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Abstract

A successful software framework—a software component encompassing reusable design decisions for a
family of related applications—usually has to evolve considerably due to new or changed requirements,
or quality improvements. Although the Application Programming Interface (API) of a framework should
stay stable, in practice it often changes during framework evolution. When upgrading the framework
to a new, improved version, such changes may invalidate plugins—modules that instantiated one of the
previous framework versions into a final application. Such application-breaking API changes are backward-
incompatible with existing plugins: plugin sources cannot be recompiled, or plugin binaries cannot be
linked and run with a new framework release. When upgrading the framework, its developers are forced
to either manually adapt plugins or manually specify update patches. Both tasks are usually error-prone
and expensive, the costs often becoming unacceptable in case of large and complex frameworks. Existing
approaches to automate component adaptation demand cumbersome specifications, which the developers
are reluctant to write and maintain. Finally, intrusive update of existing applications via modifying their
sources or binaries may be impossible at all, in case their sources or binaries are unavailable, or software
licenses forbid their change.

This thesis elaborates on an adaptation technology that supports binary backward-compatible framework
upgrade—existing plugins link and run with the new framework release without recompiling. To protect
existing plugins from API changes, we create binary adapters that constitute an adaptation layer placed
between plugins of an old version and the upgraded framework. From the point of view of an existing plugin,
the adaptation layer looks like the original framework (before the API changes), while from the point of
view of the framework the adaptation layer looks like the updated plugin. Via the adaptation layer, plugins
may invoke the improved functionality of the upgraded framework, while the framework may call back
functionality of existing plugins.

Most adapters of the adaptation layer can be created automatically basing on the history of API changes.
This automation is inspired by several case studies of API evolution, reporting that most application-
breaking evolutionary API changes of software components are refactorings—behavior-preserving program
transformations. Since refactorings have formally defined semantics, we know precisely how they change
framework APIs and, in case of application-breaking API refactorings, can formally define adaptation
actions. In particular, we rely on the semantics of application-breaking API refactorings to automatically
derive compensating binary adapters in our adaptation tool ComeBack!. The tool evaluation shows that most
application-breaking API refactorings can be addressed automatically, and that the performance overhead
implied by adapters is acceptable in a large number of adaptation scenarios.
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• Ilie Şavga, Michael Rudolf, Sebastian Götz, and Uwe Aßmann. Practical refactoring-based framework
upgrade. In GPCE ’08: Proceedings of the 7th International Conference on Generative Programming
and Component Engineering, pages 171–180, New York, NY, USA, 2008. ACM.
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“[C]omponent producers should document the changes in each product release in terms of
refactorings. Because refactorings carry rich semantics (besides the syntax of changes)
they can serve as explicit documentation for both manual and automated upgrades. [. . . ]
migration tools should focus on support to integrate into applications those refactorings
performed in the component.”

–Danny Dig and Ralph E. Johnson
The role of refactorings in API evolution [DJ05]

1
Introduction

As they decrease the development and maintenance costs of software systems, software components play an
indispensable role in software reuse [Szy98]. Component developers design components for reuse by hiding
irrelevant implementation details behind Application Programming Interfaces (APIs) of the components.
Application developers use component APIs to assemble components into final applications. Thereby
application developers are liberated not only from writing component code, but also from its maintenance.

However, in case a number of applications of a certain application domain have a similar architecture,
code reuse may be not enough. In such cases, one may also want design reuse [GHJV95, p. 27] to
share architectural decisions among similar applications. This is what software frameworks allow for. “A
[software] framework is a set of classes that embodies an abstract design for solutions to a family of related
problems, and supports reuses at a larger granularity than classes” [JF88]. It is a skeleton that prescribes
the applications’ overall structure, relation between their subparts, and the applications’ thread of control.
To instantiate an object-oriented framework, developers write plugins—modules that address particular
customer requirements and constitute together with the framework a final application (Figure 1.1). By reusing
the framework, application developers are liberated from implementing design decisions encapsulated in the
framework and can focus on particularities of the application in question tailoring the framework to address
application requirements [JF88].

As opposed to other software components, which are usually called from the code written by application
developers, a framework often plays the main coordinating role in the final application by calling back
plugin code. In such cases, the framework defines a generic algorithm, which is tailored by the application
developers in their plugins. This inversion of control [JF88] enables high framework extensibility and fosters
framework reuse.

F1

P1

Figure 1.1: Framework-based application development. By implementing a plugin P1, application developers
tailor the framework F1 to customer-specific needs.
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In general, there are two types of object-oriented frameworks: white-box and black-box frameworks. A
white-box framework is reused by inheritance: application developers subclass API classes and provide
application-specific implementation in subclass methods. Therefore, to develop a new application, its
developers need to understand how the framework is implemented, while to maintain an application they
need to understand and maintain existing application-specific subclasses. By contrast, a black-box framework
is reused by object composition: it is instantiated by a set of application-specific components, which obey a
particular communication protocol and encapsulate their implementations behind external interfaces. Such
components can be reused by plugging them together without worrying about their implementation [JF88].

Since black-box frameworks require less knowledge about the framework implementation, they are easier
to reuse than white-box frameworks. In ideal cases, a black-box framework can be reused by domain
experts (non-programmers) by applying a set of associated tools to interactively compose framework
components [RJ97]. However, at early stages of framework development it is usually not clear how
to appropriately define the communication protocol of a black-box framework and the interfaces of its
components. Therefore, framework development usually starts with a white-box framework, which evolves
gradually into a black-box framework along with an increasing understanding of the system design. As
Johnson and Foote argue: “Ideally, each framework will evolve into a black-box framework. However,
it is often hard to tell in advance how a white-box framework will evolve into a black-box framework,
and many frameworks will not complete the journey from skeleton to black-box frameworks during their
lifetimes” [JF88]. The main implication of this evolution lifecycle is that, in the same framework, some
framework API types may be reused by object composition (in the following called black-box framework
reuse) and others by inheritance (in the following called white-box framework reuse).1

As any software component, frameworks are software artifacts, which change considerably during mainte-
nance, because, according to Lehman’s first law, “a large program that is used undergoes continuing change
or becomes progressively less useful” [LB85, p. 250]. According to Swanson [Swa76] and more recent
data from Seacord et al. [SPL03, p. 5], the latter based on empirical investigations of maintenance activi-
ties [MM83, NP90, Vli00], most maintenance changes are perfective. Such changes improve the software
products by addressing new requirements, enhancing performance, or usability [II06]. Comparing with other
changes—corrective (e.g., fixing bugs), adaptive (e.g., migrating to a new implementation platform), and
proactive (e.g., improving the future component reliability) [II06]—perfective changes account for about
60% of all maintenance changes in successful software components [Swa76, SPL03]. To summarize these
findings, a successful component is always a candidate for evolution; citing Foote and Opdyke, “success sets
the stage for evolution” [FO95]. A successful framework, as any successful component, is not an exception
and is constantly evolved during its lifecycle.

Ideally, the API of a software framework should stay stable during framework evolution. In practice,
however, the API often changes during the evolutionary lifecycle. As Gamma et al. point out [GHJV95,
p. 27], “because applications are so dependent on the framework for their design, they are particularly
sensitive to changes in framework interfaces. As a framework evolves, applications have to evolve with it.”
Otherwise, any change that affects the framework API may be backward-incompatible with existing plugins.
When a new framework version is released replacing a previously existing version (framework upgrade),
such changes invalidate existing applications; that is, plugin sources cannot be recompiled or plugin binaries
cannot be linked and run with a new framework release. When upgrading to a new framework version,
developers are forced to either manually adapt plugins or write update patches. Both tasks are usually
disruptive in the middle of the development cycle, error-prone, and expensive—the costs often becoming
unacceptable in case of large and complex frameworks.

In general, to reduce the cost of component upgrade, a number of authors propose to, at least partially,
automate component adaptation [BTF05, CN96, RH02, YS97, IT03, KH98, BCP06]. These approaches
rely on and require additional adaptation specifications that describe compensating changes in a machine-
processable way. Developers have to write such specifications using a special language either as a separate

1As an important remark, in the rest of the thesis we consider implementing an API interface white-box framework reuse. Since the
implemented methods are usually called back by the framework in a certain order and might be connected with different states of the
application, such reuse requires much more knowledge of the framework internals than when just composing framework objects in
black-box framework reuse. In such cases, although application developers do not see framework internals from the plugin classes they
write, they still have to know about those internals.
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Framework Version 1

Node

String getName()
void broadcast(String msg)

Framework Version 2

Node

String getName()
void manycast(String msg, int strategy)

RenameMethod
AddParameter

Figure 1.2: RenameMethod and AddParameter refactorings. To vary on communication strategies besides
the default broadcasting, framework developers rename the method broadcast() to manycast() and provide
an integer number indicating a communication strategy as the second method parameter.

document or as annotations in component source code. These specifications are then used by a transformation
engine to either intrusively adapt the old application sources or binaries, or to generate adapters that translate
between the upgraded components and existing application code.

In reality, developers are reluctant to write adaptation specifications. Moreover, once such specifications
are provided, component evolution unavoidably demands their maintenance, because evolutionary changes
may alter component parts on which existing specifications rely, rendering the latter invalid. For instance,
if a component API type that is referred in a specification is renamed after the specification was written,
the specification is no longer valid, unless it is updated as well to reflect the renaming. In such cases,
specifications must be updated along with the changes of the involved components, which raises the
complexity and costs of component adaptation. As the main consequence, while developing and maintaining
a software system based on a large number of components (e.g., frameworks), its developers accept a new
component version only when it helps to fix an existing problem; otherwise, they prefer to stay with old,
often obsolete component versions. This leads to aging of the software system, sometimes even before its
first release [SPL03, p. 3].

1.1 API Refactorings May Break Existing Applications

To overcome the problem of providing and maintaining adaptation specifications, and to foster proper
component upgrade, Dig and Johnson [DJ05] suggest reusing the information about API changes to
automatically guide adaptation. They asked the questions: What kind of API changes occur commonly in
practice? Could the information about these changes be used to perform adaptation, so that developers are
not burdened with the task of creating and maintaining additional specifications? To answer these questions,
they investigated the evolution of five big software components, such as Eclipse [Ecl] and Struts [Str]. They
discovered that from the point of view of the component most (from 81% up to 97%) application-breaking
API changes were refactorings.

In his PhD thesis Opdyke introduces refactorings as program transformations that “do not change the behavior
of a program; that is, if the program is called twice (before and after a refactoring) with the same set of
inputs, the resulting set of output values will be the same” [Opd92, p. 2]. Refactorings play an indispensable
role in software evolution, since, according to Lehman’s second law, “as a large program is continuously
changed, its complexity, which reflects deteriorating structure, increases unless work is done to maintain or
reduce it” [LB85, p. 253]. The so-called “bad smells” in code [FBB+99, p. 75], such as duplicated code
and large classes, decrease code readability, thereby hamper maintainability. Consequently, they impede
software change increasing the efforts and costs required for fixing bugs and making software fulfill new
or changed requirements. By eliminating “bad smells”, refactorings improve the code structure and, in
effect, its maintainability. Common examples of refactorings include renaming classes and class members to
better reflect their meaning, moving members to decrease code coupling and increase code cohesion, adding
new and removing unused members. Figure 1.2 shows the RenameMethod and AddParameter refactorings
applied to a framework API class, resulting in a refactored signature of an API method.2

2All thesis examples are inspired by the LAN simulation lab [LAN, DRG+05] and are summarized in Appendix A.
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Plugin Version 1

LAN

node.broadcast(node.getName()+
“ enters the network“);

callee

Framework Version 1

Node

String getName()
void broadcast(String msg)

(a) Before API refactorings.

Plugin Version 1

LAN

node.broadcast(node.getName()+
“ enters the network“);

callee

Framework Version 2

Node

String getName()
void manycast(String msg, int strategy)

(b) After API refactorings and the framework upgrade.

Figure 1.3: Application-breaking refactorings of a framework API method. While before the refactoring,
the plugin class LAN could invoke methods getName() and broadcast() on an instance of the framework
class Node, after the refactoring the method manycast() refactored from broadcast() via RenameMethod and
AddParameter cannot be located from the old LAN.

If the refactorings of a component preserve its behavior, why are they breaking existing applications
developed with an earlier version of the component? The reason is indicated by Dig: “There is a mismatch
between the closed-world paradigm of refactoring engines and the open-world paradigm where components
are developed at one site and reused all over the world” [Dig07, p. 2]. For refactorings, it is generally
assumed that the whole source code can be accessed, analyzed and, if needed, modified. For instance,
when renaming a method, all its call sites need to be found and updated to reflect the change. As another
example, a method can be deleted only when it is not used. However, if applications developed with
the component being refactored are not available for analysis and update, they may be broken by the
component’s refactorings.

In the context of framework-based applications, where plugins are developed typically by third parties,
the mismatch pointed out by Dig is caused by the fact that plugins are usually not available at the time
of framework refactoring. As a consequence, plugins are not analyzed and updated correspondingly.
Figure 1.3 shows an application-breaking execution of the RenameMethod and AddParameter refactorings
on a framework API method used in a plugin, the latter not available at the time of framework refactoring.

Concluding their case study, Dig and Johnson suggest to document, whenever possible, evolutionary
API changes by refactorings and to build refactoring-aware migration tools supporting safe component
upgrade [DJ05]. Since refactorings are formally defined, the refactoring history of a component can be
treated as a formal specification of its evolution representing a kind of maintenance delta [Bax92] to be used
for automatic software construction and maintenance.

1.2 Thesis Research Questions

Since API refactorings account for most application-breaking changes of framework APIs, a technology
that automatically solves problems caused by API refactorings would considerably decrease the costs of
adaptation required for a framework upgrade. In addition to saving costs, such technology would also
improve the quality of framework upgrade by eliminating errors often made when adapting plugins manually.
Furthermore, it would also relax the constraints on the permitted API changes, extending developers’ options
for appropriate framework evolution.

The main goal statement of this thesis is, therefore, to use the information about API refactorings for
rigorous and practical framework upgrade.
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First, we want to be rigorous by defining precisely the intended meaning of our adaptation. For an
application-breaking API refactoring we should be able to define how the compensating adaptation action
is performed and what the result of this action is. In doing that, we must consider all particularities of
framework-based applications associated with black-box and white-box framework reuse. In addition to
considering particular application-breaking API refactorings, we should also consider the adaptation of a
number of such refactorings that occurred between two framework releases as a whole.

Second, we want to be practical by addressing the main technical requirements of both framework and
plugin developers. Framework developers require a powerful and reliable adaptation technology that does
not place additional strain on them, while compensating for most application-breaking API changes. Plugin
developers want adaptation that permits easy framework upgrade and does not require plugin recompilation.
An important consequence of the latter requirement is that we must support binary backward compatibility
of the upgraded framework and existing plugins—the latter should link and run with the new framework
release without recompiling.3

To support our main goal statement, we will answer the following research question:

How can we use the information about framework API refactorings to foster
binary backward-compatible framework upgrade?

This main question can be detailed to the following four groups of questions:

• [Group 1] Can we expect that other frameworks evolve similarly to the ones investigated by Dig and
Johnson [DJ05], making refactoring-based adaptation feasible in general? What are the circumstances
affecting the applicability of refactoring-based adaptation? Which API refactorings can break existing
applications and how?

• [Group 2] In the context of framework API evolution via refactorings, how should an adaptation
technology supporting binary backward compatibility be defined for application-breaking API re-
factorings, and what is the intended result of such technology? What are the main requirements and
limitations of the adaptation technology?

• [Group 3] What is the correlation between the semantics of refactorings and the adaptation required?
How can this correlation be formally defined and used to perform the adaptation automatically?

• [Group 4] Given such a formal approach for refactoring-based adaptation, how can it be realized in a
practical way?

In this thesis, we will answer these four groups of questions and, hence, our main research question.

1.3 A Refactoring-Based Approach to Support Binary Backward-
Compatible Framework Upgrade

Each of our four groups of research questions is answered concisely in one of the following four subsections
(Sections 1.3.1–1.3.4) and in detail in one of the four main thesis chapters (Chapters 2–5).

3The concept of release-to-release binary backward compatibility was introduced by Forman et al. [FCDR95] in the context of
library evolution. They distinguish furthermore between API compatibility, meaning applications recompile successfully, and ABI (for
Application Binary Interface) compatibility, meaning applications continue to run successfully [FCDR95]. Although we are primarily
interested in the latter, in the rest of this thesis we stay with the more common concept of API backward compatibility, specifying
precisely binary issues involved whenever necessary.
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1.3.1 Re-Exploring the Frontiers of Refactoring-Based Adaptation

To answer the questions of Group 1, we learn more about application-breaking API changes in general
and application-breaking API refactorings in particular. Considering application-breaking API changes,
we analyze how their intent impact on the probability of refactorings to occur in evolving framework
APIs. Knowing the intent of API changes and its relation to the ratio of API refactorings, we reason about
the general applicability of refactoring-based adaptation for a large number of frameworks. Considering
application-breaking API refactorings, we analyze how exactly they break existing applications and reason
about the appropriate adaptation means.

To anticipate the feasibility of refactoring-based adaptation, using two frameworks we define a case study
of API evolution, which is, according to the definition of Yin [Yin94, p. 38], critical—the study’s unique
conditions permit to generalize its results to a larger number of cases. In our case, the conditions are
unfavorable for API refactorings to occur, because the developers of the two frameworks were not restricted
in the way they evolved framework APIs and could apply API changes without preserving backward
compatibility with existing applications. Arguably, in such cases framework developers may change
framework APIs in a more drastic way than via refactorings. However, if the API evolution of such
frameworks are similar to the findings of Dig and Johnson [DJ05], we can expect the broad applicability of
refactoring-based adaptation.

For all API changes detected in our case study, we analyze why they were applied by framework developers,
and attempt to model these changes as refactorings, whenever possible. Our main findings show that, even
under such circumstances of unconstrained API evolution, when framework developers want to improve
the framework, in the investigated frameworks more than 85% of application-breaking API changes can
be modeled by refactorings. However, when framework developers replace the framework with a new
framework version written from scratch, the ratio of refactorings is insignificant. In general, the results of
our critical case study permit us to stipulate a general feasibility of refactoring-based adaptation for a large
number of evolving framework APIs.

As a secondary contribution of our case study, we provide a discussion of the mechanics of the problems
introduced by application-breaking API refactorings. In general, an API refactoring may lead to (1) Non-
localizable Functionality (e.g., a renamed or moved API method cannot be located from a plugin), (2) Missing
Functionality (e.g., a deleted API method is expected in a plugin), (3) Unintended Functionality (e.g., a
plugin method is called when a framework method is expected), or (4) Type Capture (e.g., a plugin type is
instantiated and used when a framework type is expected). This classification helps us to better understand
the adaptation means required for each group, that is, to locate the non-localizable functionality, to insert
the missing functionality, and to protect from the unintended functionality and from the inadvertently
instantiated types.

Considering our findings, we decided for adapters (i.e., applications of the Adapter design pattern [GHJV95,
p. 139]) as unintrusive adaptation means to compensate for application-breaking API refactorings (Fi-
gure 1.4). In practice, intrusive update of plugins via modifying their sources or binaries may not be possible
at all, when plugin sources or binaries are unavailable, or software licenses forbid their change. By contrast,
adapters are applicable in a large number of adaptation scenarios, also when intrusive adaptation cannot be
accomplished.

1.3.2 Designing Adapters for Binary Backward Compatibility in Refactored Fra-
mework APIs

Addressing the questions of Group 2, we develop binary adapters that translate between existing plugins and
the upgraded framework. For an existing plugin, its corresponding adapters are collected in an adaptation
layer placed between the plugin and the framework (Figure 1.5(a)). The adaptation layer reconstructs the old
framework API, with which the plugin was developed, and translates between old plugin types and API types
of the upgraded framework. From the point of view of the plugin, the adaptation layer looks like the original
framework (before the refactoring), while from the point of view of the framework the adaptation layer
looks like the updated plugin. Adapted plugins of different versions are provided with their version-specific
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Plugin Version 1

LAN

node.broadcast(node.getName()+
“ enters the network“);

adaptee

Adaptation Layer

Node

String getName(){
return adaptee.getName();

}
void broadcast(String msg){
adaptee.manycast(msg, BROADCAST);

}

callee

Framework Version 2

Node

String getName()
void manycast(String msg, int strategy)

Figure 1.4: Adapter for RenameMethod and AddParameter API refactorings. The adapter Node of the
adaptation layer placed between the plugin and the framework uses the API methods of the refactored API
class Node to serve the calls from the plugin’s LAN. The BROADCAST parameter used in the adapter is
provided at the time of API refactoring as part of the AddParameter refactoring.

F2

P1

AL1

P2

API 
evolution

version 1 version 2

(a) First framework upgrade. Adaptation layer
AL1 reconstructs the API of the framework ver-
sion F1 and translates between the plugin P1 and
the upgraded framework F2.

F3

P3P1

AL1 AL2

P2

version 1 version 2 version 3 API 
evolution

(b) Second framework upgrade. Adaptation layers AL1 and AL2 recons-
truct the APIs of the framework versions F1 and F2, while translating
between the upgraded framework F3 and the plugins P1 and P2, respecti-
vely.

Figure 1.5: Adapters in refactored framework APIs. Adapters making up adaptation layers AL are placed
between plugins P and the upgraded framework F . Since new plugins are always developed with the
upgraded framework, they require no adaptation.

adaptation layers (Figure 1.5(b)). Adaptation layers support binary backward compatibility of the upgraded
framework and existing plugins—the plugins link and run (via adapters) with the new framework release
without recompiling. Moreover, as shown in Figure 1.5(b), adaptation layers work directly with the latest
framework version avoiding performance degradation that could otherwise be caused by stacking adapters.
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Considering the coupling of the implementation of plugins and the framework, and the possible mixture of
black-box and white-box reuse of the same framework, we introduce four variants of the Adapter design
pattern: Black-Box Class and Interface Adapter patterns, and White-Box Class and Interface Adapter
patterns. To be applicable in refactored framework APIs and to support binary backward compatibility, the
patterns distinguish adapting refactored API classes and API interfaces. Black-box and white-box adapters
are classes connecting types of old plugins and the latest framework API. While black-box adapters help
old plugins to locate the refactored API types of the framework, white-box adapters support the upgraded
framework to call back functionality of old plugins. The most sophisticated pattern—the White-Box
Class Adapter pattern—supports bidirectional message exchange between old plugins calling the upgraded
framework and the upgraded framework calling back old plugins. While they serve as a direct solution for
application-breaking API refactorings, the patterns are also extensible to cope with other API changes, which
can be adapted by integrating (manually or by reusing other adaptation technologies) the compensating code
into black-box and white-box adapters.

Considering the adaptation of the framework API as a whole, we introduce exhaustive API adaptation: both
statically and at run time, the possibly refactored types and objects of the framework API, and old types
and objects of an existing plugin are completely (exhaustively) separated by a corresponding adaptation
layer. Statically, the adaptation layer contains black-box and white-box adapters for all API types, possibly
affected by application-breaking API refactorings. At application execution time, depending on the run-time
type of the object requiring adaptation, the proper (black-box or white-box) adapters are instantiated. If at
run time an object of a type defined in one site (the framework or the plugin) is sent to the other site (e.g., as
a method argument), the object is adapted (wrapped) by a wrapper—an adapter object of the adaptation
layer. If the wrapped object is later sent back to the site it originates from, it is obtained (unwrapped) from
the wrapper.

Considering the encountered challenges, adopted solutions, and limitations, we delimit precisely our
adaptation design. In particular, we discuss how we preserve object identity in the presence of adapters, and
prescribe how to properly use reflective calls and object serialization to avoid invalidating our adaptation.
We also introduce several optimizations to decrease the performance overhead implied by adapters. Finally,
we discuss refactorings, which the Adapter design pattern (and, therefore, our variants of the pattern) can or
cannot compensate. Examples of the latter are API refactorings operating at an implementation level below
method signatures, and refactorings of instance variables declared as public in framework APIs. We explain
how to model complex refactorings using a sequence of more primitive adaptable refactorings, so that the
complex refactorings can be adapted as well.

1.3.3 Formalizing Refactoring-Based Adapter Derivation

Addressing the questions of Group 3, we treat API refactorings as formal specifications of syntactic API
changes and use their trace to automatically derive adapters before upgrading a framework (Figure 1.6(a)).
The refactoring information required can be logged automatically, for example, in Eclipse [Ecl] or JBuil-
der [JBu], or harvested semi-automatically [DCMJ06, WD06], and thus does not require additional specifi-
cations for most application-breaking API changes [DJ05] from developers. Our adaptation technology is
not limited to consecutive framework versions: adapters can be generated for any of the previous framework
versions (as shown, for instance, in Figure 1.6(b)).

The main idea in automating our adaptation is to invert all syntactic changes caused by application-breaking
API refactorings, as seen from the point of view of a plugin being adapted. However, we do not want to
invert API refactorings directly on the refactored framework API, because we want the plugin to use the
refactored, improved framework version. Instead, we want to invert the original application-breaking API
refactorings on adapters, automatically constructing the latter. However, if we defined for an application-
breaking API refactoring its (real) inverse transformation, the latter would be defined in terms of the
structure of the API type affected by the original API refactoring. Since adapters have specific members
(e.g., adapter constructors and adapter methods), their structure differs from the structure of the API types.
As a consequence, in general a real refactoring inverse does not qualify to be executed on adapters.
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(a) First framework upgrade. Adaptation layer
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(b) Second framework upgrade. Adaptation layer AL1 is regenerated
for the plugin P1 considering all application-breaking API refactorings
in the history, while adaptation layer AL2 is generated for the plugin
P2 considering only such refactorings occurred between the framework
versions F2 and F3.

Figure 1.6: Refactoring-based adaptation (two framework upgrades). Given the latest framework API and
the trace of API refactorings that occurred between previous and the last framework versions, adaptation
layers are generated, which translate between existing plugins and the upgraded framework. For plugins
developed with the upgraded framework, no adaptation layer is required.

Because in fact we are interested in inverting only syntactic API changes visible from the old plugin, for each
application-breaking API refactoring we formally define its weak inverse—a transformation that effectively
rolls back the syntactic changes introduced by the refactoring. We call it weak, because its definition
considers only certain (i.e., syntactic) program properties, in contrast to all affected program properties as
considered by the definition of a real (“strong”) inverse. Moreover, not every weak refactoring inverse is
applicable on adapters, due to their structural particularities. For example, although one can specify a weak
refactoring inverse for a refactored public API field, this weak refactoring inverse would not be applicable
on adapters, because the latter do not support public fields. To denote the intrinsic property of certain weak
refactoring inverses as being executable on adapters (and used to derive adapters), we call them comebacks.

Given the latest framework and the history of API refactorings sorted in the temporal order of their application
to the API, we use comebacks to semi-automatically construct adapters before upgrading the framework to
its latest version (Figure 1.7). As the first step of adapter generation, we automatically create a syntactic
replica of the latest framework API—an adaptation layer that mimics the API of the latest framework
version and uses that version’s API types as adaptees (Figure 1.7(a)). At this stage, the adaptation layer
corresponds to the latest API of the framework (i.e., represents exactly the same set of API types), and is
not yet useful for old plugins. As the second step of adapter generation, we invert the syntactic changes
introduced by API refactorings by executing corresponding comebacks on the adapters of the adaptation
layer (Figure 1.7(b)). The execution of comebacks yields the adaptation layer that reconstructs the API of
the old framework version and translates between plugins of the old version and the upgraded framework.
API changes other than refactorings are addressed manually (as indicated in Figure 1.7), or using other
adaptation technologies (e.g., protocol adaptation [YS97]) by inserting the corresponding adaptation code
into adapters of the adaptation layer.

Although Figure 1.7 uses consecutive framework versions, in general framework versions need not be
consecutive: what is important is the difference between the framework’s API versions expressed in terms of
refactorings. For instance, given the API of the upgraded framework, now in version F3, and the refactoring
history between F1 and F3, the adaptation layer AL1 translating between the plugin P1 and the upgraded
framework F3 will be derived in the same manner as for consecutive framework versions.
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Figure 1.7: Comeback-based adapter derivation. To a set of refactorings (r1–r4) between two framework
versions (F1, F2) correspond comebacks (c1–c4) executed on the adapters of the adaptation layer. The
execution order of comebacks is the inverse of the order of the original API refactorings in the history.
Changes other than refactorings are adapted manually (m1). The resulting adaptation layer AL1 reconciles
the upgraded framework F2 and the old plugin P1.

1.3.4 Realizing, Evaluating, and Empowering a Refactoring-Based Adaptation Tech-
nology

Considering the questions of Group 4, we develop and evaluate a logic-based tool ComeBack! that generates
Java binary adapters using a history of API refactorings and a library of comebacks. The library is developed
by encoding comeback definitions as Prolog rules, which operate on the facts representing adapters. The
input of the tool is a set of facts about the latest framework API parsed from the framework binaries, and the
history of API refactorings. The output of the tool is a set of facts about the adapters derived by comebacks,
serialized into executable binary adapters.

The framework upgrade is transparent for a plugin, because the corresponding adapters are generated on
the framework site and are deployed together with the latest framework version. To assemble the plugin
and the upgraded framework via adapters, while avoiding accidental collisions of existing plugin types and
refactored framework types, we separate the name spaces of the framework and the plugin (in Java, by
loading framework and plugin types by separate class loaders). In case an application consists of plugins of
different versions, we support their side-by-side execution [Ang02]: adapted plugins of different versions
may co-exist and simultaneously use, together with newly developed plugins, the latest framework version
(e.g., assuming that the framework and all plugins of Figure 1.6(b) constitute a single application).

The functionality of ComeBack! permits us to adapt all application-breaking API refactorings detected in
our case study and most of such refactorings reported by Dig and Johnson [DJ05] (except for refactorings
of public API fields). We used our case study also to test the performance of the adapters generated by
ComeBack!. Our performance benchmarking shows an increase of execution time ranging from 1% (in the
best case) up to 6.5% (in the worst case) in the adapted applications compared to the same applications
before upgrading the refactored framework. We consider such adapter performance overhead acceptable in
most adaptation scenarios.

ComeBack! is designed to be independent from a particular Integrated Development Environment (IDE) and
is easily combinable with other adaptation tools. Its declarativeness, intrinsic to a logic-based implementation,
allows us to combine the tool with the Eclipse refactoring log to reuse the refactoring history automatically
recorded in Eclipse. In addition, ComeBack! is flexible enough to allow combination of refactoring-based
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adaptation with other adaptation technologies. In particular, we show that it is feasible to integrate protocol
adaptation [YS97] in ComeBack!.

1.4 Thesis Context, Contributions, and Main Limitations

In this thesis we focus on Java frameworks.4 As a consequence, we limit our discussion to the object-oriented
frameworks with single inheritance and single method dispatch. In our adaptation, we support classes,
interfaces, and their members that belong to the API (i.e., declared public or protected, and placed in
dedicated directories accessible by application developers). Among the Java language features we support
are inner classes, enumerations, and static methods. We also support collections and arrays. We do not
support public fields in APIs; this should not be a serious limitation in practice, however, since all instance
variables ought to be encapsulated by accessor methods to implement information hiding [Par72].

In our adaptation scenarios, we assume that plugins are available neither for analysis nor upgrade. Further-
more, we expect a non-distributed context of application execution. Finally, as one of the main requirements
of our technology, our adaptation works in presence of black-box framework reuse (i.e., reuse by object
composition), white-box framework reuse (i.e., reuse by inheritance), and the combination of both.

In this context, the main thesis contributions (indexed, to be referred to in the following chapters) are:

C1: Empirical estimation of the general feasibility of refactoring-based adaptation. By reconsidering
the way framework APIs evolve, we go beyond the case study of Dig and Johnson [DJ05] to estimate
the general feasibility of a refactoring-based adaptation technology. The results of our critical case
study are affirmative—we stipulate that refactoring-based adaptation should be useful in a large number
of evolving framework APIs.

C2: Insights into the mechanics of application-breaking API refactorings. By investigating application-
breaking API refactorings, we improve the knowledge about their technical aspects that make existing
applications break. Based on this understanding, we systematically discuss the means of an adaptation
technology required to compensate for application-breaking API refactorings.

C3: Adaptation design compensating for a refactored API type. By introducing the Black-Box and
White-Box Class and Interface Adapter patterns, we carefully define the structure of adapters that
provide binary backward compatibility compensating for application-breaking API refactorings in
the presence of black-box and white-box framework reuse, and inversion of control. We show how
problems introduced by API refactorings (including the cases, when plugins are not available for
analysis) can be solved by our adapters, without recompiling existing applications.

C4: Adaptation design compensating for a refactored framework API as a whole. By considering the
adaptation of the API as a whole, we introduce exhaustive API adaptation as a set of static and run-time
decisions to preserve type safeness and object identity in the presence of adapters.

C5: Description of challenges, adopted solutions, and limitations in using adapters for refactored
framework APIs. We report on how we solve object schizophrenia, support reflective calls and Java
object serialization, and minimize performance degradation in the presence of adapters. Moreover, we
discuss why we could or could not compensate for certain application-breaking API refactorings using
the Adapter design pattern.

4Although we are addressing, besides Java frameworks, different aspects of refactoring-based adaptation of .NET frame-
works [ŞR07a, ŞRGA08, ŞRL08], our tool support for .NET is currently much more restricted than for Java. Moreover, the frameworks
considered in our case study are also Java-based. Although Java and .NET have similarities in static and run-time type resolution,
which we describe to explain the mechanics of application-breaking API changes and the structure of our adapters, we prefer to focus
on Java specifics for simplicity. In this thesis, we will not discuss details of the on-going work in adapting .NET frameworks, which
can be considered a follow-up work.
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C6: Rigorous refactoring-based adapter derivation. We formalize the concept of a weak refactoring
inverse as a program transformation inverting syntactic changes introduced by refactorings, and
formalize comebacks as a special kind of weak refactoring inverses that can be executed on adapters.
We show how comebacks can be used to systematically construct adapters, basing on the history
of application-breaking API refactorings. For several common refactorings we define and prove
corresponding weak refactoring inverses and comebacks.

C7: Practical tool for refactoring-based API adaptation. ComeBack! supports the refactoring-based bi-
nary backward-compatible upgrade of Java frameworks. Its evaluation shows that the tool compensates
for a number of common application-breaking API refactorings, with a fairly acceptable performance
overhead implied by the generated adapters. Moreover, its functionality can be enriched to reuse the
refactoring logs of development environments, and to integrate adaptation means coping with changes
beyond refactorings. Therefore, we believe ComeBack! is practical and can be used in the future in
large and complex adaptation scenarios.

It is important to emphasize, that although indeed a number of important application-breaking API refacto-
rings have been identified during the case study and covered by our adaptation technology, completeness of
the latter is hard (or, most probably, is impossible) to achieve. Since our technology is limited to adapting
only a subset of application-breaking API changes—API refactorings—, remaining changes need to be
addressed using other adaptation technologies and tools. Moreover, for certain application-breaking API
refactorings it is difficult or impossible to construct the corresponding adapters. For instance, refactorings of
public API fields cannot be compensated for by the adapters presented in the thesis.

Furthermore, applying refactorings may subtly change framework behavior, which cannot be observed
unless dependent application code is executed. For example, if two API methods of an API class’ instance
are coupled by a shared state, moving one of the methods to another API class may impact the state sharing.
If the framework does not use the method in a way that the shared state influences behavior, moving the
method will be considered a refactoring (by the framework developers), although it may indeed change the
framework behavior observable from existing application code. In such cases, simply compensating for the
syntactic modifications using our adaptation technology may not suffice to preserve dependent application
code from malfunctioning. To detect such subtle behavior deviations associated with refactorings requires
thorough testing—an indispensable part of any code restructuring activity. Citing Fowler et al.: “If you want
to refactor, the essential precondition is having solid tests. Even if you are fortunate enough to have a tool
that can automate the refactorings, you still need tests” [FBB+99, p. 89].

Another limitation of our technology is intrinsic to the current state of the art in formalizing and im-
plementing refactorings for commercial programming languages, such as Java. In a number of recent
publications [SEM08, SVEM09, ST09], it has been shown that most (if not all) common refactorings are
insufficiently formalized, while major industrial refactoring tools are flawed. As a consequence, applying
refactorings may introduce errors into programs. Since our adaptation technology is focused on adapting
API refactorings and, moreover, is itself based on refactorings (i.e., comebacks), it may inherit any flaws
in formalization and implementation of refactorings. The practical application of the technology strongly
depends on the quality of formalization and implementation of refactorings for commercial object-oriented
languages, such as Java.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 reports our findings in a case study of unrestricted
API evolution. It shows, that even under such unfavorable conditions for API refactorings to occur, when
framework developers want to maintain the framework, application-breaking API refactorings detected
account for about 85% of all application-breaking API changes. The chapter also presents a taxonomy of
API refactorings classified according to the mechanics of problems introduced by API refactorings, and
argues for adapters as a general adaptation solution.
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Chapter 3 presents in depth the design of our adaptation. Coping with refactorings of particular API types,
the chapter introduces the Black-Box and White-Box Class and Interface Adapter patterns as variants of the
conventional Adapter design pattern that aim for binary backward compatibility of the refactored framework
and existing plugins. Coping with the adaptation of a framework API as a whole, the chapter continues
with static and run-time aspects of exhaustive API adaptation. In addition, the chapter describes challenges,
adopted solutions, and limitations of our adaptation design.

Chapter 4 discusses how to automate adapter derivation based on the formal semantics of API refactorings.
After providing the necessary background information on refactoring formalization, the chapter introduces
the concepts of weak refactoring inverse and comeback, the latter as a formal means for refactoring-based
adapter derivation. The definitions are exemplified by proofs of weak inverses and comebacks for two
common refactorings, while proofs for several other refactorings are presented in Appendix D.

Chapter 5 discusses ComeBack!—a logic-based tool for refactoring-based adapter derivation. Besides
highlighting the general tool architecture, the chapter reports on the refactorings currently supported and
the performance overhead as measured during the tool’s evaluation. In addition, the chapter shows how
ComeBack! can be combined with tools for acquiring refactoring history necessary for refactoring-based
adaptation as well as extended with technologies for adaptation of changes other than refactorings.

Chapter 6 surveys related work and Chapter 7 concludes and discusses possible directions of future work.
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“By three methods we may learn wisdom: First, by reflection, which is noblest; Second, by
imitation, which is easiest; and Third, by experience, which is the bitterest.”

–Confucius (551 BC–479 BC), Chinese Philosopher

2
Re-Exploring the Frontiers of Refactoring-Based

Adaptation

The applicability and benefit of refactoring-based adaptation depends directly on the ratio of refactorings in
the evolution of an Application Programming Interface (API). To estimate the impact of API changes on
existing applications, Dig and Johnson [DJ05] investigated the evolution of five big software components
(four frameworks: open-source Eclipse [Ecl], Struts [Str], JHotDraw [JHo], and proprietary e-Mortgage;
and the software library log4j [Log]). They discovered that 84%, 90%, 94%, 81% and 97%, respectively, of
API changes that could potentially break existing applications could be seen as refactorings from the point
of view of the components being changed. In particular, framework-based applications are broken by API
refactorings, because plugins are usually developed by third-party companies, and are usually not available
for analysis and update at the time of framework refactoring.

Could one expect the change pattern discovered by Dig and Johnson to be similar in other cases of evolving
components, and thus anticipate the general feasibility of refactoring-based adaptation? To an extent, in
his PhD thesis Dig answers this question, stipulating that “most API breaking changes are small structural
changes [. . . ] because large scale changes lead to clients abandoning the component. For a component
to stay alive, it should change through a series of rather small steps, mostly refactorings” [Dig07, pp. 33–
34]. In other words, if component developers are concerned about backward compatibility with existing
applications (and usually they are), they are likely to evolve component APIs through small changes,
especially refactorings.

However, as an evolutionary activity,1 maintenance often conflicts with preserving backward compatibility.
Component developers usually face a tradeoff between updating component APIs and not breaking existing
applications. The degree to which backward compatibility must be preserved, dictates the range of allowed
API changes and varies depending on the development policies. For instance, informal interviews with
developers of our industrial partner Comarch [Comb] show that backward compatibility has the highest
priority when evolving their commercial framework CDN XL [CDN]. As a consequence, its API has
been evolved mostly by additive changes and renamings, for which update patches can be relatively easily
specified manually. As another example, although Eclipse is evolved “while remaining compatible with
previous versions to the greatest extent possible [. . . ] there are a few areas of incompatibility”2 reported
also by Dig and Johnson [DJ05].

To which extent can maintenance changes, which are not restricted by compatibility preservation, be modeled
as refactorings? By answering this question we should be able to reason about the general feasibility of

1According to Lehman [Leh96], we consider software maintenance a form of software evolution.
2Eclipse help system, Section “Eclipse 3.0 Plugin Migration Guide”, Subsection “Incompatibilities between Eclipse 2.1 and 3.0”
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refactoring-based adaptation. Should unrestricted maintenance resemble the change pattern reported by
Dig and Johnson, we could stipulate its occurrence in a large number of software components, in our case,
software frameworks. To foresee the frontiers of refactoring-based adaptation, we address this question by
performing a critical case study.

According to Yin [Yin94, p. 38], a case study is critical, if its unique conditions permit its results to be
generalized (with a certain degree of probability) to a larger number of cases. The conditions are either
in favor of, or against, the occurrence of a certain phenomenon under investigation. In the former case,
the study results may be used to disprove the stipulated research statement: if it does not hold in favorable
circumstances, it will not hold in general. In the latter case, the results are used to validate the statement: if
it holds in unfavorable circumstances, it will hold in general [Yin94].

Arguably, framework maintenance that ignores backward compatibility implies unfavorable circumstances
for API refactorings to occur. Not being afraid of “clients abandoning the component” [Dig07, pp. 33–
34], framework developers might not refrain from changing framework APIs in a more drastic way than
possible with refactorings. If the results of such a case study are similar to the ones reported by Dig and
Johnson [DJ05], we could expect the broad applicability of refactoring-based adaptation. Otherwise, we
should at least be able to reason about circumstances, in which API refactorings are less probable.

Basing on this argument, we defined and performed a critical case study using two open-source Java
frameworks. Both frameworks are mature, being in development for more than five years with several major
versions released. Their developers were never restricted in changing the framework APIs and performed all
intended changes. This chapter brings the following two thesis contributions resulting from our case study:

C1: Empirical estimation of the general feasibility of refactoring-based adaptation. In our case study,
for each application-breaking API change discovered we analyzed its intent (why developers applied it)
and whether this change can be seen as a refactoring, or a series thereof. We show that, when developers
aimed to maintain the frameworks, our change pattern discovered (refactorings accounting for about
85% of all detected application-breaking API changes) resembles the pattern of Dig and Johnson
for more conventional framework evolution [DJ05]. However, when developers wanted to replace
the framework by implementing its new version completely from scratch, the refactoring ratio was
insignificant. In general, the results of our critical case study are affirmative permitting us to stipulate a
general feasibility of refactoring-based adaptation for a large number of evolving frameworks.

C2: Insights into the mechanics of application-breaking API refactorings. As another result of the
case study, we classify application-breaking API refactorings we discovered by the mechanics of the
problems introduced and show examples for each problem group. Using this classification, we reason
about the adaptation means required to adapt each problem group and argue for adapters as a generally
applicable adaptation solution. The classification and the examples introduced will be used consistently
throughout the rest of the thesis to explain exactly how our adaptation technology compensates for
application-breaking API refactorings.

The rest of this chapter is organized as follows: Section 2.1 postulates the feasibility of refactoring-based
adaptation by defining a critical case study of API evolution (Section 2.1.1), reporting the intent of the
application-breaking API changes and the refactoring ratio discovered in the case study (Section 2.1.2),
and discussing the feasibility of the refactoring-based adaptation for a large number of frameworks (Sec-
tion 2.1.3). Section 2.2 continues with details on how exactly API refactorings of Java-based frameworks
may break existing applications by explaining the necessary basics of Java dynamic linking and method
dispatch (Section 2.2.1), introducing running thesis examples of black-box and white-box framework reuse
in Section 2.2.1, presenting the taxonomy of application-breaking API refactorings by the mechanics of brea-
king changes (Section 2.2.3), and discussing adaptation means required to compensate for such refactorings
(Section 2.2.4). Section 2.3 summarizes and concludes our empirical investigations.
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2.1 Empirical Estimation of the General Feasibility of Refactoring-
Based Adaptation

To foresee the general feasibility of refactoring-based adaptation, we define a critical case study, in which
we not only search and count application-breaking API changes (including refactorings), but also evaluate
developers’ goals for performing such changes. As a consequence, our case study is, in fact, complementary
to the study of Dig and Johnson [DJ05]: their results are more quantitative, while ours are more qualitative.

2.1.1 Setup of a Critical Case Study

In their case study, Dig and Johnson collected data in a document-driven way using the framework change
logs or release notes and, if the documentation was not precise enough, manually comparing old and new
framework sources [DJ05]. This way of collecting data is hardly possible for unrestricted framework
evolution, when developers typically do not specify detailed release notes or change logs for new framework
releases. More appropriate to retrospectively detect changes in such frameworks is application-driven
change detection, by making plugins of existing applications compile and run with new framework releases.
All changes applied to plugins making an application executable again represent the framework change
history from that application’s point of view.

Since to perform the application-driven change detection we needed old plugin sources, for our case study
we required at least two applications developed with one of the older framework releases. Furthermore, we
wanted to adapt each application to at least two subsequent framework releases. Therefore, we required at
least three major framework releases to be available: the old release, with which the chosen applications
were developed, and two subsequent releases.

Selected frameworks

It is rarely the case that a mature framework is evolved without, at least partially, preserving backward
compatibility with existing applications. One of the most likely exceptions are frameworks used for teaching
software technologies. Their existing applications are mainly student exercises that usually do not need to be
preserved, so framework developers are unrestricted in evolving the framework APIs. The two frameworks
used in our case study (summarized in Table 2.1, where LoC stands for lines of code) are of this nature.

JHotDraw. As the first framework we used JHotDraw [JHo]—a well-known GUI framework freely available
since 2001, used for developing 2D structured editors. As with its predecessor HotDraw originally developed
in SmallTalk, JHotDraw’s API is extensively documented using design patterns [Joh92], which helped us
considerably to comprehend the framework when performing our case study.

Although the API evolution of JHotDraw was also investigated by Dig and Johnson [DJ05], they investigated
one big version step from 4.0 to 5.0 using the change log. At the time we were performing our case study,
neither JHotDraw 4.0, nor any applications developed with it, were freely available anymore. To perform
application-driven change detection, we selected the earliest framework version (version 5.2), for which

Framework Versions API Classes (Methods) LoC Applications API Coverage

JHotDraw
5.2 129 (1105) 8294

4 (sample) 36% (15%)6.0 285 (2737) 20463
7.0 372 (3201) 38879

SalesPoint
1.0 49 (328) 3350

3 (student exercises) 18% (21%)2.0 172 (1509) 17237
3.1 187 (1651) 18732

Table 2.1: Frameworks selected for the critical case study. API coverage reflects the use of API classes (in
parentheses, of API methods) by the most advanced application used to evaluate each of the two frameworks.
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framework and plugin sources were available. We used four sample clients (JavaDraw, Pert, Net, and
Nothing) delivered with the version 5.2. We also used the two major subsequent framework versions 6.0
and 7.0. JHotDraw developers confirmed that all framework versions used in the case study were evolved
without preserving backward compatibility.3

SalesPoint. As the second framework we used SalesPoint [Sal] developed at our department for teaching
framework technologies. The framework models the skeleton of a purchase-selling application with such
associated concepts as customer, shop, catalog, and data item. To realize application-specific requirements
(e.g, to implement a ticket shop), students specialize framework types. The framework itself has been
developed by students and the developer team changed often during the development process.

We used SalesPoint versions 1.0, 2.0 and 3.1, as well as two applications (student exercises) developed
with the framework version 1.0. During the case study we realized that, because the framework changed
considerably between versions 1.0 and 2.0, the two initially chosen applications did not use the part of the
API, that was new in version 2.0 and could have changed then in version 3.1. To analyze that API part, we
added another application initially developed with SalesPoint 2.0, to the case study set. Because one of the
investigators of the case study has been directly involved in the development of SalesPoint, he could affirm
that backward compatibility was never considered in the API evolution of the framework.

Collecting and interpreting the data

Because the change log of JHotDraw was too coarse-grained (most of the changes were undocumented)
and there was no change log for SalesPoint, application-driven change discovery was performed manually.
Both study investigators had Java programming experience of more than 7 years and good knowledge of
refactorings. Moreover, one of the investigators was previously involved in the development and teaching of
SalesPoint, while the other was knowledgeable about JHotDraw.

We gradually reconstructed the change history of the framework by manually adapting the plugins of
applications developed with the first major framework version to compile and run with the second and
third framework versions. Whenever possible, such adaptations were performed by refactorings. In such
cases, preserving application behavior was confirmed by comparing the functionality in question of the
application running with the first framework release and of the adapted application. In addition, for each
application-breaking API change detected we analyzed why it was applied by framework developers. We
did not explicitly design a list of change intents from the beginning of the study, but rather evolved it as we
learned evolutionary API changes. In such a way, in our manual application-driven change detection we
discovered exactly the backward-incompatible API changes affecting the chosen applications, interpreted
change intent, and, whenever possible, modeled those changes as refactorings.

The change information obtained was recorded in textual form.4 Sometimes it was difficult to infer how
to model a particular detected change and how to interpret its intent. In these cases, we backed up our
interpretation of findings by checking documentation written for application developers and investigating
source comments. In some cases, initial interpretation had to be revised and updated after detecting other
related changes. In other cases, we needed to separate changes actually breaking applications (e.g., moving
an API class) from related preparation changes (e.g., creating a new package for the class being moved).
In such cases, we did not count preparatory changes as application-breaking, although considered them to
better understand the intent of application-breaking changes. We also did not count changes other than code
changes (e.g., changes of XML configuration files in SalesPoint).

It is important to emphasize, that such manual application-driven change detection makes it hard to
impossible to reconstruct exactly the same change history twice for the same application. First, adaptation
decisions highly depend on the experience of the investigators, in particular, on their ability to model changes
as refactorings. Second, some changes can be modeled in different ways, and the decisions often depend
on the investigators’ modeling taste. Third, adaptation changes applied may depend on previously made

3JHotDraw Developer Forum: http://sourceforge.net/forum/forum.php?thread_id=2121342&forum_id=39886
4The protocol of the case study including detailed metrics of the frameworks and applications used, as well as the log of the

recorded changes, is available at http://comeback.sourceforge.net/protocol.pdf
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adaptation decisions, and the relative order of adaptation changes impacts the discovered change history.
Fourth, the knowledge of the frameworks being investigated is important to better understand the overall
impact of API changes: we could probably not manage to model many changes as refactorings without a
deep knowledge of the two frameworks under investigation.

We did not complement our change detection technique with any tool for refactoring detection (e.g., [Refb,
WD06]). Each such tool supports only a certain range of refactorings and we could not anticipate, which
changes would be detected in our case study. Moreover, using a tool for refactoring detection would find
API refactorings possibly affecting applications, while manually detecting the rest of changes would find the
API changes actually affecting applications. Combining the two would most likely bias our investigation
toward a higher ratio of detected application-breaking API refactorings.

Admittedly, by application-driven detection we could not find all application-breaking API changes applied
in the two investigated frameworks, because each chosen application used only a subset of the API types of
the corresponding framework. Moreover, the same application-breaking API change could repeatedly be
detected via different applications. However, our aim was not to find the total number of changes, but rather
to understand why and how application-breaking API changes occurred, and to which extent they could be
modeled as refactorings.

2.1.2 Case Study Results

We were not able to adapt any JHotDraw sample application to use the framework version 7.0. According to
the documentation of JHotDraw (packed together with release 7.0.9), this version “is a major departure from
previous versions of JHotDraw—only the cornerstones of the original architecture remain. The API and
almost every part of the implementation have been reworked to take advantage of the Java SE 5.0 platform.”
Even for the smallest sample application of 63 lines of code (LoC), its recompilation produced more than 60
errors, most of which could not be adapted manually.

The results for the other JHotDraw and two SalesPoint versions classified by the intent of API changes
are summarized in Table 2.2 and discussed in the rest of this section. Our main goal of grouping the
detected application-breaking API changes by their intent was to better understand the driving forces of
the changes—what caused framework developers to apply them to the framework APIs. For each intent,
we present its short description followed by corresponding examples of application-breaking API changes
detected and adapted in the case study.

Shift of responsibility

A change of this group retracted certain functionality from API classes and assigned it to other API classes.
While after the change the functionality was still present in the API, other classes were responsible for
providing the functionality than before the change.

Change intent JHotDraw SalesPoint
5.2→ 6.0 1.0→ 2.0 2.0→ 3.1

Shift of responsibility 0 34 (30) 1(0)
Concept addition 0 23 (23) 1 (1)
Concept refinement 8 (4) 94 (74) 3 (3)
Eliminating duplicated functionality 0 6 (6) 14 (11)
Refactoring to patterns 29 (29) 5 (5) 0
Language evolution 0 3 (2) 0

Table 2.2: Types of application-breaking API changes by their intent. For each type, the overall number of
detected changes (in parentheses, of refactorings) is specified. In total, API refactorings account for about
85% of all application-breaking API changes.
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SalesPoint 1.0
Catalog

User

Old Plugin
callee

void save()
//catalog functionality

catalog.save();

(a) Before the shift.

SalesPoint 2.0
Catalog

User
shop.attach(catalog);
shop.save();

Adapted Plugin
callee

catalogs
Shop

void attach(Catalog c)
void save()

//catalog functionality

(b) After the shift.

Figure 2.1: Shift of responsibility. The method save() is moved from Catalog in SalesPoint 1.0 to Shop in
SalesPoint 2.0. To be persisted, in the upgraded framework a catalog has to be attached to the shop.

For example, in SalesPoint 1.0 an instance of Catalog (containing purchase items) is saved separately; in
SalesPoint 2.0, all catalogs must be attached to an instance of Shop (a singleton class representing the shop)
that is responsible for catalog persistence (Figure 2.1). Such responsibility reallocation could usually be
modeled as refactorings (e.g., moving the method save() from Catalog to Shop, as shown in the transition
from Figure 2.1(a) to Figure 2.1(b)) combined with changes of protocols (i.e., message exchange [AG97])
between the framework and plugins. Although typically not affecting the actual framework functionality
(e.g., the ability to store catalogs), protocol changes introduce permuted message sequences, surplus, or
absence of messages between communication parties [BBG+04]. For the example of SalesPoint, the protocol
change can be seen as the absence in the existing plugin code (e.g., class User in Figure 2.1(a)) of the
method call to Shop’s attach(), to attach a catalog before persisting the whole shop. To adapt plugins, we
inserted such method calls manually.

Concept addition

A change of this group added a new API concept not present in the old API.

Adding a new API concept usually implied adding new API types and methods, and new parameters to
existing API methods. For example, in SalesPoint 2.0, introducing the concept of a shopping cart involved
creating an API class DataBasket, adding it as a formal parameter to six existing methods, creating an
exception type to control that a cart is named correctly, and adding a new method to handle that exception.
All these changes could be modeled as refactorings.

Concept refinement

This group consisted of changes that refined previously existing API concepts to better reflect their semantics
and extend their specific functionality.

In some cases, concept refinement involved renaming methods to better reflect their meaning and extracting
interfaces to separate them from implementing classes. In other cases, refinement implied changing from
Java language types to framework-specific user-defined API types. For example, in SalesPoint 2.0 a new
class NumberValue, modeling all kinds of numerical values, replaced method parameters and return values
of library types String and Integer in all API methods dealing with such numerical values in SalesPoint
1.0.5 As another example, in JHotDraw 6.0 the Java Enumeration class was replaced in the API by the
framework-specific FigureEnumeration, that enabled further addition of concept-specific methods, such as

5Refactoring called ReplaceDataValueWithObject by Fowler et al. [FBB+99, p. 141]
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SalesPoint 1.0
Transaction

executeTransaction(…)

(a) Before the refinement.

SalesPoint 2.0
SaleProcess

start(…)

Gate

getNextTransition(…)

Transition

perform(…)

(b) After the refinement.

Figure 2.2: Concept refinement. While in SalesPoint 1.0 transactions are supported by a thread-based Tran-
saction class, in SalesPoint 2.0 they are supported by a state machine implemented in classes SalesProcess,
Gate, and Transition. For simplicity, method parameters are omitted.

hasNextFigure(). Consistently with Dig and Johnson [DJ05] we considered such changes refactorings only
when the corresponding mappings from old to new types could be provided.6

An advanced case of changes, partially going beyond refactorings, was replacing one SalesPoint concept
by a different concept with richer functionality (Figure 2.2). In SalesPoint 1.0, the concept of transaction
was modeled by Transaction—a thread that could be suspended and resumed (Figure 2.2(a)). In SalesPoint
2.0, it was replaced by SaleProcess to explicitly model a state machine with states (Gate) and transitions
(Transition) (Figure 2.2(b)). The explicit state machine allowed for a more fine-grained control over the
purchase-selling workflow. For instance, one could attach to transitions explicit preconditions controlling
the execution of transitions, and attach to gates specific GUI elements displaying the current state of the
workflow to the user. Adaptation required “dissecting” Transaction to make its states and transitions explicit
for the new state machine, and involved a number of refactorings and non-trivial protocol changes.

Eliminating duplicated functionality

Changes of this group eliminated API functionality discovered to be duplicated, or very similar, in two or
more API classes and methods.

In SalesPoint 2.0, the class User serves for authentication and authorization, while its subclass Customer
mimics the real presence of a customer in a shop at a given point of sale. In the next framework release,
since its developers realized that almost all functionality implemented in Customer exists in class SalesPoint,
they removed Customer and used methods of SalesPoint instead. All but one change involved in adapting
plugins could be modeled as refactorings to call the semantically equivalent methods in SalesPoint; the
exception was a protocol change to call a sequence of three methods in the refactored framework instead of
a single initial method in the previous framework version.

Refactoring to patterns

Refactoring to patterns [Ker04] is the processes of restructuring existing code to make it follow certain
design patterns [GHJV95]. By definition, all changes of this group are refactorings.

For example, class MenuSheet of SalesPoint 2.0 was restructured to follow the Composite design pat-
tern [GHJV95, p. 163]—a change that involved a set of refactorings to participating types, such as class and
method addition, method renaming, and generalization of argument types.

As another example, in JHotDraw 5.2, Editor mediated between the classes Drawing, View and Tools in
a realization of the Mediator design pattern [GHJV95, p. 273]. In JHotDraw 6.0, the class View does not
participate in this pattern anymore. Instead, it is Subject in a newly introduced application of the Observer

6Although there is an ongoing research of adaptation in the presence of language evolution [DKTE04, BTF05, KETF07], transfor-
mations replacing library types with user-defined types are not yet formally defined.

21



design pattern [GHJV95, p. 293], with Editor observing View. Adapting plugins implied their refactoring to
call semantically equivalent methods, now located in other classes than in the previous framework release.

Language evolution

Changes of this group discovered in our case study were driven by the evolution of Java, when old Java
language types were replaced by new, improved Java types.

In SalesPoint 2.0, the parameter type of the FormSheet class constructor changed from Panel of AWT
to JComponent of Swing. This change was visible in the API and could not be considered a refactoring.
Contrary, changing Catalog to collect its items in a Map (JDK 1.2), instead of a Dictionary (JDK 1.0),
was encapsulated and reflected in the API as two refactorings of Catalog’s methods (e.g., from keys() to
keySet()). In this case, the changes could be modeled as refactorings mainly because “the functionality of
[Enumeration] interface is duplicated by the Iterator interface.”7

2.1.3 Discussion of the Feasibility of Refactoring-Based Adaptation

Although backward compatibility was not considered by the developers of the two investigated frameworks,
our pattern of discovered changes (about 85% consisting of refactorings) repeated the results reported by
Dig and Johnson for more conventional framework evolution [DJ05]. Maintaining a framework means
restructuring it in the first place, and it is this restructuring that often affects existing applications. Most of
the other changes are usually additive and do not break existing plugins. Even if considerably changing a
framework API (e.g., replacing Transaction by SaleProcess in SalesPoint, as we discussed in Figure 2.2),
developers first analyze the existing framework implementation. Consciously or unconsciously, they perform
a mental restructuring of the old design and reuse existing design decisions. Whether the new implementation
partially reuses existing code or is written from scratch, this mental restructuring boils down to code that
can often be modeled as the refactored old implementation. In other words, because software maintenance
requires a good understanding of existing systems, developers think in terms of restructuring and extending
existing concepts, even when applying complex changes.

The transition of JHotDraw from 6.0 to 7.0 does not contradict our statement, because it is a case of system
replacement and not of system maintenance [SPL03, pp. 6–7]. Arguably, although developers possess
knowledge about the framework being replaced, they develop the concepts and the whole architecture of
the replacement system from scratch without mentally restructuring existing design. For such situations,
refactoring-based adaptation is probably not feasible.

One could argue that the ratio of refactorings applied depends on how the system architecture is affected:
the more of it is changed, the less is the probability of refactorings. However, Tokuda and Batory [TB01]
show that even large architectural changes can be achieved by applying a sequence of refactorings. More
important is the driving force of the change: if developers want to improve the system (and not replace it,
for example), their changes are likely to be refactorings.

Interestingly, our results are echoed by recent investigations of framework evolution [SJM08, DR08].
Similar to us, Schäfer et al. [SJM08] use applications to detect framework API changes; in their case, by
automatically comparing old and ported applications. In interpreting the data, they distinguish between a
basic refactoring, meaning an operand as a single unit of transformation, and a conceptual change with a
bigger impact on the system architecture (such as concept addition). For three frameworks and one major
version step selected (Eclipse UI framework 2.1.3 to 3.0 [Ecl], JHotDraw 5.3 to 5.4 [JHo], and Struts 1.1
to 1.2.4 [Str]), they show that more than 75% of application changes that accomodate changes in evolving
framework APIs are basic refactorings, while others are classified as conceptual changes. However, from
our point of view, most of the conceptual changes can also be seen as a sequence of refactorings, as has been
shown by Tokuda and Batory [TB01] and discussed by us in Section 2.1.2. In fact, Schäfer et al. themselves
use refactorings to explain conceptual changes, for example, replacing method calls to call semantically
equivalent new API methods [SJM08].

7http://java.sun.com/j2se/1.4.2/docs/api/java/util/Enumeration.html
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Instead of analyzing application changes, Dagenais and Robillard [DR08] consider how the framework itself
accommodates to the changes of its API. For all old API methods not present in a new framework version,
they discover methods that are used internally in the framework as a replacement for old functionality,
and interactively suggest choosing these methods to adapt applications. In a case study of the Eclipse
JDT [JDT] they show that about 89% of the functionality not accessible through the API of the upgraded
framework is still present in the framework. Similar to Schäfer et al. [SJM08] they distinguish between
basic refactorings and more complex architectural changes. However, their findings show, that in most cases
the functionality required is still provided by the framework, and repeat, in fact, the pattern discovered by
Dig and Johnson [DJ05].

Concluding our feasibility study, our findings show that design (and code) restructuring is the intrinsic
property of the process of software maintenance. As a consequence, this allows for great optimism that
refactoring-based adaptation should be useful in a large number of evolving frameworks.

2.2 Insights into the Mechanics of Application-Breaking API Refac-
torings

Besides exploring the general feasibility of refactoring-based adaptation, the results of our critical case study
made us understand precisely how certain framework API refactorings may break existing applications. As
a consequence, we could exactly identify the mechanics of the problems introduced by API refactorings and
reason about how to adapt such refactorings. In this section, we present a taxonomy of application-breaking
API refactorings, discuss their mechanics and show examples of application-breaking API refactorings for
each identified problem group. The examples introduced in this section will be used in the rest of the thesis,
when discussing appropriate adaptation actions.

2.2.1 Background on Java Loading, Linking, and Method Dispatch

To start with, we shall shortly describe relevant issues of the Java Virtual Machine (JVM) [LY99]. Readers
aware of the Java dynamic loading, linking, and method dispatch can safely skip this description and
continue with Section 2.2.2.

In Java, a type refers to the types and type members it uses by symbolic information embedded in the type’s
binaries (stored in the type’s .class file). For example, if a method of a class (called, in the following, callee)
is to be invoked from within some class (called, in the following, caller), the information about this method
is represented in the caller’s binaries by the method signature8 and return value, together with the callee’s
fully qualified name. The JVM uses this information to load the type of the callee—find the type’s binary
representation and create from it an executable type. In most of the cases, loading of a type is triggered by
the type being referenced from some other type, which loading started at some earlier point in time. Each
type is loaded by a class loader (either the Java default system class loader or a user-defined class loader),
with which the loaded type is registered. Thereafter, the type is inserted by the JVM linker into the virtual
machine so that the type’s code can be executed. The main advantage of using symbolic information in the
binaries is that the callers do not depend on the physical layout of their callees. If, for instance, a callee’s
members are reordered and the type is then recompiled, its callers will still be able to find the required
methods without being recompiled. Because most of the work of (loading and) linking is done at (load time
and) run time, it is called dynamic linking.

Besides dynamic linking, similar to other object-oriented languages, Java provides (single) method dispatch:
when a method is called on an object (the method receiver), the actual method executed is chosen based on
the class of the method receiver.9 In case the method is not defined in the class, the run-time method lookup
finds and invokes the most specific method with the same signature defined by a class’ ancestor in the class
hierarchy.

8In Java, a method signature consists of the name of the method and the set of its formal parameters.
9Multiple method dispatch that considers in addition run-time types of method arguments is not supported in Java.
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Note on Thesis Visual Notation

The visual notation used in most thesis figures is similar to UML class diagrams [Obj05]. However,
since we are not concerned about depicting public fields, the field parts of the class boxes are
omitted. Moreover, since we operate only with API methods, visibility modifiers are omitted. For the
sake of compactness, in case we want to show method implementations, they are specified directly
in the bodies of the corresponding methods, and not on separate UML notes. For better visual
disambiguation of API classes and interfaces (which is important, when discussing adapter design),
we make italic the names of API interfaces, but not of abstract API classes. Arrows between class
boxes point from the calling site to the callee. Finally, to demarcate the framework, plugin, and (if
present in the figure) adapter types, we place the types in separate layers called Framework, Plugin,
and Adaptation Layer, respectively.

2.2.2 Thesis Running Examples of Black-Box and White-Box Framework Reuse

Now that we briefly introduced necessary Java concepts, we can continue with examples of black-box
and white-box framework reuse,10 which we will use in Section 2.2.3 to show application-breaking API
refactorings. The following examples are taken from RefactoringLAN—a collection of examples of
framework reuse and API refactorings we define and use throughout the rest of the thesis. For the figures of
RefactoringLAN, we use a visual notation similar to UML class diagrams [Obj05] with minor deviations
made for the sake of presentation specific to our context. RefactoringLAN is inspired by the LAN simulation
lab used at the University of Antwerp for teaching framework technologies [LAN, DRG+05], and is
summarized in Appendix A.

Examples of black-box framework reuse

In black-box framework reuse, plugin types may act as callers.

Figure 2.3 shows a plugin class LAN calling the method createPacket() on an instance of a framework
class PacketFactory. Thereafter, LAN asks the obtained packet (of type IPacket) about the packet creator
node by calling the method whoCreated(). Plugin binaries contain symbolic information that refers to the
fully qualified names of the framework class and interface, and the signatures and return values of the
two framework methods to be called. This information is used in dynamic linking to find and prepare the
framework types and methods for execution.

Examples of white-box framework reuse

In white-box framework reuse, both the plugin and the framework types may act as callers.

Plugin caller. A plugin type may call inherited API methods on an instance of a plugin subclass via a
usual method call or a supercall. Figure 2.4 shows a framework class Node subclassed by the plugin’s
SecureNode. The framework’s Node defines a method getIdentifier(), the implementation of which is
inherited by SecureNode. The run-time method lookup will find and invoke the framework implementation
of the method in the calls from the plugin’s LAN and SecureNode.11

Framework caller. A key property of a framework that enables the intrinsic framework ability of inversion
of control [JF88] is the ability to call back plugin functionality. To enable tailoring a generic framework
algorithm to application-specific requirements, framework developers may declare certain API methods

10Recalling our footnote from the Introduction on page 2, we consider implementing an API interface a white-box reuse.
11In fact, using the keyword super in the example of Figure 2.4 is optional, since the method getIdentifier() is not redefined in

SecureNode. However, we will use this example to discuss particularities of the adapter design, which should take into account possible
supercalls from plugin classes to framework classes.
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Plugin Version 1

LAN

IPacket packet = factory.createPacket(node, 
node.getIdentifier());

System.out.print("Packet created by " +
packet.whoCreated().getName());

LAN.class

methodRef_info
framework.PacketFactory
createPacket(Node,int):IPacket

methodRef_info
framework.IPacket
whoCreated(): Node

invoked

refer

refer

Framework Version 1 

PacketFactory

IPacket createPacket(Node n,int id){
//log id
return new Packet(n);

}

IPacket

Node whoCreated()

Packet

Packet(Node node)
//return packet creator
Node whoCreated()invoked

callee callee

Figure 2.3: Black-box framework reuse: Plugin as caller. LAN’s binaries contain symbolic references to the
framework’s PacketFactory and its method createPacket(), as well as to the framework’s IPacket and its
method whoCreated().

LAN

SecureNode node = new SecureNode();
System.out.print("secure node with " + 
" id: " + node.getIdentifier() +
" encryption: " + node.getDescription());

Node

int getIdentifier(){
//return unique identifier 

}

callee

SecureNode

String getDescription(){
int id = super.getIdentifier();
//return id + info on
//message encryption 

} 

Plugin Version 1

LAN.class

methodRef_info
plugin.SecureNode
getIdentifier():int 

Framework Version 1 

invoked

SecureNode.class

methodRef_info
framework.Node
getIdentifier():int

//no locally 
//defined method
//getIdentifier():int =>
//lookup inherited methods 

refer

calleerefer

Figure 2.4: White-box framework reuse: Plugin as caller. The plugin’s SecureNode inherits the method
getIdentifier() from the framework’s Node. The inherited method is invoked by the call from the plugin’s
LAN and (using the keyword super) by the supercall from the plugin’s SecureNode.

to be implemented in plugins (so-called hook methods) and then call these methods on objects of plugin
types.12 In general, a hook method may be declared abstract (i.e., plugins must define its implementation)
or concrete (i.e., with a default implementation plugins may redefine, or override). While for defined or
redefined API methods their plugin implementation is invoked by the framework at run time, for other API
methods the framework implementation is executed (Figure 2.5).

12For simplicity, in our examples we omit details of generic framework algorithms.
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Utils

System.out.print("node " + node.getInfo() +
" located at " + node.getNodeLocation() +
" sends " + msg);

node.broadcast(msg);

Node

//node info
String getInfo()
//node location
String getNodeLocation()
//message broadcasting
void broadcast(String msg)

callee

SecureNode
//network location
String getNodeLocation()
//encrypted broadcasting
void broadcast(String msg)
//encryption info
String getDescription()

Plugin Version 1

refer

Framework Version 1 

Utils.class

methodRef_info
framework.Node
getInfo():String

methodRef_info 
framework.Node
getNodeLocation():String

methodRef_info
framework.Node
broadcast(String):void

invoked

invoked

invoked

refer

refer

(a) Calling API class methods. The framework call to getInfo() will execute the framework method implementation, while the
calls to the methods getNodeLocation() and broadcast() will invoke the implementations provided by SecureNode.

PacketFactory

Report packetSeenInNode(Node checkNode, 
IPacket pckt){

pckt.whoCreated().getName();
…

}

IPacket

Node whoCreated()
callee

SecurePacket
Node whoCreated(){
//return packet creator

}

Plugin Version 1

Framework Version 1 

invoked

PacketFactory.class

methodRef_info
framework.IPacket
whoCreated():Node

refer

(b) Calling API interface methods. The framework call to whoCreated() will invoke the method implementation of the plugin
class SecurePacket implementing the IPacket interface.

Figure 2.5: White-box framework reuse: Framework as caller. Framework binaries contain symbolic
information about the API methods, including those defined or possibly redefined in plugins. At run time,
the calls to the API methods are dispatched according to the run-time type of the message receiver, leading
to the execution of the framework or plugin method implementations.

In the example of Figure 2.5(a), the framework class Node defines three methods: a concrete method getInfo()
for obtaining node descriptions, an abstract method getNodeLocation() for identifying node locations in
the network, and a concrete method broadcast() for message sending. The framework class is subclassed
in a plugin by SecureNode that implements getNodeLocation() to return the node location and overrides
broadcast() to encrypt a message before sending. In case at run time an instance of SecureNode is sent
to the framework’s Utils, which invokes the three methods on that instance, Java method dispatch will
invoke the framework method implementation of getInfo(), and the plugin method implementations of
getNodeLocation() and broadcast().
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Problem Description PR Examples
Non-localizable
Functionality

Although functionality required
exists, it cannot be located by the
caller

yes Changing API method signatures,
moving API methods, renaming and
moving API types

Missing
Functionality

Functionality required by the caller
does not exist

yes Removing API methods, adding abs-
tract API methods

Unintended
Functionality

Functionality found and invoked by
the caller is not the one intended

no As for Non-localizable Functiona-
lity + adding API methods

Type Capture Although the type defining required
functionality exists, it is taken over
by other type with different functio-
nality

yes Adding, renaming and moving API
types

Table 2.3: Types of problems caused by API refactorings. The PR column indicates, whether plugin
recompilation would detect the problems introduced by framework API refactorings.

In the example of Figure 2.5(b), the framework API interface IPacket is implemented by the plugin’s
SecurePacket. In case at run time an instance of SecurePacket is sent to the framework’s PacketFactory,
invoking the whoCreated() method on the instance will lead to the execution of the plugin’s method
implementation.

2.2.3 Classifying Application-Breaking API Refactorings by the Mechanics of Brea-
king Changes

In general, API refactorings may lead to the caller not obtaining the functionality it requires, which could
be obtained before the refactoring. Considering particularities of application-breaking API refactorings
observed in our case study (reported in Section 2.1.2) and of Java language dynamic linking and method
dispatch (sketched in Section 2.2.1), we identify four groups of problems caused by API refactorings: Non-
localizable Functionality, Missing Functionality, Unintended Functionality, and Type Capture (summarized
in Table 2.3). In the following, we discuss each problem group from both perspectives: as seen from plugin
callers and from framework callers.

Some of the problems we discuss were previously reported in the area of component-based software enginee-
ring with regard to general API changes of components used in component-based applications [SLMD96,
MS98, KL92]. However, we decided to introduce our terminology to precisely delimit the problems specific
for the context of framework API refactorings, as opposed to arbitrary changes of component APIs. In our
discussion, we refer to existing terminology [SLMD96, MS98, KL92] whenever appropriate.

Non-localizable Functionality

“Although functionality required exists, it cannot be located by the caller. Application execution results in
linkage errors, while plugin recompilation results in compilation errors.”

Non-localizable Framework Functionality. This problem may occur, when the plugin is acting as a caller,
either in black-box or in white-box framework reuse. In case a framework refactoring is affecting the
signature or location of an API method called in a plugin, the dynamic linking will not localize the refactored
API method.

For black-box framework reuse introduced by Figure 2.3 on page 25, Figure 2.6 shows the consequences of
two API refactorings: (1) RemoveParameter applied to the second parameter of the createPacket() method
defined by the API class PacketFactory, and (2) RenameMethod renaming the method whoCreated() of the
API interface IPacket to getCreator(). For white-box framework reuse introduced by Figure 2.4 on page 25,
Figure 2.7 shows the problem caused by the RenameMethod refactoring applied to the method getIdentifier()
of the API class Node. Similarly, other refactorings of API method signatures (e.g., adding parameters,
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Plugin Version 1
callee

Framework Version 2 

PacketFactory

IPacket createPacket(Node n){
//log n.getID()
return new Packet(n);

}

LAN

IPacket packet = factory.createPacket(node, 
node.getIdentifier());

System.out.print("Packet created by " +
packet.whoCreated().getName());

LAN.class

methodRef_info
framework.PacketFactory
createPacket(Node,int):IPacket

methodRef_info
framework.IPacket
whoCreated(): Node

IPacket

Node getCreator()

Packet

Packet(Node node)
//return packet creator
Node getCreator()

refer

refer

callee

not
invoked

?
?

not
invoked

Figure 2.6: Non-localizable Framework Functionality (black-box framework reuse). Since framework
developers realized, that the second method parameter of the PacketFactory’s createPacket() is redundant
(the node’s identifier can be obtained from the node passed as the first method argument), they removed
the redundant parameter. In addition, they renamed IPacket’s method whoCreated() to getCreator(). As a
consequence, symbolic method references in LAN became obsolete.

changing their types or order) will make dynamic linking unable to locate the refactored API method using
old method references in plugin binaries.

Another common example of this problem group, which can be seen as a method signature refactoring from
the point of view of existing plugins, is the refactoring that replaces calls to an old API method to call another
API method with similar, yet improved functionality. The old method is usually marked as deprecated and
deleted in upcoming framework releases. This so-called deprecate-replace-remove lifecycle is very common
in evolving component APIs, in particular framework APIs. After such refactorings, binaries of the plugins
unavailable for analysis and update at the time of framework refactorings will still contain the references to
the old API methods, and not the API methods to be called after the refactoring.

Yet another example is the ExtractInterface refactoring [FBB+99, p. 277]: a previously existing class
is split into an interface (named usually as the class before the refactoring) and a class implementing that
interface. In such cases, dynamic linking may be able to find the type’s binary representation, but because it
finds the interface and not the class (as it expects), dynamic linking cannot locate the implementations of the
methods required by the caller.13

As a concluding example of this problem group, refactorings changing the method location (e.g., moving
methods among classes) lead to dynamic linking not being able to localize the moved methods. Similarly,
one can consider refactorings renaming API types and packages as also changing method locations, because
such refactorings, from the point of view of existing plugin callers, make methods appear in different (i.e.,
renamed) types.

In most of the cases, plugin recompilation does not solve the problems of this group and reports compilation
errors, because plugin sources still contain obsolete references and the compiler is not able to locate changed
types and methods. A notable exception is specializing return type or generalizing parameter type of a
method, in which case the compiler is able to properly update plugins (an example of a binary-incompatible

13In Java, the exact reason of this problem is the different binary code instructions used for calling class and interface methods.
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SecureNode node = new SecureNode();

 

System.out.print("secure node with " + 
" id: " + node.getIdentifier()
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refer
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Figure 2.7: Non-localizable Framework Functionality (white-box framework reuse). Node’s getIdentifier()
is renamed to getID() and can be located neither from LAN nor from SecureNode, due to obsolete symbolic
references in plugin binaries.

refactoring as opposed to source-incompatible refactorings). The aforementioned ExtractInterface
refactoring can also be solved by plugin recompilation, if plugins do not invoke any constructor of the class
being refactored.

Non-localizable Plugin Functionality. This problem may occur in white-box framework reuse, when a
framework type is acting as a caller. In case an API refactoring affects the signature or location of an
abstract hook method, dynamic linking will not find the plugin implementation of the hook method. As a
consequence, the callback mechanism will not function properly.

For an example, let us reconsider the framework calling back abstract API methods implemented in a plugin,
as we introduced by Figure 2.5(a) for an API class and by Figure 2.5(b) for an API interface. Figure 2.8
shows application-breaking consequences of API refactorings applied to an abstract method of an API class
(Figure 2.8(a)) and to a method of an API interface (Figure 2.8(b)). In both cases, the plugin functionality
that should be accessible from the framework via the callback mechanism will not be located from the
refactored framework, and dynamic linking will fail with a linkage error.

In the context of component API evolution, Steyaert et al. call the problem of invalidating existing subclasses
by newly introduced abstract API methods the Unimplemented Method problem [SLMD96]. Analogously
to their terminology, by Non-localizable Plugin Functionality: Unimplemented Method we call the problems
caused by framework refactorings of existing abstract API methods.

Effect. Most application-breaking API refactorings lead to the problems of this group. In general, such
refactorings lead to syntactic mismatch [BBG+04] between the framework and plugins: although the
functionality is fully available, the framework and its plugins do not communicate as intended by developers,
due to the different syntactic type representation.

Missing Functionality

“Functionality required by the caller does not exist. Application execution results in linkage errors, while
plugin recompilation results in compilation errors.”

Missing Framework Functionality. Whereas some authors (e.g., [DMJN07, DNMJ08]) use the term edit
to denote pure API method removal, we stay with the well-known terminology of Opdyke [Opd92] and
Roberts [Rob99], and consider DeleteMethod applied to an API method unused in the framework also a
refactoring. Although the precondition of the DeleteMethod refactoring checks that the method is not in
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Utils

System.out.print("node " +
" located at " + node.getLocation()); 

Node

String getLocation()
callee

SecureNode
//network location
String getNodeLocation()

Plugin Version 1
refer

Framework Version 2 

Utils.class

methodRef_info
framework.Node
getLocation():String not

invoked

(a) API class refactoring. The signature of the plugin method getNodeLocation() does not match the signature of the renamed
abstract API method getLocation() in the framework’s Node.

PacketFactory

//pckt instance of SecurePacket
pckt.getCreator().getName();

IPacket

Node getCreator()
callee

SecurePacket
Node whoCreated(){
//return packet creator

}

Plugin Version 1

Framework Version 2

PacketFactory.class

methodRef_info
framework.IPacket
getCreator():Node

refer

not
invoked

(b) API interface refactoring. The signature of the method whoCreated() implemented in the plugin’s SecurePacket does not
match the signature of the renamed API interface method getCreator() in the framework’s IPacket.

Figure 2.8: Non-localizable Plugin Functionality: Unimplemented Method. Framework binaries contain
symbolic information about the abstract API methods, the implementations of which are provided in plugins.
After upgrading the refactored framework, since the signatures of methods defined in the plugin do not
match the signatures of refactored abstract API methods, the plugin functionality will not be located from
the framework.

use, in case plugins are not available for analysis an API method still in use may get deleted. The same
holds for deleting an API type (a class or an interface). Other refactorings of this group reduce the type
and method visibility, although not actually deleting the framework functionality (e.g., the HideMethod
refactoring [FBB+99, p. 245]).

To emphasize, pure API method deletion is rarely the case in framework APIs; instead, the method to
be removed from an API follows a deprecate-replace-remove lifecycle. In these cases, we consider API
refactorings that realize the deprecate-replace-remove lifecycle as refactorings leading to Non-localizable
Functionality, because the functionality required by plugins is still provided by refactored API methods of
the framework, and is not deleted altogether.

Missing Plugin Functionality. Introducing a new abstract hook method is application-breaking, because
no implementation in plugins exists. This is exactly the example of the Unimplemented Method problem
as described by Steyaert et al. [SLMD96]. In contrast to Non-localizable Functionality: Unimplemented
Method, in this case the plugin functionality required does not exist at all. If, however, the hook method
being added is concrete (i.e., the framework provides a default method implementation), adding the method
will usually not break plugins (except for Unintended Plugin Functionality: Method Capture described
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node.manycast(msg, Strategies.BROADCAST);

Node

void manycast(String msg, 
int strategy){

if(strategy==BROADCAST)
//broadcast message

else //other strategies
}
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//encrypted broadcasting
void broadcast(String msg)

Plugin Version 1
refer
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Utils.class

methodRef_info 
framework.Node
manycast(String,int):void
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Figure 2.9: Unintended Framework Functionality: Inconsistent Method. In the upgraded framework, the
overriding plugin functionality of the SecureNode’s broadcast() responsible for sending encrypted messages
is not located by dynamic linking using the signature of the refactored Node’s manycast(). As a consequence,
the framework implementation of the method is executed in LAN, as opposed to the plugin implementation
invoked before the framework upgrade.

shortly, on page 33), because existing plugins are not supposed to override the newly introduced hook
method.

Effect. From the point of view of dynamic linking, Missing Functionality is similar to Non-localizable
Functionality, because in both cases dynamic linking is unable to localize functionality expected by a caller.
Moreover, in most cases plugin recompilation reports similar problems, because the compiler is not able to
figure out, whether some types or methods are simply modified, or are deleted altogether. However, it is
important to distinguish the two groups, because they require different adaptation means (locating existing
functionality versus defining missing functionality, as discussed in Section 2.2.4).

Unintended Functionality

“Functionality found and invoked by the caller is not the one intended, possibly resulting in erroneous
application behavior. Neither application execution nor plugin recompilation result in errors.” This problem
group is possible in white-box framework reuse, in the presence of dynamic linking and method dispatch as
realized in Java.

Unintended Framework Functionality. This problem may occur in white-box framework reuse, when a
plugin type acts as a caller. In case an API refactoring affects the signature or location of a concrete hook
method, for which an overriding plugin implementation exists, dynamic linking will not locate the overriding
plugin functionality. As a consequence, the callback mechanism will invoke the framework functionality,
instead of the overriding plugin functionality invoked before the refactoring.

Based on the example from Figure 2.5 on page 26, Figure 2.9 shows a refactored API method: to vary on
communication strategies besides the default broadcasting, the method broadcast() of the framework’s Node
is renamed to manycast() and now accepts an integer indicating a communication strategy, as its second
parameter. The existing broadcast call from the framework’s LAN is updated to call the refactored method
and pass the BROADCAST constant as the second method argument indicating broadcasting strategy. After
upgrading the framework, since the signature of the overriding plugin method in SecureNode remains
unchanged, on an instance of SecureNode dynamic linking locates the framework method implementation
and not the overriding plugin implementation. As a consequence, the method invocation in Utils will result
in sending an unencrypted message.
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Discussing changes of a base class’ method leading to certain methods of existing subclasses being invoked
less than before the changes, Kiczales and Lamping call the resulting problem of inconsistent application
behavior Inconsistent Method [KL92]. Consistently to their terminology, we are using the name Unintended
Framework Functionality: Inconsistent Method to denote similar problems caused by refactorings of API
methods overridden in old plugins.

Unintended Plugin Functionality. This problem may occur in white-box framework reuse, when a
framework type acts as a caller. More specifically, the problem occurs in case an API refactoring adds a new
API method, or affects the signature or location of an existing API method, while the refactored API method
matches the signature of an existing plugin method. As a consequence, dynamic linking will locate and
the callback mechanism will invoke the plugin method with possibly different semantics than those of the
(intended) refactored API method.

For an example, let us reconsider the API class Node subclassed by the plugin’s SecureNode, as introduced
by Figure 2.5 on page 26. Among its methods, Node defines the method getInfo() returning a node des-
cription. In the second framework release, framework developers add a hook method to Node enabling its
subclasses to include subclass-specific information in node descriptions. By default, this hook method, called
getDescription(), forwards to getInfo(); that is, the two methods are semantically equivalent (Figure 2.10,
top right part). In addition, all existing framework method calls to getInfo() are updated to use the newly
introduced method getDescription().

However, unaware of the plugin implementation, framework developers introduced an accidental match
of the method signature of the newly introduced framework method with the existing plugin method
getDescription(), the latter with different semantics (i.e., returning the encryption used in SecureNode). As
a consequence, if Utils of the upgraded framework invokes the method getDescription() on an instance
of SecureNode, the method invocation will produce an unexpected behavior, obtaining the description of
the encryption algorithm as defined in SecureNode, and not the description of the node as defined in Node
(Figure 2.10).

In case a newly introduced method of a base class is accidentally overridden in a subclass, Steyaert et
al. call the resulting problems of application misbehavior Method Capture [SLMD96].14 In the context
of framework refactorings, besides the addition of API methods, such problems may also be caused by
refactoring existing API methods. In our example, this could also occur, if getInfo() was renamed to
getDescription() (without adding a new API method to Node). Analogously to the terminology of Steyaert
et al. [SLMD96], we use Unintended Plugin Functionality: Method Capture to denote similar problems
caused by refactorings introducing new or modifying existing API methods, accidentally overridden in old
plugins after upgrading to the refactored framework version.

Effect. In general, any refactoring introducing new, or changing existing, API classes and methods (e.g.,
adding and extracting methods, changing method signatures, moving methods) may lead to the well-known
fragile base class problem [MS98], in which modifications to a component’s base API class reused by
inheritance may cause derived classes to malfunction.15 In such cases, the syntactic mismatch caused by
refactorings cannot be detected and solved by subsequent plugin recompilation. If the plugins were available
for analysis and update, a refactoring engine could warn about the accidental method overriding, or could
update signatures of accidentally overriding plugin methods. However, because plugins are usually not
available at the time of framework refactoring, the problems of this group remain undetected and may lead
to malfunction at application execution time.

14As a notable difference to Java, Method Capture is not possible in C#, in which hook methods must be declared (using virtual) and
overridden (using override) explicitly. As a consequence, the language execution environment is able to avoid accidental overriding.
For an appealing and concise discussion of these features of C#, we refer to an on-line conversation with Anders Hejlsberg by Bill
Venners with Bruce Eckel at http://www.artima.com/intv/nonvirtualP.html. In Java, a good programming practice is to make
non-hook methods final, and concrete hook method protected, while marking overriding methods with the attribute @override.
However, these guidelines can be neither enforced nor checked by the language itself, and are often neglected in practice.

15Originally, the fragile base class problem was described in the context of C++ programs. In this thesis, in the line of Mikhajlov
and Sekerinski, we use ”the term fragile base class problem in a wider sense, to describe the problems arising in separately developed
systems using inheritance for code reuse” [MS98]. While in their seminal paper [MS98] Mikhajlov and Sekerinski focus on protocol
changes [YS97] in a base class, in this thesis we focus on refactorings.
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Utils

System.out.print("node " + 
node.getDescription());

Node

//node info
String getInfo()
String getDescription(){
return this.getInfo();

}
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SecureNode
//encryption info
String getDescription()

Plugin Version 1
refer

Framework Version 2 

Utils.class

methodRef_info
framework.Node
getDescription():String

inadvertently
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not
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Figure 2.10: Unintended Plugin Functionality: Method Capture. The newly introduced method getDes-
cription() in Node is semantically equivalent to getInfo(). However, the new method is accidentally named
exactly as the getDescription() method of SecureNode, whereas the two methods have different semantics.
As a consequence, instead of the node name as obtained before the refactoring, for an instance of SecureNode
its encryption description is indeliberately retrieved by Utils of the refactored framework.

Type Capture

“Although the type defining required functionality exists, it is taken over by other type with different
functionality. Application execution may result in linkage errors or erroneous application behavior, while
plugin recompilation results in compilation errors.” This problem group may occur in both black-box and
white-box framework reuse in the presence of dynamic linking. Analogously to Method Capture [SLMD96],
in which a method is accidentally taken over by another method, we introduce the term Type Capture to
refer to similar problems caused by a type accidentally taken over by another type. While Type Capture can
be seen as a special case of Non-localizable and Unintended Functionality caused by renaming existing and
introducing new API types, it requires specific adaptation means (i.e., to avoid an intended type being taken
over by some other type).

Framework Type Capture. This problem occurs when instead of a type expected by a framework caller
dynamic linking locates a type defined in the plugin. Depending on the differences between the expected
(framework) and the located (plugin) types, the framework caller may invoke methods, which are either not
specified in the located type or have unexpected semantics.

For an example, let us assume the plugin of the first version defining a class SecurePacket (the bottom
right part of Figure 2.11(a)) with two methods: (1) securityInfo() returning information of a security policy
as defined in the plugin, and (2) whoCreated() returning the creator node of the packet. In the second
framework release, framework developers introduce a new API class, accidentally called SecurePacket, with
the same fully qualified name as the plugin’s SecurePacket (the top right part of Figure 2.11(a)). The newly
introduced framework class SecurePacket defines two methods: (1) securityInfo() returning information
about the framework-specific security, and (2) getSecurityLevel() returning the packet’s level of security. The
two methods should be invoked in the framework’s Utils on an instance of the framework’s SecurePacket
(the left part of Figure 2.11(a)). Thereafter, the framework is upgraded to its second, refactored version,
while the plugin is not recompiled.

At application execution time, the plugin class SecurePacket is referenced (from some other plugin class),
and is therefore loaded and registered with its class loader. Thereafter, the framework’s Utils is to be loaded
and, since it references the class SecurePacket, the JVM uses the fully qualified name of SecurePacket to
check, whether the class is already loaded by Utils’s class loader. In case the framework and plugin types
are loaded by the same class loader (e.g., by the system class loader), the JVM will consider SecurePacket
as already loaded, and will instantiate the plugin’s SecurePacket instead of loading and instantiating the
framework’s SecurePacket (as shown in Figure 2.11(a)). As a consequence, Utils’s call to securityInfo()
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SecurePacket spckt = new SecurePacket();
System.out.print("secure packet " +
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refer
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methodRef_info
SecurePacket
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refer

(a) Framework Type Capture. In case the plugin’s SecurePacket is loaded first, its functionality takes over the one of the
framework’s SecurePacket expected in Utils’ method calls.

Framework Version 2 

LAN

SecurePacket spckt = new SecurePacket();
System.out.print("secure packet " +
" security " + spckt.securityInfo() +
spckt.whoCreated().getName() + " creator");

SecurePacket

//framework-specific security
String securityInfo()
//security level
int getSecurityLevel()

SecurePacket

//plugin-specific security
String securityInfo()
//packet's creator
Node whoCreated()

not
invoked

instantiated

inadvertently
invoked

refer

LAN.class

methodRef_info
SecurePacket
securityInfo():String

methodRef_info
SecurePacket
whoCreated():Node

Plugin Version 1

(b) Plugin Type Capture. In case the framework’s SecurePacket is loaded first, its functionality takes over the one of the
plugin’s SecurePacket expected in LAN’s method calls.

Figure 2.11: Type Capture. The framework’s SecurePacket and the plugin’s SecurePacket have exactly the
same fully qualified names, and are loaded by the same class loader.

will inadvertently obtain the semantics of the method defined in the plugin (instead of the framework),
while Utils’s call to getSecurityLevel() will not locate a method implementation. The former may lead to an
application malfunction, and the latter will fail with a linkage error.

Plugin Type Capture. Similar to a plugin type taking over a framework type in case of a framework caller,
a framework type may take over a plugin type in case of a plugin caller. In the example of Figure 2.11(b), in
case the framework’s SecurePacket is loaded before the plugin’s SecurePacket, an instance of the framework’s
SecurePacket will be created in LAN instead of the expected plugin’s SecurePacket. As a consequence,
method invocations in the plugin’s LAN may execute unintended framework methods (e.g., securityInfo())
or fail to locate a method implementation (e.g., whoCreated()).

34



Effect. In general, Type Capture may be caused by refactorings adding, renaming, and moving framework
classes and interfaces (including type renaming as a consequence of the RenamePackage refactoring).16

More specifically, Type Capture may occur, if for a framework and a plugin type (1) their fully qualified
names are the same, and (2) the types are loaded by the same class loader.17 At first glance, this situation
seems improbable: framework developers should deploy the API types in dedicated packages, and application
developers should create application-specific packages for plugin types. However, in practice application
developers do not always carefully follow package naming conventions. Moreover, application developers
may intentionally place plugin types in packages containing framework API types, to reuse certain API types
accessible only within their packages (Java package visibility, applied by default, when no type visibility is
specified). Finally, as a consequence of package renaming, framework and application package names can
unintentionally coincide after upgrading the refactored framework.

2.2.4 Choosing Adaptation Means for Application-Breaking API Refactorings

Knowing the mechanics of application-breaking API refactorings, we can reason about the appropriate
adaptation means to be applied. Moreover, considering existing approaches developed for component update,
we can judge the applicability and availability of intrusive (modifying components directly) and unintrusive
(using adapters) adaptation approaches.

Adapting Non-localizable Functionality

According to Becker et al. [BBG+04], any syntactic mismatch is adaptable. In case of Non-localizable
Functionality, the types of old plugins must be reconciled with the changed API of the framework.

Intrusively, the obsolete information about API types contained in plugins must be updated to refer to
the latest framework API. In case plugin sources are available and can be modified, they can be rewrit-
ten [BTF05, CN96, HD05] and then recompiled. If plugin binaries are accessible, they can be updated
directly (e.g, [KH98]). In case plugins are unavailable, the framework API itself can be rewritten to reconcile
the framework API and the plugins [DNMJ08].

Unintrusively, adapters can be created (e.g., [BCP06, IT03, YS97, ŞRS+07, ŞR07a, ŞRGA08]) that translate
between the old plugin types and the refactored API types. Since, as stipulated by Becker et al., using
adapters “theoretically every interface can be transformed into every other interface” [BBG+04], with
regard to Non-localizable Functionality unintrusive adaptation can cover in fact all application-breaking API
refactorings. We will discuss our adaptation patterns solving Non-localizable Functionality in Section 3.1.

Adapting Missing Functionality

When the functionality required does not exist, it needs to be provided by developers. In case an API method
has been deleted, it can be recovered from an old framework version [DNMJ08]. Otherwise, developers
need to specify the missing implementation manually. In some cases, a default implementation may suffice.

Intrusively, the missing implementation can be inserted either into the framework (in case of Missing
Framework Functionality), or into plugins (in case of Missing Plugin Functionality). Unintrusively, it can be
inserted into adapters [GHJV95, p. 142]. The latter is more restrictive: the implementation inserted may
require access to private (framework or plugin) types and members, not visible from adapters. Since for each
case of Missing Functionality the solution depends on the particular implementation that is missing, there
is no general adaptation design for this problem group. However, in most of the cases, adapters following
our adaptation patterns described in Section 3.1 can be extended with the corresponding implementation to
compensate for Missing Functionality.

16Type Capture may also occur, when the framework type being refactored is not itself public, but is placed in an API package (in
Java, by declaring the type as package-private). We treat this special case as an API refactoring, because it involves modifying the
content of an API package.

17Types loaded by different class loaders are considered different by the JVM, even if the types’ fully qualified names are the same.
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Adapting Unintended Functionality

Solving Unintended Functionality requires explicit control over the relations between framework and plugin
objects to choose the “right” implementation at run time. Recalling our examples, for Unintended Framework
Functionality: Inconsistent Method (Figure 2.9, page 31), it would mean that the framework’s Utils should
be able to invoke the plugin method broadcast() instead of the framework’s manycast(), whenever an
instance of SecureNode is asked to send a message. For Unintended Plugin Functionality: Method Capture
(Figure 2.10, page 33), it would mean that the framework’s Utils should be able to call the getDescription()
method of Node, even if it gets an object of SecureNode.

Solving Unintended Functionality intrusively should be possible, at least, at the level of binary code. One
solution would be to disable method dispatch for the methods otherwise accidentally overridden, so that
the exact method initially referred to from the binaries is called.18 Another solution (e.g., based on an
aspect-oriented technology) would intercept messages at run time to invoke the intended methods. To the
best of our knowledge, no such technology exists, and intrusive adaptation of Unintended Functionality
remains a promising area of future work.

Unintrusively, since we have full control on the adapter creation, we implement proper method dispatch
directly in adapters, solving Unintended Functionality. A proper implementation of method dispatch in
adapters makes the unintended behavior invisible for the callers, which can therefore invoke the intended
functionality. In case of Unintended Framework Functionality: Inconsistent Method, adapters localize the
existing hook method implementation in plugins and call that implementation instead of the default hook
method implementation. In case of Unintended Plugin Functionality: Method Capture, adapters dispatch to
the otherwise accidentally overridden framework methods and avoid calling unintended plugin methods. We
will discuss particularities of solving Unintended Functionality by Java adapters in Section 3.1.3.

Adapting Type Capture

Solving Type Capture requires distinguishing the types of the refactored framework and existing plugins,
regardless of the types’ fully qualified names. To remain compatible with the host language (e.g., Java),
a compensating solution should avoid such technical solutions as non-standard changes to the language
execution environment (e.g., modifying the JVM loader).

Intrusively, Type Capture could be solved by prepending all plugin types with a unique prefix, and updating
all existing type references correspondingly. To guarantee the type name uniqueness, the most practical
solution would operate on plugin binaries by prefixing plugin type names with characters not allowed in
the source code (e.g., #). Furthermore, to distinguish plugin types of different versions, the prefix should
reflect the plugin versioning information. In addition, such solution would need to make the plugin metadata
conform to the renamed binaries (in Java, by modifying JAR file manifests and META-INF/services entries)
as well as to modify any script referring to the plugin code being rewritten. Effectively, such type renaming
would deliver a plugin with its types named differently from the framework types, and from the types of
plugins of other versions.

Unintrusively, we distinguish the plugin and framework types by using adapters and a dedicated strategy
of type loading. Recalling our discussion from the Introduction (Figure 1.5 on page 7), adapters created
between the refactored framework and an old plugin constitute an adaptation layer placed between the
framework and the plugin. The adaptation layer reconstructs the old API expected by the plugin and
translates between the refactored framework and the old plugin. Reconstructing the old API implies that for
all renamed API types (potentially leading to Type Capture) their adapter types in the reconstructed API
are named as before the refactoring, while for all newly introduced API types (potentially leading to Type
Capture) no adapter types are present in the reconstructed API. As a consequence, there are exactly two
name spaces, within which any type name is unique: (1) the name space of the reconstructed API and old
plugin types, and (2) the name space of the refactored framework. What is still required is separating the two

18This solution would require disabling virtual (by default) method calls by making them non-virtual. While in such languages
as .NET’s CIL it is possible to specify, whether a method call is virtual (instruction callvirt) or non-virtual (instruction call), in Java
source or binary code it is not possible.
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name spaces at run time; in Java, it can be done by dedicating to each name space a separate class loader.19

Since plugin types and framework types are loaded by different class loaders, no Type Capture is possible in
our solution. We will show the insights of the adaptation layer in Section 3.2, describe precisely its creation
in Chapter 4, and present technical details of separate class loading implemented in our tool in Section 5.1.2.

2.3 Summary

To foresee the general applicability of refactoring-based adaptation, we set up a critical case study of
unconstrained API evolution. The results of our study—application-breaking API refactorings accounting
for about 85% of application-breaking API changes—made us believe that refactoring-based adaptation is
feasible in a large number of evolving frameworks. When developers tend to maintain the framework, most
of their API changes affecting existing plugins can be modeled by refactorings, making refactoring-based
adaptation possible. Even in the case of software replacement, where changes in our case study mostly
went beyond refactorings, the role of refactorings needs further investigation. In contrast to the big-bang
migration [RH06, p. 237] from the old to the new system (as in case of JHotDraw 7.0), when backward
compatibility is a concern, framework may be replaced gently [RH06, p. 237] by small iterative changes,
while simultaneously upgrading applications. In such scenarios of software migration, refactoring-based
adaptation can be useful [ŞA08].

Admittedly, there is a number of frameworks, for which their maintenance may not repeat the pattern of
refactorings discovered in our case study and the studies reported by other researchers [DJ05, DR08, SJM08].
For example, in comparison to a mature framework, a “young” framework in an early phase of development
may evolve in a more drastic way. The APIs of certain frameworks (e.g., Web frameworks) typically
expose many library types, changes of which (e.g., when upgrading the implementation language) are not
encapsulated and cannot be modeled as refactorings. Since we did not know the details of the development
process (e.g., how Eclipse [Ecl] or NetBeans [Net] were used to evolve the frameworks investigated in our
case study), we could not estimate the impact of using an IDE’s refactoring engine on the ratio of API
refactorings. A future work should investigate the API evolution of a larger number of commercial and
open-source frameworks varying in size, purpose, and the development policies.

However, what makes us optimistic is the fact that our results were obtained in a critical case study.
Preserving backward compatibility will furthermore increase the probability of refactorings. Concerned
with preserving existing applications, framework developers will avoid to the greatest extent possible
application-breaking API changes, applied otherwise in unrestricted API maintenance. Even more important,
maintaining backward compatibility dictates a certain “smooth” way of API evolution, when the transition
between framework releases (e.g., in Eclipse) is supported by adapters that translate between the old and the
modified APIs. In such cases, APIs will presumably evolve in small steps, mostly refactorings, enabling
thus refactoring-based adaptation [DJ05].

We shed light on problems caused by API refactorings by explaining the mechanics of breaking changes.
Except for certain cases of Missing Functionality, unintrusive (adapter-based) adaptation can compensate
for the same application-breaking API changes as intrusive adaptation. However, in practice adapters are
applicable also in cases, when plugins are unavailable for analysis and upgrade, or software licenses forbid
plugin changes. In addition, developers are often reluctant to use a technology, which directly manipulates
their code (as reported by Dig [Dig07, p. 131]). Therefore, we argue for adapters as general and practical
adaptation means applicable in a large number of adaptation scenarios. Still, in case at some later point of
framework maintenance the plugins become available and sufficient maintenance resources can be allocated
for careful plugin analysis, update, and testing, one can switch to intrusive adaptation as an alternative to
adapters.

19As another example, in .NET type name separation can be realized by registering the classes with the same names but different
versions in the Global Assembly Cache.
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“So, the real work of any process of design lies in this task of making up the [pattern]
language, from which you can later generate one particular design.”

–Christopher Alexander
The Timeless Way of Building [Ale79, p. 305] 3

Designing Adapters for Binary Backward
Compatibility in Refactored Framework APIs

The Adapter design pattern is used when “you want to use an existing class, and its interface does not match
the one you need” [GHJV95, p. 140]. Discussing the pattern’s power, Becker et al. argue: “The adapter pat-
tern is very flexible as theoretically every interface can be transformed into every other interface” [BBG+04].
In particular, in case the Application Programming Interface (API) of a software framework evolved through
refactorings, the pattern can be applied to make the code written using an old version of the API match the
refactored API.

However, the original intent of the Adapter design pattern is to make “existing and unrelated classes [. . . ]
work in an application that expects classes with a different and incompatible interface” [GHJV95, p. 139].
In such cases of component integration, independently developed components being wired together are
usually not aware of each other’s APIs. By contrast, right from their creation plugins are developed against
the framework’s API reusing its types by object composition (black-box reuse), inheritance (white-box
reuse), or the combination of both. Consequently, the implementations of frameworks and plugins are much
more tightly coupled than those of components developed independently. In case of component evolution
performed via refactorings, such coupling requires additional adaptation means to accommodate for API
refactorings.

To provide binary compatibility of the refactored API with existing plugins, in this chapter we carefully
define how adapters should be used in the context of refactoring-based API evolution. The chapter brings
the following thesis contributions:

C3: Adaptation design compensating for a refactored API type. Since frameworks can be reused by
a mixture of object composition and inheritance, we introduce four variants of the Adapter design
pattern, named Black-Box Class and Interface Adapter patterns, and White-Box Class and Interface
Adapter patterns, that are applicable in refactored framework APIs. To support binary compatibility,
both patterns distinguish adapting refactored API classes and API interfaces. Black-box and white-box
adapters are classes connecting types of the existing (old) plugins and the refactored framework API.
While black-box adapters help existing plugins to locate the refactored API types of the framework,
white-box adapters also support the refactored framework to call back functionality of existing plugins.
This feature of the white-box adapters is especially important for adapting software frameworks that
often heavily rely on the callback mechanism to realize inversion of control [JF88].

C4: Adaptation design compensating for a refactored framework API as a whole. Considering the
adaptation of the framework’s API as a whole, we introduce exhaustive API adaptation. Since for most
API types we do not know how they are reused by plugins (by object composition or by inheritance),
for all API types possibly changed by refactorings we apply both Black-Box and White-Box Adapter
patterns and statically create adapters possibly needed to adapt these API types. At application
execution time, depending on the run-time types of the objects requiring adaptation, the proper (black-
box or white-box) adapters are instantiated. Moreover, to avoid existing plugins observing framework
objects of refactored API types and, at the same time, the refactored framework observing plugin
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objects of incompatible plugin types, we completely separate the object domains of the framework and
existing plugins. All potentially dangerous objects coming from one site (the framework or plugins)
are adapted (wrapped) before being sent to another site and unwrapped if sent back at some later point
in time. The adaptation decisions (which adapters to instantiate and when) are implemented in adapters
and are completely transparent for both sites.

C5: Description of challenges, adopted solutions, and limitations in using adapters for refactored
framework APIs. We delimit precisely our approach by discussing encountered challenges, adopted
solutions, and limitations. By caching and reusing adapter instances during exhaustive API adaptation,
we preserve object identity in the presence of adapters and solve object schizophrenia associated
with (the object version of) the Adapter design pattern. In case existing plugin code makes implicit
assumptions about objects’ physical structure or type (in Java, by using reflection), introducing
adapters may cause that code to malfunction. To avoid the latter, in our adaptation design we anticipate,
whenever possible, these dangerous assumptions to properly create adapters or, at least, warn framework
developers about the possible negative impact of such assumptions. Concerned about unavoidable
performance degradation caused by adapters, we introduce static and run-time optimizations to decrease
the performance overhead. Finally, since using the Adapter design pattern implies also limitations
due to the particularities of the pattern (e.g., no adaptation of public fields), we discuss the nature of
refactorings we can or cannot adapt.

The structure of this chapter reflects its main contributions: Section 3.1 introduces the Black-Box and White-
Box Class and Interface Adapter patterns, Section 3.2 discusses exhaustive API adaptation of refactored
framework APIs, and Section 3.3 summarizes the problems, adopted solutions, and limitations in using
adapters to compensate for API refactorings.

3.1 Adaptation Design Compensating for a Refactored API Type:
Variants of the Adapter Design Pattern

In the line with other design patterns [GHJV95, p. 5], Gamma et al. describe the Adapter pattern (also
known as Wrapper, Figure 3.1) in several pattern sections, such as the pattern name and intent, a motivating
example of its use, general pattern applicability, pattern structure, its participants and their run-time
collaboration [GHJV95, pp. 139–150]. The intent of the pattern is to “convert the interface of a class into
another interface clients expect. Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces” [GHJV95, p. 139]. The pattern’s key participant, called Adapter, connects the
Target interface expected by a caller (Client) to an Adaptee that provides the required functionality. When
Client invokes a method of Target on an instance of Adapter, the latter calls Adaptee operations to serve
the request on behalf of Client. The pattern can be implemented using either inheritance (class version) or
object composition (object version), with the structure of the latter being shown in Figure 3.1.1

As mentioned in the introduction to this chapter, the original description of the Adapter design pattern
focuses on its application for component integration. To make the pattern applicable in the context of
component (in our case, framework) evolution, we identify furthermore two main particularities intrinsic to
the evolution of framework APIs. These particularities must be considered to achieve our main goal—the
binary backward-compatible framework upgrade—in the presence of black-box and white-box framework
reuse.2

1. Complex pattern collaboration. Due to its primary focus on component integration, the collabora-
tion of the Adapter pattern assumes black-box reuse: (1) Client calls Target, (2) Adapter calls Adaptee,
and (3) Adapter returns the results from Adaptee to Client.

1In the following, we consider solely the object version of the pattern, since we are adapting Java frameworks, and the language
does not support multiple inheritance (as required by the pattern’s class version).

2Recalling our footnote from Introduction on page 2, we consider implementing an API interface a white-box reuse.
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Adaptee
specificRequest()

Target Adapter

Client

request() request(){
adaptee.specificRequest();

}

adaptee

callee

Figure 3.1: Adapter design pattern (object version), adopted from Gamma et al. [GHJV95, p. 141].

This general collaboration applies also to the adaptation in black-box framework reuse, since Client is
always a plugin type calling some API methods. As a consequence, a black-box adapter must dispatch
calls from the plugins to the framework: it receives a call request from Client (a plugin type), calls
Adaptee (a framework type) and returns the answer to Client.

By contrast, due to class inheritance, in white-box framework reuse both plugins and the framework
may act as Clients. While plugins may call inherited framework methods and supercall methods of
their parent API classes, the framework may call back plugin methods. For example, by applying
such design patterns as Factory Method [GHJV95, p. 107] and Template Method [GHJV95, p. 325]
framework developers expect certain API methods to be defined (if an API method is abstract) or
redefined (if an API method provides a default implementation) by plugin developers. When these API
methods are called from the framework, the functionality implemented in plugins should be invoked,
realizing thus inversion of control [JF88]. As a consequence, in such cases a white-box adapter must
dispatch not only calls from the plugin to the framework, but also calls from the framework to the
plugin. In both directions, the adapter must be able to access the functionality required by Clients.

2. Reconstructing expected API types. In the description of the Adapter design pattern it is assumed
that all types that correspond to pattern participants, except for Adapter, exist; only the adapter class
needs to be constructed. Again, this assumption holds when integrating independent components.
However, when connecting existing plugins with the refactored framework, the old API types (expected
by plugins) have been refactored and do not exist after the framework upgrade. Therefore, these
old API types need to be constructed (more precisely, reconstructed) together with adapter classes.
Moreover, in Java the binaries of existing plugins may contain the information about the physical
representation of expected API types: whether an expected API type is specified by a separate
API interface, or specified and implemented by an API class directly. To provide binary backward
compatibility, while reconstructing an API type we must also satisfy such plugin expectations about
its implementation. More specifically:

• In case an expected API type to be reconstructed is used in a plugin by object composition (black-
box framework reuse), for backward compatibility in general it would suffice to reconstruct
the type itself (i.e., its name and interface, the latter consisting of a set of method signatures),
regardless of whether the API type is physically specified by an API class or by a separate API
interface. However, this would in addition require plugin recompilation; otherwise, the linker
may possibly fail to locate the reconstructed type’s methods. For example, if an existing plugin
expects an API type to be specified by an API interface, while in the adapter Target (which
corresponds to the expected API type) and Adapter are realized by a single adapter class, the
linker of the Java Virtual Machine (JVM) will most probably fail to locate the adapter, unless
the plugin is recompiled and its binaries are updated by the compiler.3 Since we aim for binary
backward compatibility, we have to consider also the physical representation of the API type
being reconstructed.

3The actual run-time result depends on the particular JVM implementation, which varies among vendors.
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Terminology Note

Strictly speaking, a type is a name denoting an interface—a set of signatures (operators’ names,
parameter names and types, and return types) specifying the method requests that can be sent to
an object of that type. To distinguish the conceptual notion of a type’s interface from the notion of
Java interface as an implementation unit, by an API type we mean both a name and its associated
interface accessible in the API. In Java terminology [GJSB05], an API type may be specified by a
separate API interface (the methods of which are implemented in one or more classes), or specified
and implemented by an API class directly.

• While in black-box framework reuse the physical representation of reconstructed API types
matters for binary compatibility, in white-box framework reuse it is important for backward
compatibility in general. For instance, if the expected type is an API interface, while the
reconstructed type is specified directly by an adapter class, not only executing plugin binaries
but also recompiling plugins will fail. Therefore, the reconstructed API type must mimic all
public information previously available in the expected (old) API type, including the type’s
physical representation.

Considering these two main particularities of our adaptation context, we introduce four variants of the
Adapter design pattern—the Black-Box Class and Interface Adapter patterns, and the White-Box Class and
Interface Adapter patterns—that compensate for API type refactorings. The patterns reflect the details of the
physical representation of reconstructed API types by defining class and interface adapters to account for
the refactoring of API classes and API interfaces, respectively. In the patterns’ collaborations, black-box
class and interface adapters dispatch calls from old plugins to the refactored framework, white-box interface
adapters dispatch calls from the refactored framework to old plugins, and white-box class adapters support
bidirectional message exchange between the refactored framework and old plugins.

Consistent with the pattern descriptions of Gamma et al. [GHJV95, p. 5], we describe our patterns using
a number of pattern sections. However, since our patterns are variants of the Adapter design pattern, we
omit sections that do not add to the discussion on the patterns’ difference to the original description of the
Adapter pattern. The main intent of the presented sections (most importantly, Structure and Collaboration) is
to denote the patterns’ specifics with respect to the corresponding section of the Adapter pattern. All omitted
sections should be considered as inherited, with language-specific adoption to Java, from the original pattern
description [GHJV95, pp. 139–150]. For example, according to the Adapter pattern, the adapter introduced
may also be responsible for the functionality not accessible in the adapted class [GHJV95, pp. 142]. This is
inherited in our patterns: if the implementation of an API method is missing, the corresponding method
implementation can be provided by an adapter class directly, compensating for Missing Functionality
(discussed in Section 2.2.3). Therefore, compensating for Missing Functionality is not discussed furthermore
when presenting the adaptation patterns.

Besides Missing Functionality, in our pattern descriptions we do not discuss solving Type Capture that may
occur when the name of a newly introduced API type or of a renamed API type accidentally coincides with
the name of an existing plugin type (as described in Section 2.2.3). A solution to this problem, which we

Terminology Note

A class adapter is an application of the Adapter design pattern for a refactored API class. It should
not be confused with the class version of the Adapter design pattern, that is, the version based on
inheritance. In their implementations, all our adapters (including class adapters) are using object
composition as defined in the object version of the Adapter design pattern.
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already discussed in Section 2.2.4 on page 36, goes beyond compensating for one particular refactored API
type and implies separating the name spaces of the framework and plugins. However, all our adaptation
patterns contribute to the general solution of Type Capture: if an API type is renamed, its corresponding
black-box or white-box adapter will reconstruct the old API type as expected by an old plugin. Thereby,
together with a dedicated type loading, the reconstructed API types help separating the name spaces of the
framework and the plugin.

In our patterns, we need to refer to two versions of the API class (or interface) being adapted: the version
before the refactoring and the version after the refactoring. We will reference the former as unrefactored API
class (interface), and the latter as refactored API class (interface). In the examples of pattern applications,
we use excerpts from RefactoringLAN—a set of examples of framework reuse and application-breaking
API refactorings (introduced in Section 2.2),4 and show how our adaptation patterns solve Non-localizable
Functionality and Unintended Functionality (introduced in Section 2.2.3). Although in our examples we
use source code (while omitting unnecessary implementation details), in fact, in the following we describe
binary adapters. Some of the presented adaptation decisions had not been possible at the source level,
because certain adapters would not have compiled. However, the decisions were realized by generating
adapter binaries directly.

In the rest of this section, we will present the Black-Box Class and Interface Adapter patterns (Section 3.1.1
and Section 3.1.2, respectively), the White-Box Class and Interface Adapter patterns (Section 3.1.3 and
Section 3.1.4, respectively), and the rationale of the patterns’ design and realization in Java in Section 3.1.5.

3.1.1 Black-Box Class Adapter Pattern

Motivation

In case a framework API class being reused by object composition in a plugin is changed, the plugin might
be unable to locate the previously available framework functionality.

In the first framework release, for creating network packets an API class PacketFactory is offering a method
createPacket() with two method parameters (a node of type Node and a node identifier of type int), and
with the return value of type IPacket. To obtain a new packet, a plugin class LAN may call the method
passing a node and the node’s identifier as the required method arguments. (This example was introduced by
Figure 2.3 on page 25.)

In the second framework release, framework developers realize that the second parameter of createPacket()
is redundant, since the node identifier (as required in the implementation of createPacket()) can be obtained
from the instance of node passed as the first method argument. Therefore, framework developers remove the
redundant second method parameter.5 By refactoring the class’ method, they also effectively refactor the
API type specified by the class. As a consequence, LAN call sites of the method cannot locate it after the
framework is upgraded (Non-localizable Framework Functionality, shown for our example by Figure 2.6
on page 28). One solution would be to update all call sites in the plugin to invoke properly the refactored
method. However, this is not possible in case the plugin is unavailable for change, or is not subject to
modifications.

Instead, we could define an adapter class PacketFactory offering a method createPacket() with the two formal
parameters Node and int, exactly as before the refactoring. An object of the framework class PacketFactory
is composed within an object of the adapter class PacketFactory (in its adaptee field), while the adapter class
PacketFactory is implemented in terms of the (API type of the) PacketFactory as before the refactoring. The
adapter method createPacket() is invoked by existing calls from the old plugin and, in turn, forwards the
calls to the refactored framework method createPacket() (Figure 3.2).

4RefactoringLAN is summarized in Appendix A
5Fowler et al. motivate this refactoring as follows [FBB+99, p. 224]: “A parameter indicates information that is needed; different

values make a difference. Your caller has to worry about what values to pass. By not removing the parameter you are making further
work for everyone who uses the method. That’s not a good trade-off, especially because removing parameters is an easy refactoring.”
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Framework Version 2

PacketFactory

IPacket createPacket(Node node)

adaptee

Plugin Version 1

callee

Adaptation Layer 

PacketFactory

IPacket createPacket(Node node, int id){
return adaptee.createPacket(node);

}

LAN

packetFactory.createPacket(node,
node.getIdentifier());

Figure 3.2: Application of the Black-Box Class Adapter pattern. The adapter accepts calls to PacketFactory’s
old method createPacket() declared with two method parameters and forwards them to the refactored
createPacket() declared with a single method parameter.

The problem caused by the aforementioned API method refactoring is solved as following: In case the
plugin is calling createPacket() on the object of adapter PacketFactory, the latter will use the first method
argument to call the method createPacket() on the framework object stored in the adaptee field, and then
return the obtained value to the plugin.

Comparing to the original description of the Adapter pattern, this solution explicitly permits the adapter
to be named exactly as the framework class. This is required by and is inherent to our adaptation context:
except for type rename refactorings, the names of the expected (old) and provided (refactored) API types are
the same (as PacketFactory in our example). However, conceptually the names are coming from different
name spaces and can be effectively separated to avoid name clashes. Shortly, in Java these classes are loaded
by different class loaders.

Applicability

Use the Black-Box Class Adapter pattern, if

1. a framework API class used by object composition (black-box framework reuse) is refactored, and

2. existing plugins cannot be updated intrusively.

Structure

Figure 3.3 shows the structure of the Black-Box Class Adapter pattern, annotated (by stereotypes) with the
names of the participants of the Adapter design pattern.

Participants

• Refactored API Class (Framework’s PacketFactory)

– defines the refactored API class.
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Framework Version 2

<<Adaptee>>
Refactored API Class

specificRequest()

adaptee

Adaptation Layer
<<Target>>
<<Adapter>>

Reconstructed API Class

request(){
adaptee.specificRequest();

}

callee

Plugin Version 1
<<Client>>

Plugin Client

Figure 3.3: Black-Box Class Adapter pattern.

• Reconstructed API Class (Adaptation Layer’s PacketFactory)

– reconstructs the API type of the unrefactored API class.

– adapts the API type of Refactored API Class to the API type of Reconstructed API Class.

• Plugin Client (Plugin’s LAN)

– collaborates with objects conforming to the API type of Reconstructed API Class.

Collaboration

Plugin Client calls operations on an instance of Reconstructed API Class. In turn, the instance forwards the
calls to operations of Refactored API Class that carries out the requests.

3.1.2 Black-Box Interface Adapter Pattern

Motivation

Similar to an API class, a framework API interface reused by object composition in a plugin may change.
As a consequence, the plugin might be unable to locate the previously available framework functionality,
which was accessible via the API interface.

In the first framework release, an API interface IPacket contains a method whoCreated() with the return
value of type Node. The interface is implemented by the framework’s class Packet. The implementation of
the method whoCreated() returns the node that created the packet in question. The plugin class LAN can
obtain a network packet by invoking PacketFactory’s createPacket() (as described in the example of the
previous Section 3.1.1). Thereafter, LAN may invoke on the packet the method whoCreated() to obtain the
packet’s creator. (This example was introduced by Figure 2.3 on page 25.)

In the second framework release, to follow adopted naming conventions, framework developers rename the
interface method from whoCreated() to getCreator() and update the implementing framework class Packet
correspondingly. As a consequence of the refactoring, LAN’s call sites of the method cannot locate it after
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Plugin Version 1

LAN

packet.whoCreated();

Adaptation Layer

IPacket

Node whoCreated()

CovertIPacketBlack

Node whoCreated(){
return adaptee.getCreator();
}

Framework Version 2

Packet

Node getCreator()

IPacket

Node getCreator()

adaptee

callee

Figure 3.4: Application of the Black-Box Interface Adapter pattern. The adapter wraps the refactored
IPacket of the framework, accepts plugin’s calls to the method whoCreated() and forwards them to the
framework’s getCreator().

the framework is upgraded (Non-localizable Framework Functionality, shown for our example by Figure 2.6
on page 28). Similar to the aforementioned API class refactoring, one solution would be to update all call
sites in the plugin to invoke the renamed method. However, this is not possible in case the plugin cannot be
modified.

Instead, we could introduce two adapter types: a (reconstructed) adapter interface IPacket declaring the
method whoCreated() with exactly the same signature as before the refactoring, and a class named, say,
CovertIPacketBlack, implementing the adapter interface IPacket (Figure 3.4). An object of the refactored
framework type IPacket is composed within an object of the adapter class CovertIPacketBlack. In its
implementation, CovertIPacketBlack’s whoCreated() method invokes the renamed framework method
getCreator(). When the framework instantiates the class Packet implementing the refactored interface
IPacket and returns the instance to the plugin, the adapter CovertIPacketBlack “wraps up” the refactored
framework implementation and “hides” it behind the reconstructed API interface IPacket. Such adapter
classes as CovertIPacketBlack are visible neither for the refactored framework nor for the existing plugin,
because they are introduced by and hidden in the adaptation layer. Therefore, we call such hidden adapter
classes “covert”.6

The problem caused by the aforementioned API interface refactoring is solved as following: In case the plugin
is calling whoCreated() (specified by the adapter interface IPacket) on the object of CovertIPacketBlack, the
object will call the method getCreator() on the object stored in its adaptee field, and then return the obtained
value to the plugin.

Similar to the Black-Box Class Adapter pattern, and for the same reasons, this solution explicitly permits
the adapter interface to be named exactly as the framework API interface.

Applicability

Use the Black-Box Interface Adapter pattern, if

1. a framework API interface used by object composition (black-box framework reuse) is refactored, and

2. existing plugins cannot be updated intrusively.
6In practice, the names of covert adapter classes are obfuscated to avoid possible name clashes with framework and plugin types.

Since we generate binary adapters, we prepend the names of the covert adapter classes in the adapter binaries with characters not
allowed in the source code (e.g., #).
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Plugin Version 1

<<Client>>
Plugin Client

Adaptation Layer

<<Target>>
Reconstructed API Interface

request()

<<Adapter>>
Covert Framework Adapter

request(){
adaptee.specificRequest();

}

Framework Version 2

<<Adaptee>>
Refactored API Interface

specificRequest()

adaptee

callee

Implementation of 
Refactored API Interface 

Figure 3.5: Black-Box Interface Adapter pattern.

Structure

Figure 3.5 shows the structure of the Black-Box Interface Adapter pattern, annotated (by stereotypes) with
the names of the participants of the Adapter design pattern.

Participants

• Refactored API Interface (Framework’s IPacket)

– defines the refactored API interface.

• Reconstructed API Interface (Adaptation Layer’s IPacket)

– reconstructs the unrefactored API interface.

• Covert Framework Adapter (Adaptation Layer’s CovertIPacketBlack)

– adapts the API type of Refactored API Interface to the API type of Reconstructed API Interface.

• Plugin Client (Plugin’s LAN)

– collaborates with objects conforming to the API type of Reconstructed API Interface.

Collaboration

Plugin Client calls operations on an instance of Covert Framework Adapter. In turn, the instance forwards
the calls to operations of Refactored API Interface that carries out the requests.

3.1.3 White-Box Class Adapter Pattern

A plugin may reuse the framework by subclassing its API classes. In this case, inherited framework methods
may be called from the plugin, and plugin methods implementing (defining) or overriding (redefining) API
methods may be called back from the framework. After an API refactoring, previously inherited framework
functionality may not be accessible in the plugin, and previously called back plugin functionality may not
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be accessible in the framework. Furthermore, other methods may be inadvertently invoked in the framework
and plugin instead of intended methods.

In the first framework release, a framework API class Node offers three methods: (1) a concrete method
getIdentifier() for obtaining a unique node identifier, (2) an abstract method getNodeLocation() for localizing
a node in a network, and (3) a concrete method broadcast() for message sending. The framework class is
subclassed in a plugin by SecureNode that implements getNodeLocation() correspondingly and overrides
broadcast() to encrypt its messages before sending. In addition, SecureNode defines the getDescription()
method returning the details of the encryption strategy used. (This example is a combination of two examples
introduced by Figure 2.4 on page 25 and Figure 2.5(a) on page 26, from which we omit the Node’s method
getInfo() for simplicity.)

The method getIdentifier() inherited in SecureNode is invoked by a usual method call from the plugin’s class
LAN and by a supercall from SecureNode. The other two methods declared in Node are invoked from the
framework’s Utils, executing the plugin implementation of getNodeLocation() and broadcast().

In the second framework release, Node is refactored. To vary on communication strategies besides the
default broadcasting, the method broadcast() is renamed to manycast() and now accepts as an additional
method parameter an integer indicating a communication strategy. In addition, to respect adopted naming
conventions, the methods getIdentifier() and getNodeLocation() are renamed to getID() and getLocation(),
respectively. Finally, a new method getDescription() is introduced to Node, with a default implementation
returning the node description.

Let us identify the problems caused by these refactorings, while assuming that the plugin is not recompiled
(plugin recompilation would raise a number of compile-time errors) and that a plugin object as an instance
of SecureNode is created after upgrading to the second framework version.

• In case the plugin is calling the previously available method getIdentifier() on this object, either via an
ordinary call or via a supercall, the method implementation will not be found resulting in a run-time
exception (Non-localizable Framework Functionality, Figure 2.7 on page 29).

• In case the object is passed to the framework, which asks for the node location by attempting to invoke
the getLocation() hook method on the object, no corresponding implementation in SecureNode is
found (Non-localizable Plugin Functionality: Unimplemented Method, Figure 2.8(a) on page 30).

• In case the framework asks the object of SecureNode to broadcast a message by invoking manycast()
with the second parameter for broadcasting, the more specific method of SecureNode for sending
encrypted messages will not be found. Instead, the Java method lookup will find and invoke the many-
cast() method of Node that will result in inadvertently sending a non-encrypted message (Unintended
Framework Functionality: Inconsistent Method, Figure 2.9 on page 31).

• In case the framework invokes getDescription() on the object of SecureNode, the encryption descrip-
tion (as implemented in SecureNode) and not the node description (as implemented in the refactored
Node) is obtained, which is not what is expected at the framework site (Unintended Plugin Functiona-
lity: Method Capture, Figure 2.10 on page 33).

One solution would be to manually adapt the plugin implementation of SecureNode by renaming its
getDescription() to, say, getEncryptionDescription(), getNodeLocation() to getLocation(), and broadcast()
to manycast(). For the latter method, developers would also need to extend its parameter list with an integer
parameter for specifying a communication strategy. All existing method calls in the plugin to the manually
adapted plugin methods would need to be updated to call the modified methods correspondingly (e.g., to
specify the default value of broadcasting when calling manycast()). Moreover, all plugin calls to the modified
framework methods would have to be updated as well (e.g., calling getID() instead of getIdentifier()). After
applying these modifications, the plugin would need to be recompiled. However, such intrusive adaptation
requires plugin availability and recompilation, and is cumbersome and error-prone.

Instead, we could define two adapter classes Node and CovertNode (both placed in Figure 3.6 in the
Adaptation Layer) to translate between the framework’s Node and the plugin’s SecureNode (Figure 3.6).
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Framework Version 2

Utils

Adaptation Layer

Node

int getIdentifier(){
return adaptee.getID();

}
String getNodeLocation()
void broadcast(String msg)

Plugin Version 1

SecureNode

//hook method implementation
String getNodeLocation()
//encrypted broadcasting
void broadcast(String msg) 
//encryption info
String getDescription(){
//invokes super.getIdentifier();

}

Node

int getID()
String getLocation()
void manycast(String msg,int strategy)
//node description
String getDescription()

CovertNode

String getLocation(){
return adaptee.getNodeLocation();

}
void manycast(String msg,int strategy){
adaptee.broadcast(msg);

}

LAN

node.getIdentifier();

node.getLocation();
node.manycast(msg,Strategies.BROADCAST);
node.getDescription();

adaptee

adaptee

callee

callee

callee

Figure 3.6: Application of the White-Box Class Adapter pattern. The adapter reconstructs the API class as
expected in the plugin and dispatches method calls between an old plugin and the refactored framework API.

Since SecureNode expects the unrefactored (old) Node as its superclass, the adapter class Node reconstructs
the API type of the unrefactored Node. At the same time, the adapter class CovertNode subclasses the
framework’s Node. Both adapter classes use each other by object composition in order to access from
the plugin the inherited framework functionality (the adapter class Node via CovertNode) and from the
framework the overriding plugin functionality (CovertNode via the adapter class Node, using an instance
of its subclass SecureNode). The information, whether a plugin subclass (e.g., SecureNode) overrides an
API method to be called back from the framework is inferred by CovertNode at run time by investigating
the subclass’ type information. Using this information, CovertNode performs multiple method dispatch by
invoking the overriding plugin functionality (if found) or the default framework functionality (otherwise).
The dispatch as performed in CovertNode is multiple, because its algorithm considers besides the type of the
message receiver (in our example, an instance of CovertNode) also the type of the adaptee (in our example,
an instance of SecureNode) as an additional, implicit method argument. We discuss this multiple method
dispatch in detail in the pattern’s Collaboration section.

An important requirement to perform proper adaptation is object wrapping: any framework object sent
to the plugin and any plugin object sent to the framework are encased by a wrapper—an instance of the
corresponding adapter.7 In our example, whenever an object of SecureNode is sent to the framework, the
object is encased by a wrapper—an instance of CovertNode. As a consequence, all framework calls invoked
before the refactoring on the plugin object will be invoked after adaptation on the plugin object’s wrapper.

7We will discuss object wrapping in detail in Section 3.2.
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The problems caused by the refactorings of Node are solved as follows:

• In case a plugin is calling the method getIdentifier() on the object of SecureNode (either from LAN or
via a supercall from SecureNode), the call will reach the implementation of the adapter class Node that
will invoke the method getID() of the adapter class CovertNode inherited from the framework’s Node.

• In case the plugin object of SecureNode is passed to the framework, which invokes the getLocation()
method, since the object is wrapped, the method will be invoked on the object’s wrapper (an instance
of CovertNode), which in turn will call the plugin object’s getNodeLocation().

• Similarly, in case the framework invokes manycast(), a method of the wrapper (an instance of
CovertNode) is invoked, which in turn will invoke the broadcast() method of its wrapped (i.e., plugin)
object.8

• In case the framework invokes getDescription() (again, on the plugin object’s wrapper), multiple
method dispatch implemented in CovertNode will find no intentionally overriding method in Secure-
Node and, hence, will properly invoke the framework’s getDescription() method by a supercall from
CovertNode to the refactored framework Node.

This solution adapts both the framework to the plugin and the plugin to the framework. Addressing
particularities of white-box framework reuse, the implementation of a white-box class adapter is in a sense
a hybrid of the two versions of the Adapter pattern (i.e., based on inheritance and on object composition).
Its key feature is the ability to support bidirectional communication between the framework and plugins
by properly dispatching calls on inherited methods and supercalls (coming from the plugin), and callbacks
(coming from the framework).

Applicability

Use the White-Box Class Adapter pattern, if

1. a framework API class subclassed in a plugin (white-box framework reuse) is refactored, and

2. existing plugins cannot be updated intrusively.

Structure

Since both the framework and the plugin may act as Clients, the White-Box Class Adapter pattern is in
fact composed of two Adapter patterns—one for each calling site (i.e., the framework or the plugin). For
clarity, in the pattern’s definition we need to distinguish its participants depending on the calling site. For
that, in Figure 3.7 we use prefixed names of Client, Target, Adaptee, and Adapter to annotate the White-Box
Class Adapter pattern. For the case of a framework caller, we use FrClient, FrTarget, PlAdaptee, and
Pl2FrAdapter, respectively. For the case of a plugin caller, we use PlClient, PlTarget, FrAdaptee, and
Fr2PlAdapter, respectively. Moreover, to reflect the calling site, the adapter method names are prefixed with
“fr_” and “pl_”, respectively. However, the notation change is just a syntactic necessity; the semantics of the
participants remain as in the original pattern description.

8This solution will suffice in case the framework asks for broadcasting, which is, in fact, exactly what should be expected from the
old plugin, because it was developed with a framework version that did not support other communication strategies. Still, new calls of
the refactored framework may also specify another communication strategy, such as multicast, expecting semantics different from
broadcasting. In this case, protocol adaptation [YS97] going beyond refactoring-based adaptation is required; in Section 5.2, we show
that protocol adaptation can be realized in combination with our adapters.
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Framework Version 2

<<FrClient>>
Framework Client

Adaptation Layer

<<PlTarget>>
<<PlAdaptee>>

<<Fr2PlAdapter>>
Reconstructed API Class

Plugin Version 1

<<FrTarget>>
<<FrAdaptee>>

Refactored API Class

<<Pl2FrAdapter>>
Covert Plugin Adapter

callee <<PlClient>>
Plugin Client

adaptee

adaptee

callee

callee

<<PlClient>>
Plugin Subclass

fr_request(){
adaptee.pl_specificRequest();

}
pl_request(){
adaptee.fr_specificRequest();

}
pl_specificRequest()

fr_request()
fr_specificRequest()

Figure 3.7: White-Box Class Adapter pattern.

Participants

• Refactored API Class (Framework’s Node)

– defines the refactored API class.

• Reconstructed API Class (Adaptation Layer’s Node)

– reconstructs the API type of the unrefactored API class.

– adapts the API type of Refactored API Class to the API type of Reconstructed API Class.

• Covert Plugin Adapter (Adaptation Layer’s CovertNode)

– adapts the API type of Reconstructed API Class to the API type of Refactored API Class.

– implements multiple method dispatch to call back methods of Reconstructed API Class overrid-
den in Plugin Subclass.

• Plugin Subclass (Plugin’s SecureNode)

– defines a plugin subclass of the unrefactored API class.

• Plugin Client (Plugin’s LAN)

– collaborates with objects conforming to the API type of Reconstructed API Class.

• Framework Client (Framework’s Utils)

– collaborates with objects conforming to the API type of Refactored API Class.
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Reconstructed API Class
1 public abstract class Node {
2 //instance of Covert Plugin Adapter
3 CovertNode adaptee;
4

5 //forwarding to the framework
6 int getIdentifier() {
7 return adaptee.upcall_getID();
8 }
9

10 abstract String getNodeLocation();
11

12 //forwarding to the framework
13 void broadcast(String msg) {
14 adaptee.upcall_manycast(msg,BROADCAST);
15 }
16 }

Covert Plugin Adapter
1 public class CovertNode extends refactoredAPI.Node {
2 //plugin instance
3 Node adaptee;
4

5 //multiple method dispatch
6 int getID() {
7 if (adaptee.getClass().declares("int getIdentifier()"))
8 return adaptee.getIdentifier();
9 else

10 return super.getID();
11 }
12

13 //upcalling method
14 int upcall_getID() {
15 return super.getID();
16 }
17

18 //forwarding to the plugin without multiple method dispatch
19 String getLocation() {
20 return adaptee.getNodeLocation();
21 }
22

23 //multiple method dispatch
24 void manycast(String msg,int strategy) {
25 if (adaptee.getClass().declares("void broadcast(String msg)"))
26 adaptee.broadcast(msg);
27 else
28 super.manycast(msg,strategy);
29 }
30

31 //upcalling method
32 void upcall_manycast(String msg,int strategy) {
33 super.manycast(msg,strategy);
34 }
35 }

Figure 3.8: Adapter methods in the application of the White-Box Class Adapter pattern. In their implemen-
tations, the methods use Java type introspection and reflective method invocations (details omitted). For
readability, the name of the refactored API class is prefixed with refactoredAPI.; in practice, the name need
not be changed (in Java, the adapter Node and the framework Node are loaded by different class loaders).

Collaboration

Plugin clients (i.e., Plugin Client and Plugin Subclass) call operations on an instance of Plugin Subclass. In
case a call reaches Reconstructed API Class, the latter forwards the call to an operation of Covert Plugin
Adapter. In turn, Covert Plugin Adapter uses an operation of Refactored API Class to carry out the request.

Framework Client calls operations on an instance of Covert Plugin Adapter. In turn, the instance forwards
the call to an overriding operation (if any) in Plugin Subclass, or supercalls an operation of Refactored API
Class (otherwise).

Let us take a closer look at the collaboration of the White-Box Adapter pattern by reconsidering, along
with the pattern participants of Figure 3.7, also concrete classes from the pattern application example of
Figure 3.6. The Java-like pseudocode of Figure 3.8 shows the adapter methods of Reconstructed API Class
Node and Covert Plugin Adapter CovertNode. The collaboration of the two adapter classes provides the
adaptation of the API methods of Refactored API Class to the API methods of Reconstructed API Class,
and vice versa.

• Adapting Refactored API Class to Reconstructed API Class. This adaptation is performed in the
methods of Reconstructed API Class (the adapter class Node in Figure 3.6) in case the plugin is acting
as Client.
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More specifically, the methods of Reconstructed API Class may be called exactly in two cases. First,
Plugin Client (the plugin’s LAN) invokes a method of Plugin Subclass (the plugin’s SecureNode),
the method is present in Reconstructed API Class and is not overridden in Plugin Subclass (e.g.,
getIdentifier() in Figure 3.6). Second, Plugin Subclass may supercall a method of Reconstructed
API Class (the adapter class Node). In both cases, the call reaches Reconstructed API Class, which
invokes the corresponding method of Covert Plugin Adapter (the adapter class CovertNode). For
example, in the left listing of Figure 3.8 the invocation of getIdentifier() will reach the adapter class
Node that will in turn invoke CovertNode’s method upcall_getID() (lines 6–8), the method’s name
to be explained in the next paragraph. As a consequence, the adapter protects from Non-localizable
Framework Functionality.

Any method of Covert Plugin Adapter invoked from Reconstructed API Class (e.g., upcall_getID()
shown by lines 14–16 in the right listing of Figure 3.8) is upcalling. An upcalling method has exactly
the same signature as an API method in Refactored API Class, but prepended with a unique prefix
“upcall_”. Each upcalling method merely invokes its corresponding API method in Refactored API
Class (as upcall_getID() invokes super.getID()). By using upcalling methods, we tell Covert Plugin
Adapter to invoke the inherited framework functionality, instead of performing multiple method
dispatch. We will come back to this issue at the end of the Collaboration section, after describing
multiple method dispatch as implemented in Covert Plugin Adapter.

• Adapting Reconstructed API Class to Refactored API Class. This adaptation is performed in the
methods of Covert Plugin Adapter (the adapter class CovertNode in Figure 3.6) in case the framework
is acting as Client.

More specifically, this adaptation is performed when Framework Client (the framework’s Utils in
Figure 3.6) attempts to invoke an API method, which is defined (for abstract API methods, such as
getLocation() in Figure 3.6) or redefined (i.e., overridden, such as manycast() in Figure 3.6) in Plugin
Subclass. Covert Plugin Adapter has to locate and invoke the corresponding defining or redefining
methods (getNodeLocation() and broadcast(), respectively) in Plugin Subclass.

As we mentioned in the Motivation section of this pattern and will further discuss in Section 3.2,
an object of a plugin type sent to the framework is always encased by a wrapper—an instance of
an adapter. In our example, an object of Plugin Subclass (SecureNode in Figure 3.6) sent to the
framework is wrapped by an instance of Covert Plugin Adapter (CovertNode). Therefore, a method
call of Framework Client (Utils) on the wrapper will invoke a method of Covert Plugin Adapter. There
are exactly three cases handled in Covert Plugin Adapter, depending on the properties of the API
method being invoked on behalf of Framework Client.

1. The API method is newly introduced to the API (the method did not exist in the framework
version, with which the plugin was developed). Such methods are simply inherited by Covert
Plugin Adapter from Refactored API Class and are invoked to carry out the request of Frame-
work Client. For example, in the right listing of Figure 3.8 CovertAdapter does not redefine
getDescription() method, newly introduced to the refactored framework Node. Thereby, Covert
Plugin Adapter prohibits accidental overriding of newly introduced API methods by existing
plugin methods, such as the accidental overriding of the framework’s getDescription() by the
plugin’s getDescription(). As a consequence, the adapter protects from Unintended Plugin
Functionality: Method Capture.

2. The API method is abstract (the method has no framework implementation). In this case, an
implementation of the method in Plugin Subclass can be assumed, because otherwise the plugin
would not have compiled with the old version of the API. For such methods, Covert Plugin
Adapter defines adapter methods that invoke the corresponding methods of Reconstructed API
Class on the instance contained in the adaptee field of Covert Plugin Adapter (e.g., containing
an object of SecureNode in Figure 3.6). In lines 19–21 of the right listing of Figure 3.8, Co-
vertNode’s method getLocation() will call Node’s getNodeLocation() on its adaptee, effectively
invoking the method as implemented in SecureNode. As a consequence, the adapter protects
from Non-localizable Plugin Functionality: Unimplemented Method.
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3. The API method is concrete (the method is implemented in Refactored API Class or its super-
classes). In this case, the plugin might override the method, but does not have to. Therefore,
Covert Plugin Adapter performs multiple method dispatch to decide, whether to execute a
plugin implementation or the default framework implementation. When dispatching, it uses the
metadata about Plugin Subclass (in Java, using introspection) to check for the presence of an
intentionally overriding plugin method, which corresponds to the API method being invoked
by Framework Client.9 In case overriding is detected, Covert Plugin Adapter calls the method
of Reconstructed API Class on the plugin instance stored in the adaptee field of Covert Plugin
Adapter (in our example case, an instance of SecureNode). Otherwise, the method of Refactored
API Class is supercalled from Covert Plugin Adapter. In the listing of Figure 3.8, the two
such adapter methods of Covert Plugin Adapter (i.e., CovertNode) performing multiple method
dispatch are getID() (lines 6–11) and manycast() (lines 24–29). As a consequence of multiple
method dispatch, the adapter protects from Unintended Framework Functionality: Inconsistent
Method.

Since Java does not provide run-time information about method callers, we use upcalling methods in Covert
Plugin Adapter to distinguish between Plugin Client and Framework Client. In the former case, Covert
Plugin Adapter should invoke the framework functionality inherited in plugins; in the latter case, Covert
Plugin Adapter needs to perform multiple method dispatch to detect, whether overriding plugin functionality
exists. Since upcalling methods of Covert Plugin Adapter are invoked exclusively from Reconstructed API
Class, their invocation implies a call coming from the plugin, which should be forwarded to the framework
without multiple method dispatch.10

Besides avoiding unnecessary dispatch for the method calls coming from the plugin, by using upcalling
methods we also avoid Plugin Subclass inadvertently invoking its own methods, when inherited API methods
should be invoked instead. For our running example from Figure 3.6, let us assume that from one of its
methods SecureNode (i.e., Plugin Subclass) invokes super.broadcast(), performing a supercall to the method
defined in Node (i.e., Refactored API Class). In this case, the framework method in Node should be invoked,
and not the overriding plugin method in SecureNode. However, performing multiple method dispatch in
CovertNode (i.e., Covert Plugin Adapter) would detect and inadvertently invoke the overriding method in
SecureNode. This would lead either to executing the unintended functionality of the overridden method
(e.g., in case super.broadcast() in invoked from the SecureNode’s getDescription() method) or to entering
a possibly infinite call loop (e.g., in case super.broadcast() is invoked from the SecureNode’s broadcast()
method). Via the distinct upcalling method called from Reconstructed API Class we indicate Covert Plugin
Adapter to supercall the framework instead of performing multiple method dispatch.

The pseudocode of Listing 3.1 summarizes the collaboration as performed between Covert Plugin Adapter
and Reconstructed API Class. Comparing to the code of Figure 3.8, Listing 3.1 omits the details of adapting
mismatches between method signatures of Refactored API Class and Reconstructed API Class (e.g., relating
getID() and getIdentifier(), or manycast() and broadcast()). Corresponding method signatures are related
by the adaptation code emitted at adapter generation time, taking into account the information about API
refactorings (as we will describe for refactoring-based adapter generation in Chapter 4).

3.1.4 White-Box Interface Adapter Pattern

Motivation

A plugin may reuse the framework by implementing an API interface, while framework methods imple-
mented by the plugin may be called back from the framework. After refactoring the API interface, plugin

9Multiple method dispatch is required, because we assume the unavailability of plugins for analysis. Otherwise, we could have
optimized the dispatch away by generating one specific Covert Plugin Adapter for each discovered plugin subclass.

10Upcalling methods are a particular implementation decision, chosen for its simplicity and efficiency. The method caller could be
traced differently, for example, setting a flag indicating the calling site. However, this decision would imply carrying out the flag’s
synchronization, and additional method calls to manage the flag’s value.
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Listing 3.1: Class collaboration and multiple dispatch in the White-Box Class Adapter pattern
p u b l i c c l a s s R e c o n s t r u c t e d A P I C l a s s {

p r i v a t e C o v e r t P l u g i n A d a p t e r a d a p t e e ;

p u b l i c ReturnType MethodName ( P a r a m e t e r s ) {
/ / c a l l r e a c h i n g t h i s p o i n t i n d i c a t e s P l u g i n C l i e n t
/ / hence , i n v o k e u p c a l l i n g method o f C o v e r t A d a p t e r C lass
r e t u r n a d a p t e e . " u p c a l l _ "+MethodName ( P a r a m e t e r s ) ;

}
}

p u b l i c C o v e r t P l u g i n A d a p t e r e x t e n d s R e f a c t o r e d A P I C l a s s {
/ / f i e l d t y p e i s R e c o n s t r u c t e d API C lass
/ / f i e l d v a l u e i s an i n s t a n c e o f P l u g i n S u b c l a s s
p r i v a t e R e c o n s t r u c t e d A P I C l a s s a d a p t e e ;

/ / c a l l comes f rom Framework C l i e n t , p e r f o r m m u l t i p l e method d i s p a t c h
p u b l i c ReturnType MethodName ( P a r a m e t e r s ) {

/ / check f o r o v e r r i d i n g method i n t h e adap tee
i f ( a d a p t e e . g e t C l a s s ( ) . d e f i n e s ( MethodName , P a r a m e t e r s ) ) {

/ / c a l l t h e o v e r r i d d e n p l u g i n method
r e t u r n a d a p t e e . MethodName ( P a r a m e t e r s ) ;

} e l s e {
/ / no o v e r r i d i n g found
r e t u r n s u p e r . MethodName ( P a r a m e t e r s ) ;

}
}

/ / c a l l comes f rom P l u g i n C l i e n t , u p c a l l t h e f ramework
p u b l i c ReturnType " u p c a l l _ "+MethodName ( P a r a m e t e r s ) {

r e t u r n s u p e r . MethodName ( P a r a m e t e r s ) ;
}

}

functionality, which was previously called backed from the framework via methods of the API interface,
may not be accessible in the upgraded framework.

Let us reconsider the API interface IPacket, the refactoring of which was discussed for the Black-Box Inter-
face Adapter pattern in Section 3.1.2, but now assuming white-box framework reuse. In the first framework
release, the interface contains a method whoCreated() with the return value of type Node. The interface is
implemented by the plugin’s class SecurePacket, where the implementation of the method whoCreated()
returns the packet’s creator node. In white-box framework reuse, the method packetSeenInNode() of the
framework class PacketFactory may be invoked, with an instance of SecurePacket passed as the actual
argument to the method formal parameter of type IPacket. On that instance, PacketFactory may invoke the
method whoCreated() to obtain the packet’s creator. (This example was introduced by Figure 2.5(b) on
page 26.)

In the second framework release, to follow adopted naming conventions, framework developers rename
IPacket’s method whoCreated() to getCreator() and update existing framework calls to the method. After
upgrading the refactored framework, the call to the renamed method in the framework’s PacketFactory
will not locate and invoke the plugin implementation of the method (Non-localizable Plugin Functionality:
Unimplemented Method, as shown for our example by Figure 2.8(b) on page 30). One solution would
be to make the plugin’s SecurePacket properly implement the refactored API interface and, thereafter, to
recompile the plugin. However, this is not possible in case the plugin is not available or cannot be modified.

Instead, we could introduce two adapter types: a (reconstructed) adapter interface IPacket declaring the
method whoCreated() with exactly the same signature as before the refactoring, and a class named, say,
CovertIPacketWhite, implementing the framework’s refactored interface IPacket (Figure 3.9). A plugin
instance of SecurePacket is composed as an object of the adapter type IPacket within an object of the
adapter class CovertIPacketWhite. When the plugin instantiates the class SecurePacket implementing
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Plugin Version 1

SecurePacket

Node whoCreated()

Adaptation Layer

IPacket

Node whoCreated()

CovertIPacketWhite

Node getCreator(){
return adaptee.whoCreated();

}

Framework Version 2

PacketFactory

packet.getCreator();

IPacket

Node getCreator()

adaptee

callee

Figure 3.9: Application of the White-Box Interface Adapter pattern. The adapter class CovertIPacketWhite
implements the refactored IPacket of the framework and uses the reconstructed adapter interface IPacket
implemented by the plugin, enabling the refactored framework to access existing plugin implementation.

the adapter interface IPacket and returns the instance to the framework, it is wrapped in an instance of
CovertIPacketWhite.

The problem caused by the aforementioned API interface refactoring is solved as following: In case the
framework calls getCreator() (specified by the refactored interface IPacket) on the object of CovertIPacketW-
hite, the object will call the method whoCreated() on the object stored in its adaptee field, and then return
the obtained value to the framework.

Applicability

Use the White-Box Interface Adapter pattern, if

1. a framework API interface used by object composition (white-box framework reuse) is refactored, and

2. existing plugins cannot be updated intrusively.

Structure

Figure 3.10 shows the structure of the White-Box Interface Adapter pattern, annotated (by stereotypes) with
the names of the participants of the Adapter design pattern.

Participants

• Refactored API Interface (Framework’s IPacket)

– defines the refactored API interface.

• Reconstructed API Interface (Adaptation Layer’s IPacket)

– reconstructs the API type of the unrefactored API interface.

• Covert Plugin Adapter (Adaptation Layer’s CovertIPacketWhite)
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<<Adaptee>>
Reconstructed API Interface

specificRequest()

<<Adapter>>
Covert Plugin Adapter

request(){
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<<Target>>
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Framework Client
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Plugin Version 1

Implementation of 
Reconstructed API Interface 

Figure 3.10: White-Box Interface Adapter pattern.

– adapts the API type of Reconstructed API Interface to the API type of Refactored API Interface.

• Framework Client (Framework’s PacketFactory)

– collaborates with objects conforming to the API type of Refactored API Interface.

Collaboration

Framework Client calls operations on an instance of Covert Plugin Adapter. In turn, the instance calls
operations of Reconstructed API Interface that carries out the requests.

3.1.5 Design Rationale of Black-Box and White-Box Adapter Patterns

In the previous sections of this chapter we made a step from the conventional Adapter design pattern to four
novel adaptation patterns designated to compensate for application-breaking API refactorings in evolving
Java frameworks. In doing that, we came from the general terms of the Adapter design pattern used to
describe adaptation design in the context of component integration to the terms of the patterns for adapting
refactored Java APIs (Table 3.1).

In this section, we describe in more detail why we came to the particular design of our adaptation patterns.
We believe that explaining the design rationale will help to reuse design decisions when developing adapters
for languages others than Java, and in different adaptation contexts. In particular, we will discuss how
our main goal—binary backward compatibility of the refactored framework and its old plugins—and the
particularities of the implementation platform (i.e., Java) impact the final design of our patterns. In the
following section, we first look at the conceptual relations between Target, Adapter, and Adaptee (as defined
in the Adapter design pattern [GHJV95, p. 141]), and examine particularities of realizing these relations
in Java. In our discussions, we will omit the Client participant (and, therefore, its Framework Client and
Plugin Client counterparts in our adaptation patterns), because Client simply indicates the calling site, while
the particularities of its implementation do not add to the discussion of the patterns’ design. Thereafter, we
discuss how these particularities influence the design of our adaptation patterns. Armed with this knowledge,
at the end of the section we will compare our design with a similar design developed with a different
goal—to support refactoring of legacy code from inheritance to delegation [KS08].
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Patterns Participants Participants’
Relations

Adapter pattern Target, Adaptee, Adapter, Client subtype, use,
call

Black-Box Class
Adapter pattern

Reconstructed API Class, Refactored API Class, Plugin Client forward, call

Black-Box Interface
Adapter pattern

Reconstructed API Interface, Refactored API Interface, Co-
vert Framework Adapter, Plugin Client

implement, for-
ward, call

White-Box Class
Adapter pattern

Reconstructed API Class, Refactored API Class, Covert Plu-
gin Adapter, Framework Client, Plugin Subclass, Plugin
Client

extend, intros-
pect, forward,
call

White-Box Interface
Adapter pattern

Reconstructed API Interface, Refactored API Interface, Co-
vert Plugin Adapter, Framework Client

implement, for-
ward, call

Table 3.1: Terminology of the conventional Adapter pattern and the Black-Box and White-Box Adapter
patterns. In the relations of the Black-Box and White-Box Adapter patterns, call stands for a client call,
forward for a forwarding call, implement for implementing an interface, and extend for extending a class.
Introspect is a special use relation used in the White-Box Class Adapter pattern to check for the presence of
overriding plugin implementation.

Java Adapters for Binary Backward Compatibility

To begin with, we should understand the conceptual relations between the types involved in adaptation and
consider the particularities of our implementation platform (i.e., Java) to properly realize those relations
in the Black-Box and White-Box Adapter patterns. Figure 3.11 summarizes the conceptual type relations
between the key participants of the Adapter design pattern. While discussing the realization of these
participants and their relations in the Black-Box and White-Box Class and Interface Adapter patterns, we
will superimpose the participants of Figure 3.11 (denoted as stereotypes) and their relations on the UML
class diagrams [Obj05] representing the patterns. The only extension to the standard UML notation is
composing the stereotype names in dashed boxes and relating them by dashed arrows (as in Figure 3.11), to
distinguish the relations between the participants of the Adapter design pattern from the relations between
the participants of the Black-Box and White-Box Adapter patterns.

Realizing subtype relation. Quite obviously, an Adapter is a subtype of its Target since its interface
contains the interface of Target (subtyping relation as defined by Gamma et al. [GHJV95, p. 13]), while
its objects may substitute the objects of its Target in all programs without changing the program behavior
(Liskov’s substitution principle [Lis87]). Therefore, to achieve backward compatibility, we must realize
Adapters as subtypes of their Targets.

When realizing subtype relation in Java adapters, we should consider that Java mixes the notions of class
inheritance and subtyping. If, for example, a type is specified (and implemented) by a class, it is expected
that the type’s subtype is also specified (and implemented) by a class. Moreover, certain assumptions about
types exist at the level of the language execution environment: for example, when locating a type, the Java

<<Target>>

<<Adapter>>

<<Adaptee>>

subtype

use

Figure 3.11: Subtype and use relations of the Adapter design pattern.
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linker may rely on the information about the type’s implementation (e.g., whether it is a class or an interface).
Therefore, if the type is expected to be specified by an interface, substituting it with a class specifying the
type directly (i.e., without implementing the interface) may lead to the linker not locating the replacing
type’s methods. Finally, since Java has a nominative type system [Pie02], the subtype relation must be
declared explicitly, using predefined language keywords (i.e., extends and implements in Java).
Realizing use relation. While Adapter and Target are types related by subtyping, Adapter and Adaptee are
types related by a use relation.11 We formulate this use relation as follows: Whenever Adapter possesses
the implementation of the method intended to be invoked on an instance of Target, Adapter uses its
implementation for the method invocation; otherwise, Adapter uses the implementation of its Adaptee. In
addition to reusing Adaptee’s implementation, this definition allows Adapter to realize functionality not
present in Adaptee.
Since after the API refactoring and adaptation the framework and its plugins are related via adapters, the
realization of the conceptual use relation in adapters must be powerful enough to relate the both sites as
before the API refactoring. Therefore, the realization of the use relation in our adapter patterns is directly
influenced by the way the API is reused (i.e., by object composition or by inheritance) and corresponds to
object composition (in black-box framework reuse) and to inheritance (in white-box framework reuse).

Designing the Black-Box Adapter Patterns

In case of a refactored API class, where the old version was reused in a plugin by object composition,
the plugin expects the Target interface (i.e., the API type, in our context) to be specified by an API class.
Therefore, we need to create an adapter class specifying Target. Furthermore, to subtype Target the class
of the corresponding Adapter must subclass the class specifying Target. As a possible solution, we could
specify the Target interface by a separate class, with some default (e.g., dummy) method implementations.
Afterwards, we could subclass that class by an adapter class that would override all methods of its base class
with adapter methods.
Besides creating two classes, this solution has another drawback due to the fact that the plugin is aware of
reusing an API class (and not an API interface). Namely, if a plugin attempts to instantiate the class by
calling a class constructor, there is no way to make the plugin instantiate the class realizing Adapter instead,
without either modifying the plugin’s constructor call or using an additional technology (e.g., intercepting
constructor calls and rewriting binaries at run time by an aspect-based tool, such as JAC [JAC]). However,
remaining general and independent from additional technologies and tools (e.g., aspect orientation), we want
to implement all our adaptation decisions in the base language (i.e., Java). Because we are in full control
over the adapter construction, we realize both Target and Adapter as a single class, that is, Reconstructed
API Class (Figure 3.12, the bottom part). After all, a type is a subtype of itself and realizing the adapter
class as Reconstructed API Class does not affect the subtyping we require for adaptation. The class specifies
the Target interface, defines dedicated type constructors (to properly instantiate the adapter class), and
provides the corresponding implementation of the adapter methods. Or, seen from a different perspective,
Reconstructed API Class includes the class realizing Adapter as a mixin [BC90].
Now we need to decide how to realize the use relation between Adapter and Adaptee, the API type of the
latter specified and implemented by Refactored API Class (Figure 3.12, the top part). Once Reconstructed
API Class is introduced, all plugin calls that were invoked on a framework object are invoked on an instance
of Reconstructed API Class—a wrapper of that framework object. In black-box reuse, to perform its job a
wrapper needs merely to invoke a method of its adaptee object, while the self reference of the method call
invoked on the wrapper (and bound to the wrapper) does not need to be passed further to the adaptee object.
Kniesel [Kni00, p. 15] calls this use relation consultation (as opposed to delegation [Lie86], in which the
self reference would also be passed further on). In Java, consultation can be implemented by message
forwarding (called by Kniesel explicit resending [Kni00, p. 17]), in our case, from wrappers to their adaptee
objects. Figure 3.12 summarizes design decisions with regard to the implementation of subtype and use
relations in the Black-Box Class Adapter pattern.

11Regardless of the Adapter pattern version (using object composition or inheritance), the pattern’s Adapter is always a subtype of
Target, but not of Adaptee. In the class version of the pattern, Adapter uses private inheritance that does not relate the types, only the
implementation.
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Figure 3.12: Subtype and use relations and their implementation in the Black-Box Class Adapter pattern.
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Figure 3.13: Subtype and use relations and their implementation in the Black-Box Interface Adapter pattern.

The design of the Black-Box Class Adapter pattern can be trivially adopted to the Black-Box Interface
Adapter pattern coping with a refactored API interface implemented in the framework (Figure 3.13). In
this case, since Adapter is always realized by a class, while Target is expected (e.g., by the linker) to be
specified by an API interface, we cannot realize both Target and Adapter by a single adapter class. Instead,
we reconstruct the interface as a separate implementation unit (Reconstructed API interface) and make the
adapter class hidden in the adaptation layer (Covert Framework Adapter) implement that interface. The use
relation to Adaptee (the API type specified by Refactored API Interface) is implemented as in the Black-Box
Class Adapter pattern (i.e., by message forwarding) for the same reasons.

Designing the White-Box Adapter Patterns

In contrast to black-box reuse, in white-box reuse Clients are possible at both sites (i.e., the framework and
the plugins). In general, besides the methods that can be used directly on its instances, a class in a class
hierarchy defines a two-sided inheritance interface [Hau93] (also called specialization interface [SG95]):
one side defines class members inherited by subclasses and accessible by subclasses’ clients, and the
other side defines members of subclasses accessible from the base class’ clients. Referring to our running
example of the framework’s Node subclassed by the plugin’s SecureNode (as introduced by Figure 2.5 on
page 26), one side of the Node’s inheritance interface consists of getIdentifier() and getInfo() inherited in the
plugin, while the other side of the Node’s inheritance interface consists of getNodeLocation() defined (i.e.,
implemented) and broadcast() redefined (i.e., overridden) in the plugin.

The ability of accessing subclass functionality via the methods specified in the base class plays a key
role in the implementation of many important engineering decisions (e.g., of the Template Method design
pattern [GHJV95, p. 325]). However, it also lies at heart of the fragile base class problem [MS98], because
by making assumptions about implementation particularities of base classes and subclasses, developers may
commit themselves to semantics often hidden in and non-trivial to extrapolate from class implementations.
In case such particularities are not understood by developers during application maintenance, applications
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Figure 3.14: Inheritance interface of a base class in a class hierarchy (inspired by Hauck [Hau93]).

can be easily broken if the base class is replaced (e.g., upgraded to a new version).12

In particular, the refactoring of an API class can be seen as replacing its old version (called unrefactored
API class throughout Section 3.1) with a refactored, improved version (i.e., refactored API class). After the
refactoring, whereas one side of the class’ inheritance interface is still defined by methods of old plugin
subclasses, the other side is expressed by the refactored methods of the API class. By restructuring the class
implementation that expresses only one side of the class’ inheritance interface (the side defined in the API
class, but not in its subclasses), API refactorings may introduce a mismatch between the two implementation
sides of the inheritance interface. In our running example, by affecting the signatures of getNodeLocation()
and broadcast(), and by introducing a new method getDescription(), refactorings of the API class Node
introduce a mismatch between the Node’s two sides of the inheritance interface.

In general, to support safe class replacement, Hauck suggests to formally define an inheritance interface as a
type specification, separate from class implementations [Hau93]. Given such specification that essentially
describes the contract of a base class, developers relate (or project, in the terminology of Hauck [Hau93])
the implementation of a replacement class to the specification, stating explicitly how the class implements
the contract specified by the inheritance interface (Figure 3.14). Thereafter, it is possible to ensure (e.g.,
using a type checker) that the replacement class fulfills all (type) constraints of the inheritance interface
fulfilled by the class being replaced [Hau93].

If we had an explicit inheritance interface defined for a framework API class being refactored, we could use
the inheritance interface to relate the refactored implementation of the API class and the old implementation
of existing plugin subclasses. Via the inheritance interface, we would (re-)connect the refactored API class
with its old subclasses and ensure the correctness of framework upgrade. However, in Java there is no
explicit notion of the inheritance interface; it is defined implicitly by declaring certain class methods public
and protected, and implementing some of these methods in subclasses (e.g., as in our running example of
Node and SecureNode). Moreover, we do not want to burden framework developers with the task of writing
additional adaptation specifications (in this case, the specifications of inheritance interfaces). Instead, we
connect the refactored API class and its old plugin subclasses via the adapter classes of the White-Box Class
Adapter pattern. In a sense, the pattern extrapolates an inheritance interface from a refactored API class and
its old plugin subclasses, and relates to the extracted inheritance interface the actual implementation in the
refactored framework and old plugins.

Using the naming conventions introduced when presenting the design of the White-Box Class Adapter
pattern (Figure 3.7 on page 51), Figure 3.15 relates the notion of the inheritance interface to the participants
of the Adapter pattern in the context of a refactored API class. The side of the class’ inheritance interface
inherited by a plugin subclass is the PlTarget interface expected by plugin clients. Similarly, the side of the
class’ inheritance interface accessed from the framework is the FrTarget interface expected by framework
clients. Together, PlTarget and FrTarget comprise the (implicit) inheritance interface of the refactored API
class in question. While PlTarget consists of all methods of the unrefactored API class inherited (and not
redefined) by subclasses, FrTarget consists of all methods of the refactored API class, for which defining or
redefining implementation may exist in old subclasses.

12For a set of excellent examples of the fragile base class problem we refer to Mikhajlov and Sekerinski [MS98].
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Figure 3.15: Inheritance interface and a refactored API class associated with the key Adapter pattern
participants. Target participants are prefixed to reflect the calling site, while Adaptee participants are
prefixed to reflect the site, where the required implementation is present (“Pl” for the plugin and “Fr” for the
framework, respectively). At the same time, Adapter participants are prefixed to reflect the Adaptee-Target
pair related by each Adapter (“Pl2Fr” and “Fr2Pl”, respectively).
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Figure 3.16: Subtype relations and their implementation in the White-Box Class Adapter pattern.

When realizing the types as expected by Java clients, since PlTarget and FrTarget are expected to be specified
by classes (the unrefactored API class and the refactored API class, respectively), we need to specify them
directly by classes (and not by separate adapter interfaces). The types of these two classes should then be
subtyped by the types of classes realizing the corresponding Adapters (Fr2PlAdapter and Pl2FrAdapter,
respectively), to implement the subtype relation of the Adapter pattern. Similar to the Black-Box Class
Adapter pattern, and for the same reasons, Reconstructed API Class of the White-Box Class Adapter pattern
realizes both the Target interface as expected by the plugin (i.e., PlTarget) and the corresponding Adapter
(i.e., Fr2PlAdapter) as a single class (Figure 3.16, left part). At the same time, since FrTarget is defined
by the refactored API class (called Refactored API Class in the pattern), Covert Plugin Adapter realizing
Pl2FrAdapter subclasses Refactored API Class (Figure 3.16, right part).

As the final design step, we should implement the use relations of Adapters and their Adaptees (Figure 3.17).
Fr2PlAdapter relates to its PlTarget the framework implementation of the inheritance interface represented
by FrAdaptee (the upper use arrow in Figure 3.17). Similarly, Pl2FrAdapter relates to its FrTarget the plugin
implementation of the inheritance interface represented by PlAdaptee (the lower use arrow in Figure 3.17).
In the pattern realization, Reconstructed API Class realizing Fr2PlAdapter should use the functionality of
FrAdaptee represented by Refactored API Class, while Covert Plugin Adapter realizing Pl2FrAdapter should
use (via Reconstructed API Class) the overriding functionality of old plugin subclasses. Moreover, because
we are adapting the two sides of an inheritance interface of the very same API class, the collaboration of the
two adapter classes should (re-)connect the class hierarchy affected by API refactoring. This implies that
the very same methods of the API class’ inheritance interface invoked by calls from existing framework
and plugin clients before the refactorings, will be invoked by those calls after the refactoring and pattern
application.

Probably, the most intuitive solution in Java is to implement the use relations of the pattern as class
inheritance, by extending Covert Plugin Adapter by Reconstucted API Class (Figure 3.18). Indeed, since
Covert Plugin Adapter adapts functionality of the old plugin subclasses to the refactored base API class,
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Figure 3.17: Use relations in the White-Box Class Adapter pattern.
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Figure 3.18: Inheritance-based implementation of the use relations in the White-Box Class Adapter pattern.
The adapters are inserted in the class hierarchy between the refactored API class and existing plugin
subclasses, and are related by class inheritance.

while Reconstucted API Class adapts functionality of the refactored base API class to plugin subclasses,
subclassing the former by the latter conceptually re-establishes the class hierarchy broken by API refactorings
(Figure 3.18(a)). Moreover, this solution could be optimized by implementing the Adapters as a single class
that inherits from the refactored API class, serves as the base class for the existing plugin subclasses, and
realizes the adaptation logic to invoke the appropriate methods of the refactored API class and its plugin
subclasses (Figure 3.18(b)).

Although intuitive, this inheritance-based solution has two severe disadvantages. First, we would have
to solve class name collisions: although the name of Covert Plugin Adapter is not important (we could
choose any unique name, or implement the both Adapters as a single class), the name of Reconstructed
API Class is—it has to be named exactly as the API class before the refactoring. Unless the API class was
renamed by a refactoring, the name of Refactored API Class will be exactly the same as of Reconstructed
API Class prohibiting subclassing the former by the latter (indirectly, as in Figure 3.18(a), or directly, as in
Figure 3.18(b)). We could solve this problem by renaming the whole refactored framework API (e.g., by
moving it to another package) to disambiguate the names of all Refactored and Reconstructed API Classes.
Although technically possible, we considered renaming the API undesirable.

While renaming the API is undesirable, the second disadvantage of this inheritance-based solution–the
inability to protected from Unintended Functionality (discussed in Section 2.2.3)—is much severer. More
specifically, this solution cannot cope with refactorings leading to Unintended Plugin Functionality: Method
Capture (shown by Figure 2.10 on page 33). Recalling the problem, in case a newly introduced or refactored
API method of the refactored API class has exactly the same signature as a semantically different method
implemented in an old plugin subclass, the API method will be inadvertently overridden by the plugin
method. When the framework invokes such a method on an instance of the plugin subclass, the self reference
will be bound to the plugin instance, which will invoke its (inadvertently) overriding method, leading to
an application malfunction. Relating the refactored API class and existing plugin subclasses via class
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Figure 3.19: Delegation-based implementation of the use relations in the White-Box Class Adapter pattern.
Delegation is realized by a combination of message forwarding between Reconstructed API Class and
Covert Plugin Adapter, and the type introspection as performed in the multiple dispatch of Covert Plugin
Adapter.

inheritance, we could not avoid accidental overriding, because we do not have control over the binding of
the self reference and, hence, the methods to be invoked. Without implying additional technologies (e.g.,
aspect orientation), there is no way in this inheritance-based solution to intercept accidentally overridden
methods called on a plugin instance, and invoke instead intended framework methods. Moreover, since we
cannot analyze plugins statically, we could not even warn developers about a possible accidental overriding.
Since inversion of control realized via the callback mechanism plays a crucial role in framework-based
applications, we considered this disadvantage unacceptable.

What we require are adapters that are able to intercept the method calls coming from both sides of the
inheritance interface of a refactored API class and redirect these calls appropriately. At the same time,
we must implement the White-Box Class Adapter pattern in such a way, that, at least conceptually, the
inheritance relation between the refactored API class and existing plugin subclasses is re-established.

To emulate the class inheritance, while giving adapters the required control power, we realize Reconstructed
API Class and Covert Plugin Adapter as separate classes related by delegation (Figure 3.19). Delegation
as a reuse mechanism has been shown to be at least as powerful as class inheritance [Lie86, Ste87, JZ91,
GHJV95, KS08].13 In particular, Gamma et al. argue that “delegation is an extreme example of object
composition. It shows that you can always replace inheritance with object composition as a mechanism for
code reuse” [GHJV95, p. 21]. In our adaptation context, using delegation changes the binding of method
receivers, since now adapters can intercept all calls to the methods of the inheritance interface and react on
these methods appropriately. Whenever the plugin calls a method of the inheritance interface, the call will
reach Reconstructed API Class, which will forward the call to a method of Covert Plugin Adapter invoking
the functionality of the refactored API class. Whenever the framework calls a method of the inheritance
interface, the call will reach Covert Plugin Adapter, which will introspect its plugin instance, and will
forward the call to the overriding functionality of an old plugin subclass (if present) or to the functionality
of the refactored API class (otherwise).

Besides the ability to intercept calls to the methods of the inheritance interface, another important conse-
quence of using delegation is the separation of the name spaces of the framework and the plugin. When
related by inheritance, Refactored API Class and Reconstructed API Class belong to the same name space
and there is no other way to disambiguate them than by giving them distinct names. As we discussed, this
would require renaming possibly all Refactored API Classes of the framework API. By using delegation, we
effectively create two name spaces: that of the framework and that of the plugin. Therefore, we can solve
the aforementioned name collisions by disambiguating types using the name spaces, from which the types
originate. In Java, this can be realized using different class loaders to load separately framework and plugin
types (the latter, together with the corresponding reconstructed API types). As a consequence, no renaming
of the refactored API is required. This solution (described in detail in Section 5.1.2) would not be possible,
if the refactored API class and existing subclasses were related by inheritance.

13Lieberman [Lie86] argues that delegation is more powerful than inheritance.
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Figure 3.20: Modeling inheritance by delegation (inspired by Hauck [Hau93]). The black circles denote
values of instance variables and the arrows denote the use relation. The subclass accesses the inherited
functionality using its super variable, while the base class accesses the overriding functionality using its self
variable.

Technically, our implementation of the delegation is very much in the spirit of Hauck, who suggested to
use delegation (calling it aggregation) to represent class inheritance in prototype-based languages [Hau93].
Figure 3.20 summarizes his approach using a visual notation similar to UML object diagrams [Obj05].
In Hauck’s approach, a base class (represented by an object) defines an instance variable self, while a
subclass (represented by another object) defines an instance variable super, both variables with a type of
an inheritance interface. In addition, the subclass defines an instance variable self, the type of which is an
inheritance interface conformant to the type of super. By relating class implementations to the inheritance
interfaces, the two classes are defined to be of types of their (conformant) inheritance interfaces. When
creating an object of the subclass, its self is bound to the object itself and its super is bound to the self of
an object of the base class. As a consequence, the object of the subclass can access the inherited methods
using the super variable, while the object of the base class can access the overriding functionality using its
self [Hau93].

Relating our design to the terminology of Hauck, Covert Plugin Adapter is the base class and Reconstructed
API Class is its subclass. The adaptee field of Reconstructed API Class containing an instance of Covert
Plugin Adapter corresponds to the super variable in the subclass, while the adaptee field of Covert Plugin
Adapter containing an instance of Reconstructed API Class corresponds to the self variable of the base class
in the Hauck’s terminology. These two explicit variables in combination with message forwarding are used
to implement delegation. One difference in our implementation is that we do not have to explicitly handle
the definition of the self variable for the subclass (i.e., Reconstructed API Class), since in Java such variable
(i.e., this) is implicitly defined and automatically bound to the objects of subclasses of Reconstructed API
Class.

The most important differences to the work of Hauck are caused by the fact that we do not know the
inheritance interface a priori and, moreover, we cannot infer it by statically analyzing plugins. This lack of
knowledge impacts the static design of Reconstructed API Class, which has to define forwarding methods for
all API methods defined in the unrefactored API class (because we cannot statically check, which methods
of the unrefactored API class were indeed inherited but not overridden in the old plugin). This design
decision does not decrease performance, since at run time Reconstructed API Class will forward indeed only
the methods inherited in the plugin—all calls invoked on a plugin object to methods overridden in plugin
subclasses will not reach Reconstructed API Class. However, at the other side (that of the framework) we
have to infer the knowledge about the inheritance interface as implemented in plugin subclasses to decide,
whether overriding plugin functionality exists. Because plugins are not available for static analysis, we need
to perform the analysis at run time by using introspection on the adaptee variable of Covert Plugin Adapter
pointing to a plugin object.

As a technical nuisance, in Java a subclass may explicitly call a superclass method using the keyword super.
Although this call will reach Reconstructed API Class, simply forwarding it to Covert Plugin Adapter may
not be appropriate in case the method is also overridden in the plugin. In this case, since Covert Plugin
Adapter is not aware of the fact that this is a supercall, it will attempt to call back the overriding method
in the plugin. This will result either in unintended semantics of the overridden plugin method, or in an
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Figure 3.21: Subtype and use relations and their implementation in the White-Box Interface Adapter pattern.

infinite call loop in case the supercall comes from that overriding method (as we showed in an example
in the Collaboration section of the White-Box Class Adapter pattern on page 54). To solve this problem,
we exploit the fact that Reconstructed API Class is aware about the supercall (this is indicated by the call
reaching Reconstructed API Class) and can, using an upcalling method, indicate Covert Plugin Adapter to
supercall the framework (Section 3.1.3, page 52).

Finally, the design of the White-Box Class Adapter pattern can be trivially adopted to the White-Box
Interface Adapter pattern coping with API interfaces implemented in plugins and later refactored in the
API (Figure 3.21). Since Target is specified by an API interface (Refactored API Interface), to realize
subtyping we make Covert Plugin Adapter implement the interface. At the same time, we reconstruct
Adaptee (Reconstructed API Interface), the plugin implementation of which should be accessed from
Covert Plugin Adapter. In contrast to class inheritance, in this case Target can only be called from the
framework. Therefore, to implement the use relation between Adapter (Covert Plugin Adapter) and its
Adaptee (Reconstructed API Interface) it suffices to use message forwarding similar to the one in the
Black-Box Interface Adapter pattern, but now forwarding from the adapter to the plugin.

Design Similarity When Replacing Inheritance With Delegation

The design of the White-Box Class Adapter pattern resembles the design developed by Kegel and Steimann
[KS08] to support the application of a specific refactoring—the refactoring of inheritance to delegation
[Opd92, JO93, FBB+99, GS99, KS08]. Astonishingly, although with a motivation apparently different from
that of Kegel and Steimann (adaptation instead of refactoring), we independently and simultaneously14

developed a similar design. Not believing in a simple coincidence, we ought to take a closer look at the
causes of this similarity to understand the common intrinsic properties of the two works.

In his PhD thesis, Opdyke introduces the refactoring of inheritance to delegation as “converting an as-
sociation, modeled using inheritance, into an aggregation” [Opd92, p. 103]. Given two classes related
by inheritance, the refactoring creates in the subclass a private field of the superclass, uses this field to
access the previously inherited behavior in the subclass, and eliminates the inheritance relation between
the two classes. The refactoring is furthermore described, under different names, by Opdyke and John-
son (as ConvertingInheritanceToAggregation [JO93]), Fowler et al. (as ReplaceInheritanceWith-
Delegation [FBB+99, p. 287]), and Genßler and Schulz (as TransformingInheritanceIntoCompo-
sition [GS99]).

By considering the consequences of applying this refactoring to a base class in a class hierarchy, Kegel and
Steimann take a deeper look at the necessary preconditions of the refactoring to ensure its correctness [KS08].
They point out that in case of callbacks from the base class (called Delegatee after the refactoring) to the
overriding functionality of the subclass (called Delegator after the refactoring), true delegation, and not

14At the time the paper of Kegel and Steimann [KS08] was first presented, our paper introducing black-box and white-box
adapters [ŞRGA08] was in the review phase. As a terminology remark, initially we were calling Covert Plugin Adapter of the
White-Box Class Adapter pattern Dispatcher [ŞRGA08].
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a simple message forwarding from Delegator to Delegatee, must be implemented. Otherwise, in case the
self reference is bound to an object of Delegatee, the overriding functionality in Delegator may fallaciously
remain not invoked. Kegel and Steimann implement delegation in Java by subclassing Delegatee by a special
inner class in Delegator [KS08]. The inner class knows all methods that were overridden in the former
subclasses of its superclass and forwards back those messages to Delegator, whenever the message receiver
is the object of Delegatee. At the same time, Delegator forwards to its inner class all methods not redefined
in Delegator. Since inner classes in Java have access to the state of their outer classes, the combination of the
forwarding of Delegator and the reverse forwarding of its inner class subclassing Delegatee can effectively
implement delegation [KS08].

Indeed, while Kegel and Steimann consider replacing inheritance with delegation, we in fact attempt to
reconstruct the inheritance affected by API refactorings. However, in both cases there is a change of
a base class in the class hierarchy. Being aware of the associated fragile base case problem [MS98],
we are concerned with how to avoid it by a proper implementation of delegation. Similar to Kegel and
Steimann [KS08], we want to neither imply additional technology (e.g., aspect orientation to intercept
messages) nor extend the language itself (e.g., as suggested by Aldrich and Donnelly [AD04]), and we
cannot use any formal specification of the inheritance interface (as suggested by Hauck [Hau93], and by
Stata and Guttag [SG95]). Implementing delegation in Java as a language without native support for it, we
naturally ended up in a similar design. Relating the design of the White-Box Class Adapter pattern to the
design of Kegel and Steimann [KS08], Refactored API Class performs the job of Delegatee, Covert Plugin
Adapter of Delegatee’s inner class, and Reconstructed API Class of Delegator.

Still, due to different goals and the application context, our design has several important differences from
the design presented by Kegel and Steimann [KS08]. To start with, our forwarding methods are adapter
methods, the implementations of which consider refactorings applied to the base API class to compensate
for possible syntactic mismatches introduced by API refactorings. Moreover, we implement adapters as
separate classes (and not as outer and inner classes) avoiding the name collision of Reconstructed API Class
with Refactored API Class, as discussed in Section 3.1.5. More important, we do not have access to the
plugins and cannot infer their overriding functionality; in other words, we cannot statically compute the
inheritance interface. Therefore, we have to implement multiple dispatch in Covert Plugin Adapter. Our
multiple dispatch is more flexible than the static decisions taken in the inner class of Delegator, since we
need not only to locate the intentionally overriding plugin methods, but also to avoid accidental overriding.
The latter was not a concern of Kegel and Steimann, because they could always statically check for possible
accidental method overriding. Finally, Kegel and Steimann discuss, that “it is debatable whether the (hidden)
subclassing of Delegatee [by the inner class] is acceptable for the purpose of the refactoring [because] it
does not replace inheritance, but only moves it to a new class” [KS08]. Although indeed debatable for the
refactoring, this subclassing is a must in the White-Box Class Adapter pattern.

3.2 Adaptation Design Compensating for a Refactored Framework
API as a Whole: Exhaustive API Adaptation

While in the previous section we introduced adaptation patterns compensating for refactorings of a particular
API type, in this section we will consider static and run-time issues involved in compensating for refactorings
of a framework API as a whole. Statically, “adapter [. . . ] expresses its interface in terms of the adaptee’s”
[GHJV95, p. 137]. At run time, an adapter object wraps a “foreign” object (in the sense of a type unknown
to Client), matches Client’s invocation requests to methods defined in the Target interface, and invokes
corresponding methods of the wrapped object.

What should be considered a foreign object to be wrapped in case of a refactored framework API? A
framework object of a refactored API type may be considered foreign from the point of view of a plugin,
since, due to the type refactoring, modified method signatures of the object’s type may no longer match old
method invocation requests in the plugin. Similarly, an object of a plugin type subtyping an old API type
(as before the refactoring) may be considered foreign from the point of view of the refactored framework,
since old method signatures of the object’s type may no longer match new or modified invocation requests
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in the framework (in case of callbacks). Furthermore, an object becomes foreign only when crossing the
boundaries of its domain of origin: either from the framework to the plugin, or from the plugin to the
framework.

To compensate for API refactorings, we want to wrap all foreign objects crossing domain boundaries into
adapter objects, which we call wrappers.15 Effectively, we separate the object domains of the framework and
plugin: no plugin object may enter the framework (object) domain and no framework object may enter the
plugin (object) domain without being encased into a corresponding wrapper. By “corresponding” wrappers
we mean that their adapter types depend on whether the objects being wrapped originate from the framework
or from the plugin.

• An object originates from the framework, if its class is defined in the framework; its corresponding
framework wrapper is an instance of a black-box adapter.

• An object originates from the plugin, if its class is defined in the plugin; its corresponding plugin
wrapper is an instance of a white-box adapter.

Definition 1 (Object wrappers)
A wrapper is an adapter object—an instance of an adapter, placed around an adaptee object. A framework
wrapper is an instance of either Reconstructed API Class of the Black-Box Class Adapter pattern or Covert
Framework Adapter of the Black-Box Interface Adapter pattern, placed around a framework object. A
plugin wrapper is an instance of Covert Plugin Adapter of either the White-Box Class Adapter pattern or the
White-Box Interface Adapter pattern, placed around a plugin object.

Because a framework API usually offers many possible ways of reusing the framework functionality, a
plugin typically reuses only a subset of the whole framework API. Moreover, the plugin may reuse some
API types by composition and others by inheritance. Since we assume that in general we do not have
access to plugins, we cannot statically discover, how they were reusing the API of the framework before its
refactoring. As a consequence, we do not know a priori, which wrappers will be required at run time (or, in
other words, which adapters will need to be instantiated).

To generalize our adaptation to the framework API as a whole, we introduce exhaustive API adaptation—a
set of static and run-time decisions for binary backward-compatible adaptation of refactored framework
APIs. Its main adaptation decision is to create the exhaustive adaptation layer by thoroughly considering all
possible situations, where the adaptation may be required, and to place this layer between the refactored
framework and old plugins. The layer can be seen from two time perspectives: static (type creation) and
dynamic (object creation). In the following, we call the former static adaptation layer and the latter run-time
adaptation layer.

Static adaptation layer. An important consequence of applying the Black-Box and White-Box Adapter
patterns is that we reconstruct the API types of the old API as they were before the API refactoring, resulting
in the static adaptation layer that completely reconstructs the old API. Figure 3.22 shows black-box and
white-box adapters created for two refactored API types: a concrete class Node and an interface IPacket
(interface adapters for INode are omitted). The layer adapts the refactored API under an old API (to be used
from the plugins) and the old API under the refactored API (to be used from the framework). Moreover,
for every possibly refactored API type of the latest framework version we apply both Black-Box and
White-Box Adapter patterns. By a “possibly refactored API type” we mean that the API type could have
been refactored by framework developers. We call such API types user-defined, in contrast to library types,
such as language built-in primitive, special and reference types (e.g., int, void and Swing types in Java), and
types of third-party libraries, which (we assume) cannot be evolved by framework developers.16 With the
notable exception of library collection types addressed in detail in Section 3.2.3, library types require no
adaptation. Finally, we do not create adapters for newly introduced API types; as a consequence, such types

15In the original description of the Adapter pattern, Adapter and Wrapper are synonyms [GHJV95, p. 139]. We use (non-capitalized)
term wrapper to better distinguish between adapters (as classes) and adapter objects (i.e., wrappers), the latter as instances of adapters
placed around wrapped objects.

16As a future work, we will consider a possible combination of our approach with the on-going work on adaptation of evolving
library types [BTF05, KETF07].
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Figure 3.22: Static adaptation layer. The layer reconstructs the old API and reuses the refactored API. Black
and white frames in the static adaptation layer group black-box and white-box adapters. Since we cannot
statically analyze plugins, the relation between the reconstructed API of the adaptation layer and the plugin
is of a possible reuse.

are not present in the reconstructed API and their names cannot conflict with the names of existing plugin
types (which contributes to solving the Type Capture problem, as discussed at the end of Section 2.2.4 on
page 36).

Run-time adaptation layer. At application execution time, depending on the domain of origin of an object
that crosses domain boundaries and needs to be wrapped we instantiate the corresponding adapter of the
static adaptation layer. All created wrappers make up the run-time adaptation layer (Figure 3.23). Framework
wrappers adapt framework objects of refactored API types to the old plugin, while plugin wrappers adapt
plugin objects of reconstructed API types to the refactored framework.

The central task of the run-time adaptation layer is the complete (with regard to the user-defined API types)
separation of the framework and plugin object domains: besides objects of library types, plugins can only
see their objects and framework wrappers, while the framework can only see its objects and plugin wrappers.
In more detail, any framework object sent to the plugin is wrapped by a framework wrapper before being
passed to the plugin. If a framework wrapper is later passed back to the framework, the adapted framework
object is unwrapped from the wrapper before being sent to the framework. Similarly, any plugin object
sent to the framework is wrapped by a plugin wrapper before being passed to the framework. If a plugin
wrapper is later sent back to the plugin, the adapted plugin object is unwrapped from the wrapper before
being passed to the plugin. This wrapping and unwrapping is done in the run-time adaptation layer and is
completely transparent for both sites (i.e., the framework and the plugin).

Usually, most framework and plugin objects remain in their object domain and need no adaptation. The only
exception is when one of the two sites (the framework or the plugin) invokes functionality of the other site,
possibly sending in its objects or obtaining objects from the other domain. There are exactly two cases, when
originally (before the API refactoring) objects may cross domain boundaries and, hence, require wrapping
in the run-time adaptation layer:
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Figure 3.23: Run-time adaptation layer. Clients denote framework and plugin objects requesting functionality
of another domain, while the objects of the run-time adaptation layer are framework and plugin wrappers.

1. A constructor of a framework API class is invoked from the plugin. In this case, the object obtained
in the plugin originates from the framework, while the caller is always a plugin type.

2. A method defined in one domain is invoked from the other domain. In this case, objects passed as
method arguments or return values may originate from the opposite domain. In contrast to an API
constructor invocation, where only a plugin caller is possible, in case of a method invocation both the
plugin and the framework (the latter, via callbacks) may act as callers.

In both cases the adaptation is required because the caller (of a constructor or a method) and the callee to
be invoked are in different domains. Since the run-time adaptation layer completely separates the object
domains of the framework and plugin, the calls originally invoking constructors and methods defined in
the opposite domain will now result in invoking adapter constructors and adapter methods of wrappers.
Thereby, the run-time adaptation layer intercepts all possible calls (i.e., constructor invocations and method
invocations) between the two domains and instantiates adapters of the static adaptation layer, whenever
needed.

Adaptation layer as a whole. Considering the adaptation layer as a whole, while its static adaptation layer
reconstructs the old API and provides adapters that may need to be instantiated, its run-time adaptation layer
instantiates these adapters to wrap objects crossing domain boundaries. A key facility of the adaptation layer
is the adapter cache—a storage of the information about types and objects involved in adaptation, created
and updated along with the creation of the static and run-time adaptation layers (Figure 3.24).

WrapppersAdapter Cache
Reconstructed API & 
Covert Adapters

Static Adaptation Layer Run-time Adaptation Layer

register register

Figure 3.24: Adapter cache. The cache contains the information about all types of the static adaptation layer
and all wrappers of the run-time adaptation layer.
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Listing 3.2: Adapter cache
1 p u b l i c c l a s s Adapte rCache {
2 / / adap tees and t h e i r a d a p t e r s
3 p r i v a t e Map a d a p t e e s 2 a d a p t e r s ;
4
5 / / wrapped o b j e c t s and t h e i r w rappe rs
6 p r i v a t e Map wrapped2wrappers ;
7
8 / / cache wrapped o b j e c t s and t h e i r w rappe rs
9 p u b l i c vo id putWrapper ( O b j e c t wrapped , O b j e c t wrapper ) {

10 wrapped2wrappers . p u t ( wrapped , wrapper ) ;
11 }
12
13 / / g i v e n an o b j e c t t o be wrapped , r e t u r n t h e c o r r e s p o n d i n g wrapper
14 p u b l i c O b j e c t ge tWrapper ( O b j e c t toWrap ) {
15 / / d e t a i l s s p e c i f i e d i n t h e f o l l o w i n g s e c t i o n s
16 }
17 }

• At adapter generation time, the adapter cache is created and filled in with the information about all
types of the static adaptation layer as well as the correspondence of the adapters and their adaptees.

• At application execution time, the adapter cache is instantiated (as a singleton class) and constantly
updated with the information about the created wrappers and their adaptee objects.

In the rest of this section we will discuss the design of the adapter cache (Section 3.2.1), object adaptation
as done in adapter constructors (Section 3.2.2) and adapter methods (Section 3.2.3), and proper adapter
creation and instantiation (Section 3.2.4). We will conclude the section with an example of exhaustive API
adaptation: the adaptation of a framework API reused in a plugin both by object composition and inheritance
(Section 3.2.5).

3.2.1 Adapter Cache

When an object needs to be wrapped, its type is considered in order to instantiate the corresponding adapter.
The information about the type correspondence of adaptees and adapters is derived based on the history
of API refactorings, when statically deriving the adapters. In the generated static adaptation layer, this
information is stored in the adapter cache (line 3 of Listing 3.2) to be used at application execution time,
when creating wrappers of the run-time adaptation layer.
The ability of the adapter cache to store the information about the wrappers of the run-time adaptation
layer is shown by lines 6–16 of Listing 3.2. The reason for caching wrappers is to avoid creating different
wrappers for the same object repeatedly crossing domain boundaries (e.g., returned by two API methods).
Besides unnecessarily consuming system resources, creating different wrappers may also break existing
applications that rely on object identity, since their comparison may fallaciously lead to inequality (although
they wrap the very same object). Instead of creating a new wrapper every time a framework or a plugin
object requires adaptation, we check, whether a wrapper for the object in question already exists in the
adapter cache, and, if so, reuse that wrapper. Listing 3.2 shows two methods of the adapter cache related
to storing wrappers (putWrapper(), line 9) and retrieving wrappers (getWrapper(), line 14). The latter
method, depending on the presence of a wrapper for the given object, will either return the cached wrapper
or instantiate the corresponding adapter.

3.2.2 Wrapping Newly Created Instances in Constructors of Black-Box and White-
Box Adapters

As mentioned in the introduction of Section 3.2, one of the two cases when object wrapping is required is
a class constructor defined in the framework and invoked from the plugin. By contrast, when framework
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Refactored API Class
public class refactoredAPI.PacketFactory {
String message;

public PacketFactory() {
this.message = "";

}

public PacketFactory(String message) {
this.message = message;

}
}

Reconstructed API Class
public class PacketFactory {
refactoredAPI.PacketFactory adaptee;

public PacketFactory() {
adaptee = new refactoredAPI.PacketFactory();
//cache itself as adaptee’s wrapper
AdapterCache.putWrapper(adaptee, this);

}

public PacketFactory(String msg) {
adaptee = new refactoredAPI.PacketFactory(msg);
//cache itself as adaptee’s wrapper
AdapterCache.putWrapper(adaptee, this);

}
}

Figure 3.25: Wrapping newly created framework instances in constructors of black-box class adapters. After
instantiating the corresponding framework type, an adapter constructor stores the framework instance in the
adaptee field of the wrapper and updates the adapter cache. For readability, the adaptee’s name is prefixed
with refactoredAPI. to denote that the adaptee is in a different name space than its adapter (name spaces of
the refactored API and the reconstructed API, respectively).

objects are created in the framework itself, they belong to the framework domain and require no wrapping
at the time of their creation.17 Therefore, wrapping at the time of constructor invocation is needed only
when the plugin instantiates (1) an API class defined in the framework (black-box framework reuse), or (2) a
plugin class subclassing an API class (white-box framework reuse).

Before upgrading the refactored framework, such constructor invocation executes a constructor of an API
class, either directly (in black-box framework reuse) or via a constructor call chain as implemented in Java
(in white-box framework reuse). In exhaustive API adaptation, since the static adaptation layer completely
reconstructs the old API, any API constructor invocation in the plugin will eventually reach and execute
an adapter constructor of the reconstructed API, which will then perform wrapping of the newly created
(framework or plugin) instance.

Let us consider two examples (one for black-box framework reuse and one for white-box framework reuse)
as excerpts from RefactoringLAN (Appendix A) and then discuss the conceptual differences in the wrapping
for each of the two cases. In both cases, since a constructor can only be invoked on classes and not on
interfaces, the instantiated adapter is always a class adapter.

• API constructor invocation in black-box framework reuse. Originally (before upgrading the
refactored framework) the plugin invoked the constructor on an API class PacketFactory. Since the
static adaptation layer completely reconstructs the old API, after the adaptation the old constructor
invocation in the plugin invokes the constructor of the adapter PacketFactory (Figure 3.25). The latter
is present in the static adaptation layer as Reconstructed API Class of the Black-Box Class Adapter
pattern (the pattern introduced in Section 3.1.1 on page 43). In turn, the invoked adapter constructor
is responsible for instantiating the corresponding adaptee (the framework’s PacketFactory). As a
consequence of the constructor invocation in the plugin, the adapter PacketFactory is instantiated
and its instance—a framework wrapper encasing an instance of the framework’s PacketFactory—is
cached.

• API constructor invocation in white-box framework reuse. Originally (before upgrading the re-
factored framework) the plugin invoked the type constructor of a plugin class SecureNode subclassing
API’s Node. Since the static adaptation layer completely reconstructs the old API, after the adaptation
the old constructor invocation of SecureNode invokes (according to the constructor call chain in Java)
the constructor of its superclass Node (Figure 3.26). The latter is present in the static adaptation
layer as Reconstructed API Class of the White-Box Class Adapter pattern (the pattern introduced

17They may require wrapping later, if sent to the plugin, as discussed in the following Section 3.2.3.
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Refactored API Class
public class refactoredAPI.Node {
public Node() {

//framework implementation
}
public Node(int ID) {

//framework implementation
}
}

Reconstructed API Class
public class Node {
//instance of Covert Plugin Adapter
NodeAdapter adaptee;

public Node() {
adaptee = new NodeAdapter(); //plugin wrapper
//cache itself as wrapper’s adaptee
AdapterCache.putWrapper(this, adaptee);

}

public Node(int ID) {
adaptee = new NodeAdapter(ID); //plugin wrapper
//cache itself as wrapper’s adaptee
AdapterCache.putWrapper(this, adaptee);

}
}

Covert Plugin Adapter
public class NodeAdapter extends refactoredAPI.Node {
//instance of Reconstructed API Class
Node adaptee;

public Node() {
super();

}

public Node(int ID) {
super(ID);

}
}

Figure 3.26: Wrapping newly created plugin instances in constructors of white-box class adapters. When
a constructor call chain from a plugin subclass reaches a constructor of Reconstructed API Class, the
constructor instantiates Covert Plugin Adapter. While the latter is used as adaptee of Reconstructed API
Class to call inherited framework functionality, its instance is at the same time a wrapper of the created
plugin instance.

in Section 3.1.3 on page 47). According to the pattern’s design, the reconstructed Node will in turn
create and store as its adaptee object an instance of NodeAdapter (Covert Plugin Adapter participant
of the White-Box Class Adapter pattern) that inherits from the refactored API class Node. The
created instance of NodeAdapter is then used to access the functionality that should be inherited
from the framework’s Node in the plugin’s SecureNode. At the same time, the very same instance of
NodeAdapter should be used as the plugin wrapper of the newly created SecureNode object, in case
the latter is sent to the framework at some later point in time.

In both cases, adapters are instantiated at the time a constructor is invoked in a plugin. However, strictly
speaking, the actual object wrapping is required only in black-box framework reuse: since the object to be
created in the plugin belongs to the framework domain, the object must be immediately wrapped at the time
of constructor invocation. By contrast, in white-box framework reuse, since the class of the object to be
created is defined in the plugin, the object belongs to the plugin domain and no wrapping is needed at the
time of constructor invocation. However, Covert Plugin Adapter (the adapter class NodeAdapter, in our
example of Figure 3.26) still needs to be instantiated to access the inherited framework functionality, via its
upcalling methods (as discussed in the Collaboration of the White-Box Class Adapter pattern, Listing 3.1
on page 55). Since the created plugin object may later be sent to the framework (requiring wrapping, as
discussed in the next Section 3.2.3), we cache the created instance of Covert Plugin Adapter as a plugin
wrapper of the newly created plugin object. As a consequence of this decision, for all objects of a plugin
class subclassing a reconstructed API class, their wrappers already exist in the cache and can be reused,
whenever needed.

Choosing between instantiating a black-box and a white-box class adapter. So far in our discussion we
assumed that it is known, whether the reconstructed API class, a constructor of which is invoked in the
plugin, is a black-box adapter or a white-box adapter. In practice, however, before creating and wrapping
an adaptee instance in an adapter constructor, we have to decide, which pattern (i.e., the Black-Box Class
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Figure 3.27: Sharing reconstructed API types in the static adaptation layer. Reconstructed API types Node
and IPacket are shared by the applications of the corresponding black-box and white-box adapter patterns
(sharing shown by the reconstructed API types crossing the patterns’ boundaries). Covert adapter classes for
INode are omitted.

Adapter pattern or the White-Box Class Adapter pattern) to apply. As a consequence, the constructor to be
invoked should be either a black-box class adapter constructor (i.e., similar to Figure 3.25) or a white-box
class adapter constructor (i.e., similar to Figure 3.26). In the rest of this section, we discuss in detail how we
make this decision.

Considering a particular refactored API class (or interface), although conceptually the Black-Box and
White-Box Class (or Interface) Adapter patterns are applied separately in the static adaptation layer (e.g.,
as shown in Figure 3.22 on page 69), in practice the applications of the two patterns overlap. Namely,
because the both patterns reconstruct the very same API type (i.e., of an API class or an API interface before
the refactoring), the patterns’ applications share that reconstructed API type in the static adaptation layer
(Figure 3.27). In practice, it means that the implementation of the reconstructed API type has to correspond
to both (the black-box and the white-box) adapter patterns.

Regarding a reconstructed API interface (e.g., IPacket in Figure 3.27), its sharing by the corresponding
applications of the Black-Box and White-Box Interface Adapter patterns has no implication on the interface
implementation. Since a reconstructed API interface provides merely a set of method signatures (without
method implementations), the interface is exactly the same in both pattern applications: it is either imple-
mented (in the Black-Box Interface Adapter pattern) or composed (in the White-Box Interface Adapter
pattern) by a corresponding covert adapter.

However, sharing a reconstructed API class (e.g., Node in Figure 3.27) requires that the class supports
the adapter functionality (i.e., the implementations of adapter constructors and adapter methods, the types
and instantiation logic of adaptee fields) specific for each of the two pattern applications. In practice, it
means that the implementations corresponding to Reconstructed API Class of the black-box and white-box

74



class adapter patterns are merged in the same reconstructed API class. For example, the reconstructed API
class Node of Figure 3.27 contains such functionality as black-box and white-box adapter constructors,
forwarding methods of a black-box class adapter, and upcalling methods of a white-box class adapter.

When a constructor of the reconstructed API class is invoked from the plugin, we need to infer, whether for
this particular constructor invocation the reconstructed API class in question participates in an application
of either the Black-Box Class Adapter pattern or the White-Box Class Adapter pattern. Depending on
the inferred information, we should execute the corresponding implementation of the invoked adapter
constructor (i.e., either a black-box class adapter constructor as in Figure 3.25 or a white-box class adapter
constructor as in Figure 3.26). Moreover, when an adapter method of the reconstructed API class is invoked
at some later point in time, we should use that inferred information to decide, which (a black-box or a
white-box) adapter method provided by that reconstructed API class to invoke.

To infer this information, we check (in Java, using introspection) the run-time type of the object, the creation
of which in the plugin leads to invoking a constructor of the reconstructed API class in question.

1. In case the object’s type is a reconstructed API class, the object being created is a framework wrapper.
In other words, the plugin invokes the constructor of the reconstructed API class directly, as in
black-box framework reuse. Therefore, for this particular constructor invocation the reconstructed
API class participates in an application of the Black-Box Class Adapter pattern. As a consequence,
we invoke the class’ implementation of the corresponding black-box class adapter constructor (as
shown for PacketFactory by Figure 3.25).

2. Otherwise, the object’s type is a plugin class (subclassing a reconstructed API class) and the object
being created is a plugin object. In other words, the plugin invokes the constructor of the reconstructed
API class indirectly via a constructor call chain, as in white-box framework reuse. Therefore, for
this particular constructor invocation the reconstructed API class participates in an application of the
White-Box Class Adapter pattern. As a consequence, we invoke the class’ implementation of the
corresponding white-box class adapter constructor (as shown for Node by Figure 3.26).

Finally, the result of the type checking is saved, within the object being created, as a boolean value indicating
the “color” of the object’s class (true for “black” and false for “white”). The value is then used to decide for
the implementations of the class’ adapter methods to be invoked at run time.

3.2.3 Wrapping and Unwrapping Method Arguments and Return Values in Adap-
ter Methods

The second case of an object crossing the domain boundaries between the framework and the plugin may
occur, when an object of one domain is sent as a method argument to or return value of a method defined
in the other domain. This occurs when the method caller (invoking the method) and the method callee
(defining the method) are in different domains (the framework versus the plugin). For example, the plugin
may send a plugin object to a framework API method and obtain a framework object as the return value of
the method invocation. Since after the introduction of the run-time adaptation layer, its wrappers intercept
all method calls from callers of one domain to callees of the other domain, such a method call will result
in invoking an adapter method of a wrapper. The latter is then responsible for properly adapting method
arguments obtained from the caller before sending them to the callee (i.e, its adaptee object), and the return
value obtained from the callee before returning it to the caller.

To detect objects crossing domain boundaries, all objects passed as methods arguments to adapter methods
and all objects obtained as return values after forwarding to methods of adaptees need to be investigated.

• Method Arguments. As method arguments the caller may send only objects it is aware of: objects
of the caller’s domain, the domain of adapters, or of library types. In the first case, the objects are
wrapped to be sent to the callee. An example of the second case is a plugin sending as a method
argument a framework wrapper obtained from a previously executed adapter method of another
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wrapper. In such cases, the adaptee objects contained in the adapter objects are unwrapped, since they
belong to the callee’s object domain (in the example, to the framework domain). In the third case, that
of library types, no adaptation is required, except for collection types (as we will discuss shortly in
this section).

• Return values. Once all arguments are prepared (i.e., possibly wrapped and unwrapped), the adapter
method uses them to forward the call to the callee (i.e., the wrapper’s adaptee object). The return
value obtained from the forwarding call is an object the callee is aware of: an object of the callee’s
domain, the domain of adapters, or of library types. In the first case, the objects are wrapped to be sent
to the caller. An example of the second case is the framework returning a plugin wrapper previously
obtained from a callback. In this case, the adaptee object is unwrapped to be returned to the caller,
since the object belongs to the caller’s object domain (in the example, to the plugin domain). Finally,
return values of library types are treated similarly to method arguments.

The pseudocode in Listing 3.3 summarizes the (simplified) algorithm used for wrapping and unwrapping
method arguments (lines 3–15) and return values (lines 35–45) in adapter methods. Since exception types
also represent a (possible) return type, they are wrapped and unwrapped in a way similar to the other types
(lines 21–32).18 The helper functions used in the listing are:

• isWrapper(Object) checks, whether the object is a wrapper. If true, the function indicates that the
wrapper’s adaptee object returns to its domain of origin and needs to be unwrapped. The function
uses the type metadata added to the adapters (as annotations in Java) at the time of adapter creation.

• isUserDefined(Object) checks, whether the object is an instance of a class defined in the refactored
framework or in the existing plugin. The former is indicated by the object’s class specifying one or
more refactored API types, while the latter by the object’s class specifying one or more reconstructed
API types. If true, the function indicates that the object leaves the domain of its origin and must be
wrapped.

• isLibraryCollection(Object) checks, whether the object is of a library collection type. Although
itself not user-defined, a library collection (e.g., Java List) may contain objects of user-defined API
types. When such collections are encountered in the adaptation layer, we iterate over their elements to
find objects of user-defined API types (for wrapping) and adapter types (for unwrapping). Arrays are
treated similarly to collections.

• wrap(Object) wraps the given object. The function calls the getWrapper() method of the adapter
cache sending the object to be wrapped. If no wrapper for the object exists, the adapter cache will
create a new framework or plugin wrapper; otherwise, an existing wrapper will be retrieved from the
cache. In its implementation, wrap replaces the object to be wrapped with its wrapper on the call
stack, before forwarding the call to the adaptee object (therefore, the method’s “call-by-reference”
notation used in Listing 3.3).

• unwrap(Adapter) obtains (either via a method call or via a direct field access) the adaptee object of
the given wrapper. Similar to wrap, unwrap is implemented by replacing objects on the call stack
(in this case, a wrapper by its adaptee object).

When wrapping a method argument (or a return value), it needs to be passed to a constructor of the adapter
being instantiated, which stores the argument in the adapter’s adaptee field. Therefore, each adapter needs to
declare a constructor accepting an object to be wrapped (in our implementation, with the formal parameter
type Object). However, the signature of such constructor could conflict with the signature of an adapter
constructor defined for wrapping newly created instances (as discussed in the previous Section 3.2.2), in
case the signature of the latter contains a single formal parameter of the very same type (i.e., Object). To
distinguish the constructor dedicated for argument wrapping from other adapter constructors, we use in its
signature a surrogate parameter of formal type unique in the adaptation layer. In our design, such unique

18The algorithm’s code snippet coping with exception chaining as possible in Java is provided in Appendix B.1.
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Listing 3.3: Wrapping and unwrapping method arguments and return values in adapter methods
1 < A c ce s s M od i f i e r > <ReturnType > methodName ( a rgumen t s ) {
2 / / wrap o r unwrap method arguments
3 f o r e a c h ( argument i n a rgumen t s ) {
4 i f ( a rgument != n u l l ) {
5 i f ( isWrapper ( a rgument ) ) {
6 unwrap ( a rgument ) ;
7 } e l s e i f ( i s U s e r D e f i n e d ( a rgument ) ) {
8 wrap ( a rgument ) ;
9 } e l s e i f ( i s L i b r a r y C o l l e c t i o n ( a rgument ) ) {

10 f o r e a c h ( e l e m e n t i n argument ) {
11 / / wrap o r unwrap as f o r o r d i n a r y o b j e c t s
12 }
13 }
14 }
15 }
16
17 / / f o r w a r d t o adap tee v i a r e f l e c t i o n ( d e t a i l s o m i t t e d )
18 O b j e c t v a l u e ;
19 t r y {
20 v a l u e = a d a p t e e . methodName ( a rgumen t s ) ;
21 } c a t c h ( Throwable t ) {
22 / / wrap o r unwrap t h e e x c e p t i o n o b j e c t
23 i f ( i s U s e r D e f i n e d ( t ) ) {
24 wrap ( t ) ;
25 throw t ;
26 } e l s e i f ( isWrapper ( t ) ) {
27 unwrap ( t ) ;
28 throw t ;
29 } e l s e {
30 throw t ;
31 }
32 }
33
34 / / wrap o r unwrap r e t u r n v a l u e
35 i f ( v a l u e != n u l l ) {
36 i f ( isWrapper ( v a l u e ) ) {
37 unwrap ( v a l u e ) ;
38 } e l s e i f ( i s U s e r D e f i n e d ( v a l u e ) ) {
39 wrap ( v a l u e ) ;
40 } e l s e i f ( i s L i b r a r y C o l l e c t i o n ( a rgument ) ) {
41 f o r e a c h ( e l e m e n t i n argument ) {
42 / / wrap o r unwrap as f o r o r d i n a r y o b j e c t s
43 }
44 }
45 }
46 r e t u r n v a l u e ;
47 }

type is the singleton class AdapterCache (i.e., the class implementing the adapter cache). Since none of
the adapter constructors dedicated for wrapping newly created instances can have a formal parameter of
type AdapterCache, we effectively disambiguate them from surrogate constructors for wrapping method
arguments and return values. Figure 3.28 shows the surrogate constructor of the PacketFactory adapter, the
other adapter constructors of which were introduced by Figure 3.25 on page 72.19

Finally, to properly identify an object’s domain of origin in the isUserDefined function, we must consider

19As a technical remark, we do not need to implement argument wrapping and, therefore, surrogate constructors in white-box class
adapters. This is a consequence of our decision to cache instances of Covert Plugin Adapters of the White-Box Class Adapter pattern
as plugin wrappers at the time of plugin object creation (as discussed for Figure 3.26 on page 73). For these plugin objects, their
wrappers are always present in the adapter cache and can be reused in adapter methods. As a consequence, surrogate constructors are
declared only in black-box class adapters, and (as the only constructors, and consistently with black-box class adapters) in black-box
and white-box interface adapters.
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Reconstructed API Class
public class PacketFactory {
refactoredAPI.PacketFactory adaptee;

//surrogate constructor
public PacketFactory(AdapterCache surrogateParameter, Object toWrap) {

adaptee = (refactoredAPI.PacketFactory) toWrap;
AdapterCache.putWrapper(adaptee, this);

}
}

Figure 3.28: Surrogate constructor for wrapping of method arguments and return values. Since we do not
need the value of the surrogate parameter, when invoking a surrogate constructor we can pass null as its first
argument.

Terminology Note

A method parameter is a name associated with a type, called the formal parameter type. For
an object to be passed as a method argument, the object’s type must be conformant to the formal
type of the corresponding method parameter. In statically typed languages, such as Java, the type
conformance can be verified by a type checker during compilation [Mey00, p. 467-472]. The ability
of passing the objects of various types conformant to the type expected by method callers lies at
heart of polymorphism—the powerful ability to vary method implementations depending on the
particular type of the message receiver.

the actual type of a method argument in question, and not the formal type of the corresponding method
parameter. In the presence of type polymorphism, as in Java, the actual type of a method argument may be
more specific than the formal parameter type declared in the method signature. For example, an object of
the framework class Packet may be passed as an argument, where the formal parameter type is declared to
be of Object. To correctly identify the object’s domain of origin, instead of considering the formal parameter
type (e.g., Object), we should check for the class of the object (e.g., Packet) passed as an argument to an
adapter method. The same applies for the types of the return values obtained from the forwarding calls to
the adaptees. Besides identifying objects’ domain of origin, this type checking is also crucial for proper
adapter creation (i.e., creating an adapter class) and instantiation (i.e., creating a wrapper), as we discuss in
the next section.

3.2.4 Proper Adapter Creation and Instantiation

If a method argument needs to be wrapped, considering the actual argument type is crucial to decide for the
correct adapter to be instantiated. The same applies for method return values. Let us consider the following
example of a black-box reuse, with three API types excerpted from RefactoringLAN: an API interface
INode implemented by an API class Node, subclassed in turn by an API class Server. The API methods
of INode are a subset of the API methods of Node, the methods of which in turn are a subset of the API
methods of Server. At application execution time, the framework creates a Server object and returns it to
the plugin from three distinct API methods as the value of a formal return type (1) INode of the first API
method, (2) Node of the second API method, and (3) Server of the third API method. The framework is
thereafter refactored and upgraded.

In exhaustive API adaptation, to the three, possibly refactored, API types (the names of which we prefix
with refactoredAPI. in the rest of this section) we have the corresponding adapters in the static adaptation
layer: CovertINodeBlack implementing reconstructed API INode (for refactoredAPI.INode), Node (for
refactoredAPI.Node) and Server (for refactoredAPI.Server). Moreover, to the three aforementioned API
methods correspond three adapter methods in the reconstructed API, in which the object returned by the
framework should be wrapped to be sent to the plugin. This wrapping is done in one of the three adapter
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Figure 3.29: Unrelated types in the refactored API. Whereas SaleServer is a subtype of both Server and
ISale, the latter two are not related in the API by subtyping.

methods, namely, in the one, in which the framework object is encountered for the first time in the run-time
adaptation layer. Thereafter, the framework wrapper should be cached and safely reused in the other two
adapter methods.

However, in case the first adapter method should perform wrapping, by considering the formal return type
refactoredAPI.INode of the first API method and instantiating the interface adapter CovertINodeBlack,
we cannot safely reuse the created framework wrapper in the other two adapter methods. Namely, the
wrapper is unaware of the methods defined in refactoredAPI.Node and refactoredAPI.Server and not present
in refactoredAPI.INode. Similarly, if we instantiate the Node class adapter for the refactoredAPI.Node
return value of the second method, we cannot safely reuse the wrapper in the third adapter method, due to
server-specific methods defined in refactoredAPI.Server.

Instead, when we encounter an object instantiating refactoredAPI.Server in the run-time adaptation layer
for the first time, we want to instantiate the class adapter for refactoredAPI.Server (i.e., the adapter class
Server). For that, we should consider the actual run-time type of the object (i.e, the object’s class refactore-
dAPI.Server), and not the formal type of the method return value. An instance of this adapter can then be
reused safely, whenever the object to be wrapped is passed as refactoredAPI.INode, refactoredAPI.Node,
or refactoredAPI.Server. For an object to be wrapped, we call such a corresponding adapter the object’s
specialized adapter.

In our example, since refactoredAPI.Server is an API class, its class adapter has been generated together with
the reconstructed API and can be instantiated whenever needed. However, an object’s class can be an internal
framework class not present in the API, say SaleServer extending refactoredAPI.Server (Figure 3.29).20

Since SaleServer is not in the API, no adapter was created for it when creating the static adaptation layer.
Can we consider Server adapter to serve also as the specialized adapter for objects of SaleServer? We can,
unless SaleServer implements an API interface unrelated in the API to refactoredAPI.Server by subtyping.
For example, in addition to subclassing refactoredAPI.Server, SaleServer could implement an API interface
refactoredAPI.ISale (Figure 3.29). In this case, using Server adapter cannot guarantee its objects will answer
messages of refactoredAPI.ISale.

In general, when wrapping an object, we might not find its specialized adapter in the static adaptation layer.
In this case, we need to create the object’s specialized adapter at run time and then instantiate it to wrap the
object in question. We call such adapters dynamically created. In our example, we will create a new adapter
that is a subtype of the adapters for refactoredAPI.Server and refactoredAPI.ISale. Technically, we cannot
subclass both existing adapter classes, because Java does not support multiple (class) inheritance. Therefore,
our dynamically created adapter, say, ServerISale will subclass the reconstructed API class Server and
implement the reconstructed API interface ISale.

20Since the three figures of this section—Figure 3.29, Figure 3.30, and Figure 3.31—are not referenced in other sections of the
thesis, they are not included in RefactoringLAN to avoid unnecessarily complicating it.

79



Adaptation Layer

Plugin Version 1

Node ISecurity

SecureNode

R
ec

on
st

ru
ct

ed
 

A
PI

In
te

rn
al

 
Im

pl
em

en
ta

tio
n

Figure 3.30: Unrelated types in the reconstructed API. The types Node and ISecurity, subtyped by the
plugin’s SecureNode, have no subtyping relation in the reconstructed API.

The dynamic adapter creation is required only when for an object to be wrapped (1) no wrapper exists, and
(2) no specialized adapter is found in the adapter cache. For instance, if we consider yet another internal
framework class BikeSaleServer subclassing SaleServer and implementing no additional API interface,
we can safely reuse the aforementioned dynamically created adapter ServerISale to adapt the objects of
BikeSaleServer (i.e., ServerISale is the specialized adapter of the objects of BikeSaleServer).

While for wrapping framework objects (as in the previous example) we consider the type relations in the
refactored API, for wrapping plugin objects we need to consider the type relations in the reconstructed
API. Let us reconsider our excerpt from RefactoringLAN, where a plugin class SecureNode subclasses the
framework’s Node. For the two classes, the application of the White-Box Class Adapter pattern (shown by
Figure 3.6, page 49) results in the reconstructed API class Node (Reconstructed API Class) and the adapter
class CovertNode (Covert Plugin Adapter). However, the latter can be considered the specialized adapter
for the objects of SecureNode only if SecureNode does not implement any (reconstructed) API interfaces
unrelated to the reconstructed Node (e.g., ISecurity, as shown in Figure 3.30). Otherwise, the first time we
need to wrap an object of SecureNode, we have to dynamically create the specialized adapter for SecureNode
by subclassing the adapter CovertNode and implementing the reconstructed API interface ISecurity. The
resulting adapter can then be instantiated to wrap the objects of SecureNode.

The Java-like pseudocode of Listing 3.4 reveals the internals of the adapter cache responsible for proper
adapter creation and instantiation. The method getWrapper() (line 14) is called from the function wrap of an
adapter method, whenever an object encountered in the adapter method must be wrapped. If the method does
not find a cached wrapper for the given object (lines 16–17), it will call the cache method lookupSpecialize-
dAdapter() (line 20), passing the class of the object to be wrapped. The lookupSpecializedAdapter() method
will then query the adaptees2adapters map to see, whether for the given class there is a corresponding
adapter generated in the static adaptation layer (line 30). If not, the adapter supporting the given class, and
all API interfaces implemented by the class and its ancestors, will be created dynamically (lines 31–60).
Finally, the existing or newly created adapter is instantiated by passing the object to be wrapped to the
adapter’s surrogate constructor (lines 22–25). To guarantee proper adapter creation and instantiation in
multi-threaded programs, the methods of Listing 3.4 are implemented as synchronized methods (omitted
from the listing).

An alert reader may have noticed that for a given object, the algorithm implemented in the lookupSpecialize-
dAdapter() method might not find any API superclass of the object’s class (the comparison in line 52 of
Listing 3.4 evaluating to true). This occurs when a (framework or plugin) class implements one or more API
interfaces without subclassing any API class (as shown for a plugin class in Figure 3.31). In this particular
case, the dynamically created adapter will implement all corresponding (refactored or reconstructed) API
interfaces without subclassing any adapter class. In fact, this is the only case when we create and instantiate
an interface adapter, and not a class adapter.
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Listing 3.4: Adapter cache (extended)
1 p u b l i c c l a s s Adapte rCache {
2 / / adap tees and t h e i r a d a p t e r s
3 p r i v a t e Map a d a p t e e s 2 a d a p t e r s ;
4

5 / / wrapped o b j e c t s and t h e i r w rappe rs
6 p r i v a t e Map wrapped2wrappers ;
7

8 / / cache wrapped o b j e c t s and t h e i r w rappe rs
9 p u b l i c vo id putWrapper ( O b j e c t wrapped , O b j e c t wrapper ) {

10 wrapped2wrappers . p u t ( wrapped , wrapper ) ;
11 }
12

13 / / g i v e n an o b j e c t t o be wrapped , r e t u r n t h e c o r r e s p o n d i n g wrapper
14 p u b l i c O b j e c t ge tWrapper ( O b j e c t toWrap ) {
15 / / r euse e x i s t i n g wrapper f o r t h i s o b j e c t , i f any
16 i f ( wrapped2wrappers . c o n t a i n s K e y ( toWrap ) )
17 r e t u r n wrapped2wrappers . g e t ( toWrap ) ;
18

19 / / o t h e r w i s e c r e a t e new wrapper
20 C l a s s a d a p t e r = l o o k u p S p e c i a l i z e d A d a p t e r ( toWrap . g e t C l a s s ( ) ) ;
21

22 / / g e t and i n v o k e s u r r o g a t e c o n s t r u c t o r t h a t w i l l upda te a d a p t e r cache
23 C o n s t r u c t o r c o n s t r = a d a p t e r . g e t C o n s t r u c t o r ( Adapte rCache . c l a s s , O b j e c t . c l a s s ) ;
24 O b j e c t wrapper = c o n s t r . n e w I n s t a n c e ( n u l l , toWrap ) ;
25 r e t u r n wrapper ;
26 }
27

28 / / g i v e n t h e c l a s s o f adaptee , r e t u r n t h e c o r r e s p o n d i n g most s p e c i f i c a d a p t e r
29 p u b l i c C l a s s l o o k u p S p e c i a l i z e d A d a p t e r ( C l a s s t a r g e t ) {
30 C l a s s a d a p t e r = a d a p t e e s 2 a d a p t e r s . g e t ( t a r g e t ) ;
31 i f ( a d a p t e r == n u l l ) {
32 / / t a r g e t i s n o t an API c l a s s , i n v e s t i g a t e i t
33 L i s t i n t e r f a c e s = new A r r a y L i s t ( ) ;
34

35 / / c o l l e c t imp lemen ted API i n t e r f a c e s
36 do {
37 C l a s s [ ] implemented = t a r g e t . g e t I n t e r f a c e s ( ) ;
38 f o r ( i n t i = 0 ; i < implemented . l e n g t h ; i ++) {
39 C l a s s temp = a d a p t e e s 2 a d a p t e r s . g e t ( implemented [ i ] ) ;
40 i f ( temp != n u l l ) { / / t r u e f o r API i n t e r f a c e s , f a l s e f o r o t h e r i n t e r f a c e s
41 i n t e r f a c e s . add ( temp ) ;
42 }
43 }
44

45 / / move up t h e i n h e r i t a n c e h i e r a r c h y
46 t a r g e t = t a r g e t . g e t S u p e r c l a s s ( ) ;
47 a d a p t e r = a d a p t e e s 2 a d a p t e r s . g e t ( t a r g e t ) ;
48 } w h i l e ( t a r g e t != O b j e c t . c l a s s && a d a p t e r == n u l l ) ;
49

50 / / g e n e r a t e ( and s e r i a l i z e ) new a d a p t e r ( d e t a i l s o m i t t e d )
51 i f ( i n t e r f a c e s . s i z e ( ) > 0 ) {
52 i f ( t a r g e t == O b j e c t . c l a s s )
53 / / d y n a m i c a l l y c r e a t e i n t e r f a c e a d a p t e r
54 e l s e
55 / / d y n a m i c a l l y c r e a t e c l a s s a d a p t e r
56 / / s t o r e adap tee / a d a p t e r p a i r
57 a d a p t e e s 2 a d a p t e r s . p u t ( t a r g e t , a d a p t e r ) ;
58 }
59 }
60 r e t u r n a d a p t e r ;
61 }
62 }
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Figure 3.31: No API superclass of the object’s class. The plugin class SecureNode implements two API
interfaces without subclassing any API class.

Finally, to avoid repeated dynamic creation of the same adapters (e.g., when the application is stopped
and run again), we persist the dynamically created adapters onto a storage medium for later reuse. As a
consequence, over time the size of the static adaptation layer increases, while the need for dynamic adapter
creation decreases.

3.2.5 Example of Exhaustive API Adaptation: Framework and Plugin Wrappers
in Concert

Let us look at a realistic scenario of exhaustive API adaptation, reconsidering examples of framework reuse
introduced in Section 2.2.2, API refactorings shown in Section 2.2.3, and adaptation pattern applications
discussed in Section 3.1, where all examples are excerpted from RefactoringLAN (Appendix A). In the first
framework version, for modeling network nodes and packets the framework API offers the classes Node and
PacketFactory, and an interface IPacket. The PacketFactory class defines a factory method createPacket()
that, given a node and a node identifier, returns a packet of type IPacket. In addition, given a node and a
packet in question, PacketFactory’s method packetSeenInNode() reports (as an instance of an API class
Report) the trace of the packet as seen in the node (Figure 3.32, top part).

In the plugin developed with the first framework version, a plugin class SecureNode subclasses the fra-
mework’s Node. At run time (Figure 3.32, bottom part), the plugin creates an object of SecureNode, then
instantiates PacketFactory and obtains a packet from the PacketFactory’s createPacket() method. Later in
the execution, the plugin calls PacketFactory’s packetSeenInNode() method to obtain a report about the
occurrences of the packet in the node. During the communication of the framework and plugin, objects of
both domains (denoted in Figure 3.32 by two different kinds of circles, one for each domain) cross domain
boundaries.

In the second framework release, the API is refactored. Among API refactorings, the RemoveParameter
refactoring applied to the PacketFactory method createPacket() removes the second method parameter.
Moreover, the RenameMethod refactoring changes the name of the PacketFactory’s packetSeenInNode()
method to tracePacket() (Figure 3.33, top part). The refactorings of other API types (e.g., Node and IPacket)
are omitted in the rest of this section for simplicity.

Applying exhaustive API adaptation results in the static adaptation layer completely reconstructing the
API of the first framework version. Among its adapters, the static adaptation layer contains black-box and
white-box adapters for possibly refactored API types PacketFactory, IPacket, Node, and Report. If now the
old plugin code is executed (Figure 3.33, bottom part), all API constructor invocations in the plugin will
result in invoking adapter constructors of the reconstructed API, and creating wrappers for newly created
plugin and framework instances (as discussed in Section 3.2.2). In particular, the constructor invocation of
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Plugin Version 1
SecureNode node = new SecureNode();

PacketFactory factory = new PacketFactory();

IPacket packet = factory.createPacket(node,node.getIdenfitier());

...

Report trace = factory.packetSeenInNode(node,packet);

public class PacketFactory{

public IPacket createPacket(Node n, int id){...}

public Report packetSeenInNode(Node checkNode,IPacket pckt){

//from database obtain trace of pckt in checkNode

Report result = new Report(trace); 

return result; 

}

}

Framework Version 1

Figure 3.32: Object exchange between the framework and the plugin of the same version. For an object, its
textual (variable name) and graphical (circle) representations are combined in a dashed box. Arrows show
the object exchange when invoking the packetSeenInNode() API method in the plugin.

Plugin Version 1

SecureNode node = new SecureNode();

PacketFactory factory    = new PacketFactory();

IPacket packet = factory.createPacket(node,node.getIdenfitier());

...

API Refactorings between Framework Versions 1 and 2
...
RemoveParameter(PacketFactory.createPacket, int id);
RenameMethod(PacketFactory.packetSeenInNode, PacketFactory.tracePacket);

Framework Version 2

Adaptation Layer
Adapter Cache

Figure 3.33: Object exchange and the adapter cache after the framework upgrade and adaptation. Cached
wrappers are shown as white circles (plugin wrappers) and black circles (framework wrappers). Arrows
from the wrappers in the cache point to their adaptee objects, which the wrappers could possibly wrap (the
plugin object node) or are already wrapping (the framework objects factory and packet).

SecureNode creates and caches a plugin wrapper—an instance of CovertNode adapter, while the constructor
invocation of PacketFactory creates and caches a framework wrapper—an instance of PacketFactory adapter.
All created wrappers are cached in the adapter cache of the adaptation layer (Figure 3.33, middle part).

As a consequence of wrapping a newly created instance of the framework’s PacketFactory, the factory object
created in the plugin is a framework wrapper. Its adapter method createPacket() has the same signature as
before the RemoveParameter refactoring was applied to the PacketFactory’s createPacket(). As any adapter
method, the wrapper’s createPacket() performs wrapping and unwrapping of method arguments and return
values. In particular, the method wraps an obtained framework packet into another framework wrapper
(packet in Figure 3.33), which is cached and returned to the plugin.
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Plugin Version 1
SecureNode node = new SecureNode();

PacketFactory factory = new PacketFactory();

IPacket packet = factory.createPacket(node,node.getIdenfitier());

...

Report trace = factory.packetSeenInNode(node,packet);

public class PacketFactory{

public IPacket createPacket(Node node){...}

public Report tracePacket(Node checkNode,IPacket pckt){

//from database obtain trace of pckt in checkNode

Report result = new Report(trace); 

return result; 

}

}

Framework Version 2

use

Adaptation Layer
adapter 
cache

wrap

public Report packetSeenInNode(Node checkNode, IPacket pckt){

}

unwrap

Figure 3.34: Object wrapping and unwrapping in an adapter method. Using the adapter cache, the packet-
SeenInNode() adapter method wraps its first argument (a plugin object) and unwraps its second argument (a
wrapped framework object) before forwarding the call to the framework. Similarly, the method wraps the
obtained return value (a framework object) before returning it to the plugin.

Let us now consider the object wrapping and unwrapping performed upon the invocation of the old API
method packetSeenInNode(), called tracePacket() in the refactored API (Figure 3.34). As mentioned in the
previous paragraph, now the factory object, on which the method packetSeenInNode() is invoked in the
plugin, is a framework wrapper. Therefore, the packetSeenInNode() method is an adapter method forwarding
to the tracePacket() of the refactored API’s PacketFactory. Since the first method argument of the adapter
method being invoked is a plugin object node (of type SecureNode), the object is wrapped. Since the
second method argument is a framework wrapper packet, its adaptee object is unwrapped. Then both objects
obtained (the plugin wrapper and the framework object) are used as actual method arguments to invoke
the framework’s tracePacket(). Since the method invocation returns a framework object (of type Report),
the latter is wrapped in a framework wrapper that is returned from the adapter method to the plugin. If
that framework wrapper does not exist yet, the adapter for Report is instantiated in the adapter method;
otherwise, the wrapper is retrieved from the adapter cache.

3.3 Description of Challenges, Adopted Solutions, and Limitations
in Using Adapters for Refactored Framework APIs

While realizing our adapters for particular API types and exhaustive API adaptation for the API as a whole,
we encountered a number of conceptual and technical problems due to the introduction of adapters as entities
different from their adaptees, the programming style of framework and plugin developers, the performance
overhead implied by adapters, and particularities of the Adapter design pattern. In this section, we shortly
overview the most interesting problems met, discuss solutions adopted and, in some cases, limitations
implied. In those cases, where our solutions are based on the adaptation decisions presented in previous
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sections, we shortly restate the main issues involved.

3.3.1 Solving Object Schizophrenia in the Presence of Adapters

Object composition as a reuse mechanism used in the object version of the Adapter design pattern introduces
object schizophrenia [SR02b]: what is intended to appear as a single object is actually broken up into several,
each possibly possessing its own identity, state, and behavior. This may lead to various problems, when
an object is unable to properly respond to messages, although the necessary information is available in the
object. In our case, such problems could have appeared due to split identity, split state, and split behavior.

Solving Split Identity

In philosophy, the identity is whatever makes an entity identifiable among other entities of the same kind. In
object-oriented programming languages, such as Java, there are two notions strongly related to the general
notion of identity: object equivalence and object identity.

Two objects are considered equal, if their values are equal (under a given equivalence relation). In most of
the current object-oriented programming languages, root language types expose predefined methods (such
as equals() in Java) expressing object equivalence. These methods are inherited and can be redefined in
subclasses. Checking for object equivalence is implemented by invoking these methods on the objects to be
compared.

Two objects are considered identical, if they are represented by the same (bits of) memory. In practice, since
objects in the memory are usually accessed through references (e.g., of program variables), checking for
object identity is implemented by comparing object references.

Both object equivalence and object identity are of a particular importance in those applications, where
the behavior depends on the result of object comparison (for equivalence or identity). Since wrappers are
instances of adapters different from their adaptees, and, furthermore, are objects physically different from
the adaptee objects, introducing adapters may split the identity of the objects being adapted between the
wrapped objects and their wrappers. Therefore, we ought to identify and address all cases, when previously
correct object comparison may malfunction after adaptation.

Preserving object equality. When an adaptee object is wrapped, its methods for comparing object equiva-
lence might not be accessible for existing callers that expect the semantics of object equivalence as defined
before adaptation.

Solution. Our solution is straightforward: besides other adapter methods, the wrappers also forward the
aforementioned predefined methods to the adaptee objects thereby preserving expected object equivalence.
By calling the realization of object equivalence of their adaptees, the adapters also share their adaptees’
values used for object comparison.

Preserving object identity. Reference comparison relies on objects’ physical location: only should the two
object references being compared point to the same physical location, they are considered to refer to the
same object; otherwise, they are considered to refer to two different objects. Since a wrapped adaptee object
and its wrapper are physically different objects, they reside in different memory locations. We identify and
address two cases where comparing object references in the presence of adapters could lead to erroneous
results.

1. Comparing an adaptee object and its wrapper. Assume the framework creates an object of one of
its API types and saves that object in a variable before sending the object to the plugin. Since the
framework object crosses domain boundaries, it is wrapped in the run-time adaptation layer. If later
the framework wrapper is passed back from the plugin to the framework, the result of comparing
it with the object saved in the framework variable would be erroneous, since the objects reside in
different memory locations.

Solution. Our solution to this problem is implied by unwrapping objects in the adaptation layer (as
discussed in Section 3.2.3), making it impossible to compare a wrapper and its adaptee object.
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Refactored API Classes
public class refactoredAPI.Packet {
private Message msg;

public void setMessage(String msg) {
this.msg = new Message(msg);

}

public void setTimestamp() {
msg.setTimestamp(getLocalTime());

}
}

public class refactoredAPI.EncryptedPacket
extends refactoredAPI.Packet {

public void setMessage(String msg) {
super.setMessage(encrypt(msg));

}

}

Reconstructed API Classes
public class Packet {
private refactoredAPI.Packet adaptee;

public void setMessage(String msg) {
adaptee.setMessage(msg);

}

public void setTimestamp() {
adaptee.setTimestamp();

}
}

public class EncryptedPacket
extends Packet {

private refactoredAPI.EncryptedPacket adaptee;

public void setMessage(String msg) {
adaptee.setMessage(msg);
}

Figure 3.35: Split state in black-box class adapters. The left part of the figure shows two refactored API
classes related by inheritance, and the right part lists the corresponding black-box class adapters. When
setTimestamp() is called on an instance of the adapter EncryptedPacket, the adapter method inherited from
Packet is called that will inadvertently set the timestamp on the message managed through the adaptee field
of Packet adapter.

2. Comparing wrappers of the same adaptee object. As discussed in Section 3.2.3, the same object may
be repeatedly sent from the framework to the plugin or from the plugin to the framework. If we
created a new wrapper each time the same object crossed domain boundaries, we would end up with
different wrappers for the same adaptee object. If the references of those wrappers were compared,
since the wrappers were physically different, they would fallaciously appear to wrap different adaptee
objects.

Solution. By reusing previously created wrappers stored in the adapter cache (Section 3.2.1) and,
furthermore, instantiating objects’ specialized adapters (Section 3.2.4), we ensure that each object
crossing domain boundaries is associated with exactly one wrapper.

Solving Split State

Besides sharing the common behavior, class inheritance implies also sharing states. For example, in the left
part of Figure 3.35 the class EncryptedPacket subclassing the class Packet also shares Packet’s message
msg. Although the message is stored in a private field of Packet, EncryptedPacket can access and modify
the field’s value via the redefined method setMessage() and the inherited method setTimestamp(). As a
consequence, method calls in the plugin’s LAN invoking setMessage() on an instance of EncryptedPacket
will store an encrypted message in the msg private field, while invoking setTimestamp() on that instance will
modify the timestamp of the stored message.

Assuming Packet and EncryptedPacket are present in the refactored API, their corresponding black-box class
adapters are listed in the right part of Figure 3.35. Plugin calls in LAN previously invoking the API methods
setMessage() and setTimestamp() on an instance of the framework’s EncryptedPacket are now invoking
the corresponding adapter methods of a framework wrapper—an instance of the adapter EncryptedPacket.
However, the calls will result in a different behavior than before the adaptation. Whereas the call to the
wrapper’s setMessage() will store an encrypted message in the wrapper’s adaptee object, the call to the
wrapper’s setTimestamp() will modify the timestamp of the message of the adaptee object stored in the
adaptee field of Packet. This may result in an unexpected behavior, such as a null pointer exception (e.g., in
case, the message of the adaptee object in Packet is not initialized), and a wrong timestamp of the message
stored in the adaptee object of EncryptedPacket (e.g., in case, the timestamp is later inquired during network
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Adaptation Layer

Framework Version 2 

Plugin Version 1 

CovertPacket

setMessage(String msg)
setTimestamp()

EncryptedPacket

setMessage(String msg)

EncryptedPacket

setMessage(String msg)

Packet

setMessage(String msg)
setTimestamp()

PluginEncryptedPacketLAN

plEncrPckt.setMessage(msg);
plEncrPckt.setTimestamp();

callee

Figure 3.36: Split state in white-box class adapters. Invoking the inherited method setMessage() on an
instance of PluginEncryptedPacket will modify the adaptee object as stored in CovertEncryptedPacket,
whereas invoking setTimestamp() on the very same instance will affect the state of the adaptee object of
CovertPacket.

inspection). The reason is that the state of the wrapper is effectively split into the states of the two adaptee
objects (stored in Packet and EncryptedPacket, respectively).

For a similar problem appearing in the presence of white-box class adapters, let us consider the very same
API classes Packet and EncryptedPacket, the latter subclassed in the plugin by PluginEncryptedPacket. As a
consequence, PluginEncryptedPacket inherits the methods setTimestamp() (as defined in the framework’s
Packet) and setMessage() (as redefined in the framework’s EncryptedPacket). For this framework reuse
scenario, Figure 3.36, in which we use a graphical notation instead of code for the sake of compact
presentation, shows the corresponding classes resulting from the application of the White-Box Class Adapter
pattern. If now on an instance of PluginEncryptedPacket the plugin will invoke the methods setMessage()
and setTimestamp(), the method invocations may result in an unexpected behavior, similar to the example of
the black-box class adapters from the previous paragraph.

In general, the problem of the split state is inherent to using message forwarding in the object version of
the Adapter pattern (and, hence, our variants of the pattern). In case a locally defined method of an adapter
should be called (e.g., setMessage() of EncryptedPacket), message forwarding will bind the self reference
in the adapter method to the locally stored adaptee object. By contrast, in case a method inherited in the
adapter (from one of its adapter ancestors in the reconstructed API class hierarchy) is to be called (e.g.,
setTimestamp() of Packet), message forwarding will bind the self reference to the adaptee object of the
ancestor. If the method execution changes the state of the adaptee object (as in our examples of Figure 3.35
and Figure 3.36), the method execution will fallaciously change the state of the wrapper expressed in the
states of different adaptee objects.

Solution. To avoid split states in the presence of adapters we must make sure that in all its adapter methods a
wrapper always uses the same adaptee object. In other words, we must ensure that the self reference in all
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Reconstructed API Classes
public class Packet {
protected refactoredAPI.Packet adaptee;

public void setMessage(String msg) {
adaptee.setMessage(msg);

}

public void setTimestamp() {
adaptee.setTimestamp();

}
}

public class EncryptedPacket
extends Packet {

public void setMessage(String msg) {
((EncryptedPacket) adaptee).setMessage(msg);
}

Figure 3.37: Solving split state in black-box class adapters. The adaptee field is declared protected,
and inherited by the descendants of the top-most reconstructed API class. To reflect the adaptee type
specialization, the adapter implementations down the type hierarchy cast the adaptee field to the type of the
adaptee used from a particular adapter. While not necessary in this example, type casting is required when a
more specific adaptee introduces methods not present in the adaptee used in the top-most reconstructed API
class.

adapter methods of a wrapper will always be bound to the same adaptee object. Technically, we considered
two implementations of this solution, both performed as the final step of generating the static adaptation
layer.

1. Redefining inherited adapter methods. For every inherited adapter method in a reconstructed API
class, we create a locally defined adapter method, which forwards to the adaptee object stored in the
private adaptee field of that reconstructed API class. In both our examples, this would mean adding the
adapter method setMessage() to the reconstructed EncryptedPackage with a method implementation
forwarding to the adaptee object stored in the private adaptee field of EncryptedPackage.

2. Inheriting adaptee fields. By making the adaptee field protected (instead of private) we permit
reconstructed API classes sharing adaptee objects. Only the top-most reconstructed API class in
the hierarchy defines the adaptee field, which is inherited by the reconstructed API classes down
the hierarchy. In our examples, this would mean declaring the adaptee field protected in Packet
(assuming it is the top-most adapter) and inheriting the field in EncryptedPacket (as exemplified for
black-box class adapters in Figure 3.37). Since an inherited adaptee field must hold instances of any
possible adaptees starting from the one used by the top-most reconstructed API class, the field’s type
conceptually is the least specific adaptee type (i.e., the one used by the top-most adapter).

Interestingly, both implementations can be realized as refactorings. In the former case, refactorings add
forwarding adapter methods to reconstructed API subclasses that are semantically equivalent to adapter
methods of reconstructed API superclasses. In the latter case, refactorings pull up adaptee fields in the
hierarchy of reconstructed API classes. In practice, both solutions turned out to be equivalent in power. We
decided to adopt the second solution, because it implied less members in the adapter implementation (which
is relevant for the speed of class loading) and because we found reusing of adaptee fields somewhat more
intuitive from the perspective of object-oriented programmers. Since the implementation of this solution
belongs to the time of generating the static adaptation layer, its formal description is presented as part of the
adapter generation in Section 4.3.3.
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String getName()

Server
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LAN
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adaptee

callee

Figure 3.38: Split behavior. Whereas LAN expects to invoke the getName() method of Node, the message
forwarding will invoke the Server’s getName().

Solving Split Behavior

Split behavior may appear in the presence of inheritance of classes used as adaptees, when message
forwarding from an adapter may inadvertently call a method of its adaptee, while another adaptee method
with possibly different semantics is expected.

For an example, let us assume that in the first framework release a concrete API class Node offers a method
log() for logging the node content to a database. In the second framework release, framework developers
realize that the method should be applicable only to certain nodes, namely, servers. Therefore, they apply the
PushDownMethod refactoring resulting in the method log() pushed down from Node to its subclass Server.
In addition, framework developers override Node’s getName() method in Server, introducing a slightly
different method semantics.21

In the generated static adaptation layer, to localize the method log() the reconstructed API class Node uses
Server as its adaptee (Figure 3.38). Calling log() in the plugin on a wrapper instantiating the adapter Node
will execute to the intended behavior. However, calling getName() on the wrapper will invoke the overridden
Server’s getName(), and not the Node’s getName() as expected in the plugin. It can potentially lead to
an application malfunction, if the expected method semantics differ from the semantics of the overriding
method. In this case, the behavior expected in the plugin is split between the two API classes (the adaptee
Server and its base class Node), and the adapter should be able to find the intended API methods.

Solution. To forward exactly to the API methods with expected semantics, in such cases the adapters must
be able to make non-virtual calls to the intended methods, bypassing thus methods overridden in adaptees.
For example, the forwarding implementation of the adapter method getName() shall issue a non-virtual call
to Node’s getName() instead of calling the getName() method of its adaptee Server. Unfortunately, while

21Overriding is what Meyer calls redefinition, arguing that it cannot change the semantics, since otherwise “this is contrary to the
spirit of redefinition. Redefinition should change the implementation of a routine, not its semantics” [Mey00, p. 482]. Moreover, one
could argue that the overriding method is added to be called (e.g., as an enhancement), also from existing plugins. However, then it is
questionable, why the API method being overridden is kept altogether. We refrain from further discussions on these subtle issues;
instead, we aim for providing framework developers an adaptation technology of choice that they could apply on demand.
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in such languages as .NET’s Common Intermediate Language (CIL) it is possible to specify, whether a
method call is virtual (e.g., CIL’s instruction callvirt) or non-virtual (e.g., CIL’s instruction call), in Java
source or binary code it is not possible. In Java, our solution is to warn (at adapter generation time, when
detecting such situations) framework developers about possible split behavior and let them manually verify
the intention of redefining an API method, such as getName() in Figure 3.38.

3.3.2 Dangerous Assumptions about Objects’ Physical Structure and Type

In case existing code makes assumptions about an object’s physical structure (i.e., members’ order) or
its run-time type, introducing adapters may lead to that code malfunctioning at run time. In Java, such
dangerous assumptions can be made by using reflection—a technique for working with the meta-level
of an object-oriented system. In Java, reflection is restricted to introspection and permits to gather type
information, create instances, and invoke methods of reflected types.

Assumptions about Objects’ Physical Structure

An old API type and its corresponding reconstructed API type of the static adaptation layer differ in their
physical structure due to the introduction of adapter-specific members, such as adaptee fields and surrogate
constructors. Therefore, in case existing code makes assumptions about the physical structure of objects in
use, introducing wrappers of the run-time adaptation layer may invalidate those assumptions.

Plugin Calls Relying on Member Order. Since we reconstruct exactly the syntactic part of the old API
(i.e., type hierarchy, signatures of API methods), reflective method invocations in existing plugins execute
properly after introducing the adapters. However, existing code may malfunction, when developers misuse
reflective method calls to API types by relying on the relative order of type members. This may occur, for
instance, when an array of constructors (or methods) declared by an API class is obtained by reflection,
one member of the array is obtained by its index and invoked afterwards. For example, in the Java code
of Figure 3.39 a plugin reads raw string data and uses them to reflectively create an instance of a type not
known at compile time. After the API class is refactored and adapted, since the corresponding reconstructed
API class contains also adapter-specific members, the wrong constructor may be found and invoked leading
to a run-time exception or an unexpected behavior. In Figure 3.39, a run-time error will arise, because
the adapter class adds an additional constructor dedicated for wrapping method arguments (the surrogate
constructor, discussed in Section 3.2.3), invalidating thus the plugin assumption about the member order. As
a consequence, the surrogate constructor will be invoked with an argument of type String, leading to a type
casting exception.

Solution. To avoid malfunctioning adapters when using reflection, application developers must completely
verify obtained references to meta-level structures. For example, they have to check, whether the full method
information (i.e., the method name, all parameter types, and the return type) matches their expectations
before invoking the method. Moreover, when using reflection the developers should not assume a fixed
order of the API type members and use instead the full method information in reflective method invocations.

Default Object Serialization. Serialization is the process of translating (writing) an object into a sequence
of bytes to be saved onto a storage medium or sent over a network. At later deserialization (reading), the
bytes are translated back to a clone of the original object. For convenience, Java offers a default serialization
mechanism, in which reflection is used internally to serialize and deserialize objects according to default
serialization criteria. However, by using the default serialization developers commit themselves to the
physical layout of the object being serialized. Should the object’s class evolve in a new software version,
in most of the cases the default serialization will fail to translate back already serialized objects due to the
structural mismatch of the old and new class versions.22

For instance, assume that in the first framework version an object of an API class is serialized. Thereafter,
the object’s class is refactored and, hence, adapted in the second framework version. In case a wrapper

22An on-line discussion of common problems related to Java class evolution and serialization is available at http://macchiato.
com/columns/Durable4.html.

90

http://macchiato.com/columns/Durable4.html
http://macchiato.com/columns/Durable4.html


Old API Class
public class Packet {

private String message;

public Packet(String message) {
this.message = message;

}
}

Reconstructed API Class
public class Packet {
//adaptee object
refactoredAPI.Packet pckt;

//surrogate constructor
public Packet(AdapterCache surrogateParameter, Object pckt) {

this.pckt = (refactoredAPI.Packet) pckt;
}

//constructor for wrapping newly created instances
public Packet(String message) {

pckt = new refactoredAPI.Packet(message);
}

}

Plugin
public class MyPlugin {
public void create() {
String className; //read in class name
String value; //read in value
Object o = Class.forName(className).getConstructors()[0].newInstance(value);

}
}

Figure 3.39: Dangerous use of reflection. The top part of the figure shows the snippets of the old API class
(as expected in the plugin) and the corresponding reconstructed API class. In the presence of adapters, the
plugin code in the bottom part of the figure will invoke a wrong constructor.

needs to be created for the serialized object, the default Java serialization mechanism will fail to restore the
serialized object, since the latter now needs to be stored in the wrapper. Therefore, we need to tell adapters
how to properly deserialize the objects to be used as adaptee objects. Moreover, in the opposite direction,
we also need to tell adapters how to properly serialize adaptee objects, so that in a future deserialization the
adapters could safely assume the objects being deserialized are indeed adaptee objects.

Solution. To support proper serialization in the presence of adapters, developers must implement a custom
serialization process of their objects using standard language mechanisms (e.g., by providing the private
instance methods readObject() and writeObject() in Java). In the adapters, we define, using the same
language mechanisms (i.e., by implementing readObject() and writeObject() methods in Java), a custom
serialization process, which is called by the language execution environment to serialize and deserialize
adapter objects. In these adapter methods, we call in turn the custom serialization of adaptee objects
emulating thus the standard serialization behavior with one level of method redirection, via adapters (as
reflected by the pseudocode of Listing 3.5).

In more detail, Listing 3.6 shows insights of Java adapters related to the serialization mechanism, while
the full serialization of Java adapters, including the support for custom object replacement, is provided
in Appendix B.2. The adapter’s readObject() method will be called by the Java serialization mechanism

Listing 3.5: Adapter serialization (general approach)
/ / adap tee f i e l d o f t y p e Adaptee
vo id d e s e r i a l i z e ( I n p u t S t r e a m i n ) {

a d a p t e e = new Adaptee ( ) ;
Method d e s e r i a l i z e r = a d a p t e e . g e t C l a s s ( ) . ge tMethod ( " d e s e r i a l i z e " ) ;
d e s e r i a l i z e r . i nvo ke ( i n ) ;

}

vo id s e r i a l i z e ( Ou tpu tS t r eam o u t ) {
Method s e r i a l i z e r = a d a p t e e . g e t C l a s s ( ) . ge tMethod ( " s e r i a l i z e " ) ;
s e r i a l i z e r . i nv oke ( o u t ) ;

}
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Listing 3.6: Adapter serialization in Java (core algorithm)
/ / adap tee c o n s t a i n s a ( f ramework o r p l u g i n ) adap tee o b j e c t
p r i v a t e vo id r e a d O b j e c t ( O b j e c t I n p u t S t r e a m i n ) th ro ws IOExcep t ion {

Class <?> c l a z z = . . . / / t h e adap tee type ,
/ / f i l l e d i n a t a d a p t e r g e n e r a t i o n t i m e

C o n s t r u c t o r <?> c o n s t r u c t o r ;
t r y {

c o n s t r u c t o r = c l a z z . g e t C o n s t r u c t o r ( ) ;
} c a t c h ( NoSuchMethodExcept ion nsme ) {

t r y { / / no p u b l i c c o n s t r u c t o r a v a i l a b l e , seek p r o t e c t e d
c o n s t r u c t o r = c l a z z . g e t D e c l a r e d C o n s t r u c t o r ( ) ;

} c a t c h ( E x c e p t i o n ex ) {
/ / n e i t h e r p u b l i c no r p r o t e c t e d d e f a u l t c o n s t r u c t o r f ound
/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e

}
}

t r y {
a d a p t e e = c o n s t r u c t o r . n e w I n s t a n c e ( ) ;

} c a t c h ( E x c e p t i o n ex ) {
/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e

}
t r y {

Method method = c l a z z . ge tD ec l a r ed Me tho d ( " r e a d O b j e c t " ,
O b j e c t I n p u t S t r e a m . c l a s s ) ;

method . s e t A c c e s s i b l e ( t r u e ) ; / / c i r c u m v e n t a c c e s s i b i l i t y
method . i n vo ke ( a d a p t e e , i n ) ;
method . s e t A c c e s s i b l e ( f a l s e ) ; / / can o n l y be f a l s e

} c a t c h ( NoSuchMethodExcept ion nsme ) {
/ / custom s e r i a l i z a t i o n n o t found , c r i t i c a l f a i l u r e

} c a t c h ( E x c e p t i o n ex ) {
/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e

}
}

p r i v a t e vo id w r i t e O b j e c t ( O b j e c t O u t p u t S t r e a m o u t ) t h ro ws IOExcep t ion {
Class <?> c l a z z = a d a p t e e . g e t C l a s s ( ) ;
t r y {

Method method = c l a z z . ge tD ec l a r ed Me tho d ( " w r i t e O b j e c t " ,
O b j e c t O u t p u t S t r e a m . c l a s s ) ;

method . s e t A c c e s s i b l e ( t r u e ) ; / / c i r c u m v e n t a c c e s s i b i l i t y
method . i n vo ke ( a d a p t e e , o u t ) ;
method . s e t A c c e s s i b l e ( f a l s e ) ; / / can o n l y be f a l s e

} c a t c h ( NoSuchMethodExcept ion nsme ) {
/ / custom s e r i a l i z a t i o n n o t found , c r i t i c a l f a i l u r e

} c a t c h ( E x c e p t i o n ex ) {
/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e

}
}

whenever an adaptee object should be read. It will instantiate an object of the adaptee and reflectively call
that object’s readObject() method to read the raw data into the adaptee object. In the opposite direction,
the adapter’s writeObject() method will be called by the Java serialization mechanism whenever an adapter
object should be written out (e.g, to a file). The method will forward to the adaptee’s writeObject() method to
serialize the adaptee object instead of the adapter object. Thereby we emulate the Java serialization behavior
in adapters by intercepting serialization calls from the language execution environment and forwarding them
to the serialization methods defined in adaptees.
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Use of Instanceof
public void record(Node node) {

//do something general

if (node instanceof Server) {
//do something specific for servers

}

else if (node instanceof Workstation) {
//do something specific for workstations

}
}

Figure 3.40: Assumptions about the run-time type of an object. By investigating the run-time class of the
object passed as a method argument, developers implement type-specific behavior in separate parts of the
method.

Assumptions about Objects’ Type

As we discussed in Section 3.2.3, due to the polymorphism supported in Java, an object passed as a method
argument (or a return value, as implied here and in the following discussion) does not have to be exactly of
the parameter’s formal type; the object type must only conform to the parameter type declared in the method
signature. In many cases, objects of subtypes of the formal parameter type are passed as arguments, while
developers can safely assume that these objects support at least the methods of the formal parameter type.
However, using code introspection developers may assume that an object is of a more specific type than the
formal type of the corresponding method parameter. Based on such assumptions, developers may implement
certain behavior, which may be negatively impacted in the presence of adapters.

For an example, let us assume two API classes Server and Workstation both subclassing class Node. Objects
of both subclasses are obtained calling a framework factory method getNode() with the formal return type
Node. After calling the factory method, plugin developers send the obtained framework object to a plugin
method record(), investigate the object’s run-time type and implement different behavior (e.g., by reflectively
calling the object’s type-specific methods) depending on the object’s actual type (Figure 3.40).

Whereas the example of Figure 3.40 uses an object of an API type (Node), we can extend the example to
a situation where the formal parameter type is a library type. For instance, framework developers could
have chosen Object as the type of the factory method’s return value, while plugin developers would perform
the rest of the run-time checking as in Listing 3.40.23 Moreover, similar assumptions may be made for
library collection types and arrays. For example, a framework method may return a collection of nodes as an
instance of Java List, while plugin developers would write code that iterates over the collection’s elements
and explicitly casts them from the collection’s internal representation (i.e., the type Object) to Node.

One may argue that in such cases programmers are not using the full potential of polymorphism available
in Java: “It is almost always a mistake to explicitly check the class of an object” [JF88]. An arguably
more adequate object-oriented implementation would provide two factory methods (returning Server and
Workstation, respectively). Similarly, plugin developers would overload record() with Server and Workstation
and leave the language execution environment do proper method dispatch depending on the actual type of
the method argument. However, the aforementioned instanceof programming style is fairly common for
programmers simulating “by-hand” method dispatch in their code. Often, it is preferred to avoid bloating
the framework API with many API methods. In addition, some developers (debatably) argue for better code
readability of this style comparing to overloading methods. Although we do not share this point of view, we
want our technology to also work in the presence of such type assumptions.

As we discussed in detail in Section 3.2.3, when wrapping method arguments in adapter methods we cannot
consider formal types of parameters and return values. Otherwise we could end up in one or both of the
following problems:

23Definitely, this is an example of a bad programming style. Unfortunately, it is not rare.
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1. Inadequate wrappers. The created wrapper is of a too general adapter type and cannot answer certain
method invocations. For example, if we instantiated an adapter of Node to wrap the framework object
of type Server, while the plugin invoked (e.g., using reflection) a Server’s specific method on the
wrapper, the latter would not be able to respond to the invocation.

2. Object leakage. In case a parameter type were a library type, while the actual method argument were
an object of a user-defined class, no wrapper would be created for that object. The same applies to
passing library collections as method arguments and return values, which could contain objects of
user-defined types. We call this situation object leakage—an object of one domain (i.e., the framework
or the plugin) enters another domain (i.e., the plugin or the framework) without wrapping.

Such implicit type assumptions (e.g., reflected by using instanceof or type casting) are hard to derive from
existing code requiring sophisticated code analysis. Moreover, in general, we cannot expect deriving them
from plugins presumably unavailable for code analysis.

Solution. In our algorithm for adapter instantiation (described in Listing 3.4 on page 81), given an object
to be wrapped we consider the object’s class to instantiate the object’s specialized adapter, which (by its
definition) also supports the formal type of the method parameter. In the example of Figure 3.40, if the
framework factory method returns a Server object, a wrapper instantiating the adapter for Server will be
created to wrap the framework object. If the wrapper is later passed to record(), the instanceof clause for
Server will succeed as expected inside the record() method.

Furthermore, whenever a library collection (or an array) is encountered in the run-time adaptation layer, the
collection’s (array’s) elements are iterated, investigated and, possibly, wrapped similar to ordinary objects.
For instance, if a collection of nodes is to be returned from the framework as a List, the collection will be
detected and investigated in the run-time adaptation layer, and all collection’s nodes will be wrapped before
sending the collection to the plugin.

All in all, our algorithm for adapter instantiation protects from the object leakage and inadequate wrappers.
Even in the case the algorithm fails to find the most specific adapter, we will dynamically create the latter at
run time (Listing 3.4 on page 81).

3.3.3 Static and Run-Time Optimizations for Reducing Adapter Performance Ove-
rhead

The message forwarding used in the object version of the Adapter pattern (and, hence, in our pattern variants)
inevitably implies performance penalties of at least one message redirection call per adapter method. The
penalties increase when user-defined types are present in method signatures and, hence, the corresponding
arguments need to be wrapped and unwrapped. In such cases, in addition to surrogate constructor calls
and cache lookups (for wrapping), and accessor calls (for unwrapping), time is also consumed for type
investigation in the isAdapter and isUserDefined functions (as discussed for adapter methods in Listing 3.3
of Section 3.2.3). For collection types, this is especially important, because each element of a collection
needs to be investigated, and possibly wrapped or unwrapped. Moreover, the multiple method dispatch as
performed in Covert Plugin Adapter of the White-Box Class Adapter pattern adds performance overhead
of plugin type introspection. Finally, the dynamic adapter creation may negatively impact the overall
performance of an adapted system and should be avoided, whenever possible. Concerned with performance
overhead, we were able to considerably reduce it by applying static (at adapter generation time) and run
time (at application execution time) optimizations.

Static Performance Optimizations

Our main optimization having a considerable impact on the performance of adapted systems is creating
statically black-box and white-box class and interface adapters for all API types of the latest framework
version. Thereby, we shift the time of adapter creation from application run time to the time of generating
the static adaptation layer (i.e., before performing the actual framework upgrade). Although it comes for
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the costs of additional physical space required to store the generated adapters, for most of the frameworks
(with an notable exception of frameworks used in embedded systems, the adaptation of which we did
not investigate) we consider the storage costs much less important than the gained run-time performance
improvement of not creating most adapters dynamically.24 Such “eager” adapter generation can be seen as a
particular case of partial evaluation [Fut71], in the sense adapter creation is partially evaluated before the
framework upgrade. Moreover, in case an adapter still has to be created dynamically, we store its definition
for later reuse (possibly, also in application’s subsequent executions).

As a further optimization in maximizing static adapter creation, one could consider analyzing framework
sources to locate internal framework classes that subtype unrelated API types (the latter discussed in
Section 3.2.4). For all such classes, one could create adapters statically, minimizing the need for dynamic
adapter creation. However, since we assume no availability of plugins, the static adapter creation will still
not be complete—at least, for certain plugin types their adapters may need to be created dynamically.

We statically optimize the algorithm for wrapping and unwrapping of method arguments and return values
in adapter methods (summarized in Listing 3.3 on page 55). At adapter generation time, since all built-in
value (e.g., int) and final (e.g., java.lang.String) types in the method signatures do not need wrapping and
unwrapping, the code realizing the functions isWrapper, isUserDefined, and isCollectionType for method
arguments of such types is not emitted decreasing the code size and the run-time overhead. Moreover, since
the number of parameters of adapter methods is known at the time of adapter generation, we unroll the
loop for parameter checking before emitting the code. As a consequence, parameterless methods add no
additional overhead to the forwarding calls. Furthermore, certain collections and arrays need no treatment
in adapter methods, such as the ones that are declared to contain only Strings. In addition, the object
replacement as required by wrapping and unwrapping can be efficiently implemented in Java, since its stack
architecture enables direct replacement of object references on the stack.

As another important static optimization, we allow a special kind of object leakage called harmless object
leakage. Recalling our discussion in Section 3.3.2, object leakage may occur if an object of a non-library
type of one domain crosses domain boundaries without adaptation. Although in general it may lead to
run-time malfunctions, in some cases we can safely assume that in another domain the object will not be
sent any message it cannot answer. For example, if the framework defines an internal (non-public) type
subclassing java.io.InputStream and returns an object of this type to the plugin, since the latter is not aware
of any framework internal methods and may invoke only object’s methods defined in the standard Java
InputStream, the object leakage is harmless. In these cases, we do not need to adapt such objects. This
optimization is directly related to the notion of a user-defined API type as defined in our adaptation context,
that is, an API type that could have been refactored by framework developers. Since in the aforementioned
example there is no user-defined API type as a supertype of the framework’s internal type, we can safely skip
its adaptation. This optimization decision is valuable, because in most of the cases types used for input and
output (which are time-consuming operations) are either library types or such harmless internal framework
types, for which we avoid run-time overhead.

We considered reducing the size of the static adaptation layer created in exhaustive API adaptation. For that,
one may take into account the refactoring information to demarcate only the API types actually refactored
and, furthermore, all their dependent types. To find such types one could use, similar to Dig et al. [DNMJ08],
the points-to analysis [Wei80]. Thereafter, it would be possible to reduce the static adaptation layer to
contain only adapters for the API types that may indeed require adaptation. However, this optimization
may lead to dangerous object leakage. Imagine a user-defined API class not affected by a refactoring and,
furthermore, not dependent on any refactored API type. As a consequence, the optimization will carve
out the class’ adapter from the generated static adaptation layer, while the class’ instances will never be
wrapped in the run-time adaptation layer. If now a plugin object is sent as an argument to a method of an
(unwrapped) instance of that API class, the object will bypass the run-time adaptation layer (i.e., will not be
encountered in any adapter method) leaking in the framework object domain without wrapping. In general,
a safe reduction of the static adaptation layer is possible only when, in addition to framework API types,
plugins types can also be analyzed. However, since our main assumption is the unavailability of plugins for
analysis and update, we did not perform this optimization in our adaptation context.

24As a side remark, recall that we do not have to create adapters for library types.
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Run-time Performance Optimizations

At run time, we speed up the dynamic adapter lookup (when wrapping) by caching wrappers in the adapter
cache using a Java (weak) hash map. Since references to objects in the adapter cache may hinder garbage
collection, we use weak references, as supported in Java, to the adaptee objects cached and avoid thus
unused objects remaining in memory. Whenever an adaptee object and its wrapper are not used anymore,
they get garbage-collected automatically.

Coping with the run-time overhead introduced by multiple method dispatch of the White-Box Class Adapter
pattern, we cache (in Covert Plugin Adapters of the White-Box Class Adapter pattern) the metadata about
the presence or absence of overriding functionality in the plugin. As a consequence, the need for type
introspection is reduced to one introspection per call of an adapter method implementing multiple method
dispatch. As a possible future optimization, such cache could also be made persistent, therewith reducing
the need for introspection in case the application is restarted.

3.3.4 Implications of Using the Adapter Design Pattern

The focus of the Adapter design pattern, also reflected in its structure, is to adapt interfaces—named sets of
method signatures. Therefore, in the context of API refactoring the pattern is applicable only to a subset of
all possible refactorings, namely, those affecting interfaces. We call the refactorings of this subset basic
adaptable refactorings, meaning not that they are the most basic refactoring transformations possible, but
rather that they are basic transformation units to be considered in a refactoring-based adaptation. In fact,
we already gave examples of such refactorings, when classifying application-breaking API refactorings by
the mechanics of the problems introduced (Section 2.2.3 on page 27). In this section, we overview such
refactorings from the point of view of their resulting changes that affect existing callers. In our discussion,
since we are interested only in framework API refactorings, we do not consider other refactorings (e.g.,
adding private members), possibly applied to framework types.

1. Refactorings affecting API method signatures and locations.25 Examples are renaming me-
thods (RenameMethod), adding, removing and permuting method parameters (e.g., AddParameter,
RemoveParameter), and moving methods between classes related by inheritance (PushDownMethod)
or by object composition (MoveMethod). Moreover, consistently with Dig and Johnson [DJ05], as
members of this group we treat also refactorings specializing method return types and generalizing
parameter types, replacing a primitive type with an object type (ReplaceDataValueWithObject),
and replacing a type with a collection that contains several elements of the replaced type. Such
changes can be considered refactorings, once the corresponding mapping from old to refactored types
is provided [DJ05]. Since such refactorings make existing API methods appear differently or in
different types than expected by old method callers and, moreover, may introduce conflicts with the
signatures of plugin methods, refactorings of this group may lead to Non-localizable Functionality
and Unintended Functionality.

2. Refactorings affecting API type names and locations. Examples are type renaming (RenameClass,
RenameInterface, and the type renaming implied by RenamePackage) and moving of types (Move-
Class and MoveInterface). Since such refactorings may make API methods appear in different
(i.e., renamed) API types and, moreover, may introduce name conflicts of refactored API types and
existing plugin types, refactorings of this group may lead to Non-localizable Functionality and (as a
special case) Type Capture.

3. Refactorings adding API types and methods. Examples are adding to the API an empty class
(AddEmptyClass),26 adding a new method (AddMethod), extracting a method (ExtractMethod), and
adding a class representing a new exception type (AddException). An interesting refactoring of

25By a method signature we mean the name of the method, the set of its parameters, and its return type.
26The refactoring AddClass that adds a class with an implementation can be seen as adding an empty class, and then adding to it new

methods. We will discuss this composite refactoring later in this section.
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this group, which is important for API adaptation, is AddEncapsulatedField, which adds to an
API class a private field with a pair of accessor API methods (e.g., get() and set()) accessing and
modifying the field’s value. Since refactorings of this group may introduce conflicts of type names
and method signatures of newly introduced API types and methods with existing plugin types and
methods, refactorings of this group may lead to Type Capture and Unintended Functionality.

4. Refactorings removing API types and methods. Examples are inverses of the refactorings of
the previous group, removing API types and methods (e.g., RemoveEmptyClass, RemoveMethod,
RemoveException, RemoveEncapsulatedField). Since such refactorings remove previously avai-
lable API types and methods, they lead to Missing Functionality. Consistently with our discussion
from Section 2.2.3, as a special member of this group we also consider adding a new abstract
API method, which can be seen as adding a concrete API method and then removing the method
implementation.

In case API refactorings go beyond these basic adaptable refactorings, the Adapter pattern (and hence,
our variants of the pattern) might be unable to compensate for such refactorings. For instance, since no
notion of a public field is supported in the pattern, it cannot compensate for the refactorings of public API
fields (e.g., RenameField, MoveField applied to such a field). In our approach, we require that all API
fields are encapsulated (declared private and accessed by get() and set() accessor methods) to implement
information hiding [Par72]; support for refactorings of encapsulated fields is then implied by the adaptation
of the corresponding accessor methods.

Certain refactorings operate at an implementation level below method signatures. In particular, Inline-
Method replaces a method call with the body of the called method and then deletes the latter. Since the
Adapter pattern does not define any means to access method implementations (it is not the purpose of the
pattern), we can compensate for this refactoring only by adding to the adapter the removed method (its
signature and implementation) without changing the method that resulted from InlineMethod. Although
such adaptation suffices in most of the cases, in general we cannot guarantee its behavioral correctness,
because the inlined method could have been used as a (non-abstract) hook method in the old API.27 In
this case, the method added in the adapter will never be called back from the framework and, hence, the
overriding plugin functionality will not be invoked (Unintended Framework Functionality: Inconsistent
Method, shown by Figure 2.9 on page 31). Still, we can safely compensate for the opposite refactoring
ExtractMethod by deleting the method in the reconstructed API (to avoid Unintended Plugin Functionality:
Method Capture, shown by Figure 2.10 on page 33).

In case an old API method is deleted without a deprecate-replace-remove cycle, the corresponding imple-
mentation must be defined in an adapter. Although the Adapter pattern describes such opportunity [GHJV95,
p. 142], it is not always possible in practice, because implementing such methods may require accessing
private members of the refactored framework not visible from adapters.

Adapting Composite Refactorings

What about more complex API refactorings, involving larger type and method changes? For them, we can
rely on the Adapter design pattern, if a refactoring can be modeled (seen) as a composite of basic adaptable
refactorings—a chain of basic refactorings, for which the pattern applies.28

For example, ExtractClass can be modeled as creating a new class (AddEmptyClass), adding an encap-
sulated field of the type of the new class to the base class (AddEncapsulatedField) and, by using the
field, moving a set of public members of the base class to the new class. By compensating each such basic
refactoring we will also compensate for the whole composite ExtractClass. However, if at least one of
the constituents of a composite refactoring is not an adaptable refactoring, the whole complex refactoring

27In fact, in this case one could argue, that the transformation is not a refactoring, since it changes API semantics by removing a
variability point—a hook method.

28The formal definition of a refactoring chain, as introduced by Roberts [Rob99], will be provided in Section 4.1.1.
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cannot be adapted either. For instance, if one of the public members being moved in ExtractClass is a
field, we cannot safely adapt the whole ExtractClass refactoring.

Similar discussions apply to other composite API refactorings, such as AddClass, ExtractSubclass, and
ExtractInterface. In particular, we model AddClass as AddEmptyClass adding an empty API class, fol-
lowed by a sequence of AddMethod refactorings adding API methods. Similar, we model ExtractSubclass
as AddEmptyClass adding an empty subclass of the base class, followed by a sequence of PushDownMethod
refactorings moving method down from the base class to the newly created subclass. Finally, we model
ExtractInterface as RenameClass renaming the original class, followed by AddInterface adding an
interface named as the class before the rename and implemented by the renamed class.

In many cases, the set of refactorings making up a composite refactoring can be modeled differently,
depending on the developers’ expertise and taste. It is therefore important to remember that the basic
refactorings used for modeling a composite refactoring should not go beyond the type changes that can
be applied to an interface (i.e., a named set of method signatures). Otherwise, certain constituents of the
composite refactoring and, hence, the whole composite refactoring may not be compensated by the Adapter
pattern. For instance, if we dissected furthermore the AddEncapsulatedField basic adaptable refactoring
into a sequence of the refactorings AddField adding a public field, HideField reducing the field’s visibility,
and AddMethod adding the field’s accessor methods, we could not compensate for the first refactoring in the
chain (i.e., AddField) in isolation. For such cases, one needs to consider all related refactorings, and model
them together as an adaptable refactoring (e.g., AddEncapsulatedField).

In general, it is hard to provide an unbiased estimation of how many complex refactorings can be modeled
as chains of basic adaptable refactorings. Since such modeling is highly dependent on the experience of
developers in applying refactorings, the results may vary considerably among developers. In our case
study (Section 2.1) we managed to boil down all large refactorings to adaptable ones. Since also advanced
architectural changes can be modeled as sequences of refactorings [TB01], we believe that the limitations of
the Adapter design pattern still do not prohibit the realistic application of refactoring-based adaptation.

Adapters in the Presence of Thread Synchronization

If properly implemented, synchronization provides for multiple threads consistently accessing a shared state.
By implementing a certain state synchronized, it is possible to avoid errors otherwise potentially introduced
by multiple threads simultaneously accessing the state. In Java, synchronization is based on a monitor—a
lock associated with every object—to control the exclusive access to the object. For such access, a thread
needs to acquire and own the object’s monitor; until the monitor is released by the owning thread, all other
threads attempting to acquire the monitor are blocked. In Java, synchronization can be implemented at
the level of methods (by declaring them synchronized) or at the level of statements (by placing them in a
synchronized code block) [GJSB05].

Since wrappers are objects physically different from the adaptee objects, introducing adapters splits the
monitors of the objects being adapted between the wrapped objects and their wrappers (similar to how it splits
the object identity, as discussed in Section 3.3.1 on page 85). This split should not pose additional problems
if synchronization is implemented at the level of API methods, because in this case the corresponding adapter
methods are also synchronized, by construction. By forwarding to the adaptee objects, such wrappers’
methods also share their adaptees’ monitors, thereby preserving expected synchronization.

However, if access to a certain framework shared state is realized in a synchronized code block of a
plugin, adapters introduced do not capture this synchronization access. As a consequence, splitting of
monitors of wrappers and wrapped objects may become dangerous. For instance, a framework thread can
potentially access the shared state simultaneously to a plugin thread modifying that shared state. Because
the synchronization is realized at the implementation level below method signatures (in other words, the
synchronization contract is defined at the level of method statements, and not of method signatures), the
Adapter pattern cannot correctly cope with it. As a consequence, the intended synchronization is broken
leading to an inconsistent shared state.

While considering this as a limitation of the Adapter pattern, one could also argue for preferring synchronized
methods over synchronized statements to realize access to a shared framework state. Whereas in the former
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case, the synchronization contract is defined explicitly at the level of API methods, in the latter case the
contract is implicit and not enforced by the API (hopefully, it is properly reflected in API documentation).
Arguably, such implicit contract can be broken not only by introducing adapters, but also by application
developers consciously or unconsciously disregarding it while implementing plugins. A general solution for
developing reusable software is to always make component contracts explicit [GAO95].

Equivocal Adaptees

Let us conclude with a problem connected to the object composition as used in our adapters. In the first
framework release the framework API contains a concrete class Node with the methods print() (for displaying
user messages to the console) and log() (for writing node contents to a database). In the second framework
release, by reconsidering domain-specific requirements of the framework, its developers realize that printing
should be done only by workstations, while logging only by servers. Therefore, framework developers
apply to Node two API refactorings: PushDownMethod moving log() to the Node’s subclass Server, and
ExtractSubclass moving print() to the Node’s new subclass Workstation. At the same time, the Node
class remains public and non-abstract.

In exhaustive API adaptation both the Black-Box Class Adapter pattern and the White-Box Class Adapter
pattern should be applied to compensate for Node’s refactorings. However, at adapter creation time, we
do not know, which of the two API classes (i.e., Workstation or Server) we should use in the patterns’
applications. We call this problem equivocal adaptees (Figure 3.41).

Non-deterministically deciding for one of the possible adaptees may lead to creating an adaptee object that
cannot answer messages at run time (e.g., a Workstation adaptee object when asked to log a message). A
possible solution would be asking developers to specify the API class to be used in the particular adapter
pattern application. Since developers know about the semantics of the API refactorings they applied,
their choice may be more appropriate than choosing the API class non-deterministically. For example, by
considering developer documentation (e.g, source comments or a developer guide) framework developers
may assume that existing plugins do not ask an instance of Node for logging, in case the instance is used in
existing plugins as a workstation. In this case, framework developers would specify Workstation to be used
in the applications of the Black-Box and White-Box Class Adapter patterns.

In fact, the problem of equivocal adaptees may indeed lead to run-time errors only when the plugin is
calling an API class constructor. In our example, the problem appears, if the plugin invokes a constructor of
Node, either directly (in black-box framework reuse) or via a constructor chain (in white-box framework
reuse). Otherwise, if the node is created in the framework and returned then to the plugin (which is possible
in black-box framework reuse), we know precisely the type of the node (i.e., Workstation or Server) and
can decide for the appropriate adaptee. Although in this case the adaptee object could still fail to answer
messages at run time, such errors would indicate an abuse in the plugin (e.g., asking a workstation to log to
a database) and not the problem of equivocal adaptees.

In general, the problem of equivocal adaptees is connected to the purpose of such refactorings as Extract-
Subclass and PushDownMethod—refactorings for specialization [Opd92, pp. 71–86]. In case the set of
possible objects of an original class is split in mutually disjoint object sets of the specialized subclasses,
it is in general impossible to safely map objects of the old type to the objects of the new types without
additional mapping criteria (e.g., specified by developers). However, although we envisage the problem of
equivocal adaptees, we cannot estimate its practical impact, since we did not encounter such combinations
of refactorings in our case study and the studies reported by other researchers [DJ05, DR08, SJM08].

3.4 Summary

The conventional description of the Adapter design pattern focuses on integrating independently developed
components and assumes black-box component reuse. However, we want to apply the pattern to accommo-
date for refactorings of framework APIs and, therefore, need to precisely denote the particularities of our
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void log()
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adaptee

(a) Application of the Black-Box Class Adapter pattern. It is unclear,
which API class should be used as the adaptee of the reconstructed
Node.

Framework Version 2

Adaptation Layer
Node

Plugin Version 1

Workstation
void print(String msg)

Server
void log()?

LAN
Node node = new SecureNode();

void print(String msg)
void log()

CovertNode
//dispatching and
//upcalling methods

Node

SecureNode
callee

adaptee

adaptee

(b) Application of the White-Box Class Adapter pattern. It is unclear, which API class
should be subclassed by the covert adapter class CovertNode.

Figure 3.41: Equivocal adaptees. In the application of PushDownMethod and ExtractSubclass to Node
some of the methods were moved to different subclasses of Node. As a consequence, it is not possible
to automatically decide, which API class should be used from the Node’s black-box and white-box class
adapters.

adaptation context. Since plugins are developed reusing the framework API types by object composition and
by inheritance, they are highly dependent on the framework API. Moreover, the framework is also dependent
on the plugins due to the callback mechanism accessing overriding plugin functionality. In addition, our
main goal—binary backward compatibility—requires extra means to avoid plugin recompilation. With these
particularities in mind, we design the adaptation of refactored framework APIs.

Considering the adaptation of refactored API types, we define four variants of the Adapter design pattern to
compensate for refactorings of API classes and API interfaces in black-box framework reuse and white-box
framework reuse. While black-box adapters support plugins in calling the refactored API, white-box adapters
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support the refactored framework in calling back old plugins. The most sophisticated adapters—white-box
class adapters—support bidirectional communication between the framework and plugins, and protect
against inadvertent overriding of API methods.

Considering the adaptation of the framework API as a whole, we perform exhaustive API adaptation by
statically generating adapters for all possibly refactored API types and then instantiating the corresponding
adapters at run time. The generated adapters make up the static adaptation layer, which reconstructs exactly
the framework API expected by an old plugin. The instances of adapters (i.e., wrappers) form the run-time
adaptation layer, which separates the object domains of the framework and the plugin. In the run-time
adaptation layer, all objects crossing domain boundaries are wrapped and unwrapped according to their
domain of origin. In addition, exhaustive API adaptation encapsulates decisions on how to properly create
and instantiate adapters, and reuse wrappers depending on the properties of the objects to be wrapped.

Delimiting our technology, we discuss challenges we met, solutions adopted, and limitations we had
to accept. With the help of the adapter cache implemented in the adaptation layer we solve the object
schizophrenia caused by the object composition as used in our adapters. Moreover, anticipating certain
assumptions developers may make about the run-time structure and type of the objects they are using, we
either address these issues directly in exhaustive API adaptation or suggest additional adaptation means
otherwise. Using static and run-time optimizations, we decrease the performance overhead inherent in
adapters. Since the Adapter design pattern itself cannot compensate for all possible refactorings, we discuss
API refactorings and their combinations, for which the pattern can be applied in our adaptation context.

To conclude, although focused on API refactorings while designing our adaptation patterns and exhaustive
API adaptation, we do not commit our design presented in this chapter to compensate for API refactorings
only. Indeed, all our examples are adapting syntactical API changes. However, nothing prevents developers
from extending and combining black-box and white-box adapters with means for adapting changes beyond
refactorings. For instance, if a modified API method throws an exception, while an old plugin expects a
default action to be performed instead (an example of a so-called protocol mismatch [YS97]), developers
may catch the exception and implement the default action in a method of the corresponding adapter. By
doing that, developers reuse all decisions (e.g., adapter instantiation and cache, object wrapping, identity
preservation) realized in our adaptation. That is, while our adaptation is designed to serve as an immediate
solution for most application-breaking API changes (i.e., refactorings), it is also extensible to add adaptation
support for other application-breaking API changes. In particular, in Section 5.2.1 we show how we can
combine adapting API refactorings with adapting protocol mismatches.
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“Transforming programs is easy. Preserving behavior is hard.”

–Donald Bradly Roberts
Practical analysis for refactoring [Rob99, p. 30] 4

Formalizing Refactoring-Based Adapter
Derivation

When upgrading software frameworks and libraries, the APIs of which are evolving via refactorings, and
where dependent applications are not available for update, Dig and Johnson [DJ05] suggest to treat the
history of API refactorings as a specification of component API changes. Furthermore, Dig et al. [DNMJ08]
show how to use such specification reconciling the refactored component and its dependent applications.
The authors manually specify, for several application-breaking API refactorings, compensating refactorings
that inline adaptation code into the API of the upgraded component. The adaptation code reconstructs the
syntactic part of the old API affected by refactorings, and either redirects calls of old API methods from
existing application code to invoke refactored API methods, or restores deleted API methods [DNMJ08].

This elegant engineering solution is, however, based on the intuition of developers: the adaptation is
hand-coded in the Eclipse integrated development environment [Ecl] as mappings from original application-
breaking API refactorings to compensating refactorings. The authors do not discuss, why exactly these
particular compensating refactorings are chosen and how they are related to the semantics of the original
API refactorings. Without such explicit correlation, it is not clear precisely how to systematically define
adaptation means for other, possibly more complex API refactorings than the refactorings addressed by
Dig et al. [DNMJ08]. Moreover, it is not clear how this correlation should be implemented on platforms
other than Eclipse. As another consequence of the lack of rigor in their adaptation definition, the authors do
not consider the addition of API types and methods as application-breaking, although such additions may
indeed lead to conflicts with existing applications (as we discussed for Unintended Functionality and Type
Capture in Section 2.2.3).

Evidently, what is needed is a more rigorous basis for describing refactoring-based adaptation. For an
application-breaking API refactoring, at the very least we should be able to say precisely what is the intended
meaning of its compensating adaptation action, and how this action is related to the API refactoring. More
ambitiously, we should also be able to use this rigor to automate the adaptation in a platform-independent
manner. Addressing these issues, this chapter brings the following thesis contribution:

C6: Rigorous refactoring-based adapter derivation. To rigorously define refactoring-based adaptation in
the context of framework API evolution via refactorings, we use the semantics of application-breaking
API refactorings. The key idea is to define an adaptation transformation as an explicit semantic entity,
the semantics of which depend on the formal semantics of the original API refactoring, for which
this adaptation transformation compensates. More specifically, a compensating transformation is an
inverse of an original API refactoring with regard to all syntactic program properties affected by the
API refactoring. Because we disregard all other program properties but syntactic ones, we weaken
the definition of a real inverse transformation, not considering all program properties affected by
an original transformation. Therefore, we call our compensating transformations weak refactoring
inverses.

Besides reasoning about the correlation between application-breaking API refactorings and adaptation
transformations, the rigor of weak refactoring inverses permits us to automate our adaptation. Since
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(a) First framework upgrade. Adaptation layer
AL1 is generated for the plugin P1 basing on the
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F1 and F2.
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(b) Second framework upgrade. Adaptation layer AL1 is generated for
the plugin P1 considering all application-breaking API refactorings in
the history, while adaptation layer AL2 is generated for the plugin P2
considering only application-breaking API refactorings occurred between
the framework versions F2 and F3.

Figure 4.1: Refactoring-based adaptation. Given the latest framework API and the trace of API refactorings
that occurred between previous and the last framework versions, adaptation layers are generated, which
translate between existing plugins and the upgraded framework. For plugins developed with the latest
framework version, no adaptation layer is required.

we want plugins to use the latest, improved framework, we cannot invert application-breaking API
refactorings directly on framework API types. Instead, we use certain weak refactoring inverses—called
comebacks—to generate adapters. A comeback is a weak refactoring inverse that can be executed
on adapters. When generating adapters, we create an adaptation layer that corresponds to the latest
framework version and then invert application-breaking API refactorings in the history of framework
evolution by executing the corresponding comebacks on adapters of the adaptation layer (Figure 4.1).
Since for an old plugin its difference to the latest framework API is expressed as a sequence of
refactorings in the refactoring history, by considering that difference we can generate adapters for
any previous plugin version (as shown in Figure 4.1(b)). As a consequence, adapted plugins of
different versions are provided with their version-specific adaptation layers, which use directly the
latest framework version, avoiding the performance penalties otherwise implied by stacking multiple
adapters.

Since a comeback is rigorously defined, it is possible to formally prove, that its execution indeed
constructs an adapter that compensates for the comeback’s corresponding application-breaking API
refactoring. Moreover, the semantics of the refactoring-based adaptation as a whole is defined as the
execution of a sequence of comebacks that correspond to the application-breaking API refactorings in
the refactoring history.

The rest of the chapter is organized as follows: Since we base our definitions on existing work on refactoring
formalization [Opd92, Rob99], we overview that work in Section 4.1. To give an intuition of our approach
for refactoring-based adapter derivation, we continue then with an informal introduction to the key concepts
involved in Section 4.2. Thereafter, we provide formal definitions and show proof examples of weak
refactoring inverses and comebacks in Section 4.3, conclude in Section 4.4, while providing a set of further
examples and proofs of weak refactoring inverses and comebacks for several common refactorings in
Appendix D.
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Terminology Note

An analysis function is a mathematical function with parameters. It yields a result value when
applied to arguments. For example, Superclass(X) is a function.

A logic predicate is the unit of composition in FOPL formulæ. It may contain unbound variables
and evaluates to a boolean value with the help of an interpretation. Predicates can be built using
analysis functions and mathematical relations. For example, Superclass(X) = Y and IsClass(X) are
predicates.

An assertion is a predicate with all variables bound. It serves as a statement and can be used to
specify preconditions. For example, IsClass(′ java.lang.Ob ject ′) states that java.lang.Ob ject is
the name of a class.

4.1 Background on Refactoring Formalization in First-Order Predi-
cate Logic

Refactorings—behavior-preserving source-to-source program transformations—are program transformations
with well-defined semantics [Opd92, Rob99, MEDJ05, Eet07, Tic01, Wer99]. The research on formalizing
refactorings has its origins in the works on formalizing the correctness of general program transformations
(e.g., [BBP+79, PS83]). In particular, we base our formal definitions on the refactoring formalizations
developed by Opdyke [Opd92] and Roberts [Rob99].

4.1.1 Refactoring Definitions of Opdyke and Roberts

As a first step in formalizing refactorings, in his PhD thesis Opdyke [Opd92] defines seven program
invariants refactorings should preserve (e.g., Distinct Class Names, Type-Safe Assignments, and Unique
Superclass). He then defines twenty-three primitive refactorings, such as AddClass, RenameMethod, and
ChangeType. Each refactoring definition consists of an informal description of a transformation and a
precondition—a set of statements that ensure that the execution of the transformation will not change the
program behavior (i.e., will maintain the invariants).

Opdyke uses first-order predicate logic (FOPL) [Smu68] to formaly specify refactoring preconditions. FOPL
augments the set of standard logic connectives (¬, ∧, ∨, ≡,⇒,⇔) and quantors (∃, ∀) with symbols for
specifying functions and predicates. The latter are used to specify preconditions as assertions—predicates
with all variables bound. Whether an assertion is true on a program P is determined by evaluating the
assertion under the interpretation IP = (S, ·I ), with the program’s source code S as the domain of discourse
and the mapping ·I specifying the meaning of assertions in the context of S. The evaluation of an assertion
results exactly in one of the two boolean values: true or false. In practice, the mapping ·I can be implemented
by a tool chain consisting of scanner, lexer, and parser [ASU86], which extracts information about the
source code S and represents it in the form of assertions in P. Definition 2 reflects the relation between the
program P and its source code S, as used in the rest of this chapter.

Definition 2 (Program and Source Code)
An object-oriented program1 P is the finite set of assertions that represent information about the structure of
the source code S.

In the following, if a precondition pre is true on a program P, it is denoted by |=IP pre or simply by P |= pre.
Otherwise, if the precondition pre is false on a program P, it is denoted by 6|=IP pre or simply by P 6|= pre.

1In its original sense, the term program denotes a sequence of instructions executed or interpreted by the computer. In the remainder
of this chapter, we focus on the structure of these instructions, that is, the classes and methods, in which the instructions are grouped.
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Based on the work of Opdyke [Opd92], in his PhD thesis Roberts extends the formalization of refactorings
with assertion transformations modeling the program transformations caused by the execution of refacto-
rings [Rob99]. From these assertions, postconditions can be derived [KK04]. We slightly extend Roberts’
definition of a refactoring [Rob99, page 37] to also reflect the property of a refactoring as a parameterizable
transformation.

Definition 3 (Refactoring)
A refactoring is an ordered triple R := (pre, trans, post) where pre is a set2 of formulæ that must be true on
a program P for R to be legal, trans is the program transformation, and post is a function from assertions to
assertions that transforms legal assertions whenever trans transforms programs. All unbound variables in
pre and post are formal parameters of the refactoring and will be bound to concrete values whenever R is
applied.

Because we base our work on the works of Opdyke and Roberts, we focus on reasoning about refactorings’
program transformations in terms of preconditions and assertion transformations, and not on the transforma-
tions themselves. The reason for that is a practical consideration: while there has already been considerable
research on formalizing the transformations of refactorings (e.g., as graph rewritings [Eet07, EJ04, HJE06]
or term rewriting [Bat07]), the results have barely entered practice yet. Therefore, in the following the
program transformation trans will only be informally described and the transformation of assertions (i.e.,
post) is explored instead. The application of a postcondition transformation post to a program P will be
referred to shortly as post(P) hereinafter, while trans(S) denotes the transformation of the source code S.

In fact, the assertion transformation of Definition 3 (i.e., post) has very much in common with the predicate
transformer described by Dijkstra with his algorithm for deriving the weakest precondition of program
code [Dij75].3 However, the notation Roberts uses for specifying a post is different and requires a short
explanation, since we will heavily use his formalism in our formal definitions and proofs. As a terminology
remark, while Roberts uses the ⊥ symbol for indicating that a function is not defined for a specific input,
we will use a less known notation from computability theory [San88, pages 2–3]: f (a)↓ means that the
function f is defined (or converges) for the input a and f (a)↑ indicates that f is undefined for the input a.
The motivation behind that decision is that the ⊥ symbol denotes the truth value false when interpreting
logic formulæ. To avoid ambiguity in case both truth values and convergence need to be expressed in an
assertion transformation, we use different symbols for the two concepts.

While Roberts does not formally define the assertion transformation post, we introduce its formal definition
to concisely use it in the following proofs. Formally, an assertion transformation post is a total function from
assertions to assertions and is equivalent to the identity function except for a finite number of assertions—only
those assertions that are changed are specified. The syntax for transforming a single assertion is

assertion′ = assertion[x1/y1] · · · [xn/yn],

where x1, . . . ,xn are in the domain of the assertion4 or will be added to it:

dom(assertion′) := dom(assertion)∪
n⋃

i=1

{xi} .

Each yi will be added to the codomain of the assertion if it is not the symbol ↑:

cod(assertion′) := cod(assertion)∪{yi|yi ∈ {y1, . . . ,yn}∧ yi 6= ↑} ,

Otherwise, the corresponding xi is removed from the domain of the assertion:

dom(assertion′) := dom(assertion)\{xi|xi ∈ {x1, . . . ,xn}∧ yi ∈ {y1, . . . ,yn}∧ yi = ↑}
2Strictly speaking, pre is a totally ordered set (a binary, transitive, antisymmetric, and total relation on a set), because assertions are

assumed to be evaluated from left to right in order to prevent computing analysis functions on undefined input.
3As indicated by its name, a predicate transformer modifies predicates. By transforming predicates, it also transforms all assertions

defined in terms of those predicates. By contrast, an assertion transformation post modifies assertions directly. The conceptual difference
between the two transformations is the level of abstraction used to define the semantics of the transformations (i.e., transforming
predicates versus transforming assertions). To the best of our knowledge, there is no existing work formally relating predicate and
assertion transformations.

4By the domain of the assertion we mean the set of all valid inputs for the assertion.
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This helps to undefine assertions for a certain input. To avoid having to specify value assignments for a large
(and possibly unknown) set of inputs, quantified expressions are also permitted as in ∀x ∈ X .assertion[x/y],
and quantified expressions can be specified sequentially.

As an example, the assertion transformation IsClass′ = IsClass[newClass/true] reflects the addition of the
class newClass to the program, while not changing the rest of the values of the predicate IsClass. As a
more complex example, the following assertion transformation reflects the fact, that when a class class is
removed, its subclasses are connected to its superclass in the class hierarchy.

Superclass′ = ∀c ∈ Subclasses(class).Superclass[c/Superclass(class)][class/↑]
We will formally introduce IsClass, Superclass, and Subclasses as well as other analysis functions used to
build predicates in Section 4.1.3.

Roberts also introduces chains of refactorings: “Refactorings are typically applied in sequence. This allows
large design changes to be composed of a sequence of smaller, more primitive refactorings. Since each step
is a refactoring, and therefore, behavior-preserving, the entire composition is also a refactoring.” [Rob99,
page 43]

Definition 4 (Chain of Refactorings [Rob99, page 36])
A chain of refactorings is a sequence of legal refactorings, 〈R1,R2, . . . ,Rn〉, that are applied to a program
sequentially and without intervening changes to the program.

As an example, given two refactorings RenameClass and AddMethod, a chain of the two refactorings
is 〈RenameClass,AddMethod〉. Details on how to derive the composite precondition of a sequence of
refactorings can be found in Roberts’ PhD thesis [Rob99, pages 39–52].

4.1.2 Metamodel of the Language Features Covered by Formal Refactoring Defi-
nitions

While Roberts developed his refactoring formalism for Smalltalk, we want to apply it to other object-
oriented programming languages, such as Java. Therefore, it is important to precisely delimit the language
features supported in Roberts’ formalization, so that we can reuse his work for those features in other
programming languages. Figure 4.2 summarizes, as an UML model [Obj05], all language features, for
which the refactorings are formally defined by Roberts [Rob99]. The annotations in the figure correspond to
Roberts’ analysis functions listed for the sake of presentation in the following Section 4.1.3.

Figure 4.2 reflects an abstract object-oriented language with single inheritance, which is in fact very similar
to the core model of the FAMOOS project [DTS99, page 4]. The model is fairly simple: it ignores concepts
such as interfaces, abstract methods, class and member visibility, method return types and parameters (and,
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Figure 4.2: UML model of the supported language features. The labels are annotated with analysis functions
as defined by Roberts [Rob99].
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therefore, also method overloading), exceptions, enumerations, attributes/annotations, and events. Concrete
implementations of the technology will need to add support for features specific to their target programming
language (e.g., delegates or generic types).

Since we base our work on the refactoring formalization of Roberts [Rob99], our formal refactoring-based
adaptation presented in the rest of this chapter is limited to adapting the refactorings applied to the language
features of Figure 4.2. Defining the adaptation of refactorings applied to other language features (e.g.,
interfaces, enumerations, or annotations) would require formalizing the refactorings of those features first.
We consider this extension as a future work, which is out of the scope of this thesis. Instead, our main goal
is to show how to systematically define a formal refactoring-based adaptation for a given object-oriented
programming language. However, in practice we do support other refactorings in our adaptation tool by
implementing corresponding compensating transformations operationally (as Prolog rules, as we will show
in the tool’s implementation described in Section 5.1), without proving them formally in first-order predicate
logic.

4.1.3 Roberts’ Basic and Derived Analysis Functions Adopted for Refactoring-
Based Adaptation

This section lists basic and derived analysis functions for expressing program properties and for reasoning
about them, as we will need to formalize our adaptation technology. The functions adopt those developed by
Roberts in his thesis [Rob99, pages 30–34], sometimes with slight notational modifications. One reason for
these modifications has already been mentioned: instead of the ⊥ symbol used by Roberts for indicating that
a function is not defined for a specific input, we will use f (a)↑ to indicate that f is undefined for the input
a. In addition to avoiding fallacious interpretation, this notation has another advantage of allowing to test
whether a function converges for a given input. Another reason for the modifications to some of Roberts’
ideas is that the Smalltalk programming language is dynamically typed, while our work focuses on the
statically-typed Java. As a consequence, these functions do not capture the run-time typing information (e.g.,
all types of objects assigned to fields of classes) but rather their static counterpart (the static type of a field in
a class). As a small remark, due to Smalltalk-specific terminology, Roberts’ term for “method” is selector.

Basic Analysis Functions

IsClass(class) Total function that is true if a class named class exists in the system and false otherwise.

Superclass(class) Partial function returning the immediate superclass of class.

InstanceVariablesDefinedBy(class) Partial function returning the set of instance variables defined by
class.

ClassOf(class, varName) Partial function returning the type of the instance variable varName of class.

ReferencesToInstanceVariable(class, varName) Partial function returning the set of class, selector pairs
of all of the methods that refer to the instance variable varName defined in class.

ClassReferences(class) Partial function returning the set of all class, selector pairs of all methods that
reference class.

Method(class, selector) Partial function returning the abstract syntax tree representing the method defined
by selector in class.

Senders(class, selector) Partial function returning the set of all sites that call the method defined by selector
in class.
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Derived Analysis Functions and Formulæ

Subclasses(class) Returns the set of all immediate subclasses of class.

Subclasses(class) :={c|Superclass(c) = class}

Subclasses∗(class) Returns all of the subclasses of class in the inheritance hierarchy. Computes the
transitive closure of the Subclasses function.

Subclasses∗(class) :=

{
/0 if Subclasses(class) = /0⋃

c∈Subclasses(class) {c}∪Subclasses∗(c) otherwise

Superclass∗(class) Returns all of the ancestors of class in the inheritance hierarchy. Computes the transitive
closure of the Superclass function.

Superclass∗(class) :={
/0 if Superclass(class)↑
{Superclass(class)}∪Superclass∗(Superclass(class)) otherwise

DefinesSelector(class, selector) True if class locally defines the method selector.

DefinesSelector(class,selector) :=Method(class,selector)↓

LookedUpMethod(class, selector) If class locally defines the method selector, returns selector body.
Otherwise, returns the body of the most specific selector inherited by class. If there is no such method,
this function is undefined.

LookedUpMethod(class,selector) :={
Method(class,selector) if Method(class,selector)↓
LookedUpMethod(Superclass(class),selector) otherwise

UnderstandsSelector(class, selector) True if class defines or inherits the method selector.

UnderstandsSelector(class,selector) :=∃c ∈ {class}∪Superclass∗(class).
DefinesSelector(c,selector)

UnboundVariables(class, selector) Returns the set of all non-local variables referenced from selector in
class.

UnboundVariables(class,selector) :={v|(class,selector) ∈ ReferencesToInstanceVariable(v)}

DefinesInstanceVariable(class, variable) True if class locally defines the instance variable variable.

DefinesInstanceVariable(class,variable) :=variable ∈ InstanceVariablesDefinedBy(class)

HierarchyReferencesInstVariable(class, variable) True if class, any of its superclasses, or any of its
subclasses references the instance variable variable.

HierarchyReferencesInstVariable(class,variable) :=
∃c ∈ {class}∪Superclass∗(class)∪Subclasses∗(class).

ReferencesToInstanceVariable(c,variable) 6= /0
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IsEmptyClass(class) True if class does not define any methods and instance variables.

IsEmptyClass(class) := 6 ∃s.DefinesSelector(class,s)∧ 6 ∃v.DefinesInstanceVariable(class,v)

MostSpecificSuperclass(class1, class2) Returns the most specific common superclass of class1 and class2.

MostSpecificSuperclass(class1,class2) :=
class1 if class1 = class2
class1 if class1 ∈ Superclass∗(class2)
MostSpecificSuperclass(Superclass(class1),class2) otherwise

4.1.4 Examples of Formal Refactoring Definitions: RenameClass and MoveMethod

To give an impression of formal refactoring definitions, we conclude our background section with two
examples of refactoring definitions: RenameClass and MoveMethod.

RenameClass

The RenameClass refactoring renames an existing class in the program and updates all references. It
updates the references in the source code with the help of the RenameReferences analysis function, the
inner workings of which are not important here. The following definition is adopted from Roberts [Rob99,
p. 105].

RenameClass(class, newClass)

pre : IsClass(class)∧ (1.1)
¬IsClass(newClass) (1.2)

post : IsClass′ = IsClass[class/ f alse][newClass/true] (1.3)
ClassReferences′ = ∀c 6= class.∀s ∈ {s|(class,s) ∈ ClassReferences(c)} .

ClassReferences[class/↑][newClass/ClassReferences(class)]
[c/ClassReferences(c)\{(class,s)}∪{(newClass,s)}] (1.4)

ReferencesToInstanceVariable′ = ∀(c,v,s) ∈
{(c,v,s)|(class,s) ∈ ReferencesToInstanceVariable(c,v)∧ c 6= class} .
∀lv.∀lr ∈ {lr|(class, lr) ∈ ReferencesToInstanceVariable(class, lv)} .
ReferencesToInstanceVariable[(class, lv)/↑][(newClass, lv)/
ReferencesToInstanceVariable(class, lv)\{(class, lr)}∪{(newClass, lr)}]
[(c,v)/ReferencesToInstanceVariable(c,v)\{(class,s)}∪{(newClass,s)}] (1.5)

Superclass′ = ∀c ∈ Subclasses(class).Superclass[class/↑]
[newClass/Superclass(class)][c/newClass] (1.6)

Method′ = ∀c.∀s.Method[(newClass,s)/Method(class,s)][(class,s)/↑]
[(c,s)/RenameReferences(Method(c,s),class,newClass)] (1.7)

Senders′ = ∀s.Senders[(newClass,s)/Senders(class,s)][(class,s)/↑] (1.8)
InstanceVariablesDefinedBy′ = InstanceVariablesDefinedBy[newClass/

InstanceVariablesDefinedBy(class)][class/↑] (1.9)
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MoveMethod

The MoveMethod refactoring relocate an existing method from an originating class to a target class and
adjust the method correspondingly. Fowler et al. deem this transformation “the bread and butter of re-
factoring” [FBB+99, p. 142]. This is supported by the many variants of the MoveMethod refactoring in
literature [Opd92, Rob99, FBB+99, Eet07, Wer99]: some definitions retain a forwarding method in the
originating class, some pass an instance of the originating class as additional parameter to the moved method,
some only permit moving to the classes associated via a field in the originating class. Moreover, to account
for dependencies among methods and instance variables of the originating class, the refactoring can be
extended to move several methods and instance variables at once.

In fact, one can argue, that MoveMethod denotes a family of closely-related refactorings, each having slightly
different semantics. Such refactorings differ primarily in the actions they take to make the movied method
fit into the target class. For example, if a local variable of the target class was passed as a parameter to the
method before the refactoring, the parameter can be removed from the signature of the movied method. As
its additional parameter, the refactoring may accept a new method name, which is more appropriate in the
target class. Moreover, the moved method may or may not use its originating class. In case the method
needs to access a variable of the originating class, the variable can be passed as an additional parameter to
the moved method. In case the moved method needs to access a number of members of the source class, an
instance of the originating class is passed as additional method parameter, or a reference from the target
class to the originating class is created (unless all required members are moved to the target class as well).

To apply our discussion to most such refactorings, we define and use a general version of MoveMethod
capturing the intrinsic property of the refactoring: moving a method from one class to another. While based
on the definition of Roberts [Rob99, p. 109], our definition abstracts the relation between the originating and
the target classes. Moreover, it does not consider additional refactoring actions, such as method renaming,
creating forwarding methods, or adding or removing method parameters. More specialized definitions of
MoveMethod should be seen as refinements of this general definition.

MoveMethod(class, selector, newClass)

pre : IsClass(class)∧ (1.10)
DefinesSelector(class,selector)∧ (1.11)
¬UnderstandsSelector(Superclass(class),selector)∧ (1.12)
IsClass(newClass)∧ (1.13)
¬UnderstandsSelector(newClass,selector)∧ (1.14)
UnboundVariables(class,selector) = /0 (1.15)

post : Method′ = Method[(newClass,selector)/Method(class,selector)]
[(class,selector)/↑] (1.16)

Senders′ = Senders[(newClass,selector)/Senders(class,selector)]
[(class,selector)/↑] (1.17)

ClassReferences′ = ∀c ∈ {c|IsClass(c)∧ (class,selector) ∈ ClassReferences(c)} .
ClassReferences[c/ClassReferences(c)\
{(class,selector)}∪{(newClass,selector)}] (1.18)

4.2 Refactoring-Based Adapter Derivation: Informal Introduction

In this section, we informally describe how we derive adapters basing on the information about application-
breaking API refactorings.
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Listing 4.1: Node’s adapter specification
1 I s C l a s s ( Node ) = t r u e
2 S u p e r c l a s s ( Node ) = O b j e c t
3 I n s t a n c e V a r i a b l e s D e f i n e d B y ( Node ) = { a d a p t e e }
4 Clas sOf ( Node , a d a p t e e ) = r e f a c t o r e d A P I . Node
5 Method ( Node , g e t I d e n t i f i e r ) = " r e t u r n r e f a c t o r e d A P I . Node . ge t ID ( ) "
6 R e f e r e n c e s T o I n s t a n c e V a r i a b l e ( Node , a d a p t e e ) = {Node . g e t I d e n t i f i e r }
7 C l a s s R e f e r e n c e s ( Node ) = {}
8 S e n d e r s ( Node , g e t I d e n t i f i e r ) = {}

4.2.1 Adapters as Abstract Specifications and Executable Code

As any program, an adapter can be described directly by executable code (e.g., binaries) or by an abstract
specification used to derive the program’s executable code (e.g., source code transformed to binary code by
a compiler). In our context, the advantage of representing adapters as abstract specifications is abstracting
over language details relevant only for a particular implementation platform. Specifically, by using abstract
specifications of adapters we can simultaneously derive black-box adapters and white-box adapters, as we
discuss in the following.

Recalling our discussion from Section 3.2, in exhaustive API adaptation we derive, for each possibly
refactored API type, both its black-box and white-box adapters in the static adaptation layer. For that,
we abstract over both kinds of adapters and talk about an adapter specification as an abstract description
defined in terms of analysis functions and their values (as introduced in Section 4.1.3), expressing properties
of the adapter as a program. Such abstract description can be derived using the information about API
refactorings and then employed to generate executable black-box and white-box adapters as source or binary
code artifacts (e.g., in Java).

For an example of an adapter specification, let us reconsider the API class Node as present in the first
framework version of our RefactoringLAN (Appendix A). For simplicity, let us assume that Node is
a concrete class that has exactly one method getIdentifier() returning the unique node identifier. The
method is renamed from getIdentifier() to getID() in the second framework release. Listing 4.1 shows the
description of the corresponding adapter in terms of Roberts’ analysis functions and their return values.
Lines 1–2 of the description specify the names of the adapter class and its superclass (in our case, Java
Object). Lines 3–6 relate the adapter with the refactored API class refactoredAPI.Node via the adaptee
field of type refactoredAPI.Node defined in Node and referred to in the adapter method getIdentifier().
In particular, the semantics of Node’s getIdentifier() are specified in terms of the getID() method of the
refactoredAPI.Node class (line 5). Finally, the description says, that there are no senders to the adapter and
its method getIdentifier() method (lines 7–8). Since we cannot analyze plugins, the last two lines of the
specification mean no senders to getIdentifier() in the framework, and no known senders in plugins.

This abstract description captures all information we need to create Node’s black-box and white-box class
adapters. That is, we know precisely the syntactic part of the adapter (i.e., its name and method signatures),
its relation to the latest framework API, and its supported functionality. Given such description, we consider
the particularities of implementing the subtype and use relations in black-box adapters and white-box
adapters (discussed in Section 3.1.5) and generate the corresponding executable Java binary adapters. For the
adapter specification of Listing 4.1, the source code of the generated black-box and white-box class adapters
is shown in Figure 4.3 and Figure 4.4, respectively (with adapter constructors omitted for simplicity).

To summarize, by this abstraction of adapter specifications we shift a set of implementation decisions to the
time of generating adapters as executable code, and can focus on how to correctly and automatically derive
adapter specifications, as discussed in the following Section 4.2.2.

4.2.2 Weak Refactoring Inverses Executed on Adapters: Comebacks

While in the previous section we discussed advantages of abstractly specifying adapters via analysis
functions and their values, in this section we informally describe, how we automatically derive abstract
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Reconstructed API Class
public class Node extends Object {
refactoredAPI.Node adaptee;

//forwarding to the framework
public int getIdentifier() {
return adaptee.getID();

}
}

Figure 4.3: Black-box class adapter for Node. The adapter reconstructs the old API class Node and uses
refactoredAPI.Node as its adaptee.

Reconstructed API Class
public class Node extends Object {
CovertNode adaptee;

//forwarding to the framework
public int getIdentifier() {
return adaptee.upcall_getID();

}
}

Covert Adapter Class
public class CovertNode extends refactoredAPI.Node {
Node adaptee;

//upcalling method
public int upcall_getID() {
super.getID();

}

//multiple method dispatch
public int getID() {

if (adaptee.getClass().declares("int getIdentifier()"))
return adaptee.getIdentifier();

else
return super.getID();

}
}

Figure 4.4: White-box class adapter for Node. The adapter reconstructs the old API class Node and realizes
delegation by method exchange between the reconstructed Node and the covert adapter CovertNode.

adapter specifications. Given a trace of application-breaking API refactorings, which occurred between a
previous framework version and the upgraded framework, and which are sorted according to the temporal
order of their occurrence in the API, we effectively undo all syntactic changes in the trace, as seen from the
point of view of the plugins of that previous version. To implement the undo, for an application-breaking
API refactoring we specify its weak refactoring inverse—a program transformation that reestablishes all
syntactic program properties affected by the API refactoring. In effect, a weak refactoring inverse rolls
back its corresponding refactoring only with regard to syntactic program properties (therefore, it is a “weak”
inverse transformation as opposed to a “strong” real inverse transformation that considers all affected
program properties).5

The main reason for introducing weak inverses, and not using real inverses, is that we do not want to invert
API refactorings directly on the refactored framework API, because we want plugins to use the refactored,
improved framework version. Instead, we want to invert on adapters, the structure of which is different
from the structure of API types. In general, due to the structural differences between the API types and the
adapters, real refactoring inverses would not be applicable on adapters (i.e., their preconditions would not
be satisfied by the adapters to be transformed). Moreover, not all weak refactoring inverses are applicable
on adapters. For example, although one can specify a weak refactoring inverse for a refactored public API
field, this weak refactoring inverse is not applicable on adapters, because the latter do not support public
fields. To denote a special kind of weak refactoring inverses that are applicable on adapters and can be used
to automatically derive adapters, we call them comebacks.

Technically, a comeback is realized in terms of refactoring operators executed on adapters. Similar to
ordinary refactorings, it is defined as a template transformation, parameterized by, for instance, type and

5The set of all possible weak refactoring inverses is a superset of the set of strong inverses.
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method names, parameter and return value types, or default argument values. However, a comeback is
parameterized by the names and types of adapters, and is instantiated to an executable transformation
by reusing parameters of its corresponding API refactoring. Since we operate on the level of adapter
specifications, comebacks can be seen as specification transformations, although we could implement
them also as source or binary transformations (to derive concrete adapters directly, and not their abstract
specifications). In the following, by a comeback transforming an adapter we will mean transforming an
adapter specification, which will effectively impact the structure of resulting (black-box and white-box)
binary adapters.

For some refactorings, the corresponding comebacks are implemented by a single refactoring. For example,
the comeback corresponding to the API refactoring RenameClass(oldName, newName) renames the
adapter from newName to oldName. As another example, the comeback of AddEmptyClass is defi-
ned by RemoveEmptyClass, removing an adapter. Similarly, the comeback of AddMethod is defined by
RemoveMethod, removing an adapter method. The latter two comebacks lead to newly introduced API
types and API methods not being exposed (via adapters) to old plugins, which is required to protect from
Unintended Functionality and Type Capture (as we discussed for the former in Section 3.1.3 and for the
latter in Section 2.2.4).

The comebacks of other refactorings consist of sequences of refactorings. For instance, the comeback of
PushDownMethod is defined by the DeleteMethod and AddMethod refactorings, the sequential execution of
which effectively moves (pushes up) the method between adapters in the adapter class hierarchy. Moreover,
complex comebacks may be defined by composing other, more primitive comebacks. For example, the co-
meback of ExtractSubclass is defined by combining the comebacks of PushDownMethod and AddClass.
This definition directly depends on how a complex refactoring is modeled in terms of more primitive
refactorings (as we discussed in Section 3.3.4 on page 96).

Given the framework of the latest version, the version of an old plugin, and the history of API refactorings
between the two versions sorted in the temporal order of their application to the API, we perform the
following two adaptation steps to semi-automatically construct adapters before upgrading the framework
(Figure 4.5):

1. As the first step of adapter generation, we automatically create a syntactic replica of the latest
framework API—an adaptation layer that mimics the API of the latest framework version and uses
that version’s API types as adaptees (Figure 4.5(a)). At this stage, the adaptation layer corresponds
to the latest API of the framework (i.e., represents exactly the same set of API types), and is not yet
useful for the old plugin.

2. As the second step of adapter generation, we inverse the syntactic changes introduced by application-
breaking API refactorings by executing the corresponding comebacks on the adapters of the adaptation
layer (Figure 4.5(b)). The execution of comebacks yields the adaptation layer that reconstructs the
API of the framework version, with which the old plugin in question was developed, and translates
between the old plugin and the upgraded framework. API changes other than refactorings are
addressed manually (as indicated in Figure 4.5) or using other adaptation technologies (e.g., protocol
adaptation [YS97], as we will discuss in Section 5.2), by inserting the corresponding adaptation code
into adapters of the generated adaptation layer.

When deriving adapters, the versions of the plugin in question and of the framework need not be consecutive:
what is important is the difference between the framework’s API versions expressed in terms of API
refactorings. For example, if the framework API is again refactored and the framework upgraded to version
F3, for the plugin P1 the corresponding adaptation layer AL1 is regenerated using the refactoring history
between F1 and F3 (Figure 4.6). For the plugins developed with the framework version F2, the corresponding
adaptation layer AL2 is derived similarly.
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Figure 4.5: Comeback-based adapter derivation (first framework upgrade). To a set of refactorings (r1–r4)
between two framework versions (F1, F2) correspond comebacks (c1–c4) executed on the adapters of the
adaptation layer AL2. The execution order of comebacks is the inverse of the order of the original API
refactorings in the history. Changes other than refactorings (n1) are adapted manually (transformation m1).
The resulting adaptation layer AL1 reconciles the upgraded framework and the old plugin P1.
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Figure 4.6: Comeback-based adapter derivation (second framework upgrade). Considering the history of the
application-breaking API refactorings (r1–r7) that occurred between the framework versions F1 and F3, the
adaptation layer AL1 translating between the upgraded framework and the old plugin P1 is regenerated by
the execution of the corresponding comebacks (c1–c7).

4.3 Formalizing Refactoring-Based Adapter Derivation

While in the previous section we informally introduced the concepts of a weak refactoring inverses and
a comeback, in this section we formalize these concepts. To ensure the soundness of our adaptation,
we furthermore show that the introduction of adapters does not change the semantics of the upgraded
framework. We conclude with example proofs of weak refactoring inverses and comebacks for two
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commonly used refactorings (RenameClass and MoveMethod), while leaving such proofs for a set of other
common refactorings for Appendix D.

4.3.1 Formalizing Weak Refactoring Inverses

Ever since refactoring has become a core technique of various evolutionary and agile software development
processes, such as Rational Unified Process (RUP) [Kru03] or eXtreme Programming (XP) [BA04], tool
support has been growing continuously. Most of the available tools are interactive: the developer applies
transformations while exploring program sources. Sometimes there is a need to undo a successfully applied
refactoring. Intuitively, to undo a behavior-preserving transformation (a refactoring) means to execute its
inverse transformation (that is then a refactoring, too). However, as Roberts points out [Rob99, p. 56], “[an]
inverse [. . . ] may be difficult to implement as a refactoring.” This stems from the fact that in practice
refactoring preconditions are often formalized, while the actual transformations are not. Thus, the behavior
of the transformations are specified indirectly via the preconditions. Furthermore, on large programs it is
often expensive to evaluate preconditions [Rob99].

However, with regard to the costs of evaluating preconditions, an important consequence of weak refactoring
inverses (that invert only syntactic changes caused by refactorings and disregard other program properties)
is the reduced complexity of proving the inversion property of the transformation. Furthermore, once a
transformation is proved to be a weak inverse of a refactoring, its precondition does not need to be evaluated
at run time.

Definition 5 (Weak Refactoring Inverse)
Given a refactoring R = (preR, transR, postR) that is legal on program P (i.e., P |= preR), a weak inverse
refactoring of R is a refactoring C := (preC, transC, postC), such that postR(P) |= preC and postC(postR(P)) |=
preR. Note that postR(P) is the changed program P after the application of the assertion transformations
specified in postR, while postC(postR(P)) is the changed program P after the application of the assertion
transformations specified in postR and then in postC, respectively.

From Definition 5 follows that to construct a proof of a weak refactoring inverse, one needs to evaluate the
effect of an assertion transformation post. For that, we use the notion of the strongest postcondition. In his
seminal article, Hoare [Hoa69] presents a calculus for proving program correctness using preconditions and
postconditions written as a triple {pre}S{Q}, where S is a program and pre and Q are predicate sets.6 The
calculus expresses the idea that, starting in a state where pre is true, the execution of S will terminate in a
state where Q is true. For deriving sensible values for pre and Q Hoare introduced two other concepts:

Definition 6 (Strongest Postcondition)
Given a Hoare triple {pre}S{Q}, then the following holds:

(∀Q′)(({pre}S
{

Q′
}
)∧ (Q⇒ Q′))⇐⇒ Q is the strongest postcondition.

Definition 7 (Weakest Precondition)
Given a Hoare triple {pre}S{Q}, then the following holds:

(∀pre′)((
{

pre′
}
S{Q})∧ (pre′⇒ pre))⇐⇒ pre is the weakest precondition.

From the definition of the implication and the interpretation of sets of formulæ it is trivial to see, that for
two sets of formulæ A and B the following holds: (A⊇ B) =⇒ (A⇒ B), that is, a superset always implies
a subset. Informally, the strongest postcondition could be seen as the superset of all valid postconditions,
while the weakest precondition as the smallest (sensible, so not empty) subset of all valid preconditions.

The strongest postcondition Q of an assertion transformation post (the latter defined by Definition 3 on
page 106) is then a subset of the program P containing exactly those assertions that were modified by
the post. Using this notation and assuming that a refactoring R and its corresponding weak refactoring
inverse C have been specified using the weakest precondition, Figure 4.7 depicts the relationship between

6We use different identifiers than Hoare to avoid terminology confusion with refactorings and inverses.
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Figure 4.7: Relationship between the preconditions and postconditions of a refactoring R and its weak
inverse C. Both transformations are defined as Hoare triples [Hoa69].

the preconditions and postconditions of the refactoring and its weak inverse. This can also be used for
constructively proving weak refactoring inverses in accordance with Definition 5. The following steps form
the basic outline for our proofs shown in this section and in Appendix D.

Corollary 1 (Proving Weak Refactoring Inverses)
Given a refactoring R = (preR, transR, postR) and a transformation C = (preC, transC, postC), to prove that C
is a weak inverse of R, one needs to prove the following properties of C:

1. C is behavior-preserving, that is, it is a refactoring on its own. This follows immediately from the
definition of a weak refactoring inverse (Definition 5, page 116).

2. The precondition of C is satisfied by a program P after the execution of R, that is, postR(P) |= preC or,
equivalently, QR⇒ preC.

3. After the execution of C, the program satisfies the precondition of R, that is, postC(postR(P)) |= preR
or, equivalently, QC⇒ preR.

As weak refactoring inverses are refactorings by themselves, we extend Roberts’ definition of refactoring
chains (Definition 4 on page 107) accordingly.

Definition 8 (Weak Refactoring Inverse Chain)
Given a refactoring chain R = 〈R1,R2, . . . ,Rn〉 that is legal on program P (i.e., P |= preR), the correspon-
ding weak refactoring inverse chain is C := 〈Cn,Cn−1, . . . ,C1〉, such that for each refactoring Ri in R the
corresponding weak inverse is Ci in C.

For instance, given the chain of the two refactorings 〈RenameClass,AddMethod〉, the corresponding weak
refactoring inverse chain is 〈RemoveMethod,RenameClass〉. However, C is not automatically a weak inverse
transformation of R, because (by the definition of a weak refactoring inverse) we cannot guarantee, that
preceding transformations in the chain do not have side program effects invalidating (i.e., causing to evaluate
to false) the preconditions of subsequent transformations in the chain. We will discuss this limitation in
Section 4.3.4.

4.3.2 Formalizing the Adaptation Layer and Comebacks

Now that we formally defined the concept of a weak refactoring inverse, we can apply it in the context
of creating adapters. Recalling our informal discussion from Section 4.2, in the rest of this chapter by an
adapter we mean an abstract adapter specification that can be used to derive binary adapters.

Definition 9 (Adaptation Layer Creation)
For making explicit the link between adapter names and the names of the corresponding adaptees, we
introduce a new binary predicate IsAdapter:

IsAdapter(class, adapter) True if adapter is the name of the adapter for class.
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It is modified during the first step of adaptation layer creation, when framework classes are renamed (using
a predefined prefix) by the RenameFrameworkClass refactoring to make room for adapters

RenameFrameworkClass(class) := RenameClass(class,prefix+ class),

which extends the RenameClass refactoring (the formal definition of which is provided in Section D.3) with
the additional assertion transformation

IsAdapter′ = IsAdapter[(newClass,class)/true].

The names newClass and class refer to the formal parameters of the RenameClass refactoring and will be
bound to the concrete arguments prefix+ class and class, respectively.

This conceptual renaming is necessary for introducing name spaces to avoid collisions of the names of
API types, plugin types, and adapter types. By renaming, we create two name spaces: (1) the name space
of the refactored framework, and (2) the name space of the reconstructed API types and old plugin types.
In thesis examples (e.g., in code listings of Figure 4.3 and Figure 4.4 presenting the adapters for Node in
Section 4.2.1), as the prefix we use the refactoredAPI. string.7

After the renaming, the second step is executing the CreateAdapter refactoring chain, in which we use
Roberts’ notation of refactoring chains (Definition 4 on page 107):8

CreateAdapter(class,adapter) := 〈
∃s : IsAdapter(Superclass(class),s).AddEmptyClass(adapter,s, /0),
AddInstanceVariable(adapter,“adaptee”,class),
∀m ∈ {m|Method(class,m)↓} .AddAdapterMethod(adapter,m)〉.

The AddAdapterMethod refactoring uses the AddMethod refactoring (the formal definition of which is
provided in Section D.2) to create a method that forwards calls to the adapter’s adaptee, using the instance
variable “adaptee”.

Bringing everything together, the adaptation layer for a program (i.e., the framework API, in our case) is
created using the following refactoring chain:

CreateAdapterLayer(program) := 〈
∀class ∈ program.RenameFrameworkClass(class),
∀(class,adapter) ∈ {(c,a)|IsAdapter(c,a)} .CreateAdapter(class,adapter)〉.

Corollary 2 (Adaptation Layer Properties)
From the above definition of the adaptation layer creation that transforms a program P into an adapted
program A one can deduce the following properties (with interpretations IP and IA having P and A as their
domains of discourse, respectively):

∀class.IP |= IsClass(class) ⇒ IA |= IsClass(class),
∀super,sub.IP |= Superclass(super) = sub ⇒ IA |= Superclass(super) = sub,

∀class,sel.IP |= DefinesSelector(class,sel) ⇒ IA |= DefinesSelector(class,sel),
∀class.IP |= IsClass(class) ⇒ IA |= ClassReferences(class) = /0, and

∀class,sel.IA |= Senders(class,sel) = /0.

7In practice, as we discussed at the end of Section 2.2.4, in Java the prefix can be implemented using a class loader for loading
framework types distinct from the class loader for loading plugin and reconstructed adapter types. As a consequence, no actual
renaming of framework API types is needed.

8Formal definitions of the AddEmptyClass and AddInstanceVariable refactorings are provided in the appendices D.1 and E.1,
respectively.
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In other words, the adaptation layer first renames all API types9 and then recreates the program API by
putting adapters in the place of program classes. The only exception are instance variables, which are
not replicated. In practice, however, all instance variables should be encapsulated by accessor methods
to implement information hiding as proposed by Parnas [Par72]. If we assume that the program under
adaptation is a valid program (i.e., accepted by the compiler of the programming language), then it holds
that it does not contain any references to the newly created adaptation layer, because (1) the adaptation
layer did not exist at compilation time, and (2) the process of creating the adaptation layer does not insert
any references into the program classes. For the same reason, no method in the adaptation layer has any
call sites. As the program API is fully recreated, the following structural derived analysis functions behave
equally on the adaptation layer as they behaved on the API types before the creation of the adaptation layer:
Subclasses, Subclasses∗, Superclass∗, UnderstandsSelector, and MostSpecificSuperclass.

The interpretation of the formulæ variables is different in IP and IA: while a class or method name in IP
references an artifact in the program, in IA the same name points into the adaptation layer. Informally,
IP is like a snapshot of the program before the adaptation layer creation, while IA captures the situation
afterwards.

After having examined the syntactic part of the adaptation layer generation process, we need to show that
adding the adaptation layer is behavior-preserving, that is, the adapter methods forwarding to the actual
program methods do not change the semantics of the latter. Informally, this behavior preservation is implied
by the construction of the adaptation layer: since the definition of CreateAdapterLayer is expressed
solely in terms of refactorings, CreateAdapterLayer is also a refactoring, hence, behavior-preserving.
Formally, we prove behavior preservation using Java denotational semantics [AFL99]. Since our proof
requires presenting a fairly lengthy background on Java denotational semantics, while the proof is not
required in the rest of this chapter, we enclose it in Appendix C.

Now that the derivation of the adaptation layer has been detailed, weak refactoring inverses can be executed
on adapters of the adaptation layer instead of the actual program (i.e., the framework, in our case). This shift
permits us to transform the adaptation layer and leave the actual program untouched.

Definition 10 (Comeback)
Given a program P modified by a refactoring R and an adaptation layer A derived for P, a comeback for R is
a weak refactoring inverse C := (pre, trans, post) that can be executed on A, whenever it can be executed on
P itself:

P |= pre∧A |= pre, where A = postCreateAdapterLayer(P).

4.3.3 Pulling Up Adaptee Fields to Avoid Split States

As discussed in Section 3.3.1 (Figure 3.37 on page 88), to avoid split states in the presence of adapters we
must make sure that a wrapper always uses the same adaptee object. Thereby we ensure that, when the
message forwarding is performed in an adapter method, the self reference is always bound to the same
message receiver (i.e., an adaptee object). Our adopted solution sketched in Section 3.3.1 is to declare
the adaptee field protected and permit adapters to inherit it. Only the top-most adapter in the hierarchy of
reconstructed API classes defines the adaptee field, which is inherited by the adapters down the hierarchy. In
this section, we show how we realized this design decision.

This solution is the final step in adapter generation (i.e., after all corresponding comebacks are executed),
realized by refactorings that pull up adaptee fields in the adapter hierarchy. Namely, the Recursively-
PullUpInstanceVariable refactoring makes recursive use of the PullUpInstanceVariable refactoring
(the formal definition of which is provided in Appendix E.2) to remove redundant adaptee fields from

9Recalling our discussion from Section 3.2, in our adaptation we consider only user-defined API types—types that could be
refactored by framework developers. Library types, such as language types and component types of third parties, are considered to
remain unchanged between API releases. For such types, no adapters are created.
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Figure 4.8: Termination of the iterative application of the RecursivelyPullUpInstanceVariable refac-
toring when creating the adaptation layer. Colored and transparent nodes stand for adapters with and without
an adaptee field, respectively. The straight arrow points to the start node of the current iteration step.

subclasses, so that the one inherited from the base adapter is used instead:

RecursivelyPullUpInstanceVariable(class,varName) := 〈
∀c ∈ {c|c ∈ Subclasses(class)∧ varName ∈ InstanceVariablesDefinedBy(c)} .
RecursivelyPullUpInstanceVariable(c,varName),
∀c ∈ {c|c ∈ Subclasses(class)∧ varName ∈ InstanceVariablesDefinedBy(c)} .
PullUpInstanceVariable({c} ,varName)〉

This refactoring is applied to all adapter classes in the adaptation layer with “adaptee” as an actual value for
varName.

The RecursivelyPullUpInstanceVariable refactoring is head-recursive (i.e., it performs a postorder tra-
versal): it first descends the class hierarchy and pulls up instance variables starting from the leaves of the adap-
ter tree working its way up to the topmost adapter. This is necessary, because PullUpInstanceVariable
is only defined for two directly connected hierarchy levels (i.e., an adapter class and its subclasses). Pulling
up instance variables with the same name from several subclasses to a single superclass works, because
the precondition of the PullUpInstanceVariable refactoring does not check for an existing instance
variable in the superclass, and it uses set union, which will eliminate duplicates. Due to the use of the
MostSpecificSuperclass analysis function, the final type of the adaptee field in the base adapter will be
the most specific supertype of all adaptee fields, so that instances of all subclasses can be assigned to the
adaptee field.

This recursive algorithm terminates for two reasons: First, it is applied to a finite set of adapters, because the
set of program classes is finite (Definition 2 on page 105) and for every program class exactly one adapter is
created. Second, each adapter only has a finite set of subclasses. An exemplary application of the algorithm
is depicted in Figure 4.8, where the iteration starts with adapter B and pulls up the adaptee fields from the
subclasses D and E. The iteration continues with adapter A and the recursion stops at the subclasses B and
C, from which the adaptee fields are pulled up in turn. The following iteration steps over C, D, and E have
no effect, as no recursion can be performed due to the absence of adaptee fields in the subclasses.

The use of the universal quantifications in the definition of RecursivelyPullUpInstanceVariable does
not only serve the obvious purpose of iterating over all classes fulfilling certain properties. In contrast
to the existential quantifier, a universal quantification is successful in case there are no items to quantify,
because the definition of its evaluation under an interpretation includes the empty set. As a consequence,
RecursivelyPullUpInstanceVariable will be successful, even if applied to a single adapter without
subclasses.
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Figure 4.9: No automatic proof for chaining weak refactoring inverses. Whereas for the refactorings R′

and R′′ their automating chaining is possible (the upper part of the grey box), for the corresponding weak
refactoring inverses C′ and C′′ the feasibility of chaining has to be proved manually (the lower part of the
grey box).

4.3.4 Limitation: No Automatic Proof of Chaining Weak Refactoring Inverses

The formalism introduced by Roberts, on which we base the formalization of comebacks, permits chaining
of refactorings (Definition 4 on page 107). Similarly, because they are also refactorings, weak inverses can be
chained (Definition 8 on page 117). For instance, given the chain of the two refactorings RenameClass and
AddMethod, the corresponding weak refactoring inverse chain is 〈RemoveMethod,RenameClass〉. Although
intuitive, this whole chain cannot be automatically proved to be a weak inverse transformation for the chain
of the two refactorings. To automatically prove the chaining, one needs to automatically prove that the
RenameClass refactoring as the last element of the inverse chain can be executed after the RemoveMethod
refactoring.

Unfortunately, there is no way to provide a general proof that is independent from the actual transformations,
because our comeback formalism is built on assertions and subsumption rather than on descriptions of the
actual program transformations. This choice was intended, it simplified reasoning dramatically and allowed
to extensively reuse existing refactoring formalization defined by Opdyke [Opd92] and Roberts [Rob99].
However, the genericity of the definition of weak refactoring inverses permits them to have side effects. As
a consequence, for each given chain of weak refactoring inverses we need to prove manually, whether the
transformations can be executed in the specified sequence so that it qualifies as a chain of weak refactoring
inverses.

Figure 4.9 details this limitation: it shows two refactorings R′ and R′′ executed in a chain together with
their corresponding weak inverses C′ and C′′. The upper part of the grey area in the middle of the figure
is given by Roberts’ definition of refactoring chains (Definition 4, page 107). To prove that C′ can be
executed, which corresponds to the missing |=symbol in the lower half of the grey area, either of the
following two relationships needs to be shown: P′ (the program after the execution of R′) is equivalent to
P′′′ (the program after the execution of C′′), or P′′′ enables the execution of C′. The former approach requires
formal descriptions of both R′′ and C′′ (and not only of their preconditions and postconditions) as program
transformations, and such formal descriptions are not available in the current state of the art on refactoring
formalization using first-order predicate logic. Therefore, we use the latter approach for manually proving
the feasibility of the chain.

4.3.5 Example Proofs of Weak Refactoring Inverses and Comebacks for Rename-
Class and MoveMethod

We conclude this section with the definitions and proofs of weak refactoring inverses and comebacks
for RenameClass and MoveMethod refactorings, which formal definitions we repeat in this section for
convenience. Consistently with the previous presentation, we use Roberts’ notation adopted to reflect the
properties of the Java programming language (as we discussed in Section 4.1.3).
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Notation and Invariants

While the logic connectives ∧, ∨, and ¬ are used in FOPL formulæ, their corresponding boolean functions
∧∗, ∨∗, and ¬∗ are used when interpreting them. They combine and transform the boolean values > and ⊥
obtained by interpreting the different parts of a formula. There are more logic connectives, such as⇒ and
⇔, which can be composed from the three primitive ones.

Interpreting a FOPL formula also requires the specification of a variable mapping, which assigns values
to all unbound variables in the formula. A variable is unbound, if it is neither bound by the existential
quantifier ∃ nor by the universal quantifier ∀. Such a variable mapping for an interpretation I = (D, ·I )
on a domain D is a function Z : V →D, and it is usually specified by enumerating the variables and their
assigned values, as in

Z = {a 7→ x,b 7→ y} .

The ∗ symbol denotes a don’t care condition in both FOPL formulæ and truth value computations, and is
used as a short-hand notation for negligible parts. For example, in the truth value computation (>∨∗ ∗) only
the left part of the computation is important, because it determines the result.

For the sake of readability, in the following transformation definitions we will number the assertions in
preconditions and assertion transformations. This eases referring to them in proofs, as, for example, in
3.3 : IsClass[class/ f alse] [newClass/true] referring to the assertion transformation part numbered 3.3.
These references will be used to indicate the effect of an assertion transformation of an interpretation domain
with regard to a specific assertion as follows: Consider the interpretation I defined over a domain P and
the assertion transformation post that was applied to P yielding P′. Then I ′ defined over P′ can be reduced
to I {3.3:IsClass[class/ f alse][newClass/true]} whenever the predicate of interest is IsClass. In other words, by this
notation we show the difference between I and I ′, where the difference is expressed in terms of certain
assertions transformed by post.

The following invariants formalize the most general relations and always hold for every object-oriented
program. They will be used throughout the proofs in the following sections.

Invariant 1
Only existing classes can be referenced:

∀class.ClassReferences(class) 6= /0 =⇒ IsClass(class).

Invariant 2
A method can only exist within a class:

∃class.∃method.Method(class,method)↓=⇒ IsClass(class).

Invariant 3
Only existing methods can be called:

∃class.∃m.Senders(class,m) 6= /0 =⇒Method(class,m)↓ .

Invariant 4
An instance variable can only exist within a class:

∀class.InstanceVariablesDefinedByClass(class) 6= /0 =⇒ IsClass(class).

Invariant 5
Only classes can have and can be superclasses:

∃super.∃sub.Superclass(sub) = super =⇒ IsClass(sub)∧ IsClass(super).

By definition this implies

∃super.IsClass(super) =⇒∀sub ∈ Subclasses(super) : IsClass(sub).
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In addition to these global invariants, for certain refactorings we define refactoring-specific invariants
extracted from the precondition. The extraction operates on sets of assertions, so assertion equality must be
defined first.

Definition 11 (Assertion Equality)
Two assertions p and q are equal iff they use the same input to the same predicate:

p(x1, . . . ,xm) = q(y1, . . . ,yn)⇔ p = q∧m = n∧∀(x,y) ∈ {(x1,y1), . . . ,(xm,yn)} : x = y.

Definition 12 (Refactoring Invariant)
Given a refactoring R := (pre, trans, post), the refactoring invariant is the subset of the precondition pre
containing only those assertions that are not changed by post, where assertions are compared according to
Definition 11:

inv(R) := pre∩ post(pre).
Corollary 3 (Refactoring Chain Invariant)
Given a refactoring chain R := 〈R1,R2〉 consisting of refactorings R1 := (pre1, trans1, post1) and R2 :=
(pre2, trans2, post2), the refactoring chain invariant can be composed from the refactoring invariants as
follows:

inv(R) := (inv(R1)∪ pre2)∩ post2(inv(R1)∪ pre2).

As a final notation remark, in certain cases we need to indicate that an interpretation I ′ does not deviate
from an interpretation I with respect to a specific assertion due to a (global or refactoring) invariant. In
other words, we need to show that with regard to a certain assertion certain program properties under I and
under I ′ are identical, due to a certain invariant respected in both I and I ′. For that, for the global invariants,
their number will be included as in I {Inv 1}, while refactoring invariants will be referred to only by the string
inv without a number.

RenameClass

The RenameClass refactoring (Section 4.1.4) renames an existing class in the program.
RenameClass(class, newClass)
pre : IsClass(class)∧ (3.1)

¬IsClass(newClass) (3.2)

post : IsClass′ = IsClass[class/ f alse][newClass/true] (3.3)
ClassReferences′ = ∀c 6= class.∀s ∈ {s|(class,s) ∈ ClassReferences(c)} .

ClassReferences[class/↑][newClass/ClassReferences(class)]
[c/ClassReferences(c)\{(class,s)}∪{(newClass,s)}] (3.4)

ReferencesToInstanceVariable′ = ∀(c,v,s) ∈
{(c,v,s)|(class,s) ∈ ReferencesToInstanceVariable(c,v)∧ c 6= class} .
∀lv.∀lr ∈ {lr|(class, lr) ∈ ReferencesToInstanceVariable(class, lv)} .
ReferencesToInstanceVariable[(class, lv)/↑][(newClass, lv)/
ReferencesToInstanceVariable(class, lv)\{(class, lr)}∪{(newClass, lr)}]
[(c,v)/ReferencesToInstanceVariable(c,v)\{(class,s)}∪{(newClass,s)}] (3.5)

Superclass′ = ∀c ∈ Subclasses(class).Superclass[class/↑]
[newClass/Superclass(class)][c/newClass] (3.6)

Method′ = ∀c.∀s.Method[(newClass,s)/Method(class,s)][(class,s)/↑]
[(c,s)/RenameReferences(Method(c,s),class,newClass)] (3.7)

Senders′ = ∀s.Senders[(newClass,s)/Senders(class,s)][(class,s)/↑] (3.8)
InstanceVariablesDefinedBy′ = InstanceVariablesDefinedBy[newClass/

InstanceVariablesDefinedBy(class)][class/↑] (3.9)
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Theorem 1 (InvRenameClass I)
The weak refactoring inverse for the RenameClass refactoring, InvRenameClass, is the RenameClass
refactoring:

InvRenameClass(class,newClass) := RenameClass(newClass,class).

Proof.

1. InvRenameClass is behavior-preserving by definition, because it consists of the single refactoring
RenameClass.

2. postRenameClass(P) |= preInvRenameClass⇔ postRenameClass(P) |= preRenameClass:
Let I ′ be the interpretation gained by applying the RenameClass refactoring to the source code S of
the program P reflected by P′ = postRenameClass(P)

I ′ =
(
transRenameClass(S), ·I

)
,

and let Z be the variable assignment induced by theorem 1

Z = {class 7→ newClass,newClass 7→ class} .

Then preRenameClass evaluates to true under I ′ and Z:

[IsClass(class)]I
′,Z ∧∗¬∗[IsClass(newClass)]I

′,Z

= [IsClass(newClass)]I
′ ∧∗¬∗[IsClass(class)]I

′

= [IsClass(newClass)]I{3.3:IsClass[newClass/true]}∧∗¬∗[IsClass(class)]I{3.3:IsClass[class/ f alse]}

= >∧∗¬∗⊥=>

3. postInvRenameClass(postRenameClass(P)) |= preRenameClass:
Let I ′′ be the interpretation gained by applying the RenameClass refactoring to the source code S′ of
the program P′ reflected by P′′ = postRenameClass(P′)

I ′′ =
(
transRenameClass(S′), ·I

)
,

and let Z′ be the variable assignment induced by theorem 1

Z′ = {class 7→ newClass,newClass 7→ class} .

Then preRenameClass evaluates to true under I ′′ and Z′:

[IsClass(class)]I
′′,Z′ ∧∗¬∗[IsClass(newClass)]I

′′,Z′

= [IsClass(newClass)]I
′′ ∧∗¬∗[IsClass(class)]I

′′

= [IsClass(newClass)]I
′{3.3:IsClass[newClass/true]}∧∗

¬∗[IsClass(class)]I
′{3.3:IsClass[class/ f alse]}

= >∧∗¬∗⊥=>

Theorem 2 (InvRenameClass II)
InvRenameClass can be executed on adapters.

Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
AddEmptyClass refactoring precondition it holds that IP |= a =⇒ IA |= a:

IP |= IsClass(class)
Corollary 2

=⇒ IA |= IsClass(class)

IP |= ¬IsClass(newClass)⇔ IP 6|= IsClass(newClass)
Corollary 2

=⇒
IA 6|= IsClass(newClass)⇔ IA |= ¬IsClass(newClass)
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MoveMethod

The MoveMethod refactoring moves an existing method from one class to another and adjust the method to
its new location. Its general formal definition was introduced in Section 4.1.4.

MoveMethod(class, selector, newClass)

pre : IsClass(class)∧ (3.10)
DefinesSelector(class,selector)∧ (3.11)
¬UnderstandsSelector(Superclass(class),selector)∧ (3.12)
IsClass(newClass)∧ (3.13)
¬UnderstandsSelector(newClass,selector)∧ (3.14)
UnboundVariables(class,selector) = /0 (3.15)

post : Method′ = Method[(newClass,selector)/Method(class,selector)]
[(class,selector)/↑] (3.16)

Senders′ = Senders[(newClass,selector)/Senders(class,selector)]
[(class,selector)/↑] (3.17)

ClassReferences′ = ∀c ∈ {c|IsClass(c)∧ (class,selector) ∈ ClassReferences(c)} .
ClassReferences[c/ClassReferences(c)\
{(class,selector)}∪{(newClass,selector)}] (3.18)

Theorem 3 (InvMoveMethod I)
The weak refactoring inverse for the MoveMethod refactoring, InvMoveMethod, is the MoveMethod refacto-
ring:

InvMoveMethod(class,selector,newClass) :=
MoveMethod(newClass,selector,class).

Proof.

1. InvMoveMethod is behavior-preserving by definition, because it consists of the single refactoring
MoveMethod.

2. postMoveMethod(P) |= preInvMoveMethod⇔ postMoveMethod(P) |= preMoveMethod:
Let I ′ be the interpretation gained by applying the MoveMethod refactoring to the source code S of
the program P reflected by P′ = postMoveMethod(P)

I ′ =
(
transMoveMethod(S), ·I

)
,

and let Z be the variable assignment induced by theorem 3

Z = {class 7→ newClass,selector 7→ selector,newClass 7→ class} .

The refactoring invariant of the MoveMethod refactoring is

inv(MoveMethod) = {IsClass(class)∧
¬UnderstandsSelector(Superclass(class),selector)∧
IsClass(newClass)} .
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Then preMoveMethod evaluates to true under I ′,Z, and the invariant:

[IsClass(class)]I
′,Z ∧∗ [DefinesSelector(class,selector)]I

′,Z∧∗

¬∗[UnderstandsSelector(Superclass(class),selector)]I
′,Z∧∗

[IsClass(newClass)]I
′,Z ∧∗¬∗[UnderstandsSelector(newClass,selector)]I

′,Z∧∗

[UnboundVariables(class,selector)]I
′,Z = /0

= [IsClass(newClass)]I
′ ∧∗ [DefinesSelector(newClass,selector)]I

′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′∧∗

[IsClass(class)]I
′ ∧∗¬∗[UnderstandsSelector(class,selector)]I

′∧∗

[UnboundVariables(newClass,selector)]I
′
= /0

= [IsClass(newClass)]I
′ ∧∗ [DefinesSelector(newClass,selector)]I

′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′∧∗

[IsClass(class)]I
′ ∧∗¬∗[UnderstandsSelector(Superclass(class),selector)]I

′∧∗

¬∗[DefinesSelector(class,selector)]I
′ ∧∗ [UnboundVariables(newClass,selector)]I

′
= /0

= [IsClass(newClass)]I{Inv}∧∗

[Method(newClass,selector)]I{3.16:Method[(newClass,selector)/Method(class,selector)]} ↓∧∗

>∧∗ [IsClass(class)]I{Inv}∧∗¬∗[UnderstandsSelector(Superclass(class),selector)]I{Inv}∧∗

[Method(class,selector)]I{3.16:Method[(class,selector)/↑]} ↑∧∗>
= >∧∗>∧∗>∧∗>∧∗>∧∗>∧∗>=>

The last truth value for the UnboundVariables function can be deduced from the fact that the abstract
syntax tree of the moved method is not changed and so no references to non-local variables are
introduced.

3. postInvMoveMethod(postMoveMethod(P)) |= preMoveMethod:
Let I ′′ be the interpretation gained by applying the MoveMethod refactoring to the source code S′ of
the program P′ reflected by P′′ = postMoveMethod(P′)

I ′′ =
(
transMoveMethod(S′), ·I

)
,

and let Z′ be the variable assignment induced by theorem 3

Z′ = {class 7→ newClass,selector 7→ selector,newClass 7→ class} .

Then preMoveMethod evaluates to true under I ′′,Z′, and the invariant:

[IsClass(class)]I
′′,Z′ ∧∗ [DefinesSelector(class,selector)]I

′′,Z′∧∗

¬∗[UnderstandsSelector(Superclass(class),selector)]I
′′,Z∧∗

[IsClass(newClass)]I
′′,Z′ ∧∗¬∗[UnderstandsSelector(newClass,selector)]I

′′,Z′∧∗

[UnboundVariables(class,selector)]I
′′,Z′ = /0

= [IsClass(newClass)]I
′′ ∧∗ [DefinesSelector(newClass,selector)]I

′′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′′∧∗

[IsClass(class)]I
′′ ∧∗¬∗[UnderstandsSelector(class,selector)]I

′′∧∗

[UnboundVariables(newClass,selector)]I
′′
= /0
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= [IsClass(newClass)]I
′′ ∧∗ [DefinesSelector(newClass,selector)]I

′′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′′∧∗

[IsClass(class)]I
′′ ∧∗¬∗[UnderstandsSelector(Superclass(class),selector)]I

′′∧∗

¬∗[DefinesSelector(class,selector)]I
′′ ∧∗ [UnboundVariables(newClass,selector)]I

′′
= /0

= [IsClass(newClass)]I
′{Inv}∧∗

[Method(newClass,selector)]I
′{3.16:Method[(newClass,selector)/Method(class,selector)]} ↓∧∗

>∧∗ [IsClass(class)]I
′{Inv}∧∗

¬∗[UnderstandsSelector(Superclass(class),selector)]I
′{Inv}∧∗

[Method(class,selector)]I
′{3.16:Method[(class,selector)/↑]} ↑∧∗>

= >∧∗>∧∗>∧∗>∧∗>∧∗>∧∗>=>

Again, the last truth value is implied by not changing the method’s abstract syntax tree when moving
it to the new class.

Theorem 4 (InvMoveMethod II)
InvMoveMethod can be executed on adapters.

Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
MoveMethod refactoring precondition it holds that IP |= a =⇒ IA |= a:

IP |= IsClass(class)
Corollary 2

=⇒ IA |= IsClass(class)

IP |= DefinesSelector(class,selector)
Corollary 2

=⇒ IA |= DefinesSelector(class,selector)

IP |= ¬UnderstandsSelector(Superclass(class),selector)
Corollary 2

=⇒
IA |= ¬UnderstandsSelector(Superclass(class),selector)

IP |= IsClass(newClass)
Corollary 2

=⇒ IA |= IsClass(newClass)

IP |= ¬UnderstandsSelector(newClass,selector)
Corollary 2

=⇒
IA |= ¬UnderstandsSelector(newClass,selector)

IP |= UnboundVariables(class,selector) = /0
Corollary 2

=⇒
IA |= UnboundVariables(class,selector) = /0

The last implication only holds true, if access to the adaptee field in adapters is encapsulated, i.e., performed
via a method call. If it were accessed directly, the adaptee field would be in the set of unbound variables of
the adapter method.

4.4 Summary

In this chapter, we argue for a need of rigorously defining adaptation actions that compensate for application-
breaking API refactorings. There are at least two immediate benefits of such rigorous definition. First,
it fosters better understanding of how to define compensating actions and reasoning about the intended
meaning of these actions. Second, arguably even more important, it helps to automate the adaptation and
avoid hand-coded, platform-specific implementations, which are tedious and error-prone to provide.
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Our definitions of weak refactoring inverses and comebacks are an important step towards a systematic
adaptation of evolutionary, yet application-breaking, API refactorings. The weakness of the definition of a
weak refactoring inverse is in fact its main power: by focusing only on certain (syntactic) program properties
important for proper adaptation, for a given application-breaking API refactoring we can define its syntactic
undo, while avoiding the complexity of reasoning about other program properties possibly affected by the
refactoring. In our case, some of these inverses—comebacks—are executable on adapters, and can be used
to systematically and automatically derive the latter. Because we stay at a formal and platform-independent
level in our adaptation definitions, our formal technology can be realized in a large number of platforms and
implementation languages.

It is important to emphasize, that we do not deliver proof support for all comebacks supported in our
logic-based adaptation tool ComeBack! (discussed in detail in Chapter 5). While for the comebacks formally
proven in Section 4.3.5 and Appendix D we translate their definitions to the tool’s input format (i.e, Prolog
rules), for other compensated API refactorings we implement the corresponding comebacks directly in the
tool. To provide proof support for refactorings applied to such language features as interfaces, attributes, or
generic types, would require formalizing the refactorings of those features first. We consider this extension
a future work, which is out of the scope of this thesis. Instead, addressing a number of refactorings of
important language features ubiquitous in object-oriented programming languages, we believe to pave a way
to consistently constructing refactoring-based adaptation for a large number of languages. Our definitions
should be seen as a guideline for developers on how to systematically define a formal refactoring-based
adaptation for a given object-oriented programming language. Concrete implementations of the technology
will need to add support for features specific to their target programming language.

Currently, for each considered API refactoring we define and prove its weak refactoring inverse and comeback
manually. As a future, fairly ambitious work we envisage automatically deriving such specifications. Given
a refactoring specification as a set of preconditions and assertion transformations, a deductive engine could
derive the assertions of the precondition of the corresponding weak refactoring inverse, as well as the
assertions transformed by the assertion transformation of that inverse. Moreover, the deductive engine
could also consider the execution context of the inverse (e.g., adapters) to derive the specification of a
weak refactoring inverse executable in the given adaptation context (e.g., a comeback specification), if such
specification may be defined.

An important limitation of our work—no automatic chaining of weak refactoring inverses—can be solved
by providing more rigor in the descriptions of refactorings as program transformations. Instead of reasoning
about refactorings in terms of preconditions and assertion transformations, one could use a formalism, such
as graph rewriting [HJE06, EJ04, Eet07] or term rewriting [Bat07], to explicitly specify the refactoring
transformations and, hence, their inverses. In this case, it would be possible to formally prove the absence of
undesirable side effects of refactoring inverses, enabling automatic chaining of inverses. The feasibility of
this future work depends directly on the progress in the area of refactoring formalization.
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“Evolution of software components is a complex and large topic. No single tool could
handle all its aspects.”

–Danny Dig
Automated Upgrading of Component-Based Applications [Dig07, p. 133] 5

Realizing, Evaluating, and Empowering a
Refactoring-Based Adaptation Technology

In the previous two chapters, we denote precisely the design of the adapters compensating for application-
breaking API refactorings, exhaustive API adaptation, and formal refactoring-based adapter derivation. In
practice, we should find a straightforward way to realize these adaptation decisions in a tool, which uses the
information about API refactorings to provide binary backward compatibility of the upgraded framework
and old plugins. In particular, the tool should be able to create binary adapters according to the Black-Box
Class and Interface Adapter patterns, and the White-Box Class and Interface Adapter patterns. In addition,
the tool should support all adaptation decisions of exhaustive API adaptation, such as the adapter cache
and dynamic adapter creation. At the same time, there should be no conceptual gap between our formal
definition of rigorous adapter derivation and its realization in the tool for automatically creating binary
adapters.

A practical tool should also provide transparent framework upgrade, in the sense that the refactored
framework should be deployed and combined with existing plugins without additional interventions required
from application developers. For our tool, furthermore, we want to estimate, to which extent it can
support adaptation of application-breaking API refactorings discovered by other researches [DJ05] and us
(Section 2.2.3). In addition, we should evaluate the performance overhead implied by adapters. Finally,
since a single tool cannot cope with all aspects of component evolution [Dig07], we want also to assess
the feasibility of combining refactoring-based adaptation with adaptation technologies compensating for
application-breaking API changes other than refactorings.

This chapter brings the following thesis contribution:

C7: Practical tool for refactoring-based API adaptation. We discuss the development and evaluation of
our logic-based tool ComeBack! that generates Java binary adapters using a history of API refactorings
and a library of comebacks. We decided for Prolog [DCED96], mainly because the first-order logic
definitions of adapters as abstract specifications and comebacks as specification transformations could
be straightforwardly translated into Prolog facts and rules. Internally, adapter specifications are
represented by a set of Prolog facts, while comebacks are implemented as Prolog rules, which operate
on and modify facts about adapters. The facts transformed by comebacks are then serialized into
executable binary adapters.

Our adaptation is transparent for existing applications, because the adaptation layers are generated at
the framework site and are deployed (as separate adapter components) together with the refactored
framework. To avoid name collisions of refactored API types and existing plugin types we separate
name spaces of existing plugins and the upgraded framework using (in Java) separate class loaders.
This name separation also permits us to support plugins’ side-by-side execution [Ang02]: within the
same application, adapted plugins of different versions may coexist and simultaneously use, together
with newly developed plugins, the latest framework version.

We did not explicitly design a library of comebacks right from the start of ComeBack! development.
Instead, we evolved the library during our case study (reported in Chapter 2) to compensate for
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discovered application-breaking API refactorings. In addition, we extended the library to compensate
for application-breaking API refactorings reported by Dig and Johnson [DJ05]. As a consequence, the
functionality of ComeBack! permits us to adapt all application-breaking API refactorings detected in our
case study and most of such refactorings reported by Dig and Johnson [DJ05] (except for refactorings
of instance variables declared as public in APIs). Using the information about the application-breaking
API refactorings obtained in our case study, we adapted two selected applications. In addition, we
provided adapters for all application-breaking API refactorings used in RefactoringLAN (Appendix A).
Our performance tests of the adapted applications show that, comparing to the execution time of
original applications, in the worst case the performance overhead in adapted applications reached 6.5%,
while in the best case the overhead was about 1%. In general, we consider performance pentalties
implied by our adapters acceptable in a large number of adaptation scenarios.

ComeBack! is designed to be independent from a particular Integrated Development Environment
(IDE) and can be combined with other adaptation tools and technologies. Its declarativeness, intrinsic
to a logic-based implementation, allows us to combine the tool with the Eclipse refactoring log to reuse
the refactoring history automatically recorded in Eclipse. In addition, ComeBack! is flexible enough to
allow the combination of refactoring-based adaptation with other adaptation approaches. In particular,
we estimated the feasibility of combining ComeBack! with protocol adaptation [YS97]—adaptation of
improper message exchange among functionally compatible components. Integrating such adaptation
in ComeBack! alleviates the task of writing and maintaining adaptation specifications used for adapting
API changes other than refactorings.

The rest of the chapter is organized as follows: Section 5.1 presents the general architecture of ComeBack!
and its implementation modules (Section 5.1.1), followed by the description of class loading implemented
to separate framework and plugin name spaces, and to support side-by-side plugin execution (Section 5.1.2).
Thereafter, the section reports on the current tool functionality and the performance of applications adapted
by ComeBack! (Section 5.1.3). Section 5.2 discusses how ComeBack! can be empowered to cope with
protocol adaptation by introducing the notions of protocol adapters and the required adaptation specifications
(Section 5.2.1), showing the problems in maintaining adaptation specifications in the presence of API
refactorings (Section 5.2.2), and solving these problems by using comeback-based adaptation (Section 5.2.3).
Section 5.3 concludes the chapter.

5.1 ComeBack!: a Generative Tool for Refactoring-Based Adapta-
tion

Because we aimed for developing a program that synthesizes other programs (i.e., adapters), it was natural
to use generative techniques [CE00] to develop ComeBack!.

5.1.1 General Architecture and Implementation Modules

Figure 5.1 shows the general architecture of ComeBack! and the data flow among internal and external
modules as performed during the adaptation. For a number of common refactorings we provide a comeback
library consisting of the corresponding comeback transformations specified as Prolog rules. Given the
latest framework binaries, the information about the API types (type and method names, method signatures,
inheritance relations) is parsed into a Prolog fact base. After examining the history of framework refactorings,
the corresponding comebacks are loaded into the engine and executed on the fact base. Once all comebacks
have been executed, the fact base contains the information necessary for generating adapters. More precisely,
the fact base describes the adapters as abstract adapter specifications (as we discussed in Section 4.2.1) and
can be used to create the corresponding binary adapters. That is, in ComeBack! we extract and transform
the information about the program and not the program itself; the generation of executable adapters using
this information is then the final step in adapter derivation.
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Figure 5.1: General architecture of ComeBack!. Grey boxes denote the input and output modules used by
the Prolog engine, while dashed boxes denote the input and output modules external to the tool.

Although by sticking to the refactoring engine of one of the open-source development environments we
could have partially reused its features (e.g., a parser), we would have been bound to the particularities of
the engine’s implementation. Since we envisage extending our technology to support languages other than
Java (e.g., .NET), for which no open-source refactoring engines may exist, we decided to stay independent
from such implementation particularities.

Figure 5.2 provides details on the internal implementation modules of ComeBack! and relates them to
the process of creating adapters statically (i.e., before upgrading the framework) and dynamically (i.e., at
application execution time), as we discussed in Section 3.2. In the top part of the figure (reading from
left to write), the API binaries are parsed by a Java-to-Prolog parser, obtained facts are transformed by
the corresponding comebacks, and the resulting adapter facts are serialized to the Java binary adapters by
the tool’s adapter generator (using the ASM code generation library [ASM]). The adapter generator packs
all adapters and the adapter cache of the static adaptation layer into an adapter component to be deployed
together with the refactored framework. In addition, the adapter generator serializes itself as a part of the
adapter component; as a consequence, we can reuse the very same adapter generation logic for dynamically
creating adapters whenever needed (bottom right part of Figure 5.2).

Since Prolog declarativeness permits us to abstract from irrelevant syntactical issues in the comeback
implementations, the Java-specific details of program transformations are not included in the comeback
implementations, and are addressed when emitting binary adapters. Listing 5.1 shows the comeback for
the MoveMethod refactoring as implemented in ComeBack!. (The formal definitions of the MoveMethod
refactoring and its comeback can be found in Section 4.3.5.) For convenience, we implemented the
MoveMethod refactoring as a Prolog rule (lines 7–11 of Listing 5.1) and then reused its implementation to
implement the corresponding comeback CbMoveMethod (lines 16–17).

We are able to combine ComeBack! with tools for acquiring and storing refactoring information. The latter
is important in addressing the main prerequisite of our approach—the availability of the totally ordered
API refactoring history. For Java, such history comes “for free” in the Eclipse and JBuilder IDEs, in which
refactorings applied via the IDE facilities are automatically recorded in a refactoring log. For instance, the
Eclipse environment provides a set of refactorings that, when applied, are automatically registered in a
refactoring log as textual descriptors of the applied changes. We developed a query facility that reads in and
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Figure 5.2: Internal ComeBack! modules related to static and dynamic adapter creation. The arrows in the
top part of the figure shows the input to and output from the modules of ComeBack!. Above each module its
implementation details (file or package names) are provided. Since the adapter generator is bundled together
with the statically created adapters and the adapter cache, it can be reused for dynamically creating adapters
at application execution time (shown as black extensions to the adapter set and adapter cache in the bottom
right part of the figure).

Listing 5.1: The MoveMethod refactoring and its comeback as Prolog rules
1 %
2 % Moves t h e method S e l e c t o r w i t h t h e g i v e n Parame te rs f rom C lass t o NewClass
3 % and upda tes e x i s t i n g Senders .
4 %
5 % AST and E x c e p t i o n s a re pa rsed method i m p l e m e n t a t i o n and e x c e p t i o n s , r e s p e c t i v e l y
6 %
7 moveMethod ( C las s , S e l e c t o r , P a r a m e t e r s , NewClass ) :
8 r e t r a c t ( method ( Class , S e l e c t o r , AST , P a r a m e t e r s , E x c e p t i o n s ) ) ,
9 r e t r a c t ( s e n d e r s ( C lass , S e l e c t o r , P a r a m e t e r s , S e n d e r s ) ) ,

10 a s s e r t a ( method ( NewClass , S e l e c t o r , AST , P a r a m e t e r s , E x c e p t i o n s ) ) ,
11 a s s e r t a ( s e n d e r s ( NewClass , S e l e c t o r , P a r a m e t e r s , S e n d e r s ) ) .
12

13 %
14 % The comeback f o r MoveMethod moves t h e method back t o i t s o r i g i n a t i n g c l a s s
15 %
16 cbMoveMethod ( C las s , S e l e c t o r , P a r a m e t e r s , NewClass ) :
17 moveMethod ( NewClass , S e l e c t o r , P a r a m e t e r s , C l a s s ) .

serializes the Eclipse log into a set of corresponding Prolog facts to be reused in ComeBack!. According
to these facts, the corresponding comebacks of the comeback library are selected and instantiated by the
Prolog engine. In case of framework branching, the total order of the refactoring trace can be achieved by
merging separately recorded refactorings [DMJN07].1

1We did not investigate applying our technology in the presence of branching.
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5.1.2 Assembling Refactored Framework and Existing Plugins

As we have shown in Figure 5.2, once the binary adapters of the static adaptation layer are generated, they
are packed (together with the adapter cache and adapter generator) into an adapter component to be deployed
together with the refactored framework. From the point of view of the plugin, the framework upgrade is
replacing one component by another component with the same name: an old version of either the framework
itself or a previously deployed adapter component is replaced with the newest adapter component that uses
the latest framework version. In this regard, an important characteristic of our technology is that it does
not suffer from the so-called DLL Hell—a set of problems that may appear when a component used by
multiple applications is replaced with another version [ESJ02]. Existing applications may stop working if
the two component versions are not binary compatible (upgrade problem) or if the replacing version is older
than the initial one (downgrade problem). In our case, the former problem is eliminated by the comeback
definition and construction of binary-compatible adapters, and the latter by making adapters always use the
latest framework version.

However, with regard to the safe deployment of the refactored framework, we still need to instruct the JVM
about how to assemble the refactored framework and existing plugins via adapter components. In particular,
we should address the following two issues:

• Name collisions of the reconstructed API and the refactored API. Since in exhaustive API adaptation
the static adaptation layer completely reconstructs the API as expected by the old plugin, the names of
the reconstructed API types and the refactored API types are the same (except for renamed API types).
At run time, we should be able to differentiate between the types of the two APIs and selectively load
a refactored API type or a reconstructed API type, depending on the calling site (i.e., the plugin or the
framework).

• The Type Capture problem. As we discussed in Section 2.2.3, newly introduced or renamed framework
types may accidentally have the same fully qualified names as old plugin types. In case a type defined
at one site (i.e., the framework or the plugin) has already been loaded, while a type with the same
fully qualified named defined at the other site is expected, the JVM would attempt to use the loaded
type, possibly leading to application malfunction (Type Capture, Figure 2.11 on page 34). At run time,
we should be able to load the type as expected by the caller, even if some other type with the same
fully qualified name has already been loaded during the preceding application execution.

Addressing the two issues, we separate the name spaces of the framework and the plugin so that even if two
types have the same fully qualified names, they are distinguished by the language execution environment.
In Java, our solution is based on generating custom class loaders and uses the fact that, since classes are
identified in the JVM by their names and the class loader that loaded them, classes with the same names
loaded by separate class loaders can be distinguished effectively. Therefore, framework and plugin name
spaces can be effectively separated by using separate class loaders to load the types of the old plugin and the
refactored framework.

Technically, for the upgraded framework and an old plugin, we need two class loaders: a framework class
loader to load framework types, and a plugin class loader to load plugin types. In addition, we need to load
adapter types (classes and interfaces of the static adaptation layer), which also belong to one of the two
name spaces. More exactly, the framework class loader is responsible for loading framework types and their
adapter subtypes, while the plugin class loader is responsible for loading plugin types and all other adapter
types:

• Certain adapter types of the static adaptation layer are subtypes of the refactored API types; therefore,
these adapter types belong to the name space of the upgraded framework. Namely, such types are
the classes realizing Covert Plugin Adapter of the White-Box Class Adapter pattern (Figure 3.7 on
page 51) and Covert Plugin Adapter of the White-Box Interface Adapter pattern (Figure 3.10 on
page 57).
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• All other adapter types of the static adaptation layer belong to the plugin name space. Namely, such
types are all reconstructed API types of the black-box and white-box adaptation patterns, and the
classes realizing Covert Framework Adapter of the Black-Box Interface Adapter pattern (Figure 3.5
on page 47).

As a consequence of using these two class loaders, at run time we create two different name spaces: the
name space of framework types and the name space of plugin types. Adapter types are present in both name
spaces, but because they are named as expected by the plugin (in case of reconstructed API types) or their
names are obfuscated (in case of covert adapter classes), adapter types cannot introduce any name collisions.

The particular implementation of the separate class loading depends on the launching site: either the plugin
or the framework starting the application (in other words, defining the main() method). At the launching
site, we assume the Java (default) system class loader,2 while at the other site we use a custom class loader
automatically created at adapter generation time to load types reflectively.3

Plugin Launching the Application

In this scenario, the plugin contains the code to launch the application and provides the value of the
CLASSPATH environment, referring to the framework’s JAR file. While upgrading the framework, we
replace the old framework JAR file by the generated adapter JAR file, so that the plugin’s class path does
not need to be adjusted. At the same time, the JAR file of the upgraded framework is placed in some
other directory (in our case, named according to the framework’s version). Since the adapter component
is named exactly as the framework, while its adapters reconstruct the API expected by the old plugin, the
fully qualified names of the expected framework types and the reconstructed types of the adapter component
are identical. Therefore, although the (old) framework type names are embedded in the plugin binaries, the
dynamic linking mechanism of Java will locate the corresponding adapter types required from the plugin.
As a consequence, after the framework upgrade the plugin will load adapter types whenever it was loading
API types before the upgrade.

The adapters being loaded by the plugin are equipped, in turn, with a custom framework class loader used
whenever a framework type (or an adapter type subtyping a framework type), which should be used as an
adaptee, is to be loaded. In such cases, we effectively switch from the system class loader used for loading
plugin types to the custom framework class loader. In all other cases (when a plugin type is loaded from the
plugin, or a framework type is loaded from the framework), the type is loaded by the corresponding class
loader (the system class loader or the framework class loader, respectively).

Framework Launching the Application

In many big frameworks, such as Eclipse [Ecl] and NetBeans [Net], the framework is usually responsible
for launching its applications. In such cases, the plugin’s JAR file is deployed in a prescribed directory,
while the framework provides a dedicated plugin class loader to fetch plugin types from the provided JAR
file. The actual loading of plugin types may occur at the system startup or later on demand.

In contrast to the plugin launching the application, in this scenario the name spaces of the framework and
plugin are already separated: framework types are loaded by the framework class loader (e.g., the system
class loader assumed in our discussion), while plugin types are loaded by the plugin class loader. However,
after the framework upgrade the old plugin class loader is not aware of the introduced adapters of the plugin’s
adapter component. What we need is to make the plugin work with adapter types instead of framework types
(as before the framework upgrade). Therefore, we generate a new plugin class loader that makes plugin
types access adapters of the plugin’s adapter component, instead of framework types. The old plugin class
loader is then replaced by the generated plugin class loader.

2The following discussion also applies to the cases, when the launching site uses a custom class loader. In our discussion, we omit
such cases for simplicity.

3In contrast to Java, in .NET such solution can be based on installing shared components in the global assembly cache (GAC) and
does not require using reflection.

134



F3

P3P1 P2

AL2

version 1 version 2 version 3 API 
evolution

AL1

Application

Figure 5.3: Side-by-side plugin execution. Within the same application, plugins of different versions execute
simultaneously with the upgraded framework. Adapter components containing the adaptation layers AL1
and AL2 are named as the upgraded framework of version F3.

Supporting Side-by-Side Plugin Execution. In case an application evolves together with the framework
and consists of plugins of different versions, we support plugins of different versions of the same application
to simultaneously use the upgraded framework, either directly (for newly created plugins) or through
the corresponding adapter components (for plugins of old versions). To achieve this, because all adapter
components and the framework have the same name (say, F) differing only in version numbers, we must
support side-by-side execution [Ang02]—when multiple versions of F are deployed, any existing component
has to find its “right” version of F (Figure 5.3).

To achieve side-by-side execution of plugins with the upgraded framework, the run-time system must
differentiate among versions of F (i.e., the upgraded framework and adapter components).

• Plugins have to use their corresponding adapter components. In our solution, each provided plugin
class loader uses exactly the adapter component, which corresponds to the particular plugin version.

• Adapter components have to use the latest version of F (i.e., the framework itself). In our solution,
each adapter component gets the framework class loader used to load types of the upgraded framework
(e.g., the system class loader) and uses this class loader whenever a framework type needs to be
loaded.

In effect, even in presence of multiple plugins developed against different framework versions and used
within the same application, the framework upgrade is completely transparent. Moreover, new plugins can
be developed with the upgraded framework and integrated into the application.

5.1.3 Evaluation of ComeBack! Functionality and Adapters’ Performance Ove-
rhead

We evolved the functionality of ComeBack! during our case study. Two applications adapted using the
results of the case study as well as the adapted API types of RefactoringLAN were used to compare the
performance of the original and the adapted applications.

Functionality

Table 5.1 lists the functionality of ComeBack! at the time of writing. In the table, we group supported
refactorings according to our discussion of adaptable API refactorings from Section 3.3.4. For the refacto-
rings requiring additional input from developers, such as RemoveMethod, we provide default (e.g., empty)
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Group Refactorings

Affecting API method signatures and locations

RenameMethod
AddParameter RemoveParameter
PushDownMethod MoveMethod
ReplaceDataValueWithObject

Affecting API type names and locations
RenamePackage MovePackage

RenameClass MoveClass
RenameInterface MoveInterface

Adding API types and methods

AddEmptyClass AddInterface
AddException

AddMethod ExtractMethod
AddEncapsulatedField

Removing API types and methods

RemoveEmptyClass RemoveInterface
RemoveException

RemoveMethod InlineMethod
RemoveEncapsulatedField

Composite API refactorings
AddClass RemoveClass

ExtractClass InlineClass
ExtractSubclass ExtractInterface

Table 5.1: Application-breaking API refactorings adapted in ComeBack!. The adaptation of the composite
API refactorings (the last group in the table) is achieved via adapting their constituents—refactorings of the
first four groups in the table.

implementations, which can be changed on demand for a particular application of the refactoring. Moreover,
for InlineMethod we assume that the inlined method was not used as a (non-abstract) hook method in
the old API (as discussed for the comeback of this refactoring in Appendix D.6, page 190). The current
comeback library can adapt all refactorings discovered by Dig and Johnson [DJ05] (reported in detail in
Dig’s dissertation [Dig07, p. 21]), except for refactorings moving and renaming public API fields.4 It also
can adapt all refactorings discovered in our case study, because all API variables of JHotDraw and SalesPoint
are encapsulated.

Efficiency

Concerned about the performance penalties inevitable when using adapters, we implementing a number
of static and run-time optimizations discussed in Section 3.3.3. To test the performance of the adapted
applications, by considering the application-breaking API refactorings discovered in our critical case study
of API evolution (Section 2.1) we created adapters for the most advanced sample application of JHotDraw
and one of the student applications of SalesPoint. Complementary to the adapters created in the case study,
we also created and tested adapters for the examples of application-breaking API refactorings used in our
RefactoringLAN (Appendix A).

In more detail, for the two chosen applications of JHotDraw and SalesPoint, we specified the corresponding
comebacks for all encountered application-breaking API refactorings. Moreover, to obtain executable
applications we had to adapt discovered application-breaking API changes other than refactorings, and we
could not manually insert the corresponding adaptation code directly into binary adapters. However, since
after our application-based change discovery we knew exactly how the adaptation code for all such changes
should look like, we used this knowledge to adapt changes beyond refactorings using ComeBack!. To begin
with, we executed all comebacks and obtained the adapter fact base. Then, we manually augmented it with

4Since we are consistent with the terminology of Roberts [Rob99], most refactorings in Table 5.1 do not exactly correspond to
the refactorings described by Dig and Johnson [DJ05], who used a different terminology for describing application-breaking API
refactorings. However, while supporting refactorings of Table 5.1, in effect we also can compensate for most refactorings reported by
Dig and Johnson [DJ05].
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additional facts describing how to compensate for remaining changes. For example, the FigureEnumerator
of JHotDraw 6.0 was wrapped into an implementation of the standard Enumerator used in JHotDraw 5.2.
Thereafter, we generated executable binary adapters.

We conducted the performance testing under the Win Vista 32 bit, using the CPU Athlon Turion TL60 (2
core with 2 GHz each, 64 bit) and 2 GB RAM. For the adapters generated in the JHotDraw case study, the
overhead reached 6.5%, mostly because of collection types commonly present in API method signatures.
At the same time, the SalesPoint adapters implied less than 4.5% of overhead. Finally, the performance
penalties implied by the adapters of RefactoringLAN were only 1%, because no collection types and only a
few user-defined types are present in the signatures of its API methods.

Since we use the very same code generation logic and implementation to create adapters statically and
dynamically, creating an adapter statically or dynamically takes almost identical time.5 As a consequence,
assuming the ratio of all dynamically created adapters to the statically created adapters as X%, and,
furthermore, assuming the same average type size of adapters created dynamically and statically (which
impacts the time of code generation), creating adapters dynamically will take X% of the time required to
generate the static adaptation layer. For the both applications adapted in our case study as well as for the
refactored types of RefactoringLAN the generation of their static adaptation layers took less than 2 seconds
(for RefactoringLAN, less than 1 second). Therefore, we considered the overhead implied by generating
adapters dynamically negligible.

In general, it is impossible to precisely anticipate the performance overhead for a particular adapted
framework-based application. Even if one would attempt to anticipate, using static code analysis, the
dependency between the ratio of user-defined and collection types in the framework API and the performance
overhead implied, the actual run-time overhead may vary considerably. Since usually only a subset of
API types is reused in plugins, while the latter are usually not available for analysis, one cannot anticipate
exactly which API types are reused and how. With regard to the collection types, their actual number of
elements at run time is usually unknown and cannot be anticipated statically. In addition, considering other
implementation platforms (e.g., .NET) one could implement certain adaptation actions more efficiently. For
example, in .NET there is no need to use reflection for loading classes from separate name spaces, as it is
required in Java. Moreover, it is impossible to anticipate neither the number of adapter types to be created
dynamically nor their size, the latter having a direct impact on the speed of dynamic adapter creation. All in
all, the performance overhead implied by adapters should be tested for each particular adaptation scenario,
while the developers should decide, whether the estimated performance penalties are acceptable for the
particular application in question.

5.2 Combining ComeBack! with Protocol Adaptation

Although in general the refactoring-based adaptation is capable of adapting more than 80% of application-
breaking API changes, its restriction to pure structural changes also entails its limitations. API changes other
than refactorings may require either manual or specification-based adaptation. For example, by introducing
and removing API methods, or changing the order of calling certain API methods, framework developers
may change the way the framework and its plugins should interact via message exchange (i.e., a sequence
of method calls). If existing applications are not aware of such changes, the latter may lead to protocol
mismatches characterized by improper message exchange among interacting components of an applica-
tion [BBG+04], in this case between classes of the upgraded framework and old plugins. In component
adaptation, to bridge protocol mismatches developers have to specify adaptation specifications—formal des-
criptions of messages that components may send and receive, as well as the valid message exchange. Basing
on these adaptation specifications, protocol adapters, which support proper intercomponent communication,
can be generated semi-automatically (e.g., [YS97, SR02a, CPS06, IT03, BCP06]).

5The only difference is the time required to collect metadata about the adapter to be created dynamically, as we discussed for
Listing 3.4 on page 81. Since collecting this information uses the cached data in the adapter cache, it is highly efficient and imposes no
noticeable performance overhead at run time.
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However, once such specifications are provided, component evolution unavoidably demands their mainte-
nance, because evolutionary API changes may alter component parts on which existing specifications rely,
rendering the latter invalid. For instance, if a component type referred to in a specification is renamed by a
component change at some later point in time, the specification is no longer valid, unless it is updated as
well to reflect the renaming. In such cases, specifications must be updated along with the changes of the
involved components, which raises the complexity and costs of adaptation.

Extending our refactoring-based approach, we want to maximally ease the task of adapting remaining
application-breaking API changes not compensated for by refactoring-based adaptation. In particular, for
protocol changes the corresponding adaptation specifications must be undemanding to write and should
not require maintenance throughout subsequent framework API evolution via refactorings. We show how
ComeBack! can be empowered to help framework developers writing adaptation specifications that are:

• in-time: specified at the actual time of framework change. It is inherently easier to specify the
adaptation of small incremental API changes upon their application than to write large specifications
involving complex implementation dependencies as one big step before upgrading the framework.

• durable: valid at the time of executing the specifications regardless of any API refactoring applied
after the specifications were written. This eliminates the need to maintain adaptation specifications.

Given adaptation specifications, we use the information about subsequent API refactorings to perform our
refactoring-based adaptation, which, besides compensating for application-breaking API refactorings, also
shields the adaptation specifications from those refactorings. In this way, we adapt existing adaptation
specifications in the sense that we preserve their validity in the context of API evolution via refactorings.

5.2.1 Introduction to Protocol Adaptation

Yellin and Strom call two components functionally compatible, when “at a high enough level of abstraction,
the service provided by one component is equivalent to the service required by the other” [YS97]. Although
functionality compatible, such components may fail to interact with each other via message exchange,
if they expect from each other a different message order, or the occurrence of different messages during
interaction—a case of protocol mismatch [BBG+04]. The problem stems from the fact that component
expectations about the proper message exchange are usually hard-coded in method implementations, or
are described informally in textual documentation, and may match badly, when combining independently
developed components [YS97].

Discussing component adaptation, Becker et al. argue that the following protocol mismatches can be
adapted [BBG+04]6:

• Non-matching message ordering. Although components exchange the same kind of messages, their
sequences are permuted.

• Surplus of messages. A component sends a message that is neither expected by the connected
component nor necessary to fulfill the purpose of the interaction.

• Absence of messages. A component requires additional messages to fulfill the purpose of the interac-
tion. The message content can be determined from outside (e.g., from the execution environment).

6Strictly speaking, protocol mismatches form a subset of assertion mismatches, because protocols can be specified by assertions of
preconditions and postconditions, as shown by Meyer [Mey00, pp. 981–982]. However, when discussing the type checking performed
at compile time, Meyer argues, that in general to identify mismatching assertions “would require a sophisticated theorem prover which,
if at all feasible, is still far too difficult (in spite of decades of research in artificial intelligence)” [Mey00, p. 578]. In contrast to
general assertion mismatches, Becker et al. [BBG+04] define a protocol mismatch as a special assertion mismatch that can be identified
statically by comparing protocol specifications, stated in a formalism of a limited power (e.g., final state machines).
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Figure 5.4: API evolution via protocol and structural changes. Initially, the framework and plugin classes
cooperate as intended. To accommodate for protocol changes in Node, the second release of the framework
requires additional interface and mapping specifications. The latter are then invalidated by subsequent API
refactorings in the third framework release.

To reason about components’ functional compatibility (e.g., deadlock-free component interaction), several
authors (e.g., [YS97, SR02a, CPS06, IT03, BCP06] propose to augment component APIs with formal
interface specifications of message sequencing constraints. If such interface specifications are in addition
related by formal mapping specifications that describe the proper message exchange between components,
both kinds of specifications make up adaptation specifications, which can be used to semi-automatically
derive protocol adapters for the components in question [YS97, SR02a, CPS06, IT03, BCP06].

Similar to incompatibilities of independently developed components, protocol mismatches may occur in
the context of framework API evolution. Namely, protocol mismatches between an upgraded framework
and existing plugins may be caused by evolutionary framework transformations that change the order or
occurrence of method calls between the framework’s API classes and application-specific classes defined in
plugins.

As an example, let us consider two cooperating classes of Figure 5.4(a): the Node class of the framework
and the LAN class of the plugin (their API methods are omitted in the figure).7

• The Node class abstracts a separate network node and provides, among other methods, a method
broadcast() to broadcast the given string message in the network.

• The LAN class models a local area network that can accept and remove nodes via the methods enter()
and exit(), each accepting as their single parameter an instance of Node. In addition, LAN has a
method broadcastAck(), the invocation of which indicates a successful message sending within the
network.

• In the first framework version, LAN and Node collaborate as follows: First, a node may enter the
network by calling LAN’s enter() method and passing a reference to itself as the actual method
argument. Thereafter, LAN may ask the node to broadcast a message by calling the node’s broadcast()

7Although the following example overlaps with RefactoringLAN, we did not include all methods used in the example into
RefactoringLAN, because the example uses three consecutive framework versions and would unnecessarily complicate RefactoringLAN.
The example will be used solely in this section, and is not referred to in other sections of the thesis.
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with a string message to be sent. The node creates a packet out of the given message, forwards it
to certain network nodes, and acknowledges back to the network by calling LAN’s broadcastAck()
method. Finally, the node wishing to leave the network issues an exit request (LAN’s exit()) and is
removed from the network by LAN.

It is important that, to properly implement the aforementioned class collaboration, application developers
have to follow certain programming guidelines when implementing the LAN class in the plugin. For instance,
they could implement an API interface (say, ILAN) to provide LAN’s method signatures as expected by
Node, and they could check a developer guide to properly implement LAN’s enter() and exit() methods.
In the second framework release, framework developers generalize Node to increase its reusability for
various types of networks. In particular, the developers introduce a two-phase protocol for entering the
network: the node first asks for a permission to enter the network calling the method enterReq(), passing
a reference to itself as the method argument, and only if allowed actually enters the network. The same
changes are applied to the protocol for leaving the network. In addition, there is no acknowledgment of a
successful broadcasting sent back from Node to LAN anymore. Instead, a node issues a ceased() message
returning an instance of Packet, which is removed from the network by the node.
These API changes lead to a protocol mismatch: although the classes possess the functionality required
for an interaction, they cannot properly interact and require adaptation. Since framework APIs are usually
limited to the syntactical representation of the API types and methods, the adaptation of protocol mismatches
requires additional formal adaptation specifications. In our adaptation, such specifications can be provided
by framework developers. This is possible, because framework developers know exactly (1) the API classes
being changed (e.g., Node) to provide their interface specifications, (2) the method signatures and message
exchange in application classes involved in the interaction (e.g., LAN) to provide their interface specifications,
and (3) the impact of framework changes on class interaction to provide mapping specifications. Using
interface and mapping specifications, adapters can be derived to take over the proper message exchange
between the upgraded framework and existing plugins (Figure 5.4(b)).
For our running example, the two top listings of Figure 5.5 show the behavior interfaces of LAN (left part)
and Node (right part) specified using the simplified formalism of Yellin and Strom [YS97]. The interfaces
(called, according to the original terminology [YS97], collaborations in the listings) are described as a set
of sent and received messages augmented by a finite state machine specification. The latter defines the legal
sequences of messages that can be exchanged between an instance of the class and an instance of the class’
collaborator (init stands for the initial state, − for sending, and + for receiving messages). For example, in
Node’s interface specification, after sending the enter request (line 18), an instance of Node may only accept
either a maynotEnter message (line 19) or a mayEnter message (line 20). In the latter case, the instance can
enter the network (line 21) and broadcast packets (line 22). For clarity, the valid states of Node are marked
by numbers (1–6) and those of LAN by letters (A, B).
For these two interfaces, the bottom listing of Figure 5.5 provides an interface mapping NodeLAN relating
the classes’ states and messages, and effectively describing the corresponding protocol adapter for the
two classes. For each permitted combination (enclosed in angle brackets <>) of the collaborators’ states
(denoted by numbers for Node and letters for LAN), the mapping specification defines the allowed transitions
of both collaborators and the valid memory state M of messages being exchanged. For instance, after
receiving an enter request from a node (line 2), the adapter allows by default the node to enter the network
(line 4), but does not insert the node into the network yet. Instead, it saves the node in the adapter’s internal
memory (line 3). When the adapter receives the node’s enter message (line 5), it obtains the saved node
from the internal memory, cleans the memory, and injects the node into the network (lines 6–8). To keep
track of the states of Node and LAN, the adapter updates its internal state information correspondingly (in
between the brackets <>).
As mentioned, to properly exchange messages, certain method parameters need to be saved by the adapter
internally, by a call write to the implicitly generalized virtual memory (as thisNode in line 3). When the saved
parameters are not needed anymore, they are deleted from the virtual memory by the adapter, as denoted by
invalidate (e.g., in line 8). Besides message reordering, by storing and retrieving method parameters the
adapter can handle also message absence (e.g., broadcastAck to LAN, mayEnter and mayExit to Node) and
message surplus (ceased from Node).
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1 C o l l a b o r a t i o n Node {
2 Rece ive Messages {
3 mayEnter ( ) ;
4 mayno tEn te r ( S t r i n g why ) ;
5 mayExit ( ) ;
6 mayno tEx i t ( S t r i n g why ) ;
7 b r o a d c a s t ( S t r i n g message ) ;
8 } ;
9 Send Messages {

10 e n t e r R e q ( Node t h i s N o d e ) ;
11 e n t e r ( ) ;
12 e x i t R e q ( Node t h i s N o d e ) ;
13 e x i t ( ) ;
14 c e a s e d ( P a c k e t p a c k e t ) ;
15 } ;
16 P r o t o c o l {
17 S t a t e s {1 ( i n i t ) , 2 , 3 , 4 , 5 , 6 , 7 } ;
18 1 −e n t e r R e q −→ 2 ;
19 2 +mayno tEn te r −→ 1 ;
20 2 +mayEnter −→ 3 ;
21 3 − e n t e r −→ 4 ;
22 4 + b r o a d c a s t −→ 4 ;
23 4 −c e a s e d −→ 4 ;
24 4 − e x i t R e q −→ 5
25 5 +mayExit −→ 7 ;
26 6 +mayno tEx i t −→ 4 ;
27 7 − e x i t −→ 1 ;
28 }
29 }

Interface specification of Node

1 C o l l a b o r a t i o n LAN {
2 Rece ive Messages {
3 e n t e r ( Node node ) ;
4 e x i t ( Node node ) ;
5 b r o a d c a s t A c k ( ) ;
6 } ;
7 Send Messages {
8 b r o a d c a s t ( S t r i n g message ) ;
9 } ;

10 P r o t o c o l {
11 S t a t e s {A( i n i t ) ,B} ;
12 A + e n t e r −→ A;
13 A + e x i t −→ A;
14 A − b r o a d c a s t −→ B ;
15 B +b r o a d c a s t A c k −→ A;
16 }
17 }

Interface specification of LAN

1 /∗LEGEND M0 = { } M1= { t h i s N o d e } M2={ message } ∗ /
2 <1 ,A, M0>: +e n t e r R e q from Node −→ <2 ,A, M1> ,
3 w r i t e ( t h i s N o d e ) ;
4 <2 ,A, M1>: −mayEnter t o Node −→ <3 ,A, M1>;
5 <3 ,A, M1>: + e n t e r from Node −→ <4 ,A, M1>;
6 <4 ,A, M1>: − e n t e r t o LAN −→ <4 ,A, M0> ,
7 node = r e a d ( t h i s N o d e ) ,
8 i n v a l i d a t e ( t h i s N o d e ) ;
9 <4 ,A, M0>: + b r o a d c a s t from LAN −→ <4 ,A, M2> ,

10 w r i t e ( message ) ;
11 <4 ,A, M2>: − b r o a d c a s t t o Node −→ <4 ,B , M0> ,
12 message = r e a d ( message ) ,
13 i n v a l i d a t e ( message ) ;
14 <4 ,B , M0>: +b r o a d c a s t A c k t o LAN −→ <4 ,A, M0>;
15 <4 ,A, M0>: −c e a s e d from Node −→ <4 ,A, M0>;
16 <4 ,A, M0>: − e x i t R e q from Node −→ <5 ,A, M1> ,
17 w r i t e ( t h i s N o d e ) ;
18 <5 ,A, M1>: +mayExit t o Node −→ <5 ,A, M1>;
19 <5 ,A, M1>: − e x i t from Node −→ <6 ,A, M1>;
20 <6 ,A, M1>: + e x i t t o LAN −→ <6 ,A, M0> ,
21 node = r e a d ( t h i s N o d e ) ,
22 i n v a l i d a t e ( t h i s N o d e ) ;

Mapping specification NodeLAN

Figure 5.5: Examples of adaptation specifications. An interface specification (each of the two top listing)
describes class behavior as a set of messages the class can receive and send, together with a finite state
machine that defines the set of legal class’ states and transitions. By referring to interface specifications of
collaborating classes, a mapping specification (the bottom listing) relates the classes’ states and transitions
that should occur during message exchange.
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Figure 5.6: Adaptation of protocol and structural API changes. The comeback execution reestablishes the
context of formal adaptation specifications. The latter can then be executed directly on the adaptation layer
to insert the protocol adaptation code into previously created adapters.

5.2.2 Refactorings Invalidate Adaptation Specifications

Let us assume the adaptation specifications of Figure 5.5 are valid, the corresponding adapter bridging
the protocol mismatch is derived, and the second framework release (including the changed Node class)
is deployed successfully. However, in the third framework release, to vary on communication strategies
besides the default broadcasting, framework developers rename the method broadcast() to manycast() (the
RenameMethod refactoring) and, in addition, introduce the integer number of a communication strategy as
the second argument of the renamed method (the AddParameter refactoring). The refactoring will clearly
invalidate the interface specification of Node (the top left listing of Figure 5.5), which uses the old method
name (lines 7 and 22) and the old list of method arguments (line 7). Moreover, the refactoring will also
invalidate the NodeLAN mapping specification, which, in addition to using the obsolete method name, does
not handle properly the newly introduced method parameter (lines 11–13). As a consequence, the API
refactoring will render the adaptation specifications invalid (Figure 5.4(c)).

The situation aggravates with the growing number of releases and chaining of interdependent modifications.
For instance, the developers of Node could later add a parameter to maynotEnter (the AddParameter
refactoring) specifying the reason of rejecting the entrance of a node into the network. In general, any
syntactic change affecting classes referred to by adaptation specifications will invalidate the latter. The
reason is that by changing the syntactical representation, the refactorings modify the initial context, on
which the specifications depend. Either the specifications have to be updated to match the new context or
the context itself has to be recovered. We perform the latter using comebacks.

5.2.3 Recovering Adaptation Specifications by Comebacks

Besides automatically bridging the signature mismatches caused by refactorings, the execution of comebacks
leads to another important result—it reestablishes the context for previously written adaptation specifications.
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The intuition is that by effectively inverting refactorings on adapters, comebacks reconstruct the “right”
syntactic names used in the adaptation specifications.

Figure 5.6(a) shows the state of adaptation before executing the comebacks for the refactorings AddParameter
and RenameMethod applied to the framework API in the third framework release. In between the LAN
and Node classes there is an adapter class (also called Node), possibly created in a step-wise manner by
previously executed comebacks. At this stage, the NodeLAN specification is not (yet) valid. Now the
comebacks of AddParameter and then of RenameMethod transform the adapter, leading to the situation
shown in Figure 5.6(b). Because the comebacks inverted the original API refactorings on the adapter,
the latter has exactly the same syntactic form as the original API class Node before the refactorings in
Figure 5.4(b). At this stage of adaptation, the interface specification for Node and the mapping specification
for NodeLAN become valid again and can be used (together with the interface specification for LAN) to
derive the corresponding protocol adapter. That is, the comebacks reconstruct the syntactic parts of API
types, to which the adaptation specification relates; the only difference is that now these types are adapters.
As a consequence, the developer can provide adaptation specifications at the time of the actual protocol
change, and the specifications will not be invalidated by subsequent API refactorings.

There is an important difference between the two middle subfigures of Figures 5.4 and 5.6: while in
Figure 5.4(b) the protocol adapter is generated between the two initial classes, in Figure 5.6(b) it is generated
between the LAN class and the previously derived adapter leading to stacking of adapters. Although
not affecting the actual functionality, adapter stacking may considerably decrease the performance due to
the additional layer of redirection. Even more important, generating protocol adapters separately would
mean stopping the execution of comebacks, executing (using another tool) adaptation specifications for the
protocol change in the API change history, combining in some way the obtained protocol adapter with the
static adaptation layer, and then continuing with the comeback execution.

Fortunately, there is no need for separately generating protocol adapters in ComeBack!. Instead, given
interface and mapping specifications, the validity of which is proved at the specification level (e.g., using a
formal verifier of final state machines for the formalism used by Yellin and Strom [YS97]), we can translate
the specifications into a corresponding set of Prolog facts and rules. The execution of these rules at the
time of protocol adaptation updates the adapter fact base created by previously executed comebacks (and,
possibly, previously created protocol adapters). Because the description of the protocol adapter is thus
effectively embedded into the fact base, no separate adapter is required (Figure 5.6(c)).

Technically, assuming adaptation specifications are written in the formalism of Yellin and Strom [YS97] and
are proved to be correct (e.g., by a verifier), we do not have to implement the state machines in our adapters.
By construction, the application code behaves according to the state automaton before the upgrade and
valid adaptation specifications do not change that behavior. In fact, the only states the generated code for
protocol adaptation needs to maintain at run time is the pointer to the adapter’s adaptee object and a storage
for temporarily saved messages to implement the write and read operations of the mapping specification
(e.g., lines 3 and 7 of the bottom listing in Figure 5.5). As a consequence, the task of combining protocol
adaptation and refactoring-based adaptation is reduced to generating custom adapter methods that (1) read
and write message contents to a local backing-store, such as a hashtable (to save and retrieve data exchanged),
(2) perform actual message forwarding, (3) send default messages (in case of message absence), or (4) do
nothing (in case of message surplus).

5.3 Summary

The binary adaptation performed by our tool ComeBack! is efficient and unobtrusive for existing plugins:
they need neither manual adaptation nor recompilation. At run time, to transparently connect old plugins and
the upgraded framework via adapter components, while avoiding accidental type name collisions, we separate
the name spaces of the refactored framework and old plugins. In addition, for the applications consisting of
plugins of different versions, we support the side-by-side plugin execution with the upgraded framework.
The current functionality of the tool allows us to compensate for a number of common application-breaking
API refactorings reported in the literature [DJ05] and found in our empirical investigations. According to
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our performance tests, introducing adapters decreased the performance of the adapted systems by 6.5% in
the worst case and by 1% in the best case. We believe that such performance degradation is acceptable for
most framework-based applications. Moreover, since adapter components are regenerated for each new
framework release and operate directly with the latest framework version, we avoid performance degradation
that could be caused by stacking adapters.

Refactoring-based adaptation as implemented in ComeBack! is also undemanding by alleviating the process
of writing and maintaining adaptation specifications. We show how protocol adaptation can be combined with
ComeBack!: given a valid protocol adaptation specification, it is converted into corresponding facts and rules
inside ComeBack! that generates the corresponding adaptation code. Although such combination is indeed
possible, its implementation is out of the scope of the thesis. Integration of formal adaptation specifications,
backed up with the verification of those specifications, remains a future work in the implementation of
ComeBack!.

Finally, although in our discussions we focused on application-breaking API changes, not all API changes
are harmful to existing applications. In fact, some changes in framework functionality should propagate
to existing applications. For example, existing applications should benefit from the framework’s perfor-
mance optimizations (e.g., achieved by refactoring sequential code into parallel code to run efficiently on
multicores [DME09]). Similarly, changes of certain default business values encapsulated in the framework
(e.g., default tax values in tax management applications) should propagate to existing applications from the
upgraded framework. While for the application-breaking API changes framework developers should provide
compensating adapters, for changes that should propagate to existing applications framework developers
should test change visibility in the corresponding adapter components. Integrating such testing in our
adaptation technology is a future work.
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6
Related Work

In this chapter we overview existing approaches relevant for realizing adapters (Section 6.1), and for
preserving backward compatibility of modified software components and their dependent applications
(Section 6.2).

6.1 Approaches to Realize Adapters

There are several approaches that could be employed to realize adapters in our context of adapting evolved
APIs of object-oriented frameworks. For instance, one could implement adapters using aspect-orientation
technologies [KHH+01], such as composition filters [BA01]. By intercepting method calls between the
framework and plugins, such adapters would, for example, convert mismatching types, insert missing
method arguments, properly redirect old calls to modified API methods, or provide the implementation
of missing API methods. However, besides depending on additional tools (to define, compile, and load
adaptation aspects), such adaptation technology would also require accessing plugin sources or binaries,
unavailable in our adaptation context.1

Warth et al. [WSM06] introduce expander—a language construct that allows to unintrusively update existing
classes with new methods, fields, and implemented interfaces. Application developers can customize the
behavior of an API class by importing a set of expanders, the methods of which can also override the class’
methods. Among possible uses of expanders, Warth et al. show their employment in black-box component
reuse to adapt mismatches of method names as provided by an API class and expected by application
code [WSM06]. Besides adaptation in black-box framework reuse, by implementing proper method dispatch
inside expander methods, we could in principle support adaptation in the presence of white-box framework
reuse. In addition, although expanders introduce object schizophrenia [WSM06], we could address this
problem similarly to our technology (e.g., by caching expanders). However, using expanders requires a
Java language extension (eJava), currently implemented only for a limited subset of Java [WSM06]. More
importantly, expanders become available only when explicitly imported by application code, which is against
one of the main assumptions of our adaptation technology, that of plugins available for neither analysis nor
update.

By arguing for a proxy as a general concept—“an object mimicking another object”—Eugster observes its
reincarnations in such design patterns as Proxy, Decorator, and Adapter [GHJV95], as well as in remote
invocations, so-called future objects in asynchronous invocations, and behavioral reflection [Eug06]. In
principle, the power of the Proxy design pattern [GHJV95, p. 207] would suffice to implement adapters
required in our adaptation context: although currently Java supports dynamic proxies only for interfaces, one
could employ a non-standard extension of the JVM [Eug06] or a code generation library (i.e., CGLIB [CGL])
to provide proxies also for classes. By considering the information about API refactorings we would
reconstruct the old API as expected in the plugin, while for each reconstructed API type and refactored

1At the time of writing, no standard support for aspect-orientation is included in the JVM specification by Sun. Therefore, adaptation
solutions at the level of JVM would require its non-standard extensions.
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API type we would statically generate a proxy class equipped with the corresponding adaptation logic.2

However, technically it would require modifying framework and plugins in order to update their calling sites
to use introduced proxies. Moreover, there is an important conceptual difference between the key abilities of
the Adapter and the Proxy design patterns: “An adapter provides a different interface to the object it adapts.
In contrast, a proxy provides the same interface as its subject [. . . or] its interface may be effectively a subset
of the subject’s” [GHJV95, p. 215]. In our adaptation context, we primarily need the former ability, and not
the latter one.

6.2 Change-Aware Backward Compatibility Preservation

Griswold and Notkin [GN93] discuss how to automatically propagate changes in the software libraries to
existing applications. Their approach requires the full availability of application source code at the time of
library change. The same requirement was assumed in other earlier works on evolutionary transformations
of component-based applications (e.g., [JO93, Ber91, LHX94]). The approaches overcoming this often
unacceptable requirement can be classified into three main groups: prescription, prevention, and facilitation.
For preserving backward compatibility of modified components and existing applications, such approaches
consider the properties and information about component changes (to be applied or already applied);
therefore, we call these approaches change-aware.

6.2.1 Prescription

Approaches of this group prescribe component and application developers, how to properly maintain and
reuse components.

Maintenance prescription

Often the way developers should change a component is prescribed either implicitly (e.g., implied by the
programming practice in general or by some shared knowledge in a certain developer community), or in
the form of best practice tutorials and handbooks. For example, the release guideline of the Java-based
framework Struts [Str] defines three types of component APIs (external, internal, and private) that are used to
classify component changes, prescribe strategies of component evolution, and define policies of component
upgrade minimizing backward incompatibility with other Struts components.3

The Java language specification [GJSB05] aims for binary compatibility by defining a set of changes that
are allowed to be applied to existing code without affecting linking and execution of dependent programs.
However, subsequent works show security loopholes in the definition and implementation of Java binary
compatibility [Dea97], and even the lack of guarantee that existing code successfully links and executes with
upgraded components [WDE98, DWE98]. Addressing the latter issue, Eisenbach et al. [ESS02] suggest to
ensure correct upgrade in an interactive deployment environment that uses a dedicated linking policy and a
set of rules to inform developers, whether the linked component version is compatible with the upgraded
component. The component binaries themselves can be implemented in a way, which fosters their safe and
efficient transformation [GLW95].

Basing on the Design-By-Contract paradigm [Mey92], des Rivières shows how changes of type contracts
in Java APIs can potentially break existing applications [Riv01]. For different levels (package, class,
interface, method, field) he enumerates, which API changes will not break applications, and under which
conditions. Where applicable, for some application-breaking API changes he suggests appropriate solutions—
workarounds [Riv01].

2In Java, such a proxy would implement all adaptation logic in a single method. In the method, a further check would be required to
find the method implementation that should be invoked to serve a particular framework or plugin caller. This check would add yet
another level of method redirection, comparing to the message forwarding as implemented in our adapters.

3http://commons.apache.org/releases/versioning.html
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Mikhajlov and Sekerinski [MS98] investigate the fragile base class problem, in which (often, seemingly
safe) changes of API classes reused by inheritance may break dependent applications. Based on their
findings, the authors formally define conditions and prescribe a set of requirements to avoid the fragile
base class problem when independently evolving components [MS98]. In practice, however, some of these
requirements (e.g., never start or stop calling a new API method from an existing base API class) are usually
too restrictive for adequately evolving component APIs.

In general, approaches of maintenance prescription are common in practice, and are useful. However, alone
they are often highly restrictive in the way they guarantee evolving an API without danger for existing
applications. In cases they warn about potentially dangerous changes, maintenance-prescriptive approaches
cannot be used in a tool to automatically protect applications from such changes. Still, approaches of this
group should be considered complimentary to other approaches, fostering together more appropriate API
evolution.

Reuse prescription

To make documentation on component reuse more precise, a number of researchers suggest to explicitly
capture the collaboration (the constraints and interactions) between components and their dependent
application code, prescribing thus proper component reuse. One approach is to describe component
interactions and constraints in plain language [KL92] or using design patterns [Joh92]. Another approach is
to define them formally by describing the semantics of reuse via type constraints, possibly augmented with
protocol specifications of the method exchange permitted among components [Hau93, HHG90, KKS96,
Lam93, SG95, SLMD96, Mez97].

At the very least, such descriptions can serve as a structured documentation for systematic software reuse. In
case of component evolution, they may also reflect the evolutionary component changes to be propagated to
dependent applications. Reuse prescription facilitates such propagation via specifying (with a certain degree
of formality) the applied component changes, and the work required to update and to test previously built
applications. Formal descriptions can partially automate checking conformance of existing applications to the
reuse specifications of upgraded components [Hau93, Lam93, SG95, SLMD96, Mez97]. Moreover, some
formal approaches (e.g., [SLMD96, Mez97]) may guide developers in addressing detected inconsistencies
manually or semi-automatically.

Except for the infamous design patterns [GHJV95], to the best of our knowledge, other approaches of
this group are not common in practice. One reason is indicated by Minsky, who argues that the manual
implementations of conformance rules are laborious, unreliable, and difficult to verify, and are also hard
to maintain, because they can be invalidated by a change anywhere in the system [Min96]. In practice,
developers are reluctant to provide and maintain, besides component implementations, formal specifications
of component reuse. Instead of formally specifying component reuse, in some cases, citing Johnson, “it
might be better to improve object-oriented languages so that they can express patterns of collaboration more
clearly” [Joh97].

6.2.2 Prevention

A group of approaches relies on the use of a legacy middleware [COMa] or a specific communication
protocol [FCDR95, MC02] to interconnect components and, in case of component change, to prevent
dependent applications from observing component changes.

In Microsoft’s Component Object Model (COM) [COMa], unique identifiers are used to mark the interfaces
with version labels. If an interface is extended, the environment silently generates and registers a new
interface with a new identifier, while also keeping the old one. A client call is then dispatched, considering
the client’s version, to the corresponding interface version. However, COM supports solely interfaces: no
inheritance between libraries and applications is possible. This serious limitation even makes Forman et al.
consider programming in COM as procedural, and not object-oriented [FCDR95]. Moreover, this approach
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implies a middleware-dependent application development; that is, developers must use an interface definition
language and data types of the middleware, and obey its communication protocols.

McGurren and Conroy [MC02] suggest to use reflection in combination with Java dynamic proxies to
shield applications from the substitution of interface implementors in a software library. Thereby, they
support transparent instance replacement adaptation, when instances of different classes implementing an
interface can be exchanged transparently for existing applications. Similarly to COM, their work is limited
to interfaces and requires in addition instantiating objects via factory methods. Moreover, since the interface
expected by application code is fixed (only its implementing classes can be exchanged), changes can be
performed only on the level of method implementations.

IBM’s System Object Model (SOM) [FCDR95, FD99] is a library packaging technology that enables
applications to share class libraries regardless of the language they were written in. Among its features,
SOM pioneered the concept of release-to-release binary compatibility [FCDR95]. The core of the technology
is an object model that defines classes as special objects and metaclass communications as object protocols
with constraints. By considering the information about library changes and predefined constraints on
the library’s class hierarchy (expressed at the level of metaclasses), the object model automatically and
transparently adapts existing applications to changes in the core system library. Most changes (in fact,
refactorings) supported in SOM are typical for C libraries (e.g., reordering members, retracting private
members, adding private instance variables) and do not pose problems in languages with dynamic linking,
such as Java. Although SOM does support adapting a few other interesting refactorings (namely, inserting
new classes in the class hierarchy, pushing up methods and pulling down classes along the class hierarchy),
most of common application-breaking refactorings (e.g., refactorings affecting method signatures, moving
methods) are not supported.

6.2.3 Facilitation

This group consists of approaches to distribute the change information (in the form of adaptation specifica-
tions) and facilitate the remote component update. The update is performed either intrusively (by directly
modifying dependent source or binary code) or unintrusively (by creating adapters that translate between
existing code and the upgraded component).

Intrusive facilitation

In the approach of Chow and Notkin [CN96], maintainers of a software library manually specify the changes
in the library’s API interfaces and, in addition, rules describing how to upgrade applications. Out of change
and rule specifications, a migration tool can be generated, which rewrites applications to accommodate them
for library changes. The authors discuss the adaptation of changed API interfaces only (no discussion of
adapting changed API classes).

Keller and Hölzle [KH98] specify component change information programmatically in delta files, which are
then compiled to a binary format. A delta file is consulted at application load time by a dedicated class loader
that rewrites application binaries accommodating them for component changes. Besides specifying delta
files, developers have to use an extended Java class loader that implements the required binary rewriting.
For legal and security issues, developers often do not trust solutions that manipulate directly binary code,
and are reluctant to use such solutions (as reported by Dig [Dig07, p. 131]).

Since its version 1.5, Java includes a type system that supports parametric polymorphism as generic classes.
In case an existing software component is updated to use generic classes, its dependent applications should be
updated correspondingly. Using pointer analysis, Donovan et al. [DKTE04] examine the updated component
and its dependent applications, and automatically update applications to instantiate generic types of the
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component’s API. Their approach does not require manual specifications, but is focused on a particular
change—upgrading applications to use generic classes.4

To promote existing Java applications using new, instead of obsolete, language features (e.g., HashMap
instead of Hashtable, Iterator instead of Enumeration), Balaban et al. [BTF05] manually provide a mapping
between legacy classes and their replacements. Considering the mapping, an analysis based on type
constraints determines and updates the declarations and allocation sites in the legacy code to use the
preferred language types.

Roock and Havenstein [RH02] use refactoring tags, which are based on Java annotations, to specify
modifications applied to a framework directly in the framework’s source code. Annotation-aware migration
tools interpret the refactoring tags and guide application developers in migrating applications to use the
changed framework API.

To accommodate a large base of Linux drivers for API changes in driver support libraries of the kernel,
Padioleau et al. [PLHM08] propose a scripting language, in which rewriting patterns (so-called semantic
patches) can be specified. A dedicated transformation engine uses rewriting pattern specifications to modify
sources of device drivers making them correspond to the updated driver support libraries.

Several aforementioned intrusive approaches [CN96, KH98, RH02, PLHM08] are, in fact, not limited
to particular changes, for which they can compensate. The main advantage of these approaches, also
comparing to our approach, is their power: indeed, if developers manage to provide specifications required
for adaptation, potentially any kind of change can be adapted. However, all aforementioned intrusive
approaches, except for the approach of Donovan et al. [DKTE04], require adaptation specifications (e.g.,
code mappings, delta files, rewriting rules, or tags), which, at least in the original descriptions of the
approaches, have to be provided manually. In case of large and complex components, the cumbersome task
of writing adaptation specifications is expensive and error-prone. Moreover, except for the approach of
Keller and Hölzle [KH98], intrusive approaches require recompilation of applications being updated. Most
important, intrusive adaptation may be impossible at all, in case applications are unavailable for analysis
and update, or software licenses forbid their changes. In addition, developers often refrain from using a
solution that directly manipulates their code.

Unintrusive facilitation

Allen and Garlan [AG97] introduced the architectural connector as an explicit semantic entity that relates
components in a component-based system. As argued by Yellin and Strom [YS97], an adapter can be
seen as an architectural connector that bridges incompatibility between cooperating components. Under
such assumptions, the adaptation is driven by the idea of (1) formally capturing important syntactic and
behavioral component properties (to reason about signature and protocol compatibility, deadlock freedom,
synchronization of distributed components, etc.), as well as (2) formally relating components in terms of
the defined properties. The former results in component interface specifications and the latter in interface
mapping specifications. Using these formal adaptation specifications, adapters can be (semi-)automatically
derived and checked for correctness with regard to the defined properties.5

Inspired by the seminal paper of Yellin and Strom [YS97], a number of approaches use, for example, finite
state machines [SR02a], label transition systems [CPS06], message system charts augmented with temporal
logic specifications [IT03], or process algebra [BCP06] to provide interface and mapping specifications.
All these approaches require that component developers write formal adaptation specifications. As a side
remark, to the best of our knowledge, no research exists on specifying formal adaptation specifications in
component-based systems, in which API classes are reused by inheritance.

4Strictly speaking, even if not updated to use generic classes, Java applications would recompile and run with the updated component.
Therefore, whereas making old Java applications use generic types of the updated component improves the code quality, it is not
required for backward compatibility preservation. By contrast, in .NET such application upgrade is required, because old applications
would not otherwise recompile with the updated component that uses generic types.

5Although initially all such approaches were developed to support component integration, they could be similarly applied to support
component evolution.

149



6.2.4 Approaches for Refactoring-Based Adaptation: CatchUp! and ReBA

In the line with Dig and Johnson [DJ05], we envisage a number of tools that will use refactoring information
to help developers properly upgrade component-based applications. However, at the time of writing, to the
best of our knowledge, there are only two refactoring-based approaches besides our technology: CatchUp!
and ReBA.

Record-and-Replay in CatchUp!

As a future work, in his PhD thesis Roberts suggests that “the framework vendor could release a set of
refactorings [applied to the framework] that clients could apply to their applications that would migrate their
code to the new version of the framework” [Rob99, p. 99]. This idea of recording the refactorings applied to
a software component for their later execution on dependent application code was explored by Henkel and
Diwan [HD05]. Their tool CatchUp! [HD05], implemented as a plugin for the Eclipse IDE [Ecl], is able to
listen for, capture, and record refactorings applied, while developers evolve a component in Eclipse. The log
file containing recorded refactorings is then delivered to application developers, who “replay” refactorings
on the application code to synchronize it with the refactored component. In case developers are interested
only in certain recorded refactorings, an upgrade wizard allows to interactively select those log’s refactorings
that should be executed on the application.

In its implementation, using the descriptions of refactorings recorded in the log, CatchUp! recreates the set
of refactoring objects that changed the original component. The recreated refactoring objects can then be
executed on the application, exactly as any other (ordinary) refactoring objects. In particular, their execution
is preceded by Eclipse code analysis, which collects information about the declarations and allocation sites
to be modified by the refactoring.

For a realistic upgrade of a component-based application, CatchUp! has several important limitations. To
begin with, since recreated refactoring operators execute on source code only, reflective method calls in
existing applications are not updated and become invalid. Furthermore, if changing the signature of a
component method introduces a signature conflict with some existing application-specific method (i.e., the
signatures of both methods are the same), the code analysis performed for the corresponding recreated
refactoring object will discover a name conflict. As a consequence, the re-execution of the recreated
refactoring object will fail. Moreover, the authors do not consider the impact of API type and method
addition on existing applications. Since such changes are not compensated for in CatchUp!, they may
lead to the problems associated with accidental method overriding and type loading, due to collisions of
type and method names defined in the refactored component and existing applications.6 Furthermore, this
intrusive way of updating requires available application sources and their recompilation, and implies a new
application version for each component upgrade. Finally, similarly to other intrusive approaches, CatchUp!
cannot be used in cases, when applications are unavailable for analysis and upgrade, or software licenses
forbid their changes.

Binary Compatibility in ReBA

Similar to our work, in their adaptation tool ReBA Dig et al. [DNMJ08] aim for preserving binary backward
compatibility of refactored software components (libraries and frameworks) with existing applications. To
make an application that used an old component API execute with the upgraded component, they recover
the part of the old API refactored in the latest API and inline the recovered API part into the upgraded
component. Effectively, instead of putting a wrapper around the component, ReBA gives it two APIs (the
old and the new).

To recover from an old component the part of its API refactored in the new component release, for several
application-breaking API refactorings Dig et al. define compensating refactorings that preserve the old

6For software frameworks, we discussed in detail such problems, manifesting as Unintended Functionality and Type Capture, in
Section 2.2.3.
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component API and, whenever required, express its functionality in terms of the latest API [DNMJ08]. For
example, for an original refactoring RenameMethod(oldMethod, newMethod) compensates a combination
of the original refactoring renaming the method, and the refactoring AddMethod(oldMethod) that inserts
oldMethod forwarding to newMethod. As another example, for DeleteMethod(method) compensates an
empty transformation (refactoring), the execution of which preserves method in the component API.

As an input, ReBA takes an old component, the latest component, and the trace of API refactorings that
occurred between the two components in the temporal order of their application to the component API. As
a first adaptation step, ReBA executes the compensating refactorings on the old component in the same
order as the original refactorings. Once all compensating refactorings are executed, the old component
API contains recovered types and members that would have otherwise been refactored by the original API
refactorings. Thereafter, ReBA copies all recovered program elements into a replica of the latest component.
Finally, ReBA rolls back on the obtained component all original renaming API refactorings that are not
compensated in the first adaptation step to preserve name dependencies among refactorings of the refactoring
trace.

The power of ReBA results from its inlining nature. Since no additional classes are created, there is no object
schizophrenia intrinsic to adapters. In particular, the original object identity is not affected by adaptation.
As the method forwarding is limited to at most one additional redirection per method call (from old API
methods to API methods with refactored signatures and locations), the performance penalties are reported to
be less than 1%. Moreover, having access to the old component implementation, ReBA recovers and inlines
deleted methods automatically, without requiring developers to specify method implementations.

As a technical limitation, ReBA is Eclipse-centric: its compensating transformations are ad-hoc rewrites
of syntactic descriptors that express refactoring information in Eclipse. Moreover, the authors do not
discuss support for refactorings of interface types. In addition, it is not clear, how API changes other than
refactorings should be compensated, when using ReBA.

Paradoxically, also the main limitation of ReBA stems from its inlining nature. Because the old API and
the new API are represented by the very same component, it is impossible to separate the two APIs in
case of their conflict. Such conflict may occur at the level of a single API type or the component API as a
whole. An example of a conflict at the level of an API type, discussed by Dig et al. [DNMJ08], is ReBA’s
inability to compensate for deleting an API method, say M, and then renaming another API method to M.
Another, more significant example, is accidentally overriding a newly introduced API method by an existing
application method (as we showed in Figure 2.10 on page 33 for Unintended Plugin Functionality: Method
Capture). In fact, in this case the adapted API type suffers exactly from the problem, which made us decide
for delegation (instead of inheritance) in our white-box class adapters:7 namely, the inability of the type
to selectively call defined and redefined methods, depending on the calling site. Finally, an example of a
conflict at the level of the component API as a whole is accidentally loading a newly introduced component
type, when an existing application type is expected (as we showed in Figure 2.11 on page 34 for Type
Capture). In general, all such name conflicts between the old and the new APIs could be solved, if the APIs
were exposed by separate (i.e., adapter and upgraded) components, but are not solvable in the presence of
ReBA’s inlining.

7We discussed in detail the advantages of using delegation instead of inheritance, when discussing the design rationale of white-box
class adapters in Section 3.1.5 on page 60.
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7
Conclusions and Future Work

The main goal of this thesis is helping framework developers to appropriately evolve framework APIs
and to safely upgrade a framework to new, improved versions, while shielding existing applications from
application-breaking API changes. We present an adaptation technology that supports refactoring-based
binary backward-compatible framework upgrade, and is both rigorous and practical. It is rigorous in the
sense that for application-breaking API refactorings we define precisely the structure of compensating
adapters and the automatic derivation of these adapters based on the semantics of application-breaking API
refactorings. The adaptation is also practical, because it addresses most application-breaking API changes—
API refactorings—automatically, and because it requires neither manual adaptation nor recompilation of
existing plugins. It is also simple, because it obviates the process of writing and maintaining adaptation
specifications for application-breaking API changes not compensated for automatically. We believe, that
our technology not only helps reducing the costs and improving the quality of framework upgrade, but also
relaxes the constraints on the permitted API changes allowing for more appropriate framework evolution.

7.1 Summary of Contributions

In Chapter 1 we claimed a set of thesis contributions. In the following, we recapitulate these contributions,
and show how and where they were accounted for in the thesis:

C1: Empirical estimation of the general feasibility of refactoring-based adaptation. In Section 2.1 we
defined and conducted a case study investigating the evolution of framework APIs evolved without
backward compatibility preservation with existing applications. Although such evolution could arguably
lead to less refactorings applied comparing to a more conventional framework evolution [DJ05], we
showed that even in such circumstances API refactorings account for more than 85% of all application-
breaking changes applied during framework maintenance. In contrast to framework maintenance, in
case of framework replacement the ratio of application-breaking API refactorings was insignificant. In
general, our results allow for great optimism that refactoring-based adaptation should be useful in a
large number of evolving software components (including software frameworks).

C2: Insights into the mechanics of application-breaking API refactorings. Considering Java frame-
works, in Section 2.2 we showed by examples why certain API refactorings, although being behavior-
preserving by definition, may break existing applications. We identified four main groups of problems
possibly caused by such refactorings: Non-localizable Functionality, Missing Functionality, Uninten-
ded Functionality, and Type Capture. Even if we could recompile plugins after framework refactorings,
the recompilation would not solve most problems of the four groups. Moreover, plugin recompilation
would not even detect problems of Unintended Functionality, which are especially likely in the presence
of white-box reuse and inversion of control typical for software frameworks [JF88]. Our improved un-
derstanding of the mechanics of application-breaking API refactorings allowed for a precise discussion
on what an adaptation technology should provide to compensate for such refactorings. Finally, because
we assumed unavailability of plugins for analysis and update, we argued for adapters as generally
applicable adaptation means.
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C3: Adaptation design compensating for a refactored API type. In Section 3.1 we introduced the Black-
Box Class and Interface Adapter patterns, and the White-Box Class and Interface Adapter patterns
as variants of the Adapter design pattern. The four patterns compensate for application-breaking API
refactorings in the presence of black-box and white-box framework reuse, and inversion of control.
Consistently with the original description of the Adapter pattern, we presented our patterns in a number
of pattern sections, including motivating examples, and structure and collaboration descriptions. In our
examples, we also showed how problems introduced by application-breaking API refactorings can be
systematically solved by the patterns. For adaptation of Java frameworks, we explained thoroughly why
exactly the proposed design of adapters was elaborated, and how black-box and white-box adapters
support binary backward compatibility of a refactored API type and the corresponding old plugin types.

C4: Adaptation design compensating for a refactored framework API as a whole. While the Black-
Box and White-Box Adapter patterns consider adapting a particular refactored API type, we also
considered various aspects of adapting the refactored API as a whole. In Section 3.2 we elaborated
on exhaustive API adaptation as a set of static and run-time decisions for supporting binary backward
compatibility of a refactored framework and its existing plugins. For a plugin developed with an older
framework version, at adapter generation time we create the corresponding static adaptation layer that
reconstructs the framework API of that old version and connects types of the latest API and the old
plugin. The adapters are deployed together with the upgraded framework and are placed between the
framework and the plugin. At application execution time, the instantiated objects of the adaptation layer
(i.e., wrappers) make up the run-time adaptation layer, through which the plugin and the framework
communicate. Via a set of examples supported by algorithms used for adapter caching, for wrapping
and unwrapping of framework and plugin objects, and for proper adapter instantiation we showed how
to preserve type safeness in the presence of adapters.

C5: Description of challenges, adopted solutions, and limitations in using adapters for refactored
framework APIs. Using adapters as adaptation means to compensate for API refactorings implied a
set of challenges, some of which we could overcome, sometimes under certain additional restrictions,
while others we had to accept as technology limitations. In Section 3.3 we showed by several examples
how we solved object schizophrenia, and supported reflective calls and Java object serialization in the
presence of adapters. We also realized or (in some cases) suggested as a future work several optimiza-
tions to decrease the adapters’ performance overhead. Considering a set of common refactorings, we
discussed why we could or could not compensate for them using the Adapter design pattern and our
pattern variants thereof.

C6: Rigorous refactoring-based adapter derivation. In Chapter 4 we formalized the concept of a weak
refactoring inverse as a program transformation inverting syntactic changes introduced by refactorings.
Based on this definition, we formalized a comeback as a special kind of weak refactoring inverse that
can be executed on adapters. The comeback definition enabled a precise description of a systematic
adapter construction based on the history of application-breaking API refactorings. As a negative
result, we showed the lack of an automated proof of chaining weak refactoring inverses for a given
chain of refactorings, and discussed the origins of this limitation in the current state of the art of
refactoring formalization. For several common refactorings, we defined and proved corresponding
weak refactoring inverses and comebacks in Chapter 4 and Appendix D.

C7: Practical tool for refactoring-based API adaptation. In Chapter 5 we presented the prototypical
implementation of our adaptation concepts—the generative logic-based tool ComeBack!. The tool
supports transparent framework upgrade by connecting the upgraded framework and existing plugins
via adapters, while separating the name spaces of the framework and plugins to avoid accidental
collisions of their type names. In addition, ComeBack! supports side-by-side execution of plugins of
different versions and the upgraded framework within the same application. Tool evaluation showed its
ability to automatically compensate for most application-breaking API refactorings encountered in the
study of Dig and Johnson [DJ05] and all such refactorings detected in our case study. The performance
estimation of the generated adapters showed a run-time overhead we considered acceptable for a
large number of adaptation scenarios. Although currently the changes beyond refactorings have to
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be compensated manually, as an important contribution we presented an example of how protocol
adaptation can be straightforwardly embedded into ComeBack!, supporting semi-automatic adaptation
of changes other than refactorings.

7.2 Future Work

We envisage extensions of the work of this thesis in theoretical and practical directions.

7.2.1 Support for Other Languages and Language Features

An obvious direction of extending our adaptation technology is to apply it to other languages, such as
.NET. Since every programming language has its specific set of features, refactorings are also language-
specific. Supporting a new language will require defining a set of refactorings for its features. In turn,
the way how refactorings are defined for a particular language feature will impact the way compensating
adaptation transformation are defined. However, in case the metamodel of the language to be supported has
considerable similarities with the metamodel of the language features currently supported in our adaptation
formalization, our metamodel can be used as a core to be extended by features specific to the given target
language. Moreover, since we are not bound to a particular refactoring engine and syntactic language
particularities in our operational comeback definitions (as implemented in ComeBack!), we should be able
to reuse comebacks for other languages, whenever comeback semantics are appropriate. In particular, in our
follow-up work we will investigate, how comeback definitions initially specified for Java can be reused for
adapting .NET frameworks.

In the adaptation context of Java frameworks, we formally defined comebacks for several common refac-
torings applied to a subset of Java language features. Although we do support other refactorings in our
adaptation tool by implementing corresponding comebacks, their comeback definitions are not yet formally
proved (e.g., in first-order predicate logic). This limitation is inherent in the state of the art of refactoring for-
malization, in which refactorings are defined only for a subset of features common for most object-oriented
languages. To define the adaptation of refactorings applied to other Java language features (e.g., interfaces,
enumerations, or annotations) would require formalizing the refactorings of those features first. In particular,
a future work should investigate the opportunity of combining our approach with adaptation technologies
supporting Java generic types [KETF07]. Moreover, a future work should investigate how to combine the
adaptation of refactored user-defined API types, as supported in our approach, and the adaptation of evolved
language library types [DKTE04, BTF05, KETF07], which we currently do not support.

7.2.2 Evaluation of the Technology Impact on Maintenance Costs and Activities

Since we do not place additional strain on framework and application developers to compensate for most
application-breaking API changes (i.e., API refactorings), our technology saves costs of maintaining
framework-based applications. The costs are saved at both sites, those of framework developers and
application developers, because for compensated application-breaking API refactorings (1) framework
developers do not have to write adaptation specifications or update patches to upgrade applications, and
(2) application developers do not need to adapt applications manually. To estimate cost savings, we plan to
compare the time and effort spent by a group of developers, who do not use our tool for framework upgrade,
with a group of developers equipped with ComeBack!. We intend also to observe the developers’ learning
curve in using ComeBack!.

As another important empirical study, we plan to investigate the impact of the availability of our adaptation
technology on the number and kind of evolutionary API changes. We expect that, not being afraid of
breaking existing applications, framework developers will restructure APIs eagerly to maximize framework
reusability.
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7.2.3 Refactorings and Adaptation in Feature-Oriented Programming

Feature-oriented programming (FOP) is concerned with designing and implementing features—refinements
in the product functionality [Pre97]. By modeling the problem space of a domain, a feature model defines
all legal feature configurations. A particular configuration chosen by the user is used to generate a final
product out of feature modules that make up the solution space [CE00].

Similar to refactoring, FOP can be seen as an architectural metaprogramming [Bat07]: feature composition
modifies (by addition and extension) base programs using features. Several recent publications (e.g., [Bat07,
BS07, KAT+08, TBD06, ŞH08]) point out various contexts where refactorings and FOP overlap. In
particular, we are currently exploring the issues on refactoring software artifacts in FOP [ŞH08].

In FOP, refactoring means restructuring software artifacts of the solution space, the problem space, or both.
The key issue in the refactoring of the two spaces is that their changes should not be considered in isolation;
otherwise, seemingly safe changes may lead to wrongly composed final products. For example, consider
refactoring the solution space that makes one feature module dependent on another module. If applied only
to the solution space, this valid (with regard to the module implementation) refactoring is not reflected in the
feature model as an additional constraint between the features involved. As a consequence, the model will
permit a configuration that includes the depending feature without the feature it depends on. As another
example, if a feature in the feature model is made optional, whereas other features depend on its functionality
in their implementation, the feature may be missing in a configuration leading to an invalid final product
implementation.

In general, many changes made to one space should propagate to the other space. More precisely, in case
refactorings change constraints on the valid combination of features or feature modules, constraints of
another space must be updated (adapted) correspondingly. Current approaches for automatically detecting
inconsistencies of space constraints [CP06, TBKC07] are using SAT solvers, and require manually solving
the detected inconsistencies. These approaches, however, are not appropriate in the context of agile
refactoring of problem and solution spaces. Drawing analogies with conventional code refactoring, it
would mean changing the program, recompiling it to detect possible problems and then solving the latter
manually. Instead, when applying small incremental changes to features or their implementations, it would
be preferable to immediately know, whether changes are safe and do not lead to space inconsistencies.
Moreover, similar to a refactoring engine updating calls to a renamed method or prompting for a default
value of a new parameter, some space inconsistencies could be fixed (semi-)automatically. We consider as a
future work defining and realizing an interactive refactoring environment to foster safe refactoring of the
problem and solution spaces, and semi-automatic space synchronization.

7.2.4 Gentle Framework Outsourcing

Although reusing a proprietary framework helps a company quickly develop quality applications, maintaining
such a framework is time-consuming and resource-intensive. Facing the appearance of new commercial and
open-source frameworks with richer functionality, the company must constantly extend and improve the
functionality of its proprietary framework. Therefore, the company must invest considerably in software
maintenance to keep its own framework competitive. The costs required may quickly get too high, especially
for small-size and medium-size companies with limited resources. As an alternative, such a company
may consider software outsourcing [Ulr02, p. 55]: replacing the whole or, at least, a part of the current
functionality of their proprietary component by commercial or open-source components.

However, outsourcing is a white-box modernization—a resource-intensive process with high failure
risk [SPL03, p. 9]. The risk is especially high, when the outsourcing is done in one big step, as a big-bang
software replacement [RH06, p. 237]. In such cases, to keep existing applications running developers
need to maintain the old version of the framework for the whole time of performing outsourcing. Besides
additional costs of maintaining an old framework version, the task of migrating applications to use the
outsourced framework is complex and error-prone, especially in case the implementation of the outsourced
framework considerably deviates from the framework implementation before outsourcing. Moreover, the
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users of the applications have to wait until the whole outsourcing is performed, and cannot benefit from
improvements achieved at intermediate stages of outsourcing.

Instead, during framework outsourcing we want to keep applications running with the framework being
outsourced. For that, we can provide adapters that shield the applications from the changes in the framework’s
API. Since this activity is an example of the so-called gentle software migration [RH06, p. 237], we call it
gentle framework outsourcing [ŞA08].

As opposed to the big-bang replacement, in which refactorings are rare (as we discussed in Section 2.1.3
for the replacement of JHotDraw), in gentle framework outsourcing refactorings play a key role. When
analyzing the framework and preparing it for outsourcing, refactorings help restructuring the framework’s
internals to decrease code coupling, increase code cohesion, and make valuable business decisions otherwise
hidden in the legacy code easily comprehensible in the framework implementation. The main activity
at this stage is refactoring to pattern [Ker04]—restructuring the implementation to follow general and
domain-specific design patterns.

Refactoring is also the main activity when actually replacing a framework implementation with external
components chosen for outsourcing. For example, replacing a method call to an equivalent “outsourced”
method, refactoring a method’s algorithm to use functionality of an external component, or replacing old
types with more powerful types of an external framework can be modeled as refactorings. Using the history
of API refactorings, ComeBack! can generate adapters that protect existing applications during outsourcing.
Moreover, in outsourcing there is inevitably a need for internal adapters to wire together old and outsourced
framework parts. These adapters can also be generated based on refactoring information, similarly to
adapters that preserve applications. In case more sophisticated adapters are required (e.g., protocol adapters),
either specific adaptation approaches can complement the refactoring-based adaptation, or the required
functionality can be implemented in adapters by hand.

We consider applying gentle framework outsourcing in several academic case studies and, together with our
industrial partners, in an industrial project. This will bring new input as well as developers for ComeBack!.

7.2.5 Progress in Formalizing and Implementing Refactorings

Since the introduction of the first tool for automated refactoring—the Refactoring Browser [Refa]—a
number of refactoring tools were developed and successfully applied in practice. Using a refactoring tool
enables the programmer to rapidly apply design changes to existing code without having to worry about
accidentally introducing code errors. When applying the refactoring operation requested by the programmer,
the refactoring tool checks that the program behavior is preserved according to the semantic rules of the
object language. In Java, support for automated refactorings is provided by stand-alone tools and as a
functionality of such popular Integrated Development Environments as Eclipse [Ecl], JetBrains’ IntelliJ
IDEA [Int], Borland’s JBuilder [JBu] or Sun’s NetBeans [Net].

Although indeed successful in practice, both open-source and commercial refactoring tools have been shown
to contain numerous, potentially harmful bugs [SEM08, SVEM09, ST09, EESV].1 In most cases, these
bugs are due to certain language semantics overlooked by the developers while implementing the program
analysis used in refactoring tools. As a consequence of such bugs in refactoring tools, a program can be
incorrectly transformed even if applied refactorings are seemingly simple and safe, such as renaming a
program entity [SEM08] or changing its accessibility [ST09].

Such bugs find their way into refactoring tools, including heavily tested commercial ones, not because
of the negligence of the tools’ programmers, but due to the complexity of the object language (e.g.,
Java) and the lack of its formal semantics. The main reason is indicated by Schäfer et al.: “Deriving
the correct [refactoring] preconditions relies on a global understanding of the object language in which
programs to be refactored are written, and has to account for all corner cases that might possibly lead to an
incorrect refactoring. In a complex modern language like Java this is an arduous task even for very simple
refactorings” [SVEM09]. Since Java is only weakly formalized (in a textual language specification), when

1For an impressive survey of such bugs identified in major Java refactoring tools we refer to Ekman et al. [EESV].
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implementing a Java refactoring it is possible to misinterpret or simply overlook relevant language properties.
Moreover, the lack of rigour in Java formalization prevents automatically checking the correctness of the
implementation of refactorings, while manually written programs testing for such correctness are incomplete,
for the same reason. As a consequence, many refactorings are specified incompletely, and most (if not all)
refactoring tools are flawed [SEM08, SVEM09, ST09, EESV].

Since our refactoring-based adaptation technology is focused on compensating for application-breaking
refactorings, its application depends directly on the quality of the original refactorings. Even if a comeback is
proved to be correct with regard to the corresponding application-breaking refactoring, if the latter is flawed,
the former will not fix the flaw. That is, if an original refactoring incorrectly transforms the framework due to
a bug in the refactoring’s specification or implementation, the corresponding comeback will not compensate
for the damage caused by the bug. Furthermore, comebacks—the main transformations compensating for
application-breaking API refactorings—are themselves refactorings; hence, their specifications may be
incomplete and their implementations may be flawed as for any other refactorings.

All in all, the application in practice of our (and, probably any) refactoring-based approach will depend on the
progress in formalizing refactorings and developing refactoring tools for conventional object-oriented pro-
gramming languages, such as Java [Tip07, KETF07, DDGM07, SEM08, KS08, SVEM09, ST09, DME09,
WST09].
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A
RefactoringLAN: Two Framework API Versions

and Plugin Types

In this appendix, we summarize RefactoringLAN—a set of examples of framework reuse and API refac-
torings we use throughout the thesis. It is inspired by the LAN simulation lab used at the University of
Antwerp for teaching framework technologies [LAN, DRG+05]. The core of RefactoringLAN are types
defined for modelling a computer network, with such associated concepts as the network itself, its nodes,
packets, and maintenance utilities. While designing RefactoringLAN, in the trade-off between making it
realistic and simple we preferred the simplicity. Introducing new types and members for each example
would unnecessarily complicate the presentation; therefore, we defined as few API types and members as
possible to be used in all thesis examples.1 Each particular example should be considered as an excerpt from
RefactoringLAN, with unnecessary details omitted.

RefactoringLAN consists of two parts: the framework API of the first version reused in a plugin, and the
refactored framework API of the second version. For each of the two parts, in the following two sections we
present a figure and a description summarizing involved types and members. The visual notation used in the
figures is similar to UML class diagrams [Obj05]. However, since we are not concerned about depicting
public fields, the field parts of the class boxes are omitted. Moreover, since we operate only with API
methods, visibility modifiers are omitted. Arrows between class boxes point from the caller to the formal
type of the callee as expected by the caller. For each object serving as a message receiver, its formal type (as
expected by the caller) and actual type (i.e., the object’s class) are specified in source comments.

As a final remark, because the framework’s Node in both versions of the framework API specifies an abstract
method, strictly speaking, the class is abstract and cannot be directly instantiated. However, in certain thesis
examples, in which Node’s abstract method is not involved, considering the class concrete (and not abstract)
simplifies the presentation. For convenience, in all excerpts from RefactoringLAN, in which Node does not
contain an abstract method, the Node class should be considered concrete; otherwise, it should be considered
abstract.

A.1 RefactoringLAN: First Framework API Reused in Plugin

Figure A.1 shows the framework API of the first version reused in the plugin of the same version. API types
are reused in the plugin both by object composition and by inheritance. Besides ordinary calls from the
plugin to the framework, the framework also calls back methods implemented in the plugin. In the following,
we list API types and plugin types, followed by a short description and (if applies) a list of supported API
methods.

1RefactoringLAN should be considered as a collection of examples developed solely for demonstration purposes; all its examples
are implemented in our ComeBack! tool and can be obtained from the tool’s homepage at http://comeback.sourceforge.net.
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A.1.1 Framework API Types

• IPacket: an interface modelling network packets.

– whoCreated() returns the node that created the packet.

• Packet: (implements IPacket) a class modelling network packets.

– Packet() (constructor) accepts the node creating the packet.

– whoCreated() returns the node that created the packet.

– setMessage() sets the given string as the packet message.

– setTimestamp() uses the internal clock to set the timestamp of the message.

• EncryptedPacket: (subclasses Packet) a class modelling encrypted network packets.

– setMessage() overrides the inherited method to encrypt the message being saved.

• PacketFactory: a class for creating network packets.

– createPacket() given a node and its identifier, returns a new packet. Internally, invokes the
constructor of Packet and logs the identifier argument for tracing packet creators.

– packetSeenInNode() returns a report about the occurrence of the given packet in the given node.
Internally, calls the method whoCreated() specified in IPacket.

• Report: a class that encapsulates trace information relating network packets and nodes (since irrelevant
for the presentation, its members are omitted).

• INode: an interface modelling network nodes.

• Node: (implements INode) a class modelling network nodes.

– getName() returns the name of the node.

– getIdentifier() returns the unique node identifier.

– getInfo() returns the node description.

– getNodeLocation() (abstract) returns the location of the node in the network.

– broadcast() sends the given message using broadcasting communication strategy.

– print() outputs the given message to the console.

– log() writes a specific node content to a database.

• Server: (subclasses Node) a class modeling servers as specific network nodes.

• Utils: a class offering a set of utility methods (since irrelevant for the presentation, its API methods
are omitted). The class acts as a caller invoking methods on framework and plugin instances. In all its
method calls, the formal type of the callee as expected by the caller is an API type defined in the first
framework version.

A.1.2 Plugin Types

• PluginEncryptedPacket: (subclasses EncryptedPacket) a class for modelling encrypted network
packets, the encryption of which is defined by the plugin (since irrelevant for the presentation, the
class members are omitted).

• SecurePacket: (implements IPacket) a class modelling secure network packets.

– whoCreated() returns the node that created the packet.
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– securityInfo() returns the description of the security policy as defined and used in the plugin
packet.

• SecureNode: (subclasses Node) a class modelling secure network nodes.

– getNodeLocation() implements the inherited abstract method to return the node location in the
network.

– broadcast() overrides the inherited method to encrypt the message before broadcasting.

– getDescription() returns the description of the encryption algorithm as used in the plugin.
Internally, makes a supercall to the getIdentifier() method defined in Node.

• LAN: a class modelling a local area network (since irrelevant for the presentation, its methods are
omitted). The class acts as a caller invoking methods on framework and plugin instances. In all its
method calls, the formal type of the callee as expected by the caller is an API type (in black-box
framework reuse) or a subtype of an API type (in white-box framework reuse) defined in the first
framework version.
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A.2 RefactoringLAN: Second, Refactored Framework API

Figure A.2 shows the second framework API resulting from the application of a number of refactorings to
API types of the first framework version. In the following, we list the API refactorings applied between the
first and the second framework versions, and denote exactly the affected API types and methods.

• AddClass: adds a new API class SecurePacket with two API methods securityInfo() and getSecurity-
Level(). The former method returns the description of the security policy as defined and used in the
framework packet. The latter method returns an integer indicating the current level of security used in
the framework packet.

• RenameMethod: renames five API methods.

– in IPacket and Packet: whoCreated() to getCreator().

– in Node: getIdentifier() to getID(), getNodeLocation() to getLocation(), and broadcast() to
manycast().

– in PacketFactory: packetSeenInNode() to tracePacket().

• AddMethod: adds a new API method getDescription() to Node. The method is semantically equivalent
to Node’s getInfo() returning the node description.

• RemoveParameter: removes the second parameter (of formal type int) from the signature of the
method createPacket() defined in PacketFactory. The parameter is redundant, since the node identifier
can be obtained from the node, passed as the first method argument.

• AddParameter: adds the second parameter (of type int) to the renamed method manycast() in
Node. The parameter allows to specify other communication strategies besides broadcasting (e.g.,
multicasting).

• PushDownMethod: moves the method log() from Node to its existing subclass Server. The refactoring
addresses a specific framework requirement: only servers may log their content to a database.

• ExtractSubclass: subclasses Node with a new class Workstation and pushes down the method
print(). The refactoring addresses a specific framework requirement: only workstations may print a
message to the console.

• AddMethodCall: adds calls to the methods of the newly introduced class SecurePacket. Can be seen
as a refactoring from the point of view of existing applications, in case they are not exposed to the
effects of the introduced method calls.

• ReplaceMethodCall: update existing calls to invoke refactored methods. This is not a separate
refactoring, but rather a transformation associated with other refactorings. In Figure A.2 we show it
as a separate transformation, to ease tracing the updated framework call sites.
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B
Adaptation-Aware Exception Chaining and Object

Serialization

B.1 Handling Exception Chaining in Adapter Methods

When discussing the insights of an adapter method (Listing 3.3, page 77) we mentioned that library
collections must be treated specially, when wrapping and unwrapping method arguments and return values
in adapter methods. Otherwise, a leakage of objects of one domain (i.e., the framework or plugin) into the
other domain may occur (as discussed furthermore in Section 3.3.2, page 93). However, library collections
are not the only possible source of object leakage. Another language feature being dangerous in this regard
is exception chaining, where an exception object can point to another exception object indicating the original
exception cause. Basically, this is just another name for packing exceptions inside other exceptions. If a
packed exception is of a user-defined API type, the refactoring of the latter may be as dangerous to existing
callers as the refactoring of any other user-defined API type. Therefore, the packed exception object needs to
be obtained from the enclosing exception object (similarly to obtaining an object from a library collection),
and wrapped or unwrapped (similarly to wrapping and unwrapping of ordinary objects).

Listing B.1 shows the code snippet of an adapter method coping with exception chaining as implemented
in Java. For simplicity, this code was omitted from Listing 3.3 on page 77 by assuming only at most one
exception to be possibly thrown by a forwarding call to the wrapper’s adaptee object. The helper functions
isWrapper and isUserDefined were explained for Listing 3.3.

Listing B.1: Handling exception chaining in an adapter method

. . .
/ / f o r w a r d t o adap tee v i a r e f l e c t i o n ( d e t a i l s o m i t t e d )
O b j e c t v a l u e ;
t r y {

v a l u e = a d a p t e e . methodName ( a rgumen t s ) ;
} c a t c h ( Throwable t ) { / / u n r o l l c h a i n o f e x c e p t i o n s i n t o a l i s t

L i s t <Throwable > c h a i n = new A r r a y L i s t <Throwable > ( 3 ) ;
Throwable temp = t ;
/ / s t a r t i n g w i t h t h e f i r s t e x c e p t i o n , go a l o n g t h e e x c e p t i o n c h a i n
w h i l e ( temp != n u l l ) {

c h a i n . add ( temp ) ;
temp = temp . g e t C a u s e ( ) ;

}
/ / check each c h a i n e d e x c e p t i o n f o r need o f w r a p p i n g o r unwrapp ing
b o o l e a n changed = f a l s e ;
f o r ( i n t i = c h a i n . s i z e ( )−1 ; i >= 0 ; i−− ) {

temp = c h a i n . g e t ( i ) ;
i f ( isWrapper ( temp ) ) {

unwrap ( temp ) ;
changed = t r u e ;

} e l s e i f ( i s U s e r D e f i n e d ( temp ) ) {
wrap ( temp ) ;
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changed = t r u e ;
} e l s e i f ( changed ) {

Throwable newTemp = temp . g e t C l a s s ( ) . n e w I n s t a n c e ( ) ;
newTemp . s e t S t a c k T r a c e ( temp . g e t S t a c k T r a c e ( ) ) ;
newTemp . i n i t C a u s e ( c h a i n . g e t ( i + 1 ) ) ;
temp = newTemp ;

}
c h a i n . s e t ( i , temp ) ;

}
throw c h a i n . g e t ( 0 ) ;

}

i f ( v a l u e != n u l l ) {
. . .

B.2 Custom Serialization in Adapters

The methods writeReplace() and readResolve() in Java allow to replace the object being serialized or
deserialized with another object. For example, if a serialized database object is to be deserialized, while
the content of the database changed, it is usually desirable to use the updated database information during
deserialization. In this case, by implementing readResolve() it is possible to read the updated database
information and use it for instantiating the object instead of the obsolete information previously serialized.
The writeReplace() method works similarly, but for custom serialization. If such methods are present in the
original API types, adapters must locate and invoke them to properly realize the serialization mechanism.
Listing B.2 complements Listing 3.6 from page 92 with the code for object replacement supported in the
custom adapter serialization.

Listing B.2: Adapter serialization in Java (complete algorithm)
/∗ adap tee i s t h e a d a p t e r ’ s f i e l d c o n t a i n i n g an i n s t a n c e o f ( f r amework o r p l u g i n )

adap tee ∗ /
p r i v a t e vo id r e a d O b j e c t ( O b j e c t I n p u t S t r e a m i n ) th ro ws IOExcep t ion {

Class <?> c l a z z = . . . / / t h e adap tee type ,
/ / f i l l e d i n a t a d a p t e r g e n e r a t i o n t i m e

C o n s t r u c t o r <?> c o n s t r u c t o r ;
t r y {

c o n s t r u c t o r = c l a z z . g e t C o n s t r u c t o r ( ) ;
} c a t c h ( NoSuchMethodExcept ion nsme ) {

t r y { / / no p u b l i c c o n s t r u c t o r a v a i l a b l e , seek p r o t e c t e d
c o n s t r u c t o r = c l a z z . g e t D e c l a r e d C o n s t r u c t o r ( ) ;

} c a t c h ( E x c e p t i o n ex ) {
/ / n e i t h e r p u b l i c no r p r o t e c t e d d e f a u l t c o n s t r u c t o r f ound
/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e

}
}
O b j e c t toBeRead ;
t r y {

toBeRead = c o n s t r u c t o r . n e w I n s t a n c e ( ) ;
} c a t c h ( E x c e p t i o n ex ) {

/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e
}
t r y {

Method method = c l a z z . ge tD ec l a r ed Me tho d ( " r e a d O b j e c t " ,
O b j e c t I n p u t S t r e a m . c l a s s ) ;

method . s e t A c c e s s i b l e ( t r u e ) ; / / c i r c u m v e n t a c c e s s i b i l i t y
method . i n vo ke ( toBeRead , i n ) ;
method . s e t A c c e s s i b l e ( f a l s e ) ; / / can o n l y be f a l s e

} c a t c h ( NoSuchMethodExcept ion nsme ) {
/ / custom s e r i a l i z a t i o n n o t found , c r i t i c a l f a i l u r e

} c a t c h ( E x c e p t i o n ex ) {
/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e

}
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/ / f i n d and c a l l custom d e s e r i a l i z a t i o n o f r e a d R e s o l v e
t r y {

Method method = c l a z z . ge tD ec l a r ed Me tho d ( " r e a d R e s o l v e " ) ;
/ / s i n c e r e a d R e s o l v e i s found , o b t a i n t h e r e p l a c e m e n t o b j e c t
b o o l e a n a c c e s s i b l e = method . i s A c c e s s i b l e ( ) ;
method . s e t A c c e s s i b l e ( t r u e ) ; / / c i r c u m v e n t a c c e s s i b i l i t y
toBeRead = method . i nv ok e ( toBeRead ) ;
method . s e t A c c e s s i b l e ( a c c e s s i b l e ) ; / / r e s t o r e s t a t e
i f ( toBeRead == n u l l ) {

/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e
}

} c a t c h ( NoSuchMethodExcept ion nsme ) {} / / no r e p l a c e m e n t o b j e c t => j u s t c o n t i n u e
/ / i n s t a n t i a t e t h e adap tee f i e l d
a d a p t e e = toBeRead ;

}

p r i v a t e vo id w r i t e O b j e c t ( O b j e c t O u t p u t S t r e a m o u t ) t h ro ws IOExcep t ion {
/ / s t a r t w i t h t h e custom s e r i a l i z a t i o n o f w r i t e R e p l a c e
Class <?> c l a z z = a d a p t e e . g e t C l a s s ( ) ;
O b j e c t t o B e W r i t t e n = a d a p t e e ;
t r y {

Method method = c l a z z . ge tD ec l a r ed Me tho d ( " w r i t e R e p l a c e " ) ;
/ / s i n c e w r i t e R e p l a c e was found , o b t a i n t h e r e p l a c e m e n t o b j e c t
b o o l e a n a c c e s s i b l e = method . i s A c c e s s i b l e ( ) ;
method . s e t A c c e s s i b l e ( t r u e ) ; / / c i r c u m v e n t a c c e s s i b i l i t y
t o B e W r i t t e n = method . i nv ok e ( t o B e W r i t t e n ) ;
method . s e t A c c e s s i b l e ( a c c e s s i b l e ) ; / / r e s t o r e s t a t e
i f ( t o B e W r i t t e n == n u l l ) {

/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e
}
/ / s e t t h e t y p e o f t h e o b j e c t t o be s e r i a l i z e d t o t h e t y p e o f t h e r e p l a c e m e n t

o b j e c t
c l a z z = t o B e W r i t t e n . g e t C l a s s ( ) ;

} c a t c h ( NoSuchMethodExcept ion nsme ) {} / / no r e p l a c e m e n t o b j e c t => j u s t c o n t i n u e
t r y {

Method method = c l a z z . ge tD ec l a r ed Me tho d ( " w r i t e O b j e c t " ,
O b j e c t O u t p u t S t r e a m . c l a s s ) ;

method . s e t A c c e s s i b l e ( t r u e ) ; / / c i r c u m v e n t a c c e s s i b i l i t y
method . i n vo ke ( t o B e W r i t t e n , o u t ) ;
method . s e t A c c e s s i b l e ( f a l s e ) ; / / can o n l y be f a l s e

} c a t c h ( NoSuchMethodExcept ion nsme ) {
/ / custom s e r i a l i z a t i o n n o t found , c r i t i c a l f a i l u r e

} c a t c h ( E x c e p t i o n ex ) {
/ / custom s e r i a l i z a t i o n mechanism f l awed , c r i t i c a l f a i l u r e

}
}
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C
Introducing Adaptation Layer is

Behavior-Preserving

In this appendix we formally prove that the adapter methods forwarding to the actual program methods (in
our context, by program we mean the framework being adapted) do not change the semantics of the latter.
As a consequence, the addition of an adaptation layer is behavior-preserving with regard to the original
semantics of the program. To achieve such formalization, in the following the denotational semantics [Sto81]
of a typical adapter method will be investigated. We start with a short overview of the denotational semantics
as defined for Java in Section C.1 and then present the formal proof in Section C.2.

C.1 Background on Java Denotational Semantics

The denotational semantics of a programming language combines the syntactic description of that language
with a formalism of its semantics [Sto81]. The language syntax is specified with the help of a generating
grammar, which is a set of rules of the form V →W (or V ::= W ), called productions, that specify how
words of the language can be derived. A production consists of terminal and nonterminal symbols, where a
nonterminal can be thought of as a placeholder for a production and a terminal is a part of a word of the
language. For our proof, it shall suffice to restrict grammars to be context-free, meaning that the left-hand
side of all productions only consist of single nonterminal symbols (V ) and the right-hand side (W ) is a
(possibly empty) string of terminals and nonterminals.

As our comeback technology has been developed for Java, for our proof we will use the dynamic denota-
tional semantics for Java introduced by Alves-Foss and Lam [AFL99], which base on the Java Language
Specification (JLS) [GJSB05] and the Java Virtual Machine Specification [LY99].

C.1.1 Continuations and Semantic Functions

The denotational semantics for Java programs is defined in terms of an environment γ ∈ Γ, which represents
the static and dynamic aspects of the execution engine together with related helper functions, and a store
σ ∈ Σ for representing the memory during program execution.

When evaluating a syntactic construct, continuations are functions pointing to the rest of the code that
should be evaluated afterwards. This abstraction is used for the normal control flow as well as for exceptions.

• A command continuation θ : Γ×Σ takes an environment γ∈ Γ and a store σ∈ Σ and returns an answer
representing a modification.

• An expression continuation κ : V ×T ×Σ→ Σ takes a value v ∈ V , the type of the value t ∈ T , and
a store σ ∈ Σ and returns a store based on the denotation of the evaluated program part.
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Operational semantic functions define the relationship between a language construct and the execution
time behavior:

• Command functions C [[]] : Γ×θ×Σ take the current environment γ ∈ Γ, a command continuation
θ, and the current store σ ∈ Σ and return a continuation function. They are used for evaluating
commands.

• Expression functions E [[]] : Γ×κ×Σ take the current environment γ ∈ Γ, an expression continuation
κ, and the current store σ ∈ Σ and return a continuation function. They are used for evaluating
expressions resulting in a value.

Definitional semantic functions are auxiliary to the actual execution in that they define the execution
context:

• Value functions V [[]] : Γ→V ×T take the current environment γ∈ Γ and return a pair (v, t) consisting
of a value (a basic type or a string) v ∈ V and its type t ∈ T . The fst and snd helper functions project
onto the first and second element of the pair, respectively.

C.1.2 Denotational Semantics Productions

This section contains those corrected and abridged production rules as initially defined by Alves-Foss and
Lam [AFL99] that are used in the proof of the following Section C.2. A question mark above right a
production rule name indicates optionality, that is, the input can match the rule but does not need to.

A return statement first causes the expression to be evaluated and the result to be stored in the environment.
Then the command continuation function recorded in the environment when invoking the method that should
be returned from is retrieved using the getComCont function and evaluated. The promote(τ1,(r,τ)) function
performs numeric promotion of the given value r of the given type τ to the desired type τ1 according to the
rules of the JLS [GJSB05]. &return, &returnVal, and &returnType are auxiliary variables used to record
nesting, scoping, and control flow information in the environment.

C [[<RetStmt>]]γθσ ::=
C [[return <Expr>;]]γθσ = E [[<Expr>]]γκσ where
∀r,τ,σ.κ(r,τ,σ) = θ1(γ1,σ) where

θ1 = γ.getComCont(&return) and
τ1 = γ[&returnType] and
r1 = promote(τ1,(r,τ)) and
γ1 = γ[&returnVal← r1]

A method invocation expression first causes the method arguments to be evaluated. Alves-Foss and Lam do
not define the getSigs function but it seems safe to assume that it returns a representation of the method
signature. The value r holds the list of arguments as prepared by the <ArgList> production rule. That
signature and the method name are used to look up the command continuation function for evaluating the
statements in the method body with the help of the getMethod function of the environment.

E [[<MethodInv>]]γκσ ::=

E [[<Name>(<ArgList>?)]]γκσ = E [[<ArgList>]]γκ1σ where
∀r,τ,σ1.κ1(r,τ,σ1) = m(γθσ1) where

sig = getSigs(r) and
m = γ.getMethod(fstV [[<Name>]]γ,sig) and
∀γ2,σ2.θ(γ2,σ2) = κ(γ2[&returnVal],γ2[&returnType],σ2)

170



An argument list contains arguments that are evaluated from left to right. The append function appends the
given lists.

E [[<ArgList>]]γκσ ::=
[ E [[<Expr>]]γκσ ]
| E [[<ArgList1>,<Expr>]]γκσ = E [[<ArgList1>]]γκ1σ where
∀r1,τ1,σ1.κ1(r1,τ1,σ1) = E [[<Expr>]]γκ2σ1 where
∀r2,τ2,σ2.κ2(r2,τ2,σ2) = κ(q,τ,σ2) where

q = append(r1,r2) and
τ = τ1 + τ2

For our purpose, it is sufficient to look at simple names and ignore qualified names.

V [[<Name>]]γ ::=
V [[<SimpleName>]]γ

A simple name is made up of an identifier, which is typically represented by a special terminal symbol
(here, typeset in italics). The reason for using a single placeholder terminal symbol for all identifiers is that
a context-free grammar cannot verify the validity of the identifier’s occurrence. For example, checking
whether an identifier has been declared before it is used cannot be done by the parser that enforces the
grammar but has to be done by the compiler traversing the abstract syntax tree.

The evaluation of a simple name will produce a pair containing the value of the name and the type “name”.
Unfortunately, Alves-Foss and Lam do not provide a definition for the ValueOf function.

V [[<SimpleName>]]γ ::=
V [[Id]]γ = (ValueOf(Id),“name′′)

A method body is a single block of statements.

C [[<MethodBody>]]γθσ ::=
C [[<Block>]]γθσ

A block contains a list of statements in curly braces represented by a block statement list.

C [[<Block>]]γθσ ::=

[[{<BlockStmtList>?}]]γθσ = C [[<BlockStmtList>]]γθσ

A block statement list evaluates the contained block statements from left to right.

C [[<BlockStmtList>]]γθσ ::=
C [[<BlockStmt>]]γθσ

| C [[<BlockStmtList1><BlockStmt>]]γθσ = C [[<BlockStmtList1>]]γθ1σ where
∀γ1,σ1.θ1(γ1,σ1) = C [[<BlockStmt>]]γ1θσ1

C [[<BlockStmt>]]γθσ ::=
C [[<Stmt>]]γθσ
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The following production rule has been shortened to only show the evaluation of expression statements.

C [[<Stmt>]]γθσ ::=
C [[<ExprStmt>]]γθσ

Expression statements are expressions that can also act as statements, e.g., method invocations.

C [[<ExprStmt>]]γθσ ::=
C [[<Expr>]]γθσ = E [[<Expr>]]γκσ where
∀r,τ,σ1.κ(r,τ,σ1) = θ(γ,σ1)

C.2 Proof of an Adapter Method Not Affecting API Semantics

To show that the addition of the adapters constituting the adaptation layer does not change the semantics of
the program (i.e., the framework, in our case), we formulate and prove a supporting theorem. The informal
description of the proof follows its formal description, while the production rules used were introduced in
the previous Section C.1.2.

Theorem 5 (Denotational Semantics of Adapters)
The adaptation layer does not change the denotational semantics of the framework API.

Proof. Let methodAPI(τ1, . . . ,τn) : τr be the original API method called with τ1, . . . ,τn ∈ T being the
parameter types, a1, . . . ,an the corresponding arguments, and τr ∈ T being the return type; methodAD
the corresponding forwarding adapter method with the same parameters and return type; the environment
γ ∈ Γ and the store σ ∈ Σ the state of the execution environment; and κ : V ×T ×Σ→ Σ an expression
continuation; then E [[methodAD(a1, . . . ,an);]]γκσ = E [[methodAPI(a1, . . . ,an);]]γκσ (the right-hand side
lists the production rules applied):

E [[methodAD(a1, . . . ,an);]]γκσ

= E [[a1, . . . ,an]]γκ1σ where ∀r,τ,σ1.κ1(r,τ,σ1) = m(γθσ1) where <MethodInv>
m = γ.getMethod(methodAD,getSigs(r)) and
∀γ2,σ2.θ(γ2,σ2) = κ(γ2[&returnVal],τr,σ2)

= E [[a1, . . . ,an−1]]γκ2σ where ∀r1,τ1,σ1.κ2(r1,τ1,σ1) = E [[an]]γκ3σ1 where <ArgList>
∀r2,τ2,σ2.κ3(r2,τ2,σ2) = κ1(q,τ,σ2) where
q = append(r1,r2) and τ = τ1 + τ2

= . . . <ArgList>
= E [[a1]]γκnσ

= m(γθσ) <MethodBody>
= C [[{return methodAPI(a1, . . . ,an);}]]γθσ <Block>
= C [[return methodAPI(a1, . . . ,an);]]γθσ <BlockStmtList>
= E [[methodAPI(a1, . . . ,an);]]γκσ where ∀r,τ,σ.κ(r,τ,σ) = θ1(γ1,σ) where <RetStmt>

θ1 = γ.getComCont(&return) and r1 = promote(τr,(r,τ)) and
γ1 = γ[&returnVal← r1]

The first derivation step uses the production rule <MethodInv> for method invocation expressions. The
new expression continuation κ1 continues the derivation with the method body, once all method arguments
have been evaluated using the <ArgList> production. The latter is applied recursively until all argument
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expressions have been evaluated and incorporated into the store σ1. After applying the <MethodBody>
statement production rule the <Block> and the <BlockStmtList> statement productions are used. The
derivation stops after the application of the <RetStmt> production, which results in a method invocation
expression of a method of the new API.

Since the proof applies to an adapter as an abstract specification (as discussed in Section 4.2 on page 111),
in effect it implies that the semantics of the methods of the black-box and white-box executable adapters
generated from the adapter specification do not change the framework’s semantics.
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D
Proofs of Weak Refactoring Inverses and

Comebacks For Several Common Refactorings

In the following, we give definitions and proofs of weak refactoring inverses and comebacks for several
common refactorings, which, when applied to a component API, may break existing applications dependent
on that component. As a result, these transformations enable the creation of an adaptation layer representing
the previous API version (before being affected by the refactorings) and so pave the way for refactoring-
based adaptation. For completeness, we also repeat here the definitions of refactorings, weak refactoring
inverses, and comebacks used as running examples in Chapter 4. The notations used were introduced in
Section 4.3.5.

D.1 AddEmptyClass and RemoveEmptyClass

The AddEmptyClass refactoring adds an empty, unreferenced class to the program (adopted from Ro-
berts [Rob99, p. 103], where it is called AddClass).

AddEmptyClass(class, super, sub)

pre : IsClass(super)∧ (1.1)
¬IsClass(class)∧ (1.2)
∀c ∈ sub.(IsClass(c)∧Superclass(c) = super) (1.3)

post : IsClass′ = IsClass[class/true] (1.4)
ClassReferences′ = ClassReferences[class/ /0] (1.5)
Superclass′ = ∀c ∈ sub.Superclass[class/super][c/class] (1.6)
InstanceVariablesDefinedBy′ = InstanceVariablesDefinedBy[class/ /0] (1.7)

The RemoveEmptyClass refactoring removes an empty, unreferenced class from the program (adopted from
Roberts [Rob99, p. 104], where it is called RemoveClass).

RemoveEmptyClass(class)

pre : IsClass(class)∧ (1.8)
ClassReferences(class) = /0∧ (1.9)
IsEmptyClass(class) (1.10)
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post : IsClass′ = IsClass[class/ f alse] (1.11)
ClassReferences′ = ∀c 6= class.∀s.ClassReferences[class/↑]

[c/ClassReferences(c)\{(class,s)}] (1.12)
Superclass′ = ∀c ∈ Subclasses(class).Superclass[class/↑]

[c/Superclass(class)] (1.13)
ReferencesToInstanceVariable′ = ∀v.∀c.∀s.

ReferencesToInstanceVariable[(class,v)/↑]
[(c,v)/ReferencesToInstanceVariable(c,v)\{(class,s)}] (1.14)

(1.15)

Composing the RemoveInstanceVariable, RemoveMethod, and RemoveEmptyClass refactorings yields
the RemoveClass refactoring for removing non-empty, unreferenced classes:

RemoveClass(class) := 〈
∀v ∈ InstanceVariablesDefinedBy(class).RemoveInstanceVariable(class,v),
∀m ∈ {m|Method(class,m)↓} .RemoveMethod(class,m),
RemoveEmptyClass(class)〉.

Theorem 6 (InvAddEmptyClass I)
The weak refactoring inverse for the AddEmptyClass refactoring, InvAddEmptyClass, is the Remove-
EmptyClass refactoring:

InvAddEmptyClass(class,superclass,subclasses) := RemoveEmptyClass(class).

Proof.

1. InvAddEmptyClass is behavior-preserving by definition, because it consists of the single refactoring
RemoveEmptyClass.

2. postAddEmptyClass(P) |= preInvAddEmptyClass⇔
postAddEmptyClass(P) |= preRemoveEmptyClass:
Let I ′ be the interpretation gained by applying the AddEmptyClass refactoring to the source code S
of the program P reflected by P′ = postAddEmptyClass(P):

I ′ =
(
transAddEmptyClass(S), ·I

)
.

Then preRemoveEmptyClass evaluates to true under I ′:

[IsClass(class)]I
′ ∧∗ [ClassReferences(class)]I

′
= /0∧∗ [IsEmptyClass(class)]I

′

= [IsClass(class)]I{1.4:IsClass[class/true]}∧∗

[ClassReferences(class)]I{1.5:ClassReferences[class/ /0]} = /0∧∗

6 ∃s.[Method(class,s)]I
′
↓∧∗

6 ∃v.v ∈ [InstanceVariablesDefinedBy(class)]I{1.7:InstanceVariablesDefinedBy[class/ /0]}

= >∧∗>∧∗>∧∗>=>

The second-to-last truth value can be derived from Invariant 2 (page 122) and the fact that the
AddEmptyClass refactoring does not add any methods to the new class. More formally, it can
be shown that the formula ∀s.Method(class,s)↑ is a refactoring invariant for the AddEmptyClass
refactoring.
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3. postInvAddEmptyClass(postAddEmptyClass(P)) |= preAddEmptyClass⇔
postRemoveEmptyClass(postAddEmptyClass(P)) |= preAddEmptyClass:
Let I ′′ be the interpretation gained by applying the InvAddEmptyClass inverse refactoring to the
source code S′ of the program P′ reflected by P′′ = postInvAddEmptyClass(P′):

I ′′ =
(
transRemoveEmptyClass(S′), ·I

)
.

The refactoring invariant of the AddEmptyClass refactoring is

inv(AddEmptyClass) = {IsClass(super),∀c ∈ sub.IsClass(c)} ,

and the invariant of the refactoring chain 〈AddEmptyClass,RemoveEmptyClass〉 is

inv(〈AddEmptyClass,RemoveEmptyClass〉) = {IsClass(super),∀c ∈ sub.IsClass(c)} .

Then preAddEmptyClass evaluates to true under I ′′ and the invariant:

[IsClass(super)]I
′′ ∧∗¬∗[IsClass(class)]I

′′∧∗

∀c ∈ sub.
(
[IsClass(c)]I

′′ ∧∗ [Superclass(c)]I
′′
= superclass

)
= [IsClass(super)]I

′{Inv}∧∗¬∗[IsClass(class)]I
′{1.11:IsClass[class/ f alse]}∧∗

∀c ∈ sub.
(
[IsClass(c)]I

′{Inv}∧∗

[Superclass(c)]I
′{1.13:Superclass[c/Superclass(class)]} = superclass

)
= >∧∗¬∗⊥∧∗ (>∧∗>) =>.

Although the RemoveEmptyClass refactoring is a weak inverse for the AddEmptyClass refactoring, it is
not a comeback, because it cannot always be executed on adapters: although the framework class is empty,
the generated adapter will have an adaptee field if it is at the root of an adapter hierarchy, violating thus the
precondition of the RemoveEmptyClass refactoring. The adaptee field—if defined in the adapter and not
inherited by it—cannot be simply removed, it must be pushed down to all subclasses of the base adapter, if
there are any. The RemoveEmptyAdapter refactoring addresses this issue:

RemoveEmptyAdapter(class) := 〈
∀v ∈ {v|v ∈ InstanceVariablesDefinedBy(class)∧ v = “adaptee”} .
PushDownInstanceVariable(Subclasses(class),v),

RemoveEmptyClass(class)〉.

The adaptee field will always be removed from the adapter before the RemoveEmptyClass refactoring is
executed, even if there are no subclasses into which the field can be pushed down. This is due to the
PushDownInstanceVariable refactoring (formally specified in Appendix E.3) using universal quantifica-
tion internally, so that it can also be applied to a class without subclasses.

The RemoveEmptyAdapter refactoring also qualifies as a weak inverse for the AddEmptyClass refactoring,
but additionally it can be executed on adapters. As a weak refactoring inverse, it will conceptually always
be executed in a context created by a previous execution of the AddEmptyClass refactoring. Although its
precondition is theoretically stronger than that of the RemoveEmptyClass refactoring, it is not in practice,
because the removed classes will always be empty. Note that the universal quantification works similar to an
if-then construct: it is successfully executed if the quantified set is empty. As a comeback, when executed
on adapters, the RemoveEmptyAdapter refactoring will take care of pushing down the adaptee field to all
subclasses.
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Corollary 4 (RemoveEmptyAdapter I)
The RemoveEmptyAdapter refactoring is a comeback of the AddEmptyClass refactoring.

Theorem 7 (InvRemoveEmptyClass I)
The weak refactoring inverse for the RemoveEmptyClass refactoring, InvRemoveEmptyClass, is the
AddEmptyClass refactoring:

InvRemoveEmptyClass(class) := AddEmptyClass(class,Superclass(class),Subclasses(class)).

Proof. This proof is very similar to the one of Theorem 6.

1. InvRemoveEmptyClass is behavior-preserving by definition, because it consists of the single refacto-
ring AddEmptyClass.

2. postRemoveEmptyClass(P) |= preInvRemoveEmptyClass⇔
postRemoveEmptyClass(P) |= preAddEmptyClass:
Let I ′ be the interpretation gained by applying the RemoveEmptyClass refactoring to the source code
S of the program P reflected by P′ = postRemoveEmptyClass(P)

I ′ =
(
transRemoveEmptyClass(S), ·I

)
,

and let Z be the variable assignment induced by theorem 7

Z = {class 7→ class,super 7→ Superclass(class),sub 7→ Subclasses(class)} .

Then preAddEmptyClass evaluates to true under I ′ and Z:

[IsClass(super)]I
′,Z ∧∗¬∗[IsClass(class)]I

′,Z∧∗

∀c ∈ subZ .([IsClass(c)]I
′,Z ∧∗ [Superclass(c)]I

′,Z = super)

= [IsClass(Superclass(class))]I
′ ∧∗¬∗[IsClass(class)]I

′∧∗

∀c ∈ Subclasses(class).([IsClass(c)]I
′ ∧∗ [Superclass(c)]I

′
= Superclass(class))

= >∧∗¬∗[IsClass(class)]I{1.11:IsClass[class/ f alse]}∧∗

∀c ∈ Subclasses(class).
(
[IsClass(c)]I{Inv 5}∧∗

[Superclass(c)]I{1.13:Superclass[c/Superclass(class)]} = Superclass(class)
)

= >∧∗¬∗⊥∧∗ (>∧∗>) =>

The first and the last truth value can be derived from Invariant 5 (page 122) and the fact that the
RemoveEmptyClass refactoring does not remove the superclass of the removed class.

3. postInvRemoveEmptyClass(postRemoveEmptyClass(P)) |= preRemoveEmptyClass⇔
postAddEmptyClass(postRemoveEmptyClass(P)) |= preRemoveEmptyClass:
Let I ′′ be the interpretation gained by applying the InvRemoveEmptyClass inverse refactoring to the
source code S′ of the program P′ reflected by P′′ = postInvRemoveEmptyClass(P′):

I ′′ =
(
transAddEmptyClass(S′), ·I

)
.

Then preRemoveEmptyClass evaluates to true under I ′′:

[IsClass(class)]I
′′ ∧∗ [ClassReferences(class)]I

′′
= /0∧∗ [IsEmptyClass(class)]I

′′

= [IsClass(class)]I
′{1.4:IsClass[class/true]}∧∗

[ClassReferences(class)]I
′{1.5:ClassReferences[class/ /0]} = /0∧∗

6 ∃s.[Method(class,s)]I
′′
↓∧∗

6 ∃v.v ∈ [InstanceVariablesDefinedBy(class)]I
′{1.7:InstanceVariablesDefinedBy[class/ /0]}

= >∧∗>∧∗>∧∗>∧∗>
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Theorem 8 (InvRemoveEmptyClass II)
InvRemoveEmptyClass can be executed on adapters.

Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
AddEmptyClass refactoring precondition it holds that IP |= a =⇒ IA |= a:

IP |= IsClass(super)
Corollary 2

=⇒ IA |= IsClass(super)

IP |= ¬IsClass(class)⇔ IP 6|= IsClass(class)
Corollary 2

=⇒
IA 6|= IsClass(class)⇔ IA |= ¬IsClass(class)

∀c ∈ sub.
(

IP |= IsClass(c)
Corollary 2

=⇒ IA |= IsClass(c)
)

∀c ∈ sub.
(

IP |= (Superclass(c) = super)
Corollary 2

=⇒ IA |= (Superclass(c) = super)
)

D.2 AddMethod and RemoveMethod

The AddMethod refactoring adds a new, unreferenced method to a class. If a method with the same
name already exists in a superclass, the method to be added must have the same semantics (adopted from
Roberts [Rob99, p. 106]).

AddMethod(class, selector, body)
pre : IsClass(class)∧ (2.1)

¬DefinesSelector(class,selector)∧ (2.2)
(¬UnderstandsSelector(Superclass(class),selector)∨ (2.3)

LookedUpMethod(Superclass(class),selector)
α≡ body

)
(2.4)

post : Method′ = Method[(class,selector)/body] (2.5)
Senders′ = Senders[(class,selector)/ /0] (2.6)
ReferencesToInstanceVariable′ = ∀c ∈ Superclass∗(class)∪{class} .
∀v ∈ {v|DefinesInstanceVariable(c,v)}∩UnboundVariables(body).
ReferencesToInstanceVariable[(c,v)/
ReferencesToInstanceVariables(c,v)∪{(class,selector)}] (2.7)

ClassReferences′ = ∀c ∈ {c|IsClass(c)}∩UnboundVariables(body).
ClassReferences[c/ClassReferences(c)∪{(class,selector)}] (2.8)

The RemoveMethod refactoring removes a method from a class if it is either unreferenced or overrides an
inherited method with the same semantics (adopted from Roberts [Rob99, p. 107]).

RemoveMethod(class, selector, body)
pre : IsClass(class)∧ (2.9)

DefinesSelector(class,selector)∧ (2.10)
(Senders(class,selector) = /0∨ (2.11)

Method(class,selector)
α≡ LookedUpMethod(Superclass(class),selector)

)
(2.12)
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post : Method′ = Method[(class,selector)/↑] (2.13)
Senders′ = Senders[(class,selector)/↑] (2.14)
ClassReferences′ = ∀c ∈ {c|IsClass(c)}∩UnboundVariables(body).

ClassReferences[c/ClassReferences(c)\{(class,selector)}] (2.15)
ReferencesToInstanceVariable′ = ∀c ∈ Superclass∗(class)∪{class} .
∀v ∈ {v|DefinesInstanceVariable(c,v)}∩UnboundVariables(body).
ReferencesToInstanceVariable[(c,v)/
ReferencesToInstanceVariables(c,v)\{(class,selector)}] (2.16)

Theorem 9 (InvAddMethod I)
The weak refactoring inverse for the AddMethod refactoring, InvAddMethod, is the RemoveMethod refacto-
ring:

InvAddMethod(class,selector,body) := RemoveMethod(class,selector,body).

Proof.

1. InvAddMethod is behavior-preserving by definition, because it consists of the single refactoring
RemoveMethod.

2. postAddMethod(P) |= preInvAddMethod⇔ postAddMethod(P) |= preRemoveMethod:
Let I ′ be the interpretation gained by applying the AddMethod refactoring to the source code S of the
program P reflected by P′ = postAddMethod(P):

I ′ =
(
transAddMethod(S), ·I

)
.

The refactoring invariant of the AddMethod refactoring is

inv(AddMethod) = {IsClass(class)∧
(¬UnderstandsSelector(Superclass(class),selector)∨

LookedUpMethod(Superclass(class),selector)
α≡ body

)}
.

Then preRemoveMethod evaluates to true under I ′ and the invariant:

[IsClass(class)]I
′ ∧∗ [DefinesSelector(class,selector)]I

′∧∗(
[Senders(class,selector)]I

′
= /0∨∗

[Method(class,s)]I
′ α≡ [LookedUpMethod(Superclass(class),s)]I

′
)

= [IsClass(class)]I{Inv}∧∗ [Method(class,selector)]I{2.5:Method[(class,selector)/body]} ↓∧∗(
[Senders(class,selector)]I{2.6:Senders[(class,selector)/ /0]} = /0∨∗ ∗

)
>∧∗>∧∗ (>∨∗ ∗) =>

3. postInvAddMethod(postAddMethod(P)) |= preAddMethod⇔
postRemoveMethod(postAddMethod(P)) |= preAddMethod:
Let I ′′ be the interpretation gained by applying the InvAddMethod inverse refactoring to the source
code S′ of the program P′ reflected by P′′ = postInvAddMethod(P′):

I ′′ =
(
transRemoveMethod(S′), ·I

)
.
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The invariant of the refactoring chain 〈AddMethod,RemoveMethod〉 is

inv(〈AddMethod,RemoveMethod〉) = {IsClass(class)∧
(¬UnderstandsSelector(Superclass(class),selector)∨

LookedUpMethod(Superclass(class),selector)
α≡ body

)}
.

Then preAddMethod evaluates to true under I ′′ and the invariant:

[IsClass(class)]I
′′ ∧∗¬∗[DefinesSelector(class,selector)]I

′′∧∗(
¬∗[UnderstandsSelector(Superclass(class),selector)]I

′′∨∗

[LookedUpMethod(Superclass(class),selector)]I
′′ α≡ body

)
= [IsClass(class)]I

′{Inv}∧∗ [Method(class,selector)]I
′{2.13:Method[(class,selector)/↑]} ↑∧∗(

¬∗[UnderstandsSelector(Superclass(class),selector)]I
′{Inv}∨∗

[LookedUpMethod(Superclass(class),selector)]I
′{Inv} α≡ body

)
= >∧∗>∧∗>=>

Theorem 10 (InvAddMethod II)
InvAddMethod can be executed on adapters.

Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
RemoveMethod refactoring precondition it holds that IP |= a =⇒ IA |= a:

IP |= IsClass(class)
Corollary 2

=⇒ IA |= IsClass(class)

IP |= DefinesSelector(class,selector)
Corollary 2

=⇒ IA |= DefinesSelector(class,selector)

IP |= Senders(class,selector) = /0
Corollary 2

=⇒ IA |= Senders(class,selector) = /0

IP |= Method(class,s)
α≡ LookedUpMethod(Superclass(class),s)

Corollary 2
=⇒

IA |= Method(class,s)
α≡ LookedUpMethod(Superclass(class),s)

Unless the refactoring engine performing the RemoveMethod refactoring provides a means for storing the
code of the deleted method, there cannot be any refactoring inverse for it. Although state-of-the-technology
systems, such as Eclipse [Ecl], NetBeans [Net], and JBuilder [JBu], only store the history of executed
refactorings and their parameters, in the following we show that the AddMethod refactoring can serve as
a weak inverse for the RemoveMethod refactoring. Thus, existing refactoring engines would need to be
extended (or framework developers need to manually intervene), so that the following proof can be put into
practice.

Theorem 11 (InvRemoveMethod I)
The weak refactoring inverse for the RemoveMethod refactoring, InvRemoveMethod, is the AddMethod
refactoring:

InvRemoveMethod(class,selector,body) := AddMethod(class,selector,body).

Proof.
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1. InvRemoveMethod is behavior-preserving by definition, because it consists of the single refactoring
AddMethod.

2. postRemoveMethod(P) |= preInvRemoveMethod⇔ postRemoveMethod(P) |= preAddMethod:
Let I ′ be the interpretation gained by applying the RemoveMethod refactoring to the source code S of
the program P reflected by P′ = postRemoveMethod(P):

I ′ =
(
transRemoveMethod(S), ·I

)
.

The refactoring invariant of the RemoveMethod refactoring is

inv(RemoveMethod) = {IsClass(class)} .

Then preAddMethod evaluates to true under I ′ and the invariant:

[IsClass(class)]I
′ ∧∗¬∗[DefinesSelector(class,selector)]I

′∧∗(
¬∗[UnderstandsSelector(class,selector)]I

′∨∗

[LookedUpMethod(class,selector)]I
′ α≡ body

)
= [IsClass(class)]I{Inv}∧∗ [Method(class,selector)]I{2.13:Method[(class,selector)/↑]} ↑∧∗

= >∧∗>∧∗>=>

The last truth value can be derived from the fact that the removed method must have been added
before using the AddMethod refactoring and therefore fulfilled that part of the precondition.

3. postInvRemoveMethod(postRemoveMethod(P)) |= preRemoveMethod⇔
postAddMethod(postRemoveMethod(P)) |= preRemoveMethod:
Let I ′′ be the interpretation gained by applying the InvRemoveMethod inverse refactoring to the
source code S′ of the program P′ reflected by P′′ = postInvRemoveMethod(P′):

I ′′ =
(
transAddMethod(S′), ·I

)
.

The invariant of the refactoring chain 〈RemoveMethod,AddMethod〉 is

inv(〈RemoveMethod,AddMethod〉) = {IsClass(class)} .

Then preRemoveMethod evaluates to true under I ′′ and the invariant:

[IsClass(class)]I
′′ ∧∗ [DefinesSelector(class,selector)]I

′′∧∗(
[Senders(class,selector)]I

′′
= /0∨∗

[Method(class,s)]I
′′ α≡ [LookedUpMethod(Superclass(class),s)]I

′′
)

= [IsClass(class)]I
′{Inv}∧∗ [Method(class,selector)]I

′{2.5:Method[(class,selector)/body]} ↓∧∗(
[Senders(class,selector)]I

′{2.6:Senders[(class,selector)/ /0]} = /0∨∗ ∗
)

>∧∗>∧∗ (>∨∗ ∗) =>

Theorem 12 (InvRemoveMethod II)
InvRemoveMethod can be executed on adapters.
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Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
AddMethod refactoring precondition it holds that IP |= a =⇒ IA |= a:

IP |= IsClass(class)
Corollary 2

=⇒ IA |= IsClass(class)

IP |= ¬DefinesSelector(class,selector)
Corollary 2

=⇒ IA |= ¬DefinesSelector(class,selector)
IP |= ¬UnderstandsSelector(Superclass(class),selector)⇔

IP 6|= UnderstandsSelector(Superclass(class),selector)
Corollary 2

=⇒ IA 6|= UnderstandsSelector(Superclass(class),selector)⇔
IA |= ¬UnderstandsSelector(Superclass(class),selector)

IP |= LookedUpMethod(Superclass(class),selector)
α≡ body

Corollary 2
=⇒

IA |= LookedUpMethod(Superclass(class),selector)
α≡ body

D.3 RenameClass

The RenameClass refactoring renames an existing class in the program and updates all references. It
updates the references in the source code with the help of the RenameReferences analysis function, the
inner workings of which are not important here. The following definition is adopted from Roberts [Rob99,
p. 105].

RenameClass(class, newClass)

pre : IsClass(class)∧ (3.1)
¬IsClass(newClass) (3.2)

post : IsClass′ = IsClass[class/ f alse][newClass/true] (3.3)
ClassReferences′ = ∀c 6= class.∀s ∈ {s|(class,s) ∈ ClassReferences(c)} .

ClassReferences[class/↑][newClass/ClassReferences(class)]
[c/ClassReferences(c)\{(class,s)}∪{(newClass,s)}] (3.4)

ReferencesToInstanceVariable′ = ∀(c,v,s) ∈
{(c,v,s)|(class,s) ∈ ReferencesToInstanceVariable(c,v)∧ c 6= class} .
∀lv.∀lr ∈ {lr|(class, lr) ∈ ReferencesToInstanceVariable(class, lv)} .
ReferencesToInstanceVariable[(class, lv)/↑][(newClass, lv)/
ReferencesToInstanceVariable(class, lv)\{(class, lr)}∪{(newClass, lr)}]
[(c,v)/ReferencesToInstanceVariable(c,v)\{(class,s)}∪{(newClass,s)}] (3.5)

Superclass′ = ∀c ∈ Subclasses(class).Superclass[class/↑]
[newClass/Superclass(class)][c/newClass] (3.6)

Method′ = ∀c.∀s.Method[(newClass,s)/Method(class,s)][(class,s)/↑]
[(c,s)/RenameReferences(Method(c,s),class,newClass)] (3.7)

Senders′ = ∀s.Senders[(newClass,s)/Senders(class,s)][(class,s)/↑] (3.8)
InstanceVariablesDefinedBy′ = InstanceVariablesDefinedBy[newClass/

InstanceVariablesDefinedBy(class)][class/↑] (3.9)
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Theorem 13 (InvRenameClass I)
The weak refactoring inverse for the RenameClass refactoring, InvRenameClass, is the RenameClass
refactoring:

InvRenameClass(class,newClass) := RenameClass(newClass,class).

Proof.

1. InvRenameClass is behavior-preserving by definition, because it consists of the single refactoring
RenameClass.

2. postRenameClass(P) |= preInvRenameClass⇔ postRenameClass(P) |= preRenameClass:
Let I ′ be the interpretation gained by applying the RenameClass refactoring to the source code S of
the program P reflected by P′ = postRenameClass(P)

I ′ =
(
transRenameClass(S), ·I

)
,

and let Z be the variable assignment induced by theorem 13

Z = {class 7→ newClass,newClass 7→ class} .

Then preRenameClass evaluates to true under I ′ and Z:

[IsClass(class)]I
′,Z ∧∗¬∗[IsClass(newClass)]I

′,Z

= [IsClass(newClass)]I
′ ∧∗¬∗[IsClass(class)]I

′

= [IsClass(newClass)]I{3.3:IsClass[newClass/true]}∧∗¬∗[IsClass(class)]I{3.3:IsClass[class/ f alse]}

= >∧∗¬∗⊥=>

3. postInvRenameClass(postRenameClass(P)) |= preRenameClass:
Let I ′′ be the interpretation gained by applying the RenameClass refactoring to the source code S′ of
the program P′ reflected by P′′ = postRenameClass(P′)

I ′′ =
(
transRenameClass(S′), ·I

)
,

and let Z′ be the variable assignment induced by theorem 13

Z′ = {class 7→ newClass,newClass 7→ class} .

Then preRenameClass evaluates to true under I ′′ and Z′:

[IsClass(class)]I
′′,Z′ ∧∗¬∗[IsClass(newClass)]I

′′,Z′

= [IsClass(newClass)]I
′′ ∧∗¬∗[IsClass(class)]I

′′

= [IsClass(newClass)]I
′{3.3:IsClass[newClass/true]}∧∗

¬∗[IsClass(class)]I
′{3.3:IsClass[class/ f alse]}

= >∧∗¬∗⊥=>

Theorem 14 (InvRenameClass II)
InvRenameClass can be executed on adapters.

Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
AddEmptyClass refactoring precondition it holds that IP |= a =⇒ IA |= a:

IP |= IsClass(class)
Corollary 2

=⇒ IA |= IsClass(class)

IP |= ¬IsClass(newClass)⇔ IP 6|= IsClass(newClass)
Corollary 2

=⇒
IA 6|= IsClass(newClass)⇔ IA |= ¬IsClass(newClass)

184



D.4 RenameMethod

The RenameMethod refactoring renames an existing method in a set of classes and updates all references
(adopted from Roberts [Rob99, p. 108]).

RenameMethod(classes, selector, newSelector)
pre : ∀c ∈ classes.IsClass(c)∧ (4.1)

DefinesSelector(c,selector)∧ (4.2)
(∀d /∈ classes.DefinesSelector(d,selector)⇒

(Senders(d,selector)∩Senders(c,selector)) = /0) (4.3)

post : Method′ = ∀d.∀s.∀c ∈ classes.Method[(c,newSelector)/Method(c,selector)]
[(c,selector)/↑][(d,s)/RenameReferences(Method(d,s),selector,newSelector)] (4.4)

Senders′ = ∀c ∈ classes.Senders[(c,newSelector)/Senders(c,selector)]
[(c,selector)/↑] (4.5)

ReferencesToInstanceVariable′ = ∀c ∈ classes.∀(d,v) ∈
{(d,v)|(c,selector) ∈ ReferencesToInstanceVariable(d,v)} .
ReferencesToInstanceVariable[(d,v)/ReferencesToInstanceVariable(d,v)\
{(c,selector)}∪{(c,newSelector)} (4.6)

ClassReferences′ = ∀c ∈ {c|IsClass(c)} .
∀class ∈ {class|class ∈ classes∧ (class,selector) ∈ ClassReferences(c)} .
ClassReferences[c/ClassReferences(c)\
{(class,selector)}∪{(class,newSelector)}] (4.7)

Theorem 15 (InvRenameMethod I)
The weak refactoring inverse for the RenameMethod refactoring, InvRenameMethod, is the RenameMethod
refactoring:

InvRenameMethod(classes,selector,newSelector) :=
RenameMethod(classes,newSelector,selector).

Proof.

1. InvRenameMethod is behavior-preserving by definition, because it consists of the single refactoring
RenameMethod.

2. postRenameMethod(P) |= preInvRenameMethod⇔ postRenameMethod(P) |= preRenameMethod:
Let I ′ be the interpretation gained by applying the RenameMethod refactoring to the source code S of
the program P reflected by P′ = postRenameMethod(P)

I ′ =
(
transRenameMethod(S), ·I

)
,

and let Z be the variable assignment induced by theorem 15

Z = {classes 7→ classes,selector 7→ newSelector,newSelector 7→ selector} .

The refactoring invariant of the RenameMethod refactoring is

inv(RenameMethod) = {∀c ∈ classes.IsClass(c)∧
(∀d /∈ classes.DefinesSelector(d,selector)⇒

(Senders(d,selector)∩Senders(c,selector)) = /0)} .
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Then preRenameMethod evaluates to true under I ′,Z, and the invariant:

∀c ∈ classesZ .[IsClass(c)]I
′,Z ∧∗ [DefinesSelector(c,selector)]I

′,Z∧∗(
∀d /∈ classesZ .[DefinesSelector(d,selector)]I

′,Z ⇒∗(
[Senders(d,selector)]I

′,Z ∩ [Senders(c,selector)]I
′,Z
)

= /0

)
= ∀c ∈ classes.[IsClass(c)]I

′ ∧∗ [DefinesSelector(c,newSelector)]I
′∧∗(

∀d /∈ classes.[DefinesSelector(d,newSelector)]I
′ ⇒∗(

[Senders(d,newSelector)]I
′ ∩ [Senders(c,newSelector)]I

′
)

= /0

)
= ∀c ∈ classes.[IsClass(c)]I{Inv}∧∗

[Method(c,newSelector)]I{4.4:Method[(c,newSelector)/Method(c,selector)]} ↓∧∗(
∀d /∈ classes.[DefinesSelector(d,newSelector)]I{Inv}⇒∗(
[Senders(d,newSelector)]I{Inv}∩ [Senders(c,newSelector)]I{Inv}

)
= /0

)
= >

3. postInvRenameMethod(postRenameMethod(P)) |= preRenameMethod:
Let I ′′ be the interpretation gained by applying the RenameMethod refactoring to the source code S′

of the program P′ reflected by P′′ = postRenameMethod(P′)

I ′′ =
(
transRenameMethod(S′), ·I

)
,

and let Z′ be the variable assignment induced by theorem 15

Z′ = {classes 7→ classes,selector 7→ newSelector,newSelector 7→ selector} .

Then preRenameMethod evaluates to true under I ′′,Z′, and the invariant:

∀c ∈ classesZ′ .[IsClass(c)]I
′′,Z′ ∧∗ [DefinesSelector(c,selector)]I

′′,Z′∧∗(
∀d /∈ classesZ′ .[DefinesSelector(d,selector)]I

′′,Z′ ⇒∗(
[Senders(d,selector)]I

′′,Z′ ∩ [Senders(c,selector)]I
′′,Z′
)

= /0

)
= ∀c ∈ classes.[IsClass(c)]I

′′ ∧∗ [DefinesSelector(c,newSelector)]I
′′∧∗(

∀d /∈ classes.[DefinesSelector(d,newSelector)]I
′′ ⇒∗(

[Senders(d,newSelector)]I
′′ ∩ [Senders(c,newSelector)]I

′′
)

= /0

)
= ∀c ∈ classes.[IsClass(c)]I

′{Inv}∧∗

[Method(c,newSelector)]I
′{4.4:Method[(c,newSelector)/Method(c,selector)]} ↓∧∗(

∀d /∈ classes.[DefinesSelector(d,newSelector)]I
′{Inv}⇒∗(

[Senders(d,newSelector)]I
′{Inv}∩ [Senders(c,newSelector)]I

′{Inv}
)

= /0

)
= >

Theorem 16 (InvRenameMethod II)
InvRenameMethod can be executed on adapters.
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Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
RenameMethod refactoring precondition it holds that IP |= a =⇒ IA |= a:

∀c ∈ classes.
(

IP |= IsClass(c)
Corollary 2

=⇒ IA |= IsClass(c)
)

∀c ∈ classes.
(

IP |= DefinesSelector(c,selector)
Corollary 2

=⇒ IA |= DefinesSelector(c,selector)
)

∀c ∈ classes.(IP |= (∀d /∈ classes.DefinesSelector(d,selector)⇒
(Senders(d,selector)∩Senders(c,selector)) = /0)

Corollary 2
=⇒ IA |= (∀d /∈ classes.DefinesSelector(d,selector)⇒

(Senders(d,selector)∩Senders(c,selector)) = /0))

D.5 MoveMethod

The MoveMethod refactoring moves an existing method from one class to another and ajust the method
to its new location. The following is our general definition of the refactoring, which is based on a more
specialized definition as described by Roberts [Rob99, p. 109].

MoveMethod(class, selector, newClass)

pre : IsClass(class)∧ (5.1)
DefinesSelector(class,selector)∧ (5.2)
¬UnderstandsSelector(Superclass(class),selector)∧ (5.3)
IsClass(newClass)∧ (5.4)
¬UnderstandsSelector(newClass,selector)∧ (5.5)
UnboundVariables(class,selector) = /0 (5.6)

post : Method′ = Method[(newClass,selector)/Method(class,selector)]
[(class,selector)/↑] (5.7)

Senders′ = Senders[(newClass,selector)/Senders(class,selector)]
[(class,selector)/↑] (5.8)

ClassReferences′ = ∀c ∈ {c|IsClass(c)∧ (class,selector) ∈ ClassReferences(c)} .
ClassReferences[c/ClassReferences(c)\
{(class,selector)}∪{(newClass,selector)}] (5.9)

Theorem 17 (InvMoveMethod I)
The weak refactoring inverse for the MoveMethod refactoring, InvMoveMethod, is the MoveMethod refacto-
ring:

InvMoveMethod(class,selector,newClass) :=
MoveMethod(newClass,selector,class).

Proof.

1. InvMoveMethod is behavior-preserving by definition, because it consists of the single refactoring
MoveMethod.
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2. postMoveMethod(P) |= preInvMoveMethod⇔ postMoveMethod(P) |= preMoveMethod:
Let I ′ be the interpretation gained by applying the MoveMethod refactoring to the source code S of
the program P reflected by P′ = postMoveMethod(P)

I ′ =
(
transMoveMethod(S), ·I

)
,

and let Z be the variable assignment induced by theorem 17

Z = {class 7→ newClass,selector 7→ selector,newClass 7→ class} .

The refactoring invariant of the MoveMethod refactoring is

inv(MoveMethod) = {IsClass(class)∧
¬UnderstandsSelector(Superclass(class),selector)∧
IsClass(newClass)} .

Then preMoveMethod evaluates to true under I ′,Z, and the invariant:

[IsClass(class)]I
′,Z ∧∗ [DefinesSelector(class,selector)]I

′,Z∧∗

¬∗[UnderstandsSelector(Superclass(class),selector)]I
′,Z∧∗

[IsClass(newClass)]I
′,Z ∧∗¬∗[UnderstandsSelector(newClass,selector)]I

′,Z∧∗

[UnboundVariables(class,selector)]I
′,Z = /0

= [IsClass(newClass)]I
′ ∧∗ [DefinesSelector(newClass,selector)]I

′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′∧∗

[IsClass(class)]I
′ ∧∗¬∗[UnderstandsSelector(class,selector)]I

′∧∗

[UnboundVariables(newClass,selector)]I
′
= /0

= [IsClass(newClass)]I
′ ∧∗ [DefinesSelector(newClass,selector)]I

′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′∧∗

[IsClass(class)]I
′ ∧∗¬∗[UnderstandsSelector(Superclass(class),selector)]I

′∧∗

¬∗[DefinesSelector(class,selector)]I
′ ∧∗ [UnboundVariables(newClass,selector)]I

′
= /0

= [IsClass(newClass)]I{Inv}∧∗

[Method(newClass,selector)]I{5.7:Method[(newClass,selector)/Method(class,selector)]} ↓∧∗

>∧∗ [IsClass(class)]I{Inv}∧∗¬∗[UnderstandsSelector(Superclass(class),selector)]I{Inv}∧∗

[Method(class,selector)]I{5.7:Method[(class,selector)/↑]} ↑∧∗>
= >∧∗>∧∗>∧∗>∧∗>∧∗>∧∗>=>

The last truth value for the UnboundVariables function can be deduced from the fact that the abstract
syntax tree of the moved method is not changed and so no references to non-local variables are
introduced.

3. postInvMoveMethod(postMoveMethod(P)) |= preMoveMethod:
Let I ′′ be the interpretation gained by applying the MoveMethod refactoring to the source code S′ of
the program P′ reflected by P′′ = postMoveMethod(P′)

I ′′ =
(
transMoveMethod(S′), ·I

)
,

and let Z′ be the variable assignment induced by theorem 17

Z′ = {class 7→ newClass,selector 7→ selector,newClass 7→ class} .
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Then preMoveMethod evaluates to true under I ′′,Z′, and the invariant:

[IsClass(class)]I
′′,Z′ ∧∗ [DefinesSelector(class,selector)]I

′′,Z′∧∗

¬∗[UnderstandsSelector(Superclass(class),selector)]I
′′,Z∧∗

[IsClass(newClass)]I
′′,Z′ ∧∗¬∗[UnderstandsSelector(newClass,selector)]I

′′,Z′∧∗

[UnboundVariables(class,selector)]I
′′,Z′ = /0

= [IsClass(newClass)]I
′′ ∧∗ [DefinesSelector(newClass,selector)]I

′′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′′∧∗

[IsClass(class)]I
′′ ∧∗¬∗[UnderstandsSelector(class,selector)]I

′′∧∗

[UnboundVariables(newClass,selector)]I
′′
= /0

= [IsClass(newClass)]I
′′ ∧∗ [DefinesSelector(newClass,selector)]I

′′∧∗

¬∗[UnderstandsSelector(Superclass(newClass),selector)]I
′′∧∗

[IsClass(class)]I
′′ ∧∗¬∗[UnderstandsSelector(Superclass(class),selector)]I

′′∧∗

¬∗[DefinesSelector(class,selector)]I
′′ ∧∗ [UnboundVariables(newClass,selector)]I

′′
= /0

= [IsClass(newClass)]I
′{Inv}∧∗

[Method(newClass,selector)]I
′{5.7:Method[(newClass,selector)/Method(class,selector)]} ↓∧∗

>∧∗ [IsClass(class)]I
′{Inv}∧∗

¬∗[UnderstandsSelector(Superclass(class),selector)]I
′{Inv}∧∗

[Method(class,selector)]I
′{5.7:Method[(class,selector)/↑]} ↑∧∗>

= >∧∗>∧∗>∧∗>∧∗>∧∗>∧∗>=>

Again, the last truth value is implied by not changing the method’s abstract syntax tree when moving
it to the new class.

Theorem 18 (InvMoveMethod II)
InvMoveMethod can be executed on adapters.

Proof. Let IP be the interpretation induced by the program P and let IA be the interpretation representing
the program after the execution of the CreateAdapterLayer refactoring, then for each assertion a in the
MoveMethod refactoring precondition it holds that IP |= a =⇒ IA |= a:

IP |= IsClass(class)
Corollary 2

=⇒ IA |= IsClass(class)

IP |= DefinesSelector(class,selector)
Corollary 2

=⇒ IA |= DefinesSelector(class,selector)

IP |= ¬UnderstandsSelector(Superclass(class),selector)
Corollary 2

=⇒
IA |= ¬UnderstandsSelector(Superclass(class),selector)

IP |= IsClass(newClass)
Corollary 2

=⇒ IA |= IsClass(newClass)

IP |= ¬UnderstandsSelector(newClass,selector)
Corollary 2

=⇒
IA |= ¬UnderstandsSelector(newClass,selector)

IP |= UnboundVariables(class,selector) = /0
Corollary 2

=⇒
IA |= UnboundVariables(class,selector) = /0
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Note that the last implication only holds true, if access to the adaptee field in adapters is encapsulated, i.e.,
performed via a method call. If it were accessed directly, the adaptee field would be in the set of unbound
variables of the adapter method.

D.6 ExtractMethod and InlineMethod

The ExtractMethod refactoring [FBB+99, p. 89] extracts a part of a method into a new method. Applied to
a framework method, the refactoring changes only the API and not the executed code, because the extracted
method has to be called unconditionally from the original method. At the core of the transformation is the
addition of a new method, which can be implemented using the AddMethod refactoring, and the modification
of the abstract syntax tree of the existing method inserting a call to the new method. However, the language
metamodel introduced in Section 4.1.2 on page 107 does not permit the specification of this abstract syntax
tree transformation at the necessary level of detail (e.g., passing accessed local variables as arguments to
the extracted method). For the sake of investigating the aptness of these refactorings for adaptation, we
abstract from these intricacies and only look at the precondition of the AddMethod refactoring as presented
in Section D.2.

The transformation inverting a method extraction is called InlineMethod [FBB+99, p. 95] and first replaces
all call sites of the inlined method with the method body before the method is deleted. The latter part can
be implemented using the RemoveMethod refactoring also presented in Section D.2. As a consequence of
this reuse of basic refactorings, extracting and inlining methods can also be performed on adapters. The
resulting semantics, however, are slightly different from that of real inverse transformations and shall be
pointed out briefly.

For inverting a method extraction on adapters it suffices to execute the weak refactoring inverse for the
addition of the extracted method. Since adapter methods contain forwarding calls to their adaptees, the
application of the RemoveMethod refactoring will restore the state of the API before the extraction but the
adapter method will still end up calling the extracted control flow in its latest form. However, it will not lead
to any problems, because the execution of weak inverse transformations on adapters must reconstruct the
old API represented by adapters (in this case, to avoid accidental method overriding) and not the control
flow of the adaptees.

The inlining of a method can be inverted by simply re-adding the inlined method to the class it was removed
from. The place(s) the method has been inlined into do not need to be changed back to call the re-added
method, because they contain semantically equivalent code. Similarly to the inverse transformation for the
RemoveMethod refactoring, it is necessary to provide the missing (in this case, inlined) code, so that it can
be inserted again when inverting the inlining of an API method.

Finally, this discussion is not applicable to API methods that should serve as hook methods. In these
cases, simply adding an inlined method or removing an extracted method may lead to fragile base class
problems [MS98].
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E
Refactorings in Adaptation Layer Construction

This appendix presents additional refactorings that do not require definitions and proofs of weak refactoring
inverses and comebacks, because their effects are assumed to be invisible to old callers of the refactored API,
in which no instance variable is declared public or protected. Therefore, under our assumptions the execution
of these refactorings cannot break existing applications. However, because we use these refactorings during
the construction of the adaptation layer (as described in Section 4.3.2), we show their formal definitions
adapted to a statically-typed environment of Java.

E.1 AddInstanceVariable

The AddInstanceVariable refactoring adds a new instance variable to an existing class (adopted from
Roberts [Rob99, p. 110]).

AddInstanceVariable(class, varName, type)
pre : IsClass(class)∧

IsClass(type)∧
¬HierarchyReferencesInstVariable(class,varName)

post : InstanceVariablesDefinedBy′ = InstanceVariablesDefinedBy[class/

InstanceVariablesDefinedBy(class)∪{varName}]
ClassOf′ = ClassOf[(class,varName)/type]
ReferencesToInstanceVariable′ = ReferencesToInstanceVariable[(class,varName)/ /0]

E.2 PullUpInstanceVariable

The PullUpInstanceVariable refactoring moves existing instance variables from a set of sibling classes to
their superclass. In case the superclass does not already define an instance variable with the same name, the
refactoring definition of Roberts [Rob99, p. 113]) will attempt to evaluate the ReferencesToInstanceVariable
function for an undefined input. To prevent this, we introduce the following helper function to return an
empty set in the case of undefined input and modify accordingly the original definition of the refactoring.

EmptySetIfUndefined(function, input) Wrapper returning an empty set if the given function is undefined
for the given input.

EmptySetIfUndefined( f unction, input) :=

{
/0 if f unction(input)↑
f unction(input) otherwise
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PullUpInstanceVariable(classes, varName)

pre : ∃super.∀c ∈ classes.(IsClass(c)∧
Superclass(c) = super∧
varName ∈ InstanceVariablesDefinedBy(c))

post : InstanceVariablesDefinedBy′ = ∀c ∈ classes.InstanceVariablesDefinedBy[c/
InstanceVariablesDefinedBy(c)\{varName}][Superclass(c)/
InstanceVariablesDefinedBy(Superclass(c))∪{varName}]

ClassOf′ = ∀c ∈ classes.ClassOf[(Superclass(c),varName)/MostSpecificSuperclass(
ClassOf(c,varName),ClassOf(Superclass(c),varName))][(c,varName)/↑]

ReferencesToInstanceVariable′ = ∀c ∈ classes.ReferencesToInstanceVariable
[(Superclass(c),varName)/ReferencesToInstanceVariable(c,varName)∪
EmptySetIfUndefined(ReferencesToInstanceVariable,(Superclass(c),varName))]
[(c,varName)/↑]

The actual source code transformation need to ensure that the variable pulled up is initialized correctly in
the subclasses, so that its run-time type corresponds to the type of the original variable slot. Furthermore,
all read accesses to the variable from within the subclasses need to be enhanced with casts, otherwise the
source code might not compile anymore.

E.3 PushDownInstanceVariable

The PushDownInstanceVariable refactoring moves an existing instance variable from a class to a set of
subclasses (adopted from Roberts [Rob99, p. 114]).

PushDownInstanceVariable(classes, varName)

pre : ∃super.∀c ∈ classes.(IsClass(c)∧
Superclass(c) = super∧
varName ∈ InstanceVariablesDefinedBy(super))

post : InstanceVariablesDefinedBy′ = ∀c ∈ classes.InstanceVariablesDefinedBy[c/
InstanceVariablesDefinedBy(c)∪{varName}][Superclass(c)/
InstanceVariablesDefinedBy(Superclass(c))\{varName}]

ClassOf′ = ∀c ∈ classes.ClassOf[(c,varName)/ClassOf(Superclass(c),varName)]
[(Superclass(c),varName)/↑]

ReferencesToInstanceVariable′ = ∀c ∈ classes.ReferencesToInstanceVariable
[(c,varName)/ReferencesToInstanceVariable(Superclass(c),varName)]
[(Superclass(c),varName)/↑]
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and Satoshi Matsuoka, editors, ECOOP ’97: Proceedings of the 11th European Conference on
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science. Springer,
1997.

[PS83] Helmuth Partsch and Ralf Steinbrüggen. Program transformation systems. ACM Computer
Surveys, 15(3):199–236, September 1983.

[Refa] Refactoring Browser. http://www.refactory.com/RefactoringBrowser/index.html.

199

http://www.netbeans.com
http://www.omg.org/cgi-bin/doc?formal/05-07-05
http://www.refactory.com/RefactoringBrowser/index.html


[Refb] RefactoringCrawler homepage.
https://netfiles.uiuc.edu/dig/RefactoringCrawler.

[RH02] Stefan Roock and Andreas Havenstein. Refactoring tags for automatic refactoring of framework
dependent applications. In XP ’02: Proceedings of the International Conference on Extreme
Programming and Flexible Processes in Software Engineering, pages 182–185, 2002.

[RH06] Ralf H. Reussner and Wilhelm Hasselbring. Handbuch der Software-Architektur. Dpunkt
Verlag, 2006.

[Riv01] Jim des Rivières. Evolving Java-based APIs.
http://wiki.eclipse.org/Evolving_Java-based_APIs, 2001.

[RJ97] Donald Bradly Roberts and Ralph E. Johnson. Evolve frameworks into domain-specific
languages. In Robert C. Martin, editor, Pattern Languages of Program Design. Addison-
Wesley Professional, Reading, Massachusetts, 1997.

[Rob99] Donald Bradley Roberts. Practical analysis for refactoring. PhD thesis, University of Illinois
at Urbana-Champaign, Urbana, IL, USA, 1999.
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