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Chapter 1

Introduction

Imaging methods have become an invaluable tool for diagnosis and surgery

planning in the �eld of medicine. In earlier years, the representation of

graphical data was restricted to two-dimensional images and only a modest

quality because of technical limitations. This scenario, though revolutionary

at the time, has been rapidly enhanced owing to the technological evolution.

Nowadays, the use of three-dimensional dynamic imaging is common prac-

tice, allowing the visualization of entire organs while dynamic processes like

blood �ow or breathing are observed. In particular, computer tomography

(CT) has become a standard in pulmonary imaging which allows the analysis

of a range of diseases like lung nodules, emphysema and embolism. However,

the improved spatial and temporal resolution involves a dramatic increase

in the amount of data that has to be stored and processed. This has mo-

tivated the development of computer aided diagnostics (CAD) systems that

have released the physician from the tedious task of manually delineating the

boundary of the structures of interest from such a large number of images,

a pre-processing step known as image segmentation. Apart from being im-

practical, the manual segmentation is prone to high intra- and inter observer

variability. Nonetheless, the automatic segmentation of the lungs a�ected

by atelectasis from volume CT data has not been faced until now. Atelecta-

sis is characterized by the absence of air in the collapsed lung parenchyma,

thus resulting in an X-ray absorption similar to that of other anatomical
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structures in the thorax. Consequently, the segmentation of the lungs with

atelectasis poses a challenge because in CT images they have similar texture

and gray level as the surrounding tissue and therefore the available graphical

information is not su�cient to distinguish the boundary of the lung.

Research studies which aim to explain the distribution of ventilation and

alveolar recruitment in the atelectatic lung in order to improve mechanical

ventilation strategies heavily rely on the analysis of large number of volume

CT data which assure the statistical signi�cance of the results. The latter

can be only guaranteed by a tool that automatically segments the lung with

atelectasis free from intra- and inter observer subjectiveness, which are known

to be associated with manual measurements.

The present work aims to close the existing gap left by the segmentation

of atelectatic lungs in volume CT data. A-priori knowledge of anatomical

information plays a key role in the achievement of this goal.

1.1 State-of-the-art and review of related liter-

ature

The design of algorithms for image reconstruction, processing and segmenta-

tion is a topic of intense research that has shown an outstanding growth in

the last time. Such evolution have been accompanied by the development of

computer-aided diagnosis (CAD) systems that emerged as a set of tools for

clinical decision making in various �elds of medicine. CAD systems related to

chest computed tomography o�er the automated detection of pulmonary nod-

ules, diagnosis of pulmonary embolism and quanti�cation of emphysema and

interstitial lung disease [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. An algorithm

common to all of these tools is the segmentation of the lung [14, 15, 16, 17]

followed by dedicated procedures for the identi�cation and classi�cation of

intrapulmonary anatomical structures.

However, the high accuracy demanded in clinical diagnostic is only pos-

sible with high de�nition imaging methods where partial-volume e�ects are

minimized. For that reason, high resolution thin-slice CT is nowadays the
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preferred standard for optimal performance of CAD systems [6]. A study

that compared CAD and experts' performances using 0.75 mm, 2 mm and

4 mm slice thickness, showed that experts outperformed CAD using 4 mm

sections, had comparable performance at 2 mm and was inferior at 0.75 mm

[4]. This trend of gaining accuracy and reliability by means of improved

image de�nition instead of more complex segmentation algorithms is con-

�rmed by a number of works driven by the desire for automatic recognition

and evaluation of pulmonary diseases beyond the performance of the expe-

rienced physician [6, 18, 14, 19, 5]. The importance of good quality images

is also evidenced in a recent study on lung parenchyma segmentation based

on material decomposition [20]. There, the high contrast obtained with this

technique is responsible for the accurate and easy delineation of the healthy

lung boundary hereby reducing the complexity of the algorithms to simple

thresholding and region growing methods.

With regard to thoracic CT, CAD systems are mainly used for detection

and characterization of pulmonary nodules [21, 22, 4, 23, 19]. Such systems

are able to identify small lesions, measure their diameters, recognize early

malignomas and give more precise estimates on chemotherapy response than

radiologists alone can do. Nevertheless, current schemes for nodule detec-

tion report many false positives and their performance needs to be further

improved [24]. Potential limitations of CAD systems include those patients

with di�use interstitial lung disease, pleura e�usion and atelectasis for which

the nodule detection may either be impaired or not feasible at all [6]. A

detailed evaluation of computer aided detection and automated CT volume-

try of pulmonary nodes is presented in [6, 18]. The segmentation algorithms

mostly used in these systems are conventional thresholding and region grow-

ing assisted, in some cases, by a-priori information of the size, shape, position

and density of tumors in order to reduce the error rate.

Another group of works concentrates on the identi�cation of emphysema

[10, 11, 12, 25] and bronchi abnormalities [26] for which a precise segmen-

tation of the airways [27, 28, 29] is necessary. Since the diameter of small

bronchi is below the sub-millimeter resolution of modern CT scanners, the

beam collimation and slice thickness directly de�nes how deep the bronchial
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tree can be segmented. Besides primitive semi-automatic segmentation meth-

ods [30] that prompt the user to set a seed that initiates a region growing,

more complex strategies have been proposed. In [11], the seed is automati-

cally placed by identifying the trachea according to its geometrical character-

istics and a special region growing algorithm enlarges the bronchial tree by

analyzing its cross-sectional image in each plane and verifying the presence of

the airway wall. A similar approach is presented in [26] which introduces the

edge-radius-symmetry (ERS) transform. This method exploits the known

elliptic like symmetry of the airways in a cross-sectional image to score the

voxels with additional information other than their gray level only. A rule-

based detection of the airways is presented in [31] which considers the size,

gray level and pairwise appearance of vessels and airways. This approach

has been optimized in [32] where the bronchovascular pairs are identi�ed

with relational learning by extending the analyzed parameters to circularity,

area ratio between airway and vessel, adjacency between them and proxim-

ity to hilum. None of the mentioned methods can be applied without severe

modi�cations when the airway wall and/or adjacent vessels cannot be dis-

tinguished from the atelectatic lung tissue. Moreover, the good performance

of such CAD systems heavily relies on thin-slice CT images.

Diaphragm segmentation using a 3D Active Appearance Model (AAM)

[33] has been introduced in [34]. There, with the help of a training set, a

�general� upper layer of the diaphragm is generated, which is adjusted to the

speci�c individual being analyzed according to some characteristics derived

automatically from it. However, this is only possible for healthy lungs.

The works cited so far heavily rely on high de�nition images where the

anatomical structures can be easily distinguished from each other and dis-

eases are clearly identi�able based on the gray level of the voxels. In the

presence of atelectasis the situation changes and the introduction of anatom-

ical knowledge is necessary to assist the algorithms to overcome the missing

graphical information.

A small number of knowledge-based approaches is reported in the liter-

ature for the segmentation of the lung. Preliminary studies introduced in

[35, 36, 37, 38] aimed to recognize thoracic anatomical structures have been
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further re�ned to meet more speci�c applications like lung lobe [39] and air-

ways [40] segmentation. These works use explicit anatomical knowledge such

as the expected size, shape, and relative positions of objects to guide dif-

ferent algorithms in order to achieve better discrimination between objects

of similar attenuation but none of them is in a position of �reconstructing�

large indistinguishable boundaries of an anatomical structure. This di�culty

has been recognized by Kauczor et.al. in [41]. There, the segmentation of

the atelectatic lung is limited to a single transversal slice taken speci�cally

from the region of the heart. The ribs, vertebrae, heart and sternum are

used to estimate the boundary of the partially visible lung parenchyma in

the dorsal zone. Consequently, non lung tissue like airways and vessels are

wrongly included in the segmentation. Based on the mentioned concept and

being aware of its shortcomings, a new approach is developed in the present

thesis capable of segmenting the whole lung with atelectasis, which excludes

the large airways and the aorta from the intrapulmonary volume. This tool

is capable of a reliable operation with 5 mm slice thickness, contrary to the

requirements of most modern CAD systems optimized for thin-slice CT im-

ages.

Since the development of segmentation, classi�cation and registration al-

gorithms itself is not the goal of this work but merely the means to achieve a

robust segmentation of the lung, the review of these algorithms is limited to

those that have found application in thoracic imaging and will be presented

in chapter 3.

1.2 Aims of this work

The overall objective pursued in this thesis is to develop a method capable

of performing a reliable and robust segmentation of the lung a�ected by

atelectasis.

Since this work is the result of the close cooperation with a research group

for mechanical ventilation, the segmentation algorithms were optimized for

the CT data gained during the experiments performed which is characterized
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by images intensely a�ected by partial volume e�ects1 and artifacts due to

probes, tubes and electrodes. Bearing this in mind, the following goals and

requirements are distinguished:

� The segmentation algorithms should work both on 1 mm and 5 mm

slice thickness CT images.

� The segmentation algorithm should be robust against artifacts due to

probes, tubes and electrodes.

� An accurate segmentation should be guaranteed for di�erent PEEP

levels.

� Anatomical information should support the segmentation algorithms to

identify the non-distinguishable boundary between the collapsed lung

and surrounding anatomical structures in the CT image.

� If the existing algorithms are not suitable for dealing with the large

variability observed in the shape of the lung due to di�erent degrees

of induced atelectasis and PEEP levels, new algorithms need to be

designed in order to use the anatomical information previously learned.

� The software should be able to work on di�erent animals that show

large dissimilarities. This should be achieved with the adaption of a

reduced set of parameters isolated from the algorithms' code.

1.3 Chapter overview

Chapter 2 presents the thoracic anatomical structures that will be analyzed

throughout this thesis and brie�y introduces how they are used and com-

bined to produce the segmentation of the whole lung. A comparison between

anatomical atlas images and the corresponding multiplanar reconstruction of

volume CT data evidences the di�culty in identifying organs and structures

1Partial volume e�ects are observed when multiple tissues contribute to a single pixel
or voxel resulting in a blurring of intensity across boundaries.
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in the CT cross-sectional images. In addition, the chapter discusses which

planes are best suited for the segmentation of each particular structure and

the problems that arise in the presence of atelectasis.

The �rst part of chapter 3 reviews established registration, segmenta-

tion and classi�cations algorithms that have been selected according to the

anatomical structure and the characteristics of the image they will work on.

In the second part, the novel algorithms designed speci�cally for this work

in order to overcome the di�culties imposed by a high degree of atelectasis

are introduced. All algorithms presented in this chapter are building blocks

of more complex segmentation procedures described in chapter 4.

Chapter 4 combines a detailed explanation of the segmentation algorithms

and the anatomical considerations they rely on for the segmentation of the

structures presented in chapter 2. The chapter concludes with the segmen-

tation of the lung from volume CT data.

In chapter 5, a detailed evaluation of the various components of the overall

segmentation algorithm is reported. In this chapter, after a brief introduction

to well established evaluation methods for segmentation algorithms, others

are proposed to yield more insight in the deviation observed between manual

and automatic assessment of the lung boundary. Additionally, the impact of

errors in the physiological measurements derived from the automatic segmen-

tation has been analyzed, which is of paramount importance for the practical

medical use of the algorithm.

Finally, chapter 6 outlines the goals achieved in this thesis and analyzes

the optimization potential for further work.
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Chapter 2

Anatomical considerations

In this chapter, a general overview of the pig thoracic anatomy relevant for

this thesis will be presented. More speci�c topics related to the anatomical

structures analyzed by the segmentation algorithms are treated individually

in each section of chapter 4 as they are required.

Anatomical knowledge is a key issue in the lung segmentation approach

proposed in this work. Information about the position and shape of organs

and bones, together with the observed deviation from their characteristical

values is indispensable for selecting those anatomical structures that are ad-

equate to derive landmarks and surfaces that delimit the lung. Moreover,

some entities that show an important inter and intra individual variability

in the cross-sectional image of a certain plane present a moderate devia-

tion from a typical shape in a di�erent sectional plane. These anatomical

considerations will be incorporated in the segmentation procedure to reduce

the complexity of the algorithms and tune them to the speci�c anatomical

structure they analyze, hence reducing processing time and improving seg-

mentation accuracy.

Since pigs are not a commonly studied species, detailed information of

their anatomy is not available. Consequently, most of the information pre-

sented in this chapter is limited to a number of measurements and observa-

tions performed by the author on a reduced training set of animals (appendix

B) and should not be considered a gold standard.
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Figure 2.1: Coordinate system adopted throughout this thesis.

Figure 2.1 shows the coordinate system adopted throughout this thesis.

Since during the CT sessions the pig lay in supine position, the spine appears

at the bottom of the transversal plane image, the right lung on the left side

of the image and the left lung on the right.

Figures 2.2, 2.3 and 2.4 show the cross-sectional images of the thorax of a

pig. As can be observed, an exact identi�cation of all anatomical structures

in the CT image is not feasible. However, healthy lung parenchyma is easily

distinguishable from the surrounding tissue due to the high proportion of air

it contains. The situation changes completely in the presence of atelectasis.

There, gray level and texture of the collapsed lung are very similar to that

of the tissue that surrounds it.

2.1 Lungs

The lungs are contained in the thoracic cavity together with the bronchi,

part of the esophagus and trachea, the major vessels, and the heart. Strictly

speaking, the lung parenchyma is made of alveoli wrapped in a mesh of

capillaries covering circa 70% of their area. The lung parenchyma is protected

by the ribcage which together with the diaphragm and heart de�nes the

border of the lungs.
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(a) (b)

Figure 2.2: Transversal section of a pig. (a) Anatomical atlas (modi�ed af-
ter [42]) . (b) CT image. 1 IV Vertebrae thoracicae (thoracic vertebra); 2
Processus spinalis (spinal process); 3-5 Costa (rib); 6 Sternum (sternum);
7 Scapula (scapula); 8 M. spinalis thoracis (spinal-thoracic muscle); 9 Mm
multi�di thoracis (multi�dus thoracic muscle); 10 M. longissimus thoracis
(longissimus thoracic muscle); 11 M. longus colli (longus thoracic muscle);
12 Oesophagus (esophagus); 13 Arcus aorticus (aortic arch); 14 Thymus
(thymus); 15 Trachea (trachea); 16 Auriculus dexter (right auricle); 17 Ven-
triculus dexter (right ventricle); 18 Truncus pulmonalis (pulmonary trunc);
19 Arcus aorticus (aortic arch); 20 Pulmo sinister (left lung); 21 Pulmo dexter
(right lung); 22 Car (heart).
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(a) (b)

Figure 2.3: Sagital section of a pig. (a) Anatomical atlas (modi�ed after [43]).
(b) CT image (5 mm slice thickness). 1 Arcus aortae (aortic arch); 2 Trun-
cus brachiocephalicus (branchiocephalic trunc); 3 Arteria subclavia sinistra
(left subclavian artery); 4 Auricula cordis dextra (right auricle); 5 Truncus
pulmonalis (pulmonary trunc); 6 Auricula cordis sinistra (left auricle); 7 Ven-
triculus cordis sinister (left ventricle); 8 Vv. pulmonales (pulmonary vein);
9 Bronchus principalis (principal bronchus); 10 Oesophagus (esophagus); 11
Costa (rib); 12 Mediastinum (mediastinum); 13 Arcus costalis (costal arch);
14 Sternum (sternum); 15 Mm. pectorales (pectoral muscles); 16 stomachus
(stomach).
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(a) (b)

Figure 2.4: Coronal section of a pig. (a) Anatomical atlas (modi�ed after
[42]). (b) CT image (5 mm slice thickness). 1 Pulmo dexter; 2 Pulmo sinister;
3 Trachea; 4 V. cava cranialis (superior vena cava); 5 V. cava caudalis (inferor
vena cava); 6 Auriculus dexter (right auricle); 7 Truncus pulmonalis (pul-
monary trunc); 8 Arcus aorticus (aortic arch); 9 Diaphragma (diaphragm);
10 Hepar (liver); 11 Costa (rib); 12 Car (heart).

(a) (b) (c)

Figure 2.5: Lung examples. (a) 3D reconstruction of the lung of a pig gener-
ated by the segmentation tool presented in chapter 4. (b) Left lung of a pig
(modi�ed after [44]). A Lobus cranealis (superior lobe); B Lobus caudalis (in-
ferior lobe); 1 Bronchus principalis sinister (left principal bronchus); 2 Arteria
pulmonaris (pulmonary artery); 3 Venis pulmonaris (pulmonary vein). (c)
Right lung of a pig (modi�ed after [44]). A Lobus cranealis (superior lobe); B
Lobus medius (middle lobe); C Lobus caudalis (inferior lobe); D Lobus acces-
soriuss (accessory lobe); 1 Arteria pulmonaris (pulmonary artery); 2 Venis
pulmonaris (pulmonary vein); 3 Bronchus trachealis (bronchus trachealis);
4 Bronchus principalis dextra (principal right bronchus); 5 Vena plmonaris
(pulmonary vein).
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Airways and vessels that �penetrate� the lung are anatomical structures

that are clearly distinguishable from the lung tissue. However, the size of the

bronchi above the 16th generation and the adjacent vessels become smaller

than the resolution of the CT scanner, with its identi�cation being no longer

possible. Consequently, lung parenchyma will be referred to as that complex

of alveoli, capillaries, small vessels and airways that show as a homogeneous

structure in the CT image.

The healthy lung parenchyma is recognizable in the CT image as a ho-

mogeneous dark surface, the CT number of which varies typically between

-200 and -500 HU [25] depending on the air contents. In the presence of at-

electasis, deviations of these values are observed in the collapsed lung tissue

due to the lower air contents. There, the lung may present CT numbers as

high as 300 HU which do not di�er from the surrounding soft tissue.

The shape of the lung is prone to large inter individual variability. More-

over, the lung of an individual changes considerably its size during the breath-

ing cycle and with the PEEP level when the lung is subject to mechanical

ventilation. An example of the large variability observed in the animals of

the training set is presented in �gure 2.6. There, the dependency of the lung

size with the pressure is illustrated by means of the distance between land-

marks placed on the top of the lung (G), on the top of the diaphragm dome

(E) and on the bottom of the lung (L).

(a) (b)

Figure 2.6: Geometrical relationships between lung landmarks for increasing
PEEP level measured by end-expiration. (a) Distance between the upper-
most (cranial) points of the lung G and diaphragm E. (b) Distance between
E and the lowest point of the lung L.
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2.2 Ribcage

As observed in �gures 2.2, 2.3 and 2.4, the ribs delimit the lung in the dorsal

region. In this zone, the ribs are separated from the lung parenchyma through

the pleura, a thin membrane that is hardly resolved by the CT scanner. As

will be shown in section 4.5, the points where the ribs are in contact with

the pleura provide landmarks that de�ne unambiguously the dorsal surface

of the lung.

Two additional properties of the ribs make them specially attractive for

delimiting the lung. Their CT number, above 150 HU, is higher than that of

the soft tissue of all other anatomical structures, including atelectatic lung

parenchyma, thus allowing a reliable identi�cation and segmentation of these

bones independently of the atelectatis level. The second property is related

to the breathing. During the tidal cycle, the ribcage expands and contracts

thus contributing to the breathing carried out mainly by the diaphragm. This

movement is imposed on the lungs, consequently, although no rigid union

exists between lung and ribs1, the distance between them remains unaltered

during the tidal cycle.

The cross-sectional image of the ribs in the transversal plane shows re-

markable di�erences regarding their shape and position. As can be observed

in �gure 2.2, the ribs near the vertebrae are dissimilar to the ribs near the

sternum. Their location depends on the position of the transversal frame ana-

lyzed, thus, a rib that is next to the spine �moves� towards the sternum as the

considered transversal frame descends from cranial to basal zone. Conversely,

in the sagittal plane (�gure 2.3), most of the ribs lay approximately on the

same line and their shape resembles an ellipse2. These properties are pre-

served throughout all sagittal planes of an animal except in the region of the

costo-vertebral articulation. Moreover, inter individual variability presents

1The parietal pleura (attached to the chest wall) is separated from the visceral pleura
(which cover the lung, blood vessels, bronchi and nerves) by a pleural �uid that lubricates
both surfaces allowing the two layers to slide against each other while breathing. However,
the capillar gap built by the pleural �uid avoids that both layers can be detached due to
external forces.

2Due to the low resolution of the CT slices shown in �gure 2.3, this anatomical char-
acteristic is not clearly observable.
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minimal deviation of the mentioned characteristics from their typical values.

Hence, the sagittal cross-sectional image of the ribs will be selected for their

segmentation (section 4.5.1).

2.3 Airways

The respiratory tract begins below the larynx with the trachea, the largest

airway. The trachea branches into the right and left bronchi which lead to the

two lungs. The bronchi branch many times into smaller airways, ending in

the bronchioles, with a diameter of approximately 0.5 mm. The bifurcation

of the trachea into the bronchi is known as carina. This point is specially

attractive as a landmark due to its easy identi�cation. Observed in succes-

sive frames of the transversal plane, the shape of the trachea evolves from a

circle into an ellipse which �nally divides into two circles3 (the bronchi) that

veer away from the center in the left and right directions. This characteristic

is minimally a�ected by inter individual variability. Furthermore, this dis-

tinctive geometry of the airways in the vicinity of the carina is also observed

in many other species [44]. Bearing in mind these features, the carina will

de�ne a coordinate system which the position of most anatomical structures

involved in the lung segmentation will be referred to.

The bronchial tree of the pig slightly di�ers from that of the human.

It presents a rami�cation on the right side of the trachea, the bronchus

trachealis, that leads to the superior lobe (lobus cranealis) of the right lung,

as illustrated in �gure 2.7.

The large airways are held open during breathing by rings of cartilage

which are reliably identifyable in the CT image. This semi-�exible soft tissue

possesses a characteristical CT number that distinguishes the wall of the

airways from both the air in its interior as well as the surrounding healthy

lung parenchyma. Based on this property, it is feasible to segment the bronchi

in thin-slice CT images [10, 27]. However, when the lung is collapsed, the

situation changes. Since lung tissue a�ected by atelectasis presents a similar

3With this description it is suggested that the shape of the trachea and bronchi cross-
sectional image resembles a circle or an ellipse.
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(a) (b)

Figure 2.7: Pig airways. (a) Anatomical atlas (modi�ed after [44]). (b)
Detail of the bronchus trachealis. A Lobus cranialis (superior lobe); B Lobus
medius (middle lobe); C Lobus caudalis (inferior lobe); 1 Trachea (trachea);
2 Bronchus principalis (principal pronchus); 3 Bronchus trachealis (bronchus
trachealis); 4 Bronchus lobaris cranialis (superior lobe bronchus); 5 Bronchus
lobaris medius (middle lobe bronchus).

gray level to the wall of the airways, the segmentation algorithm must rely

entirely on the degree of darkness of the pixels in the interior of the airways,

a feature that is independent of the degree of the disease. The CT number

inside the airways is lower than -900 HU, the lowest observable in the thoracic

CT in normal conditions. However, if the lung is subject to mechanical

ventilation, high pressure may produce regions with a CT number even as

low as -1000 HU in the hyper-ventilated zones. Taking this into account,

the identi�cation and segmentation of the airways needs to be supported

by a shape analysis in order to distinguish between hyper-ventilated lung

parenchyma and bronchial tree. As mentioned before, the upper airways can

be represented accurately with a circle or ellipse in the transversal plane,

therefore, this sectional image will be selected for the identi�cation of the

trachea and carina and for the segmentation of the principal bronchi.
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2.4 Diaphragm

The thoracic diaphragm separates the thoracic, or chest cavity, from the

abdominal cavity. This muscle is attached to the sternum, the lumbar ver-

tebrae, and the lower ribs. Three openings in the diaphragm allow passage

of the aorta, esophagus, nerves, veins and the lymphatic and thoracic ducts.

During breathing, the diaphragm keeps in close contact with the base of

the lung. Therefore, the upper surface of the diaphragm provides excellent

landmarks for the segmentation of the base of the lung during the whole

tidal cycle. In healthy conditions, due to the high contrast between the lung

tissue and the diaphragm, the border between them is clearly visible in the

CT image. Indeed, in this case, the base of the lungs can be accurately

segmented analyzing the gray level of the lung itself without participation of

the diaphragm. This property does not hold in the case of atelectatic lungs.

There, the CT number of the diaphragm, circa 100 HU, is similar to that

of the collapsed lung tissue. Nonetheless, in this situation, a model of the

diaphragm dome will provide the mentioned landmarks in order to de�ne the

base of the lung (section 4.6).

Figure 2.8 shows the lung and diaphragm, among other anatomical struc-

tures, under the e�ect of di�erent PEEP levels. There, it can be observed

that the sagittal plane is suitable to estimate the junction between the base

of the lung and the diaphragm. In this plane, the border between the muscle

and the lung, always visible in the ventral zone, can be extrapolated, with

help of a model, towards the dorsal zone where this edge becomes invisible

due to atelectasis.

The transversal section of the diaphragm shows large variability with the

pressure and with the position of the transversal plane considered, making it

di�cult to establish a general model that describes accurately the mentioned

edge in all trasnversal slices.

In the dorsal region, the lung is completely collapsed and the atelectatic

tissue cannot be distinguished from the diaphragm. Consequently the images

of the coronal plane near the vertebral column do not provide any graphical

information at all.
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(a) (b) (c)

(d) (e) (f)

Figure 2.8: E�ect of the lung pressure on the diaphragm shape. The top row
illustrates from left to right the transversal, coronal and sagittal planes for 0
cm H2O. Bottom: idem for 12 cm H2O.
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2.5 Vessels

Veins and arteries present an important anatomical characteristic in the

cross-sectional image normal to their symmetry axis, namely, they resemble

a quasi perfect circle. Since in the thorax the largest vessels descend from

the heart in careneo-caudal direction, this characteristic is observed in the

transversal plane. However, this property is not su�cient for their identi�ca-

tion considering that the vessels �lled with blood have the same gray level in

the CT image as the soft tissue of the diaphragm, heart and atelectatic lung

by which they are surrounded. Additional anatomical properties introduced

below and treated more intensively in section 4.7, relate the position of the

aorta to the vertebrae and ribs, thus providing more information which allow

its segmentation even in an atelectatic lung.

Thoracic aorta

The thoracic aorta of the pigs runs parallel to the backbone describing a

sinusoidal movement around it. In the cranial region it lies to the left of

the vertebral column, as it descends it approaches the median line, passes

in front of the spine, continues to the right and at its termination tends to

the center again. This characteristical form of the aorta, shown in �gure

2.9 has been observed in the pigs of the training set (see appendix B.1) and

di�ers slightly from the human aorta anatomy [45]. The diameter of the

aorta remains nearly constant along all transversal frames of the thorax and

its diameter can be derived from that of the trachea with an error smaller

than 5 mm (�gure 2.10).
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Figure 2.9: Example of 3D reconstruction of the thoracic aorta.

Figure 2.10: Comparisson between the aorta and trachea diameter (based on
the training set B.1).

Vena cava and vessels adjacent to bronchi

As shown in �gure 2.11, adjacent to each bronchus runs an artery and a

vein [26, 32]. They are arranged in a typical pattern where the centers of

the vein, bronchus and artery are aligned with the bronchus always in the

middle. Although this informal anatomical observation has not been used in

the present work for the segmentation of such vessels, it is one of the building

sites that remain open for the optimization of the segmentation algorithm.
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(a) (b)

Figure 2.11: Pulmonary vessels adjacent to the bronchi. (a) atlas image (after
[44]). (b) CT image. A Trachea (trachea); B Truncus pulmonaris (pulmonary
trunk); C Venis pulmonaris (pulmonary veins); 1 Arteria (artery); 2 Bronchus
(bronchus); 3 Vena (vein); 4 Vena Cava (vena cava).

The vena cava (�gure 2.11 (b)), shows anatomical properties (not formally

studied in the present thesis) simmilar to the arteria aorta which may be

employed for its segmentation in future works.
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Chapter 3

Image Analysis and Segmentation

This chapter will introduce the theoretic fundamentals of the algorithms em-

ployed in this work for the segmentation of the lung and related anatomical

structures. The �rst part of the chapter brie�y describes established meth-

ods of image segmentation, classi�cation and registration. The second part,

presents a number of algorithm that have been developed and optimized

speci�cally for segmentation of atelectatic lungs.

3.1 Segmentation

Image segmentation is de�ned as the partitioning of an image into non-

overlapping regions which are homogeneous with respect to some charac-

teristic such as intensity or texture [46, 47]. Formally, the segmentation can

be described as the following mapping

Seg : I(X)→ S(X)

that assigns to each pixel with coordinates X of the image I one segment

Sk in the set S. Thus, satisfying

I = ∪Sk with 1 < k < K

where Sk ∩ Sj = 0 for k 6= j.
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This means that, ideally, the segmentation procedure partitions a medical

image into its distinct anatomical structures.

A a wide palette of segmentation algorithms has been developed in an

e�ort to improve their performance depending on the requirements of the

speci�c application, imaging modality, etc. Noise, motion and partial vol-

ume e�ects produce imaging artifacts which have a signi�cant impact on the

segmentation results. Although researchers look tireless for an ubiquitous

segmentation algorithm, there is not a general approach that yields accept-

able results for every medical image. Methods that have a more universal

character can be applied to a variety of data at the cost of sacri�cing quality.

Conversely, methods that are specialized to a particular application achieve

better results by considering a-priory information.

Usually, the dimensionality1 selected coincides with the dimension of the

image domain. However, in order to reduce the memory requirements, com-

putational complexity or to simplify the implementation of the algorithm,

2D methods are applied sequentially to the slices of a volume data. A com-

parative studio of segmentation algorithms for the segmentation of CT lung

images is presented in [48].

3.1.1 Thresholding

Thresholding is the separation of objects or regions of an image based on pixel

gray levels above or below a threshold value. A mathematical de�nition of

thresholding is given by

Sk(X) =

 So if I(X) > Threshold

Sb if I(X) < Threshold

where So and Sb are the object and background segmentation respec-

tively2.

1Dimensionality refers to whether a segmentation algorithm operates in a 2D or 3D
image domain.

2This de�nition assumes that the gray level of the object is higher than the selected
threshold. The inverse is also valid like in the case of the healthy lung parenchyma which
gray level is lower than the background.

23



The value of the threshold can be automatically determined based on the

gray level hystogram of the image, or manually set if previous knowledge of

the object and background intensities is available. Thresholding is a classical

method to segment an image where di�erent structures have contrasting in-

tensities. This procedure is very sensible to the presence of noise, therefore,

it is usually applied after preprocessing the image with a �lter. Due to its

simplicity, this technique o�ers low computational time and produce satis-

factory results for certain imaging modalities with low noise like computer

tomography. This justi�es that thresholding shares the scenario of the lung

segmentation [22, 41] with other more sophisticated algorithms. Variations

on classical thresholding have been proposed for medical image segmentation

[49].

3.1.2 Region growing

The simplest region-growing algorithm is known as pixel aggregation [50]

method. In this approach, regions consist of spatially connected pixels that

fall within a speci�ed gray-level deviation from the starting or seed pixel.

Beginning with the seed pixel, the n-connectivity (see �gure 3.1) de�nes

which pixels are analyzed and appended to the region, provided that they

meet a certain homogeneity criterion. This process repeats iteratively with

the neighbor pixels of each newly incorporated pixel, thus enlarging the region

until no more pixels can be grouped.

Based on this concept, the airways (section 4.4), stomach (section 4.8)

and ribs (section 4.5.1) will be segmented by analyzing the connectivity of

2D regions, instead of pixels, between adjacent slices.

Region growing algorithm have been successfully used in nodule detection

of mammograms [51], [52], thoracic CT Scans [19] and tracheobronchial tree

segmentation [29].

Like in thresholding, region growing is also sensitive to noise, causing

extracted regions to have holes. Conversely, partial volume e�ects can cause

separate regions to become connected. An extensive and comparative study

on seeded region growing can be found in [53].
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(a) (b) (c)

Figure 3.1: Connectivity de�nition in an image. (a) 4-connected: pixels are
connected if their edges touch. (b) 8-connected: pixels are connected if their
edges or corners touch. (c) Three-Dimensional Connectivity 6-connected:
voxels are connected if their faces touch.

3.1.3 Template matching

Template matching identi�es in an image those regions that match a tem-

plate image. The geometry of the object to be segmented must be previously

known in order to de�ne a template or convolutional kernel. The simplest

approach performs the convolution between image and kernel which shows

a maximum where the template best matches the image. Di�erent meth-

ods have been developed to reduce the computing time or enhance accuracy

like �ltering in the frequency domain of the image, working with an image

pyramid3 [54, 55]. More sophisticated algorithms are employed to deal with

translation, scale and image rotation problems [56].

In the �eld of medical image processing, template matching is used for the

automated detection of pulmonary nodules [23] or bronchial abnormalities

[26], among others [57].

The segmentation of the thoracic aorta in section 4.7 is based on this

technique.

3An image pyramid is obtained by repeatedly �ltering and sub-sampling the original
image in order to generate a sequence of reduced resolution images
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3.2 Registration

The object of image registration is to bring one image (target image) into

alignment with another image (reference image) by applying a spatial trans-

formation to the input image. Classical registration methods are limited to

the use of linear (also called rigid) transformations, which are a combination

of translation, rotation, global scaling and shearing. Linear transformations

are global by nature, and thus unable to model local deformations usually

observed in biomedical images.

Non-rigid registration, by contrast, is free from the limitations mentioned

above and allows elastic deformations. In recent years there has been a grow-

ing interest in the �eld of elastic deformation and a wide variety of di�erent

approaches have been developed to accurately describe the deformations re-

quired for the registration of biomedical images. Considering that this theme

is not the principal concern of the current thesis but useful as a tool for the

estimation of the base of the lung (section 4.6), a brief introduction to the

most relevant methods will be given.

One strategy consists on modeling anatomical structures by biomechan-

ical models of tissue [58, 59]. They take topological and physical properties

of the modeled object into account, and are thus able to predict the defor-

mation according to external forces and boundary conditions. A drawback

of this approach is the exact determination of the biomechanical parameters

which in turn show important deviations from standard values due to in-

ter and intra individual variability, additionally a�ected by temperature and

age of the individual among others factors [60]. However, recent works have

shown a promising future of this concept, steadily increasing the quality of

the biological models [61, 62]. The interested reader can consult the following

literature for additional information [63, 64, 65].

Another group of non-rigid registration methods are based on anatomical

landmarks. Simply speaking, a landmark is a distinctive reference point of

an image. Thus, by identifying the landmarks of the source image and their

corresponding (homologous) landmarks of the target image it is possible to

compute an elastic transformation that puts them in correspondence. Thin-
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plate spline (TPS) [66], elastic body spline (EBP) [67] and �nite elements

[68, 69] are some of the most relevant mathematical bases of interpolation

methods.

Anatomical Atlas

Anatomical atlases are built with a collection of biomedical images which

have been segmented and labelled by experts. The standard atlas-guided

approach treats segmentation as a registration problem thus �nding a one-

to-one transformation that maps a pre-segmented atlas image to the target

image [70]. This process is often referred to as �atlas warping�. Both rigid

and non-rigid deformation are used to perform the warping. However, elas-

tic registration is usually preferred for a better match of the anatomical

structures. Atlas-guided approaches have been mainly applied in MR brain

imaging [71, 72] but they �nd also their use in the lung lobe segmentation of

CT images [17] and segmentation of 3D cardiac MR images [73].

Based on this concept, the base of the lung de�ned by the junction be-

tween diaphragm and ribs, referred to as �lung edge� (LE) (section 4.6.2) has

been manually segmented and stored. This simpli�ed atlas will be used to

estimate the non visible LE of lungs a�ected by atelectasis. For that the LE

curve taken from the atlas is subject to rigid and elastic transformation to

perform a landmark based registration.

3.3 Analysis of shape

Since several organs and anatomical structures possess characteristical shapes

that, in normal cases, do not deviate much from the average, the analysis of

shape provides a strategy to identify and classify them. Moreover, changes

of the typical geometry of anatomical structures caused by a disease process

can be evaluated to distinguish between malignant and benign conditions

[74, 75]. Shapes are de�ned by contours which are the result of a segmentation

operation. However, the analysis of shape seldom operates on the contour
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itself. Instead, features are derived from them, called shape factors, which

describe di�erent properties of the contours, as will be shown below.

Alternatively, shapes may be described with a binary or bi-level image as

well, which implies a considerable increase in the memory requirements.

3.3.1 Contours

Contour is de�ned as the edge or border of a 2D region that results from the

segmentation of an image. The simplest representation of a contour is an

ordered set of the pixel coordinates along the contour. The dimensionality

of a contour can be reduced from 2 to 1 if the distance from each pixel to

the contour centroid is stored instead of the absolute (x,y) coordinates. A

more e�cient representation method is the chain coding proposed by Free-

man [76] also known as the Freeman chain code. This technique speci�es the

(x,y) coordinates of a starting point on the contour, the direction of traversal

(clockwise or counter-clockwise), and a code to indicate the direction of the

movement to reach the next contour point on a discrete grid. Besides an e�-

cient representation, chain code provides advantages with regard to rotation,

translation and scaling [77].

Considering the compact representation of contours to de�ne shapes com-

pared to binary images, the anatomical structures segmented in this work are

stored as contours. Consequently, most of the algorithms have been designed

to operate with contours as well.

3.3.2 Shape factors

Shape factors (also known as shape descriptors) summarize properties em-

bedded in a contour using a small number of parameters.

Compactness

Compactness is de�ned as the ratio of the perimeter P and the area A of a

contour. It is a measure of the �e�ciency� of a contour to contain a given

area.
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Co = P 2

A

In order to normalize and restrict the range of this parameter to [0,1], as

well as to obtain increasing values with increasing complexity of the shape,

this de�nition is modi�ed as

Cf = 1− 4πA
P 2

The compactness coe�cient has been applied to the shape analysis of

mammographic calci�cation [78] and the classi�cation of benign versus ma-

lignant breast masses [79].

Moments

The same concepts used in mathematics to de�ne moments of the probability

density function (PDF) have been extended to the analysis of images and

contours [80]. Given a M×N digital image I, the regular moments mp,q of

order (p + q) are de�ned as

mp,q =
M−1∑
x=0

N−1∑
y=0

(x)p · (y)q · I(x, y) (3.1)

where x and y are the coordinates of the pixels of I, and I(x,y) their

intensity or gray level. If the moments of a contour are computed, only the

contour pixels are used with intensity set to 1 and the internal pixels set to

0.

The central moments of an M×N digital image I are de�ned as

µp,q =
M−1∑
x=0

N−1∑
y=0

(x− x)p · (y − y)q · I(x, y) (3.2)

where x = m1,0

m0,0
and y = m0,1

m0,0

The �rst order moment m1,1 will be used in the segmentation of the

thoracic aorta (section 4.7) to estimate the position of its center.
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Ellipse approximation

The cross-sectional image of some anatomical structures like airways, vessels

and even ribs can be accurately described by an ellipse. In order to do so,

the center, major and minor radii and rotation are derived from the contour

with the help of the principle component analysis (PCA):

First, the center of mass of the object is computed to de�ne the ellipse

center. Then the covariance matrix of the contour is built with the coordi-

nates of its points relative to the ellipse center. The major and minor radii

are derived from the eigenvalues λ as shown in equation 3.3, and the rotation

angle is extracted from the eigenvectors. Additionally, the circularity η of the

ellipse is computed with equation 3.4, with 0 being that of a perfect circle.

Ri =
√

2λi (3.3)

η = 1−
√
λ1

λ2

= 1− R1

R2

(3.4)

In sections 4.5.2 and 4.4, the ellipse approximation of pre-segmented con-

tours plays a main role in the classi�cation and validation of ribs and airways.

3.4 Classi�cation

Generally speaking, classi�cation is the process of assigning elements of a

set to the class they belong to, according to their features. When working

with images, classi�ers operate on di�erent entities like pixels (or voxels),

contours, 2D regions, or volume data. Consequently the nature of the features

evaluated by the classi�er depend on the domain of the data to be classi�ed.

Classi�cation is a subject of permanent research that covers a wide palette

of approaches and �elds of application. A comprehensive survey of image

classi�cation can be found in [81]. The tool chosen for the classi�cation of

contours in the present work are classi�cation trees. Although they do not

count among the most used methods, some of their characteristics make them

appropriate for the classi�cation of contours as will be explained below.
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3.4.1 Classi�cation trees

Since classi�cation trees (also known as decision trees) were �rst introduced

by Breiman [82], they have been used in diverse �elds like medicine [83, 84,

85], pattern recognition [86] and speech processing [87] among others [88, 89].

They are an attractive alternative to other classi�cation methods like neural

networks, when understanding the classi�cation process is more important

than the accuracy of the classi�cation itself. Additionally, classi�cation trees

can be manually built, thus allowing a specialist to incorporate his/her ex-

pertise in the classi�cation process in order to improve results. This issue

gains signi�cance when a reduced training set is available.

Basically, classi�cation trees are described by a series of questions as-

signed to the nodes of a binary tree (�gure 3.2). In each node, a single

feature (predictor) is evaluated and if the condition is met, the classi�cation

process continues one level below with the node reached by the right branch,

otherwise node on the left is chosen. This process begins at the root node

and descends through the tree until a terminal node is reached, indicating

the assigned class.

A detailed explanation of the training algorithm is out of the scope of

this thesis, therefore only a brief introduction to the concept will be given.

Like in other supervised training methods, each element of the training

set must be labeled with the class it belongs to. The algorithm then sys-

tematically tries to split the set into two parts, examining one predictor at

a time. The goal is to attain a set of labels as homogeneous as possible in

each partition, i.e. the split which maximizes the reduction in impurity is

chosen. This process is known as �binary recursive partitioning�. Beginning

at the root with the whole training set, this splitting or partitioning is then

applied to each of the new partitions, thereby growing the tree. The process

continues until all terminal nodes are pure or contain no more cases than a

speci�ed minimum fraction of the sizes of one or more classes.

A reduced training set, noisy data and outliers in general may result in

over-�tting, therefore the tree must be pruned until it reaches its �right� size.

Pruning is the process of removing nodes and branches that fail to generalize,
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Figure 3.2: Classi�cation tree example used to classify contours into valid
ribs and no ribs. The predictors evaluated in each node are I, R1, Cy, α and
ρ.

thus improving the performance of the decision tree when it is applied to real

data. Many approaches have been proposed for pruning like cross-validation

and statistical tests. For more information refer to [82].

The penalty for wrong classi�cation can be optionally introduced with a

cost matrix C. There, c(i,j ) is the cost of classifying an element into class i

if its true class is j. Consequently C = 0 if i = j.

Classi�cation trees are used in the present work for the classi�cation

of contours into such diverse anatomical structures like ribs (section 4.5.2),

bronchi, trachea and carina (section 4.4).

3.5 Dedicated algorithms

The algorithms described below have been developed speci�cally to meet

the requirements imposed by the segmentation of the lung in the conditions

that concern the performed experiments. However, their comprehension is

not indispensable to understand the chapter 4 where the segmentation of the

lung is introduced. The reader is encouraged to proceed with the next chapter
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and consult the algorithms description when necessary. It may facilitate their

understanding in the context they are employed.

Although the concepts behind the algorithms are simple and can be ex-

plained using simple words, they are formulated with pseudo-code to guar-

antee an accurate description.

3.5.1 Contour Overlap Algorithm

Given two sets of contours referred to as target and seed set, the contour over-

lap algorithm analyzes the contours belonging to the target set and identi�es

those that overlap with at least N pixels of some contour in the seed set.

Algorithm 1 Contour Overlap

1: procedure ContourOverlap(Seed, Target, ThreshOvr,Mode)
2: for all Cs ∈ Seed do
3: for all Ct ∈ Target do
4: if Ct ∈ V alidContours then continue

5: end if

6: OverlappingMask ← Mask(Cs) & Mask(Ct)
7: if Area(OverlappingMask) > ThreshOvr then
8: V alidC ← V alidC ∪ Ct
9: end if

10: end for

11: if Mode =Upper then
12: OverlappingC ← Upper(V alidC) ∪OverlappingC
13: else if Mode =Biggest then
14: OverlappingC ← Biggest(V alidC) ∪OverlappingC
15: else if Mode =All then
16: OverlappingC ← V alidC ∪OverlappingC
17: end if

18: end forreturn OverlappingC
19: end procedure

In brief, the for loop starting in line 3 evaluates all contours Ct extracted

from the set of contours Target against each contour Cs extracted from the

set of contours Seed (line 2). In line 6, the function MASK creates a mask

from a contour C, i.e. it makes a binary image where the pixels inside the
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contour are set to 1 and the rest are set to 0. Afterward, a pixel wise

AND operation is performed between the masks of Ct and Cs to create

OverlapingMask. Put simply, a mask is computed with those pixels inside

Cs that overlap with the pixels inside Ct. If the number of pixels set to 1 in

OverlapingMask is higher than ThreshOvr, Ct is added to the set of validated

contours ValidC (lines 7 to 9). Lines 4 and 5 prevent a contour Ct that has

been already validated from being analyzed twice. Finally, according to the

mode of operation, the algorithm can select among all Cts that overlap a Cs :

only one Ct (the one with the largest area: lines 13 and 14, or the one which

has the lowest Y coordinate: lines 11 and 12), or all of them (lines 15 and

16). The selected contours join the OverlappingC set which is returned as

the output result of the algorithm.

3.5.2 Robust Fit Algorithm

The following robust �t algorithm has been designed to �t data with outliers

and is one of the original contributions of this work. Contrary to weighted

robust �t algorithms which ponders each data point according to its distance

to the previous estimation of the �tting curve, the present approach removes

the outliers from the data set to be �tted in order to ignore completely their

in�uence in the �tting function.
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Algorithm 2 Robust Fit

1: procedure Robust Fit(Dataset,Niter, Residual,Model)
2: E ←∞
3: Iteration← 0
4: while Iteration < Niter and E > Residual do
5: i← 0
6: Error ← ∅
7: for all p ∈ Dataset do
8: TestSet← Dataset \ pi
9: Fit← LeastSquaresFit(Model,TestSet)
10: Errori ← (Fit− TestSet)2

11: i← i+ 1
12: end for

13: j ← argimin Error(i)
14: E ← Error(j)
15: Dataset← Dataset \ pj
16: Iteration← Iteration+ 1
17: end while

18: return Fit
19: end procedure

This algorithm is based on the following assumption: Let D be a data set

made of N elements, where the ith element is an outlier. Then, there are N

subsets T of D built with (N -1) elements of D, i.e. each subset T excludes

an element of D in turn. The �t mean squared error computed by �tting

the subset a Ti (the one that excludes the outlier) is the smallest among the

errors of all subsets.

This concept can be extended to a set of data with more than one outlier

and is implemented in the robust �t algorithm shown above. Input arguments

are the Data set to be �tted, a Model, the maximum number of iterations

Niter, and the allowed Residual 4.

During each iteration (lines 4 and 16), one element from the data set D

will be removed (line 15): the outlier that has the worst e�ect on the �t.

This outlier is identi�ed in a loop (lines 7 to 12). In each pass of the loop,

a test set T is created from D excluding the element i (line 8). Then, a

4The residual is de�ned as the mean squared error of the di�erence between the observed
value and the �tted value.
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least squares �t algorithm �ts Model with the elements of T (line 9) and the

corresponding �t error is stored (line 10). The loop �nishes after all subsets

of the current data set D have been explored.

Afterwards, the element i for which the �t error Error is minimal is

identi�ed (line 13) and removed from D (line 15). At this point one outlier

has been identi�ed and removed from the data set that will be processed in

the next iteration. The process is repeated until the mean squared error of the

di�erence between observed and �tted data is lower than the allowed Residual

or until the maximal number of iterations Niter have been compleated . Then

the remaining elements of D are �tted with theModel function and returned.

The complexity of this algorithm, O(Niter · SIZE(Dataset)), makes it

unsuitable for a large data size. If this is not the case (as in the present

study) the data is better �tted with the proposed approach than using other

robust algorithms tested so far.

3.5.3 Volume Growing Algorithm

Since the volume growing algorithm is the core of both the Bronchial tree

tracking and the Stomach segmentation, it will be explained in the context

of these applications in order to facilitate its comprehension.
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Algorithm 3 Volume Growing

1: procedure Volume Growing(CTdata, StartIdx,ROI, StrEl, Thres)
2: i← StartIdx
3: StartSlice← CTdata(i)
4: StartSliceROI ← StartSlice & ROI
5: Seed← Seg(StartSliceROI , Threshold )
6: n← 1
7: while n > 0 do
8: i← i− 1
9: TestSlice← Seg(CTdata(i) , Threshold )
10: Overlap← TestSlice & Seed
11: n← Area(Overlap)
12: if n > 0 then
13: Seed← Overlap⊕ StrEl
14: OutV olume(i)← Seed
15: end if

16: end while

17: return (OutV olume, i− 1)
18: end procedure

As will be explained in greater detail in section 4.6.2, the goal of the

bronchial tree tracking algorithm is the identi�cation of the lowest end (rec-

ognizable in the CT image) of the bronchial tree in a lung with atelectasis,

or, when the atelectasis is not visible (either because the lung is healthy or

due to high PEEP levels) to �nd the lowest point of the base of the lung.

In brief: the algorithm processes all transversal frames sequentially down-

wards beginning below the carina. The frames are analyzed pairwise, i.e. the

airways of two contiguous frames (the upper and lower frame) are segmented

and the connectivity (overlap) of the segments between both frames is used

to track the bronchi.

Input arguments are CTdata: the 3D CT dataset, StartIdx : the index

of the transversal frame where the tracking starts, ROI : the 2D region of

interest (ROI) where the airways are segmented, StrEl : the structuring ele-

ment used for the dilation operation, Thres : the threshold level used for the

airways segmentation.
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Lines 2 to 5 segment5 in the StartSlice the airways (and lung parenchyma)

with a gray level below Thres inside the ROI. The segmented data is called

Seed (line 5) in analogy to region growing algorithms, as it will be used to

analyze the connectivity with the voxels below Thres of the next transversal

frame (TestSlice)(line 9).

It is worth noting that the diameter of the bronchi becomes smaller than

3 pixels (considering the pixel size of 0.5 × 0.5 mm) as the transversal plane

approaches the base of the lung, and the voxels of those bronchi that do

not descend vertically are misaligned between contiguous frames. Therefore,

the voxels of the Seed do not overlap with the TestSlice and the tracking

would be broken. To remedy this problem the Overlap area is enlarged by

performing a dilation of their segments with the structuring element StrEl.

As a consequence, the voxels of the enlarged Overlap are connected with the

voxels of the TestSlice, assuring the further tracking of those bronchi that

descend obliquely. The last takes place in line 10, where the overlap between

the voxels of the TestSlice with the Seed is computed. If the area resulting

from the overlap is at least one voxel, the TestSlice is used as Seed (lines

11 to 14) for the next iteration, and stored in the resulting segmentation

volume. This procedure is repeated (lines 7 and 16) until no connection

between the voxels of Seed and TestSlice is veri�ed (line 7). Finally, the

segmented volume and the last frame where the presence of the airways (or

lung parenchyma) was observed is returned (line 16).

The value assigned to the mentioned parameters for the bronchial tree

tracking are speci�ed in appendix A.2.

The behavior of the algorithm when used to segment the dark regions of

the stomach (section 4.8) remains the same as to the following points:

- the transversal frames are analyzed upwards beginning at the lowest

frame where the stomach has been detected.

- ROI, threshold, and structuring element are set according to the re-

quirements of the stomach segmentation as detailed in appendix A.3.

5The segmentation is performed by a simple threshold based algorithm referred to as
SEG.
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3.5.4 Modify Contour Algorithm

This algorithm modi�es a contour by replacing the portion comprised be-

tween two points, j and k, by a curve. The points j and k are the nearest

points of the contour to p1 and p2, the start and end points of the curve re-

spectively. The mode of operation (upper/lower) decides whether the upper

or the lower portion of the contour is kept. A graphical example of the Mod-

ifyContour algorithm applied to the contour of a lung a�ected by atelectasis

is shown in �gure 3.3.

(a) (b) (c)

Figure 3.3: ModifyContour examples. (a) lung contour a�ected by atelectasis
and bones pro�le curve. p1 and p2 are the start and end points of the curve.
(b,c) Resulting contour after having modi�ed the lung contour with the curve
under the (b) upper mode and (c) lower mode operation.

The input arguments of the algorithm are a contour (Contour), a curve

(Curve) and the mode of operation (mode). The Contour is de�ned as an

ordered set of points the �rst element Contour(0) of which is the uppermost

point of the contour and its sense of circulation is de�ned to be clockwise.

The Curve is also de�ned as an ordered set of points where p1 is the starting

point of the curve, on the left of the end point p2. Lines 2 and 3 store the

corresponding coordinates of the contour points in x and y. The number of

elements of the Curve is stored in n by means of the function LENGTH (line

4). The distances from each point of the contour to p1 and d2 are computed

in the for loop in the lines 7 to 10 and stored in d1 and d2 respectively. Line

11 identi�es the position (j ) of that point of the Contour which lies nearest
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to p1. This is done by looking for the index (argument) of the element that

minimizes the distance d1. The same applies to k, in line 12, considering the

distances d2 of each point of the contour relative to the end of the curve p2.

Algorithm 4 Modify Contour

1: procedure ModifyContour(Contour, Curve, mode)
2: x← Contourx
3: y ← Contoury
4: n← Length(Curve)
5: p1← Curve(0)
6: p2← Curve(n)
7: for i← 0, n do
8: d1(i)← (x(i)− p1x)2 + (y(i)− p1y)2

9: d2(i)← (x(i)− p2x)2 + (y(i)− p2y)2

10: end for

11: j ← argimin d1(i)
12: k ← argimin d2(i)
13: if mode = upper then
14: NewContour = Concatenate(Contour(m)j<m<k , Curve

′)
15: end if

16: if mode = lower then
17: NewContour = Concatenate(Contour(m)k<m<j , Curve)
18: end if

19: return NewContour
20: end procedure

Taking into account the clockwise sense of circulation of the Contour, and

being p1x < p2x, it can be veri�ed that, if the curve lays below the contour,

then is k < j. Therefore, comparing the index of the contour points with j

and k it can be determined if they belong to the upper or the lower portion

of the Contour, i.e. contour points with an index smaller than k and greater

than j de�ne the portion that lies above the points p1 and p2, and those

contour points with indices between k and j de�ne the lower portion of the

contour.

Depending on the mode of operation (mode) the algorithm concatenates

the upper portion of the contour (lines 13 to 15 Contour(m)j<m<k) or the

lower portion of the contour (lines 16 to 18 Contour(m)k<m<j) with the
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curve. It is worth noting that the Curve has previously been reversed in line

14 (denoted by Curve') in order for the resulting contour (NewContour) to

be an ordered set with clockwise circulation.
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Chapter 4

A knowledge-based approach for

the automatic lung segmentation

The human perception of an image is a complex process that cannot be en-

tirely described by means of rules or statistical approaches. Nevertheless,

experiments performed on psycho-perception of images have revealed impor-

tant aspects that have been incorporated in this work to improve the quality

of the segmentation. Some of the most important �ndings [90] related to

�human segmentation� are:

� The use of a-priori knowledge improves the image interpretation.

� Segmentation and classi�cation are combined into a single process dur-

ing the perception of an image.

These two considerations have inspired the design of the segmentation pro-

cedure developed in this work. The structures which are easier to identify

(based on previously acquired anatomical knowledge) are segmented and clas-

si�ed �rst, thus reducing the complexity of the further segmentation prob-

lem. At the same time, the information gained from the structures already

classi�ed is used to improve the results of the remaining segmentation and

classi�cation steps.

As explained in chapter 3, image segmentation consists of the partitioning

of an image into regions with similar properties which are further classi�ed
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as object or background. According to this de�nition, segmentation methods

based on texture, gray level, or intensity gradient currently used to segment

lungs [22, 14, 16, 91, 25, 48, 19, 11, 15, 13] would not be able to recognize the

lung with atelectasis in a CT image as a unity. Rather, they would split it into

multiple regions along with their di�erent characteristics. On the other hand,

the ability of a human being to recognize and manually segment the lung is

highly in�uenced by his/her previous anatomical knowledge not only of the

lung but of the whole thorax and the �common properties� used to segment

an image are not restricted merely to the analysis of intensity and texture.

Those regions in the image where the lung does not show any di�erence from

the surrounding tissue do not provide information that can be used by an

expert to �nd the limits of the pulmonary parenchyma, therefore, it must be

�guessed� on the basis of the position of other organs, bones or anatomical

structures that can be easily recognized. Taking this into account, a strategy

aimed at using as much anatomical information as possible is followed.

A typical di�culty in the segmentation of biological images lies in the

variability of the anatomical structures among di�erent individuals. Many

di�erent approaches have been developed in the last years to face this prob-

lem like elastic deformation and registration [92, 93, 94, 95, 96], statistical

atlas [17, 97, 93], a combination of both [98], among others, but none of them

is suitable for dealing with the additional variability factor due to di�erent

degrees of induced atelectasis that concern the current study. The identi-

�cation of features in the images that remain unaltered or quasi invariant

despite of the inter and intra individual variability and di�erent degrees of

atelectasis is one of the core issues of this thesis. This allows the �nding of

reliable landmarks that are explicit in the images leading to a segmentation

of the lung that equals, in some of its regions, the accuracy achieved by an

expert.

4.1 Overview of the segmentation algorithm

The method proposed in this work to segment the lung can be regarded

as a complementary segmentation approach, meaning that the lung itself is
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not segmented but rather the anatomical structures that bound it, in order

to identify and delimit the lung parenchyma. This process is illustrated in

�gure 4.1 and explained in the rest of this chapter. In section 4.3, the body

segmentation is developed. The body de�nes the ROI that will be processed

in the following segmentation steps. Section 4.4 introduces the segmentation

of the airways and the carina identi�cation. The position of the carina will

de�ne the origin of a reference system employed by a number of algorithms

which analyze the relative position and shape information of bones and other

anatomical structures in order to classify them. In section 4.5 the ribs and

vertebrae are identi�ed and with the help of this information, the pleura,

i.e. the limit of the lungs in the dorsal region is segmented. Section 4.6

presents a model to estimate the diaphragm dome, de�ning the base of the

lung. Section 4.7 describes the aorta segmentation and section 4.8 explains

the identi�cation of the stomach. Finally, section 4.9 presents an algorithm

for the segmentation of the lung, combining the results obtained from the

segmentation of the individual anatomical structures previously mentioned.
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Figure 4.1: Lung segmentation �ow chart. This pipeline model illustrates the
hierarchy of the individual anatomical structures segmentation, indicating
that each step employs the results of the preceding one. The procedure
concludes with the lung segmentation which combines the information gained
along the descending chain.

4.2 Image data and preprocessing

The image data consists of helical computed tomography (CT) scans of the

chest organized as a stack of axial slices de�ning a 3D volume array or rect-

angular grid of voxels that include the thorax from the trachea to below the

diaphragm, thus covering the entire lungs. The pixel size ranges from 0.47

Ö 0.47 to 0.51 Ö 0.51 mm2 and the slice thickness is either 1 mm or 5 mm.

The data set images are provided by the scanner in DICOM format and each

volume scan contains a stack of contiguous slices.
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The radiograph attenuation of each pixel is expressed in Houns�eld units

(HU):

HU =
µ−µH2O

µH2O
∗ 1000

where µ is the linear attenuation coe�cient of the material and µH2O is

the linear attenuation coe�cient of water.

This scale arbitrarily assigns a value of 1000 HU to bone (complete ab-

sorption), a value of -1000 HU to air (no absorption), and a value of 0 HU

to water.

The image preprocessing resembles that proposed in [41]. Each transver-

sal plane image is smoothed with a 2D median �lter (7 Ö 7 pixels) in order

to prevent the noise from producing undesired artifacts (see �gure 4.2). At

the same time, it smooths the edge of the lung and other anatomical struc-

tures leading to better segmentation results. The �ltered slices are stored

for further processing by the multiple algorithms that contribute to the �nal

lung segmentation.

(a) (b)

Figure 4.2: CT image preprocessing. (a) Original CT image. (b) Filtered
image.
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4.3 Body segmentation

The body is segmented in the transversal plane by a 2D slice by slice

threshold-based algorithm (see �gure 4.3). A bi-level1 image is created from

the slice being analyzed by setting those voxels to 1 with a value above -300

HU (this value has been empirically determined to involve soft tissue and

cortical bone in the segmentation) and clearing the rest. The result of this

operation is shown in �gure 4.3 (a). There the body segmentation (white

pixels) includes holes2 corresponding to the anatomical structures with high

contents of air, like some regions of the lungs and airways, with a value below

-300 HU. These holes are further removed by a simple �ood-�ll operation

(�gure 4.3 (b)). At this point, all pixels inside the body are set to 1 and

the surrounding (air) pixels are set to 0. Finally, the contour that delimits

background (air) from foreground (body) is stored, de�ning the ROI that

will be processed along the following segmentation steps and the bi-level

image is discarded in order to reduce the memory requirements.

The goal of this �rst stage towards the lung segmentation is to reduce

both the processing time and potential errors by preventing the algorithms

to explore and process regions of the image outside the ROI. Figure 4.3(c)

illustrates the ROI applied to the �ltered CT image.

1A bi-level image is de�ned as a logical array containing only 0s and 1s, interpreted as
black and white, respectively.

2A hole is de�ned as a set of background pixels that cannot be reached by �lling in the
background from the edge of the image.
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(a) (b) (c)

Figure 4.3: CT image de�nition of the ROI. (a) Mask of the body with holes.
(b) Mask of the body after holes have been �lled in. (c) ROI of the �ltered
image.

4.4 Airways segmentation

The airways are the �rst thoracic anatomical structure segmented as men-

tioned in section 4.1. They possess the important property of remaining

unaltered with the atelectasis, thus providing valuable information indepen-

dently of the stadium of the disease. Due to their characteristic gray level

(below -900 HU), the lowest observable in the thoracic CT, the identi�cation

of the airways is relatively simple. They are usually segmented with region

growing algorithms [11, 28, 26, 27], getting satisfactory results up to the 6th

bronchi generation. However, these methods require thin-slice CT images

and are not optimized for atelectatic lungs, therefore, they are not suited for

some of the experiments that this study is concerned with.

In this section, an algorithm to segment the trachea and primary bronchi

independently of the atelectasis degree is presented. With the help of this

approach, also applicable to a 5 mm slice thickness, it is possible to identify

the position of the carina in the airways. Moreover, the artifacts produced by

the presence of the endotracheal tube (ETT) have been taken into account

during the design of the algorithm, in order to reach a robust segmentation

of the upper airways despite of the presence of the ETT.

A specially attractive landmark is the carina. This point, where the

trachea divides into the right and left primary bronchi, is always clearly
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visible in CT scans. Additionally, it shows only a moderate inter individual

variability and is intimately related to the lung anatomy. This is why the

carina position will be chosen as the origin of a reference coordinate system

that will be used for several segmentation steps of the anatomical structures

that provide additional information for the lung segmentation.

Although the following approach cannot be regarded as a region growing

algorithm, it is based on the connectivity between 2D regions (contours) of

adjacent layers, thus enlarging the airways volume beginning with the �rst

contour identi�ed as trachea (seed) and growing downwards up to the end

of the primary bronchi. Contrary to classical region growing, the criterion

employed to enlarge the volume is not limited to the analysis of gray level.

Instead, shape and position features extracted from the contours of each slice

are considered. Those contours that originate from the airways meet the

requirements expected to contribute to the volume growing. Other contours

that stem from non-airways parenchyma like hyperventilated zones of the

lungs and the esophagus, which have a similar gray level to that of the

airways, are excluded from the segmentation as their features do not match

that of the trachea and bronchi.
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Figure 4.4: Finite state automaton used for the segmentation of the airways.

More speci�cally, a thresholding algorithm pre-segments all regions below

-900 HU of each �ltered slice of the volume CT data. The result of this oper-

ation is a set of contours in each frame, that delimit the regions identi�ed as

�air�. The following step validates slice by slice the contours pre-segmented

before they are appended to the set which de�nes the airways volume. Based

on the shape and position of each contour, 3 classi�cation trees classify them

into trachea (�gure 4.5 (a)), carina (�gure 4.6 (a)), bronchi (4.7 (a)), or none

of them. Those contours that ful�ll the expected requirements contribute

to the growing of the airways. Otherwise, they are rejected. Starting from

the uppermost transversal frame, the trachea is identi�ed. Ideally, in the

transversal sectional CT image, the trachea looks like a black disk the diam-

eter of which remains quasi constant from the larynx up to the carina. Based

on this hypothesis it can be recognized considering merely its area [11]. How-

ever, observations based on the animals of the training set (appendix B.1)

indicate that the identi�cation of the trachea of a pig based on this single

feature may fail, especially when the trachea is intubated. The mentioned

deviations from the ideal case require the evaluation of features that provide
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the segmentation algorithm with additional information. Consequently, each

contour is �tted with an ellipse characterized by its major and minor radius

(r1,r2), the rotation angle between the main axis and the X axis (a), the root

mean squared error of the radial distance between each point of the contour

and the ellipse (normalized with the ellipse radius at the respective points)

(RMSE), and the displacement of the ellipse-center between adjacent slices

(DCx, DCy).

Since the shape and number of the airway contours depend on the position

of the transversal slice considered, a �nite state machine (FSM) [99] shown

in �gure 4.4 controls the validation and appending process. This automaton

decides which classi�cation tree must be employed to identify the trachea,

carina or bronchi contour according to the frame position, as will be explained

below.

The process starts at the uppermost transversal frame of the CT volume

data (Start state) with the search of the trachea. After having extracted

this frame, the FSM changes to the state labelled Trachea found? where

it continues analyzing the subsequent frames downwards (edge No) as long

as no contour is classi�ed as trachea by the classi�cation tree illustrated in

�gure 4.5 (a). If the last frame of the volume CT data is reached and the

trachea could not be detected, it must be manually identi�ed (edge END

that leads to the Set carina manually state).

When the trachea has been found, the FSM changes (edge Yes) to two

states simultaneously which tracks and segments the trachea upwards (state

Grow Trachea up) and downwards (state Grow Trachea downwards). In

this state, the contours of adjacent slices that overlap are appended to the

trachea segmentation (edge N=1 ) if the following condition is ful�lled: only

one contour of the lower frame must overlap the contour of the upper frame

(this is described by the notation N=1 ). If 2 contours of the lower frame are

overlapped by a single contour of the upper frame (N=2 ), the FSM changes

to the state Carina found?. The presence of the 2 contours may be due to

one of the following reasons: a) The trachea has been completely segmented

and the upper frame being analyzed corresponds to the carina, therefore, the

2 contours of the lower frame are the left and right primary bronchi. b) The
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(a) (b)

Figure 4.5: Trachea validation. (a) Classi�cation tree used to classify the
trachea. (b) Trachea segmentation 8.5 cm above the carina. The gray circle
inside the trachea is the ETT.

carina has not been reached, one contour in the lower frame corresponds to

the trachea and the other one is the bronchus trachealis3 (�gure 4.7 (b)).

This analysis is performed in the state Carina found? using the anatomical

knowledge contained in the classi�cation trees shown in �gures 4.6 (a) and

4.7 (a). If the alternative b is detected, the FSM returns to the state Grow

Trachea and continues with the trachea segmentation as explained before.

If the carina was found, its coordinates are registered and the FSM transits

through the edge Yes to the Get Bronchi state where the contour of the left

(L br) and right (R br) primary bronchi are identi�ed as 2 independent seeds

to enlarge these bronchi downwards (transition to states Grow Left bronchus

and Grow Right bronchus). The procedure stops when the bronchus contour

of the upper slice does not overlap any contour of the slice below it (N=0).

The state Grow Trachea upwards processes sequentially the frames up-

wards beginning from the carina if the previous state was Set carina manually

(or the �rst valid trachea contour if the previous state was Trachea found).

The contours of the upper adjacent slice are appended to the trachea inde-

pendently of its shape in order to ignore the artifacts due to the ventilator.

3This bronchus is a singularity of the pig anatomy not observed in humans.
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(a)

Figure 4.6: Carina validation. (a) Classi�cation tree used to classify the
carina. (b) Trachea and bronchus trachealis. (c) Carina segmentation.

Consequently, the trachea �grows� in cranial direction until no more overlap

between adjacent frames is detected.

When the airways segmentation concludes, and the position of the carina

has been identi�ed, the mentioned reference system with origin in the carina

is established.

The analysis of the overlapping contours is performed by the Contour

Overlap algorithm (appendix 3.5.1) the parameters of which are set according

to the state of the FSM where the overlap is examined. For a detailed

description of the values assigned to parameters of the mentioned algorithm,

please refer to appendix A.1.
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(a) (b)

Figure 4.7: Bronchi validation. (a) Classi�cation tree used to classify the
right and left primary bronchi. (b) Primary bronchi segmentation.

4.5 Bone landmarks

In chapter 2 the anatomical position of the lungs related to the ribs has been

described. As has been shown there, that in the dorsal (dependent) zone of

the thorax the lung parenchyma is separated from the ribs by the pleura, a

thin membrane the dimension of which is comparable to the pixel size of the

CT image. Thus, the points where the ribs are in contact with the pleura

are potentially excellent landmarks for delimiting the lung.

If CT volume data of the whole thorax is not available, a set of landmarks

taken from the visible areas of the lung and the bones can be extracted from

the transversal plane of the CT image as proposed by [41]. This method can

be summarized as follows: the bones are segmented and classi�ed according

to their anatomical position into sternum, right ribs, left ribs and vertebrae.

They de�ne the landmarks that, together with the lung landmarks (�gure 4.8

(b)), are interpolated with a Bezier curve (spline) which is in turn the contour

that encloses the lungs. If in the analyzed slice the articulation between the

vertebra and the rib is not visible, additional interpolation landmarks need

to be estimated to assure that the segmentation follows the border of the

lung. Finally, the heart is identi�ed and removed from the contour obtaining
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the de�nitive segmentation of the lungs. This approach has the advantage

that the lungs can be segmented from a single slice (transversal plane) taken

from the region of the heart, but it is not applicable in the apical and in the

basal region. It also ignores vessels and airways, therefore, they are included

in the lung parenchyma as shown in �gure 4.8 (c).

(a) (b) (c)

Figure 4.8: Bones landmarks and lung segmentation. (a) CT image of the
animal after ARDS lavage. (b) Recognition of lung areas (green) after thresh-
old segmentation between -1024 and 275 HU. The black points in the image
show the position of the bones and lung - landmarks. (c) Final segmentation
of the lung (green) after suplementation of the lung areas identi�ed in (b)
with the area de�ned by the Bezier curve (landmark interpolation). The
heart (red) is segmented by a thresholding algorithm (HU range from -175
to 275). (after [41]).

When 3D CT data is available, it is also possible to extract the bones-

landmarks (speci�cally the ribs-landmarks) from the sagittal plane yielding

a segmentation of the dorsal zone of the lung that is extremely accurate

and may be even better than the one reached by an expert who is merely

guided by the transversal plane CT image. This results from the capability

of the algorithm to process information existing in the 3D data that is not

accessible when a single slice has to be used for the manual segmentation.

This approach which is one of the main contributions of this work is described

in the following section.

4.5.1 Ribs segmentation and landmarks extraction

The method employed to segment the ribs is analog to that introduced in

section 4.4. The contours of the bones pre-segmented in the sagittal planes by
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Figure 4.9: Image processing steps followed to segment the ribs and extract
the ribs-landmarks.

a thresholding algorithm are appended to enlarge the ribs volume beginning

with the seed ribs contours, which are distinguished from the contours of

other structures by a classi�cation tree. This procedure is illustrated in the

�ow chart shown in �gure 4.9.

The image processing starts by selecting two sagittal plane images at

about 5 cm to the right (�gure 4.10(a)) and 5 cm to the left (�gure 4.10(c))

to the carina (�gure 4.10(b)), referred to as right and left initial frames. The

choice of these particular slices was motivated by the properties mentioned

below4 which are more prominent in the selected position than in other sagit-

tal frames.

1. The ribs used to produce landmarks (referred to as valid ribs) are quite

similar to each other.
4These properties result from observations made by the author with respect to the

volume CT data of the animals used as training set
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2. Ribs (and other artifacts) that are inadequate to derive landmarks from

(referred to as no rib) are quite di�erent from the valid ribs.

3. At least 10 valid ribs per frame can be reliably identi�ed according to

their gray level, size and position. The extraction of these features is

straightforward allowing fast computation.

Following from points 1. and 2., the valid ribs build a dense cluster in

the feature space (�gure 4.11) that is easily distinguished from the no ribs

class. Therefore, the di�culty faced by the classi�cation algorithm is very

low resulting in a misclassi�cation near 0.

These characteristics disappear gradually as the sagittal plane frame ap-

proaches the backbone (�gure 4.12).

In the initial frames, a thresholding algorithm pre-segments the bones

(and other structures) with a gray level over 150 HU. Usually the interior of

the bones (medulla) shows darker than their border, resulting in a �double�

segmentation, i.e. one contour delimits the bone and another one, inside,

delimits the medulla. To avoid this problem, a �ood-�ll operation equalizes

the gray level of each rib with that of its border.

The entities pre-segmented in the previous step undergo a classi�cation

algorithm (4.5.2) that validates those ribs that will be used to de�ne land-

marks and rejects other ribs and structures that are not desired (�gure 4.13

(b)). The results of the image processing at this point are shown in �gure

4.10(d, f).

Having identi�ed the valid ribs in the initial frames, a loop starts as

shown in the �ow chart (�gure 4.9) that analyzes sequentially all frames to

the right and to the left of the left initial frame in order to identify valid

ribs by means of the Contour Overlap algorithm (section 3.5.1) and extracts

landmarks until a stop condition is met.

The same procedure is repeated with the right initial frame and the frames

at both of its sides.

In each frame that is evaluated, the regions with gray level above 150

HU are pre-segmented by a thresholding algorithm resulting in a set of con-

tours that corresponds to valid ribs and other undesired structures. In each
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Example of the images used as initial frame for the segmentation
of the ribs. (a) Sagittal plane that corresponds to the left line of (b). (b)
Transversal plane below the carina. The vertical lines indicate the sagittal
planes selected to start with the ribs segmentation. (c) Sagittal plane that
corresponds to the right line of (b). (d) Ribs segmented from (a) used as seed
for the contour overlap algorithm. The points above the ribs are landmarks.
(e) Ribs landmarks interpolated in the transversal plane complemented with
the vertebra segmentation. (f) Ribs segmented from (c).
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(a)

(b)

Figure 4.11: 2D projections of the 4D feature space used for rib classi�cation.
The valid rib class builds a dense cluster even when based on only 2 features.
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iteration, two contiguous frames are examined: the current frame containing

valid ribs that are already known and the next frame where the valid ribs

will be searched .

Speci�cally, starting at the position of the left initial frame in the �rst pass

of the loop, the next frame to the right is extracted. The valid ribs classi�ed

in the initial frame are used as seed for the Contour Overlap algorithm5

to validate the bones segmented in the next frame. The ribs validated in

this step, i.e. the valid ribs, will be used as seed for the following iteration

to validate the bones segmented in the following sagittal plane. This loop

continues until a sagittal plane is reached where no more ribs are validated

as no overlap is observed, meaning the stop condition was reached.

Each valid rib found in each sagittal plane de�nes one landmark the

position of which is the (X,Y,Z) coordinate of the highest6 point of the rib

contour (�gure 4.10(d)).

The procedure described above is analog to a region growing algorithm7

but applied to contours instead of pixels, in the sense that the region grows

appending contours that overlap along neighboring frames.

Although the ribs are basically segmented with a 2D thresholding algo-

rithm, the whole segmentation approach uses 3D information to enhance the

robustness and accuracy of the �nal result.

It is worth noting that when the sagittal plane being analyzed approaches

the backbone, the shape of the ribs changes (costo-vertebral articulation) and

it can be segmented with 2 contours where only the upper one is useful for

the landmark de�nition. It is also possible, due to image artifacts, that two

contours in a frame overlap a seed contour in the previous frame, which

produces undesired results. To prevent such problems, the Contour Overlap

algorithm is set up to return only one upper contour in the above mentioned

case (�gure 4.12).

5The contour of the ribs segmented in the next frame that overlap with the contours
of the valid ribs found in the current frame are validated, the rest are discarded.

6Considering that the body lies in supine position, the highest point of a rib section in
the sagittal plane is the nearest to the sternum.

7Region growing is a procedure that groups pixels into regions. The simplest approach
is pixel aggregation, which starts with a seed pixel and grows a region by appending
spatially connected pixels that meet a certain homogeneity criterion.
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Figure 4.12: Example of a sagittal plane near the backbone.

After the rib segmentation is �nished, there are at least 500 3D land-

marks8 available for each lung to build an interpolating surface that corre-

sponds to the boundary between the dependent zone of the lung and the ribs.

This approach leads to a very robust segmentation that relies on the large

amount of landmarks that can be reliably identi�ed. If some ribs are not

segmented because the algorithm fails, there is still enough redundancy to

interpolate a surface that accurately matches the lung limit. One pro�le of

this surface, complemented with the segmentation of the vertebra (see 4.5.3),

is shown in �gure 4.10 (e).

4.5.2 Ribs classi�cation algorithm

The segmentation of the bones of the initial frame (�gure 4.13 (b)) produces

a set of contours, some of them originating from the ribs that will provide

landmarks (valid rib) and others coming from artifacts like probes or bones

that have to be ignored (no rib). For the classi�cation of the contours into

valid rib and no rib, the classi�cation tree shown in �gure 4.13 (a) has been

employed. Beforehand, features based on the gray level, size and position rel-

ative to the carina coordinate system9 need to be derived from each contour.

These features are the predictor values of the tree:

8They result from the identi�cation of circa 10 valid ribs per sagittal frame multiplied
by 50 frames that are analyzed for each lung.

9The origin of the coordinate system used as reference to measure distance and angle
of the features, is set to the (z,y) coordinate of the carina.
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(a) (b)

Figure 4.13: Ribs classi�cation. (a) Classi�cation tree employed to classify
the ribs. The predicted categorical values are the two classes we are interested
in, namely valid rib and no rib. The features derived from each segment are
the predictor values of the tree. (b) α, ρ and Cy are some of the features
extracted from the initial frame (sagittal plane) to classify the ribs. The
dashed line shows the distance to the carina equal to 12 cm.

� α and ρ : angle (measured counterclockwise from the z axe) and radius

of the vector that points to the center of the ellipse which best �ts the

contour.

� R1: major radius of the ellipse that best �ts the contour.

� I : mean value of the voxels gray level inside a contour (expressed in

HU)10.

The mentioned features are derived from the 2D sagittal plane image and all

distances and angles are measured in this plane as well.

10The mean gray level of a segment is computed from the original image (no �ltering)
in order to avoid the in�uence of those pixels outside the contour that may be used by the
�lter.
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The classi�cation tree has been constructed with Matlab based on [82]

using a training set of 10 pigs ( see appendix B.1) taking into account that

the cost of classifying a no rib segment as a valid rib is much higher than

the cost of the inverse. In fact, if a valid rib is not recognized, the impact

on the �nal result on the lung segmentation is likely to be negligible because

there is enough redundancy, coming from the large number of valid ribs that

are correctly classi�ed. In contrast, if one no rib segment were misclassi�ed,

this would severely distort the shape of the lung because the landmark in-

terpolation must �t an �outlier� that is not part of the rib cage (e.g. like the

searcher inserted in the alimentary canal).

The performance of the classi�cation tree has been measured with a test

set of 10 animals (see appendix B.2), that di�ers from the training set. The

results show a misclassi�cation rate of 4% for valid ribs, i.e. 4% of valid ribs

have been classi�ed as no rib, and 0% for no rib.

4.5.3 Vertebrae segmentation and landmarks extraction

The vertebra segmentation is straightforward as no classi�cation is necessary.

The image processing consists of four steps repeated for each transversal

frame of the volume data as described below and exempli�ed in �gure 4.14.

It is worth noting that for this segmentation process no 3D information was

used. This is because the task of identifying the upper contour of each

vertebra can be performed accurately with 2D information.

First, a ROI de�ned by the position of the costo-vertebral articulations is

extracted from the transversal plane (�gure 4.14(a)). Second, a thresholding

algorithm generates the contours of all regions which gray level lays over 150

HU (�gure 4.14(b)). Third, an auxiliary rectangular contour is created in

the bottom of the ROI that overlaps with the vertebra (dashed line rectangle

in the lower part of �gure 4.14(c)). Finally, the Contour Overlap algorithm

(section 3.5.1) identi�es the biggest contour that overlaps the auxiliary con-

tour, which is the portion of the vertebra (�gure 4.14(d)) we are interested in.

This contour complements the pro�le de�ned by the ribs in the transversal

plane (�gure 4.10 (e)).
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After the vertebrae have been segmented, a contour per frame has been

identi�ed. Each contour de�nes one vertebra landmark which position is the

(X,Y,Z) coordinates of the uppermost point of the contour (�gure 4.10 (e)).

(a) (b) (c) (d)

Figure 4.14: Vertebra segmentation sequence. In the image (transversal
plane) the trachea (1), esophagus (2) and one portion of a vertebra (3) can
be seen.

The anatomical structures employed at this stage of the lung segmen-

tation procedure are common to all vertebrates though probably a specie-

speci�c classi�cation tree should be generated from an appropriate training

set.

4.6 Diaphragm segmentation

In this section, a procedure for the segmentation of the base of the lung which

relies on an anatomical model of the upper surface of the diaphragm will be

introduced. The thoracic diaphragm, hereby referred to as �diaphragm�,

delimits the base of the lungs and separates them from the abdominal cavity.

The CT number of this muscle is approximately 100 HU and can be easily

distinguished from the lungs when they are �lled with air but it is not clearly

discriminable from the atelectatic lung parenchyma. Therefore, anatomical

information previously learned must be considered to overcome the miss-

ing graphical information in the CT images, thus allowing the segmentation

algorithm to produce reliable results.
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Beichel presents a 3D Active Appearance Model (AAM) approach for

the segmentation of the top layer of the diaphragm dome. Although this

approach has been applied to human lungs without atelectasis, it shows some

de�ciencies when it comes to fully match the dome surface in local regions

[34].

The segmentation algorithm presented in this section is based on a 2D

approach that estimates the base of the lung (BL) in each sagittal plane by

interpolating 4 landmarks of the diaphragm: A, B, C and D (�gure 4.15

(a)) derived from each sagittal image. Two of them (A and B) are reliably

extracted from the ventral zone of the lung. The position of C can not be

identi�ed in the CT image of an atelectatic lung, and consequently is assessed

using anatomical information previously learned from the training set. Land-

mark D is positioned by the diaphragm model according to the coordinates

of B and C. Further details about the landmarks and the interpolating curve

are given in sections 4.6.1 to 4.6.4.

The selection of the sagittal plane and the 4 landmarks to develop a

model of the upper surface of the diaphragm valid for PEEP levels below 16

cm H2O, for the whole breath cycle and for di�erent degrees of atelectasis

was motivated by the following observations (�gure 4.15):

1. The cross-sectional image of the BL in the sagittal plane is a curve that

can be modeled by the interpolation of 4 points with a cubic spline [100].

The model needed to de�ne the BL in the transversal or coronal plane

is more complex and requires more interpolating points (�gure 4.16).

2. The intra individual variation of the BL along the sagittal planes of

the lung is reduced, therefore the BL can be accurately described with

the same model independently of the position of the sagittal plane.

This property does not hold for the transversal and the coronal planes

however.

3. The atelectasis is only visible for PEEP levels below 16 cm H2O in the

dependent zone of the lung (when the animal lies in supine position).

Therefore in the ventral region the high contrast between the dark vox-
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els of the lung parenchyma and the surrounding tissue provides enough

information for its segmentation independently of the lung pressure.

4. If the PEEP level is higher than 16 cm H2O, the atelectasis is not

visible in the CT image and the whole lung can be reliably segmented

with a thresholding algorithm without the need of a model. Therefore,

this pressure de�nes the highest pressure for which the model needs to

be valid.

5. The lower border of the lung in each sagittal plane, identi�ed with the

landmark C, bounds with the ribs and the diaphragm. Therefore, the

Y coordinate of C is given by the respective Y coordinate of the ribs

which has been previously segmented with high accuracy.
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: Manual segmentation of the BL in the sagittal plane for di�erent
PEEP levels. Images taken during end inspiration of a lung with atelectasis.
(a-f): 0, 4, 8, 12, 16, 20 cm H2O PEEP level. Witch increasing pressure,
the shape of the BL changes and the atelectasis becomes invisible. The
dependency of D with the pressure is given by the position of landmarks B
and C. Landmark M identi�es the top of the stomach.

4.6.1 Ventral landmarks A and B

The Y coordinates of A and B, Ay and By, are set to -4 cm and 0 cm respec-

tively, measured in the reference coordinates system with origin in the carina

(�gure 4.16(b)). The Z coordinate of both landmarks is obtained directly

from the CT image on the BL and segmented by means of a thresholding

algorithm. The Y coordinate of B remains unaltered for all sagittal planes.

The same holds for A, except for those frames where the cross-sectional im-

age of the lung is below11 -4 cm (�gure 4.16(b)). In this case, the ventral

11Considering that the animal lies in supine position, the term below refers to higher Y
coordinates.
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junction of the lung with the ribs (near the sternum) determines Ay. The Y

coordinates of these landmarks have been chosen in the mentioned position

for the following reasons:

1. Placing the landmarks too close to each other increases the �tting error.

Considering that the slice thickness can be 5 mm, the �quanti�cation

error� of the Z coordinate of A and B is relatively big, therefore, this

e�ect is minimized by selecting their Y coordinate as distant as possible.

2. A and B must be derived from a (visible) region of the lung that is not

a�ected by atelectasis, which corresponds to the ventral zone above the

coronal plane de�ned by the Z coordinate of the carina12.

3. Keeping the distance between all landmarks approximately equal, inde-

pendently of the sagittal frame being analyzed yields an interpolation

that changes smoothly from slice to slice. This behavior can be ob-

served in �gure 4.16 (a) and (b).

(a) (b)

Figure 4.16: Example of the automatic BL segmentation and positioning of
landmarks A, B, C and D. (a) Sagittal plane near the heart center, about 3.5
cm to the left of the spine. (b) Sagittal plane on the left of the heart, about
8 cm to the left of the spine. In this cross-sectional image, landmark A lies
below -4 cm, and its Y coordinate is set to the ventral junction of the lung
with the ribs.

12Extreme cases of induced atelectasis have been observed where the ventral zone of the
lung above the coronal plane de�ned by the Z coordinate of the carina was a�ected by the
lavage. In such exceptional situations, this approach is not applicable.
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4.6.2 Dorsal landmark C

The lowest point of the lung in each sagittal plane is identi�ed with landmark

C and the curve resulting after connecting the C points of all frames is referred

to as the lung-edge (LE) curve (�gure 4.17 (a)). In atelectatic lungs subject to

low PEEP levels, the position of C (and consequently the LE curve) cannot be

immediately identi�ed in the CT image. Therefore, a standarized or reference

LE curve has been built beforehand with the training set. However, the size

and shape of this reference curve does not describe accurately the LE curve

of the atelectatic lung being analyzed. In consequence, it must be adjusted

to this lung in order to provide the coordinates of landmark C in each sagittal

plane.

More speci�cally, the landmarks J, K, R, L (see below) of a particular lung

determine the position of the corresponding control points of the reference

LE curve13, which in turn adjusts its shape to this lung. For that purpose,

the reference curve is subject to a linear deformation in coordinates X and

Z, and an elastic deformation in Y according to the rib cage.

Figure 4.17 (b) shows a reference LE curve created with the LE curves

of the training set (appendix B.1), which were manually segmented. After

identi�cation of the corresponding landmarks J, K, R, L, the curves have been

co-registered, resampled in order for all of them to have the same number of

points, and �nally averaged.

Landmarks J and K (�gure 4.17 (b)) are the extreme left and right points

of the lung, i.e. the points where the lungs reach their maximal width. They

can be recognized independently of the atelectasis degree, as they lie above

the Y coordinate of the carina, in the ventral region that is always visible.

Landmarks L and R are the lowest points of the left and right lung. They

cannot be identi�ed in the atelectatic lung parenchyma, therefore, additional

anatomical information is used to estimate their position. The bronchial

tree, an anatomical structure visible in the CT image independently of the

13The control points of the LE curve are derived from their corresponding landmarks
identi�ed in the training set of images.
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(a)

(b)

(c)

Figure 4.17: Example of LE curve. (a) The black line shows the LE curve
and landmarks J, K, L, R of a particular animal. (b) Reference LE curve
and control points J, K, L, R. After elastic deformation, this curve de�nes
the position of landmarks C in each frame. (c) J and K landmarks identi�ed
in the coronal plane.
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(a) (b)

Figure 4.18: Estimation of the lowest point of the lung with the help of the
bronchial tree. (a) Distance between the lowest point of the left lung S and
the lowest end of the left half of the bronchial tree L. (b) Idem right lung. The
low interindividual variability (below 2 mm) observed con�rms landmark S
and T as the best estimators of L and R. The measurements were performed
on 1 mm slice thickness.

degree of atelectasis, provides the information required to assess the position

of these landmarks.

As illustrated in �gure 4.18, the lowest visible point of the left and right

bronchial tree (S and T) show a high correlation with L and R respectively,

therefore, an algorithm capable of tracking the airways downwards in the

dorsal basal region beyond the 12th generation is necessary.

Bronchial Tree Tracking

Many approaches have been developed to segment the tracheo-bronchial tree

in thin-slice CT [27, 29, 11] that achieve high accuracy, but none of them

reaches the 12th generation. Moreover, they are not designed to work properly

on lungs with atelectasis. However, the identi�cation of S and T does not

demand an accurate segmentation of the bronchi, but simply an algorithm

capable of following the airways downwards until their deepest extreme. A

simple but e�cient approach to �nd the mentioned S and T landmarks is

presented in section 3.5.3. The Bronchial Tree Tracking algorithm processes

the transversal planes of the 3D CT data sequentially beginning with a slice
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about 45 mm below the carina (�gure 4.19 (a)) and returns the frame index

where the lower end of the bronchi us was detected (�gure 4.19 (c)). A

detailed description of the parameter setting of the algorithm can be found

in appendix A.2.

(a) (b) (c)

Figure 4.19: Bronchial tree tracking example in the right lung. (a) Start
transversal slice selected for the tracking (circa 4.5 cm below the carina). The
right ROI is de�ned by the ribs. (b) Seed resulting from the segmentation of
the voxels inside the ROI below -300 HU after dilation. (c) Last slice where
the bronchus has been detected (15 cm below the carina).

In a 5 mm slice thickness CT image it has been observed due to partial-

volume e�ects that the small bronchi near the lung base are �merged� with the

lung parenchyma with atelectasis about 2 cm before their inferior extreme.

Therefore, the tracking algorithm must a�ect the found position of S and T

by a correction term of 2 cm when it detects a slice thickness of 5 mm.

4.6.3 Landmark D

The position of landmark D is estimated by the diaphragm model based on

the coordinates of B and C (equations 4.1 and 4.2).

Dy(p) =
By(p) + Cy(p)

2
(4.1)

Dz(p) = α · (Bz(p) + Cz(p))− β (4.2)
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With α = 0.48 and β = 7.4 mm, where the subindices y and z identify

the corresponding coordinates of the landmarks B, C and D, which in turn

introduce the dependency of D with the pressure pin the model.

The values of α and β have been found empirically in order to adjust the

curvature of the interpolating curve employed for the automatic segmentation

of the diaphragm (�gure 4.16) to the manually segmented base of the lung

(�gure 4.15).

4.6.4 Landmarks interpolation

Having positioned the four landmarks A, B, C and D in the sagittal plane,

they are interpolated in the same plane with a cubic spline (polynomial form)

with knot sequence {A,B,D,C}. The not-a-knot end condition is used, thus

forcing the �rst and second polynomial piece of the interpolant to coincide,

as well as the second-to-last and the last polynomial piece. Four landmarks

have been chosen for the interpolation because this is the minimal number

of knots required to �t accurately the BL in the sagittal plane.

Drawbacks of the model: This approach is applicable for those cases

when the atelectasis a�ects the lung below the coronal plane de�ned by the Y

coordinate of the carina. Otherwise it is not possible to identify the landmark

B.

The LE curve has been �learned� from the lungs of the training set. Al-

though it is elastically deformed to match the particular characteristics of

the lung being analyzed, the position of C derived from the LE is subject to

errors due to large inter individual variability that degrade the diaphragm

segmentation results.

4.7 Thoracic Aorta segmentation

This section introduces an algorithm to segment the thoracic aorta (half

of the descending aorta above the diaphragm) in CT images of atelectatic

lungs. The procedure relies on anatomical characteristics that relate the
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position and size of the artery to that of the vertebrae, carina and trachea,

accurately segmented in earlier steps.

In the transversal plane CT image, the aorta �lled with blood looks like

an homogeneous gray disk. Since this property is minimally a�ected by the

inter and intra individual variability, segmenting the vessel with the template

matching algorithm using as convolution mask (template) a disk is a suitable

approach. However, the high degree of atelectasis in the dorsal region pro-

duces large areas, in this zone of the image, with homogeneous gray level that

impede the algorithm to precisely determine the position of the artery. To

overcome this di�culty, the region where the template matching should op-

erate is restricted by a ROI to the area where the aorta is likely to be found.

The size and position of this ROI is controlled by anatomical information

previously acquired from the training set, as will be shown below.

Following the mentioned strategy, although gray level and texture of the

aorta do not provide relevant information as they are hard to distinguish

from the soft tissue of the diaphragm, heart and lung with atelectasis which

usually surround the artery, small regions of the lungs and esophagus �lled

with air provide those darker pixels around the vessel that will be used to

estimate the position of its center14.

The anatomical observations listed below are derived from the animals

of the training set. They provide the basis for de�ning the ROI in each

transversal frame as well as for correcting potential segmentation errors later

on.

1. The projection of the aorta on the coronal plane, i.e. its X coordinate,

related to the vertebra landmarks shows a sinusoidal shape which is

better described by a 4th order polynomial (�gure 4.20). Deviations

between di�erent animals have been observed but the �oscillating� na-

ture of the shape is always present.

2. The aorta lies contiguous to the spine and ribs near the costo-vertebral

articulation.

14Throughout this section, the center of the circle described by the aorta wall in a
cross-sectional image of the transversal plane is referred to as the center of the aorta.

74



3. The diameter of the aorta correlates with the diameter of the trachea.

Figure 4.20 shows the X position of the aorta relative to the X coordinates

of the vertebra landmark (ordinate) and relative to the Z coordinate of the

carina (abscissa). For clarity, only 3 curves are plotted. (note that the size

of all pigs was similar).

Figure 4.20: Examples of the aorta center relative to the vertebra position
(ordinate) and carina (abscissa) measured in the transversal CT images.

4.7.1 Segmentation algorithm

Having described the anatomical considerations involved in the aorta seg-

mentation, the algorithm that uses them in order to assess the position and

diameter of the artery in the volume CT data it will be explained. Figure

4.21 illustrates the �ow chart of the segmentation procedure.

The template matching algorithm operates in the transversal plane and

requires the shape of the aorta in this plane as convolution mask. This is

de�ned as the �ideal� cross-sectional image of the aorta, consisting of a square

background (pixels set to 0) with a disk centered on it (pixels set to 1) as

shown in �gure 4.22. Since the actual diameter of the aorta, i.e. the diameter

of the disk, is unknown, it is derived from the trachea15 in the �rst step of

the segmentation algorithm. This diameter is referred to as TD.

15The contours of the trachea in each frame have been previously stored by the airways
segmentation algorithm and its diameter is indirectly estimated from its area.
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Figure 4.21: Aorta segmentation �ow chart.
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Figure 4.22: Convolution mask used to �lter the ROI. The black pixels out-
side the disk are set to 0, the white pixels inside are set to 1.

At this point a loop starts that processes each transversal frame and

searches the aorta inside a ROI (�gure 4.25(a,b,c)) which is dynamically

de�ned as follows: the lower border is given by the rib landmarks interpolated

in the transversal plane (�gure 4.10 (e)). The upper border replicates the

lower border but is shifted TD upwards, the left and right borders are taken

from the maximum deviations of the aorta center, relative to the vertebra

position, observed during the previously taken measurements (�gure 4.20 (a))

augmented TD/2 in both directions.

The convolution of the template with the ROI of the CT image produces

a new �ltered image (�gure 4.25(d,e,f)) from which the center of the aorta

will be estimated. Assuming that the gray level of the pixels inside the aorta

is higher than the gray level of the remaining pixels of the ROI and that the

real diameter of the aorta is exactly the diameter of the template disk, the

�ltered image can be expected to reach a maximum in the center of the aorta,

where the ROI best correlates with the convolution mask. Unfortunately, in

reality this is not always the case. Indeed, the gray level of some few pixels

outside the aorta is lower than that of the pixels inside the aorta and the

mentioned diameters are not exactly the same (recall that the actual diameter

is unknown), therefore, the �ltered image has a broad region of maxima16

where the center of the aorta is not de�nite. Hence, the �center of mass� of

this region must be determined and its coordinates will be considered to be

the center of the aorta.

16The absolute maximum inside this region does not coincide with the center of the
aorta due to noise in the �ltered image.
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The region of maxima is extracted from the �ltered image by keeping

only those pixels with a gray level above 99% of the absolute maximum gray

level (�gure 4.23(b)).

(a) (b)

Figure 4.23: Extraction of the region of maxima. (a) Filtered image. (b)
Region of maxima.

A drawback of this approach is that the presence of bright pixels outside

the aorta but inside the ROI may displace the maxima of the �ltered image

from the actual center of the aorta. Probe heads inserted in the esophagus

are an example of this (�gure 4.24(a)). The mentioned problem arises in few

slices and can not be predicted (probes are not always used in all experiments

and their location is unknown). Figure 4.24(b) illustrates an example of the

X coordinate of the aorta for each frame computed with the center of mass of

the region of maxima. The in�uence of the probe head in the displacement

of the aorta center can be observed in the slices between -2 and -4 cm above

the carina. They appear like outliers of the actual X position.
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(a) (b)

Figure 4.24: Aorta center correction. (a) The extremely high gray level of
the probe head in the esophagus produces the maxima in the �ltered image
outside the aorta, leading to a wrong aorta positioning (dotted line circle).
The solid line circle shows the corrected position of the aorta after the robust
�t. (b) Aorta center relative to carina and vertebra. The outliers are ignored
by the robust �t algorithm (solid line). The dashed line shows the �t using
an ordinary least-squares regression. The outlier (-3, 11), i.e. 3 cm above
the carina and 11 mm to the left of the vertebra corresponds to the dotted
line circle shown in (a).

Segmentation Re�nement

The last step in the aorta segmentation is the identi�cation and correction of

the erroneous aorta center estimations. Taking into account that the position

of the aorta changes smoothly from slice to slice, and considering points 1.

and 2. made under the anatomical observations, the X coordinate of the

aorta is corrected by a robust �t algorithm (section 3.5.2) which employs

a 4th order polynomial to identify and remove outliers, keeping and �tting

only those assessments of the aorta center that are anatomically meaningful

(�gure 4.24).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.25: Aorta segmentation. Top row: 2D-ROI in the transversal plane
where the aorta will be looked for. Middle row: convolution of the CT image
inside the ROI with the �lter template. Bottom row: Aorta segmentation.
Left column: apical region; the border between the aorta and the heart above
it is not visible. Middle column: helium region: the dorsal zone of the lung
with atelectasis, the aorta and the diaphragm above it have almost the same
gray level and texture. The esophagus (seen as a dark spot in the middle
of the ROI) bounds the aorta on the right. Right column: justa diaphragm
region; small regions of the lungs �lled with air, darker than the aorta, are
used to �nd its position.

The values assigned to the parameters of the robust �t algorithm are

detailed in appendix A.4.
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Based on the second property of the model, the Y coordinate of the aorta

is adjusted if necessary. In this case, the ROI de�nes the upper and lower

limits allowed. Centered in the current Y coordinate and the corrected X

coordinate, a circle with diameter TD is positioned in the current frame. If

this circle is not completely contained in the ROI, (i.e. the contour of the ROI

cuts across the circle) the Y position must be modi�ed as much as necessary

until the circle lies inside the ROI, satisfying the observation that the aorta

is expected to lie contiguously to the spine and ribs near the costo-vertebral

articulation.

This concludes the aorta segmentation process.

A preliminary approach intended to smooth the changes of the aorta

center along adjacent frames using 3D interpolation have shown erroneous

results as it ignores the constraints established by the anatomical observa-

tions. It has been observed in some cases that the artery was placed below

the limits of the bones.

4.8 Stomach segmentation

Although the stomach is placed in the ventral cavity below the diaphragm,

in some animals this organ is visible in the transversal CT images that cor-

respond to the base of the lung. Since some dark regions of the stomach

have CT numbers similar to the healthy lung parenchyma, they need to be

identi�ed and excluded from the lung segmentation.

Figure 4.26 illustrates a portion of the stomach that appears like a black

region in the transversal, sagittal and coronal plane.
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(a) (b) (c)

Figure 4.26: Presence of the stomach in the zone of the lung base. (a)
Transversal plane. (b) Sagittal plane. (c) Coronal plane.

As the stomach does not delimit the lungs its precise segmentation is not

required. Instead, only those regions of the stomach �lled with gas have to

be recognized. In order to do so, no further anatomical information than its

approximate position and CT number is needed.

The approach followed to identify the black regions of the stomach is

based on the volume growing algorithm (section 3.5.3), the same which has

been employed for the bronchial tree tracking (section 4.6.2). The procedure

starts with the last transversal frame of the volume data. There, a rectan-

gular ROI is de�ned which contains the whole transversal plane above the

carina, thus assuring that the dark regions of the stomach will be included in

the 2D ROI. This algorithm scans the transversal frames upwards appending

the mentioned dark areas to the 3D segmentation of the stomach if the con-

nectivity between them is veri�ed. Finally, the identi�ed volume is stored

for further use in the last step of the lung segmentation.

Detailed information of the parameter settings of the volume growing

algorithm for the stomach segmentation is given in appendix A.3.
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4.9 Lung segmentation

Having analyzed the anatomical structures related to the lung, it is now

feasible to proceed with the lung segmentation.

Since the cross-sectional image of the lung in the transversal plane changes

considerably from the top to the bottom of the thorax, and di�erent anatom-

ical structures participate in the composition of the lung shape depending on

the frame being analyzed, four zones of the lung have been de�ned in order

to facilitate the operation of the segmentation procedure and improve its

results. These zones are: (I) cranial, (II) apical superior, (III) apical inferior

and (IV) caudal.

The algorithm begins with the identi�cation of the lung parenchyma not

a�ected by the atelectasis as shown in �gure 4.28. This is done with the help

of a thresholding segmentation as introduced in [22, 41]. Although the lung

parenchyma is characterized by a CT number between -200 and -500 HU [25],

it has been preferred to ignore the lower limit (-500 HU) for its segmentation

in order to avoid excluding the hyperventilated zones with gray level below

-500 HU when the lungs are subject to PEEP levels above 4 cm H2O. This

has the negative side e�ect that the regions identi�ed contain the airways

and stomach (with CT numbers lower than -500 HU). Therefore, they must

be removed from the �nal segmentation of the lung, as will be shown later

on.

The rest of this section describes the characteristics of the atelectatic

lung in each zone, the information provided by the anatomical structures

already segmented and the way it is managed by the segmentation algorithm

to compose the edge of the lung in each transversal frame.

Craneal zone (I)

The craneal zone (�gure 4.27 (a)-I, (b,c)) is comprised between the uppermost

point of the lung and the transversal plane circa 7 cm above the carina. In

this zone, two important observations can be made: a) The contour of the

lung is not de�ned by the ribs and vertebrae in the dorsal region. b) The

atelectasis is almost imperceptible because the liquid drains to lower zones
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.27: Zone-dependent lung segmentation. (a) Craneal (I), apical su-
perior (II), apical inferior (III), caudal (IV). The transversal frames (b) to
(g) correspond to the vertical lines of the sagittal view (a).
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due to the gravity force. Therefore, the segmentation of the lung in this zone

achieved by a thresholding algorithm operating on the gray level of the CT

image describes the lung edge more accurately than the ribs.

Apical superior zone (II)

The apical superior zone (�gure 4.27 (a)-II, (d)) comprises the region be-

tween the transversal planes situated at 7 cm and 2.5 cm above the carina

approximately. In this zone, the dependent region of the lung, partially af-

fected by the atelectasis, is limited by the ribs. The already segmented lung

parenchyma visible in the CT image is therefore extended downwards up to

the ribs curve with the algorithm ModifyContour (section 3.5.4). The result

of this operation is a lung contour that incorporates lung parenchyma not

identi�able in the CT image, but, depending on the position of the transversal

plane, parts of the aorta (section 4.7) may be included in the lung segmen-

tation as well, which have to be removed later on.

Apical inferior zone (III)

The apical inferior zone (�gure 4.27 (a)-III, (e,f)) comprises the region be-

tween the transversal planes situated 2.5 cm above the carina and the up-

permost point of the diaphragm. As the transversal section of the lung

approaches the diaphragm, the impact of the atelectasis becomes more no-

ticeable in the dorsal zone. Like in zone II, the bone pro�les therefore provide

the border of the lungs in the dependent region. Additionally, a portion of

the vertebra contour is appended to the ribs curve to better match the lung

anatomy as shown in �gure 4.27 (e, f, g). Then the contour of the lung

parenchyma identi�ed in the CT image is extended downwards up to the

ribs-vertebra curve by ModifyContour and, in a last step, the aorta is ex-

cluded from the lung segmentation.

The vena cava and other vessels parallel to the bronchi also ought to be

removed from the lung segmentation. However, they have not been consid-

ered in this work and consequently constitute the main error source (as will

be shown in chapter 5).
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Figure 4.28: Lung segmentation procedure.

Caudal zone (IV)

The caudal zone (�gure 4.27 (a)-IV, (g)) lies below the transversal plane

de�ned by the uppermost point of the diaphragm. Typically, this zone is

strongly a�ected by the atelectasis and the small �spots� of lung parenchyma

identi�ed in the CT image can not be used to de�ne the ventral border of the

lung. Therefore, this is assessed by the diaphragm dome (section 4.6). As

shown in the left branch of the �ow chart (�gure 4.28) the upper and lower

edge of the lung are de�ned by the diaphragm and ribs curve respectively,

which are connected to each other to de�ne a contour. The area of this

contour is complemented with the lung parenchyma previously identi�ed in

order to de�ne the lung segmentation in each transversal frame.
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The �ow chart illustrated in �gure 4.28 summarizes the segmentation

procedure according to the zone where the transversal frame is situated.

Although the lung is 2D segmented with a slice by slice approach, 3D infor-

mation has been considered during the analysis of the anatomical structures

involved in the lung segmentation (sections 4.4 to 4.8), thus improving the

quality of the �nal result.
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Chapter 5

Algorithms evaluation

In this chapter, the results of performance tests of the segmentation algorithm

presented in this thesis are reported, after a brief outline of the methods used

for the evaluation. A full description of the last topic is beyond the scope

of this work and the interested reader can refer to [101, 102] for additional

details.

The evaluation of the segmentation algorithms is not only important for

the selection of the most appropriate approach for a given application but

also for tuning the parameters of the algorithm to optimize its performance.

However, the problem of objective evaluation of the segmentation quality is

far from being solved. From the medical point of view, the quality of a seg-

mentation algorithm can be evaluated according to subjective criteria which

are not embedded in the metrics relevant for image segmentation theory.

Therefore, in the following sections the impact of the segmentation errors

in the physiological measurements derived from the automatic segmentation

of the lung will be considered together with conventional approaches for the

assessment of goodness of segmentation.

5.1 Evaluation of image segmentation

Evaluation methods are mainly divided into two groups: analytical methods

and empirical methods [102]. The �rst intrinsically examine the segmenta-
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tion algorithm by analyzing its principles and properties [103, 104]. Empiri-

cal methods, on the other hand, indirectly judge the segmentation algorithm

by applying it to test images and measuring the quality of the segmenta-

tion results. Empirical methods are further classi�ed into goodness methods

and discrepancy methods (also known as supervised evaluation). Empirical

goodness methods evaluate the di�erent algorithms by computing a goodness

measure based on the segmented image and they do not rely on a reference

segmentation. Entropy [103], colour uniformity [104], region shape [49], in-

traregion contrast [105], intraregion uniformity [106] among others are some

examples of goodness measures. Empirical discrepancy methods measure the

disparity between an automatically segmented image and a reference segmen-

tation, also called gold standard, both derived from the same source image.

However, reference (manual) segmentations do not guarantee a perfect truth

model since an operator's performance can be �awed. A study aimed at as-

sessing the relative accuracy of subjective brain volume evaluation analyzed

twice by the same radiologist (before and after a time lap of 3 months),

showed a di�erence of up to 4.9 %, and 87.8 % overlapping. A comparison

between di�erent radiologists reported a similarity of the result between 64

and 87 % [93]. An e�ort to overcome this drawback have led to the devel-

opment of physical phantoms [107] and computational phantoms [108] but

these are merely simpli�ed models that do not replicate the richness of detail

and inter individual variability observed in the real objects of study.

The methods adopted for the evaluation in the present work of lung seg-

mentation algorithms belong to the group of empirical discrepancy methods.

Besides the well established Dice coe�cient [109], additional evaluation co-

e�cients are introduced by the author to provide a better insight into the

characteristics of the segmentation errors produced by the algorithm.

The Dice coe�cient measures the similarity between the regions de�ned

by the automatic SA and reference SR segmentations. It is de�ned as twice

the number of the overlapped pixels (intersection) between both regions di-

vided by the sum of the number of pixels of each region.
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CDice =
2· | SR ∩ SA |
| SR | + | SA |

(5.1)

This coe�cient provides an intuitive measure of the segmentation quality

between 0 (no match at all) and 1 (perfect match). However, it does not

distinguish between errors due to over segmentation (i.e. the automatic seg-

mentation includes pixels that are not part of the reference segmentation) and

under segmentation (i.e. some pixels present in the reference segmentation

have been excluded from the automatic segmentation). The identi�cation of

over and under segmentation and their localization in the lung is of great

interest from the medical point of view in order to assess the gravity of the

errors implicated in the computation of the lung ventilation.

For example, when the base of the lung is completely invisible in the CT

image due to atelectasis, over and under segmentation are not critical as long

as the size of the automatically segmented area is similar to the size of the ref-

erence segmented area. In this case, the CT number of the lung parenchyma

coincides with that of the diaphragm and the computed ventilation (based

on the CT number of the pixels) of the wrong automatic segmentation will

be similar to that corresponding to the reference segmentation (�gure 5.1

(a)).

By contrast, over segmentation that includes a portion of the airways

has an undesired negative e�ect on the computation of the lung ventilation.

In this case, a region of the airways would be considered a hyper-ventilated

compartment of the lung although it does not really belong to the lung

parenchyma (�gure 5.1 (b)). Similarly the vessels that run parallel to the

principal bronchi, not segmented in this work, are wrongly included in the

lung parenchyma and count as atelectatic tissue (�gure 5.1 (c)). As will

be shown in section 5.7, they constitute the largest over segmentation error

source.

The coe�cients of correct segmentation, over segmentation and under

segmentation have been de�ned by the author as follows:

Ccorr =
| SR ∩ SA |
| SR |

(5.2)
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(a) (b)

(c)

Figure 5.1: Examples of over and under segmentation. The black line cor-
responds to the reference (manual) segmentation and the yellow contour is
the result of the automatic segmentation. (a) The impact of over and under
segmentation on the computation of the ventilation in an atelectatic lung
is negligible as long as the area of manual and automatic segmentation are
similar. (b) Over segmentation of the right lung that includes a portion of
the right bronchus. (c) Additional over segmentation errors of the lung are
caused by the vessels parallel to the bronchi not segmented in the current
approach.
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Cover =
| SA | − | SR ∩ SA |

| SR |
=
| SA \ SR |
| SR |

(5.3)

Cunder =
| SR | − | SR ∩ SA |

| SR |
=
| SR \ SA |
| SR |

(5.4)

where Ccorr is the correct segmentation coe�cient, Cover is the over seg-

mentation coe�cient and Cunder is the under segmentation coe�cient. It is

worth noting that Cover may be bigger than 1 if the over segmentation area

is larger than the reference segmentation area used for normalization.

Since these coe�cients employ an area for normalization, they tend to ex-

aggerate segmentation errors when the reference area is small like in the base

of the lung (�gure 5.1 (a)). Contrary, segmentation errors are dissimulated

when the reference area is large (�gure 5.1 (c)).

A similar situation arises when the bias introduced by a segmentation

procedure is being quali�ed by C coe�cients. Assuming that the automatic

segmentation exceeds the reference segmentation in one pixel along each point

of the reference contour, i.e. the automatic segmentation is equal to the

reference segmentation dilated by one pixel. In this case, a coe�cient that

reports �1� meaning �one pixel oversegmentation� is desirable to quantify this

kind of error, independently of the area and length of the reference contour.

For this aim, a second set of coe�cients C ′over and C
′
under have been intro-

duced which di�er from Cover and Cunder in the denominator employed for

normalization as shown in equations 5.5 and 5.6.

C ′over =
| SA | − | SR ∩ SA |
| SR? | − | SR ∩ SR? |

=
| SA \ SR |
| SR? \ SR |

(5.5)

C ′under =
| SR | − | SR ∩ SA |
| SR? | − | SR ∩ S |

=
| SR \ SA |
| SR? \ SR |

(5.6)

With SR∗ = SR⊕StrEl where StrEl is a disc structuring element with 1

pixel radius, i.e. SR∗ is the reference segmentation dilated by one pixel.

These coe�cients allow a twofold interpretation. The denominator of

equations 5.5 and 5.6 coincides with the length of the contour of the dilated
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reference segmentation, therefore C ′over and C
′
under can be regarded as the over

and under segmentation areas normalized by the length of such a contour.

For the evaluation of the ribs segmentation, where one portion of the

lung contour is described by the curve de�ned by the ribs, the over and

under segmentation coe�cients, C”over and C”under, have been de�ned in

order to take into account strictly the segmentation errors along this curve.

The same holds true for the evaluation of the diaphragm segmentation.

C”over and C”under coe�cients are de�ned as follows:

C”over =
| SA \ SR |

LA
(5.7)

C”under =
| SR \ SA |

LA
(5.8)

where:

| SA \ SR | is the ribs/diaphragm over segmentation (the yellow area in

�gures 5.2 (b, c)), i.e. the number of pixels that the automatic segmentation

exceeds the manual segmentation along the ribs/diaphragm curve. These

pixels actually belong to the lung parenchyma, therefore, the ribs/diaphragm

over segmentation is a component of the lung under segmentation.

| SR\SA | is the ribs/diaphragm under segmentation (black area in �gures

5.2 (b, c)).

LA is the length of the ribs/diaphragm curve used for the automatic

segmentation of the lung.

These coe�cients do not consider the errors produced in the region of

the vertebrae, which are in�uenced by the aorta segmentation and other

anatomical structures not segmented in this work.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Diaphragm and ribs segmentation error examples. (a) Manual
(black) vs. automatic (yellow) segmentation. (b) Ribs over segmentation
(yellow area) and under segmentation (black area). (c) Diaphragm over seg-
mentation (yellow area) and under segmentation (black area). An enlarged
view of the right lung and its segmentation errors is depicted below each
picture (images (d), (e) and (f))

5.2 Lung segmentation evaluation

A general notion of the quality of the lung segmentation algorithm is given

by the correct segmentation, over segmenatation and under segmentation

coe�cients of the whole lung volume. Table 5.1 shows the values of the

mentioned coe�cients measured on the test set (appendix B.2).

Ccorr Cover Cunder

97.04 ± 0.90 11.12 ± 2.08 2.97 ± 0.90

Table 5.1: Lung segmentation evaluation coe�cients computed on the whole
lung expressed as percentage of the mean value ± standard deviation.
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Figure 5.3 illustrates the value of the Dice coe�cient obtained for the

lung segmentation of each transversal frame. The abscissa is labeled with

the four zones distinguished during the segmentation process, i.e. cranial (I),

apical superior (II), apical inferior (III) and base of the lung (IV). The black

line corresponds to the mean value of the Dice coe�cient measured from the

test set, while the gray area represents ±1 standard deviation.

Figure 5.3: Dice coe�cient of the lung segmentation computed locally for
each transversal frame.

As can be observed, the Dice coe�cient indicates that the performance of

the segmentation algorithm degrades noticeably in zone IV which corresponds

to the diaphragm. In spite of this, it is worth noting that when the slice

position approaches the end of zone IV, the area of the lung is reduced up

to less than 1 % of the area that can be found in zone III. This implies that

segmentation errors that are large when considered at a single frame level,

may indeed be very small when related to the total lung volume.

From the medical point of view, a global error description that expresses

the percent of lung tissue (volume) that has been wrongly segmented is more

relevant than an error coe�cient that quanti�es the over and under segmen-

tation related to the segment size of a speci�c slice. This global error analysis

is reported in table 5.2 which shows the contribution of the errors produced

in each zone to the overall error in the whole lung.
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Zone I II III IV

Correct segm. 4.73 ± 0.99 7.69 ± 0.19 68.60 ± 2.15 16.03 ± 2.29
Over segm. 0.24 ± 0.14 0.59 ± 0.05 7.24 ± 1.65 3.05 ± 0.61
Under segm. 0.06 ± 0.09 0.12 ± 0.06 1.54 ± 0.52 1.23 ± 0.52

Table 5.2: Correct, over and under segmenatation in each zone relative to
the whole lung volume expressed as percentage of the mean value ± standard
deviation.

The values obtained for Ccorr, Cover and Cunder coe�cients computed

locally to each transversal frame are illustrated in �gure 5.4. They con�rm

the exponential degradation of the automatic segmentation towards the end

of zone IV (base of the lung) anticipated by the Dice coe�cient. Figure 5.4

(a) indicates a consistent overlapping (clearly above 90 %) between reference

and automatic segmentation in zones I, II and III. The poor performance

in the lower 2 cm of the lung (left most part of zone IV in �gure 5.4) is

attributed to inter individual variability. Notably, in this region the lung is

usually not visible in the CT images employed in the test set and can only

be guessed based on a-priory knowledge learned from the training set. The

observation of the last frames of zone IV in �gures 5.4 (a, b and c) suggest

that the area of the wrongly segmented lung does not di�er substantially

from that of the reference segmentation. More speci�cally, if the last frame

is considered, Ccorr ∼= 0.4, Cover ∼= 0.6, Cunder ∼= 0.6 meaning that about 60

% of the lung area that was excluded from the automatic segmentation was

�compensated� by an equivalent area included from the diaphragm (�gure

5.1 (a)). This unacceptable image segmentation error, has, only a moderate

impact in the computation of the lung ventilation as mentioned in section

5.1. Nonetheless, the low performance of the algorithm towards the end of

zone IV, disquali�es it for use as a diagnostic tool for the base of the lung.
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(a)

(b) (c)

Figure 5.4: Lung segmentation evaluation by means of the Ccorr, Cover and
Cunder coe�cients computed locally to each transversal plane. (a) Correct
segmentation. (b) Over segmentation. (c) Under segmentation.

Figure 5.5 (a) reveals a mean over segmentation error C ′over (made by the

algorithm) lower than one pixel in zones I and II. In zones III and IV, this

error lies between 1.5 and 3 pixels . Figure 5.5 (b) shows that the mean

under segmentation error C ′under in zones I to III is lower than half a pixel.

Even in most of zone IV, this error is smaller than 1 pixel.
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(a) (b)

Figure 5.5: Lung segmentation evaluation by means of the C ′over and C
′
under

coe�cients computed locally to each transversal plane. (a) Over segmenta-
tion. (b) Under segmentation.

Although the error analysis presented so far has shown the magnitude

of the segmentation errors along the Z axis, this coe�cients do not give

information about how the error pixels are distributed along the lung contour

of a transversal section. Therefore, in the next sections the contribution

to the global error of the individual errors introduced by the anatomical

structures involved in the lung segmentation will be examined.

5.3 Airways segmentation evaluation

Strictly speaking, the airways of the complete bronchial tree are not seg-

mented. As explained in section 4.4, the goal of the airways segmentation

algorithm was twofold. Firstly, it should reliably segment the trachea and

principal bronchi in 5 mm slice CT images a�ected by the artifacts intro-

duced by the endotracheal tube which distorted the shape of the trachea.

Secondly, it identi�es the carina in order to set the origin of the coordinate

reference system.

The inter individual variability together with the di�erent positions

adopted by the ETT in di�erent experiments result in a wide spectrum of

artifacts which alter the shape of the trachea beyond the alternatives covered

by the segmentation algorithm. This explains that the carina identi�cation
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failed in 2 out of 10 animals of the test set. However, after the carina position

has been automatically (or manually) correctly identi�ed, the segmentation

algorithm has correctly1 segmented the trachea and bronchi of all animals

of the test set. Nonetheless, this can not be considered a highlight of this

approach compared with more sophisticated methods [10, 27, 11]2 capable

of segmenting up to the 6th generation of the bronchial tree.

5.4 Ribs segmentation evaluation

The segmentation of the ribs in the dorsal region is one of the main contri-

butions of this work considering the high accuracy reached by the algorithm.

As explained in chapter 2, in zones II, III and IV the ribs de�ne from the

practical point of view, the contour of the lung in the dorsal region. The

vertebrae are also related to the border of the lung. However, they do not

contribute to the lung segmentation with the same quality o�ered by the ribs.

Some examples of the segmentation errors due to the ribs and vertebrae are

shown in �gure 5.6.

1Since the algorithm has not been applied to a phantom, the segmentation is assumed
to be correct when it coincides with the manual (reference) segmentation considered as a
gold standard.

2These approaches require high resolution CT images for correct operation and cannot
be employed for the airways segmentation of 5 mm slice thickness CT images.
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(a) (b)

(c) (d)

Figure 5.6: Automatic (yellow line) vs. manual (black line) ribs segmenta-
tion. (a, b) Lung over segmentation error near the vertebra. (c) Typical
errors produced by the operator during the segmentation of the dependent
zone of the lung. In this zone the automatic segmentation is usually bet-
ter than the manual segmentation. (d) Example of diaphragm segmentation
near the base of the lung.

The under and over segmentation error have been separately evaluated

for the right and left ribs. Figure 5.7 shows the value obtained for C”over

and C”under coe�cients.

Segmentation errors produced when the lung border does not coincide

with the vertebrae (�gure 5.6 (a, b)) are not analyzed in this section. They

are evaluated together with other error sources in section 5.7 under the head-

ing Others.

100



(a) (b)

(c) (d)

Figure 5.7: Ribs segmentation error. (a, c) Left ribs evaluation. (b, d) Right
ribs evaluation.

Due to errors in the reference segmentation, the error evaluation does

not re�ect the true quality of the ribs segmentation algorithm. The auto-

matic ribs segmentation in the dependent zones obtained with the presented

strategy may be better than the manual segmentation done by an operator

guided merely by the transversal plane image. This relies on the capability

of processing the information available in the 3D data that is not accessible

when a single slice is used for the manual segmentation.

5.5 Aorta segmentation evaluation

The aorta segmentation evaluation deserves a double analysis. From the med-

ical point of view, it is important to assess the portion of lung parenchyma

that has been erroneously identi�ed as a part of the aorta. This aorta over
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segmentation contributes to the under segmentation error of the lung. Figure

5.8 (a), (b) shows that the impact of the aorta over and under segmentation

error is negligible. When the aorta segmentation is displaced from its actual

position, the automatic segmentation of the lung contour, which is composed

of a portion of the aorta wall, may include non-lung tissue (�gures 5.9 (a),

(b)). However, this is not the single error source that increases the lung over

segmentation. Additional vessels and anatomical structures contiguous to

the aorta that are not segmented in the present study are included in the

automatic lung segmentation (�gures 5.9 (c), (d)).

(a) (b)

(c) (d)

Figure 5.8: Aorta segmentation evaluation. Aorta over (a) and under (b)
segmentation error normalized with the area of the aorta in the transver-
sal plane. (c) Distance between the center of the reference and automatic
segmentation of the aorta. (d) Bland-Altman plot of the aorta diameter.
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(a) (b) (c) (d)

Figure 5.9: Lung under segmentation along the aorta wall. The black line
corresponds to the reference segmentation. (a) Top and (c) bottom of zone
III. (b) Enlarged region of image (a) around the aorta. (d) Enlarged region
of image (c).

The second analysis of the automatic aorta segmentation abstracts from

the medical implications and focuses on the evaluation of the segmentation

algorithm itself. As explained in section 4.7, the cross-sectional image of the

aorta in the transversal frame is approximated with a disk which is de�ned

by its radius and its center. Figure 5.8 (c) shows the distance between the

estimated and actual position of the aorta center for each trasnversal frame.

As can be observed the misplacement of the center oscillates around a dis-

tance of 1.5 mm, less than 8% of the aorta diameter. Figure 5.8 (d) shows

the erroneous assessment of the aorta diameter by means of a Bland-Altman

plot. It must be taken into account that an exact reference measurement

of the aorta position and radius was not possible due to the low contrast

observed in the CT images of the atelectatic lungs.

5.6 Diaphragm segmentation evaluation

The diaphragm segmentation is extremely prone to inter individual variabil-

ity. This leads to an inaccurate segmentation which becomes most evident

in the lowest transversal frames. The lower the frame to be segmented, the

less graphical information is available for the automatic segmentation, and

the more information must be provided by the diaphragm model and the

lung-diaphragm edge learned from the training set. Figure 5.10 illustrates
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(a) (b) (c)

Figure 5.10: Representative example of the diaphragm segmentation. (a)
Top, (b) middle, (c) bottom of zone IV. When the transversal slice approaches
the bottom of the base of the lung, the area of the lung is smaller and the
segmentation error increases.

an example of the lung segmentation on the top (a), middle (b), and bottom

(c) of zone IV.

The over and under segmentation errors of the left and right halves of the

diaphragm have been evaluated independently with the coe�cients C”over

and C”under as shown in �gure 5.11.

As mentioned in section 5.1, the region of the lung above the vertebra (in

the transversal plane) is not included in the diaphragm error evaluation.
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(a) (b)

(c) (d)

Figure 5.11: Diaphragm segmentation evaluation. (a, c) Left half of the
diaphragm. (b, d) Right half of the diaphragm.

5.7 Global analysis

The analysis presented in sections 5.3 to 5.6 focuses on the evaluation of the

under and over segmentation errors of the anatomical structures segmented

by the algorithm computed in each single slice. This implies, as mentioned

in section 5.2, that segmentation errors that are large when considered at

a frame level where the lung contour is small, may in fact be negligible if

compared to the whole lung volume.

In this section, an evaluation of the segmentation error of the previously

mentioned anatomical structures normalized by the reference segmentation

of the whole lung volume is presented. The di�erences between the reference

and automatic segmentation due to the vessels that descend adjacent to the
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bronchi, the vena cava, and other small anatomical structures not segmented

by the algorithm result in segmentation errors that are treated separately

under the term others.

Tables 5.3 and 5.4 show the over and under segmentation errors of the

ribs, diaphragm, aorta and others in each zone related to the whole lung

parenchyma. The last column reports the cumulative error due to each

anatomical structure.

Zone I II III IV TOTAL

Ribs - 0.01 0.5 0.13 0.64
Diaphragm - - - 0.53 0.53

Aorta - 0.01 0.09 0.01 0.11
Others 0.06 0.11 0.95 0.57 1.69
TOTAL 0.06 0.13 1.54 1.24 2.97

Table 5.3: Over segmentation error (percentage) in each zone relative to the
whole lung volume.

Zone I II III IV TOTAL

Ribs - 0.06 1.12 0.9 2.08
Diaphragm - - - 0.88 0.88

Aorta - 0.01 0.05 0.01 0.07
Others 0.24 0.52 6.07 1.26 8.09
TOTAL 0.24 0.59 7.24 3.05 11.12

Table 5.4: Under segmentation error (percentage) in each zone relative to
the whole lung volume.

Figure 5.12 shows the proportion of the segmentation error of the anatom-

ical structures related to the whole reference lung volume as indicated in the

column labeled TOTAL in tables 5.3 and 5.4. This analysis re�ects the fact

that large segmentation errors have a moderate impact from the medical

point of view.
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(a) (b)

Figure 5.12: Distribution of the segmentation errors of the anatomical struc-
tures involved in the lung segmentation. (a) Under and and (b) over seg-
mentation of the lung expressed as percent of the whole lung volume.

Bearing in mind that the largest discrepancies between the automatic and

reference segmentation are due to the anatomical structures not analyzed in

the current work (labelled others), they should not be considered segmenta-

tion errors caused by the algorithm. Structures like the vessels adjacent to

the airways, the esophagus and the vena cava are hard to distinguish from

the atelectatic lung parenchyma and are not correctly segmented even in the

reference images. Thus, it is more convenient to trust the automatic segmen-

tation which at least reproduces systematically the same �errors� instead of

relying on a subjective manual segmentation characterized by high inter and

intra observer variability.

Similarly, the apparent low performance of the automatic ribs segmenta-

tion is due to the bad quality of the segmentation considered as gold standard

where the border of the lung in the dorsal region has been poorly segmented.

An exact manual-segmentation of the rib-lung edge is not possible in the

intercostal space (where the rib is not visible in the CT image), consequently

it must be guessed by the expert based on his/her previous anatomical in-

formation.
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Chapter 6

Overview and Conclusions

6.1 Overview

Throughout the present thesis, a number of algorithms specially designed

for the segmentation of thoracic anatomical structures have been presented

concluding with the segmentation of the lungs.

Having observed that the atelectatic lung parenchyma shows very similar

gray level and texture in a CT image compared to the tissue of the diaphragm,

vessels, fat and heart, anatomical knowledge has been employed to overcome

the missing graphical information. The strategy followed to achieve a robust

segmentation was inspired by the human psycho-perception of images. Those

entities that are easily recognized in a CT slice have been identi�ed �rst and

provided information used for the further segmentation steps of the remaining

anatomical structures. This approach has guaranteed a robust and accurate

estimation of the lung boundary in the dorsal region by interpolating land-

marks derived from the ribs which are univocally recognized independently

of the degree of atelectasis. The airways, too, remain unaltered by atelectasis

allowing their identi�cation up to the lower end of the bronchial tree. The

latter has provided valuable information, together with the ribs cage and a

diaphragm model, for the assessment of the completely invisible base of the

collapsed lung. With the help of reference landmarks derived from the lung,

trachea, vertebrae and the carina, the segmentation of the thoracic aorta,
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which CT number di�ers minimally from the surrounding atelectatic tissue,

has been possible. Consequently, inter-pulmonary structures (large airways

and aorta) could be excluded from the �nal lung segmentation.

The results obtained are encouraging considering the di�cult task faced

by the segmentation algorithms due to the lack of information in CT images

of the lungs a�ected by high degrees of atelectasis. Contrary to the trend of

current CAD systems which rely on high de�nition images for an accurate

segmentation, the developed algorithms showed good performance both in 5

mm and 1 mm slice thickness CT images strongly a�ected by artifacts. By

taking advantage of 3D information not available when manual segmentation

is performed on a CT slice, the automatic estimation of the lung border in

the dorsal region have achieved more accuracy than a quali�ed operator.

However, the deviations observed from the expected lung-diaphragm edge,

disquali�es the software for use as a diagnostic tool in the region of the base

of the lung.

6.2 Original contributions of the dissertation

This thesis is focused on the robust segmentation of the atelectatic lung in

1 mm and 5 mm slice thickness CT images intensily a�ected by artifacts

due to probes, tubes and electrodes. Bearing this in mind, well established

segmentation methods have been preferred to more modern approaches of

academical interest. Nonetheless, the existing algorithms alone were not

able to cope with the large variability observed in the shape of the lung

due to di�erent degrees of induced atelectasis and PEEP levels. For that

reason, new algorithms have been designed speci�cally to take advantage

of anatomical information previously learned, thus allowing a robust lung

segmentation. This has only been possible after a meticulous analysis of the

thoracic anatomy that resulted in the identi�cation of those structures which

are minimally in�uenced by inter individual variability and di�erent degrees

of atelectasis.

The most important original contributions reported in this this thesis are:
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� The identi�cation of the anatomical structures, in the thoracic cavity,

that are indicated for the derivation of landmarks and features for the

lung segmentation to be based on. Such landmarks and features have

the important property of remaining unaltered or quasi invariant among

di�erent animals, di�erent degrees of atelectasis, and di�erent PEEP

levels, hereby allowing a robust and reliable identi�cation.

� The procedures for segmentation of the ribs, aorta, large airways, up-

per layer of the diaphragm and lungs by selecting the appropriate algo-

rithms according to the characteristics of the image and the anatomical

structure to be processed.

� The combination of pre-segmentation and classi�cation in order to en-

hance the robustness of the �nal segmentation algorithm.

� The introduction of classi�cation trees for the classi�cation and identi-

�cation of anatomical structures, which can be both automatically and

manually built. This particularity allows the experienced physician to

manually adjust the paramenters of the tree in order for the segmen-

tation algorithms to be applied to species other than those studied

in the present work. At the same time, the tedious manual task of

pre-segmenting a large training set is not required.

� The development of a robust �t algorithm that excludes outliers in

the computation of the �tting function, thus leading to better results,

for the speci�c task it has been designed, than using existing �tting

methods.

6.3 Future work

As shown in chapter 5, the largest discrepancy between automatic and man-

ual segmentation is due to those inter-pulmonary anatomical structures not

considered in the present work. Therefore, the identi�cation of the vena cava

and vessels adjacent to the bronchi [26, 32] constitute the main item for the

further development of this segmentation tool.
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The estimation of the base of the lung is another topic that o�ers a large

potential of improvement. Intra-patient elastic registration is an alternative

to consider if a CT of the healthy lung is available in addition to the CT of

the injured lung. However, handling the non negligible deformations of the

thorax due to the breathing and di�erent PEEP levels, possess a challenge.

Since physicians tend to avoid exposing patiens to the high doses of radi-

ation implicated in a CT study, the analysis of atelectasis by this mean will

likely remain as a research resource used mainly with animals. Under such

assumption, there are no reasons to avoid higher dose of X-rays involved in

thin slice CT, thus implying a reduction of partial volume e�ects. The same

concept could be extended, exposing twice the same animal as required by

material decomposition with the hope to obtain a better singal to noise ra-

tio. Hereby, the improved quality of the images should help to enhance the

accuracy and robustness of the segmentation algorithms.

It is the hope of the author that this thesis has helped to alleviate the

tedious work of manually segmenting the lung from volume CT images. As

has been mentioned before, there is still much to be done but the basis of a

robust segmentation tool has been identi�ed.
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List of abreviations

Aa. Arteriae (arterys)

AAM Active Apearance Model

ARDS Acute Respiratory Distress Syndrome

Ccorr Correct segmentation coe�cient

CDice Dice coe�cient

Cover Over segmentation coe�cient

Cunder Under segmentation coe�cient

CAD Computer Aided Diagnostic

Cf normalized compactness (shape factor)

Co compactness (shape factor)

CT Computer Tomography

DICOM Digital Imaging and Communications in Medicine

EBP Elastic Body Spline

ETT Endotracheal Tube

ERS Edge-Radius-Symetry transform

FSM Finite State Machine

HU Houn�eld Unit

LE Lung Edge

Mm. Musculi (muscles)

MR Magnetic Resonance

PCA Principal Component Analysis
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PDF Probability Density Functions

PEEP Positive End-Expiratory Pressure

RMSE Root Mean Squared Error

ROI Region of interest

Vv. Venae (veins)
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Anhang A

Algorithms setup

A.1 Contour Overlap settings for the airways

segmentation

Signature

Ovr = ContourOverlap(Seed, Target, ThreshOvr,Mode)

Parameters

Seed set of contours used as seed for the volume growing

Target is the set of contours to be analyzed

ThreshOvr minimal number of pixels that must overlap between the areas

of the seed and target contour

Mode controls if all overlapped contours (All) found in the target set

are added to the Ovr found by the algorithm, or only one contour

is selected, namely the one with lower Y coordinate (Upper) or

the one with the largest area (Bigger)

Ovr set of contours that overlap with Seed.
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Table A.1 shows the values heuristically assigned to the parameters of the

Contour Overlap algorithm according to the current state of the auotmaton

(�gure 4.4).

FSM State ThreshOvr [pixels] Mode

Grow trachea down. 50 All
Grow trachea up. 1 All
Grow left br. 10 All
Grow right br. 10 All

Tabelle A.1: Contour Overlap settings according to the FSM state

A.2 Bronchial Tree Tracking settings

Signature

(V ol, S) = V olumeGrowing(CTdata, StartIdx,ROI, StrEl, Thres)

Parameters

CTdata original 3D CT data set. Observe that the �ltered CT images are

not indicated for the identi�cation of small bronchi with diameter

below 1 mm (2 pixels)1 because the 2D median �lter (7 Ö 7 pixels)

would �wash them out�.

StartIdx index of the �rst frame selected to begin with the tracking pro-

cess. Choosing this slice 45 mm below the carina, assures that

the descending bronchi are included in the ROI (see below). This

position is not critical and may vary in a range of 1 cm.

ROI region of interes that will be analyzed in the �rst frame. The lower

ROI side employed for the left lung is de�ned by the left ribs

pro�le (�gure 4.19 (a)), and the upper side replicates the lower

one shifted 100 pixels in ventral direction. The airways segmented

inside this area will be tracked downwards. The same applies for

1considering the pixel size = 0.5 x 0.5 mm of the CT images used in this study.

115



the segmentation of the right side of the bronchial tree, using in

this case the right ribs pro�le to delineate the ROI.

StrEl structuting element that dilates the segmented airways used as

seed (see 4.6.2), a 8 pixels diameter disk.

Thres threshold de�ned for the segmentation algorithm. Although the

airways have a characteristic CT number below HU, a value of

-350 has been set. This relies on the assumption that the gray

level of the soft tissue2 is always higher than -300 HU and the

small bronchi that descend oblique show in the CT image gray

levels near -400 HU. In consequence, the airways are tracked until

their size is as small as one pixel without risk to go on downwards

and include the diaphragm tissue in the segmentation.

Vol segmented volume (not required)

S position of the bottom end of the bronchial tree

Since the bronchial tree tracking algorithm searches merely the lowest extre-

me of the bronchial tree detectable in a CT image, the segmented volume

Vol is discarded.

A.3 Stomach segmentation settings

Signature

(V ol, S) = V olumeGrowing(CTdata, StartIdx,ROI, StrEl, Thres)

Parameters

CTdata is the �ltered 3D CT data set

StartIdx is the index of the last frame selected to begin with the tracking

process. This corresponds to the lowest transversal frame where

the dark regions of the stomach is detected

2assuming in 1 mm slice thicknes
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ROI is the region of interes that will be analyzed in order to segment

the seed in the �rst frame involved in the iterative process. The

ROI includes the whole transversal frame above the carina

StrEl is the structuting element, a 20 pixels diameter disk

Thres is the threshold de�ned for the segmentation algorithm, set to

-500 HU

Vol segmented volume of the stomach

S position of the upper extreme of the stomach (discarded)

A.4 Robust Fit settings for the aorta segmen-

tation

Signature

X∗ = RobustF it(X,Niter, Residual,Model)

Parameters

X x coordinates vector of the aorta center in each transversal frame

before outliers removal and smoothing

Niter maximal number of iterations allowed (set to 15)

Residual mean squared �t error allowed (set to 7 [pixels2 ] )

Model is a general 4th polynom used as �tting function

X* x coordinates vector of the aorta center in each transversal frame

after outliers removal and smoothing
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Appendix B

Datasets

The tables below illustrate the weight of the animals involved in the mechan-

ical ventilation studies and the voxel size of the corresponding volume CT

data used as training and test set for the segmentation algorithms.

Study 1: �Evaluation of di�erent tidal volumes on the estimation of the

PEEP of minimal elastance during Volume Controlled Ventilation (PEEP

Titration Protocol)�. The data used for the training and test sets corresponds

to the sessions performed at end expiration by PEEP levels of 0, 4, 8, 12 and

16 cmH2O.

Study 2: �variable pressure support ventilation vs. conventional pressure

support and pressure controlled ventilation�. The data employed in the train-

ing and test sets correponds to the baseline and injury respectively, under

whole drive end expiration sessions.

118



B.1 Training set

Weight [Kg] Voxel size [mm] Study

25.0 0.47 × 0.47 × 1 1
27.0 0.47 × 0.47 × 1 1
31.7 0.47 × 0.47 × 1 1
44.2 0.48 × 0.48 × 5 2
36.0 0.51 × 0.51 × 5 2
39.1 0.51 × 0.51 × 5 2
39.1 0.51 × 0.51 × 5 2
36.5 0.51 × 0.51 × 5 2
35.8 0.49 × 0.49 × 5 2
33.3 0.51 × 0.51 × 5 2

Table B.1: Weight of the animals and voxel size employed as training set for
the automatic segmentation of the lung.

B.2 Test set

Weight [Kg] Voxel size [mm] Study

25.0 0.47 × 0.47 × 1 1
27.7 0.47 × 0.47 × 1 1
33.7 0.53 × 0.53 × 1 1
36.5 0.47 × 0.47 × 1 1
44.2 0.51 × 0.51 × 5 2
35.6 0.45 × 0.45 × 5 2
43.6 0.47 × 0.47 × 5 2
42.6 0.49 × 0.49 × 5 2
40.1 0.49 × 0.49 × 5 2
36.8 0.49 × 0.49 × 5 2

Table B.2: Weight of the animals and voxel size employed as test set for the
automatic segmentation of the lung.
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