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Summary
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The vast and growing volume of 3D protein structural data stored in the PDB contains

abundant information about macromolecular complexes, and hence, data about protein

interfaces. Non-covalent contacts between amino acids are the basis of protein interac-

tions, and they are responsible for binding affinity and specificity in biological processes.

In addition, water networks in protein interfaces can also complement direct interactions

contributing significantly to molecular recognition, although their exact role is still not well

understood.

It is estimated that protein complexes in the PDB are substantially underrepresented

due to their crystallization difficulties. Methods for automatic classification and description

of the protein complexes are essential to study protein interfaces, and to propose putative

binding regions. Due to this strong need, several protein-protein interaction databases have

been developed. However, most of them do not take into account either protein-peptide

complexes, solvent information or a proper classification of the binding regions, which are

fundamental components to provide an accurate description of protein interfaces.

In the first stage of my thesis, I developed the SCOWLP platform, a database and web

application that structurally classifies protein binding regions at family level and defines

accurately protein interfaces at atomic detail. The analysis of the results showed that

protein-peptide complexes are substantially represented in the PDB, and are the only source



of interacting information for several families. By clustering the family binding regions, I

could identify 9,334 binding regions and 79,803 protein interfaces in the PDB. Interestingly,

I observed that 65% of protein families interact to other molecules through more than

one region and in 22% of the cases the same region recognizes different protein families.

The database and web application are open to the research community (www.scowlp.org)

and can tremendously facilitate high-throughput comparative analysis of protein binding

regions, as well as, individual analysis of protein interfaces.

SCOWLP and the other databases collect and classify the protein binding regions at

family level, where sequence and structure homology exist. Interestingly, it has been ob-

served that many protein families also present structural resemblances within each other,

mostly across folds. Likewise, structurally similar interacting motifs (binding regions) have

been identified among proteins with different folds and functions. For these reasons, I de-

cided to explore the possibility to infer protein binding regions independently of their fold

classification. Thus, I performed the first systematic analysis of binding region conserva-

tion within all protein families that are structurally similar, calculated using non-sequential

structural alignment methods. My results indicate there is a substantial molecular recog-

nition information that could be potentially inferred among proteins beyond family level.

I obtained a 6 to 8 fold enrichment of binding regions, and identified putative binding re-

gions for 728 protein families that lack binding information. Within the results, I found out

protein complexes from different folds that present similar interfaces, confirming the predic-

tive usage of the methodology. The data obtained with my approach may complement the

SCOWLP family binding regions suggesting alternative binding regions, and can be used

to assist protein-protein docking experiments and facilitate rational ligand design.

In the last part of my thesis, I used the interacting information contained in the SCOWLP

database to help understand the role that water plays in protein interactions in terms of

affinity and specificity. I carried out one of the first high-throughput analysis of solvent in

protein interfaces for a curated dataset of transient and obligate protein complexes. Sur-

prisingly, the results highlight the abundance of water-bridged residues in protein interfaces



(40.1% of the interfacial residues) that reinforces the importance of including solvent in

protein interaction studies (14.5% extra residues interacting only water-mediated). Inter-

estingly, I also observed that obligate and transient interfaces present a comparable amount

of solvent, which contrasts the old thoughts saying that obligate protein complexes are

expected to exhibit similarities to protein cores having a dry and hydrophobic interfaces.

I characterized novel features of water-bridged residues in terms of secondary structure,

temperature factors, residue composition, and pairing preferences that differed from direct

residue-residue interactions. The results also showed relevant aspects in the mobility and

energetics of water-bridged interfacial residues.

Collectively, my doctoral thesis work can be summarized in the following points:

1. I developed SCOWLP, an improved framework that identifies protein interfaces and

classifies protein binding regions at family level.

2. I developed a novel methodology to predict alternative binding regions among struc-

turally similar protein families independently of the fold they belong to.

3. I performed a high-throughput analysis of water-bridged interactions contained in

SCOWLP to study the role of solvent in protein interfaces.

These three components of my thesis represent novel methods for exploiting existing

structural information to gain insights into protein-protein interactions, key mechanisms to

understand biological processes.
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have never done my PhD in Dresden. I’d like to thank those from Schröder’s group who
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Chapter 1

INTRODUCTION

This introductory chapter contains basic concepts and techniques used during my doc-

toral thesis time. It first connects the concepts of protein sequence, structure and function

to protein interactions. It also provides an overview of the main databases and explains

the basics of the computational biomolecular simulation techniques used during the thesis.

Finally, it describes the chapters contained in this dissertation.
1

1Snapshot of the authors PhD live. The image in the cover represents the ’word clouds’ obtained from
the author’s bookmarks created during his PhD. The clouds give greater prominence to words that appear
more frequently in the source data. The image is generated using Wordle (www.wordle.net)
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1.1 Protein sequence, structure and function

1.1.1 Protein sequence

Proteins are the most abundant biological macromolecules, occurring in all cells and all

parts of cells. Proteins also occur in great variety; thousands of different kinds, ranging in

size from relatively small peptides to huge polymers with molecular weights in the millions,

may be found in a single cell. Moreover, proteins exhibit enormous diversity of biological

functions and are the most important final products of the information pathways. Proteins

are the molecular instruments through which genetic information is expressed. Relatively

simple monomeric subunits provide the key to the structure of the thousands of different

proteins. All proteins, whether from the most ancient lines of bacteria or from the most

complex forms of life, are constructed from the same ubiquitous set of 20 amino acids,

covalently linked in characteristic linear sequences. Because each of these amino acids has

a side chain with distinctive chemical properties, this group of 20 precursor molecules may

be regarded as the alphabet in which the language of protein structure is written. What is

most remarkable is that cells can produce proteins with strikingly different properties and

activities by joining the same 20 amino acids in many different combinations and sequences.

From these building blocks different organisms can make such widely diverse products as

enzymes, hormones, antibodies, transporters, muscle fibers, and myriad other substances

having distinct biological activities. Among these protein products, the enzymes are the

most varied and specialized.

Knowledge of the sequence of amino acids in a protein can offer insights into its three-

dimensional structure and its function, cellular location, and evolution. Most of these

insights are derived by searching for similarities with other known sequences. Thousands of

sequences are known and available in databases accessible through the Internet (Table 1.1).

A comparison of a newly obtained sequence with this large bank of stored sequences often

reveals relationships both surprising and enlightening. Exactly how the amino acid sequence

determines three-dimensional structure is not understood in detail, nor can we always pre-

dict function from sequence. However, protein families that have some shared structural or

functional features can be readily identified on the basis of amino acid sequence similarities.
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Table 1.1: Databases to analyze protein sequences and domains.

Type and name of the tool References

Sequence databases

UniProt UniProt Consortium [1]

Ncbi National Center for Biotechnology Information [2]

Domain databases

SMART Schultz et al. [3]

Pfam Bateman et al. [4]

PROSITE Hulo et al. [5]

CDD Marchler-Bauer et al. [6]

Domain classification

CATH Orengo et al. [7]

SCOP Murzin et al. [8]

FSSP Holm et al. [9]

Individual proteins are assigned to families based on the degree of similarity in amino acid

sequence. Members of a family are usually identical across 25% or more of their sequences,

and proteins in these families generally share at least some structural and functional char-

acteristics. Some families are defined, however, by identities involving only a few amino

acid residues that are critical to a certain function (Table 1.1).

1.1.2 Protein structure

The covalent backbone of a typical protein contains hundreds of individual bonds. Because

free rotation is possible around many of these bonds, the protein can assume an unlim-

ited number of conformations. However, each protein has a specific chemical or structural

function, strongly suggesting that each has a unique three-dimensional structure.

In a globular protein, different segments of a polypeptide chain (or multiple polypeptide

chains) fold back on each other. This folding generates a compact form relative to polypep-

tides in a fully extended conformation. The folding also provides the structural diversity

necessary for proteins to carry out a wide array of biological functions. Globular proteins

include enzymes, transport proteins, motor proteins, regulatory proteins, immunoglobulins,
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Figure 1.1: Levels of structure in proteins. The primary structure consists of a sequence of amino
acids linked together by peptide bonds and includes any disulfide bonds. The resulting polypeptide can be
coiled into units of secondary structure, such as an α helix. The helix is a part of the tertiary structure
of the folded polypeptide, which is itself one of the subunits that make up the quaternary structure of the
multisubunit protein, in this case hemoglobin.

and proteins with many other functions.

For large macromolecules such as proteins, the tasks of describing and understanding

structure are approached at several levels of complexity, arranged in a kind of conceptual

hierarchy. Four levels of protein structure are commonly defined (Fig 1.1). A description of

all covalent bonds (mainly peptide bonds and disulfide bonds) linking amino acid residues

in a polypeptide chain is its primary structure. The most important element of primary

structure is the sequence of amino acid residues. Secondary structure refers to particularly

stable arrangements of amino acid residues giving rise to recurring structural patterns.

Tertiary structure describes all aspects of the three-dimensional folding of a polypeptide.

When a protein has two or more polypeptide subunits, their arrangement in space is referred

to as quaternary structure.

As a new millennium begins, the number of known three-dimensional protein structures

is in the thousands and more than doubles every two years. This wealth of structural infor-

mation is revolutionizing our understanding of protein structure, the relation of structure to

function, and even the evolutionary paths by which proteins arrived at their present state,

which can be glimpsed in the family resemblances that are revealed as protein databases are

sifted and sorted. The sheer variety of structures can seem daunting. Yet as new protein

structures become available it is becoming increasingly clear that they are manifestations
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Figure 1.2: PDB statistics. Number of structures deposited in the PDB per year (single and accumu-
lated).

of a finite set of recognizable, stable folding patterns.

Such discussions are possible only because of the vast amount of information available

over the Internet from resources such as the Protein Data Bank (PDB; [10]), an archive

of experimentally determined three-dimensional structures of biological macromolecules,

including proteins and nucleic acids. When the PDB was originally founded in 1973 it

contained just 7 protein structures. Since then it has undergone an almost exponential

growth in the number of structures, which does not show any sign of falling off (Fig 1.2).

1.1.3 Protein motifs

The three-dimensional structure of a typical globular protein can be considered an assem-

blage of polypeptide segments in the α-helix and β-sheet conformations, linked by connect-

ing segments. The structure can then be described to a first approximation by defining how

these segments stack on one another and how the segments that connect them are arranged.

This formalism has led to the development of databases that allow informative comparisons

of protein structures, complementing other databases that permit comparisons of protein

sequences (1.1). An understanding of a complete three-dimensional structure is built upon

an analysis of its parts.
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Supersecondary structures, also called motifs or simply folds, are particularly stable ar-

rangements of several elements of secondary structure and the connections between them.

There is no universal agreement among biochemists on the application of the three terms,

and they are often used interchangeably. The terms are also applied to a wide range of struc-

tures. Recognized motifs range from simple to complex, sometimes appearing in repeating

units or combinations. A single large motif may comprise the entire protein.

Polypeptides with more than a few hundred amino acid residues often fold into two or

more stable, globular units called domains. In many cases, a domain from a large protein

will retain its correct three-dimensional structure even when it is separated (for example, by

proteolytic cleavage) from the remainder of the polypeptide chain. Different domains often

have distinct functions, such as the binding of small molecules or interaction with other

proteins. Small proteins usually have only one domain (the domain is the protein).

Following these rules, complex motifs can be built up from simple ones. For example, a

series of β-α-β loops, arranged so that the β strands form a barrel, creates a particularly

stable and common motif called the α/β barrel (Fig 1.3).

As we have seen, the complexities of tertiary structure are decreased by considering

substructures. Taking this idea further, researchers have organized the complete contents

of databases according to hierarchical levels of structure. The Structural Classification

of Proteins (SCOP, [8]) database offers a good example of this very important trend in

biochemistry. At the highest level of classification, the SCOP database (http://scop.mrc-

lmb.cam.ac.uk/scop) borrows a scheme already in common use, in which protein structures

are divided into four classes: all α, all β, α/β (in which the α and β segments are interspersed

or alternate), and α + β (in which the α and β regions are somewhat segregated) (Fig 1.3).

Within each class are tens to hundreds of different folding arrangements, built up from

increasingly identifiable substructures. Some of the substructure arrangements are very

common, others have been found in just one protein. A variety of motifs array among the

four classes of protein structure. The number of folding patterns is not infinite, however.

As the rate at which new protein structures are elucidated has increased, the fraction of

those structures containing a new motif has steadily declined. Fewer than 1,000 different

folds or motifs may exist in all proteins. In SCOP the top two levels of organization, class
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and fold, are purely structural. Below the fold level, categorization is based on evolutionary

relationships. Many examples of recurring domain or motif structures are available, and

these reveal that protein tertiary structure is more reliably conserved than primary sequence.

The comparison of protein structures can thus provide much information about evolution.

Proteins with significant primary sequence similarity, and/or with demonstrably similar

structure and function, are said to be in the same protein family. A strong evolutionary

relationship is usually evident within a protein family. For example, the globin family

has many different proteins with both structural and sequence similarity to myoglobin.

Two or more families with little primary sequence similarity sometimes make use of the

same major structural motif and have functional similarities; these families are grouped

as superfamilies. An evolutionary relationship between the families in a superfamily is

considered probable, even though time and functional distinctions – hence different adaptive

pressures – may have erased many of the telltale sequence relationships. A protein family

may be widespread in all three domains of cellular life, the Bacteria, Archaea, and Eukarya,

suggesting a very ancient origin. Other families may be present in only a small group of

organisms, indicating that the structure arose more recently. Tracing the natural history

of structural motifs, using structural classifications in databases such as SCOP, provides a

powerful complement to sequence analyses in tracing many evolutionary relationships. The

SCOP database is curated manually, with the objective of placing proteins in the correct

evolutionary framework based on conserved structural features.

Two similar enterprises, the CATH (class, architecture, topology, and homologous su-

perfamily) and FSSP (fold classification based on structure-structure alignment of proteins)

databases, make use of more automated methods and can provide additional information

(Table 1.1). Structural motifs become especially important in defining protein families and

superfamilies. Improved classification and comparison systems for proteins lead inevitably

to the elucidation of new functional relationships. Given the central role of proteins in liv-

ing systems, these structural comparisons can help illuminate every aspect of biochemistry,

from the evolution of individual proteins to the evolutionary history of complete metabolic

pathways.
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Figure 1.3: Organization of proteins based on motifs. Shown here are just a small number of the
hundreds of known stable motifs. They are divided into four classes: all α, all β, α/β, and α + β. Struc-
tural classification data from the SCOP (Structural Classification of Proteins) database (http://scop.mrc-
lmb.cam.ac.uk/scop) are also provided. The PDB identifier is the unique number given to each structure
archived in the Protein Data Bank (www.rcsb.org/pdb).

1.1.4 From dimers to large complexes

Many proteins have multiple polypeptide subunits. The association of polypeptide chains

can serve a variety of functions. Many multisubunit proteins have regulatory roles; the bind-

ing of small molecules may affect the interaction between subunits, causing large changes

in the protein’s activity in response to small changes in the concentration of substrate or

regulatory molecules. In other cases, separate subunits can take on separate but related

functions, such as catalysis and regulation. Some associations, such as the fibrous proteins

and the coat proteins of viruses, serve primarily structural roles. Some very large protein

assemblies are the site of complex, multi-step reactions. One example is the ribosome, site

of protein synthesis, which incorporates dozens of protein subunits along with a number

of RNA molecules. A multisubunit protein is also referred to as a multimer. Multimeric

proteins can have from two to hundreds of subunits. A multimer with just a few subunits is

often called an oligomer. If a multimer is composed of a number of nonidentical subunits,

the overall structure of the protein can be asymmetric and quite complicated. However,

most multimers have identical subunits or repeating groups of nonidentical subunits, usu-
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ally in symmetric arrangements. The repeating structural unit in such a multimeric protein,

whether it is a single subunit or a group of subunits, is called a protomer.

1.2 Protein complexes

1.2.1 Protein interactions

Knowing the three-dimensional structure of a protein is an important part for understand-

ing how the protein functions. Proteins are dynamic molecules whose functions almost

invariably depend on interactions with other molecules, and these interactions are affected

in physiologically important ways by sometimes subtle, sometimes striking changes in pro-

tein conformation. The importance of molecular interactions to a protein‘s function can

hardly be overemphasized. Most of these interactions are fleeting, though they may be the

basis of complex physiological processes such as oxygen transport, immune function, and

muscle contraction. The functions of many proteins involve the reversible binding of other

molecules. A molecule bound reversibly by a protein is called a ligand. A ligand may be any

kind of molecule, including another protein. The transient nature of protein-ligand respond

rapidly and reversibly to changing environmental and metabolic circumstances. A ligand

binds at a site on the protein called the binding site, which is complementary to the ligand

in size, shape, charge, and hydrophobic or hydrophilic character. Furthermore, the interac-

tion is specific: the protein can discriminate among the thousands of different molecules in

its environment and selectively bind only one or a few. A given protein may have separate

binding sites for several different ligands. These specific molecular interactions are crucial

in maintaining the high degree of order in a living system.

Proteins are flexible. Changes in conformation may be subtle, reflecting molecular vi-

brations and small movements of amino acid residues throughout the protein. A protein

flexing in this way is sometimes said to ”breathe”. Changes in conformation may also be

quite dramatic, with major segments of the protein structure moving as much as several

nanometers. Specific conformational changes are frequently essential to a protein’s func-

tion. The binding of a protein and ligand are often coupled to a conformational change

in the protein that makes the binding site more complementary to the ligand, permitting

tighter binding. The structural adaptation that occurs between protein and ligand is called
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induced fit. In a multisubunit protein, a conformational change in one subunit often af-

fects the conformation of other subunits. Interactions between ligands and proteins may be

regulated, usually through specific interactions with one or more additional ligands. These

other ligands may cause conformational changes in the protein that affect the binding of

the first ligand.

Two properties of a protein characterize its interaction with ligands. Affinity refers

to the strength of binding between a protein and ligand; the equilibrium constant Keq or

the dissociation constant Kd for binding is a measure of affinity. Specificity refers to the

ability of a protein to bind one molecule in preference to other molecules. Both properties

depend on the structure of the ligand-binding site on a protein, which is designed to fit its

partner like a mold. For high-affinity and highly specific interactions to occur, the shape

and chemical surface of the binding site must be complementary to the ligand molecule.

Enzymes represent a special case of protein function. Enzymes bind and chemically

transform other molecules’ they catalyze reactions. The molecules acted upon by enzymes

are called reaction substrates rather than ligands, and the ligand-binding site is called the

catalytic site or active site.

1.2.2 Physicochemical properties of protein interactions

Covalent bonds, which hold the atoms within an individual molecule together, are formed

by the sharing of electrons in the outer atomic orbitals. The distribution of shared as well as

unshared electrons in outer orbitals is a major determinant of the three-dimensional shape

and chemical reactivity of molecules.

Noncovalent bonds are critical in maintaining the three-dimensional structures of large

molecules such as proteins and nucleic acids. Noncovalent bonds also enable one large

molecule to bind specifically but transiently to another, making them the basis of many

dynamic biological processes.

Weak interactions occur in an aqueous system. Water describes physical and chemi-

cal properties that are of crucial importance for the structure and function of biomolecules.

Noncovalent interactions responsible of strength and specificity of recognition among biomolecules

are decisively influenced by the solvent properties of water, including its ability to form hy-
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drogen bonds with itself and with solutes. In the following sections, we describe the four

types of noncovalent interactions among macromolecules in aqueous solvent.

The hydrogen bond

Normally, a hydrogen atom forms a covalent bond with only one other atom. However,

a hydrogen atom covalently bonded to a donor atom, D, may form an additional weak

association, the hydrogen bond, with an acceptor atom, A: In order for a hydrogen bond to

form, the donor atom must be electronegative, so that the covalent D —H bond is polar.

The acceptor atom must also be electronegative, and its outer shell must have at least one

nonbonding pair of electrons that attracts the δ+ charge of the hydrogen atom. In biological

systems, both donors and acceptors are usually nitrogen or oxygen atoms, especially those

atoms in amino ( —NH2) and hydroxyl ( —OH) groups (Fig 1.4). Because all covalent

N —H and O —H bonds are polar, their H atoms can participate in hydrogen bonds.

By contrast, C —H bonds are nonpolar, so these H atoms are hardly never involved in a

hydrogen bond.

Water molecules provide a classic example of hydrogen bonding. The hydrogen atom in

one water molecule is attracted to a pair of electrons in the outer shell of an oxygen atom in

an adjacent molecule. Not only do water molecules hydrogen-bond with one another, but

also they form hydrogen bonds with other kinds of molecules. The presence of hydroxyl

( —OH) or amino ( —NH2) groups makes many molecules soluble in water. In general,

molecules with polar bonds that easily form hydrogen bonds with water can dissolve in

water and are said to be hydrophilic (Greek, ’water-loving’). Most hydrogen bonds are

0.26 – 0.31 nm long, about twice the length of covalent bonds between the same atoms. In

particular, the distance between the nuclei of the hydrogen and oxygen atoms of adjacent

hydrogen-bonded molecules in water is approximately 0.27 nm, about twice the length of

the covalent O —H bonds in water. The hydrogen atom is closer to the donor atom, D, to

which it remains covalently bonded, than it is to the acceptor. The length of the covalent

D —H bond is a bit longer than it would be if there were no hydrogen bond, because

the acceptor ’pulls’ the hydrogen away from the donor. The strength of a hydrogen bond

in water (≈ 5 kcal/mol) is much weaker than a covalent O —H bond (≈ 110 kcal/mol).
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Figure 1.4: Amino acids’ hydrogen bond properties.

An important feature of all hydrogen bonds is directionality. In the strongest hydrogen

bonds, the donor atom, the hydrogen atom, and the acceptor atom all lie in a straight

line. Nonlinear hydrogen bonds are weaker than linear ones; The strengths of the hydrogen

bonds in proteins and nucleic acids are only 1 to 2 kcal/mol, considerably weaker than the

hydrogen bonds between water molecules.

Electrostatic interactions and salt bridges

Electrostatic interactions are the forces that electric charges exert on each other, described

by Coulomb’s law. The magnitude of the electrostatic force (F ) on a charge (q1) due to the

presence of a second charge (q2), is given by:

F = ke
q1q2
r2

(1.1)
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where r is the distance between the two charges and ke a proportionality constant. A

positive force implies a repulsive interaction, while a negative force implies an attractive

interaction.

Salt bridges are close range electrostatic interaction between two side-chains oppositely

charged in proteins. The anion is a carboxilate (from Asp or Glu) and the cation is an

ammonium (RNH+
3 , from Lys) or a guanidinium (RNHC(NH2)+2 ), from Arg). If a salt

bridge is located on the surface of the protein, the dielectric constant should be close to

that of pure water. Such an exposed salt bridge might contribute very little to protein

stability. Again ammonium acetate is dissociated in water, so an Asp• • •Lys salt bridge

should be weak or negligible in bulk water. Alternatively, the salt bridge might be found

somewhat or completely buried in the interior of the protein. The consensus from a large

number of studies of salt bridges is that they can contribute to protein stability, but there

is considerable variation. Typically, a surface-exposed salt bridge is worth around anywhere

from 0 to 2 kcal/mol, and a buried salt bridge can can be worth up to 3 kcal/mol, with

some exceptional cases being worth more.

Van der Waals interactions

When any two atoms approach each other closely, they create a weak, nonspecific attractive

force that produces a van der Waals interaction, named for Dutch physicist Johannes Diderik

van der Waals (1837 – 1923), who first described it. These nonspecific interactions result

from the momentary random fluctuations in the distribution of the electrons of any atom,

which give rise to a transient unequal distribution of electrons, that is, a transient electric

dipole. If two noncovalently bonded atoms are close enough together, the transient dipole

in one atom will perturb the electron cloud of the other. This perturbation generates a

transient dipole in the second atom, and the two dipoles will attract each other weakly.

Similarly, a polar covalent bond in one molecule will attract an oppositely oriented dipole

in another.

Van der Waals interactions, involving either transient induced or permanent electric

dipoles, occur in all types of molecules, both polar and non-polar. The strength of van der
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Waals interactions decreases rapidly with increasing distance; thus these noncovalent bonds

can form only when atoms are quite close to one another. However, if atoms get too close

together, they become repelled by the negative charges in their outer electron shells. When

the van der Waals attraction between two atoms exactly balances the repulsion between

their two electron clouds, the atoms are said to be in van der Waals contact (Fig 1.5). Each

type of atom has a van der Waals radius at which it is in van der Waals contact with other

atoms. The van der Waals radius of an H atom is 0.1 nm, and the radii of O, N, C, and

S atoms are between 0.14 and 0.18 nm. Two covalently bonded atoms are closer together

than two atoms that are merely in van der Waals contact. For a van der Waals interaction,

the internuclear distance is approximately the sum of the corresponding radii for the two

participating atoms. Thus the distance between a C atom and an H atom in van der Waals

contact is 0.27 nm, and between two C atoms is 0.34 nm. In general, the van der Waals

radius of an atom is about twice as long as its covalent radius. For example, a C —H

covalent bond is about 0.107 nm long and a C —C covalent bond is about 0.154 nm long.

The energy of the van der Waals interaction is about 1 kcal/mol, only slightly higher than

the average thermal energy of molecules at 25 ◦C. Thus the van der Waals interaction is even

weaker than the hydrogen bond, which typically has an energy of 1 – 2 kcal/mol in aqueous

solutions. The attraction between two large molecules can be appreciable, however, if they

have precisely complementary shapes, so that they make many van der Waals contacts when

they come into proximity.

Hydrophobic bonds

Nonpolar molecules do not contain ions, possess a dipole moment, or become hydrated.

Because such molecules are insoluble or almost insoluble in water, they are said to be hy-

drophobic (Greek, ’water-fearing’). The covalent bonds between two carbon atoms and

between carbon and hydrogen atoms are the most common nonpolar bonds in biological

systems. The force that causes hydrophobic molecules or nonpolar portions of molecules to

aggregate together rather than to dissolve in water is called the hydrophobic bond. This

is not a separate bonding force; rather, it is the result of the energy required to insert a

nonpolar molecule into water. A nonpolar molecule cannot form hydrogen bonds with wa-
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Figure 1.5: Van der Waals energy representation

ter molecules, so it distorts the usual water structure, forcing the water into a rigid cage

of hydrogen-bonded molecules around it. Water molecules are normally in constant mo-

tion, and the formation of such cages restricts the motion of a number of water molecules;

the effect is to increase the structural organization of water. This situation is energeti-

cally unfavorable because it decreases the randomness (entropy) of the population of water

molecules.

The opposition of water molecules to having their motion restricted by forming cages

around hydrophobic molecules or portions thereof is the major reason why hydrophobic

molecules are essentially insoluble in water and interact mainly with other hydrophobic

molecules. Nonpolar molecules can also bond together, albeit weakly, through van der

Waals interactions. The net result of the hydrophobic and van der Waals interactions is

a very powerful tendency for hydrophobic molecules to interact with one another, and not

with water.

Weak interactions are crucial to macromolecular structure and function

The noncovalent interaction we have described are individually much weaker than the cova-

lent bonds. Proteins contain so many sites of potential hydrogen bonding or ionic , van der

Waals, or hydrophobic interactions that the cumulative effect of the many small binding
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forces can be enormous. For macromolecules, the most stable complex is usually the one

in which weak-bonding possibilities are maximized. Receptors extensive surfaces provide

many opportunities for weak interactions.

Besides contributing to the stability of large biological molecules, multiple noncovalent

bonds can also confer specificity by determining which regions of different molecules will

bind together. All types of these weak interactions are effective only over a short range and

require close contact between the reacting groups. For noncovalent bonds to form properly,

there must be a complementarity between the sites on the two interacting surfaces, where

almost any other arrangement of the same groups on the two surfaces would not allow the

molecules to bind so tightly. Such multiple, specific interactions allow protein molecules to

bind.

1.3 Computational biomolecular simulations: molecular dynamics

Molecular dynamics (MD) is a form of computer simulation that solves Newton’s equations

of motion for a system of N interacting atoms:

mi
δ2~ri
δt2

= ~Fi (1.2)

where forces are:

~Fi =
−δV
δ~ri

(1.3)

where V is the potential.

The equations are solved simultaneously in small time steps, so that the temperature and

pressure remain at the required values, and the coordinates are written to an output file at

regular intervals. The coordinates as a function of time represent a trajectory of the system.

After initial changes, the system usually reaches an equilibrium state. By averaging over

an equilibrium trajectory many macroscopic properties can be extracted from the output

file. The pipeline typical for energy minimization and MD in common is represented in
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Figure 1.6: Schematic flow chart of algorithms for energy minimization and MD. Features
which apply only to molecular dynamics are indicated with asterix. Each cycle of energy minimization
represents a step in conformation space, while each cycle of molecular dynamics represents a step in time [11].

the Figure 1.6. Further on, we give some definitions and details on the stages and aspects

important for MD runs.

1.3.1 Forcefield

Forcefield refers to the functional form and parameter sets used to describe the potential

energy of a system of particles (typically but not necessarily atoms). Force field functions

and parameter sets are derived from both experimental work and high-level quantum me-
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chanic calculations. All-atom forcefields provide parameters for every atom in a system,

including hydrogens, while united-atom forcefields could treat the hydrogen and carbon

atoms in methyl and methylene groups, for example, as a single interaction center. Coarse-

grained forcefields, which are frequently used in long-time simulations of proteins, provide

even more abstracted representations for increased computational efficiency. More detailed

description of the physical nature behind potential included in the force fields is given in

the subsection 1.2.2. In comparison to analytical expression for the potentials mentioned

before, bonded interactions are explicitly decomposed into bond, torsion angle and dihedral

angle potentials:

Vbonded = Vbond + Vangle + Vdihedral (1.4)

Electrostatic interaction usually contains explicitly only the component of the equation 1.1,

which describes point-charge interactions, unless a force-field is polarizable and, therefore,

has a different expression for the electrostatic potential. So, in general, the potential has

the following form:

V (~r) =
∑
bonds

Kr(r−req)2+
∑
angles

Kθ(θ−θeq)2+
∑

dihedrals

Vn
2

(1+cos[nφ−γ])+
atoms∑
i<j

(
Aij
r2ij

)−Bij
r2ij

)+
atoms∑
i<j

qiqj
εRij

(1.5)

and polarization component is usually expressed as:

Epol = −1
2

atom∑
i

~µi
~
E

(0)
i (1.6)

where µi is an induced atomic dipole and E
(0)
i is an initial electric field causing this po-

larization. In addition, charges that are not centered on atoms, but are off-center (as for

lone-pairs) that can be included in the forcefield.
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1.3.2 Energy minimization

Energy minimization methods are common techniques to compute an equilibrium configu-

ration of molecules, which should be a stable state and correspond to a local minimum of

their potential energy. This kind of calculations generally start from an arbitrary state of

molecules, then the mathematical procedure of optimization allows to move atoms (to vary

coordinates) in a way to reduce the net forces (the gradients of potential energy) to nearly

zero (or defined cut-off value). From a computational viewpoint, the problem of minimizing

the energy of a model macromolecular system falls into the general area of nonlinear opti-

mization problems. The functional V (~r) should be minimized in the multidimensional space

~r . In case of a model with N atoms, there are 3Ndimensional space (since each atom has

3 cartesian coordinates), and V is the potential energy of the system. There are two most

popular algorithms used for the minimization: steepest descent and conjugate gradient.

Steepest descent

Steepest descent is a first-order optimization algorithm. To find a local minimum of a

function using steepest descent, one takes steps proportional to the negative of the gradient

(or the approximate gradient) of the function at the current point. For each next iteration:

~rk = ~rk−1 + λk
~F

F
(1.7)

where λk is a positive coefficient. Since the vector ~F
F is parallel to the negative gradient of

the energy, it points straight downhill. The weaknesses of steepest descent are:

1. The algorithm can take many iterations to converge towards a local minimum, if the

curvature in different directions is very different.

2. Finding the optimal λ per step can be a time-consuming task. Conversely, using a

fixed λ can yield poor results.
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Conjugate gradient

Because of these limitations, steepest descent is usually followed by conjugate gradient in

the minimization procedure. This technique combines information on the current gradient

with that based on the gradient at previous steps. Iteratively:

~rk = ~rk−1 + λk

(
~Fk +

F 2
k

F 2
k−1

~Fk−1

Fk−1

)
(1.8)

It can be proven that for a quadratic surface, the search direction specified by the last

equation passes through minimum on the Nth step for an N-dimensional surface, as long

as the minimum along each successive search direction is found. Even if the step size is

not optimal, the conjugate gradient method still yields a search direction that is superior

to that of steepest descent.

1.3.3 Verlet integration

Verlet integration [12] is a numerical method frequently used to integrate Newton’s equations

of motion. The Verlet integrator offers greater stability than the much simpler Euler method,

as well as other properties that are important in physical systems such as time-reversibility.

Stability of the technique depends heavily upon either a uniform update rate, or the ability

to accurately identify positions at a small time intervals into the past.

1.3.4 Periodic boundary conditions

Periodic boundary conditions (PBC) are a set of boundary conditions that are often used

to simulate a large system by modeling a small part that is far from its edge. A unit cell of

a certain geometry is defined, and when an object passes through one face of the unit cell,

it reappears on the opposite face with the same velocity. The simulation is of an infinite

perfect tiling of the system. The tiled copies of the unit cell are called images, of which

there are infinitely many. During the simulation, only the properties of the unit cell need

to be recorded and propagated. The minimum-image convention is a common form of PBC

particle bookkeeping, where each individual particle in the simulation interacts with the

closest image of the remaining particles in the system.
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In MD PBC are usually applied to simulate bulk gases, liquids, crystals or mixtures. A

common application used in this thesis is to use PBC to simulate solvated macromolecules in

a bath of explicit solvent. Since MD contains electrostatic interactions, the net electrostatic

charge of the system must be zero to avoid summing to an infinite charge when PBC is

applied. However, there are still some artifacts originated from the correlations between

unit cells and artificial interactions between ’heads’ and ’tails’ of different unit cells.

PBC requires the unit cell to be a shape that tiles perfectly into a three-dimensional

crystal. Thus, a spherical or elliptical droplet cannot be used. A cube or rectangular prism is

the most intuitive and common choice, but can be computationally expensive due to unnec-

essary amounts of solvent molecules in the corners, distant from the central macromolecules.

A common alternative that requires less volume is the truncated octahedron.

1.3.5 Particle mesh Ewald

Particle Mesh Ewald (PME) method is utilized for electrostatic calculations in PBC. PME

uses Ewald summation, which is a special case of the Poisson summation formula, replac-

ing the summation of interaction energies in real space with an equivalent summation in

Fourier space. The advantage of this approach is the rapid convergence of the Fourier-space

summation compared to its real-space equivalent when the real-space interactions are long-

ranged. Because electrostatic energies consist of both short- and long-range interactions,

it is maximally efficient to decompose the interaction potential into a short-range compo-

nent summed in real space and a long-range component summed in Fourier space [13]. In

practice, the cut-off for PME is defined by a researcher, who uses MD, and depends on the

size of a unit in PBC. The cut-off should be less or equal to the half of unit’s dimension, to

assure the convergence of electrostatic summation in the direct space.

1.3.6 Temperature coupling

Temperature coupling is a technique used for maintenance of constant temperature in PBC

in NTP or NTV microcanonical ensembles. There are several ways to carry out tempera-

ture couplings. In the weak-coupling algorithm a single scaling factor is used for all atoms

[14]. This algorithm ensures that the total kinetic energy is appropriate for the desired tem-
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perature but does not control that the temperature is even over all parts of the molecule.

Atomic collisions tend to ensure an even temperature distribution, but in reality this is not

guaranteed, and there are many subtle problems that can arise with weak temperature cou-

pling [15]. Andersen temperature coupling scheme [16] implies imaginary collisions, which

randomize the velocities to a distribution corresponding to the fixed constant temperature.

The dynamics process is Newtonian. Hence time correlation functions can be computed

and the results averaged over an initial canonical distribution. Too high collision rate slows

down the speed at which the molecules explore configuration space, whereas too low rate

means that the canonical distribution of energies is sampled slowly [17]. Use of Langevin

dynamics is an another approach for temperature coupling. There is a collision frequency

parameter in this algorithm to be defined and a simple leapfrog integrator (a variant of

Verlet integration) is used to propagate the dynamics, with the kinetic energy adjusted to

be correct for the harmonic oscillator case [18, 19]. A collision frequency parameter is not

necessary equal to the physical collision frequency. In fact, it is often advantageous, in terms

of sampling or stability of integration, to use much smaller values for this parameters than

the physically relevant ones.

1.3.7 Pressure coupling

Pressure coupling adjusts the volume of the unit cell (gradually on each step) to make the

computed pressure approach the target pressure. Equilibration with NTP microcanonical

ensemble is generally necessary to adjust the density of the system to appropriate values.

Pressure coupling algorithms are often analogous to weak temperature coupling [14].

1.3.8 SHAKE algorithm

SHAKE algorithm is used to perform bond length constraints [20]. It is normally utilized

for hydrogens in MD simulations. The size of the MD time step is determined by the fastest

motions in the system. SHAKE removes the bond stretching freedom, which is the fastest

motion, and consequently allows a larger time step to be used, resulting in speeding up

the calculations. For water models, a special “three-point” algorithm is used [21]. Since

SHAKE is an algorithm based on dynamics, the minimizer is not aware of what SHAKE is
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doing; for this reason, minimizations should be carried out generally without SHAKE.

1.3.9 Counterions

Counterions are used in MD with PBC to make a charge of a unit neutral to avoid prob-

lems with electrostatics. For counterions Na+, K+ and Cl- are usually used. A study

on counterions impact to MD results in AMBER shows that the simulations of solvated

proteins are moderately sensitive to the presence of counterions. However, this sensitivity

is highly dependent on the starting model and different procedures of equilibration used.

The neutralized systems tend to evince smaller root mean square deviations regardless of

the system investigated and the simulation procedure used. The results of parameterized

fitting of the simulated structures to the crystallographic data, giving quantitative measure

of the total charge influence on the stability of various elements of the secondary structure,

revealed a clear scatter of different reactions of various systems’ secondary structures to

counterions addition: some systems apparently were stabilized when neutralized, while the

others were not. Thus, one cannot unequivocally state, despite consideration of specific sim-

ulation conditions, whether protein secondary structures are more stable when they have

neutralized charges. This suggests that caution should be taken when claiming the stabi-

lizing effect of counterions in simulations involving small, unstable polypeptides or highly

charged proteins [22].

1.3.10 MM-PBSA/MM-GBSA

The MM-PBSA/MM-GBSA (Molecular Mechanics-Poisson-Bolzmann Surface Area/Molecular

Mechanics-Generalized Born Surface Area) approach represents the post-processing method

to evaluate free energies of binding or to calculate absolute free energies of molecules in so-

lution. The MM-PBSA/GBSA method combines molecular mechanical energies with the

continuum solvent approaches. Often, the key quantity that needs to be computed is the

total free energy of the molecule in the presence of solvent, which could be written as:

Etot = Evac + δGsolv (1.9)
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where Evac represents a molecule’s energy in vacuum (gas-phase), and δGsolv is the free

energy of transferring the molecule from vacuum into solvent, i.e. solvation free energy.

Usually it is assumed that Evac is given by a classical potential function, or forcefield,

that breaks the interaction down into various physical components, such as bond and angle

stretching, torsional twist, and also VDW and Coulomb interactions between its atoms were

assumed (subsection 1.2.2).

To estimate the total solvation free energy of a molecule δGsolv one typically assumes

that it can be decomposed into the electrostatic and non-electrostatic components:

δGsolv = δGel + δGnonel (1.10)

where δGnonel is the free energy of solvating a molecule from which all charges have been re-

moved (i.e. partial charges of every atom are set to zero), and δGel is the free energy of first

removing all charges in the vacuum, and then adding them back in the presence of a contin-

uum solvent environment. The above decomposition, which is yet another approximation,

is the basis of the widely used MM-PBSA scheme [23]. Generally speaking, δGnonel comes

from the combined effect of two types of interaction: the favorable van der Waals attraction

between the solute and solvent molecules, and the unfavorable cost of breaking the structure

of the solvent around the solute. δGnonel is described in terms of solvent accessible surface

area (ASA), the surface area of a biomolecule that is accessible to a solvent. The ASA is

usually measured in Å2. ASA is typically calculated using the ’rolling ball’ algorithm [24],

which uses a sphere (of solvent) of a particular radius to probe the surface of the molecule.

The choice of the probe radius does have an effect on the observed surface area, as using a

smaller probe radius detects more surface details and, therefore, reports a larger surface. A

typical value is 1.4 Å (also used as a default value in a popular NACCESS program [25]),

which approximates the radius of a water molecule. Another factor that affects the results

is the definition of the VDW radii of the atoms in the studied molecule. For example, the

molecule may often lack hydrogen atoms which are implicit in the structure. The hydrogen
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atoms may be implicitly included in the atomic radii of the heavy atoms, with a measure

called the group radii.

The ASA is closely related to the concept of the solvent-excluded surface (also known

as the molecular surface or Connolly surface), which is imagined as a cavity in bulk solvent

(effectively the inverse of the solvent-accessible surface). In practice, it is also calculated

via a rolling-ball algorithm [26] and independently implemented three-dimensionally in two

studies [27, 28]. Connolly spent several more years perfecting the method [29] and it is thus

sometimes called the Connolly surface.

The ASA can be used in protein interfaces characterization (difference of the ASA of

complex and unbound components gives the size of an interface of the complex) and for

empirical estimation of hydration energy, which is considered to be proportional to ASA.

Within the PBSA, δGnonel is supposed to be proportional to the total solvent ASA of the

molecule, with a constant derived from experimental solvation energies of small non-polar

molecules:

δGnonel ∼ ASA (1.11)

which is an approximation, but arguably not the most critical one in the hierarchy of

assumptions that form the foundation of the implicit solvent methodology [30]. In a model

of continuous solvent the remained component δGel can be easily calculated if the potential

distribution ϕ(r) in space is known. This distribution is described by Poisson-Bolzmann

equation for the charge density ρ(r) distribution in a dielectric with constant ε(r):

∇ε(r)∇ϕ(r) = −4πρ(r) + κ2ε(r)ϕ(r) (1.12)

where κ is Debye-Huckel parameter. However, in molecular dynamics applications, the

associated computational costs are often very high, as the Poisson-Boltzmann equation

needs to be solved every time the conformation of the molecule changes. The Generalized

Born (GB) model is an approximation to the exact (linearized) Poisson-Boltzmann (PB)
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equation. The GB approach is computationally more effective than PB approach and it is

an approximation to the exact PB equation. It is based on modeling a protein as a volume

whose internal dielectric constant differs from the external solvent. The model has the

following functional form:

Gel,GB =
1

8π

(
1
ε0
− 1
ε

)
) N∑

1<j

qiqj
fGB

(1.13)

where:

fGB =
√
r2ij + a2

ije
−D (1.14)

and:

D =

(
rij

2aij

)2

, aij =
√
aiaj (1.15)

where, ε0 is the dielectric constant in vacuo, qi is the electrostatic charge on particle i,

rij is the distance between particles i and j, and ai is a quantity (with the dimension

of length) known as the effective Born radius [31]. The effective Born radius of an atom

characterizes its degree of burial inside the solute; qualitatively it can be thought of as

the distance from the atom to the molecular surface. Accurate estimation of the effective

Born radii is critical for the GB model [32]. Often, the challenge in these calculations is to

extract frames from trajectory to essentially sample the conformational space. Depending

on a system, there is a different number of randomly chosen frames to be enough for this

purpose. Averaged structure of a system is usually not used since even for two equally

probable rotamer states of a sidechain its average would not correspond to the physically

relevant state of the system. The most important impact of conformational changes is on

the electrostatic energy component, that is why at the first step, statistical sampling could

be carried out only for less computationally expensive electrostatic component.
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For calculations of entropies in the MM-PBSA method normal mode analysis is used.

Nevertheless, entropy components of free energies are still the least accurate in MM-PBSA

energy calculations [33].

1.4 Description of the work

My doctoral thesis is organized in the following five chapters:

• Chapter I (this chapter) contains basic concepts and techniques used during my doc-

toral thesis time. It first connects the concepts of protein sequence, structure and

function to protein interactions. It also provides an overview of the main databases

and explains the basics of the computational biomolecular simulation techniques used

during the thesis. Finally, it describes the chapters contained in this dissertation.

• Chapter II. All available 3D structural information of proteins at atomic resolution

is stored in the Protein Data Bank (PDB), and its growth is exponential with no

sign of falling off. For this reason, there are already many databases that obtain

the interacting information from the PDB, although most of them miss fundamental

components for the interface definition and a classification of family binding regions.

In this chapter, I describe the SCOWLP platform, a database and web application that

aims to improve the other existing databases of protein interfaces by i) the inclusion of

peptidic ligands, interfacial water molecules and more accurate interaction rules, and

ii) the classification of protein binding regions by families. SCOWLP is presented by

means of two peer-reviewed research articles published during my PhD in the BMC

Bioinformatics Journal.

• Chapter III. Proteins exhibit an enormous diversity of structures, and different protein

families, even different folds, may present non-obvious structural similarities. The

detection of these similarities may lead to the discovery of evolutionary relationships

and reveal common structural features important for function. In this chapter, I

describe a methodology I developed to calculate binding regions conservation between

structurally similar proteins. The non-obvious similarities are obtained performing
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pair wise non-sequential structural alignments between all proteins independently of

their fold classification. This work is under revision for publication in the Proteins

Journal.

• Chapter IV. Protein interactions take place in aqueous solution, and water molecules

can mediate residue-residue interactions complementing direct interactions. The spe-

cific role that water plays in binding affinity and specificity is still not well understood.

This lack of knowledge makes solvent often ignored in many computational protein

interaction analysis, rational drug design and protein docking studies. In this chapter,

I make use of the novel interfacial information contained in the SCOWLP database

(see Chapter 2) to study the characteristics of solvent and water-bridged residues in

protein interfaces. In the first section, I carry out a descriptive analysis of interfacial

solvent in a representative dataset of high-resolution protein complexes containing in-

terfacial water molecules. In the second section, I studied the mobility and energetics

of interfacial water molecules. (both sections correspond to articles published in the

Proteins Journal).

• Finally, chapter V outlines the main achievements of my thesis work and relates them

to the most recent research performed in the area. Future directions and possible

implications of my results are also discussed.

Chapters 2, 3 and 4 are a compendium of published research articles in peer reviewed

international journals. They all follow an standard research article structure: Abstract,

Introduction, Methodology, Results and Discussion and Conclusions. The bibliography is

collected at the end of the thesis to avoid redundancy among chapters.
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Chapter 2

THE SCOWLP DATABASE

All available 3D structural information of proteins at atomic resolution is stored in the

Protein Data Bank (PDB), and its growth is exponential with no sign of falling off. For

this reason, there are already many databases that obtain the interacting information from

the PDB, although most of them miss fundamental components for the interface definition

and a classification of family binding regions. In this chapter, I describe the SCOWLP

platform, a database and web application that aims to improve the other existing databases

of protein interfaces by i) the inclusion of peptidic ligands, interfacial water molecules and

more accurate interaction rules, and ii) the classification of protein binding regions by

families. SCOWLP is presented by means of two peer-reviewed research articles published

during my PhD in the BMC Bioinformatics Journal.
1
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1The image in the cover illustrates the ’worldwide’ usage of the SCOWLP web-application. The red dots
represent the IP location of the user and the size of the dot the amount of connections. The USA and
Europa are zoomed for better appreciation. The image was generated using the Alien IP program. A
total of 2,426 people visited the www.scowlp.org during the first two years, where 661 were unique IPs.
The users visited 966 domain families (restricting the visit of one IP to a family once). A total of 424
domain families are visited from the 1,250 existing ones. The most dominant ones are SH3, SH2 and PDZ
domains.
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2.1 SCOWLP: a web-based database for detailed characterization and
visualization of protein interfaces

by Joan Teyra, Andreas Doms, Michael Schröder and M. Teresa Pisabarro

in BMC Bioinformatics, 2006, 7:104

2.1.1 Abstract

Currently there is a strong need for methods that help to obtain an accurate description

of protein interfaces in order to be able to understand the principles that govern molecular

recognition and protein function. Many of the recent efforts to computationally identify

and characterize protein networks extract protein interaction information at atomic resolu-

tion from the PDB. However, they pay none or little attention to small protein ligands and

solvent. They are key components and mediators of protein interactions and fundamental

for a complete description of protein interfaces. Interactome profiling requires the devel-

opment of computational tools to extract and analyze protein-protein, protein-ligand and

detailed solvent interaction information from the PDB in an automatic and comparative

fashion. Adding this information to the existing one on protein-protein interactions will

allow us to better understand protein interaction networks and protein function. SCOWLP

(Structural Characterization Of Water, Ligands and Proteins) is a user-friendly and publicly

accessible web-based relational database for detailed characterization and visualization of

the PDB protein interfaces. The SCOWLP database includes proteins, peptidic-ligands and

interface water molecules as descriptors of protein interfaces. It contains currently 74,907

protein interfaces and 2,093,976 residue-residue interactions formed by 60,664 structural

units (protein domains and peptidic-ligands) and their interacting solvent.

The SCOWLP web-server allows detailed structural analysis and comparisons of protein

interfaces at atomic level by text query of PDB codes and/or by navigating a SCOP-

based tree. It includes a visualization tool to interactively display the interfaces and label

interacting residues and interface solvent by atomic physicochemical properties. SCOWLP

is automatically updated with every SCOP release. SCOWLP enriches substantially the

description of protein interfaces by adding detailed interface information of peptidic-ligands

and solvent to the existing protein-protein interaction databases. SCOWLP may be of
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interest to many structural bioinformaticians. It provides a platform for automatic global

mapping of protein interfaces at atomic level, representing a useful tool for classification of

protein interfaces, protein binding comparative studies, reconstruction of protein complexes

and understanding protein networks. The web-server with the database and its additional

summary tables used for our analysis are available at http://www.scowlp.org

2.1.2 Introduction

One of the most interesting and important challenges in the so-called ”Post-genomic Era” is

the understanding of protein networks. Protein-protein interactions have been extensively

investigated using a variety of methods [34], and many databases have been built becoming

very helpful tools for the analysis of protein networks [35–37].

Protein interfaces have long been studied at protein chain and domain interface levels

[38–46]. Furthermore, numerous analyses have used datasets of protein chain interfaces

to investigate residue type propensities, sequence and structure conservation at protein

interfaces [41, 44, 46–49]. Databases containing structural domain-domain interactions

have also been recently created: 3did [50], PiBase [51], iPfam [52], PSIbase [53], InterPare

[54], PRISM [55]. However, in these methods still many protein residues are not taken into

account as ”interfacial” or ”interacting” because of peptidic-ligands and also solvent being

frequently ignored from the protein interaction analysis.

Peptidic-ligands and solvent mediate protein interactions and are fundamental compo-

nents for a complete description of protein interfaces. Proteins can interact with peptides to

perform their biological function. Besides, peptides have been used to mimic protein bind-

ing interfaces, and their complexes with proteins have been used to study protein binding

affinity/specificity properties in a simplified way [56–58]. For these reasons, many protein-

peptide complexes have been experimentally studied by X-ray crystallography and/or NMR

studies, providing additional information on protein interfaces [58]. Moreover, protein inter-

actions take place in an aqueous solution. Solvent molecules can bridge binding partners via

hydrogen bonds contributing significantly to molecular recognition and function [56, 59–64].

Most current methods do not provide an accurate description of protein interfaces, which

is required to be able to establish the bases for understanding the principles that govern
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molecular recognition and protein function.

Here we present SCOWLP (Structural Characterization Of Water, Ligands and Pro-

teins), a platform for complete and detailed characterization and visualization of protein

interfaces. Our database includes all protein-interacting components of the PDB including

peptides and solvent, which until now have been excluded from systematic protein interface

analysis and databases. In our database all interface interactions are described at atom,

residue and domain level by using interacting rules based on atomic physicochemical criteria.

This complete characterization makes SCOWLP useful for comparative structural analysis

of molecular interfaces. The web application allows the user to access all the atomic inter-

action information by querying the PDB or the SCOP hierarchy. All interface information

characterized by different interaction descriptors can be interactively visualized by using a

Jmol 3D applet [65].

2.1.3 Methodology

SCOWLP is a web-based relational database formed by eleven tables describing PDB inter-

face interactions at atom, residue and domain level. The database contains 74,907 protein

interfaces and 2,093,976 residue-residue interactions formed by 60,664 structural units and

interacting solvent. For the creation of the SCOWLP, we extract 3D data of protein do-

mains, peptidic-ligands and interface solvent from the PDB [10], and we define protein

domains from the SCOP 1.69 [66]. We compute protein interactions at atom, residue and

domain level by using bounding shape-based algorithms [67]. We also have developed a

web application to handle and navigate through the interfacial data in an automatic and

user-friendly fashion. We designed the SCOWLP methodology based on the following steps:

SCOL-Ligand (Structural Characterization Of Peptidic-Ligands)

The first step of our methodology consists of creating the SCOL table. Each structural unit

in a PDB file is represented by a different chain name. We extract all structural units of

the PDB and compare them with the domain definitions of SCOP. Although SCOP has

a ”Peptide” class containing functional peptides, it does not contain all peptidic-ligands

complexed in the PDB. For this reason, structural units bigger than two and smaller than
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Figure 2.1: Schematic overview of the methodology. SCOWLP uses information from PDB, SCOP,
SCOL and SCOW for the computation of atomic interface interactions.

one hundred residues not defined in SCOP are considered peptidic-ligands. We stored this

information in the SCOL table (Fig 2.1). Heteroatoms and modified residues that form part

of the same polypeptide chain are included, and DNA residues are excluded. We charac-

terize each SCOL peptidic-ligand by resolution, sequence length and secondary structure.

SCOWLP contains 2,739 peptidic-ligands, which add 3,413 new interfaces (Fig 2.2).

Interacting structural unit pairs

We label all structural units of the PDB with the SCOL-peptide and the SCOP-domain

definitions in order to compute their interactions. We consider a contact distance cut-off

of 9 Å between two residues in order to allow up to two bridging water molecules in the

shortest axes defining the interface. We use bounding shape-based algorithms to compute a
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Figure 2.2: Comparative histogram of SCOWLP vs. PSIMAP database. Representation of the
number of residue-residue (left y axis) and structural unit interactions (right y axis) contained in SCOWLP
and comparison with PSIMAP.

9 Å convex hull (the smallest convex set containing all atoms at 9 Å) for each structural unit

of each PDB entry. Convex hull algorithms have been proved to reduce the computational

time required for an interface calculation by both, reducing the search space to decrease the

number of residues checked for the calculation and allowing distributed computations [67].

Structural units with intersecting shapes and having at least one residue-residue interaction

are considered interacting pairs (Fig 2.1).

SCOW-Water (Structural Characterization Of Water)

We consider a water molecule as part of an interface when it is located in the shape inter-

section of two interacting structural units. All interface water molecules are stored in the

SCOW table and are then included in the atomic interface computation. We also consider

an interaction when two residues are bridging through one or two water molecules. Residue

contacts are defined as only water-mediated (OWM), non water-mediated or direct (D), and

mixed (M). Residues that only interact through water are defined as wet spots (Fig 2.3).

SCOWLP contains 435,086 new water-mediated interactions thanks to the implementation

of SCOWL. This represents 20% of the SCOWLP database (Fig 2.2).
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Figure 2.3: Schematic representation of the interface interaction of two molecules and defi-
nition of wet spots. Molecules A and B form an interface. Interacting residues and water molecules are
represented as black and open circles, respectively.

Interaction rules for interface computation

Only amino acid residues and water molecules placed in the intersection of structural unit

shapes are potential interactors. We apply atom type and distance criteria to compute

interactions between structural unit pairs at physicochemical level. For hydrogen bonds we

apply a≤ 3.2 Å donor-acceptor distance. For salt bridges, we apply a≤ 4 Å distance criteria.

Van der Waals energies are defined by hydrophobic atoms at van der Waals radii distance.

At atomic level, we characterize the interactions by: i) nature: hydrophilic, hydrophobic;

ii) contact type: main chain, side chain, mixed; iii) number of bridging water molecules. At

residue level, we characterize the interactions by: i) nature: hydrophilic, hydrophobic, dual;

ii) contact type: main chain, side chain, mixed; iii) number of bridging water molecules; iv)

total number of atoms contacting. At structural unit level, we characterize the interactions

by: i) contact volume; ii) surface area from convex hull surface; ii) number of interacting

atoms/residues per unit; iv) type of interaction: intra-/inter-molecular. All interfacial

interaction information is stored in the SCOWLP database (Fig 2.1).
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Summary tables

We have created the following additional tables for the filtering and comparative analysis

of the information contained in the database:

• Interface description; This table summarizes all interfaces of the SCOWLP database.

It contains 74,907 interfaces constituted by SCOP domains labelled with the at-

tributes: PDB Id code, atomic resolution, contact type (intra-/inter-molecular) and

SCOP Id code. All interfaces are also labelled by number of interactions (total, all

water-mediated and only water-mediated) and number of interacting residues per

binding partner. Each interaction is classified by type (side-/main-chain or both) and

by number of bridging water molecules.

• Wet interfaces selection; This table stores interfaces of complexes at resolution ≤ 2.5 Å

from the Interface description table for interfacial solvent analysis. This table does

not include homodimer interfaces because of their patchy, poorly packed and highly

hydrated nature [68]. With the resultant dataset, we create three tables:

– Content; This table can be used to rank superfamilies based on their content

in water mediating interface interactions. For each interface, it contains the

average of total interactions, all water-mediated interactions and the ratio from

the percentage of water-mediated interactions at superfamily level.

– Morphology; This table can be used to rank the interfaces by number of wet

spots. In this table each family is represented by the complex with the highest

number of wet spots, labelled with the total number of interacting residues and

wet spots.

– Comparative; This table can be used to monitor solvent variations in interfaces

and compare them at family level. It contains interfaces sorted out by domain,

and then by their respective ligands (protein or peptide). Because a protein-

ligand interface can be found in different PDBs, we select the interfaces that

appear more than once and contain wet spots. When the same PDB file contains
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a repeated interface of two binding partners, we select as a representative the

one with more wet spots.

Implementation

We used MySQL and the Java programming language to generate and analyze the SCOWLP

database. Interface calculations are performed on a 2.6 GHz Pentium IV in approximately

36 hours. SCOWLP is automatically updated with every SCOP release.

2.1.4 Results and discussion

SCOWLP database contains detailed information of protein interfaces including peptidic-

ligands and solvent in the PDBs, and classifies protein interfaces by using specific physico-

chemical atomic criteria. The database can be accessed through a user-friendly web appli-

cation.

Interaction rules

The use of atom type and distance rules allows us to characterize and classify interactions at

physicochemical level. Other existing methods adopt exclusively a general distance criterion.

PSIMAP [67], for example, considers as an interacting pair any atom distance at ≤ 5 Å. For

this reason, the total number of residue-residue and structural unit interactions we obtain

by applying our interaction rules is reduced in comparison to PSIMAP (Fig 2.2). This

reduction translates into more accurate interface definitions.

Peptidic-ligand contribution

Some proteins have been subject of many structural studies complexed with peptides (e.g.

Proteases, b.47.1). Besides, the superfamilies that have the higher occurrence of peptides are

not necessarily those with higher domain-domain representation (e.g. Cyclophilin, b.62.1).

By taking into account information about protein-peptide complexes SCOWLP contributes

interfacial information of 8 SCOP superfamilies uniquely represented by protein-peptide

complexes (a.23.4, a.50.1, d.76.1, a.8.5, d195.1, g.33.1, a.144.1, a.12.1). In addition, it con-

tributes with more than 50% of the interacting information in other superfamilies. Our
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Figure 2.4: Enrichment of the interface definitions by peptidic-ligands and solvent. A)
Enrichment in the description of protein interfaces by peptidic-ligands. The molecular recognition features
of the BTB/POZ domain family are summarized. A representative POZ domain

results show the importance of including protein-peptide interfacial information in order

to enrich considerably the description of protein interfaces. Proteins can bind to peptides

in places that do not exactly correspond to binding sites in their known protein-protein

complexes. As an example, we show the BTB/POZ (Poxvirus and Zinc finger) family.

The twelve BTB/POZ complexes in the PDB present five domain-binding regions, two of

them described by the protein-peptide complexes (Fig 2.4.A). The POZ-peptide interfa-

cial information is functionally relevant. It may help to propose new POZ contacts when

reconstructing multi-protein complexes and modelling signalling pathways where the POZ

domain-containing proteins are involved. Our results show that the addition of peptidic

information can help to complete the view on how a protein recognizes its binding partners.

Solvent contribution

All superfamiles of the Content table contain solvent mediating interactions. Furthermore,

in some of these superfamilies water-mediated interactions represent up to 75% of the total

interfacial interactions (e.g. d.250.1). Relating to the ”only water-mediated” interactions,

we observe from the Morphology table that 43 is the maximum number of wet spots found.

Figures 2.4.B and 2.4.C illustrate how solvent, in particular wet spots, may play an impor-

tant role in the morphological description of protein interfaces (shape and size). Considering

the solvent, a discontinuous surface formed by several small isolated patches changes to a

bigger and rounded patch. These observations show that we can enrich the description of
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protein interfaces by considering interfacial solvent.

Although solvent molecules mediating protein interactions can be conserved in a protein

family, variations may occur due to different facts: i) atomic resolution and/or quality of

the structural data, ii) conformational changes upon ligand binding, iii) protein flexibility,

iv) new interacting regions (e.g. loop insertions and deletions), v) residue mimicry. Wet

spots variations may be used as indicators in these cases. The Comparative table allows us

to compare the interfaces of 127 families in 751 complexes based on wet spots variations.

Solvent molecules play an important role in the replacement of residues in protein in-

terfaces. Sometimes the atomic resolution, the existence of different rotamers or even small

differences in contact distances defining the interaction may influence the number of wet

spots. Nevertheless, small variations of wet spots in complexes of the same family that do

not present changes in total number of interactions can be used to locate residue mimicry

cases (e.g. Lys+H2O≈Arg). Making use of this information may be very useful in analysis

of protein interfacial evolution and in protein engineering/rational design when designing

affinity and specificity of a protein for its ligands.

Web application

SCOWLP contains atomic interfacial information of all the PDB entries structured by the

SCOP hierarchy. There are two ways to query our database: SCOP or PDB. The user can

query SCOP by keywords, SCOP/PDB Ids, or by simply navigating the SCOP hierarchical

tree (Fig 2.5.1). When the user selects a family from the tree (labelled as FA), SCOWLP

retrieves a list of the PDBs containing interfaces of that family in one frame. A second frame

shows a summary table listing all the interfaces of that family with PDB id, type of contact,

superfamily description of binding partners, interfacial area, total interacting residues and

number of wet spots. This summary table gives a good overview over the interacting

partners and interfacial variations at family level. By selecting any of the PDB IDs in this

table, the user retrieves a list of all the interfaces of that PDB organized in two interactive

tables: Interfaces and Interactions. We obtain the same tables querying SCOWLP by PDB

ID (Fig 2.5.2). The ”Interfaces” table shows binding partners, interfacial area, total number

of interfacial residues and wet spots. The Interaction Types table classifies the interactions
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based on their water mediation, nature and type. The user can select the interfaces in a

master/slave way to display a 3D molecular viewer and the selected domain contacts. We

have implemented Jmol scripts [65] to allow the user to display and interactively analyze

interfaces by using two control panels (Fig 2.5.3). The first one (on the right; Fig 2.5.3a;

Domain Contact Selection) controls the interface display in the 3D viewer, allowing the

user to highlight the residues forming part of each interface. The second panel (bottom

left; Fig 2.5.3c) controls: Molecule View: ON/OFF residue labelling, water mediators and

spinning; Interacting Descriptions: interfacial residues colouring based on wet spots, nature

and type. Fig 2.5.3 shows a protein domain (red) interacting with a peptidic-ligand (yellow)

and their respective interacting residues (wet spots in blue).

By using SCOWLP, the user can achieve specific queries, SCOP family analysis, interface

comparisons and a detailed 3D display of the atomic interaction data contained in PDBs.

2.1.5 Conclusion

Detailed analysis of the interfacial information contained in the PDB is very useful to ob-

tain more accurate descriptions of protein interfaces. We have created SCOWLP to have

a platform for the characterization and 3D visualization of protein interfaces. SCOWLP

enlarges the available information on protein-protein interactions by introducing 3,413 new

protein-peptide interfaces and 435,086 additional water-mediated interactions. All interac-

tions contained in SCOWLP are characterized and classified at physicochemical level instead

of using general distance criteria. This allows a more appropriate definition and enhanced

comparison of the interfaces contained in our database.

As the origin of specificity and affinity in molecular recognition can be partially explained

in terms of solvent’s contribution to the interaction, our database constitutes a very useful

tool to facilitate rational ligand design. In particular wet spots can be used as indicators of

interfacial solvent variations, being helpful in comparison of protein family interfaces, and

perhaps guiding docking experiments.

SCOWLP may be of interest to many structural bioinformaticians, representing a useful

tool for classification of protein interfaces, protein binding comparative studies, reconstruc-

tion of protein complexes and understanding protein networks.
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www.SCOWLP.org 

SCOP navigation window: 
  1a: SCOP hierarchy tree. 
  1b: Family PDB Ids. 
  1c: Family interactions table. 

1-SCOP id and name queries: 

3D interface window: 

  3a: Residue contact tables and interface selection button. 
  3b: PDB graphical representation highlighting the selected interface 
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Figure 2.5: Screenshots and legends showing the structure of the SCOWLP website.
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2.2 SCOWLP classification: Structural comparison and analysis of pro-
tein binding regions

by Joan Teyra, Maciej Paszkowski-Rogacz, Gerd Anders and M. Teresa Pisabarro

in BMC Bioinformatics, 2008, 9:9

2.2.1 Abstract

Detailed information about protein interactions is critical for our understanding of the

principles governing protein recognition mechanisms. The structures of many proteins have

been experimentally determined in complex with different ligands bound either in the same

or different binding regions. Thus, the structural interactome requires the development of

tools to classify protein binding regions. A proper classification may provide a general view

of the regions that a protein uses to bind others and also facilitate a detailed comparative

analysis of the interacting information for specific protein binding regions at atomic level.

Such classification might be of potential use for deciphering protein interaction networks,

understanding protein function, rational engineering and design. Protein binding regions

(PBRs) might be ideally described as well-defined separated regions that share no interacting

residues one another. However, PBRs are often irregular, discontinuous and can share a

wide range of interacting residues among them. The criteria to define an individual binding

region can be often arbitrary and may differ from other binding regions within a protein

family. Therefore, the rational behind protein interface classification should aim to fulfil

the requirements of the analysis to be performed.

We extract detailed interaction information of protein domains, peptides and interfacial

solvent from the SCOWLP database and we classify the PBRs of each domain family. For

this purpose, we define a similarity index based on the overlapping of interacting residues

mapped in pair-wise structural alignments. We perform our classification with agglomer-

ative hierarchical clustering using the complete-linkage method. Our classification is cal-

culated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature

especially interesting for those protein families with controversial binding regions.

The hierarchical classification of PBRs is implemented into the SCOWLP database and

extends the SCOP classification with three additional family sub-levels: Binding Region,
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Interface and Contacting Domains. SCOWLP contains 9,334 binding regions distributed

within 2,561 families. In 65% of the cases we observe families containing more than one

binding region. Besides, 22% of the regions are forming complex with more than one different

protein family. The current SCOWLP classification and its web application represent a

framework for the study of protein interfaces and comparative analysis of protein family

binding regions. This comparison can be performed at atomic level and allows the user to

study interactome conservation and variability. The new SCOWLP classification may be of

great utility for reconstruction of protein complexes, understanding protein networks and

ligand design. SCOWLP will be updated with every SCOP release. The web application is

available at http://www.scowlp.org

2.2.2 Introduction

Protein interactions are essential for intra-cellular communication in biological processes.

Proteins are composed of small units or domains that can physically interact together form-

ing multi-domain protein complexes. A single protein can have several binding regions,

and each region can engage distinct ligands, either simultaneously or at successive stages of

signalling [69].

In our previous work we developed the SCOWLP database [70], which contains detailed

interfacial information of structurally known protein complexes, peptide complexes and wa-

ter molecules as mediators of interactions. SCOWLP and other existing protein interaction

databases [50, 51, 71] contain lists of interfaces for SCOP protein families and, therefore,

they are only able to perform individual interface analysis. A classification of protein bind-

ing regions (PBRs) is essential in order to characterize all protein regions participating in

the binding and to be able to compare protein complexes sharing the same binding region.

At the same time, such a classification should provide some insights into the interacting

properties preserved by members of a protein family. However, the criteria to delineate

PBRs can be difficult to assess, and often arbitrary and controversial.

Binding regions in protein domains can form separated patches, but also some protein

families bind through multiple binding regions with different ranges of residue overlapping.

Furthermore, some observed protein interfaces are the result of non-biological artefacts (i.e.
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crystal packing) and are often difficult to distinguish from the biological ones, creating

discrepancy among the current resources [72, 73]. Some of these interfaces can connect

binding regions or can be included into existing ones, introducing noise quite difficult to

handle for clustering algorithms. As different clustering algorithms can vary the grouping

completely, an advantageous classification of PBRs should contain a proper measurement

of similarity and a flexible clustering algorithm to cover the requirements of the analysis to

be performed.

Hierarchical clustering comprises a whole family of clustering methods differing only on

the manner inter-cluster distance is defined (the linkage function). The more common aggre-

gation methods are single-, complete- and average-linkage. Complete and single-linkage are

extreme procedures with completely different properties. Complete-linkage uses the similar-

ity between the furthest pair of objects from two clusters. In contrast to these requirements,

single-linkage only uses the nearest pair of objects from each cluster. Both methods have an

extreme conception of homogeneity of a cluster. Single-linkage leads to grouping and may

result in a few large and heterogeneous clusters [74]. Complete-linkage results in dilatation

and may produce many clusters, being more suitable for isolating poorly separated clusters

[75]. Average-linkage tries to avoid these effects by computing the average. This method is

used by two different computational approaches for protein interface classification described

so far. Nussinov and colleagues pioneered interface classification based on common struc-

tural features shared among the interfaces from various folds and considering full interfaces

at chain level [45, 76]. More recently Kim and colleagues [77, 78], instead of classifying

interfaces as a whole, classified the domain faces forming an interface by SCOP families.

Their classification uses interfaces defined as biological in the PQS database [72] and does

not include peptidic and solvent interaction data.

We present a classification of PBRs from all existing contacting domains from the

SCOWLP database, which includes detailed information about proteins, peptides and sol-

vent interaction. Peptide and solvent interactions are highly represented in the PDB and

are highly informative in protein interactions [79]. For our classification we use hierarchi-

cal clustering with the complete-linkage method. The similarity measure used is obtained

based on the overlapping of interacting residues mapped in pair-wise structural alignments
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and exclusion of gap regions. We explain and discuss the methodology used to classify

PBRs and the rational behind applying flexible similarity cut-offs. Our PBRs classification

is implemented in SCOWLP and extends its usage from individual analysis of protein in-

terfaces to comparative structural analysis of specific family binding regions. We describe

the SCOWLP web application and its utilities for PBRs analysis.

2.2.3 Methodology

The PBRs classification extends the SCOWLP relational database by four additional tables

describing the hierarchical classification at binding region, interface and contacting domain

level. The content of the classification is given at similarity zero, which offers a general view

of the regions that protein families use for recognition. In addition, our classification offers

different similarity cut-offs to allow flexibility in the analysis of the PBRs. The classification

of PBRs was performed as follows (Fig 2.6.A):

Extraction of interfaces and contacting domains

An accurate definition of the interacting residues is crucial to have a proper clustering of a

family PBR. We extracted all protein interfaces from the SCOWLP database, in which the

interactions are defined at atomic level and based on their physiochemical properties [70, 79].

Protein domains interacting with peptidic ligands and residues interacting through a water

molecule (wet spots) are also taken into account. We consider ”interface” all domain-domain

interactions; that means those belonging to the same protein and also to different proteins.

SCOWLP contains 79,803 interfaces contained in 2,561 SCOP families. We grouped the

domains participating in each interface by SCOP families, obtaining for each family a list

of contacting domains with the residues forming part of the binding region.

Pair-wise structural alignments (PSAs)

A reliable alignment is indispensable to calculate the similarities among binding regions.

For this purpose we used MAMMOTH, which has shown proved accuracy to structurally

align protein families [80]. We performed all-against-all PSAs of the contacting domains

for each family to be able to measure the similarity among binding regions. SCOWLP



51

Family A

Domain contact list

d1   d2   d3   d4   d5   d6  ...

d1

d2

d3

d4

d5

d6

...

SIM
IL

ARIT
Y 

VALU
ES (S

i)

xxxxx----xxxxxxxxxx---

--xxxxxxxxxxxxxxxxxxxx

SCOWLP db

Pair wise structural 
alignment

Mapping inter-
acting informa-

tion
d5

d2

SCOWLP FamiliesA

B

d1

d4

d5

d2

d3

d6

...

Si(d2, d5) =

SINGLE-REGION

MULTI-REGION

SINGLE-INTERFACE MULTI-INTERFACE

FAMILY BINDING REGIONS

Clustering

d1
d2
d3
d4
d5
d6

interacting residues

overlapping residues

6

7+10
2

= 0.71

fa A fa A

fa B fa Cfa B

fa A

fa B

fa C

fa C

Si cut-off 

Si calculation all-against-all

  . . .        . .  .

.

d5

d2

Figure 2.6: Schematic overview of the methodology. A) The contacting domains per family are
extracted from the SCOWLP database. The Si are calculated for all-against-all contacting domains and used
for clustering. Results are displayed in a dendrogram. B) Classification of protein binding regions (PBRs).
A protein family can recognize other proteins and ligands by single- or multi-binding regions, and for each
binding region single- or multi-interfaces may exist depending on the number of partners that have been
structurally observed interacting within a specific binding region.

contains about 160,000 contacting domains uneven distributed by families. This represents

276 million PSAs performed in a cluster of five Pentium IV 2.6 GHz. The alignments

were performed taking the Cα atoms into account and using a gap penalty function for

opening and extension [81]. The root-mean-squared deviation (RMSD) was not considered

for measuring the similarity between two interfaces, as the superimposed members of the

same family share a common structure.
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Similarity Index (Si)

The residues described in SCOWLP to be forming and interface were mapped onto the

domain-pair structural alignment. We calculated a similarity index (Si) based on the number

of interacting residues that overlap and the length of both interacting regions by (Fig 2.6):

Si(a, b) =
IRoverlap(a,b)(

IRlength(a) − IRgaps(a)
)

+
(
IRlength(b) − IRgaps(b)

)
2

(2.1)

where a and b represent the two domain structures aligned. The number of interacting

residues that match in the PSA is represented by IRoverlap(a,b). This value is divided by

the average number of the interacting residues in both domains excluding the interacting

residues located in gap regions in the structural alignment (IRgaps).

Clustering binding regions

Based on the calculated Si, we clustered the binding regions of each SCOP family using the

agglomerative hierarchical algorithm [74] following several steps (Fig 2.6):

1) Define as a cluster each contacting domain.

2) Find the closest pair of clusters and merge them into a single cluster.

3) Re-compute the distances between the new cluster and each of the remaining clusters.

4) Repeat steps 2 and 3 until all contacting domains are clustered into a single cluster.

To re-compute the distances we used the complete-linkage method [75], which considers

the distance between two clusters to be equal to the minimum similarity of the two members.

Binding region definition by Si cut-offs

The result of the clustering can be represented in an intuitive tree or dendrogram, which

shows how the individual contacting domains are successively merged at greater distances

into larger and fewer clusters. The final PBRs depend on the Si cut-off that is set up.

We can observe in Fig 2.7.A that the total number of binding regions for all the SCOP

families grows exponentially as the Si cut-off increases. Based on our observations of a

representative group of families we set up an empirical maximum similarity cut-off value of
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Figure 2.7: PBR analysis. A) Representation of the number of binding regions obtained using different
Si cut-offs. B) Representation of the relative percentage of SCOP families with different number of binding
regions at zero Si cut-off. C) Representation of the relative percentage of binding regions depending on the
number of interfaces at zero Si cut-off. (x-axis in B and C are limited to 8 for simplicity).

0.4. We pre-calculated the results for Si cut-offs at 0, 0.1, 0.2, 0.3 and 0.4 to offer a range

of values that allow flexibility in the final analysis of PBRs. The SCOWLP web application

offers the possibility to display the classification at any of these cut-off values.

Our classification clustered 160,000 contacting domains from 2,561 families in 9,334

binding regions. About 65% of the families contain more than one binding region (Fig 2.7.B).

These values are obtained for similarity zero and may vary depending on the similarity cut-

off applied.

Interface definitions

In order to differentiate binding regions having single-interfaces from multi-interfaces, we

identified in each binding region the partner for each contacting domain (Fig 2.6.B). Each

binding region was divided in sub-clusters when there were different domain families in-

teracting in the same binding region. This resulted in a total of 10,300 interfaces. The

classification shows a 78% of the binding regions having a single-interface and the rest hav-

ing mainly 2 or 3 interfaces per region (Fig 2.6.C). These numbers have to be carefully

interpreted by taking into account the limitation of the structural information contained in

the PDB (i.e. 1,715 binding regions contain a unique member in the PDB and therefore

only one known interface per binding region).
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Implementation

We used MySQL and Java programming language to generate the classification of PBRs.

Calculations were performed on a cluster of five Pentium IV 2.6 GHz. The PBRs classifica-

tion has been included into the SCOWLP database. SCOWLP will be updated with every

SCOP release.

2.2.4 Results and discussion

In this section we first discuss the methodology used for the classification of PBRs. Besides,

we describe the utility of the SCOWLP web application.

Extraction of similarities

The classification of PBRs requires a proper definition of the similarity between binding

regions. For this purpose it is essential to have (a) a reliable source of interface definitions,

(b) high quality alignments, and (c) a adequate similarity function:

(a) Interface definitions.

Our work includes detailed atomic interfacial information from the SCOWLP database,

which comprises protein-protein complexes, protein-peptides complexes and solvent-

mediated interactions [70, 79]. The contained interacting information at physico-

chemical level is very useful to study and compare conservation/variability among

complexes even at low sequence similarity.

(b) Domain PSAs of a family are computationally efficient and give reliable Si.

The two partners forming an interface do not have to be aligned in order to extract a Si.

For each interface, only the partner belonging to the family in study is structurally

aligned with the rest of the members of the family. This procedure has two clear

advantages: 1) an increased computational speed for each PSA as we overlook one

of the partners, reducing the amount of residues to align; 2) the good quality of

the family domain alignments, as family domains are structurally conserved. Protein

binding regions are often irregular, discontinuous and difficult to compare. Therefore,

a good alignment is critical to calculate the range of overlap between two regions.
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Our classification method is exclusively based on structural alignments, which makes

the methodology computationally expensive but gives better accuracy than sequence

alignments at family level.

(c) The similarity index penalizes gap regions.

The Si reflects the overlap of interacting residues between two binding regions in do-

mains belonging to the same protein family. It is important to consider the number of

interacting residues per domain, which allows us to obtain the percentage of interact-

ing residues that is overlapping over the total (see Methods). This helps to distinguish

whether a binding region is identical, different or included into another one.

Ligands and proteins possess internal degrees of freedom and can adopt various con-

formational states. Furthermore, many family members often contain sequence in-

clusions/deletions in loops or C-/N-termi, or even additional secondary structure el-

ements, which are often involved in protein interactions. For these reasons, we cal-

culate the Si without considering the interacting residues belonging to gap regions in

the PSA. This is graphically illustrated in Figure 2.8.A. Two proteins belonging to

the same family differ in an insertion of 55 residues, which creates a gap region in

the PSA. This additional region is involved in binding and, therefore, increases the

number of interacting residues for the protein containing it. In general, dismissing

interacting residues belonging to gap regions in PSAs produces a condensation effect

on the clusters at high level of similarity. Additionally, it can also cause reorganiza-

tion of cluster members at lower levels of similarity. Ignoring gaps for Si calculation

and applying flexible similarity cut-offs might help in the final clustering and conse-

quent analysis. This is illustrated in Figure 2.8.B, where two contacting domains of

the same family presenting two different overlapping binding regions (peptide-binding

and crystal packing) are clustered differently depending on considering or excluding

gap regions and by applying flexible Si cut-offs. As an example, applying a 0.2 cut-off

when excluding gaps clusters all peptide-binding interfaces separated from the crystal

packing interface. This clustering may facilitate further analysis of these different

binding regions and their properties.
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Figure 2.8: Effects of gap regions for Si calculation and clustering. A) Two structures of the
PTB domain differing in an insertion/deletion are displayed as green ribbons, and their respective ligands in
orange ( PDB entry codes: 1SHC and 1IRS). Interacting residues are coloured in red. The insertion/deletion
is shown in white. Note that some of the red regions may be included in white ones. B) A section of the
dendrogram obtained from the clustering of the PTB domain binding regions (more detailed in figure 2.10)
is shown for both cases, excluding and including gap regions. Two members of these clusters presenting
different (peptide-binding, 1NMB:AB and crystal packing, 1QQG:AB) but overlapping binding regions are
highlighted in blue and pink, respectively. A Si cut-off of 0.2 (dashed line) is shown for comparison.

Aggregation using the complete-linkage method

Some protein families bind through multiple binding regions with different ranges of residue

overlapping. This produces extensions of the binding region definitions and association of

two clearly defined regions by a third into a bigger single one. To cope with these usual

situations, instead of using the average-linkage used by other authors [76, 78], we have

rather applied the complete-linkage [75] due to two main properties:

• Property 1: Complete-linkage is sensitive to zero similarity. This method defines at

similarity zero all binding regions that do not share interacting residues. Besides, it

also assumes that in the same binding region all the members must have some range

of similarity among them; otherwise they are split in two separate clusters. This is

illustrated in Figure 2.9 (left panel), where a binding region of domain X might appear

as a single one due to the overlapping of several interfaces (A to G). The handling

of the three ”connector interfaces” (C, D, G) will be responsible of the definition of

the final clusters at similarity zero. The clustering is decided based on the higher

similarity; C is more similar to B than to D and, on the other hand, G is more similar

to F than to D. Therefore, the connectors G and C will be part of the cluster EF
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and AB respectively, whereas D will belong to a separate cluster. At no similarity,

complete-linkage differentiates three binding regions, whereas single-linkage offers only

one cluster containing all interfaces. In single-linkage the members having no direct

similarity (D, F) are included in the same cluster if there is a ”connector interface”

(G) having some similarity with both. This enables progressive extensions of a binding

region depending on the Si cut-off applied. The average-linkage method would have

intermediate properties.

• Property 2: Complete-linkage expands the differences between clusters. Complete-

linkage always takes the member with less similarity to join clusters. Domain Y in Fig-

ure 2.9 (right panel) is an illustrative example of binding regions included into others

(EFG included in ABCD). The dendrogram shows how the complete-linkage enlarges

the differences between both groups more than the single-linkage. The average-linkage

would have intermediate values.

These two properties of the complete-linkage method may be very useful for clustering of

PBRs. Figure 2.10 represents a specific example of these properties for all the structurally

known binding regions of the PTB (phospho-tyrosine-binding domain) domain (see below).

Threshold values define the final PBRs

The clustering process can be represented by a dendrogram, which shows how the individual

objects are successively merged at greater distances into larger and fewer clusters. The

branches are proportional in length to the estimated similarity of each binding region with

the others. The final clusters depend on the similarity cut-off that is set up.

Binding regions of a family can often present overlapping residues, which makes their

definition to be sometimes unclear and arbitrary. Sometimes there is no unique criteria to

adopt in order to define clear PBRs and, in these cases, an appropriate classification may

depend on user-based considerations. Illustrative examples are: i) being able to distinguish

multi-interfaces versus multi-regions (Fig 2.6.B) in a protein family, ii) distinction of domain-

domain versus domain-peptide interfaces, and iii) being able to separate and analyze ”non-

biological” interfaces.
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Figure 2.9: Aggregation methods for clustering. Schematic comparison between complete- and
single-linkage method properties. Two domains (X and Y) with their respective binding regions (A to G)
are schematized. Dendrograms obtained from the clustering of PBRs using complete- and single-linkage
methods are shown at the right of each domain scheme for comparison.

This panorama encouraged us to proceed with the application of several cut-offs within

an empirical range of similarities by taking advantage of the clustering properties of the

complete-linkage method. The minimum Si cut-off value was fixed to zero to give a general

view of the binding regions used by a family (property 1). The maximum value was fixed to

0.4 based on our observations (see Si cutoff and Definition section). We also pre-calculated

the results for 0.1, 0.2, 0.3 Si cut-offs to allow flexibility in the analysis of PBRs. Figure

2.10 shows all the structurally known binding regions of the PTB domain and the clusters

for different Si cut-offs for complete- and average-linkage. It can be appreciated that the

slope is not so drastic in complete as it is in the average-linkage method. Although offering

a similar grouping of elements, the complete-linkage method produces dilatation of the

differences among the elements (property 2) and assists in the application of different cut-

offs for separation of clusters. As an example, a cut in a specific point (highlighted in yellow

bars) gives a wider similarity range for complete than for average-linkage. The introduced

flexibility for choosing cut-offs offers, for example, the possibility to differentiate sub-clusters
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(i.e. 2NMB:AB and 1XR0:BA in Figure 2.10) and decide to include or exclude them in a

specific binding region for comparative analysis.

Binding regions vs. interfaces clustering

In this section we compare SCOWLP with a different method, PRISM [55], to give insights

to users into the utilization of our approach and its biological applications compared to

other strategies to classify protein interactions. Whereas SCOWLP compares and classifies

interfaces based on defined binding regions in the fold of each counterpart (at family level),

PRISM compares full interfaces (both partners) in a sequence position independent manner.

By using a geometric hashing algorithm it groups interfaces by similarities of the space

distribution of interacting residues independently of the fold. Although being two different

approaches, both methods can provide a similar number and composition of clusters for a

specific protein family; however, differences may also exist in other cases. The following

examples are intended to illustrate it (0.2 similarity cut-off used):

1) If a protein family interacts with two different proteins using the same binding re-

gion (Single region-multi-interface; Fig 2.6.B), SCOWLP would always include both

interfaces in the same cluster, whereas PRISM would do it only in case it consid-

ers similar the distribution of the interfacial residues. This is exemplified in Figure

2.10. SCOWLP includes 1j0w:AB in the same binding region cluster as 1m7e:BA and

1p3r:BA, whereas PRISM classifies 1j0w:AB unaccompanied in an only-one-member

interface cluster. The same applies to the case of classification of protein-peptide in-

terfaces, where conformational differences of the short peptidic sequences may cause

a different PRISM-architecture and, therefore, a separate classification. SCOWLP

groups several peptides binding to the same binding region of the PTB domain in

one single cluster of 16 members (Figure 2.10, cluster 1aqc:AC to 1shc:AB); however,

PRISM groups these interfaces in two different clusters of six and seven members. For

this specific example, the difference in overall numbers of interfaces is due to the fact

that some of the protein-peptide interfaces obtained with SCOWLP are missing in the

PRISM clustering (1uef:BD, 1m7e:CF and 1oqn:BD).

2) In the case of structural symmetry (i.e. symmetrical protein assemblies and crystal
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Figure 2.10: Aggregation methods for clustering. Clustering of the PBRs of the PTB domain.
The dendrograms derived from the clustering using complete- and average-linkage are shown in the left and
right panels, respectively. An example to illustrate the range of similarity that could be used to produce a
specific cutting point is represented by the thickness of a yellow line for both methods. The centre of the
figure contains the graphical representation of the PTB binding regions obtained using the complete-linkage
at zero Si cut-off. The PTB domain is represented as a grey surface, and the corresponding binding partners
in coloured ribbons. Two graphs representing the number of clusters at different Si cut-offs are shown at the
bottom.
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packing), PRISM would include all interfaces in a cluster, whereas SCOWLP would

have separated clusters for each binding region.

3) PRISM takes protein chains as a domain unit and therefore does not consider intra-

interacting domains, which are considered in SCOWLP.

Web application

We implemented the hierarchical classification of PBRs into the SCOWLP web application.

Based on a selected SCOP family, SCOWLP retrieves its binding regions and a summary

of the interacting information. The results are generated based on a user-selected similar-

ity cut-off. The analysis of the binding regions can be performed in three different ways

(Fig 2.11):

a) visualizing the spatial location of each binding region on a representative family struc-

ture by using Jmol plug-in [65],

b) keyword search for PDB ids and chains to identify specific complexes, or

c) visualizing the structure-based aligned representative sequences for a binding region

with highlighted interacting residues.

Once the binding region of interest is localized, a tree-based structure shows three addi-

tional classification levels (Fig 2.11.d): binding region (BR), interface (IF) and contacting

domain (DC). All domains in a family that contain interacting information are structurally

aligned and their sequences are displayed. Upon selection, the interacting residues can be

coloured based on their physico-chemical properties (hydrophobic, hydrophilic or both), and

also by the water contribution to the interfacial interactions (dry, wet or dual interaction).

A label with the interacting correspondences will appear on each interacting residue when

pointed with the mouse. The physico-chemical properties allow the user to distinguish con-

served vs. variable interactions. In Figure 2.11, the PTB domain is used as an example of

the utility of the SCOWLP database for analysis of PBRs. In this example, the clustering

is selected for similarity cut-off value 0.4 (corresponding dendrogram shown in Figure 2.10).

A structure-based alignment of the PBRs is obtained, and all interacting residue patterns

are highlighted (panel c). A specific binding region is expanded to display all interfaces; in

this case corresponding to PTB binding to phospho-tyrosine peptidic ligands. This binding
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region gets automatically displayed in the 3D viewer for graphical inspection (panel a).

This interface is expanded to obtain a structure-based alignment of all PTB domains that

use this binding region for recognition. The secondary structure of the domain is displayed

at the top of the alignment to help with interpretation of interacting information. The

interacting residues are highlighted with different colouring; in this case based on the water

contribution to their interfacial interactions (panel d). This information allows comparative

analysis of the interfaces, including conservation vs. variation of the interactions. In this

example we easily are able to analyze (at structure and sequence level) all the interfaces of

the PTB domain with different phospho-tyrosine peptides and their interaction patterns. In

the example, the three main recognition regions described for the X11 PTB and a peptide

motif from the Alzeimer’s amyloid precursor protein (APP; PDB entry 1AQC) are displayed

and structurally aligned with the recognition regions of other peptides known to bind PTBs

in this region. Also, specific differences in the interaction pattern can be further analyzed

individually by clicking on each PDB entry code. Analysis of the conservation/variability of

the interactions describing an interface may be of great utility for understanding energetic

and evolutionary aspects of protein interactions and for helping in rational engineering and

design.

2.2.5 Conclusions

Classification of the regions that a protein family uses to recognize binding partners is

important for understanding the interactome. Protein binding regions are often irregular,

discontinuous and can share interacting residues among them, making their clustering dif-

ficult, and arbitrary. A suitable classification requires proper measurements of similarity

between protein binding regions and an appropriate clustering approach. Our approach

consists of hierarchical clustering of the PBRs included in the SCOWLP database, which

contains detailed interfacial information of proteins, peptides and solvent. We use the

complete-linkage method and a similarity index obtained by mapping interacting residues

in non-gap regions of pair-wise structural alignments. This approach provides a dilatation

of the differences among clusters, making it suitable to isolate poorly separated clusters.

In addition, we introduce flexibility in the usage of different similarity cut-offs for PBRs
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Figure 2.11: SCOWLP web application screenshot and utilities. PTB domain used as an
example of the utilities of the SCOWLP database for analysis of PBRs. [a] 3D viewer allows structural
analysis of binding regions the PTB family. [b] The Manager Box allows selection of Si cut-offs, display
of interacting properties and keyword search. [c] Multiple structure alignment of representative PBRs of
the PTB domain is provided together with the highlighting of the interacting residues, including solvent-
mediated interactions. From the PBR tree, each PBR can be selected to be displayed in the 3D viewer.
The PBR tree can be expanded by clicking on its branches to display all interfaces belonging to a particular
PBR. [d]. Visualization of the contacting domains. Secondary structure of the domain is displayed, and
physico-chemical properties of the interacting residues can be highlighted with the help of the ”manager
box” (see text for more details about SCOWLP utilities for analysis of PBRs)
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analysis. Our results show that, from 2,561 families containing binding regions, 65% use

more than one binding region to interact. Furthermore, from all existing binding regions

in SCOWLP, 22% are interacting with more than one protein family. In order to be able

to analyze all family binding regions of the PDB in a detailed and comparative fashion we

have implemented our PBR classification into the SCOWLP web application.

The current SCOWLP classification and its web application represent a complete frame-

work for the study of protein interfaces and comparative analysis of protein family binding

regions. Mining of this information may be of great utility for understanding energetic and

evolutionary aspects of protein interactions, reconstruction of protein complexes, under-

standing protein networks and rational ligand design.
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Chapter 3

BINDING INFERENCES ACROSS FOLD SPACE

Proteins exhibit an enormous diversity of structures, and different protein families, even

different folds, may present non-obvious structural similarities. The detection of these

similarities may lead to the discovery of evolutionary relationships and reveal common

structural features important for function. In this chapter, I describe a methodology I

developed to calculate binding regions conservation between structurally similar proteins.

The non-obvious similarities are obtained performing pair wise non-sequential structural

alignments between all proteins independently of their fold classification. This work is

under revision for publication in the Proteins Journal.
1

CL CF SF

RT

FA1

FA2

1Scheme representing the methodology performed in this chapter to infer binding regions between struc-
turally similar proteins classified in different families. The structure consists in the alignment of YgdR
homodimer and Neurophysin II homodimer (2ra2:A,C and 1jk6:F,A) that belong to different folds (CF,
class fold)
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3.1 Studies on the inference of protein binding regions across fold space
based on structural similarities

by Joan Teyra, John Hawkins and M. Teresa Pisabarro

in Proteins, 2010, submited

3.1.1 Abstract

The emerging picture of a continuous protein fold space highlights the existence of non-

obvious structural similarities between proteins with apparent different topologies. The

identification of structure resemblances across fold space and the analysis of similar recog-

nition regions may be a valuable source of information towards protein structure-based

functional characterization. In this work, we use non-sequential structural alignment meth-

ods (ns-SAs) to identify structural similarities between protein pairs independently of their

SCOP hierarchy, and we calculate the significance of binding region conservation using the

interacting residues overlap in the ns-SA. We cluster the binding inferences for each family to

distinguish already known family binding regions from putative new ones. Our results indi-

cate that binding region conservation across fold space occurs systematically and, therefore,

there is a plethora of molecular recognition information that could be potentially inferred

among proteins, independently of current fold classifications. We obtain a 6 to 8 fold en-

richment of binding regions, and identify binding inferences for 728 protein families that

lack binding information. We also investigate the presence of recurrent recognition struc-

tural features among protein families, and possible binding mode analogies between ligands

from commonly clustered binding regions. The identification of similar recognition regions

in proteins together with detailed analysis of their atomic and physico-chemical properties

may constitute a first approximation to guide protein interactions prediction. The data

obtained in this work is available in the download link at www.scowlp.org.

3.1.2 Introduction

Currently the limitations of protein structure classification approaches and the nature of

the protein fold space are under debate. An emerging view is that the fold space may

not be so discretely organized as thought [82–86]. Proteins exhibit an enormous diver-
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sity of structures, and detection of similarities between them independently of current fold

classifications may lead to the discovery of evolutionary relationships and reveal common

structural features important for function [87]. Many of the current protein structure clas-

sifications are based on conventional structural alignment methods, which in their majority

assume sequentiallity of the protein secondary structure elements (SSEs) favoring align-

ments of homologous proteins [7–9]. However, there is a growing occurrence of protein

folds with common three-dimensional architectures but different topology due to duplica-

tion, swapping and/or deletion genetic events. In addition, protein structures presenting

variations in SSEs composition (insertions/deletions) may still share a common structural

core. Sequential structural alignment methods have difficulties to draw definite conclusions

on structural resemblance in these cases [88, 89]. By contrast, non-sequential structural

alignment algorithms (ns-SAs) overcome these limitations and have the ability to reveal

unsuspected similarities between proteins belonging to different hierarchical levels in the

current protein structure classifications [90–93].

The molecular function of a protein is defined on the basis of its interactions with other

molecules, which take place through specific sites or binding regions [94]. The PDB contains

atomic information about proteins and their complexes [10], but it is estimated that it is still

far from having representative structures of all protein-protein interactions [95]. Despite the

fact that current structural genomics efforts are progressively making such data available,

to cover this knowledge gap and be able to understand the principles of protein recognition

there is a need for approaches to facilitate comparative analysis of protein binding regions

in known protein complexes.

Protein family members, which are homologous in sequence and structure, recognize

other molecules through conserved binding regions and modes [44, 96]. This observation

has recently inspired the development of several binding region classification techniques

[55, 70, 71, 97] based on conventional structural alignments of the members. Analysis of

this data has revealed an abundant redundancy of protein complexes, including homodimer

products of crystallization [72]. These and other recent studies [97, 98] have reported that

most protein families interact through many different regions, and that a single binding

region may recognize multiple distinct partners. So far, protein binding region classification



69

methodologies have been restricted to comparing binding regions within family levels. The

sequence identity between families is generally lower than within families, but they are still

structurally related to each other and they might share similar binding properties.

In the late 90s, Russell et al. [94] performed a pioneer analysis of common binding

regions of families within the same SCOP fold interacting with short polypeptides and

small molecules. The authors reported nine examples of binding region concurrence in the

apparent absence of sequence homology, proving that the methodology could be extended

to protein-protein interactions.

It has also been observed that proteins with different folds and functions often inter-

act with others through interfaces containing similar local structural features or interacting

motifs, the number of which has been observed to be limited, highlighting the analogy

between binding and folding [99]. So far, studies on the comparison of protein interfaces

have been based on geometric algorithms that compare local atomic properties [100, 101]

or non-covalent interactions [102] independently of the overall structure. The studies con-

ducted by Nussinov and colleagues used geometric hashing techniques to perform several

comparative interfacial studies [99], and Wolfson and coworkers use the same techniques to

predict binding regions on protein surfaces [103]. In spite of their utility, structural align-

ment algorithms that do not require atomic connectivity have some intrinsic challenges that

make them too sensitive for comparing binding regions: they are in some cases too rigid to

allow certain structural flexibility and variability of the physicochemical properties.

Aytuna et al. [101] and Guenter et al. [104] have used ns-SAs to predict protein interac-

tions when two structures contain regions in their surfaces that resemble the complementary

partners of a known interface. To predict interactions these authors use template interface

libraries to align both sides of an interface against unbound protein structures. All these

studies have been useful for identifying similarities between protein binding regions and

have revealed that relationships may appear among different folds.

Since it has already been observed that both, overall structural similarities between

proteins and local binding region similarities also exist across folds, the aim of this work

has been to structurally relate protein families independently of their fold classification,

and to investigate protein binding regions inferences. We use ns-SAs and calculate the
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significance of binding region conservation between protein pairs using the residues over-

lap of their binding regions in the alignment. We cluster known family binding regions

together with the inferred ones derived beyond family level in order to define new puta-

tive recognition regions, p-sites. Our results indicate that there is a plethora of molecular

recognition information that could be potentially inferred among proteins, independently

of current fold classifications. We investigate binding mode analogies between ligands from

known and inferred binding regions, and analyze the appearance of recurrent structural

binding motifs contained in many protein families. Our approach provides a broad view of

putative protein-family binding regions derived beyond family level, which may have im-

portant practical applications in guiding protein-protein docking experiments and rational

engineering.

3.1.3 Methodology

SCOWLP database and binding region selection

We use our in-house protein binding regions classification scheme, SCOWLP [70, 97] to

extract all existing protein-protein and protein-peptide complexes from the PDB. In the

SCOWLP classification all protein complexes for each SCOP family are selected, and pair-

wise superimpositions of all members are performed. The similarity index for a binding

region pair is then calculated based on the number of interacting residues overlapping in

the structure-based sequence alignment of the proteins, as follows:

Si =
IRoverlap
IR1 + IR2

2

(3.1)

where IR1 and IR2 are the interacting residues of each protein family member with the

respective ligand, and IRoverlap represents the interacting residues overlap in the alignment.

The collection of binding regions is then clustered to identify the non-redundant set of shared

binding regions within each family. We use the agglomerative hierarchical algorithm [74]

and the complete-linkage method, which considers distances between two clusters as their

minimum similarity [75].
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In this work, we extract a set of SCOWLP binding regions such that their clusters have

zero similarity to each other [97]. This wide threshold allows binding regions that may

include different ligand binding modes. We consider binding mode the relative orientation

how structurally similar ligands are recognized by a protein receptor. All protein binding

regions are mapped onto a single-family representative, which is the family member hav-

ing more interacting residues at non-gap regions in a multiple structure alignment of the

whole family. The representative includes all binding regions known for the family that it

represents.

Protein family dataset

All protein families belonging to the first five classes of SCOP v 1.75 (all α , all β, α/β,

α+β and multi-domain α/β) were included in the study. If the family contained binding

information, the SCOWLP representative was selected, otherwise the first member in the

SCOP family. This way, a total of 3,551 representatives were selected, where 2,532 of them

contained binding information. Crystal packing contacts are filtered out using a support

vector machine-based program, NOXclass [73] (cut off 70%), which takes into account their

distinctive interface properties [105]. A total of 5,826 binding regions containing ≥ 5 residues

were extracted from SCOWLP. Smaller binding regions were ignored since we observed that

they were highly likely to be crystal packing artifacts that had passed the NOXclass filter.

Non-sequential structural alignments

The SSM algorithm [106] was used for the non-sequential structural alignments (ns-SAs).

The method first matches graphs built on the secondary structure elements (SSEs) of the

proteins, followed by an iterative 3D alignment of Cα atoms. SSM has the ability to

find structural similarities between proteins independently of their topology allowing both,

opposite directionality and different sequential order of SSEs. We performed all-against-

all ns-SAs for all protein family representatives. This resulted in either sequential (SSEs

consecutive in sequence) or non-sequential alignments. The following function, Q-score

[106], was used to evaluate their structural similarity:
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Q =
N2
aln[

1 +
(
RMSD
R0

)2 ]
N1N2

(3.2)

where Naln corresponds to the number of aligned residues, N1 and N2 are the total numbers

of residues in the aligned structures, and R0 is an empirical parameter that balances the

relative significance of the root mean square deviation (RMSD) and Naln. We have set R0

to 3Å following previous studies by Krissinel et al. [106]. Q-score reaches a value of 1 only

for identical structures, and it decreases with similarity. The Q-score has been found to

perform uniformly well in a broad similarity range of conditions and to be specially good

in identifying low structural similarities [106], which is the requirement of our study. We

define two structures to be similar enough to asses binding region conservation when the

following conditions are satisfied: Q-score ≥ 0.15, number of aligned SSEs ≥ 3 and SSE

coverage ≥ 40% of at least one of the aligned proteins.

Binding regions conservation

We extract all the binding regions associated to the two representatives aligned. For each

binding region, the interacting residues are mapped onto the structure-based sequence align-

ment. We also calculate the solvent accessibility for both representative proteins to distin-

guish the residues located in the core region from the solvent exposed ones, since core

residues can not participate in recognition. We used NACCESS [25] to calculate the solvent

accessibility of each residue using a probe sphere of radius 1.4Å. A residue is considered

accessible if its total relative accessible surface area (RSA) is more than 5% [107]. We calcu-

late the binding region conservation (BRC) as the ratio between the number of interacting

residues located in structurally aligned regions that are also solvent exposed (IRaln) and

the total number of interacting residues (IRtot):

BRC =
IRaln
IRtot

(3.3)
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P-value estimation

We assess the statistical significance of the BRC by estimating the p-values under the null

hypothesis that two random protein families do not contain conserved binding regions. The

estimation was carried out by calculating the BRC of 105̂ randomly selected samples of

protein representative pairs and a binding region for each pair. The distribution of these

scores was used to estimate the p-values obtained as (r+1)/(n+1), where n is the number

of samples that have been simulated (105), and r is the number of these replicates that have

a score greater than or equal to the BRC value for which we are estimating the p-value

[108]. Note that, as the sampling procedure can possibly contain undetermined cases of

similar binding regions from the alternate distribution, these p-values are likely to be an

underestimate of true significance, i.e. in some instances the real p-values will be much more

significant. In a pairwise ns-SA, a binding region is inferred from one to another protein

family if the conservation significance has a p-value ≤ 0.05.

Clustering of inferred binding regions

The inferred binding regions (iBR) and the known family binding regions (kBR) were col-

lected for each family. Since binding inferences may occupy equivalent surface regions in the

family, we re-clustered the binding regions in a similar way as described above for SCOWLP

(see SCOWLP binding regions selection). To make sure that the obtained kBR clusters from

SCOWLP are not modified in this process, we set the similarity between these initial kBR

to zero. Three distinguishable cluster types were obtained: 1) those that only contained

one kBR (family sites; f-sites), 2) those that only contained iBR (putative sites; p-sites), 3)

those that contained both (mixed sites; m-sites).

Normalization

Each protein in SCOP is classified at four hierarchical levels below the root (RT): class

(CL), class fold (CF), superfamily (SF) and family (FA). In this scheme, any pair of proteins

necessarily has a single common ancestor level that relates them. For each of the all-against-

all pairwise ns-SA we obtain the closest ancestor level (Table 3.1). The number of aligned

pairs obtained per ancestor level is normalized by the number of pairwise alignments that
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can be performed. At SF level the possible combinations are:

SF =
n∑
i=1

mi (mi − 1)
2

(3.4)

and at the upper levels:

CF,CL,RT =
n∑

i,j=1

mimj

2
(3.5)

where n is the number of SF (or CF, CL, RT); i (and j) represents each SF (or CF, CL, RT);

mi is the number of families for each SF (or CF, CL, RT). In a similar way, the number of

significant binding regions is normalized based on the number of calculations performed for

each level (SF, CF, CL, RT).

3.1.4 Results and discussion

All-against-all non-sequential structural alignments

We selected a representative protein for each of the 3,551 SCOP families and we performed

all-against-all pairwise non-sequential structural alignments (ns-SAs) with them. These

resulted in 6x106̂ ns-SAs that took about two weeks of calculations using 9 compute nodes.

From the obtained ns-SAs, a total of 87,154 fulfilled the structural similarity constraints

(see Methods: All-against-all non-sequential structural alignments).

The results obtained support previous observations of the existence of structural similar-

ity among proteins independently of their SCOP hierarchy [90–93]. They also show a high

percentage of similarities at inter-fold level (above fold level), and are shown in Table 3.1 (see

total column for CL and RT). Once the data is normalized to the occurrence in a particular

hierarchical level, we observe that 61.9% of all pairwise ns-SA performed at superfamily

level (SF) present structural similarities. This high structural relationship between mem-

bers of the same SF is to be expected, since proteins are grouped together at SF level when

they have sufficient functional or structural similarity to infer a common origin. Although

proportionally lower, the percentage found for the other levels is quantitatively significant,
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Family binding regions (f-sites and m-sites)
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Figure 3.1: A) Number of binding inferences per binding region. B) Number of binding inferences per
protein family. C) Histogram representation of number of binding regions after clustering depending on the
similarity cutoff. D) Bubble representation of the number of predicted against the known binding regions
per family, where the size of the bubble represents the amount of families.

as it represents an important count for structural similarities dispersed across folds. In-

terestingly, the high number of structural similarities found non-sequentially, specially at

inter-fold level (see columns sq and ns), highlights the need of ns-SA approaches to relate

protein structures and supports the current view of a continuous fold space [82, 84, 85].

Inference of protein binding regions

We mapped the binding regions of each protein on the pairwise ns-SA to assess their binding

region conservation (BRC; see Methods). We calculated 206,889 BRC scores using the

87,154 pairwise alignments and 6,254 known family binding regions (kBRs). Each BRC

score has associated a p-value representing the probability that a better score can occur by

chance (see Methods). A total of 26,893 BRC scores were considered statistically significant,

and the corresponding binding regions were then inferred. This result represents a 2.6

fold enrichment since the expected number of results at p-value ≤ 0.05 from the 206,889

BRC calculations is only 10,300. Based on this, and the fact that our p-values are an

underestimate, we expect the false positive rate to be at most 38%.

The distribution of the data by ancestor level reveals that most of the inferences are

inter-fold (see in Table 3.1 total column in Inferences for CL and RT). Once the data is

normalized and in contrast with the structural alignment results, we interestingly observe

that the percentage of significant inferences is comparable per ancestor level (norm column

in Inferences in Table 3.1), which indicates BRC independently of the SCOP level.
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The analysis of the number of inferences per binding region shows that most of the

binding regions present a reduced number of inferences to other protein families, although in

some cases may be up to 57 (Fig 3.1.A). We plot the binding inferences in a network in which

the nodes represent protein families within the five SCOP classes (all α, all β, α/β, α+β and

multi-domain α/β in Fig 3.2.A) and the edges represent inferences. The nodes are clustered

based on the number of binding inferences (node connectivity). In this representation, as

each class includes different folds, two proteins from the same SCOP class can be either

connected by inter- or intra-fold binding inferences (edges in the plot). We observe from the

network that within the classes there are sub-clusters of proteins presenting high intra-fold

inference, which are connected by inter-fold inferences. This is better observed for all α and

α+β classes. The distribution of the proteins in the network is driven by higher number

of inter-fold inferences that connect the different classes (Table 3.1), where all-β acts as

the pivotal class linking the others due to the common SSEs. The multi-domain class has

a reduced number of families that are spread along the network and lowly connected with

other families, showing no class preference. We also observe that all-β and α/β contain

many protein families with low number of inferences, which in many cases are inter-fold.

Inspection of network sub-clusters populated with proteins from different classes, reveals

the presence of inferred regions with slight differences in topology, orientation or number of

SSEs, highlighting the existence of common architectures or binding motifs such as Ross-

mann fold, helix-turn-helix, β-sandwich and β-barrel (see Fig 3.2.A). Our observations

confirm that proteins with different folds interact with others through regions containing

similar structural features.

An example of binding inference based on structural similarity is shown for the Papain

binding region of the protease inhibitor Staphostatin (Fig 3.2.B) [109]. The inhibitor inter-

acts with the L- and R-protease domains through a “β-hairpin binding loop”, which spans

the active site of the protease. Staphostatin consists on a mixed eight-stranded β-barrel

structure, where four strands define a binding region found structurally conserved in seven

proteins (at inter- and intra-fold level). Our methodology identifies significant conservation

in the strands forming the binding region. Due to the broad definition taken in our ap-

proach, some binding inferences may show a wide range of additional structural features:
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Table 3.1: Distribution of the pairwise structural similarities and significant binding region
inferences. The information is organized by ancestor level based in the SCOP hierarchy: root (RT), class
(CL), class fold (CF) and superfamily (SF). The results of ns-SAs can be sequential (sq) or non-sequential
(ns). Normalized values (N) and averaged Q-score (Qavg) are shown (see Methods for details)

Ancestor level
Structurally similar protein pairs Inferences

sq ns total N(%) Qavg total norm

RT 705 12,357 13,062 0.3 0.17 3,571 14.0

CL 5,230 49,153 54,383 0.9 0.19 16,522 14.5

CF 4,401 6,389 10,790 0.1 0.23 4,050 16.0

SF 4,489 4,430 8,919 61.9 0.26 2,750 18.0

longer loops connecting the β-strands defining the BRC (Fig 3.2.B:5, 7), additional SSEs

(Fig 3.2.B:1, 2), or different connectivity between β-strands. Other inferred binding regions

may even not contain the “β-hairpin binding loop” (Fig 3.2.B:1, 3) or present different

β-hairpin length or conformations. Interestingly, it has been observed that the “β-hairpin

binding loop” appears unstructured in the Staphostatin unbound form [55], suggesting that

a range of flexibility in the search is required to describe these structural variations.

This example illustrates the usefulness of our approach to obtain a broad view of possible

binding inferences that may help to identify putative ligands, which may present similar or

different binding modes. Our approach may be combined with detailed atomic inspection

for obtaining more precise binding information.

Classification of binding inferences

The analysis of the number of binding regions inferred per protein family for the 2,435

protein families taken in the study shows a wide variation, decreasing logarithmically the

higher the binding inferences per family are (Fig 3.1.B). Some of this information is re-

dundant, since different inferred binding regions (iBRs) may converge to equivalent regions

or to known family binding regions (kBRs). Therefore, to reasonably classify the binding

inferences, we performed a hierarchical clustering of the kBRs together with the iBRs. The

kBRs and iBRs can either be clustered together (mixed sites; m-sites) or separately (being

family sites; f-sites for kBRs, and predicted sites; p-sites for iBRs).
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Figure 3.2: A) Connectivity network of the binding inferences. Network representation based on the
binding inference connectivity (hedges) of the protein families (nodes) is shown using Cytoscape with the
spring embedded layout. Representative examples of recurrent binding motifs are shown. B) Staphostatin
protease inhibitor case. Inferences of binding regions from the Staphostatin protease inhibitor to the Papain
protein family are shown. Panel 1) Structure of Streptavidin-like Staphostatin (red ribbon) in complex
with the cysteine protease Papain (grey ribbon) is shown. (1pxv; chains C and A respectively). The
“binding loop” is highlighted with a dashed ellipse. Panels 2 to 8 show the structure pairwise alignment of
Staphostatin with seven proteins (blue ribbons) that present significant conservation in the corresponding
Papain binding region. Panels 2 to 4: Proteins belonging to different SCOP folds than Staphostatin: 2)
Cyclophilin-like (2esl:F), 3) Lipocalins (1xca:B), 4) Oncogene product p14-TCL1 (1jnp:B). Panels 5 to 8:
Proteins belonging to the same Streptavidin-like fold: 5) Extracellular hemoglobin linker subunit (2gtl:O),
6) Avidin/streptavidin (2cam:B), 7) D-aminopeptidase (1ei5:A), 8) Quinohemoprotein amine dehydrogenase
(1pby:A)
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The clustering outcome is dependent on the applied similarity cutoff (Fig 3.1.C) and,

therefore, the more restrictive the cutoff the more regions are obtained. For the initial

26,893 regions, for similarity cutoff 1.0 we obtain a total of 24,386 non-redundant clusters,

whereas for cutoff 0 we get 8,259. We observe that the number of p-sites is 6 to 8 fold

higher than the number of f-sites independently of the cutoff applied, which is indicative of

a considerable enrichment of putative binding regions for protein families.

Proteomics studies have already shown that proteins may interact with many partners,[110,

111] and that timing and location play a key role in these interactions. In addition, protein

interaction conservation analysis for protein families have also revealed that when a single

binding region is taken into account [48] the results are not as conclusive as when multiple

interfaces are considered [112], in which case it is observed that the interacting residues are

significantly more conserved than those in the rest of the surface. Our methodology may

help to add insights to the current structural protein recognition knowledge by suggesting

putative protein recognition regions.

An illustrative example could be the Ornithine Decarboxilase (OD) family belonging to

the CheY-like fold (Fig 3.3.A). There is no structure of OD in complex with other proteins

and, although some inferences could be made from members of the same fold (CheY-like),

with our approach we identify six structurally related protein families to OD, from which

five are inter-fold related. Once their corresponding conserved binding regions are inferred

to OD, it can be interestingly observed that they cover a large proportion of the solvent

accessible surface of OD. The binding inferences located in equivalent regions are clustered

together regardless of the different ligand recognition mode, and this information collected

across fold space might give clues about potential recognition properties of the Ornithine

Decarboxilase CheY-like family.

Ligand binding modes in m-sites

The ligands corresponding to complexes, where the binding regions of the receptors cluster

together, may either present analogous or different binding modes (i.e. the relative orien-

tation the ligand adopts when recognized by the receptor). Previous studies at family level

revealed that only 4.2% of all interfaces clustered in the same binding region have analogous
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SAIKAR synthase-likeGAPDH domain-like

PreATP-grasp domain Aminoacid dehydrogenase-
like

MurD-like peptide ligase Ribosomal protein L23p
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Figure 3.3: Binding regions inferred to Ornithine Decarboxilase (OD). A) Pairwise ns-SAs of the
OD domain (1c4k:A) with six structurally related proteins. The proteins are shown as white ribbons, and the
aligned regions are colored in red. Only SAIKAR synthase-like (top right) is intra-fold related to OD. The
color code of the boxes on the right top of the ns-SAs corresponds to the protein structures of the respective
ligands shown in panel B. B) The OD structure (gray surface) is shown with the respective binding partners
in the inferred binding regions from the proteins in panel A (rotated +90◦ for better visualization). The
structures were obtained from PDB: 1xbt:A,B (pink), 1zgz:A,C,D (red, blue), 1b6s:B,A (orange), 1npd:A,B
(pink), 1eeh:A,A (yellow), 1jj2:R,1 (clear blue), 2qa4:S,V (green). In the PDB codes, the first chain listed
corresponds to the protein with observed similarity to OD and the second to the ligand.

binding modes [98]. We analyzed the m-sites to find out binding mode analogies between

ligands corresponding to inferred and known family binding regions (0.6 similarity cutoff;

Table 3.2). We performed a detailed visual inspection of the results obtained. Of these

results we identified 46 out of 81 analogous binding modes at intra-fold level, and 9 out

of 65 at inter-fold level. The most frequent cases were homodimers of structurally similar

proteins (double-homodimer in Table 3.2 and Fig 3.4.C, D).

Two cases correspond to a complex of two proteins that are structurally similar one

another, allowing the alignment in reverse order (reverse-similarity in Table 3.2). At intra-

fold level we found four cases of similar enzymatic subunits, where the structurally similar

receptors were classified in different SCOP families and their ligands belonging to the same
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Table 3.2: Distribution of ligand binding mode analogies in m-sites. The m-sites are obtained
at 0.6 similarity cutoff. The similarity of the ligands is assessed by structural similarity, and the binding
mode is inspected manually.

Same fold Cross fold

Different binding mode 38 56

Same binding mode:

� same ligand 4 1

� similar ligand:

� � double homodimer 35 7

� � cross-similarity 2 0

� different ligand 2 1

Total 81 65

family (Fig 3.4.E). Our method could also identify an interesting case with the same ligand

binding mode at inter-fold level, where one of the receptors is structurally similar to a part

of the other (Fig 3.4A). The last three are quite striking since correspond to structurally

different ligands but sharing similar binding modes (Table 3.2 and Fig 3.4B, F, G).

Our methodology is able to identify new analogies between protein binding modes both

within fold families and between protein folds. The number of analogies that we could

identify is limited by the availability of representative data about protein complexes in

the PDB [95]. We predict that particular structural motifs may recognize ligands at similar

locations but in different modes, which agrees with previous studies performed at family level

[98]. Some of this binding plasticity may be promoted by solvent, which plays an important

role in the definition of protein interfaces [68, 113–115]. The analysis of ligand binding

modes performed here with the m-sites should be extended to all binding region clusters,

as their comparison can be of high relevance in studies of protein-protein interactions and

might have important implications in rational engineering and design. For such a purpose,

we foresee the potential of our methodology assisted by complementary techniques, such as

algorithms aligning non-connected atoms with physicochemical features [116].
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Figure 3.4: Illustrative examples of binding inferences with analogous ligand binding modes.
Examples of inter-fold (A-D) and intra-fold (E-H) related binding inferences (see Table 3.2). The ns-SAs of
structurally similar protein pairs are shown as ribbons in dark blue and gray and their respective ligands
are shown in light blue and gray. A) Alignment of SOCS and VHC domains in complex with POZ domains
(2c9w:A,C in blue and 1lm8:V,C in gray); B) Alignment of YgdR homodimer and Neurophysin II homodimer
(2ra2:A,C and 1jk6:F,A); C) Alignment of YtmB homodimer and F1 ATP synthase α+β subunits homodimer
(2nwa:A,B and 1bmf:A,D). D) Alignment of MiaE homodimer and long-chain cytokine homodimer (2itb:A,B
and 1rhg:A,C); E) Alignment of APE0525 and Ta1423 domains in complex with PUA domains (1zs7:A,A
and 1q7h:A,A); F) Alignment of PrgX C-terminal and SinR domains in complex with PrgX N-terminal and
TM1459-like domains (2aw6:A,B and 1zz6:A,B); G) Alignment of Zn-dependent carboxipeptidase and NagA
domains with their catalytic domains (2qs8:A,A and 1o12:A,A).
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Enrichment of family binding regions

Some protein families contain much structural information about their complexes, whereas

others may not have available information at all [78, 97]. Likewise, we observed the same

trend for the putative binding regions described in this work, p-sites (Fig 3.1.D). It is

noteworthy that a large number of the families, for which binding information is not known,

are predicted to have binding regions by our methodology. Interestingly, most of these

protein structures have been obtained from structural genomics initiatives [117], and most

of them represent new folds or families for which no functional or binding data is available.

These initiatives are increasing the number of SCOP folds and superfamilies containing a

single family [118]. Out of 1,019 families without any known binding information, we find

728 with at least one p-site. Most of the binding inferences are found at inter-fold level,

highlighting the importance of considering structural resemblances across folds to locate

putative binding regions for uncharacterized proteins.

3.1.5 Conclusion

Many computational efforts have been directed towards the comparison and classification of

binding regions of known protein complexes of the same family by making use of their high

structure and sequence similarity. Also local comparative studies of protein binding regions

and interfaces independently of the protein fold have been performed. However, to our

knowledge no systematic comparison of protein binding regions beyond family level has been

performed in order to obtain binding inferences using non-obvious structural resemblances

across all folds.

We use non-sequential structural alignment algorithms to be able to reveal unexpected

resemblances among three-dimensional protein architectures independently of their topol-

ogy. The methodology we use assesses the significance of binding region conservation across

all superimposed pairs of proteins independently of their family SCOP classification. Anal-

ysis of our results reveal that binding region conservation across fold space occurs system-

atically, and that it is not limited to homologous but extends to proteins considered having

different folds in the current protein topology classifications. We find a high number of

structural relationships beyond family level and detect nearly 27,000 putative binding in-
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ferences among 3,551 SCOP families, from which the majority are derived from a different

fold. After hierarchical clustering of the inferred binding regions we obtain a 6 to 8 fold

enrichment of the known binding regions at family level. We obtain putative binding infer-

ences (p-sites) for 728 protein families that have no binding information known, which are

mostly derived from current structural genomic initiatives.

Current structural genomics efforts are aiming to experimentally solve representative

protein structures and their complexes to complete the protein fold space and the structural

interactome, and are creating a big demand for adequate automatic tools to sort, study and

compare the existing and future structural data in order to understand and be able to predict

protein-protein interactions. In these lines, our approach provides a broad view of protein

binding regions across fold space and it is helpful for deriving putative binding inferences,

which in combination with other complementary techniques may enhance the current picture

of the structural interactome and assist protein-protein docking experiments and rational

engineering.
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Chapter 4

WATER IN PROTEIN INTERFACES

Protein interactions take place in aqueous solution, and water molecules can mediate

residue-residue interactions complementing direct interactions. The specific role that water

plays in binding affinity and specificity is still not well understood. This lack of knowledge

makes solvent often ignored in many computational protein interaction analysis, rational

drug design and protein docking studies. In this chapter, I make use of the novel interfacial

information contained in the SCOWLP database (see Chapter 2) to study the characteristics

of solvent and water-bridged residues in protein interfaces. In the first section, I carry out

a descriptive analysis of interfacial solvent in a representative dataset of high-resolution

protein complexes containing interfacial water molecules. In the second section, I studied

the mobility and energetics of interfacial water molecules. (both sections correspond to

articles published in the Proteins Journal).
1

1The image in the cover represents a protein complex (blue-yellow) surrounded of water molecules (green-
red) simulating biological conditions





87

4.1 Characterization of interfacial solvent in protein complexes and con-
tribution of wet spots to the interface description

by Joan Teyra and M. Teresa Pisabarro

in Proteins 2007, 67(4):1087-1095

4.1.1 Abstract

Water networks in protein interfaces can complement direct interactions contributing sig-

nificantly to molecular recognition, function, and stability of protein association. Thus,

water can be seen as an extension or addition of protein structural features, which may

add plenty of information to protein interfacial definition. However, solvent is frequently

neglected in protein interaction studies. Analysis of the interfacial information contained in

the PDB is essential to achieve more accurate descriptions of protein interfaces. With this

aim, we have used the SCOWLP database (http://www.scowlp.org) and applied computa-

tional geometry methods to extract and analyze interfacial information of a high-resolution

non-redundant dataset of 176 protein complexes containing obligate and transient interfaces.

We have identified all interfacial residues and characterized them in terms of temperature

factors, secondary structure, residue composition, and pairing preferences to understand

their contribution to the interface description. We have paid special attention to water-

bridged residues; focusing on those that interact only mediated by a water molecule called

wet spots. Our results show that 40.1% of the interfacial residues are interacting through

water and that wet spots represent a 14.5% of the total, emphasizing the importance of

the inclusion of solvent in protein interaction studies, and the contribution of wet spots to

interfacial description. Wet spots present similar characteristics to residues binding buried

water molecules in the core or cavities of proteins; being preferably located in non-regular

secondary structures and establishing hydrogen bonds by their main-chains. We observe

that obligate and transient interfaces present a comparable amount of solvent. Moreover,

the role of solvent in both complex types differs according to the different nature of their in-

terfaces. The information obtained in our studies will assist in the process of accomplishing

more accurate descriptions of protein interfaces and may be helpful to improve comparison

of protein family interfaces, to facilitate rational ligand design, and to guide protein docking.



88

4.1.2 Introduction

Understanding the binding properties of proteins constitutes the essence of functional ge-

nomics. To understand what a protein does, information is needed about what it binds,

and even more important, how. Non-covalent contacts between amino acids are the ba-

sis of protein-protein interactions and they are responsible for affinity and specificity in

biological processes. Furthermore, protein interactions take place in aqueous solution, rea-

son why buried solvent molecules are common in protein interfaces [61, 63, 115]. Water

networks bridging binding partners can complement interfacial direct interactions and con-

tribute significantly to molecular recognition, function, and stability of protein association

[60, 64, 119–121]. However, solvent is frequently ignored in protein interaction analysis

and, for this reason, many protein residues are not taken into account in the definition of

interfaces.

The structural data contained in the PDB is often used to study protein interfaces. In

our previous work, we developed the SCOWLP database and a web-based visualization

tool to extract and analyze at physicochemical level the atomic interactions of all protein

interfaces of the PDB [70]. It describes protein interfaces including solvent as a mediator

of protein interactions and considering all residues of the PDB that interact only through

water, which we call wet spots.

Protein complexes have been classified according to their lifetime (transient, permanent),

the possibility of finding them stable in vivo (obligate, non-obligate), and their composition

(homo-, hetero-oligomeric). However, it remains arbitrary to classify protein complexes

due to the overlap between types and the limitation on their biological knowledge (i.e.

localization, co-expression, or binding energies) [122].

Several recent studies have investigated protein interfaces with the aim of characterizing

protein complexes [47, 123–125]. All these studies have used different datasets to investigate

and compare the properties of the different types of protein complexes. However, they all

overlook interfacial solvent and its importance to protein binding and stability. Few studies

have paid attention at water-mediated protein interactions [42, 68]. They have showed

that crystal packing interfaces are more polar (often 50% more solvated) and that homo-
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oligomers have slightly more hydrated interfaces than hetero-complexes; although presenting

high heterogeneity within groups.

In the present work, we consider obligate and transient protein complexes using fold-

ing considerations [126]. Interfaces formed by protein-chains where the process of folding

and binding is essentially inseparable are obligated to interact or in permanent contact

(i.e. multi-subunit enzymes). On the other hand, interfaces formed by proteins that fold

independently and then associate to carry out a particular biological task are transient

[41, 127]. These are usually the key players in the regulation of biochemical pathways

and signal transduction cascades. Permanent complexes are functionally obligate and only

exist in their complexed form, while transient complexes exist independently and asso-

ciate/disassociate in vivo. The comparison of interfaces of relatively higher hydrophilic

nature (formed when two-folded monomeric proteins associate) with those more related

to a protein core [41, 59, 128] (formed in coupled folding-binding process) may suggest a

different contribution and role of solvent.

For our work, we have used a curated dataset consisting of obligate and transient high-

resolution protein complexes to study their solvent contributions. We have extracted from

the SCOWLP database all detailed information about water-mediating interfacial interac-

tions and the protein residues involved. We have carried out a detailed analysis of protein

interfaces looking at water-bridged residues, and identifying and characterizing wet spots.

Our studies identify interesting specific characteristics of water-bridged residues in terms

of secondary structure, temperature factors, residue composition, and pairing preferences,

and emphasize the role of wet spots as important contributors to protein interfaces. Inter-

estingly, we observe that obligate and transient interfaces present a comparable amount of

solvent, although each contains particular features.

4.1.3 Methodology

Dataset

For our studies, we created a curated dataset consisting of 104 obligate and 72 transient

high-resolution protein complexes (Table 4.1). We started with a nonredundant dataset from

Weng and Mintseris [126] and we updated and modified it as follows. For each complex of
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the initial dataset, we used the SCOP classification [8] to find all complexes of the PDB with

the same family-family composition. We restricted the search to crystallographic structures,

and we used a threshold of resolution 2 Å to account for reliability of water positions. A

manual check-step was necessary to be able to automatically identify the correct binding

site in multichain complexes. Then, we selected as a representative of the family-family

pair the complex with the highest amount of interacting waters and containing wet spots.

This selection criterion was established to circumvent the intrinsic underestimation of water

molecules in crystallographic structures.

Interface definition and characterization

We retrieved all the interfacial information used in this study from the SCOWLP database

(http://www.scowlp.org), which describes all domain, residue, and atom interfacial interac-

tions of the PDB [70]. SCOWLP considers interactions based on atom type and inter-atom

distance criteria, including all interfacial solvent as an additional interface descriptor. We

used a geometrical algorithm (Convex Hull [67]) to obtain a good approximation to the

protein domains’ shape, and we expanded it for both interacting domains to define their

intersection as the interface, taking the atoms in the intersection for a pairwise Euclidean

distance calculation. We used the same principles to finely capture the geometrical area of

the interfaces. In addition, we characterized the interface size by the number of residues

forming it.

We defined the interactions based on distance criteria between atom types. For hydro-

gen bonds, we considered a donor-acceptor distance 3.2 Å, for salt bridges 4 Å, and for

van der Waals energies the van der Waals radii distance. Interfacial residues were then

classified according to the interaction type as dry (direct interaction), dual (direct and

water-mediated interactions), and wet spots, which are residues interacting only through

one water molecule (Fig 4.1). For each interface of our dataset, we extracted the total

interfacial residues, water-bridged and wet spots, and we used this information for com-

parative analysis. After the interfaces were defined for both, obligate and transient protein

complexes, we analyzed their temperature factors, residue propensities, pairing preferences,

and secondary structure (α-helix, β-sheet, and unstructured regions). Based on the nature
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Table 4.1: Non-redundant dataset

OBLIGATE protein complexes (104)

1a9x C:D 1fm0 D:E 1i9c A:B 1kz8 A:F 1nzi A:B 1uc4 A:G

1ade A:B 1g72 D:C 1iak A:B 1l8a A:B 1o7n A:B 1umd A:D

1b25 C:D 1g8k E:F 1ir1 D:V 1li1 DE:F 1o97 C:D 1uzb A:B

1bbh A:B 1g8t A:B 1ird A:B 1lm8 B:C 1oao AB:C 1xgs A:B

1cmc A:B 1go3 F:E 1j5w A:B 1luc A:B 1oaq H:L 2ahj A:B

1d7w A:B 1got G:B 1jb7 A:B 1m1n A:B 1og8 A:B 2aps A:B

1dce A:B 1gt3 A:B 1jbo A:B 1m4r A:B 1ooy A:B 2bbk H:L

1dj7 A:B 1h32 A:B 1jcr A:B 1mka A:B 1owf A:B 2cst A:B

1dxr C:HLM 1h6k B:Y 1jnr A:B 1mro A:B 1p7g Q:T 2ubp A:C

1e3d A:B 1h8e A:D 1jsd A:B 1mty B:D 1pby A:C 3daa A:B

1e9g A:B 1h8e B:E 1k5n A:B 1my7 A:B 1pby AC:B 3lyn A:B

1ec3 A:B 1hbn D:E 1k8k B:F 1mzn A:C 1qgw A:C 3pcc A:M

1ed9 A:B 1hbn D:F 1k8k C:F 1n5w A:B 1qip A:B 8gss A:B

1eex A:B 1hbn E:F 1k8k D:F 1n60 A:B 1qq5 A:B 9wga A:B

1eto A:B 1hfe T:M 1kfc A:B 1n62 D:F 1r4p A:BCF

1f0v A:B 1hj5 A:B 1kqf A:B 1nh2 BC:D 1req C:D

1f3u A:B 1hsb A:B 1kqf B:C 1nms A:B 1sox A:B

1fj2 A:B 1i7q C:D 1kqp A:B 1nr4 E:F 1ubp B:C

TRANSIENT protein complexes (72)

1a4y D:E 1dtd A:B 1gcq B:C 1jiw I:P 1m5a A:D 1r0t A:B

1acb E:I 1eay A:C 1gl4 A:B 1jps HL:T 1m9y E:H 1r3j AB:C

1ava A:C 1eer A:B 1got A:B 1jtg C:D 1mz8 C:D 1rew AC:B

1b2s B:E 1euv A:B 1gvn C:D 1jw9 B:D 1nci A:B 1s6v B:C

1blx A:B 1f3v A:B 1h1r A:B 1kli H:L 1nmm C:D 1ugh E:I

1clv A:I 1f60 A:B 1he1 B:D 1klu A:D 1o6s A:B 1wej F:HL

1d2z A:B 1f83 A:CB 1hx1 A:B 1ksh A:B 1o94 AB:CD 2btc E:I

1d4x A:G 1fle E:I 1i2m C:D 1kxv B:D 1oga AC:DE 2sge E:I

1dan LH:U 1flt VW:X 1icf D:J 1l6x A:B 1on1 A:B 3btq E:I

1dhk A:B 1fns A:HL 1iqd AB:C 1lk3 A:HL 1osp HL:O 3gal A:B

1dpj A:B 1fs1 C:D 1j34 AB:C 1lw6 E:I 1qav A:B 3lyn A:B

1dqj AB:C 1g4y B:R 1jdh A:B 1m48 A:B 1qkz A:HL 3sic E:I
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Total interfacial 

residues (100%)

Water-bridged 

residues

(40.1%)

Wet Spots

     (14.5%)

Domain A

Domain B

A B

Dry residue
Dual residue
Wet spot

Direct interaction
Water-mediated interaction
Water

Figure 4.1: Residue interaction types. (A) Definition of residue interactions: Interface between
domains A and B is formed by 13 residues (five dry, five dual, and three wet spots). (B) Partition of residue
interactions (percentages taken from Table 4.2).

of the contact, we differentiated between main- and side-chain interactions.

Normalizations

The information given for all the interfaces in Table 4.2 was normalized against the number

of complexes per type. We also normalized the amino acid pairing preferences and secondary

structure composition against the frequency of appearance of each residue or secondary

structure element in the complex as follows:

Sij =
bij

ci
nc ×

cj
nc

(4.1)

where Sij is the score for the pairing preference between amino acids i and j or the secondary

structure elements i and j. The value of bij is the number of binding pairs between i and j

that occur at the interfaces of the dataset. The denominator is the product of the relative

frequencies of appearance at the interface of the amino acids or secondary structure elements

i and j. The relative frequencies are derived by the quotient of the number of the amino
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Table 4.2: Summary table.

Obligate Transient Alla

Number of Complexes in the dataset 104 72 176

Mean number per complex:

Area (Å2) 3362 1394 2557

Total interfacial residues 85 39 66

Water-bridged residues 35 15 27

Wet spots 12 6 10

Interacting waters 17 8 13

Waters mediating wet spots 10 4 8

Mean number per 1000 Å2:

Total interfacial residues 25 28 26

Water-bridged residues 10 11 10

Wet spots 4 4 4

Interacting waters 5 6 5

Waters mediating wet spots 3 3 3

Percentage (%):

Water-bridged/total residues 41.6 37.9 40.1

Wet spots/total residues 14.8 14.2 14.5

Wet spots/Water-bridged 36.1 37.2 36.4

a The averages are normalized against the number of complexes per type

acids or secondary structure elements i or j occurring at the interface (ci or cj) and the

total number of amino acids or secondary structure elements at the interfaces in the whole

dataset (nc).

4.1.4 Results and discussion

Our curated dataset consists of 176 protein-protein complexes: 104 obligate and 72 tran-

sient (Table 4.1). The average number of wet spots and the average number of interacting

water molecules in our dataset are similarly distributed, showing their nondependence on

resolution (Fig 4.2). We studied the contribution of solvent to the interfacial characteristics

of obligate and transient protein complexes in our dataset by analyzing and comparing the
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Figure 4.2: Interface solvent distribution of our dataset by resolution. The dataset of protein
interfaces used is given in Table 4.1.

temperature factors, secondary structure, residue propensities, and pairing preferences of

all interfacial residues (dry, dual, and wet spots).

Participation of solvent in protein interfaces

We defined the interface size based on both, the number of interacting residues and the

geometrical area (see Materials and Methods). Table 4.2 summarizes the average number

of residue interactions per complex, per 1000 Å2, and in percentages for obligate, transient,

and both protein complexes. The number of water-bridged residues per interface is on

average 27. This means that 40.1% of the interfacial residues interact through water, either

complementing direct interactions (63.6%) or forming wet spots (36.4%) (Fig 4.1.B). The

fact that water-mediated interactions at protein interfaces are almost as numerous as direct

residue interactions clearly stresses the relevance of solvent in protein interfaces. Rodier et

al. also observed a similar abundance of water-mediated interactions and direct hydrogen

bonds in their interfacial hydration analysis of homo- and hetero-complexes [68]. Moreover,

we find that the average of wet spots in protein interfaces is 14.5% of the total interfacial

residues, and that more than half of the interacting waters in the interface are bridging wet
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spots (Table 4.2).

In terms of interfacial area, there are on average five interacting water molecules and

26 interfacial residues per 1000 Å2 in protein complexes. From those, 10 are water-bridged;

four of them wet spots. We appreciate that the existing differences between obligate and

transient complexes in terms of hydration vanish when we consider them relative to the

area (per 1000 Å2). The interface size in obligate complexes is twice as high as in transient

complexes [122], thus obligate complexes appear slightly more hydrated (41.6% vs. 37.9%)

and less dense (25 vs. 28 residues/1000 Å2) than transient. The correlation between water-

bridged residues and area is much stronger in obligate (R2 = 0.76) than in transient (R2 =

0.36). However, the correlation between wet spots and area is weak in both cases; although

obligate (R2 = 0.59) is stronger than transient (R2 = 0.29). These discrete correlations

reflect a high heterogeneity within obligate and, even more, within transient complexes in

terms of solvent. Rodier et al. also observed different degrees of solvation among each

complex type in their studies of a homo-/hetero-complexes dataset [68].

Role of interfacial solvent

To analyze the role that the solvent plays in protein interfaces, we plotted the percentage

of wet spots of the total water-bridged residues against the percentage of water-bridged

residues of the total number of interfacial residues (Fig 4.3). While the percentage of water-

bridged residues represents the level of the interface’s hydration, the percentage of wet spots

reflects the role of solvent either complementing direct interactions (low %) or adding new

interacting residues (high %). Looking at Figure 4.3 divided into four quadrants at 50%

hydration and 50% complementation/addition, we can appreciate a central area (quadrant I)

where the majority of the interfaces are placed with no complex type distinction. Of special

interest are quadrants II and III, where the most hydrated interfaces having up to 70% water-

bridged residues can be found; showing again no difference by complex type. In quadrants

III and IV, we find those interfaces with higher percentages of wet spots. There are some

interfaces where more than 25% of the interfacial residues are wet spots, highlighting the

importance of the inclusion of wet spots in the description of protein interfaces.

Figure 4.3 shows an overlapping of both complex types, illustrating the heterogeneity
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Figure 4.3: Role of interfacial solvent. The level of hydration is given according to the percentage of
water-bridged residues of the total number of residues forming part of the interface (y-axis). The percentage
of wet spots of the total water-bridged residues indicates the contribution of wet spots to complementation
of direct interactions or addition of interacting residues to the definition of the interface (x-axis). The figure
is divided into four quadrants for discussion.

of obligate and transient protein complexes with respect to water-bridged residues and wet

spots. This suggests that the role of interfacial solvent is not dependent on the type of

complex but on intrinsic properties.

Interfacial distribution of wet spots

Protein topology determines many aspects of the molecular recognition mechanism. How-

ever, because proteins do not always entirely fit in their binding modes, they use solvent as

an important contributor to their shape complementarities. Water molecules act as molec-

ular glue between two binding proteins, providing polar interactions even between residues

that are too far to interact directly. Wet spots in protein interfaces can be located both ex-

ternally and internally, enlarging and/or enriching the interface definition, respectively. To

analyze the distribution of wet spots in interfaces, we calculated the interfacial area without

considering solvent (Adry) and the interfacial area considering interactions mediated by one

water molecule (Asolv). Our aim was to use the difference of the calculated geometrical
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Figure 4.4: Contribution of wet spots to the enlargement or enrichment of protein interfaces.
The Area is the difference of the interfacial area with and without solvent (Asolv - Adry).

areas (Area = Asolv - Adry) as an indicator of interface enlargement or enrichment due to

the addition of wet spots. While for a large area we should find interfaces containing many

wet spots distributed surrounding the interfacial area, for a low area wet spots should most

often be internally located. In Figure 4.4, we can appreciate that for a high number of

wet spots only obligate complexes emerge due to their larger interface size. However, it is

difficult to differentiate between obligate and transient, and exceptions exist in both cate-

gories due to the wide variety of interface morphologies [68] (i.e. well-defined interacting

cores surrounded by wet spots enlarging the interface, wet spots connecting dry multipatch

interfaces, wet interfaces due to many cavities, etc.).

Mobility of the interaction

The flexibility of the residues at the protein surface together with the participation of water

molecules help to define the shape and physicochemical complementarities of the binding

partners, which determine the specificity and stability of the association. In proteins, the

accessibility to solvent generally correlates with the mobility of atoms expressed in crystal-

lographic temperature B-factors [129].
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We calculated the temperature B-factor’s mean value for all interacting residues (dry,

dual, and wet spots; other authors have studied B-factors of interfacial waters [68]) and we

compared obligate and transient complexes to account for systematic differences (Fig 4.5).

We can appreciate that interfacial residues of obligate complexes have lower temperature

B-factor averages than transient. A general observation for both complex types is that dual

residues are less mobile than the dry ones. This observation is in agreement with molecular

dynamics studies of buried waters in globular proteins [130].

Wet spots are comparable to dry residues in obligate complexes in terms of mobility,

although in transient complexes wet spots are more similar to dual residues.

Interacting waters are likely to form multiple hydrogen bonds with the neighboring

atoms. We checked the interacting behavior of the waters forming wet spots and compared

it with the behavior of the other interacting waters of the interface. We computed the

number of bridges that any water is doing, and grouped waters according to this number.

In Figure 4.6, we can appreciate that waters mediating wet spots form preferably one but

also two bridges, which is a similar behavior to the observed for the other interacting waters

(data not shown).

Structural composition of interfacial residues

We analyzed the secondary structure composition of all interfacial residues (dry, dual, and

wet spots) of our dataset. Based on our analysis, we could observe that in general interfacial

residues are located predominantly in unstructured regions and prefer side-chains to interact

(Fig 4.7). These suggestions have also been proposed in previous studies [131]. α-Helices and

β-sheets have been described to occur infrequently at interfaces by Ansari and Helms in their

study of transient complexes [124]. We observe that both, obligate and transient complexes

have a comparable preference for α-helix and unstructured side-chain interactions. On

the other hand, in transient complexes we observe a higher participation of the β-sheet

side-chain interactions than in obligate. Dry and dual residues show similar frequencies

in both complexes and interaction types. However, wet spots interact more frequently

by the main-chain. While wet spots interacting by the main-chain tend to be located in

unstructured regions, we do not observe such strong nonstructured preferences for side-
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chain interactions. The active participation of unstructured regions in the formation of

water-mediated interactions can be explained because residues in α-helix and β-sheets form

systematic main-chain hydrogen bonds. Main-chain atoms in unstructured regions often

fail to form direct intramolecular hydrogen bonds, being available to interact with water

molecules.

Interestingly, Park et al. have recently described that residues interacting with buried

waters in the core of globular proteins are predominantly located in unstructured regions and

prefer main-chains to interact [130]. The fact that we observe similar features in wet spots

makes us to suggest that they might play similar structural roles as the residues interacting

with waters in protein cores and cavities. This applies for interfaces of obligate complexes,

which mimic protein cores due to their coupled fold-binding process; whereas in transient

complexes wet spots features could be explained by the involvement of unstructured regions

(i.e. loops) in protein recognition.

Amino acid composition of interfaces

We examined the amino acid composition in all interfacial interactions of our dataset

(Fig 4.8.A-C). While dry are interacting mainly by the side-chains of hydrophobic residues

(obligate: 72.2%, transient: 74.6%), dual prefer the side-chains of hydrophilic residues (ob-

ligate: 61.8%, transient: 67.3%). Moreover, the frequencies of the main-chains in dual

are increased in comparison to the dry residues. These observations are due to the fact

that residues with capabilities to form multiple contacts are more likely to complement

direct with water-mediated interactions. We can appreciate that for dry and dual residues

the composition slightly differs between transient and obligate complexes. In both, dry and

dual, hydrophobic side-chains are preferred by obligate, whereas transient prefer hydrophilic

(Fig 4.8.A,B). Obligate complexes have been reported to be more hydrophobic than tran-

sient [41, 42, 47]. Many transient complexes involved in signal transduction need to bind

quickly and specifically and do not need to be stable over long periods and thus, to achieve

specificity they make use of a higher rate of hydrophilic residues.

Wet spots show a different composition from dual residues (Fig 4.8.B,C), having a higher

participation of the main-chains (dual: 38.2%, 32.7%, wet: 55.8%, 50.9%, for obligate and
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Figure 4.7: Secondary structure composition of interfaces. Distribution of the interacting residues
in terms of secondary structure (α-helix, β-sheet, and unstructured). Information is shown for transient and
obligate complexes, and divided into main- and side-chain.

transient, respectively). Wet spots exhibit a small preference for some short side-chains (i.e.

Ser/Thr preferred to Tyr, and Asn preferred to Gln), opposite to dual residues. Moreover,

Arg frequencies show quite a substantial decrease in wet spots. These differences between

dual and wet spots in the residue length preference are consistent with the fact wet spots only

interact mediated by water. Dual and wet spots have in common a remarkable preference

for Gly, as well as a strong preference for Ala main-chain in obligate complexes.

Interfacial pairing preferences

We examined all residue-residue interfacial interactions of our dataset to analyze the pairing

preferences of obligate and transient complexes, and we generated pair matrices based on the

following interaction types: direct, dual, and only water-mediated (Fig 4.8.D-F). For direct
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interactions, we appreciate in both complex types a preference for hydrophobic-hydrophobic

and charged-charged pairing. Obligate complexes contain high frequencies of hydrophobic

interaction pairs, mostly with Leu and Phe; whereas transient complexes have a more spread

range of interacting pairs.

When we analyze the dual interacting pairs, we observe high frequency pairs with Arg,

not only with hydrophilic but also with hydrophobic residues. Transient complexes present

high interacting frequencies between charged residues due to their electrostatic component

and their capabilities to form water hydrogen bonds. Arg also shows pairing preferences to

hydrophobic residues, as it can form not only water hydrogen bonds with the main-chain

of hydrophobic residues but also hydrophobic interactions with the aliphatic carbons of its

side-chain. Obligate complexes have more diversity of residue pairs than transient (clearly

reflected by much less white in the matrix).

Wet spots show more wide range of residue pairs and more diversity of high frequencies

than the dual interactions. In the only water-mediated matrix, transient complexes show

the highest peaks with Gly, Tyr, Asn, Phe, Ile, and charged residues. On the other hand,

obligate residues contain a homogeneous frequency distribution only altered by the high

interacting frequencies that Glu and Tyr have.

This statistical analysis of residue composition and pairing preferences by interaction

type shows very interesting particularities about the role of water in protein interfaces. It

comes into sight that obligate complexes tend to establish a broad range of main-chain

interactions with solvent to complement direct hydrophobic interactions. This may give a

more hydrophilic nature to obligate interfaces than initially thought when solvent is not

included.

4.1.5 Conclusions

We present a detailed analysis and characterization of the interfacial solvent of a high-

resolution dataset containing obligate and transient interfaces, carried out with the aim of

assessing the role of the, often overlooked, water-mediated interactions in protein interfaces.

Our analysis identifies 40.1% of the interfacial residues interacting through water and an

average of five water molecules per 1000 Å2 mediating interactions in interfaces. Further-
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more, the inclusion of solvent allows the participation of 14.5% of the interfacial residues

that only interact mediated by a water molecule called wet spots. The observed abundance

of water-bridged residues in protein interfaces reinforces the relevance of including solvent

in protein interaction studies. A thorough characterization of the interfacial information

of our dataset underlines differences between water-bridged residues and wet spots. We

observe that the preferred residues and interaction pairs vary whether the residue is already

interacting directly (dual) or not (wet spot). Dual residues interact more frequently by the

side-chain of long polar residues, whereas wet spots interact essentially by their main-chain

and short polar side-chains. We find wet spots in different interfacial solvation patterns,

but preferably located in nonregular secondary structures. Wet spots predominantly choose

their main-chains to establish interfacial interactions and have Gly as the preferred residue.

These characteristics are similar to those seen in residues binding buried water molecules

in the core or cavities of proteins, which appear to perform the task of satisfying the un-

met hydrogen bonding [130]. The abundance of wet spots together with their peculiar

characteristics makes their contribution to interfacial description quite significant.

Moreover, we also analyze the solvent contribution in obligate and transient complexes

based on fold considerations. Although the amount of solvent is comparable for both, we

corroborate the existence of a high heterogeneity within each complex type as it has been

described for homo- and hetero-complexes [68]. Protein complexes formed in a coupled

folding-binding process (obligate) are expected to exhibit similarities to protein cores having

a dry nature. However, although we observe that in average obligate interfaces contain less

density of residues per 1000 Å2, the percentage of hydrated residues is slightly higher than

that in transient interfaces. We also see that, as expected, protein complexes formed by

two monomeric folded proteins contain a higher hydrophilic nature than obligate. The

role of solvent in interfaces of transient complexes is to hydrate mainly the charged side-

chains as they have more capabilities to form water hydrogen bonds, whereas in obligate

complexes solvent tend to establish a broad range of main-chain interactions to complement

the hydrophobic interactions forming the interface.

In summary, we provide an enhanced understanding of the role of interfacial solvent,

and in particular, the contribution of wet spots, to the description of protein interfaces.
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Wet spots may play a crucial role in binding affinity and specificity, although they are often

discarded in computational protein interaction studies and rational drug design.

We believe that the information obtained in our studies will be useful to enhance de-

scriptions of protein interfaces, to help in interface comparisons and to better understand

molecular recognition. The consideration of solvent-mediated interactions in residue propen-

sities and pairing preference matrices may be of great interest to improve the performance

of empirical methods based on statistical protein structure information such as docking and

potential energy functions for protein folding and ligand design.
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4.2 A molecular dynamics approach to study the importance of solvent
in protein interactions

by Sergey Samsonov, Joan Teyra, M. Teresa Pisabarro

in Proteins 2008, 73(2):515-525

4.2.1 Abstract

Water constitutes the cellular environment for biomolecules to interact. Solvent is impor-

tant for protein folding and stability, and it is also known to actively participate in many

catalytic processes in the cell. However, solvent is often ignored in molecular recognition

and not taken into account in protein-protein interaction studies and rational design. Previ-

ously we developed SCOWLP, a database and its web application (http://www.scowlp.org),

to perform studies on the contribution of solvent to protein interface definition in all protein

complexes of the PDB. We introduced the concept of wet spots, interfacial residues inter-

acting only through one water molecule, which were shown to considerably enrich protein

interface descriptions. Analysis of interfacial solvent in a non-redundant dataset of protein

complexes suggested the importance of including interfacial water molecules in protein inter-

action studies. In this work we use a molecular dynamics approach to gain deeper insights

into solvent contribution to protein interfaces. We characterize the dynamic and energetic

properties of water-mediated protein interactions by comparing different interfacial inter-

action types (direct, dual and wet spot) at residue and solvent level. For this purpose, we

perform an analysis of 17 representative complexes from two protein families of different

interface nature. Energetically wet spots are quantitatively comparable to other residues

in interfaces, and their mobility is shown to be lower than protein surface residues. The

residence time of water molecules in wet spots sites is higher than of those on the surface

of the protein. In terms of free energy, though wet-spots-forming water molecules are very

heterogeneous, their contribution to the free energy of complex formation is considerable.

We find that water molecules can play an important role in interaction conservation in pro-

tein interfaces by allowing sequence variability in the corresponding binding partner, and

we discuss the important implications of our observations related to the use of the corre-
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lated mutations concept in protein interactions studies. The results obtained in this work

help to deepen our understanding of the physico-chemical nature underlying protein-protein

interactions and strengthen the idea of using the wet spots concept to qualitatively improve

the accuracy of folding, docking and rational design algorithms.

4.2.2 Introduction

Water plays an extremely important role in all biological processes because of its unique

physical and chemical properties. It represents not only an environment for interacting com-

ponents of biochemical reactions but it is also an active participant. Without a critical level

of hydration proteins are not functional, and water molecules presence is crucial in catalytic

sites of many enzymes [132]. It has been shown that water molecules can be structurally

conserved in protein complexes, and that their residence time and diffusion characteristics

are distinct from bulk and surface solvent [133–135]. Thermodynamically, water molecules

can contribute favorably to protein complex formation [136, 137]. Computationally, the

inclusion of water in the Hamiltonian of protein systems has improved folding predictions

compared to in vacuo folding models [138]. It is widely accepted that exclusion of water

molecules from the proteins contact area in the process of complex formation is associated

with a free energy decrease. The entropic component increase due to the transfer of water

molecules into bulk solvent is considered to have the decisive energetic impact. This entropy

gain is usually thought to exceed the corresponding enthalpy loss [139]. Despite all, solvent

is often ignored in the analysis of protein-protein interactions.

The protein interface concept is very important in the description of protein-protein

interactions. Protein interfaces could be defined differently depending on the criteria in-

troduced for the cut-off for interacting atoms of the complex counterparts [140]. In our

previous work we have developed SCOWLP, which, taking into account interfacial solvent,

classifies all interfacial protein residues of the PDB into three classes based on their inter-

acting properties: dry (direct interaction), dual (direct and water-mediated interactions),

and wet spots (residues interacting only through one water molecule) [70]. Also in our pre-

ceding studies, statistical analysis of a nonredundant protein structure dataset showed that

40.1% of the interfacial residues participate in water-mediated interactions, and that 14.5%
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of the total residues in interfaces are wet spots. Moreover, wet spots have been shown to

display similar characteristics to residues contacting water molecules in cores or cavities of

proteins [113]. This suggests that water-mediated interactions should not be disregarded

in a detailed definition of protein interfaces. Our and other studies have revealed that

water-mediated interactions are highly heterogeneous [42, 68, 113], making protein-protein

interactions studies challenging. In fact, certain aspects of water-mediated interactions still

remain unclear.

This study aims to gain insights into solvent contribution to protein interactions. Our

focus is the contribution of wet spots to protein interfaces in comparison to other interfacial

residues. For this purpose, we use a molecular dynamics (MD) approach to characterize

dynamic and energetic properties of wet spots and the water molecules forming them. We

pay special attention to the role of water molecules in interaction conservation in protein

interfaces.

For our studies we use representatives of two protein families of different physico-

chemical interface nature and interface size in complex with other proteins and peptides:

Src-homology 3 domains (SH3) and immunoglobulin domains (Ig). SH3 are small recogni-

tion domains comprising 5 antiparallel β-strands and widely presented in signaling pathways

[141]. Immunoglobulin domains are bigger and comprise 7 to 9 antiparallel β-strands [142].

Ig interfaces are more hydrophilic than SH3 domain interfaces.

The results of this study show that water-mediated interactions are similar in both

protein families, and that the dynamic and energetic characteristics of wet spots and dual

residues are comparable to dry interfacial residues. Interfacial water molecules display

properties such as residence time and mobility more similar to water molecules in cores and

cavities of proteins than to bulk or protein surface solvent. Our findings emphasize the

important role of water contributing to interaction conservation of protein interfaces and

strongly imply the significance of including interfacial solvent in detailed protein interface

descriptions.
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Table 4.3: Complexes dataset

PDBid Family Resol(Å) PP/Pp Short description

1UJO* SH3 1.70 Pp Signal transduction adaptor molecule-2(STAM-2). SH3 domain

with peptide derived from deubiquitination enzyme (UBPY)

1BBZ SH3 1.65 Pp Abl Tyrosine Kinase SH3 domain with p40 synthetic peptide

1FYN SH3 2.30 Pp Fyn Tyrosine Kinase SH3 domain with 3BP-2 synthetic peptide

1OEB SH3 1.76 Pp Grb2-like adaptor protein Mona/Gads. SH3 domain with the

peptide derived from T-cell receptor signal transducer SLP-76

1B07 SH3 2.50 Pp Proto-oncogene Crk2 (Serine-Threonine kinase) SH3 domain

with peptoid inhibitor

1UTI SH3 1.50 Pp Grb2-like adaptor protein Mona/Gads with the peptide derived

from Hematopoietic Progenitor Kinase 1 (Hpk1)

1ABO SH3 2.00 Pp Abl Tyrosine Kinase SH3 domain with 3BP-1 synthetic peptide

1OPK SH3 1.80 PP Mouse Abl Tyrosine Kinase (SH3-PI)

2SRC SH3 1.50 PP Human Src Tyrosine Kinase (SH3-PI)

1AVZ* SH3 3.00 PP Fyn Tyrosine Kinase SH3 domain with HIV1-Nef protein

1QCF SH3 2.00 PP Human Hck Tyrosine Kinase (SH3-PI)

1SM3 Ig 1.95 Pp Tumor specific Fab fragment with its peptide epitope

1QKZ* Ig 1.95 Pp Fab fragment with bacterial antigen

1EJO Ig 2.30 Pp Monoclonal 4C4 Fab fragment with G-H loop from virus FMDV

1G7I Ig 1.80 PP Monoclonal Fab fragment with Hen Egg White Lysozyme

1JPS Ig 1.85 PP Fab D3h44 fragment with tissue factor

1LK3 Ig 1.91 PP Fab 9D7 fragment with engineered IL-10

PP, protein-protein complex; Pp, protein-peptide complex. (*) Soft harmonic force restraints (2 kcal/mol)

were applied on C of the ligand to keep it in the binding site during the simulation.

4.2.3 Methodology

Protein complexes dataset

The following criteria for protein complex selection was applied: resolution ≤ 2.5 Å and

existence of wet spots (as they are annotated in SCOWLP [70], Table 4.3). The complex 1avz

(FYN SH3 domain with HIV1-Nef) was also taken in our dataset because of its biological

relevance. Structural alignments of the proteins were done with the MAMMOTH algorithm

[80].



111

Molecular dynamics simulations

MD simulations were carried out with the AMBER 8.0 package. All hydrogen atoms were

added using the Xleap tool. Standard ff03 force field parameters were used. Parameters

for phosphorylated residues (complexes 1opk, 2src, and 1qcf) were taken from the phospho-

rylated amino acids library set [143], and parameters for the N-substituted glycine residue

(complex 1b07) were derived in the Antechamber module of AMBER 8.0. Each complex

was solvated in a truncated octahedron periodic box filled with TIP3P water molecules

and neutralized by counterions. MD simulations were preceded by two energy-minimization

steps: 500 cycles of steepest descent and 1000 cycles of conjugate gradient with harmonic

force restraints on protein atoms, then 1000 cycles of steepest descent and 1500 cycles of

conjugate gradient without constraints. This was followed by heating of the system from 0

to 300 K for 10 ps, and a 30 ps MD equilibration run at 300 K and 106 Pa in isothermal

isobaric ensemble (NPT). Following the equilibration procedure, 10 ns of productive MD

runs were carried out in periodic boundary conditions in NPT ensemble with Langevin tem-

perature coupling with collision frequency parameter γ = 1 ps−1 and Berendsen pressure

coupling with a time constant of 1.0 ps. The SHAKE algorithm was used to constrain all

bonds that contain hydrogen atoms. A 2 fs time integration step was used. An 8 Å cutoff

was applied to treat nonbonded interactions, and the particle mesh ewald (PME) method

was introduced for long-range electrostatic interactions treatment. MD trajectories were

recorded each 2 ps. For the analysis of the trajectories PTRAJ module was used.

Trajectory processing

We defined interfacial interactions based on physico-chemical and distance criteria between

atoms. For hydrogen bonds, we considered a donor-acceptor distance of 3.2 Å, for salt

bridges 4 Å, and for van der Waals interactions the van der Waals radii distance. Three

classes of residues were introduced: dry (direct interaction), dual (direct and water-mediated

interactions) and wet spots (residues interacting only through one water molecule) [70]. Each

frame of the trajectory was processed so that the relative time fractions (TFs) of total, dry,

dual and wet spot interactions (TFT , TFD, TFd, and TFws) during the simulation were

corresponded to each residue. The total interaction was defined as a sum of all three defined
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interaction types. A residue was considered interacting if the total time of interaction was

at least 5% of the simulation time. A residue was considered to be a wet spot if it interacted

only through a single water molecule more than 10% of the simulation time. Such cut-offs

were chosen arbitrarily in order to consider the wide range of the interactions for analysis

and to restrict the definition of wet spots in MD to a certain intuitively significant value.

Effective interface area calculations

The area of interface is usually defined as the difference between solvent accessible areas

for the unbound molecule and for the same molecule in complex. We introduced effective

interface areas related to water-less (∆ASAwl) and water-mediated (∆ASAw) interactions

in order to estimate the impact of water-mediated interactions on the interface definition.

The introduction of effective interface areas allows to consider that during the simulation

the same interfacial residue could belong to dry (D), dual (d), and wet spots (ws) residue

class for certain respective times:

∆ASAwl =
∑
i

∆ASAi
(
TFD,i +

1
2
TFd,i

)
(4.2)

∆ASAw =
∑
i

∆ASAi
(
TFw,s +

1
2
TFd,i

)
(4.3)

where TFD/d/ws, i are the relative time fractions of residue i; ∆ASAi is the accessible

surface area of the ith residue calculated in the NACCESS program with a standard water

probe radius of 1.4 Å [25].

Fluctuation analysis

The average fluctuation (F) for each interfacial residue was obtained with the PTRAJ

module of AMBER 8.0 as a mass-weighted sum of fluctuations for atoms belonging to this

residue. To implicitly decompose the impact of each type of interaction (total, dry, dual,

and wet spots) on the fluctuation as an analytically unknown function F(TFT , TFD, TFd,

and TFws), the following method was used. The function values were averaged regarding

to all other TFs except for the one of interest in order to obtain dependence on this certain

TF: 〈F(TFij , TFkj ≥ a)〉i, where i contains all interaction types (T = total, D = dry, d
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= dual, ws = wet spot) except k (i 6= k), k is the TF of interest, j is the summing index

for interfacial residues and a ∈ [0,100] expressed in %. Dependences on these 4 TFs were

compared qualitatively.

MM-GBSA free energy decomposition per residue

Energetic post-processing of the trajectories was done in a continuous solvent model as im-

plemented in the AMBER 8.0 MM-GBSA (Molecular Mechanics-Generalized Born Surface

Area) module. MM-GBSA is a method for free energy calculation utilizing implicit solvent

model and is based on a Generalized Born approximation to the exact (linearized) Poisson-

Boltzmann equation for electrostatics. The snapshots for the calculations were chosen as

described by Lafont et al. [144]. To achieve better conformational space sampling, first,

all frames of the trajectory were sorted by in vacuo calculated electrostatic energy values

and the range of these energies was divided into 10 equal intervals. For each interval the

number of corresponding conformations was calculated and served as a weight function for

the interval. Then, for a conformation, most closely corresponding to the interval mean

value of electrostatic energy, full MM-GBSA energy calculations were carried out. The final

result was calculated as a weighted sum of values for each interval. The energy components

per residue were compared by TFs (i.e., TFT , TFD, TFd, TFws) in a similar way as it is

described in the Fluctuation analysis section.

Residence time analysis of water molecules

The distance from the interacting heavy atoms of each wet spot counterpart to water

molecules in each frame was calculated using the PTRAJ module of AMBER 8.0. If the

distance did not exceed 3.6 Å, the wet spot site was considered to be occupied. A surface

water site was defined by the volume that was closer than 3.6 Å to one of the protein polar

groups and was not located in an interface. Solvent was considered as bulk at a distance

≥ 5 Å from the protein surface. Surface and bulk sites are defined so that their total oc-

cupancy is 100%. This makes them a priori more occupied in comparison to interfacial

sites, where total occupancy is 64% on average. Therefore, when differences between sur-

face, bulk and interfacial sites exist, conclusions can be made even stronger. The frequency
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of consecutively occupied frames for the site was presented as residence time distribution

density. Maximum number of consecutively occupied frames for the site was corresponded

to maximum residence time (Tmax) of a water molecule in the site, and total occupancy

was defined as the sum of all time intervals when the site was occupied.

Free energy perturbation calculations

For free energy calculations of water molecules in wet spot sites, the double decoupling

method of free energy perturbation as described in the work of Hamelberg and McCammon

was used [145]. This method is based on two steps of perturbation. First, electrostatic

interactions are gradually turned off; then van der Waals radii of chargeless atoms are

decreased to 0. The free energy difference between two states was calculated using the

thermodynamic integration approach at discrete points of the coupling parameter λ, which

was variated from 0 to 1 and then back from 1 to 0 with a 0.01 step along the path.

Simulation for each λ value was equilibrated for 10 ps followed by a productive MD sampling

for 10 ps. In the case of two water molecules in the same spot, the less mobile one was

first removed. If the removal energy of the first water was negative (favorable), and the two

waters were establishing hydrogen bond interactions in the site, both waters were removed

from the spot at a time. AMBER prevents other water molecules from occupying the site

of the perturbed one by considering the volume corresponding to the site of the perturbed

water molecule as occupied by default.

Statistical analysis

Statistical analysis of data was carried out with the R-package [146].

4.2.4 Results and discussion

We have performed MD studies to deepen our understanding of the properties of protein

interfacial residues (direct, dual, and wet spots) and interfacial solvent. In this work we have

studied protein interactions in terms of mobility, free energy and interaction conservation.

For this purpose we have analyzed water-mediated interactions in a representative set formed

by 11 complexes of SH3 domains (seven with peptides and four with proteins) and six
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Table 4.4: Summary of interface properties

Domains SH3 Ig

Number of interacting residues per domain 14 ± 2 24 ± 5

Interface area (Å2) 733 ± 195 1291 ± 471

Interacting residues/1000 (Å2) 19 19

Total observed wet spots in MD (SCOWLP) 49 (15) 61 (19)

Wet spots in MD (SCOWLP)/complex 4.5 (1.4) 10 (3.2)

Wet spots in MD (SCOWLP)/1000 (Å2) 6.1 (1.9) 7.7 (2.5)

Wet spots in MD (SCOWLP)/interface residue 0.32 (0.10) 0.42 (0.13)

Effective areas ratio ∆ASAw/∆ASAd, (%) 28 ± 7 39 ± 13

complexes of Ig domains forming variable antibody fragments (three with peptides and

three with proteins) (Table 4.3). A total of 292 interfacial residues including 110 wet spots

were analyzed.

Interaction patterns in MD simulations

MD runs of 10 ns were performed for each complex. To define interfacial residues the trajec-

tories were processed and the corresponding TFs were calculated. A summary of properties

averaged over all structures of a family for the interface description of the two representative

protein families used in this study is presented in Table 4.4. Immunoglobulin interfaces are

almost twice bigger than SH3 domain interfaces, both in number of residues and in area

size. However, the density of interactions (number of interfacial residues per area unit) is

the same for both families. In both families the number of wet spots observed in MD simu-

lations is about three times higher than in the corresponding PDB initial structures. This

could be explained, first of all, because of the different nature of the source of information

(obtained from PDB files, static; defined in MD, dynamic), and partly by resolution and

quality of data contained in PDB files. Classification of interfacial residues based on X-ray

data falls into three classes (direct, dual, and wet spots), while in MD this discrete division is

not possible due to the fact that the same residue may present different interacting modes

during the simulation. A continuous model of residue interaction pattern requires more
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complicated, often implicit, not direct mathematical approaches for analysis. Table 4.4 il-

lustrates roughly same ratios for the parameters for the two representative domain families

though Ig interfaces have higher relative number of wet spots than SH3 domains interfaces.

The last displayed parameter in Table 4.4 corresponds to the ratio of effective areas of dry

and water-mediated interfaces (see Methods section). These ratios reflect how larger the

area of the interfaces would be if we would include wet spots in the interface definition.

We obtained roughly 30 and 40% of interface size increase for SH3 and Ig, respectively.

Considering the importance of the interfacial area as an empirical parameter in algorithms

implemented for energy calculations, these numbers suggest that exclusion of the water

molecules from protein interface analysis may lead to significantly biased or incomplete re-

sults. In terms of total interactions per residue, despite the differences in size and chemical

nature, both SH3 and Ig interfaces have comparable averaged contribution of interfacial

residues to each class (Fig 4.9). The t-test shows only a significant difference for the wet

spots impact (at the level of P-value = 0.05). Although the total occurrence of wet spots

interactions is about three times lower than of direct interactions, overall water-mediated

interactions correspond to almost the same TF as direct interactions. The percentage of

interactions in our complexes agrees with the 14% presence of wet spots in total interfacial

residues obtained for a nonredundant dataset of protein complexes [113]. That means that,

in terms of wet spots contribution, both SH3 and Ig families are close to average protein

families. Direct and water-mediated interactions reveal differences in distributions of TFs

(Fig 4.10). Direct interactions are almost uniformly distributed on all time fraction inter-

vals, while dual and wet spots interactions are distributed mostly on intervals up to 30% of

relative interaction time. At the same time, the distribution of total interactions shows that

most of the residues are interacting during more than half of the simulation. Comparison

of the distributions suggests that there are few interfacial residues forming wet spots inter-

actions for a long time during simulations. However, the contribution of wet spots to total

interaction is substantial (Fig 4.9). The analysis of the distributions shows that it is not

correct to consider that an interfacial residue unambiguously belongs to only one class of

interfacial residues. We monitored wet spots in the MD simulations of the SH3 and Ig do-

mains, and classified them by interaction type (main-chain/side-chain) as well as by amino
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Figure 4.9: Average time fractions of interaction in the Ig and SH3 complexes.

acid composition (Fig 4.11). For both families side-chain interactions slightly prevailed

(55% of all wet spots), which agrees with previous results obtained for transient complexes

based on crystallographic data [113]. Wet spots show in general a strong preference for

polar and negatively charged residues, mostly interacting through their side-chains. At the

same time, water mediation increases the participation of hydrophobic amino acid residues

through their main-chains in the formation of interfaces with a certainly less hydrophobic

character.

Interaction conservation through water

Water plays a role of molecular glue in protein interfaces [59]. Water may mediate conserved

interactions in protein families and thus participate in specificity. Certain water-mediated

interactions can be present in most of the interfaces of a protein family (e.g., Asn52 in SH3

domains; Fig 4.12). In addition, water may also keep the interactions conserved despite the

introduction of semi- or nonconservative mutations in a specific position in a protein family

(e.g., sites I, IV, and V; Fig 4.12). Correlated mutations in binding partners are expected

to appear as a result of coevolution and aim to keep a specific interaction conservative

[147, 148]. However, due to the participation of water in protein interfaces conservation of
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Figure 4.10: Distribution of time fractions of interaction for all simulated complexes.

Figure 4.11: Participation of different residues in wet spots.
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an interfacial interaction may occur despite non-correlated mutations (Table 4.5). Examples

of interaction conservation through water found in SH3 domains are graphically shown in

Figure 4.13. Figure 4.13.A illustrates site I with no correlation between the mutations in

protein and ligand. The conserved interaction Glu(SH3)-Arg(ligand) is replaced in one of

the complexes (1bbz) by the interaction Val(SH3)-Tyr(ligand). The interaction formed by

the side-chain of different ligand residues with the protein is conserved due to the estab-

lishment of water-mediated main-chain interactions. Figure 4.13.B illustrates site III with

direct interacting residues being replaced by wet spots. The conserved interaction between

side-chains of ligand and side-chains of the protein is maintained in one of the complexes

with a non-conservative mutation (1fyn) thanks to the establishment of a water-mediated

main-chain interaction. The concept of correlated mutations in protein-protein interaction

studies was introduced in the 90s [147, 148] and has been used since then to optimize protein

design, predictions of protein interfaces and docking algorithms. Several matrices of residue-

pairwise interacting probabilities have been built using different mathematical approaches

and empirical parameters [149–151]. However, none of them considers solvent as mediator

of interactions. Our results indicate that disregarding interfacial solvent may cause inaccu-

racies in the application of correlated mutations based approaches in the complete analysis

of protein interfaces and the prediction of protein interactions.

Fluctuation analysis

In previous work we showed that thermal B-factors of wet spots are comparable to those of

other interfacial residues [113]. Prior to checking if the mobility properties of different inter-

facial residue classes could be distinguished, we compared the mobility of surface residues

and interfacial residues in terms of average fluctuations. Our results show that fluctuations

of interfacial residues (side-chain and also full residue) are significantly lower than those of

surface residues (at the level of t-test P-value = 0.05), while there is no significant difference

for backbone fluctuations. Implicit decomposition of the average fluctuation function cal-

culated for all interfacial residues in the studied complexes shows that, in general, residue

fluctuations decrease with the increase of residue interaction time (Fig 4.14). Dual residues

fluctuate more than dry and less than wet spots. At the same time the residues in the
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Figure 4.12: Structure-based sequence alignment of SH3 domains. Residues are colored by
their participation in wet spots. The position of Asn52 (numbering by 1uj0) is labeled with an
asterisk. Interaction sites from Table 4.5 are labeled with roman numbers at the top of the alignment.

Table 4.5: Examples of Interaction Conservation in SH3 Domain Interfaces.

Site PDB ID SH3 Ligand Site PDB ID SH3 Ligand

I 1uj0 E12m R64s IV 1uj0 D34s N66m

1bbz V10m Y63s 1oeb N37s T67m

1oeb E15m R65s 1uti* N33s E68m

1uti E11m R66s Va 1uj0 N36s N66s

II 1bbz S12s Y63s 1oeb S39s T67m

1qcf I16m E175s 1uti S35s E68s

1fyn* R16s Y66s Vb 1fyn N38s Y66m

1uj0* V14s R64s 1abo E35s M62m

1oeb* L17s R65s Vc 1bbz E35s P65m

1b07* N14s R68s 1avz D237s L106m

1uti* I13s R66s 1qcf R35s W174m

III 2src D16s I172m 1b07* R36s P67m

1uj0* E18s R64s

1fyn* D20s Y66s

1bbz* T16s Y63s

1uti* E17s R66s

s, side-chain; m, main-chain interactions; *, direct interaction; Va, Vb, Vc

correspond to different interactions in the same site
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Figure 4.13: Examples of interfacial interaction conservation through water in SH3 inter-
faces. (A) Site I of Table 4.5 with no correlation between the mutations in protein and ligand.
(B) Site III of Table 4.5 with direct interacting residues being replaced by wet spots. Proteins and
ligands are represented by ribbons and labeled. Interacting residues are shown in sticks, and water
molecules as spheres. The color code of the sequences in the upper right panels corresponds to the
colors of the residues in the proteins and ligands as well as in the water molecules. Hydrogen bonds
are represented with dash lines.
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protein interior were shown to be significantly (at the level of t-test P-value = 0.05) less

mobile than those in the interface or surface. For example, for the 1uj0 complex, the av-

erage fluctuations for protein interior, interfacial and surface residues were 0.50 Å ± 0.06

Å, 0.74 Å ± 0.30 Å and 1.00 Å ± 0.48 Å, respectively. The fluctuation analysis of 111

surface and 151 interfacial residues also revealed significant difference (at the level of t-test

P-value = 0.05) between these two groups of protein residues (1.20 ± 0.61, 0.83 ± 0.59,

respectively). Our data agree with the thermal factor analysis performed on a large dataset

of protein complexes, which found that the closer the residues are to the core of interfaces,

the higher their stability [152]. Since the fluctuations of wet spots and surface residues at

temperatures higher than 180 K could be roughly explained in terms of surrounding water

molecules mobility [153], it suggests that water flow around wet spots is slower in general

than water molecules motion in the surface hydration shell. A similar trend was obtained

for the interfacial residues participating in water-mediated interactions in another study

where the speed of surrounding water flow and the mobility of the residues were analyzed

in MD simulations [140]. Therefore, dynamical properties of interfacial residues and solvent

mediating interaction are tightly interconnected, and they could be mechanically described

as a coupling of harmonic oscillator to solvent modes via small springs (hydrogen bonds)

[154]. This means that dynamic analysis of the interfacial residues might be biased without

the consideration of surrounding water molecules.

Free energy decomposition per residue in interfaces

The MM-GBSA method applied for free energy decomposition calculations per residue al-

lows to obtain the following independent components describing the energetics of a protein

complex in implicit solvent: electrostatic component in vacuo, van der Waals interactions

component in vacuo, Generalized Born reaction field energy [155] and hydrophobic compo-

nent of solvation. The differences in energy values for interfacial residue classes were com-

pared with the characteristic thermal motion energy value at 300 K (RT ∼ 0.6 kcal/mol).

The differences in hydrophobic component of solvation were lower than this value, so we

considered that this component does not differ significantly among the interfacial residue

classes. Generalized Born reaction field energy roughly compensates for the electrostatic
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Figure 4.14: Fluctuations of interfacial residues decomposed by interaction type.

component in vacuo, so we discuss only the results obtained for van der Waals and elec-

trostatic components in vacuo. The general trend for both components and all types of

interactions is that the energy values decrease with the increase of residue interaction time,

suggesting that both energy components stabilize complexes independently of the residue

class. Energy decomposition (data not shown) illustrates that the electrostatic impact of

water-mediated interactions is at least of the same order as of direct interactions, consider-

ing that the dielectric constant of water in the protein interface within the analyzed distance

scale is approximately one order lower than the dielectric constant in bulk (and several times

higher than in dry interfaces) [156]. The Van der Waals energy component is the lowest for

dual residues and the highest for wet spots. Such a benefit for dual residues is explained by

more tight contacts of the atoms additionally summed up with water atoms contacts. In wet

spots there are only contacts with water atoms, which are not so tightly packed. Despite

the quantitative differences observed for the SH3 and Ig interfaces, the important finding

out of the energy decomposition is that all three interfacial residue classes are energetically
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comparable even in implicit solvent, meaning that wet spots interactions are energetically

of the same order as direct interactions. This conclusion could be generalized for all protein

interfaces since the analyzed interface families substantially differ in physico-chemical prop-

erties. The obtained small differences between the families in the free energy components

are due to intrinsic properties of the dataset, and the larger size and more hydrophilic nature

of Ig interfaces. Noninterfacial residues were analyzed in the same way but their free energy

contribution values were at least one order lower than of the interfacial ones. This suggests

that inclusion of water-mediated interactions in protein interface definition is energetically

well grounded.

Residence time of water molecules in wet spot sites

The analysis of the residence time distribution density of wet spot sites obtained from MD

simulations suggests that the best theoretical model to describe the distribution density

function should be defined as ρ(t) = Ct−k, where C is a constant that can be obtained

by normalization for each site individually, and the constant k > 0 is the only distribution

parameter. This k constant and the maximum residence time (Tmax) in sites were taken

as the parameters to compare different water sites. For wet spot sites the linear regression

adjusted correlation coefficient r is equal to 0.97 ± 0.04 with P-value ranging from 8 × 10−13

to 3 × 10−2. r and P-values for most of the surface and bulk solvent sites were not defined

because the observed residence times were in the most cases less than 20 ps, meaning that

there were just two points in the distribution (each point was obtained summing up the

number of events on a 10 ps interval to avoid big fluctuations in the density function). As it

is shown in Table 4.6, both k and Tmax significantly differ (at the level of t-test P-value =

0.05) for different sites, indicating that water molecules in wet spot sites are less mobile than

in bulk solvent or in surface hydration sites. At the same time, in each wet spot site many

occupancy events occur that have as short residence as in bulk or surface sites. That agrees

with the model proposed by Makarov et al., where the correlation function for residence

time in hydration sites is decomposed into the sum of fast and slow diffusion exponent

components. These components characterize bulk water motions and specific for hydration

site events, respectively [157]. Other theoretical and experimental studies obtained similar
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Table 4.6: Residence Time Parameters of Different Water Sites.

Site type Sample size Tmax (ps) k

Wet spot 110 137 ± 12 3.0 ± 1.0

Surface 30 18 ± 6 7.1 ± 1.1

Bulk 10 14 ± 2 8.7 ± 0.9

Sample size is the number of analyzed sites of each water

site type. Tmax is maximal residence time. k is residence

time distribution parameter.

residence time values for different water sites, which vary from 1−10 ps for bulk solvent to

101-103 ps for protein hydration sites, cavities and cores [132]. Tmax and k are well correlated

(adjusted correlation coefficient r = 0.81 for ln(Tmax) ∼ k linear regression), meaning that

maximum residence time of water molecules does not correspond to an opportunistic event

of site occupation but is expected from the residence time distribution. There was no

correlation between total occupancy of the sites and Tmax (r< 0.3) because these parameters

are independent and describe different kinetic characteristics of the site. While Tmax is

defined only by the energy barrier required for the molecule to leave the site, total occupancy

is also dependent on the energy barrier of water transfer from bulk solvent to the site.

The residence time analysis suggests that the potential barriers for wet spots sites are

significantly higher than those for surface sites. However, it does not mean that the potential

energy level of water molecules in wet spot sites are necessarily lower than in bulk solvent.

Free energy of water molecules in wet spot sites

To determine if water molecules contribute energetically favorably to complex formation we

calculated their free energy using the free energy perturbation double decoupling method

[145]. As a first step, free energy of removing a water molecule from bulk solvent was

calculated. Electrostatic and van der Waals components were equal to 8.2 and -2.2 kcal/mol,

respectively, which agrees well with the results obtained from similar calculations correlated

with experimental data [145, 158] (Table 4.7). The second step consisted of the transfer

of a water molecule from the wet spot site to vacuum. The difference of these two energy
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Table 4.7: Free Energy Perturbation of Water Molecules (Ws) in 1UJ0 complex using the
Double-Decoupling Method.

E (kcal/mol) site Site type EElect EV DW -RT* RT* Erot Etotal ∆G0

ln(SwSp/Sw∗p) ln(C0V1)

E12-R64 Wet spot 12.9 -1.5 0.4 -4.4 0 7.4 -1.4

D34-N66 Wet spot 8.3 0.1 0.4 -4.1 0 4.7 1.3

D34-N66, 2 Ws Wet spot 22.9 -3.7 0.8 -8.2 0 12.6 -6.6

N52-M61,N63 Wet spot 8.9 0.1 0.4 -4.2 0 5.2 0.8

N52-M61,N63 2 Ws Wet spot 18.1 0.1 0.8 -7.2 0 11.2 0.1

L58-R6 Surface 9.8 0.2 0.4 -3.8 0 6.4 -0.4

D31-S33 Surface 7.6 -0.6 0.4 -3.7 0 3.7 2.3

Lysozyme Cavity 13.5 0.0 0.4 -3.9 0 10.0 -4.0

Bulk-vacuo transfer Bulk 8.2 -2.2 - - - 6.0 -

Bulk-vacuo transfer[145] Bulk 8.2 -2.2 - - - 6.0 -

Bulk-vacuo transfer[158] Bulk 8.3 -2.4 - - - 5.9 -

EV DW , van der Waals energy; -RT* ln(SaSb/Sa∗b), the free energy component related to the symmetry of

water molecule (Sa), protein (Sb) and the complex of water molecule with protein (Sa∗b); RT*ln(C0V1),

the free energy component associated with translational constraints in the V1 volume; Erot, the free energy

component associated with rotational constraints; Etotal, total free energy of a water molecule transfer from

the site to vacuo; ∆G0, free energy of transfer of a water molecule from bulk to the site [145].

components makes up the total energy of a water molecule transfer from bulk solvent to the

wet spot site. The obtained results for several water sites of the SH3 domain complex 1uj0

show that the sites are very heterogeneous. In particular, the free energy of water molecule

transfer from bulk to the site formed by the carboxyl oxygen of Glu12 in the SH3 domain and

the side-chain of Arg64 in the ligand is -1.4 kcal/mol, meaning a favorable impact of a water

molecule on the complex formation. The calculations carried out for another site formed

by the side-chain of Asp34 in the SH3 domain and the side-chain of Asn66 in the ligand

revealed a positive change of free energy (1.3 kcal/mol). However, as it was observed in the

trajectory, another water molecule was present in this site and establishing a hydrogen bond

with the first water molecule forming the wet spot. Consideration of both water molecules

in the free energy calculations revealed an energy gain of -6.6 kcal/mol (Table 4.7). In this



127

case removal of two water molecules from a wet spot site leads to an increase of the free

energy value, while a removal of each water molecule independently leads to a free energy

decrease. Another example of such an effect was found in the site formed by the side-chain

of Asn52 in the SH3 domain and the main-chain of Met61 in the ligand. Here, although the

energy became more favorable by taking into account two water molecules transfer, water

contribution was still not favorable. For the comparison of the free energies of wet spot

sites we took several surface sites and a site in the cavity of lysozyme, which is not exposed

to bulk solvent (1hel, 1.7 Å). The X-ray structure of lysozyme presents a very stable water

molecule [159], which is present in the site during the whole simulation with a residence

time of several nanoseconds. The energetic impact of the cavity water to the stability of

the lysozyme was quite significant (-4 kcal/mol). In surface sites no big negative values

for free energy were found. In similar calculations performed with the double decoupling

method for free energy calculation with AMBER, the obtained values for the free energy of

water in hydration sites changed from slightly positive up to -5 kcal/mol [145, 158]. The

examples of favorable energetic impact of water molecules on complex formation was also

found in a study of various protein complexes by Monte Carlo calculations using different

force fields [160]. The most important conclusion that can be driven from this free energy

analysis is that water molecules in wet spot sites can not be characterized uniformly in

energetic terms since in some cases they manifest properties similar to cavity waters and in

other do not even contribute favorably to the complex free energy (just occupying an empty

space between the residues). Nevertheless, it is realistic to claim that the introduction of

water into protein interface description would crucially change the energy function of the

system. Interestingly, a recent attempt of solvated protein docking has shown promising

results [161].

4.2.5 Conclusion

We present a detailed MD study on 17 protein complexes representatives of two families

of different interface nature. Our aim has been to gain insights into the contribution of

interfacial solvent in protein-protein interactions. We show that water molecules in protein

interfaces contribute to the conservation of protein interactions by allowing more sequence
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variability in the interacting partners, which has important implications for the use of the

correlated mutations concept in protein interactions studies.

Interfacial residues interacting through water are more mobile than those interacting

directly but less than protein surface residues. Despite their broad heterogeneity, all inter-

facial residues are quantitatively comparable in terms of their contribution to the energy

of complex formation, independently of their type of interaction. In the case of interfacial

solvent, water molecules forming wet spots have significantly longer residence time than

those on the protein surface, meaning that in terms of mobility interfacial protein residues

and interfacial solvent are alike. Although interfacial water molecules are very diverse en-

ergetically, their contribution to the free energy of complex formation should be not be

ignored.

Our data confirm that water plays an important active role in protein interfaces, sug-

gesting that consideration of solvent in the development of energetic functions describing

protein interactions is essential. Moreover, the introduction of water-mediated interactions

into protein interface definitions should substantially increase the accuracy of protein inter-

action predictions based on protein contacts. We believe that the results obtained in this

work could be useful for deeper understanding of the physico-chemical properties underlying

protein-protein interactions in order to improve the accuracy of protein folding, docking and

rational design methods.
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Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

This last chapter outlines the main achievements of my thesis work and relates them to

the most recent research performed in the area. Future directions and possible implications

of my results are also discussed.

5.1 SCOWLP database

During my thesis I developed the SCOWLP database and its web interface following a two-

steps process: i) the automatic identification and atomic description of all protein interfaces

contained in the PDB repository [70] and ii) the structural classification of protein binding

regions by families (FBRs) [97].

There are some other FBR databases such as PRISM [55], PIBASE [162], SCOPPI [71],

3DID [163], although SCOWLP differs from them in: i) the accurate definition of atom-

atom interactions at physicochemical level, ii) the inclusion of water-mediated interactions,

iii) the inclusion of protein-peptide interactions, and iv) the clustering technique applied.

The importance of including these fundamental components have been widely explained

and discussed in Chapter 2.

The number of available tools and web servers for the analysis of protein-protein inter-

actions and interfaces since I started my thesis [164] has been increasing, reflecting their

need for research. SCOWLP web application permits the analysis of individual protein

interfaces, and the database allows the possibility of high-throughput comparative studies

of protein interactions and binding regions.

Specific structural databases for protein-nucleic acid (NA) [165] or for protein-saccharide

(SAC) [166] complexes already exist, however, there is currently no database that combines

ligands of different nature at once into a single database that structurally classifies protein

interactions. One of my current ongoing work is the inclusion of protein-NA and protein-
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SAC complexes into the SCOWLP database. This kind of classification will potentially be

able to, i) differentiate protein regions recognizing other proteins from those interacting with

NA or SAC, and ii) identify protein-families that can recognize proteins and other ligands

(NA, SAC) through the same region.

Moreover, it is known that the role of water molecules mediating protein-NA [167] and

protein-SAC [168] are as critical for recognition as for protein-protein interactions. The

fact that SCOWLP is one of the few databases that takes into account water-mediated

interactions, makes it suitable to describe and classify these type of complexes.

SCOWLP website (www.scowlp.org) has been already visited more than 6,000 times

during the last 3 years, showing the interest of the scientific community for this kind of

information. I am currently updating SCOWLP to improve its speed and user-friendliness,

and to incorporate the interacting information obtained from protein-NA and protein-SAC

complexes. With all these improvements SCOWLP may become a routinary tool for struc-

tural biologists and bioinformaticians.

The information contained in the SCOWLP database can be downloaded and used for

independent research projects. The utility of this kind of structural information has been

already highlighted in several studies:

• Validation of large-scale of protein-protein interaction information, determined by

two-hybrid or pull-down analysis [169].

• Modeling the structures of multi-domain proteins and protein complexes using a hy-

brid method combining comparative modeling based on a template complex and pro-

tein docking [170].

• Interactions prediction of protein structures when two structures contain surface re-

gions that resemble the complementary partners of a known interface [101, 104].

• Statistical analysis of special features of protein interactions such as the research

work presented in Chapter 4 [113, 114] about the role of water molecules in protein

interfaces.
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• Extraction of statistical potentials to improve computational predictive techniques,

such as the study we performed about the inclusion of solvent information in protein

contacts prediction [171]. Other techniques such as docking or fold recognition could

also benefit from this information.

5.2 Inference of binding regions within protein families

Proteins exhibit an enormous diversity of structures, and many proteins classified as a

different fold present common three-dimensional architectures [84]. It has also been observed

that proteins with different folds and functions often interact with other proteins through

interfaces containing similar local structural features or interacting motifs [99].

During my PhD I performed the first systematic analysis of protein binding region

conservation between protein families presenting structural resemblances across all known

folds, in order to obtain binding inferences beyond family level. The results obtained by

this approach highlighted that binding region conservation occurs systematically, specially

between proteins considered to have different folds in the current protein topology classifi-

cations. Within the results, I could identify interface similarities between protein complexes

that present structurally similar receptors, although classified in different folds. These cases

support the feasibility of the methodology to propose putative binding regions to proteins.

My approach provides alternative binding regions for protein families, and can be used

as a predictive tool for deriving putative binding inferences. However, the results obtained

still require an accurate analysis at atomic level of the binding determinants to assess ligand

recognition similarities. For this reason, I am currently working in a collaborative project

to design a software for the comparison of the physico-chemical properties of atoms in the

space, that could complement the results obtained in the work presented in my thesis.

5.3 Water in protein interfaces

Water networks in protein interfaces can complement direct interactions contributing signif-

icantly to molecular recognition, function, and stability of protein association. The descrip-

tion of protein interfaces may be modified by the inclusion of water-mediated interactions

in the definition of protein interfaces. The inclusion of residues that cannot interact directly



132

with the ligand but through water molecules, so called wet spot residues, may also change

interface’s size and shape. During my PhD, I decided to study the role of water molecules

in protein interfaces, paying special attention to wet spot residues.

The research project I present in Chapter 4 [113] about the study of water molecules

in protein interfaces in a curated dataset of obligate and transient protein complexes rep-

resents one of the first high-throughput studies in this area. Indeed, it nicely complements

the comparative analysis of the role of water molecules in the interfaces of biological and

crystal packing complexes performed by Rodier et al. [68]. The results of my work showed

that 40.1% of the interfacial residues were interacting through water and that wet spots

represented a 14.5% of the total, emphasizing the importance of the inclusion of solvent in

protein interaction studies, and the contribution of wet spots to interfacial description. I

characterized for the first time wet spot residues in terms of secondary structure, tempera-

ture factors, residue composition, and pairing preferences. Interestingly, I also observed that

obligate and transient interfaces present a comparable amount of solvent, which contrasts

the old thoughts saying that obligate protein complexes are expected to exhibit similarities

to protein cores having a dry and hydrophobic interfaces.

Moreover, the contact matrices generated in my work were further used by the group

to study the influence of solvent in the prediction of protein contacts, implementing ’wet’

together with classical ’dry’ matrices in a correlated mutations approach [171].

I also contributed to studies performed in the group on the dynamic characteristics of

water molecules in protein interfaces for two families of different interface nature [114]. We

observed that interfacial residues interacting through water are more mobile than those

interacting directly but less than protein surface residues. Also, that water molecules medi-

ating residue-residue interactions have significantly longer residence time than those on the

protein surface.

My results agree with other studies, suggesting the consideration of water molecules

should improve the accuracy of many computational techniques, such as protein folding or

rational design methods, as it has recently been shown for protein docking [161].
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5.4 Other collaborative research projects

During my PhD I had the chance to work in some other collaborative projects. This allowed

me to get in contact with a broad range of computational and experimental techniques. I

highlight the research articles that have been already published although the results have

not been included as part of my thesis:
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5.4.1 Analysis of the impact of solvent on contacts prediction in proteins

by Sergey Samsonov, Joan Teyra, Gerd Anders and M Teresa Pisabarro

in BMC Structural Biology, 2009, 9:22

The correlated mutations concept is based on the assumption that interacting protein

residues co-evolve, so that a mutation in one of the interacting counterparts is compensated

by a mutation in the other. Approaches based on this concept have been widely used for

protein contacts prediction since the 90s. Previously, we have shown that water-mediated

interactions play an important role in protein interfaces. We have observed that current

”dry” correlated mutations approaches might not properly predict certain interactions in

protein interfaces due to the fact that they are water-mediated.

The goal of this study has been to analyze the impact of including solvent into the con-

cept of correlated mutations. For this purpose we use linear combinations of the predictions

obtained by the application of two different similarity matrices: a standard ”dry” similar-

ity matrix (DRY) and a ”wet” similarity matrix (WET) derived from all water-mediated

protein interfacial interactions in the PDB. We analyze two datasets containing 50 domains

and 10 domain pairs from PFAM and compare the results obtained by using a combina-

tion of both matrices. We find that for both intra- and inter-domain contacts predictions

the introduction of a combination of a ”wet” and a ”dry” similarity matrix improves the

predictions in comparison to the ”dry” one alone.

Our analysis, despite the complexity of its possible general applicability, opens up that

the consideration of water may have an impact on the improvement of the contact predictions

obtained by correlated mutations approaches.

• I contributed to the creation of the ’wet’ contact matrices based on the data contained

in SCOWLP database, and to the discussion of the research work.
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5.4.2 A genome-scale DNA repair RNAi screen identifies a novel gene associ-
ated with hereditary spastic paraplegia

by Slabicki M, Theis M, Krastev DB, Teyra J, Paszkowski-Rogacz M, Junqueira M, Heninger

AK, Poser I, Mundwiller E, Truchetto J, Prieur F, Confavreux C, Brice A, Shevchenko A,

Pisabarro MT, Stevanin G and Buchholz FA

in Plos Biology, 2010, accepted

DNA repair is essential to maintain genome integrity and genes with roles in DNA repair

are frequently mutated in a variety of human diseases. Repair via homologous recombination

typically restores the original DNA sequence without introducing mutations and a number

of genes that are required for homologous recombination DNA double-strand break repair

(HR-DSBR) have been identified. However, a systematic analysis of this important DNA

repair pathway in mammalian cells has not been reported.

Here, we describe a genome-scale endoribonuclease-prepared short interfering RNA (esiRNA)

screen for genes involved in DNA double strand break repair. We report 61 genes that influ-

enced the frequency of HR-DSBR and characterize in detail one of the genes that decreased

the frequency of HR-DSBR. We show that the gene KIAA0415 encodes a putative helicase

that interacts with SPG11 and SPG15, two proteins mutated in hereditary spastic paraple-

gia (HSP). We identify mutations in HSP patients, discovering KIAA0415/SPG48 as a novel

HSP-associated gene and show that a KIAA0415/SPG48 mutant cell line is more sensitive

to DNA damaging drugs.

We present the first genome-scale survey of HR-DSBR in mammalian cells providing a

dataset that should accelerate the discovery of novel genes with roles in DNA repair and

associated medical conditions. The discovery that proteins forming a novel protein complex

are required for efficient HR-DSBR and are mutated in patients suffering from HSP suggests

a link between HSP and DNA repair.

• I contributed to the functional annotation of the KIAA0415 using structure-based

computational methods.
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