay minerals fraction of more than 40 % is observed in the sediments at positions 4, 6, 

and 7. At position 2, with a minimum in the layer between 2–12.5 cm, it increases with 

depth up to 27 %. Other positions (1, 3 and 5) are characterized by a lower percentage of 

clay minerals which does not exceed 17 %. 

Organic matter content 

At most positions the percentage of organic matter is rather low (less than 3 %). It 

increases with depth at positions 1 and 4, whereas at positions 2 and 7 there is a tendency 

that it decreases (to 1 %) down the sediment profile. Position 5 is characterized by the 

highest content of organic matter of more than 7 %.  

 

There is the common tendency that the clay content is inversely proportional to the sand 

content in all profiles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.17. Percentage of grain-size distribution and organic matter content of sediment profiles at 

different positions of Lago Maggiore. 
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 4.3.2 Sequential extraction of 137Cs in the sediment 

Sequential extractions of the sediments give the association of 137Cs to the different geo-

chemical fractions within the sediment matrix. A set of 5-step sequential extraction 

experiments was performed with sediment material (mostly from the area of the 

Chernobyl maximum) from different positions of Lago Maggiore as described in chapter 

3.5.2. The results of these experiments show that 137Cs is very tightly bound to the 

sediment at almost all positions and generally only a few percent of 137Cs could be 

extracted altogether. The results are given in Fig. 4.18 and in a table in Appendix D. 

Position 1 

At position 1 less than 10 % of the total 137Cs could be extracted. Only 0.45 % of 137Cs 

was associated with the exchangeable fraction. An even smaller percentage of 137Cs was 

extracted with carbonates and oxides and hydroxides of manganese, respectively. Only 

the amount of 137Cs associated to organic matter and to the amorphous silicates is in the 

order of several percents. More than 90 % is associated to the residue which mainly 

consists of clay minerals, feldspars and quartz. 

Position 2 

The measured percentage of exchangeable 137Cs at position 2 is about 1 %. Less than a 

percent of radiocaesium was associated with carbonates, oxides and hydroxides of iron 

and manganese, and amorphous silicates, respectively. 137Cs was extracted mainly from 

the organic matter even though the portion of organic phase was less than 3 % (see 

chapter above).  

Position 3 

The extraction experiments were performed on two different sediment cores from 

position 3. Both show a surprisingly low percentage of exchangeable 137Cs of less than 

0.3 %. The portion of about 1 % of 137Cs could be extracted with the organic matter 

whereas the percentage of radiocaesium associated with oxides and hydroxides of iron 
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and manganese is negligible. Thus, about 98 % of radionuclide remains fixed to the 

sediments. 

Performing the experiments on two sediment cores taken from one position but several 

meters apart, we tested the variability of our results. The measurements show that the 

differences between two cores of the same position in the lake are very small as 

compared to the differences between cores from different basins. 

Position 4 

The highest percentage of extracted 137Cs (4.3 %) is found in the organic matter fraction 

which is followed by the fractions of exchangeable ions (1.6 %), carbonates (0.5 %) and 

oxides and hydroxides of iron and manganese (0.2 %). The 5th step of the extraction 

procedure could not be performed completely as with centrifuging it was not possible to 

separate the liquid phase from the solid. Thus, all the rest was put to the residue. This 

explains the question mark “?” in Fig. 4.17. Whether the white powder swimming on the 

liquid phase is amorphous silicates or poly-phosphates as suggested by Dr. Wessels from 

the Lake Research Institute at Langenargen, Germany, has still to be analyzed. 

Position 5 

Position 5 is characterized not only by the highest percentage of the measured 

exchangeable 137Cs (9.7 %) but in general, somewhat higher values of extractable 

radiocaesium. More than 20 % of 137Cs was extracted altogether from the sediments 

which belongs to the fractions of exchangeable ions, organic matter (6.6 %), carbonates 

(2.4 %), amorphous silicates (1.1 %) and oxides and hydroxides of iron and manganese 

(1.1 %). Still, about 80 % of 137Cs remains fixed in the residue and cannot be extracted by 

the performed 5-step procedure. 

Position 6 

The highest extraction degrees at position 6 were determined in the fraction of the 

exchangeable ions (4.5 %) and the organic matter (3.2 %), followed by lower percentage 

of extracted 137Cs with the carbonates (1.8 %), oxides and hydroxides of iron and 
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manganese (0.7 %), and amorphous silicates (0.5 %). The total degree of extraction for 
137Cs is about 11 %.  

Position 7 

The portion of extracted 137Cs in the first step is 0.9 %. With 2 % the largest extraction 

percentage is measured for the fraction of organic matter. Steps 2, 3 and 5 have very low 

values of extracted radiocaesium which are in the order of only 0.2 %. So, again about 

97 % of the radionuclide is fixed to the phase which mainly consists of clay minerals, 

feldspars and quartz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18. Results of the 5-step sequential extraction experiments for different positions of Lago 
Maggiore. Given on the right side is: position, depth of the lake, and the sediment layer 
on which the extraction experiment was performed. On the left side the year of 
sediment sampling is marked as explained in the text. 
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extractable 137Cs during five steps is generally very low (1.9 – 8.5 %) except at the 

position 5 where it is rather high (20.9 %).  

The lowest percentage of radiocaesium could be extracted in the third step with oxide and 

hydroxides of iron and manganese. The extraction degree of this phase is always below  

1 % with an exception at position 5 where it amounts to 1.1 %. On the contrary, most of 

extracted 137Cs was found in the organic fraction, followed by amorphous silicates and at 

some positions exchangeable ions of Cs. 

As the portion of exchangeable 137Cs in the sediment is very low and most of the Cs 

radionuclides are fixed to clay minerals, the importance of 137Cs diffusion in the sediment 

and the danger of its redissolution into the water of Lago Maggiore is very low. Still, the 

exchangeable fraction of 137Cs which is named α  in the following chapters remains 

important for modeling the vertical distribution of radiocaesium in the sediment.  

The measured portion α  of exchangeable 137Cs is taken as one of the input parameters of 

the model described in chapter 5. That 137Cs which is associated to carbonates, oxides and 

hydroxides of iron and manganese, organic matter, amorphous silicates, and the rest is 

taken as the fixed fraction in the model. 

 

 4.3.3 Classification of positions  

From the results of the granulometric composition of sediments, organic matter content, 

and 137Cs association to the different geo-chemical fractions, it is possible to perform 

another classification of sediments of Lago Maggiore.  

Here, the following factors will be discussed: 

• organic content; 

• measured portion of exchangeable 137Cs. 

Organic content 

In Fig. 4.19 (A) the organic matter content for different positions of Lago Maggiore is 

shown. Each position is represented by the values measured in sediment profiles at a 

depth corresponding to the region of the Chernobyl peak.  
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According to the percentage of organic content, the positions of Lago Maggiore can be 

divided into three groups: 

• organic matter larger than 3 % (position 5); 

• content of organic matter varying between 2 % and 3 % (positions 1, 2, and 7, 

representing in that way the northern basin of the lake); 

• fraction of organic matter not exceeding 2 % (positions 3, 4, and 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19. Percentage of organic matter content in the sediments (A) and percentage of 
exchangeable 137Cs measured at step 1 during the sequential extraction experiments (B) 
in the sediments from different positions of Lago Maggiore. 

 
 

Measured portion of exchangeable 137Cs 

A similar classification of the positions can be done according to the percentage of the 

measured portion of exchangeable 137Cs in the sediment profiles. Figure 4.19 (B) shows 

the portion of exchangeable 137Cs ions measured in the sediments from different positions 

of Lago Maggiore. 
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• northern and central basins (positions 1, 2, 4 and 7) with a rather low percentage 

of exchangeable 137Cs (0.45 – 1.56 %);  

• southern basin (positions 5 and 6) which is characterized by much larger 

percentage of extracted exchangeable 137Cs ions (4.5 – 9.9 %);  

• position 3 which with the lowest portion of measured exchangeable ions of 137Cs 

(0.24 %). 

 

Generally, Lago Maggiore sediments are mainly characterized (except position 5) by low 

percentage of exchangeable and extractable during 5 step extraction procedure 137Cs at 

the same positions.  
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 4.4 Dating of sediment with 210Pb 

Dating of the sediments was carried out in the seven cores from different positions of 

Lago Maggiore. Based on the data on the content of unsupported 210Pb in individual 1 cm 

layers of the depth profile, their age and the sedimentation rates were determined. To do 

these calculations, two different models were used: CRS and CIC (see chapter 3.6 and 

Appendix E). Additionally the independent linear depth-age relation based on 137Cs is 

introduced.  

 

 4.4.1 Results and discussion on 210Pb dating 

Figures 4.22 to 4.28, part A, show the plot of 210Pb activity versus the accumulated 

weight (calculated from the bulk density and thickness of the sediment sample) for 7 

cores from different positions. In sediment cores from positions 1 to 5, and 7 the larger 

turbidites were taken out. Afterwards, a weighted least-square exponential fit to the data 

(pink line) was applied.  

At positions 2 (Fig. 4.23), 4 (Fig. 4.25) and 6 (Fig. 4.27) the 210Pb activity concentration 

can be described by exponential functions (CIC) rather well. However, the extrapolation 

down to infinity shows very low values as compared with the measured data. The reason 

for these higher unsupported 210Pb activity concentrations might be the loss of 222Rn from 

the sample of up to 30 % in the worst case. More probable is a deviation from the CIC 

model Also at other positions significant deviations from the best fit-line are observed. 

These deviations indicate that the accumulation rate varied: high activities indicate low 

accumulation rates and vice versa. Another reason of such large scatterings in 210Pb 

activity concentration, e.g. at positions 1 (Fig. 4.22) and 7 (Fig. 4.28), might be the 

presence of many smaller turbidite layers which can be rather difficult to identify and are 

therefore not taken out from the 210Pb fit. 

The results of dating the seven cores are given in Fig. 4.22 to 4.28, part B. The age of 

individual sediment layers is shown as calculated according to CIC (thick green line, thin 

lines are the uncertainties) and CRS (the red points with the error bars calculated from the 

counting statistics of the 210Pb measurement) models. The blue line (points) is an 
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independent time scale based on 137Cs dating with maxima indicating Chernobyl fallout 

in 1986 and nuclear weapons testing in 1963, plotted versus corrected depth. On the 

secondary axis the sedimentation rate calculated from the CRS model is shown as a red 

dashed line. 

Both, CIC and CRS dating results agree very well back to about 40 years for cores from 

positions 1 (Fig. 4.22), 3 (Fig. 4.24) and 7 (Fig. 4.28). Also the location of the 137Cs 

maxima confirm these models, whereas at positions 4 (Fig. 4.25) and 6 (Fig. 4.27) is 

agrees only with the CIC model. Still, the 137Cs model at position 3 gives an indication 

that the top layer of the sediment core might be missing. This fact is rather surprising 

because according to the photo of the profile a presence of the top was indicated by the 

layer of light brown colour. Probably, the explanation of such 137Cs slope can be the 

presence of the turbidite which was found before the Chernobyl fallout and was not taken 

completely from the fit. 

At position 5 (Fig. 4.26) rather good agreements can be seen between CRS and CIC 

models, but both do not agree with 137Cs dating. There is a clear disagreement between 

three methods of age determination applied for the sediment core from position 2 (Fig. 

4.23).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.21. Average sedimentation rates in g·(cm2·a)-1calculated using the CRS 210Pb model. 
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From Fig. 4.21 it can be seen that the average sedimentation rate calculated using the 
210Pb data varies between 0.3 g·(cm2

·a)-1 and 1.2 g·(cm2
·a)-1. 

However, the range of the sedimentation rate is from 0.7 to 2.2 g·(cm2
·a)-1 (position 1), 

0.01 to 1.1 g·(cm2·a)-1 (position 2), 0.2 to 1.5 g·(cm2·a)-1 (position 3), 0.02 to 

0.9 g·(cm2
·a)-1 (position 4), 0.2 to 1.6 g·(cm2

·a)-1 (position 5), 0.04 to 0.6 g·(cm2
·a)-1 

(position 6) and 0.4 to 1.4 g·(cm2·a)-1 (position 7). These values can be compared later 

with the output of the modeling the 137Cs vertical distribution in the sediment (chapters 

5.6 and 5.7). 
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Fig. 4.22. Position 1. A: Measured unsupported 210Pb activity concentration versus accumulated 
weight. The pink line is a weighted exponential fit to the data. B: Depth-age relation of 
the sediment as a result of dating. The dashed line shows the sedimentation rate 
calculated by the CRS model. 
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Fig. 4.23. Position 2. A: Measured unsupported 210Pb activity concentration versus accumulated 
weight. The pink line is a weighted exponential fit to the data. B: Depth-age relation of 
the sediment as a result of dating. The dashed line shows the sedimentation rate 
calculated by the CRS model. 
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Fig. 4.24. Position 3. A: Measured unsupported 210Pb activity concentration versus accumulated 
weight. The pink line is a weighted exponential fit to the data. B: Depth-age relation of 
the sediment as a result of dating. The dashed line shows the sedimentation rate 
calculated by the CRS model. 
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Fig. 4.25. Position 4. A: Measured unsupported 210Pb activity concentration versus accumulated 
weight. The pink line is a weighted exponential fit to the data. B: Depth-age relation of 
the sediment as a result of dating. The dashed line shows the sedimentation rate 
calculated by the CRS model. 
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Fig. 4.26. Position 5. A: Measured unsupported 210Pb activity concentration versus accumulated 
weight. The pink line is a weighted exponential fit to the data. B: Depth-age relation of 
the sediment as a result of dating. The dashed line shows the sedimentation rate 
calculated by the CRS model. 
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Fig. 4.27. Position 6. A: Measured unsupported 210Pb activity concentration versus accumulated 

weight. The pink line is a weighted exponential fit to the data. B: Depth-age relation of 
the sediment as a result of dating. The dashed line shows the sedimentation rate 
calculated by the CRS model. 
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Fig. 4.28. Position 7. A: Measured unsupported 210Pb activity concentration versus accumulated 
weight. The pink line is a weighted exponential fit to the data. B: Depth-age relation of 
the sediment as a result of dating. The dashed line shows the sedimentation rate 
calculated by the CRS model. 
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 4.4.2 General conclusions on dating the sediments 

For some of the sediment cores from Lago Maggiore both CIC and CRS models show 

rather good estimates of the sediments’ age. It was supposed that due to varying 

sedimentation rates CRS version should be much better. However, as the age of sediment 

layers is determined via the ratio of integrals of the 210Pb activity down to infinity, 

turbidites which add some more 210Pb to the inventory tend to make the calculated age of 

sediment layers younger. 

Of course, large turbidites can easily be identified on the photo of sediment cores. 

Nevertheless, smaller turbidites within the seasonal pattern in the photo of the core which 

have an influence on the age determination as well are more difficult to identify and to 

handle. Therefore, dating with radionuclides becomes rather difficult. 

In general, together with 137Cs, the 210Pb methods CIC and CRS can provide reliable data 

for dating purposes and for sediment accumulation rate calculations. 
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5. MODELING OF RADIOCAESIUM IN WATER AND SEDIMENTS 

OF LAGO MAGGIORE 

To predict the long-term behaviour and particularly the migration of radionuclides in the 

environment, different models were developed and used so far (Smith et al., 2002; 

Kirchner, 1998; Klemt et al., 2002; Monte et al., 2003). Generally, two classes of 

migration models can be distinguished. The models of the first class – simple 

compartment models – use a number of compartments (which are defined as parts with 

constant concentrations) associated to soil/sediment layers, and calculate radionuclide 

fluxes between them, without making assumptions on the migration mechanisms 

(Bossew and Kirchner, 2004). Recently, however, it was pointed out (Kirchner, 1998) 

that this class of models which is using common differential equations implicitly assumes 

purely convective flow with dispersion characteristics defined by the number and size of 

compartments. The solution of such simple compartment models is presented as 

integration over time. 

The models of the second class – analytical models – result in partial differential 

equations for the concentration C (x,t), of a radionuclide in depth x below soil or 

sediment surface after migration time t. Basically, there are two types of analytical 

models. The first type makes assumptions on physico-chemical mechanisms which 

govern the migration of radionuclides in soil and their interaction with soil particles 

(Bossew, 2004). The second type tries to describe empirical profiles mathematically 

rather than explaining them, but due to their purely empirical basis, this type of models 

should not be used for predictions. Analytical models can be solved using both, finite 

differences (the solution is the averaged activity concentration within a certain layer) or 

finite element methods (the result is the continuous function instead of discretised 

constant values). 

This work is devoted to a particular analytical model of the first type which assumes 

sedimentation and diffusion as two main processes controlling the vertical migration of 
137Cs in lake sediments. Another important mechanism which describes the interaction of 
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137Cs between liquid and solid phase is sorption. The processes bio- and physical 

turbation as well as radioactive decay are taken into account in the model.  

Within a joint project of the Radioecological Laboratory at the Hochschule Ravensburg-

Weingarten (Germany) and the Spiez Laboratory (Switzerland) on the present 

radioecological situation of Lago Maggiore, the runoff of radiocaesium from the 

catchment area to the lake tributaries after a direct single-pulse deposition was modelled. 

It was sufficient to use a compartment model and to solve the common differential 

equations by the finite differences approach (Semizhon, 2005). In case of our model 

which describes migration processes in space and time and consists of a set of partial 

differential equations, a finite element program (FemLab) was used instead of finite 

differences (programs like ModelMaker, Powersim, etc.), although finite element 

programs are usually much more complicated. In this way we were able to describe the 

migration behavior of radionuclides by modeling their input into and the vertical 

distribution within the sediment as shown in this chapter. 

 

5.1 Main processes in the “diffusion-convection” type model 

In this chapter the main mechanisms controlling the migration processes of radiocaesium 

in the bottom sediments will be discussed in details.  

5.1.1 Sorption 

In deep lakes one of the processes by which radioactivity in the water column can be lost 

is sorption of radionuclides to particles which subsequently settle to the bottom sediment 

taking the radionuclide with them. Thus, a transfer of activity between the two phases 

(dissolved and particulate form) is taking place.  

Exchangeable and fixed parts of radioactivity 

In the solid phase of bottom sediments 137Cs exists in two forms – exchangeable and 

fixed. The exchangeable form includes that 137Cs which is most of its time adsorbed on 

the surface of particles and only part of its time dissolved in the pore water. The fixed 
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part of the radionuclide is bound to solids. The corresponding concentrations are given as 

EC  and FC  in Bq·m-2 per 1 cm layer of sediment. The interaction between the two parts 

can be described by first-order fixation and redissolution processes using the following 

differential equations (Konoplev et al., 1996): 

( )
FE

E CrCf
t

t,xC
⋅+⋅−=

∂
∂

    (5.1) 

( )
FE

F CrCf
t

t,xC
⋅−⋅=

∂
∂

    (5.2) 

where, 

f and r are fixation and redissolution rates, respectively, in a-1. 

Schematically, one solution of these equations is shown in Fig. 5.1. Fixation and 

redissolution rates are dynamic parameters. As we do not intend to model seasonal 

variations (the time resolution is in terms of years), an equilibrium between fixation and 

redissolution can be assumed (Fig. 5.1). In this way the actual values of r  and f  become 

obsolete and only the ratio of r  and f  is important. The parameter f  which is in the 

order of 2 a-1 (Spasova, 2003) is reasonable and we have equilibrium within one year. 

 

 
 

               arbitrary starting 

                 concentrations      equilibrium 

 

 

 

Fig. 5.1. A combination of fixation and redissolution processes describing the exchangeable and 
fixed parts of activity concentration. 

 

The portion of exchangeable activity α  is experimentally determined by the first step of 

extraction experiments (see chapter 4.3). Taking into account the statements described 

above we finally derive the following equilibrium equation: 

Time

CE

CF

Time

CE

CF
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fr

r

CC

C
   

FE

E

+
=

+
=α .    (5.3) 

Distribution coefficient 

The distribution coefficient Kd is an equilibrium parameter which relates the activity 

concentration of the adsorbed 137Cs to its activity concentration in the pore water (see 

chapter 3.2.4) 

There are exchangeable (ex
dK ) and total ( tot

dK ) distribution coefficients which can be 

calculated from the concentration of exchangeable ions sorbed on solids or from the total 

activity of the sediment, respectively. The ratio of these two coefficients gives the portion 

of exchangeable activity α  within the sediment:  

tot
d

ex
d

K

K
  =α .     (5.4) 

The value of the total distribution coefficient tot
dK , is very much sensitive to radionuclide 

speciation in the solid phase (Konoplev and Bulgakov, 1995). In immediate term only the 

exchangeable portion of radionuclide contributes to solid-liquid interphase exchange. The 

advantage of tot
dK  is that its value is governed by ion exchange and can in principle be 

calculated on the basis of environment characteristics such as capacity of sorption sites 

and cation composition of solution.  

Nevertheless, a rather constant tot
dK  for 137Cs (over the period of 11 years after the 

Chernobyl fallout) was measured by Klemt et al. (2001) for the system “water – 

suspended matter” in Lake Lugano which is a neighbouring lake to Lago Maggiore. In 

our model with the first order fixation and redissolution processes we also use a constant 

distribution coefficient tot
dK . 
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5.1.2 Sedimentation and compaction 

Sedimentation is mathematically equivalent to convection with the only difference that 

convection is connected with dispersion while sedimentation processes take place without 

it. This process is described by the following differential equation: 

x

C
v

t

C
S ∂

∂⋅=
∂
∂

,     (5.5) 

where Sv  is a sedimentation speed in cm·a-1. 

Fig. 5.2 explains schematically the sedimentation process which describes the 

“movement” or transport of the activity with time through the profile. The black line 

indicates an arbitrary peak as initial condition at time 0t . If there are no other processes 

in the lake than sedimentation, with time the activity will be moved down to deeper 

layers of the sediment profile which correspond to the lighter lines in the figure.  

 
 
            t0                     t1                     t2                      t3 

 

 
 
 
 
            t0                     t1                  t2                   t3  
 
 
 
 
 
 
 

Fig. 5.2. Schematic description of the sedimentation processes in the lake sediments using finite 
differences (FD) and finite element methods (FEM) assuming a peak distribution in the 
sediment. Different colours indicate different time. 

 

Here, it is also necessary to show one of the distinctions between the two approaches: 

finite differences and finite elements methods (see also chapter 5.5). The limited number 

of layers in the finite differences approach introduces a broadening of the peak (Fig. 5.2).  
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Experimentally it was found out that the bulk density of the sediment bρ  (g·cm-3) is not 

constant and increases with depth for most of the studied positions. Empirically it can be 

described as: 

( ) 






 ⋅ρ+ρ=ρ x
dx

d
x 0b ,    (5.6) 

where 0ρ  is the density of the top layer of the sediment, in g·cm-3; x is depth in cm and 

dx

dρ
, in g·cm-4, defines the slope of the linear function of bulk density of a certain vertical 

profile. 

The compaction of sediments with depth is taken into account by weighing the 

sedimentation speed Sv  (cm·a-1) at depth x within the sediment by the measured bulk 

density bρ : 

( ) ( )x
vxv

b

0
0S ρ

ρ⋅= .     (5.7) 

The sedimentation rate SR  (g·cm-2 per year) which does not depend on the depth is used 

to describe the amount of sediment settling every year onto the bottom of the lake. 

The ratio 
b

SR

ρ
 gives the sedimentation speed Sv  which is introduced into the differential 

equations describing the movement of the activity concentration due to the sedimentation 

process (see equation (5.5)): 









⋅

ρ∂
∂=

∂
∂

E
b

SE C
R

xt

C
      (5.8) 

and  









⋅

ρ∂
∂=

∂
∂

F
b

SF C
R

xt

C
.     (5.9) 

In these differential equations the sedimentation speed has to be within the gradient as it 

is not constant. 
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5.1.3 Diffusion and turbation 

In terms of fixed and exchangeable activities of 137Cs, it is evident that the fixed portion 

FC  cannot diffuse in the sediment as it is bound to solid particles, whereas the 

exchangeable part EC  can be transported upwards and downwards due to diffusion 

processes in the pore water. 

On the other hand, there are bio- and physical turbation processes which are important for 

the top sediment layer and describe the role of worms, wind, waves, etc. in the lake. 

Diffusive transport in sediments 

Thus, one of the main transport mechanisms which contribute to the mixing of 

radionuclides in lake sediment is molecular diffusion. Dissolved radionuclides tend to 

move from regions of high concentration to regions of low concentration according to 

Fick’s first law of diffusion: 

x

C
DF E

E ∂
∂⋅−= ,    (5.10) 

where  

F is the diffusion flux, in Bq·(cm2·a)-1; 

ED is the effective diffusion coefficient, in cm2·a-1. 

From the conservation of mass we know that 

F
xt

CE

∂
∂−=

∂
∂

,     (5.11) 

Combining this relation with the Fick’s first law we get Fick’s second law: 
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and 










∂
∂⋅

∂
∂=

∂
∂

FE
F C

x
D

xt

C
.    (5.13) 



Chapter 5 
 

98 

Only in case when ED  is independent on depth x it can be taken outside the gradient: 

2
E

2

E
E

x

C
D

t

C

∂
∂⋅=

∂
∂

.    (5.14) 

In Fig. 5.3 the effect of the diffusion process influencing a peak distribution of 

radioactivity in the sediment is shown schematically. The longer the diffusion takes place 

the broader the peak will be. Different curves show different time intervals. 
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            t2 

               t3 
        t4 

 

 

Fig. 5.3. Effect of diffusion on a peak distribution of activity within the sediment depending on 
time. Different colours indicate different times. 

 

Retardation factor 

The effective diffusion coefficient ED is the diffusion coefficient in an adsorbing system. 

It is equal to the diffusion coefficient of ions under non-adsorbing conditions (D), divided 

by a retardation factor (R) of the adsorbing system: 
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Here, τ  (τ <1) is the dimensionless tortuosity factor which describes the decrease of ED  

due to tortuous flow along the pores of the sediment. D is the diffusion coefficient of ions 

(in this study Cs+) in water of a certain temperature in cm2·a-1 . 

The retardation factor is a dimensionless parameter characterizing the retarding effect of 

adsorption on solute transport. Mathematically, the retardation factor, R, is defined as: 

ex
d

b K1R ⋅
θ
ρ+= ,    (5.16) 

where 

bρ  is the measured bulk density of the sediment, in g·cm-3; 

θ  is a dimensionless parameter which describes the volumetric content of water. 

Hence, it is evident that the larger the distribution coefficient is, the larger the retardation 

factor is. On the other hand, a lower pore water content can also lead to an increase of the 

retardation factor. 

Tortuosity and porosity 

In sediments, diffusive transport of ions and molecules is influenced by two sediment 

characteristics – tortuosity and porosity (Maerki et al., 2004).  

Tortuosity τ  is a measure of the increase of the path length through the pores of sediment 

as compared to the direct path. It can be calculated as (Klute, 1986) 

23

7
−ε⋅θ=τ ,     (5.17) 

where ε  is the dimensionless porosity of the sediment which is in the order of 80 – 90 % 

and θ  is a volumetric content of water. The assumption that all pores in the sediment are 

filled with water leads to θ =ε . Taking this fact into account, the equation for the 

tortuosity can be formulated as: 

3

1

ε=τ .     (5.18) 
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Having the values for particle density and bulk density of the sediment, it is possible to 

calculate the total porosity ε  using the following equation: 















ρ
ρ−=ε

p

b1 .     (5.19) 

Here, pρ  is the mean particle density which according to Klute (1986), typically equals to 

2.65 g·cm-3. This value was also measured on some typical sediments by Spasova (2003). 

The total pore space increases as the bulk density decreases and vice-versa. The ratio 
p

b

ρ
ρ

 

gives the fraction of the total volume which is occupied by solids, thus, by subtracting 

this value from unity, one gets the fraction of the total volume occupied by pores.  

Effective diffusion of 137Cs in sediments 

An important remark concerning the distribution coefficient in equation (5.16) should be 

mentioned here. As described above, our model introduces one distribution coefficient 

dK  which is responsible for the uptake of 137Cs into the sediment. But we introduce 

another coefficient ex
d_difK  which controls the diffusion within the sediment. The latter is 

decreased due to the enhanced concentration of competing ions ( +
4NH , K+) in the pore 

water of the sediments as compared to the lake water. This ex
d_difK  is used to calculate 

the retarded diffusion of 137Cs within the pore water. Thus the final equation for the 

effective diffusion can be given by:  

ex
dif_d

b

3
E

K1

1
DD

⋅
ε

ρ+
⋅ε⋅= .    (5.20) 

In this formula D is the constant of diffusion for metal ions in pure water as taken from 

Klute (1986) and recalculated to the average temperature of the lake water using the 

equation below: 
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C25
CT

C25
CT

D
M

M
D o

o

o

o ⋅= ,      (5.21) 

where 
CT

M o  and 
C25

M o  are the viscosities of water, in cp, at the respective temperatures. 

In Lago Maggiore the temperature of the lake water below the epilimnion varies between 

6°C and 8ºC for spring and autumn seasons. Thus, the diffusion constant D for Cs+ at a 

temperature of 7 ºC (which is an average temperature of the deepest layers of the lake) 

equals to 405.35 cm2·a-1. 

The exchangeable 137Cs distribution coefficient ex
d_difK  essentially reduces the effective 

diffusion of exchangeable 137Cs in the sediment. The larger this coefficient is the lower 

the portion of time in which Cs+ can diffuse in the pore water.  

Competing ions 

The major ions that compete with caesium for binding sites on illitic clays are NH4
+ and 

K+ (see chapter 1.2.1).  

In a simple model we assume that the distribution coefficient ex
d_difK  is inversely 

proportional to the concentration of competing ions in the pore water: 

[ ] [ ]
[ ] [ ] waterporeinNH5K

waterinNH5K

K

K

4

4
ex
d

ex
dif_d

++

++

⋅+
⋅+

= .   (5.22) 

Here, the constant “5” in front of ammonium concentration reflects the fact that the 

affinity of NH4
+ cations to the selective sorption sites is about 5 times higher than the 

affinity of K+. 

In our model ex
d_difK  is a free parameter which will only later be compared with the 

concentration of competing ions. 

Bio- and physical turbation processes 

In the top layers of sediment (several cm) two different processes may take place: 

bioturbation which is the mixing or alteration of sediment particles or pore water by 
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various organisms, or/and physical turbation which is caused by the action of waves, 

currents, winds, etc. Both processes influence the vertical migration of the exchangeable 

and non-exchangeable chemical form of radionuclides in the top layer of the bottom 

sediments leading to a mixing of this layer. 

From a mathematical point of view these processes are similar to diffusion and can be 

described by the following equation: 

x

C
DF physphys ∂

∂⋅−= ,     (5.23) 

what allows simply to sum it up to the effective molecular diffusion: 
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Here, the term of physD  implies that not only physical turbation but also bioturbation is 

included. 

 

5.1.4 Radioactive decay 

One of the processes leading to the decrease of activity concentration of radionuclides in 

the sediment is radioactive decay: 

C
t

C ⋅λ−=
∂
∂

,      (5.26) 

where λ  is the decay constant in a-1. It can be calculated from the half-life T1/2 for a 

certain radionuclide: 

2/1T

2ln=λ .     (5.27) 

Thus, for 137Cs with the half-life T1/2 = 30.07 years λ  equals to 0.023 a-1. 

Graphically this process is presented in Fig. 5.4.  



Modeling of radiocaesium in water and sediments of Lago Maggiore 
 

103 

                t0 
 

                t1 

 

                t2 
 

                t3 

                t4 
 

 

 

Fig. 5.4. The law of radioactive decay (a) and its influence on the decrease of activity 
concentration with time t  on a vertical peak profile (b). 

 

5.1.5 Complete system of coupled differential equations 

Taking into account all the processes described above, the vertical distribution of activity 

within the sediment and the continuous input of 137Cs into the lake can be comprised by 

the following system of two coupled partial differential equations:  
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EC  and FC  are the exchangeable and fixed part of radioactivity, respectively, given in 

Bq·m-2 per 1 cm layer of sediment; λ (a-1) denotes the 137Cs radioactive decay constant, f 

(a-1) and r (a-1) are first order fixation and redissolution rates, SR  (g·cm-2·a-1) is the 

sedimentation rate, bρ  (g·cm-3) is the measured bulk density of the sediment, physD  

(cm2·a-1) the combined bio- and physical turbation acting only in the top layers of the 

sediment, and ED  (cm2·a-1) is the retarded constant of 137Cs+ diffusion.  
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5.2 Initial and boundary conditions 

To solve the system of partial differential equations initial and boundary conditions are 

needed. 

 

5.2.1 Initial conditions 

The model presented in this study can describe not only the maximum in the vertical 

sediment profile related to the fallout in Chernobyl in 1986, but also those peaks which 

are related to the nuclear weapons testing fallouts with maxima in 1959 and 1963. In case 

that the total inventory in the vertical sediment profiles was not reached experimentally 

(e.g. position 1), modeling was possible only for the Chernobyl peak. Hence, as the time 

for the initial condition 01.01.59 (a rough time of the first nuclear weapons testing fallout 

maximum) or 01.05.86 (the time of the Chernobyl fallout) were chosen.  

For both cases it was approximated that at initial time the activity concentration in the 

sediment was negligible: 

0 )0t(C)0t(C FE ==== .    (5.30) 

 

5.2.2 Boundary conditions 

To solve the partial differential equations a Dirichlet boundary condition is used:  

Ld CK)0x(C ⋅== .    (5.31) 

This boundary condition describes the uptake of activity from water to the top layer of 

the sediment and - as an alternative interpretation - in combination with the sedimentation 

rate SR  it describes the uptake of settling suspended matter being in equilibrium with the 

dissolved activity in the surrounding water. In principle, activity diffusing within the 

sediment to its top layer could be taken out from the sediment and redissolved again in 

the water by this equation. 
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The radionuclide activity concentration in the lake water, CL (Bq·m-3), must be known 

from the time of deposition (Chernobyl or nuclear weapons testing fallouts) until the time 

to which the model should be calculated. 

MOIRA and AQUASCOPE models as a tool to describe the activity concentration in 

the lake water 

A variety of models predicting the behavior of radionuclides (most commonly 137Cs and 
90Sr) in fresh water ecosystems has been developed and tested during recent decades 

(Monte et al., 2003). Among them there are such models as MOIRA (Monte, 1991; 

Monte et al., 2000) and AQUASCOPE (Smith et al., 2005) which give average estimates 

for radionuclides in water bodies for all times after radioactive fallout. These are models 

which have been intensively calibrated and tested for Chernobyl-derived radionuclides in 

many European lakes. Thus, the output results are quite reliable.  

The above mentioned models are, essentially, equivalent. They supply similar outputs for 

a suitable choice of their parameters and they are considered to be not very complicated 

in the sense that the information on input parameters is usually available and does not 

require complicated measurements.  

MOIRA 

For running MOIRA one has to know such general information on the lake and its 

watershed as mean and maximum depths, altitude, longitude and latitude, lake area, 

catchment area, average amount of precipitation as well as the deposition on the 

catchment area and lake itself. However, additional information about soil and bedrock 

type can be of great importance. MOIRA calculates the activity concentration of 

radionuclides taking into account their seasonal variations by introduction of seasonal 

moderator which (in case of Lago Maggiore) gives an increased transport of 137Cs during 

the late spring – summer period with snow melting and maximum amount of 

precipitation.  
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AQUASCOPE 

The AQUASCOPE model takes into account the following key processes of radionuclide 

transfer in a catchment-lake system: fallout to the catchment and lake surface, runoff of 

radionuclide from the catchment to the lake, removal of radionuclide from the lake water 

to sediments and removal of radionuclide via the lake outflow (Smith et al., 2005).  

The 137Cs activity concentration in the runoff water, CR (Bq·m-3), is given by the sum of 

three exponential functions: 

)eee(D)t(C t)k(
Cs

t)k(
Cs

t)k(
CsCR

321 +λ−+λ−+λ− γ+β+α⋅= ,  (5.32) 

where DC is the 137Cs deposition to the catchment area (Bq·m-2); λ (a-1) is the 137Cs 

radioactive decay constant; αCs, βCs, γCs (m-1) and k1, k2, k3 (a-1) are empirically 

determined constants. The three exponential terms in the equation (5.32) describe a very 

fast decrease of the 137Cs activity due to a rapid washoff processes, a slow decline as a 

result of soil fixation and redistribution processes, and the very long term of 

“equilibrium” situation, respectively. 

The initial mean 137Cs activity concentration in the lake water, CL(0) (Bq·m-3), can be 

estimated by: 

d

D
)0(C L

L = ,     (5.33) 

where DL (Bq·m-2) is the 137Cs deposition to the lake surface and d (m) the mean depth of 

the lake, calculated by dividing the lake volume by the lake area.  

Taking into account that the decline of radionuclide concentration in the lake water is 

determined by transfer of radionuclide to the bottom sediments, losses through the lake 

outflow and physical decay constant, the activity 137Cs concentration in the lake can be 

calculated as: 
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,   (5.34) 

where τw (a) is the water residence time of the lake and τs (a) is the time constant of 137Cs 

transfer to the sediments. The inflow of 137Cs into the lake is given by CR (eq. 5.32). 
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The simplicity of the structure of the AQUASCOPE model (implemented in EXCEL) in 

comparison with the MOIRA model (based on the program Powersim) convinced us to 

use the AQUASCOPE model for predicting 137Cs in Lago Maggiore and to implement it 

as a boundary condition for the set of two partial differential equations. Fig. 5.5. shows a 

comparison of the model outputs.  

 

 

 

 

 

 

 

 

 

Fig. 5.5. Comparison of the results (concentration of 137Cs in water of Lago Maggiore) of models 
MOIRA (blue curve with seasonal variations) and AQUASCOPE (green line).  

 

After several runs of the lake models (MOIRA and AQUASCOPE) two parameters 

which have the main influence on the output result were singled out, these are – the mean 

precipitation and the deposition of 137Cs on the catchment area. In Semizhon (2005), a 

sensitivity analysis of the run-off model for Lago Maggiore was performed which also 

showed that the most sensitive parameters are the initial deposition on the catchment 

area, the amount of precipitation, and the soil permeability factor (see chapter 4.1.5). 

According to “Atlas of caesium deposition on Europe after the Chernobyl accident” 

(1998) the inventory of 137Cs on the territory of the watershed of Lago Maggiore varies 

largely between 2 000 Bq·m-2 and 40 000 Bq·m-2. The best fit to the measured data is 

shown in Fig. 5.6. As initial deposition on the catchment area of the lake in this case a 

value of 3 500 Bq·m-2 was taken. This value is in agreement with that of (5 000 ± 2 000) 

Bq·m-2 which was used in the catchment area model described in Semizhon (2005).  
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As the value for the average precipitation for Lago Maggiore and its watershed is known 

rather precise, it was not possible to vary it largely. Although the annual precipitations 

have rather strong variations (1226–3352 mm·a-1), according to the maps of precipitation 

(Carollo, 1985) and data reported in the literature (de Bernardi et al., 1984; Premazzi, 

2003) the average rainfall in the watershed area of Lago Maggiore is 1833 mm·a-1. 

The other parameters used in AQUASCOPE model are the average deposition of 137Cs to 

the lake (20 000 Bq·m-2), the water residence time (3.8 a) and the areal fraction of organic 

boggy soils (0.05).  

Nuclear weapon testing and Chernobyl fallout boundary conditions 

The AQUASCOPE model was applied to Lago Maggiore and fitted to several measured 

surface water data points which were available from D’Alberti (2003), D’Alberti (2001–

2002), Cazzaniga et al. (1996–1998), Cazzaniga et al. (1997), D’Alberti and Osmani 

(1995), Osmani et al. (1994), Dominici and Risposi (1990–1993), Dominici (1989 – 

1980), from the "Radioactivity Environmental Monitoring (REM) database of the 

Institute for Environment and Sustainability, DG JRC, European Commission, and also to 

our measured data of the 137Cs vertical distribution in the water column (Fig. 5.6). The 

output of the model gives the result as an average 137Cs concentration over the water 

column.  

The data points taken from the literature correspond to the surface water measurements, 

so it is reasonable to have very high values for the first months after Chernobyl accident 

when most of activity was deposited on the lake surface. Within the next months part of 

activity was transported with particles down to the bottom sediments and by this way was 

removed from the surface. This fact explains the lower values of the 137Cs activity 

concentrations (blue points in Fig. 5.6). The measured points at different depths (every 30 

– 50 m) of the lake water column are presented in red colour. The higher 137Cs activity 

concentration was measured in the deeper layers while on the surface it was rather low. 

To model the vertical distribution of 137Cs over the whole sediment profile including the 

Chernobyl and nuclear weapons testing fallouts, the boundary conditions were derived in 

the following way: The activity concentration in the lake water after single pulse events 
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was calculated with the AQUASCOPE model (Fig. 5.6). This result was summed up 

three times with different amplitudes for the maxima of the weapon testing and 

Chernobyl fallouts in 1959, 63 and 86, respectively, as shown in Fig. 5.7.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.6. Comparison between empirical data and AQUASCOPE model predictions of 137Cs 
activity concentration in the water of Lago Maggiore. Blue points (D’Alberti, 2003; 
D’Alberti 2001–2002; Cazzaniga et al., 1996–1998; Cazzaniga et al., 1997; D’Alberti 
and Osmani, 1995; Osmani et al., 1994; Dominici and Risposi, 1990–1993; Dominici, 
1989 – 1980) and pink (REM database of JRC, Ispra, Italy) points are the values of 
137Cs activity concentration in the surface water, red are the measured values for 
different depths in the water column. The blue solid line is the output of the 
AQUASCOPE model which is an average 137Cs concentration over the water column. 

 

 

 

Fig. 5.7. Boundary condition: Activity concentration in the lake water. 
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The ratio of peaks in 1959 and 1963 is known to be about 2.6 (Bachhuber, 1982). The 

ratio of inventories of 137Cs in the catchment area after the nuclear weapon testing fallout 

and after the Chernobyl fallout is one more free parameter of the model. It is sufficient to 

describe the nuclear weapon testing fallouts by two distinct incidents. The diffusion 

acting for more than 40 years smears these peaks to a broad feature in the vertical 

distribution which is observed nowadays. 
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5.4 Introduction of turbidites 

As discussed in chapter 4.2.2 a distinctive feature of Lago Maggiore is the presence of 

turbidite layers in the sediment profiles. These turbidite layers were found nearly at all 

studied locations, so while modeling the vertical 137Cs distribution in the sediments it 

appeared to be necessary to describe the real situation and to take turbidites into account 

as an instantaneous extra input of sediment.  

To model such special events, the following parameters are needed:  

• position of the turbidite;  

• a very short fixed time interval for the deposition; 

• a very large deposition speed; 

• activity concentration inside the turbidite.  

The position of the turbidite layers can be easily defined from photos of sediment core 

and the measured 137Cs and bulk density vertical distributions. For the model the position 

of the turbidite should be given in terms of time and can be calculated knowing the depth 

where the turbidite layer is observed and the sedimentation speed of the sediment. Within 

the turbidite itself a deposition speed which is several orders of magnitude larger than the 

sedimentation speed of the sediment should be introduced in order to model the extra 

deposition of sediments during one single incident.  

In most cases the activity concentration of 137Cs inside the turbidite layer stays constant 

but it differs from that which is measured in the layers below and above. So, an additional 

coefficient for the 137Cs activity concentration within the turbidite is included into the 

model.  

All these parameters described above give no special insight into processes but they give 

the possibility to model the diffusion into or out of the turbidite. 
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5.5 Finite-element method for modeling the radionuclides in the 

sediment 

To get a numerical solution of our model, which is a system of two coupled partial 

differential equations (5.28) – (5.29), a finite element method is used instead of a finite 

differences approach which was successfully applied so far for the calculation of the 

vertical 137Cs distribution in sediments of three lakes with different limnological 

characters (Klemt et al., 2002). In these applications of finite differences an artificial 

broadening of structures in the vertical distribution due to the sedimentation term could 

not be avoided. Also, the used program (ModelMaker) was not able to handle turbidites 

and the thousands of compartments which would have been needed to describe not only 

the Chernobyl but also the nuclear weapons testing fallouts. 

The convection-diffusion type model in a 1-dimensional geometry was built using the 

MATLAB package FemLab. An example of the mathematical code of the model can be 

found in Appendix F. 
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5.6 Results of modeling radiocaesium in the sediments of Lago 

Maggiore from different positions 

The model described above is applied to describe the vertical distributions of 137Cs 

activity concentrations in sediments of Lago Maggiore. The model is adjusted to each 

particular case taking into account such measured parameters as exchangeable portion of 

radiocaesium α  and the bulk sediment density bρ  which may vary with depth. The 

height and the position of maxima is optimized by two parameters: the sedimentation rate 

SR  and the total distribution coefficient tot
dK . Additionally, the distribution coefficient 

ex
dif_dK  responsible for the retarded diffusion within the sediment is optimized. All three 

free parameters are optimized together in a “non-weighted least squares fit”. Such 

parameters as time of the turbidite, speed and the activity concentration within the 

turbidite, deposition onto the lake surface due to the nuclear weapon testing fallout are 

optimized by hand to reasonable values. 

The results of modeling the vertical distribution of 137Cs in the sediments of Lago 

Maggiore from different positions are shown in Fig. 5.8 to Fig. 5.16. For positions 1 (Fig. 

5.8, 5.9) and 7 (Fig. 5.16) the peak related to the Chernobyl fallout is modeled. For other 

positions (2 to 6) the model describes the complete profile with two maxima related to 

both, the Chernobyl and the nuclear weapon testing fallouts.  

In each figure the colored lines (part A) correspond to the inventories in single 1 cm 

sediment layers which are fitted to the measured data marked as red dots (the data 

corresponds to 2003 (17 years) for positions 1 and 2 (Fig. 5.8 to 5.11), to 2004 (45.3 

years) for positions 3, 4, 5 (Fig. 5.12 to 5.14), and to 2005 (46.3 years) for positions 6 and 

7, respectively (Fig. 5.15, 5.16)). The layer inventories are summed up to the total 

inventory of the sediment which is represented by the upper dark blue curve (Fig. 5.8 to 

5.16, part A). 

As a snapshot at the times of sampling the measured vertical 137Cs distributions in the 

sediment are given (part B, columns) and compared to the modeled function (part B, line) 

and the layer average as calculated from the model (part B, points). 
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At present, a continuous decrease of radioactivity can be seen for each position. The 

maximum in total inventories of 137Cs of most studied sediments profiles is observed  

8 – 9 years after the Chernobyl accident and varies between 10 kBq·m-2 and 21 kBq·m-2. 

An exception is position 6 where the total 137Cs inventory is characterized by a maximum 

of about 6 kBq·m-2 reached already in 1988 (30 years in Fig. 5.15), 2 years after the 

Chernobyl fallout. The modeled total 137Cs inventories are in a good agreement with our 

measurements (see chapter 4.2). 

At those lake positions where two maxima are modeled it was necessary to introduce 

different sedimentation rates for the regions of Chernobyl and nuclear weapon testing 

maxima (Table 5.1). There is no common tendency of the sedimentation rate to increase 

or decrease with time but it is obvious that the conditions in the lake were changed during 

the studied period of time.  

The turbidity flows (see chapter 4.2.2) are taken into account for the common fit and 

shown in figures as “turbidites”. Hence, at position 1 (Fig. 5.8, A) a turbidite can be 

observed as one instance in the year 1999 (13 years) and in Fig.5.8, B as the region 

between 4 cm and 7 cm. In another core from the same position a similar situation is 

expected. Indeed, from Fig. 5.9, A, it can be seen that a turbidite occurred in the same 

year 1999 (13 years) and corresponds to the layer between 3 cm and 7 cm in Fig.5.9, B.  

In Fig. 5.10, A and 5.11, A, where the modeling of the 137Cs vertical distributions in two 

different sediment cores at position 2 are shown, a very large turbidite can be seen as one 

instance in the year 1976 (17.9 years). In Fig. 5.10, B and 5.11, B, it corresponds to the 

region between 13 and 32 cm. 

At position 3 (Fig. 5.12, A) two turbidites are observed in the years 1963 (4.6 years) and 

1999 (41 years) which matches the layers 18.5–20.5 cm and 2–5 cm in Fig. 5.12, B.  

The small turbidite layers between 0–3 cm and 1–4 cm at positions 4 (Fig. 5.13) and 5 

(Fig. 5.14), can be seen as one instance in the years 2004 (45 years) and 2001 (43 years) 

respectively. Finally, at position 7 (Fig. 5.16) two turbidite layers between 10–12 cm and 

15.5–18.5 cm are observed in the years 1999 (7.7 years) and 1995 (3 years), respectively. 
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The main parameters of the model are summarized in Table 5.1 and discussed in the 

following chapter 5.7. 

Generally, the results of modeling show that maxima due to Chernobyl and nuclear 

weapon testing fallouts as well as intermediate turbidites are described quite well, except 

those positions where a lot of small turbidites are found which bring not only additional 

uncertainty to the model, but also makes the situation very complicated. For other 

positions good agreements are observed between measured 137Cs activity concentrations 

and model predictions. This means that our model is able to describe quite realistically 

the distribution of 137Cs in lake sediments and parameters describing the migration 

processes in the lake can be derived.  

 



 

 

 

 

Table 5.1. Measured (bulk density of the top layer of the sediment ρ0 and the slope of the bulk density dρ/dx, portion of exchangeable 
radiocaesium α), free (sedimentation rate RS, total distribution coefficient Kd

tot and coefficient Kd
ex

_dif responsible for the diffusion 
within the sediment) and dependent (exchangeable distribution coefficient Kd

ex, effective diffusion of 137Cs in the sediment DE) 
parameters of the model. 

 

Measured parameters Free fit parameters Dependent parameters 

Bulk density RS [g·(cm2·a)-1] 
 

ρ0  

[g·cm-3] 

dρ/dx 

[g·cm-4] 

α [1] 
Chernobyl NWT 

Kd
tot [l·kg-1] Kd

ex
_dif [l·kg-1] Kd

ex [l·kg-1] DE [cm2·a-1] 

Pos 1 Core 1 0.73 0.0009 0.94 ± 0.03 - 19 500 ± 8 000 29.3 ± 15 87.8 ± 38.7 12.0 ± 6.2 

Pos 1 Core 4 0.76 0 
0.0045  

0.61 ± 0.02 - 18 600 ± 7 100 25.2 ± 14.6 83.9 ± 38.0 13.3 ± 7.7 

Pos 2 Core 1 0.29 0.009 0.12 ± 0.01 0.24± 0.04 104 000 ± 27 000 335 ± 107 1030 ± 272 3.4 ± 1.1 

Pos 2 Core 3 0.28 0.009 
0.0099  

0.13 ± 0.01 0.25± 0.04 99 000 ± 9 000 194 ± 84 980 ± 102 6.1 ± 2.6 

Pos 3 Core 3 0.70 0.0002 0.0021  0.42 ± 0.03 0.21 ± 0.04 18 600 ± 7 000 9.8 ± 6.7 39.0 ± 18.4 35.5 ± 24.2 

Pos 4 Core 2 0.07 0.016 0.0156  0.054 ± 0.002 0.13 ± 0.03 110 500 ± 8 500 390 ± 83 1 724 ± 166 3.9 ± 0.9 

Pos 5 Core 3 0.08 0.008 0.0968  0.052 ± 0.002 0.12 ± 0.02 210 000 ± 26 100 2 865 ± 1 888 13 170 ± 1370 0.8 ± 0.5 

Pos 6 Core 3 0.11 0.006 0.0451 0.06 ± 0.01 0.30 ± 0.02 70 000 ± 1 200 480 ± 232 3 161 ± 230 5.1 ± 2.5 

Pos 7 Core 1 0.22 0.004 0.0086 0.10 ± 0.01 - 44 500 ± 13 700 129 ± 77 387 ± 122 8.4 ± 5.0 
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Fig. 5.8. Position 1 Core 1. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.5.1986. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.9. Position 1 Core 4. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.5.1986. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.10. Position 2 Core 1. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.5.1986. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.11. Position 2 Core 3. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.5.1986. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.12. Position 3 Core 3. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.1.1959. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.13. Position 4 Core 2. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.1.1959. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.14. Position 5 Core 3. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.5.1959. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.15. Position 6 Core 3. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.1.1959. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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Fig. 5.16. Position 7 Core 1. A: Modeling of the time-dependency of the total inventory (upper 
dark blue curve) and the depth inventory of 137Cs in the sediment (individual layers 
with thickness of 1 cm). Zero point of the abscissa is 1.5.1986. The red points represent 
the measured 137Cs activity concentration in the vertical profile. B: The vertical 137Cs 
distribution in the sediment: Measured data (columns), modeled function (line) and the 
layer average as calculated from the model (points). 
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5.7 Discussion on modeling: Free and dependent fit parameters 

Table 5.1 summarizes the measured, optimized and calculated parameters of the model 

which was successfully applied to the vertical distributions of bottom sediments from 7 

different positions of Lago Maggiore. Here, the main parameters will be discussed. 

 
137Cs distribution coefficient  

In Fig. 5.17 the optimized total distribution coefficient is shown for different positions of 

Lago Maggiore.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.17. Total 137Cs distribution coefficient ( tot
dK  in 103·l·kg-1) for different basins of Lago 

Maggiore. 
 

The highest values (more than 105 l·kg-1) are observed at positions 2, 4 and 5. In contrast, 

at positions 1, 3, 6 and 7 tot
dK -values are 5 to 10 times lower. The low values at positions 

1, 3 and 6 can be explained by their locations and lower depths as compared with other 

positions. For instance, at position 1 and 3 which are close to inflows to the lake, one of 

the reasons of low tot
dK  could be a non-equilibrium situation between the 137Cs activity 
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concentration of the settling particles and 137Cs activity dissolved in the lake water as it is 

also observed in the surface water of the lake. At position 6 water plants and reed at the 

bank of the lake indicate a more eutrophic state of this basin as compared to the rest of 

the lake. 

In chapter 4.1.4 the values of distribution coefficients measured in the water column are 

given for the two deepest positions. The weighted averages over the water column 

(without upper 5 m surface layer) are (98000 ± 12000) l·kg-1 and (328000 ± 110000)  

l·kg-1 at positions 2 and 5, respectively. Within the uncertainties these values are in a 

good agreement with the total distribution coefficients which are the output parameter of 

the model (Table 5.2). 

 
 
Table 5.2. Comparison between measured and modeled 137Cs distribution coefficients ( tot

dK ) in 

Lago Maggiore. 
 

 Position 2 Position 5 

K d  
(l·kg-1) 

Measured values: 
water column 

50 m 
100 m 
196 m 
200 m 
275 m 

  63 000 ± 28 000 
226 000 ± 64 000 
117 000 ± 35 000 
119 000 ± 26 000 
  88 000 ± 17 000 

51 m 
110 m 
154 m 

 
 

278 000 ± 57 000 
602 000 ± 84 000 
315 000 ± 67 000 

 
 

 Optimized values  
104 000 ± 27 000 
99 000 ± 9 000 

210 000 ± 11 300 

 

Another distribution coefficient ex
dif_dK  was introduced into the model to regulate the 

retarded diffusion within the sediments. In chapter 5.1.3 a simple model which assumes 

that the distribution coefficient ex
dif_dK  is inversely proportional to the concentration of 

competing ions (K+ and +
4NH ) in the pore ware was described. According to this model 

the diffusion is increasing if the concentration of competing ions in the pore water is 

increased.  

Using equation (5.22) and taking into account that the concentrations of K+ and +
4NH  

were measured both in lake water and pore water at positions 2, 5 and 7 (see chapter 

4.1.3) we result at ratios between ex
dif_dK  and ex

dK  of 0.03, 0.25 and 0.1, respectively. On 
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the other hand, for the same positions the ratios of the coefficient ex
dif_dK  and the 

correspondent distribution coefficient of exchangeable 137Cs ex
dK  obtained from the 

model (see Table 5.1) are 0.3, 0.2 and 0.3, respectively. The tendency of a decreased 

distribution coefficient within the sediment comes out of the model correctly. The values 

are not always in perfect agreement mainly due to uncertainties introduced by varying 

sedimentation rates (mini-turbidites). Moreover, equation (5.22) might be a simplification 

of the real situation. Generally, our model shows that in sediments from Lago Maggiore 

ex
dif_dK  is 3 – 5 times lower than ex

dK .  

 

Sedimentation rates and effective diffusion 

In Fig. 5.18, A sedimentation rates for the region above the Chernobyl maximum 

obtained from the model are shown for different positions of Lago Maggiore. In 

sediments of central and northern basin the sedimentation rates varies between 

0.1 g·(cm2·a)-1 and 0.8 g·(cm2·a)-1. In the southern basin much lower rates (about 

0.05 g·(cm2·a)-1) of sedimentation are obtained. The larger SR  of 0.4 g·(cm2·a)-1 at 

position 3 can be explained by the input of additional material with the inflow of the river 

Toce.  

To be able to describe the two maxima of 137Cs in the measured vertical profiles, it was 

necessary to introduce different sedimentation rates for the periods before the Chernobyl 

accident in 1.05.86 and after. Both optimized values for positions 3, 4, 5 and 6 are given 

in Table 5.3. 

The values for SR  are in a good agreement with those which are calculated with the CRS 

210Pb model and discussed in chapter 4.4.1. Weighing the sedimentation rates for the 

region of Chernobyl maximum (obtained from our model, see Table 5.3) with the average 

bulk density we get the average sedimentation speeds at different positions. In Fig. 5.19 

the comparison between these sedimentation speeds (A) and those measured in 1998 at 

different basins of Lago Maggiore by L. Langone (Marchetto and Musazzi, 2001) are 

shown. 
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Fig. 5.18. A: Sedimentation rates (SR  in g·(cm2·a)-1) for the region of Chernobyl maximum and 

B: Effective diffusion ( ED  in cm2·a-1) calculated by the model for different positions 
and basins of Lago Maggiore. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.19. Sedimentation speeds (Sv  in cm·a-1) (A) calculated from our model and (B) measured 

by L. Langone in 1998 (Marchetto and Musazzi, 2001) for different positions and 
basins of Lago Maggiore. 
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Both examples show variability of sedimentation speeds not only for different positions 

and basins but large variants within one position. In general, the values are in a rather 

good agreement. The differences at some positions can be explained by the compaction 

which is taken into account in case of our measurements (A). Those positions were the 

sediment bulk density is constant (e.g. position 1) show perfect agreement.  

A parameter which is calculated from the ex
dif_dK  is the effective diffusion coefficient 

ED . It varies between 0.8 cm2·a-1 and 8.4 cm2·a-1 for different positions of Lago 

Maggiore (Fig. 5.18, B). However, also larger values of 12.7 cm2·a-1 and 35.5 cm2·a-1 at 

positions 1 and 3 which are located close to the inflow of the rivers Ticino and Toce, 

respectively, are observed.  

 

Other parameters 

Because of low biological activity and a rather dense constitution of the sediments, the 

physical and bio-turbation is negligible. The fixation rate f  was set for all cases as 2 a-1. 

Together with the measured portion of exchangeable radioactivity it is used to calculate 

the redissolution rate r , which was rather low (0.009 – 0.1 a-1). 

Parameters which describe the position and the size of the turbidite are optimized by hand 

separately for each case.  

If together with the Chernobyl maximum also the 137Cs peak related to the nuclear 

weapon testing fallout is to be described by the model, the boundary conditions are 

introduced by the three identical sums of three exponential functions with different 

amplitudes for the different maxima (chapter 5.2.2). To fit the height of the peak related 

to the nuclear weapons testing fallout, the ratio of the 137Cs inventories in the catchment 

area after the Chernobyl and nuclear weapons testing fallouts were adjusted additionally 

while modeling.  
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5.8 Comparison of 137Cs behaviour in Lago Maggiore and other 

European lakes 

 The importance of the sorption properties of particulate matter of 137Cs in Lago 

Maggiore can be demonstrated by a comparison of the concentrations of dissolved 137Cs 

in three other prealpine lakes (Fig. 5.20) which experienced about the same amount of 

direct 137Cs input from Chernobyl fallout. One of them is the neighbouring Lake Lugano 

(southern Switzerland, Italy) where roughly about 24 kBq·m-2 of 137Cs was deposited 

onto the lake surface. Lake Constance, a large 

and rather deep mesotrophic hardwater lake at 

the borders of Germany, Austria and 

Switzerland, where the initial fallout of 137Cs 

was about 17 kBq·m-2 (Mangini, 1990). Finally, 

on lake Vorsee, which is a small shallow (2.2 m 

maximum water depth) eutrophic lake in 

southern Germany supplied by a swampy 

watershed, the initial fallout of 137Cs was about 

30 kBq·m-2 (Kaminski et al., 1998). Table 5.3 

summarizes main characteristics of these lakes.  

Fig. 5.20. Different European lakes. 

 
 

Table 5.3. Main characteristics of different European lakes. 

 
 Lake  

Constance 
Lago  
Maggiore 

Lake  
Lugano 

Lake  
Vorsee 

Lake surface (km2) 572 212.5 48.9 0.09 
Mean depth (m) 85 177.4 134 0.6 
Maximum depth (m) 254 370 288 2.2 
Residence time (a) 4.1 4 7 0.24 
Catchment area (km2) 11 487 6 599 615 1.27 
137Cs deposition in 1986 (kBq·m-2) 17 20 24 28 
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5.8.1 137Cs in lake water 

Characterized by similar initial depositions Lake Constance, Lago Maggiore, Lake 

Lugano and Vorsee have different 137Cs activity concentrations in the water several years 

after the nuclear reactor accident in Chernobyl (Fig. 5.21). Such differences can be 

explained by differences in limnological character of these lakes.  

The highest 137Cs concentration is observed in lake Vorsee water over the whole time 

span as compared to the other three lakes. This high contamination levels are caused by a 

continuous input of 137Cs from a swampy watershed (Kaminski et al., 1994) into the lake 

which mainly has organic material in the sediment. Redissolution of 137Cs from the 

sediment which occurs preferentially in winter and autumn when the ammonium 

concentration in the water increases due to the decomposition of organic matter. This 

leads to a seasonal cycling of the activity concentration. 

Lowest 137Cs concentrations were measured in Lake Constance (< 1 Bq·l-1 in 2005), a 

large and deep mesotrophic lake. The radiocaesium was rapidly removed from the water 

column and strongly bound to clay mineral particles in the sediment (Kaminski et al., 

1998). 

In Lake Lugano with its permanently anoxic northern basin and monomictic (seasonally 

anoxic) southern basin, a slower removal of dissolved 137Cs activity concentrations from 

the water compared to most other deep prealpine lakes of similar size was observed by 

Santschi at al. (1990). Here, a lower fixation of 137Cs to suspended matter takes place due 

to ion exchange with +
4NH . The strong increase of the 137Cs concentration with depth is 

controlled by the increasing +
4NH  concentration.  

In contrast, in Lago Maggiore which is an oligotrophic lake, the dissolved oxygen 

concentration is rather large (6–11 mg·l-1, see chapter 4.1.2) and stays nearly constant 

over the complete water column which results in a negligible +
4NH  concentration (Table 

5.4). The increase of the 137Cs concentration with depth by a factor of two (see Fig. 5.21, 

where the single measurements in different depths are shown for Lago Maggiore water 

after month 200) is probably controlled by a slight decrease of pH. 
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Table 5.4. Comparison of main cation compositions of lake waters (The data for lake Vorsee, and 
Lake Constance: Konoplev et al., 2002; Lake Lugano: Radioecological laboratory at 
the Hochschule Ravensburg-Weingarten (1999). The data for [Ca2+], [Mg2+], [Na+] in 
Lago Maggiore in 2005 are kindly given by Piero Guilizzoni). 

 

 [K +] in 
mg·l-1 

[NH 4
+] in 

mg·l-1 
[Ca2+] in 

mg·l-1 
[Mg 2+] in 

mg·l-1 
[Na+] in 
mg·l-1 pH 

Vorsee 0.9–2.0 0.04–1.0 53–118  6.9–8.6  3.5–5.0 7.4–9.4 
Lake Lugano 
(Southern basin) 

1.6–2.1 0.007 – 0.028 29–39  7.8–9.1 5.0–6.3  7.7 

Upper  
Lake Constance 

1.1–1.3 < 0.01 48.7–54.1  6.7–9.7 4.4–4.7  7.5–8.1 

Lago Maggiore 1.4–2.0 0.003–0.025 22.6–22.7 3.7 2.7–2.8 6.2–7.7 
 

As can be seen from Table 5.4, all lake waters have rather similar ionic compositions. All 

four lakes are characterized by relatively high concentrations of calcium and relatively 

low concentrations of potassium. However, the substantial difference between the lakes is 

the different ammonium concentrations which have a great influence on the mobility of 
137Cs in the lake.  

The 137Cs concentration in the water column of four different lakes is shown in Fig. 5.21. 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 5.21. Time-dependency of 137Cs activity concentration in the water of Lake Constance 

(Santschi et al., 1990; database of the Radioecological laboratory at the Hochschule 
Ravensburg-Weingarten), Lake Lugano (Dominik and Span, 1992; database of the 
Radioecological laboratory at the Hochschule Ravensburg-Weingarten), Vorsee 
(Zibold et al., 2001), and Lago Maggiore (data from JRC in Ispra and our 
measurements). Zero point of the abscissa is 1.5.1986. 
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The time-dependency of the 137Cs specific activities in lake water for Lake Constance, 

Lake Lugano and lake Vorsee is described by a sum of two exponential functions (non-

weighted least squares fit). In Lago Maggiore the radiocaesium in the lake surface water 

is described by the AQUASCOPE model.  

 

5.8.3 137Cs in sediments 

The comparison of extractability of 137Cs from the sediments measured by sequential 

extraction experiments shows some differences for the lakes with different limnological 

characteristics. Thus, for example, in Lake Constance with high self purification capacity, 
137Cs is strongly bound to illites and the percentages of total extracted (5 steps) 

radiocaesium is a factor of 2 to 8 lower than those of Lake Lugano (Kaminski et al., 

1998; Konoplev et al., 1996).  

In the glacially formed shallow eutrophic lake Vorsee caesium is mainly bound to 

organic material in the sediment and the percentages of total extracted caesium exceed 

those of Lake Lugano. 

In Lago Maggiore 137Cs is tightly bound to the clay minerals. The low portion of 

exchangeable 137Cs of only about 1 % at some positions as compared to about 5 % in 

Lake Constance and Lake Lugano (Klemt et al., 2000) is astonishing. 

According to the model described above, in Lake Lugano and Lago Maggiore the 

maximum of total 137Cs inventory was reached about 9 years after the Chernobyl accident 

as compared to 5 and 15 years in Lake Constance and in the shallow eutrophic lake 

Vorsee, respectively. Before the maximum is reached, the input into the sediments is the 

dominating process. Only afterwards the radioactive decay dominates the continuous 

input of activity into the lakes (Klemt et al., 2000, 2005). 

For comparison, in Table 5.5 measured and optimized model parameters of different 

European lakes are presented. The main differences were found for the distribution 

coefficients which are dependent on the amount of clay minerals in the system, for the 

sedimentation rates, and the bulk densities of the sediment.  
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Table 5.5. Comparison of bulk density of sediment (ρb), portion of exchangeable activity (α), 
sedimentation rate (RS), total 137Cs distribution coefficient (Kd

tot) and retarded diffusion 
of exchangeable 137Cs activity (DE) in Lago Maggiore and other European lakes.  

 

Measured 
parameters 

Optimized  
parameters 

 

bρ  in g·cm-3 α  SR  in  

g·(cm2·a)-1 

tot
dK  in 

l·kg-1 
ED in 

cm·a-1 
Lake Constance 0.27 0.04 0.12 165 000 0.18 

Lake Lugano 0.17 0.05 0.06 49 100 0.82 

Vorsee  0.02 0.04 0.10 17 600 23.80 

Lago Maggiore (P2) 0.28 0.01 0.12 99 000 6.1 

Lago Maggiore (P4) 0.21 0.02 0.05 110 000 3.9 

 

A principal difference for the lake can be found in the bulk density of the sediments: in 

Lake Constance and Lago Maggiore the measured density of typical sediment is rather 

high, especially in comparison with lake Vorsee where it is more than one order of 

magnitude lower. For most positions of Lago Maggiore the sedimentation speed is not 

constant. The second parameter – portion of exchangeable 137Cs – as discussed above is 

rather similar for all lakes except Lago Maggiore where at some positions very low 

percentage (< 1 %) of exchangeable Cs ions was measured.  

Concerning optimized parameters, it can be seen that Lake Constance and Lago 

Maggiore are characterized by a total 137Cs distribution coefficient of about 105 l·kg-1 

which is twice or three times larger than that in Lake Lugano and about a factor 6–9 

larger than that in the shallow lake Vorsee. The main reason for high values of tot
dK  are a 

high content of clay minerals in the lake sediments and very low concentration of 

competing ions (K+ and +
4NH ).  

The values of the distribution coefficient give the possibility to calculate the effective 

diffusion in the sediments which is negligible for Lake Lugano, Lago Maggiore and Lake 

Constance but it is important for lake Vorsee. However, in Lago Maggiore some 

positions exist (especially close to the tributaries) where diffusion cannot be neglected. 
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5.9 General conclusions on modeling 

The suggested convection–diffusion model describes the continuous input of 137Cs into 

the sediment and the vertical distribution of 137Cs within the sediment of the deep 

prealpine Lago Maggiore reasonably well which also allows a prediction of its future 

conditions. 

The model takes into account such basic processes as the exchange of 137Cs between 

water and the top sediment layer via the distribution coefficient dK , first-order 137Cs 

fixation and redissolution, the retarded diffusion of 137Cs within the sediment, and 

radioactive decay. 

The main parameters determining the vertical distribution of 137Cs in bottom sediments 

are the sedimentation rate SR  and two distribution coefficients dK . The location of the 

maxima of the 137Cs is mainly dependent on sedimentation rate, and the 137Cs activity 

concentrations in sediments are determined by the value of one distribution coefficient. 

These parameters plus the distribution coefficient ex
dif_dK  which is responsible for the 

retarded diffusion within the sediment are the only free parameters of the model. 

In the model a compaction of sediments with depth is also taken into account via the 

measured sediment density distribution. 

Also modeling of turbidites as an instantaneous extra input of sediment is provided. 

Taking the activity concentration of the water as the boundary condition for the 

differential equation a good agreement is achieved between experimental results and 

model predictions.  

In case of Lago Maggiore, the development of the total 137Cs inventories in the sediment 

with time shows that the maximum in total inventories is reached after 8–9 years after the 

Chernobyl accident. 

There is a strong influence of the tributaries (input of Cs, organic matter, clay minerals) 

on the behavior of radiocaesium in the lake. Position 3 which is located in front of the 

mouth of the river Toce is one of the examples where this influence is observed.  
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Our model describes well the vertical 137Cs distributions in the sediments, it also gives an 

idea about the importance of processes taking place at different positions and basins of 

the lake. 
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6. RADIOCAESIUM ACTIVITY CONCENTRATION IN FISH  

Fish is one of the food resources for men. The contamination of an aquatic ecosystem, 

and particularly lakes, by radionuclides can therefore give rise to significant doses to 

man. After the Chernobyl accident, due to high radiocaesium bioaccumulation factors, 

fish remained contaminated despite relatively low radiocaesium levels in water. In that 

respect it is important to get an idea about the persistence and bioavailability of 137Cs in 

the aquatic environment. 

 

6.1 Dynamic model for 137Cs uptake by fish and the concentration ratio 

It is known that the bioaccumulation of radioactivity in fish is determined by numerous 

ecological and environmental factors such as fish species, the length of the food chain, 

water temperature and others (Smith and Beresford, 2005). Also the trophic level of the 

lake system is of great importance.  

After the initial fry stage, many fish species occupy a typical food niche. They may either 

feed on plankton, benthos (non-predatory group, e.g. whitefish, roach and carp) or 

smaller fish (predatory group, e.g. pike and eel). However, several species change their 

habitat during their life, often in relation to body size (Brittain and Håkanson, 2002). 

Many investigations (Smith and Beresford, 2005) show that the 137Cs accumulation in 

fish results in an increasing contamination with increasing fish size.  

The uptake of radioactivity by aquatic biota is commonly described by the concentration 

ratio, CR, also known as concentration factor (CF). The concentration ratio CR (l kg-1) of 
137Cs in fish is: 

waterofliterperionconcentratactivityCs

)weightfresh(fishofkgperionconcentratactivityCs
CR

137

137

= .  (6.1) 

CR is an equilibrium parameter which means that the 137Cs activity concentration in fish 

is assumed to be in equilibrium with that of water, for example during long times (years) 

after a fallout. In short-term releases when the equilibrium conditions are not yet reached, 

a dynamic approach is required.  
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A typical dynamic model for 137Cs uptake by fish (Thomman, 1981; Smith and Beresford, 

2005) can be described in the following way: 

 

 

Assuming first order processes, this model in mathematical terms can be presented as: 

ffbLf

f
CCkCk

dt

dC
λ−−+= ,   (6.2) 

where  

fk  – the rate constant describing the transfer of 137Cs from water to fish, in (l·kg-1
·a-1); 

bk  – the backward rate constant describing the excretion of radioactivity from fish, in a-1; 

λ  – decay constant of 137Cs, in a-1. 

Cf and CL are activity concentrations of 137Cs in fish (Bq kg-1) and lake water (Bq l-1), 

respectively.  

By making the assumption that the rate constants fk  and bk  are much larger than the 

decay constant λ , the equation for the change of 137Cs activity concentration can be 

simplified to: 

fbLf

f
CkCk

dt

dC
−= .    (6.3) 

In equilibrium conditions the activity concentration of fish does not change, 0
dt

dCf = , 

and therefore, the ratio of rates fk  and bk  gives the equilibrium concentration ratio CR  

(l·kg-1):  

CR)equlibriumat(
C

C

k

k

L

f

b

f == .   (6.4) 

Typical values for fk  and bk  according to Smith et al. (2000) are given in Table 6.1. 

The equilibrium between 137Cs activity concentration in fish and water will be reached 

after several time constants (the inverse of the rate constants) have passed. In this case it 

is appropriate to talk about a long-term time scale estimated in years.  

= + input from water – excretion – radioactive decay. 
Change of  

137Cs concentration in fish 



Radiocaesium activity concentration in fish 

 

141 

Table 6.1. Typical values (according to Smith et al., 2000) of rate constants describing the 
transfer of 137Cs from water to fish ( fk ) and excretion of radioactivity (bk ) from the 

non-predatory and predatory fish. These values are given for the concentration of 
potassium in the lake water of 1.56 mg·l-1. 

 

Fish kb in a-1 kf in (l ·kg-1
·a-1) 

Non-predatory  8.4 11.5·10-3 

Predatory 0.5 3.3·10-3 

 

In several studies it was found that the concentration ratio of 137Cs in fish is inversely 

proportional to the potassium content in the lake (Smith and Beresford, 2005). As 

radiocaesium is chemically similar to potassium, an important nutrient, the increase of the 
137Cs concentration in fish takes place via the same accumulation mechanisms as for 

potassium. This fact leads to the higher concentration ratio of radiocaesium in the lakes 

with low content of potassium.  

 

6.2 137Cs in fish from different lakes 

The dynamics of radiocaesium in water and different kinds of fish (Table 6.2) from the 

eutrophic Lake Vorsee (Zibold et al., 2001) and the mesotrophic Lake Constance 

(Kaminski et al., 1998; Zibold et al., 2002) is illustrated in Fig. 6.1 and Fig. 6.2, 

respectively.  

The time-dependency of the 137Cs specific activities in predatory and non-predatory fish 

and lake water in each case is described by a sum of two exponential functions (non-

weighted least squares fit). To perform essentially a non-weighted least square fit for the 
137Cs specific activities in predatory fish in Lake Constance, the data for 137Cs activity 

concentration measured before 1987 were not used, as during the first months after the 

Chernobyl fallout the accumulation in the food chain was not complete. 

It can be seen that after the Chernobyl fallout, the 137Cs uptake and excretion processes 

reached a steady state and the radiocaesium activity concentrations in fish changed at the 

same rate as in the water. So, an equilibrium between 137Cs in water and fish can be 

assumed. Using this information, the fish–water concentration ratios CRs were calculated 
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as the ratio of the individual measurements of the 137Cs activity concentration in fish and 

the 137Cs specific activity in the lake water taken from the exponential fit.  

In Fig. 6.3. and Fig. 6.4. it can be seen that the CR values stay more or less constant with 

time and are in agreement with earlier results for pike (Zibold et al., 2001). The red and 

green lines on the diagrams show the calculated averages of concentration ratios CRs for 

predatory and non-predatory fish, respectively (Table 6.3). 

 

Table 6.2. Non-predatory and predatory fish studied in different European lakes. 

 

Non-predatory fish 
Bleak Alburnus alburnus 

Bream Albramis brama 

Carp Cyprinus carpio 

Perch Perca fluviatilis 

Roach Rutilus rutilus 

Rudd Scardinius erythropthalmus 

Siver bream Blicca bjoerkna 

Tench Tinca tinca 

Whitefish Coregonus spp 
 

Predatory fish 

Eel Anguilla anguilla 

Pike Esox lucius 

Wels Catfish Silurus glanis 
 
 

Table 6.3. Concentration factors of predatory and non-predatory fish in lakes.  

 
Lake Fish CR in l·kg-1 

Predatory 4 630 ± 220 
Vorsee 

Non-predatory 1 120 ± 30 

Predatory 12 880 ± 1 570 
Lake Constance 

Non-predatory 5 040 ± 240 

Lago Maggiore Non-predatory 4 360 ± 880 
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The concentration ratios of 137Cs in predatory fish, both from Vorsee and Lake 

Constance, are a factor of 2 to 4 higher than those for non-predatory fish. A similar 

tendency, however, is observed for CR values between two lakes for one fish group. In 

lake Vorsee CRs of radiocaesium are lower than in Lake Constance which can be 

explained by the different trophic levels of the lakes.  

 

6.3 137Cs in fish in Lago Maggiore 

For Lago Maggiore some data on 137Cs accumulation in fish for the period 1986 – 2002 

were available from the Joint Research Center in Ispra. In 2005, we measured rather low 

levels of the 137Cs specific activity in fish. The results of our measurements are given in 

Table 6.4.  

Table 6.4. 137Cs specific activities in fish of Lago Maggiore in 2005.  

 
Fish 137Cs act.conc. in Bq·kg-1 (fresh weight) 

1.05 ± 0.33 

2.12 ± 0.36 Whitefish (Coregonus lavaretus) 

1.15 ± 0.29 
Zander (Stizostedion Lucioperca) < 0.37 

 

In Fig. 6.5. the time-dependencies of 137Cs activity concentration in different species of 

fish (perch, whitefish, rudd and others) and in the lake surface water are shown. Here, 

radiocaesium in the water is described by the AQUASCOPE model, while essentially a 

non-weighted least squares fit is applied for the fish data. It can be seen that the decrease 

in the 137Cs activity concentration in fish follows the decrease of radioactivity in the 

surface water. In Lake Constance as compared to lake Vorsee very low 137Cs 

concentrations in fish of less than 1 Bq·kg-1 were measured in 2002. Similar levels as in 

Lake Constance are observed in Lago Maggiore in 2005. 
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Fig. 6.1. Time-dependency of the 137Cs specific activities in water and fish (predatory and non-
predatory) in lake Vorsee (Zibold et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2. Time-dependency of the 137Cs specific activities in water and fish (predatory and non-
predatory) in Lake Constance (Zibold et al., 2002).  
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Fig. 6.3. The concentration ratios (CRs) for 137Cs in predatory (red triangles) and nonpredatory 
(green dots) fish from lake Vorsee. The lines are the calculated averages. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4. The concentration ratios (CRs) for 137Cs in predatory (red triangles) and nonpredatory 
(green dots) fish from Lake Constance. The lines are the calculated averages. 
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Lago Maggiore
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Fig. 6.5. Time-dependency of the 137Cs specific activities in fish and lake surface water in Lago 
Maggiore. The data for 137Cs activity concentration in fish are taken from: green 
triangles– Radioactivity Environmental Monitoring (REM) database of the Institute for 
Environment and Sustainability, DG JRC, European Commission; green squares – 
D’Alberti (2001–2002), Cazzaniga et al. (1996–1998), Cazzaniga et al. (1997), D’Alberti 
and Osmani (1995), Osmani et al. (1994), Dominici and Risposi (1990–1993), Dominici 
(1989–1980); green points –our measurements in 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6. Fish–water concentration ratios (CRs) for 137Cs in non-predatory fish in Lago Maggiore. 
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The fish–water CRs of 137Cs in Lago Maggiore are shown in Fig. 6.6. Here, the measured 

activity concentration of non-predatory fish is divided by the activity concentration in the 

lake water as calculated with the AQUASCOPE model. If the fish species was undefined 

the data was taken out from the common fit. The average CR value (4360 ± 880) l·kg-1 

for Lago Maggiore agrees within the uncertainties with the average CR (5040 ± 240)  

l·kg-1 calculated for non-predatory fish in the mesotrophic Lake Constance (Table 6.3). 

This is a good indication that the CR can be transferred from one lake to another provided 

the trophic level of the lake is the same. The somewhat lower fish–water CR of 137Cs in 

Lago Maggiore can be explained by the higher potassium concentration of 1.4–2 mg·l-1 

(Guilizzoni, 2003–2005; our measurements – see chapter 4) as compared to that in Lake 

Constance with 1.1 – 1.3 mg·l-1 of potassium measured during the period 1976–1995 

(Roßknecht, 1998). 

As a conclusion the following statements can be formulated for the 3 lakes with different 

limnological properties. The concentration factor can be used several months after the 

fallout and it can be transferred from one lake to another considering the following 

dependencies: 

• A factor 3 lower fish–water concentration ratio CR of 137Cs is found in the 

eutrophic lake Vorsee as compared to those which are observed in mesotrophic 

and oligotrophic lakes, Lake Constance and Lago Maggiore, respectively.  

• Within one lake the concentration factors for different fish groups vary largely. 

For example, in Lake Constance the CR for predatory fish is 2.6 times higher than 

CR for non-predatory fish. In lake Vorsee the CR value for predatory fish is a 

factor of 4 larger than for fish from the non-predatory group.  

• The variability of CRs of 137Cs within one fish group and one lake is rather high. 

The values of CR vary within one order of magnitude as observed in Lake 

Constance and Vorsee and even more in Lago Maggiore. 
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CONCLUSIONS 

This work contains the present state of knowledge about the behaviour of the artificial 

caesium radionuclides introduced into the pre-alpine Lago Maggiore as a consequence of 

atmospheric nuclear weapons testing and the accident at the nuclear reactor in Chernobyl. 

Particularly, it provides a complete survey of the distribution of 137Cs in the sediments of 

the lake and its participation in the sediment deposition processes. The most important 

results of field investigations, laboratory experiments and modeling are summarized as 

follows: 

• During 2003 – 2005 the water sampling from the northern, southern and middle 

basins of the lake and its tributaries was done. In lake water as well as in tributaries 

the 137Cs activity concentration is rather low with about 1 mBq·l-1. The increase of the 
137Cs activity concentration with depth by a factor of two is probably controlled by a 

slight decrease of pH. The K+ concentration is constant in the water column; the 

oxygen concentration is also constant and rather large which results in a negligible 

NH4
+ concentration.  

• The 137Cs activity concentration in the tributaries is compared to a run-off model 

(Håkanson, 2004) where one of the free parameters is the initial deposition on the 

catchment area. According to our measurements it must be in the order of 5 kBq/m2. 

• Sediment cores were taken at 7 different locations of Lago Maggiore in spring of 

2003, 2004 and 2005. They were analyzed gamma spectrometrically for 137Cs, 

unsupported 210Pb, 134Cs and 241Am content. At most positions two maxima of 137Cs 

were recognized which can be assigned to the fallouts after the Chernobyl accident 

and the atmospheric nuclear weapons testing fallouts in the 1960’s. 

• In bottom sediments of Lago Maggiore a considerable decrease of Chernobyl-derived 
137Cs inventories is observed between northern and southern positions, high values 

exceeding 30 kBq·m-2 in the northern and central basins and, low levels (7 kBq·m-2) 

near the outflow. The maximum in total inventories is reached 8–9 years after the 

Chernobyl accident as compared to 5 and 15 years in Lake Constance and in the 

shallow eutrophic Lake Vorsee, respectively. 
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• The results of the 5-step sequential extraction procedure performed on sediments of 

Lago Maggiore show that 137Cs is very tightly bound to the sediment. The percentage 

of exchangeable 137Cs extracted during the first step is only about 1 % at some 

positions as compared to about 5 % in Lake Constance and Lake Lugano (Klemt  

et al., 2000). Most of extracted 137Cs was found in the organic fraction, followed by 

amorphous silicates.  

• A model based on coupled sedimentation-diffusion equations was developed to 

describe migration processes of 137Cs and it’s distribution in the sediment of Lago 

Maggiore. This model can cover the time period from the nuclear weapon testing to 

the present and takes into account compaction of sediments, fixation and 

redissolution, influence of competing ions on the retarded diffusion within the 

sediments. The results of the model were compared with the water and sediment 

measurements from seven positions at different basins. Estimated 137Cs activity 

concentrations are in good agreement with measured data. 

• The free parameters of the model are the sedimentation rate ( SR ) and two distribution 

coefficients: one (Kd) which is responsible for the uptake of 137Cs into the sediment 

and another one (ex
dif_dK ) which controls the diffusion within the sediment. Our model 

shows that generally in sediments from Lago Maggiore ex
dif_dK  is 3 – 5 times lower 

than the exchangeable distribution coefficient ex
dK  

• Estimated and measured values of a total 137Cs distribution coefficient tot
dK  which 

characterizes the positions from the main basin of the lake are very large, about 

105 l·kg-1. Similar values are also observed in lake Constance which are twice larger 

than those in Lake Lugano and about a factor 5 larger than those in the shallow lake 

Vorsee. The main reason for high values of tot
dK  are a high content of clay minerals in 

the lake sediments and low concentration of competing ions K+ and +
4NH . However, 

the positions with lower depth which are located close to the tributaries have lower 

distribution coefficients of about 20 000 l·kg-1. There is a strong influence of the 

tributaries on the behavior of radiocaesium in the lake. 
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• A lot of large and smaller turbidites which are the consequences of the underwater 

landslides of sediments due to the steep slopes of the lake basin or of the input of the 

allochthonous material with heavy rains or river floods are found in Lago Maggiore. 

An important improvement of the model is that it became possible to model turbidites 

as an instantaneous extra input of sediment. However, their presence makes it 

difficult to establish correctly the depth-age relation in the sediment profile and brings 

additional uncertainties into the model. 

• A depth-age relation was established using a combination of the 137Cs model with the 
210Pb CIC and CRS models. Together with a 7Be check of the presence of the top 

layer it became sufficient to provide a reliable continuous time-scale and to verify the 

completeness of the sediment profile. The CRS model as well as the model which 

describes the 137Cs vertical distribution showed the varying sedimentation rates over 

time. Higher sedimentation rates of 0.1 – 0.9 g·(cm2·a)-1 are found in the southern and 

central basin while the northern basin is characterized mostly by lower rates of about 

0.05 g·(cm2·a)-1.  

• In 2005 very low 137Cs concentrations of less than 1 Bq·kg-1 were measured in non-

predatory fish from Lago Maggiore. Consequently, a 137Cs fish–water concentration 

ratio (CR) of (4360 ± 880) l·kg-1 was calculated for Lago Maggiore. It agrees within 

the uncertainties with the average CR (5040 ± 240) l·kg-1 calculated for non-predatory 

fish in the mesotrophic Lake Constance. The decrease in the 137Cs activity 

concentration in fish follows the decrease of radioactivity in the surface water. 
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APPENDIX A: 

Activity concentration of radionuclides in the sediments of Lago 

Maggiore 

 

Activity concentrations (decay-corrected to the date of sampling) of different 

radionuclides in sediment samples from different positions of Lago Maggiore evaluated 

with the software Genie 2000 and LabSOCS, statistical uncertainties of the spectrometric 

measurement and MDA (minimum detectable activity) levels are given in the following 

tables. 

 

Sampling dates: 

Positions 1 and 2 – 12.03.2003 

Positions 3, 4 and 5 – 26.04.2004 

Positions 6 and 7 – 18.04.2005 
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Table A.1. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 1 
Core 1 (lake depth 110 m) 

          

  Cs-134   Cs-137   Pb-210  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 1.09 0.24 1.85 71.48 1.34 2.17 185.65 5.72 18.50 

1-2 -- -- 3.02 88.52 2.14 3.83 200.63 8.58 28.70 

2-3 -- -- 3.54 106.35 2.44 3.72 197.11 8.81 29.10 

3-4 -- -- 2.92 77.71 1.98 3.70 157.24 7.76 27.83 

4-5 -- -- 2.92 38.48 1.41 3.35 79.42 6.36 25.90 

5-6 -- -- 2.22 42.05 1.36 2.95 80.52 5.84 23.10 

6-7 -- -- 2.34 37.50 1.24 2.81 88.16 5.64 23.50 

7-8 -- -- 2.61 44.27 1.40 2.77 79.77 5.85 22.90 

8-9 -- -- 2.77 102.99 2.18 3.39 116.51 6.77 26.20 

9-10 -- -- 2.16 131.35 2.48 3.23 118.52 6.95 26.80 

10-11 -- -- 2.91 196.35 3.46 4.25 184.22 9.35 33.90 

11-12 -- -- 2.51 135.03 2.38 3.10 97.61 6.22 25.30 

12-13 -- -- 2.60 161.86 2.72 3.17 120.28 6.71 25.10 

13-14 -- -- 2.77 173.64 2.88 3.21 127.54 7.18 27.50 

14-15 -- -- 2.54 154.56 2.53 2.91 120.70 6.45 24.80 

15-16 -- -- 2.12 133.51 2.32 3.06 101.33 6.01 24.00 

16-17 -- -- 2.16 122.14 2.24 3.40 109.83 6.46 25.90 

17-18 -- -- 2.98 144.28 2.69 3.65 113.99 7.19 29.50 

18-19 -- -- 2.63 265.14 3.54 3.13 94.12 6.27 25.20 

19-20 1.39 0.35 3.04 161.83 2.76 3.39 77.24 6.04 25.40 

20-21 -- -- 2.18 130.57 2.06 2.61 79.84 5.05 21.00 

21-22 -- -- 2.83 133.04 2.48 3.43 74.84 6.11 226.30 

22-23 -- -- 2.61 194.89 3.01 3.24 93.41 6.36 24.00 

23-24 2.08 0.43 3.66 607.17 6.56 3.97 133.68 8.13 30.80 

24-25 -- -- 3.60 654.86 6.88 5.40 137.28 8.30 33.40 

25-26 -- -- 3.12 166.92 2.90 3.43 111.24 6.88 26.90 

26-27 -- -- 3.11 42.99 1.52 3.42 116.47 7.23 25.40 

27-28 -- -- 3.11 20.88 1.13 3.82 132.15 7.63 28.50 

28-29 -- -- 3.07 10.05 0.87 3.38 107.54 6.82 25.30 

29-30 -- -- 2.56 8.75 0.70 2.81 99.13 6.03 21.40 

30-31 -- -- 2.12 6.88 0.66 2.82 91.68 5.94 23.60 
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31-32 -- -- 2.39 8.26 0.70 2.99 86.65 5.97 24.80 

32-33 -- -- 2.52 7.71 0.67 2.69 84.29 5.86 24.20 

33-34 -- -- 2.74 8.75 0.74 3.05 93.04 6.60 27.10 

34-35 -- -- 2.41 8.13 0.64 2.46 93.56 5.88 23.60 

35-36 -- -- 2.83 6.09 0.57 3.31 78.67 6.33 26.60 

36-37 -- -- 2.17 4.40 0.68 3.47 72.38 6.35 28.10 

37-38 -- -- 2.58 9.12 0.74 3.01 86.36 6.05 25.80 

38-39 -- -- 2.59 12.52 0.83 3.06 98.42 6.31 24.80 

39-40 -- -- 3.42 12.53 0.98 3.97 104.80 7.83 30.70 

40-41 -- -- 3.18 8.36 8.32 3.56 113.48 7.33 29.70 

41-42 -- -- 2.81 2.72 0.60 3.78 78.49 6.31 26.80 

42-43 -- -- 2.66 4.73 0.57 2.73 74.90 5.72 21.80 

43-44 -- -- 2.65 5.49 0.65 3.15 86.91 6.01 24.90 

44-45 -- -- 2.54 7.95 0.72 3.01 116.44 5.93 23.10 

45-46 -- -- 3.43 15.34 1.04 3.89 134.00 8.09 31.20 

46-47 -- -- 3.45 9.34 0.97 3.84 89.72 7.33 30.40 

47-48 -- -- 3.52 12.49 0.94 3.46 75.33 7.06 31.30 

48-49 -- -- 3.54 15.27 1.08 4.13 92.82 7.66 30.60 

49-50 -- -- 2.46 17.97 0.94 2.89 118.52 6.37 23.20 

50-51 -- -- 2.57 19.39 1.05 3.22 129.50 6.90 25.90 

51-53 -- -- 3.05 22.71 1.17 3.46 124.74 7.59 29.80 

          

  Pb-214   Bi-214   Am-241  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 41.08 1.20 4.58 29.37 1.44 5.27 -- -- 2.03 

1-2 42.33 1.84 7.45 36.09 2.27 8.53 -- -- 2.89 

2-3 37.03 1.94 8.17 26.53 2.34 9.43 -- -- 3.05 

3-4 50.90 1.87 7.18 38.32 2.25 8.09 -- -- 2.79 

4-5 39.20 1.76 7.03 31.35 2.21 8.54 -- -- 2.96 

5-6 41.72 1.57 5.98 33.90 1.92 7.13 -- -- 2.50 

6-7 40.06 1.48 5.75 34.49 1.83 6.81 -- -- 2.53 

7-8 31.43 1.53 6.58 26.95 1.83 7.04 -- -- 2.55 

8-9 35.66 1.64 6.58 29.12 2.04 8.07 -- -- 2.85 

9-10 33.70 1.67 7.11 2.97 0.56 7.84 -- -- 2.63 

10-11 43.13 2.11 9.08 33.07 2.55 10.00 -- -- 3.58 

11-12 49.28 1.64 6.49 41.74 0.53 7.03 -- -- 2.74 
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12-13 43.91 1.68 6.51 35.66 2.05 7.56 -- -- 2.56 

13-14 49.75 1.80 6.93 44.62 2.25 7.76 -- -- 2.90 

14-15 52.10 1.65 6.02 45.76 2.03 7.13 -- -- 2.50 

15-16 51.71 1.63 6.19 40.23 1.95 6.90 -- -- 2.46 

16-17 58.61 1.76 6.58 46.93 2.16 7.56 -- -- 2.40 

17-18 46.43 1.84 7.12 31.27 2.18 8.18 -- -- 3.13 

18-19 43.33 1.66 6.58 36.10 2.00 7.26 -- -- 2.52 

19-20 28.80 1.62 6.96 18.75 1.93 7.98 -- -- 2.78 

20-21 34.76 1.34 5.45 30.32 1.63 6.17 -- -- 2.10 

21-22 40.24 1.67 6.74 30.94 1.91 7.90 -- -- 2.76 

22-23 41.90 1.67 6.57 33.27 2.02 7.20 -- -- 2.78 

23-24 35.60 1.95 8.43 27.81 2.34 9.47 -- -- 3.03 

24-25 38.44 1.98 8.56 26.64 2.26 9.42 -- -- 3.34 

25-26 25.81 1.65 7.24 18.35 2.00 8.34 -- -- 2.77 

26-27 32.77 1.79 7.51 27.13 2.21 8.41 -- -- 2.77 

27-28 47.76 1.97 7.55 35.33 2.40 9.04 -- -- 3.14 

28-29 36.36 1.73 6.72 27.66 2.10 8.08 -- -- 2.82 

29-30 51.42 1.64 5.91 41.21 1.98 6.94 -- -- 2.60 

30-31 39.31 1.56 5.88 31.30 1.90 7.14 -- -- 2.53 

31-32 49.18 1.63 5.97 39.49 1.98 6.91 -- -- 2.72 

32-33 51.69 1.63 5.89 43.30 2.00 6.98 -- -- 2.54 

33-34 42.17 1.72 6.52 34.50 2.11 7.63 -- -- 2.98 

34-35 57.78 1.68 6.06 48.37 2.02 6.85 -- -- 2.41 

35-36 36.15 1.71 6.84 30.60 1.86 8.16 -- -- 2.85 

36-37 40.22 1.74 7.00 41.16 0.61 8.04 -- -- 3.00 

37-38 35.76 1.58 6.46 34.15 2.01 7.35 -- -- 2.71 

38-39 41.90 1.62 6.25 37.63 1.13 7.50 -- -- 2.46 

39-40 46.36 2.10 8.56 36.18 2.60 9.82 -- -- 3.10 

40-41 55.68 2.07 7.89 46.77 2.52 9.35 -- -- 2.99 

41-42 39.85 1.71 6.77 32.73 2.09 7.83 -- -- 2.76 

42-43 45.91 1.64 6.18 31.93 1.96 7.24 -- -- 2.59 

43-44 45.57 1.68 6.45 34.32 2.03 7.44 -- -- 2.51 

44-45 48.76 1.58 6.03 38.39 1.93 7.15 -- -- 2.23 

45-46 58.29 2.18 8.20 43.20 2.65 9.92 -- -- 3.44 

46-47 46.94 2.08 8.42 39.64 2.55 9.51 -- -- 3.39 

47-48 39.68 2.00 8.28 33.09 2.51 9.65 -- -- 3.30 
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48-49 48.83 2.12 8.42 35.05 2.60 10.00 -- -- 3.15 

49-50 60.58 1.70 6.02 50.76 2.06 6.76 -- -- 2.76 

50-51 68.31 1.86 6.31 54.38 6.05 7.29 -- -- 2.67 

51-53 71.98 2.15 7.59 63.07 2.60 8.72 -- -- 3.16 
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Table A.2. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 1 
Core 4 (lake depth 96 m) 

       

  Cs-134   Cs-137  

 Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 2.92 72.41 2.59 3.20 

1-2 -- -- 3.52 80.12 2.95 3.83 

2-3 -- -- 3.88 98.68 3.02 3.79 

3-4 -- -- 2.46 43.90 1.66 3.02 

4-5 -- -- 2.47 33.12 1.41 2.81 

5-6 -- -- 2.21 37.07 1.47 2.63 

6-7 -- -- 2.60 60.51 2.20 3.08 

7-8 -- -- 3.27 128.73 3.87 3.59 

8-9 -- -- 3.77 167.08 4.94 4.15 

9-10 -- -- 2.63 129.94 3.77 3.04 

10-11 -- -- 2.95 166.12 4.73 3.25 

11-12 -- -- 2.33 94.50 2.94 2.39 

12-13 -- -- 2.79 145.18 3.90 2.70 

13-14 -- -- 2.94 166.07 4.98 2.87 

14-15 -- -- 2.67 163.11 4.55 2.64 

15-16 -- -- 2.42 116.85 3.48 2.47 

16-17 -- -- 4.35 713.10 18.06 3.88 

17-18 -- -- 3.13 220.86 5.79 3.62 

18-19 -- -- 3.61 77.57 2.87 4.06 

19-20 -- -- 2.33 16.65 0.89 3.60 

20-21 -- -- 2.49 6.14 0.71 2.75 

21-22 -- -- 2.14 4.50 0.52 2.48 

22-23 -- -- 2.41 5.65 0.60 2.62 

23-24 -- -- 3.87 10.59 0.86 3.09 

24-25 -- -- 2.62 7.10 0.69 2.73 

25-26 -- -- 2.62 5.98 0.64 2.75 

26-27 -- -- 3.07 6.97 0.73 4.21 

27-28 -- -- 2.82 4.96 0.59 2.60 

28-29 -- -- 2.04 5.00 0.50 2.29 

29-30 -- -- 2.62 6.68 0.68 2.86 

30-31 -- -- 2.99 10.07 0.83 3.02 
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31-32 -- -- 3.53 11.63 1.01 4.14 

32-33 -- -- 3.06 6.31 0.72 3.32 

33-34 -- -- 2.39 2.49 0.49 2.68 

34-35 -- -- 2.44 2.63 0.50 2.63 

35-36 -- -- 2.65 5.04 0.65 3.12 

36-37 -- -- 3.30 13.50 0.99 3.39 

37-38 -- -- 3.14 10.83 0.89 3.45 

38-39 -- -- 3.03 10.30 0.88 3.36 

39-40 -- -- 3.09 13.59 1.02 3.42 

40-41 -- -- 3.27 14.58 1.03 3.59 

41-44 -- -- 1.60 20.18 1.08 1.86 

44-47 -- -- 1.68 20.49 1.28 1.83 

47-50 -- -- 1.71 20.83 1.29 1.81 

50-53 -- -- 1.74 21.65 1.35 2.01 
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Table A.3. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 2 
Core 1 (lake depth 285 m) 

          

  Cs-134   Cs-137   Pb-210  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 2.82 121.98 2.38 3.31 528.22 11.90 27.30 

1-2 -- -- 3.38 178.16 3.17 3.76 518.86 13.00 3.18 

2-3 -- -- 2.91 240.14 3.41 3.27 411.40 10.74 29.10 

3-4 -- -- 3.81 317.60 4.56 6.34 311.70 10.65 4.43 

4-5 2.34 0.48 3.94 458.01 5.23 4.09 328.82 1027 3.15 

5-6 -- -- 3.65 1297.27 10.90 4.04 290.45 10.15 34.40 

6-7 -- --- 4.91 1748.91 14.44 4.85 283.34 11.27 39.90 

7-8 -- -- 4.38 535.06 6.54 4.82 354.23 12.45 38.30 

8-9 -- -- 3.37 71.90 1.92 4.50 239.30 8.82 40.60 

9-10 -- -- 3.18 39.46 1.45 3.46 229.68 8.88 28.70 

10-11 -- -- 3.37 30.33 1.35 4.53 201.15 8.76 28.00 

11-12 -- -- 2.96 39.49 1.43 3.47 183.88 8.30 27.60 

12-13 -- -- 2.68 29.85 1.17 3.20 164.57 7.20 25.10 

13-14 -- -- 2.51 16.27 0.81 3.18 103.24 5.51 21.40 

14-18 -- -- 3.81 21.91 1.15 3.95 126.61 7.19 28.80 

18-22 -- -- 4.32 28.31 1.41 4.38 148.74 8.81 34.00 

22-26 -- -- 3.63 29.35 1.27 3.80 130.35 7.43 29.30 

26-30 -- -- 4.03 29.14 1.53 4.61 111.71 8.30 34.60 

30-31 -- -- 2.71 24.10 1.01 2.88 105.42 5.78 22.30 

31-32 -- -- 3.00 17.75 0.96 3.26 93.31 6.29 25.50 

32-33 -- -- 3.28 38.26 1.29 3.23 147.88 7.00 26.50 

33-34 -- -- 3.31 42.63 1.51 3.47 213.02 8.60 2.81 

34-35 -- -- 3.95 79.54 2.23 4.51 256.88 10.21 32.00 

35-36 -- -- 3.06 77.87 1.95 3.21 152.56 7.54 26.50 

36-37 -- -- 2.66 68.63 1.47 2.80 139.59 5.97 23.20 

37-38 -- -- 3.25 113.87 2.32 3.42 162.26 7.56 24.90 

38-39 -- -- 3.20 90.50 2.11 3.48 176.67 7.98 26.20 

39-40 -- -- 4.48 13.93 1.15 4.94 116.97 8.68 34.40 

40-41 -- -- 2.96 4.19 0.58 2.95 159.99 7.13 24.40 

41-42 -- -- 4.56 -- -- 4.32 157.67 9.30 35.30 

42-43 -- -- 4.16 -- -- 3.60 115.04 8.31 34.20 
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43-44 -- -- 3.36 -- -- 3.23 99.75 6.96 25.60 

44-45 -- -- 3.51 -- -- 3.23 99.80 6.91 27.10 

45-46 -- -- 3.45 -- -- 2.89 81.58 6.61 27.50 

46-47 -- -- 3.83 -- -- 3.53 107.62 7.83 31.30 

47-48 -- -- 4.44 -- -- 3.79 124.92 8.42 32.30 

48-49 -- -- 3.87 -- -- 4.44 112.39 7.13 40.90 

49-50 -- -- 3.76 -- -- 3.04 98.81 7.27 29.30 

50-51 -- -- 3.19 -- -- 3.02 108.10 6.62 25.30 

51-52 -- -- 3.77 -- -- 3.72 101.48 7.23 28.70 

52-53 -- -- 3.62 -- -- 3.28 105.50 7.11 26.50 

53-54 -- -- 3.48 -- -- 3.19 101.30 6.89 26.80 

54-55 -- -- 3.46 -- -- 3.06 94.30 6.47 28.50 

55-56 -- -- 3.40 -- -- 3.10 79.92 6.00 25.20 

56-57 -- -- 4.57 -- -- 4.05 77.69 8.08 35.00 

57-58 -- -- 3.34 -- -- 2.84 68.01 5.62 24.70 

58-59 -- -- 3.56 -- -- 2.96 80.77 6.25 25.40 

59-60 -- -- 3.17 -- -- 3.14 95.81 6.92 28.10 

60-61 -- -- 3.15 -- -- 3.04 101.55 6.76 26.30 

61-62 -- -- 3.62 -- -- 3.31 80.12 6.75 25.70 

62-63 -- -- 3.48 -- -- 2.95 94.67 6.75 25.90 

63-64 -- -- 3.80 -- -- 3.15 92.84 7.05 27.90 

64-65 -- -- 3.40 -- --- 2.98 92.33 6.54 24.50 

          

  Pb-214   Bi-214   Am-241  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 68.89 1.95 7.06 66.39 2.57 7.77 -- -- 2.78 

1-2 65.61 2.17 8.23 48.35 2.76 9.38 -- -- 3.37 

2-3 80.24 2.07 7.26 73.02 2.69 8.12 -- -- 2.74 

3-4 54.34 2.22 11.80 37.55 2.62 10.00 -- -- 3.15 

4-5 63.24 2.11 8.33 51.30 2.67 9.46 -- -- 3.02 

5-6 58.37 2.05 8.64 51.86 2.70 8.61 -- -- 3.56 

6-7 44.16 2.35 1.13 34.51 2.82 10.80 -- -- 3.95 

7-8 40.94 2.36 10.50 33.60 2.97 11.20 -- -- 3.99 

8-9 65.11 2.04 9.52 55.20 2.86 8.88 -- -- 2.91 

9-10 81.18 2.17 7.39 62.82 2.74 8.52 -- -- 3.09 

10-11 62.33 2.08 7.81 51.19 2.65 8.76 -- -- 2.93 
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11-12 80.91 2.14 7.17 61.11 2.66 8.26 -- -- 2.67 

12-13 90.99 1.99 6.16 69.30 1.18 7.26 -- -- 2.74 

13-14 52.18 1.51 5.78 44.92 1.98 6.73 -- -- 2.21 

14-18 73.61 2.18 7.88 64.29 2.84 9.32 -- -- 2.91 

18-22 67.45 2.39 10.70 54.78 2.98 10.70 -- -- 3.37 

22-26 78.38 2.19 7.91 70.79 1.42 9.64 -- -- 3.19 

26-30 51.59 2.29 9.14 50.26 3.08 10.50 -- -- 3.29 

30-31 48.97 1.59 6.01 42.84 2.08 6.97 -- -- 2.39 

31-32 39.89 2.16 6.71 39.89 2.15 7.72 -- -- 2.58 

32-33 54.51 1.82 7.11 39.21 2.31 8.39 -- -- 2.55 

33-34 46.12 1.87 7.19 44.79 2.35 8.40 -- -- 2.90 

34-35 57.32 2.30 8.91 51.24 3.04 10.70 -- -- 3.14 

35-36 55.21 1.84 6.74 46.99 0.55 7.60 -- -- 2.70 

36-37 62.82 1.64 6.02 55.93 0.70 6.93 -- -- 2.38 

37-38 72.24 2.00 7.04 66.58 1.77 7.98 -- -- 2.52 

38-39 52.84 1.86 6.99 49.70 2.46 7.89 3.54 0.54 2.86 

39-40 77.57 2.51 8.99 76.11 3.18 10.90 -- -- 3.76 

40-41 76.25 1.82 5.60 68.68 2.21 7.05 -- -- 2.59 

41-42 102.84 2.72 9.01 130.36 3.72 10.30 -- -- 4.02 

42-43 59.28 2.20 8.01 60.07 2.74 9.98 -- -- 3.25 

43-44 58.46 1.93 7.12 52.34 6.71 8.31 -- -- 2.70 

44-45 51.28 1.87 6.99 46.69 2.25 8.52 -- -- 2.73 

45-46 43.86 1.73 6.62 45.85 2.15 7.95 -- -- 2.93 

46-47 59.54 2.16 7.93 56.03 2.60 9.46 -- -- 3.19 

47-48 63.90 2.25 8.51 57.29 2.71 9.93 -- -- 3.19 

48-49 72.50 2.15 9.69 56.39 2.54 15.40 -- -- 3.19 

49-50 73.72 2.05 6.81 64.84 2.50 8.61 -- -- 2.98 

50-51 74.61 1.92 6.25 65.99 2.32 7.55 -- -- 3.02 

51-52 60.65 2.03 7.15 -- -- 13.70 -- -- 2.84 

52-53 67.89 2.04 7.06 -- -- 13.80 -- -- 2.70 

53-54 60.73 1.93 6.87 -- -- 13.20 -- -- 2.55 

54-55 67.56 1.97 6.92 -- -- 13.30 -- -- 2.72 

55-56 70.03 1.97 6.95 -- -- 13.70 -- -- 2.63 

56-57 55.40 2.23 8.87 48.61 1.08 10.70 -- -- 3.27 

57-58 37.15 1.66 6.84 -- -- 11.60 -- -- 2.62 

58-59 53.40 1.84 6.69 -- -- 12.60 -- -- 2.80 
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59-60 49.19 1.94 7.42 43.19 2.49 8.50 -- -- 3.04 

60-61 50.24 1.91 7.45 38.07 2.40 8.61 -- -- 3.11 

61-62 61.63 1.97 6.77 -- -- 13.10 -- -- 2.74 

62-63 58.31 1.83 6.58 -- -- 11.90 -- -- 2.74 

63-64 49.77 1.89 7.39 -- -- 12.40 -- -- 2.80 

64-65 62.69 1.89 6.36 -- -- 12.20 -- -- 2.71 
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Table A.4. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 2 
Core 3 (lake depth 290 m) 

       

  Cs-134   Cs-137  

 Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 5.87 105.80 4.38 7.37 

1-2 -- -- 8.57 161.37 6.98 9.50 

2-3 -- -- 6.02 204.60 7.08 7.25 

3-4 -- -- 5.95 266.27 8.40 6.37 

4-5 -- -- 5.77 352.33 10.71 6.63 

5-6 -- -- 8.78 749.56 23.69 9.64 

6-7 -- -- 5.85 1454.02 43.49 6.68 

7-8 -- -- 10.70 1460.80 49.68 12.50 

8-9 -- -- 4.68 130.57 4.65 5.66 

9-10 -- -- 5.77 54.49 2.83 6.68 

10-11 -- -- 6.84 35.81 2.28 6.71 

11-12 -- -- 5.14 38.59 2.22 5.74 

12-13 -- -- 6.18 32.84 1.86 5.07 

13-16 -- -- 1.56 23.51 1.12 1.78 

16-19 -- -- 1.41 21.82 1.15 1.74 

19-22 -- -- 2.21 25.94 1.45 2.00 

22-25 -- -- 1.58 27.43 1.52 1.93 

25-28 -- -- 1.27 29.62 1.55 1.49 

28-31 -- -- 1.65 33.01 1.65 2.03 

31-32 -- -- 3.33 30.23 1.58 5.65 

32-33 -- -- 3.22 26.70 1.41 3.82 

33-34 -- -- 2.06 13.88 0.79 2.49 

34-35 -- -- 3.50 30.16 1.61 4.17 

35-36 -- -- 2.67 23.12 1.28 4.34 

36-37 -- -- 6.60 55.08 2.89 10.10 

37-38 -- -- 13.60 54.90 4.40 20.20 

38-39 -- -- 6.15 85.88 3.69 7.43 

39-40 -- -- 4.31 75.22 2.99 5.24 

40-41 -- -- 3.86 68.84 2.61 4.47 

41-42 -- -- 5.18 94.48 3.70 5.56 

42-43 -- -- 5.81 114.88 4.29 6.97 
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43-44 -- -- 5.43 37.49 2.20 5.66 

44-45 -- -- 4.00 8.12 1.01 4.82 

45-46 -- -- 3.10 7.94 0.82 4.83 

46-47 -- -- 4.70 3.46 0.94 5.31 

47-48 -- -- 4.24 -- -- 4.93 

48-49 -- -- 4.14 -- -- 4.51 

49-50 -- -- 4.16 -- -- 4.11 

50-51 -- -- 3.32 -- -- 3.15 

51-52 -- -- 3.29 -- -- 3.68 

52-53 -- -- 4.00 -- -- 4.29 

60-61 -- -- 3.43 -- -- 3.25 

68-69 -- -- 2.32 -- -- 2.05 
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Table A.5. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 3 
Core 3 (lake depth 160 m) 

          

  Cs-134   Cs-137   Pb-210  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 3.73 61.37 1.99 4.35 263.46 10.41 33.33 

1-2 -- -- 3.86 56.81 1.90 5.55 214.02 9.39 31.20 

2-3 -- -- 2.90 32.28 1.12 3.06 95.85 5.93 23.70 

3-4 -- -- 3.27 26.45 1.26 3.63 65.54 6.13 28.90 

4-5 -- -- 3.15 25.71 1.31 5.08 72.47 6.28 39.70 

5-6 -- -- 3.54 48.21 1.70 3.89 88.46 6.96 29.20 

6-7 -- -- 3.45 74.01 2.08 4.02 194.29 9.13 32.40 

7-8 -- -- 3.68 84.20 2.24 4.32 237.83 9.84 33.30 

8-9 -- -- 2.17 68.21 1.31 2.49 129.86 5.11 19.30 

9-10 -- -- 3.58 66.01 1.96 4.96 77.54 6.61 30.10 

10-11 -- -- 3.41 142.35 2.80 4.17 152.02 8.17 30.80 

11-12 -- -- 3.83 254.31 4.12 4.42 167.95 8.63 45.20 

12-13 -- -- 3.54 246.44 3.90 4.48 102.43 7.20 44.30 

13-14 -- -- 3.38 306.69 4.38 4.02 104.96 7.09 42.40 

14-15 -- -- 3.06 188.40 3.02 3.73 129.82 6.84 27.30 

15-16 -- -- 3.56 37.98 1.55 5.30 106.30 7.30 30.80 

16-17 -- -- 3.56 20.43 1.19 3.84 102.31 7.17 43.30 

17-18 -- -- 3.53 17.96 1.16 4.28 107.70 7.28 30.30 

18-19 -- -- 3.46 18.96 1.16 4.01 124.58 7.41 28.70 

19-20 -- -- 2.52 57.32 1.35 2.83 177.17 6.36 22.40 

20-21 -- -- 3.71 71.55 2.09 5.43 135.32 7.97 5.43 

21-22 -- -- 3.62 25.72 1.34 4.24 101.88 7.16 4.34 

22-23 -- -- 3.66 6.36 0.83 4.12 101.91 7.24 44.40 

23-24 -- -- 3.41 1.27 0.61 4.08 99.10 6.85 41.20 

24-25 -- -- 3.24 -- -- 3.33 87.08 6.46 41.20 

25-26 -- -- 2.98 -- -- 2.89 83.57 5.81 2.48 

26-27 -- -- 3.41 -- -- 3.47 99.40 7.34 28.80 

27-28 -- -- 3.63 -- -- 3.68 83.52 7.02 31.60 

28-29 -- -- 3.56 -- -- 3.55 92.66 6.86 42.20 

29-30 -- -- 1.76 -- -- 1.65 78.99 3.70 14.60 

30-31 -- -- 3.53 -- -- 3.64 86.00 7.36 30.00 
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32-33 -- -- 3.53 -- -- 3.58 66.15 6.45 43.50 

33-34 -- -- 2.97 -- -- 3.46 75.57 6.47 41.70 

34-35 -- -- 3.45 -- -- 3.30 85.34 6.31 39.80 

35-36 -- -- 3.54 -- -- 3.81 99.84 6.84 28.60 

36-37 -- -- 2.81 -- -- 2.70 88.82 5.46 23.90 

          

  Bi-214   Pb-214   Am-241  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 28.82 2.39 9.63 40.28 1.95 8.50 -- -- 3.26 

1-2 24.90 2.30 9.55 34.47 1.88 8.43 -- -- 4.04 

2-3 29.14 1.82 7.37 44.28 1.52 6.24 -- -- 2.63 

3-4 33.16 2.29 8.81 37.66 1.80 7.82 -- -- 2.81 

4-5 13.69 2.08 9.37 24.35 1.72 8.13 -- -- 2.64 

5-6 24.64 2.22 8.85 31.14 1.77 8.00 -- -- 2.54 

6-7 39.55 2.44 9.14 45.96 1.95 8.14 -- -- 3.16 

7-8 43.05 2.52 9.63 51.01 2.01 8.28 -- -- 3.48 

8-9 36.30 1.58 5.85 49.99 1.29 5.13 -- -- 2.17 

9-10 35.66 1.19 9.43 38.25 1.85 7.95 -- -- 2.99 

10-11 34.82 2.28 8.61 42.64 1.86 8.06 -- -- 2.93 

11-12 32.81 2.46 9.88 41.35 2.02 8.86 -- -- 3.62 

12-13 20.41 2.22 9.50 35.82 1.87 8.50 -- -- 3.29 

13-14 33.47 2.24 9.17 33.47 1.85 7.93 -- -- 3.22 

14-15 30.90 2.08 8.11 41.83 1.71 6.99 -- -- 2.90 

15-16 34.86 2.44 9.41 38.08 2.44 8.12 -- -- 3.24 

16-17 30.63 2.32 9.22 37.13 1.85 8.08 -- -- 2.99 

17-18 28.93 2.37 9.50 45.51 1.97 7.85 -- -- 3.10 

18-19 28.00 2.34 9.50 40.37 1.89 7.76 -- -- 3.04 

19-20 44.95 1.85 6.82 52.61 1.49 5.72 -- -- 2.53 

20-21 39.17 2.50 9.45 52.60 2.05 8.41 -- -- 3.29 

21-22 38.32 2.51 9.80 50.06 2.01 8.25 -- -- 3.07 

22-23 42.50 1.27 9.52 51.70 2.01 8.07 -- -- 3.57 

23-24 37.42 2.39 9.10 50.17 1.95 7.64 -- -- 3.39 

24-25 39.18 2.29 8.81 47.12 1.83 7.54 -- -- 4.65 

25-26 52.97 2.13 7.28 60.03 1.70 6.75 -- -- 2.50 

26-27 66.67 2.77 9.24 73.63 2.21 8.07 -- -- 3.08 

27-28 43.57 2.62 9.42 54.29 2.09 7.99 -- -- 3.29 
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28-29 37.52 24.17 9.25 47.16 1.94 7.80 -- -- 3.17 

29-30 36.49 1.30 4.76 46.22 1.04 4.06 -- -- 1.45 

30-31 55.42 2.72 9.56 62.31 2.14 7.99 -- -- 3.13 

32-33 50.61 2.66 9.60 58.54 2.08 7.81 -- -- 3.05 

33-34 58.63 2.69 9.07 57.63 2.06 7.78 -- -- 2.89 

34-35 41.24 2.33 8.95 51.23 1.90 7.53 -- -- 3.12 

35-36 46.58 2.56 9.28 53.52 2.02 8.10 -- -- 3.02 

36-37 48.65 2.05 7.60 60.52 1.65 6.19 -- -- 2.52 
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Table A.6. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 4 
Core 2 (lake depth 150 m) 

          

  Cs-134   Cs-137   Pb-210  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 3.85 91.70 2.37 4.47 405.29 12.11 33.90 

1-2 -- -- 3.29 91.62 2.06 3.79 454.70 11.09 29.00 

2-3 -- -- 3.71 87.76 2.31 4.42 315.59 10.80 34.10 

3-4 -- -- 4.83 150.04 3.32 4.89 493.30 14.51 38.50 

4-5 -- -- 3.48 174.79 3.22 4.10 335.41 11.15 31.90 

5-6 1.34 0.31 2.28 256.83 2.90 2.81 334.41 1.81 21.80 

6-7 1.10 0.38 3.31 605.95 5.88 3.68 430.84 10.50 30.70 

7-8 2.34 0.57 4.48 1030.25 10.09 5.45 263.44 11.64 41.90 

8-9 2.40 0.68 5.47 705.85 8.45 6.07 365.35 14.41 44.70 

9-10 -- -- 4.38 168.58 3.40 4.68 309.14 11.42 34.50 

10-11 -- -- 3.74 76.74 2.15 4.03 226.58 9.35 31.20 

11-12 -- -- 3.99 55.99 1.86 4.15 202.67 9.21 31.80 

12-13 -- -- 3.82 53.06 1.85 4.11 192.36 9.37 32.90 

13-14 -- -- 3.73 66.50 2.01 4.29 221.61 9.75 32.70 

14-15 -- -- 6.29 100.60 3.35 6.93 365.81 16.24 52.60 

15-16 -- -- 5.63 122.99 3.36 6.25 308.79 13.81 45.60 

16-17 -- -- 4.00 142.04 2.99 4.51 271.45 10.44 32.90 

17-18 -- -- 4.20 173.81 3.31 4.67 229.04 9.74 32.10 

18-19 -- -- 4.05 110.97 2.59 4.46 246.19 9.99 33.30 

19-20 -- -- 2.67 66.04 1.45 2.80 222.38 6.86 22.60 

20-21 -- -- 3.67 26.22 1.36 4.31 180.56 8.80 31.40 

21-22 -- -- 3.88 14.97 1.09 4.31 181.98 9.02 32.20 

22-23 -- -- 3.61 12.83 1.00 3.96 177.87 8.93 32.90 

23-24 -- -- 4.97 8.68 1.08 5.20 150.30 9.43 37.60 

24-25 -- -- 2.23 5.32 0.48 2.39 132.88 5.14 18.50 

25-26 -- -- 2.79 4.28 0.55 2.80 115.40 5.65 20.70 

26-27 -- -- 1.92 1.83 0.32 1.87 101.30 3.96 16.30 

27-28 -- -- 2.15 1.75 0.37 1.99 94.13 4.37 17.70 

28-29 -- -- 1.69 1.53 0.28 1.64 96.54 3.57 14.20 

29-30 -- -- 2.25 1.03 0.35 2.03 132.13 4.80 18.10 

30-31 -- -- 4.98 1.26 0.33 4.08 103.59 3.97 1.62 
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31-32 -- -- 1.95 -- -- 1.71 99.70 3.87 15.50 

32-33 -- -- 2.46 -- -- 2.11 83.86 4.54 19.30 

33-34 -- -- 2.16 -- -- 1.98 88.05 4.11 16.90 

34-35 -- -- 1.89 -- -- 1.65 79.94 3.53 14.00 

35-36 -- -- 2.63 -- -- 2.30 88.52 4.94 20.40 

36-37 -- -- 2.37 -- -- 1.99 88.11 4.31 17.80 

37-38 -- -- 2.49 -- -- 2.28 71.55 4.16 18.80 

38-39 -- -- 2.70 -- -- 2.26 83.41 4.94 21.10 

39-40 -- -- 2.54 -- -- 2.11 85.21 4.60 18.60 

40-41 -- -- 2.61 -- -- 2.24 85.11 4.76 19.50 

41-42 -- -- 2.12 -- -- 1.87 103.54 4.33 15.90 

42-43 -- -- 2.39 -- -- 2.02 90.85 4.59 18.30 

43-44 -- -- 2.34 -- -- 2.02 78.76 4.47 18.20 

44-45 -- -- 2.61 -- -- 2.26 81.56 4.92 19.00 

          

  Bi-214   Pb-214   Am-241  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 49.30 2.60 9.49 60.43 2.15 8.34 -- -- 3.23 

1-2 50.31 2.32 8.37 64.94 1.88 6.82 -- -- 2.76 

2-3 55.02 2.71 9.58 60.27 2.14 8.40 -- -- 3.26 

3-4 46.49 3.07 12.00 61.84 2.49 9.97 -- -- 3.55 

4-5 25.17 2.29 9.55 38.64 1.90 8.05 -- -- 3.02 

5-6 49.52 1.81 6.57 63.00 1.50 5.83 -- -- 2.12 

6-7 39.49 1.91 8.93 52.30 1.87 8.32 -- -- 3.27 

7-8 40.81 2.83 11.00 40.71 2.25 10.80 -- -- 4.20 

8-9 34.93 3.21 13.50 49.93 2.63 12.10 -- -- 5.13 

9-10 50.68 2.88 11.10 67.25 2.41 9.47 -- -- 3.60 

10-11 64.27 2.80 9.34 72.68 2.25 8.16 -- -- 3.09 

11-12 54.44 2.64 9.02 59.92 2.10 8.25 -- -- 3.13 

12-13 55.21 2.72 9.43 68.47 2.29 8.40 -- -- 3.18 

13-14 69.98 2.87 9.56 77.52 2.28 8.09 -- -- 3.23 

14-15 39.53 3.98 16.00 42.25 3.07 14.20 -- -- 7.10 

15-16 44.89 3.60 14.30 43.28 2.79 12.80 -- -- 4.52 

16-17 24.65 2.34 10.00 37.94 1.94 8.61 -- -- 3.49 

17-18 51.10 2.72 10.00 58.01 2.14 8.52 6.80 0.70 3.56 

18-19 58.51 2.73 9.79 64.33 2.18 8.33 2.77 0.62 3.73 



Appendix A 
 

189 

19-20 45.00 1.84 6.78 53.62 1.48 5.54 2.65 0.43 2.46 

20-21 52.88 2.67 9.85 67.44 2.16 8.26 -- -- 4.10 

21-22 63.46 2.80 9.60 71.78 2.23 7.97 -- -- 3.33 

22-23 45.61 2.53 9.21 54.67 2.05 8.14 -- -- 3.15 

23-24 49.79 3.15 11.50 62.44 2.54 10.20 -- -- 4.09 

24-25 44.78 0.86 5.87 47.24 1.26 4.86 -- -- 1.99 

25-26 43.02 1.89 7.01 54.52 1.53 5.71 -- -- 2.02 

26-27 41.41 1.17 4.86 53.51 1.10 4.12 -- -- 2.15 

27-28 53.35 1.58 5.47 66.75 1.30 4.57 -- -- 2.22 

28-29 61.85 1.35 4.50 69.09 1.07 3.70 -- -- 1.31 

29-30 45.34 1.55 5.48 56.74 1.25 4.63 -- -- 1.72 

30-31 39.38 1.35 4.98 49.89 1.08 4.08 -- -- 1.62 

31-32 49.96 1.37 4.85 60.61 1.10 3.98 -- -- 1.62 

32-33 54.94 1.69 5.92 65.01 1.36 4.87 -- -- 2.09 

33-34 42.43 0.72 5.28 51.72 1.16 4.51 -- -- 1.65 

34-35 46.40 1.30 4.64 55.84 1.03 3.91 -- -- 1.59 

35-36 61.65 1.87 6.39 68.77 1.52 5.41 -- -- 2.10 

36-37 31.07 1.43 5.65 41.16 1.15 4.64 -- -- 1.70 

37-38 36.93 1.54 6.09 44.12 1.25 4.95 -- -- 2.04 

38-39 52.27 1.73 6.23 57.08 1.41 5.18 -- -- 1.97 

39-40 51.36 1.69 5.91 56.99 1.33 4.97 -- -- 1.99 

40-41 65.05 1.77 5.91 69.71 1.40 4.99 -- -- 1.91 

41-42 52.17 1.48 5.15 65.26 1.21 4.21 -- -- 1.61 

42-43 40.94 1.54 5.58 54.09 1.27 4.72 -- -- 1.77 

43-44 40.05 1.51 5.57 49.46 1.22 4.61 -- -- 1.91 

44-45 53.35 1.70 6.19 54.03 1.38 5.05 -- -- 1.96 
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Table A.7. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 5 
Core 3 (lake depth 40 m) 

          

  Cs-134   Cs-137   Pb-210  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 3.51 93.71 2.37 4.21 364.73 11.60 33.40 

1-2 -- -- 4.59 114.41 3.01 5.59 508.41 15.39 41.60 

2-3 -- -- 6.07 153.75 4.02 7.09 649.29 20.30 56.70 

3-4 -- -- 5.03 207.06 4.49 7.15 731.17 20.28 53.00 

4-5 -- --      3.67 182.24 3.31 4.22 337.11 11.18 31.00 

5-6 -- -- 3.88 315.52 4.52 4.56 361.56 11.79 36.51 

6-7 -- -- 6.11 507.57 7.25 7.41 550.18 18.83 57.41 

7-8 -- -- 6.74 710.33 9.63 8.14 534.67 20.11 58.92 

8-9 -- -- 4.07 1069.76 10.30 4.94 399.90 13.40 42.70 

9-10 -- --     8.02 1569.57 16.33 8.85 439.05 20.30 69.30 

10-11 -- -- 3.51 93.71 2.37 4.21 364.74 11.60 33.45 

11-12 -- -- 6.57 430.57 7.38 7.77 580.70 21.06 61.53 

12-13 -- -- 4.62 166.80 3.57 5.93 411.97 14.44 46.30 

13-14 -- -- 3.67 89.50 2.38 4.53 270.44 10.76 35.07 

14-15 -- -- 4.57 65.67 2.43 5.56 256.89 12.62 42.00 

15-16 -- -- 3.84 49.61 1.80 4.17 218.83 9.81 33.43 

16-17 -- -- 2.41 47.08 1.37 3.04 171.36 6.95 23.66 

17-18 -- -- 3.28 55.31 1.73 3.73 238.01 9.36 30.33 

18-19 -- -- 7.05 76.51 3.40 8.70 492.91 21.26 69.01 

19-20 -- -- 7.29 69.56 3.01 8.04 446.42 19.56 66.15 

20-21 -- -- 9.30 75.75 3.71 14.60 383.40 22.22 126.17 

21-22 -- -- 7.01 104.07 3.73 8.40 330.11 18.00 61.64 

22-23 -- -- 5.04 135.43 3.58 6.09 337.53 14.40 45.20 

23-24 -- -- 5.55 191.03 4.26 6.55 361.52 15.24 50.40 

24-25 -- -- 3.69 103.09 2.50 6.57 263.04 10.34 34.40 

25-26 -- -- 3.81 62.55 2.10 4.65 262.50 11.04 34.32 

26-27 -- -- 3.96 27.54 1.49 4.65 240.27 10.79 36.61 

27-28 -- -- 3.22 16.00 1.09 4.12 215.43 9.45 32.73 

28-29 -- -- 3.53 13.50 1.01 3.81 240.49 9.82 32.94 

29-30 -- -- 3.43 5.91 0.84 4.11 230.64 9.83 32.03 

30-31 -- -- 3.09 4.36 0.78 4.11 237.21 9.94 33.92 
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31-32 -- -- 2.50 2.87 0.56 3.14 217.47 7.50 25.60 

32-33 -- -- 3.54 2.44 0.71 4.16 189.93 9.17 33.50 

33-34 -- -- 3.39 -- -- 3.54 187.30 8.70 32.21 

34-35 -- -- 3.18 -- -- 3.60 193.94 8.84 31.40 

35-36 -- -- 3.57 -- -- 3.83 183.20 9.24 33.20 

36-37 -- -- 2.77 -- -- 3.01 198.20 7.45 26.40 

37-38 -- -- 3.54 -- -- 3.63 175.36 8.97 32.45 

38-39 -- -- 3.61 -- -- 3.70 181.29 8.94 33.10 

39-40 -- -- 3.65 -- -- 3.57 186.46 9.20 34.13 

40-41 -- -- 3.77 -- -- 3.75 202.39 9.48 34.81 

41-42 -- -- 3.68 -- -- 3.75 143.45 8.80 33.90 

42-43 -- -- 3.68 -- -- 3.72 188.42 9.01 32.50 

43-44 -- -- 3.50 -- -- 3.84 192.19 9.30 34.54 

44-45 -- -- 3.77 -- -- 3.77 161.34 9.12 34.70 

          

  Pb-214   Bi-214   Am-241  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 58.59 2.09 7.82 47.90 3.06 11.00 -- -- 3.41 

1-2 22.17 2.17 10.70 12.52 2.85 12.72 -- -- 4.28 

2-3 46.52 3.24 15.00 20.13 3.92 17.81 -- -- 6.18 

3-4 47.54 3.02 14.20 35.73 3.87 16.20 -- -- 5.15 

4-5 44.78 1.98 8.47 31.56 2.36 9.73 -- -- 3.33 

5-6 56.69 2.25 9.43 49.61 2.79 10.51 -- -- 3.81 

6-7 23.40 3.03 20.10 6.12 3.84 17.73 -- -- 5.30 

7-8 46.99 3.51 21.80 11.72 4.14 19.90 -- -- 6.87 

8-9 54.06 2.41 10.80 31.83 2.72 11.60 -- -- 4.02 

9-10 45.65 3.77 25.50 28.51 3.33 20.90 -- -- 7.65 

10-11 58.59 2.09 7.82 47.90 3.06 11.00 -- -- 3.41 

11-12 4.92 5.20 22.20 -- -- 19.80 -- -- 5.79 

12-13 51.63 2.69 15.50 29.11 3.26 13.92 -- -- 4.90 

13-14 70.20 2.35 9.22 50.00 1.54 10.90 -- -- 3.60 

14-15 43.25 2.55 11.20 31.92 3.15 12.67 -- -- 4.61 

15-16 35.88 1.94 8.20 22.61 2.37 10.04 -- -- 3.57 

16-17 77.78 1.78 5.99 65.02 2.19 7.04 -- -- 2.82 

17-18 60.89 2.10 8.08 47.56 2.57 9.56 -- -- 3.17 

18-19 51.57 3.97 17.90 37.36 4.98 21.60 -- -- 6.91 
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19-20 11.64 3.46 17.40   21.19 -- -- 5.84 

20-21 12.13 3.34 28.80 13.52 1.92 28.79 -- -- 4.21 

21-22 15.68 3.20 17.10 3.10 0.43 20.12 -- -- 6.41 

22-23 10.73 2.35 12.50   14.21 -- -- 4.75 

23-24 24.28 2.72 13.90 20.23 2.24 15.01 9.60 1.04 7.82 

24-25 43.03 2.06 8.79 27.51 2.50 10.33 4.24 0.68 5.64 

25-26 50.07 2.28 9.21 34.90 2.72 10.63 3.40 0.69 4.02 

26-27 32.72 2.09 9.53 20.41 2.52 10.80 -- -- 3.77 

27-28 52.04 1.99 10.00 44.53 2.53 9.39 -- -- 3.99 

28-29 79.45 2.28 7.99 65.88 2.81 9.71 -- -- 3.13 

29-30 83.45 2.34 8.29 61.57 2.82 9.67 -- -- 3.26 

30-31 89.80 2.40 8.26 70.35 1.45 9.90 -- -- 3.57 

31-32 92.35 1.90 6.40 72.45 2.30 7.41 -- -- 2.80 

32-33 103.62 2.52 8.62 81.28 3.05 9.98 -- -- 3.90 

33-34 89.86 2.29 7.84 74.36 2.79 9.07 -- -- 3.39 

34-35 87.33 2.28 7.82 62.44 2.70 9.46 -- -- 3.22 

35-36 55.40 2.12 7.87 45.00 2.64 9.97 -- -- 3.40 

36-37 80.59 1.86 6.45 61.90 2.25 7.71 -- -- 2.61 

37-38 109.33 2.52 8.29 85.52 3.04 9.82 -- -- 3.31 

38-39 99.92 2.44 8.21 73.57 2.87 9.41 -- -- 3.61 

39-40 111.79 2.55 8.12 81.58 3.02 9.89 -- -- 3.58 

40-41 95.49 2.45 8.27 77.64 2.97 9.74 -- -- 3.31 

41-42 92.23 2.41 8.11 76.46 2.96 9.69 -- -- 3.40 

42-43 111.10 2.54 8.23 85.24 1.87 9.72 -- -- 3.47 

43-44 97.73 2.45 8.23 74.76 2.94 9.60 -- -- 3.53 

44-45 146.54 2.86 8.65 109.37 3.34 10.23 -- -- 3.48 
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Table A.8. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 6 
Core 3 (lake depth 29 m) 

          

  Cs-134   Cs-137   Pb-210  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 6.93 124.90 3.65 12.10 798.52 24.41 83.10 

1-2 -- -- 4.05 193.91 2.87 5.70 970.55 16.86 49.40 

2-3 -- -- 8.09 226.20 5.31 14.70 812.87 27.13 98.80 

3-4 -- -- 8.02 288.62 5.93 10.70 791.75 26.71 99.40 

4-5 -- -- 4.30 214.33 3.74 5.26 440.37 14.45 49.00 

5-6 -- -- 5.90 337.30 4.91 7.61 568.13 18.11 66.40 

6-7 -- -- 6.64 274.58 4.94 8.83 564.96 20.78 84.00 

7-8 -- -- 8.27 154.29 4.51 11.20 439.83 23.56 98.50 

8-9 -- -- 8.33 136.76 4.26 14.90 478.85 2.33 97.80 

9-10 -- -- 7.37 166.71 4.43 10.10 468.52 22.25 87.30 

10-11 -- -- 7.12 165.02 4.22 9.08 440.33 20.62 83.30 

11-12 -- -- 5.61 185.10 3.51 7.39 480.28 17.03 62.90 

12-13 -- -- 6.38 187.63 4.21 8.55 445.62 19.10 72.60 

13-14 -- -- 6.66 168.21 4.14 8.72 388.81 19.27 81.40 

14-15 -- -- 6.19 120.79 3.34 7.72 322.06 17.22 72.70 

15-16 -- -- 5.81 93.08 2.74 7.09 329.68 15.43 63.00 

16-17 -- -- 5.13 47.07 1.91 6.08 226.52 13.09 56.70 

17-18 -- -- 2.70 -- -- 4.91 252.84 8.22 32.80 

18-19 -- -- 2.52 18.12 0.87 3.44 211.67 7.32 29.90 

19-20 -- -- 4.60 1.33 1.21 5.69 151.51 11.05 45.50 

20-21 -- -- 4.70 8.49 1.09 5.54 182.19 11.46 47.90 

21-22 -- -- 4.66 6.54 1.09 5.85 141.12 10.35 46.40 

22-23 -- -- 4.66 5.61 1.03 5.49 127.41 10.09 47.70 

23-24 -- -- 4.64 1.88 0.90 5.21 104.10 9.35 43.20 

24-25 -- -- 4.63 2.49 0.93 5.30 82.84 9.19 45.90 

25-26 -- -- 4.48 2.04 0.89 5.19 140.15 10.76 49.10 

26-27 -- -- 4.48 0.27 0.86 4.77 99.05 9.17 43.00 

27-28 -- -- 3.81 2.08 0.77 4.04 86.21 8.01 39.50 

28-29 -- -- 3.69 1.80 0.72 4.27 8.84 8.28 36.80 

29-30 -- -- 4.86 -- -- 4.96 8.51 10.63 46.90 

30-31 -- -- 4.68 -- -- 4.83 83.71 10.59 49.70 
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31-32 -- -- 4.82 -- -- 5.14 88.99 10.61 49.30 

32-33 -- -- 4.66 -- -- 5.32 92.57 10.31 47.40 

33-34 -- -- 4.65 -- -- 4.93 57.42 10.03 47.20 

34-35 -- -- 4.90 -- -- 5.19 9.60 10.75 51.00 

35-36 -- -- 4.61 -- -- 5.07 90.31 10.29 5.03 

36-37 -- -- 4.63 -- -- 7.17 61.16 10.42 50.30 

37-38 -- -- 4.81 -- -- 5.57 87.36 9.77 68.90 

38-39 -- -- 4.81 -- -- 5.57 87.36 9.77 68.90 

          

  Bi-214   Pb-214   Am-241  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 119.09 4.50 16.20 35.42 3.68 19.60 -- -- 7.45 

1-2 57.25 3.11 13.00 47.15 2.49 11.70 -- -- 3.90 

2-3 -- -- 23.80 3.86 7.07 22.80 -- -- 7.57 

3-4 4.41 5.38 24.70 14.15 4.06 28.20 -- -- 9.09 

4-5 13.52 2.96 12.70 17.35 2.21 11.60 -- -- 4.78 

5-6 28.30 4.19 17.60 31.94 3.18 16.40 -- -- 5.25 

6-7 23.11 4.34 20.70 12.24 3.46 18.50 -- -- 6.28 

7-8 12.17 5.00 24.50 -- -- 22.60 -- -- 7.94 

8-9 15.33 5.51 23.70 19.07 4.12 23.40 -- -- 7.76 

9-10 11.34 4.98 21.90 11.78 4.49 20.10 5.84 1.35 8.18 

10-11 101.46 4.41 16.90 24.28 3.55 18.60 6.72 1.38 7.28 

11-12 115.58 3.48 12.70 21.69 2.99 15.60 3.44 1.07 6.47 

12-13 88.32 2.14 20.90 17.45 3.32 17.10 -- -- 6.56 

13-14 87.46 4.05 16.10 22.29 3.43 18.00 5.47 1.28 10.40 

14-15 70.81 3.11 19.90 23.19 3.11 16.80 5.25 1.16 6.94 

15-16 84.22 1.54 13.00 30.04 2.80 15.10 -- -- 5.99 

16-17 74.11 1.23 16.70 34.22 2.58 12.90 -- -- 4.84 

17-18 52.71 1.17 9.26 86.45 1.53 5.94 -- -- 3.14 

18-19 49.69 1.91 7.73 49.56 1.58 7.03 -- -- 2.34 

19-20 45.82 3.13 12.00 53.57 2.44 14.40 -- -- 4.42 

20-21 36.42 2.99 12.30 45.66 2.37 11.50 -- -- 4.99 

21-22 43.06 3.06 12.00 47.66 2.43 11.50 -- -- 4.56 

22-23 36.74 3.02 12.30 43.61 2.38 14.60 -- -- 4.63 

23-24 26.83 2.85 12.10 38.63 2.27 14.10 -- -- 4.43 

24-25 22.90 2.81 12.10 28.46 2.25 11.70 -- -- 4.63 
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25-26 49.78 3.11 11.90 48.94 2.45 10.90 -- -- 4.42 

26-27 34.48 2.85 11.90 43.54 2.27 10.80 -- -- 4.77 

27-28 35.70 2.54 10.10 40.41 2.01 9.34 -- -- 3.55 

28-29 23.23 2.30 9.87 33.23 1.83 11.60 -- -- 3.41 

29-30 31.40 2.99 12.30 33.37 2.37 15.20 -- -- 4.65 

30-31 34.51 3.07 12.70 43.00 2.42 11.50 -- -- 4.52 

31-32 30.01 2.98 12.40 38.56 2.39 11.50 -- -- 4.54 

32-33 32.64 3.01 11.90 38.01 2.39 11.60 -- -- 5.48 

33-34 38.70 3.05 12.20 47.52 2.40 11.60 -- -- 4.90 

34-35 31.32 3.01 12.50 38.25 2.41 15.20 -- -- 4.64 

35-36 34.51 2.98 12.50 33.75 2.27 11.60 -- -- 4.30 

36-37 46.08 1.53 12.50 50.12 2.46 11.70 -- -- 4.46 

37-38 54.33 3.51 12.30 62.45 2.59 14.10 -- -- 4.76 

38-39 54.33 3.51 12.30 62.45 2.59 14.10 -- -- 4.76 
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Table A.9. Activity concentrations (in Bq·kg-1) of radionuclides in sediments from Position 7 
Core 2 (lake depth 370 m) 

          

  Cs-134   Cs-137   Pb-210  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 -- -- 2.00 94.93 1.54 2.50 578.96 9.60 21.20 

1-2 -- -- 1.94 100.96 1.70 2.52 352.93 7.95 20.00 

2-3 -- -- 3.28 141.70 2.75 3.90 188.72 9.24 31.80 

3-4 -- -- 3.27 148.59 2.94 3.96 205.44 9.70 32.60 

4-5 -- -- 2.91 178.43 2.83 3.55 210.07 8.55 27.80 

5-6 -- -- 3.48 166.47 4.23 3.48 199.60 9.80 32.90 

6-7 -- -- 3.49 198.06 3.45 4.21 239.77 10.18 31.40 

7-8 -- -- 3.30 220.90 3.67 4.29 289.62 10.99 33.40 

8-9 -- -- 3.70 151.31 2.91 4.30 205.48 9.34 30.90 

9-10 -- -- 3.57 93.12 2.31 4.24 106.69 7.23 42.50 

10-11 -- -- 3.27 47.54 1.60 3.88 63.09 5.96 39.20 

11-12 -- -- 3.17 102.77 2.35 5.51 212.56 8.98 44.30 

12-13 -- -- 3.48 272.65 4.04 4.47 336.64 11.26 31.80 

13-14 -- -- 3.70 233.98 3.94 4.48 246.41 11.13 36.60 

14-15 -- -- 3.57 267.70 4.20 4.46 248.60 10.81 33.90 

15-16 -- -- 2.64 131.35 2.22 3.38 101.87 6.29 24.00 

16-17 -- -- 3.47 108.13 2.51 4.31 140.00 8.01 31.00 

17-18 -- -- 3.45 119.00 2.63 4.17 125.51 7.86 31.50 

18-19 -- -- 3.45 115.51 2.40 4.09 116.01 7.30 27.90 

19-20 1.27 0.44 3.66 713.42 7.48 4.38 199.56 9.81 32.80 

20-21 1.67 0.68 6.30 1358.90 14.04 7.23 394.14 18.43 60.00 

21-22 -- -- 5.46 87.45 2.90 6.10 337.84 15.23 44.90 

22-23 -- -- 3.61 60.76 1.96 4.51 230.64 10.46 34.20 

23-24 -- -- 4.99 47.11 2.15 6.04 290.23 13.42 44.40 

24-25 -- -- 3.20 54.28 1.81 4.40 206.18 10.01 34.20 

25-26 -- -- 3.22 46.78 1.59 3.79 162.65 8.42 27.40 

26-27 -- -- 2.73 60.14 1.60 3.41 193.34 7.89 24.70 

27-28 -- -- 3.11 49.00 1.68 3.76 139.86 8.32 30.00 

28-29 -- -- 4.95 52.28 2.27 7.57 259.04 12.63 41.80 

29-30 -- -- 6.61 70.73 2.97 7.67 376.24 18.14 57.10 

30-31 -- -- 5.13 40.15 2.03 5.93 171.88 12.27 44.30 

31-32 -- -- 5.78 89.81 3.22 7.10 291.81 15.76 53.00 
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32-33 -- -- 3.84 111.02 2.66 4.33 203.69 10.21 33.50 

33-34 -- -- 3.37 127.89 2.80 4.30 184.96 9.67 32.90 

34-35 -- -- 3.44 159.41 3.06 3.97 210.56 9.76 31.70 

35-36 -- -- 3.83 119.78 2.89 4.48 211.98 10.79 35.50 

36-37 -- -- 3.90 82.88 2.27 4.35 258.85 10.99 35.00 

37-38 -- -- 3.36 20.94 1.26 4.38 202.47 9.69 30.40 

38-39 -- -- 4.27 10.93 1.09 4.85 272.24 11.97 37.40 

39-40 -- -- 3.55 7.05 0.86 4.08 175.81 9.63 33.30 

40-41 -- -- 3.64 2.12 0.70 4.27 122.57 8.50 32.30 

41-42 -- -- 3.50 1.64 0.64 3.80 136.13 8.61 31.80 

42-43 -- -- 3.28 1.17 0.63 3.64 177.12 9.30 30.90 

43-44 -- -- 3.22 -- -- 3.60 82.35 7.44 29.40 

44-45 -- -- 3.50 -- -- 3.49 129.00 7.88 30.30 

45-46 -- -- 3.73 -- -- 3.71 120.83 8.45 32.30 

46-47 -- -- 3.21 -- -- 3.49 57.61 7.31 32.20 

47-48 -- -- 3.38 -- -- 3.76 96.45 8.07 32.80 

48-49 -- -- 3.50 -- -- 3.38 79.64 7.37 30.20 

49-50 -- -- 3.01 -- -- 3.02 67.90 6.46 27.10 

50-51 -- -- 3.19 -- -- 3.07 62.31 6.59 28.70 

51-52 -- -- 2.75 -- -- 2.43 68.07 5.69 23.20 

52-53 -- -- 2.96 -- -- 3.17 48.44 5.46 25.50 

53-54 -- -- 3.33 -- -- 3.31 34.60 6.21 27.10 

54-55 -- -- 2.71 -- -- 2.70 67.40 5.66 23.30 

55-56 -- -- 2.83 -- -- 2.72 70.07 5.28 23.10 

56-57 -- -- 2.86 -- -- 3.06 84.95 6.50 26.00 

57-59 -- -- 2.94 -- -- 2.99 63.97 6.08 26.00 

59-61 -- -- 3.16 -- -- 3.07 68.26 6.82 28.30 

61-63 -- -- 2.75 -- -- 2.84 41.12 4.98 24.20 

63-65 -- -- 2.32 -- -- 2.28 50.64 4.87 20.90 

          

  Bi-214   Pb-214   Am-241  

 Act. Unc. MDA Act. Unc. MDA Act. Unc. MDA 

0-1 58.95 1.71 5.76 73.78 1.44 4.90 -- -- 1.96 

1-2 48.01 1.63 5.70 56.01 1.36 4.75 -- -- 2.06 

2-3 35.59 2.30 9.06 48.92 1.91 9.91 -- -- 2.92 

3-4 23.43 2.22 9.23 31.29 1.81 10.30 -- -- 3.77 
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4-5 31.61 2.04 8.22 45.61 1.70 9.29 -- -- 3.30 

5-6 47.14 2.58 9.00 45.74 2.00 8.43 -- -- 3.56 

6-7 31.50 2.37 9.33 38.07 1.89 8.00 -- -- 3.12 

7-8 51.80 2.63 9.49 56.79 2.11 8.71 -- -- 3.28 

8-9 31.99 2.29 9.26 45.89 1.91 10.30 -- -- 3.02 

9-10 18.05 2.14 9.55 28.50 1.77 10.60 -- -- 3.02 

10-11 20.16 2.05 8.71 30.62 1.68 9.42 -- -- 2.67 

11-12 32.60 2.22 8.66 43.50 1.87 8.09 -- -- 3.03 

12-13 47.70 2.51 9.53 64.73 2.12 8.17 -- -- 3.11 

13-14 31.72 2.53 10.40 42.87 2.11 12.00 -- -- 3.81 

14-15 35.21 2.53 10.00 48.31 2.14 9.05 -- -- 3.60 

15-16 40.21 1.94 7.43 51.89 1.63 6.34 -- -- 2.41 

16-17 53.00 2.67 9.71 70.30 2.25 0.12 -- -- 0.06 

17-18 40.58 2.48 9.40 52.96 2.03 7.77 -- -- 3.48 

18-19 31.74 2.33 9.01 39.23 1.90 10.00 -- -- 2.06 

19-20 44.92 2.54 9.67 60.31 2.25 9.06 -- -- 3.24 

20-21 7.42 3.09 17.20 20.63 3.06 16.60 -- -- 5.58 

21-22 38.68 3.64 15.00 56.70 2.97 15.80 -- -- 5.21 

22-23 54.88 2.76 9.88 68.88 2.30 8.48 -- -- 3.30 

23-24 44.34 3.00 14.10 58.35 2.92 16.10 -- -- 4.31 

24-25 74.74 2.89 9.23 91.65 2.42 8.33 -- -- 3.62 

25-26 54.77 2.49 8.62 61.69 2.03 7.54 -- -- 2.95 

26-27 46.42 2.14 7.62 59.61 1.78 8.72 -- -- 3.12 

27-28 31.11 2.28 9.08 48.14 1.92 9.85 -- -- 3.27 

28-29 44.05 3.45 13.50 50.43 2.79 11.30 -- -- 4.21 

29-30 13.51 4.42 18.90 29.86 3.24 20.10 -- -- 5.96 

30-31 5.52 3.02 13.90 18.29 2.45 12.10 -- -- 4.29 

31-32 38.02 3.86 15.70 43.27 3.06 13.90 -- -- 5.29 

32-33 52.42 2.79 10.40 72.67 2.33 8.49 -- -- 3.69 

33-34 43.91 2.54 9.28 57.28 2.14 8.33 -- -- 4.59 

34-35 45.20 2.55 9.54 68.46 2.20 8.12 4.76 0.65 3.48 

35-36 41.45 2.80 10.70 48.26 2.23 9.25 6.14 0.88 4.13 

36-37 41.78 2.74 10.60 59.96 2.26 8.71 5.39 0.67 3.36 

37-38 54.02 2.73 9.69 66.87 2.27 7.83 -- -- 3.38 

38-39 46.07 2.95 11.10 61.46 2.41 12.20 -- -- 4.03 

39-40 51.30 2.76 9.99 63.76 2.23 10.60 -- -- 3.61 
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40-41 51.42 2.69 9.95 60.25 2.22 8.29 -- -- 3.12 

41-42 37.19 2.43 9.16 53.18 2.02 7.84 -- -- 3.37 

42-43 41.66 2.55 9.59 57.00 2.12 10.30 -- -- 4.51 

43-44 36.03 2.41 9.28 45.84 1.95 7.72 -- -- 3.20 

44-45 52.28 2.67 9.59 69.14 2.24 7.72 -- -- 3.37 

45-46 48.27 2.66 9.57 55.47 2.13 8.14 -- -- 3.47 

46-47 27.98 2.38 9.15 34.86 1.81 7.97 -- -- 3.07 

47-48 38.64 2.46 9.32 49.55 2.02 8.16 -- -- 2.94 

48-49 34.15 2.50 9.39 50.00 2.01 8.26 -- -- 3.00 

49-50 32.04 2.13 8.29 44.00 1.77 7.17 -- -- 3.91 

50-51 29.12 2.12 8.58 40.20 1.75 7.19 -- -- 2.92 

51-52 31.51 1.87 7.28 41.41 1.53 6.02 -- -- 3.42 

52-53 19.69 1.98 8.39 26.86 1.64 6.94 -- -- 2.56 

53-54 16.02 2.04 9.10 22.95 1.64 7.56 -- -- 2.77 

54-55 29.30 1.84 7.52 38.37 1.49 6.04 -- -- 2.86 

55-56 40.26 1.99 7.43 50.14 1.64 8.28 -- -- 2.35 

56-57 40.74 2.17 8.05 44.82 1.70 6.89 -- -- 2.45 

57-59 28.00 1.97 7.83 37.55 1.61 6.86 -- -- 2.53 

59-61 23.50 2.06 8.43 30.19 1.64 7.18 -- -- 2.70 

61-63 17.24 1.84 7.84 23.52 1.45 6.77 -- -- 2.38 

63-65 14.52 1.48 6.53 25.40 1.22 6.80 -- -- 2.46 
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APPENDIX B: 

Bulk density of the sediments of Lago Maggiore 

Table B.1. Measured bulk density of dry sediments of Lago Maggiore, in g·cm-3. 

Sed. 
layer, cm 

Pos 1  
Core 1 

Pos 1  
Core 4 

Pos 2  
Core 1 

Pos 2  
Core 3 

Pos 3  
Core 3 

Pos 4  
Core 2 

Pos 5  
Core 3 

Pos 6  
Core 3 

Pos 7  
Core 1 

0-1 0.91 0.71 0.38 0.32 0.64 0.29 0.32 0.13 0.27 

1-2 0.68 0.60 0.29 0.22 0.63 0.27 0.17 0.14 0.34 

2-3 0.57 0.57 0.32 0.23 0.95 0.36 0.12 0.12 0.33 

3-4 0.69 0.90 0.27 0.36 0.96 0.20 0.13 0.12 0.35 

4-5 0.94 0.91 0.26 0.35 0.98 0.24 0.24 0.24 0.40 

5-6 0.88 0.92 0.35 0.23 0.87 0.22 0.20 0.13 0.40 

6-7 0.93 0.80 0.25 0.37 0.66 0.19 0.11 0.12 0.35 

7-8 0.83 0.70 0.23 0.18 0.59 0.22 0.12 0.12 0.27 

8-9 0.73 0.59 0.29 0.30 0.77 0.17 0.21 0.12 0.38 

9-10 0.70 0.86 0.32 0.33 0.93 0.21 0.11 0.13 0.66 

10-11 0.52 0.76 0.30 0.32 0.69 0.25 0.11 0.14 0.93 

11-12 0.87 1.03 0.34 0.37 0.60 0.25 0.12 0.12 0.42 

12-13 0.78 0.93 0.42 0.46 0.81 0.27 0.13 0.15 0.25 

13-14 0.71 0.80 0.69 0.57 0.67 0.26 0.20 0.15 0.22 

14-15 0.91 0.88 0.61 0.57 0.63 0.14 0.17 0.17 0.23 

15-16 0.84 0.74 0.61 0.57 0.70 0.16 0.23 0.18 0.43 

16-17 0.62 0.62 0.61 0.61 0.75 0.24 0.29 0.20 0.41 

17-18 0.68 0.69 0.61 0.61 0.67 0.24 0.20 0.24 0.39 

18-19 0.81 0.59 0.61 0.61 0.72 0.29 0.10 0.24 0.55 

19-20 0.69 0.73 0.61 0.58 0.42 0.30 0.09 0.28 0.36 

20-21 0.83 0.85 0.61 0.58 0.48 0.35 0.06 0.27 0.13 

21-22 0.77 0.89 0.61 0.58 0.58 0.45 0.11 0.28 0.15 

22-23 0.78 0.78 0.56 0.55 0.63 0.39 0.16 0.29 0.23 

23-24 0.59 0.74 0.56 0.55 0.64 0.44 0.13 0.28 0.16 

24-25 0.60 0.83 0.56 0.55 0.63 0.65 0.20 0.30 0.24 

25-26 0.69 0.85 0.56 0.58 0.73 0.54 0.20 0.33 0.32 

26-27 0.65 0.71 0.63 0.58 0.72 0.54 0.21 0.34 0.31 

27-28 0.61 0.80 0.63 0.58 0.76 0.52 0.26 0.32 0.33 

28-29 0.69 0.89 0.63 0.54 0.75 0.51 0.31 0.34 0.17 

29-30 0.90 0.83 0.63 0.54 0.75 0.42 0.33 0.30 0.12 
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30-31 0.87 0.74 0.70 0.54 0.75 0.59 0.34 0.28 0.16 

31-32 0.87 0.61 0.98 0.58 -- 0.59 0.36 0.27 0.15 

32-33 0.89 0.70 0.48 0.60 0.81 0.68 0.39 0.26 0.24 

33-34 0.73 0.97 0.33 1.08 0.79 0.64 0.38 0.30 0.27 

34-35 0.92 0.87 0.23 0.57 0.70 0.62 0.33 0.27 0.27 

35-36 1.03 0.78 0.42 0.45 0.64 0.75 0.28 0.24 0.22 

36-37 1.01 0.66 0.56 0.30 0.62 0.71 0.34 0.25 0.20 

37-38 0.80 0.64 0.36 0.14 -- 0.68 0.39 0.35 0.28 

38-39 0.81 0.68 0.36 0.33 -- 0.63 0.40 0.35 0.21 

39-40 0.54 0.66 0.46 0.47 -- 0.58 0.42 -- 0.28 

40-41 0.59 0.64 0.44 0.55 -- 0.66 0.45 -- 0.39 

41-42 1.07 0.61 0.47 0.40 -- 0.62 0.41 -- 0.35 

42-43 0.83 0.61 0.51 0.34 -- 0.72 0.43 -- 0.36 

43-44 0.79 0.61 0.64 0.38 -- 0.81 0.46 -- 0.45 

44-45 0.61 0.60 0.65 0.50 -- 0.81 0.46 -- 0.36 

45-46 0.54 0.60 0.68 0.50 -- -- -- -- 0.40 

46-47 0.55 0.60 0.54 0.42 -- -- -- -- 0.60 

47-48 0.55 0.60 0.51 0.48 -- -- -- -- 0.45 

48-49 0.53 0.60 0.60 0.45 -- -- -- -- 0.50 

49-50 0.44 0.60 0.64 0.55 -- -- -- -- 0.54 

50-51 0.40 0.55 0.75 0.64 -- -- -- -- 0.65 

51-52 0.41 -- 0.61 0.61 -- -- -- -- 0.61 

52-53 -- -- 0.64 0.66 -- -- -- -- 0.90 

53-54 -- -- 0.65 0.61 -- -- -- -- 0.85 

54-55 -- -- 0.66 0.55 -- -- -- -- 0.80 

55-56 -- -- 0.70 0.52 -- -- -- -- 0.75 

56-57 -- -- 0.50 0.52 -- -- -- -- 0.63 

57-58 -- -- 0.40 0.61 -- -- -- -- 1.21 

58-59 -- -- 0.68 0.83 -- -- -- -- 1.21 

59-60 -- -- 0.64 0.68 -- -- -- -- 1.48 

60-61 -- -- 0.61 0.64 -- -- -- -- 1.48 

61-62 -- -- 0.62 0.65 -- -- -- -- 2.03 

62- 63 -- -- 0.72 0.75 -- -- -- -- 2.03 

63- 64 -- -- 0.61 0.73 -- -- -- -- 1.85 

64- 65 -- -- 0.72 0.68 -- -- -- -- 1.85 

65- 66 -- -- -- 0.68 -- -- -- -- 0.85 
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66- 67 -- -- -- 0.61 -- -- -- -- 0.67 

67- 68 -- -- -- 0.57 -- -- -- -- 0.54 

68- 69 -- -- -- 0.82 -- -- -- -- 0.58 

69- 70 -- -- -- 0.83 -- -- -- -- 0.67 
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APPENDIX C: 

Results of grain-size distribution analyses 

Table C.1. Percentage of grain-size distribution and organic matter content of sediment profiles 
at different positions of Maggiore. 

Sediment fraction in % Position (sediment layer) 
Sand Silt Clay Organic matter 

Pos 1 (0 - 9.5 cm) 14.6 66.1 16.9 2.4 

Pos 1 (9.5 - 24 cm) 23.4 59.2 12.2 5.2 

Pos 2 (0 - 2 cm) 65.3 18.8 13.0 2.9 

Pos 2 (2 - 12.5 cm) 65.9 21.0 10.9 2.2 

Pos 2 (12.5 - 14.5 cm) 43.4 33.5 22.1 1.0 

Pos 2 (39 - 47 cm) 31.2 40.1 27.0 1.7 

Pos 3 (5 - 18 cm) 22.3 64.9 11.7 1.1 

Pos 4 (0 - 15 cm) 1.1 67.1 30.1 1.8 

Pos 4 (15 - 30 cm) 1.7 52.0 44.6 1.7 

Pos 4 (30 - 45 cm) 9.6 58.3 28.3 3.8 

Pos 4 (45 - 60 cm) 8.8 70.4 16.8 4.0 

Pos 5 (0 - 20 cm) 2.4 78.9 11.5 7.2 

Pos 6 (8 - 28 cm) 10.9 41.1 46.6 1.4 

Pos 7 (0 - 25 cm) 26.8 45.2 25.1 2.9 

Pos 7 (25 - 50 cm) 4.8 48.9 44.1 2.2 
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APPENDIX D: 

Results of 5-step sequential extraction procedure 

Table D.1. Percentage of extracted 137Cs during 5-step sequential procedure. 

Position 

(sediment 

layer, cm) 

Step 1, 

% 

Step 2, 

% 

Step 3, 

% 

Step 4, 

% 

Step 5, 

% 

Rest 

(residue), 

% 

Pos 1 (9.5–24) 0.45 ± 0.11 0.23 ± 0.08 0.15 ± 0.06 2.20 ± 0.16 5.51 ± 0.33 91.46 ± 0.40 

Pos 2 (2–12.5) 0.99 ± 0.05 0.20 ± 0.03 0.21 ± 0.02 4.40 ± 0.21 0.90 ± 0.05 93.30 ± 0.22 

Pos 3 (8–17) 0.21 ± 0.06 0.16 ± 0.16 0.08 ±0.03 1.17 ± 0.10 0.43 ± 0.06 97.95 ± 0.15 

Pos 3 (8–15) 0.29 ± 0.06 0.16 ± 0.06 0.05 ± 0.06 1.26 ± 0.09 0.14 ± 0.03 98.10 ± 0.14 

Pos 4 (2.5–12) 1.56 ± 0.09 0.52 ± 0.04 0.23 ± 0.02 4.27 ± 0.20 -- 93.42 ± 0.22 

Pos 5 (8–17) 9.68 ± 0.56 2.38 ± 0.20 1.11 ± 0.16 6.58 ± 0.40 1.12 ± 0.16 79.13 ± 0.75 

Pos 6 (0–8) 4.51 ± 0.32 1.76 ± 0.22 0.68 ± 0.11 3.18 ± 0.21 0.50 ± 0.10 89.37 ± 0.47 

Pos 7 (0–25) 0.86 ± 0.07 0.24 ± 0.06 0.18 ± 0.05 1.78 ± 0.12 0.25 ± 0.04 96.69 ± 0.17 

 

Step 1 – Exchangeable ions of 137Cs; 

Step 2 – Carbonates; 

Step 3 – Oxides and hydroxides of ion and manganese; 

Step 4 – Organic matter; 

Step 5 – Amorphous silicates. 

Rest (residue) – Clay minerals, quartz, feldspars. 
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APPENDIX E: 

Constant rate of supply model for sediment dating 

The Constant Rate of Supply (CRS) model is based on the assumption that the supply of 

unsupported 210Pb to the accreting material is constant for each time interval. This 

approach does not require the rate of sediment accumulation to be constant over time. In 

that case the initial concentration ( )tA 0  (Bq·g-1) of unsupported 210Pb in the sediment 

satisfies: 

( ) ( ) consttRtA S0 =⋅ ,     (E.1) 

where ( )tRS  is the dry mass sedimentation rate in g·(cm2
·a)-1 and t  is time in a. 

The present concentration of unsupported 210Po at a present depth x  can be calculated 

from (Appleby & Oldfield, 1978): 

( ) ( ) t
0 etAxA λ−⋅= ,     (E.2) 

where 0A  and ( )xA  are the initial and present activity concentration of unsupported 

210Pb in the layer at depth x , respectively, and λ  is radioactive decay constant for 210Pb 

(0.031 a-1). 

A sediment deposited during a small period of time t∆  occupies a layer of thickness x∆ : 

( )
( ) t
x

tR
x

b

S ∆⋅
ρ

=∆ ,     (E.3) 

where ( )xbρ  in g·cm-3 is the bulk density of the sediment at depth x  and ( )tRS  is the dry 

mass sedimentation rate in g·(cm2
·a)-1. The rate of change of depth is: 

( )
( )x

tR
x

b

S

ρ
=& .     (E.4) 

Substituting (E.4) and (E.2) into (E.1), leads to: 
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( ) ( ) ( ) ( )0r0AtrtA 00 ⋅=⋅       

( ) ( ) ( ) ( ) t
0 e0r0AtrxA λ−⋅⋅=⋅       

( ) ( ) ( ) ( ) ( ) t
bb e0x00AxxxA λ−⋅⋅ρ⋅=⋅ρ⋅ && .   (E.5) 

The total residual (cumulated) unsupported 210Pb ( )xA r  (Bq·cm-2) in the sediment below 

the depth x  is: 

( ) ( ) ( ) dxxAxxA
x

br ⋅⋅ρ= ∫
∞

    (E.6) 

and, accordingly, 

( ) ( ) ( ) dxxAx0A
0

br ⋅⋅ρ= ∫
∞

.    (E.7) 

From equations (E.5) and (E.6) it follows that: 

( ) ( ) ( ) ( ) ( ) t
bbr e0x0A0xxAxA λ−⋅⋅⋅ρ−=⋅⋅ρ−= &&& .  (E.8) 

Integrating this equation with regard to time we obtain: 

( ) ( ) ( ) ( ) dte0x0A0xA
t

t
br ⋅⋅⋅⋅ρ= ∫

∞
λ−

&       

( ) ( ) ( ) ( ) t
br e0x0A0

1
xA λ−⋅⋅⋅ρ⋅

λ
= &     (E. 9) 

( ) ( ) t
rr e0AxA λ−⋅= .      (E.10) 

This calculation is based on the fact that cumulated unsupported 210Pb below any given 

depth in a core can be compared to the total unsupported 210Pb in the core and the age 

calculated for that particular depth. A series of these age calculations can be used to 

develop a graph of age versus depth of the core. 

The age of the layer of depth x  can be calculated as: 
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( )
( )xA

0A
ln

1
t

r

r⋅
λ

= .     (E.12) 

( )xA r  is calculated by numerical integration of the graph of x/Ab ⋅ρ . 

 

Whereas, for the constant input concentration (CIC) model the age of the layer of depth x 

is: 

( )
( )xA
0A

ln
1

t ⋅
λ

=       (E.13) 

Hence, from equations (E.4), (E.8) and (E.9) the rate of sedimentation ( )xRs  in 

g·(cm2
·a)-1 is given by: 

( ) ( ) xxtR bs &⋅ρ=        

( ) ( )xA
A

tR r
s

&

−=        

( ) ( )
( )xA

xA
xR r

s

⋅λ= .     (E.14) 

Depending on the core, age determination older than 60-100 years should be treated with 

caution because statistical uncertainties and small variations in the background 210Pb can 

cause large changes in the age estimation. 
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APPENDIX F: 

Example of modeling: Mathematical code for Matlab 

 

% FEMLAB Model M-file 
% Generated by FEMLAB 3.0 (FEMLAB 3.0.0.181, $Date: 2004/01/29 19:04:14 $) 
 
clear; 
clc; 
 
flclear fem 
 
% Femlab version 
clear vrsn 
vrsn.name = 'FEMLAB 3.0'; 
vrsn.ext = ''; 
vrsn.major = 0; 
vrsn.build = 181; 
vrsn.rcs = '$Name:  $'; 
vrsn.date = '$Date: 2004/01/29 19:04:14 $'; 
fem.version = vrsn; 
 
% Geometry 
g1=solid1([0,90]); 
clear s 
s.objs={g1}; 
s.name={'depth'}; 
s.tags={'g1'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Constants 
% Rs86 - sedimentation rate after the Chernobyl accident, g/(cm2

·a) 
% Rs63 - sedimentation rate after the nuclear weapons testing fallout, g/(cm2·a) 
% fix - fixation rate, 1/a 
% lambda - radioactive decay constant, 1/a 
% alphabar - portion of exchangeable radioactivity (dimensionless) 
% D - Diffusion constant of Cs+ ions in the pure water at certain temperature, cm2/a 
% Kdtot - total distribution coefficient, ltr/kg 
% Kddiffusion - distribution coefficient which is responsible for the retarded diffusion within the sediment 
% ro0 - bulk density for the top layer of the sediment, g/cm3 
% R - radius of the sediment corer, m 
% rop - mean particle density, g/cm3 
% LA - lake area, m2 
% CA - catchment area, m2 
% Pr - precipitation (net annual rainfall), mm/a 
% DL86 - Average deposition on the lake in 1986, Bq/m2 
% DL63 - Average deposition on the lake in 1963, Bq/m2 
% DC - Average deposition to the catchment, Bq/m2 
% MD - Lake mean depth, m 
% B1 to B6 – constants of the AQUASCOPE model 
t1 – time of the nuclear weapons testing fallout, a 
t2 – time of the Chernobyl accident, a 
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t3 and t4 – time of the turbidite, a 
par1 – constant describing the sedimentation speed within in the turbidite  
par2 – constant describing the amplitude of the turbidite 
 
 
fem.const={'Rs86','0.128', ... 
           'Rs63','0.25',... 
           'fix','2', ... 
           'lambda','log(2)/30.07', ... 
           'alphabar','0.0099', ... 
           'D','417.63', ... 
           'Kdtot','99000', ... 
           'Kddiffusion','193.8',... 
           'ro0','0.2781', ... 
           'R','0.02865', ... 
           'rop','2.65', ... 
           'LA','213000000', ... 
           'CA','6390000000', ... 
           'Pr','1.752', ... 
           'DL86','20000', ... 
           'DC86','5000', ... 
           'DL63','2330', ... 
           'MD','176.5', ... 
           'B1','0.3', ... 
           'B2','18', ... 
           'B3','0.41', ... 
           'B4','0.02', ... 
           'B5','0.00535', ... 
           'B6','0.00029', ... 
           't1','4.5', ... 
           't2','27.3', ... 
           't3','17.9', ... 
           't4','18', ... 
           'par1','440', ... 
           'par2','2.1', ... 
           'scale','0.001'}; 
 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hmax',[], ... 
                  'hmaxfact',1, ... 
                  'hgrad',1.3, ... 
                  'xscale',1.0); 
 
% Refine mesh 
fem.mesh=meshrefine(fem); 
fem.mesh=meshrefine(fem); 
fem.mesh=meshrefine(fem); 
fem.mesh=meshrefine(fem); 
fem.mesh=meshrefine(fem); 
fem.mesh=meshrefine(fem); 
fem.mesh=meshrefine(fem); 
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% Application mode 1 
clear appl 
appl.mode.class = 'FlPDEC'; 
appl.mode.type = 'cartesian'; 
appl.dim = {'u1','u2','u1_t','u2_t'}; 
appl.sdim = {'x','y','z'}; 
appl.name = 'c'; 
appl.shape = {'shlag(2,''u1'')','shlag(2,''u2'')'}; 
appl.sshape = 2; 
appl.border = 'off'; 
appl.assignsuffix = '_c'; 
clear prop 
prop.elemdefault='Lag2'; 
prop.wave='off'; 
prop.weakconstr=struct('value',{'off'},'dim',{{'lm1','lm2','lm3','lm4'}}); 
appl.prop = prop; 
clear bnd 
bnd.weak = 0; 
bnd.dweak = 0; 
bnd.constr = '0'; 
bnd.q = 0; 
bnd.h = 1; 
bnd.g = 0; 
bnd.r = {0,{'Ce';'Cf'}}; 
bnd.type = {'neu','dir'}; 
bnd.ind = [2,1]; 
appl.bnd = bnd; 
clear equ 
equ.shape = [1;2]; 
equ.gporder = 4; 
equ.cporder = 2; 
equ.init = 0; 
equ.usage = 1; 
equ.weak = 0; 
equ.dweak = 0; 
equ.constr = '0'; 
equ.c = {{'c11';'c22'}}; 
equ.a = {{'a11','-a12';'-a21','a22'}}; 
equ.f = 0; 
equ.da = 1; 
equ.al = '-vs'; 
equ.be = 0; 
equ.ga = 0; 
equ.ind = [1]; 
appl.equ = equ; 
fem.appl{1} = appl; 
fem.sdim = {'x'}; 
 
 
% Simplify expressions 
fem.simplify = 'on'; 
 
% Global expressions 
% RT - Water residence time of the lake, a 
% LV - lake volume 
% Kappa - Caesium removal rate, 1/a 
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% DC86 - Average deposition to the catchment in 1986, Bq/m2 
% DC63 - Average deposition to the catchment in 1963, Bq/m2 
% RT - Water residence time of the lake, a 
% MD - Lake mean depth, m 
% Kappa - Caesium removal rate, 1/a 
% cw – concentration in the lake water, mBq/l 
% Ce – exchangeable part of radioactivity, Bq/m2 per 1 cm layer 
% Cf – fixed part of radioactivity, Bq/m2 per 1 cm layer 
% Kdturbidite – distribution coefficient which is dependent on time and includes the terms describing the 
turbidite 
% reisol – redissolution rate, 1/a 
% Dphys – combined bio- and physical turbation, cm2/a 
% De – retarded diffusion, cm2/a 
% epsilon – porosity, dimensionless  
% rob – bulk density of the sediment, g/cm3 
% vs – sedimentation speed, cm/a 
 
 
fem.expr = {'LV','LA*MD', ... 
            'RT','LV/(Pr*CA)', ... 
            'Kappa','(1/RT)+(8/MD)+1', ... 
            'cw86','(T186+((DC86.*exp(-(t-t2).*lambda))/RT).*(T286+T386+T486)).*(t>t2)', ... 
            'T186','DL86/MD*exp(-(t-t2)*(Kappa+lambda))', ... 
            'T286','(B1*(exp(-(t-t2)*B2)-exp(-(t-t2)*Kappa)))/(Kappa-B2)', ... 
            'T386','(B5*(exp(-(t-t2)*B3)-exp(-(t-t2)/RT)))/(1/RT-B3)', ... 
            'T486','(B6*(exp(-(t-t2)*B4)-exp(-(t-t2)/RT)))/(1/RT-B4)', ...  
            'cw63','(T163+((DC63.*exp(-(t-t1).*lambda))/RT).*(T263+T363+T463)).*((t>=t1)&(t<=t2))', ... 
            'T163','DL63/MD*exp(-(t-t1)*(Kappa+lambda))', ... 
            'T263','(B1*(exp(-(t-t1)*B2)-exp(-(t-t1)*Kappa)))/(Kappa-B2)', ... 
            'T363','(B5*(exp(-(t-t1)*B3)-exp(-(t-t1)/RT)))/(1/RT-B3)', ... 
            'T463','(B6*(exp(-(t-t1)*B4)-exp(-(t-t1)/RT)))/(1/RT-B4)', ...  
            'cw59','(T159+((DC59.*exp(-t.*lambda))/RT).*(T259+T359+T459)).*(t<t1)', ... 
            'T159','DL59/MD*exp(-t*(Kappa+lambda))', ... 
            'T259','(B1*(exp(-t*B2)-exp(-t*Kappa)))/(Kappa-B2)', ... 
            'T359','(B5*(exp(-t*B3)-exp(-t/RT)))/(1/RT-B3)', ... 
            'T459','(B6*(exp(-t*B4)-exp(-t/RT)))/(1/RT-B4)', ... 
            'T2','(B1*(exp(-t*B2)-exp(-t*Kappa)))/(Kappa-B2)', ... 
            'T3','(B5*(exp(-t*B3)-exp(-t/RT)))/(1/RT-B3)', ... 
            'T4','(B6*(exp(-t*B4)-exp(-t/RT)))/(1/RT-B4)', ... 
            'DC63','DL63/4', ... 
            'DL59','DL63/2.6', ... 
            'DC59','DL63/2.6/4', ... 
            'cw','cw59+cw63+cw86', ... 
            'Ce','cw.*Kdturbidite.*(alphabar*ro0*0.01)', ... 
            'Cf','cw.*Kdturbidite.*((1-alphabar)*ro0*0.01)', ... 
            'a11','lambda+fix', ... 
            'a22','lambda+redisol', ... 
            'a12','redisol', ... 
            'a21','fix', ... 
            'c22','Dphys', ... 
            'c11','De+Dphys', ... 
            'Dphys','0.01*(x<=1)', ...             
            'De','(D*(epsilon)^(1/3))*(1/(1+(rob/epsilon*Kddiffusion)))', ... 
            'Kdex','alphabar*Kdturbidite',... 
            'Kdturbidite','Kdtot.*(1+(flsmhs((t-t3),scale)-flsmhs((t-t4),scale))*par2)',... 
            'redisol','alphabar*fix/(1-alphabar)', ...             
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            'epsilon','1-rob/rop', ... 
            'rob','ro0+0.0088.*x', ... 
            'vs','((Rs086+Rs063)/rob).*(1+(flsmhs((t-t3),scale)-flsmhs((t-t4),scale))*par1)', ...  
            'Rs086','(Rs86)*(t>=27.3)',... 
            'Rs063','(Rs63)*(t<27.3)',... 
            'c','u1+u2'}; 
 
 
% Functions 
fem.functions = {}; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); 
 
 
% Solve problem 
fem.sol=femtime(fem, ... 
                'nullfun','flnullorth', ... 
                'blocksize',5000, ... 
                'complexfun','off', ... 
                'conjugate','on', ... 
                'symmetric','off', ... 
                'solcomp',{'u2','u1'}, ... 
                'outcomp',{'u2','u1'}, ... 
                'rowscale','on', ... 
                'tlist',[0:0.1:44.2], ... 
                'atol',{'0.000000010'}, ... 
                'rtol',0.1, ... 
                'maxorder',1, ... 
                'masssingular','maybe', ... 
                'consistent','2', ... 
                'estrat',0, ... 
                'tout','tlist', ... 
                'tsteps','strict', ... 
                'complex','off', ... 
                'linsolver','umfpack', ... 
                'thresh',0.1, ... 
                'umfalloc',0.7, ... 
                'uscale','auto'); 
 
% Save current fem structure for restart purposes 
fem0=fem; 
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