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1 Introduction 

The demand for high data rates seems to keep growing as the integration of many services 

like internet telephony, high-definition TV (HDTV), audio/video (A/V) on demand, etc. push 

the existing connections bandwidth limits. Moreover, the end user would also like to access 

all these services while being mobile. 

Commercial xDSL service providers offer peak data rates up to 50 Mbps (e.g. VDSL) to the 

end user and gigabit wired connections will be available in the near future. Nonetheless, there 

is a limit as to how much bandwidth can be transported over a twisted pair copper wire due to 

its low frequency cut-off. Therefore complex modulation schemes such as orthogonal 

frequency division multiplexing (OFDM) are used which require intensive digital post 

processing. While this modulation scheme is the principal driving force for xDSL services 

and the most popular one used up to date, the data rates are still not high enough to provide all 

the afore mentioned services with decent quality. 

Fiber to the home (FTTH) is an emerging technology which offers the enormous bandwidth 

of optical fiber (in the THz range). Connections are being deployed in many countries (in 

USA by Verizon, in Germany by Deutsche Telekom, in France by France Telecom, etc) and 

future networks start looking as shown in Figure 1.1. The connection between the optical line 

terminal and the end user will be carried out through a passive optical network (PON) to 

provide broadband coverage of broadcast TV, internet traffic and public switched telephone 

network traffic (PSTN). 

 

Figure 1.1: FTTH network architecture. FDM: Frequency Division Multiplex [1]. 
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Each house will have an optical network unit (ONU) capable of routing all the traffic and 

distributing it inside the household. A typical home with a FTTH connection will appear as 

shown in Figure 1.2. The huge bandwidth can be then divided into the different users 

(i.e. rooms) in the house and be transported through low loss, electromagnetic immune optical 

fiber. Wired gigabit connections will be easily implemented such as already deployed 

10 Gigabit Ethernet (10 GET) but that leaves the wireless transmission problem still unsolved 

for mobile devices. 

 

Figure 1.2: FTTH inhouse distribution. ONU: Optical network unit. 

Millimeter wave Radio-over-Fiber (RoF) systems are a key enabler to realize gigabit speed 

broadband wireless services as there is a huge unlicensed bandwidth at these high frequencies 

(i.e. 60 GHz, 70 GHz and 90 GHz ). The idea behind RoF systems is to centralize all the 

expensive components and control devices in the so called central station (CS) so as to 

simplify the distribution points, called base stations (BS), which are fed through optical fiber 

as seen in Figure 1.3. The enormous bandwidth offered by optical fiber allows the division of 

space in picocells or femtocells, depending on the cell size. Within each cell, a BS is in charge 

of distributing the data among its users through different intermediate frequencies. There are 

various proposed architectures, such as RoF without mm-wave generation, with sub mm-

wave generation or with mm-wave generation (the special case depicted in Figure 1.3), which 
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will be discussed later. The BS is then an optical to electrical (O/E) converter which sends the 

broadband data on a mm-wave carrier and depending on the RoF architecture, is more or less 

complex. In this context, each base station (or in FTTH case, each room in the household) 

will have a small, compact and most importantly cheap O/E transceiver which would be 

connected via optical fiber to the central station via an optical network. 

 

Figure 1.3: RoF basic architecture. 

Moreover, future research concentrates on going one step further and giving up on the CS 

altogether by using directly the wired 10 GET connection in the household and a simple 

scheme to upconvert the broadband baseband signal. A simple solution would be to remotely 

heterodyne the 10 GET optical signal with a local oscillator separated by the desired mm-

wave frequency. The critical system parameters as well as optimum receivers need to be 

further investigated for this application. 

However, today the architecture of RoF systems is completely different and not compatible 

with FTTH architectures. In future access networks like wavelength division multiplex 

passive optical networks (WDM-PON) analog RoF and digital FTTH signals must co-exist in 

the same fiber infrastructure. If this will happen, seamless broadband access services could be 

readily put into the field. In the second generation FTTH system splitting ratio up to 1:64 (or 

even more) and fiber lengths greater than 50 km are under discussion. Moreover, the bit error 

rate (BER) requirements are as high as BER = 10-9, either for wired or wireless systems. This 

results in rather high values for the power budget of the analog RoF systems and a good 

immunity against the chromatic dispersion of the fiber. 

The outline of this work is as follows. Chapter 2 will discuss the requirements for broadband 

wireless access services in terms of channel capacity, free space propagation and fading 

effects while also taking into account the most important technical challenges still ahead. 
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Chapter 3 gives an overview of the most common optical mm-wave generation methods 

whereas chapter 4 discusses the effects of the different RoF architectures with regard to 

propagation in a dispersive medium (i.e. optical fiber) and the penalties incurred therein. 

Chapter 5 first characterizes the generation of mm-wave signals with a Mach-Zehnder 

modulator under different conditions. Moreover, a novel generation method via an optical 

fiber loop mirror with different configurations is proposed and is one of the main topics of 

this thesis. In chapter 6 an evaluation of the different receiver architectures for the mobile unit 

is developed, taking special interest in sensitivity, implementation loss and bit error rate 

performance for the different setups. The maximum attainable capacities of each receiver are 

also calculated. In chapter 7 the results of the broadband wireless experiments are presented 

and discussed in detail. Finally, chapter 8 provides a summary of the most important results 

achieved throughout this work. 
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2 General system requirements for mobile broadband 
communication systems 

In this section a general overview of the requirements for mobile broadband communication 

systems will be addressed, and the basic ideas and applications will be described. 

2.1 Gigabit wireless communications 
The adoption of each successive generation of Ethernet technology has been driven by 

economics, performance demand, and the rate at which the price of the new generation has 

approached that of the old. As the cost of 100 Mbps Ethernet decreased and approached the 

previous cost of 10 Mbps Ethernet, users rapidly moved to the higher performance standard. 

Additionally, gigabit Ethernet became economic (e.g. below €200) for server connections and 

desktop gigabit connections have come within €10 or less of the cost of 100 Mbps 

technology. Consequently, gigabit Ethernet has become the standard for servers, and systems 

are now ordered with gigabit Network interface cards. Mirroring events in the wired world, as 

the prices of wireless gigabit links approach the prices of 100 Mbps links, users are switching 

to the higher-performance product, both for traditional wireless applications (e.g. voice), as 

well as for applications that only become practical at gigabit speeds (e.g. HDTV streaming). 

Wireless communications are directed towards the need for gigabit speeds and longer-range 

connectivity as the applications emerge for home A/V networks, high-quality multimedia, 

voice and data services. Current wireless local area networks (WLANs) offer peak rates of 

54 Mbps, with 200–540 Mbps, such as IEEE 802.11n, becoming available soon. However, 

even 500 Mbps is inadequate when faced with the demand for higher access speed from rich 

media content and competition from 10 Gbps wired LANs. In addition, future home A/V 

networks will require a Gbps data rate to support multiple high-speed, HDTV streams 

(e.g. carrying an uncompressed high-definition video at resolutions of up to 1920×1080 

progressive scans, with latencies ranging from 5 to 15 ms, and 30 bit per channel and a frame 

rate of 90 fps will require a data rate as high as 5 Gbps) [2]. 

Some approaches, such as IEEE 802.11n, are improving data rates by evolving the existing 

WLANs standards to increase the data rate; to up to 10 times faster than IEEE 802.11a or 

802.11g, but still less than 1 Gbps. Others, such as the ultra-wideband (UWB) are pursuing 

much more aggressive strategies, such as sharing spectra with other users. However, the 
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typical 480 Mbps bandwidth of UWB cannot fully support broadcast video and therefore the 

data packets need to be recompressed. This forces manufacturers to utilize expensive encoders 

and more memory into their systems, in effect losing video content and adding latency in the 

process. Another approach will be moving to higher, unused and unregulated millimeter wave 

frequencies. Millimetre wave technology can be classified as occupying the electro magnetic 

spectrum that spans between 30 and 300 GHz, which corresponds to wavelengths from 10 to 

1 mm. An interesting application band at 60 GHz offers various advantages over current 

communications systems in the L band. One of the deciding factors that make 60 GHz 

technology attractive is the establishment of huge unlicensed bandwidths (up to 9 GHz) that 

are available worldwide. The spectrum allocations vary for different regions and are listed in 

Table 2.1 [3]. 

Region Unlicensed BW (GHz) Max Tx Power 
(mW) 

Max antenna gain 
(dBi) 

Europe 9 GHz (57–66) 20 37 

Japan 7 GHz (59–66) 10 47 

USA 7 GHz (57–64) 500 Not specified 

Korea 7 GHz (57–64) 10 To be decided 

Australia 3.5 GHz (59.4–62.9) 10 Not specified 

Table 2.1: The 60 GHz band allocation around the world [3]. 

While this is comparable to the unlicensed bandwidth allocated for ultra-wideband purposes 

( 2–10 GHz), the 60 GHz band is continuous and less restricted in terms of power limits 

(also there are less existing users). This is due to the fact that the UWB system is an overlay 

system and thus subject to different considerations and very strict regulation. This huge 

bandwidth offers potential in terms of capacity and flexibility and makes 60 GHz technology 

particularly attractive for gigabit wireless applications. The main use of the bandwidth will be 

in the downlink as broadcast for distribution of high definition multimedia content whereas 

the uplink can be realized with about 100 MHz for user data upload. Although 60 GHz 

regulations allow much higher transmit power compared to other existing wireless local area 

networks (e.g. maximum 100 mW for IEEE802.11 a/b/g) and wireless personal area network 

(WPAN) systems, the higher transmit power is necessary to overcome the higher path loss at 
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60 GHz. While the high path loss seems to be a disadvantage at 60 GHz, it does however 

confine the 60 GHz power and system operation in an indoor environment. Hence, the 

effective interference levels for 60 GHz are less severe than those systems located in the 

congested 2-2.5 GHz and 5-5.8 GHz regions. In addition, higher frequency re-use can also be 

achieved over a very short distance in an indoor environment, thus allowing a very high 

throughput network. The compact size of the 60 GHz radio also permits multiple antenna 

solutions at the user terminal that are otherwise difficult, if not impossible, at lower 

frequencies. Compared to a 5 GHz system, the form factor of millimetre wave systems is 

approximately 140 times smaller and thus the antennas can be conveniently integrated into 

consumer electronic products, but it will require new design methodologies to meet modern 

communication needs. 

2.2 Millimetre wave propagation 
In this section propagation of mm-wave signals in free space will be modeled to recognize 

limiting factors and common impairments. The carrier frequency at fRF = 60 GHz provides the 

following advantages: 

• Broadband unlicensed bandwidth (7 GHz). 

• Due to high path losses and oxygen absorption the transmission is confined to very 

small local areas (i.e a room) with no wall transmission. This provides highly secure, 

virtually interference-free links with the possibility of frequency re-use within a small 

geographic region. 

•  Small antenna size capable of distributed antenna array configurations and on-chip 

integration. 

But due to limitations in our lab equipment, the proof of concept system experiments for 

gigabit wireless transmission in later sections was carried out at fRF = 33 GHz. Therefore, the 

theory will be developed for these two carrier frequencies.    

2.2.1 Free space propagation 
Due to the spherical propagation of radio waves in free space, the path loss decays with the 

square of fRF, mathematically in dB, 

 10
420 log RF

freespace
d fPL
c

π ⋅ ⋅⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

 (2.1) 
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where d is the link distance and c the speed of light in vacuum. The path loss as a function of 

link distance is plotted in Figure 2.1 for different carrier frequencies fRF. The initial loss is 

quite high, but then increasing the distance reaches a plateau. The path loss at fRF = 60 GHz 

for the first meter (d = 1 m) is around 68 dB and 62.8 dB for fRF = 33 GHz. 

 

Figure 2.1: Path loss as a function of link distance d with carrier frequency fRF as a parameter. 

The free space path loss can be mitigated by using high gain, albeit directional, antennas. A 

more detailed expression for line-of-sight (LOS) links was given by Friis accounting for other 

system parameters such as antenna gain and system losses. The general equation relates the 

received power PRX to the transmitted power PTX by [4] 

 
2

2 2 2 .
16

RX TX RX

TX RF

P G G c
P d f SLπ

⋅ ⋅
=

⋅ ⋅ ⋅ ⋅
 (2.2) 

Here GTX and GRX are the transmitter antenna and receiver antenna gain respectively and SL is 

a system loss factor (SL > 1) to account for extra effects such as implementation loss and 

human shadowing losses. Besides free space path losses which are already quite high at mm-

wave frequencies, the atmosphere presents a couple of additional impairments such as 

• Water vapour and oxygen absorption. 

• Precipitation attenuation due to rain. 

• Foliage blockage. 

• Scattering effects. 
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• Diffraction (i.e. bending). 

Studies about these effects are well known in the literature and as an example, the 

atmospheric absorption for two different geographical scenarios were researched in [5]. The 

results are plotted in Figure 2.2. At 60 GHz there is a strong absorption due to resonation with 

oxygen molecules. Although oxygen absorption is quite an impediment at 60 GHz compared 

to lower frequencies, the extra attenuation of 10 dB/km when used in indoor scenarios 

(i.e. d < 20 m) results in only a 0.2 dB penalty. Working at fRF = 33 GHz has the low extra 

attenuation value of 0.1 dB/km, which can be safely neglected for indoor short range 

scenarios. 

 

Figure 2.2: Average atmospheric absorption of mm-waves for two different scenarios [5]. 
Scenario A: Sea level and scenario B: 4 km elevation. 

2.3 Channel capacity 
Claude Shannon established the theoretical basis of digital communication with two well-

known theorems: source coding and channel coding. The first established the minimum bit 

error rate (BER) required to reproduce a source signal within a given degree of accuracy. 

Shannon’s channel coding theorem on the other hand establishes the maximum rate at which 
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transmission is achievable with arbitrarily high accuracy. This channel capacity C in presence 

of additive white Gaussian noise (AWGN) takes the form [6] 

 ( )2 2log 1 log 1RX
n n

n power

PC B B SNR
B N

⎛ ⎞
= ⋅ + = ⋅ +⎜ ⎟⎜ ⎟⋅⎝ ⎠

 (2.3) 

where Bn is the systems noise bandwidth, PRX the received power, Npower the noise power and 

SNR the signal to noise ratio. This establishes an upper bound to channel capacity. While 

simple techniques for reaching within about 30% to 50% of channel capacity have been 

known and employed for at least 30 years, only within the last few years has a composite 

technique involving iterative soft decoding of parallel or serial concatenated codes, known as 

“turbo decoding”, shown that efficiencies above 80% of channel capacity are practically 

achievable, provided sufficient long decoding delays can be tolerated. 

The main challenges of wireless propagation at 60 GHz are 

• High loss from the Friis equation in Eq. (2.2). 

• Human shadowing. 

• Non-negligible Doppler shift. 

• Non line-of-sight (NLOS) propagation which causes random fluctuations in the signal 

level known as multipath fading. 

• Noise. 

Although high powers are allocated for the 60 GHz band, Eq. (2.2) denotes the importance of 

the antenna gains. The SNR at the receiver can be calculated from Friis equation in dB form 

adding other loss and noise factors as 

 ( ) ( )( )1010 logTX TX RX shad B n RXSNR P G G PL d L IL k TB NF= + + − − − − ⋅ +  (2.4) 

where Lshad stands for human shadowing losses, IL denotes an implementation loss factor, kB 

is Boltzmann’s constant, T is the absolute operating temperature in °K and NFRX the noise 

figure of the receiver. PL(d) is the path loss defined as 

 0
0

( ) ( ) 10 logpath
dPL d PL d n d

⎛ ⎞= + ⋅ ⋅ ⎜ ⎟
⎝ ⎠

 (2.5) 
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for the link distance d and reference distance d0. The exponent npath in Eq.(2.5) is useful to 

later depict several transmission scenarios, such as line of sight (LOS) or non-line of sight 

(NLOS) in home or office environments.  Ignoring human shadowing losses, meaning there is 

a direct LOS between transmitter and receiver (i.e. Lshad = 0) the following parameters were 

used to simulate a millimeter wireless link operating at fRF = 33 and 60 GHz with 

PTX = 10 dBm, NFRX = 10 dB, IL = 6 dB, Bn = 7 GHz and d = 10 m. The channel capacity C 

was evaluated from Eq. (2.3) for different combined antenna gains GC (i.e. GC=GTX+GRX in 

dB) varying the transmitted power PTX in Figure 2.3a and Figure 2.3c whereas the channel 

bandwidth Bn is swept in Figure 2.3b and Figure 2.3d. 

Figure 2.3: Shannon’s maximum channel capacity C as a function of transmitted power 
(a and c) and system bandwidth (b and d) for a 33 GHz (c and d) and 60 GHz 
(a and b) wireless link. 

One important result from these curves is that using omnidirectional antennas (i.e. GC = 0 dB) 

no gigabit wireless channel can be obtained with the limits for PTX = 13 dBm and B = 7 GHz 
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imposed in Europe. Only in USA with PTX = 27 dBm can a real gigabit wireless connection be 

implemented, but that is a huge amount of power used. Another problem with omnidirectional 

antennas is that power is wasted in the backscattered directions, so future antennas for gigabit 

wireless communications will have to have high gain and be extremely directive to minimize 

power loss in unused directions while providing some sort of beam steering to adjust the 

propagation direction. 

Different scenarios for gigabit wireless indoor links arise, basically LOS or NLOS. The basic 

parameters are described in Table 2.2. In NLOS links the path loss due to scattering exceeds 

the square law for free space links. This path loss exponent can vary from npath = 1.55 in LOS 

corridors due to a guided wave effect, to npath = 2 (LOS in free space) up to npath = 5 in 

extreme NLOS links. The path loss exponent npath is explained in detail in [7]. 

Environment npath Shadowing Reference 

Home 5-10m 
(LOS/NLOS) 

1.55/2.44 1.5/6.2 [7]  

Conf. Room 20 m 
(LOS/NLOS) 

1.77/3.83 6/7.6 [8] 

Table 2.2: Gigabit wireless links scenarios parameters [3]. 

Calculating the capacity as a function of link distance d for these various scenarios gives rise 

to the results in Figure 2.4a for fRF = 60 GHz. 

Figure 2.4: Capacity C as a function of link distance d for a) fRF = 60 GHz and b) fRF = 33 GHz. 

The first curve of interest is the free space path loss which already shows that for 

omnidirectional antennas with zero gain, a true gigabit wireless link is limited to a couple of 
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metres. Considering the office LOS scenario with npath = 1.77 and a Bn = 1.5 GHz has a lower 

performance than free space due to shadowing losses plus the guided wave effect which are 

taken into account. The NLOS case with npath = 3.83 proves to be the worst case scenario for 

omnidirectional antennas, as not even 100 kbps can be realized at 20 m distance by increasing 

the bandwidth. The increase in bandwidth from 1.5 GHz to 7 GHz only improves the 

performance in the first meters. The same general observations can be obtained from Figure 

2.4b for fRF = 33 GHz whereas due to less link loss, the wireless reach is somewhat extended. 

The critical point is then the gain of the antennas and later, the frequency dependence of such 

gain. A curve considering a transmitter antenna with GTX = 10 dB shows a considerable 

improvement and a gigabit wireless link can be theoretically implemented up to a distance of 

d = 2.7 m for 60 GHz links and d = 3.7 m for a 33 GHz link. As the combined gain of the 

antennas seems to greatly increase the capacity of the link, plotting the capacity versus gain in 

Figure 2.5 can help design links accordingly. 

Figure 2.5: Capacity C as a function of combined antenna gain GC for a) fRF = 60 GHz and b) 
fRF = 33 GHz. 

The case of interest is NLOS (i.e. npath = 3.83), which with GC = 30 dB achieves a gigabit link 

with a distance of 20 m (indoor office scenario) in Figure 2.5 for both RF frequencies. If 

higher data rates were to be implemented, like 10 Gbps, then either extreme high gain 

antennas with GC = 50 dB would have to be used plus an spectral efficient modulation format 

like M-ary phase shift keying (PSK). However, if the bandwidth B is increased to 7 GHz, then 

simple amplitude modulation formats like amplitude shift keying (ASK) could be employed. 
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For a single antenna element with antenna gain more than 20 dBi, a reliable communication 

link is difficult to establish even in LOS condition at 60 GHz. This is due to the human 

blockage which can easily block and attenuate such a narrowbeam signal. To overcome this 

problem, a switched beam antenna array or adaptive antenna array is required to search and 

beamform to the available signal path. The array is subsequently required to track the signal 

path periodically and establish the best path available (which could be NLOS if human 

shadowing is high). 

As far as the proof of concept system is concerned, using fRF = 33 GHz instead of 60 GHz 

provides only a 5.2 dB path loss difference at reference distance d0 = 1 m. The challenge 

resides in the relative bandwidth of the system. Working with ASK signals at data rates as 

high as 10 Gbps at a carrier frequency of 33 GHz means that a system with a relative 

bandwidth of 30% must be realized. Usually, the relative bandwidth doesn’t surpass 10% so 

as to have good quality RF components (i.e. filters, amplifiers, etc.). 

2.4 Technical challenges 
Even though 60 GHz technologies offer certain advantages over lower frequency systems, 

there are still numerous challenges that need to be addressed. In this section an overview of 

these open points in 4 main categories (channel propagation, antenna technology, integrated 

circuit technology and modulation schemes) will be described.    

2.4.1 Channel propagation 
Due to the high popularity of cellular networks, WLANs and the emerging massification of 

WiMax, there are plenty of channel models and measurements in the lower frequency channel 

range (5 GHz for WLAN [9]-[10] and 3-10 GHz in the UWB band [11]-[13]). However, the 

60 GHz band lacks of many channel modeling and even less measurements are consistenly 

made. Moreover, the few models available are radio channel models which include the 

antennas [14]. A propagation channel model would be necessary for general use. Therefore, a 

mm-wave propagation channel characterization for short range wireless communications was 

develop in [15] for 60 GHz links for various indoor scenarios. Furthermore, the reflection and 

transmission behavior of building materials at 60 GHz is reported in [16].  The higher losses 

at 60 GHz mean that material penetration is extremely difficult (or even impossible) and that 

the 60 GHz radio signal will be effectively confined to single rooms. While this is 
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advantageous for security reasons, it also means that to provide coverage in a wide area, the 

need of repeaters or some kind of distribution system for femtocellular networks is 

imperative. 

2.4.2 Antenna technology 
Many types of antenna structures are considered not suitable for 60 GHz WPAN/WLAN 

applications due to the requirements for low cost, small size, light weight, and high gain. In 

addition, 60 GHz antennas also require to be operated with approximately constant gain and 

high efficiency over the broad frequency range (57–66 GHz). The beamforming at 60 GHz 

can be achieved by either switched beam arrays or phase arrays. Switched beam arrays have 

multiple fixed beams that can be selected to cover a given service area. It can be implemented 

much easier compared to the phase arrays which require the capability of continuously 

varying the progressive phase shift between the elements. The complexity of phase arrays at 

60 GHz typically limits the number of elements. A 2x2 beam steering antenna was developed 

in [17] at 61 GHz with circular polarization and 14 dB gain. A third solution called photonic 

beamforming is a hybrid electrical/optical approach. Using new photonic lightwave circuits in 

silica technology the phase of multiple antenna elements can be easily adjusted [18]. More 

information on this subject can be found in [19]-[20].  

The implementation of larger phase arrays, however, presents some technical challenges such 

as requirement for higher feed network loss, more complex phase control network, stronger 

coupling between antennas as well as feedlines, and so forth. These challenges make the 

design and fabrication of the larger phase arrays become more complex and expensive. 

For later system experiments and as a proof of concept to cope with the equipment in our lab, 

a wireless link at fRF = 33 GHz was implemented. The broadband data reached data rates as 

high as Rb = 10 Gbps, therefore the realisation of a system with a relative bandwidth > 30% 

was quite challenging. For this reason, a wireless link with fRF = 33 GHz will be 

characterized. Figure 2.6a shows the calculated free space path loss for a wireless link with 

the transmission distance d as a parameter according to Eq. (2.1). For the case d = 1 m, at 

fRF = 33 GHz, the free space path loss was calculated to be PLfreespace = 62.8 dB. The ideal 

channel transfer function exhibits a loss tilt which varies ±2.5 dB inside the bandwidth of 

interest (24-40 GHz). 



2 General system requirements for mobile broadband communication systems  

 

 

16 

Figure 2.6: a) Free space path loss as a function of frequency for a wireless link with the 
transmission distance d as a parameter and b) antenna gain response. 

A more general equation to calculate the link loss was developed by Friis [4] 
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where PTX and PRX are the transmitter and receiver power respectively, GTX and GRX are the 

transmitter and receiver antenna gain respectively, λ is the wavelength, d the link distance and 

SL is a system loss factor (SL ≥ 1 which includes shadowing and other losses). For the system 

experiments two antenna sets were available: 

• Vivaldi DRH40: Vivaldi type antennas with a frequency response from 4 to 40 GHz 

and a nominal gain Gvivaldi = 15 dB. The gain response in the frequency range of 

interest is shown in Figure 2.6b. 

• SGH 2640: standard gain horn antennas with a frequency range from 26 to 40 GHz 

and a nominal gain Ghorn = 24 dB. Its gain response is also depicted in Figure 2.6b. 

The link loss of our channel was measured in an anecoic chamber setting the antennas 

d = 3.1 m apart. The results are shown in Figure 2.7 for different antenna combinations. This 

case corresponds to the free space case as the chamber guarantees no multipath or reflection 

paths. A certain tilt in the response can still be observed, being 1.6 dB for the Horn-Horn and 

2.8 dB for the Horn-Vivaldi case in the systems bandwidth of interest. These two cases can be 

tolerated but using two Vivaldi antennas exhibit a tilt of 7.55 dB which is unacceptable, as a 

signal using the whole available bandwidth (i.e. 9 GHz) will surely be distorted. 
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Figure 2.7: Link loss as a function of frequency for a wireless link for d = 3.1 m and different 
antenna combinations. 

The antennas directional diagram for the E-plane and H-plane can be seen in Figure 2.8a for a 

Horn antenna and Figure 2.8b for a Vivaldi antenna. The Horn antenna is clearly more 

directive, thus providing more gain (10 dB more than the Vivaldi). 

Figure 2.8: Antennas directional diagrams with fRF = 33 GHz for a) Horn antenna and b) 
Vivaldi antenna. 

2.4.3 Integrated circuit technology 

To exploit the wireless market it seems the key aspects that decide a technology’s success are 

the size and cost. By using integrated circuit (IC) technology the size of the devices is reduced 

and mass production is feasible, allowing a reduction in cost. At mm-wave there are three 
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competing IC technologies: group III and IV semiconductor technology such as gallium 

arsenide (GaAs) and indium phosphide (InP); silicon germanium (SiGe) technology such as 

HBT and BiCMOS; and silicon technology such as CMOS and BiCMOS. There is, up to now, 

no single technology that can meet all the objectives and system requirements. Therefore, the 

choice of IC technology will depend on the application. For example, GaAs technology 

allows fast, high gain, and low noise implementation but suffers poor integration and 

expensive implementation. On the other hand, SiGe technology is a cheaper alternative to the 

GaAs with comparable performance. A comparison of the costs of different semiconductor 

technologies normalized to the cost of InP is shown in Figure 2.9 for the year 2005 [21]. All 

of these technologies can work at 60 GHz being InP the most expensive to develop. GaAs 

technology in both its high electron mobility transistor (HEMT) variants: metamorphic 

HEMT or pseudomorphic HEMT, offers around a 60% of the InP cost. Most impressive is the 

reduction in cost when using SiGe, with only a mere 8% of the InP costs. 

 

Figure 2.9: Relative cost, per unit area, for semiconductor technologies normalized to InP [21]. 

In [22], the first mm-wave fully antenna integrated SiGe chip has been demonstrated. In 

reduced size and mass production, CMOS technology appears to be the leading candidate as it 

provides low-cost and high integration solutions compared to the others at the expense of 

performance degradation such as low gain, linearity constraint, poor noise, lower transit 

frequency, and lower maximum oscillation frequency. Recent advances in CMOS technology 

[23] have demonstrated the feasibility of bulk CMOS process at 130 nm for 60 GHz RF 
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building blocks, active and passive elements. More future research and investigations in 

developing a fully integrated CMOS chip solution have to be performed. 

2.4.4 Modulation schemes 
The choice of the modulation format at 60 GHz will be highly dependent on the wireless 

channel, the use of high gain antennas or arrays of them and the limitations of the RF 

technology. For example, if the delay spread of the propagation channel is high, then 

orthogonal frequency division multiplex (OFDM) will be the obvious choice due to its flat 

fading capabilities. On the other hand, high directive antennas could be used to minimize the 

effects of multipath fading. 

Regarding CMOS technology, the lower power and high linearity requirements of the 

amplifiers make the use of OFDM complicated. Moreover, the poor phase noise performance 

limits higher modulation formats to less than 16 quadrature amplitude modulation (16QAM), 

16 phase shift keying (16PSK) or 16 frequency shift keying (16FSK). The use of simple 

modulation formats such as amplitude shift keying (ASK) or differential phase shift keying 

(DPSK) are motivated by the huge unlicensed bandwidth available in the 60 GHz band. 

Therefore, the choice of the modulation format is a tradeoff of a number of issues which need 

to be further studied. 

A comparison of different attributes of the most common modulation formats is summarized 

in Table 2.3. For later system experiments, ASK was selected as the modulation format to be 

used. Though relatively spectral inefficient, ASK offers several advantages such as simplicity 

of implementation, potential ultra-high data rate capabilities (i.e. 10 Gbps), relative 

insensitivity to amplifier non-linearity and oscillator phase noise and most of all, ease of 

interfacing to wire or fiber data networks [24]. 

 

 

 

 

 

 



2 General system requirements for mobile broadband communication systems  

 

 

20 

 Mod. 
Scheme 

Mod. 
Circuitry, 
Relative 

Complexity 

Demod. 
Circuitry, 
Relative 

Complexity 

Clock 
Recovery 
Required 

IF Circuitry, 
Relative 

Complexity 

Data Rate 
@ 1 GHz 

BW 
(Gbps) 

Relative 
SNR 

Improvement 
(dB) 

ASK/OOK –
Envelope Low Lowest No Lowest 0.8 0 (Ref) 

ASK/OOK -  
Coherent Low Medium Yes Lowest 0.8 -1 

FSK – 
Coherent Medium High Yes Lowest 0.8 -4.7 

BPSK Low Medium Yes Lowest 0.8 -6.1 

DPSK - 
Downconvert Low Low No Low 0.8 -5.1 

QPSK Medium High Yes Low 1.9 -6.1 

Table 2.3: Comparison of modulation schemes/architectures [25]. 

The spectral efficiency can be defined as the channel capacity divided by the bandwidth used. 

Shannon’s theorem puts a limit on the maximum spectral efficiency SE that can be achieved, 

and rearranging terms from Eq. (2.3) it takes the form 

 ( )2( / ) log 1 .CSE bps Hz SNR
B

= = +  (2.7) 

Simulations for different modulation formats with optimum coding are shown in Figure 2.10 

including Shannon’s fundamental limit as a function of the SNR. Each modulation reaches the 

maximum spectral efficiency determined by the logarithm of the number of constellation 

points in the format (i.e. SEmax = log2(M), being M the number of constellation points). It is 

clear that increasing M results in a more spectral efficient format which approachs Shannon’s 

limit for the case of the phase modulation formats. The case of ASK is similar to BPSK but 

with lower sensitivity, being one of the most spectral inefficient modulation formats which 

requires relatively high SNR to achieve a modest spectral efficiency of 1 bps/Hz. At the 

expense of system complexity, higher capacities can be obtained with higher order 

modulation formats for the same SNR. Quadrature amplitude modulation (QAM) proves to be 

the best approach as it requires the lowest SNR to reach its optimum spectral efficiency. 
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Figure 2.10: Spectral efficiency SE as a function of SNR for different modulation formats. 

2.5 Signal transport schemes: radio over fiber architectures 
The technical challenges described in section 2.4 concentrated mainly on physical aspects of 

gigabit wireless communications such as the components required for actual transmission 

from base station (BS) to the end user. The transport of these broadband signals to and from 

the BS will be briefly described in this section, taking into account both down- and uplink 

architectures. 

2.5.1 Downlink transmission 
For the downlink three basic architectures are available: RF over fiber, IF over fiber and 

baseband over fiber. The basic principle of transmitting an RF signal with broadband data is 

carried out by all of them. However, each differentiates itself mainly in the way the 

complexity of the system is divided. Schematics of these three approaches can be seen in 

Figure 2.11. 

The most straightforward approach to interconnecting remote antenna base stations in a fiber 

radio system is via an optical fiber feed network which can transport the wireless signals 

directly over the fiber at the RF transmission frequency without the need for any subsequent 

frequency up- or down-conversion at the base stations. This signal transport scheme is known 

as ‘RF over fiber’ (RoF) and a schematic depicting the architecture is shown in Figure 2.11a. 

Such a configuration is attractive in microcellular and picocellular networks operating in the 

mm-wave frequency region where a large number of cheap and simple BSs are required to 
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provide wide geographical coverage. However, a critical issue is the need of high speed 

optical modulation techniques able to generate mm-wave signals and consequently high speed 

photodiodes able to convert the optical signals back to the mm-wave range in the electrical 

domain. Various methods are available for mm-wave generation and will be discussed later in 

chapter 3. Moreover, depending on the kind of modulation technique, the RF signal will 

suffer more or less fiber chromatic dispersion induced power fading. This analysis is 

thoroughly investigated in chapter 4.  

 

 

 

Figure 2.11: Signal transport schemes for the downlink. a) RF over fiber, b) IF over fiber and 
c) baseband over fiber. 

By shifting the complexity a little bit into the BS, the transmission of ‘IF over fiber’ is shown 

in Figure 2.11b. In this case, IF frequency generally refers to intermediate frequencies in the L 

band (1-2 GHz). By reducing the frequency transmitted through the fiber the effects of fiber 
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chromatic dispersion are significantly diminished. Moreover, systems working directly at L 

band frequencies (e.g. WLAN) will not need up-conversion and the requirement on high 

speed optoelectronic components is reduced. However for systems working in the higher mm-

wave range, the frequency up-conversion is carried out directly at the BS with a local 

oscillator (LO), increasing its complexity and cost. 

To benefit from a mature technology such as baseband optical digital communications, the 

third approach ‘baseband over fiber’ was developed and is depicted in Figure 2.11c. Now the 

signal is time multiplexed and directly sent at baseband to the BS where the frequency 

upconversion is takes place. Therefore, the requirement on the optoelectronic components is 

the lowest and the effects of fiber chromatic dispersion are very low. In addition, many of the 

digital signal processing techniques can also be implemented. On the other hand, the BS is 

now a complex and costly unit, capable of up-converting different channels with different IFs. 

 

 

Figure 2.12: RHD signal transport schemes for the downlink. a) ODSB and b) OSSB. 

The previous three approaches employ intermediate frequencies (IFs) which limit the 

bandwidth available for data transmission. To reach multi-gigabit data rates either some 

complex multi-level format is needed or the broadband data needs to be directly modulated 

onto the optical carrier. The latter procedure is known as remote heterodyne detection (RHD) 
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and offers two possibilities: optical double sideband (ODSB) and optical single sideband 

(OSSB) which are shown in Figure 2.12a and Figure 2.12b, respectively.  

For this approach a dual wavelength source is needed which provides the two optical spectral 

lines. Coherence and correlation between these lines will be studied later in chapter 4. The 

main difference between both approaches resides in if the two optical lines are modulated 

with the broadband data or only one of them is. The base station architecture is the same for 

both cases, as the heterodyning to produce the RF frequencies takes place in the broadband 

photodiode. In this way, larger bandwidth is available, meaning that increased data rates can 

be transmitted. 

2.5.2 Uplink transmission 
There are many proposals for the downlink architecture but not so many for the uplink. The 

main issues are the need of a laser source in the BS and the modulation of this optical carrier 

with the uplink data. Some schematics can be seen in Figure 2.13. 

The most straightforward approach would be to mimic the CS architecture, shown in Figure 

2.13a. The uplink signal is modulated onto a laser diode through an external modulator. The 

main disadvantage of this approach is the need of high speed electro-optical components to 

accommodate the RF signal. In addition, the uplink signal will suffer from chromatic 

dispersion induced power fading.  

Another solution would be to downconvert the uplink signal to intermediate frequencies, 

shown in Figure 2.13b. Now the laser diode can be directly modulated, saving the cost of a 

high speed external modulator. Furthermore, this approach benefits of the maturity of IF 

demodulation techniques. However, the need of an LO source in the BS increases its 

complexity and cost. Nonetheless, the LO can be distributed through the downlink and 

recovered in the BS through electrical filtering. 

The last approach would be to use a device which receives the downlink data at one 

wavelength and modulates the uplink signal onto another optical carrier. This can be realized 

with an electro absorption transceiver (EAT) which acts as a detector for the downlink and as 

an electro absorption modulator (EAM) for the uplink. The corresponding schematic is shown 

in Figure 2.13c. The EAT can be thought of as a 4-port device with optical in/out and RF 

in/out ports. Realisations of such a structure can be found in [26]-[27]. 
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Figure 2.13: Signal transport schemes for the uplink. a) RF over fiber, b) IF over fiber and 
c) Electro Absorption Transceiver (EAT). 

Another variant for the EAT is using reflecting semiconductor optical amplifiers (RSOA). 

Research done in [28] shows that the modulation on an optical carrier can be deleted and the 

original optical carrier can thus be remodulated with the new data stream. Direct modulation 
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of the RSOA bias current was achieved for 1.25 Gbps signals in [29], saving the optical 

modulator for the uplink. Data rates as high as 10 Gbps in WDM-PON were demonstrated in 

[30] after electronic equalization. 
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3 Optical methods for microwave signal generation 

The generation of the mm-wave carriers can be achieved electrically, but optical heterodyne 

techniques offer definitive advantages. First of all, the ability to generate the mm-wave 

signals remotely due to the low loss of the fiber. Secondly, optical fiber provides immunity to 

electromagentic interference. Thirdly, the mechanical flexibility and low weight provide ease 

of deployment. And finally, some optical upconversion methods are capable of generating 

multiples of a reference oscillator, providing saving costs due to frequency multiplication. 

Several optical methods are used to generate electrical local oscillator (LO) signals in the 30 

to 300 GHz range. All of them involve the heterodyne mixing of two or more laser spectral 

lines (separated at the desired mm-wave frequency fLO) in a photodiode to generate the 

electrical beat signals. The laser spectral lines can be obtained from a single laser source or 

two phase-correlated lasers, or even two uncorrelated lasers. Due to the mixing, generally in a 

broadband photodiode, the resulting signals provide low-phase noise in accordance to the 

electrical reference source used. While many methods rely on generating two phase correlated 

spectral lines, some can use “white noise” sources such as the amplified spontaneous emission 

(ASE) from an erbium doped fiber amplifier (EDFA). However, the coherence of the optical 

fields is a major issue. In the next sections, the most common methods are briefly explained. 

3.1 Heterodyned laser techniques 
Heterodyning two laser modes that are offset from each other by fLO is the most commonly 

used and, subjectively, the simplest method for efficiently producing optical LO signals. The 

modes can originate from the same laser cavity, called mode-locking. The drawback in this 

case is that for a certain laser, this results in a fixed microwave frequency, as the laser modes 

are a solution to the propagation equations in a laser cavity. However, the modes can come 

from two independent optical sources that either electrically/optically phase locked or 

injection locked together. In either case, the optical LO signal intensity can be generally 

expressed as 

 0 1( ) sin(2 ).LO LOP t a a f tπ ϕ= + ⋅ +  (3.1) 

where 0 1 2( ) 2a P P= + is the average optical intensity of the two combined modes, 

1 1 2a PP= and fLO is the offset frequency of the two laser modes. For comparison purposes, a 
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mixer conversion gain will be defined as the ratio of the detected power at nfLO+fRF to the 

detected electrical power at fRF, which is given by [31] 

 
2

2
04

n
n

a
a

Γ =  (3.2) 

where n represents the nth harmonic of fLO used for the upconversion. 

Ideally, the electrical fields for the individual laser modes are perfectly aligned, the intensities 

of each mode are equal, and the offset frequency is well stabilized. In this case, 100% optical 

modulation is achieved, a0 = a1, and the differential conversion gain is Γ1 = -6 dB. 

Conventional electronic mixers have conversion losses of more than 6 dB, so this is quite a 

good result, although in this scenario, no link loss has been assumed. 

3.1.1 Mode-locking 
Inside a laser cavity many independent longitudinal modes are present. They are usually 

independendent from each other, meaning that their phase noise is uncorrelated. The 

frequency separation Δf of the modes is given by the length of the cavity L, the refraction 

index nL and the velocity of light c in the following form 

 .
2 L

cf
n L

Δ =  (3.3) 

By mixing in a photodiode, all spectral lines contribute to generate electrical signals in the 

frequencies n f⋅ Δ (n = 1, 2,…). As all the modes in the laser cavity are uncorrelated, the 

generated electrical signal is unstable and very noisy. 

With precise modulation of the laser with a signal with frequency fm, which approximates the 

frequency separation Δf, these uncorrelated longitudinal modes can be coupled and thus stop 

being independent. This approach is called active Mode-Locking. Passive Mode-Locking can 

be achieved by using saturated absorbers. Passive Mode-Locking is easier to achieve in 

practice but lacks tuning capabilities. By heterodyne mixing in a photodetector, the resulting 

signal at fLO = nΔf is very stable and, as the longitudinal modes are now correlated, its phase 

noise is very low [32]. 

For the generation of mm-wave signals the use of semiconductor lasers is very popular. They 

are very compact and have mode separations Δf in the GHz region. Nonetheless, they have to 
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be specially designed for this purpose, with a section that allows active or passive mode-

coupling. Many examples can be found in the literature, namely [33]-[39]. 

One main drawback of this technique is the broad spectrum of the laser source which makes 

the use in WDM systems quite inefficient. As many modes contribute to the mm-wave signal 

generation, this method is especially subtle to fiber dispersion. By optical filtering, two modes 

can be selected with a frequency separation of fLO. This provides a dispersion tolerant signal at 

cost of power efficiency [40]. 

Special devices can be manufactured with optical filters inside the laser cavity which hinder 

the propagation of undesired modes so that only the two modes used for the mm-wave signal 

generation leave the laser cavity [41]. This results in a compact, efficient device but lacks 

tunability of the mm-wave frequency and a complex fabrication process. 

3.1.2 Injection-locking 
In contrast to mode-locking, where two or more laser modes are coupled by an external 

electrical modulation signal, in the case of Injection-Locking the coupling is produced by an 

optical signal. A laser (called Master laser) is modulated with the desired mm-wave LO signal 

so that the emission spectrum shows the corresponding modulation sidebands. Also 

subharmonics are possible, as seen in [42]. When this signal is “injected” into another laser 

(called Slave laser) then one modulation sideband of the Master laser couples the emission of 

the slave laser, so that both lasers transmit a correlated signal with the desired mm-wave 

separation. 

Several configurations for this approach can be found in the literature [43]-[48]. The biggest 

disadvantage is the need of at least two lasers and other optical components (i.e. isolators, 

fiber couplers, etc). However, locking two or more slaves to one master laser provides 

multichannel capability and optical spectra with 1 Hz linewidth have been generated [49]. 

3.1.3 Phase locked loops 

The most straightforward method to generate mm-wave signals is the heterodyne method 

where two lasers, which are separated by the desired frequency fLO in the optical domain, 

combine in a photodiode to generate the mm-wave signal. This method can be achieved by 

using two completely uncorrelated laser sources but the frequency stability and phase noise 

are very poor. Normally an active phase-locked loop with a microwave source is needed to 
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couple both laser sources in phase and thus achieve stable mm-wave signals [50]-[58]. Due to 

the high spectral linewidth of semiconductor lasers (a couple of MHz) the control loop time 

constant has to be relatively small (typically < 1 ns). It is therefore very difficult to achieve 

this for a single phase-locked loop, which is why hybrid solutions with phase-locking and 

injection-locking are proposed [59]. Nonetheless they require complex optical and electrical 

configurations. 

3.2 External optical modulators 
The basic principle behind external optical modulators is to maintain the laser working in a 

continous wave mode and modulate the optical field via diverse electrooptical effects, for 

example, the electrooptic effect in crystals. Basically, when light propagates in a crystal, two 

possible linearly polarized modes exist: the so called rays of propagation. Each mode 

possesses a unique direction of polarization and a corresponding index of refraction nx and ny 

(i.e. a velocity of propagation). The existence of two orthogonal fields with different indices 

of refraction (nx ≠ ny) is called birefringence. The linear electrooptic effect is the change in the 

indices nx and ny that is caused and is proportional to an applied electric field which in turn 

will lead to a change in phase. When an interferometric structure is used, such as a Mach-

Zehnder structure, the phase modulation is converted to intensity modulation. The 

electrooptic effect is found in crystals such as lithium niobate (LiNbO3), III-V semiconductors 

such as gallium arsenide (GaAs) or indium phosphide (InP) as well as poled polymers. 

The most common optical modulators work using the Pockels effect (or linear electrooptic 

effect) of LiNbO3 which achieves high Pockels coefficients (e.g. r33 = 31 pm/V). The one 

disadvantage of LiNbO3 as a material is that it cannot be integrated with the laser diode 

source. That is why special interest was pursued in the use of III-V semiconductor materials 

such as gallium arsenide and indium phosphide. The possibility of monolithic integration with 

CW lasers is the main advantage of these kind of materials eventhough the Pockels effect is 

weaker than that in lithium niobate and there tends to be a poor overlap between the optical 

mode and the applied electric field. Furthermore, the refractive index of InP is relatively 

higher (n = 3.5) than silica fiber leading to increased fiber-to-fiber insertion loss (typically 

10 dB). However, integrated photonic devices based on GaAs and InP are becoming an 

interesting option to integrate multiple functions in chips. A low drive voltage (0.45 V) GaAs 

Mach-Zehnder modulator with 50 GHz bandwidth is demonstrated in [60]. InP is used in 
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high-power and high-frequency electronics because of its superior electron velocity with 

respect to the more common semiconductors silicon and GaAs. In [61] an 80 Gbps InP 

modulator with loaded capacitive electrodes is presented. InP also has a direct bandgap, 

making it useful for optoelectronics devices like laser diodes and is also used as a substrate 

for epitaxial indium gallium arsenide based opto-electronic devices. 

In addition to being able to exploit the electrooptic effect in semiconductor materials it is also 

possible to use the electro-absorption effect. Electro-absorption can occur in both bulk 

semiconductors and quantum well structures; for the former it is referred to as the Franz 

Keldysh effect while in the latter it is called the quantum confined Stark effect (QCSE) [62]. 

With this in mind, compact electro absorption modulators (EAMs) can be built. However, 

there is a shift of absorption spectra with varying bias occuring over a relatively narrow 

window of wavelengths, thus precise alignment between the wavelength of the CW source 

laser and the EAM is required. EAMs have been successfully demonstrated at frequencies as 

high as 60 GHz [63], and the envisioned application here would be 60 GHz fibre radio 

picocells. The fact that EAMs can be monolithically integrated with lasers indicates the 

possibility of low cost manufacturing, although it should be pointed out that packaging issues 

still need to be resolved as does sensitivity to changes in temperature and/or bias voltage. 

Efficient generation of optical LO signals can therefore also be obtained using a single laser 

source and a Mach Zehnder amplitude or phase modulator, using modulation sidebands of an 

externally modulated fiber link. Modulators with high bandwidths (up to 30 GHz with 

LiNbO3) are now common optical components and if the mm-wave requirements aren’t too 

high, they can be pretty inexpensive. Moreover, the generation of LO signals directly at fLO or 

harmonic signals at nfLO can be obtained. By adjusting the modulator bias point and RF drive 

power to the modulator introducing the low frequency reference signal at fLO, efficient 

frequency multiplication to generate mm-wave signals upon detection can be achieved. Many 

setups are proposed and researched in the literature [64]-[67]. In contrast to direct modulated 

lasers, external modulation provides frequency stability, low chirp and by harmonic 

generation the effective bandwidth can be improved by several orders of magnitude. 

Moreover, there is a complete control over the modulation and schemes such as optical single 

sideband (OSSB) can be achieved. There is a distinction in whether the information signal is 

already modulated onto the optical signal and the external modulator is in charge of only 
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“upconverting” this signal into the mm-wave range [68]-[69], or if both the information and 

the mm-wave are inserted by the same external modulator [70]. 
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4 Propagation of mm-wave signals in optical waveguides 

The propagation of signals through optical waveguides is well described in the literature (for 

more details refer to [71]). The focus in this chapter will be on the properties and impairments 

of mm-wave signals which propagate in optical fibers. In this field, two distinct approaches 

can be distinguished: intensity modulation/direct detection (IM/DD) links or remote 

heterodyne detection (RHD) techniques. In IM/DD links, a single laser is modulated in its 

intensity with the mm-wave signals plus the data signal. After transmission through optical 

fiber, the mm-wave signal is recovered in a broadband photodiode by direct detection. This 

approach is very straightforward but requires high bandwidth devices. Depending on the type 

of system and the RF frequency employed, the laser spectral line could be modulated up to 

60 GHz or higher. Directly modulated lasers are out of this range due to linearity problems 

and even external modulation can only achieve 40 GHz bandwidth (with LiNbO3 MZMs for 

example). On the other hand, RHD are based on the transmission of two phase correlated 

optical carriers with a frequency offset equal to the desired mm-wave frequency. One of the 

carriers is modulated with the information and the mm-wave signal is recovered after 

heterodyning in a photodiode. Now the bandwidth requirement is defined by the information 

signals bandwidth, which can be as high as 7 GHz for a 10 Gbps ASK signal. However, this 

approach usually needs special care not to lose the phase correlation of the optical spectral 

lines. In both approaches, chromatic dispersion in optical fibers is a limiting factor for the 

transmission distance which can be achieved in this kind of fiber optic links when the 

microwave signals are in the above 20 GHz region. 

For IM/DD mm-wave links, chromatic dispersion poses a carrier to noise (C/N) penalty due 

to differential phase changes in the modulation sidebands relative to the carrier of the optical 

signal. In RHD links it results in both a C/N penalty as well as an increase in phase noise on 

the mm-wave signal, both due to decorrelation of the two transmitted optical carriers. Also for 

high data rates (10 Gbps and above), fiber chromatic dispersion introduces a significant pulse 

broadening of the baseband information data which results in intersymbol interference (ISI) 

thus leading to higher error rates and transmission distance limitations. 
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4.1 Chromatic dispersion 
Chromatic dispersion (CD) causes light pulses in optical fibers to spread, thus introducing 

intersymbol interference (ISI) and limits the transmission distance specially when operating 

with bit rates of 10 Gbps and higher. The group velocity of the fundamental mode in single 

mode fibers (SMF) is frequency dependent because of CD. As a result, the different spectral 

components which form an optical pulse travel at slightly different group velocities, and 

therefore, the pulse broadens. Thus, this effect is also referred to as group velocity dispersion 

or simply fiber dispersion. 

Consider a single mode fiber of length L. A specific spectral component of the optical signal 

at the angular frequency ω would arrive at the output end of the fiber after a time delay 

T = L/vg, where vg is the group velocity, defined as [72] 

 .g
dv
d

ω
β

=  (4.1) 

By using 0nk n cβ ω= = in (4.1), then g gv c n= , where gn  is the group index given by 

 ( ).gn n dn dω ω= +  (4.2) 

The frequency dependence of the group velocity leads to pulse broadening simply because 

different spectral components of the pulse disperse during propagation and do not arrive at the 

same time at the fiber end. If Δω is the spectral width of the pulse, the extent of pulse 

broadening for a fiber length L is described by 

 2 ,
g

dT d LT L
d d v

ω ω β ω
ω ω

⎛ ⎞
Δ = Δ = Δ = Δ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.3) 

Where 2 2
2 d dβ β ω= is known as the group velocity dispersion (GVD) parameter and 

determines how much an optical pulse would broaden on propagation inside the fiber. 

Expressing Eq. (4.3) as a function of the wavelength spectral width Δλ results in 
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where 
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D is called the dispersion parameter and is expressed in units of ps/nm·km being β2 the 

propagation constant. As D depends on the transmission wavelength, then in WDM systems 

each channel will be affected by a different dispersion parameter. 

The pulse spreading ΔT can be approximately related to the bitrate Rb in binary systems, by 

intuitively making the pulse broadening smaller than the allocated bit slot (Tb = 1/Rb). 

Although many details are needed for a precise relation of Rb and ΔT, an order of magnitude 

estimate can be obtained from the condition RbΔT<1 and therefore from Eq. (4.4) the 

following fundamental dispersion rule of thumb limit is obtained for non-return-to-zero 

(NRZ) modulation 

 1.bR L D λΔ <  (4.6) 

Using single mode semiconductor lasers one can reduce Δλ to less than 1 nm and obtain a RbL 

product of more than 1 Tbps·km. Taking D = 17 ps/nm·km for SMF around λ = 1550 nm, this 

would mean that for a data rate Rb = 10 Gbps, a maximum transmission length L10 ≈ 60 km is 

obtained. This value is reduced to L40 ≈ 4 km for Rb = 40 Gbps. It is evident that the higher 

the data rate Rb the more impaired the system is with respect to fiber dispersion. 

The wavelength dependence of D is governed by the frequency dependence of the mode 

index n. From Eq. (4.5) and Eq. (4.2), D can be rewritten as 
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 (4.7) 

Clearly, fiber dispersion D has two main contributions: the so called material dispersion DM 

and waveguide dispersion DW. Material dispersion DM takes the form [73] 
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Material dispersion occurs because the refractive index of silica, the material used for fiber 

fabrication, changes with the optical frequency ω. The origin of material dispersion is related 

to the characteristic resonance frequencies at which the material absorbs electromagnetic 
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radiation. The refractive index n(ω) is approximated for both cladding and core by the 

Sellmeier equation [74] 

 
2

2
2 2

1
( ) 1 ,

M
j j

j j

B
n

ω
ω

ω ω=

= +
−
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where ωj is the resonance frequency and Bj is the oscillator strength. These values are 

obtained empirically by fitting the measured curves to Eq. (4.9) with M = 3 [75]. Then with 

Eq. (4.8) the material dispersion DM can be calculated. 

Waveguide dispersion, on the other hand, depends on the relative powers transmitted in the 

core and the cladding, which depends on the geometry of the fiber, especially the spot size wd. 

From [73] the wavelength variation of DW is given by 
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Figure 4.1: Total dispersion D and relative contributions of material dispersion DM and 
waveguide dispersion DW for a conventional single-mode fiber [73]. 

Figure 4.1 shows the wavelength dependency of the total dispersion D and the contributions 

of material dispersion DM and waveguide dispersion DW for standard single-mode fibers. The 

zero dispersion wavelength λ0 is defined as the wavelength where the total dispersion D is 

zero. For standard SMF this occurs for λ0 ≈ 1300 nm. As the waveguide dispersion DW can be 

tailored, different kind of fibers can be obtained where the material dispersion is totally 
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compensated (dispersion flattened fibers) or λ0 is shifted to the long-haul telecommunication 

wavelength of 1550 nm (dispersion shifted fibers or DSF). 

Working at the zero dispersion wavelength λ0 would seem to solve the dispersion problem. 

However, optical pulses still experience broadening due to higher order dispersive effects. 

This is caused because D cannot be made zero at all wavelengths contained within the pulse 

spectrum. Therefore, the wavelength dependence of D plays an important role, especially in 

dispersion shifted fibers. The dispersion slope S can be then defined as [71] 
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3 22 3
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λ λ λ
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 (4.11) 

where 
33

3 2 2d d d dβ β ω β ω= = . At λ = λ0, β2 = 0 and S is proportional to β3. For a source 

of spectral width Δλ, the effective value of the dispersion parameter becomes D = SΔλ. The 

limiting bit rate distance product can be estimated by replacing this value of D in Eq. (4.6) 

 ( )2 1.bR L S λΔ <  (4.12) 

Taking S = 0.08 ps/nm2·km for a dispersion shifted fiber around λ0 = 1550 nm and a spectral 

width Δλ = 1 nm, then the RbL product approaches 12.5 Tbps·km, much higher than the 

dispersion limited RbL product. Consequently, the effects of dispersion slope will be neglected 

for the remainder of this work. 

4.1.1 Chromatic dispersion impaired system 
In this section the effects of chromatic dispersion pulse broadening for baseband data 

transmission under direct detection will be studied. As a model, a trapezoidal pulse shape is 

assumed for simplification purposes, with a bit period Tb and original rise/fall times tr 

(normalized to Tb) and no fiber attenuation is considered. According to Eq. (4.4) each pulse 

will spread by an amount ΔT, so we define the normalized pulse broadening as 

 .N
b b

T D LT
T T

λΔ ⋅ Δ ⋅
Δ = =  (4.13) 

At the receiver, the rise/fall time of the received pulse Ts is affected by the pulse broadening 

as well, and is changed to 
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 2 2 .s NT tr T= + Δ  (4.14) 

Considering no power loss, the area of the transmitted trapezoidal pulse remains constant. The 

amplitude of the logical level 0 is zero, while the amplitude of the logical level 1 can be 

written as 

 1,0
1,0'

1 N

I
I

T
=

+ Δ
 (4.15) 

where I1, I0 and I’1, I’0 are the mean pulse amplitudes of level 1,0 at the transmitter and 

receiver respectively. The receiver Q factor can be defined as 

 1 0

1 0

' 'I IQ
σ σ

−
=

+
 (4.16) 

where σ1 and σ0 are the standard deviation of amplitudes of level 1 and 0 respectively. They 

depend mainly on two noise contributors in the receiver, shot noise and thermal noise. Shot 

noise is a manifestation of the fact that the electric current consists of a stream of electrons 

that are generated at random times. On the other hand, thermal noise generates when at a 

finite temperature, electrons move randomly in any conductor. Random thermal motion of 

electrons in a resistor manifests as a fluctuating current even in the absence of applied 

voltage. Thus the photodiode current generated in response to a constant optical signal can be 

written as 

 ( ) ( ) ( )p d s TI t I I i t i t= + + +  (4.17) 

where p inI RP= is the average current dependent on the responsivity R of the photodiode and 

the incident optical power Pin, Id is the dark current and is(t) and iT(t) are the contributions 

from shot and thermal noise respectively. Shot noise is mathematically a stationary random 

process with Poisson statistics, but can be approximated by Gaussian statistics. The variance 

is given by [71] 

 ( )2 2s p d nq I I Bσ = +  (4.18) 

where Bn is the effective noise bandwidth of the receiver and q the electron charge. 
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Thermal noise is indeed a stationary random process with Gaussian statistics that is frequency 

independent up to f ≈ 1 THz (nearly white noise) and its variance is given by [71] 

 2 4 B
T amp n

L

k T NF B
R

σ =  (4.19) 

where kB is Boltzmann’s constant, T is the absolute temperature in °K, RL is the load resistor 

and NFamp the amplifier noise figure. An important difference between both noise 

contributions is that shot noise depends on the generated photocurrent whereas thermal noise 

does not. 

The total current noise for each level can be obtained by adding the contributions of shot and 

thermal noise. Since both are independent random processes with approximately Gaussian 

statistics, the total variance of the current fluctuations can be obtained by simply adding 

individual variances. The result is 

 ( )1,0

2 2 2
1,0

42 .B
s T p d n amp n

L

k Tq I I B NF B
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σ σ σ= + = + +  (4.20) 

Figure 4.2 shows a histogram simulation of the voltage at the receiver for a dispersion 

impaired system. The crosstalk between the values of logical 0 and 1 can be clearly 

distinguished. Two Gaussian fits are drawn for comparison. 

 

Figure 4.2: Histogram of the voltage at the receiver and the corresponding Gaussian fit for 
each logical level. 

-3 -2 -1 0 1 2 3 4 5 6 7
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

 

 

 Samples
 Gaussian Fit Logical 0
 Gaussian Fit Logical 1

S
am

pl
es

 (%
)

Voltage (µV)



4 Propagation of mm-wave signals in optical waveguides  

 

 

40 

From Eq. (4.13)-(4.15) and [76] the expression of the bit error rate (BER) of a CD-impaired 

system can be found to be 
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where erfc is the complementary error function, 0 1p σ σ= and gmed and ginf are given by 
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Using Eq. (4.16) and Eq. (4.20) the variations of Q versus received optical power can be 

calculated for different transmission distances L, i.e. different pulse spreading values ΔΤΝ. 

Simulations were carried out with the following parameters: Rb = 10 Gbps with a Mach-

Zehnder modulator with an extinction ratio ER = 30 dB, using a p-i-n photodiode with 

responsivity R = 1 A/W and zero dark current Id = 0, λc = 1550 nm, spectral linewidth 

Δλ = 0.12 nm, Popt = -35 to -5 dBm and D = 17 ps/nm·km. The noise bandwidth is limited by 

a low pass filter to Bn = 7.5 GHz. The thermal noise is simulated with a thermal noise power 

density of Nth = 10 pA/√Hz, corresponding to an effective temperature of Teff = 90°K. No 

system amplifier was used, so NFamp = 0 dB over a load resistor RL = 50 Ω, thus σT ≈ 0.9 μA. 
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As a result of fiber dispersion (attenuation is neglected), the Q factor decreases significantly 

as shown in Figure 4.3a when the fiber length is increased. Nonetheless, with Eq. (4.21) the 

BER can be evaluated and the results are shown in Figure 4.3b. 

Figure 4.3: Simulated a) Q curves and b) BER curvers for a system working with Rb = 10 Gbps 
as a function of received optical power in a p-i-n photodiode. 

Dispersion induced broadening affects the BER performance in two ways. First, a part of the 

pulse energy spreads beyond the allocated bit slot and leads to intersymbol interference thus 

for sufficient long fiber spans an error floor is reached independently of the optical power. 

Second, the pulse energy within the bit slot is reduced and thus the signal to noise ratio (SNR) 

is reduced at the decision circuit. Since the SNR should remain constant to maintain system 

performance, the receiver requires more average power. This is usually called dispersion-

induced power penalty. For example, between L = 0 km and L = 60 km, there is a penalty of 

3.5 dB for BER = 10-9.  

4.2 IM/DD fiber optic mm-wave links 
Chromatic dispersion has a significant influence on the transmission distance in IM/DD mm-

wave links for high RF frequencies (fRF > 20 GHz). A typical link setup is shown in Figure 

4.4, where xin(t) is the input mm-wave signal that is modulated on the optical carrier by 

electro-optic intensity modulation (E/O IM). The resulting optical signal, yin(t) is transmitted 

through optical fiber to the receiver. The mm-wave signal is here recovered by opto-electric 

direct detection (O/E DD), such as a photodiode, resulting in the signal xout(t).  
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Figure 4.4: IM/DD fiber optic mm-wave link. 

In this kind of links, the mm-wave signal is carried as a lower and an upper sideband around 

the optical carrier. Due to fiber dispersion and the mm-wave frequency offset (fm = fRF) 

between the sidebands and the optical carrier, the phase of each of the spectral components 

suffers a differential change. This produces either constructive or destructive interference. 

After detection, the destructive interference case results in a power reduction of the recovered 

mm-wave signal xout(t) known as dispersion power fading. 

The fiber can be modeled as a band-pass filter with flat amplitude response and linear group 

delay. Although optical fiber exhibits a certain loss profile over the wavelength, the region 

used for mm-wave links is considered as narrow optical bandwidth (< 1nm) and the amplitude 

response therein can be considered constant. To evaluate the effects of fiber dispersion alone, 

the attenuation will be set to zero (i.e. no power losses). The low-pass equivalent transfer 

function of the fiber is given by [77] 

 
2( )( ) exp exp mj fj fH f δφ −−= =  (4.23) 

where 

 
2D L

c
π λδ =  (4.24) 

and fm = fRF is the mm-wave frequency, D is the chromatic dispersion, λ is the optical 

wavelength, c is the speed of light in vacuum and L is the length of the fiber. The optical 

signal after fiber transmission yout(t) results in 

 ( ) ( ) ( )out inY f Y f H f=  (4.25) 
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where Yout(f) and Yin(f) are the Fourier transforms of yout(t) and yin(t) respectively, obtained 

from 

 

2

2

( ) ( ) exp

( ) ( ) exp .

j ft
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j ft
in in

Y f y t dt

Y f y t dt

π

π

∞
−

−∞
∞

−

−∞

=

=

∫

∫
 (4.26) 

The receiver recovers the mm-wave signal by square law photodetection, then 

 2( ) ( )out outx t y t=  (4.27) 

with a spectrum given by its Fourier transform 

 2( ) ( )exp .j ft
out outX f x t dtπ

∞
−

−∞

= ∫  (4.28) 

The dispersion induced C/N penalty on the recovered mm-wave signal is found by comparing 

the signal power of Xout(fRF) with and without fiber transmission. Mathematically, 

 
2

( )
/ 10log .

( )
out m nofiber

pen
out m fiber

X f
C N

X f
=  (4.29) 

The C/N penalty takes different forms depending on the type of mm-wave signal that is to be 

transmitted. This will be detailed in the next few sections. 

4.2.1 Unmodulated mm-wave carrier 
For an unmodulated mm-wave carrier, the model representation is 

 ( ) sin(2 ).in mx t f tπ=  (4.30) 

After E/O conversion, the resulting optical signal has an electric field given by 

 2( ) 1 sin(2 ) exp cj f t
in my t f t ππ= +  (4.31) 

where fc is the frequency of the optical carrier. A schematic for this kind of link is represented 

in Figure 4.5. The optical carrier in the form of a laser diode (LD) is modulated in its intensity 

with the electrical mm-wave carrier at fm. If the optical Mach Zehnder Modulator (MZM) is 

biased at quadrature for maximum linearity and with a moderate modulation index ma (i.e. 
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ma < 0.8·Vπ), then the output signal consists of the optical carrier plus two sidebands fc±fm. 

Mathematically, the electric field is represented by 

 ( ) ( )
0 1 1( ) c c m c mj t j t j tE t E e A e A eω ω ω ω ω+ −

+ −⎡ ⎤= + ⋅ + ⋅⎣ ⎦  (4.32) 

where E0 is the input field amplitude, A±1 the amplitude of the respective sidebands, ωc=2πfc 

the optical carrier angular frequency and ωm=2πfm the mm-wave carrier angular frequency. 

 

Figure 4.5: IM/DD fiber optic mm-wave link with unmodulated mm-wave carrier at fm. 
LD: Laser Diode, MZM: Mach Zehnder Modulator, PD: Photodiode. 

From the ideal model for an optical waveguide in Eq. (4.23), transmission in a dispersive 

medium imposes an additional phase change of the sidebands relative to the optical carrier 

given by 

 
2 2

2( ) .c m
d m m

DL ff f
c

π λϕ δ= =  (4.33) 

Then the electric field arriving at the receiver has the form 

 ( ) ( ) ( ) ( )
0 1 1( ) .c c m d m c m d mj t j t j t

recE t E e A e A eω ω ω ϕ ω ω ω ϕ ω+ + − −
+ −⎡ ⎤+ ⋅ + ⋅⎣ ⎦∼  (4.34) 

At the receiver, usually a photodiode (PD), all spectral components mix heterodynally and 

according to the proportionality of the photo current to the detected optical power, we have 

 2 *( ) ( ) ( ) ( ) ( ).PD rec rec rec recI t P t E t E t E t= ⋅∼ ∼  (4.35) 

For the special case at quadrature in which A+1=A-1, then the electrical power dependency on 

the dispersion induced phase shift is [78] 
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 [ ]2 2 2 2( ) ( ) cos ( ) cos ( / ) .el PD d m m cP t I t cDL f fϕ ω π⎡ ⎤= ⎣ ⎦∼ ∼  (4.36) 

Using Eq. (4.36) and Eq. (4.29) the C/N penalty due to chromatic dispersion can be 

numerically calculated. As the interest in this chapter is to study the penalties caused by 

chromatic dispersion, fiber attenuation will be neglected for all the analyses from now on 

unless specifically stated otherwise. Figure 4.6 shows the C/N penalty for a mm-wave carrier 

at different RF frequencies as a function of transmission distance considering transmission 

over single mode fiber (SMF) with D = 17 ps/nm·km and a center wavelength of 

λc = 1550 nm. Even after a few km of SMF the C/N is so huge that the transmission distance 

is severely limited. 

 

Figure 4.6: Dispersion induced C/N penalty as a function of transmission distance. 
Calculations for fRF = 33 and 60 GHz, D = 17 ps/nm·km and λc = 1550 nm. 

A complete extinction of the mm-wave carrier occurs when the phases of the lower and upper 

sidebands are π out of phase and multiples. That is when the phase of H(f) in Eq. (4.23) has 

introduced a change of π/2 on each sideband relative to the optical carrier. From Eq. (4.33) 

the transmission distance for the first complete extinction can be obtained as 

 0 2 22 c m
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=  for  .
2d
πϕ =  (4.37) 
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For the above example of fm = fRF = 33 GHz, λc = 1550 nm and a fiber dispersion of 

D = 17 ps/nm·km this occurs at L0 = 3.37 km. This behavior is cyclic in nature, and the period 

of repetition can be also derived from Eq. (4.24) as 

 0 2 2
c m

cL
D fλ

Δ =   for  .dϕ π=  (4.38) 

This periodicity can be used to measure chromatic dispersion in optical fibers wih decent 

accuracy [79]. Even though dispersion power fading occurs, that is critical at definite 

transmission distances. Careful planning of a network can be devised to avoid these critical 

points and obtain good performances. Some ideas can be found in the literature [80]. 

 

Figure 4.7: Transmission distance for 1 dB or 3 dB compression point as a function of fRF. 
Calculations with D = 17 ps/nm·km and λc = 1550 nm. 

In a system point of view, it is more interesting to predict when the signal enters the 1 dB or 

3 dB penalty points as to know the extinction length of the mm-wave signal. This means, 

when the signal is attenuated 1 dB or 3 dB from the ideal case of no dispersion. The results 

from Eq. (4.36) for 1 dB and 3 dB respectively are shown in Figure 4.7 as a function of the 

RF frequency fRF. It is evident that moving to higher frequencies limits greatly the 

transmission distance, not even reaching 500 m transmission for fRF = 60 GHz. 
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4.2.2 Modulated carrier with an intermediate frequency fIF 
Interesting is the case of electrooptical upconversion of an intermediate frequency fIF. In this 

method the laser diode is direcly or externally modulated with an intermediate frequency fIF of 

some couple of GHz. Then the broad bandwidth MZM is in charge of upconverting this signal 

into the mm-wave range [81]. A schematic of this kind of approach is shown in Figure 4.8. 

 

Figure 4.8: IM/DD fiber optic mm-wave link with a modulated mm-wave carrier at fm. 
LD: Laser Diode, MZM: Mach Zehnder Modulator, PD: Photodiode. 

By modulating the laser in its intensity with an adequate RF drive power at fIF, only the ±1 

sidebands will be present. The same has to be ensured for the MZM so that the optical 

spectrum has the form depicted in Figure 4.8 . Mathematically the received signal influenced 

by fiber chromatic dispersion before the photodiode is represented by 
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 (4.39) 

being A and B the amplitude of the sidebands of the intermediate frequency modulation (fIF) 

and upconversion modulation (fm) respectively and considering the same amplitude of the 

upper and lower sidebands in each modulation process. Mixing in a photodiode produces 

numerous frequency components (all the possible cross products between fc, fm and fIF) being 

the only one of interest the one in fRF = fm + fIF, given by 
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 [ ] [ ]{ }( ) cos( ) cos ( ) cos ( ) ( ) .rec m IF d m IF d m d IFP t t tω ω ϕ ω ω ϕ ω ϕ ω+ ⋅ + + −∼  (4.40) 

The corresponding electrical signal is obtained in the same way as in Eq. (4.36) by squaring 

the generated current in the photodiode (i.e. 2 2( ) ( )el PD recP t I P t∼ ∼ ). 

Simulations are shown in Figure 4.9 for different intermediate frequencies fIF but a resulting 

fRF = 33 GHz kept constant. Similar strong dispersion limited effects as in section 4.2.1 are 

evident and changing fIF has only a small deviation from the unmodualted case from Figure 

4.6. The electrical power exhibits the same behavior as in section 4.2.1, so that the first 

extinction of the mm-wave signal can then again be derived from Eq. (4.40) and is given by 

 0 22 c m RF

cL
D f fλ

=  (4.41) 

and the periodicity is then 

 0 2 .
c m RF

cL
D f fλ

Δ =  (4.42) 

By replacing fRF = fm, the same result as in Eq. (4.37) and Eq. (4.38) is obtained. This explains 

the subtle variations from the unmodulated case, as for small values of fIF, then fRF ≈ fm. 

 

Figure 4.9: Dispersion induced C/N penalty as a function of transmission distance with fIF as 
parameter. Calculations with D = 17 ps/nm·km, λc = 1550 nm and fRF = 33 GHz. 
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Nonetheless, the transmission of this kind of signals is extremely limited by fiber chromatic 

dispersion to only a couple of km at best. Methods to extend the transmission distance are 

based on eliminating one of the redundant optical spectral lines (e.g. by optical filtering or 

special driving configurations of the MZM), so that the resulting RF signal comes from the 

beating of only two optical spectral lines. In this category we can distinguish two methods: 

double sideband with suppressed carrier (DSB-SC) [68] and optical single sideband (OSSB) 

modulation [82]. Both approaches provide the same optical spectrum: two sidebands 

separated by 2fm where each sideband is modulated by the intermediate frequency fIF. 

 

Figure 4.10: IM/DD fiber optic mm-wave link with DSB-SC modulation at fm = fRF/2-fIF. 
LD: Laser Diode, MZM: Mach Zehnder Modulator, PD: Photodiode. 

By biasing a MZM at its minimum transmission point, the optical carrier is theoretically 

completely suppressed (DSB-SC method). The resulting spectrum is depicted in Figure 4.10. 

Notice that now the MZM is driven by approximately half the desired mm-wave frequency 

fm = fRF/2 - fIF as after photodetection an effective doubling of the frequency occurs. The 

received signal is now reduced from Eq. (4.39) to 
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 (4.43) 
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And the resulting power for the received signal at fRF = 2fm + fIF is then given by [83] 

 ( ) cos( ) cos .
2 2
m m

rec m IF d IF dP t t t ω ωω ω ϕ ω ϕ⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∼  (4.44) 

Again the signal is generated from the beating of two optical spectral lines, so that they are 

still not completely immune to fiber dispersion power fading effects. Nonetheless these 

effects are much more benign, and thus is this method of electrooptical upconversion 

described as dispersion tolerant. Calculating the electrical power as 2( ) ( )el recP t P t∼ , gives rise 

to the curves in Figure 4.11 for fRF = 33 GHz. Now the intermediate frequency fIF does indeed 

play a preponderant role in the achievable transmission length, as the curves vary greatly for 

the same resulting fRF. Nevertheless, as opposed to the previous method, the transmission 

distance is increased in tenths of kms depending on the selection of the intermediate 

frequency fIF and the system could be then power limited and not dispersion limited. 

 

Figure 4.11: Dispersion induced C/N penalty as a function of transmission distance with fIF as 
parameter for DSB-SC method. Calculations with D = 17 ps/nm·km, λc = 1550 nm 
and fRF = 33 GHz. 

The transmission distance at which the signal fades completely can be calculated from 
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and the periodicity is now 

 0 2 .
c IF RF

cL
D f fλ

Δ =  (4.46) 

From Eq. (4.45) the improvement in transmission distance is evident. The difference from the 

previous cases in Eq. (4.41) and Eq. (4.37) shows that now fIF is indeed a key parameter and 

as it is quite small compared to fRF, it shifts the incidence of the first transmission zero to 

some tenths of kms. 

4.3 Effects of transmitter chirp 
The previous results were calculated without considering transmitter chirp. Chirp is the 

inherent frequency modulation (FM) which accompanies intensity modulation (IM) in directly 

modulated optical lasers. This effect cannot be neglected, especially when working with 

intermediate frequencies as described in section 4.2.2. Laser chirp is a natural effect in 

directly modulated laser and can be minimally controlled [84]. To avoid laser chirp, external 

modulator are usually used. By operating the laser in continuous wave (CW) mode, the 

frequency modulation can be totally suppressed. But sometimes some chirp is beneficial, so 

by choosing the bias conditions carefully, the chirp parameter can be freely adjusted in 

external modulators [85]. 

The effects of transmitter chirp will then be briefly explained for the case of optical 

upconversion with DSB-SC method, as this scheme is the most dispersion tolerant. Both 

directly modulated lasers and externally modulated links will be studied. 

4.3.1 Directly modulated IF links 

This case corresponds to the previously described setup shown in Figure 4.10. An expression 

linking the instantaneous angular frequency deviation Δω in relation to the power variation 

was derived in [86] for sinusoidal small signal modulation as 

 ( )
0

.
2

LE
m gj

P P
αω ω ωΔ

= − −
Δ

 (4.47) 

Here αLE is the laser linewidth enhancement factor, ωg is an output power dependent 

frequency at the intercept of the transient and adiabatic chirp [84], P0 is the output power of 

the laser and ΔP is the power variation due to intensity modulation. More interesting is the 
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relation between the FM index f mm ω ω= Δ and the IM index 0am P P= Δ which can be 

derived from the absolute value from Eq. (4.47) as [87] 
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⎝ ⎠
 (4.48) 

Independent measurements of mf and ma can lead to the determination of αLE and ωg but with 

some uncertainty as usually laser diodes have a frequency dependent phase offset between 

FM and IM. This phase offset is given by 
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 (4.49) 

However, a simple estimate of the chirp is sufficient to characterize the electro-optical 

upconversion system behavior [88] and ΔϕFM-IM = 0 will be considered first (i.e. pure blue-

shift). An approximation for small signal modulation (i.e. ma < 0.5 and mf < 1) taking into 

account the effects of laser chirp was developed in [88] for blue-shift chirp, then the received 

electrical power at fRF = 2 fm + fIF is now 
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∼  (4.50) 

where ϕd is the same expression as derived in Eq. (4.33). The results of varying the FM index 

mf and IM index ma are represented in Figure 4.12a and Figure 4.12b respectively. Changes in 

the FM index mf result in strong variations of the normalized power as seen in Figure 4.12a. It 

is surprising that even higher powers are obtained with little chirp (i.e. more power than the 

initial launch power). The 3 dB length L3dB is defined as the fiber length where the response 

drops 3 dB from the L = 0 case. Even some little chirp duplicates L3dB, as mf = 0.2 produces 

L3dB = 64 km. It would seem that increasing even further the FM index would extend the 

transmission distance even more. However, for higher values of mf, the approximation in 

Eq. (4.50) is no longer valid. A more exact solution can be found in [81] where it was 

demonstrated that for mf > 2 a local minimum starts producing a loss of power around the 

original zero power length L0 for the chirpless case. 
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Figure 4.12: Normalized power as a function of transmission distance with transmitter chirp.    
a) Variation of mf with ma = 0.4 and b) variation of ma with mf = 0.2. Calculations 
with D = 17 ps/nm·km, λc = 1550 nm, fIF = 2 GHz and fRF = 33 GHz. 

Figure 4.12b shows the dependency on the IM modulation index ma when mf = 0.2. Here the 

variations are not so drastical as the previous case, nonetheless a shift in L0 is observed as ma 

decreases. Although this would seem advantageous, the resulting RF power for lower mas is 

significantly lower than for higher mas. Therefore the choice of ma is a compromise solution 

between RF power and reach. 

Figure 4.13: Normalized power as a function of transmission distance with transmitter chirp.    
a) Blue shift and b) red shift. Calculations with ma = 0.4, D = 17 ps/nm·km, 
λc = 1550 nm, fIF = 2 GHz and fRF = 33 GHz. 

The previous results were obtained considering pure blue-shift. In Figure 4.13 a comparison 

between both types of chirp is shown for different values of the FM index mf. There is a 

symmetrical behavior between both cases, the main disadvantage being for the red shift case 

as the power drops abruptly in the first kms depending on the FM index mf. For this case, 
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much shorter L3dB are encountered in comparison to the chirpless case. In real deployed 

systems, laser diodes show no pure blue-shift (ΔϕFM,IM = 0) or red shift (ΔϕFM,IM = π) but a 

phase shift ΔϕFM,IM between these two values. However, it is known that the typical chirp 

behavior of telecomm laser diodes is Δf/ΔP > 0, hence a tendency to blue-shift is 

observed [84]. 

4.3.2 Externally modulated IF links 
Instead of modulating directly a laser diode, an external modulator can be employed to have 

full control of the chirp of the laser spectral line [89]. Ideally, as the laser is operated in CW 

mode, an external modulated signal is considered chirpless. But when optimized for low 

switch voltage, it is inevitable to have some residual chirp, especially in integrated modulators 

[90]. Moreover, in some cases, designing a modulator with some negative chirp reduces the 

system power penalty over the chirp-free version [91]. An example of such a system is 

depicted in Figure 4.14. 

 

Figure 4.14: IM/DD fiber optic externally modulated mm-wave link with DSB-SC modulation. 
LD: Laser Diode, MZM: Mach Zehnder Modulator, PD: Photodiode. 

The intermediate signal fIF is now inserted via a dual-drive MZM (MZM1 in Figure 4.14) 

which means that the drive signal is fed into both arms of MZM1. In this way, some 

interesting cases can be achieved by adjusting the phase difference Δθ of the IF drive signals 

and the bias point of MZM1 (through the arms phase difference Δφ). Three cases are of 

special interest: 

a) Δφ = 0 and Δθ = 0 corresponds to pure phase modulation, which in reality should be 

simply achieved by a single phase modulator. 

b) Δφ = π/2 and Δθ = π is the most common intensity modulation case with two 

sidebands plus carrier. 
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c) Δφ = π/2 and Δθ = π/2 is called single sideband modulation (SSB), as only one 

sideband is produced. 

The results of each case are drawn in Figure 4.15 for fRF = 33 GHz, fIF = 2 GHz, λc = 1550 nm 

and D = 17 ps/nm·km. Intensity modulation is the same case previously calculated in Figure 

4.11 as no modulator chirp is yet considered. The case of phase modulation proves the 

concept of phase modulation to intensity (PM-IM) conversion thanks to fiber dispersion [92]. 

The detected RF power for short lengths of fiber is minimal, but after some kms it increases, 

having a maximum where IM has its minimum. The 6 dB maximum power difference 

between PM and IM is due to the different bias point in which they work. As IM employs a 

MZM biased at quadrature, 3 dB optical power is lost, thus resulting in the 6 dB electrical 

power difference. The most interesting case is OSSB which has a constant RF power 

independent of fiber dispersion and proves to be the most dispersion tolerant method up to 

date [82]. It should be mentioned that no fiber attenuation was considered for all calculations. 

 

Figure 4.15: Normalized power as a function of transmission distance for different modulation 
schemes. Calculations with D = 17 ps/nm·km, λc = 1550 nm, fIF = 2 GHz and 
fRF = 33 GHz. 

A dual-drive MZM with access to electrodes in both arms (as shown in Figure 5.3a) enables a 

variable chirp parameter. For such a MZM, the chirp parameter αMZM is as a function of the 

modulation index and bias point is defined by [93] 
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 (4.51) 

with Vb being the bias voltage, Vo the offset voltage corresponding to the phase retardation in 

absence of electric field and 

 1 2

1 2
.V Vv

V V
+

=
−

 (4.52) 

V1 and V2 are the RF drive voltages applied to first and second arm of the MZM, respectively. 

Eq. (4.51) demonstrates the tunability of the chirp parameter αMZM. As the chirp parameter 

influences the phase of the generated spectral components after the modulator, the chromatic 

dispersion effects studied in section 4.2 will also be affected. The fiber distance at which the 

RF beat signals after the photodiode exhibit a π phase difference was calculated Eq. (4.37) for  

a DSB with carrier signal and can now be rewritten taking the modulator chirp into account 

as [94]  

 ( )0 2 2
21 arctan .
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D f
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πλ
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 (4.53) 

By having a large and negative chirp the fiber distance can be actually extended. The RF 

power as a function of link distance is proportional to [95] 
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 (4.54) 

Eq. (4.54) is calculated in Figure 4.16 for fRF = 33 GHz with the modulator chirp αMZM as a 

parameter. As already demonstrated in section 4.2, the power degradation has a periodic 

behavior and the increase in link distance is evident for an IM/DD link. The case of αΜΖΜ = 0 

is the same as that obtained in Figure 4.6. By using a negative chirp, the extinction distance 

can be almost doubled. Nonetheless, chirp produces spectral broadening which is significant 

in multigigabit systems, so adjusting the chirp must be a compromise solution between reach 

and spectral broadening issues. 
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Figure 4.16: Calculated RF power versus transmission distance for fRF = 33 GHz with the 
modulator chirp αMZM as a parameter. 

4.4 Remote heterodyne detection fiber optic mm-wave links 
Remote heterodyne detection (RHD) techniques are based on the fiber optic transmission of 

two phase-correlated optical signals which are separated at the desired mm-wave frequency 

fRF. 

 

Figure 4.17: Principle of operation of RHD fiber optic mm-wave links. 

A typical configuration of the RHD-technique is shown in Figure 4.17. Here the two phase-

correlated signals part from perfect phase correlation, but usually they don’t travel the same 

optical path. Therefore, when they are reunited to be transmitted over a single fiber link to the 

receiver, the difference in paths traveled produces a differential propagation delay, Δτpath. 
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Moreover, as both optical carriers travel through the optical fiber, they further suffer another 

differential propagation delay, Δτdisp, due to chromatic dispersion. Arriving at the receiver, the 

overall differential propagation delay is given by 

 path dispτ τ τΔ = Δ + Δ  (4.55) 

which results in a state of partial phase decorrelation. The amount of phase decorrelation 

depends on the introduced amount of differential delay. The first part of the differential delay 

in Eq. (4.55) is caused by the path imbalance and can be calculated to be 

 path
path

L n
c

τ
Δ ⋅

Δ = ±  (4.56) 

where ΔLpath is the difference in path length and n is the refractive index of the optical 

waveguide. The sign of the path imbalance depends on wether it works in the same or 

opposite direction as the dispersion induced delay Δτdisp, which is always considered positive 

and is given by 

 
2

.c
disp RFD L f

c
λτΔ = ⋅ ⋅ ⋅  (4.57) 

Therefore, the path imbalance induced delay could compensate a certain combination of mm-

wave frequency fRF and transmission distance L limitation due to fiber dispersion [96]. 

 

Figure 4.18: Differential delay as a function of transmission distance for fRF = 33 GHz with 
Δτpath as a parameter. Calculations done for λc = 1550 nm and D = 17 ps/nm·km. 
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Figure 4.18 shows the sum differential delay as a function of the transmission distance L for 

fRF = 33 GHz with the path imbalance delay Δτpath as a parameter. It can be observed that for 

L = 4.4 km, the sum differential delay is zero when the path imbalance poses a negative delay. 

From Eq. (4.56) and Eq. (4.57) this occurs for 

 
2

.c
path RFL D L f

n
λ

Δ = ⋅ ⋅ ⋅  (4.58) 

On the contrary, when the path imbalance has the same sign as the dispersion induced delay, 

it contributes to a differential delay floor. When the paths are equal, a linear dependence is 

observed. Nonetheless, for large transmission distances, all cases converge to the delay 

induced by fiber dispersion. 

Assumming that the master laser has a Lorentzian shaped power spectrum, the single 

sideband power spectral density of the mm-wave signal at the output of the O/E detector is 

given by [97]-[98] 
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 (4.59) 

Where f is the offset from the mm-wave carrier and Δνm is the linewidth of the power 

spectrum of the master laser. Small depictions of the power spectrum can be seen at the right 

side of Figure 4.17. For a small differential delay (Δτ ≈ 0), the two optical signals remain 

correlated and the result spectrum is a delta function given by the first term in Eq. (4.59). On 

the other hand, for extreme large delays (Δτ ≈ ∞) the two signals become completely 

uncorrelated. The resulting mm-wave spectrum becomes Lorentzian shaped with a linewidth 

of 2Δνm. For intermediate values of Δτ, the spectrum is a combination of the delta function 

and a sinc with spectral zeros spaced by 1/Δτ. With sufficient RF spectral resolution, the zero 

spacings of the partial decorrelated mm-wave signal spectrum give information on the total 

differential delay. 

From Eq. (4.59) two effects can be distinguished. The first term corresponds to a decrease in 

C/N while the second term contributes to an increase of the phase noise. Following the law of 

conservation of energy, this means that the decrease in signal power (and also C/N) is due to 
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an increase of phase noise power at all offset frequencies. Nonetheless, both effects pose 

limitations on the maximum transmission distance and must be treated separately. 

The delay induced C/N penalty is found from the first term in Eq. (4.59) as 

 
1/ 10 log .

exp( 2 )pen
m

C N
π ν τ

⎛ ⎞
= ⋅ ⎜ ⎟− Δ Δ⎝ ⎠

 (4.60) 

Figure 4.19 shows the C/N penalty from Eq. (4.60) with the master laser linewidth Δνm as a 

parameter. Only a small C/N penalty is observed even for large differential delays and wide 

linewidths, meaning this approach is quite tolerant to fiber dispersion in this aspect. The 

transmission distance is calculated for fRF = 33 GHz for the special case where Δτpath = 0 ps, 

i.e. the differential delay is only introduced by the fiber dispersion. For standard DFB lasers, 

the linewidth is in the 5-10 MHz region, meaning transmission distances of 1000 km can be 

reached before a 3 dB C/N due to chromatic dispersion is reached. That is three orders of 

magnitude better than with the IM/DD method and thus fiber attenuation will be the 

transmission limiting factor in this case. Although the differential delay introduced by fiber 

dispersion Δτdisp can be compensated with the path imbalance delay Δτpath, the penalty is so 

negligible that surely other factors will limit system performance (e.g. fiber attenuation or 

fiber dispersion on the baseband data). 

 

Figure 4.19: Dispersion induced C/N penalty as a function of differential delay with Δνm as 
parameter. The transmission distance is calculated for fRF = 33 GHz, λc = 1550 nm 
and D = 17 ps/nm·km. 

10 100 1000
5

4

3

2

1

0

 Δν = 1 MHz
 Δν = 10 MHz
 Δν = 100 MHz

 

 

C
/N

 P
en

al
ty

 (d
B

)

Transmission Distance (km)

45 450 4500
Differential Delay (ps)



4.4 Remote heterodyne detection fiber optic mm-wave links 

 

 

61 

To analyze the phase noise variation, the phase fluctuation spectrum, Sφ(f), is best suited than 

the power spectrum from Eq. (4.59). From the master laser frequency fluctuation, Sf(f)m, the 

phase fluctuations can be calculated as [99] 

 ( )2

( )
( ) 2 1 cos 2 .f m

delay
S f

S f f
fφ π τ= ⋅ ⋅ − Δ⎡ ⎤⎣ ⎦  (4.61) 

The spectrum is shown in Figure 4.20 as a function of frequency offset from the carrier with 

the differential delay as a parameter. For infinite delays, the Lorentzian shape with a 1/f 2 

dependence can be clearly seen. For intermediate values of Δτ the sinc shape is observed, with 

its zero spacing. For low values of Δτ (Δτ < 1ps) then the zero spacings are so large, that the 

distribution of the phase noise is quite uniform, meaning that a significant amount of the delay 

induced phase noise will be removed by the filtering performed in the mm-wave 

receiver [100].   

 

Figure 4.20: Phase fluctuation spectral density. 

The phase noise is expressed as rms phase error σφ or as phase variance (σφ)2 given by 
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where Bn is the mm-wave receiver noise bandwidth. Figure 4.21 shows the calculated rms 

phase error from Eq. (4.62) as a function of the differential delay with the master laser 

linewidth Δνm times the receiver noise bandwidth Bn as a parameter. It is clear that the rms 

phase error increases as the differential delay is bigger. Furthermore, an increase in master 

laser linewidth or receiver noise bandwidth also causes an increase in rms phase error. 

 

Figure 4.21: Delay induced rms phase error as a function of the differential delay with the 
master laser linewidth Δνm times the receiver noise bandwidth Bn as parameter. 

The rms phase error is a limiting factor for phase modulation formats such as Binary Phase 

Shift Keying (BPSK), Quaternary PSK (QPSK) and higher order PSKs where the information 

is carried by the phase of the optical signal. Deviations in the phase states lead to an increase 

in the Bit Error Rates (BER). Table 4.1 shows the allowable rms phase error for different 

modulation formats. Tha values are taken from the Intelsat specifications for a QPSK 

system [101]. 

Modulation Format 1 dB Penalty at BER = 10-9 Typical 10% of Typical 

BPSK 11.4° 8.2° 0.82° 

QPSK 3.9° 2.8° 0.28° 

8PSK 1.8° 1.3° 0.13° 

16PSK 1.2° 0.9° 0.09° 

Table 4.1: Allowable rms phase error for different modulation formats [101]. 
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With the help of Table 4.1 and Eq. (4.62), the maximum allowable transmission distance for 

fRF = 33 GHz can be calculated for each different modulation format. The results are shown in 

Figure 4.22 for no path imbalance delay, i.e. the delay is only induced by chromatic 

dispersion in the fiber. 

 

Figure 4.22: Master laser linewidth Δνm times the receiver noise bandwidth Bn as a function of 
the transmission distance for different system types. Calculated for fRF = 33 GHz, 
λc = 1550 nm and D = 17 ps/km·nm. 

From the above it is seen that, for bandwidths Bn < 150 MHz systems at this high carrier 

frequency, it is possible to transmit over long fiber distances with RHD-links using master 

laser with linewidths in the 1-10 MHz range (top horizontal line calculated with 

Δνm = 1 MHz, typical values for DFB lasers). However, moving to higher data rates will 

require larger bandwidths. If Bn = 7 GHz, then laser linewidths in the order 10-100 kHz will 

be required to transmit phase modulation formats over decent distances (bottom horizontal 

line calculated with Δνm = 10 kHz, which is representative for ECL lasers). 

4.5 Phased induced intensity noise   
Another point of interest is that the laser phase noise will be converted to intensity noise as 

investigated in [102]. The laser phase induced intensity noise (PIIN) is defined in [103] as 
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where Δνm represents the spectral laser linewidth, λc the laser center wavelength, D is the 

fiber dispersion in ps/nm·km, c is the speed of light, L the fiber link length and fRF the desired 

mm-wave frequency. Eq. (4.63) suggests that PIIN will strongly occur in optical mm-wave 

systems operating at high frequencies and/or long fiber link lengths. A plot of the several 

noise sources in an optical amplified mm-wave fiber link is shown in Figure 4.23. The 

calculations are based on a DFB laser with Δνm = 5 MHz and a RIN = -140 dB/Hz operating 

at λc = 1550 nm. The optical signal is amplified by an EDFA with gain G = 22 dB, an ideal 

noise figure NF = 3 dB and the ASE bandwidth is limited to B = 1 nm via a fiber Bragg 

grating (FBG). The optical power is set to Popt = 0 dBm and the mm-wave frequency is used 

is fRF = 33 GHz. The photodiode used is a pin diode with R1 = 0.05 A/W and R2 = 0.5 A/W to 

show the difference in a higher current environment. 

Figure 4.23: Contributions to total noise in mm-wave fiber links for fRF = 33 GHz with fiber 
length L as a parameter in a 7.5 GHz bandwidth for a) R1 = 0.05 A/W and 
b) R2 = 0.5 A/W. 

Clearly PIIN becomes the dominant source of noise at longer fiber lengths. In the example 

previously proposed, the effects of PIIN start dominating at L1 = 5 km and L2 = 50 km 

depending on the photodiode responsivity. Nonetheless, in optically amplified systems, 

generally the biggest contribution comes from the signal-spontaneous beat noise (i.e. Sg-Sp) 

which is dominant for higher responsivities R. 

Although from a noise perspective PIIN is the major contributor, the C/N penalty was 

calculated in [102] for a QPSK signal with a receiver bandwidth of 33 MHz over L = 30 km 

as a function of carrier frequency and for different laser linewidths. The results indicate that 
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even at high RF frequencies such as fRF = 60 GHz and large laser linewidths Δνm = 20 MHz, 

there is only a penalty of 12 dB in the carrier to noise ratio. 

Another study in [104] shows that to keep the power penalty below 0.5 dB for BER = 10-11, 

the requirement on the laser linewidth becomes strict around 5 Gbps (Δνm < 2 MHz). 

However, as a consequence of the saturation of the noise power in the higher bit rate range, 

the linewidth requirement is the same for tens of Gbps. 

The impact of PIIN is the dominant noise mechanism which will reduce the mm-wave signal 

quality, but does not significantly restrict the overall system performance. With mainstream 

distributed feedback (DFB) lasers improving exhibiting laser linewidths around Δν m = 5 MHz 

are not uncommon, and external cavity lasers (ECL) with Δνm = 100 kHz would allow to 

neglect the contributions of PIIN to system degradations. Also using high responsivity 

photodiodes would shift the influence of PIIN to tens of km. Therefore, the contributions of 

PIIN can be safely neglected and the main contributor is, as usual, the signal-spontaneous beat 

noise from the optical amplifier.   

4.6 Polarization mode dispersion 
It is well known from the literature that polarization mode dispersion (PMD) is a limiting 

factor in high speed, long haul fiber optic systems [105]-[106]. In these systems where 

chromatic dispersion is either very small or compensated, PMD plays an important role as it 

imposes a delay between the two principal polarization modes that coexist in a fiber. In a 

similar way that chromatic dispersion induces a time delay Δτdisp between two optical spectral 

lines, PMD causes a delay Δτpmd between the two principal states of polarization. This 

produces again a power penalty which leads to increase of the BER [107]. 

The optical field vectors of two light waves with the same arbitrary linearly polarization at 

angular frequency ωi in an optical fiber can be mathematically written as 

 
cos

( )
sin
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j tin
iE t A e ω θ

θ
⎛ ⎞
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⎝ ⎠

for 1, 2i =  (4.64) 

where θ is the angle between the linear polarized field vectors and the x-axis of the orthogonal 

principle axis of the optical fiber, and Ai the field amplitude. 
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The fiber link represents an anisotropic medium with birefringence Δn = nx – ny where nx,y is 

the refractive index at the orthogonal principal axis x and y of the fiber, respectively. The 

transformation matrix of the fiber link can be expressed as 
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 (4.65) 

where the phase components are ,
,2x y

i x y in Lδ π λ= being L the fiber length. The transmission 

through optical fiber results in the electrical field at the receiver taking the form 

 ( ) ( ).out in
i i iE t T E t= ⋅  (4.66) 

The resulting optical power at the photodetector is then 

 
2

1 2 .out out
recP E E= +  (4.67) 

At the photodiode, heterodyne mixing takes place and the resulting beat frequency fRF = f1 - f2 

has an electrical power PRF which changes with the square of Prec. The power penalty ΔP due 

to a PMD induced delay Δτpmd is given by [108] 

 
21 ( ) cos ( ) (1 ( ))

10 log
2

pol RF pmd polf f L f
P

κ π τ κ⎛ ⎞+ + ⋅ ⋅Δ ⋅ ⋅ −
⎜ ⎟Δ = − ⋅
⎜ ⎟
⎝ ⎠

 (4.68) 

for 0, 0pmd LτΔ ≥ ≥ and 0 1.polκ≤ ≤ Here ( )( ) cos 4 arccospol polf κ κ⎡ ⎤= ⋅⎣ ⎦ , where κpol 

represents the splitting ratio of the signal with respect to the principal polarization axis, and L 

is the fiber length. Using the splitting ratio κpol as a parameter results in the curves shown in 

Figure 4.24. It is evident from the graphs and Eq. (4.68) that the worst case scenario is when 

κpol = 0.5, corresponding to θ = 45°, i.e. the signal is launched into the fiber with a linear 

polarization state with an angle of 45° with the principal polarization axes. For this worst 

case, Eq. (4.68) can be reduced to the form in [107] 

 ( )20 log cos( ) .wc RF pmdP f Lπ τΔ = − ⋅ ⋅ ⋅Δ ⋅  (4.69) 
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Figure 4.24: Power penalty for fRF = 33 GHz due to PMD induced delay Δτpmd with the power 
splitting ratio κpol as a parameter and L = 10 km. 

Although PMD is a statistical process, for special cases when the transmission distances are 

smaller than the beat length, it can be approximated linearly with the fiber length L. But when 

the fiber length is longer than the beat length, it usually follows with the square root of L 

[109]. We have then 

 pmd pmd Lτ τ′Δ = Δ ⋅  (4.70) 

and so Eq. (4.69) results into 

 ( )20 log cos( ) .wc RF pmdP f Lπ τ ′Δ = − ⋅ ⋅ ⋅Δ ⋅  (4.71) 

Figure 4.25 shows the power penalty as a function of the transmission distance L for two 

different fiber types. One is an old already deployed SMF fiber with Δτ’pmd = 0.8 ps/√km 

whereas the other one is a modern fiber with a much lower Δτ’pmd = 0.1 ps/√km. For older 

fibers the effects of PMD for fRF = 33 GHz produce a power fading around L = 355 km. For 

modern fibers with low Δτ’pmd the effects of PMD power fading are negligible even after long 

transmission distances in the order of thousands of kilometers. 
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Figure 4.25: Power penalty for fRF = 33 GHz due to PMD induced delay Δτ'pmd for two different 
fibers with the Δτ'pmd as a parameter. 

The length where the mm-wave signal first vanishes can be again derived from Eq. (4.71) and 

is 

 
2

0
1 .

2 'RF pmd
L

f τ

⎛ ⎞
= ⎜ ⎟⎜ ⎟Δ⎝ ⎠

 (4.72) 

This means that both optical fields’ polarization states are orthogonal to each other and 

effectively cancel in the photodiode. Nonetheless, PMD penalties are much lower than the 

IM/DD case and for modern fibers also small compared to the RHD technique. Therefore for 

the subsequent applications in the next chapter the influence of PMD can be neglected. 
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5 Electrooptical upconversion methods 

In order to reduce the requirements of high frequency RF sources in the central station, 

different optical frequency upconversion methods can be used. They consist in shifting lower 

frequencies in the electrical domain to higher frequency ranges by using different forms of the 

electrooptical effect (for example, the linear Pockels effect, the quadratic Kerr effect, etc.). 

Most of them consist in creating high order harmonics (i.e. multiples) of an input modulation 

frequency fm and then filter out the undesired components, such that by heterodyning in a 

photodiode only the higher frequencies are generated. The following sections describe in 

detail the methods investigated in this thesis and the parameters that characterize them in 

terms of efficiency and RF frequencies achieved. 

5.1 Mach-Zehnder modulator 
One of the most popular ways of upconverting electrical signals is using an optical Mach-

Zehnder modulator (MZM) at certain bias points to generate the required high order 

harmonics [109]. A schematic of a basic MZM is shown in Figure 5.1 with its most common 

bias or working points. 

Figure 5.1: a) Basic Mach-Zehnder Modulator and b) its most common bias points. 

Optical power Pin enters through a single mode dielectric optical waveguide which splits into 

two singlemode waveguides at the input waveguide Y branch. The input Y (Y1) branch splits 

the power into upper and lower arms. The optical phase difference is shifted with respect to 

the unchanged state by an amount Δφ(V)=φRF+φDC. This phase modulation is accomplished by 
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placing electrodes around the waveguides in each arm. In this example, the upper arm has two 

electrodes (one for the RF signal and the other for a DC signal) whereas the lower arm 

remains unchanged. Then the two waveguides have their powers recombined at the output Y 

branch (Y2). The relative phase of the light from the two arms is determined by the phase 

modulator. If the light is in phase (i.e. Δφ=0), it adds to form the fundamental mode of the 

output waveguide, and the output power Pout is at a maximum. If the light from the two arms 

is out of phase (i.e. Δφ=π), it adds in Y2 to form the second order mode of the output 

waveguide; this mode is not guided by the singlemode waveguide, so the power is radiated 

into the substrate and the output power is at a minimum. For the case where there is a 

transmission factor of tm and both Y1 and Y2 provide equal splits, then 

 [ ] 2 ( )1 cos( ( )) cos .
2 2
in

out m m in
P tP t t t P φφ Δ⎛ ⎞= ⋅ + Δ = ⋅ ⋅ ⎜ ⎟

⎝ ⎠
 (5.1) 

Being 

 mod( ) ( )( ) DC RFV V t V tt
V Vπ π

φ π π+
Δ = ⋅ = ⋅  (5.2) 

where Vπ is called the half-wave voltage and is the voltage swing needed to go from 

maximum to minimum transmission point (see Figure 5.1b). If Vmod is a mm-wave signal of 

the form ( )mod ( ) cosDC RF RFV t V V tω= + ⋅ then the output power becomes 

 ( )( )( ) 1 cos cos
2
in

out m a RF
PP t t m tπγ π ω⎡ ⎤= ⋅ + +⎣ ⎦  (5.3) 

where γ=VDC/Vπ is the normalized bias and ma=VRF/Vπ the amplitude modulation index 

driving the MZM. Figure 5.1b shows the most common bias points of operation of a MZM. 

The optimal DC Bias for linear operation is when VDC = Vπ/2+iVπ for i= 0,1,2…. The case 

i = 0 is called quadrature (QUAD corresponding to γ = 0.5) and the output optical intensity 

can be expressed from Eq. (5.3) by Bessel-function expansion neglecting insertion losses 

(i.e. tm = 1) as 

 ( )2 1( ) ( 1) ( )cos (2 1) .
2

kin
QUADout in k a RF

k

PP t P J m k tπ ω
∞

+
=−∞

= − − +∑  (5.4) 
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This corresponds to an optical carrier plus the odd-order sidebands (represented by the 2k+1 

term in the Bessel series). A schematic of a sample spectrum can be seen in Figure 5.2a. The 

same analysis can be done for the two other bias points of interest such as maximum power 

transmission (MAX where γ = 0) or minimum power transmission (MIN corresponding to 

γ = 1). The corresponding intensities are 

 ( ) ( )0 2( ) 1 ( ) ( 1) ( )cos 2
2

kin
MAXout a in k a RF

k

PP t J m P J m k tπ π ω
∞

=−∞
= − + −∑  (5.5) 

and 

 ( )2 1( ) ( 1) ( )cos (2 1) .k
MINout in k a RF

k
P t P J m k tπ ω

∞

+
=−∞

= − − +∑  (5.6) 

Figure 5.2: Spectra at the output of the MZM for Pin = 1 mW, tm = 1 and ma = 0.8 under a) 
QUAD bias, b) MAX bias and c) MIN bias. 

For the MAX case, the spectrum is composed of an optical carrier plus the even order 

sidebands (Figure 5.2b). However, for the MIN case (Figure 5.2c), the optical carrier is 

ideally completely suppressed and only the odd-order sidebands are present. This case is of 

special interest, as after detection in a squaring device such as a photodiode, an effective 

doubling of the RF frequency can be achieved. The same could be obtained for the MAX bias 

point, but in this case there are two components in charge of generating the mm-wave signal 

(carrier and ±2 harmonic), and thus this scheme is more susceptible to fiber dispersion (as 

explained in Section 4.2). 

The modulator described in Figure 5.1 is usually called single-drive MZM, as only one RF 

and bias (DC) signal are used. Other interesting MZM architectures are depicted in Figure 

5.3. A dual-drive MZM (shown in Figure 5.3a) has two electrodes in each arm of the MZM to 

achieve complete freedom over the relative optical phase and chirp parameter (see section 
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4.3.2). In this way, the voltage swing to produce a modulation index ma can be reduced in half 

by carefully feeding of the RF signal in both arms (i.e. each arm is fed ma·Vπ/2). Another 

interesting topology is the dual-nested MZM, where two MZMs are placed inside a MZM 

“superstructure”, depicted in Figure 5.3b. This type of modulator is mainly used to generate 

complex optical modulation formats such as differential quadrature phase shift keying (RZ-

DQPSK) [110] but can also be used to generate a double sideband with suppressed carrier 

(DSB-SC) signal [111]. 

 

Figure 5.3: a) Dual-drive and b) dual-nested Mach-Zehnder modulators. 

Through the course of this work both single-drive and dual-drive MZMs models were used. 

Nonetheless, both electrodes in one arm of the dual-drive MZM were grounded using it as a 

single-drive MZM. Therefore, the following analysis will focus only on single-drive MZMs. 

The optical intensity in the MZM for sinusoidal drive can be also modeled as a Fourier 

expansion in the time domain 
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where ma is the modulation index, 2P0 is the power incident on the modulator, tm is the 

modulator transmission factor (<1 also known as insertion loss), Vb is the modulator bias 

voltage in units of Vπ and A is the modulator RF driving amplitude. Usually the modulation 

index ma is also referred to as modulation depth. For example, biasing the modulator at 

QUAD and modulating with ma = 1 means going from the MAX to the MIN transmission 

point. Values of ma higher than 1 usually involve overmodulation and the generation of higher 

order harmonics. 

For example, working on either the maximum or minimum transmission point (i.e. Vb = 0, Vπ, 

2Vπ, …) then only the even order harmonics are generated. The calculated harmonic content 

of the detector output as a function of the input RF drive power at fRF for a MZM biased at 

minimum transmission for harmonics n = 2, n = 4 and n = 6 is shown in Figure 5.4. 

 

Figure 5.4: Simulated MZM photonic link response versus input RF drive power with 
minimum biasing of the modulator with no insertion loss (i.e. tm = 1). 

This simulation shows efficient frequency conversion to any of the even harmonics for 

specified RF drive powers. In this case a perfect MZM with no insertion loss (i.e. tm=1) is 

considered. One interesting case corresponds to n = 4. With a modulation index for this 

harmonic generation of ma = 1.635 the second harmonic (n = 2) is cancelled, and theoretically 

a clean spectrum up to the 4th harmonic is obtained. The 6th is still present but 4 dB attenuated 

and if fRF is sufficiently high, out of the band of interest. Table 5.1 summarizes the optimum 
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modulation indices ma for different harmonic generation for a MZM biased at minimum with 

an insertion loss of 4.5 dB (tm = 0.35). 

n =  2 4 6 8 10 

ma = 0.97 1.7 2.4 3.1 3.7 

Table 5.1: Optimal modulation indices ma for nth harmonic generation. 

The previous discussion corresponds to a MZM with an infinite extinction ratio. The 

extinction ratio (ER) is defined as the difference in optical power from the maximum and 

minimum transmission points. Mathematically, 

 .MAX

MIN

PER
P

=  (5.8) 

An infinite ER would mean that the minimum transmission point produces zero optical power 

and thus maximum signal swing. That is rarely the case, as some residual power is left during 

a logical “zero”. The power penalty in BER performance produced by a non-infinite ER was 

derived in [71] for pin receivers in digital communications and is given by 

 110 log .
1pen

ERER
ER

+⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠
 (5.9) 

Figure 5.5 shows how the power penalty decreases with increasing ER. Usually, MZM have 

ER > 15 dB, being the power penalties under 0.3 dB and thus can be considered negligible. 

 

Figure 5.5: Power penalty degradation due to extinction ratio (ER). 
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Concerning mm-wave generation (i.e sinusoidal modulation), the effect of a finite ER is 

mainly affecting how much the carrier can be suppressed in the MIN bias point. Ideally from 

Eq. (5.6) and Figure 5.2c, the optical carrier should be non existent but that is rarely the case. 

In the next section the setup and experimental properties of a MZM biased at minimum 

transmission for the generation of mm-wave signals will be described. 

5.1.1 Mach-Zehnder modulator biased at MIN 
The case depicted in Figure 5.2c is for an ideal MZM with an infinite extinction ratio. 

Imperfections in the manufacturing process of MZMs lead to misalignements in the 

polarization of both arms, which result in a far from perfect suppression of the carrier. 

Therefore, a remnant of the optical carrier is still present and consequently, interfering mm-

wave signals at different RF frequencies are generated. 

 

Figure 5.6: Setup for DSB-SC using a Mach-Zehnder modulator biased at MIN. 

Figure 5.6 shows the basic setup to generate a Double Sideband with Suppressed Carrier 

(DSB-SC) signal by using a MZM biased at the minimum transmission point (MIN). The 

setup consists of a DFB laser with output power Popt = +13 dBm, a polarization controller 

(PC) to align the polarization entering the MZM to achieve optimum modulation, an RF 

generator operating at fm with its corresponding amplifier to set the modulation index ma= 0.6 

(a higher ma could not be achieved with the amplifier available, so giving importance to 

linearity, this lower ma was chosen) and a bias control circuit to set and maintain the bias 

point at MIN. The bias control unit operates on the principle of low frequency dithering [112] 

and a simple schematic is shown in Figure 5.7. 
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Figure 5.7: Bias control unit schematic. 

The MZM is a 10 Gbps OC-192 compliant MZM from JDSU. Although it is specified for 

10 Gbps operation, good results can still be obtained for higher modulation frequencies fm. Its 

Vπ is 5.5 V at 1 GHz and the insertion loss is 5 dB. The resulting optical spectrum at the 

output of the MZM is depicted in Figure 5.8a for fm= 16.5 GHz. At this high frequency Vπ was 

measured to be 6 V. Usually this kind of MZM are designed for multigbit data modulation so 

that with VDC ≈ 0 V they are biased at quadrature. Therefore, to reach the MIN transmission 

point VDC ≈ Vπ/2 ≈ 2.75 V. After generating the optical DSB-SC signal, the mm-wave signal 

is obtained by heterodyning in a broadband photodiode (NEL B >100 GHz, Pmax= 0 dBm, 

R = 0.9 A/W). The RF spectrum after amplification is plotted in an Electrical Spectrum 

Analyzer (ESA, R&S FSEK30) and is shown in Figure 5.8b. The increase in the noise floor at 

26 GHz is due to the change in frequency range internally by the ESA. Simulations were 

carried out in the commercial software VPI Transmissionmaker 8.0 with the parameters 

which best fit the devices used in the experiments. There is a good agreement of the 

measurements with the obtained simulations in the optical as well as the electrical domain. Up 

to the first harmonics the overlap is perfect, but then the second harmonics have 5 dB 

variations. Nonetheless the values for the component at 2fm and the remnant carrier match the 

measurements. 
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Figure 5.8: DSB-SC with MZM: a) Optical (10 pm RBW) and b) electrical spectrum 
(100 Hz RBW) for fm= 16.5 GHz and ma=0.6. 

By working on the MIN bias point the optical powers achieved are quite small (being -5 dBm 

the power of the ±1 harmonics) requiring the use of optical amplification such as an erbium 

doped fiber amplifier (EDFA) or a semiconductor optical amplifier (SOA). Also it can 

evidently be seen that the carrier is not fully suppressed. For comparison purposes, the carrier 

suppression is defined as 

 1harm
opt

carrier

PCS
P

=  (5.10) 

where Pharm1 is the power in the first harmonic and Pcarrier the power of the optical carrier. 

This is valid for the optical domain as well as the electrical domain. For the case in Figure 

5.8a we obtain an optical carrier suppression CSopt = 19.67 dB. However, the electrical carrier 

suppression is approximately CSel = 25 dB. The remnant carrier beats with both the ±1 

harmonics and thus generates an RF component at fm which reduces the available bandwidth 

of the system. Several methods can be used to extend the optical carrier suppression to 

acceptable values (CSopt > 25 dB so that the carrier is suppressed more than 99.7% and its 

contribution can be neglected). Two of them will be described in more detail. 

As one of the main causes of the imperfect cancelling of the carrier is the cross-polarization 

products happening in the MZM, the use of a polarizer at the output of the setup helps to 

reduce the carrier [113]. The modified setup is shown in Figure 5.9. An EDFA is used to 

amplify the optical signals, then a Fiber Bragg Grating (FBG) with bandwidth B = 1 nm 

works as a passband filter to reduce the amplified spontaneous emission (ASE) of the EDFA 
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which contributes to overall system noise. A second polarization controller (PC 2) is in charge 

of aligning the input signal to the fixed polarizer. The electrical receiver is the same used in 

the previous setup. The power of the EDFA is set so that we have Popt = -1 dBm at the 

photodiode to match the previous case. 

 

Figure 5.9: Setup for DSB-SC with output polarizer. 

From the resulting optical spectrum shown in Figure 5.10a, a CSopt = 41.4 dB is measured. 

The improvement is quite noticeable but the setup requires fine tuning of both polarization 

controllers (PC 1 and PC 2) to achieve decent results. The electrical spectrum in Figure 5.10b 

shows a CSel = 32 dB. There is only a minimal improvement in the electrical carrier 

suppression (7 dB), indicating that the higher order harmonics (±2 harmonic and so on) also 

contribute to the generation of the component at fm. 

Figure 5.10: DSB-SC with MZM and polarizer: a) Optical (10 pm RBW) and b) electrical 
spectrum (100 Hz RBW) for fm= 16.5 GHz and ma=0.6. 

In order to test the frequency dependent properties of this scheme, the setup with a MZM 

alone (Figure 5.6) was used, but with lower RF powers (electrical power Pm = -2 dBm) to 
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prevent damage to the photodiode at lower modulation frequencies. The results of the 

frequency sweep are plotted in Figure 5.11. The electrical carrier suppression remains well 

over 20 dB over most of the frequency range. The power of the generated component at 2fm 

has an evident slope, meaning the modulation index decreases at higher frequencies. 

Nonetheless, this modulator can still be used with good enough efficiency at higher 

frequencies than the specified on the datasheet. The 3 dB point of the modulator used is found 

to be at fm = 12.5 GHz. The carrier suppression has variations as high as 20 dB attributed to 

the sensitivity of this scheme towards the bias point of the MZM. As seen in Figure 5.11, the 

power of the unwanted component at fm fluctuates strongly, mainly due to small deviations in 

the MZM bias point adjustment. 

 

Figure 5.11: Frequency sweep of the MZM setup (Pm = -2 dBm). 

The same test can be easily performed for the setup with the polarizer (see Figure 5.9) as no 

narrow band optical filters are used. For this measurement the FBG and circulator were taken 

out. The results are then depicted in Figure 5.12. The use of an EDFA allows more optical 

power so that the power of the harmonics is higher. Here the polarization changes and 

instabilities play a significant role in the measurements. During the sweep, the value of the 

optical carrier varied, although optically non-evident, electrically it was quite noticeable. The 

setup was tuned at a fixed frequency (namely fm = 10 GHz) and then the sweep was run. As 

can be seen, the electrical carrier suppression is better than the previous case, being higher 
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than 40 dB for most of the frequency range. In practice, for a fixed frequency the setup can be 

tuned and optical carrier suppressions of up to 60 dB were achieved. Nonetheless, small 

changes in the bias voltage and polarization states produce interfering components at fm. The 

introduction of the EDFA also contributes to the noise of the system and instabilities. 

Therefore, for a system where the modulation frequency is fixed, then the best option is to 

filter out the carrier optically. In this way the carrier is completely removed and small changes 

in the bias voltage do no affect in any way the systems performance. 

 

Figure 5.12: Frequency sweep of the MZM polarizer setup (Pm = -2 dBm, EDFA = 9 dBm). 

One method to directly filter out the remnant carrier is by placing an optical filter such as a 

Fiber Bragg Grating (FBG) in the transmission path. In this way, optical carrier suppressions 

of more than 50 dB can be easily obtained. By designing an FBG with a bandwidth 

B = 33 GHz and a rejection of 60 dB, a CSopt = 57.75 dB was achieved with the setup shown 

in Figure 5.13. The FBG must be tuned in the frequency to match the optical carrier and not 

suppress the sidebands. This tuning is realized by straining the FBG and changing its period 

and consequently its resonance wavelength [114]. 
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Figure 5.13: Setup for DSB-SC with output FBGs. 

This last method offers a simple configuration and tuning, providing the highest carrier 

suppression and stability. Moreover, now the bias point stabilization is more relaxed, as 

FBG 1 attenuates the carrier by 60 dB, so that the bias control unit can be replaced by a 

simple manually tunable DC source. Also the bias point can be tuned to minimize the higher 

order harmonics (VDC = 2.4 V instead of 2.7 V used in the other cases) and thus achieve a 

higher electrical carrier suppression. Figure 5.14 plots both the optical and respective RF 

spectra. The simulations predict no carrier present, however a remnant of the carrier is still 

observed in the measurements, attributed mainly to the beating of the ±1 harmonic with the 

±2 harmonics (their frequency difference is fm = 16.5 GHz). Nonetheless, an electrical 

suppression of CSel ≈ 70 dB was obtained, roughly a 40 dB improvement over the polarizer 

setup. 

Figure 5.14: DSB-SC with MZM and FBG: a) Optical (10 pm RBW) and b) electrical spectrum 
(100 Hz RBW) for fm= 16.5 GHz and ma=0.6. 

Even though the setup with an FBG provides the best optical carrier suppression, the 

tunability of this scheme with respect to the modulation frequency fm is very difficult, as the 

bandwidth of the FBG should be varied, or an extremely narrow bandwidth FBG must be 
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employed. The higher the modulation frequency fm the less critical the requirements on the 

FBG bandwidth are. Recent techniques in our lab could produce FBGs with a bandwidth as 

small as B = 12 GHz but with lower rejection. Narrower FBGs are either difficult to produce 

or the rejection is lower than 60 dB. Therefore there is an inherent trade-off between 

bandwidth and rejection in FBGs [114]. 

As a performance benchmark, the phase noise of the generated mm-wave signal was 

measured after a single mode fiber (SMF) link of length L. The results are shown in Figure 

5.15. For a frequency multiplication scheme, theory predicts that the phase noise of the 

resulting signal should be increased by a factor of 20·logN, where N is the multiplication 

factor [115]. For our case of frequency doubling, N = 2 and thus a theoretical phase noise 

increase of 6 dB is to be expected [116]. There is no significant change even after L = 40 km 

of SMF. As a reference, the phase noise of the mm-wave signal generator (WILTRON 

68347B) is also plotted. The 6 dB theoretical increase is evident, but no further penalty is 

introduced in the system even after long transmission distances such as L = 40 km. 

 

Figure 5.15: Phase noise for the doubling scheme using a MZM and FBG vs fiber length L.  

5.2 Fiber loop 
A similar approach as the one described in the previous section can be devised with help of a 

fiber loop mirror as depicted in Figure 5.16. 
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Figure 5.16: Fiber loop mirror. PC: Polarization controller, κ: couplers coupling ratio.  

A fiber loop mirror (FLM) consists of a fused fiber coupler whose output ports are spliced 

together or simply connected by a short single mode fiber link [117]. An input signal into the 

coupler will be splitted in two counter-propagating waves: one traveling in the clockwise 

direction (cw) and other in the counterclockwise direction (ccw) 

 
( )
( )

31 0

41 0

c

c

j t
cw

j t
ccw

E t S E e

E t S E e

ω

ω

= ⋅ ⋅

= ⋅ ⋅
 (5.11) 

where ωc is the optical carrier frequency, E0 its amplitude and Sij are the couplers scattering 

parameters. For a coupling ratio κ the scattering parameters are 

 31

41 1

S

S j

κ

κ

=

= −
 (5.12) 

meaning the cross transmission (i.e. S41) has a π/2 phase shift with respect to the through 

transmission (i.e. S31). 

After traveling through the same fiber they recombine in the same coupler to provide the 

following outputs at each input port 

  
( ) ( ) ( )
( ) ( ) ( )

,1 13 14

,2 23 24

out ccw cw

out cw ccw

E t S E t S E t

E t S E t S E t

= ⋅ + ⋅

= ⋅ + ⋅
 (5.13) 

For a 50% symmetrical fiber coupler (i.e. κ=0.5 and Sij=Sji) then all the input optical power 

will be reflected back to port 1 of the fiber coupler. This theoretical condition is very difficult 

to achieve in practice, as small polarization misalignements of the counterpropagating waves 
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occur limiting the suppression. By controlling the polarization states of the signals inside the 

loop, a variable optical reflector can be realised [117]. 

Another interesting application which will be described in the next sections is the introduction 

of a phase changing element inside the loop. 

5.2.1 Fiber loop with a phase modulator 
Perhaps the most straight-forward and easy way of inducing a phase change is by using the 

electrooptical Pockels effect. A change in the refractive index of the material used makes the 

light travel slower and thus produces a phase change. Lithium Niobate (LiNbO3) materials 

provide an efficient way of changing the phase using this linear electrooptical effect. For our 

research a LiNbO3 phase modulator (PM) UDT PM-1.5-8.0 was used which limits the 

modulation frequency to approximately 8 GHz. Its Vπ is specified to be 14 V but applying this 

RF drive power the maximum phase change reached was only 0.7π at low frequencies and 

even less at higher frequencies like 8 GHz (see Appendix A).   

 

Figure 5.17: Unbalanced fiber loop mirror with phase modulator. Optical intensity spectra 
a) reflected at the input b) transmitted to the output and c) inside the loop. 
PC: Polarization controller 
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By inserting the PM inside the loop as shown in Figure 5.17, the phase of the 

counterpropagating waves will be modulated at different times, depending on the position of 

the phase modulator relative to the symmetry axis of the fiber loop [118]. For this case, 

Eq. (5.11) turns into 

 
( ) ( )( )

( ) ( )( )

cos
31 0

cos
41 0

e

e

cw
c ph m

ccw
c ph m

j t m t
cw

j t m t
ccw

E t S E

E t S E

ω π ω τ

ω π ω τ

⎡ ⎤+ ⋅ −⎣ ⎦

⎡ ⎤+ ⋅ +⎣ ⎦

= ⋅ ⋅

= ⋅ ⋅
 (5.14) 

assuming sinusoidal phase modulation. Here ph RFm V Vπ=  represents the phase modulation 

index of the phase modulator for each wave, Vπ is the modulators half wave voltage, ωm is the 

modulation angular frequency and τ is the half-time delay between the two 

counterpropagating waves defined by 

 
2

n L
c

τ ⋅Δ
=

⋅
 (5.15) 

being n the refractive index of the fiber, c the speed of light and ΔL/2 the distance from the 

symmetry axis of the loop where the modulator is placed. 

The right hand part of the exponential in Eq. (5.14) describes an angle modulated signal, 

which can be expanded in a series of Bessel functions of the first kind of order k. Therefore, 

we have the Fourier series for the complex exponential as follows 

 ( )( ) ( )sine e e .ph m m m
j m t jk jk t

k ph
k

J mπ ω τ ω τ ωπ
∞

⋅ ⋅ ⋅ ± ±

=−∞
= ⋅∑  (5.16) 

Now the output at port 2 of the fiber coupler changes into a series of the form 

 ( ) ( )
,2 0( ) , e c mj k t

out m
k

E t E A k ω ωω
∞

+

=−∞
= ⋅ ⋅∑  (5.17) 

with 

 ( ) ( )( ) ( )( )23 41 24 31, e e .m mjk jkccw cw
m k ph m k ph mA k S S J m S S J mω τ ω τω π ω π ω −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  (5.18) 
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The output signal contains all frequency components of the form fc±kfm for k=0,1,2… as 

described in Eq. (5.17). The amplitude of the sidebands is then proportional to ( ),mA kω

being the amplitude of the optical carrier 

 ( ) ( ) ( )23 41 0 24 31 0,0 .ccw cw
m ph phA S S J m S S J mω π π= ⋅ + ⋅  (5.19) 

Assuming an ideal bidirectional phase modulator (i.e. cw ccw
ph ph phm m m= = ) and a symmetric 

fiber coupler (i.e 24 31S S= and 23 41 24S S j S= = ⋅ ), then the optical carrier is completely 

suppressed and Eq. (5.18) turns into 

 ( )
( )( ) ( ), e e

2
m m

k ph m jk jk
m

J m
A k ω τ ω τπ ω

ω −⋅
= −  (5.20) 

being 

 ( ) ( )2
24, 2 ( ) sin( ).m k ph mA k S J m kω π ω τ≈ ⋅ ⋅ ⋅ ⋅  (5.21) 

As seen in Eq. (5.21), when 2mω τ π=  then the odd spectral components of the frequency 

spectrum appear at port 2 of the fiber coupler and the even order ones are reflected back to 

port 1 as depicted in the insets in Figure 5.17. 

High speed LiNbO3 phase modulators usually have long travelling wave electrodes to achieve 

a near velocity match between the RF microwave and the optical wave [119]-[120]. This is 

also true for optical MZMs. Therefore they are not suitable for bidirectional operation. In the 

loop mirror the optical waves are propagating in the same (cw) and in the opposite direction 

(ccw) as the microwave signal in the modulator resulting in different modulation efficiencies 

for each optical wave for higher frequencies. 

A sample measurement of the forward (cw) and backward (ccw) response of our UDT PM-

1.5-8.0 is shown in Figure 5.18. As expected, a huge variation in the phase modulation indices 

is observed and different slopes are shown through a linear fit slope function (LFS). For 

frequencies higher than 1 GHz the slope of the modulation index of the ccw propagation is 

approximately 3.2 times that of the cw direction. From 4 GHz, the modulation index for the 

ccw direction can be considered to be practically zero. More measurements of the phase 

modulation index mph can be found in Appendix A. 
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Figure 5.18: Measured modulation index mph for the cw and ccw waves versus modulation 
frequency fm (Pm= 26 dBm, Vπ = 14 V, LFS: Linear Fit Slope). 

If the phase modulation indices differ for the cw and ccw waves, then the optical carrier in 

Eq. (5.19) can not be fully suppressed with a 50% fiber coupler (i.e. κ = 0.5). By replacing 

Eq. (5.12) in Eq. (5.19) we have a carrier suppression dependency on the couplers coupling 

ratio κ as follows 

 ( ) ( ) ( ) ( )0 0,0 1 .cw ccw
m ph phA J m J mω κ π κ π= ⋅ − − ⋅  (5.22) 

Figure 5.19a plots the optical carrier versus coupling ratio κ according to Eq. (5.22). For an 

asymmetrical phase modulator the optical carrier is not completely suppressed by a 

κ = 0.5 coupler but the minimum is shifted dependent on the relationship between the cw and 

ccw phase modulation indices. Taking the data in Figure 5.18, for example, for fm = 4 GHz 

and ΔL = 2cm, then the values for the modulation indices are 0.43cw
phm = and 0.05ccw

phm =

approximately. For this case the optimal coupling ratio should be κ = 0.626 (as shown in 

Figure 5.19a). Figure 5.19b now plots the carrier suppression with respect to the first 

harmonic which is calculated as follows 
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Figure 5.19: a) Optical carrier power and b) carrier suppression versus coupling ratio κ of the 
coupler for a symmetrical phase modulator ( 0.43cw ccw

ph phm m= = ) and an 

asymmetrical one ( 0.43cw
phm = and 0.05ccw

phm = ) for a fixed  fm = 4 GHz and 
ΔL = 2 cm. 

The variation in coupling ratio is quite significant, 12.6% for our example. Therefore a tuning 

of the coupling ratio κ of the coupler should compensate the phase modulators lack of 

bidirectionalty and achieve complete carrier suppression. 

 

Figure 5.20: Measured electrical carrier suppression CSel versus coupling ratio CR (modulation 
power Pm = 26 dBm, ΔL = 2 cm, fm = 4 GHz). 

A temperature controlled tunable coupler was used to make a fiber loop and compare the 

results from the theory in Figure 5.19b. The phase modulator was placed at ΔL = 2cm and the 
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frequency chosen was fm = 4 GHz, so that 0.43cw
phm = and 0.05ccw

phm = . The results of the 

electrical carrier suppression (CSel) from the model and measurements are shown in Figure 

5.20. A good agreement from theory and measurements is observed. 

Assuming a perfect phase modulator with cw ccw
ph ph phm m m= = , the instantaneous phase shift 

( )tϕΔ  between the two optical waves propagating in opposite directions in the fiber loop can 

be calculated as 

 ( ) ( )( ) ( )( ){ } ( ) ( )sin sin 2 sin cos .ph m m ph m mt m t t m tϕ π ω τ ω τ π ω τ ωΔ = ⋅ ⋅ + − − = − ⋅ ⋅ ⋅ ⋅ (5.24) 

With a coupling ratio of κ = 0.5 of the fiber coupler, the intensity transmission (T(t)) at the 

output and reflection (R(t)) at the input of the loop mirror are given by 

 
( ) ( )( )

( ) ( )( )

1 1( ) 1 cos ( ) 1 cos cos
2 2
1 1( ) 1 cos ( ) 1 cos cos
2 2

m m

m m

T t t t

R t t t

ϕ φ ω

ϕ φ ω

⎡ ⎤= ⋅ − Δ = ⋅ − Δ ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⋅ + Δ = ⋅ + Δ ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦

 (5.25) 

with ( )2 sin .m ph mmφ π ω τΔ = ⋅ ⋅ ⋅  

Expanding Eq. (5.25) in a series of Bessel functions results in 
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=
∞
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+ Δ
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∑

∑
 (5.26) 

The output signal intensity contains spectral components with frequencies of 2kfm with 

k = 1, 2,… For that reason at the output of the loop mirror a DSB-SC signal with sidebands at 

fc ± kfm is generated. This optical signal is tolerant to the chromatic dispersion of the fiber and 

a low phase noise microwave signal at the base station can be generated because the optical 

sidebands are correlated [121]. 
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Figure 5.21: Simulated photonic link response of the fiber loop with a phase modulator versus 
input RF drive power (Vπ = 14 V, fm = 1 GHz, ΔL = 1 cm). 

Figure 5.21 shows the calculated photonic link response for the harmonics n = 2, 4 and 6 for a 

perfect fiber loop mirror with a phase modulator and no insertion loss for the coupler and 

phase modulator. The modulation frequency is chosen to be fm = 1 GHz and the phase 

modulator is placed with ΔL = 1 cm inside the loop so that ωmτ ≈π/2. From the datasheet of 

the phase modulator Vπ is reported to be 14 V. The response is similar to the MZM case 

described in section 5.1.1 but with lower efficiency. The optimum RF drive powers vary 

greatly with the half-wave voltage Vπ of the phase modulator and as shown in Figure 5.18 the 

modulation index, and consequently the Vπ of the phase modulator, are not constant over the 

whole operating frequency range for constant RF drive power. The optimum Δφm can be 

calculated from Eq. (5.26) and are displayed in Table 5.2 for different harmonics generation. 

For the case where ωmτ ≈π/2, then mph = Δφm/2π, providing the lowest phase modulation 

index possible. 

  n =  2 4 6 8 10 

Δφm = 3.08 5.34 7.54 9.68 11.75 

mph 0.49 0.85 1.2 1.54 1.87 

Table 5.2: Optimal Δφm for nth harmonic generation and mph for ωmτ ≈π/2. 
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Comparing the values of ma in Table 5.1 with mph proves that this method is more efficient if 

both modulators have the same Vπ for the case ωmτ ≈π/2. The modulation index required for 

the fiber loop method is half the one required for the MZM approach. This originates in the 

argument of the Bessel functions in Eq. (5.7) and Eq. (5.26). Nonetheless, the relative detector 

power for this method is 6 dB lower than that of the MZM case. Also this analysis doesn’t 

take into account the variations of Vπ with modulation frequency fm and the most important 

issue shown in Figure 5.18 which is the poor bidirectionality of high speed LiNbO3 phase 

modulators. 

This whole analysis is also valid for uncorrelated optical source signals when the optical path 

length differences are less than the coherence length of these signals. An amplified 

spontaneous emission (ASE) source, like the power spectrum of an erbium doped fiber 

amplifier (EDFA) with no input signal can be described through a Fourier decomposition of 

each noise term [122]. Considering an amplifier with unity coupling efficiency, uniform gain 

G and bandwidth B centered around ωc, the electric field can be written as a sum of cosine 

terms spaced δf apart in frequency 

 
/2

( /2 )
( ) 2 ( 1) cos(( 2 ) ),

B f

sp sp opt c k
k B f

E t n G hf f k f t
δ

δ
δ ω π δ

= −
= − + + Φ∑  (5.27) 

where nsp is the inversion parameter and Φk is a random phase for each component of 

spontaneous emission. The bandwidth of the ASE at the output of an EDFA is approximately 

Δλ = 30 nm. Therefore the coherence length of the field is lc = 79 μm assuming a rectangular 

intensity spectral density. Thus ASE light can interfere coherently if the distance lc is much 

greater than all optical path differences encountered. As both cw and ccw waves travel exactly 

the same optical path in the fiber loop, heterodyning of ASE in a photodiode is possible [123]. 

The complex amplitudes of the counter propagating waves now take the form 

 ( )( )31 0( ) cos ( 2 ) sin
M

cw cw
N c m m k

k M
E t S E k t tω π δν φ ω τ

=−

⎡ ⎤= ⋅ ⋅ + + Δ ⋅ − + Φ⎣ ⎦∑  (5.28) 

and 

 ( )( )41 0( ) cos ( 2 ) sin ,
M

ccw ccw
N c m m k

k M
E t S E k t tω π δν φ ω τ

=−

⎡ ⎤= ⋅ ⋅ + + Δ ⋅ + + Φ⎣ ⎦∑  (5.29) 
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where 0 / 2 .M B δν=  

The output current i(t) from the photodetector is proportional to the intensity 

 
2

( ) ( ) ( ) ,cw ccw
N N

opt

qi t E t E t
hf

⎡ ⎤= +⎣ ⎦  (5.30) 

averaging over all optical frequencies. Here q is the electron charge, h planck’s constant and 

fopt the optical frequency. 

Due to the fact that the optical path length differences in the loop and all other components 

are less than the coherence length for this signals, the output current contains spectral 

components with frequencies of kfm with k = 1, 2,… Not only the generation of a microwave 

signal with the fundamental frequency fm is possible, but also the upconversion by using 

higher order spectral components. 

For experimental verification various fiber loops with different length differences ΔL were 

realized. By sweeping the modulation frequency fm a periodical behavior of the amplitude of 

the harmonics in dependency of ωmτ (and thus ΔL, the position of the phase modulator inside 

the loop) is obtained according to Eq. (5.21). The maxima and minima of this function are 

placed at 

 min
cf k

n L
= ⋅

Δ
 (5.31) 

 max
1
2

cf k
n L

⎛ ⎞= + ⋅⎜ ⎟ Δ⎝ ⎠
 (5.32) 

for k = 0,1,2…. 

Figure 5.22 shows the transfer function in transmission of the fiber loop for the generated 

mm-wave signal at 2fm for two fiber loops, one with ΔL = 83 cm and another one with 

ΔL = 25 cm. Simulations were carried out according to Eq. (5.26) using a constant modulation 

index mph = 0.32. The measurements pose a good agreement with the simulations except for 

the efficiency drop for higher modulation frequencies. This is mainly caused by the phase 

modulation index drop from the phase modulator itself, but also due to the different phase 

modulation indices in the cw and ccw propagation direction (see Figure 5.18). 
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Figure 5.22: Power transfer function of the fiber loop for the spectral component at 2fm for 
different ΔL ( Pm = 20 dBm, mph = 0.32 for simulations). 

If the measured values for ( )cw
ph mm f  and ( )ccw

ph mm f  are used in Eq. (5.21) of our model a good 

agreement between simulation and experiment is obtained. For a fiber loop with ΔL = 60 cm 

the results for the spectral component 2fm are shown in Figure 5.23. 

 

Figure 5.23: Simulated and measured power transfer function of the fiber loop for the spectral 
component at 2fm based on the extracted phase modulation indices mph of the 
modulator ( Pm = 20 dBm, ΔL=60 cm). 

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
-35

-30

-25

-20

-15

-10

-5

0

5 Measurement                 Simulation
 ΔL = 83 cm     ΔL = 83 cm
 ΔL = 25 cm     ΔL = 25 cm

P
ow

er
 (d

B
m

)

Modulation frequency fm (GHz)

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
-35

-30

-25

-20

-15

-10

 

 

 Simulation
 MeasurementP

ow
er

 (d
B

m
)

Modulation frequency fm (GHz)



5 Electrooptical upconversion methods  

 

 

94 

The measurement of the minima is straightforward from the frequency sweep and provides an 

estimation of ΔL. By manipulating Eq. (5.31) for two adjacent minima we obtain 

 
min

.cL
n f

Δ =
Δ

 (5.33) 

Moreover, to increase the bandwidth of the system, the minima should be placed farther apart. 

This results in ΔL being small i.e. the phase modulator should be placed slightly off the 

symmetry axis of the loop. For this purpose, a loop with ΔL = 2 cm was realized and the 

results of the frequency sweep up to 10 GHz are shown in Figure 5.24 for the components fm 

and 2fm as well as the electrical carrier suppression when using a laser source as well as for 

the ASE source variant. 

Figure 5.24: Transmission of the fiber loop as a function of modulation frequency 
(Pm = 20 dBm, ΔL = 2 cm) with a a) laser source and b) ASE source.  

The variations of the amplitude of the electrical carrier at fm in Figure 5.24a are caused by 

random changes in the polarization of the cw and ccw waves inside the fiber loop and by the 

different modulation indexes that the cw and ccw waves experience at the phase modulator. 

Nonetheless the electrical carrier suppression (right axis in Figure 5.24a) remains more than 

20 dB for most of the measurement range when using a laser source. For the ASE case 

depicted in Figure 5.24b, polarization effects don’t play an important role as the light source 

can be considered unpolarized. However, the carrier suppression is not as good as in the 

previous case, reaching the 20 dB mark for a finite frequency band. 
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Figure 5.25: Electrical frequency spectrum of the output signal (Pm = 20 dBm, fm = 4.4 GHz) 
with a a) laser source and b) an ASE source. 

The electrical spectrum for a modulation frequency fm of 4.4 GHz is shown in Figure 5.25. 

After tuning the polarization inside and outside the loop an electrical carrier suppression of 

CSel = 24 dB was achieved. This can be calculated from Eq. (5.23). Using the data collected in 

Figure 5.18 for the phase modulator and the scattering matrix of the coupler used, an 

electrical carrier suppression of approximately 24 dB was estimated.The phase noise of an 

electrical carrier characterizes its stability. For the optically generated signal with 

2fm = 10 GHz the measured single sideband phase noise is shown in Figure 5.26. 

Figure 5.26: Phase noise measurement of the source synthesizer and microwave signal for 
different transmission lengths L with a a) laser source and b) an ASE source 
(Pm = 26 dBm, fm = 5 GHz). 

As a reference the phase noise of the synthesizer at fm = 5 GHz is shown in the lower trace. 
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separated by approx. 6 dB which is the theoretical expected value for a frequency doubling 

scheme [115] for all transmission lengths used. In Figure 5.26b the results for a fiber loop 

using an ASE source are depicted. Up to an offset frequency of roughly 0.1 MHz the curves 

exhibit the expected 6 dB difference, but then the generated frequency component at 2fm 

reaches a phase noise floor which increases when 500 m of single mode fiber were inserted 

due to decorrelation in the fiber link. 

The generation of microwave signals with a fiber loop and a phase modulator has nearly no 

influence on the phase stability of the signal when a laser source is used. Even after 

transmission over L = 19 km of SMF there is no significant penalty observed. On the other 

hand, using an ASE source shows severe phase noise degradation due to decorrelation which 

would affect data transmission performance, especially in phase modulation formats such as 

PSK and multilevel formats such as QAM. Nonetheless, a link with L = 2 km SMF was tested 

and no signal was detected, so that the power fade-off of this scheme is the limiting factor, 

and not its phase noise performance. The efficiency of this scheme with an ASE source is 

strongly dependent on the optical bandwidth used, being the main limiting factor the 

bandwidth of the components inside the loop (i.e. the phase modulator’s optical bandwidth). 

Tests were carried out by optically slicing the ASE spectrum with an FBG and that results in a 

very poor efficiency. Furthermore, the use of an ASE source hinders the utilization of this 

scheme in a WDM scenario, thus the application with a laser source is preferred. 

5.2.2 Fiber loop with a semiconductor optical amplifier 

Another way of generating the phase difference inside the loop is by using a non-linear 

element like a semiconductor optical amplifier (SOA). A cross-phase modulation (XPM) 

effect accompanies cross-gain modulation (XGM) when two optical signals are 

simultaneously present in a SOA [124]. XPM in SOAs applied in an interferometric 

configuration has been used for all-optical wavelength conversion [125]-[127], optical 

demultiplexing [128]-[130] and for optical clock recovery [131]. All of these schemes operate 

the SOA as a nonlinear element, where generally a π phase shift is desired. For our 

application, the XPM effect will be driven in the linear regime and thus used for the 

generation of a DSB-SC signal in a setup similar to the one described in the previous section. 
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Figure 5.27: Cross-gain modulation in SOAs. 

When two optical fields are incident on the same facet of a SOA, as shown in Figure 5.27, the 

modulation of the amplifier gain caused by optical amplification of λ1 imparts a modulation 

onto the other beam at λ2. The carrier density Ncd(z,t) in the SOA evolves in time as [132] 

 ( ),
,

( )cd i
cd cd t i

sat ii

N J R N N N
t ed E

∂
= − − −

∂
∏∑  (5.34) 

where the summation is over the beams present in the device. Πi are the instantaneous 

powers, J the injected current density, d the active layer thickness and q the electronic charge. 

R(N) is the spontaneous recombination rate given by 2 3( )cd nr cd cd cdR N A N BN CN= + + , the 

three terms accounting for defect, radiative spontaneous and Auger recombination 

respectively. The gain for beam i (at wavelength λi) is described by ( ),i cd t ia N N− and the 

saturation energy Esat is given by 

 ,
i

sat i
i

AE
a

ω
=

Γ
 (5.35) 

where A is the active region area and Γ the mode confinement. The propagation of optical 

power in the amplifier is governed by 

 ( ), int
i

i cd t i ia N N
z

α
∂

⎡ ⎤= Γ − −⎣ ⎦∂
∏ ∏  (5.36) 

where αint is the internal loss. 
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If there is a large saturating power in one of the optical beams and a small modulation 

imposed on it, then the optical power can be written as Πi = Pi +pi, denoting the steady state 

and perturbing signals respectively. The carrier density is now 0cd cdN N n= +  and 

substituting in Eq. (5.34) for the steady state we have 

 ( ) ( )0 0 ,
,

0 i
t i

sat ii

PI R N N N
qV E

= − − −∑  (5.37) 

and for the small signal 

 
( )0 ,
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.t i i cd icd cd

c sat ii

N N p n Pn n
t Eτ

− +∂
= − −

∂ ∑  (5.38) 

The small signal lifetime is given by 2
0 01 2 3c cd nrR N A BN CNτ = ∂ ∂ ≈ + + . For the case of 

sinusoidal variation with time at angular frequency ω, then 
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∑
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 (5.39) 

where the contribution to the lifetime of the stimulated emission by each beam is given by 

, ,1 s i i sat iP Eτ = and consequently varies with z, the position inside the SOA. 

The behavior of the steady-state optical power in the beams is governed by 

 ( )0 , int
i

i t i i
P a N N P
z

α∂ ⎡ ⎤= Γ − −⎣ ⎦∂
 (5.40) 

and the small signal propagation is given by 

 ( )( ), int .i
i cd t i i i i

p a N N p a nP
z

α∂
= Γ − − + Γ

∂
 (5.41) 

The magnitude of the perturbation to the carrier density is given by ncd in Eq. (5.39) and 

shows the response of the carriers due to the amplification of the perturbing beam which has a 

roll-off with a 3 dB frequency of 3 2 effπτ being 

 ,1 1 1 .eff c s i
i

τ τ τ= +∑  (5.42) 
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It would appear that this high frequency limit applies to XGM (and therefore to XPM). 

However, higher bandwidths than the ones imposed in Eq. (5.39) are achieved in practice due 

to the removal of the gain compression as the carrier population cannot follow the pump light 

variation [132]. 

The rate equations governing XGM in SOAs (i.e. Eq. (5.37)-(5.41)) can be numerically 

solved, but an analytic solution can be found for the case of wavelength conversion. 

Assuming that the CW intensity of the probe at wavelength λ1 is smaller than the CW portion 

of the pump at λ2, then the conversion efficiency from pump (λ2) to probe (λ1) in the SOA is 

given by [132] 

 0

,2 ,2
exp 1

1conv
s c s

g L
j

η
τ τ ωτ

⎛ ⎞−
= −⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (5.43) 

where g0 is the gain per unit length and L the length of the SOA. Eq. (5.43) reveals why an 

estimate of the bandwidth based on the carrier modulation bandwidth from Eq. (5.39) is 

misleading. The frequency response of the wavelength conversion mechanism (i.e. XGM) is 

based on a combination of the device gain and the stimulated and spontaneous lifetimes. 

Figure 5.28: Normalized conversion efficiency of XGM versus modulation frequency fm for 
a) different gains g0L and b) stimulated carrier lifetimes τs,2. Spontaneous carrier 
lifetime is τc = 300 ps in all curves. 

Although the parameters g0L, τc and τs,2 are inter-related in a real SOA, they will be set 

independently for illustration purposes. Figure 5.28 shows the frequency response for gain 

and stimulated carrier lifetime parametrization for a spontaneous carrier lifetime τc = 300 ps. 

First of all, increasing the device gain g0L or the stimulated carrier lifetime τs will increase the 
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XGM bandwidth. Furthermore, resonant peaks can be formed due to the exchange of light of 

the two beams, which was experimentally verified in [133].  

Two SOAs were available for characterization: one commercially available from Covega and 

a second one custom designed from the University of Karlsruhe. More data on the SOAs can 

be found in Appendix C. Figure 5.29 shows the measured frequency response of the output 

probe beam against modulation frequency of the input pump beam. For the SOA from Covega 

a bias current Ibias = 500 mA was used. From CW measurements of the same amplifier, the 

measured saturation power is Psat = 9.4 dBm. Using a spontaneous carrier lifetime τc = 300 ps, 

the saturation energy is Esat = Psat·τc = 2.61·10-12 J. The optical power of the probe was 

-10 dBm, then the carrier lifetime due to stimulated emission is τs = 26.13 ns. The small 

signal gain was 22 dB, then g0L = 4. Substituting these values into Eq. (5.43) produces the 

solid line in Figure 5.29.  The theory matches the experimental results quite well. The 3-dB 

bandwidth of the XGM effect is measured to be about 1.66 GHz for this SOA. 

 

Figure 5.29: Conversion efficiency of XGM versus modulation frequency fm for the SOA from 
Covega (modulation power Pm= 17 dBm). 
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would be interesting to have an expression linking the SOA phase to gain variations at the 

device output. Thus an effective α-factor (αeff) is introduced in the literature as [134] 

 2 2
ln

out
eff

out

in

g P
P

φ φα
Δ Δ

= − = −
Δ ⎛ ⎞Δ

⎜ ⎟
⎝ ⎠

 (5.44) 

where Δφ is the phase variation introduced, Δg the corresponding gain variation and ΔPout the 

output power variation associated with Δg when the input signal power is Pin. The exact 

expression for αeff is quite complicated, involving effects such as carrier heating, spectral hole 

burning, two photon absorption, etc. which are beyond the scope of this thesis. Eq. (5.44) is 

correct only when the probe beam is CW and Δg is induced by a bias current modulation or 

by an input power variation of a second optical beam (i.e. a pump laser). Its utility is that, for 

a signal whose dynamics are much slower than the carrier heating dynamics (in the ps order), 

the temporal phase evolution can be easily calculated using Eq. (5.44) once the gain variation 

at the SOA output versus time is known. But this approach has its limitations, as αeff depends 

on parameters which vary by changing the SOA operation condition. This means that αeff is 

practically of use when wide (some tens of ps or more) optical pulses are injected in the SOA 

or when its bias current is modulated. Generally the electrodes that supply the bias current to 

the SOA are not desgined for RF performance, limiting the modulation frequencies to some 

MHz. That is why the setup with a pump laser is chosen as shown in Figure 5.31. 

The same setup for the XGM bandwidth is used to measure the phase modulation index mph 

generated by XPM and is explained in detail in Appendix B. The frequency resolution of the 

optical spectrum analyzer dictates the minimum modulation frequency which can be resolved 

for the measuremtent. In our case, the optical resolution of the Advantest Q8384 of 10 pm 

would let resolve peaks which are theoretically 1.25 GHz apart but in practice we could start 

measuring from 2 GHz. As XPM is linked to XGM through αeff as described in Eq.(5.44), 

which is constant for a SOA operating condition independent on the modulation frequency fm, 

a similar behavior like XGM can be expected. Therefore from the previous measurements, the 

phase modulation index mph can be approximated as a constant value up to fm = 1.2 GHz and 

then it rolls off as an exponential function (i.e. constant slope in the logarithmic x axis). The 

results for forward (cw) and backward (ccw) propagation for different bias currents are shown 
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in Figure 5.30 with the corresponding fit for lower frequencies. The fit curves indicate that for 

lower frequencies much higher modulation indeces can be achieved than with the previous 

phase modulator. Moreover, the forward and backward operation of the SOA produces 

identical modulation indeces, simplifying the model equations for the fiber loop. Nonetheless, 

the modulation index rolls off at higher frequencies, limiting the useful application of these 

scheme to values of fm around 4-5 GHz. 

 

Figure 5.30: Phase modulation index mph for XPM versus modulation frequency fm (Covega 
SOA, Pm= 17 dBm, Pprobe = -10 dBm, Ppump = 2.5 dBm). 

A SOA is placed ΔL/2 from the symmetry axis of the fiber loop and the XPM is induced by a 

modulated pump laser, inserted via another coupler into the loop (Figure 5.31) and filtered out 

by a Fiber Bragg Grating (FBG) afterwards at the output [135]. The analysis is analogous to 

that in section 5.2.1, but now the counter propagating waves suffer both gain and phase 

changes due to XGM as well as the desired XPM effect. The complex amplitudes of the 

waves in (5.14) take the form 
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 (5.45) 

where ωc is the frequency of the probe light source, fm is the modulation frequency applied to 

the the pump laser, mph is the phase modulation index, G represents the gain introduced by the 

SOA each different for cw and ccw propagation respectively. The phase modulation of the 

ccw wave is delayed by 2τ with respect to the cw wave. 
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Figure 5.31: Unbalanced fiber loop mirror with SOA. PC: Polarization controller, FBG: Fiber 
Bragg Grating. 

The transfer function of the loop for transmission now takes the form [136] 

 ( )( )0
1( ) ( ) ( ) 2 ( ) ( ) cos ( )
4 cw ccw cw ccwT t G t G t G t G t tτ τ τ τ φ φ= − + + − − ⋅ + Δ −  (5.46) 

where ( )( ) ( )( )( ) ( ) ( ) sin sincw ccw
cw ccw ph m ph mt t t m t m tφ φ τ φ τ ω τ ω τΔ = − − + = − − + . In these 

equations, G and φ are the gain and phase of the data signal, τ the loop asymmetry and φ0 a 

static phase change. A control of the polarization states of the waves entering the SOA should 

be done to ensure maximum XPM of the two waves, but as the SOA used in our experiments 

is polarization insensitive, the only use of the polarization controllers inside the loop is to 

ensure maximum interference of the counter propagating waves in coupler 1. Using the 

Fourier series for the complex exponential from (5.16) and for the sake of simplicity we 

consider a symmetric 50% coupler, i.e. κ = 0.5, 24 31S S κ= = and 23 41 24S S j S= = ⋅ , also

cw ccwG G G= = , 0cw ccwg gΔ = Δ = and cw ccw
ph ph phm m m= = , then the complex amplitude at the 

output port is 

 ( )( ) sin( ) .cj t
perf m k ph

k
E t G e j k J mω ω τ

∞

=−∞

⎛ ⎞
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⎝ ⎠
∑  (5.47) 
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For k = 0 (i.e. the carrier) the field is zero. When ωmτ = π/2 then the odd spectral components 

of the frequency spectrum appear at the output port and the even ones are reflected to port 1 

of the loop mirror. Thus at the output of the loop a DSB-SC signal with sidebands at fc ± kfm is 

generated. The same kind of RF response is obtained for this case as in section 5.2.1. The use 

of a SOA has two main advantages: it generates gain inside the loop (20-25 dB optical gain) 

and the phase modulation index mph that can be achieved is higher than with commercial 

phase modulators. Popular LiNbO3 modulators achieve a refraction index change Δn in the 

order of 10-6 to 10-4 caused by the Pockels-effect in the waveguide [137]. On the other hand, 

SOAs can achieve a Δn = 2.10-3 for P = Psat/10 [124], that is one order of magnitude more. 

Higher pump powers can induce larger refractive index changes at the cost of reduced optical 

gain. 

The experimental setup was shown in Figure 5.31 plus some additional elements, such as a 

variable delay line inside the loop to fine tune the delay τ between the two waves. The pump 

laser is externally modulated by a 10 Gbit/s modulator from JDSU which limits the 

modulation frequency fm to 15 GHz. The RF spectrum corresponding to a modulation 

frequency fm of 15 GHz is shown in Figure 5.32. The upconversion to 2fm = 30 GHz with an 

electrical carrier suppression of more than 25 dB is achieved. 

 

Figure 5.32: Electrical frequency spectrum of the output signal with a modulation frequency 
fm = 15 GHz after 100 averages (Pm = 20 dBm, λ = 1550 nm, ΔL = 8 cm). 
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The RF upconversion response of the setup is measured by varying the modulation frequency 

fm up to 15 GHz and detecting the optical signal with a fast photodiode (NEL-KPD1510). For 

a fiber loop with ΔL = 8 cm (i.e. τ = 330 ps) and biasing the SOA from with Ibias = 500 mA, 

the results for the spectral component 2fm are shown in Figure 5.33. Simulations were carried 

out in VPI for comparison purposes. The measured curves present a good agreement with the 

proposed fiber loop model taking into account the exponential decay of the modulation index 

mph due to the SOAs XPM effect. The SOA model in VPI is a transmission line model (the 

same used to model semiconductor lasers), being the only difference the use of anti-reflection 

coated facets, which is only a simple redefinition of the laser parameters.  

 

Figure 5.33: Simulated and measured power transfer function of the fiber loop for the spectral 
component at 2fm (Pm = 17 dBm, ΔL = 8 cm, Ibias = 500 mA). 

The SOA from Covega is optimized for system performance, exhibiting a huge bandwidth of 

approximately 60 nm and a poor nonlinear performance as the maximum modulation index 

achieved was 0.76. Another SOA from the University of Karlsruhe was available for 

comparison. This SOA was designed for nonlinear operation and has a bandwidth of 25 nm, a 

small signal gain of 19 dB and a saturation power Psat = -5 dBm. It operates with much lower 

bias currents, around 100 mA. For more details please refer to Appendix B and Appendix C. 

The measurements of the conversion efficiency and phase modulation index mph are shown in 

Figure 5.34. The 3dB bandwidth of the XGM is now around 2 GHz. The modulation indices 

achieved are much higher than with the Covega SOA, reaching mph as high as 1.08 with one 

quarter of the bias current for the lower frequency range (i.e. up to 1.4 GHz). 
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Figure 5.34: a) Conversion efficiency of XGM and b) modulation index mph versus modulation 
frequency fm for the SOA from Uni Karlsruhe (Pm= 17 dBm, Pprobe = -10 dBm, 
Ppump = -5.5 dBm). 

This SOA was placed in another loop with ΔL = 6.55 cm (i.e. τ = 260 ps) and the computed 

simulations are shown in Figure 5.35 for Ibias = 125 mA. There is a good conformity between 

theory and simulations. Also as the modulation index mph increases, the transfer function 

suffers an overmodulation which constitutes the valley in the first period. 

 

Figure 5.35: Simulated and measured power transfer function of the fiber loop for the spectral 
component at 2fm (Pm = 17 dBm, ΔL = 6.55 cm, Ibias = 125 mA). 
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fm = 15 GHz, a signal at 30 GHz was obtained (as shown in Figure 5.32), a 150% 

improvement over the 20 GHz signal obtained in section 5.2.1 with the phase modulator. The 

performance of both SOAs is summarized in Table 5.3, and compared with the phase 

modulator used in section 5.2.1.  

mph 
Phase modulator 

UTP 1-8 GHz 

Covega SOA 

(Ibias = 500 mA) 

Karlsruhe SOA 

(Ibias = 125 mA) 

@1 GHz 0.61 0.682 1.08 

@4 GHz 0.437 0.315 0.546 

@8 GHz 0.188 0.15 0.29 

@12 GHz ≈ 0 0.075 0.182 

@15 GHz ≈ 0 0.043 0.126 

Table 5.3: Phase modulation index mph for at different modulation frequencies for different 
SOAs and phase modulator. 

The SOA especially desgined for nonlinear operation (i.e. Karlsruhe SOA) exhibits a superior 

performance than the phase modulator and the system optimized SOA from Covega. In the 

frequency range for the system experiments in chapter 7 (i.e. around fm = 4.5 GHz) provides 

the highest modulation index mph. 
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6 Comparison of optical heterodyne receiver architectures 

The optical heterodyne receivers used in this thesis differentiate themselves with the ones 

used for broadband optical communications in that a wireless link is present to provide gigabit 

wireless access to mobile devices. Classical heterodyne receivers would use the lower path in 

Figure 6.1 to demodulate a signal mixed at fRF by the beating of the data signal plus a local 

oscillator (LO). The wireless link in this case takes the role of the bandpass filter (BPF). 

Usually the photodiode used for heterodyning and generating the mm-wave carrier is placed 

at the so called base station (BS) where it receives the optical signal from a central station 

(CS) and broadcasts the corresponding electrical RF signal. In the mobile device the task of 

demodulating this broadband signal from an RF carrier remains. This is not trivial and many 

receiver approaches are proposed in the literature. In this chapter, some modulation formats 

and models for the receivers used will be presented and analysed. 

Figure 6.1: Optical heterodyne receiver example. MZM: Mach-Zehnder modulator, LO: Local 
oscillator, PD: Photodiode, BPF: Bandpass filter, LPF: Low pass filter. 

6.1 Amplitude shift keying (ASK) 
ASK is the simplest modulation format to generate. The information is modulated in the 

amplitude of an RF carrier and the modulated signal can be described as [138] 

 ( )( ) ( )2 cos ( ) ,sig t s LO RF RFV t Z m t R P P t t noiseω φ= + +  (6.1) 

where m(t) is the digital information, Zt is the overall transceiver impedance, R is the 

photodiode responsivity, Ps is the signal power and PLO the local oscillator power. The RF 

carrier angular frequency is ωRF whereas φRF takes into account the phase noise present in the 

signal. The additive noise term is mainly generated by shot noise in the local oscillator laser 

itself when PLO > Ps, which is generally desired in this kind of systems to approach quantum 
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limit efficiencies. In this so-called shot noise limit, thermal noise can be neglected and will 

not be considered in the following discussions.  

ASK can be demodulated synchronously, by recovering the RF carrier from the signal and 

using it to down-convert the information to baseband in a broadband mixer as shown in 

Figure 6.2a. Another common method is to use an independent local oscillator at fRF in the 

mixer, but this requires frequency and phase tracking. However, as shown in Figure 6.2b, 

using an envelope detector or a square-law receiver, ASK can be recovered asynchronously 

(i.e. no phase information is required). 

Figure 6.2: Optical heterodyne receivers for ASK with a) synchronous and b) asynchronous 
demodulation. 

For synchronous (or coherent) demodulation as proposed in Figure 6.2a, a strong local 

oscillator assumption will make the system to be dominated by shot noise as a great number 

of photons are received per bit of information. Thus we can assume Gaussian statistics for the 

voltage at the decision circuit as illustrated in Figure 6.3a. The dominant LO shot noise also 



6.1 Amplitude shift keying (ASK) 

 

 

111 

allows us to assume that the noise during a “zero” is the same as the noise during a “one” so 

that 0 1 nσ σ σ= = . 

 

Figure 6.3: Probability densities at the input of the decision circuit in a heterodyne receiver for 
a) synchronous ASK, b) asynchronous ASK and c) PSK [138]. 

The BER performance will then be determined by solving the problem of the detection of a 

known pulse in Gaussian noise [139]. The maximum likelihood demodulator is a matched 

filter [140]. Since in the demodulators in Figure 6.2, the overall filter function is the cascade 

of the predetection band-pass and postdetection low-pass, either the band-pass or the low-pass 

filter (or a combination) could be used to approximate the ideal sinc function matched filter. 

The voltage obtained during a “one” is proportional to the amplitude of the RF signal, while 

the noise is proportional to the DC photocurrent and receiver noise bandwidth (Bn) as 
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Here Prcvdone is the power in a “one”, PLO the LO power, q the electron charge, R the 

photodiode responsivity and Zt the overall receiver impedance. Setting the optimum threshold 

to half the voltage generated by the receiver during a “one” allows the calculation of the BER 

by using the Q function which is defined as 
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Therefore, the BER takes the form [138], 
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where onercvd
p

c n

P
n

hf B
η

=  is the peak number of photons required per bit of information, η the 

quantum efficiency of the photodiode, h Planck’s constant and fc the optical carrier frequency. 

Eq. (6.4) assumes that the receiver noise bandwidth is equal to Rb = 1/Tb, where Tb is the 

symbol time. This corresponds to the case of a matched filter receiver [140]. In order to 

achieve a BER of 10-9, the argument of the Q-function should be 6, thus requiring 72 photons 

in each bit that is a “one”. This translates into an average of 36 photons per bit, assuming 

“ones” are equally likely as “zeroes”. 

The case of an asynchronous (or incoherent) receiver presents some problems, because the 

signal is either squared or envelope detected and now the associated statistics for the “ones” 

and “zeroes” are no longer Gaussian. The probability density at the output of an envelope 

detector with a digitally modulated sinusoidal signal under additive white-Gaussian noise is 

well-known to be described by a Rician distribution for a “one” and a Rayleigh distribution 

for a “zero” [141] as illustrated in Figure 6.3b. 

To determine the BER performance for incoherent ASK demodulation now involves solving 

the integrals of the Rician and Rayleigh distributions. A closed formed solution with Marcum 

Q function can be achieved, but when the signal-to-noise ratio is high, the Marcum Q function 

can be approximated using the standard Q function from Eq. (6.3) [138]. Assuming that the 

optimum threshold level is again half the level of Vone, then 
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For all practical cases the second term in Eq. (6.5) dominates the probability of error, and we 

can further simplify the expression to 
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In order to achieve a BER of 10-9 using an incoherent ASK demodulator, 80 photons in each 

bit that is a “one” are required. This translates into an average of 40 photons per bit, assuming 

an equal symbol distribution. This represents only 4 photons more than coherent detection per 

bit, or a 0.5 dB optical power penalty. This is such a small degradation that incoherent 

demodulation is typically preferred due to its simplicity. 

The task of constructing these demodulators is not trivial and several approaches are found in 

the literature [142]-[145]. For the system experiments both coherent and incoherent 

demodulation will be used, therefore the receiver architectures will be described next. 

6.1.1 Receivers with coherent demodulation 
To coherently demodulate an RF carrier with data on it, some kind of RF carrier recovery is 

needed (see Figure 6.2a) to later use it in a broadband mixer and shift the RF spectrum to 

baseband. Usually RF carrier recovery involves some kind of phase detector and a voltage 

controlled oscillator (VCO) which with the help of a phase-locked loop (PLL) tracks the 

frequency and the phase of the RF carrier. The receiver architecture developed in the lab is 

drawn in Figure 6.4. 

 

Figure 6.4: Detailed schematic of the coherent receiver. 

After photodetection the RF signal can either go through a cable link for back to back (BtB) 

measurements or a wireless link (with added amplification). Both paths combine in the 
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coherent demodulator. The signal is further amplified by a Centellax low noise broadband RF 

amplifier (LNA). The photodetected signal also has a baseband copy due to the direct 

detection process in the photodiode, therefore an electrical bandpass filter is in charge of 

eliminating this baseband copy (mainly for the BtB case).  

Instead of employing a VCO, a frequency synthesizer was used (SMP04 from Rohde & 

Schwarz) which generates an LO at fLO = 33 GHz. The output signal needed to be amplified to 

+13 dBm which is required for the broadband mixer (Miteq M2640W) to operate. To obtain 

coherent demodulation, two issues needed to be addressed: frequency and phase tracking of 

the RF carrier. The frequency stability was achieved by synchronizing the SMP04 with the 

source synthesizer used to generate the optical DSB-SC signal at the central station via its 

10 MHz reference port. Otherwise, a frequency mismatch which varies in time is observed. 

Secondly, the phase mismatch of both synthesizers causes amplitude variations in the 

recovered data. To solve this issue, a slow PLL was implemented in Labview. The DC 

component of the recovered data signal was used as an input and the program changed the 

electrical phase of the local oscillator (SMP04) to achieve maximum amplitude. Not only was 

this vital, but the phase noise of the source synthesizer needs to be quite good too. The first 

experiments involving a WILTRON synthesizer couldn’t be carried out. By changing the 

source synthesizer with an Agilent PSG04, the signals could be locked during the experiments 

time frame. 

 

Figure 6.5: Phase noise of the synthesizers used. 
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Figure 6.5 shows the phase noise measurements of three synthesizers involved in the 

experiments demonstrating that the WILTRON synthesizer provides much higher phase noise 

than the PSG. The optimal combination is to use the PSG as the source synthesizer for the 

DSB-SC optical signal and the SMP04 as local oscillator in the receiver unit. 

From Eq. (2.4) in section 2.3 we can solve for the implementation loss (IL) of our proposed 

receiver, which is rewritten as 

 10( ) (10 log ( ) )TX TX RX shad B n RXIL P G G PL d L k TB NF= + + − − − ⋅ +  (6.7) 

Considering the BtB case (i.e. no wireless link), then GTX = GRX = PL(d) = 0. Moreover, no 

shadowing is considered, so Lshad = 0 too. To obtain a BER = 10-9 a Q factor of 6 is needed, 

which translates in ( )2
1010 log 15.6 dBSNR Q= ⋅ = [146]. The cascaded noise figure of the 

receiver was calculated using Friis formula [147] and results in NFRX = 5.04 dB which is 

expected due to the low noise amplifier (LNA) as the first stage of the receiver. The 

remaining parameters are Bn = 7 GHz and PTX = -34 dBm (the measured electrical power for 

BER = 10-9 in the lab). Solving Eq. (6.7) results in ILcoh = 20.91 dB for this receiver, which 

demonstrates there is sufficient margin for improvement. Typical values of IL considered in 

chapter 2 for the simulations were around 6 dB. One of the key issues when dealing with huge 

bandwidths is the group delay response of all the components involved. As the bit slot is 

100 ps for 10 Gbps, the group delay ripple of the amplifiers and mixer combined should be 

kept below this value. Also the use of a transimpedance amplifier directly after the 

photodiode will improve the sensitivity of the proposed receiver. 

However, the biggest drawback of this scheme is the requirement to lock both source and 

receiver synthesizers which is unrealistic at best due to the fiber link plus the wireless link to 

the mobile unit. Moreover, some kind of phase tracking is also needed, increasing the 

complexity of the receiver, which should be incorporated in the mobile devices plus a carrier 

recovery circuit. To avoid RF carrier recovery we move on to receivers using incoherent 

demodulation, which will be explained in the next section. 

6.1.2 Receivers with incoherent demodulation 
In order to have mm-wave carrier independence, receivers with incoherent demodulation such 

as square-law detection or envelope detection are used. As the theoretical penalty in 
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comparison with coherent demodulation techniques is quite small (40 photons per bit 

compared to 36 for coherent detection, only 0.5 dB), these methods are preferred due to the 

costs savings of not having a local oscillator. Two approaches will be described, one 

involving square-law detection (i.e. the self homodyne receiver) and one using envelope 

detection. 

6.1.2.1 Self-homodyne receiver 
The self-homodyne receiver is based on the principle of mixing the incoming RF signal with 

itself to produce baseband demodulation. The RF signal is actually squared, producing 

harmonic products at baseband and twice the RF carrier frequeny. Due to bandwidth 

limitations of the electrical components and low pass filtering, the higher order components 

are removed. Therefore demodulation takes place with no local oscillator, providing mm-

wave carrier independence as long the RF carrier is within the square-law device’s bandwidth 

(usually a broadband mixer is used for this purpose). A detailed setup of the self homodyne 

receiver is shown in Figure 6.6. 

 

Figure 6.6: Detailed schematic of the self-homodyne receiver. 

After the O/E conversion in a broadband photodiode, the signal can travel through two paths: 

a cable link for BtB measurements or a wireless link. Both paths reunite in the self-homodyne 

receiver consisting of a low noise preamplifier with gain G1 = 25 dB and noise figure 

NF1 = 4 dB, a bandpass filter in the 23-40 GHz band, another low noise amplifier with gain 

G2 = 27 dB and noise figure NF2 = 5 dB. A 6 dB broadband coupler splits the signal into two 

paths, which are adjusted through broadband delay lines, and recombine in an electrical 

broadband mixer (Miteq 2640W which operates in the 26-40 GHz region). The mixer needs 

high powers in the LO port to operate correctly (i.e. light up the diodes in the mixer). From 
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the manufacturer’s datasheet, at least +13 dBm RF power is required in the LO port of the 

Miteq mixer. Transforming this power requirement to the input port of the self-homodyne 

receiver gives us a sensitivity of -24 dBm for BER = 10-9 at 10 Gbps. After self mixing, the 

signal is low-pass filtered (ELPF, B = 7 GHz) to remove the unwanted high frequency images 

after the mixing process. 

This type of receiver is quite straight forward and doesn’t require a local oscillator with PLL 

like the coherent receiver from the previous section. However, it needs a large amount of RF 

amplification to operate. An improvement to reduce the high power requirements could be by 

using active mixers (with power supply), however none were available in the desired 

frequency range during the development of this thesis. For our case then, two broadband low 

noise amplifiers (LNA) just give a sensitivity of -24 dBm for BER=10-9, which is much worse 

than the coherent case. The calculated equivalent noise figure is now NFRX = 4.02 dB, which 

is 1 dB better than before, but the power needed to be increased to PTX = -24 dBm. Using 

Eq. (6.7) results in ILSH = 33.93 dB, roughly 13 dB worse than the coherent demodulator. For 

this reason, instead of using a square-law type of receiver, the next step would be to simply do 

an envelope detection of the incoming RF signal. 

6.1.2.2 Envelope detection receiver 

By detecting the envelope of the RF signal, all its amplitude information can be recovered 

linearly. For this purpose, a broadband diode detector already in a WR28 waveguide was 

available from Spacek Labs (model DKa-2P in Figure 6.7a). 

 

Figure 6.7: a) Setup used to measure the IF bandwidth of DKa-2P diode detector and 
b) corresponding frequency response. 
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The waveguide specifications allows it to operate in the 26-40 GHz region but its IF 

bandwidth was never characterized for this application. Usually these kind of diodes are used 

as video receivers for CATV systems where an IF bandwidth of only a couple of MHz is 

required [148]. Using the setup depicted in Figure 6.7a, the IF bandwidth could be estimated 

and the results are shown in Figure 6.7b. Surprisingly, the IF bandwidth of the diode detector 

can be estimated to be 5.5 GHz even though in the “pass band” there is much ripple present. 

This would allow the detector to operate with data rates as high as 7.5 Gbps (i.e. 3 dB 

bandwidth at least 75% of the bitrate). The following receiver depicted in Figure 6.8 was 

constructed around the DKa-2P. The setup is very similar to the self-homodyne one, but 

instead of dividing the signal into two paths for self mixing, the RF signal can be directly fed 

to the diode detector (DKa-2P). As a consequence, much less RF amplification is needed in 

comparison with the self-homodyne receiver, i.e. only one mm-wave amplifier with gain 

G = 25 dB and NF = 4 dB. In this case a Centellax UAL130VM LNA was used due to its flat 

group delay response. After the broadband detector a 10 Gbps baseband amplifier from 

Picosecond Pulselabs (PSPL 5828) was used and a 1 dB attenuator was required to match 

impedances. The low pass filter is in charge of reshaping the pulses to a raised cosine form as 

well as filtering unwanted high frequency components. The sensitivity for BER = 10-9 and a 

data rate of 7.5 Gbps was measured to be -34 dBm, a 10 dB improvement over the self 

homodyne case with one less RF amplifier used. The cascaded noise figure was calculated to 

be NFRX = 4.04 dB, comparable to the self-homodyne receiver.  

 

Figure 6.8: Detailed schematic of the diode envelope detector receiver. 

The low pass filter used was designed for 10 Gbps systems, therefore it is not a matched filter 

for other data rates. This means that for lower data rates, specially 2.5 Gbps and lower, the 
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recovered data could exhibit spurious responses within the filters bandwidth. The sensitivity 

varies then with the data rate and they are summarized in Table 6.1. 

 

Data Rate 2.5 Gbps 5 Gbps 7.5 Gbps 10 Gbps 

Opt. Power (dBm) -3.3 -4.6 -4.6 +8.5 

P1 (dBm) -33.85 -34.14 -34.20 -22.40 

P2 (dBm) -32.52 -36.89 -36.02 -4.6 

P3 (dBm) -26.08 -30.26 -30.30 2.21 

Table 6.1: Measured envelope detector sensitivities for BER = 10-9 and different data rates. 

Eventhough the previous analysis for the IL is not quite correct for lower data rates (as we 

stop using a matched filter), using Eq. (6.7) for comparison purposes results in 

ILenv = 21.91 dB, only 1 dB worse than the coherent demodulator. This receiver architecture 

combines simplicity and a sensitivity of -34 dBm comparable with that of coherent detection, 

which makes it the best choice for gigabit wireless systems. The main drawback is the 

reduced bandwidth (i.e. B = 5.5 GHz due to the detector response plus low-pass filtering 

afterwards), allowing a maximum error free data rate of 7.5 Gbps. Higher data rates such as 

10 Gbps were also tested but suffered severly from intersmybol interference and thus were not 

error free despite the higher optical powers used. A more detailed explanation is carried out in 

chapter 7 for the system experiments. 

6.2 Phase shift keying (PSK) 
In PSK systems, the transmitted signal’s envelope is held constant while the phase of the RF 

signal is varied by the information being transmitted. The form of the recovered RF signal is 

 ( )( ) 2 cos ( ) ( ) ,sig t s LO RF RFV t Z R P P t m t t noiseω π φ= + + +  (6.8) 

where m(t) takes the values of 0 or 1 depending on the information. In conventional PSK 

systems m(t) corresponds directly to the data. This type of system requires absolute phase 

knowledge either through a homodyne receiver or a synchronous demodulator in a heterodyne 

receiver. 
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In a homodyne receiver the LO is phase-locked to the received signal, then the RF frequency 

is zero, which makes this case not very interesting for wireless transmission. In the case of 

coherent demodulation in a heterodyne PSK system, the signal appears at an RF frequency 

instead of at baseband. Under the assumption of a sufficiently high RF frequency, the BER is 

given by [144] 

 ( )2 .coh PSK pBER Q n− =  (6.9) 

This requires 18 photons per bit for a BER = 10-9. This is a little more than 3 dB better than 

the ASK receivers previously mentioned. 

An alternative to PSK is to differentially encode the data being transmitted, called differential 

PSK (DPSK). In this scheme, a “zero” is transmitted as a change in phase, while a “one” is 

sent as no change in phase. Since the information is encoded into the relative phase from 

symbol to symbol, a simple heterodyne receiver with a one-bit delay and multiply as shown in 

Figure 6.9 will demodulate the signal. 

 

Figure 6.9: Schematic of a DPSK receiver. 

The relative-phase comparison used in DPSK implies that DPSK will have less exacting 

requirements on the laser phase noise. The receiver in Figure 6.9 can be implemented with the 

same components as the self-homodyne receiver in Figure 6.6 but changing the delay lines 

settings to have a one bit delay between both paths. 

Under the strong LO and zero-linewidth assumptions, the expression for the BER is [144] 

 ( )1 exp .
2DPSK pBER n= −  (6.10) 

This requires 20 photons per bit for BER = 10-9. The small difference with heterodyne PSK 

makes this scheme usually favoured. This is exactly 3 dB better than the ASK receivers 
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mentioned in section 6.1. As a matter of fact, phase modulation is usually the preferred 

modulation format for wireless communications as the effect of amplitude variations is 

minimized. This type of receiver will be used in the systems experiments with a fiber loop, 

described in the next section, using an intermediate frequency of fIF = 2 GHz and working 

with data rates of 155 Mbps. Using this low data rates requires smaller RF bandiwdths, which 

make the noise contributions smaller, and thus an implementation loss of ILDPSK = 6.5 dB was 

achieved, much better than the previous ASK receivers, but for lower data rates. 

6.3 Linewidth effects 
Linewidth is a major factor in determining the performance of an optical receiver. In contrast 

to microwave sources which can have a linewidth as low as 1 Hz, usually DFB lasers exhibit 

linewidths in the order of 10 MHz, which is a substantial percentage of the bit rate, even for 

Gbps data rates. The resulting mm-wave linewidth depends on how this signal is optically 

generated, but it strongly depends on the type of lasers used. 

The most notorious observable effect of a finite mm-wave linewidth is an increase in the 

observed BER for a given amount of received signal power. This is effectively a reduction in 

receiver sensitivity and is demonstrated in Figure 6.10 when using two uncorrelated laser 

sources to generate a 10 Gbps ASK mm-wave signal (setup details in Appendix D, Figure 

D.6). 

 

Figure 6.10: Effect of mm-wave linewidth in receiver performance. 
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For a given modulation format, the ideal BER curve is calculated using the assumption that 

the RF linewidth is zero. As the linewidth is increased the slope of the BER curve 

dramatically changes and a BER floor may be observed [143]. 

A non-zero RF linewidth spreads the RF signal energy over a broader bandwidth than is 

expected just from the modulation of the signal. This causes fluctuations in signal power and 

introduces cross-talk. The precise impact of linewidth on communications performance is 

difficult to predict in analytic form, therefore numerical techniques are used to estimate the 

performance, such as simulation suites like VPI TransmissionMaker 8.0. 

The tolerance to linewidth varies depending on the modulation format used. Table 6.2 shows 

the ideal sensitivities and the approximate amount of RF linewidth (Δν) that results in 1 dB 

degradation receiver sensitivity for the conventional demodulators described in the previous 

sections. 

The methods used to combat the effects of a large RF linewidth depend on the type of 

signaling used. ASK uses a wideband RF filter, envelope detector, and narrowband 

postdetection low-pass filter, for example. A wideband predetection filter is used instead of a 

matched filter so that most of the signal energy, which was spread in frequency due to phase 

noise, is captured. The postdetector filter substantially reduces the effects of the additional 

noise bandwidth of the wide predetection filter. The sum of the two filter time constants is 

usually equal to the symbol time [149].  

6.4 Overview 
The most important parameters of all the previously discussed receivers are gathered in Table 

6.2, along with the theoretical quantum limit sensitivities (i.e. photons per bit for BER = 10-9), 

linewidth requirements (i.e. Δν as a percentage of the bit rate Rb), implementation losses 

(i.e. IL in dB) and noise figures (NF in dB) of the constructed demodulators. A comparison of 

the theoretical receiver performance is drawn in Figure 6.11. for an ideal quantum efficiency 

η = 1 and Bn = 10 GHz. As usual, the PSK formats exhibit a 3 dB improvement in 

performance in regard to amplitude modulation. As previously discussed, incoherent 

demodulation is only 0.5 dB worse than the coherent case (both for ASK and PSK). Adding 

the simplicity of incoherent demodulation plus this low penalty makes this type of receivers 

the optimum choice. 
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Demodulator np for BER = 10-9 Δν  (% of Rb) IL (dB) NF (dB) BER 

ASK – Coherent 72 ~ 0.5 % 20.91 5.04 2
pn

Q
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

ASK – Square Law 80 ~ 10 % 33.93 4.02 
1 exp 42

pn−⎛ ⎞
⎜ ⎟
⎝ ⎠

 

ASK – Envelope 80 ~ 10 % 21.91 4.04 
1 exp 42

pn−⎛ ⎞
⎜ ⎟
⎝ ⎠

 

PSK - Coherent 18 ~ 0.5 % Not available Not available ( )2 pQ n  

DPSK 20 ~ 1 % 6.5 4.03 ( )1 exp
2 pn−  

Table 6.2: Receivers key parameters. 

 

Figure 6.11: Theoretical BER vs received optical power for heterodyne receivers. 
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fRF = 33 GHz and Bn = 10 GHz are shown in Figure 6.12 for all broadband receivers (i.e. for 

the DPSK receiver no wireless experiments were carried out). 

Figure 6.12: Shannon’s theoretical maximum capacities for ASK broadband receivers for a) 
Vivaldi-Vivaldi antenna set and b) Vivaldi-Horn antenna set. 

The coherent and envelope receivers show the same performance due to the fact that the 1 dB 

less IL from the coherent receiver is compensated with a 1 dB higher NF (see Table 6.2). 

From Figure 6.12a, using the self-homodyne receiver, a 10 Gbps link can be realized only up 

to 8 m. The coherent receiver would have no problem extending the distance more than 20 m. 

The case of the envelope receiver is a bit misleading. Theoretically it has the same 

performance as the coherent receiver, but due to the bandwidth limitation of the broadband 

detector, an error free 10 Gbps link could not be realized. The advantage of using a horn 

antenna as a receiver is clear from Figure 6.12b as it increases dramatically the theoretical 

maximum channel capacity and reach. 
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7 System experiments 

This chapter is concerned with system experiments involving the before mentioned mm-wave 

signal generation methods. The scheme using a fiber loop (both with phase modulator and 

SOA) will be tested in section 7.1 for relatively low RF frequencies (i.e. fRF = 11 GHz) due to 

the phase modulator limitations, this also limiting the data rates to be transmitted (in this case 

155 Mbps will be used). Increasing the RF frequency to fRF = 33 GHz allows the transmission 

of broadband data up to 10 Gbps. Two broadband setups for wireless transmission of 10 Gbps 

will be explained: Optical double sideband (ODSB) will be described in section 7.2.1 whereas 

optical single sideband (OSSB) is portrayed in section 7.2.2. Lastly, heterodyning of two 

uncorrelated lasers will be investigated in section 7.3 as a possible in-house solution in fiber 

to the home systems. 

7.1 Fiber loop setup 
Two configurations regarding the fiber loop setup mentioned in section 5.2 were carried out. 

The principle of operation is the same for both, but what changes is the non-reciprocal phase 

changing element inside the loop. The first setup is the one using a phase modulator inside the 

fiber loop while the other one uses XPM in SOAs to achieve the same results. 

7.1.1 Fiber loop with phase modulator 
In order to demonstrate the upconversion of an intermediate frequency signal (IF) carrying a 

digital base band signal, the setup shown in Figure 7.1 is used. As the phase modulator used 

operates only up to frequencies as high as 8 GHz, this limits the available bandwidth of the 

system. The fiber loop is tuned to have a ΔL= 2 cm (as described in section 5.2.1, Figure 

5.24). A subcarrier of 2 GHz is DPSK modulated with a 155 MBit/s NRZ pseudo random 

(231-1) base band signal. The light source can be either a DFB laser or an ASE source which 

is modulated in its intensity with a modulation index ma=0.6 to guarantee linearity. The phase 

modulator in the unbalanced fiber loop is modulated with fm = 4.5 GHz. This results in a 

maximum transmission of the loop at 9 GHz. At port 2 of the loop the spectrum consists of 

two sidebands fc ± 4.5 GHz each one modulated with the 2 GHz IF signal containing the 

baseband information. After photodetection we obtain two signals at 9 ±2 GHz from which 

the one at 11 GHz is demodulated. 
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Figure 7.1: Setup for the upconversion of an IF signal at 2 GHz modulated with a 155 Mbit/s 
baseband signal using a fiber loop with a phase modulator (PC: Polarization 
Controller). 

Figure 7.2 shows the Bit Error Rate (BER) for four different lengths of fiber (L = 0.5, 2, 12.8 

and 19.2 km) and an optical back-to-back measurement as a function of optical power at the 

photodiode. Within the experimental uncertainties all measured curves are showing the same 

slope. No influence of fiber chromatic dispersion was observed. The experimental setup is 

limited in its transmission length due to the attenuation of the fiber link and the available 

amplification devices at the time of the measurements. 

 

Figure 7.2: BER vs optical power at photodiode for different fiber lengths L using a laser 
source. 
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According to the theory developed in Section 4.2.2 and using the values of fRF = 9 GHz and 

fIF = 2 GHz from our experiments, the carrier to noise penalty as a function of fiber length L is 

plotted in Figure 7.3. The first transmission zero occurs at L0 = 204 km and for L = 20 km the 

C/N penalty is only 0.1 dB and can be considered negligible for our experiments. If sufficient 

amplification were available, transmission distances of up to 120 km with a penalty of only 

4.4 dB due to chromatic dispersion could be achieved. 

 

Figure 7.3: Dispersion induced C/N penalty as a function of transmission distance for DSB-SC 
method. Calculations with D = 17 ps/nm·km, λc = 1550 nm, fRF = 9 GHz and 
fIF = 2 GHz. 

In Figure 7.4 the BER curves for two configurations with an incoherent source (e.g. the 

amplified spontaneous emission of an EDFA), one with the stand alone fiber loop and the 

other with a fiber length L = 0.5 km are shown. In the first case (L= 0 km) the slope is similar 

to the previous case with a laser source. As a short span of Corning SMF 28 is introduced 

(L = 0.5 km) it can be evidently seen that more power (6 dB at BER = 10-9) is needed to 

obtain the same BER performance and also a deterioration in the BER slope occurs. These 

effects are attributed to the fiber chromatic dispersion. As each spectral line experiences 

different dispersion values through the whole ASE spectrum (30 nm or more), the interference 

of all these spectral lines is out of phase in the photodiode and a stronger power fade-off 

effect occurs. Therefore to achieve the same BER performance, more power is needed. As the 

fiber length was increased to 2 km, no detection was anymore possible. 
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Figure 7.4: BER vs optical power at photodiode for different fiber lengths L using an ASE 
source. 

Simulations were carried out in VPI TransmissionMaker 8.0 for the setup with an ASE source 

and the results of the C/N penalty are shown in Figure 7.5. For L = 500 m a penalty of 13 dB 

is reached which agrees with our expected penalty of 6 dB in the optical domain. For 

L = 2 km the penalty is 22.5 dB approx. which is out of the dynamic range of our receiver. 

 

Figure 7.5: Dispersion induced C/N penalty as a function of transmission distance for DSB-SC 
method with an ASE source. Calculations with D = 17 ps/nm·km, λc = 1550 nm, 
fRF = 9 GHz and fIF = 2 GHz. 
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7.1.2 Fiber loop with SOA 
The setup for a fiber loop with a SOA is shown in Figure 7.6. A subcarrier of 2.3 GHz is 

DPSK modulated with a 155 MBit/s NRZ pseudo random (231-1) base band signal. The data 

laser is directly modulated in its intensity with a modulation index ma = 0.6 to guarantee 

linearity. The pump laser is externally modulated by an AT&T Mach-Zehnder modulator with 

fm = 4.2 GHz and a modulation index ma = 0.84 due to electrical amplification limitations 

(corresponding to Pm = 20 dBm and Vπ = 7.5 V). The length difference ΔL in the fiber loop is 

adjusted to 4 cm to ensure maximum transmission of the loop at 8.4 GHz and the SOA used is 

the one from Covega. At the output of the loop the spectrum consists of two sidebands 

fc ± 4.2 GHz each one modulated with the 2.3 GHz IF signal containing the baseband 

information plus the pump laser. Therefore, a FBG is used to filter out the unwanted pump 

signal. After photodetection two signals at 8.4 ± 2.3 GHz are obtained from which the one at 

10.7 GHz is filtered for demodulation. 

 

Figure 7.6: Setup for the upconversion of an IF signal at 2.3 GHz modulated with a 155 Mbit/s 
baseband signal using a fiber loop with Covega SOA (PC: Polarization Controller). 

Figure 7.7 shows the BER for different lengths of fiber and an optical back-to-back 

measurement as a function of optical power at the photodiode. Considering small empirical 

deviations, all measured curves are showing the same slope indicating that no influence of the 

chromatic dispersion was observed as expected from [150]. 
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Figure 7.7: BER vs optical power at photodiode for different fiber lengths L using a fiber loop 
with Covega SOA. 

The spans of fiber that can be used are limited mainly due to the attenuation of the fiber link 

and the available amplifiers. However, transmission over spans up to 44 km of SMF 28 was 

achieved, doubling the reach obtained with the fiber loop and a phase modulator in 

section 7.1.1 with no use of extra optical amplification. This makes evident the advantage of 

the gain introduced by the SOA inside the loop which extends the transmission distance 

without need of pre- and/or post-link amplification. 

When using XPM of SOAs to transmit data in this scheme, there are plenty of variables which 

influence XPM and thus the effective transmission of the signal. To mention some there are 

the pump and probe powers (Ppump and Pprobe respectively), wavelength separatation of the 

pump and probe (Δλ), SOA temperature (T) and so on. In the next graphs the effect on the 

BER curves of varying these parameters will be studied. 

The first parameter to be tested will be the probe power required for optimum performance. 

As the probe doesn’t need to have high powers, generally an optical amplifier can be spared 

in comparison to the setup using a phase modulator. The results of varying the probe power in 

the range -12 to 0 dBm can be observed in Figure 7.8. The fiber length was set to L = 0 km, so 

it is an optical back-to-back measurment. Figure 7.8a shows the “high power” range. Here we 

can notice that high probe powers are not convenient, as the probe starts working as a pump, 

and thus the XPM efficiency decreases (see Appendix B.1). Optimum values for the probe 

power lie between -4 and -9 dBm where all the BER curves lie together. As the probe power 
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continues to decrease (see Figure 7.8b), the BER curve deteriorates and a BER floor is 

reached. This could be due to the small power of the probe signal reaching the receiver. 

Figure 7.8: BER vs optical power at photodiode for different probe powers Pprobe using a fiber 
loop with Covega SOA and fiber length L = 0 km. 

Another parameter of interest is the pump power. Usually high pump powers (in the order of 

+5 dBm) are needed to have a high XPM efficiency, which is crucial in this setup. The BER 

curves for different pump powers can be observed in Figure 7.9. As long as the pump power 

remains over -1 dBm there is no distinct BER penalty to be seen. As the pump power 

decreases, the BER curves worsen; being the minimum pump power required -4 dBm to 

obtain decent results. 

 

Figure 7.9: BER vs optical power at photodiode for different pump powers Ppump into the SOA 
using a fiber loop with Covega SOA and fiber length L = 0 km. 
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The next parameter of interest is the wavelength separation between the pump and the probe. 

The further apart they are, the less efficient the XPM effect is. The result on the BER curves 

can be appreciated in Figure 7.10. For this experiment, the probe was fixed at 

λprobe = 1549 nm whereas the pump wavelength λpump was varied in the 1545 to 1554 nm 

range. Powers for the pump and probe were taken from the best cases of the previous tests to 

be Ppump= +3 dBm and Pprobe = -10 dBm. As shown in Appendix B.3, varying the wavelength 

of the probe didn’t have much influence in the modulation index. As the pump wavelength is 

increased to the maximum allowed by the available laser, no significant penalty could be 

observed for high values such as λpump = 1553 nm. The same behavior is observed for the 

lower wavelength range (i.e. 1545 nm). As this test could only be done around the FBG 

tunability of only 10 nm, this seems not to be enough wavelength separation to produce a 

significant difference in modulation index mph. 

 

Figure 7.10: BER vs optical power at photodiode for different pump wavelengths λpump using a 
fiber loop with Covega SOA, λprobe = 1549 nm and fiber length L = 0 km. 

The last parameter of interest is the SOAs temperature. In all of the setups the SOA is 

stabilized by a temperature controller (ILX Lightwave - LDC 3722) which also provides the 

SOA with the injection current (to allow the SOA to operate in the inversion regime). The 

effects of maintaining the injection current at Ibias = 500 mA but varying the desired working 

temperature can be seen in Figure 7.11. 
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Figure 7.11: BER vs optical power at photodiode for different SOA temperatures T using a fiber 
loop with Covega SOA and fiber length L = 0 km. 

As long as the SOA is cooled below 32°C the performance is optimal. For higher temperature 

values a BER penalty is obtained. The maximum working temperature of the SOA used 

(Covega) was specified to be no higher than 35°C. As shown in Appendix B.4, varying the 

operating temperature has no significant effects on the modulation index mph as long as the 

threshold temperature is not reached. Once near this temperature (in this case T = 34°C) a 

lower mph was measured, causing the penalty observed in the BER curve. 

7.2 Broadband radio over fiber wireless access 
In order to transmit wireless broadband signals such as 10 Gbps of data, high mm-wave 

carriers are needed. Recent research is focused on transmitting on the free designated bands 

around 60 GHz (these vary for different countries as already described in section 2.1 and 

Table 2.1). In this scenario, a relative bandwidth of 10% is generally set to allow the 

electronics to cope with this high frequency.  

From the proposed electrooptical upconversion methods described in section 5, the most 

efficient, stable and able to achieve high frequencies is the one using a MZM biased at the 

minimum transmission point. Then the next task is to modulate the broadband data optically 

so that it is upconverted in the base station (BS) to the desired mm-wave frequency. 
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7.2.1 Optical double sideband data modulation 
The simplest setup is shown in Figure 7.12. It is straightforward in the fact that both generated 

laser lines are modulated in their amplitude by MZM2. This method was already used in [151] 

with excellent wireless transmission experiments and broadband data rates as high as 

12.5 Gbps at 60 GHz. 

 

Figure 7.12: Setup I (ODSB) to transmit broadband signals with double sideband suppressed 
carrier data modulation. 

This approach provides easy mm-wave tunability but its greatest disadvantage is the poor 

resilience to chromatic dispersion. As both broadband optical signals mix in the photodiode, 

the resulting upconverted signal is not very tolerant to dispersion. The mm-wave carrier was 

set to a low value of fRF = 33 GHz to cope with the instruments available in our lab. 

Figure 7.13: Measured optical spectra at the output of setup I for a) 2.5 Gbps and b) 10 Gbps. 
Resolution bandwidth = 10 pm. 

The corresponding measured optical spectra for 2.5 Gbps and 10 Gbps are depicted in Figure 

7.13. It is evident that both laser lines are modulated with the broadband data. For the case of 

2.5 Gbps the low mm-wave carrier gives enough spacing so that the spectra do not overlap. 

The case of 10 Gbps is more critical, as can be observed from Figure 7.13b. The mm-wave 

separation is the same in both cases fRF = 33 GHz = 0.264 nm. The suppression of the carrier 

is of utmost importance, as it generates an interfering spectrum. From mode partition noise 
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theory in DFB lasers, [152] demonstrated that a mode suppression ratio of more than 20 dB 

was needed to maintain the BER penalties below 0.1 dB. Taking a rough analogy, a carrier 

suppression of more than 20 dB would also make the interference effects negligible. 

 

Figure 7.14: System experiments setup I to transmit broadband signals. 

The system experiment for setup I is shown in Figure 7.14. Generation of the DSB-SC signal 

and subsequent data modulation is performed at the Central Station (CS). Then the signal is 

transmitted via a Single Mode Fiber (SMF) link to the Base Station (BS). In the BS the optical 

signal heterodynes in a broadband photodiode (NEL KEPD2525VPG, B ≈ 100 GHz) to 

produce a mm-wave carrier at fRF = 33 GHz with the broadband data modulated on it. To 

reach the Mobile Unit (MU) the signal is transmitted through a wireless link. Also a cable link 

is available for back-to-back measurements. The received RF signal is bandwidth limited by 

an electrical bandpass filter (EBPF) to the Ka band (i.e. 26-40 GHz). In the MU the 

downmixing of the RF signal can be done either synchronously with a local oscillator or 

asynchronously via square law detection (i.e. self-homodyne principle) or a broadband diode 

envelope detector. The three receivers were already introduced in chapter 6. The demodulated 
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data is low pass filtered (ELPF) to BLP = 7 GHz and compared with the original transmitted  

data in a Bit Error Rate Tester (Advantest D3286) with a clock recovery unit from Maxim 

(MAX 3991) which only works for data rates between 9.95 and 11.1 Gbps. 

Setting the bitrate to Rb = 2.5 Gbps, the back-to-back measurement (i.e. cable link) results are 

shown in Figure 7.15 for synchronous and asynchronous demodulation with the fiber link 

length L as a parameter. Using a self-homodyne receiver (see Figure 7.15b) provides mm-

wave carrier independence at the cost of poor receiver sensitivity (-24 dBm electrical power 

for BER = 10-9 as measured in section 6.1.2.1). Nonetheless, fiber lengths up to L = 65 km 

could be tested. By using a local oscillator (LO) in the receiver and thus using synchronous 

demodulation, the sensitivity is improved by 10 dB (-34 dBm electrical for BER = 10-9 as 

demonstrated in section 6.1.1) and now longer fiber lengths can be tested (see Figure 7.15a). 

In this case an error floor is observed for L = 70 km at BER = 10-10.  

Figure 7.15: BtB BER curves for the system experiments with Rb = 2.5 Gbps using setup I with 
fiber length L as a parameter for a) synchronous and b) asynchronous 
demodulation. 

The error floor can be better described with the eye diagrams of the recovered data shown in 

Figure 7.16 for the synchronous demodulation case. For L = 0 km the eye is open, but as the 

fiber link length L is increased, a closure of the eye due to fiber dispersion becomes apparent, 

indicated by the arrows in the figures. At the extreme case of L = 70 km, the eye appears 

totally closed at this power level, causing intersymbol interference and the error floor 

observed in Figure 7.15a. 
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Figure 7.16: Eye diagrams for synchronous demodulation at Rb = 2.5 Gbps for a) L = 0 km, 
b) L = 19 km, c) L = 40 km and d) L = 70 km. Optical power = -8 dBm, 
time base = 100 ps/div and amplitude scale = 50 mV/div for all cases. 

Increasing the data rate to Rb = 10 Gbps will be discussed next. The BER curves for this case 

are shown in Figure 7.17 for both demodulation techniques and the length of the fiber link L 

is varied. After only L = 2 km of SMF the effects of chromatic dispersion are evident. There is 

a penalty of 0.2 dB in comparison to the BtB case. Due to the RF carrier at fRF = 33 GHz, both 

modulated spectral lines experience different chromatic dispersion values, which when 

demodulated cause intersymbol interference. This effect is expected to be worse at higher RF 

frequencies such as 60 GHz. As the fiber length L is increased, the penalty increases, almost 

0.6 dB for L = 5 km. Now the curves differ for each demodulation scheme. For synchronous 

demodulation and L = 7 km error free operation is achieved, albeit with a penalty of 1 dB. 

However with asynchronous demodulation, for L = 7 km an error floor is reached at 

BER = 10-10 with an optical power of Popt = -11.5 dBm. This means that even increasing the 

optical power doesn’t achieve lower error rates or error free transmission. As the 

asynchronous demodulation uses the self-homodyne principle (i.e. square law detection), 

saturation effects cause evidently nonlinearity penalties which make the system operate worse 

with higher optical powers. Nonetheless, in the synchronous demodulator scheme in Figure 

7.17a also an error floor is reached at BER = 10-11 for L = 10 km and BER = 3·10-9 for 

L = 12 km. For a fiber length of L = 13 km no data could be retrieved. 
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Figure 7.17: BtB BER curves for the system experiments with Rb = 10 Gbps using setup I with 
fiber length L as a parameter for a) synchronous and b) asynchronous 
demodulation. 

The corresponding eye diagrams can be observed in Figure 7.18 for the asynchronous 

receiver. In Figure 7.18d, corresponding to L = 13 km, the eye is completely closed, 

indicating strong intersymbol interference effects. To test if the system is extremely impaired 

by chromatic dispersion, a dispersion shifted fiber (DSF) with L = 10 km and a dispersion 

value of D = -2 ps/nm·km at λ = 1549 nm was used for the synchronous demodulation case. 

The results show the same behavior as the optical BtB case of L = 0 km. 

 

 

Figure 7.18: Eye diagrams at Rb = 10 Gbps for a) L = 0 km, b) L = 5 km, c) L = 7 km and 
d) L = 13 km. Optical power = -8 dBm, time base = 20 ps/div and amplitude 
scale = 50 mV/div for all cases. 
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System simulations were carried out in the commercial software VPI TransmissionMaker 8.0 

using an ideal heterodyne receiver (a detailed schematic can be found in Appendix D, Figure 

D.3). The BER curves for setup I are shown in Figure 7.19a using an RF bandwidth of 

BRF = 14 GHz (which is available in the lab but not in the international regulations) and a low 

pass filter with BLP = 7.5 GHz. The curves exhibit approximately the same behavior as the 

measurements besides the fact that using an ideal receiver reduces the optical power needed 

drastically. Nonetheless, the same error floors due to fiber dispersion as in the measurements 

are observed for L = 10 km and L = 12 km. Simulating for L = 15 km shows an even higher 

error floor which could not be achieved in the laboratory (the eye closes completely for 

L = 13 km, as seen in Figure 7.18d). 

Figure 7.19: System simulations with Rb = 10 Gbps using setup I. a) BER curves with fiber 
length L as a parameter and b) BER as a function of fiber length L for different RF 
bandwidths. 

Figure 7.19b depicts the influence of the RF bandwidth on the BER as a function of fiber 

length. It is evident that higher RF bandwidths accommodate larger signal power and thus, 

lower BER. However, increasing the bandwidth past 14 GHz doesn’t provide a large 

improvement. Moreover, the regulations in the 60 GHz spectrum dictate a bandwidth limit of 

7 GHz in USA and 9 GHz in Europe, meaning a more efficient way of using the limited 

spectrum is vital in achieving high data rates for decent fiber transmission lengths. 
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Figure 7.20: BER curves for the system experiments with Rb = 2.5 Gbps using setup I and 
transmission over a wireless link of d = 1 m for a) synchronous and 
b) asynchronous demodulation. 

For the first wireless link, two broadband (4-40 GHz) Vivaldi antennas (DRH40) with 

nominal gains at the transmitter and receiver of GTX = GRX = 15 dB were used. The link loss of 

our system is LL = 33 dB at fRF = 33 GHz and for d = 1 m. The results of a wireless link with 

d = 1 m are shown in Figure 7.20 for Rb = 2.5 Gbps and both demodulation schemes. The 

results are similar to the cable link case but with a higher optical power requirement. 

Nonetheless, this indicates negligible influence of the wireless link at this short distance. 

Figure 7.21: BER curves for the system experiments with Rb = 10 Gbps using setup I and 
transmission over a wireless link of d = 1 m for a) synchronous and 
b) asynchronous demodulation. 

The case for Rb = 10 Gbps is shown in Figure 7.21. Again, the short wireless link doesn’t play 

an important role, as the curves are analogous to the cable link case. The same error floors are 

reached at the same fiber link lengths. Moreover, the same saturation effects and nonlinear 
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penalties are observed for asynchronous demodulation. Worth of notice is the high penalty 

and error floor at BER = 10-5 in Figure 7.21b for L = 10 km. 

7.2.2 Optical single sideband data modulation 
As opposed to the previous section, the idea behind setup II is to modulate only one optical 

line with the broadband data. In this way, a superior dispersion tolerance can be achieved. 

There are plenty of ways of separating phase correlated optical lines to transmit broadband 

signals, as demonstrated in [108],[153]-[156]. Our setup is based on [108] so that a custom 

made optical Mach Zehnder Interferometer (MZI) with a Free Spectral Range (FSR) of twice 

the mm-wave frequency used is employed (see Figure 7.22). 

 

Figure 7.22: Setup II to transmit broadband signals with single sideband data modulation. 

The two phase correlated spectral lines are generated in the same way as in section 7.2.1, with 

a MZM biased at minimum transmission and an extra carrier suppression FBG (optical 

spectrum shown in Figure 7.23a). As depicted in Figure 7.22, the FSR of our MZI is set to 

FSR = 66 GHz. In this way, both spectral lines are separated into two different optical paths 

(path A and B) with more than 30 dB suppression (see Figure 7.23b). Path A is NRZ 

modulated with the broadband data (i.e. 231-1 PRBS sequence) by using a MZM with a 

modulation index ma = 0.8 to ensure no overmodulation, as in the previous section (see Figure 

7.23c). On the other hand, path B is only attenuated, delayed τ seconds and tuned in its 

polarization to obtain maximum coupling at the last coupler. By adjusting the path imbalance 

delay Δτpath between path A and B, the tolerance to dispersion can be controlled [96]. 

However, for the upcoming experiments, the delay τ was adjusted so that path A and B are of 

equal length (i.e. Δτpath = 0). After reuniting the signals in a 3 dB coupler, an optical single 
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sideband (OSSB) signal with the desired mm-wave frequency separation is obtained (see 

Figure 7.23d). 

Figure 7.23: Optical spectra for setup II at a) DSB-SC, b) after MZI, c) path B after data 
modulation and d) OSSB signal. Rb = 10 Gbps, resolution bandwidth = 10 pm. 

The system experiments setup is the same as in the previous section but now using OSSB data 

modulation. Nonetheless, a setup schematic is shown in Figure 7.24. An extra EDFA is used 

to amplify the signals before photodetection. As usual, an optical bandpass filter (OPBF) with 

bandwidth B = 1 nm is used to limit the ASE from the EDFA (see optical spectrum in Figure 

7.23d). The system allows multigigabit transmission with data rates up to 10 Gbps. At the 

receiver end, a synchronous receiver (i.e with a local oscillator) presents some major 

problems as the path separation of the signal in the MZI and subsequent combining after data 

modulation creates a stringent requirement on the phase tracking of the mm-wave signal. 

Therefore a phase-locked loop is needed to match the phase of the mm-wave carrier and the 

local oscillator. Even though they are locked in frequency through the 10 MHz reference port, 

the phase mismatch results in amplitude variations of the recovered data. At the time of the 

experiments no PLL was available (nor designed) and the resulting phase divergence varied 
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too quickly to obtain realistic measurements. For this reason, the self-homodyne receiver was 

preferred in this case. 

 

Figure 7.24: System experiments setup II to transmit broadband signals using OSSB data 
modulation. 

Transmission of 2.5 Gbps was already demonstrated in [153] but with a different setup using 

Fiber Bragg Gratings to carry out the optical spectral line separation. In this context, the first 

experiments will be carried out with a data rate of 2.5 Gbps to test and compare the proposed 

system. The BER curves for the 2.5 Gbps cable link case are shown in Figure 7.25a for 

different fiber lengths L. The curves show all the same slope indicating a good tolerance to 

chromatic dispersion up to 69 km. Even after 69 km of SMF there is no significant penalty 

due to chromatic dispersion. Theory from section 4.4 predicts negligible C/N penalties for this 

approach, and from Figure 4.19 and using a laser linewidth of Δν = 10 MHz (typical values 

for the DFB lasers used) even after 100 km fiber transmission the penalty is only 0.12 dB. 

Simulations neglecting fiber attenuation for this kind of system are shown in Figure 7.25b (a 

detailed schematic can be found in Appendix D, Figure D.4). The dispersion penalty after 
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120 km SMF is only 1 dB at BER = 10-9, indicating the system would be attenuation limited 

before dispersion starts playing an important role. Using longer fiber lengths such as 

L = 90 km, the effects of amplification limit start showing. For this long distance, the gain of 

the EDFA is maximized, and thus its noise contribution. The BER curve has a different slope, 

reaching error free operation but with a penalty of 1 dB compared to the optical back to back 

case. This is can also be caused by the lack of a matched filter for Rb = 2.5 Gbps. The low 

pass filter (LPF in Figure 7.24) was designed for Rb = 10 Gbps and thus doesn’t shape the 

lower data rate pulses into a raised cosine form, which is the optimum pulse form for 

demodulation [140]. 

Figure 7.25: 2.5 Gbps BER curves for a) the system experiments setup II for the cable link case 
and different fiber lengths L and b) simulations in VPI. 

 

Figure 7.26: Eye diagrams at Rb = 2.5 Gbps for setup II cable link case for a) L = 0 km, 
b) L = 44 km and c) L = 90 km of SMF and optical power at the 
photodiode = −3 dBm. Time base = 100 ps/div, amplitude scale = 50 mV/div. 

The corresponding eye diagrams were measured with a sampling scope after recovery and are 

shown in Figure 7.26. Some ringing effects are evident, but this may be due to the low pass 

filter used, which has a bandwidth B = 7 GHz, which is designed for 10 Gbps signals 

according to ITU-T specifications. Nonetheless, the distortions increase with longer fiber 
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length L and by L = 90 km the signal is much noiser, leading to a change in BER slope and 

the 1 dB penalty at BER = 10-12. 

The next data rate of interest would be 10 Gbps. For this case, a clock recovery circuit from 

MAXIM was available. The MAX 3991 recovers and reshapes the data and extracts the clock 

out of it for BER measurements. It operates for data rates ranging from 9 to 11.1 Gbps 

according to the manufacturer. The data and clock recovery unit is placed right after the LPF, 

before entering the BER tester. In this way, the clock reference is the same for all 

measurements, independent of the fiber length L tested. For the optical back-to-back case and 

a data rate of 10 Gbps, the BER curves are shown in Figure 7.27a. 

Figure 7.27: 10 Gbps BER curves for a) the system experiments and b) simulations in VPI for 
setup II cable link case and different fiber lengths L. 

All the curves up to L = 21 km show the same slope, the penalty due to fiber chromatic 

dispersion are measured to be 0.4 dB, 1 dB and 2.2 dB for L = 13, 21 and 40 km and 

BER = 10-9. For L = 40 km chromatic dispersion starts to influence the signal with its 

characteristic change in slope. The case of L = 53 km is much more critical, not even reaching 

BER = 10-9. Figure 7.27b shows system simulations in VPI using the schematic depicted in 

Figure D.5 and increasing the data rate to 10 Gbps. It demonstrates that chromatic dispersion 

starts affecting the system for L = 40 km even using an ideal heterodyne receiver. As a rule of 

thumb, the maximum distance for 10 Gbps NRZ and BER = 10-9 is around 60 km in a real 

system, where not even BER = 10-9 can be reached as expressed in the simulations. 

Nonetheless, much longer distances could be achieved than with setup I, where by L = 13 km 
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no data could be retrieved. Moreover, a small penalty in comparison to an ideal baseband 

transmission of optical broadband signals could be achieved. 

 

Figure 7.28: Eye diagrams at Rb = 10 Gbps for setup II cable link case for a) L = 0 km, 
b) L = 21 km and c) L = 53 km of SMF and optical power at the 
photodiode = −1.6 dBm. Time base = 20 ps/div, amplitude scale = 50 mV/div. 

The corresponding eye diagrams are shown in Figure 7.28. The eye appears undistorted even 

after 21 km of SMF transmission. For L = 53 km, the eye closure leading to an increased BER 

is evident. 

For the wireless experiments the same Vivaldi DRH40 antennas as the previous section were 

used. The link loss is still 33 dB for d = 1 m. In defining the wireless reach of the system, one 

key parameter is the photodiode used. As the amount of electrical amplification of the system 

is limited due to group delay response, especially for high data rates as 10 Gbps, a high power 

photodiode with a decent responsivity R provides a longer reach. The first available 

photodiode is a broadband one from the company NEL (KEPD2525VPG, B > 100 GHz, 

R = 0.9 A/W) but its main drawback is that it allows operation with low input optical powers 

(Pmax = 0 dBm). Using this photodiode, the maximum wireless reach for error free operation 

was experimentally demonstrated for d = 1 m and a data rate of 10 Gbps over 21 km of 

SMF [157]. To increase the wireless reach either a greater responsivity R is required or a 

photodiode capable of handling high optical input powers. The company u2t provides such a 

photodiode with its XPDV3120R with a lower bandwidth (i.e. B = 70 GHZ), but it can handle 

optical input powers up to Popt = +13 dBm and has a responsivity R = 0.6 A/W. The reduced 

responsivity is more than compensated by the 13 dB more optical power which can be 

delivered to the photodiode. Figure 7.29 shows the BER curves for a data rate of 2.5 Gbps and 

a wireless link of d = 1.1 m using this high power photodiode from u2t. 
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Figure 7.29: BER curves for the system experiments with Rb = 2.5 Gbps and setup II for a 
wireless link of d = 1.1 m and different fiber lengths L. 

The BER curves behave comparable to the cable link case showing the same slope up to 

L = 69 km. A small deviation at L = 69 km can be seen, attributed to the wireless channel. As 

in the cable case, for L = 90 km, the slope changes, making evident the limits of this approach 

due to chromatic dispersion in the fiber. 

Figure 7.30: BER curves for the system experiments with Rb = 2.5 Gbps and setup II for a 
wireless link of a) d = 2 m and b) d = 3 m for different fiber lengths L. 

Increasing the wireless distance to d = 2 m and d = 3 m result in the curves shown in Figure 

7.30. No significant change in performance is observed despite the change in wireless reach. 

As the optical power was limited, for L = 90 km SMF the power budget was at the limit of the 

labs capacity. That is why for d = 2 m the curve starts with BER = 10-8 and for d = 3 m this 
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link could not be tested. Nonetheless, with sufficient optical amplification the same 

performance as for the d = 1.1 m link can be expected. 

In Figure 7.31 the results with a data rate of 10 Gbps are presented for a wireless link with 

d = 1.1 m. The curves exhibit the same slope as the optical BtB case and error free 

transmission is achieved even after 21 km of SMF. As in the cable case, for L = 40 km, an 

error floor is reached at BER = 10-10 due to chromatic dispersion. The change in slope is also 

evident, as well as in the L = 50 km case, where the error floor is now BER = 10-9, barely 

reaching the BER requirements for access networks. The penalties for BER = 10-9 are now 

0.4 dB for L = 21 km and 1.4 dB for L = 40 km, much lower than in the cable case. Even the 

performance for L = 50 km is improved, reaching BER = 10-9, meaning that the bandwidth 

limitation imposed by the antennas (4-40 GHz) proves helpful for the system performance. 

 

Figure 7.31: BER curves for the system experiments with Rb = 10 Gbps and setup II for a 
wireless link of d = 1.1 m for different fiber lengths L. 

For d = 2 m the link loss increases in 6 dB, and is now LL2m = 38.8 ± 2.5 dB. Respectively, 

LL3m = 42.3 ± 2.5 dB for d = 3 m. Both wireless links are depicted in Figure 7.32. For 

d = 2 m, the performance degrades significantly. Although error free operation was achieved 

up to 21 km SMF transmission, for 40 and 50 km the BER is one order of magnitude worse as 

the previous case. Similar behavior happens for d = 3 m, where not even the optical BtB is 

error free. It seems that for our system, 1 m increase in wireless link length degrades to one 

order of magnitude in BER. 
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Figure 7.32: BER curves for the system experiments with Rb = 10 Gbps and setup II for a 
wireless link of a) d = 2 m and b) d = 3 m for different fiber lengths L. 

By changing the receiver Vivaldi antenna with a Horn antenna with GRX = 24 dB, the link loss 

is reduced in 9 dB, meaning greater distances can be achieved. Pushing the limits of 

amplification and lab space, the results for d = 5 m and d = 7 m are shown in Figure 7.33, 

corresponding to LL5m = 37.8 dB and LL7m = 40.7 dB, respectively. 

Figure 7.33: BER curves for the system experiments with Rb = 10 Gbps and setup II for a 
wireless link with a horn receiver for a) d = 5 m and b) d = 7 m for different fiber 
lengths L. 

Although the link loss LL is comparable to the previous measurements with d = 2, for d = 5 m 

the performance starts deteriorating significantly for L = 40 km, but is error free up to 

L = 21 km, showing the same slope as the previous cases. In the case of d = 7 m, no special 

care was taken with regard to multipath effects, and the link was operated across the lab, with 

plenty of metal and interference objects. Even though the line of sight was clear, BER not 

better than 10-6 could be achieved. This is sufficient for a femtocell network distribution 
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system but not good enough for wireless access, which require at least a BER = 10-9. The 

penalties for BER = 10-9 and the different configurations as a function of fiber length L are 

summarized in Table 7.1 for the 10 Gbps system experiments. 

 BtB Wireless 
1.1 m 

Wireless 
2m 

Wireless 
3m 

21 km 1 0.4 0.8 0.8 

40 km 2.2 1.4 1.2 N/A 

Table 7.1: 10 Gbps system penalties in dB for BER = 10-9. 

Suprisingly the penalties for the BtB case are higher than for the wireless transmission 

experiments. This can be attributed to the higher powers available in the BtB case which drive 

the amplifiers into saturation, producing distortions and this, higher penalties. The loss 

introduced through the wireless link lets the amplifiers work in a linear regime, minimizing 

nonlinear distortions. 

To increase the wireless distance, the receiver in the mobile unit presents plenty of 

improvement opportunities. The self-homodyne receiver provides mm-wave carrier 

independence at the cost of a poor sensitivity (in our case, -24 dBm for BER = 10-9) and 

requires plenty of RF amplification. By using classic LO downconverting schemes, the 

sensitivity can be improved up to -45 dBm and wireless links were demonstrated up to 20 m 

for 10 Gbps [151]. The main drawback from this scheme is the requirement of 

synchronization of the LO and RF signals, usually through a PLL or coupling of the 

transmitter and receiver mm-wave oscillators, to achieve stable operation. 

7.2.3 Comparison ODSB vs OSSB 
To better compare the performance of the ODSB method from section 7.2.1 and the OSSB 

method from section 7.2.2, a sampling scope measurement right after the photodiode is quite 

useful. Here the baseband data and the mm-wave carrier with the broadband data are detected, 

and one can infer the effects of fiber dispersion on the baseband signal from the 

corresponding eye diagrams. However, this kind of measurement poses some triggering 

problems. The setup used for these measurements is shown in Figure 7.34, with the mm-wave 

carrier remaining at fRF = 33 GHz, but the data rate has to be a fraction of the modulation 



7.2 Broadband radio over fiber wireless access 

 

 

151 

frequency fm, thus the clock for the PRBS generator is driven with fR = fm/2 setting the data 

rate to Rb = 8.25 Gbps (1/4 from fRF). 

 

Figure 7.34: Setup to measure the mm-wave plus baseband signal. 

First of all, for a clear picture, all microwave sources have to be synchronized. That means 

that the generator modulating the DSB-SC subsystem and the clock for the PRBS generator 

need to have the same electrical reference, which is the link marked as REF in Figure 7.34. 

Second, the selection of the data rate is not trivial, as it needs to be an exact divisor of the 

resulting mm-wave frequency. That is why Rb = ¼ fRF = 8.25 Gbps was chosen and taken 

from the coupled generator with fR = 8.25 GHz. Finally, the trigger signal for the sampling 

scope is taken from the PRBS generators CLK/16 output which in this case is approximately 

515 MHz. 

Figure 7.35: Optical spectra for a) the ODSB and b) OSSB setup both with ma = 0.8. Data rate 
Rb = 8.25 Gbps. Resolution bandwidth = 10 pm. 
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The power spectrum for both setups is shown in Figure 7.35. Figure 7.35a depicts the ODSB 

signal with the data rate Rb = 8.25 Gbps. A small spectral overlap is present, as the mm-wave 

frequency is relatively small. The relative bandwidth of the system is 25%. Figure 7.35b on 

the other hand, shows the OSSB power spectrum, with a modulated signal and unmodulated 

LO signal for the mm-wave upconversion. The whole bandwidth of the baseband signal is 

undistorted. 

  

  

  

Figure 7.36: Eye diagrams with mm-wave signal plus baseband for the ODSB and OSSB 
setups. Fiber lengths a) L = 0 km, b) L = 0 km, c) L = 7 km, d) L = 21 km, 
e) L = 15 km and f) L = 40 km. Optical power = 1.5 dBm, time base = 30 ps/div 
and amplitude scale = 10 mV/div for all cases. 

The resulting eye diagrams measured with the sampling scope are displayed in Figure 7.36 as 

a function of the transmission fiber length L. It is evident that for the ODSB case, the 

baseband signal is much more dispersion compromised, as the eye starts closing for L = 7 km 

and even more for L = 15 km. As the two sidebands experience different group delays, this 

causes the distortion when mixed with each other at the mixer. In the OSSB case, however, 

even after L = 40 km transmission over SMF, the baseband eye remains open. Testing the 

limits of the OSSB system with regard to optical amplification is shown in Figure 7.37 where 
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the transmission length was extended to 65 and even 90 km. Even though the signal is pretty 

much distorted, the baseband eye remains open, finally proving the superior dispersion 

immunity of the OSSB method in comparison with the easy to setup ODSB approach. 

  

Figure 7.37: Eye diagrams with mm-wave signal plus baseband for the OSSB setups. Fiber 
lengths a) L = 65 km and b) L = 90 km. Optical power = 1.5 dBm, time 
base = 30 ps/div.  Amplitude scale = 10 mV/div in a) and 5 mV/div in b). 

 

7.3 Heterodyned uncorrelated lasers 
The simplest method to generate mm-wave signals would be to heterodyne two uncorrelated 

laser sources. This method produces higher phase noise mm-wave signals and is thus 

discarded as an efficient mm-wave generation scheme also due to the small laser wavelength 

variations which cause mm-wave jitter. On the other hand, depending on the application, this 

idea can prove beneficial. For example, this could be used to benefit from existing 

10 Gigabit Ethernet (10 GET) connections from Fiber to the Home (FTTH) architectures. In 

this way, the 10 GET signal could be coupled with a local oscillator laser which provides the 

mm-wave frequency upconversion of the broadband baseband signal. This is an easy method 

to implement for the downlink in femtocell networks, where the number of cells is greater 

than 100. Some other considerations have to be taken for the case of the uplink, as it will 

require and E/O conversion. Much research was done in this field in the early stages of long 

haul optical communications and heterodyne receivers [158]-[159] albeit for lower data rates. 

The requirements on laser linewidth and other parameters were deeply studied in [160] and 

experimentally demonstrated in [161]. A basic schematic of a heterodyne receiver is shown in 

Figure 7.38. The receiver architecture with square envelope detections is basically the same as 

the self-homodyne receiver described in previous sections. 
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Figure 7.38: Optical heterodyne receiver. 

The bandwidths of the bandpass filter and low pass filter play an important role in the system 

performance. Also the linewidth of the local oscillator (LO) laser proves to be a critical factor, 

as well as the decision threshold level. For the system experiments the following setup shown 

in Figure 7.39 was used. The RF receiver architecture chosen is the self-homodyne receiver 

which provides mm-wave carrier independence and thus is tolerant to the carrier jitter. The 

optical SSB signal is now formed by heterodyning two uncorrelated laser sources in a 3 dB 

fiber coupler. The 10 GET connection is emulated by an externally modulated laser source. A 

polarization controller (PC) is in charge of obtaining maximum coupling of the two waves. 

After optical amplification and bandpass filtering to reduce ASE, the signal is launched via an 

SMF link into the receiver at the base station. 

 

Figure 7.39: System experiments setup III to transmit broadband signals using OSSB data 
modulation. 



7.3 Heterodyned uncorrelated lasers 

 

 

155 

7.3.1 RF bandwidth 
The effects of the RF bandwidth were already studied in [162] showing that using IF 

bandwidths smaller than two times the bit rate Rb resulted in asymptotically high sensitivity 

penalties. The previous system depicted in Figure 7.39 was simulated in VPI (for a more 

complete schematic refer to Appendix D, Figure D.6) and the RF bandwidth was varied by 

using an electrical bandpass filter with variable bandwidth. The rest of the paramaters for the 

simulation were LO laser power PLO = 10 dBm, signal laser power Ps = 0 dBm, combined 

laser linewidth Δν = 200 kHz (i.e simulating two ECLs with Δν = 100 kHz each), 

Δf = 33 GHz and using an ideal square law detection receiver with R = 1 A/W, a preamplifier 

with G = 20 dB and a post detection filter with BLPF = 0.75·Rb (in our case BLPF = 7.5 GHz as 

Rb = 10 Gbps). The results for the BER curves for L = 0 km are shown in Figure 7.40a. 

Figure 7.40: a) Simulation BER curves for the system experiments with Rb = 10 Gbps and setup 
III for the cable link and for different RF banwidths. b) Receiver sensitivity versus 
relative bandwidth for BER = 10-9 and optimum threshold setting from [162]. 

It is evident that higher bandwidths accommodate higher RF power and thus the performance 

is improved. Even using B = 10 GHz RF bandwidth is not enough to achieve decent data rates 

without FEC, so this scheme would not be useful for 60 GHz systems due to bandwidth limit 

regulations. Apart from using narrower linewidth lasers (which would increase the costs), 

there are two ways of lowering the error floor: lowering the decision threshold or increase the 

RF passband. Lowering the threshold would reduce the systems sensitivity so increasing the 

RF passband is preferred, as it can be partially compensated by the post-detection filter. 

Nevertheless, increasing the bandwidth indefinetely doesn’t always achieve better results, as 

the performance improves meagerly from B = 20 GHz (i.e. a system with a huge 60% relative 
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bandwidth). This is due to the fact that at some point, more noise than data is collected by the 

increased RF bandwidth. 

The receiver sensitivity for BER = 10-9 for a 140 Mbps-ASK receiver with square-law 

detection was calculated in [162] as a function of the RF bandwidth relative to the bit rate Rb 

and the results are shown in Figure 7.40b. The shot noise limit curve was calculated under the 

assumption of a strong local oscillator and zero linewidth lasers. It demonstrates the ultimate 

sensitivity achievable. For all other curves, a local oscillator with PLO = 10 dBm was used and 

the resulting linewidths were varied relative to the bit rate Rb. Even for zero linewidth, the 

curve deviates steeply from the shot noise limit. Increasing the linewidth shows an 

asymptotical behavior for small RF bandwidths. If the RF bandwidth is large enough, then the 

curves follow the zero linewidth one. However, for small RF bandwidths, the error rate floor 

may rise above 10-9 and the receiver performance degrades disastrously. The minimum 

sensitivities are reached at 4.2·Rb and 5.5·Rb for linewidths 0.3·Rb and 0.5·Rb respectively. In 

[162] the RF bandwidth was assumed to be greater than two times the bit rate (i.e. B > 2·Rb) to 

simplify the calculations. In our case, however, we are using at most B = 1.4·Rb meaning that 

a small linewidth may be critical for achieving error free performance. 

7.3.2 Laser linewidth 

As already studied in [160], the lasers linewidth proves to be a critical factor in system 

performance. In remote heterodyne systems, the product laser linewidth x system bandwidth 

limits the transmission distance as already demonstrated in section 4.4 for phase modulation 

formats (refer to Figure 4.22). To test our system under different conditions, the lasers 

linewidth was varied by using different laser sources. One is a distributed feedback (DFB) 

laser with a linewidth of ΔνDFB = 10 MHz. These are the laser typically employed in 10 GET 

systems. On the other hand, narrower laser sources such as external cavity lasers (ECL) can 

be employed, with laser linewidths of ΔνECL = 100 kHz. 

In the case of uncorrelated heterodyning of two laser sources, the resulting mm-wave signal 

will have a linewidth ΔνRF equivalent to the sum of each lasers linewidth [149]. 

Mathematically, 

 RF sig LOν ν νΔ = Δ + Δ  (6.11) 
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where Δνsig and ΔνLO are the signal lasers and LO lasers linewidth respectively. By using 

different combinations of signal and LO laser, the resulting mm-wave linewidth can be 

varied. 

Figure 7.41a shows the BER curves by using two DFB lasers with a resulting linewidth of 

approximately ΔνRF = 20 MHz. Only the optical BtB link could be tested, and the error rate is 

not better than BER = 10-6. For longer transmission distances, the BER deteriorates, being 

almost a flat line at BER = 10-4 for L = 25 km. For the wireless link only BER = 10-4 could be 

achieved (not shown in Figure 7.41a). 

Figure 7.41: BER curves for setup III with resulting linewidth a) ΔνRF= 20 MHz, 
b) ΔνRF = 10.1 MHz and c) ΔνRF= 0.2 MHz. d) System simulations. Data rate 
Rb = 10 Gbps for all cases. 

By changing the LO laser to a narrow linewidth ECL (ΔνECL = 0.1 MHz), the resulting 

linewidth is reduced to ΔνRF = 10.1 MHz. This improvement is significantly shown in Figure 

7.41b as some BER curves now reach error free operation in the optical BtB case. The 
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penalties for longer transmission distances such as 19 and 25 km are less, although an error 

floor is reached at BER = 10-10 and BER = 10-9 respectively. A wireless link of d = 1 m was 

tested and the BER curves show all the same slope, with small penalties for the longer fiber 

distances. 

To obtain the smallest resulting linewidht of ΔνRF = 0.2 MHz, two ECL lasers were 

employed. The results shown in Figure 7.41c confirm that the narrower the linewidth the 

better the system performance. Almost error free operation was achieved even under long 

fiber transmission distances for the cable case. A wireless links with d = 1 m also 

demontrastes error free operation after L = 2 km but a significant penalty of 1 dB for 

L = 19 km. Duplicating the link distance to d = 2 m results in decent operation with 

BER = 10-9. 

With the same simulation set as in section 7.3.1, now the linewidth of both lasers was 

simultaneously varied and the BER curves calculated. The parameters remain the same: 

PLO = 10 dBm, Ps = 0 dBm, BLPF = 7.5 GHz, R = 1 A/W, G = 20 dB and L = 0 km. The RF 

bandwidth was set to BRF = 14 GHz. The results are shown in Figure 7.41d with the resulting 

RF linewidth as a parameter. For RF linewidths up to 2 MHz the curves show little penalty, 

but when two standard uncooled DFB lasers are used (i.e. ΔνDFB = 10 MHz each), the 

performance degrades abruptly, reaching an error floor at 10-6. These results agree with our 

experimental data, where only using narrow linewidth ECLs resulted in error free 

performance.  

7.3.3 Simple remote heterodyne with diode detector 

An improvement based on the previous setup to use two uncorrelated lasers would be to use 

envelope detection to achieve better sensitivities (see section 6.1.2.2). The receiver consists 

now of a low noise mm-wave amplifier (LNA) and a broadband diode detector (DKa-2P) in 

WR28 waveguide from Spacek Labs Inc. The diode detector is used as an envelope detector 

providing mm-wave carrier independence. It is specified to operate in the 26-40 GHz region 

with a sensitivity of 2000 mV/mW throughout the Ka band, but the IF frequency response is 

not specified as it is usually not used for this kind of application. The tangential sensitivity is 

specified to be -45 dBm in a 2 MHz video bandwidth [163]. The response was already 

measured in section 6.1.2.2 providing a bandwidth of B = 5.5 GHz. This would mean that data 

rates as high as Rb = 7.5 GBps can be detected without distortion. Higher data rates like 
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10 Gbps suffer the notch at 6 GHz but in principle could also be demodulated with this diode 

detector. The setup for the system experiments is schematically shown in Figure 7.42. 

 

Figure 7.42: System experiments setup IV to transmit broadband signals using OSSB data 
modulation. 

With the setup described in Figure 7.42, the carrier frequency fRF can be adjusted, so that the 

behavior of the broadband detector can be characterized in the Ka band (i.e. 26-40 GHz). The 

first data rate chosen was Rb = 5 Gbps to test if a multi channel configuration could be 

possible. The bit error ratio (BER) was measured for different carrier frequencies and only a 

small fiber link (i.e. L ≈ 0 km). The results are plotted in Figure 7.43 for the cable link case. 

 

Figure 7.43: BER curves for the system experiments with Rb = 5 Gbps and setup IV for the 
cable link and for different carrier frequencies fRF. 
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The best operation was obtained for fRF = 30 GHz, but also 27 and 33 GHz have small 

penalties (0.2 dB). For fRF = 25 GHz an error floor is observed which can be explained due to 

the cutoff frequency of the WR28 waveguide at 25.5 GHz. For fRF = 36 GHz a bigger penalty 

is incurred (1 dB). A carrier frequencies of 39 GHz provided too much distortion and no data 

could be recovered. The most important result of this experiment is that the broadband 

detector could be used in a multi channel environment provided extra filtering in each 

receiver for channel selection is available. 

The Q-factors corresponding to the measurements in Figure 7.43 are listed in Table 7.2. The 

optical power was maintained constant for all the measurements at 2.2 dBm. The optimum 

carrier frequency is then fRF = 30 GHz with Q = 7.5 and the largest eye opening. 

 Carrier Frequency fRF 
25 GHz 27 GHz 30 GHz 33 GHz 36 GHz 

Q-factor 4.86 5.6 7.45 6.54 5.99 
Eye opening 

(mV) 21.4 37.5 43 33.8 25 

Table 7.2: Measured Q-factors for Rb = 5 Gbps and different carrier frequencies fc. 

 

Figure 7.44: Optical SSB spectra for different data rates Rb. 

Using the optimum fRF = 30 GHz, the data rate Rb was varied from 5 to 10 Gbps and the 

optical spectrum is plotted in Figure 7.44. This type of OSSB modulation causes no optical 

spectrum overlap and provides enough chromatic dispersion tolerance so that transmission 

over huge spans of SMF is possible. Usually in heterodyne receivers the LO laser power 
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should be high, but due to saturation effects in our receiver it  was optimized for the best 

possible Q factor of the recovered signal. This resulted in PLO = 2 dBm, roughly 6.4 dB higher 

than the signal power. 

In the system experiments, the receiver front end has a sensitivity of -34 dBm for BER = 10-9 

and a noise figure NF = 4.04 dB (as measured in section 6.1.2.2). The broadband photodiode 

from u2t operates up to 70 GHz with a responsivity R = 0.6 A/W and can handle large optical 

powers (max Pin = 13 dBm). Due to the response of the diode detector up to 6 GHz, it acts as 

a natural matched filter for Rb = 7.5 Gbps. That is, the noise equivalent bandwidth Bn is equal 

to the data rate Rb and proves to be the maximum likelihood demodulator [138]. 

Figure 7.45: BER curves for the system experiments setup IV for the cable link for 
a) Rb = 7.5 Gbps and b) Rb = 10 Gbps for different fiber lengths L. 

The BER versus received optical power for the cable link connection is shown in Figure 7.45 

for two different data rates: 7.5 and 10 Gbps. The curves shown in Figure 7.45a prove that 

even after 90 km of SMF transmission the power penalties are negligible. A longer span of 

L = 103 km was tested but could not be measured due to power budget problems with a single 

optical preamplifier and the 8 dB insertion loss of the optical attenuator used. Moving to 

higher data rates such as 10 Gbps (see Figure 7.45b) confirms that the bandwidth limitation 

imposed by the diode detector (B = 6 GHz, refer to section 6.1.2.2 and Figure 6.7b) causes 

massive intersymbol interference as no error free performance can be achieved. Moreover, 

after L = 53 km of SMF an error floor is reached with BER = 3.10-9. Nonetheless, this is 

acceptable for wireless access systems even though the optical power required to operate in 

the low error region is quite high. The recovered eye diagrams at Rb = 7.5 Gbps are shown in 
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Figure 7.46 for an optical input power of 2.5 dBm. There is some distortion after 90 km SMF 

but the eye remains open. 

  

Figure 7.46: Eye diagrams for Rb = 7.5 Gbps and cable link. Fiber lengths a) L = 0 km and 
b) L = 90 km. Optical power = 2.5 dBm, time base = 30 ps/div.  Amplitude 
scale = 50 mV/div. 

A wireless link of d = 1.5 m was chosen to carry out the wireless experiments. At the 

transmitter end a Vivaldi antenna working in the 4-40 GHz range and having a gain 

GTX = 15 dB was employed. Extra amplification was needed to overcome the free space path 

loss, which at fRF = 30 GHz is PLfreespace = 62 dB. The receiver antenna was a horn antenna 

working from 26-40 GHz and having a gain GRX = 24 dB. With this in mind, the link loss is 

only LL = 23 dB. 

Figure 7.47: BER curves for the system experiments setup IV for a wireless link of d = 1.5 m 
for a) Rb = 7.5 Gbps and b) Rb = 10 Gbps for different fiber lengths L. 

Clearly wireless transmission requires higher optical power, but the curves in Figure 7.47a 

show no significant degradation due to the wireless channel for Rb = 7.5 Gbps. Transmitting 

at Rb = 10 Gbps suffers from more distortion effects which result in a slight change of slope in 

the BER curves and one order of magnitude worse performance in Figure 7.47b. Nonetheless, 
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fiber transmission distances up to 53 km were achieved and the use of forward error 

correction (FEC) would allow such a system to operate error freely at the expense of signal 

processing in the mobile unit. 

7.4 Overview 
To summarize the wireless experiments carried out in one diagram, the theoretical maximum 

capacities for each receiver were calculated with the theory developed in chapters 2 and 6, 

and the results are shown in Figure 7.48. The receivers are denoted by “Demodulation type – 

Tx antenna – Rx antenna”, being ‘V’ for Vivaldi and ‘H’ for Horn antenna. The different 

setups (denoted by points according to the bit rate achieved and distance transmitted) are 

divided into: 

• Setup I: Optical Double Sideband from section 7.2.1. 

• Setup II: Optical Single Sideband from section 7.2.2. 

• Setup III and IV: heterodyning of two uncorrelated lasers from section 7.3. 

 

Figure 7.48: Overview of wireless system experiments. 

The line types correspond to the different receivers tested. From Figure 7.48, the best receiver 

available woud be the envelope detector, but its bandwidth limitation makes it possible to 

transmit error free only up to 7.5 Gbps using ASK modulation. 10 Gbps was also tested and 

BER = 10-9 were achieved, which is enough for broadband wireless access. 
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The second best receiver would be the heterodyne demodulator. In this case only a proof of 

concept link with d = 1 m was tested eventhough the capabilities of the system would allow 

transmission distances of more than 20 m. The main drawback of this scheme is the need of a 

carrier recovery unit to use as local oscillator (LO) in the receiver. This was carried out in the 

lab by synchronizing the signal generator in the central station with the LO signal generator in 

the receiver, which is only a proof of concept setup and not a real scenario.  

The self homodyne receiver is the worst of all due to its high power requirements, which 

results in an implementation loss ILSH = 33.93 dB. Therefore, the distances that can be 

achieved with such receiver are severely limited. Nevertheless, its stability allows the use of 

any of the setups and the maximum reach of 7 m for 10 Gbps was in this way obtained in the 

lab. 

One general requirement for all receivers is the group delay response of all its components. 

As the bit slot is 100 ps for a 10 Gbps signal, if the overall group delay ripple of the receiver 

is in this order of magnitude, then intersymbol interference will inevitably occur. Therefore 

special care should be taken when choosing amplifiers, delay lines and mixers in this kind of 

receivers. Moreover, linewidth requirements discussed in section 6.3 prove to be another 

system limitation. The experiments in section 7.3.2 show that narrower linewidths as expected 

from theory are needed. The linewidths in Table 6.2 are expressed as a percentage of the data 

rate, and since demodulators can be implemented in a variety of ways for a given modulation 

format, they are only estimates of the required linewidth. Nonetheless, from the experimental 

results, ASK with incoherent demodulation required linewidths in the order of 10 MHz or less 

to operate error freely for a 10 Gbps signal (Δν/Rb = 0.001 %). 

In chapter 2 the focus on 60 GHz systems was mentioned, mainly due to its huge unregulated 

bandwidth availability worldwide. All the proposed optical setups located in the central 

station are easily scalable to this higher frequency by changing the separation of the spectral 

lines to fRF = 60 GHz by using a MZM with sufficient RF bandwidth (BW > 30 GHz). For the 

OSSB case, the MZI has to be desgined with an FSR = 120 GHz instead. The components of 

the different receivers in the mobile unit have to be completely changed for the corresponding 

frequency range. This is also not a major issue and shifting to higher frequencies provides the 

benefit of a smaller system relative bandwidth, where the RF components can cope with the 

bandwidth demands of high bitrates such as 10 Gbps. 
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8 Summary 

The main focus of this work has been the optical generation of mm-wave signals for future 

gigabit wireless networks. The main motivation resides in the use of radio over fiber (RoF) 

systems as a distribution medium of broadband multimedia content. The advantages of a fiber 

distribution system include low loss (i.e. longer transmission distances), immunity to 

electromagnetic interference, ease of deployment, light weight and the inmense available 

bandwidth (i.e. the possibility of multichannel capability through DWDM). The efforts by 

different providers to supply fiber connections to each end user (i.e. FTTH networks) make 

RoF an attractive future technology. 

From this point of view, the characteristics of gigabit wireless networks were generally 

described in chapter 2. The choice of the mm-wave band is strongfully backed up by the huge 

worldwide unregulated bandwidth in the 60 GHz region. Due to high free space path losses at 

this frequency, plus oxygen absorption losses, the reach of 60 GHz mobile systems is severely 

distance limited. This is a disadvantage for fixed wireless links but a big advantage for 

picocell and femtocell systems due to frequency reuse.The key aspect in extending the reach 

would be to use high gain directional antennas. For a fixed wireless link, Cassegrain antennas 

can be used to reach a couple of kms of wireless transmission. In a mobile environment, 

however, such huge antennas are impractical, which makes the need of smart antennas with 

adaptive directional capabilities imperative. The theoretical maximum achievable capacities 

were calculated in section 2.3 demonstrating the large influence of the antennas in both 

achievable data rate and reach.    

To simplify the base stations architecture in a RoF network requires the need of some kind of 

mm-wave signal distribution. These can be accomplished through different optical methods 

briefly described in chapter 3. Another advantage of a fiber distribution system is the ability 

to optically upconvert lower frequency signals. The properties of transmission of radio signals 

through optical fiber are developed in chapter 4. The chromatic dispersion (CD) of the fiber 

proves to be a key impediment in achieving long fiber transmission distances. Due to the 

phase shift produced by CD on the different spectral lines and depending on how the mm-

wave signal is transmitted optically, the link can be limited to some kms. In order to extend 

this to some tenths of kms, the use of double sideband with suppressed carrier (DSB-SC) is 
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proposed. By eliminating the optical carrier, chromatic dispersion induced penalties are 

harshly reduced.   

The novel concept in this thesis is the use of a fiber loop mirror (FLM) with a phase 

modulation element inside it to generate an optical DSB-SC signal. The inherent stability of 

the FLM and the reduction of acousto-optic effects due to the bidirectional nature of the loop 

make this approach theoretically quite attractive in comparison to the more simple method of 

using a Mach-Zehnder modulator biased at minimum. Several FLMs were constructed during 

the development of this thesis, some used a phase modulator (PM) and others employed a 

semiconductor optical amplifier (SOA). The carrier suppression of all the setups was well 

over the required 20 dB. However, the FLM transmission behavior is extremely dependent on 

the position of the phase modulation element inside the loop and its bidirectional behavior. 

Commercial phase modulators up to 30 GHz are available; however, to reach such high 

frequency performance, the RF electrodes are of the traveling wave type, meaning that the 

efficiency is maximized in one operation direction, as demonstrated in Appendix A. 

By means of cross-phase modulation (XPM) effect in SOAs, the FLM becomes more 

complicated, requiring an optical pump to be spliced inside the loop. However, the phase 

modulation indices mph achieved in this way are much higher (see Appendix B) meaning a 

more efficient electro-optical upconversion. On the other hand, the frequency response of this 

mechanism is quite slow, limiting the achievable frequencies to a couple of GHz. This is 

advantageous for WLAN and UWB systems, but not for 60 GHz applications. 

Independently of the phase inducing element used, the FLM has a periodic frequency 

behavior dependent on the position of this element inside the loop (see Figure 5.22). To 

maximize the usable RF bandwidth, the phase inducing element has to be placed near the 

symmetry axis of the loop. This is quite difficult to achieve by splicing and requires complete 

control on all the devices inside the loop. Using a phase modulator specified to work up to 

8 GHz and modulated at fm = 4.5 GHz, proof of concept system experiments were carried out 

at fRF = 11 GHz with data rates as high as 155 Mbps (as described in section 5.2.1). Exploiting 

the same test bed, the FLM with a SOA was also used to carry out the same system 

experiments with decent results (see section 5.2.2). The broad optical bandwidth of the fiber 

loop, limited only by the bandwidth of the phase inducing element, makes this approach 

suitable to address multiple users through DWDM. 
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To reach higher mm-wave frequencies (i.e. 60 GHz), and thus transmit higher data rates, the 

FLM setup was limited due to the phase modulator employed. Moreover, SOAs also exhibit a 

reduced efficiency as the modulation frequency fm is increased (see Figure 5.33). For these 

reasons, the generation of a DSB-SC signal at higher frequencies was carried out by a Mach-

Zehnder modulator (MZM) biased at its minimum transmission point. Utilizing a standard 

10 Gbps OC-192 MZM, mm-wave signals up to 33 GHz were generated with fm = 16.5 GHz. 

Due to mismatches in the MZM construction and polarization issues, there is always a 

remnant optical carrier. Different configurations of this approach were presented in section 

5.1 with special interest in the carrier suppression capabilities. The best solution resulted in 

suppressing the optical carrier via optical filtering through a Fiber Bragg grating (FBG). In 

this fashion, by tuning the FBG via stress, the carrier was attenuated more than 60 dB and two 

spectral lines separated by fRF = 33 GHz were produced (as shown in Figure 5.14). By optical 

mixing in a fast photodiode, the resulting mm-wave signal is obtained. The choice of this fRF 

was driven by the limitations of the equipment in the lab but using a more broadband MZM, a 

60 GHz RF signal can be easily generated in this way. 

Concerning broadband data modulation, two options are available using a DSB-SC signal: 

optical double sideband (ODSB) and optical single sideband (OSSB). ODSB means the 

modulation of both spectral lines with the broadband data takes place and is described in 

section 7.2.1. It is a simple method, requiring only a second MZM and no extra optical 

components resulting in high stability. The main drawback is the poor immunity to fiber 

chromatic dispersion. Working with Rb = 10 Gbps, a maximum fiber transmission distance of 

L = 10 km with standard singlemode fiber (SMF) was achieved. 

On the other hand, OSSB is more complex and is fully described in section 7.2.2. The phase-

correlated spectral lines are separated by a Mach-Zehnder Interferometer (MZI) with a free 

spectral range (FSR) equal to twice the desired RF frequency. In this way, one of the spectral 

lines can be modulated with the broadband data while the other remains unchanged. After 

recombination in a 3 dB coupler, an optical single sideband signal is obtained as shown in 

Figure 7.22. Chromatic dispersion tolerance is extremely improved with this method, reaching 

fiber transmission distances as far as L = 53 km of SMF at Rb = 10 Gbps. 

To demonstrate the feasibility of both approaches in a FTTH scenario like the one depicted in 

Figure 1.2, a wireless link was setup and several receivers for the mobile units were tested. 
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The modulation format chosen was amplitude shift keying (ASK) due to its simplicity to 

implement. Therefore, three options were available to demodulate an ASK signal: heterodyne 

downmixing with a local oscillator, self homodyne and envelope detection. 

Heterodyne downmixing with a local oscillator (LO) is a coherent form of demodulation (see 

section 6.1.1) which requires complete phase and frequency control of the LO signal. This 

translates in the need of a carrier recovery unit with a phase locked loop (PLL) to track the 

signals phase, making the receiver more complex. The sensitivity for BER = 10-9 was 

measured to be -34 dBm with a noise figure NF = 5.04 dB. However, the implementation loss 

of this receiver was calculated to be ILcoh = 20.91 dB which leaves plenty of room for 

improvement. A proof of concept link with d = 1 m was constructed and error free 

transmission of 10 Gbps was achieved. 

Moving to incoherent demodulators relaxes the need of frequency and phase tracking, but 

increases the implementation loss and in some cases reduces the sensitivity. The self-

homodyne receiver described in section 6.1.2.1 is a simple scheme which mixes the incoming 

signal with itself. Though simple, it requires high electrical power in the mixer to light up the 

diodes, making its measured sensitivity to be -24 dBm (as measured in section 6.1.1). 

Therefore, its implementation loss is the highest of all at ILsh = 33.93 dB. Nevertheless, a 

wireless link with d = 7 m and 10 Gbps was constructed and operated error free. Another 

variation is the use of envelope detection. The key issue in this method is the availability of 

broadband diode detectors. A diode detector from Spacek Labs with a bandwidth B ≈ 6 GHz 

was used in the proposed experiments, limiting the bitrate to Rb = 7.5 Gbps. The 

implementation loss for this approach was ILenv = 21.91 dB, comparable to the coherent 

receiver and offering the same sensitivity at -34 dBm for BER = 10-9. A proof of concept link 

with d = 1.5 m and 7.5 Gbps operated error free. Increasing the data rate to 10 Gbps proved 

that the bandwidth limitation causes massive intersymbol interference. Nevertheless, the 

system operated with BER = 10-9, which meets the requirements for broadband wireless 

access. 

Apart from using two phase-correlated spectral lines such as the ones emerging from a DSB-

SC signal, the mixing of two completely uncorrelated lasers is another low-cost option. For 

this method, described in section 7.3, an incoherent demodulator is needed as the RF 

frequency is unstable when both lasers are free running and unlocked. This approach is the 
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simplest to implement if an already deployed 10 Gigabit Ethernet connection is to be used, 

such as is available in the wired FTTH connections. However, the performance is severely 

influenced by two parameters: the lasers linewidth and the RF bandwidth available. In the 

experiments at fRF = 33 GHz, a reduced laser linewidth improved performance strongly (see 

Figure 7.41d). When the resulting RF signal linewidth approaches ΔνRF = 10 MHz (e.g. by 

using two DFB lasers with Δν = 5 MHz each) an error floor at BER = 10-9 is reached. The 

other vital parameter is the RF bandwidth. Larger RF bandwidths can accommodate more 

signal power and thus improve the performance as demonstrated by the system simulations in 

Figure 7.40a. This proves to be the major issue as the bandwidth is limited to 9 GHz at the 

most in the 60 GHz band and thus is a compromise solution between bandwidth available and 

laser linewidth. 

To summarize, this thesis encompasses a complete and comprehensive working system for 

the wireless distribution of high definition multimedia content, with data rates as high as 

10 Gbps, operating error free with wireless links up to 7 m. The construction of the proof of 

concept system, although lab-limited to fRF = 33 GHz, proved quite challenging as a relative 

bandwidth of 30% was realized where usually 10% is the design limit in real RF systems. 

Moreover, proficiency in multiple fields was required (e.g. fiber optic communications, RF 

component and system design and wireless propagation theory). Over the scope of one PhD 

thesis this includes an ample amount of research and energy. Technically, the optical 

generation of mm-wave signals is a mature technology, meaning that efficient methods for 

LO generation and distribution are already available. Depending on the system requirements, 

a simple method such as optical double sideband (ODSB) can be employed, limiting the fiber 

transmission distance to some kms for 10 Gbps. However, if longer fiber links are required, 

such as in future broadband access networks, optical single sideband (OSSB) is the way to go 

due to its resilience to chromatic dispersion. With fiber links up to 53 kms for OSSB with a 

data rate of 10 Gbps already demonstrated, the ultimate limit lies in the chromatic dispersion 

distortions on the baseband data itself. If fiber links longer than 100 km will be required, then 

dispersion compensation is mandatory. In my opinion, the key aspects that need to be further 

developed in gigabit wireless links are located in the RF domain. First of all, the influence of 

the antenna gain is enormous to develop high capacity links, thus the requirement of high gain 

and smart directional antennas is a necessity. Second, another area of improvement is the 
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receivers in the mobile units. The receivers used during this work were built with the 

available components in the laboratory and only as a proof of concept. Therefore, its 

implementation loss (IL) is quite high (e.g. 21-33 dB). Monolithic integration and careful 

design can reduce the IL and thus provide more signal to noise ratio (SNR) to reach longer 

wireless transmission distances by improving receiver sensitivity. Lastly, the use of higher 

modulation formats such as M-ary PSK can provide a capacity boost as well as a better use of 

the limited spectrum in the worldwide unlicensed 60 GHz band, which in the end is the goal 

of this type of systems.   
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Appendix A  Phase modulation index measurements of PM 

The modulation of the phase of an optical signal is usually quite difficult to measure directly, 

as the phase information of an optical carrier is lost after photodetection. Generally an indirect 

measurement takes place in which the phase modulation is converted to intensity modulation. 

The electric field of an optical carrier modulated in its phase takes the form 

 ( )sin
0( ) c ph mj t m tE t E e ω π ω⎡ ⎤+ ⋅ ⋅⎣ ⎦= ⋅  (A.1) 

where ωc is the angular frequency of the optical carrier, ph RFm V Vπ=  is the phase 

modulation index, Vπ is the modulators half-wave voltage and ωm is the modulation angular 

frequency. Expanding Eq. (A.1) as a series of Bessel functions of the first order k results in 

 ( )0( ) .c mj t jk t
k ph

k
E t E e J m eω ωπ

∞

=−∞

⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦∑  (A.2) 

From Eq. (A.2) it is evident that the spectrum consists of infinite harmonics kωm around ωc. 

The amplitude and phase of the harmonics are governed in such a way that after 

photodetection they all cancel out. Figure A.1 shows a simulation of the generated harmonics 

for k = ±5 with their corresponding phase.  

 

Figure A.1: Phase modulation harmonics of ωm around ωc. 
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In order to measure the phase modulation index mph of the UDT PM-1.5-8.0, the setup shown 

in Figure A.2 was used. A dual wavelength source is in charge of generating two phase 

correlated spectral lines which in our case are Δfc = 33 GHz apart. They are then separated in 

two different optical paths by a Mach-Zehnder Interferometer. The spectral line in path A is 

modulated in its phase by the phase modulator (PM) under test, whereas the other spectral line 

remains unchanged. After recombination in a 50% coupler, the phase modulation is turned 

into intensity modulation and therefore detected by the broadband photodiode. 

 

Figure A.2: Setup to measure the phase modulation index mph. MZI: Mach-Zehnder 
interferometer, PM: Phase modulator, PC: Polarization controller, PD: Photodiode, 
ESA: Electrical spectrum analyzer. 

Mathematically, the signals in path A and B take the form 

 ( )0( ) sin sin
2

c
A c ph mE t E t m tωω π ω⎡ Δ ⎤⎛ ⎞= + + ⋅ ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (A.3) 

 0( ) sin
2

c
B cE t E tωω⎛ Δ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (A.4) 

where ωc is the central frequency of the dual-wavelength source, Δωc = 2πΔfc << ωc and 

ωm = 2πfm, being fm the modulation frequency applied to the phase modulator. The signal 

entering the photodiode is the sum of both electrical fields and after some algebraic 

manipulation takes the form 

 0( ) ( ) ( ) 2 sin sin( ) cos sin( )
2 2 2

ph phc
out A B c m m

m mtE t E t E t E t t t
π πωω ω ω

⎡ ⎤ ⎡ ⎤Δ
= + = + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
(A.5) 

As the photodiode acts as a squaring device, the current IPD is then proportional to 
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 (A.6) 

As the photodiode has a finite bandwidth, all high frequency components will be filtered out, 

in this case the first term of Eq. (A.6). Neglecting all the high frequency components of IPD 

such as 2ωc, IPD takes the form 

 ( ){ }1 cos sin .PD c ph mI A t m tω π ω⎡ ⎤≈ + Δ + ⋅⎣ ⎦  (A.7) 

IPD is a phase modulated signal with the frequency Δωc, and can be expanded in a series of 

Bessel functions of the first order as 

 ( ) 1 ( ) cos( )PD k ph c m
k

I t A J m t k tπ ω ω
∞

=−∞

⎡ ⎤
≈ + ⋅ ⋅ Δ +⎢ ⎥

⎣ ⎦
∑  (A.8) 

The power spectrum now has harmonics of kωm around the GHz band frequency Δωc. The 

ratio of the power in the center harmonic to the first sideband is a function of mph and is given 

by 

 11

0 0

( )
.

( )
ph

r
ph

J mP P
P J m

π
π

⋅
= =

⋅
 (A.9) 

The power ratio from Eq. (A.9) is calculated and plotted in Figure A.3. It is clearly a 

monotonic increasing function up to the first zero of J0(π·mph) which occurs for mph = 0.76. 

 

Figure A.3: Power ratio as a function of the phase modulation index mph. 
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As long as the phase modulation index mph < 0.76, the inverse function can be calculated and 

thus the value of mph retrieved. Mathematically 

 [ ] 11 1

0

( )
( )

ph
ph r

ph

J m
m f P f

J m
π
π

− − ⎡ ⎤⋅
= = ⎢ ⎥

⋅⎢ ⎥⎣ ⎦
 (A.10) 

and expanding it in a Taylor series of order 4 results in 

 ( ) ( ) ( )2 3 40.0151 0.006 0.2453 0.6973 0.0033 .ph r r r rm P P P P= − ⋅ − ⋅ + ⋅ − ⋅  (A.11) 

This approximation works best for modulation index values mph < 0.6. For phase modulation 

index values approaching mph = 0.76 a higher order polynomial would be needed to maintain 

the same accuracy. 

Figure A.4 shows the measurements of the modulation index mph for both operation 

directions, forward and backward, as a function of the modulation frequency fm. The power 

was controlled and set to be Pm = 26 dBm throughout the whole measurement. It is evident 

that the phase modulator under test has a travelling wave electrode, as the phase modulation 

index mph for the forward and backward direction differ greatly as the frequency increases. In 

the forward direction, the phase modulation index mph decreases with a slope of -0.057/GHz. 

For backward operation, the phase modulation index mph decreases more abruptly with a slope 

of -0.19/GHz up to 4 GHz. From there onwards, the modulation index remains approximately 

zero. 

 

Figure A.4: Phase modulation index mph as a function of modulation frequency fm for forward 
and backward modulation (Pm = 26 dBm). 
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The response to variations in the modulation power Pm are depicted in Figure A.5 for different 

modulation frequencies fm. Figure A.5a shows the response in the forward direction whereas 

the results of backward operation are described in Figure A.5b. First of all, although Vπ of the 

phase modulator used is specified from the datasheet to be Vπ = 14 V, from the graphs in 

Figure A.5 it is clear that this value is never reached (i.e. mph = 1) even for high RF swing 

voltages suchs as Vpp = 14 V. Second, the curves have different slopes according to the 

modulation frequency fm. For the forward case, up to 6 GHz the results are acceptable, but 

then a much lower efficiency occurs even for fm = 8 GHz which is within the phase 

modulators reported bandwidth. Last but not least, backward operation is extremely 

inefficient, as already shown in Figure A.4. Even for high RF powers, the backward response 

is negligible from 4 GHz onwards. This is explained due to the fact that high speed phase 

modulators employ travelling wave electrodes to achieve this kind of high frequency 

response. The downside is that this works only on one direction of propagation, where the 

optical signal and the RF signal copropagate. On the opposite direction, the response is thus 

hampered. 

Figure A.5: Phase modulation index mph as a function of modulation power Pm for a) forward 
and b) backward operation with modulation frequency fm as a parameter. 

To better compare the differences between forward and backward operation, Figure A.6 

shows both modes for selected frequencies fm. As expected, at lower frequencies such as 

fm = 0.5 GHz, the difference between forward and backward operation is minimal. At the 

other end of the phase modulators bandwidth, at fm = 8 GHz, the differences are greater, as the 

modulation efficiency decreases, for backward operation there is practically no modulation. 
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And even in forward operation the modulation index achieved is less than half for lower 

frequencies. 

 

Figure A.6: Phase modulation index mph as a function of modulation power Pm with modulation 
frequency fm as a parameter. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

 Forward (0.5 GHz)
 Backward (0.5 GHz)
 Forward (8 GHz)
 Backward (8 GHz)

 

 
M

od
ul

at
io

n 
In

de
x 
m
ph

Vpp (V)



 

 

 

193 

Appendix B Phase modulation index measurement of SOAs 

Semiconductor optical amplifiers (SOAs) are used throughout this work to generate mm-wave 

signals via cross-phase modulation (XPM) in a fiber loop configuration. The measurement of 

the modulation index mph generated by XPM in SOAs is not so easy to measure with the setup 

described in Appendix A, as there is also an inherent cross-gain modulation (XGM) 

associated with it. Therefore the setup shown in Figure B.1 is proposed in the literature [164]-

[165]. By injecting two optical signals into the SOA, the low power probe laser will exhibit a 

XGM and XPM effect due to the high power pump laser which modulates the carrier density 

inside the SOA. After filtering out the pump with a fiber Bragg grating (FBG), the desired 

probe beam is available to process.  

 

Figure B.1: Setup to measure the phase modulation index mph generated by XPM in SOAs. 
MZM: Mach-Zehnder modulator, OA/PM: Optical attenuator/power monitor , PC: 
Polarization controller, ISO: isolator, FBG: Fiber Bragg grating, PD: Photodiode, 
OSA: Optical spectrum analyzer. 

The amplitude modulation index ma can be directly measured with a calibrated photodiode 

(PD) and a sampling scope in the time domain as shown in Figure B.2a. Mathematically, 

 max AVG
a

AVG

V Vm
V

−
=  (B.1) 

where Vmax is the maximum voltage and VAVG the average voltage of the waveform. The phase 

modulation index can be calculated from the optical spectrum by measuring the optical carrier 
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power |C0|2 and the first sideband power |C1|2 as shown in Figure B.2b. The relationship 

between the ratio optical carrier to sideband is [165] 

 ( )2 22 2
1 1 1 2

2 2 2
0 10

4 ( ) ( ) ( )
4 ( ) ( )

a

a

C J m J J
J m JC

β β β β
β β

⋅ + −
=

⋅ + ⋅
 (B.2) 

where β = π·mph and Jn are the Bessel functions of order n. Once ma is known, β is calculated 

numerically from Eq. (B.2) thus providing a way of calculating mph due to XPM in SOAs. 

Figure B.2: a) Output power versus time and b) ouput power spectrum from OSA (fm = 5 GHz). 
Resolution bandwidth 10 pm. 

For the phase modulation index measurements two SOAs were available. A commercial one 

from COVEGA and a custom made one from University of Karlsruhe. The most important 

parameters of both SOAs are summarized in Table B.1, for more measurements and data refer 

to Appendix C. 

 Length 
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G 
(dB) 

Gain 
Ripple 
(dB) 

Psat 
(dBm) 

Operating 
Current (mA) 

ASE Peak 
Wavelength (nm) 

Optical 3-dB 
BW (nm) 

COVEGA 1 22 0.13 9.4 500 1535.1 59.4 

Uni 
Karlsruhe 0.7 19 2 -5 150 1555.7 25.4 

Table B.1: Basic parameters of the tested SOAs. 

The SOA from COVEGA is designed for DWDM system performance, therefore it presents 

high gain (G = 22 dB) over a broad optical bandwidth (B = 59.4 nm) with a decent saturation 

power Psat = 9.4 dBm to provide linear operation. On the other hand, the SOA from Uni 
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Karlsruhe was specially designed for nonlinear operation. Consequently, the saturation power 

is quite low at Psat = -5 dBm, it has a smaller optical bandwidth with B = 25.4 nm and 

comparable gain with G = 19 dB. An important factor is that it requires less current to bias 

with Iop = 150 mA. 

A sample measurement is shown in Figure B.3 for both SOAs for different bias currents Ibias 

and for both forward and backward operation. As was explained in section 5.2.2, the XPM 

bandwidth can be approximated with the XGM bandwidth and then an estimation of the phase 

modulation index mph outside the measurement range can be predicted. One important result 

is that higher modulation indices than with a phase modulator can be achieved in the low 

frequency range and that the device operates bidirectionally. 

Figure B.3: Phase modulation index mph for XPM versus modulation frequency fm. a) Covega 
SOA, Pm= 17 dBm, Pprobe = -10 dBm, Ppump = 2.5 dBm and b) Uni Karlsruhe SOA, 
Pm= 17 dBm, Pprobe = -10 dBm, Ppump = -5.5 dBm. 

The dependence on the phase modulation index mph on different SOA parameters will be 

investigated in the next sections for the SOA from Covega only. 

B.1 Probe power dependency 

The probe power is varied from Pprobe = -12 to 0 dBm and the results are shown in Figure B.4. 

As the probe power increases, the modulation index mph decreases because the probe starts 

acting as a new pump. So theoretically, low probe powers prove beneficial to obtain a high 

modulation index mph, but there is a tradeoff in signal power, as the gain of the device is 

limited. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
1,1
1,2

Bias Current
Forward (cw)            Backward (ccw)

 200 mA            200 mA
 300 mA            300 mA
 400 mA            400 mA
 500 mA            500 mA  

 

m
ph

 (r
ad

)

Frequency (GHz)

a) COVEGA SOA

0 2 4 6 8 10 12 14
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
1,1
1,2

Bias Current
Forward                    Backward

 75 mA            75 mA
 100 mA            100 mA
 125 mA            125 mA
 150 mA            150 mA 

 

 
m
ph

 (r
ad

)

Frequency (GHz)

b) Uni Karlsruhe SOA



Appendix B Phase modulation index measurement of SOAs 

 

 

196 

 

Figure B.4: Phase modulation index mph for XPM versus modulation frequency fm for different 
probe powers Pprobe (Covega SOA, Pm= 17 dBm, Ppump = 2.5 dBm). 

B.2 Pump power dependency 

Now the pump power is varied from Ppump = -7.5 dBm to +2.5 dBm. The results are plotted in 

Figure B.5. As expected from theory, the stronger the pump power, the higher the modulation 

index mph that can be achieved. 

 

Figure B.5: Phase modulation index mph for XPM versus modulation frequency fm for different 
pump powers Ppump (Covega SOA, Pm= 17 dBm, Pprobe = -10 dBm). 
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B.3 Wavelength dependency 

In this section the wavelength separation of pump and probe will be varied, and the optical 

filters tuned accordingly, to measure the dependency of the XGM effect with regards to 

wavelength separation. As the tuning range of the FBG was limited to 8 nm and the pump 

laser could also be tuned but only 2 nm around 1549 nm, then the pump laser was set fix at 

λpump = 1549.6 nm and the probe beam was swept through the 8 nm tunable range of the FBG. 

The results are shown in Figure B.6. 

 

Figure B.6: Phase modulation index mph for XPM versus modulation frequency fm for different 
wavelength separations of pump and probe. (Covega SOA, Pm= 17 dBm, 
Pprobe = -10 dBm, Ppump = 2 dBm). 

No significant variation is observed through the swept wavelength range probably due to the 

limited tuning range of the FBG which could only be varied 8 nm. 

B.4  Temperature dependency 

The dependency of the modulation index mph with regards to operation temperature will be 

the last test. The operating temperature can be controlled via the biasing and temperature 

controller from ILX LDC-3722. The range tested was from T = 22°C to 34°C and the results 

are shown in Figure B.7. 
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Figure B.7: Phase modulation index mph for XPM versus modulation frequency fm for different 
operating temperatures. (Covega SOA, Pm= 17 dBm, Pprobe = -10 dBm, 
Ppump = 2 dBm). 

The increase in temperature has no predominant effect on the modulation index mph as long as 

the threshold temperature is not reached. This states that the temperature of the active region 

has no appreciable influence on the device operation as long as the injection current is 

maintained constant. In the case of the SOA from Covega, the operating temperature was 

specified to be no higher than 35°C. As this temperature is approached (i.e. T = 34°C) then a 

lower mph is observed which could be due to problems with the injection current distribution 

at this operating temperatures. 
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Appendix C SOA datasheets 
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