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Zusammenfassung 

Die vorgelegte Doktorarbeit “Fly ash impact in forest ecosystems in Northeastern Ger-

many − an assessment and regionalization approach” (Flugascheeinträge in Waldöko-

systeme in Nordostdeutschland − ein Erfassungs- und Regionalisierungsansatz) verfolgte die 

Ziele 
 

(a) zu testen, ob sich die Erfassung der ferrimagnetischen Suszeptibilität eignet, um 

kosteneffizient quantitative und / oder qualitative Informationen zu den eingetragenen 

Flugaschemengen und den in der Folge veränderten bodenchemischen Potenzialen 

zu erheben 

(b) zu testen, ob der Indikator „ferrimagnetische Suszeptibilität“ genutzt werden kann, 

um Informationen über Flugascheeinträge von der punktbezogenen Erfassung auf einen 

regionalen Maßstab hoch zu skalieren.  

 

Grundlage dieser Zielstellungen sind Forschungsarbeiten zu der Frage der langfristigen 
Wirksamkeit und ökologischen Bedeutung von Industrieexhalationen auf Waldökosys-
teme, die am Institut bereits in den 1960ziger Jahren begonnen wurden und verstärkt seit 

Mitte der 1990ziger Jahre fortgeführt wurden. Auf ihrer Basis wurde die Herausforderung 
eines kostengünstigen und flächenbezogenen Erhebungsansatzes identifiziert und for-

muliert. Die vorgelegte Arbeit ordnete sich in diese Forschungsarbeiten ein und führte sie im 

Rahmen des Verbundforschungsvorhabens ENFORCHANGE ((FKZ: 0330634 K, Bundesmi-

nisterium für Bildung und Forschung) von 2005 - 2009 fort.  

 

Die Doktorarbeit ist als kumulative Arbeit angelegt, im Rahmen derer insgesamt 10 Publi-

kationen zusammengefasst wurden. Davon sind 5 in internationalen Journalen bereits publi-

ziert, akzeptiert oder in einem Fall in Begutachtung; 5 weitere Publikationen wurden ergän-

zend und auf speziellere Themen bezogen in Proceedings oder Buchbeiträgen publiziert.  

 

Die Arbeit gliedert sich in 5 Abschnitte:  

• Kapitel 1 (Einleitung) gibt einen kurzen Überblick zur Motivation und Struktur der 

Doktorarbeit.  

• In Kapitel 2 (Ziele und Rahmen der Arbeit) wird der Arbeitsansatz im Rahmen des Ver-

bundforschungsvorhabens ENFORCHANGE vorstellt.  

• Kapitel 3 umfasst eine Auswertung von Veröffentlichungen zur Geschichte und den 

ökologischen Auswirkungen der Flugascheeinträge am Beispiel der Modellregion 

Dübener Heide.  
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• In Kapitel 4 wird der methodische Ansatz der Arbeit vorgestellt, der von einem Vortest 

zur Eignung der Erfassung der magnetischen Suszeptibilität über die Ableitung eines 

flächigen Erhebungsansatzes bis hin zur Frage der Modellbildung und Korrelation mit 

chemischen Kenngrößen reicht. 

• Kapitel 5 beinhaltet die Ergebnisse der räumlichen Modellbildung und der 

Korrelation der magnetischen Suszeptibilität mit ausgewählten Basen-, Säure- und 

Schwermetallkationen sowie mit Schwarzem Kohlenstoff.  

• Kapitel 6 diskutiert, vergleicht und bewertet die Ergebnisse der den 

Veröffentlichungen zugrunde liegenden Studien und zieht ein abschließendes Resumé.  

 

Ein Schlüsselergebnis der vorgelegten Arbeit belegt, dass entgegen der ursprünglichen 

Arbeitshypothese des Projektverbundes ENFORCHANGE nicht das mehr als 100 Jahre alte 

Kraftwerk Zschornewitz die wesentliche Quelle für die Flugascheeinträge in der Modell-

region Dübener Heide war, sondern der räumlich entfernter gelegene, aber deutlich größere 

Industriekomplex Bitterfeld.  

 

Bezogen auf die Zielsetzung der vorgelegten Arbeit, konnte mithilfe multipler Regressi-
onsverfahren und auf Basis von Feldaufnahmen der ferrimagnetischen Suszeptibilität in 

einem regelmäßigen Stichprobenraster ein hoch auflösendes räumliches Modell gebildet 

werden. Unter Berücksichtigung weiterer Modellparameter, die schrittweise hinsichtlich ihres 

Erklärungswertes ausgewählt wurden, konnten mikrotopographische und vegetationsbe-

dingte Informationen genutzt werden, um die räumliche Variabilität des magnetischen 
Signals differenziert darzustellen. Damit ergibt sich eine Planungsgrundlage, die die bis-

her genutzte, auf Waldschadensansprachen basierende Stratifizierung in Zonen unter-

schiedlicher Eintragsintensität mit Bezug zur Planungseinheit deutlich detaillierter untersetzt.  

Der Versuch, auf Flugascheeintragsmengen, respektive -vorräte zu schließen ließ sich 

hingegen auf Basis der verfügbaren Daten nicht umsetzen. Die Korrelationsbeziehungen 

der von Volumen- in den Massenbezug umgerechneten Suszeptibilität mit Basen-, Säure 

und Schwermetallkationen sowie Schwarzem Kohlenstoff fielen heterogen aus. Eine gute 
Vorhersage auf Basis eines linearen Regressionsmodells konnte für Ca, Mg und Mn 
getroffen werden, wohingegen die Modellqualität für Fe, Al sowie Cd und Schwarzen Koh-

lenstoff deutlich schlechter zu beurteilen war.  

Dies ergab sich zum einen aus der verfügbaren Datenbasis, die keine durchgängige 
Harmonisierung für die Erhebungen der Suszeptibilität und der chemischen Kenn-
werte erlaubte. Zum anderen geht diese Erkenntnis mit Ergebnissen aus der Regionalisie-
rung einher, die einen Einbezug weiterer Modellparameter und die Nutzung multipler 
anstelle linearer Regressionsmodelle nahe legt.  
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Summary 

The presented doctoral thesis „Fly ash impact in forest ecosystems in Northeastern Germany 

− an assessment and regionalization approach“ intends to 

 

(a) test if the field assessment of ferrimagnetic susceptibility can be used as cost efficient 
method to get information on fly ash deposition impacted chemical site properties.  

(b) develop a regionalization approach to bridge the gap from plot-wise assessed data to 

spatial management information. 

 

The thesis is a follow-up of extensive research activities by the Institute for Soil Science 
and Site Ecology on industrial deposition in Dübener Heide and Upper Lusatian region 

which started in the early 1960ies and were intensified from the middle of the 1990ies on. A 

central topic of these research activities was the assessment of the impact of fly ash 

deposition on chemical soil properties. 
A major challenge was to transfer the assessed chemical characteristics from plot to 
region and to aggregate the measured values to provide an information basis, which can be 

used for a site potential and risk oriented forest management. This challenge was picked up 

by the joint research project “ENFORCHANGE” (FKZ 0330634 K, German Federal Ministry 

of Education and Research). The presented thesis was carried out in the frame of this project 

during the period 2005 - 2009. 

 

The thesis was conceived as cumulative work, which includes ten papers in total. Five arti-

cles are published in peer-reviewed journals (ISI listed, 1 paper still in revision), and five are 

part of books or conference proceedings.  

 

• Chapter 1 “Introduction” gives an overview on the motivation, idea and structure of the 

thesis.  

• In chapter 2 “Aims and Scope of the presented work” information on the background 

and frame of the study within the project ENFORCHANGE is given.  

• Chapter 3 “Background and State of the Art” deals with the history of fly ash deposi-

tion in the model region Dübener Heide. 

• Chapter 4 “Material and Methods” gives information on fly ash and presents the spatial 

assessment design and the hereon based approaches for up-scaling and correlation of 

magnetic susceptibility with selected chemical characteristics.  

• Chapter 5 “Results” presents results of the spatial modeling and linear regression 

based approach to use ferrimagnetic susceptibility for predicting the contents of selected 

base cations, selected acid and heavy metal cations and Black Carbon.  
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• Chapter 6 “Discussion and Conclusions” compares the assumptions and findings in 

the different articles, discusses contradictory findings and open questions and provides a 

comprehensive evaluation of the outcomes. Final conclusions are drawn and an outlook 

is given.  

 

A key finding of the thesis is that the industrial complex Bitterfeld was the most impor-
tant source of fly ash deposited in the model region Dübener Heide. The power plant 
Zschornewitz plays only a minor role contrary to the research hypothesis formulated in EN-

FORCHANGE. 

 

Related to the targets of the thesis, spatial variation of magnetic susceptibility was pre-
dicted with high precision by a multiple linear regression model. A slightly differing set 

of model parameters − according to their explanatory value for three selected depth levels − 

improved the prediction quality.  

The selection of the parameters supported understanding the major drivers for magnetic par-

ticle deposition, storage, and vertical displacement in the forest soils. Humus layer (depth 
level 6-10 cm), horizontal distance to Bitterfeld and soil type (Podzol, semi-terrestrial 

sites) were the most important variables. These variables point to a slowed-down humus 

dynamic, which causes the accumulation of fly ash in the humus layer. In depth level 11 – 
15 cm, variables such as “aspect” gain in importance, which describe the exposure against 
the major wind direction and thus indicate the probability and of deposition.  

For the mineral horizon (depth level 21-25 cm), exposition and especially stand proper-
ties are most important. The latter gives evidence for the intensity of deposition caused by 

surface roughness. Therefore, the variables “coniferous” and “mixed” stands were highly 

relevant for the model.  

 

Variable correlations between mass susceptibility and selected base cations, acid 
cations and heavy metals have been found. When using a linear regression model, a 

prediction of Ca and Mg and of Mn was possible. The model performance was lower for 

Fe, Al, Cd and Black Carbon. A possible reason was the use of different plot types: the 

assessment of magnetic susceptibility and chemical soil properties was well harmonized at 

the ENFORCHANGE plots considering the sampling material and sampling location. A com-

parable harmonization could not be achieved at a number of monitoring plots, which were 

included into the analysis to broaden the data base.  
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Comparing the results from the linear regression model based prediction with the results 

achieved by multiple regression based spatial modeling lead to the conclusion that the mul-
tiple regression approach is more promising: by using other model parameters such as 

orographic, climatic or stand parameters together with magnetic susceptibility, the prediction 
quality of the deposed agents could be improved and small scale variations in nutrient 

potentials and risks driven by fly ash deposition could be better recognized and made avail-

able for forest management decisions.  
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1. Introduction 

1.1 Motivation 

The presented thesis is a follow-up of extensive research of the Institute for Soil Science and 

Site Ecology on industrial deposition in Dübener Heide and Upper Lusatian region. A focus of 

these research activities has been the assessment of the impact of fly ash deposition on 

chemical site potentials and risks. A challenge resulting from the related findings was to 

transfer the assessed chemical characteristics from plot to region and to aggregate the 

measured values to provide an information basis, which can be used for a site potential and 

risk oriented forest management.  

 

The objective of the presented research was to provide two missing puzzle-stones in the 

research on fly ash deposition:  

 

(a) to test if the field assessment of ferrimagnetic susceptibility can be used as cost efficient 
method to get information on fly ash deposition impacted chemical site properties.  

(b) to develop a regionalization approach to bridge the gap from plot-wise assessed data 

to spatial management information. 

 

The Dübener Heide near to the Central German industrial triangle Leipzig-Halle-Bitterfeld 

was chosen as model region because of its long history of industrial deposition, high num-

ber of research projects on fly ash effects from the early 1960ies on and the resulting enor-

mous database on deposition influenced vegetation and soil development. 

The research was carried out in frame of the joint research project “ENFORCHANGE” (Envi-

ronment and Forests under Changing Conditions), supported by the Federal Ministry of Edu-

cation and Research (BMBF, FKZ: 0330634K), which is presented in detail in chapter 2.  
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1.2 Idea and Structure 

The thesis was conceived as cumulative work, which includes ten papers in total. Five arti-

cles are published in peer-reviewed journals (ISI listed, 1 paper still in revision), and five are 

part of books or conference proceedings.  

 

In chapter 2 “Aims and Scope”, three contributions are integrated, which give information 

on the background and frame of the study within the project ENFORCHANGE. This includes 

an overview on the project ENFORCHANGE and its different modules, but also on some 

results from this interdisciplinary study.  

 

Chapter 3 “Background and State of the Art” includes three contributions dealing with 

history of fly ash deposition in the model region Dübener Heide and its consequences for 

forest management. The model region is described and the impact of fly ash deposition on 

the forest ecosystem is discussed. Hereon based, some conclusions are drawn on how to 

integrate the past fly ash deposition into process-oriented forest management approaches.  

 

In chapter 4 “Materials and Methods”, the properties of fly ash including potentials and 

risks for affected forest ecosystems are described in the first paper (4.1.1). The second con-

tribution introduces a pre-test of a field assessment method for ferrimagnetic susceptibility. In 

addition conclusions are drawn how to conceive the field assessment as suitable basis for 

up-scaling procedures (4.2.1).  

 

Two contributions in chapter 5 “Results” introduce the potentials and restrictions of up-

scaled ferrimagnetic susceptibility data as basis for forest management decisions. A region-

alization model and its parameters are presented and discussed (5.1.1). In addition, ferri-

magnetic susceptibility is tested as indicator for key base cations, acid and heavy metal 

cations and Black Carbon (5.2.1). 

 

Chapter 6 “Discussion and Conclusions” assumptions and findings of the papers are 

compared. Contradictory findings and open questions are discussed and a comprehensive 

evaluation of the outcomes is provided. Final conclusions are drawn and an outlook is given.  
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2. Aims and Scope 

2.1 The ENFORCHANGE study − overview, integration and contribution of the 

presented research approach  

“ENFORCHANGE” (Environment and Forests under Changing Conditions, 

www.enforchange.de) was a research project supported by the Federal Ministry of Education 

and Research (BMBF, Germany), which pursued the following global targets:  

 

(a) characterization of changes of environmental factors (climate, site, and human beings) 

relevant for land use with special regard to their interactions,  

(b) evaluation of effects of changes on the prioritization of (forest) goods and services,  

(c) development of instruments and guidelines for a process-oriented (dynamic) forestry and 

spatial planning, and  

(d) aggregation and transfer of results into the (forest) practice and other relevant target 

groups (“children”, “regional citizen”, “scientist”, “planner”, “policy maker”).  

 

An outspoken aim of the project was to assess and evaluate the long-term effects of 
former deposition for two model regions in the New Lander, the Dübener Heide and the 

Upper Lusatian region, where the latter was mainly considered as validation region for the 

outcomes in Dübener Heide. Among others, focus was laid on the impact assessment of 
fly ash deposition, as fly ash was considered in the past to be a major driver for forest eco-

system development in both regions (e.g. Klose et al. 2001 and 2002, Koch et al. 2002, Lux 

1965 and 1974, Neumeister et al. 1997). Based on the ENFORCHANGE results, approaches 

could be derived for integrating the current impact of past deposition into forest management 

(Eisenhauer and Sonnemann 2009).  

 

Figure 1 gives an overview on the research structure of ENFORCHANGE. The project in-

tended to realize the chain from assessment of the environmental situation to the integration 

into forest management and the transfer into practice and public. ENFORCHANGE was 

structured into three thematic working groups, which were called “blocks” in the project ter-

minology.  

 

Block I “Site Factors and Regionalization” dealt with an assessment of environmental 

changes with focus on forest sites and climate frame conditions. The assessment data 

formed the basis for evaluation and modeling of changing abiotic frame conditions and ef-

fects of past and ongoing processes. The research on fly ash deposition assessment and 

regionalization, which is the main topic of this thesis, was carried out in this group. A crucial 
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part of the research work was the development of regionalization models. This included an 

up-scaling of chemical soil properties (Zirlewagen 2009, Zirlewagen and von Wilpert 2009) 

and of ferrimagnetic susceptibility (Fürst et al. 2009 b) and also downscaling of climate 

change scenarios to regional scale (Bernhofer et al. 2008).  

 

The results from block I formed the basis for block II “System Development, Evaluation, 
transfer into adapted planning concepts”, which linked regionalized data with process 

models for tree growth and nutrient balances for Climate Change scenarios. As a major re-

sult, forest ecosystem responses on ongoing environmental changes might be described. 

Effects for the provision of forest goods, services and related monetary consequences were 

appraised. The results were transformed into renewed silvicultural and operational manage-

ment recommendations (Eisenhauer and Sonnemann 2009, Stang and Knoke 2009).  

 

Block III “Processing, translation, transfer” dealt with the analysis of transfer options to dif-

ferent target groups and for the realization of transfer into practice and publicity.  
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Fig. 1: Structure of the joint research project ENFORCHANGE (Makeschin and Fürst 2007).  
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In Dübener Heide, ENFORCHANGE started with two research hypotheses: 

 
(1) the regional power plant Zschornewitz, which is situated in close vicinity to the North-

eastern border of Dübener Heide forest was considered as most important source of fly 
ash and other air pollution components. Zschornewitz is the oldest regional power plant with 

more than 100 years of activity. Furthermore, its technological standard (filtering techniques) 

was very ancient until its closing in the 1990ies. A regional deposition gradient was de-

scribed first by Lux (1965), later on by Lux and Stein (1977) and by Klose and Makeschin 

(2005). The highest deposition along the gradient was found at the Eastern border of 

Dübener Heide in Saxony-Anhalt with strongly affected sites near to Zschornewitz. The gra-

dient stretches with decreasing intensity to the Southwestern corner of Dübener Heide in 

Saxony (see Fig. 2). 

 

(2) the sites in four historically well documented deposition zones along the above de-

scribed deposition gradient can still be differentiated (a) according to their nutrient po-
tentials and (b) according to specific risks such as heavy metal release (Fürst et al. 2006, 

Fritz and Makeschin 2007, Fritz et al. 2009). It was assumed that the vegetation develop-

ment and the growth potential of forest stands are still impacted by this spatial differentiation 

as described by numerous authors, such as Amarell (1997), Enderlein and Stein (1962), Er-

hard and Flechsig (1998), Heinsdorf et al. (1994), Herpel et al. (1995), Hüttl and Bellmann 

(1999), Konopatzky and Kopp (2001), Kunze et al. (1995), and Lux (1964 a and b, 1974). 

 

Hereon based, twelve key plots and some complementary satellite plots were identified in the 

Dübener Heide along the deposition gradient from Northeast near the former power plant 

Zschornewitz to Southwest (Fig. 2). These plots were used to analyse current site and stand 

properties. 
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Fig. 2: Model region Dübener Heide with deposition gradient (schematic) and deposition 

zone related key plots.  

 

The key plots represented major (terrestrial) soil type-stand type-combinations of the 

region. They were preferably chosen at sites, where information from former deposition 

monitoring, forest health monitoring or growth and yield field trials could be involved. At the 

key plots, chemical and physical site properties were measured depth level-wise with focus 

on the humus layers and the upper mineral horizons. In addition, forest growth and yield 

characteristics were assessed.  

The key plots were installed for the total project duration, i.e. their geographic coordinates 

were documented, and linked to available GIS-information (site quality maps / geology, to-

pography, etc.).  

 
Missing information, e.g. considering stand type development in a distinct deposition zone 

and on a distinct site type but in different age classes was collected at satellite plots, which 

were not permanently installed.  
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Ferrimagnetic susceptibility field assessment was carried out at all key plots and in a 

regular sample grid with two grid densities (1x1 km² and 4x4 km², nested approach, see 

also chapter 5.1.1) as basis for the regionalization.  

 

Finally, information from earlier regional monitoring and survey plots (Level-I, Level-II 

monitoring, permanent soil monitoring sites, forest growth and yield field trials, climate sta-

tions), data from literature analysis and available GIS-data were integrated into the EN-
FORCHANGE information pool.  
 

Figure 3 shows the upscaling approach in ENFORCHANGE: the key and satellite plots and 

the grid-wise ferrimagnetic susceptibility measurements were installed to complement the 

regionally available data and information pool. The assessed environmental information from 

all measurements in ENFORCHANGE and from the regional data pool was aggregated and 

provided spatially explicit time series as basis for modeling and regionalization of ongoing 

ecosystem processes (Fürst et al. 2006, Fürst and Makeschin 2009). This was used as basis 

for process-oriented forest management (Eisenhauer and Sonnemann 2009). 
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Fig. 3: System of information bundling in ENFORCHANGE consisting of regionally available 

data, complementary information from own measurements and results from monitoring and 

regionalization (Fürst et al. 2006, Fürst and Makeschin 2009). 

 

 

The two articles included in this chapter present the ENFORCHANGE study in the light of its 

structure, approach and outcomes.  
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2.1.1 Fürst, C., Abiy, M., Makeschin, F. (2008): Forest ecosystem development after 
heavy deposition loads – case study Dübener Heide, WIT Transactions on Ecol-
ogy and the Environment (ISSN 1743-3541), Air Pollution XVI: p. 571-584 

 

Extended summary 
The article introduces the ENFORCHANGE study and gives an overview on the history and 

development of the forest ecosystem Dübener Heide in the light of the influence of air pollu-

tion from lignite combustion. The presented and at this point of time not finished investi-

gations along the deposition gradient in Dübener Heide revealed that the deposition impact is 

still detectable, though the deposition zones defined first by Lux (1965) could not be 

validated in the course of the ENFORCHANGE study. Chemical site potential differences 

described by Fritz and Makeschin (2007) and Fritz et al. (2009) allow for a stratification of 

Dübener Heide in two different zones: a “high influence zone” in up to 8-15 km distance to 

the power plant Zschornewitz, which is situated near to the western border of Dübener 

Heide, and a “low influence zone” in more than 8-15 km distance. The “high influence zone” 

is characterized by high pH-values, and high base cation availability and base saturation in 

the humus layers, indicating a considerable nutrient pool far beyond from the natural level. 

The described spatial differentiation was also supported by a cluster analysis of the results of 

ferrimagnetic susceptibility field assessment in the humus layers, which was done parallel to 

the chemical analyses at the 12 ENFORCHANGE plots. The plots in a distance up to 8-15 

and more than 8-15 km were clearly differentiated from the rest.  

 

The spatial stratification according to the site potential is decisive for silvicultural questions. 

In the past, forest health and growth were extremely affected by depositions. The four depo-

sition zones described by Lux (1965) were originally defined on the basis of an assessment 

of forest growth and health. An analysis of forest growth data from different studies (Hüttl and 

Bellmann 1999, Lux 1964 a, b and 1966) revealed that a clear spatial differentiation of radial 

increment as forest growth indicator along the deposition gradient seemed to be only valid at 

the early beginning of fly ash deposition and deposition research. Later on, when fly ash 

filters were introduced from the 1980ies on and when the SO2 deposition was still increasing, 

differences in radial increment could not be found anymore. From this time on, negative 

impact of deposition on forest growth was equal in the whole Dübener Heide. Nowadays the 

sites in the “high influence zone” up to 8 – 15 km distance benefit from the former fly ash 

deposition. In contrast to the sites at the “low influence zone”, they are characterized by an 

ample soil vegetation and natural regeneration of noble hardwood species and European 

beech. The vegetation types at the not measurably fly ash influenced sites reflect much more 

the original regional site potential with domination of Scots Pine and Oak.  
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2.1.2 Fürst, C., Makeschin, F. (2009): Forest ecosystem development under a changing 
environment and conclusions for forest management, Forestry in Achieving Mil-
lenium Goals, Proceedings, p. 47-55 

 

Extended summary 
The article introduces more results from the ENFORCHANGE study regarding the reactions 

of the forest ecosystem Dübener Heide on the change in the deposition regime and future 

changes in climate frame conditions. Based on these results, conclusions how to better inte-

grate ongoing environmental processes in forest management concepts are drawn. 

The assessment of chemical and physical parameters at the 12 ENFORCHANGE key plots 

and a field assessment of ferrimagnetic magnetic susceptibility in a regular grid confirmed 

the spatial differentiation along the deposition gradient, which was concluded in the before 

presented article. The here presented (extended) results supported finally a stratification of 

three spatially distinct areas instead of four as proposed by Lux (1965): in up to 8 km 

distance to the former emitters, pH (KCl) values and base saturation are clearly elevated far 

beyond the original potential of the sites. In a zone up to 15 km, only pH-values were found 

to be elevated and in a distance of more than 15 km, no measurable effects could be found. 

While the plot-wise chemical analyses were arranged along the deposition gradient, which 

assumed a strong influence of the power plant Zschornewitz, the magnetic susceptibility 

screening was based on regular grid measurements. These grid-wise measurements re-

vealed that the impact of the industry site Bitterfeld, which is situated farther from Dübener 

Heide was clearly stronger than originally believed (see also chapter 5.1.1). It could also be 

shown that fly ash was deposited much farther than proved by the assessment of chemical 

and physical properties at the project plots.  

 

Considering site potentials and forest growth, the double-edged effects of fly ash deposition 

on site potentials and risks under climate change were discussed. Driven by the improved 

site potential due to fly ash “fertilization”, tree species such as noble hardwoods and Euro-

pean beech regenerate naturally in Dübener Heide. Facing a possible reduction of 20 % of 

the actual precipitation and an increase of the mean annual temperature of 3.5 °C in the next 

100 years, the stability and resilience of such stands could pose future problems. The 

necessity of a stronger integration of ongoing ecosystem processes into silvicultural 

management was concluded. Silvicultural management in both parts of Dübener Heide, in 

Saxony and Saxony-Anhalt, started to consider the idea of a process-oriented forest 

management by leaving the stand type as decision basis and replacing stand type by 

“development type” with close reference to indicators for actual ecosystem and site 

development trends. 
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3. Background and State of the Art 

3.1 Fly ash deposition and consequences for forest management − overview  

Forest ecosystems in Eastern Germany are still affected by long-term effects from former 

deposition caused by unfiltered lignite combustion in Czech, Polish, and German power 

plants until the early 1990s. Fly ash is defined as particle residue that enters the flue gas 

stream after lignite (brown coal) or hard coal (black coal) combustion. Observed deposition 

rates of the most affected regions in Eastern Germany and Eastern Europe range from 140 t 

/ km2 * a (industrial triangle Leipzig-Halle-Bitterfeld, Northeastern Germany) up to 457 t / km2 

* a (Upper Silesia, Poland) (Lux 1965 and 1976, Lux and Stein 1977, Strzyszcz et al. 1996, 

Strzyszcz and Magiera 2001, Klose and Makeschin 2003).  

 

In the early 1960s, two trans-regional deposition hot spots were described for Eastern 

Germany:  

Region (1) the lowland transect between Chemnitz-Leipzig-Magdeburg, and  

Region (2) the Lusatian / Spree region along the Polish border between Frankfurt / Oder-

Lübben-Cottbus-Hoyerswerda-Görlitz (Lux 1965 and 1976).  

 

The deposited fly ash in region (1) originated from lignite with high S content. The major 

impact factors on forest ecosystems were sulphur and heavy metal deposition followed by 

nitrogen and potassium. Additionally, fluorides, chlorides, as well as complex herbicides from 

chemical industry complexes such as Bitterfeld were important pollutants for some places. 

Region (2) was impacted by fly ash from lignite with a lower S-content. The resulting envi-

ronmental damages (e.g. forest decline) were less serious compared to region (1) (Lux 1976, 

Kunze et al. 1996).  

 

In the industrial triangle Leipzig-Halle-Bitterfeld, which forms a part of region (1), an in-

tensive industrialization took place since almost 100 years and substantial deposition 

amounts resulted especially from lignite combustion for energy production.  

The estimated deposition in Dübener Heide amounts from 1910 – 2000 to 18 Mio. t fly 
ash and 12 Mio t SO2. During the decade 1961 – 1970 up to 3 t / ha * a fly ash were depos-

ited in regional forests (Klose and Makeschin 2004, Lux 1965 and 1976, Neumeister et al. 

1991, Nebe et al. 2001).  

 

However, fly ash deposition was not the only regionally relevant impact factor: N-depo-

sition from the regionally most important N-factory Piesteritz, forest management including N-

fertilization against deposition effects and nowadays increasing drought and decreasing 
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rainfall influence the ecosystem processes and lead to a unique situation considering the 
site potentials and risks and also the species composition in soil vegetation and stand 

types.  

 

Fig. 4 resumes for Dübener Heide the history of anthropogenic influence, quantifiable effects 

on forest vegetation and visible system reactions and processes according to Amarell (1997), 

Bendix (2001), Lux (1964 a and b, 1965), Lux and Stein (1977) and Konopatzky (1995, 

2001).  

 

The intention of Fig. 4 is to visualize the interdependencies between deposition of fly 
ash, forest management and other impact factors such as climate change and the effects 

for forest ecosystem development. The impact factors are split up into direct and indirect im-

pacts by human activities. The ecosystem processes are separated into site processes and 

processes on stand level. Reactions are shown for the soil vegetation and the stand level. 
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Fig. 4: History of human impact on the Lowland forest ecosystem Dübener Heide (acc. to Fürst et al. 2007, Fürst and Makeschin 2009). The 

arrows show the duration of impact factors, processes and ecosystem reactions. Dashed lines are used when the exact start or end of impacts, 

ecosystem processes or visible reactions cannot be specified. (alk. = alkaline, decr. = decreasing, div. = diversity re-nat. = re-naturalization). 
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In the Dübener Heide, cultivation of Scots pine (Pinus sylvestris, L.) started in the middle 

of the 18th century. In combination with local forest pasture and litter utilization, Scots 

pine cultivation resulted in poor and monotonous Scots pine forests, which were charac-

terized by acidophilic soil vegetation groups (dwarf shrubs, mosses, lichens) and raw humus 

forms (Bendix 2001).  

 

Due to easily available near-surface lignite resources, industrialization started already at the 

end of the 19th century in the immediate vicinity of Dübener Heide, but was limited at the be-

ginning to small power plants with only local deposition effects. From the 1920s on, an in-
tensification of industrial energy production for the capital Berlin led to the yet mentioned 

high deposition loads.  

N deposition from industry (N-factory Piesteritz) and agriculture amounted up to 300 kg N / 

ha * a, and was even surpassed in the 1960ies for some places by N fertilization of up to 990 

kg N / ha. Fly ash was deposited along a characteristic distance and wind direction 

dependent gradient, whereas SO2 and N deposition were more evenly distributed within the 

whole Dübener Heide (Lux 1965, Klose and Makeschin 2004).  

 

Deposition and fertilization dependent vegetation types were observed in the Dübener 

Heide from the 1920 / 1950ies on. Basophilic and light preferring species started to grow in 

the immediate vicinity of the former power plants. They indicated alkaline dust deposition and 

an artificial opening-up and die back of the Scots pine stands. Raising regional vegetation 

diversity and especially high species diversity near to the power plants went along with a 

decreasing vitality of the Scots pine stands. This process was accompanied by artificially 

elevated pH (KCl) values of up to 7 and a base saturation of up to 100 % in the humus layer 

and upper mineral horizons. Based on a visual assessment of forest decline the yet men-

tioned deposition zones were defined. They formed the basis for a spatially differentiated 
ecosystem management intensity. Due to intense forest decline, efforts to convert the 
Scots pine stands started from the 1970ies on in the most affected deposition zones near 

to the power plants. These efforts were extended to the total area from the 1980ies until 

now (Lux 1964 a and b, Kopp 2003). 

 

From the 1980ies on, fly ash filters were introduced. As unintended side effect, the still in-

creasing acidic deposition components NOx, SO2 / SOx were no longer buffered by alka-
line dusts. Herpel et al. (1995) found for some sample plots in Dübener Heide an average 

decrease of pH(KCl) of 0.4 units and a base saturation decrease of 17 % for 1988 compared 

to the situation in the 1970s. For the period 1988 to 2000, a further reduction of 0.7 pH-units 

was reported by Kurbel (2002). After 1989, SO2 emission and fly ash deposition were 
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more or less stopped, whereas N deposition rates of 28 - 45 kg / ha * a from animal hus-

bandry and traffic amplified the long-term effects of the former N-deposition and N-fertiliza-

tion in terms of dense grass layers and nitrophile soil vegetation. However, N-eutrophication 

was balanced to a certain degree by ample ground vegetation development, improved tree 

growth, and vital natural regeneration of mainly noble hardwoods (Lux 1964 b). Kopp (2003) 

expected also a re-development of humus forms, which represent the original site potential.  

 

Recently, re-immigration of acid indicators and disappearance of the dense grass lay-
ers are observed due to vanished base deposition and ongoing acidic deposition (Augustin 

et al. 2005). The health of the forests in Dübener Heide has improved as a result of lower 

industrial deposition and extensive conversion activities, but it is still threatened by increasing 

N deposition (Materna and Fiedler 1994).  

 

Based on the recognition of differing range and effects of alkaline fly ash and dissolved 
acidic deposition components, Lux (1965) discussed first the necessity to define 
deposition zones (planning units with homogeneous deposition impact) around the 

industrial hot spots in Dübener Heide, but also in the Upper Lusatian region for an adapted 

forest management. Enderlein and Stein (1962), Lux and Pelz (1968) and Lux (1976) 

developed a sample plot based approach, where a classification of health state and growth 

potential in medium-aged Scots pine stands (50 – 90 a, sample plots, n ≈ 150) was used for 

a regionalization of deposition impact.  

The degree of single tree growth reduction and needle losses were aggregated plot-
wise to a factor, which indicated the intensity of damage. Based on the sample plot results 

(post-stratification), deposition zone-specific silvicultural management measures were de-

rived and delivered spatial information on additional costs and economic losses caused by fly 

ash deposition (see e.g. Reiche 2001).  

 

However, the former forest growth and decline based definition of deposition zones 
cannot be used anymore due to considerable changes in regional forests health and 
species composition since the 1960ies. However, impacts on chemical humus and soil 
properties are still evident (Fritz et al. 2009, Fritz and Makeschin 2007, Klose et al. 2002, 

Klose and Makeschin 2004, Koch et al. 2002, Koch and Makeschin 2004).  
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Environmental frame condition changes as described for the Dübener Heide trigger 
complex ecosystem processes. For the Dübener Heide, e.g., fly ash deposition caused a 

homogenization of site quality differences, and a differentiation of formerly comparable sites 

and vegetation types along the regional deposition gradient. These modifications are super-

posed by N deposition and climate change. 

 

Consequently, forest management planning must adapt continuously to such ongoing 

processes. Site classification and forest inventory deliver a first basis, which however reflects 

only partly the ongoing processes (Schoenholtz et al. 2000; de Vries et al. 2003). Process-
oriented forest management planning respects natural dynamics in (forest) ecosystem 

management on landscape level.  

 

The development of a process-oriented forest management planning requires three steps: 

 

(1) Identification of the major forest ecosystem processes (see Fig. 4) and the related 

process indicators. A suitable process indicator must be apt to describe course, direction 

and progress of processes (“vectored dynamics”) in forest ecosystems. Process indica-

tors for forest soils processes are e.g.  

(a) C(hot water extractable (hwe) / cold water extractable (cwe)) ratio as indicator for soil organic matter 

(SOM) dynamics,  

(b) pH(H2O / KCl) ratio as indicator for the re-acidification potential,  

(c) difference between current and expected humus forms as indicator for the influence 

of management measures on natural humus dynamics,  

(d) temporal and spatial changes in ferrimagnetic susceptibility in the Oe / Oa as 

indicator for fly ash deposition influenced humus dynamics. 

 

(2) Process indicator based regionalization in order to derive process-oriented manage-

ment units as spatial information base.  

 

(3) Orientation of forest management planning to process-oriented management planning 
units. The economic and ecological targets of forest management are pre-defined by the 

forest owner (e.g., timber production, sustaining environmental quality). Process-oriented 

management planning units allow for a more sensitive adjustment of the type and inten-

sity of management planning measures.  

 

Although the delineation of process units is a general aim in landscape ecology (Haber 

2005), no generalizeable approach has been developed so far, neither in environmental nor 



Fly ash impact in forest ecosystems in Northeastern Germany - an assessment and regionalization approach 

 20

forest management. For the latter, dynamics within a planning unit and the spatial relation 

between different planning units under changing management concepts or the impact of local 

variations of environmental changes (e.g. Climate Change impact in dependence from 

topographical parameters) are of special interest. A better consideration of these factors 

would not only support a process-oriented forest management but could help to integrate 

forest management approaches into ecological landscape management approaches on 

different scale levels (Volk and Steinhard 1999). 

 

Articles 3.1.1 – 3.1.4 focus on the deposition history in Dübener Heide and process-oriented 

forest management as possible management concept. Some aspects are also part of the 

publications in chapter 2.  

 

Publication 3.1.1 gives the most detailed overview on the development of the forest 

ecosystem Dübener Heide und draws conclusions on how to integrate ongoing ecosystem 

processes in forest management.  

 

Publication 3.1.2 introduces a framework of tools and methods for a process-oriented forest 

management.  

 

Publication 3.1.3 includes first ideas of a possible concept for a regionalization of information 

on ecosystem processes as management decision basis.  

 

Publication 3.1.4 was written at the very beginning of the research project ENFORCHANGE 

and focuses on the historical and actual deposition situation in Dübener Heide.  
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3.1.1 Fürst, C., Lorz, C., Makeschin, F. (2007): Development of forest ecosystems after 

heavy deposition loads considering Dübener Heide as example − challenges for 

a process-oriented forest management planning, SI "Meeting the challenges for 
process-oriented forest management" Forest Ecology and Management, 248(1-2), 
p. 6-16 

 

Extended summary 
This article gives an overview on the state of art, prevailing studies and existing knowledge 

on deposition research in Dübener Heide and draws hereon based conclusions for an im-

proved forest management concept.  

In its first part, the article reviews literature on the development of the forest ecosystem in 

Dübener Heide. Dübener Heide was considered as an example for comparable forest eco-

systems and ecosystem processes in Central and Eastern Europe, which were driven by a 

dramatic change in the deposition regime, from heavily to moderately impacted by air 

pollution.  

 

Main on- and off-site factors and their influence on the forest vegetation and the ecosystem 

processes are described for different time periods. In the following, approaches for dealing 

with the influence of deposition on forest management planning are introduced. Finally, a 

concept for integrating ongoing ecosystem processes into a process-oriented forest 

management is described.  

 

Therefore, some process-sensitive indicators are identified, among them ratios of chemical 

site properties, humus form differences and spatial and temporal dynamic of ferrimagnetic 

susceptibility as physical indicator. These indicators are assumed to support a process-

oriented regionalization of management relevant information and especially the formation of 

process-homogeneous management planning units.  

 

The benefit of the presented approach against classic forest management planning is 

discussed. It is concluded that a process-oriented management approach allows for a better 

appraisal and consideration of future on- and off-site potentials and risks in strategic 

development targets and short-term management measures.  

Finally, requirements for the application of the presented approach in practice and resulting 

research needs are derived.  
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3.1.2 Fürst, C., Vacik, H., Lorz, C., Makeschin, F., Podraszky, V., Janecek, V. (2007): 
Meeting the challenges of process-oriented forest management, SI "Meeting the 
challenges for process-oriented forest management" Forest Ecology and 
Management 248(1-2), p. 1-5 

 

Extended summary 
This article was written as editorial of the special issue “Meeting the challenges for process-

oriented forest management” and discusses the question of a better integration of processes 

into forest management in the light of the actual development and research.  

 

The article gives an overview on the drivers of the development of forest management 

approaches and summarizes and discusses the contributions of the special issue 

considering four thematic blocks – (1) background and consequences for a dynamic 

development of natural systems, (2) regional frame conditions and development of adapted 

assessment and evaluation approaches, (3) integration of natural processes in modeling and 

forest management concepts, and (4) tools for supporting cognitive processes and decision 

making and for transferring information to heterogeneous end-user groups.  

 

The article concludes that a process-oriented management demands a sound and mature 

knowledge base on ecosystem functioning with regard to reactions on multiple changing 

conditions from climate change and changing off-site impact from industrial land use towards 

changing forest management measures and their interrelations. 

 

A network of tools, methods and models is proposed, which facilitates cognitive processes 

for the change from a static view of forest ecosystems to a process-determined perception 

and decision making. The specific role of indicators such as ferrimagnetic susceptibility in 

this network is to form the base for indicator based (process) models, simulators and up-

scaling approaches. These are used to describe the joint temporal and spatial development 

of forest ecosystems. 



Fly ash impact in forest ecosystems in Northeastern Germany - an assessment and regionalization approach 

 23

3.1.3 Fürst, C., Lorz, C., Abiy, M., Makeschin, F. (2006): Fly ash deposition in 
Northeastern Germany and consequences for forest management, Contributions 
to Forest Sciences, Ulmer, p. 50-63 

 

Extended summary 
The article is part of the book “Future-oriented Concepts, Tools and Methods for Forest 

Management and Forest Research Crossing European Borders”.  

 

The presented analysis of the state of the art and the hereon based conclusions for forest 

management and regionalization of management relevant information stood at the very be-

ginning of the project ENFORCHANGE. The paper introduces some aspects of the history of 

fly ash deposition in Dübener Heide based on prevailing research, where e.g. Zschornewitz 

was still considered to be the major regional fly ash emitter and the existence of the 

deposition zones was assumed to be valid.  

 

Some effects of fly ash deposition on the forest ecosystem Dübener Heide are presented 

under special consideration of forest growth and soil vegetation. Regarding the conse-

quences for forest management, some silvicultural findings from earlier research are dis-

cussed and a first stepwise approach for upscaling the investigations in ENFORCHANGE is 

derived. Finally, possible potentials of a regionalization of ongoing ecosystem processes are 

discussed.  
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3.1.4 Fürst, C., Abiy, M., Makeschin, F. (2005): Reaction of forest systems in the 
industrial triangle Leipzig-Halle-Bitterfeld on a changing immission regime – 
state of the art, in: Neuhöferovà, P. (ed.) Restoration of Forest Ecosystems of the 
Jizerske Hory Mountains, Czech University of Agriculture Prague, p. 67-72 

 

Extended summary 
The publication was written on the basis of a presentation of the ENFORCHANGE study at 

the conference “Restoration of Forest Ecosystems of the Jizerske Hory Mountains”.  

 

The historical and actual deposition situations in Dübener Heide are compared. The article 

assumes the deposition gradient described by e.g. by Lux (1965) to be valid and describes 

the spatial differentiation of different deposition components: in previous studies, a 

decreasing influence of fly ash and S along the distance dependent gradient was observed, 

starting at the former power plants at the Southwestern border of Dübener Heide. 

Considering N-deposition, overlapping gradients with irregular peaks for N were observed.  

 

As a result, also the impact of deposition on the site potentials and risks experienced a spa-

tial stratification, which is relevant for the silvicultural responses. Based on former findings of 

Lux and Stein (1977) and Nebe et al. (2001) the necessity of a conversion with deciduous 

tree species is concluded, despite the stated spatial stratification of site potentials and risks 

was not yet considered in the here presented conclusions.  

 

As a consequence, the regionalization of ecosystem processes is identified as challenge for 

a better support of silvicultural management decisions. 
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4. Material and Methods 

4.1 Fly ash properties and fly ash impact on forest ecosystems  

The average geo-chemical composition of fly ash varies depending on basic material 
properties (lignite or coal) and its origin. Lignite-derived fly ash from the industrial triangle 

Leipzig-Halle-Bitterfeld e.g., consisted in av. 26% SO3, 20% CaO, 18% SiO2, AlO3, FeO3, 

MgO, TiO2, Na2O, K2O, heavy metals, and „black“ (tertiary) carbon (Neumeister et al. 1991, 

Peklo and Niehus 1993, Magiera and Strzyszcz 2000, Klose and Makeschin 2003, Fürst and 

Makeschin 2006; for details see Tab. 1). 

 

Tab. 1: Composition of lignite derived fly ash in the model region (acc. to Neumeister et al. 

1991, Peklo and Niehus 1993, Thomasius et al. 1998, Fürst and Makeschin 2006). 

molecular deposition components (w- %) heavy metals (mg/kg) 

SO3 CaO MgO K2O Fe2O3 Al2O3 SiO2 Corg. Cd Cu Pb Zn 

13-26 15-20 1.5-3 0.1-1 4-10 3-8 10-18 5-20 3-8 140-230 50-100 130-250 

means of the total deposition for the example Dübener Heide (kg/ha*a) 

Na K Ca Mg Fe Mn Cu Pb Cd Zn F Cl N S P Ca /S 

15.7 8.3 320 36.5 125 1.1 1.4 1.0 0.1 2.3 9.8 54 38 190 0.3 1.7 

 

Typical impacts of fly ash deposition on forest sites are wider C : N and C : P ratios as 

well as an additional input of S and base cations. In the long run, fly ash accumulation leads 

to an improvement of site quality, particularly for nutrition capacity of naturally poor sites 

(sandy soils). An increase of the site index up to two levels and an enhancement of the 
eligible tree species spectrum are reported by Kopp and Schwanecke (2003) and Thoma-

sius et al. (1998). Amarell (1997), Heinsdorf et al. (1994) and Thomasius et al. (1998) de-

scribe a drift of ground vegetation composition towards nitrophile and eutrophic species. An 

ample tree growth and an exuberant development of ground vegetation were and still ob-

served in the Western parts of Dübener Heide (Lux 1964 b, Amarell 1997, Thomasius et al. 

1998).  

 

Another effect, which is still observed, is the modification of humus form and an abnormal 
thickness of humus layers, which influences the water retention capacity and nutrient 

supply (Thomasius et al. 1998, Hartmann et al. 2008 and 2009). This modification is going 

along with an augmentation of mineral particle content that exceeds the threshold of 30 %, 

which distinguishes the humus layer from the mineral top soil (Klose et al. 2001, 2002 and 

2003, Klose and Makeschin 2004, Koch et al. 2002). In previous studies, fly ash impacted 
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humus forms were assumed to be characterized by an elevated hydrophobicity, which can 

hinder the water percolation into mineral soil (Katzur et al. 1998, Thomasius et al. 1998). 

However, most recent results show that fly ash can decrease at least partially the hydro-
phobicity of humus layers and leads to higher air capacities in the humus layers and 

lower available water capacities (Hartmann et al. 2008 and 2009). Fly ash, which is shifted 

in the upper mineral soil, can induce faster percolation of rainfall due to its specific physi-

cal properties (Taubner and Horn 1998). This process can accelerate humus layer dehydra-

tion and amplify disturbance of water balance in humus layer (Dekker and Ritsema 2003, 

Zikeli et al. 2002).  

 

Fly ash deposition increases the Al, Fe, and heavy metal content in forest ecosystems 

(Strzyszcz 1999, Strzyszcz and Magiera 1998 and 2001). Trüby (2003) reported a 

considerable uptake of heavy metals up to 120 µg Pb / g (dw (dry weight)) for 120 years old 

conifers, which seemed not to affect tree growth and vitality. 

However, heavy metal deposition might also cause a disturbance of litter decomposition 

and can provoke the before described development of adverse humus forms (Klose et al. 

2003, Magiera et al. 2002 a, Strzyszcz 1999, Strzyszcz and Magiera 1998). Results from 

wood ash research suggest that heavy metals might remain in the humus layers and the 

humous upper mineral soil (Bramryd and Fransman 1995, Fritze et al. 1994). The accumu-

lated heavy metals might be mobilized by re-acidification, which is accelerated by N-

deposition and the lack of (former) base deposition (Klose et al. 2003, Koch et al. 2002).  

 

The development of the adverse humus forms might also have other reasons: Klose et al. 

(2003) and Klose and Makeschin (2004) e.g., described impeding effects of lignite derived 

fly ash on microbial activity. Also “Black Carbon”, another component of the fly ash depo-

sition, seems to play a key role in hindering organic matter decomposition (Goldberg 

1985). The possible role of macromolecular organic pollutants (PCB, PAH), which play e.g. 

an important role for evaluating wood ash effects, is not yet clear for fly ash deposition.  

 

From silvicultural point of view, the influence of fly ash deposition on humus provokes 

antithetic effects. The observed intensification of fine root growth in ash-dominated humus 

layers together with better availability of base cations improves tree nutrition. On the other 

hand, the resulting tendency of shallow root systems leads to higher wind throw probability 

and drought susceptibility (Klose et al. 2003, Koch et al. 2002, Thomasius et al. 1998). Lux 

(1976) highlightens a particular endangering of functional stability of Scots pine dominated 

forest systems by the elevated pH-values and base saturation, since fly ash deposition 

cannot be managed in a site-adapted dosage and thus provokes additional costs and 
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economic losses. Stracke (1996) concludes the necessity of a conversion with hardwood, 

which increases the expenses for stand establishment and regeneration and decreases eco-

nomic profit due unfavorable assortments. Economic losses might also result from shortening 

of the rotation period, which results from fly ash induced stability risks.  

 

Fly ash deposition demands for an adapted site classification system in dependence from 

original site quality and possible on- and off-site effects (Kallweit 1990, Klose et al. 2003, 

Thomasius et al. 1998, Koch and Makeschin 2004, Makeschin et al. 2004, Zhong and 

Makeschin 2003 a, b and 2004). A conversion with broadleaves (European beech or noble 

hardwoods) was proposed by Lux and Stein (1977), Thomasius et al. (1998) and Nebe et al. 

(2001). Broadleaves make better use of the high nutrient potential and can contribute to a 

stabilization of nutrient balance. Nowadays, the demanded conversion is realized by natural 

processes, but an ample natural regeneration with noble hardwoods and European 
beech raises the question how to continue with these new stand types.  

 

The following article introduces in detail the properties and risks of fly ash compared to wood 

ash and rock powder as fertilizers.  
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4.1.1 Fürst, C., Makeschin, F. (2006): Comparison of Wood Ash, Rock Powder, and Fly 

Ash − a review, Contributions to Forest Sciences, Ulmer, p. 63-81 

 

Extended summary 
The literature review was part of the proceedings “Future-oriented Concepts, Tools and 

Methods for Forest Management and Forest Research Crossing European Borders and 

compares the properties of wood ash, rock powder and fly ash regarding their fertilizing 

effects and risks for forest soils.  

 

Considering fly ash, the average chemical composition in Dübener Heide based on findings 

from Neumeister et al. (1991), Peklo and Niehus (1993), Thomasius et al. (1998) is pre-

sented and the resulting impact on the site potential and possible trade-offs for drinking water 

quality are discussed.  

 

Recommendations for the application and right use of wood ash and rock powder, and the 

possible reactions of forest ecosystems on fly ash deposition are given. The application fields 

of wood ash and rock powder were considered as complementary. Wood ash was 

recommended to be used on sites with naturally higher organic matter. Rock powder was 

highlightened to be able to improve the properties of poor (sandy) soils with low organic 

matter content. Fly ash deposition was considered as a kind of long-term fertilizing experi-

ment for forest soils with some parallels to wood ash fertilization. It was shown that wood ash 

fertilized and fly ash affected soils experienced the most obvious effects in the Oe and Oa 

horizon induced by a long-lasting decomposition with litter fall on ash residuals and a slow 

move of the only partly-decomposed matter to the Oa. The article concludes that fly ash im-

pacted forest soils demand for a careful monitoring considering the turnover rate of the or-

ganic matter and the possible eluviation of toxic elements.  

 

Finally, a decision tree is proposed how to handle wood ash and rock powder fertilization and 

how to integrate “fly ash fertilization” in forest management practice. 
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4.2 Assessment of fly ash deposition with ferrimagnetic susceptibility 

The magnetic susceptibility χ is defined as difference between the relative magnetic per-

meability μ and 1 (μ - 1). It can be used to express approximately the concentration of 

magnetic particles in the soils (Thomson and Oldfield 1986). 

 

According to their magnetic properties, materials can be divided into diamagnetic, para-
magnetic, ferrimagnetic, and ferromagnetic substances (Glaser 2001). The detection of 
lignite derived fly ash by magnetic susceptibility is based on its content of ferrimagnetic 
iron oxides, such as magnetite (Fe3O4) and maghemite (γ-Fe2O3), which are natural compo-

nents of lignite (magnetite) or can be the result of pyrite (FeS2) oxidation (magnetite and 

maghemite) and a successive enrichment of the ferrimagnetic oxides during the combustion 

process (Katzur et al. 1998, Magiera and Strzyszcz 2000, Strzyszcz et al. 1996, Strzyszcz 

1999).  

 

In a number of studies, the indicator magnetic susceptibility was tested and found suitable 

as proxy for fly ash deposition (Boyko et al. 2004, Grimley et al. 2004, Magiera et al. 2007, 

Magiera and Zawadzki 2007, Magiera and Strzyszcz 2000, Schibler et al. 2002, Strzyszcz 

and Magiera 1998).  

As proved by previous studies, the detection method is most suitable for areas with a 
strong impact of industrial emissions, since a natural enrichment of magnetic substances 

as result of geochemical processes and activity of micro organism in humus layers is also 

reported from non-industrial areas and might blur the effect of minor fly ash deposition 

(Faßbinder 1994, de Jong et al. 2005, Le Borgne 1955, Magiera and Strzyszcz 2000, Scollar 

1965, Thompson and Oldfield 1986).  

 

The magnetic signal might be correlated with Fe, Al, Mn and heavy metals (Lu and Bai 

2006, Goluchowska 2001, Magiera and Zawadzki 2007, Wang and Qin 2005, Zawadzki et al. 

2009) and to some extent also with base cations and Black Carbon (see chapter 5.2.1). A 

restriction is that these correlations cannot easily be transferred from one region to 
another as they depend from geographical origin and type of the combustion material. Also 

the land use type and even the forest type itself can impact the correlation (Fialova et al. 

2006, Magiera and Zawadzki 2007, Strzyszcz and Magiera 1998). In consequence, the im-

pact of different environmental parameters on the magnetic signal should be considered in 

the regionalization approach (see chapter 5.1.1).  

 

For the assessment of the ferrimagnetic susceptibility, two basically different designs were 

used in the studies 4.2.1, 5.1.1 and 5.2.1 (Fig. 5, Tab. 2).  
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Fig. 5: Overview on the different test designs. The results from the pre-study (A) formed the basis for the large-scale assessment (B).  
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Tab. 2: Overview on the sampling design at the different test plots of the pre-study and the 

hereon up-building regionalization study. 

A. pre-study B. regionalization 
A / B 

suitability validation 4x4 km² 1x1 km² 

number of 

plots  

3 plots 4 plots  38 plots 72 plots 

plot design 

a) Burgkemnitz 

and Tornau: 10 

m long transect,  

1 spade sample 

each 0.5 m 

 

b) Pretzsch: 110 

m long transect,  

1 spade sample 

each 5 m 

 

3 test sites per 

test plot  

 

five bore holes / 

test site (1 cen-

tral bore hole, 4 

satellite bore 

holes) 

5 bore holes / test plot 

 

(a) along the head side of existing 

profiles 

 

or 

 

(b) 1 central bore hole, 4 satellite 

bore holes if no profile was opened 

up 

measurement 

design 

20 cm deep spade samples, meas-

urements in the spade holes and at 

the spade samples, each measure-

ment with three repetitions 

30 cm deep bore holes, 1 

measurement per cm depth directly 

in the bore holes 

localization 

measurements 

a) depth level 

wise (1, 2, 5, 10, 

20 cm)  

 

b) horizon wise 

(Oe, Oa, A(a), 

B(w)) 

horizon wise (Oe, 

Oa, A(a), B(w)) 

depth level-wise (1 cm = 1 depth 

level) 

number of 

measurements 

/ test plot * 

a) 660 

 

b) 528 

360 150 150 

* For more details see publications 4.2.1, 5.1.1 and 5.2.1. 
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A. In the frame of a pre-study on the suitability of the method including a validation of 
the results, a portable magnetic susceptibility meter (KT-9, © Terraplus) was used. The 

KT-9 is conceived for detecting very low quantities of magnetic Fe-Oxides in compact (rocks) 

or loose substrates (mineral soil, humus layer). The instrument measures spot wise the 

volume magnetic susceptibility as sum value up to a depth of 0.5 – 2.0 cm starting from the 

surface of the measured substrate. The susceptibility meter has a sensitivity of 1 × 10−5 S.I. 

units and can be used either in a single readout mode or in a continuous (scanning) readout 

mode.  

 

For testing the suitability of the field magnetic susceptibility measurements, three test 

plots were selected (Fig. 5, Tab. 2), where different deposition levels have been found 

previously (Klose and Makeschin 2005). The magnetic susceptibility signal was measured 

depth-level and horizon wise at spade samples and in remaining spade holes. In Dübener 

Heide, extensive disturbances by wild boar were observed during the studies and compli-

cated the differentiation between Oe and Oa and also between humus layer and the upper 

mineral horizon. Therefore, the measurements of the suitability test were established along 

transect with a length of 10 m or 110 m and with a distance between each single sampling 

point of 0.5 m (10 m transects) or 5 m (110 m transect) to achieve information on the rele-

vance and dimension of the influence of variable micro site conditions, including bioturbation 

and natural variability of humus layer thickness. 

 

For testing if the historically documented deposition gradient and the deposition 
zones can be detected by magnetic field measurements, four test plots were selected. 

Each test plot represents a specific deposition zone according to Lux (1965) and Lux and 

Stein (1977), respectively (Fig. 6). Magnetic susceptibility was measured horizon wise with 

the KT-9 and again at spade samples and in remaining spade hole. At each of the validation 

test plots, three test sites were established, which represented different situations of stand 

composition. At each test site, five spade samples were collected, where four spade samples 

were satellites in a distance of 1 m around one central spade hole.  

 

The results of this pre-study were used as basis for the grid- and plot-wise measurements for 

the regionalization and the correlation with base cations and heavy metals. 
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Fig. 6: Localization of the plots in the pre-study in relation to the deposition zones according 

to Lux 1965, and Lux and Stein 1977. The plots Burgkemnitz, Tornau and Pretzsch were 

established to test in detail the suitability of field magnetic susceptibility measurements. The 

plots V1 - V2 were used in a second step to validate the method (Fürst et al. 2009 a). 
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B. For spatial transfer and correlation of the magnetic signal (mass susceptibility) with 
contents of base cations, acid and heavy metal cations and Black Carbon, magnetic 

susceptibility field assessment was carried out in a 4x4 km² grid (38 plots) and a 1x1 km² grid 

(72 plots) (Fig. 7). Both grids were overlapping (nested approach). The grid-wise measure-

ments were done to map with sufficiently high resolution the spatial variation of magnetic 

susceptibility and to test if the formerly observed distant dependent fly ash deposition 

gradient can be validated. The 4x4 km² basic grid allowed for linking the magnetic suscepti-

bility measurements to chemical soil data from Level-I monitoring. The 1x1 km² grid intensi-

fied the information depth for the regionalization of magnetic susceptibility. 

 

Magnetic susceptibility was measured with the MS2 meter susceptibility system of 
Bartington Instruments. The system is developed for detecting very low quantities of mag-

netic Fe-Oxides in compact (rocks) or loose substrates (mineral soil, humus layer). The sus-

ceptibility meter has a sensitivity of 0.1 - 1 × 10−5 SI units and can be used in a single readout 

mode or transfers the measured values to a PC, where the data can be processed with the 

software Multisus (© Bartington).  

The Multisus program is using the Windows 3.1 or Windows 95/NT interface to record the 

magnetic susceptibility measurements of different field assessment sensors. The program 

allows for saving as file the results from a batch of individual samples or from a core. For 

single samples the results can be volume or mass specific and provision is made for auto-

matic increments of depth for core measurements (source: Operation Manual of Multisus 2.0, 

Bartington Instruments Ltd.).  

The MS2 meter susceptibility system comprises a portable measuring instrument, the MS2 

meter, and a variety of sensors. The meter displays the magnetic susceptibility value of the 

tested substrates when these are brought within the influence of one of the sensors, which 

are each designed for a specific application and sample type (source: Operation Manual of 

the MS2 system, Bartington Instruments Ltd.).  

 

At the field assessment, volume magnetic susceptibility was measured centimeter wise 

in 30 cm deep boreholes with the MS2H down-hole-probe sensor. The MS2H is a sub-

surface probe for profiling the magnetic susceptibility of zones in 25 mm nominal diameter 

auger holes. Zones with a thickness down to 15 mm can be discriminated. The starting point 

1 of the measurements was defined as first measurement after removing the litter (Oi). The 

Oi was removed, as the pre-study has shown that fly ash particles could never be detected in 

this layer.  
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Fig. 7: Grid-wise magnetic sus-

ceptibility mapping. The yellow 

dots belong to the basic 4x4 

km² grid, which was identical 

with the plots of the EU-Level I 

grid. The orange dots belong to 

the high-resolution 1x1 km² 

grid.  
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For the regionalization of magnetic susceptibility, mean values of measurements at 

three depth levels were used:  

 

Depth level 6–10 cm represents the zone in the humus layer, where in average, the 

highest magnetic susceptibility values were observed (see also Fig. 8). For this zone, biased 

measurements can be excluded which can occur at the interface between airspace and 

humus layer (depth level 0 - 5 cm) due to technical particularities of the sensor. Also, the 

likelihood of an impact of admixed particles from the mineral soil is low.  

 

Depth level 11–15 cm is situated in the transition zone between humus layer and upper 
mineral horizon, which is characterized by great local variability of humus content in mineral 

soil and vice versa due to bioturbation caused by wild boars. In most cases, a distinct and 

sharp border between humus layer and upper mineral soil does not exist. In this zone, an 

increased magnetic susceptibility is observed.  

 

Depth level 21–25 cm represents the local background value spectrum for the mineral 
horizon as reference for the height of the magnetic susceptibility signal. At the same time, a 

possible falsification of the measurements due to organic material, which can drop down into 

the bore hole when taking out the auger, can more or less be excluded in this zone. 

 

To allow for a correlation between magnetic susceptibility and contents of key base 
cations, acid and heavy metal cations and Black Carbon, additional laboratory mag-
netic susceptibility measurements were carried out. The aim was to adjust and correct the 

field assessments and to calculate a correction factor for field and laboratory assessed 
volume magnetic susceptibility and to calculate on this basis mass susceptibility.  

 

The corrected values of the magnetic signal were correlated with results of chemical 
analysis at several plot types.  

 

A. ENFORCHANGE plots: a subset of 12 plots origins from the research project ENFOR-

CHANGE. The plots were situated on the most important regional soil type (Eutric Cam-

bisols) to minimize the influence of variable soil properties on the assessed chemical 

characteristics and the magnetic susceptibility. The influence of different stand types 

(pure Scots pine stands and mixed stands with English oak and European beech), which 

are situated at the plots could not totally be excluded (Zawadzki et al. 2007).  
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Only at the ENFORCHANGE plots it was possible to assess chemical parameters and 

magnetic susceptibility at identical sampling spots and soil samples. Magnetic suscepti-

bility was first assessed in situ (volume magnetic susceptibility) at the soil profiles exactly 

at the location where the soil samples were taken. For deriving a correction factor for the 

in situ measurements, the soil samples, which were also used for the chemical analyses, 

were measured in the laboratory (volume and mass susceptibility).  

 

In consequence, the plot collective delivered the most proper basis for correlating the 

content of Ca, Mg, Fe, Al, Mn, Cd and Black Carbon with the magnetic susceptibility. A 

restriction for statistical analysis was the limited number of plots, which was predefined 

by the project frame. Furthermore, no reference plots in a non fly ash impacted region 

such as Dahlener Heide were included in the ENFORCHANGE study. 

 

To widen the data basis for spatial trend analysis, plot collective B was included in the study. 

 

B. Monitoring plots: 20 plots from Level-I monitoring and two other plots from a prevailing 

study were included. The precondition for their selection was the availability of soil 

chemical data, which were assessed according to the same standard as at the ENFOR-

CHANGE plots. The Level-I plots belong to a European wide network of 6,000 soil moni-

toring plots for the assessment of long range transboundary air pollution with regular 

assessment of soil chemical values each five years. The two other monitoring plots were 

part of a habilitation thesis (Lorz 2008) and were chosen to have a broader data base in 

Dahlener Heide.  

 

The chemical parameters and the field assessment of the magnetic susceptibility (volume 

magnetic susceptibility) were done at the same plot, but the sampling spots and soil 

samples were not identical. The chemical analyses were done up to five years earlier 

than the presented magnetic susceptibility assessment and the soil samples were not 

anymore available.  

 

Furthermore, magnetic susceptibility was correlated with regionalized values of the base 

saturation from the ENFORCHANGE and Level-I plots. This was done to get further 

information on the spatial variance of magnetic susceptibility in dependence from the dis-

tance to the fly ash emitters. 
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Publication 4.2.1 introduces the pre-study in Dübener Heide as first approach to develop and 

test magnetic susceptibility field measurements as method for the following mapping of fly 

ash deposition. The hereon based grid-wise assessment and correlation with base cations 

and heavy metals is integrated into the results section (chapter 5), because there, major 

results were derived.  

The methodology for the regionalization study however was yet presented in short in this 

section to give a better overview on the differences in the applied test designs.  
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4.2.1 Fürst, C., Lorz, C., Makeschin, F. (2009): Testing a soil magnetometry technique 
in a highly polluted industrial region in Northeastern Germany, Water, Air, and 
Soil Pollution, 202, p. 33-43, DOI: 10.1007/s11270-008-9956-9 

 

Extended summary 
The article focuses on a test of the suitability of ferrimagnetic susceptibility field assessment 

for assessing historical fly ash deposition in Dübener Heide and for verifying the deposition 

zones, which were originally defined by Lux (1965).  

 

In this pre-study a hand-held, the KT-9, was used, which implies some restrictions for the 

methodological approach and the hereon based conclusions: the penetration depth of the 

magnetic signal is limited to maximally 2 cm and the flashlight-like design of the hand-held 

with a central sensor makes it difficult to assess the magnetic signal at a specific depth 

(point) at a profile. Therefore, a depth level-wise assessment and a horizon wise assessment 

of the magnetic signal were compared and in this case using this specific technology, the 

horizon wise assessment showed better results.  

 

Despite these problems, the measurements supported the verification of the four historically 

documented deposition zones. Apart from the measured susceptibility values (mean values), 

also some statistical characteristics, such as standard deviation and coefficient of variation 

were proved to be applicable to distinguish the former deposition zones.  

 

The article concluded some weaknesses of the pre-study, which were picked-up later on in 

the grid-wise assessment of ferrimagnetic susceptibility for the regionalization of fly ash 

deposition: the KT-9 is designed for assessing volume magnetic susceptibility, which does 

not allow directly for a calculation of the deposited fly ash amounts. Therefore, parallel 

assessment of mass susceptibility under laboratory conditions is demanded to derive a 

correction factor.  

 

Furthermore, it was not possible to get information on the natural level of magnetic suscepti-

bility in the humus layers, when restricting the assessment to Dübener Heide. As a conse-

quence, the measurements were extended later on to Dahlener Heide, where no fly ash 

deposition was recorded in the past (see chapter 5.2.1).  
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5. Results 

5.1 Regionalization of fly ash deposition based on ferrimagnetic susceptibility 

measurements  

The pre-study proved the suitability of ferrimagnetic susceptibility field measurements 

to detect different levels of fly ash deposition. The deposition zones described first by Lux 

(1965) could be verified with this method. Although, the approach had still some weak-

nesses, such as the use of volume magnetic susceptibility and the related problems to 

correlate the magnetic signal with contents of base cations or heavy metals. This was 

considered later on (chapter 5.2) be deducing a correction factor from field assessed volume 

magnetic susceptibility to mass susceptibility. 

 

The aim of the regionalization was among others to explain the spatial variation of the 
response variable magnetic susceptibility by auxiliary variables, which are 

characterized by a pertinent correlation with the response variable (Zirlewagen and von 

Wilpert 2004) and which are available in digital form. Examples for auxiliary variables are the 

horizontal distance to former emitters, relief attributes, pedo-geological attributes (substrate / 

soil type), and stand attributes. For instance, the horizontal distance to emitters explains 

gradual differences in the magnetic signal along the deposition gradient. Topographical 

height and exposure give information on deposition intensity. Digital relief parameters, which 

describe convex or concave orography, can explain hydrological soil and site properties and 

support also the prediction of the response variable magnetic susceptibility (Zirlewagen and 

von Wilpert 2004). The soil type gives information on the water regime and matter dynamics 

and thus indicates for how long fly ash is stored in humus layers. Stand properties such as 

tree species composition, height, density etc., contain information on the efficiency of 

combing out of dust particles and − in coherence with the soil type − which humus dynamics 

can be expected. A pre-selection of auxiliary variables was based on experiences with the 

regionalization of soil chemical values in the federal state of Saxony (Zirlewagen et al. 2006, 

2007). 

 

The observed magnetic susceptibility values from the field assessment (volume sus-

ceptibility) ranged in the humus layers from 0 up to 565 SI units×10−5. Calculated as mass 
susceptibility, single outliers reached values of up to 800 χ * 10-8 m³ kg-1.  

In comparison, the regional background values, which were observed at the C(w) horizons 

at the ENFORCHANGE plots (profiles) vary between 0 (Podzol) and 10 – 20 SI units×10−5 

(Eutric Cambisols). Calculated as mass susceptibility, values of 3 - 30 χ * 10-8 m³ kg-1 were 

found.  
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Considering the spatial variability of magnetic susceptibility, the highest single values 
were observed at the Western part of Dübener Heide, which was situated nearest and in 

the major regional wind direction to the former power plants. Here however, also the 

broadest variability of the measured values was observed, which is supported by results of 

the pre-study (Fürst et al. 2009 a). The lowest values and the lowest variability were ob-

served in the Northeastern part of Dübener Heide, which is situated farthest from the 

power plants.  

 

Within the bore holes (Fig. 8), the highest mean values were achieved in the humus 
layers, in a depth of 8 and 9 cm. The highest variability of the measured values was 

observed in a depth from 10 to 12 cm. The lowest mean values and the lowest variability 
were found in the upper humus layer from 1 to 4 cm depth and in the mineral horizon 
from 22 cm depth on.  

 
Fig. 8: Magnetic susceptibility (volume susceptibility) mean values (SI-Units x 10 -5) and 

variability expressed by the 95 % confidence interval from 0 – 30 cm depth. Number of test 

plots: 110 (Fürst et al 2009 b).  
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These findings and the necessity to correlate the magnetic signal with depth level-wise 

assessed chemical characteristics according to the EU Level-I monitoring standard, were the 

reason to focus in the following on the results on the three different depth levels described in 

chapter 4.2:  

depth level 6-10 cm where standard deviation and coefficient of variation were lower com-

pared to depth level 11-15 cm. At depth level 11-15 cm, the value range was highest and 

high standard deviation and coefficient of variation express the heterogeneity of this depth 

level. Depth level 21-25 cm was characterized by low standard deviation, which expresses a 

lower variability of the measured values, despite some outliers, which lead to a higher 

coefficient of variation than in depth level 6–10 cm.  

 

As basis for the spatial model, a total of 21 auxiliary variables was identified in a step-
wise selection process (see 5.1.1), which includes a global modeling approach for the 

whole area of Dübener Heide and a stratified modeling approach for the near distance zone 

up to 25 km.  

The application and explanatory value of each variable varied for the different depth 
levels, going along with specific characteristics of each depth level, and varies also between 

global model and stratified model. The validation of the model parameters helped to exclude 

depth level-wise variables, which do not contribute to a higher model quality or to include 

additional variables. Some variables, such as the logarithmic distance to Bitterfeld and the 

stream power index, showed for almost all depth levels and for global and stratified model a 

high explanatory value. In contrast, the logarithmic distance to Zschornewitz was not signifi-

cant and has to be rejected as major parameter for fly ash deposition. Neither for the global 

nor for the stratified model a stable correlation was found.  

Contradictory to research hypothesis (1) of the ENFORCHANGE study, the statistical 

analysis of the grid-wise assessed ferrimagnetic susceptibility revealed that deposition from 

the power plants in Bitterfeld reached much farther compared to the deposition from 
Zschornewitz, which had only a very restricted local impact. The impact of the Bitterfeld 

power plants was most evident for depth levels 6-10 cm and 11-15 cm. The maximum 

distance for detectable fly ash deposition is 40 km. Up to a distance of 10 km, the impact was 

even detectable in the depth layer 21-25 cm. For the Zschornewitz power plant, only minor 

impacts were detected up to a maximum distance of 10 km for the depth levels 6-10 and 11-

15 cm, while the impact on the depth level 21-15 cm was almost not quantifiable. 

 

The spatial variation of magnetic susceptibility was predicted with high precision by a 
multiple linear regression model. The use of a slightly differing set of model parameters for 

the different depth levels according to their explanatory value improved the prediction quality 
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considerably and supported also the understanding of major drivers for magnetic particle 

deposition, storage, and vertical displacement in the forest soils.  

For the humus layer (depth level 6-11 cm), the horizontal distance to Bitterfeld and soil 
type (Podzol, semi-terrestrial sites) were the most important variables. They indicate 

slowed-down humus dynamics, which supports the accumulation of fly ash in the humus 

layer.  

For the depth level 11-15 cm, variables gain in importance, which describe the exposure 
(aspect) to major wind direction and thus indicate the probability of deposition.  

For the mineral horizon (depth level 21-25 cm), aspect and especially stand properties 

are most important. The latter give indication of the intensity of deposition driven by the 

variable combing-out effects. Consequently, the variables “coniferous” and “mixed” stands 

were highly relevant for the model.  

 

The following article presents the regionalization study in detail. Some key findings of the 

study are highlighted separately and are presented in detail in the article itself (chapter 8.2). 



Fly ash impact in forest ecosystems in Northeastern Germany - an assessment and regionalization approach 

 44

5.1.1 Fürst, C., Zirlewagen, D., Lorz, C. (in print): Regionalization of magnetic 
susceptibility measurements based on a multiple regression approach, Water, 
Air, and Soil Pollution DOI: 10.1007/s11270-009-0154-1 

 

Extended summary  
The article presents the results of the field assessment of ferrimagnetic magnetic 

susceptibility in Dübener Heide in a regular grid. The intention of this assessment was to get 

information on the spatial variation of ferrimagnetic susceptibility and to test the research 

hypotheses of the ENFORCHANGE project (1) Zschornewitz as major regional emitter and 

(2) existence of the deposition zones.  

 

The assessment was down with centimeterwise with the down hole probe sensor MS2B of 

Bartington up to a depth of 30 cm. The measurements were in the following clustered into 

three different depth levels. These represent the humus layer, the transition zone between 

humus layer and mineral horizon, and the mineral horizon and allow (see article 5.2.1) linking 

the results of this assessment with depth level-wise assessed chemical soil characteristics.  

 

Based on the compiled results for the three depth levels, a multiple regression-based 

regionalization approach was applied, testing and using additional environmental parameters 

derived from geology, topography, and stand type. The aim was to develop a comprehensive 

model for the spatial variability of ferrimagnetic susceptibility as indicator for the fly ash 

deposition.  

 

Spatial variation of magnetic susceptibility was predicted with a high precision by the multiple 

linear regression models. A slightly differing set of model parameters was selected for the 

single depth levels. In tendency, magnetic susceptibility values in depth level 6–10 cm were 

best explained by the distance to Bitterfeld and by soil properties. In depth level 11–15 cm, 

variables which describe the orographic conditions and stand properties gain in importance. 

In depth level 21– 25 cm, variables indicating soil and site properties disappear completely. 

Here, aspect and land surface characteristics play a major role together with stand 

properties. 

 

A spatial stratification of the model for a distance of up to 25 km to the former emitters pro-

vided a further improvement of the model quality considering the prediction of small-scale 

variations of ferrimagnetic susceptibility. 
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The study provides key findings of the ENFORCHANGE project and of this thesis: 

 

1. The industrial area Bitterfeld is the most relevant source of fly ash for Dübener Heide. In 

contrast, the Zschornewitz power plant is only of minor importance.  

Figs. 9a and 9b show exemplarily for the depth level 6-10 cm results from the stepwise 

model parameter test. A good correlation between the height of the magnetic signal and the 

horizontal distance to Bitterfeld was found (Fig. 9a). A comparable correlation did not exist 

for the distance to Zschornewitz (Fig. 9b). The missing R² and RMSE in Fig. 9b express the 

impossibility to fit a nonlinear regression for magnetic susceptibility and horizontal distance to 

Zschornewitz. The nonlinear least-squares estimations did not converge for the tested pre-

diction equations. 

Fig. 9a: Dependence of magnetic 

susceptibility from the horizontal distance to 

Bitterfeld for depth level 6-10 cm. The dashed 

lines show the 95% confidence interval for 

individual prediction. 

Fig. 9b: Dependence of magnetic 

susceptibility from the horizontal distance to 

Zschornewitz for depth level 6-10 cm. The 

dashed lines show the 95% confidence 

interval for individual prediction. 
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2. As result of the regionalization, it was possible to identify strata with more or less 

comparable height of the magnetic signal. This is especially evident for depth level 6-10 cm 

(Fig. 9c) and becomes less pronounced with increasing depth (Figs. 9d and 9e). By using 

parameters for topography, soil type and forest stand type parameters, also the spatial 

variability within the strata can be modeled. This provides more detailed information for forest 

management planning than a simple zoning as proposed by Lux (1965). A further improve-

ment in the representation of small scale variations of the magnetic signal was possible by 

using a stratified modeling approach (Fig. 9f). Figs. 9c – 9e show the regionalization results 

for the three depth levels. Fig. 9f compares the information depth of the global and a strati-

fied modeling approach.  

 

 
Fig. 9c: Spatial variability of 

magnetic susceptibility in the 

global model for depth level 

6-10 cm. 

Fig. 9d: Spatial variability of 

magnetic susceptibility in the 

global model for depth level 

11-15 cm. 

Fig. 9e: Spatial variability of 

magnetic susceptibility in the 

global model for depth level 

21-25 cm. 

 

Fig. 9f: Zoom-in into 

differences between global 

(“all data”) and a stratified 

model considering high 

resolution information on 

small scale differences in 

magnetic susceptibility for 

the depth level 6 – 10 cm. 
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5.2 Indicative value of ferrimagnetic susceptibility assessment for  

site potentials and risks 

When assessing ferrimagnetic susceptibility, a major question was, if the magnetic signal 

allows for concluding on the content of base cations, acid and heavy metal cations and 
Black Carbon as ecologically relevant components of fly ash deposition.  

Therefore, an extended test series was carried out at the 12 ENFORCHANGE plots and 20 

Level-I plots and 2 previously assessed plots (Lorz 2008) in Dübener and Dahlener Heide. 

Dahlener Heide served as reference region with absence of fly ash deposition to conclude on 

natural background values of ferrimagnetic susceptibility and chemical properties under 

comparable geological conditions and in a comparable forest ecosystem type.  

 

Volume magnetic susceptibility, which was assessed in the field, was converted into 
mass magnetic susceptibility by specific correction factors for humus layer and upper 
mineral horizon respectively, derived from laboratory measurements of ferrimagnetic sus-

ceptibility. Hereby, it became possible to correlate the mass susceptibility (χ x 10-8 m³ kg-1) 

with contents of Ca, Mg, Fe, Mn, Al and Cd, which were assessed according to the Level-I 

standard procedure (BMELV 2006, Fritz and Makeschin 2007) and with Black Carbon, which 

was assessed in the frame of a diploma thesis (Koschke et al. subm.). The correlation with 

Cd and Black Carbon was restricted to the humus horizons Oe and Oa.  

 

The correlation expressed by Pearson’s correlation coefficient (r) between mass suscepti-
bility and the Ca and Mg content was in trend higher at the ENFORCHANGE plots except 

for the Mg content at the Oe horizon. Taking the Fe, Al, Mn and Cd content, the results 
were vice versa. Also some trends were vice versa: the correlation with Fe and Al (with ex-

ception of Oa in case of Fe) was negative for all horizons at the ENFORCHANGE plots. At 

plot collective B this came only true for Fe at the mineral soil horizon 3 (21 - 30 cm) and for 

Al at all three mineral horizons. 

The correlation with Black Carbon was negative for all plot types. Taking the absolute 

values, correlation with Black Carbon at the ENFORCHANGE plots was higher compared to 

the plot collective B. When correlating the mass susceptibility over all horizons, r was 

higher at the ENFORCHANGE plots for Ca, Mg, Cd and (absolute value) Black Carbon. 

The results are vice versa for Fe, Mn and Al.  

When analyzing the distance dependence of the correlation, no spatial trend could be found 

for all elements, neither for Pearson’s correlation coefficient, nor for the variability of the 

measurements expressed by the standard error.  
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The accuracy of predicting soil chemical characteristics was tested by using linear 
regression equations. This step was restricted to humus horizons Oe and Oa as they were 

more intensively and directly impacted by fly ash deposition than the (upper) mineral horizon. 

Using a linear regression, Ca and Mg as key nutrients can be predicted by fly ash depo-
sition. The prediction quality for these base cations was even better (higher R², smaller 95% 

confidence interval, better distribution of the residuals), than for the metal cations Fe and Al. 

The prediction quality for Cd and for Black Carbon as possible risk factors was less satis-
fying compared with Ca, Mg and Mn.  

In sum, the results of the study have shown that magnetic susceptibility can be used for pre-

dicting key element concentrations. Under the specific conditions of this study, the prediction 

quality for the nutrients Ca and Mg was very high. Magnetic susceptibility showed also a 

comparably good correspondence with regionalized base saturation.  

 

The following article presents the results in detail. Some key findings of the study are high-

lighted separately and are presented in detail in the article itself (chapter 8.2). 
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5.2.1 Fürst, C., Lorz, C., Makeschin, H. (in review): Testing the indicative value of mag-
netic susceptibility measurements for concluding on site potentials and risks 
provoked by fly ash deposition, Environmental management  

 

Extended summary 
The article was thought as synthesis of the results so far. In this article, Dübener Heide as fly 

ash influenced forest ecosystem and Dahlener Heide as reference area are compared.  

 

A major motivation of the ferrimagnetic susceptibility field assessment was to conclude with 

an easy and cost-efficient method on the fly ash deposition amounts or at least on the con-

tents of deposited base cations, heavy metals and Black Carbon. To test the predictive value 

of the indicator “ferrimagnetic susceptibility”, its correlation with base saturation, the base 

cations Ca and Mg, the acid cations Fe, Al and Mn, the heavy metal cation Cd (humus layer) 

and with Black Carbon (humus layer) was tested. Base saturation and base cations were 

chosen to represent nutrient potentials resulting from fly ash deposition. The acid and heavy 

metal cations and Black Carbon are selected to represent possible risks.  

 

In a first step, the correlation of magnetic susceptibility with the contents of nutrient, acid and 

heavy metal cations and with base saturation and Black Carbon was calculated. In the 

following, the suitability of using magnetic susceptibility as model parameter in a linear re-

gression based model to predict the content of Ca, Mg, Fe, Al, Mn, Cd and Black Carbon 

was tested.  

The Pearson correlation coefficients proved the connectivity between magnetic susceptibility 

and the selected indicators. Going a step further than prevailing studies, the test proved also 

the suitability of magnetic susceptibility to predict fly ash deposition influenced nutrient con-

tents. This applied mainly for the humus layers and especially for the Oa. Magnetic suscepti-

bility showed also a comparably good coherence with regionalized base saturation.  

However, provoked by the data base and not considered additional impact factors on the 

measurement and modeling results, some weaknesses in using a linear regression based 

model were revealed. They led to the conclusion that magnetic susceptibility could be a 

valuable model parameter in a multiple regression based approach, but should not be used 

alone for predicting fly ash deposition effects.  

 

The presented findings raise the question of the indicative value and transferability of the 

results, which forms also part of the discussion (see chapter 6).  
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Also this study delivered some key findings for the ENFORCHANGE project and within the 

frame of the thesis, which are resumed in the following. 

 

1. Correlations between mass susceptibility and selected base cations, acid and heavy metal 

cations and Black Carbon were found. A correlation with base saturation was calculated at 

the ENFORCHANGE plots and served as reference basis to a spatial regression of magnetic 

susceptibility and base saturation, which resulted in a comparable good connectivity between 

the integrative soil chemical parameter base saturation and magnetic susceptibility.  

The study revealed some problems using different plot types, where the assessment of mag-

netic susceptibility and the chemical characteristics were not in any case harmonized. In 

trend, the correlation between mass susceptibility and the selected cations and Black Carbon 

was higher in the humus layer compared to the mineral horizon. Within the humus layer, 

correlation for Oa was higher than for Oe. The correlation between mass susceptibility and 

all horizons (“total”) is mostly higher than the mean value of the correlation coefficients for 

the single horizons (Tab. 3). 

 

Tab. 3: Pearsons correlation coefficient r for mass susceptibility (χ * 10-8 m³ kg-1) and the 

content of Ca, Mg, Fe, Mn, Al, Cd and Black Carbon at the ENFORCHANGE plots, the 

monitoring plots and for both plot types together.  

Depth  
(horizon) 

Correlation magnetic susceptibility (χ * 10-8 m³ kg-1) 

all plots base satu-
ration 

Ca Mg Fe Mn Al Cd Black 
Carbon 

Oe (0-5) 0,12 0,33 0,73 -0,10 0,72 0,58 -0,09
Oa (5-10) 0,42 0,64 0,72 0,55 0,70 0,53 -0,38
Min 1 (10 - 15) 0,50 0,55 -0,18 0,19 -0,15 -0,44 
Min 2 (15 - 20) 0,50 0,42 -0,08 0,33 0,06 -0,45 
Min 3 (20 - 30) 0,26 0,21 -0,29 0,36 -0,03 -0,26 

  

Total 

  

0,76 0,76 0,86 0,49 0,72 0,13 -0,26
ENORCHANGE plots 
Oe (0-5) 0,43 0,49 0,21 0,38 0,03 -0,26 -0,48 -0,18
Oa (5-10) 0,58 0,90 0,84 -0,28 0,10 -0,43 -0,03 -0,45
Min 1 (10 - 15) 0,56 0,38 0,51 -0,29 0,19 -0,42 -0,18 
Min 2 (15 - 20) 0,53 0,71 0,78 -0,07 0,09 -0,34 -0,13 
Min 3 (20 - 30) 0,51 0,63 0,84 -0,25 0,12 -0,44 -0,13 

  

Total 0,61 0,65 0,58 0,85 0,46 0,75 0,80 -0,39
Monitoring plots 
Oa (0-5) 0,39 0,66 0,66 0,70 0,68 0,55 -0,04
Oe (5-10) 0,45 0,57 0,62 0,70 0,65 0,46 -0,34
Min 1 (10 - 15) 0,08 0,43 0,27 0,15 -0,41 
Min 2 (15 - 20) 0,00 0,06 0,10 0,37 -0,52 
Min 3 (20 - 30) 0,31 0,28 -0,19 0,43 -0,56 

    

Total 

  

0,52 0,52 0,75 0,75 0,74 0,51 -0,20
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2. The prediction of element contents by using volume magnetic susceptibility as model 

parameter in a linear regression based model showed heterogeneous results.  

A clear linear regression model with comparably high coefficients of determination (R²) could 

be derived for Ca (displayed exemplarily in Fig. 10a), Mg and Mn. The R² for Ca amounted to 

0.51, for Mg to 0.52 and for Mn to 0.37. In all three cases, also small 95 % confidence inter-

vals were observed. This indicates a sufficient precision of the linear regression model.  

In contrast, the linear regression was not so clear for Cd and Black Carbon. In consequence, 

the R² values were lower and amounted in both cases to 0.09 and also the 95 % confidence 

intervals were broader.  

Absolutely no linear regression could be calculated for Fe and Al. In both cases the R² values 

were approximately 0 and the 95 % confidence intervals became very broad.  

The model quality test by using the relation between measured and predicted values and the 

residuals revealed a visible coherence between measured and predicted values for Ca (dis-

played exemplarily in Fig. 10b), Mg and Mn with small 95 % intervals. The model quality test 

for Cd and Black Carbon showed a slight coherence with broader 95 % intervals. In contrast, 

and supporting the previous findings, no such coherence could be found for Fe and Al and 

the 95 % intervals became very broad.  

Considering the residual histograms, these were slightly right skewed for Ca (displayed 

exemplarily in Fig. 10c), Mg and Mn and a good coherence with the expected distribution of 

the observations was given. Also for Cd, the distribution corresponded very well to a 

standardized normal distribution. For Fe and Al the distribution of the residuals was left 

skewed and did not fit very well together with the expected distribution. Same applied for 

Black Carbon.  

 

 

 

Fig. 10a: Ca content as linear 

regression function of magnetic 

susceptibility. 

Fig. 10 b: Comparison measured 

and predicted values for Ca. 

Fig. 10c: Histogram of residuals 

for Ca. 

 



Fly ash impact in forest ecosystems in Northeastern Germany - an assessment and regionalization approach 

 52

3. A stratification of the regression models into distance clusters (without illustration) resulted 

in an improvement of the R² of Fe and Al to 0.05 and 0.06, respectively. Also the coherence 

between measured and predicted values and the distribution of the residuals were improved. 

However, the sample sizes within each of the distance clusters are very small and in the 

consequence the 95 %confidence intervals became very broad and let doubt about the 

quality of respective models. Contradictory results were obtained by a stratification of the 

regression models in the two plot collectives A and B. Taking Fe as an example, a clear 

linear regression model could be calculated for the subset of the ENFORCHANGE plots (plot 

collective A) with R² = 0.43. However, the 95 % confidence interval became very broad due 

to the low number of plots. In contrast, the linear regression for the subset of the monitoring 

plots (plot collective B) was much less clear and the R² amounted to 0.12. In this case, the 

95 % interval was smaller due to the higher number of plots. However, in both cases, the 

distribution of the residuals corresponded even less to a standardized normal distribution. 

The trends for Al were similar.  
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6. Discussion and Conclusions 

6.1 Contradictory findings and open questions  

In the frame of the ENFORCHANGE study, the assessment of ferrimagnetic susceptibility 

aimed at providing a cost-efficient and easy method (i) to estimate the deposited fly ash 

amount and (ii) to conclude on the extent of change of site potentials (base cations) and site 

risks (heavy metals, Black Carbon).  

 

Within the ENFORCHANGE study it was firstly assumed that (a) the Zschornewitz power 

plant has been the major regional emitter and (b) the deposition zones described by Lux 

(1965) along a deposition gradient starting from Zschornewitz are still existent.  

The pre-study(ies) in chapter 3 and 4 with a plot-wise assessment of ferrimagnetic suscep-

tibility along the deposition gradient seemed to support at least partially these hypotheses. 

Using cluster analysis for the plot-wise assessed ferrimagnetic susceptibility, the re-
sults went very well along with previous results of the assessment of chemical 
characteristics (Fritz and Makeschin 2007, Fritz et al. 2009). Three zones with different 

deposition impact in Dübener Heide were distinguished, (i) a high impact zone in max. 8 km 

distance to Zschornewitz, (ii) an intermediate impact zone in max. 15 km distance and a low 

to no impact zone in distances > 15 km.  

Using statistical characteristics, e.g., standard deviation or coefficient of variation, the results 

of presented in 4.2.1 support even a less differentiated stratification into a zone with detect-

able fly ash (former deposition zone I) and a zone with lesser likelihood of fly ash deposition 

(former deposition zones II, III and IV). The spatial relation to Zschornewitz with a deposition 

gradient starting at this power plant seemed to be supported by these results.  

 

A problem to be considered with regard to up-scaling is the non random selection of 
measurement plots, which might lead to biased results (Saborowski and Jansen 2002). The 

12 ENFORCHANGE plots were selected with the aim to represent as best as possible the 

most important forest stands – (terrestrial) site combinations along the formerly defined 

deposition gradient and were selected from an existing set of measurement plots established 

by Lux (1965). This selection was done to provide a reference base between the actual 

measurements and data sets. Furthermore, only plots were selected, where the geographical 

coordinates were known, and which could be retrieved.  

The grid-wise assessment of ferrimagnetic susceptibility and the spatial model revealed 

that the power plants in Bitterfeld − but not Zschornewitz − had a much higher impact on 

Dübener Heide with a much larger spatial extent. Furthermore, it was shown that a spatially 
distinct stratification of four deposition zones by different levels of the magnetic signal is 



Fly ash impact in forest ecosystems in Northeastern Germany - an assessment and regionalization approach 

 54

not anymore possible. It should be skipped in favor of a stronger consideration of micro-
scale variability of fly ash deposition depending on other environmental factors, such as 

topography site and stand type.  

 

The deposition zones defined by Lux (1965) were based on visual assessment of forest 
health and growth at a number of test trees per stand. The identification of deposition zones 

is based on a step-wise aggregation of the stand-wise assessed results to zones with homo-

geneous health and growth impact symptoms. The hereby derived deposition zones formed 

an important basis for financial compensation of pollution effects (Albrecht 2007, Bendix 

2007). From the late 1980ies on, no spatially significant differences in tree growth could 

be detected anymore (Hüttl and Bellmann 1999). A probable reason was the regional estab-

lishment of fly ash filtering techniques in the 1980ies, thus SO2 became the most important 

pollutant. Compared to fly ash, the spatial influence of sulfur (as wet deposition component) 

bridged greater distances compared to fly ash and therefore no spatial stratification for its 

influence in the Dübener Heide could be found. 

 

In the pre-study on the suitability of ferrimagnetic susceptibility field assessment (chapter 

4.2.1) it was also tested, if depth level-wise or horizon wise measurement deliver better re-

sults. Results for horizon wise measurements with the KT-9 showed a more distinct 
differentiation of fly ash deposition levels with a wider range of values, a lower standard 

deviation and a lower coefficient of variation compared to depth level-wise measurements. 

However, depth level-wise assessment delivers a better basis for comparing and 
correlating the results with depth level-wise measured chemical characteristics of the 

ENFORCHANGE plots and other plots. Furthermore, the depth level-wise approach allows 

for a higher objectivity of the measurements despite the problem to link them later on to soil 

horizons.  

 



Fly ash impact in forest ecosystems in Northeastern Germany - an assessment and regionalization approach 

 55

6.2 Comprehensive evaluation of the results 

A demand formulated in the pre-study (chapter 4.2.1) was to assess and compare ferri-
magnetic susceptibility in a reference region as it was done e.g. in the frame of the SANA 

study (Hüttl and Bellmann 1999), where three plots were analyzed along a deposition 

gradient from Rösa (located about 10 km east of the industrial complex of Bitterfeld and in-

fluenced by high deposition loads) via Taura (located about 50 km north east to Bitterfeld) to 

the background site Neuglobsow (located in northern Brandenburg) (Weisdorfer 1999, 

Schaaf 2004). Hereby, it was possible to conclude on the natural range of the chemical 

characteristics of the humus layers and the mineral horizons.  

In frame of the presented thesis, Dahlener Heide was chosen as reference region, where 

no fly ash deposition nor air pollution driven forest decline was reported in the past (see 

chapter 5.2.1).  

 

The maximum ferrimagnetic susceptibility values observed in Dübener Heide in the pre-

study (chapter 4.2.1) occurred in the Oe and Oa horizons, which corresponds to the findings 

of Klose et al. (2002) and Koch et al. (2002). In contrast to their observations, the peak was 

found mainly in the Oa horizon (see also chapter 4.2.1) and no longer in the Oe horizon.  

This finding can be explained by the temporal dynamic of the humus layers in Dübener 
Heide with a vertical movement of the fly ash containing humus horizons due to litter fall 

and decomposition processes. 

 

In Dübener Heide, maximum values of ferrimagnetic mass susceptibility (outliers near to 

Zschornewitz) reached values of up to 800 χ * 10-8 m³ kg-1 (see chapter 5.2.1). This is in 

agreement with findings by Klose and Makeschin (2003), who found almost equal maxi-

mum values near to Zschornewitz. In comparison, Magiera et al. (2002 b) found maximum 

values of up to 2,741.3 χ * 10-8 m³ kg-1 in the most polluted soils of Poland in the district Ka-

towice (Upper Silesia), where the observed fly ash deposition is roughly three times higher 

(457 t / km²) than in Dübener Heide (140 t / km²) (Klose and Makeschin 2003, Lux 1965 and 

1976, Lux and Stein 1977, Strzyszcz et al. 1996, Strzyszcz and Magiera 2001). Comparing 

the relations between the deposition amounts and the magnetic susceptibility values in Po-

land and Germany, the dimensions (“3-times higher”) fit also very well. 

 

The mean values of mass susceptibility in the humus layers at the Eastern border of 
Dübener Heide (i.e. the less or almost not deposition impacted part with a distance of 

around 50 km to the former emitters) reached values of up to 180 χ * 10-8 m³ kg-1, which 

corresponds to the values observed in Dahlener Heide.  
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At both areas, Dübener and Dahlener Heide, the values observed in the mineral horizon are 

much lower than in the humus layer. The maximum values were observed at the Western 

part of Dübener Heide in the vicinity of Zschornewitz and amounted to 30 χ * 10-8 m³ kg-1. 

In the other parts of Dübener and Dahlener Heide, the values in the mineral horizon 

ranged between 3 - 20 χ * 10-8 m³ kg-1.  

 

Even if it is not possible to exclude minor sources of fly ash (domestic fuel) in Dahlener 

Heide, the spatial trends of the magnetic signal observed in chapter 5.2.1 indicate, that 

values of more than 200 χ * 10-8 m³ kg-1 in the humus layers can be considered as re-

gional threshold for verifiable fly ash deposition. Klose and Makeschin (2003) found 

minimum values of up to 350 χ * 10-8 m³ kg-1 for the most Western point of their deposition 

gradient, which reached up to 25 km distance to the former emitters. As shown in the pre-

sented studies, it must be considered that the impact of the Bitterfeld power plants on the 

humus layers is detectable at least for a distance of 40 km (chapter 5.1.1, 5.2.1) with an 

asymptotical trend. This allows for the conclusion that the proposed threshold value for the 

magnetic signal, which is stable for distances of more than 50 km, might be valid in general.  

 

Fig. 11 gives an overview on the value range of different materials (rocks, minerals, organic 

material, water and air) from other studies (Glaser 2001, Hasso-Agopsowicz et al. 2004, 

Hunt et al. 1995, Klose and Makeschin 2003). This comparison supports the proposed 

threshold value: maximum values for not fly ash influenced humus layers amount in these 

studies to ~ 100 χ * 10-8 m³ kg-1. The proposed threshold is two times higher and thus in-

cludes the possibility of exceptionally higher values due to natural enrichment of magnetic 

particles (Faßbinder 1994, de Jong et al. 2005, Le Borgne 1955, Magiera and Strzyszcz 

2000, Scollar 1965, Thompson and Oldfield 1986). 
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Fig. 11: Overview on the mass susceptibility value ranges of different material classes observed in previous studies (Glaser 2001, Hasso-Agop-

sowicz et al. 2004, Hunt et al. 1995, Klose and Makeschin 2003). 
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The use of ferrimagnetic field assessment to detect fly ash deposition was successfully 

tested and approved by numerous studies (e.g. Boyko et al. 2004, Grimley et al. 2004, 

Magiera et al. 2006, Magiera and Strzyszcz 2000, Magiera and Zawadzki 2007, Schibler et 

al. 2002, Strzyszcz and Magiera 1998). The major motivation of these studies was to get 

information on the spatial distribution of deposited fly ash. Magnetic susceptibility can also be 

easily correlated with a number metals, especially Fe, Al, Mn and heavy metals (Golu-

chowska 2001, Lu and Bai 2006, Magiera and Zawadzki 2007, Wang and Qin 2005, 

Zawadzki et al. 2009). The correlation however varies in dependence from geographical 

origin, type of combustion material (lignite or hard coal) and land use type and can not easily 

be transferred from one test region to another (Fialova et al. 2006, Magiera and Zawadzki 

2007, Strzyszcz and Magiera 1998). 

 

Within the frame of the study presented in chapter 5.2.1, the correlation with Fe, Al, Mn 

and Cd were tested. The results were in parts contradictory to the findings of other 

studies, especially considering the relation between magnetic susceptibility and the Fe con-

tent. A major impact factor on the correlation was the use of several plot types (project 

plots, monitoring plots), where the assessment of ferrimagnetic susceptibility and the 
chemical characteristics were not always well synchronized.  

Furthermore, mass susceptibility was not directly measured at all plots, but calculated by 
correction factors for humus layer and mineral horizon in a two-step procedure, from 

field assessed volume susceptibility to volume susceptibility as assessed under laboratory 

conditions and from “laboratory” volume susceptibility to mass susceptibility. These 

correction factors can only describe an average correlation between field assessed volume 

and laboratory assessed mass susceptibility. As an example, the distance between the mag-

netic susceptibility sensor and the material to be measured cannot be totally standardized in 

bore holes and can underlay manifold variations by truncated roots, structural disturbances, 

when removing the borer, etc.  

In the consequence, it was not possible to develop a linear regression based model to 
predict the Fe and Al content, while such a linear relation was found for Mn. This might be 

a weakness of the linear regression based modeling approach, which does not allow for 

including further model parameters to improve the model quality.  

 

The approach presented in chapter 5.2.1 went a step further than prevailing studies and 
tested, if the content of other agents, such as base cations and Black Carbon can also be 
predicted by ferrimagnetic susceptibility. Under the specific conditions of the presented 

study, it was possible to develop a linear regression based model for predicting the 
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content of Ca and Mg as important nutrients with ferrimagnetic susceptibility as model pa-

rameter. However, this did not apply for Black Carbon.  

 

In contrast to the results presented in chapter 5.2.1, Wang (2009) found a very high and 

positive correlation between Black Carbon and mass susceptibility. The applied analysis 
method and the hereby isolated part of the Black Carbon combustion continuum (Ma-

siello 2004) might be the major impact factor on the correlation with magnetic susceptibility 

and the possibility to predict Black Carbon with magnetic susceptibility as model parameter.  

 

When calculating Pearson’s correlation coefficient in dependence from the distance to 

the Western border of Dübener Heide with its closeness to the former emitters, at least no 
spatial trends could be found for Ca, Mg, Fe and Al, while slight trends were observed fro 

Cd and Black Carbon. Missing spatial trends support the use of magnetic susceptibility as 

model parameter.  

However, a missing trend could only be expected for the correlation with Fe as main 

source of magnetism but e.g. not for Ca or Mg.  

The observation leads to several possible hypotheses. Possibly, the indicative value of 
magnetic susceptibility for fly ash and the related deposits is superposed to a higher 

extend by natural humus properties, than assumed at the beginning of the studies 

(Faßbinder 1994, Zawadzki et al. 2007). The humus layer in forests is an important nutrient 

reservoir and magnetizable Fe or Mn compounds occur also in “normal” humus layers 

(Faßbinder 1994, Scollar 1965, LeBorgne 1955).  

 

In the case of Ca and Mg, liming might be a most important factor. Liming effects are likely 

in Dübener Heide in the zone 10 - 20 km distance, where alkaline particles of the fly ash 

were almost not anymore deposited (Fritz and Makeschin 2007). In this zone, acid deposition 

components have provoked even higher forest health damages than near to the former 

emitters and in the consequence extensive compensation measures were carried out (Fürst 

et al. 2007, Fritz and Makeschin 2007). This would explain the observation that the 

correlation between magnetic susceptibility and Ca and Mg in this zone was slightly lower 

and the standard error was slightly higher than in the other distance clusters (see article 

5.2.1, without illustration).  
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With increasing distance to emitters, additional factors might have an influence on the 

indicative value of magnetic susceptibility for fly ash and decrease the prediction quality 

of magnetic susceptibility for all tested elements and Black Carbon. Previous studies showed 

that especially stand or soil type have a considerable influence on natural magnetic suscep-

tibility values blurring possibly its increase by fly ash deposition (e.g. Blundell et al. 2009, 

Hanesch and Scholger 2005, Kapicka et al. 2001, Zawadzki et al. 2007, 2009).  

In chapter 5.1.1 it was proved that different sets of model parameters must be chosen to 

predict magnetic susceptibility at different depth levels, which could be related to the 

humus layer, the zone between humus layer and mineral soil and the mineral soil. In ten-

dency, magnetic susceptibility values in the humus layer (depth level 6–10 cm) were best 

explained by the distance to Bitterfeld, soil type characteristics and characteristics for the 

land surface. The stand type e.g. plays an important role as model parameter in the depth 

level 21-25 cm. 

 

The different model parameters support the understanding of the deposition and 
accumulation process for different depth levels. Soil type related parameters “Podzol” 

and “Semi-terrestrial sites”, which were very relevant for the humus layer (depth level 6-10 

cm, chapter 5.1.1), indicate a slowed down humus dynamics, which supports a long-term 

accumulation of fly ash (Magiera and Zawadzki 2007). Topographical parameters such as 

“Streampower index” or “Slope length factor” were also relevant for the depth level 6-10 cm 

and can be explained with regard to their indication of humus accumulation or erosion. 

However, stand properties play a minor role in the model for the humus layer (depth level 6-

10 cm), but became more relevant for the transition zone (depth level 11-15 cm) and es-

pecially for the mineral soil (depth level 21-25 cm). Probably, stand type impacts on the 

findings for the humus layer are widely superposed by soil type and orographic parameters, 

which decide upon humus dynamics. 

 

For the transition zone between humus layer and mineral soil (depth level 11-15 cm), 

variables describing orographic conditions gain in importance. New variables have a high 

explanatory value, such as the divergence from western aspect, which indicates the ex-

posure against the major wind direction and thus the probability of deposition. Also, stand 

properties (mixed forest) contribute to the model for this depth layer, though their explanatory 

value is lower compared to their importance for the model in the mineral horizon (depth level 

21-25 cm).  

 

For the mineral horizon (depth level 21-25 cm), the importance of variables indicating soil 

and site properties is not existent anymore. Here, aspect and land surface characteristics, 
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which indicate the deposition probability, play a major role together with stand 
properties. Here, the classes mixed forests and coniferous forests from Corine Landcover 

1990 and 2000 were selected as model parameters. They can be considered as indicators 
for the probability that deposition was combed out by the crown layer. Coniferous and 

mixed stands have a higher surface roughness of the crown layer compared to deciduous 

stands and furthermore, the combing out effect of conifers in mixed or pure stands is ex-

tended to the whole year and not limited to the vegetation period compared to pure 

deciduous stands. 

This raises the question why stand type is not relevant for the model for the humus layer. For 

depth level 21-25 cm, the stand type might indicate a vertical displacement of magnetic iron 

complexes together with sesquioxides and humus complexes by initial podzolization 

processes. This is supported by the findings that (a) only coniferous or mixed types show an 

explanatory value and not deciduous types and that (b) the older Corine Landcover classifi-

cation from 1990 contribute to the modeling in this depth layer and not the classification of 

2000. Finally, also the precipitation amount from 1971 to 2000 contributed to the model in 

the mineral horizon. This might be in agreement with the hypothesis formulated before: 

Locally, higher precipitation amounts can support podzolization processes. 

 

The analysis of model parameters and their indicative value leads to a more differentiated 

view on findings listed in chapter 5.2.1, where the correlation between the indicator magnetic 

susceptibility and key element contents was also different at different depth levels. A possi-
bility to improve the prediction quality of the element and Black Carbon contents is the 

use of a multiple-regression based model with a step-wise selection of highly indica-
tive model parameters as shown in chapter 5.1.1. 

 

6.3 Conclusions and Outlook 

The two aims of the presented work, which were formulated in chapter 1.1, were realized in 

major parts.  

 

(a) The field assessment of ferrimagnetic susceptibility was approved as cost efficient 
method to detect historical fly ash deposition and to distinguish different levels of 

deposition intensity and accumulation in dependence from the distance to the fly ash 

emitters and further environmental parameters, such as exposition, soil and stand 

properties.  
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(b) Very early(Lux 1976), research started to develop complex models for the air transport of 

particles for a better differentiation of impacts of the variable deposition components and 

to react with adapted forest management measures, such as liming or conversion (Fürst 

2007). So far, forest health and growth as well as soil vegetation characteristics were 

used as most indicative parameters to come to the requested spatial stratification into 

different deposition zones, while the air transport based modeling approaches failed due 

to their high level of complexity and the numerous parameters to be considered.  

 

The grid-wise assessment and multiple-regression based modeling of magnetic sus-
ceptibility allows for a complex spatial model for fly ash deposition under 
consideration of further environmental influence factors, which were in the past decisive 

for fly ash deposition. A high resolution spatial model was developed, which gives also infor-

mation on micro-site differences of magnetic susceptibility as indicator for fly ash deposition. 

This might correspond better to the management need to develop strategies for a stand 
wise differentiated silvicultural treatment in dependence from growth relevant differences 

in site potentials. Beyond this background, the study in chapter 5.2.1 has tested (with 

success) the suitability of ferrimagnetic susceptibility also as indicator for the Ca and Mg 

content.  

 

However, some expectations could not be fulfilled. The results of predicting some key 
element and Black Carbon contents based on a linear regression were not fully satis-
factory and revealed that ferrimagnetic susceptibility as single model parameter in a 
linear regression based model is not sufficient. Same applies, when correlating Ca, Mg, 

Fe, Al, Mn, Cd and Black Carbon contents with ferrimagnetic susceptibility in different depth 

levels. However, the results were rather heterogeneous. This leads to the conclusion that a 

precise prediction of the deposited fly ash amount by the model parameter ferrimag-
netic susceptibility as intended at the very beginning of the different studies is only 
possible with restrictions, especially since fly ash itself is characterized by a very hetero-

geneous composition (see chapter 4.1.1).  

 

The question must be posed, if information on the absolute fly ash deposition amount is a 

management relevant factor and not − to a much higher priority − the ecological impact of fly 

ash deposition. Using ferrimagnetic susceptibility together with further model 
parameters in a multiple-regression based approach could be sufficient to obtain 
spatially highly differentiated information on still relevant site potentials and risks. A 

pre-condition to be considered, is the better synchronization of magnetic susceptibility field 

assessment and chemical analysis as concluded in chapter 5.2.1.  



Fly ash impact in forest ecosystems in Northeastern Germany - an assessment and regionalization approach 

 63

Here, the choice of the further model parameters decides upon the possibility to get 

additional information on processes such as humus accumulation or vertical displacement 

of base or acidic cations. Further experiments on the stability of the correlations 
between element contents and ferrimagnetic susceptibility over time would be 

necessary to get information on possible temporal dynamics to be considered.  

 

Furthermore, the question must be raised, if the content in ferrimagnetic substances in 

the humus layers underlies also other impact factors: Faßbinder (1994), de Jong et al. 

(2005), Le Borgne (1955), Magiera and Strzyszcz (1999), Scollar (1965), and Thompson and 

Oldfield (1986) described the natural enrichment of ferrimagnetic substances as a result of 

microbial activity. Vice versa, it cannot be excluded that ferrimagnetic iron oxides are 
removed from the humus layers into the mineral horizon, e.g. by leaching or 

bioturbation. Elevated values of ferrimagnetic susceptibility in the A(h) and even in the B(wh) 

horizon (see chapters 4.2.1 and 5.1.1) indicate that vertical displacement together with 

humus particles must be considered as relevant process with impact on the height of the 

magnetic signal in the humus layers.  

 

Even the minerals magnetite and maghemite, which are related to the phenomenon “ferri-

magnetic susceptibility”, may underlie a transformation from magnetite to maghemite and 
finally to hematite driven by low pH values of rainwater (Correa et al. 2006) or microbial 

activity (Brown et al. 1997).  

When comparing the value ranges of ferrimagnetic susceptibility of these three minerals 

shown in Fig. 11, it becomes clear that this transformation process leads also to a 
considerable reduction of the detectable ferrimagnetic values. On the other hand, the 

mentioned in situ formation of ferrimagnetic substances by microbial processes might 
counteract the loss of ferrimagnetic susceptibility (Faßbinder 1994, Le Borgne 1955, 

Scollar 1965, Thompson and Oldfield 1986). In sum, both interfering processes will super-

pose in the long run the magnetic signal induced by fly ash deposition.  

 

A possible solution and future challenge to include such temporal processes into a spatial 
model of ferrimagnetic susceptibility would be to assess the magnetic signal in a 
“chronosequential” approach: i.e. in regions with comparable geological and vegetation 

characteristics, but with different duration of fly ash deposition. Respective sequences are 

already realized for analyzing the impact of pedogenic processes in mineral and magnetic 

properties of soils (e.g. Lu et al. 2008) and are still outstanding for humus dynamics.  
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Finally, to conclude on the suitability of the indicator ferrimagnetic susceptibility for a 

process-oriented forest management approach, the presented work has shown that this 

indicator gives  

(a) good indication of the spatial variation of former deposition and is  

(b) highly sensible against a dynamic development of sites and especially of the humus 

layers.  

 

The only remaining problem and possibly topic of future research is to come to a 

comprehensive formulation of thresholds not only for the spatial trends as described in 

chapter 6.2, but also for the temporal trends and the manifold and sometimes interfering 

impact factors on the height of the magnetic signal.  
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The actually discussed guidelines for cumulative dissertations propose a modular 
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authorship with a minimum amount of 7 evaluation points. The following Tab. 5 resumes the 

status of the contributions included in the presented theses and resulting total evaluation 
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Tab. 5: Evaluation of the included articles. 

authorship status evaluation 

first author co-author accepted / in press (x 6) submitted (x 2)  

peer-reviewed with impact factor 
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8.2 Papers (attached) 
  

 



Forest ecosystem development after heavy 
deposition loads – case study Dübener Heide 

C. Fürst, M. Abiy & F. Makeschin 
Institute for Soil Science and Site Ecology, 
Dresden University of Technology, Germany 

Abstract 

Forest ecosystems in the New Lander (Germany) were impacted for more than 
one century by industrial emissions. The deposition amount has decreased since 
the middle of the 1980s due to technological progress and closing of main 
emitters. In the research project ENFORCHANGE (www.enforchange.de), the 
impact of past industrial depositions on forest ecosystems is assessed in two 
model regions, and approaches how to integrate deposition residuals into forest 
management are developed. The here presented model region Dübener Heide is a 
ca. 300 km² large forest area in the industrial triangle Leipzig-Halle-Bitterfeld, 
which is one of the most polluted regions in the New Lander. A total deposition 
amount of 18 Mio t fly ash and of 12 Mio t SO2 led to considerable changes of 
site properties, forest growth and health. The actual investigations in Dübener 
Heide revealed that the historical deposition impact still results in a spatial 
differentiation of forest growth conditions: nowadays, Dübener Heide can be 
divided into two parts with different impact level and intensity. Verifiable fly ash 
influence with high pH values and nutrient potential is limited to a zone of 
maximally 8–15 km distance to the former emitters, whereas SO2 impacted the 
total 300 km² area, but its effects are no longer detectable. This spatial 
differentiation is relevant for tree species choice in the future: the heavily fly ash 
impacted sites are characterized by ample regeneration and growth of noble 
hardwood species and European beech, whereas the not measurably fly ash 
influenced sites are more or less suitable for Scots Pine and Oak. The prediction 
of the long-term development of the site potential and tree species suitability on 
heavily fly ash affected sites under different climate change scenarios are part of 
ongoing studies. 
Keywords: forest ecosystem development, fly ash deposition, SO2 deposition, 
forest growth and health, site potential, forest management planning. 
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1 Introduction – case study Dübener Heide and assessment of 
former deposition loads (ENFORCHANGE) 

1.1 Deposition history in the model region Dübener Heide 

For more than one century, forest ecosystems in the New Lander were heavily 
impacted by industrial depositions. In the industrial triangle Leipzig-Halle-
Bitterfeld, one of the most polluted regions of the New Lander, this deposition 
originated from unfiltered brown-coal combustion and exhalations from 
chemical industry (Fürst et al. [5]). The extreme alteration of the natural 
conditions, which lasted until the early 1990s, is still impacting the site 
properties and vegetation dynamics and must be considered in actual forest 
management. Zooming into the region Leipzig-Halle-Bitterfeld and taking the 
Dübener Heide – the most important regional forest area – as an example, the 
historically documented deposition amounted from 1910 – 2000 to 18 Mio t fly 
ash and 12 Mio t SO2. In the decade from 1961 – 1970, a fly ash deposition of up 
to 3–8 t / ha * a is reported by Lux [21, 24], Neumeister et al. [30], Nebe et al. 
[31] and Klose and Makeschin [13]. To demonstrate the extend of deposition 
impact on the forest soils: pH (KCl) values in the humus layer and upper mineral 
horizon of the regional forest soils (mainly poor sandy brown soils and podzols) 
increased in that period from originally 3–4 up to 7–9 and a base saturation of up 
to 100% is still detectable (Fritz and Makeschin [3]). From the 1980s on, the 
introduction of fly ash filters lead to a more or less acidic deposition regime 
(NOx, SO2 / SOx). After 1989, a strong reduction of fly ash emission went along 
with raising atmospheric N deposition in a magnitude of 28 – 45 kg/ha*a and 
changed completely the regional deposition characteristics (Hüttl and Bellmann 
[11], Marquardt et al. [29], Gauger et al. [8]).  
     Lux [21, 24] and Lux and Stein [26] have shown that the Dübener Heide 
deposition situation is characterized by a wind direction and distance dependent 
gradient (Fig 1), starting in the eastern part of the forest mainly at the power 
plants and chemical industries clustered in Bitterfeld and its surroundings 
(Gräfenhainichen, Zschornewitz). The different deposition fractions SO2 and fly 
ash, which  contains “black” (tertiary) carbon, alkali / earth alkali metal salts, 
heavy metals and silicium compounds, were distributed along this gradient 
according to their aggregate state and particle size (Lux [22, 24], Niehus and 
Brüggemann [32], Magiera and Stryszcz [27], Stryszcz [35]).  
     Stein [34] and Lux [24] used a visual classification of forest decline for 
distinguishing up to five deposition zones along this gradient, where the 
differentiation between zone 1 a and 1 b (zones of highest intensity) was given 
up later on. Lux [21] and Lux and Pelz [25] proposed to take these deposition 
zones as basis for forest management planning. The deposition zones were 
defined on the basis of a sample plot supported evaluation system: visible crown 
damages (forest decline classes) in 150 plots in medium aged Scots pine stands 
were assessed on single tree level, then compiled for stand level and 
“regionalized” by subsequent spatial aggregation of comparable stands to the 
deposition zones. Each deposition zone was assumed to be homogenous 
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Figure 1: Schematic overview on the localization of Dübener Heide (black 
square) and the regional deposition gradient (black arrow), starting 
at the industrial sites in the East and following the dominant wind 
direction (map basis: CORINE LANDCOVER (CLC) 2000). The 
deposition zones are marked with scattered lines.  

considering the deposition impact on forest growth and health, on specific risks 
and on possible silvicultural strategies and economic output. In deposition zone 1 
e.g., Scots pine, the regionally dominating tree species, was heavily threatened 
by the alkaline fly ash deposition or dropped even totally out. In consequence, 
conversion efforts were concentrated to this zone and management intensity was 
reduced to deposition damage driven harvesting.  
     At the late 1980s, Herpel et al. [10] documented at heavily fly ash influenced 
sites a decrease of pH(KCl) of 0.4 units and base saturation decrease of 17% 
compared to the 1970s. This went along with incipient installations of fly ash 
filters at the main regional emitters. From 1988 to 2000, a further reduction of 
0.7 pH-units was reported by Kurbel [18]. In the long run, a rapprochement of 
the site properties to the original regional characteristics is expected (Kopp [16], 
Kopp and Jochheim [17]).  
     As a result of deposition reduction, the health state of the forest and especially 
of Scots pine stands improved considerably since the 1990s. Actually, ample 
regeneration of noble hardwoods and European beech can be observed especially 
in the extremely fly ash influenced parts of the Dübener Heide. This however, 
might be a temporary phenomenon, whose sustainable development and ability 
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to be integrated into regional silviculture must be evaluated beyond the 
background of the described re-acidification tendency. 

1.2 ENFORCHANGE – assessment and evaluation of former 
deposition loads 

“ENFORCHANGE” (Environment and Forests under Changing Conditions, 
www.enforchange.de) is a research project supported by the Federal Ministry of 
Education and Research (BMBF, Germany), which intends to assess the long-
term effects of former depositions in two model regions in the New Lander, 
among them Dübener Heide. Based on this assessment, approaches are derived 
for better respecting this special situation and its expected impact on a number of 
forest services in forest management.  
     ENFORCHANGE started with the NULL-hypothesis, that the forest sites in 
the historically documented deposition zones in Dübener Heide are still different 
considering (a) their potentials such as nigh nutrient availability and (b) specific 
risks such as heavy metal release, which are relevant for forest management 
decisions (Makeschin and Fürst [28]). Furthermore, it was assumed that at least 
forest growth is still impacted by the spatial differentiation of the site properties 
along the former deposition gradient. Finally, ENFORCHANGE intended to 
model and regionalize ongoing ecosystem processes as basis for process-oriented 
forest management decisions. 
     Figure 2 resumes the ENFORCHANGE approach, how to come to an 
information pool providing spatially explicit time series data as basis for 
modelling and regionalization of ongoing ecosystem processes (Fürst et al. [5, 
6]).  
     A number of 12 key plots was installed in the Dübener Heide along the 
historically documented deposition gradient. The key plots represent the major 
(terrestrial) soil type and stand type combinations in the region. They were 
preferably chosen at sites, where information from former deposition monitoring, 
forest health monitoring or growth and yield field trials could be involved. At the 
key plots, chemical and physical site properties are measured depth level-wise 
with focus on the humus layers and the upper mineral horizons and forest growth 
and yield characteristics are assessed.  
     The key plots were installed permanently for the total project duration, i.e. 
their geographical coordinates are documented, and geo-referenced to available 
GIS-information (site maps / geology, topography, etc.). Missing information, 
e.g. considering stand type development in a distinct deposition zone and on a 
distinct site type but in different age classes was collected at satellite plots, 
which are not permanently installed. Last but not least, field assessment of 
former fly ash deposition was carried out at the key plots and in a regular sample 
grid with two different grid densities (1*1 km² and 4*4 km²) as interface to the 
regionalization of the actually detectable deposition load. Here, ferrimagnetic 
susceptibility was used, which describes the amount of magnetizable iron-oxides, 
a distinctive component of fly ash from coal combustion (Fürst et al. [4]). 
Ferrimagnetic susceptibility was also measured depth-level wise with focus on 
the humus layers and the upper mineral horizons. 
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Figure 2: System of information bundling in ENFORCHANGE consisting of 
regionally available data, complementary information from own 
measurements and results from monitoring and regionalization.  

     Finally, information from further regional monitoring and survey plots 
(Level-I, Level-II monitoring, permanent soil monitoring sites, forest growth and 
yield field trials, climate stations), data from literature analysis and available 
GIS-data were integrated into the ENFORCHANGE information pool.  

2 Long-term deposition impact on forest 
ecosystems – some first results 

2.1 Deposition impact on the site potential 

The analysis of chemical and hydrological site properties at the 12 key plots and 
the ferrimagnetic susceptibility based screening revealed that the differences 
along the historical deposition gradient still exist. They are mainly induced by 
former fly ash deposition. SO2 deposition impact could not be detected anymore. 
The former deposition zones are still traceable by differences in the equipment 
with nutrients, especially base cations (Fig. 3a), by differences in physical humus 
properties, such as content of mineral matter in the humus layer (Klose et al. 
[14], Koch et al. [15]) and by different levels of ferrimagnetic susceptibility 
(Fig. 3b). Though, the borderlines of the former forest decline classification 
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based spatial stratification and the actual spatial stratification according to 
chemical and physical characteristics are not completely identical.  
     Fig. 3a shows results from the multiple-regression based regionalization of 
the actual base saturation in the humus layer, Fig. 3b provides results from the 
kriging based regionalization of ferrimagnetic susceptibility (volume 
susceptibility) as indicator for the verifiability of fly ash deposition in the 
Dübener Heide.  
 

Figure 3: a (left): Regionalization of base saturation in the humus layer. 
b (right): Regionalization of magnetic susceptibility in the humus layer. 

     Fig. 3a and b reveal major differences between the immediate vicinity to the 
former emitters in the eastern part of Dübener Heide and the western part, which 
is farthest from the emission sources. A differentiation of the part in between is 
possible, but the absolute values of the measured chemical and physical 
properties and their high variability do not support a clear separation into several 
deposition zones.  
     Actually, site potential differences, which are indeed relevant for 
differentiated forest management strategies, can only be ascertained for two 
zones: a “high influence zone” in up to 8–15 km distance to the former emitters 
and a “low influence zone” in more than 8–15 km distance. Fig. 4 (next page) 
introduces the results of a cluster analysis of the magnetic susceptibility values in 
the humus layers of the 12 key plots. The plots in a distance up to 8 and up to 
15 km differentiate clearly from the rest. This finding is supported by similar 
cluster analysis results of further chemical and physical humus properties. The 
“high influence zone” is characterised by high base cation availability and base 
saturation in the humus layers, indicating a considerable nutrient pool far beyond 
from the natural level. The stock of extractable Ca in the humus layer and upper 
mineral soil until a depth of 30 cm e.g., reaches up to 4,000 kg / ha in the zone 
up to 8 km distance to the former emitters (Fritz et al. [3]). This is 10 to 20 times 
higher compared to the plots in a distance of 30 km, which are farthest to the 
former emitters and whose chemical properties represent more or less the 
original regional potential. Based on first tentative extrapolations, pH values 
might approximate to the original regional values in a time period of around 30–
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50 yrs. Until now, it is however not foreseeable until when the high base cation 
potential can still be considered as silviculturally relevant factor. Considering the 
physical humus properties, a smaller fine pore volume going along with higher 
air capacity can be stated (Hartmann et al. [9]). In the “low influence zone”, 
humus properties are much more dependent from the original site characteristics 
and the stand type.  
 

Figure 4: Results from a cluster analysis of magnetic susceptibility 
(laboratory measurement, humus layer) at the 12 key plots. 

     One of the major challenges for future management of the forests in Dübener 
Heide is the change of the regional climate. The down-scaling of global climate 
change scenarios for Dübener Heide proved that a reduction of the mean annual 
precipitation of up to 100 mm and an increase of the mean annual temperature of 
up to 3.5 °C can be expected. Even worse, the water deficiency during the 
summer period is estimated to become aggravated, which affects especially the 
regionally dominating poor sandy soils (Bernhofer et al. [1], Franke and Köstner 
[2]). Beyond that background, results from effects of fly ash deposition on 
hydrological properties of the humus layers become important. Fly ash can not 
only be considered as multi-nutrient fertilizer (Fürst et al. [7]), but can also 
impact the properties of the regionally dominating moder–raw humus forms with 
their high hydrophobicity. In contrast to former findings (Thomasius et al. [36], 
Katzur et al. [12]), Hartmann et al. [9] revealed that fly ash reduces the water 
repellency and hydrophobicity of the humus layers in the “highly influenced 
zone” and increases the water conductivity. At the same time, the available water 
for plant growth, expressed by the field moisture capacity becomes smaller due 
to the fly ash caused decrease of the fine pore volume. Additionally, a 
tendencially decreased depth of the root zone due to high nutrient availability at 
the humus layer and upper mineral horizon at fly ash influenced sites might 
amplify the future risk of drought stress (Thomasius et al. [36], Koch et al. [15], 
Klose et al. [14]).  
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2.2 Deposition impact on forest growth 

Forest health and consequently growth were extremely affected by the former 
depositions. Comparing different time strata, (a) the late 1960s until 1980, (b) the 
1980s, (c) the time from 1940 until 1991 and (d) the mid of the 1970s until 1991, 
Lux [23] and Hüttl and Bellmann [11] proved the enormous impact of the 
industrial emissions on the forest development in Dübener Heide. Fig. 5 
compares the reaction in radial increment of Scots pine for the four time strata at 
the historically documented four deposition zones.  
 

Figure 5: Reduction of the radial increment of Scots pine in four different 
time strata. In the 1980s, first fly ash filters were installed, whereas 
SO2 emission was not yet stopped. Consequently, emission impact 
on forest health and growth became even worse (Lux [23], Hüttl 
and Bellmann [11]).  

     In tendency, radial increment was negatively impacted by the depositions at 
Dübener Heide. This resulted mainly from the extremely high SO2 deposition: 
from 1965 to 1981, deposition showed the expected spatially differentiated 
impact on the mean radial increment, with decreasing intensity from deposition 
zone I (DI) to deposition zone IV (DIV). But afterwards, in the period 1982–
1988, the spatial differentiation seemed to disappear. This period was 
characterized by beginning fly ash filtering, where at the same time, SO2 
deposition even increased. From the 1990s on, the last power plants were closed 
or were equipped with modern fly ash and SO2 filtering techniques.  
     Comparing the radial increment tendencies between 1940–1991 and 1975–
1991, where data were only available for zone I (DI) and zone IV (DIV), it can 
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else be demonstrated that the influence of the deposition on differences in mean 
radial increment does not show the extreme spatial differentiation, which was 
assumed in the 1960s, the time, were the deposition zones were defined. The 
height growth tendencies followed comparable trends. This supports the 
impression that SO2 deposition, which affected the forest over a wide area and 
not fly ash deposition with its more or less local importance, was the relevant 
agent. Of course, forests in the immediate vicinity of the former emitters reacted 
first and thus supported the stratification into four deposition zones at least in the 
first period of heavy deposition (Lux [22]).  

 

Figure 6: Trends of height growth development of a Scots pine stand (plot 
Tornau 45, 15 km distance to the emitters) before, during and after 
the deposition period. In the period from 1965–1990, a stagnation 
in height growth can be shown. After 1990, Scots pine restarted to 
grow in an age of even 155 yrs [data source: investigations of the 
former State Forest Research Centre Flechtingen, Saxony-Anhalt, 
2005).  

     Investigations from intensive forest growth monitoring plots have proved that 
height growth of Scots pine recovered after the 1990s (Fig. 6).  
     Ongoing measurements at the ENFORCHANGE key plots show that 
nowadays, height and diameter growth of forests in Dübener Heide follow the 
general trend to be superior to the benchmark data in the regionally valid growth 
and yield tables (Pretzsch et al. [33]). This applies to all relevant stand types and 
especially for the regionally dominating Scots pine stands.  
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3 Conclusions and preview 

After stopping the heavy depositions, the situation has been improved 
considerably for the regional forest ecosystem Dübener Heide. On the other 
hand, it should be highlightened that at least fly ash deposition effects can not 
only be considered as damaging factor. Fly ash deposition increased the 
available nutrient potential in the humus layers and the upper mineral horizons in 
the dominating poor sandy soils of Dübener Heide (Fürst et al. [5]). Furthermore, 
fly ash deposition tends to result in improved hydrological properties of the 
humus layers, a fact which gains in importance facing the problem of reduced 
water availability in the future. A visible consequence of the fly ash deposition 
caused improvement of the site potential is the ample noble hardwood and 
European beech regeneration, which can be observed in the zone of 8–maximally 
15 km distance to the former emitters. Its potential to be integrated into 
silvicultural concepts must be discussed quite critically: considering the ongoing 
re-acidification of the fly ash influenced sites and the uncertainty how long the 
artificially increased nutrient potential is available for plant growth, the future 
regional suitability especially of noble hardwoods on sandy soils is doubtful. 
Furthermore, results of climate change modelling and regionalization suggest a 
severe decrease of regional precipitation, which amounts to almost 20–25% of 
the actual rainfall. This supports a turn back to drought resistant tree species such 
as Scots pine and Oak, which however are not able to benefit from the actually 
increased nutrient potential. 
     Some first results on the analysis of heavy metal loads in the regional forest 
sites as a result of fly ash deposition revealed total net values which exceed by 
far (up to 5-times) the thresholds given by national regulations for heavy metal 
values such as LABO [19]. Critical values however are more or less restricted to 
the immediate vicinity of the former emitters, where still high pH-values confine 
the mobility of endangering heavy metals and limit their possible discharge into 
the ground water. Prolonging the actual re-acidification tendency of the regional 
sites of 0.7 pH units within around 12–15 years after the closure of the former 
emitters and the additional acidification impact of regional N-deposition, a 
supposable potential of ground water quality impact can be expected in the next 
50 ys. Conversion of the Scots pine and Oak dominated forests with European 
beech could be a countermeasure. Facing the problem of reduced water 
availability, this demands however for adapted conversion and transformation 
concepts with respect to the potential of different stand structures and tree 
species mixture types to reduce the evapotranspiration.  
     Therefore, model coupling approaches in ENFORCHANGE, linking forest 
growth (SILVA) with nutrient and water balance (BALANCE) and impact of 
forest structure and tree species composition on stand climate (HIRVAC) help to 
test and consider the above outlined multiple aspects in regional silvicultural 
planning. The future challenge will consist in using the still existing deposition 
driven site potentials under new climate conditions and to find strategies for 
responding on possible environmental risks.  
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FOREST ECOSYSTEM DEVELOPMENT UNDER A CHANGING 
ENVIRONMENT & CONCLUSIONS FOR FOREST 

MANAGEMENT 
 

Fürst C., Makeschin F. 
Institute for Soil Science and Site Ecology, Dresden University of Technology, Pienner Rd. 

19, 01737 Tharandt, Phone: +49 - 35203-3831378, Fax: +49 - 35203-3831388,  

e-mail: fuerst@forst.tu-dresden.de, makeschin@t-online.de 
 
Summary: Lowland forest ecosystems in Saxony and Saxony-Anhalt were impacted for more 
than a century by heavy industrial pollution. Especially the so called “Dübener Heide”, the 
largest forest area at the border between Saxony and Saxony-Anhalt was affected by 
depositions from the most important industrial triangle of the former GDR Leipzig-Halle-
Bitterfeld. At the same time, management of Dübener Heide underwent high pressure for 
ensuring the timber supply and the recreation of citizens in this congested urban and 
industrial region.  
Regional silvicultural management decisions, which were confronted to both, increasing 
industrial deposition and increasing demand in biomass production, led to large-scale 
establishment of pure Scots pine stands. These were confronted to extremely high amounts of 
alkaline deposition (18 Mio. t fly ash) and acidic depositions (12 Mio. t. SO2) from regional 
power plants and chemical industry. This disastrous combination led finally to the break-
down of large parts of the regional forest ecosystems and entailed high efforts for conversion 
and restoration of the forests. Nowadays, a recovery of the forest ecosystems can be 
observed, which is indicated by large scale re-establishment of original site properties and the 
original ground vegetation types and which is accompanied by tree growth, which exceeds by 
far the original regional level. However, climate change poses new challenges to these forest 
ecosystems. A reduction of 20 % of the actual precipitation and an increase of the mean 
annual temperature of 3.5 °C are expected for the next 100 years. Beyond this background, 

the stability and resilience of the actual forest ecosystems must be questioned critically. First 
studies however show, that the capability of the actual forest ecosystems in buffering such 
changes allows concluding that changing climate conditions can be responded by respective 
silvicultural management measures.  
The article introduces (a) the reactions of the exemplary forest ecosystem Dübener Heide on 
changing environmental frame conditions, where a complex study was conducted in the frame 
of the research project ENFORCHANGE (www.enforchange.de), supported by the German 
Federal Ministry of Education and Research. (b)Conclusions on possible management 
consequences and future challenges are drawn.  
Keywords: Forest ecosystem development, industrial deposition, ecosystem processes, 
process-oriented forest management. 

 

INTRODUCTION 

 

 Forest ecosystems all around Europe were faced since the very first settlements to an 
intensive impact of human activities, which led early to changes in the forested area itself 

and influenced among others the tree species distribution by selective use, furthering or 

fighting of tree species. Furthermore, human activities influenced the environmental frame 

conditions under which forests grow. Most actual examples are large-scale deposition of 

industrial exhalations, especially SO2, which led to severe forest decline effects up to the 
1990ies, ongoing N deposition from agriculture and traffic, which provoke nutrient 

imbalances and last but not least climate change as the main driver for the actual 

development of European forest ecosystems. Lowland forest ecosystems are particularly 

sensible to such impact, as they grow mainly under dry conditions and as their growing 

area is mostly restricted to sites with unfavourable conditions for other land-use forms. 

Furthermore, they are often - as a result of favourable topographic conditions - situated 
near to densely settled and used areas and thus are confronted today to widely spread 

demands from regional society. Fig. 1 records as an example 200 years history of human 

impact on the so called Dübener Heide, a well investigated Lowland forest ecosystem in 

North-Eastern Germany.  
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Figure 1. History of human impact on the Lowland forest ecosystem Dübener Heide (acc. to 

Fürst et al., 2007). Main processes and visible reactions are resumed. Arrows show the 

duration of the impact factors, processes and ecosystem reactions. Dashed lines are used 
when the exact start of an impact, an ecosystem process or a visible reaction is not known. 

The impact factors shown in Fig. 1 are separated into impact by management measures and 

impact by change of the frame conditions for the ecosystem development. Ecosystem 

processes are separated into site processes and processes on stand level. Visible reactions 

are shown for the soil vegetation and the stand level. (alk. = alkaline, div. = diversity re-nat. 

= re-naturalization). 
 

In Dübener Heide, systematic cultivation of Scots pine (Pinus sylvestris, L.) started 

from the middle of the 18th century on. This led in combination with local forest pasture 

and litter utilization to poor Scots pine forests, which were characterized by acidophilic soil 

vegetation groups (dwarf shrubs, mosses, lichens) and raw humus forms (Bendix, 2001).  
Due to the regional lignite occurrence, industrialization started early in the 

immediate vicinity of Dübener Heide, but was limited at the beginning to small power plants 

with local deposition effects. From the 1920s on, an intensification of industrial energy 

production led finally to incredibly high deposition loads, which amounted from 1910 – 

2000 to 18 Mio. t fly ash and 12 Mio t SO2. N deposition from industry and agriculture 

amounted up to 300 kg / ha * a, and was even surpassed in the 1960ies by local N 
fertilization of up to 990 kg / ha. Fly ash was deposited along a characteristic distance and 

wind direction in dependent gradient, whereas SO2 and N deposition were more evenly 

distributed (Lux, 1965; Klose and Makeschin, 2004).  

Deposition and fertilization dependent vegetation types appeared in the Dübener 

Heide from the 1920/1950ies on. Basophilic and light preferring species started to settle in 
the immediate vicinity of the former power plants. They indicated alkaline dust deposition 

and the hereby provoked opening-up and die back of the Scots pine stands. Raising regional 

vegetation diversity and high species diversity near to the power plants went along with a 

decreasing vitality of the Scots pine stands. This process was accompanied by artificially 

elevated pH (KCl) values (up to 7) and base saturation (up to 100 %) in the humus layer and 

upper mineral horizons. Based on a visual assessment of forest decline, up to four 
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deposition zones were distinguished, which formed the basis for a spatially differentiated 

ecosystem management intensity. Efforts to convert the Scots pine stands started from the 

1970ies on in the zones with heavy forest decline phenomena and they were widened to the 

total area from the 1980ies until now (Lux, 1964 a, b; Kopp, 2003). 

From the 1980s on, fly-ash filters were introduced and the still increasing acidic 

deposition components NOx, SO2 / SOx were no longer buffered by alkaline dusts. Herpel et 
al. (1995) documents for some sample plots in Dübener Heide a decrease of pH(KCl) of 0.4 

units and base saturation decrease of 17 %  until 1988 compared to the situation in the 

1970s. From 1988 to 2000, a further reduction of 0.7 pH-units was reported by Kurbel 

(2002).After 1989, SO2 and fly ash deposition were more or less stopped, whereas N 

deposition in a magnitude of 28 – 45 kg/ha*a from animal husbandry and traffic amplifies 

the long-term effects of the former N-deposition and N-fertilization in terms of dense grass 
layers and nitrophile soil vegetation. However, N-eutrophication was balanced to a certain 

degree by ample ground vegetation development, improved tree growth, and vital natural 

regeneration of mainly noble hardwoods (Lux, 1964 b). Kopp (2003) expects also a re-

development of humus forms, which represent the original site potential.  

Nowadays, re-immigration of acid indicators and disappearance of the dense grass 
layers are observed due to vanished base deposition and ongoing acidic deposition (Augustin 

et al., 2005). The health of regional forests has improved as a result of lower industrial 

deposition and conversion, but they are still threatened by increasing N deposition (Materna 

& Fiedler, 1994).  

One of the major challenges for future management of the forests in Dübener Heide 

is the change of the regional climate. Here, considerable decrease of precipitation and 
increase of temperature are expected. This raises the question, if the actual tree species 

composition and noble hardwood regeneration are well adapted for the future.  

 

MATERIALS AND METHODS - FOREST ECOSYSTEM STUDY ENFORCHANGE 

 
“ENFORCHANGE” (Environment and Forests under Changing Conditions, 

www.enforchange.de) is a research project supported by the Federal Ministry of Education 

and Research (BMBF, Germany).Within the project, long-term forest ecosystem reactions 

and processes as a result of changing frame conditions and the consequences for a 

sustainable forest ecosystem management are studied.  

ENFORCHANGE tested the hypothesis that forest sites in Dübener Heide are still 
impacted considering potentials such as nutrient availability and water balance as well as 

specific risks such as heavy metal release. Furthermore, it was assumed that forest growth 

is still superposed by the spatially differentiated effects of former depositions along a 

historically documented regional deposition gradient. To support forest ecosystem 

management, ongoing ecosystem processes under special consideration of climate change 
effects are modelled and finally up-scaled from a number of sample plots by statistic 

regionalization approaches. Figure 2 resumes the monitoring - modelling - management 

information and support chain, which is realized in the project. 

A combination of available GIS-data, data from climate and environmental 

monitoring, field trials and own measurements is used to feed the process model BALANCE, 

which is coupled with the stand climate model HIRVAC and the tree growth model SILVA. 
The model output delivers information on the effects of changing environmental frame 

conditions and different management alternatives on ecological and economic parameters, 

which are given as feed-back to the user. Two reference regions serve for the validation of 

the modelling results and the development of process-regionalization approaches.  

12 project plots were installed in Dübener Heide along the regional deposition 
gradient. These plots represent major (terrestrial) soil type and stand type combinations in 

the region and are chosen from a pool of 150 study plots, which was established in the 

1960ies. At the key plots, chemical and physical site properties including magnetic 

susceptibility are measured depth level-wise with focus on the humus layers and the upper 

mineral horizons, and forest growth and yield characteristics are assessed. The project plots 

deliver the data base for the multiple-regression based regionalization of environmental 
data. The plot-wise data set is complemented by grid-based screening of spatial 

differentiation in magnetic susceptibility with two different grid densities (1*1 km² and 4*4 

km²). Magnetic susceptibility describes the amount of magnetizable iron-oxides, a 

component of fly ash from lignite combustion. By correlation with heavy metal or base 
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cation content, this indicator supports the spatial transfer of respective plot-wise 

measurements in regions with high deposition amounts. In the project context, magnetic 

susceptibility is used, to identify spatial strata, which are differentiated (a) by the intensity 

of former deposition load and (b) by the speed of ongoing processes, such as re-acidification 

and base cation leaching. These strata are proposed to be used for differentiated handling in 

regional forest management.  
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Figure 2. Monitoring - modelling - management information and support chain in the 

project ENFORCHANGE. 

 

RESULTS 
 

Deposition impact on the site potential 

The assessment of chemical and physical parameters at the project plots and the 

screening of magnetic susceptibility revealed that the spatial differentiation along the 

historically documented deposition gradient still exists. This gradient is mainly driven by 
former fly ash deposition. SO2 deposition impact could not be detected anymore and N 

deposition affects all parts of Dübener Heide. Differences in the nutrient equipment and the 

pH values as well as differences in physical humus properties, such as content of mineral 

matter in the humus layer (Klose et al., 2002; Koch et al. 2002) and last but not least 

different levels of magnetic susceptibility support a stratification of maximally three spatially 

distinct areas instead of four as proposed by Lux (965): in up to 8 km distance to the former 
emitters, pH (KCl) values and base saturation are clearly elevated far beyond the original 

potential of the sites. Here, fly ash impacts also the physical properties of the regionally 

dominating raw humus forms with their high hydrophobicity. Hartmann et al. (2007) 

revealed that fly ash reduces the water repellency and hydrophobicity of the humus layers 

and increases the water conductivity. At the same time, the available water for plant growth, 
expressed by the field moisture capacity becomes smaller due to the fly ash caused decrease 

of the fine pore volume. Additionally, a tendencially decreased depth of the root zone due to 

high nutrient availability at the humus layer and upper mineral horizon at fly ash 

influenced sites might amplify the future risk of drought stress (Koch et al., 2002; Klose et 

al., 2002). In a zone up to 15 km, only pH-values are elevated and in a distance of more 

than 15 km, no measurable effects could be found. 
Based on first tentative extrapolations, pH values tend to approximate the original 

regional values in a time period of around 30 - 50 ys, where the re-acidification rate in the 
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Horizontal distance to Bitterfeld

zone up to 8 km distance is 5 - 10 times higher compared to the zone in more than 15 km 

distance. In the zone up to 8 km distance, the stock of extractable Ca in the humus layer 

and upper mineral soil until a depth of 30 cm reaches up to 4,000 kg / ha (Fritz & 

Makeschin 2007). This is 10 to 20 times higher compared to the plots in a distance of 30 

km, which are farthest to the former emitters and whose chemical properties represent more 

or less the original regional potential. Until now, it is not foreseeable, until when base cation 
leaching scales down the extremely high base cation potential and especially the Calcium 

stock in the zone up to 8 km distance to the regionally characteristic level.    

While the plot-wise measurements were arranged along the formerly documented 

deposition gradient, which assumed a strong influence of the power plant “Zschornewitz” in 

the immediate vicinity of Dübener Heide, the magnetic susceptibility screening was based 

on regular grid measurements. These measurements revealed (1) that the spatial effect of 
the deposition went especially at the humus layers much farther than proved by the 

assessment of chemical and physical properties at the project plots (Fig. 3 a). Furthermore, 

the measurements highlightened that (2) the impact of the industry site Bitterfeld, which is 

situated farther from Dübener Heide was clearly stronger than originally believed (Fig. 3 b).  

 
Deposition impact on forest growth 

Forest health and growth were extremely affected by the former depositions. Table 1 

shows exemplarily the volume increment (m³/ha*a) and volume increment reduction (% of 

reference value in zone IV) along the regional deposition gradient (Lux 1964 b modified, 

1965).  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 3a. Spatial range of detectable fly-ash deposition in the depth levels 5 - 10 cm, 10 - 15 cm and 
20 - 25 cm, mean values. The correlation between distance and magnetism decreases from 5 - 10 cm 

to 20 - 25 cm. Fly ash deposition affected mostly the upper 0 - 15 cm. 

 

Comparing the late 1960ies until 1980 with the 1980ies, deposition showed only at 
the first time period the expected spatially differentiated negative impact on tree growth, 

with decreasing intensity with increasing distance to the power plants. In the period 1982 - 

1988, the former spatial differentiation disappeared. This period was characterized by 

beginning fly ash filtering, where at the same time, SO2 deposition even increased. 

Comparing tree growth parameters between 1940 - 1991 and 1975 - 1991 nearest and 

farthest to the power plants underpins that the influence of the deposition does not show 
the extreme spatial differentiation, which was assumed in the 1960ies, the time, were the 

deposition zones were defined. Of course, forests in the immediate vicinity of the former 

emitters reacted first on the emissions and thus supported the stratification into four 

deposition zones at least at the beginning of heavy deposition (Lux, 1966). Later on, the 

extremely high and spatially widely distributed SO2 deposition might have been the driving 
factor for the observed large scale impact on tree growth (Hüttl & Bellmann, 1999) From the 

1990ies on, the last power plants were closed or were equipped with modern fly ash and SO2 

filtering techniques. Investigations from intensive forest growth monitoring plots have 

proved that height growth of Scots pine recovered after the 1990ies. Ongoing measurements 

at the ENFORCHANGE key plots show that nowadays, height and diameter growth of forests 

in Dübener Heide follow the general trend to be superior to the benchmark data in the 
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regionally valid growth and yield tables. This applies to all relevant stand types and 

especially for the regionally dominating Scots pine stands.  

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 3 b. Spatial influence of fly ash at the depth level 5 - 10 cm in dependence from the 

distance to Bitterfeld and Zschornewitz. The spatial correlation between magnetic 

susceptibility values and horizontal distance is lower for Zschornewitz and the spatial range 

of detectable fly ash deposition is smaller compared to the impact of Bitterfeld. 
 

Table 1.  Volume increment (m³/ha*a) and volume increment reduction (% of reference value 
in zone IV) in the deposition zones. DI highest, DII high, DIII medium, DIV low deposition.  

Deposition zone 

DI DII DIII 

D IV - regional 

reference value 

growth 

parameters 
height (m/a) 0,09 0,15 0,16 0,23 

basal area (m²/ha*a) 0,38 0,53 0,53 0,64 

volume (m³/ha*a) 4,6 5,9 6,2 8 

growth 

reduction 

(referred to 

zone D0) 

height growth reduction (%) -61 -35 -30 0 

basal area increment (%) -41 -17 -17 0 

volume increment (%) -43 -26 -23 0 

 

At a glance, fly ash deposition effects on Dübener Heide can not only be considered 

as damaging factor, but resulted in double-edged effects on regional forests: positive aspects 

are a higher nutrient availability (base saturation) and cation exchange capacity and an 
improvement of physical humus properties like texture and sorption capacity. On the other 

hand, a disturbance of ground vegetation composition and organic matter decomposition 

can be observed (Kopp, 2003). A visible consequence of fly ash deposition is the ample noble 

hardwood and European beech regeneration, which can be observed in the zone of 8 - 

maximally 15 km distance to the former emitters. Its potential to be integrated into 
silvicultural concepts must be discussed critically beyond the background of ongoing re-

acidification and worsening of climate conditions. Especially re-acidification has a negative 

impact on the stability and development of the fly ash-adapted stand types and the quality 

of by-products like water, biodiversity and socio-economic functions.  

 

Climate change impact and forest growth 
The down-scaling of global climate change scenarios for Dübener Heide proved that a 

reduction of the mean annual precipitation of up to 100 mm and an increase of the mean 

annual temperature of up to 3.5 °C can be expected. Even worse, the water deficiency 

during the summer period is estimated to become aggravated, which affects especially the 
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regionally dominating poor sandy soils (Goldberg et al., 2007; Franke & Köstner, 2006). The 

temperature increase and precipitation decrease will not follow a regular trend. Until 2010 

an increase of precipitation and small temperature decrease is expected, while from 2010 on 

a clear worsening of climate frame conditions for forest ecosystem development is predicted.  

Modelling of the impact of climate change impact on growth parameters revealed 

that growth under the recent regional climate conditions is highest. Taking the IPCC 
scenario A2 and  European beech stands as an example, height growth reduction can reach 

up to 4 m during the stand life, which means a decrease of one yield class in the regional 

yield tables with respective consequences for future timber production. This applies 

especially for the young stands, while the consequences in elder stands are considerably 

lower.  

On the other hand, forest ecosystems are able to buffer the predicted decrease of 
precipitation and increase of temperature almost completely considering inner stand 

climate. This depends from the stand type: Scots pine stands aggravate the predicted 

development by their high evapotranspiration rate and low Albedo. Mixed stands or pure 

broadleaved stands reduce the admission of solar radiation to the soil surface and thus are 

characterized by clearly lower evapotranspiration rates and temperature compared to open 
land climate. The ability to regulate the stand climate of mixed and well structured stands is 

the highest and countervails against the predicted shortening of precipitation and 

temperature increase (Fischer et al., 2008). 

 

DISCUSSION - CONSEQUENCES FOR MANAGEMENT  

 

Environmental frame condition changes as described for Dübener Heide trigger 

complex ecosystem processes. Forest management planning should adapt to these ongoing 

processes instead of basing decisions to descriptions of the actual status, which are 

delivered by forest inventory and site classification (Schoenholtz et al., 2000; de Vries et al., 

2003). Process-oriented forest management planning respects natural dynamics in (forest) 

ecosystem management on landscape level. In Dübener Heide e.g., fly-ash deposition 
provoked a homogenisation of site quality differences, and a differentiation of formerly 

comparable sites and vegetation types along the regional deposition gradient. These 

modifications are superposed by N deposition and climate change. 

The realization of process-oriented forest management planning demands to identify 

main forest ecosystem processes (see Fig. 1). Development targets and management 
measures should be based on area-related process-indicators (vegetation types, change 

ratios in chemical and physical parameters) as discussed by Scheuner and Makeschin 

(2005), Kopp (2003), and Schoenholtz et al. (2000). This allows for a better appraisal and 

consideration of future on- and off-site potentials and risks in strategic development targets 

and short-term management measures.  

In a second step, a regionalization of process-information (speed / intensity, 
direction) based on the process-indicators and results from process modelling should be 

realized. Respective regionalization techniques for up-scaling of processes from monitoring 

and inventory plots are still under development. The regionalization of process parameters is 

a major topic in most landscape related sciences (Diekrüger et al., 1999; Volk & Steinhardt, 

1999). Some promising approaches were yet presented by Zirlewagen & v. Wilpert (2004) 
and Saborowski & Jansen (2002). 

Finally, process-homogeneous planning units must be identified, which allow for 

drawing process-sensitive and spatially differentiated decisions on type and intensity of 

management measures. Although the delineation of process units is a general aim in 

landscape ecology (Haber, 2005), no generalizeable approach has been developed so far. The 

dynamics within a planning unit and the spatial relation between different planning units 
under regionally changing management concepts or local variations of environmental 

changes are of special interest. They should be pursued and tested considering their 

practical suitability for spacious application. This would support a statistically valid 

process-oriented forest management, which could easily be integrated into ecological 

landscape management approaches on different scale levels (Volk & Steinhard 1999). 
Integrating processes into management concepts could help to avoid unreasonable 

investments, e.g. furthering of tree species and stand structures, where the future 

development provokes ecological risks or financial losses. In Dübener Heide, spatial 

differentiation of re-acidification rate and base cation leaching demands for respective 
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silvicultural responses. In the nearest distance to the former emitters, natural (noble) 

hardwood regeneration can be used as cost-efficient countermeasure, as the elevated base 

cation stock is expected to be available for more than one forest generation. In medium 

distance, it is expected that the actually still improved site potential will soon be lost. At the 

same time, natural hardwood regeneration occurs less frequently in this zone, while Scots 

pine regeneration struggles still with grass dominated soil vegetation and thick moder - raw 
humus layers. Conversion efforts could help to slow down the re-acidification, but are faced 

to the problem of future water scarcity, which in this case cannot be compensated by the 

positive effects of fly ash on hydrological humus properties and high nutrient availability.  

Fly ash deposition brought also a higher heavy metal input into the sites, where the mobility 

is expected to increase with ongoing re-acidification. Consequently conversion with tree 

species, which do not support re-acidification is recommended, where magnetic 
susceptibility values let expect a locally higher fly ash input. In the far distance zone, fly ash 

deposition and re-acidification ratio are low. With regard to climate change, the actual Scots 

pine dominated stands can be considered as well adapted and no additional efforts are 

demanded. 

Silvicultural management in both parts of Dübener Heide, in Saxony and Saxony-
Anhalt starts to consider the idea of a process-oriented forest management by leaving the 

stand type as decision basis and replacing stand type by “development type” with s close 

reference to indicators for actual ecosystem and site development trends.  
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Abstract
The article reviews in its first part literature on the development of forests in the lowland region Dübener Heide (Saxony, Central Germany). The

Dübener Heide acts as example for regions in Central and Eastern Europe, which are undergoing a dramatic transformation from heavily to

moderately affected by air pollution. Main on- and off-site factors and their influence on forest vegetation and processes are described. In the

following, regional approaches for dealing with spatial influence of deposition in forest management planning are introduced and a concept for

integrating ongoing processes into a process-oriented forest management is described. Additionally, the special suitability of the presented

approach compared to classic forest management planning is discussed. Requirements and research needs for an application of the presented

approach are noted. The article is based on an approach, which is pursued in the regional research project ‘‘Environment and Forests under

Changing Conditions’’ (ENFORCHANGE). ENFORCHANGE is running in two regions in former Eastern Germany: ‘‘Dübener Heide’’ (Saxony/

Saxony-Anhalt) and Upper Lusatian region (Saxony). Major aim of the project is the development of improved forest management planning

concepts including landscape management and land-use optimization in former industrial hotspots.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Forests are major air pollutant receptors due to high surface

roughness and long rotation period (Ulrich, 1983; Strzyszcz and

Magiera, 1998, 2001; Strzyszcz, 1999). Changing deposition

regime and environmental changes like climate shift are forcing

forest ecosystems to adapt to new frame conditions. They

trigger complex ecosystem processes, which should be

considered in forest management planning. Especially regions,

which are subjected to a dramatic transformation from heavy to

moderate air pollution like the former industrial hotspots in

Eastern Germany, demand for a process-oriented forest

management concept (see Section 2, Lux, 1965; Jensen

et al., 1996; Schoenholtz et al., 2000; de Vries et al., 2003).

Process-oriented forest management planning can be based

on the ecosystem management framework concepts discussed
* Corresponding author. Tel.: +49 35203 3831378; fax: +49 35203 3831388.

E-mail address: fuerst@forst.tu-dresden.de (C. Fürst).

0378-1127/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.foreco.2007.02.030
by Rauscher (1999) and Rauscher et al. (2000) as well as

Bormann et al. (1994). Additionally, it should meet with the

intention of respecting natural dynamics in (forest) ecosystem

assessment and management on landscape level as described by

Jensen et al. (1996). When using the term (forest) ecosystem

management in the following, the definition of Wagner (1995)

is preferred, who suggests that ‘‘ecosystem management is the

skilful manipulation of ecosystems to satisfy specified societal

values’’. Jensen et al. (1996) highlighted that this definition is

especially comfortable, ‘‘because it does not imply that

optimization of biodiversity, ecosystem health and integrity,

and commodity production must be included in every

ecosystem management effort’’. For forest (eco)systems in

intensively settled and managed regions as presented in Section

2, this understanding of ecosystem management seems to be

particularly suitable: it turns away from the approach to protect

native ecosystem integrity as proposed by Grumbine (1994) and

picks up a more anthropocentric resource management idea,

which of course respects the basic principles of a sustainable

forest management (SFM) (Anonymous, 1995). The aspect of

mailto:fuerst@forst.tu-dresden.de
http://dx.doi.org/10.1016/j.foreco.2007.02.030
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‘‘planning’’ in the presented process-oriented forest manage-

ment planning was chosen in order to emphasize the claim of

placing management strategies into a proper, i.e. spatially

explicit context based on the concept of ‘‘coordinated planning

unit maps’’. Coordinated planning unit maps are used in multi-

scale ecological assessment to delineate ecosystems for specific

planning or reporting needs on the scale levels of national

resource planning, area planning and project planning to

facilitate multi-agency, multi-ownership and multi-government

collaboration in monitoring and land-use planning (see Jensen

and Everett, 1994; Jensen et al., 1996).

The presented approach is pursued in the regional research

project ‘‘Environment and Forests under Changing Condi-

tions’’ (ENFORCHANGE), which is realized in two regions in

former Eastern Germany: ‘‘Dübener Heide’’ (Saxony/Saxony-

Anhalt) and Upper Lusatian region (Saxony). The aim of the

project is the development of improved, i.e. process-oriented

forest management planning concepts including landscape

management and land-use optimization in former industrial

hotspots.

The presented article intends (i) to identify the main

historical on- and off-site factors for forest ecosystem

development in the region Dübener Heide, their impact on

forest ecosystem processes and the existing regionalization and

management concepts for the disturbed ecosystem. (ii) Based

on this background information, a process-oriented forest

management planning concept is introduced and discussed.

2. Forest ecosystem development in Dübener Heide

Forest ecosystems in Eastern Germany are still influenced by

long-term effects from former deposition produced by

unfiltered lignite combustion in Czech, Polish, and German

power plants until the early 1990s. In the early 1960s, two trans-

regional deposition hot spots were identified in Eastern

Germany: (1) a lowland transect between Chemnitz/Leipzig/

Magdeburg, and (2) the Lusatian/Spree region along the Polish

border between Frankfurt/Oder-Lübben-Cottbus-Hoyers-

werda-Görlitz (Lux, 1965, 1976) (see Fig. 1).

The deposition regime in region (1) was characterized by

lignite with high S content. The main impact factors were
Fig. 1. Localization of
sulphur and heavy metal deposition followed by nitrogen and

potassium. Additionally, fluorides, chlorides, as well as

complex herbicides from chemical industry were locally

important pollutants. Region (2) was mainly influenced by

the combustion of lignite with lower S content. The resulting

environmental damages (e.g. forest decline) were appraised as

slightly less serious compared to region (1) (Lux, 1976; Kunze

et al., 1996).

Fig. 2 resumes for the comparably well investigated

lowlands (Dübener Heide), the history of anthropogenic

influence on regional forests, main effects on forest vegetation

and (visible) system reactions and processes according to Lux

(1964a,b, 1965), Lux and Stein (1977), Konopatzky (1995),

Amarell (1997) and Bendix (2001). The intention of Fig. 2 is to

highlight the interrelations between the two impact factors

forest management and deposition changes and the resulting

forest ecosystem development.

The impact factors shown in Fig. 2 are (a) on-site factors and

their effects (light grey), i.e. forest management measures, (b)

off-site factors and their effects (dark grey), i.e. mainly

industrial emission and climate change and (c) combined

effects of on- and off-site factors (hatched grey).

2.1. History and development in the period 18th century

until 1920s

From the middle of the 18th century, raising cultivation of

conifers, especially Scots pine (Pinus sylvestris, L.) locally

combined with forest pasture and forest litter utilization resulted

in the development of heathland Scots pine forests. These forests

had been dominated more or less by broadleaved species like oak,

European beech, lime, and hornbeam before. However, a large

scale change of ground water level as a result from active and now

abandoned open cast mines superposed the original site and

vegetation characteristics. Real start, end and intensity of the

impact of this change are not well described (Reiche, 2001). The

artificial Scots pine forests (‘‘Kiefernforstgesellschaften’’) in

the region were characterized by acidophilic soil vegetation

groups (dwarf shrubs, mosses and lichens) with comparably low

species diversity and occurrence of poor humus forms like raw

humus (Amarell, 1997; Bendix, 2001).
region (1) and (2).



Fig. 2. History of human influence on forest systems in the lowlands (Dübener Heide), their effects on forest vegetation and resulting system reactions.
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2.2. History and development in the period 1920s–1970s

Starting in the 1920s, off-site impact factors became more

important and an intensification of industrial energy produc-

tion led to high deposition loads in the regional forests. The

total deposition in the most important regional woodland, the

so-called ‘‘Dübener Heide’’, amounted from 1910–2000 to 18

Mio t fly ash and 12 Mio t SO2
1, and in the decade from 1961–

1970 up to 3–8 t/(ha a) of fly ash were deposited in the

regional forests (Lux, 1965, 1976; Neumeister et al., 1991;

Nebe et al., 2001; Klose and Makeschin, 2004). The different

deposition fractions SO2 and fly ash, which contains ‘‘black’’

(tertiary) carbon, alkali/earth alkali metal salts, heavy metals

and silicium compounds were distributed according to (a)

their aggregate state, (b) their particle size and form and (c)
1 In the consulted literature, the term ‘‘SO2-deposition’’ is used and com-

prises the total deposition in the forest ecosystem including all compartments.

The quantification of SO2-deposition was based on time-related concentration

measurements. Information on the Stot or SO3/SO4
2�deposition equivalent in

forest soils was not available. Consequently, the term ‘‘SO2-deposition’’ is also

used in the presented paper.
landscape shape and land-use form along a regional gradient.

This gradient was dependent on distance and wind direction in

case of clustered emitters (power plants and industry in the

Bitterfeld district) or characterized by overlapping areas of

several emitters with irregular peaks of local deposition

(mainly N from agriculture and industrial N production) (Lux,

1966, 1976; Niehus and Brüggemann, 1995; Magiera and

Strzyszcz, 1999; Strzyszcz, 1999). Additionally, the impact of

industrial deposition on regional forests was overlapped by

locally clustered N fertilization of forests, which amounted up

to 990 kg/ha (Konopatzky, 1995). In consequence, deposition

(and fertilization) dependent vegetation zones appeared, with

typical indicators of alkaline or acidic deposition components

and N fertilization (Lux, 1964a; Konopatzky, 1995; Amarell,

1997; Konopatzky and Kopp, 2001). Basophilic and light

preferring species started to settle in the immediate vicinity of

the former power plants. They indicated alkaline dust

deposition and an irregular opening ups of (nonadapted)

Scots pine stands by advanced felling as a consequence of

ongoing needle losses, forest die back and calamities.

Increasing regional vegetation diversity and especially high

species diversity near to the power plants were reported as



Fig. 4. (a) Development of the emission situation in Dübener Heide (acc. to Herp

deposition in t/(ha a) in the Dübener Heide.

Fig. 3. pH (KCl) value in humus layers (Oe/Oa) of characteristic soil vegetation

types of Dübener Heide along the deposition gradient (Heinsdorf et al., 1994,

modified).
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contradictory development to a decreasing vitality of the Scots

pine stands (Lux, 1964a,b). This process went along with

artificially elevated pH (KCl) values (up to 7) and base

saturation (up to 100%) in the humus layer and upper mineral

horizon of the regional forest soils. Fig. 3 shows exemplarily

pH (KCl) values in humus layers of typical soil vegetation

types under Scots pine stands along the deposition gradient

(Ntotal = 122 sample plots).

The vegetation types in Fig. 3 comprise (a) vegetation

groups representing the different deposition (and fertilization)

types, e.g. mosses (+/� no deposition), Calamagrostis (mainly

local N deposition/fertilization) and herbs (mainly fly ash

deposition), and (b) types with complex dynamic, e.g. Avenella

(acidic deposition, but also opening up of the stands), and

herbs-Avenella type (beginning pre-dominance of acidic

depositions/re-acidification). These vegetation types can be

used as indicator for artificially changed chemical top soil

properties (Konopatzky and Kopp, 2001). Their indicative

value for site quality (changes) seems to describe better the

regional site quality (changes) compared to the vegetation

indicated site quality grid proposed by Ellenberg (1988).
el et al., 1995; Neumeister et al., 1997; Reiche, 2001, modified). (b) Fly ash
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However, Kopp (2003) mentions also that the time-delayed

response of soil vegetation composition restricts its indicative

value. Considering the humus layer, discordant humus forms

occurred, which are recognizable by (a) abnormal thickness of

Oe/Oa-horizon, (b) increased microbial respiration and (c)

reduced organic matter decomposition. They indicate the

dramatic disturbance of natural soil processes in forest

ecosystems affected by deposition (Lux, 1974; Klose et al.,

2003; Koch and Makeschin, 2004).

2.3. History and development in the period 1970s – end of

20th century

The period of 1970s until the end of 20th century was

characterized by an intensification of silvicultural counter-

measures such as conversion, but also ongoing N-fertilization

(Lux, 1976; Konopatzky and Kopp, 2001; Nebe et al., 2001;

Kopp, 2003). From the 1980s on, an introduction of fly ash

filters lead to a more or less acidic deposition regime (NOx,

SO2/SOx). After 1989, a strong reduction of fly ash emission

along with an even increasing levels of N emissions (NOx, NH4)

changed the deposition characteristics in formerly fly ash

influenced areas (e.g. Hüttl and Bellmann, 1999; Marquardt

et al., 2001; Gauger et al., 2002; Wellbrock et al., 2005). Fig. 4a

provides information on the special development of the

emission situation in Dübener Heide from 1891 to 2000

(Herpel et al., 1995, Neumeister et al., 1997; Reiche, 2001),

Fig. 4b shows the extrapolated development of regional fly ash

deposition in Dübener Heide in the same period based on

regional deposition measurements and emission data.
Fig. 5. Volume increment (m3/(ha a)) and volume increment reduction (% of referenc
Raising atmospheric N deposition in a magnitude of 28–

45 kg/(ha a) caused by intensive animal husbandry and

acceding traffic intensity superposed the former regional

deposition gradient. This additional N input amplified the long-

term effects of N-fertilization in terms of dense grass layers

(Calamagrostis epigejos) and other nitrophile soil vegetation.

For long time this posed a severe obstacle for natural forest

regeneration and required high technical input for stabilizing

forest ecosystems. Decreasing vegetation diversity was

observed in this period, which can be considered as an

indicator for ongoing N-eutrophication. However, N-eutrophi-

cation in the soils was to some extent balanced by an ample of

ground vegetation growth, revitalization and improved tree

growth, and vital development of immigrating tree species

(noble hardwoods) (Lux, 1964b; Amarell, 1997). This indicated

the development towards another system balance (‘‘renatur-

alization’’). Herpel et al. (1995) documented a decrease of pH

(KCl) of 0.4 units and base saturation decrease of 17% until

1988 compared to the situation in the 1970s. From 1988 to

2000, a further reduction of 0.7 pH-units in the most stands

affected by fly ash was reported by Kurbel (2002). In the long

run, a re-development of humus forms is expected, which are

more similar to the original site potential (Kopp and Jochheim,

2002; Kopp, 2003).

2.4. History and development in the 21st century

In the scope of climate change, a decrease in precipitation

and increasing temperature represent considerable off-site

impulses for forest system development in Dübener Heide.
e value in zone IV) in the deposition zones (acc. to Lux, 1965, 1964b, modified).
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Küchler and Sommer (2005) expect an average reduction of

annual precipitation of 31 mm compared to 1977–1997 for the

next 50 years and an average increase in temperature of over

3 K in Saxony. Re-immigration of acidity indicators and

disappearance of the dense grass layers in formerly fertilized

areas are observed due to vanished base deposition and ongoing

acidic deposition (Augustin et al., 2005; Wellbrock et al.,

2005). The health of regional forests has improved partially as a

result from conversion effects and lower S deposition, but is

threatened by increasing N deposition on the other hand

(Materna and Fiedler, 1994). Climate change and long-term re-

acidification lead to the question if the actual tree species

composition and especially the noble hardwood regeneration

can be integrated into future silvicultural concepts.

2.5. Regional planning approaches

Based on the prevailing recognition of differing range and

effects of alkaline fly ash and dissolved acidic deposition

components, Lux (1965) defined first of all the necessity to

identify deposition strata (planning areas) around the industrial

hot spots for an adapted forest management. Enderlein and

Stein (1962), Stein (1965), Lux and Pelz (1968) and Lux

(1976) developed a sample plot based approach, where a

classification of health state and growth potential in medium-

aged Scots pine stands (50–90 a, Nsample plots: approximately

150) was used for a regionalization of the deposition impact.

Fig. 5 shows exemplarily the volume increment (m3/(ha a)) and

volume increment reduction (% of reference value in zone IV)

along the regional deposition gradient (Lux, 1964b modified,

1965).

The degree of single tree growth reduction and needle

losses were aggregated sample plot-wise to a factor, which

indicated the intensity of damage. Post-stratification based

on the sample plot results was used for an application of

stratum-specific silvicultural management measures and for

obtaining area-related information on additional costs and

economic loss. This formed the basis for financial

compensation by regional industry. Stock volume, recreation

potential and water management aspects were integrated into

a multidimensional approach for evaluating the effects of

complex depositions on forest management (see, e.g. Reiche,

2001).

Nowadays, the former damage classification cannot be used

anymore due to changes in regional forests health and species

composition, whilst on the other hand impact on chemical

humus and soil properties is still evident (Klose et al., 2002;

Koch et al., 2002; Klose and Makeschin, 2004; Koch and

Makeschin, 2004). For a process-oriented forest management

the establishment of planning units, which are more or less

homogeneous considering (a) basic (site) properties, (b) site

processes, and (c) vegetation type development with special

respect to back-coupling effects between site and vegetation

seems to be promising (Kopp and Schwanecke, 1994; Kopp,

2003). For instance, Schoenholtz et al. (2000) recommend a

stronger integration of (site) process indicators into planning

concepts.
3. Concept of process-oriented forest management

The reaction of forests on a changing deposition regime

depends on tree species composition and site properties (Kunze

et al., 1995, 1996) and their interrelations. In Dübener Heide,

fly ash deposition provoked (a) a homogenisation of site quality

differences, and (b) a differentiation of formerly comparable

sites and vegetation types along the regional deposition

gradient. These artificial modifications now are disappearing

or are overlapped again by current N deposition (Neumeister

et al., 1991; Thomasius et al., 1999; Schaaf, 2004). Forest

management planning is forced to adapt to these ongoing

processes (including stand and site) instead of using exclusively

the actual (vegetation and stand) status as decision basis

(Schoenholtz et al., 2000; de Vries et al., 2003). Integrating

processes into management concepts helps to avoid unreason-

able investments, e.g. furthering tree species and stand

structures, where the future development provokes ecological

risks or financial losses.

The development of a process-oriented forest management

planning requires three steps:
(1) I
dentification of the main forest ecosystem processes (see

Fig. 2) and the related process indicators. A suitable process

indicator must be apt to describe course, direction and

progress of processes (‘‘vectored dynamics’’) in forest

ecosystems. Process indicators for forest soils processes

may be, e.g.

a. C(hwe/cwe) ratio as indicator for soil organic matter (SOM)

dynamics,

b. pH (H2O/KCl) ratio as indicator for the re-acidification

potential,

c. difference between actual and expected humus form as

indicator for the influence of management measures on

natural humus dynamics,

d. temporal and spatial changes in ferrimagnetic suscept-

ibility in the Oe/Oa as indicator for fly ash deposition

influenced humus dynamics.
(2) P
rocess indicator based regionalization in order to derive

process-oriented management units as spatial information

base.
(3) O
rientation of forest management planning to process-

oriented planning units. The economic and ecological

targets of forest management are pre-defined by the forest

owner (e.g. timber production, sustaining environmental

quality). Process-oriented management planning units

allow for drawing a more sensitive derivation of type

and possible intensity of concrete management measures.
Fig. 6 gives an overview on a concept for process-oriented

management planning units based on the propositions of Kopp

and Schwanecke (1994), Konopatzky (1995) and Konopatzky

and Kopp (2001). The following explanations refer to Fig. 6.

Natural frame conditions, anthropogenic impact and the

factor ‘‘time’’ are determining basic and variable site proper-

ties. Basic site properties result from geological and climatic

frame conditions. Without man made changes, a balance
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between characteristic soil type(s) and corresponding humus

form(s) and vegetation type(s) would reflect the natural frame

conditions. ‘‘Characteristic’’ humus form and vegetation type

as reference for the current situation can be defined by means of

expert knowledge (‘‘dashed line’’), whereas the frame

conditions are verifiable (‘‘solid line’’). Anthropogenic impact

leads to the current ‘‘measurable’’ situation as described in

Section 1: this impact influences humus and vegetation type and

to certain extent also soil properties (chemical and magnetic

characteristics in the uppermost mineral layer, but without

changing the soil type itself). The differences between the

current situation and the reference situation can be seen as a

measure for the deviation from a development under

undisturbed conditions. Course, direction and progress of

ongoing processes are expressed by a change of humus and soil

properties (e.g. SOM, C:N ratio, pH-value, base saturation and

ferrimagnetic susceptibility) and the state of vegetation

development. This change over time can only be detected by

re-investigation of humus and soil properties and vegetation

composition. Both, deviation from undisturbed development as

well as the trend and progress of ongoing processes are a

valuable base for evaluating necessity, type and intensity of

silvicultural management measures.

Information on geological and climatic properties, resulting

site properties and ‘‘characteristic’’ vegetation types can be

used for defining basic management planning units, which

represent more or less the natural frame for regionally possible

development scenarios. In case of Dübener Heide, it is difficult

to identify the original vegetation type: apart from many
different impact factors on regional forests and forest soils (as

described in Section 1), the change of the ground water level

superposed the original situation from the beginning of

opencast mining (see, e.g. Reiche, 2001). Consequently, expert

knowledge is demanded for a spatial classification of the most

probable reference situation. Information on current vegetation

and humus types can be obtained by (a) remote sensing (forest

vegetation types and macro structure) and (b) complementary

terrestrial investigations (soil vegetation types, humus forms,

and chemical soil properties). This helps to refine the basic

management planning units and to integrate the current

development state. In case of Dübener Heide, a detection

and regionalization of the actual deposition load and its effects

is indispensable for two reasons:
(1) t
he formerly defined deposition strata reflected more or less

forest health as sum parameter of fly ash, S, and N

deposition and also climatic influence (Lux, 1965, 1966;

Erhard and Flechsig, 1998).
(2) T
he deposition type underlies manifold changes as

mentioned in Section 1. The regionalization of the actual

(fly ash) deposition load in humus layers and top soils

should be based on easily measurable indicators like

ferrimagnetic susceptibility in a first step in order to achieve

an optimal spatial field assessment (Tölle and Raasch, 1983;

Strzyszcz and Magiera, 1998; Magiera and Strzyszcz, 1999;

Hanesch and Scholger, 2002; Maier and Scholger, 2004).

Trend and speed of ongoing processes can be expressed by

the change of chemical humus and soil properties (SOM,
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C:N, pH-value, base saturation, see, e.g. Scheuner and

Makeschin, 2005; Landgraf et al., 2006) and stand

development (age class, mixture, stand density, etc.) after

re-investigation. Especially for a regionalization of the

changes in humus properties, a combination of floristic

indicators – soil vegetation species with high indicative

value – and chemical indicators like base saturation and

C:N ratio is recommended (Kallweit, 1990; Amarell, 1997;

Konopatzky and Kopp, 2001; Wilson et al., 2001; Klose and

Makeschin, 2004).
Basic management planning units as described in Fig. 6

comprise information on basic and current site quality and

vegetation reflecting the historical development in the

naturally given frame up to date. Basic management planning

units can be used as reference for the formulation of

silvicultural targets, which are geared to the actual regional

development potential. On the sandy soils of Dübener Heide,

the choice of tree species is mainly driven by the poor

availability of water and nutrients. Fly ash deposition

superposed the spectrum of natural tree species due to an

artificially increased nutrient availability. High fly ash

deposition in the immediate vicinity of power plants enabled

an immigration of noble hardwood in formerly pure Scots pine

stands even on poorer sites, whilst stability and increment of

the Scots pine stands as economically most important stand

type in the lowland was considerably reduced (Kunze et al.,

1995, 1996).

Process-oriented management planning units comprise

information on the current site quality and the ongoing

processes to indicate possible spatial development scenarios. In

Dübener Heide, information on (a) intensity and speed of (re-

)acidification and (b) subsequent depletion of (deposited)

nutrients and heavy metals under different stand types and stand

development states is most important with regard to process-

related management information. Spatial information on such

processes would help to improve cost efficiency of regional

silvicultural management strategies.

Process-oriented management planning should be based on

three pillars – (1) basic management planning units (natural

frame conditions), (2) process-oriented management planning

units (potentials and processes over time) and (3) targets for

economic and ecological development by the land owners. For

a better understanding of processes and prediction of realistic

development scenarios, an integrative application of process-

based models is indispensable (e.g. Mäkelä et al., 2000; Peng,

2000; Wallman et al., 2005). This should be accompanied by a

sensitivity analysis in order to assess the influence of the factors

(and factor combinations) ‘‘natural frame conditions’’ and

‘‘anthropogenic impact’’ on the predicted processes and for

integrating the most significant predictors (Battaglia and Sands,

1998).

Finally, two examples should explain typical questions in

Dübener Heide, where improved spatial information on long-

term availability of nutrients and sensitivity to re-acidification

would support an economically efficient and ecologically

satisfactory silvicultural management.
(1) W
here along the deposition gradient and to which extent

can natural noble hardwood regeneration in Scots pine

stands be integrated into the future stand composition: in

case of noble hardwood dominated stands, climate change

and re-acidification might endanger the future economic

success or even the maintenance of the stands. On sites with

high base saturation, these risks are expected to be less

relevant. The other extreme is to continue the work with

pure Scots pine stands. This however, could further

unfavourable processes like re-acidification and nutrient

depletion. Furthermore the stability of Scots pine stands and

the wood quality are poor on sites with high fly ash

influence.
(2) C
onsidering the deposition gradient – at which distance to

the formal emitters and how to continue with old Scots pine

stands with low stand density index (SDI) and dense ground

vegetation (grass layers). Natural regeneration of Scots pine

is actually retrogressive on these sites and the increasing N

deposition is expected to tighten this situation. Conversion

with broad leaved tree species (oak, European beech) might

slow down re-acidification, but is quite expensive and its

success is limited by the ample development of soil and

vegetation. Douglas fir could be an economically interest-

ing alternative on such sites, but its regional growth

potential is not well known so far.
4. Conclusions and preview

Deposition impact in Dübener Heide leads to double-edged

effects on regional forests: (i) a higher nutrient availability

(base saturation) and cation exchange capacity, (ii) an

improvement of physical properties like texture and sorption

capacity. On the other hand, (iii) a disturbance of ground

vegetation composition and organic matter decomposition can

be observed and (iv) an imbalance of the nutrition state of

(coniferous) forests (Kallweit, 1990; Kopp and Schwanecke,

1994; Herpel et al., 1995; Amarell, 1997; Konopatzky and

Kopp, 2001; Kopp, 2003). Regional forest management has to

take into consideration that the tendency of re-acidification is

mainly driven by S mineralization, sulphate leaching accom-

panied by cation losses (Schaaf et al., 2004) and to regionally

varying extent by increasing N-immissions: re-acidification has

a negative impact on the stability and development of the fly

ash-adapted stand types and the quality of by-products like

water, biodiversity and socio-economic functions.

Fig. 7 compares against this background a ‘‘process-

oriented’’ forest management planning approach with a

management approach as applied in German forest practice

(in the following: ‘‘classic’’ forest management approach, see

Speidel, 1972) considering mainly the necessary information

input.

The ‘‘classic’’ forest management approach reflects the

vegetation dynamics (natural vegetation versus current vegeta-

tion and stand development state) in development targets and

concrete management measures, but assumes at the same time

that site quality is more or less static. This approach ignores an

essential part of ongoing system processes (Martell et al., 1998;
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Peng, 2000; Schoenholtz et al., 2000). In areas with major

changes of environmental frame conditions like Dübener

Heide, an orientation on management planning units, which are

characterized by comparable trends of site development would

be better suitable for taking the differences along the spatial

deposition gradient into consideration (Erhard and Flechsig,

1998).

In a ‘‘process-oriented’’ management approach as proposed

in Section 4, development targets and management measures

are based on area-related process indicators (vegetation, site,

deposition load and changes) as discussed by Scheuner and

Makeschin (2005), Maier and Scholger (2004), Kopp (2003),

Hanesch and Scholger (2002), Konopatzky and Kopp (2001),

and Schoenholtz et al. (2000). This allows for a better appraisal

and consideration of future on- and off-site potentials and risks

in strategic development targets and short-term management

measures.

For applying a process-oriented management planning

approach, regionalization techniques for the up-scaling of

processes from monitoring and inventory plots must be

developed (de Vries et al., 2003; Augustin et al., 2005). The

regionalization of process parameters is a major topic in most

landscape related sciences (e.g. Diekrüger et al., 1999; Volk and

Steinhardt, 1999). Although the delineation of process units

designated as ecotopes, physiotopes, or patches is a general aim

in landscape ecology (Mosimann, 1990; Haber, 2005), no

general approach has been developed so far. For a process-

oriented management planning the delineation of ‘‘process-

homogeneous’’ management planning units (compare the

concept of hydrologic response units (HRU) by Flügel,

1995) focussing on the reaction of sites on forest measures

under changing environmental conditions seems to be a

promising approach. The dynamics within a planning unit and
the spatial relation between different planning units under

regionally changing management concepts or local variations

of environmental changes are of special interest. Some

promising approaches were presented by Zirlewagen and v.

Wilpert (2004), Saborowski and Jansen (2002) and Erhard and

Flechsig (1998). They should be pursued and tested considering

their practical suitability for spacious application. This would

support a statistically valid process-oriented forest manage-

ment, which could easily be integrated into ecological

landscape management approaches on different scale levels

(Volk and Steinhardt, 1999; Kopp, 2003).
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Klose, S., Tölle, R., Bäucker, E., Makeschin, F., 2002. Stratigraphic distribution

of lignite-derived atmospheric deposits in forest soils of the upper Lusatian

region, East Germany. Water Air Soil Pollut. 142, 3–25.

Klose, S., Wernecke, K.D., Makeschin, F., 2003. Microbial biomass and

enzyme activities in coniferous forest soils as affected by lignite-derived

deposition. Bio. Fertil. Soils 38, 32–44.

Koch, J., Klose, S., Makeschin, F., 2002. Stratigraphic and spatial differentia-

tion of chemical properties in long-term fly ash influenced forest soils in the
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(Ed.), Einfluss von Luftverunreinigungen auf die Vegetation, Ursachen –

Wirkung – Gegenmaßnahmen, Fischer Jena, pp. 26–33.

Lux, H., Pelz, E., 1968. Schadzone und Schadstufe als Klassifizierungsbegriffe
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Meeting the challenges of process-oriented forest management
Abstract
The article gives an overview on the drivers of the development of forest management approaches and summarizes and discusses the

contributions of the presented Special Issue considering four thematic blocks: (1) background and consequences for a dynamic development of

natural systems, (2) regional frame conditions and development of adapted assessment and evaluation approaches, (3) integration of natural

processes in modeling and forest management concepts, and (4) tools for supporting cognitive processes and decision making and for transferring

information to heterogeneous end-user groups. Conclusions are drawn on the challenges of a future-capable forest management. A concept of a

process-oriented management is introduced that intends to consider better the dependence of forest management from societal and natural

processes.
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1. Introduction

The first well regulated management approaches introduced

by v. Carlowitz (1713) and others intended more or less to

assure a sustainable provision with timber. They assumed a

rather simple development of forests and provoked in the

consequence a considerable ecosystem simplification, loss of

integrity and stress (Gale, 2000). Nowadays, worldwide

forestry experiences a considerable change of its role and

socio-cultural acceptance, which lead to a regionally diversified

self-understanding of forest management concepts (Kohm and

Franklin, 1997; Kissling-Näf and Bisang, 2001; Farell et al.,

2000). Since the mid-1970s forest ecologists started to focus on

ecological processes and emphasized the need to understand

and to manage forests as ecosystems. An ecosystem-based

management taking multifunctionality of forests on landscape

level into account became one of the central, but also

sometimes misleading ideas (Führer, 2000; Schlaepfer et al.,

2002). Multi-purpose forest management concepts have to

consider a broad range of ecosystem attributes and bridge

conflicting management objectives. Concepts of adaptive

management (Holling, 1978), hierarchy theory (Midmore

and Whittaker, 2000), and forest ecosystem sustainability

(McGinley and Finegan, 2003) have been proposed to develop

sustainable forest management (SFM) concepts as well as to

fullfill the demands of public participation in forest planning

(Bell, 2001). Forest management can be seen as a continuous

process of monitoring, evaluation, planning, and action aiming
0378-1127/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.foreco.2007.02.031
at the sustainable use of forests providing values, goods, and

services requested by society under changing environmental

and socio-economic conditions (Davis et al., 2001; Reynolds,

2005).

The success of sustainable forest management depends on

the ability to adapt management strategies to natural dynamics,

or to manipulate the natural processes according to the

management objectives. Forest management goals and methods

must be based on a sound knowledge of natural processes and

their potential external drivers and pressures, which allow

forest dynamics to be predictable under different management

regimes (Bergeron and Harvey, 1997).

Process-oriented forest management should be able to bring

together (i) the ecological view emphasizing environmental and

ecosystem processes and (ii) the economic view of optimizing

forest management planning and decision making. The DPSIR

approach discussed by Mander et al. (2005) might be a suitable

framework for dealing with environmental management

processes in a feedback loop, which controls the interactions

within the cycle of Drivers–Pressures–State–Impact–

Responses. The idea of this more or less indicator based

approach will be extended in this Special Issue: (i) indicators

for environmental changes, (ii) indicator based (spatial)

modeling approaches, (iii) tools for supporting (collaborative)

decision processes, and (iv) advanced group communication

and knowledge management techniques are interlinked to

enable the end-user to retain control on multi-scale system and

planning processes.

http://dx.doi.org/10.1016/j.foreco.2007.02.031
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2. The Special Issue

The Special Issue ‘‘Meeting the challenges of process-

oriented forest management’’ presents contributions from

ForwardFORESTs1—a transdisciplinary virtual conference

on multiple-purpose forestry held in 2005. One of the major

aims of the conference was to find pathways for future-oriented

approaches by linking forest and environmental research with

socioeconomic (political) approaches and bringing together

experiences gained in complementary scientific disciplines.

More than 100 participants from 16 countries namely Austria,

Canada, Czech Republic, Belgium, Finland, France, Germany,

The Netherlands, Poland, Portugal, Slovenia, Slovakia,

Sweden, Switzerland, the Russian Federation and Canada

presented the current state of knowledge in 56 presentations,

including eleven keynotes. Selected contributions from the

conference were compiled and organized around four major

topics in this Special Issue of Forest Ecology and Management.

The background and consequences for a dynamic develop-

ment of natural systems is the focal point of the first part of the

Special Issue. Sustaining the functionality and productivity of

forest ecosystems demands ecosystem management respecting

natural dynamics and processes (Kint et al., 2006). Approaches

how to integrate processes into forest management planning

from stand level to landscape level must be developed

(Andersson et al., 2000). Fürst et al. (act. issue) propose an

integrated approach. Its advantages are discussed and compared

to classic forest management concepts. The authors conclude

that development targets and management measures must be

based on regionalized process-indicators (vegetation state, site

conditions, deposition load). This allows a better appraisal and

consideration of future on- and off-site potentials and risks in

strategic development targets and short-term management

measures. Lorz et al. (act. issue) are extending the stand-centred

approach to the role of forests in River Basin Management. The

simulation of land use effects on water resources in forested

river basins has been carried out in a great number of projects,

but mostly without consideration of the spatial distribution of

forests. The authors’ objectives are (i) to implement the spatial

distribution of forests in large scale models and (ii) to simulate

its effect on water yield and water quality. Their conceptual

approach includes a schematic five-units-model (FUM)

representing cross sections with typical land use sequences.

In addition the creation of artificial catchments is proposed to

test model settings and thus simulating and optimizing different

land use systems.

To understand the dynamics of forest ecosystems systems

especially in (post)industrialized regions with high anthro-

pogenic impact requires an analysis of regional frame

conditions and their impact and the development of adapted

assessment and evaluation approaches (Bellmann, 2000).

Despite improved technical standards and a reduced emission,

heavy deposition load can still be observed in forest ecosystems

in the New Member States in Central Europe. This indicates the
1 http://forwardforests.czu.cz/.
urgent need to provide easily usable tools to identify and assess

potential environmental risks (Hanesch and Scholger, 2002;

Maier and Scholger, 2004). The contribution by Jamnicka et al.

(act. issue) shows the chances of using the accumulation of

nutrients and contaminants in fungi and plants as proxies for

soil conditions. A similar idea is behind the methodological

approach using ferromagnetic susceptibility to detect heavy

metal contamination in soils (Magiera et al., act. issue). Both

approaches are aiming to develop cheap and fast assessment

methods that support the regionalization of soil pollution. They

demonstrate the wide spectrum of laboratory and field methods,

which can be used in environmental risk assessment.

Additionally, suitable indicators and advanced regionaliza-

tion techniques are necessary to model spatially explicit the

forest ecosystem status (Ryan et al., 2000). Complex up-scaling

approaches based on multiple linear regression analyses

coupled with geo-statistics using a two-stage procedure with

global and regional transfers allow, e.g. to conclude from plot-

wise measurements and indicators on deposition impact on

forests at landscape level (Zirlewagen et al., act. issue). The

results of the presented approach can be used as base for better

adapted silvicultural concepts and forest management mea-

sures. Forest management measures must be analysed

considering the impact of climate change and their long term

impact on soil properties (Horn et al., act. issue). Only few

studies are available which analyze the effects of alternative

silvicultural strategies on carbon sequestration, timber produc-

tion, soil functionality and other forest services and functions at

the operational level of the forest management unit (FMU).

Forest management can contribute actively to reducing

atmospheric CO2 despite some limitations of the achievable

quantities due to biological and societal constraints. Sustain-

able soil functionality and economic success by using high tech

in forestry must not be incompatible demands, but emphasize

the importance of developing sustainable forest management

strategies that serve the multiple demands on forests in the

future (Seidl et al., act. issue).

In this context, the question must be raised how to bring data

and experiences on existing frame conditions and the resulting

natural processes into modelling and forest management

concepts? To understand and predict the potential impact of

changes in global environment forest simulation models can be

used. Recently, it has become fashionable among ecologists to

favour mechanistic approaches instead empirical ones (Korzu-

khin et al., 1996; Battaglia and Sands, 1998). The strength of

these process models is the weakness of the growth and yield

models, and vice versa. Most traditional growth and yield

models, which exclude soil processes and the role of ecosystem

disturbance in determining ecosystem function, may be able to

predict the continuity of timber harvest and the nature of future

forest stands, but tell us little about the effects of timber

harvesting on ecosystem structure and function (Peng, 2000).

The link between foresters and ecologists coupled with

combining empirical and mechanistic approaches into a hybrid

approach will certainly advance our understanding of the

effects of future changing environment on SFM. Linking

furthermore models on different scale levels, from landscape

http://www.dynamicdata.fle.czu.cz/
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related land-use pattern and vegetation dynamics on the level of

forest stands to wood quality related questions on the level of

the single tree individual is crucial for the development of a

knowledge based evaluation of forest management strategies

under changing conditions (Lindner et al., 2002).

Especially climate change is one of the most severe

environmental problems, and the future impact on forest

ecosystems and their potential to fulfil functions in a

sustainable way is under debate (Lasch et al., 2002, 2005).

For estimating the impact of such dramatically changing

conditions, e.g. on biodiversity, ecological-coenotic species

groups can be used. They allow for forecasting the dynamics of

forest ground vegetation diversity on the base of forest

ecosystem modeling outputs. Long term modeling results of

forest type and species richness show that silvicultural

strategies with cuttings support higher ecosystem diversity in

comparison to natural development. However, it seems that

only natural development furthers the development of climax

forest types (Khanina et al., act. issue). An integrated wood

quality modeling, including growth and pathogen driven

deterioration processes supports management decisions from

single tree to stand level. Without such an integrated approach,

misinterpretations and inaccuracies might arise in the inter-

pretation of economic results based on simple tree growth

simulators (Seifert, act. issue).

To come to a common understanding and acceptance of

process-based management approaches, tools for supporting

cognitive processes and decision making and for transferring

information to heterogeneous end-user groups are an indis-

pensable contribution. In the past, institutions dealing with

natural resource management sector have been relatively slow

to adopt Knowledge Management Technologies (Reynolds

et al., 2005). Although decision making and processes for

knowledge creation, storage and transfer are interdependent,

research has not adequately considered their integration

(Bolloju et al., 2002). Knowledge management practices might

be categorized according to their contribution to problem

solving and problem recognition in the management process.

The fact that many problems require the generation of new

knowledge and the application of existing ideas leads to the

classification of practices that support the identification and

resolution of new or unique problems and those that deal with

previously solved problems (Gray, 2001).

ICT (Information and Communication Technology) advances

and innovations have enabled significant changes in the practice

of forest management. Contributions at the conference covered

recent advances in decision support systems, e-learning,

information transfer and knowledge management activities.

Upcoming methods for supporting sustainable forest manage-

ment are especially of high interest when dealing with small scale

forestry, where collaborative planning processes and group

decision making tools must be taken into consideration.

Stimulated by developments in business administration and

industry, computer-based decision support systems (DSS) are

currently drawing much attention as a means of improving the

quality and transparency of decision making in natural resource

management (Rauscher, 1999). The increasing number of
stakeholders involved in natural resource management and the

corresponding need to consider multiple interests and prefer-

ences in the decision-making process led to the use of Multi-

Criteria Decision Making (MCDM) techniques in DSS devel-

opment. Collaborative technologies such as Group Decision

Support Systems (GDSS) might help to avoid the consequences

of knowledge fragmentation and will extend that support to

decision-making processes involving several individuals. In this

context Martins and Borges (act. issue) are addressing

collaborative planning methods and tools in forest management

of multiple small non-industrial forest owners. The key issues of

the planning process and a review of methods and tools used to

support group decision-making in forest management planning

are presented. They conclude that the development of

technological platforms promote the effective integration of

methods and tools which enhances the ability of stakeholders to

analyse more information and more facets of the forest

management problem and support group decision-making.

Distance education in natural resource management has

historically generated a great deal of interest in areas where

student population was widely distributed. Self-motivated

individuals worked on their own, with supplied course

materials, print-based media and postal communication, often

using some learner support from tutors via telephone or e-mail

(Sherry, 1996). Study courses, tutorials and simulation tools

provided via Internet have brought a new dimension to virtual

education and raised philosophical and practical issues unique

to the method of delivery, interaction and administration of

online instruction (Vacik et al., 2006).

3. Do we really need something new?—Conclusions

The majority of forests is multifunctional: they fulfil, to

varying extend, ecological, economic and social functions

simultaneously (Farell et al., 2000). A clear functional

specialisation of forests exists only on small scale (e.g.

protective forests, short rotation plantations, nature conserva-

tion), requiring completely different management strategies

(Führer, 2000). The multiple purpose nature of today’s forestry

requires from forest resource managers to consider a broad

range of ecosystem attributes at various spatial and temporal

scales in developing management strategies and operational

plans, in evaluating the effectiveness of management activities,

and in tracking trade-off relationships among conflicting

management objectives. One of the most important questions

is how we can solve these typical decision problems effectively

and how to improve constantly our decision-making processes

and our decision support capabilities (Rauscher et al., 2005).

Modern forest management approaches can take profit from

scientific understanding of forest ecosystems and from tools for

modeling, decision support and Information and Communica-

tion Technology (ICT). Due to the resulting complexity of the

management approach, a system analysis approach including

feedback and dependencies between the different system

elements seems to be a reasonable path (Vacik et al., 2007). It

should be the rationale to combine the strengths of available

tools, methods and models to foster the holistic understanding



Fig. 1. Overview on a possible network of tools, methods and models for

process-oriented forest management.
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of forest ecosystem processes and the effects of SFM

techniques for supporting forest management at strategic and

tactical planning level.

Fig. 1 gives an idea, how a network of tools on different time

and scale levels for supporting a process-oriented management

can be designed.

Forest ecosystems and their dynamics are characterized by

their history (temporal scales), where the past is decisive for the

present and the present determines the future. They are also

characterized by the scale level, from which they are regarded.

To describe the temporal development of forest ecosystems

(processes), respective indicators must be used, which form the

base for indicator based (process) models and simulators and

regionalization approaches. These are used to describe the joint

temporal and spatial development of forest ecosystems. The

models along the different scale levels must be linked, in order

to give an adequate input to decision support tools and

knowledge management systems at the interface between forest

ecosystem2 and forest manager. As management and decision

making are rarely a matter of only one individual person, but

related to communication processes, information transfer and

group communication techniques are the last puzzle stone to

complete the process-oriented management network. Such a

network of tools, methods and models is actually intended to be

realized in the frame of the DynamicDATA EU25+3 activity, a

project platform, which is supported by the German Federal

Ministry of Education and Research (BMBF) for supporting the

development of transregional land-use management

approaches in Central and Eastern Europe.

Process-oriented management demands a sound and mature

knowledge base on ecosystem functioning with regard to
2 For this discussion, man was not regarded as integral part of the forest

ecosystem in order to better clarify the interfaces and links between the

different methods, tools and models in the process-oriented management net-

work.
3 http://www.dynamicdata.fle.czu.cz/.
reactions on multiple changing conditions from climate change

over changing off-site impact from industrial land-use towards

changing forest management measures and their interrelations.

The forest manager(s) must be supported by a network of tools,

methods and models, which facilitates cognitive processes for

the change from a static view of forest ecosystems to a process-

determined perception and decision making. Such an approach

could also be employed for external applications regarding the

promotion of forest services and benefits as well as the

coordination of stakeholder interests.
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Abstract 

The article gives a short overview on the development of forests in North-Eastern Germany 

focussing on Dübener Heide as model region. This region was affected for more than 90 years 

by fly ash deposition from unfiltered lignite combustion in Czech, Polish, and German power 

plants, which still superposes natural matter cycles and balance. Long term fly-ash deposition 

resulted in a homogenisation of differing site qualities along a distance dependent regional 

gradient and in a new mosaic considering formerly comparable sites and stand types. 

Changing deposition regime and environmental changes like climate change initiate new and 

complex ecosystem processes. They demand from forest ecosystems a continuous adaptation 

to new frame conditions, which should be considered in a skilful forest management. In the 

following the article introduces an approach for the regionalization of ongoing processes 

based on process-indicators. The intention of the approach is to come to a delineation of 

process-homogeneous planning units, which form a base for a better integration of future 

potentials and risks into forest management planning. 

Fly-ash deposition history in North-Eastern Germany 

Overview 

The development of environment and particular of forests in North-Eastern Germany is 

affected by a special deposition history: fly-ash from unfiltered lignite combustion in Czech, 

Polish, and German power plants containing high amounts of (average in brackets) SO3 
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(26%), CaO (20%), SiO2 (18%), AlO3, FeO3, MgO, TiO2, Na2O, K2O, heavy metals (Cd, Cu, 

Pb, Zn), and tertiary carbon (KLOSE and MAKESCHIN, 2004) still superposes the natural 

matter cycles and matter balance. Two main deposition regions were defined from the early 

1960ies on: (a) the lowland region Chemnitz via Leipzig till Magdeburg, and (b) the hilly 

Lusatian/Spree region along the Polish border between Frankfurt/Oder-Lübben-Cottbus-

Hoyerswerda-Görlitz. Especially region (a), part of the central German lignite mining area is 

characterized since more than 90 years by an intensive industrialization and especially by 

lignite combustion for energy production. The article refers in the following to the 

comparably well investigated region (a).  

In the most important forest in region (a), the so called “Dübener Heide”, fly ash deposition 

amounted from 1910 – 2000 to a total of 18 Mio. t, and during the decade 1961 – 1970 up to 3 

- 8 t / ha * a fly ash were deposited in the regional forest ecosystems (KLOSE and 

MAKESCHIN, 2004, NEUMEISTER et al., 1991, LUX, 1976 a, b, 1978). Fig. 1 gives an 

overview on the total deposition in Dübener Heide in the period 1891 – 2000 (REICHE, 

2001), Tab. 1 provides exemplary information on the emission situation (main emitters) in the 

middle of the 1970ies (LUX, 1965), the period with the highest amount of emission and 

deposition. The comparison between daily coal combustion and related fly ash and CaO 

emission reveals the varieties of technical standards of the regional power plants and 

industries. Especially the power plant “Zschornewitz”, which was characterized by a very 

poor technical standard, was known to be one of the most important regional pollution 

sources (ENDERS and PEKLO, 1975). 

 

 

 

 

 

 

 

 

 

Fig. 1: Fly ash deposition development from 1891 – 2000 (acc. to REICHE, 2001, mod.) 
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Tab. 1: Main emitters in the industrial triangle Leipzig-Halle-Bitterfeld (LUX, 1965) 

main emitters (1965) coal combustion (t/d) fly ash t/d CaO t/d 

Zschornewitz 10.500 420 84

Muldenstein 1.184 47 9

K. Liebknecht 3.120 69 14

Vockerode 12.500 125 25po
w

er
 p

la
nt

s 

gov. energy production 13.500 135 27

film industry 3.500 70 14

dye industry 4.000 80 16

ch
em

. i
nd

us
try

 

other chem. industry 2.616 104 21

 

Nowadays, the reduction of regional power plants and chemical industry as well as improved 

filter techniques on the one hand and an exponential increase of traffic and intensive 

agriculture (animal husbandry) on the other, lead over to a change in the deposition quality: 

fly ash disappeared completely, whereas NOx, SOx and NH3 are still on a high level (FÜRST 

et al., 2005, WELLBROCK et al., 2005).  

Effects of fly-ash deposition 

Fly-ash deposition is defined as particle residue from coal combustion, which enters the flue 

gas stream. The different components of fly-ash – “black” (tertiary) carbon, alkali / earth 

alkali metal salts, heavy metals and silicium compounds were distributed according to (a) 

their aggregate state, (b) their particle size and form and (c) the landscape relief and (d) the 

dominant land use type along a regional gradient. According to LUX (1978) and HAASE 

(1995), the differing range and effects of alkaline particles and soluble acidic deposition 

components requires a stratification of the affected areas around the industrial hot spots as 

base for an adapted forest management. LUX (1965, 1976 a, b), STEIN (1965) and 

ENDERLEIN and STEIN (1964) developed respective stratification standards (Fig. 2). This 

approach intended to regionalize economic losses caused by depositions. The deposition 

zones were defined according to a sample plot based evaluation system, which comprises a 
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single tree and stand wise characterization of visible damages in medium aged Scots pine 

stands combined with a spatial regression of the results.  

 

Fig. 2: Deposition zones in the Leipzig-Halle-Bitterfeld region according to LUX (1965) 

 

Zone DI a and DI b were the most affected zones. DII and D III are characterized by a 

spatially continuous decrease of fly ash deposition. D0 was almost not affected by fly ash 

deposition, but suffered from the generally high S and N deposition level in GDR. The 

regional fly-ash gradient in Dübener Heide is mainly distance-dependent due to the locally 

concentrated emitters (power plants) and is reflected by (i) an impact on growth parameters 

(Tab. 2), and (ii) the development of “typical” ground floor vegetation groups (Fig. 3) (KOPP, 

2003, KONOPATZKY and KOPP, 2001, HEINSDORF et al., 1994, LUX, 1964 a, LUX and 

STEIN, 1977).  
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The fly ash impact on regional forests is nowadays overlapped by additional local emission 

sources (mainly N emission from farming). In consequence, an irregular spatial pattern of 

acidic or alkaline deposition effects can be observed (STRZYSZCZ, 1999, MAGIERA and 

STRZYSZCZ, 1999, THOMASIUS et al., 1998, NIEHUS and BRÜGGEMANN, 1995, LUX, 

1976 a).  

 

Tab. 2 gives an overview on height, basal area and volume growth and growth reduction from 

the most affected zone DI (= DI a + DI b) to the “reference” zone D0. Compared to D0, a 

major impact on growth was observed in DI, whereas the impact on stand growth in DII and 

DIII was more or less comparable. LUX (1965) concluded that the influence on height growth 

(for Scots pine) seemed to be the best indicator for fly ash impact.  

 

Tab. 2: Deposition impact on the growth of 50 – 90 yrs. old Scots pine stands (150 sample 

plots) in Dübener Heide according to LUX and STEIN (1977) 

deposition zone DI DII DIII D0 

height (m/a) 0,09 0,15 0,16 0,23

basal area (m²/ha*a) 0,38 0,53 0,53 0,64

growth 

parameters 

volume (m³/ha*a) 4,6 5,9 6,2 8

height growth reduction 

(%) -61 -35 -30 0

basal area incr. (%) -41 -17 -17 0

growth 

reduction 

(referred to 

zone D0) 
volume incr. (%) -43 -26 -23 0

 

Fig. 3 gives an overview on the regionally typical ground floor vegetation groups along the 

deposition gradient in Dübener Heide and the corresponding nutrient stock in the humus 

layers according to HEINSDORF et al. (1994, N=122 sample plots). The vegetation groups in 

Fig. 3 reflect the different deposition load and deposition type along the gradient. In the 

immediate vicinity of the former power plants basophile and light preferring species (herbs) 

related with high nutrient and S stock in the humus layers are still the predominating ground 

floor vegetation group. In a greater distance (> 30 km, corresponding to zone D0) from the 
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power plants, mosses are dominating. They coincide with a comparably poorer nutrient stock 

in the humus layers. The groups “Calamagrostis epigejos” (mainly local N deposition / 

fertilization), “Deschampsia (Avenella) flexuosa” (acidic deposition, but also opening up of 

the stands), and “herbs-Deschampsia flexuosa” type (beginning pre-dominance of acidic 

depositions / re-acidification) reflect the local pre-dominance of N and acidic deposition. 

These vegetation types can be used as indicator for the artificially changed chemical top soil 

properties (KONOPATZKY and KOPP 2001, WILSON et al., 2001). Especially the “herbs-

Deschampsia flexuosa” type seems to have a high indicative value for the ongoing re-

acidification process. However, KOPP (2003) mentions the time-delayed response of ground 

floor vegetation composition, which restricts its indicative value.  

Fig. 3: Differentiation of “typical” vegetation groups along the fly ash deposition gradient in 

Dübener Heide and nutrient stocks in the humus layers acc. to HEINSDORF et al., 1994 
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Consequences and challenges for Forest Management 

Consequences in forest management practice 

Forests are predisposed receptors for fly-ash due to their high surface roughness and the long 

production periods (STRZYSZCZ and MAGIERA, 1998, 2001, STRZYSZCZ, 1999, 

ULRICH et al., 1979). The reaction of forests on fly-ash deposition depends on tree species 

composition and site properties (KUNZE et al., 1995, 1996). Fly-ash deposition can cause a 

homogenisation of existing site quality differences and a differentiation of formerly 

comparable sites and stand types (THOMASIUS et al., 1998, FIEDLER, 1986). Fly ash 

deposition leads (i) to a higher nutrient availability (base saturation) and cation exchange 

capacity, to a change of physical properties like texture and sorption capacity, (ii) to a 

disturbance of ground floor vegetation composition and organic matter decomposition and 

(iii) to an imbalance of the nutrition state of (coniferous) forests (KOCH and MAKESCHIN, 

2004, KLOSE et al., 2002, KOCH et al., 2002, KONOPATZKY and KOPP, 2001, 

AMARELL, 1997, HERPEL et al., 1995, KALLWEIT, 1990, LUX, 1964 b). From a 

silvicultural point of view, fly-ash deposition widens in the immediate vicinity of power 

plants the eligible tree species spectrum: high fly-ash deposition allows even on poorer sites a 

change from Scots pine stands to mixed stands with beech and noble hardwoods like lime, 

elm, and maple. On the other hand, stability and increment of Scots pine stands as 

economically important stand type in the lowland were considerably reduced (KUNZE et al., 

1995, 1996). Consequently, a conversion of pure Scots pine stands with less fly-ash sensitive 

tree species was demanded (NEBE et al., 2001, THOMASIUS et al., 1998, LUX, 1976 b). 

Considering respective economic consequences, e.g. VILLA (1989) and STRACKE (1996) 

developed multidimensional approaches for evaluating the effects of deposition on forest 

management including development of stocking volume, change of rotation period and of 

costs for regeneration as well as development of recreation potential and water management 

aspects. Recapitulating the economic consequences, deposition increased considerably the 

costs for (sustainable) forest management and reduced the revenue due to a negative impact 

on production period and assortment structure. In the former GDR, this was approved by 

chemical industry in the form of a yearly appointed monetary compensation (see e.g. LUX, 

1965, ENDERS and PEKLO, 1975, VILLA, 1989). 
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Challenges for forest management 

From the 1980ies on, the introduction of fly-ash filters lead to a merely acidic deposition 

regime (NOx, SO2). After 1989, a strong reduction of fly-ash emission going along with still 

high or even increasing level of N emissions (NOx, NH4) changed totally the deposition 

characteristics in formerly fly-ash influenced areas (NIEHUS, 1996). These trends initiated a 

process of re-acidification and impacted matter balance and matter cycle in the formerly fly-

ash influenced sites (KURBEL, 2002, HERPEL et al., 1995). In consequence, the long term 

development of broad-leaved tree species regeneration, e.g. noble hardwood species is still 

unclear. The ongoing re-acidification as well as an expected temperature increase and 

precipitation decrease (KÜCHLER and SOMMER, 2005) might cause a re-adjustment of the 

inter-specific competition in regional stands. Furthermore, by-products like water quality / 

quantity and socio-economic functions are affected by the described trends (WAGNER, 

2004). Ongoing research is aimed to reveal respective development potentials and risks 

(FÜRST et al., in preparation).  

The special development of forests in regions like Leipzig-Halle-Bitterfeld demands for an 

integration of ongoing processes into forest management planning (FÜRST et al., in 

preparation). A pre-condition is the regionalization of processes as base for process-oriented 

evaluation and management approaches. Fig. 4 introduces a respective approach, which is 

applied in the context of the project ENFORCHANGE 1. 

 

____________ 
1 The project “Environment and Forests under Changing Conditions” (ENFORCHANGE, 

www.enforchange.de) is supported by the Federal Ministry of Education and Research and deals 

among other with the development of process-oriented regionalization and management concepts in 

the regions Leipzig-Halle-Bitterfeld and Upper Lusatia.  
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Fig. 4: Stepwise regionalization of process as base for (forest) management planning 

 

Process-regionalization is based on a network of assessment and monitoring plots (v. 

WILPERT and ZIRLEWAGEN, 2003). These plots represent within the project 

ENFORCHANGE the regional fly-ash deposition gradient in the model region Dübener 

Heide, the main site classes and stand types (assessment plots) and are the source for long 

term time series data (monitoring plots). The recorded site quality, growth and climate 

characteristics are integrated into a multidisciplinary data base and form the base for a 

parameterization and validation of process-models. These deliver regionally adapted scenarios 

of climate and of stand growth development. Selected process indicators, which are recorded 

on the assessment plots like ferromagnetic susceptibility (see MAIER and SCHOLGER, 

2004, HANESCH and SCHOLGER, 2002, MAGIERA and STRZYSZCZ, 1999, 

STRZYSZCZ and MAGIERA, 1998, PEKLO and NIEHUS, 1992), vegetation indicators 

(KONOPATZKY and KOPP, 2001, AMARELL, 1997) and chemical and physical humus 

properties (see e.g. KLOSE and MAKESCHIN, 2004, ZIRLEWAGEN and v. WILPERT, 

2004, KALLWEIT, 1990) are combined with basic spatial information (geology, site quality, 

climate, etc.) in order to realize a process-oriented spatial stratification (process-homogeneous 

planning units). The combination of these process-oriented planning units with the regional 

development scenarios forms the base for the regionalization of multi-dimensional processes 

stratification
(process-homogeneous planning units)
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in the regional forest ecosystems. This process-regionalization intends to support regional 

forest practice and land use planning by better reflecting the effects of past (and future) 

environmental changes and forest management measures on regional forests. This is aimed to 

be a base for a more time and cost efficient forest ecosystem (and land use) management.  

Discussion and conclusions 

Fly ash deposition in the past and the current change of the deposition regime result in 

ambivalent consequences for forest management in regions like Leipzig-Halle-Bitterfeld. On 

the one hand side, an improvement of site quality and an enlargement of silvicultural 

possibilities can be observed. On the other hand, system stability and long term potential of 

economically relevant tree species might be affected. Regions with such elementary changes 

demand for concepts for a better integration of processes in forest (and land-use) management 

in order to realize a sustainable landscape development.   

Beyond this background the delineation of “process-homogeneous” management planning 

units (compare e.g. the concept of Hydrologic Response Units (HRU) by FLÜGEL, 1995) 

focussing on the further development of sites as response on forest management under 

changing environmental conditions seems to be a promising approach. The hereby provided 

information allows to integrate future on- and off-site potentials and risks into strategic 

development targets and short-term management measures, whereas the actually available 

(more static) management planning information base ignores an essential part of the ongoing 

ecosystem processes (PENG, 2000, SCHOENHOLTZ et al., 2000, MARTELL et al., 1998). 

AUGUSTIN et al. (2005) and de VRIES et al. (2003) emphasize the demand of 

regionalization techniques for up-scaling processes from monitoring and inventory plots. 

Regionalization of process parameters is an overall objective in landscape related research 

(e.g. DIEKRÜGER et al., 1999, KLEEBERG et al., 1999, VOLK and STEINHARDT, 1999) 

and the delineation of process units like ecotopes, physiotopes, or patches is a frequently used 

approach in landscape ecology (HABER, 2005, MOSIMANN, 1990).  

Some promising approaches for regionalization were recently presented by ZIRLEWAGEN 

and v. WILPERT (2004), ZIRLEWAGEN (2003), SABOROWSKI and JANSEN (2002), 

MUES (2000) and ERHARD and FLECHSIG (1998). They are mainly based on indicators 

for the current status of forest ecosystems and should be enhanced with regard to process-

regionalization by integrating process-indicators. This would be a valuable contribution for a 
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statistically valid process-oriented forest management and would furthermore offer the 

possibility to form a better interface to ecological landscape management on different scale 

levels (KOPP, 2003, VOLK and STEINHARD, 1999).  
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Abstract 
   Forests in the industrial triangle Leipzig-Halle-Bitterfeld underlie since more than 90 years 
an intensive influence of depositions. The deposition history is characterized by high SO2, N, 
and fly ash loads until the late 1980ies / early 1990ies and a later change in the immission 
quality towards a disappearance of fly-ash and further on high N depositions. The influence 
of depositions on regional forests shows a spatial differentiation with a decreasing influence 
of fly ash and S along a distance dependent gradient starting from the former power plants 
and overlapping gradients with irregular peaks for N. The stability of the region typical Scots 
pine forests is still endangered by past and ongoing immissions. Consequently, a conversion 
towards forests, which are adapted to the actual site conditions and their future development, 
is demanded. This requires a revision of the site classification system by a regionalization of 
the former and actual depositions and the resulting soil processes and vegetation develop-
ment.  

 
Immission regime in the industrial triangle Leipzig-Halle-Bitterfeld – some tendencies 
   The industrial triangle Leipzig-Halle-Bitterfeld, part of the central German lignite mining 
area was characterized since-more than 90 years by an intensive industrialization and espe-
cially by lignite combustion for energy production. The immission regime in the regional for-
ests was dominated by SO2, heavy metals, followed by N and Potassium salts. In the sur-
roundings of chemical industry hotspot Bitterfeld, additionally Fluorides, Chlorides, as well as 
complex Herbicides from the local chemical industry were emitted. The deposition in the 
most important regional woodland, the so called “Dübener Heide” amounted from 1910 – 
2000 to 18 Mio. t fly ash and 12 Mio t SO2,  and in the decade from 1961 – 1970 up to 3 t / ha 
* a fly ash were stored in the regional forests (LUX, 1965, 1976 a, b, 1978, NEBE et al., 
2001, NEUMEISTER et al., 1991, PEKLO and NIEHUS, 1992, KLOSE and MAKESCHIN, 
2004).  
   The reduction of regional power plants and chemical enterprises as well as improved filter 
techniques on the one hand and an exponential increase of traffic and a still high number of 
agricultural enterprises (mainly chicken farms, pig husbandries) on the other, lead to a 
change in the immission regime: fly ash immission disappeared completely, whereas NOx-
(act: 5.650 t/a), SOx-(act.: 3.660 t/a) and NH3-(act. 780 t/a) are still on a high level. Fig. 1 
provides an overview on the actually most important regional emission components accord-
ing to EPER, 2005.  
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Fig. 1: Actual annual emissions in the industrial triangle Leipzig-Halle-Bitterfeld (EPER, 2005). 
 

   In the past, two characteristic classes of emitted matter, (a) fly-ash including black carbon, 
alkaline dust, heavy metals and silicium compounds and (b) soluble emissions like SO2, NH3, 
and NOx, were distributed along a gradient according to their aggregate state, their particle 
size, the landscape characteristics, and the local wind rose around the power plants (see 
THOMASIUS et al., 1998). The fly-ash gradient was characterized by a more or less a con-
tinuously decreasing deposition in dependence from the distance to the regional power 
plants in Bitterfeld, Zschornewitz, Wörlitz, and Wolfen. In the case of N-depositions with a 
higher spatial distribution of local emitters, the gradient is characterized by overlapping 
deposition areas with irregular local deposition peaks (LUX, 1976 a, NIEHUS and BRÜG-
GEMANN, 1995, STRZYSZCZ, 1999, MAGIERA and STRZYSZCZ, 1999). According to LUX 
(1978) and HAASE (1995), the differing range and effects of alkaline particles and soluble 
acidic deposition components requires a stratification of the influenced areas as basis for an 
adapted forest management. ENDERLEIN et al. (1961), STEIN (1965) and LUX (1965, 1976 
b) developed a regionalization approach based on the classification of visible damages on 
sample plots in medium-aged Scots pine stands (see Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Deposition zones in the Dübener Heide (acc. to Lux, 1965). 
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   Fig. 2 shows the stratification in the Dübener Heide, which describes zones with a distinct 
height of financial losses, calculated according to the deposition effects on tree growth, tim-
ber marketing, and additional costs (LUX, 1965, see also KURTH, 1985, STRACKE, 1996).  

 
Reactions of forest systems 
  The regional woodland in the industrial triangle Leipzig-Halle-Bitterfeld is mainly character-
ized by coniferous stands, where Scots pine is the regional dominant tree species (see Fig. 
3). Scots pine was part of the natural vegetation in the Dübener Heide, but became its actual 
importance due to the transformation process going along with the industrialization of the 
region and the hereby provoked timber need in the 18th and 19th century (BENDIX, 2001). 
According to the results from the ecological forest monitoring (see e.g. BIEBERSTEIN, 1988) 
more than 70 % of the forests in the former district Leipzig were strongly affected by immis-
sions at the end of the 1990ies, and large parts of the pine-dominated stands especially near 
to the power plant impended to break down.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Tree species composition in the Dübener Heide (MLU, 1999, SMUL, 2005) 
 
   The influence of the immissions on forest systems and their reaction is correlated with the 
regional immission gradient. Regarding former fly-ash immissions, fertilizing-like effects could 
be observed in a distance up to 25 km (ENDERLEIN and STEIN, 1964), which ensue from 
the high deposition of base cations, S and N. This provokes (a) an exuberant development of 
the ground vegetation and supports tree growth, but leads (b) to a lower stability of the Scots 
pine stands, which are negatively effected by too high base depositions (LUX, 1964 a, b; 
1976, KURTH, 1985). AMARELL, 1997, KNOCHE et al., 2001, and THOMASIUS et al., 1998 
describe a drift of the ground vegetation towards nitrophile and nutrient indicating species, 
which accentuates the change of the growth conditions. Fly ash deposition improves the nu-
trition capacity of the regional sites. KOPP and SCHWANECKE, 1994, THOMASIUS et al., 
1998 and KNOCHE et al., 2001, report an eutrophication up to two degrees and an enlarge-
ment of the eligible tree species spectrum. Fly ash depositions improves especially the nutri-
ent provision in the humus layer and to some extend also in the uppermost mineral horizon 
(e.g. STRYSZCZ, 1991, 1993). This provokes the development of flat root systems and thus, 
endangers the stand stability against wind throw and drought (THOMASIUS et al., 1998, 
KNOCHE et al., 2001, KOCH et al., 2002, KLOSE and Makeschin, 2004). Going along with 
fly ash immission, round about 5 kg/ha*a heavy metals (Cu, Cd, Pb, Zn) were deposited in 
the regional forests in the past century (NEUMEISTER et al., 1991, PEKLO and NIEHUS, 
1992). Due to their high storing capacity and the long term accumulation, heavy metals might 
endanger in the future the stability and resilience of the forest systems and lead also to off-
site effects regarding e.g. regional water quality (ULRICH ET AL., 1979, STRZYSZCZ, 1999, 
STRZYSZCZ AND MAGIERA, 1998, 2001). STRZYSZCZ, 1993, 1999, STRZYSZCZ and 
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MAGIERA, 1998, MAGIERA et al., 2002, KLOSE et al., 2003 report e.g. a disturbance of the 
litter decomposition and the development of the adverse humus forms. In the outskirt-forests 
characterized by a wider distance than 25 km to the power plants, acidic depositions (SOx, 
N) were not compensated by simultaneous alkaline immissions and consequently a nutrient 
disharmony in the forest vegetation occurred and led to intensive liming actions in the past. 
 
 Enterprises registered by EPER 

 
 
 
 
 
 
 
 
 
 

 
 
 
Source: EPER 2005, modified; 

 
Fig. 4: local emitters in the region Leipzig-Halle-Bitterfeld 

 
   Nowadays, the locally high NOx and NH3 emissions (see Fig. 4, EPER, 2005) sustain a 
spatially differentiated N deposition, which overlaps the immission strata described by LUX, 
1965. In the former fly ash influenced forests, the hereby provoked acidification of the forest 
sites might be levelled by the still high basic cation storage in the humus layer. However, a 
considerable loss of NH4+-soluble cations since 1988 was reported by KOCH et al., 2002, 
which indicates a continuous reduction of the buffer capacity and nutrition state of the artifi-
cially up-based sites. In the outskirt-forests, the local N immissions can accentuate the exist-
ing nutrition imbalance.   

 
Conclusions and preview 
   Immission history and actual depositions in the industrial triangle Leipzig result in ambiva-
lent consequences for forest management: the former fly-ash depositions entail actually in an 
artificially high base nutrition status of the forest sites near to the former power plants. A de-
velopment of the ground floor vegetation towards base and nitrogen indicators and an inten-
sive natural regeneration of noble hardwoods (maple, ash, lime) on de facto mid-quality sites 
can be observed. The stability and durability of this situation is still open (THOMASIUS et al., 
1998). The continuously high N deposition supports on the artificially up-based sites the am-
ple vegetation growth, but endangers further on the stability of the Scots pine forests. Be-
sides, the spatially differentiated N deposition provokes a faster acidification of the sites and 
can support the release of the accumulated heavy metals especially in the outskirt-forests. 
NESAFI (2005) e.g. revealed a decrease of the total stock in heavy metals and a simultane-
ous augmentation of the mobile pool along a transversal deposition gradient in the Dübener 
Heide. LUX and STEIN, 1977 and NEBE et al., 2001 propose a conversion with deciduous 
tree species in order to stabilize the Scots pine stands on the artificially up-based sites. A 
conversion with site-adapted hardwood species might also help to counteract the effects of 
the N depositions in the whole region. As a precondition for an adapted silvicultural planning, 
an adaptation of the site classification system in dependence from the original site quality 
and the ongoing development is required (KALLWEIT, 1990, KLOSE et al., 2002, KOCH and 
MAKESCHIN, 2004). For this purpose, a regionalization of the past and actual regional 
deposition (see e.g. MUES, 2000, ZIRLEWAGEN, 2003) and the ongoing soil and vegetation 
development is subject of ongoing research activities (FÜRST and MAKESCHIN, 2005). 
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Abstract 

The article intends to discuss the effects of the liming alternatives wood ash and rock powder 

in comparison to the effects of fly-ash deposition on forest soils. As result, recommendations 

considering the characteristic application field and right use of wood ash and rock powder, 

and the possible reactions of forest ecosystems on fly ash deposition are given. The 

application fields of wood ash and rock powder can be considered as complementary. Wood 

ash should be preferred on sites with naturally higher organic matter, whereas rock powder 

can particularly improve the properties of poor (sandy) soils with low organic matter content. 

Fly ash deposition can be considered as a kind of long-term fertilizing experiment for forest 

soils with some parallels to wood ash fertilization. Both, wood ash fertilized and fly ash 

affected soils show the most obvious effects in the Oe and Oa horizon induced by a long-

lasting decomposition with litter fall on ash residuals and a slow move of the only partly-

decomposed matter to the Oa. Past fly ash impact to forest soils demands under a changing 

deposition regime a careful monitoring considering the turnover rate of the organic matter and 

the possible eluviation of toxic elements.  

The paper is based on a presentation given at the International Conference on Restoration of 

Forest Soils in Polluted Areas, Prague. 

Introduction 

Since long time, the necessity of an amelioration of forest soils is discussed controversially. 

BAULE and FRICKER (1967), LUNNAN et al. (1991), and HOEN and SOLBERG (1994) emphasized 

the increased production potential and C-sequestration ability as reason for ameliorative 

measures. REHFUESS (1990), WOLFF et al. (1997) and EISENBEIS et al. (1996) considered the 
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consequences of atmogene deposition like the possible imbalance of nutrients and the low 

microbiological activity as important argument for amelioration. Contrariwise GULDER and 

KÖLBEL (1993) argue that a special need for an improvement of forest soil fertility is 

scrutinized by a sufficient nutrient supply of the vegetation.  KREUTZER (1995) showed that 

liming enhances the nitrification and the nitrate eluviation and thus, provokes undesirable off-

site effects like a decrease of water quality. SKRINDO and OKLAND (2001) and SCHÄFER (2002) 

observed a decrease of the diversity of soil flora and fauna provoked by liming. As a 

consequence, alternatives to liming, like wood ash / lignite ash or rock powder can be taken 

into consideration. NAROVEC and SACH (1994) and STENICKA and NAROVEC (1994) mentioned 

the special improvement of physical soil properties by amelioration with rock powder. 

Furthermore, residues from combustion processes for energy production like wood ash 

demand sustainable ways for recycling. However, also these alternatives include characteristic 

risks. BUNDT et al. (2001) warned against the possible input and remobilization of organic 

contaminants provoked by the use of combustion residuals like wood ash or lignite ash.   

In order to estimate such effects of ash deposition, fly-ash affected forest soils, which can be 

found in the vicinity of industrial barycentres in Eastern Germany and Eastern Europe, can 

serve as a kind of long term practical test. Fly-ash supplied macro- and micro-nutrients but 

also heavy metals to a very high extend and entailed ameliorative effects, but lead also to a 

contamination of the soils (FÜRST et al, in preparation). 

The article intends to discuss the effects wood ash and rock powder in comparison to the 

effects of fly-ash deposition on forest soils and intends to asses their potential positive effects 

and the ecological risks for forest ecosystems and the environment. The paper is based on a 

presentation given at the International Conference on Restoration of Forest Soils in Polluted 

Areas, Prague. 

Soil Amelioration - Materials, Potentials and Risks 

Wood ash 

The (re-)introduction of wood ash as ameliorative material went along with increased use of 

wood for energy supply at the beginning of the 90ies (CLARHOLM, 1994), in some regions also 

with the question of woody biomass as substitute for lignite. Basic research on wood ash 

effects was carried out in Sweden since 1910 and in Finland since 1937 (BÜTTNER, et al., 

1998, HOLMBERG and CLAESON, 2002). One challenge of the use of woody biomass for 



Chapter 1 

In: Christine Fürst, Vladimir Janecek, Carsten Lorz, Franz Makeschin, Vilem Podrazky, Harald Vacik (EDS.): Future-

oriented Concepts, Tools and Methods for Forest Management and Forest Research Crossing European Borders. 

Contributions to Forest Sciences 28, Nov 2006. Ulmer 

63 - 80

energy production is the proper handling of the combustion residuals. The remaining ashes 

must be deposited (expensive), can be used as aggregate in cement (small potential), or can be 

applied as fertilizer in agriculture and forestry (POHLANDT, 1995). Table I provides 

information on the ash content in the combustion residuals of exemplary bio-materials 

according to ZOLLNER and REMLER (1998), OBERNBERGER (1997) and SCHULZE and 

MARUTZKY (2002).  

Tab. 1: Ash content of selected materials 

material ash content coarse ash cyclone ash fly ash
    % of dw % of fractions
sawdust / saw mill rests 0.5 – 3.0    

timber without bark 0.8 – 1.4 20 - 30 55 - 65 10 - 15 

timber with bark 1.0 - 2.5 70 - 90 10 - 30 3 - 6 

bark 5.0 – 8.0 75 - 85 15 - 25 1 - 4 

straw 5.0 – 12.0    

waste timber 6.0 – 12.0    

 

The average ash content of the above mentioned materials ranges between 0.5 %  and 12.0 %. 

The ash content of timber combustion residuals depends on whether the timber is burnt with 

bark (up to 2.5 % ash content) or without bark (max. 1.4 % ash content). This is a result of (a) 

the higher lignification and accumulation of inorganic matter in cortical cells and (b) of the 

potential soiling of bark during harvesting and transport. The ash content of bark can range 

between 5.0 – 8.0 % and resembles therein lignite-(and silicate) rich organic matter like straw 

(5.0 – 12.0 % ash content). The comparison indicates the necessity to separate timber and 

bark and to avoid the use of waste timber  in order to reduce the resultant ash amount.  

Timber with or without bark and pure bark can be differentiated according to the content of 

three ash fractions (i) coarse ash, (ii) cyclone ash and (iii) fly ash, which can be differentiated 

by their chemical composition (see also Tab. 2). Generally the nutrient content decreases from 

(i) to (iii), while the content of critical substances (e.g. heavy metals) is increasing. 

Combustion residuals from bark and timber with bark consist dominantly out of coarse ash, 

and pure bark combustion produces less fly ash compared to timber with bark combustion. 
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The combustion residuals of timber without bark show a clearly higher content in cyclone and 

fly ash than pure bark and timber with bark.  

Properties and application 

Wood ash application in forest systems is related with the idea to re-establish the nutrient 

cycle after nutrient removal by whole tree harvesting (HAKKILA and KALAJA, 1983, NAYLER 

and SCHMIDT, 1986 and 1989, ANDERSSON and LUNDKVIST, 1989, CAMPBELL, 1990, OHNO and 

ERICH, 1991, HUANG et al. 1992, MUSE and MITCHELL, 1995, OBERNBERGER, 1997, ZOLLNER 

and REMLER, 1998, V. WILPERT, 2002, V. WILPERT et al., 2002, KHANNA et al., 2002, 

HOLMBERG and CLAESON, 2002). FROSTEGARD et al. (1993), BAATH and ARNEBRANT (1994) 

and OBERNBERGER (1997) pointed out that wood ash fertilizing effects are comparable with 

normal liming, but with a higher vertical depth effect (V. WILPERT, 2002, V. WILPERT et al., 

2002). Wood ash can be seen as Ca-dominated multi-nutrient fertilizer, which improves 

especially the potassium supply of forest vegetation (ZOLLNER and REMLER, 1998, V. 

WILPERT, 2002, V. WILPERT et al., 2002, SCHÄFER, 2002, NIEDERBERGER et al., 2002). The 

nutrients are predominately bound in form of metal oxides, hydroxides, carbonates, sulphates, 

and chlorides. Due to its chemical properties – pH-value 11 – 13, quicklime resembling 

chemical reaction, and high buffering potential with basicity up to 35-weight-%, wood ash 

can be seen as appropriate material for a compensation of acidic depositions (ANDERSSON and 

LUNDKVIST, 1989, BONNEAU et al. 1990, TVEITE et al. 1990, OHNO, 1992, CLARHOLM, 1994, 

MEIWES, 1995, OBERNBERGER, 1997, BÜTTNER, et al., 1998, NIEDERBERGER, 2002 b, V. 

WILPERT, 2002, V. WILPERT et al., 2002). MISRA et al. (1993) mention the dependence of the 

chemical composition of wood ash from the furnace temperature. The combustion process 

leads to a hundredfold enrichment in minerals (BÜTTNER, et al., 1998). Table II (next page) 

gives an overview on the chemical composition of the three ash fractions according to 

BÜTTNER et al. (1998), POHLANDT (1995), OBERNBERGER (1997), NIEDERBERGER et al. (2002) 

and SCHULZE and MARUTZKY (2002).  

Coarse ash contains the mineral residuals of timber and bark combustion and soil particles 

sticking on the combustion material. Coarse ash consists merely of macro nutrients like Ca, 

Mg, K, P, with an average composition of 41.7 % CaO, 6.0 % MgO, 6.4 % K2O, and 2.6 % 

P2O5. Heavy metals like Ni, Cr, and V form only a minor part of the dry mass. Cyclone ash 

contains a high amount of nutrients but is characterized by a higher percentage of heavy 
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metals like Cd, Cu, Pb, and especially organic pollutants (OBERNBERGER, 1997). Fly (micro) 

ash shows the highest percentage of heavy metals and contains in particular easily volatile 

ones like Zn, Pb, and Cd. (OBERNBERGER, 1997, NIEDERBERGER et al., 2002). Due to the high 

content of macronutrients and the comparably low content of heavy metals, OBERNBERGER 

(1997) advices the preferable application of coarse and cyclone ash for fertilizing. Only the 

cadmium and lead content of cyclone ash can limit it’s utilization in some cases (FRITZE et al., 

1995). The main problem of fly ash consists in its high content in Cr (IV).   
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Tab. 2: Chemical composition of the three ash fractions coarse, cyclone, and fly ash. 

fraction  
element  
content 

                        coarse ash 
min               mean                max 

                     cyclone ash 
min            mean             max 

                     fly ash 
min               mean             max 

P 1.6 27.6 0.6 25.8 2.1 22.4 
S 0.4 12.4 0.7 34.0 3.2 69.4 
K 11.2 135.6 10.9 165.1 5.6 219.6 
Ca 105.4 408.1 16.1 438.9 105.6 268.1 
Mg 9.6 61.4 2.2 56.9 8.0 41.7 
Al 4.2 30.1 1.1 28.5 3.2 46.6 
Mn 0.6 34.7 0.8 39.2 1.2 45.1 

g/kg 
dry 
matter 
 

Fe 3.5 31.9 1.8 531.1 3.4 42.3 
Cu 14.0 160.0 43.0 493.0 55.0 1 450.0 
Mo  2.8  3.8  13.2 
Zn 100.0 200.0 740.0 1 400.0 109.0 6 200.0 
V  43.3  40.5  23.6 
Co  21.1  19.2  17.5 
Cl  198.0  1 120.0  5 250.0 
Ni 12.7 367.2 8.6 88.3 12.8 484.4 
Cr 1.3 473.6 5.0 419.3 17.0 810.0 
Cd 0.2 20.3 2.1 110.3 5.0 113.0 
Pb 0.9 218.0 15.7 3 527.0 24.1 7 300.0 
Hg -- -- -- -- 0.1 -- 
As < 1.0 4.1 2.0 6.7 7.0 37.4 

mg/kg 
dry 
matter 
 

F  68.0  2 100.0  4 860.0 
        Cr(IV) 1.3 61.5 473.6                 5.0 71.8 419.6                    18.0   113.3 621.0 
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Potentials 

Wood ash can improve chemical and physical soil properties (BÜTTNER, et al., 1998, RUMPF et 

al., 2001, SCHÄFER, 2002) and enhances tree growth and particularly fine root development 

(GENEGER, 2001). Wood ash increases the pH-value and the plant availability of base cations. 

In some cases less soluble chemical complexes (K) can occur and lead to a restrained K-

availability (KHANNA et al., 1994). OBERNBERGER (1997) highlightens that wood ash shows a 

minor effect on the short term availability of nutrients compared with ashes from other plant 

materials. BÜTTNER, et al. (1998) and also EBERL and HILLMANN (2002) emphasized the long-

lasting duration of wood ash decomposition. BÜTTNER, et al. (1998), SCHÄFER (2002), EBERL 

and HILLMANN (2002), HALLENBARTER and LANDOLT (2002) and SCHÄFFER et al. (2002) 

reported a long-term improvement of pH-value and Ca, K, and P availability. The observed 

improvement of the base cation availability reaches up to 30 cm depth, whereas an influence 

on the pH-value could be observed up to 50 cm depth. The influence on the pH-value shows a 

dependency from stand composition: In beech stands, the possible pH-value augmentation 

amounts up to 2 degrees, in spruce stands up to one degree. BÜTTNER, et al. (1998) and 

LAMERSDORF (2002) documented a tendencial improvement of plant nutrition, i.e. a higher K, 

P, and N-contents in needles, EBERL and HILLMANN (2002) mentioned a reduction of heavy 

metal content in needles. However, the better tree nutrition status entails not necessarily in 

better tree growth (UNGER and FERNANDEZ, 1990, LWF, 1997). BÜTTNER, et al. (1998), 

BAATH and ARNEBRANT (1993, 1994), BAATH et al. (1995) revealed ambivalent effects on 

microbial activity as well as on fungi diversity, which can provoke back coupling effects on 

tree growth. PERIÖMÄKI and FRITZE (2002) observed an increased microbial activity and a 

change in microbial community structure in boreal forest systems. ZIMMERMANN and FREY 

(2002) documented a higher rate of CO2-deposition and an augmentation of microbial 

biomass as well as an increase of N-Cycle related enzyme activity. In contradiction, BAATH et 

al. (1995) reported a decrease in microbial biomass contents, where fungi seemed to be more 

sensitive than bacteria.  



Chapter 1 

In: Christine Fürst, Vladimir Janecek, Carsten Lorz, Franz Makeschin, Vilem Podrazky, Harald Vacik (EDS.): Future-

oriented Concepts, Tools and Methods for Forest Management and Forest Research Crossing European Borders. 

Contributions to Forest Sciences 28, Nov 2006. Ulmer 

63 - 80 

Restrictions 

According to HOLMBERG and CLAESON (2002), wood ash application can lead to pH and salt 

chocks, burning of plant tissues and excessive nutrient release. Depending from the 

dominating ash fraction, high amounts of heavy metals can be brought into the soil, which 

however under normal conditions remain in the upper mineral horizon (BRAMRYD and 

FRANSMAN, 1995, FRITZE et al., 1995, BÜTTNER, et al. 1998, EBERL and HILLMANN, 2002). 

Another problem of wood ash application is the Cr (IV) content. This rare oxidation state 

results under special conditions from organic matter combustion. Cr (IV) is normally reduced 

due to its high redox-potential to the stable oxidation state Cr (III), except in the particular 

case of sandy soils with low organic matter content (POHLANDT, 1995, LATSCHA and KLEIN, 

1994, V. WILPERT, 2002, V. WILPERT et al., 2002, NIEDERBERGER, 2002 a, BRILL and 

SCHLOTHMANN, 2001, BRILL, 2002).  

Wood ash can provoke a clear-cut like surplus nitrification (BÜTTNER, et al., 1998, V. 

WILPERT, 2002, V. WILPERT et al., 2002, SCHÄFER, 2002, LAMERSDORF, 2002, OBERNBERGER, 

1997). FRITZE et al. (1994, 1995) and HOLMBERG and CLAESON (2002) compared wood ash 

effects with forest fire impact, which provokes nitrogen leaching but leads to an improvement 

of nutrient availability. BÜTTNER, et al. (1998) e.g. revealed K+ and Mg2+ leaching from the 

upper mineral soil. These effects were only temporary and NO3
--mobilization did not reach 

the deeper mineral soil. Wood ash application can decrease P-availability due to the formation 

of stable Ca-P and Al-P complexes and thus reduce the soluble P-fraction (PUNGH et al., 1978, 

CLARHOLM, 1994, CLARHOLM and ROSENGREN-BRINCK, 1995, LWF, 1997). In some cases, 

soluble P-fractions were documented (CLARHOLM, 1994), and SCHÄFFER (2002) mentions that 

the possible P-availability reduction restricts not conclusively the P-nutrition. CLARHOLM 

(1994) observed an increase of acid phosphatase activity in top soils but found at the same 

time a negative correlation with P-content of needles. ZIMMERMANN and FREY (2002) 

documented a decline of the P-cycle related enzyme activity.  

Fertilization with wood ash inserts at least organic pollutants like Polycyclic Aromatic 

Hydrocarbons (PAH) and PolyChlorinated Biphenyls (PCB), where the PAH content seems 

to be predominant. A mobilization of these complex molecules in the A-Horizon is possible 

and can affect water quality (POHLANDT and MARUTZKY, 1994, POHLANDT, 1995, BÜTTNER, et 

al., 1998, BUNDT, 2001, KOHL, 2002, SCHÄFFER, 2002, HOLMBERG and CLAESON, 2002). 
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Recommendations 

The recommended dosages for wood ash range between 3 t/ha in 50 years and 8 t/ha in 3 

years (NOGER et al., 1996, OBERNBERGER, 1997, BÜTTNER et al., 1998, V. WILPERT, 2002, V. 

WILPERT et al., 2002, SCHÄFFER et al., 2002). Wood ash is recommended to be applied in 

dosages up to 5 t/ha (LWF, 1997, SCHÄFFER, 2002). CLARHOLM (1994) remarked that an 

amount of 1 – 5 t/ha wood ash delivers the equivalent in nutrients lost by whole tree 

harvesting. Low dosages can lead to a higher nitrification ratio than elevated dosages and 

entail in an insufficient Ca/Al balance (LAMERSDORF, 2002). In order to avoid plant damages 

and salt chock and to improve long term fertilization, a mixture with dolomite is proposed by 

V. WILPERT (2002). ERIKSSON (1998), and HOLMBERG and CLAESON (2002) highlightened the 

importance of a carbonatisation for slowing down nutrient solubility and Ca-eluviation and 

recommended a hardening of wood ash with water and dolomite or cement. As consequence 

of the differing chemical composition of the ash fractions, an exclusive use of coarse ash and 

cyclone ash and renunciation of fly ash are demanded by BÜTTNER, et al. (1998), ZOLLNER 

and REMLER (1998), V. WILPERT (2002), V. WILPERT et al. (2002), OBERNBERGER (1997), LWF 

(1997). Regarding coarse ash, the combustion technique dependent Cd and Organic Pollutants 

content must be considered. Due to the stability of Cr (IV) under aerobe conditions, wood ash 

should not be applied on poor sandy soils, except those, which are characterized by elevated 

organic matter content (V. WILPERT, 2002, NIEDERBERGER, 2002 a). 

Rock Powder 

Rock powder is especially used in regions where other fertilizers are not easily available. The 

“petrofertilizer” rock powder is considered as adequate material for “remineralization and 

recapitalization” of degraded soils under tropical conditions (LEONARDOS et al., 1987, 2000, V. 

FRAGSTEIN et al., 1988, CORONEOS et al. 1996). Under temperate climate, rock powder can be 

used for an “ecologization” of soils with atmogenic acidification. Rock powder supports tree 

growth and the establishment hardwood plantations (NAROVEC and SACH, 1994). Basic 

research on rock powder has been carried out in Germany and Poland since the beginning of 

the last century (1905) (RZEZNIK and NEBE, 1968). Today, rock powder fertilization is rarely 

applied due to high transportation costs exceeding those of other fertilization alternatives.  
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Properties and Application 

Rock powder can be applied for the amelioration of forest or agricultural soils with originally 

poor starting situation, e.g. podzols, podzols with hardpan and gley soils (NAROVEC and 

SACH, 1994). Rock powder improves physical soil properties and increases the soluble 

nutrient availability (Ca, Mg, K, and P) (NAROVEC and SACH, 1994, HARTMANN and KEPLING, 

2003, HARTMANN et al., 2003 and V. WILPERT and LUKES, 2003). HEINZE (1990) mentions a 

generally insufficient P supply when using rock powder, whereas other macro-nutrients seem 

to be released in sufficient quantities. These contradictory effects result from the variable 

basic material for rock powder production, e.g. crushed Basalt, Diabase, Gabbro Rock, 

Amphibolite Rock, Phonolite Rock, Volcanic Ash, Quartz-Porphyry, and Granite are used 

(HEINZE, 1990, NAROVEC and SACH, 1994, STENICKA and NAROVEC, 1994, V. WILPERT and 

LUKES, 2003). Table III resumes observed pH-values of different basic materials according to 

V. FRAGSTEIN (1988), HEINZE (1990), and SAYEDAHMED (1993). 

 

Tab. 3: pH-values of different basic materials for rock powder 

basic material pH(H2O) pH(KCl) 

Phonolite > 10 

Basalt 8 - 10 

Diabase ~ 8 

Granite 7 - 10 

 

no values available 

 

Diabase, Basalt, Pyroxenphorphyry, Angitporhyrite 6.1 – 7.6 

Quarzporphyry 
no values available 

5.6 – 6.0 

 

SAYEDAHMED (1993) reports for different rock powders an average silicic acid content of 48.3 

– 64.7%. The pH (H2O) value varies between > 10 up to 7 and compared with wood ash, rock 

powder shows a generally lower buffer potential for the application in acidic conditions (V. 

FRAGSTEIN et al., 1988, SAYEDAHMED, 1993). HEINZE (1990) mentions a variability of pH 

(KCl) values from 6.1 to 7.6 for test materials despite Quartz-Porphyry, where the pH (KCl) 

values range from 5.6 – 6.0. This was considered as reason for the special suitability of this 

material for fertilizing Scots pine stands. The plant availability of elementary nutrients like 
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potassium is strongly dependent from the basic material. BAKKEN et al. (1997, 2000) ranked 

Biotite (Feldspar) above Nepheline and Epidote Schist. With regard to the general macro 

nutrient supply, SAYEDAHMED (1993) laid down the ranking Basalte < Diabase < Volcanic ash 

< Superbiomin < Igneols Rock meal. Diabase and Basalte show the highest trace element 

content and Basaltic Rocks followed by Phonolite Rocks are known for the highest nutrient 

release ratio (V. FRAGSTEIN, 1988). 

Potentials 

Rock powder decreases soil acidity, increases base saturation and nutrient availability, and 

improves the adsorption exchange activity (NAROVEC and SACH, 1994, STENICKA and 

NAROVEC, 1994). The intensity and variability of these effects are material dependent. 

Smectite rich volcanic ashes e.g. are known for a special improvement of the base cation 

availability (BLUM et al., 1989 a, b). V. WILPERT and LUKES (2003) highlightened the acid 

neutralization capacity and pH-level stabilization of Phonolites. SAYEDAHMED (1993) found a 

generalizeable increase of K-mobility and K-flux into mineral top soil for different basic 

materials, which lead to a better K-availability and higher K and P uptake. Also Ca-

availability was positively affected. HILDEBRAND and SCHACK-KIRCHNER (2000) found that 

these effects can only be achieved by higher dosages compared with liming. Rock powder 

supports the C- and N-mineralization (MERSI, 1993), initiates a lower nitrification ratio and 

slower nutrient release than dolomite and thus is a suitable long-term fertilizer (V. WILPERT 

and LUKES, 2003). HARTMANN and KEPLING (2003) and SAYEDAHMED (1993) remark in this 

context the resulting long-term improvement of tree growth on poor soils.NAROVEC and SACH 

(1994) and STENICKA and NAROVEC (1994) observed a rising biological activity and 

humification after rock powder application. MERSI (1993) revealed contrasting effects. In 

some cases Xylanase and Protease activity in the A-Horizon decreased after rock powder 

application. A decrease of Phosphatase, a partial increase of Protease activity and nitrification 

ratio were also documented and accompanied by augmenting nitrate content and pH-value in 

the soil solution. 

Restrictions 

A possible restriction is an augmenting nitrification ratio compared to a complete renunciation 

of fertilization (NAROVEC and SACH, 1994, STENICKA and NAROVEC, 1994). The material 
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dependent nutrient release ratio and the applied particle size can counteract the fertilizing 

intention (ROSCHNIK et al., 1967, LEONARDOS et al., 1987, V. FRAGSTEIN, 1988, BLUM et al., 

1989, BAKKEN et al., 2000, GILLMANN et al., 2001). An increased death rate of young plants 

due to salt-chock under dry conditions is another possible risk (HARTMANN and KEPLING, 

2003). V. WILPERT and LUKES (2003) revealed probable negative effects of Phonolite rocks 

due to high sodium content and deduced the necessity of a careful material choice.  

Recommendations 

Rock powder is an adequate fertilizer for long-term amelioration of physical and chemical 

properties of poor sandy soils (NAROVEC and SACH, 1994, STENICKA and NAROVEC, 1994). In 

order to achieve sufficient fertilizing effects, the average dosage should be 3 – 4 times higher 

than liming doses (HILDEBRAND and SCHACK-KIRCHNER, 2000). V. FRAGSTEIN et al. (1988) 

discuss critically the necessity of high dosed rock powder application in agricultural systems 

and their costs. ROSCHNIK et al. (1967) observed for agricultural purposes an exponential 

growth effect for application rates between 5 – 40 t/ ha and D´HOTMAN DE VILLIERS (1961, 

1962) tested successfully dosages up to 180 t / ha. Respective recommendations could not be 

found for forest purposes. 

Rock powder should not be used as start fertilizer , but after establishing the culture in order 

to improve tree growth conditions (HARTMANN and KEPLING, 2003). The chemical properties 

– e.g. sodium content in Phonolite Rocks - should be taken into account and risky basic 

materials should be excluded from application (V. WILPERT and LUKES, 2003). Rock powder 

can be applied as alternative to liming on sites which are sensitive against a fast nitrification 

and nitrate mobilization, but should however be renounced in sensible regions like water 

preservation areas. The particle size should be adapted to the weathering rate and nutrient 

release rate, which are (1) dependent from the fertilizing purpose and (2) acceptable for the 

region-specific environmental conditions.  

Fly ash 

Fly ash deposition is defined as particle residue from coal combustion that enters the flue gas 

stream as a result from lignite (brown coal) or hard coal combustion. The possible deposition 

amount per year in the most affected regions in Eastern Germany and Eastern Europe can 

range from 140 t / km2 * a (industrial triangle Leipzig-Halle-Bitterfeld, North-Eastern 
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Germany) and up to 457 t / km2 * a (Upper Silesia, Poland) (LUX, 1970, 1976, LUX and STEIN, 

1977, NEUMEISTER et al., 1991, PEKLO and NIEHUS, 1992, STRZYSZCZ, 1993, 1999 a, b, 

STRZYSZCZ et al., 1996, STRZYSZCZ and MAGIERA, 1998, 2001, KLOSE and MAKESCHIN, 2003).  

 In the immediate vicinity of recent and former power plants an ample tree growth and 

exuberant development of ground vegetation can be observed (LUX, 1964 b, KURTH, 1985, 

AMARELL, 1997, THOMASIUS et al., 1998). These fertilizing-like effects result from the high 

deposition of alkaline cations. However, also heavy metals are deposed and accumulated in 

the long run (ULRICH et al., 1979, STRZYSZCZ, 1999, STRZYSZCZ and MAGIERA, 1998, 2001). 

TRÜBY (2003) reported a considerable uptake of heavy metals up to 120 µg Pb/g dw for 120 

years old conifers, which however seems not to affect tree growth and vitality. 

Properties 

The average geo-chemical composition of fly ash varies in dependence from basic material 

(lignite or mineral coal) and its origin. Lignite-derived fly ash from the industrial triangle 

Leipzig-Halle-Bitterfeld e.g., consisted in av. 26% SO3, 20% CaO, 18% SiO2, AlO3, FeO3, 

MgO, TiO2, Na2O, K2O, heavy metals, and „black“ (tertiary) carbon (NEUMEISTER et al., 

1991, PEKLO and NIEHUS, 1992, MAGIERA and STRZYSZCZ, 1999, and KLOSE and MAKESCHIN, 

2003). For more details see Tab IV.   

Tab. 4: Characteristic chemical composition of lignite fly ash in North Eastern Germany (acc. 

to NEUMEISTER et al., 1991, PEKLO and NIEHUS, 1992, THOMASIUS et al., 1998) 

molecular deposition components (w- %) heavy metals (mg / kg) 

SO3 CaO MgO K2O Fe2O3 Al2O3 SiO2 Corg. Cd Cu Pb Zn 

13-26 15-20 1.5-3 0.1-1 4-10 3-8 10-18 5-20 2.7-7.6 140-230 50-100 130-250 

means of the total deposition for the example Dübener Heide (kg/ha*a) 

Na K Ca Mg Fe Mn Cu Pb Cd Zn F Cl N S P Ca /S 

15.7 8.3 320 36.5 125 1.1 1.4 1.0 0.1 2.3 9.8 54 38 190 0.3 1.7 
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Potentials 

Characteristic fly ash deposition effects on forest sites are the widening of the C/N and C/P 

relation and additional input of S and base cations. In the long run, fly ash accumulation in 

forest systems leads to an improvement of site quality, particularly regarding the nutrition 

capacity of naturally poor sites (sandy soils). An increase of the site index up to two degrees 

and an enhancement of the eligible tree species spectrum were reported by KOPP and 

SCHWANECKE (1994), THOMASIUS et al. (1998) and KNOCHE et al. (2001). AMARELL (1997), 

KNOCHE et al. (2001), and THOMASIUS et al. (1998) describe a ground vegetation drift towards 

nitrophile and nutrient indicating species, which accentuates the growth conditions change. 

The durability of this situation and long term ecosystem responses are still unknown.  

Another effect is the modification of the humus form and thickness of the humus layer, which 

influences the water retention capacity and nutrient supply (THOMASIUS et al., 1998, KNOCHE 

et al., 2001). This modification is going along with an augmentation of mineral particle 

content that exceeds the threshold of 30 %, which is demarcating humus layer from mineral 

top soil (KLOSE et al., 2001, 2002, 2003, KLOSE and MAKESCHIN, 2004, KOCH et al., 2002).  

Risks 

Fly ash deposition increases the Al, Fe, and heavy metal content in forest ecosystems. This 

provokes a disturbance of litter decomposition and leads to the development of adverse 

humus forms (STRZYSZCZ, 1993, 1999, STRZYSZCZ and MAGIERA, 1998, MAGIERA and 

STRZYSZCZ, 2002, KLOSE et al., 2003). When considering results from wood ash research, 

heavy metals will remain in the upper mineral soil (BRAMRYD and FRANSMAN, 1995, FRITZE 

et al., 1995, BÜTTNER, et al., 1998, EBERL and HILLMANN, 2002). However, the accumulated 

heavy metals can be mobilized by a re-acidification of the sites, which is speeded up by  N-

deposition and absent base deposition (KOCH et al., 2002, KLOSE et al., 2003). KLOSE et al. 

(2003) and KLOSE and MAKESCHIN (2004) described the impeding effects of lignite derived 

fly ash on microbial activity. “Black” carbon seems to play a key role in hindering the organic 

matter decomposition (GOLDBERG, 1985). The possible role of macromolecular organic 

pollutants (PCB, PAH), which play and important role for evaluating wood ash effects, is not 

yet clear. Fly ash specific humus forms are characterized by an elevated hydrophobicity, 

which can hinder the water percolation into mineral soil (THOMASIUS et al., 1998, KATZUR et 
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al., 1998). In contrast, fly ash, which shifted in the upper mineral soil, can induce faster 

percolation of rainfall due to their special physical properties (low density) (TAUBNER and 

HORN, 1998). This process can accelerate humus layer dehydration and amplify the disturbed 

water balance in humus layer (ZIKELI et al., 2002, DEKKER and RITSEMA, 2003).From 

silvicultural point of view, the influence of fly ash deposition on the humus provokes 

antithetic effects: the observed intensification of fine root growth in ash-dominated humus 

layers improves (a) tree nutrition, but (b) endangers stand stability against wind throw and 

drought by supporting the development of flat root systems (THOMASIUS et al., 1998, KNOCHE 

et al., 2001, KOCH et al., 2002, KLOSE et al., 2003). LUX (1976) and KNOCHE et al. (2001) 

mention a particular endangering of functional stability of Scots pine dominated forest 

systems by too high base depositions. Fly ash deposition cannot be managed in a site-adapted 

dosage and thus provokes additional costs and economic losses. STRACKE (1996) mentions 

e.g. the necessity of a conversion with hardwood, which increases the expenses for stand 

establishment and regeneration and decreases economic profit due unfavourable assortments. 

Economic losses can also result from shortening of the rotation period, which results from fly 

ash induced stands destabilization.  

Recommendations 

Fly ash deposition demands for an adapted site classification system in dependence from 

original site quality and possible on- and off-site effects (KALLWEIT, 1990, THOMASIUS et al., 

1998, KNOCHE et al., 2001, KLOSE et al., 2003, ZHONG and MAKESCHIN, 2003 a, b, KOCH and 

MAKESCHIN, 2004, ZHONG and MAKESCHIN, 2004, MAKESCHIN et al., 2004). A conversion 

with broadleaves (beech or noble hardwoods) is proposed by LUX and STEIN (1977), 

THOMASIUS et al. (1998) and NEBE et al. (2001). This seems to be promising at artificially 

alkalinized sites near to the (former) power plants, also with regard to the destabilization of 

coniferous stands reported by LUX (1976) and KNOCHE et al. (2001). Furthermore, 

broadleaves can use better the additional nutrients due to a better rooting and better use of the 

nutrition potential for tree growth.  
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Comparative Evaluation and Conclusions 

Wood ash and rock powder are an alternative to other industrial fertilizers. A long-term 

increase of pH-value and base cation availability, and an improvement of physical soil 

properties can be achieved. However, these positive effects on plant nutrition are not 

significant in any case and in contrast also damages like salt or pH-chock are possible, 

particularly in forest cultures. The composition of rock powder and wood ash can deviate 

from real requirements of forest systems. Besides, undesirable matter like organic pollutants, 

heavy metals, or sodium is deposed into forest ecosystem. Consequently, a careful analysis of 

(a) site deficiencies, (b) nutrition and stress situation of forest systems and (c) fertilizing 

material composition are required in order to avoid negative effects. Besides, a cost-benefit 

analysis considering material specific costs (e.g. transport and production of rock powder or 

cost-evading for deposing wood ash) is necessary in order to realize the most economic 

fertilization alternative. Fig. 1 (next page) resumes the application fields for the materials 

wood ash, rock powder, and fly ash and summarizes recommendations for practical handling. 

The application of wood ash and rock powder is primarily dependent from the fertilizing 

target (1). Rock powder can be used for improving physical and chemical soil properties 

especially at originally poor sites in a dry climate. Rock powder is an alternative to other 

fertilizers on soils, which are endangered by intensive nitrification. Under tropical conditions, 

a recapitalization and remineralization of degraded soils is possible. Under temperate climate, 

rock powder can be used for an ecologization of heavily disturbed soils. These can be found 

e.g. in industrialized regions, where soils suffer from long-term deposition influence. 

However, in case of fly-ash affected soils, a critical check of the necessity of an additional 

nutrient supply is indispensable.  

Wood ash application is suitable for restoring the biochemical cycle after nutrient removal by 

(whole) tree harvesting.  
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Fig. 1: Application fields of wood ash, rock powder, and fly ash and recommendations for practical handling 
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The natural situation (2) confines the use of wood ash and rock powder, which show 

complementary application fields: wood ash may limit P-availability, leads to an additional 

Cr-(IV) input and possible pH- and salt chock of the vegetation. Consequently, it should be 

applied on soils with higher organic matter content in a temperate climate and not be used on 

poor sandy soils under dry climate. Under dry conditions, rock powder has its complementary 

application field. Fly ash deposition is a special case of unintended long-term amelioration. 

Wood ash and rock powder use should take into consideration the stand age (3): Both can 

provoke salt chocks and burning of plant tissues and thus endanger recently established 

stands. As conclusion by analogy with fly ash, wood ash use might also provoke heavy 

concurrence problems of young trees with an ample soil vegetation development (LUX, 1964 

a, PEKLO and NIEHUS, 1992, AMARELL, 1997). Fertilizing alternatives or postponing 

fertilization in dependence from stand top height development should be  considered.  

As precondition (4) for wood ash and rock powder use of, regional availability is the decisive 

factor: rock powder is used in regions, where other ameliorative materials are hardly 

available. The use of wood ash dependent from the role of wood for energy production, which 

might increase in the next years (V. WILPERT, 2002). In areas dedicated to water protection or 

natural protection, the use of both fertilizers should be carefully checked or completely 

neglected. Financial restrictions demand for a cost-benefit analysis, which reveals the regional 

potential and application costs.  

After the decision (5) for one of the alternatives, the following recommendations (6) should 

be respected: Rock powder demands high dosages (3 – 4 times > liming) for verifiable 

fertilizing effects. Low nutrient release and possible ingredients like sodium can counteract 

the intention of growth condition improvement. Attention should be paid to basic material 

choice (K, pH, Sodium) and particle size. Wood ash application requires an exclusive use of 

fresh wood for reducing the amount of combustion residuals and its content in critical 

substances. A careful separation of the different ash fractions and preferable use of coarse ash 

and cyclone ash are recommended in order to avoid needless heavy metal and Cr (IV) input. 

A hardening with dolomite/cement helps to prevent plants against chocks and to improve 

fertilization effects in the long run. For forest purposes dosages between 1 – 5 t/ha are 

recommended.  

Fly ash deposition can be considered as kind of long-term amelioration experiment. The 

effects of fly ash deposition can support the understanding of forest ecosystem reactions on 
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(ash) fertilization: spatial and temporal variability of the fly ash composition result in a 

dynamic development of site specific production potentials and ecosystem reactions. On 

landscape level, fly-ash deposition leads to a homogenisation of differing sites and to a 

diversification of comparable sites and demands for an adapted classification of site quality as 

basis for sustainable silvicultural strategies. Fly ash research may help to evaluate the effects 

of ash fertilization through conclusion by analogy: fly ash affected and wood ash fertilized 

soils show both most obvious effects in the Oe and Oa horizon. Research on long term effects 

of fly ash revealed that this leads to an intensification of tree rooting in the Oe and Oa. The 

better plant nutrition leads to a better tree growth, but also to a higher drop out risk by 

supporting the development of flat root systems which are sensible against wind throw and 

water stress. Hardwood stands react less sensible than coniferous stands (especially Scots pine 

stands) and are able to use the additional nutrition potential more efficient. Consequently, a 

conversion of (formerly) fly-ash deposition influenced coniferous stands can be 

recommended.  
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Abstract The paper presents the results of a study in
the region Dübener Heide (Central Germany) testing
the suitability of field measurements of magnetic
susceptibility for the detection of historical fly-ash
deposition. The measurements supported the verifica-
tion of historically documented deposition zones
along an emission gradient. Mean values, standard
deviation, and coefficient of variation can be used to
characterize the former deposition zones, although the
study revealed several problems, which will be the
subject of future work: (1) the volume susceptibility
measurements used in the study do not allow the
calculation of the actual fly-ash amount stored in the
soil and thus must be calibrated with correction
factors from laboratory measurements; and (2) meas-
urements in regions with similar conditions but
without fly-ash deposition are needed to obtain

reference values for the natural range of magnetic
susceptibility.

Keywords Ferrimagnetic susceptibility . Industrial air
pollution . Fly-ash . Forest soils

1 Introduction

The industrial triangle Leipzig–Halle–Bitterfeld (see
Fig. 1), as part of the Central German lignite mining
region, was characterized for almost 100 years as a
source region for emissions caused by intense
industrial activity and the combustion of lignite for
energy production. The adjacent forested landscape
Dübener Heide (Fig. 1) at the eastern border of the
industrial triangle received an estimated deposition
load of up to 18 million tons of fly-ash and of 12
million tons of SO2 during the period 1910–2000. For
the decade 1961–1970, the fly-ash deposition for this
region ranged between 3 and 8 t ha−1 year−1 (Lux
1976, 1978; Neumeister et al. 1991). Klose and
Makeschin (2004, 2005) reported even local peak
loads up to 128 t ha−1 year−1. The fly-ash from the
region consists of SO3

1 (26%), CaO (20%), SiO2

(18%), AlO3, FeO3
1, MgO, TiO2, Na2O, K2O, heavy

metals (Cd, Cu, Pb, Zn), and black carbon (Fürst and
Makeschin 2006; Klose and Makeschin 2004). Start-
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ing in the early 1990s, the closure of power plants and
the reduction of emissions from remaining industries
due to improved filter techniques resulted in a
considerable improvement of air quality. Fly-ash
emission was omitted completely.

However, the fly-ash stored in the forest soils has
still a considerable influence on the forest ecosystems
of the Dübener Heide and will be a major factor for
their further development: (1) the turnover rate of
organic matter is reduced, and abnormal thick humus
layers can be observed, which alter the water balance
of the forest soils (Strzyszcz 1993, 1999; Strzyszcz
and Magiera 1998; Katzur et al. 1998; Taubner and
Horn 1999; Magiera et al. 2002; Klose et al. 2001).
(2) The deposited elements, especially base cations,
influence ground vegetation as well as growth and
species composition of the forest stands (Lux 1978).

The intensity of these effects is mainly driven by
the total amount of deposition, which depends on the

distance to former emitters, the dominating wind
direction, relief, canopy surface, and the particle size
and solubility of the deposition components (Katzur
et al. 1998; Strzyszcz et al. 1996). According to Lux
(1978), the different ranges and effects of alkaline
nonsoluble particles and soluble acidic deposition
require the identification of deposition zones as basis
for an adapted forest management. The choice of tree
species, thinning intensity, and rotation period must
be adapted to the amount of deposited fly-ash.
Therefore, Stein (1965) and Lux (1976) proposed an
approach which uses classes of forest decline for the
differentiation of up to five deposition zones (see
Fig. 1). The deposition zones were defined on the basis
of a sample plot-supported evaluation system. Visible
damages in 150 plots in middle-aged Scots pine stands
were surveyed on a single tree level, then compiled for
stand level and regionalized by a subsequent spatial
aggregation of comparable stands of the deposition

Fig. 1 Deposition zones in the Dübener Heide (Lux and Stein 1977, modified) and location of test sites
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zones. The latter were assumed to be more or less
homogenous regarding the impact of the deposition on
forest production and economic outcome.

However, forest decline classes can only be seen as
a rough indicator for the estimation of actual fly-ash
deposition and storage in forest soils: (1) Forest
damages are a sum parameter, which in this region
are not only linked to fly-ash deposition, but also to
high air concentrations of SO2 and NH3 and climatic
extremes. (2) Since the 1990s, a considerable im-
provement of the health state of the Scots pine can be
observed. Past differences in the health state, which
could be used for estimating the total deposition of
fly-ash along a regional deposition gradient, do not
exist anymore. Therefore, other methods are needed
for the detection of the actual fly-ash load in the past
and the current amount of fly-ash in forest soils. As
cost efficiency was an important criteria for the
selection of a suitable field detection technique,
magnetic susceptibility was chosen as suitable param-
eter based on the broad experiences in other regional
studies (e.g., Katzur et al. 1998; Strzyszcz 1993;
Klose et al. 2002; Chianese et al. 2006; D’Emilio et
al. 2006; Magiera et al. 2006).

The presented paper intends to evaluate (1) if field
measurements of magnetic susceptibility are a suitable
technique for an in situ detection of past fly-ash
deposition in the Dübener Heide and (2) to which
extend the former deposition zones can still be found
by field measurements of magnetic susceptibility.

2 Materials and Methods

2.1 Magnetic Susceptibility Measurement

Magnetic susceptibility can be used as a cost-efficient
detection method for fly-ash deposition (Strzyszcz
and Magiera 1998; Magiera and Strzyszcz 2000;
Grimley et al. 2004). The magnetic susceptibility χ
is defined as difference between the relative magnetic
permeability μ and 1. It can be used, e.g., to express
approximately the concentration of magnetic minerals
in the soils (Thompson and Oldfield 1986). Accord-
ing to their magnetic properties, materials can be
divided into diamagnetic, paramagnetic, ferromagnet-
ic, and ferrimagnetic substances (Strzyszcz 1993;
Glaser 2001). The detection of lignite-derived fly-
ash by magnetic susceptibility is based on its content

of ferrimagnetic Fe-oxides. These are mainly magne-
tite (Fe3O4) and maghemite (γ-Fe2O3), which are
both (1) a natural component of lignite (magnetite) or
(2) a result of pyrite (FeS2) oxidation (magnetite and
maghemite; Strzyszcz et al. 1996; Katzur et al. 1998;
Strzyszcz 1999; Magiera and Strzyszcz 2000).

The detection method is suitable only for areas
with a strong impact of industrial emissions, since a
natural enrichment of magnetic substances as result of
(1) geochemical processes and (2) activity of micro-
organism in humus layers is also reported from non-
industrial areas and might blur the effect of minor
fly-ash deposition (Le Borgne 1955; Scollar 1965;
Thompson and Oldfield 1986; Faßbinder 1994; Jong
de et al. 2005; Magiera et al. 2007).

For the measurements in the Dübener Heide, a
portable magnetic susceptibility meter (KT-9, ©
Terraplus) was used. The KT-9 is developed for
detecting very low quantities of magnetic Fe-oxides
in compact (rocks) or loose substrates (mineral soil,
humus layer). The instrument measures spot-wise the
volume magnetic susceptibility as sum value up to a
depth of 0.5–2.0 cm starting from the surface of the
measured substrate. The susceptibility meter has a
sensitivity of 1×10−5 SI units and can be used either
in a single readout mode or in a continuous (scanning)
readout mode.

2.2 Selection and Design of the Test Plots

The Dübener Heide (see Fig. 1) is situated in Central
Germany south and north of the border between the
federal states Saxony and Saxony-Anhalt. The region
belongs to the transition zone from oceanic to
continental climate with a mean annual temperature
of 8–9°C and a mean annual precipitation of 550–
650 mm. The geologic underground of the Dübener
Heide is dominated by pre-Weichsel glacial and
glaciofluvial sands, which are mostly covered by sandy
to loamy periglacial deposits of the late Weichsel. The
region is characterized by a comparably high homoge-
neity of the parent material with the exception of a few
and small terminal moraines, which were excluded
from the study. The predominant soil types are Eutric
and Distric Cambisols with small areas of Glossic
Podzo-Luvisols, Spodo-Dystric Cambisols and Orthic
Podzols (Kopp and Schwanecke 1997).

The results of the forest inventory show that the
main stand type is pure Scots pine (Pinus sylvestris,
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[L.]), partially with deciduous tree species understory
of European beech (Fagus sylvatica [L.]), White birch
(Betula pendula [Roth), and Sessile oak (Quercus
petrea [(Matt) Liebl.]) from artificial or natural
regeneration.

The site conditions and composition of ground
vegetation are impacted by past fly-ash deposition
along a regional gradient, reflecting the former
deposition zones. The test plots of this study were
arranged along this gradient (Fig. 1). To ensure that
fly-ash is the main reason for the differences in
susceptibility measurements, all plots have the same
soil type (Eutric Cambisol, i.e., “Nedlitzer Sand-
braunerde”) and the same stand type (80 to 90-year-
old Scots pine stands [with deciduous trees in
understory]).

2.2.1 Suitability Test of Magnetic Field Measurements

For testing the suitability of the field magnetic suscep-
tibility measurements, three sites were selected (Fig. 1),
where different deposition levels have been found in
earlier research (Klose and Makeschin 2005).

& Site Burgkemnitz is located in the deposition zone
I, 8 km east from former emitters, where a high
intensity of fly-ash deposition was recorded.

& Site Tornau is located in the deposition zone III,
18 km east from former emitters, where a low
intensity of fly-ash deposition was recorded.

& Site Pretzsch is located in deposition zone IV,
30 km east from former emitters, where no or
minimal deposition effects are assumed.

At the sites Burgkemnitz and Tornau, magnetic
susceptibility was measured with the KT-9 in spade
samples and in the remaining spade hole. The measure-
ments were carried out (1) for five depth levels (1, 2, 5,
10, and 20 cm) and (2) horizon-wise (Oe, Oa, A(h), B
(w), measurements in the center of each horizon). Each
measurement was repeated three times. The Oi horizon
was excluded from the measurements because several
pretests had shown that magnetic susceptibility cannot
be detected in this horizon (see e.g., Olson et al. 2004),
since the Oi horizon formed after fly-ash deposition.
For the B(w) horizon, the maximum depth was 20 cm.
The C horizon was not sampled.

At the sites Burgkemnitz and Tornau, the sampling
was arranged along a 10-m-long transect, and the
samples were taken in a horizontal distance of ∼0.5 m
(see Fig. 2a for design of test plots).

At the site Pretzsch, focus was laid on a horizon-
wise measurement following the above described
design. The experiences from the sites Burgkemnitz

a) suitability test sites b) verifying test sites
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Fig. 2 a Sampling design
for the suitability test sites.
b Sampling design for test
site for verification of the
deposition zones
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and Tornau indicated a higher accuracy of this
approach. At the site Pretzsch, the sampling was
arranged along a longitudinal transect of 110 m. The
samples were taken in a horizontal distance of 5 m
(Fig. 2a). Thus, a clearer picture of the natural
variation of humus properties (texture, structure) for
the selected soil type and the corresponding magnetic
signal was expected.

2.2.2 Test of the Verification of the Former Deposition
Gradient with Magnetic Susceptibility

For testing if the historically documented deposition
gradient and the deposition zones can be detected by
magnetic field measurements, four test sites were
selected. Each of these sites represents a specific
deposition zone according to Lux and Stein (1977)
(Fig. 1). At each of the test sites (site V1–4), three test
plots were installed representing typical situations
within the stand, (1) Scots pine without understory,
(2) Scots pine with European beech understory, and
(3) Scots pine with other hardwood (oak, birch)
understory. The plot characteristics refer to the local
variability of the humus properties depending on
stand composition and structure. At each of the three
test plots per site, samples were taken in the center of
the plot and in four satellite positions in 1 m distance
around the plot center (see Fig. 2b for details).
Magnetic susceptibility was measured horizon-wise
with the KT-9 at the spade samples and in the
remaining spade hole following the above described
design. Each measurement was repeated three times.
Table 1 gives an overview on the observed thickness
of the horizons Oe, Oa, and A(h) at all test sites.

3 Results

3.1 Suitability Test

It was possible to detect three deposition zones,
represented by the sites Burgkemnitz (zone I), Tornau
(zone III), and Pretzsch (zone IV), by the field
measurement technique for magnetic susceptibility.
Table 2 resumes the results for the depth and
horizon-wise measurements. For the total sample size
(n=132, horizon or depth level) mean value, standard
deviation, and coefficient of variation were calculated.
Compared to the sites Tornau (zone III) and Pretzsch
(zone IV), the means of site Burgkemnitz (zone I) are
nearly three times higher for the topsoil (depth <5 cm,
Oe and Oa horizons). For the lower solum (depth 10
and 20 cm), the means are still two times higher. A
continuous peak of magnetic susceptibility in the Oa
horizon occurs despite the higher natural variability of
humus properties. A similar peak could not be detected
by the depth-wise measurements at the sites Burgkem-
nitz and Tornau. All three sites showed a similar level
of magnetic susceptibility for the B horizons.

Standard deviation and coefficient of variation were
used as indicators for the variability of the magnetic
susceptibility for the respective zone (Table 2, Figs. 3
and 4). The mean and standard deviation for the depth
levels 1–10 cm and for the humus layers Oe and Oa is
about two to four times higher compared to the depth
20 cm and the mineral horizons A(h) and B(w). The
coefficient of variation shows that the variability tend
to be highest for the upper top soil (depth 1 cm, Oe
horizon) and the solum (depth 20 cm, B(w) horizon).
However, the coefficient of variation is comparably

Table 1 Overview on the range of thicknesses for the horizons Oe, Oa, and A(h) for all test sites

Horizon Oe + Oa (cm) Oe (cm) Oa (cm) A(h) (cm) Design Spade samples (n)

Suitability test Burgkemnitz (zone I), Tornau (zone III), Pretzsch (zone IV)
Burgkemnitz 5–15 2–6 3–9 5–8 10 m long transect, spade samples

each 0.5 m
22

Tornau 4–9 2–4 2–5 4–5
Pretzsch 4–10 2–4 2–6 3–6 110 m long transect, spade samples

each 5 m

Test along the gradient (V1 = zone I, V2 = zone II, V3 = zone III, V4 = zone IV)
V1 4–9 2–4 2–5 4.5–6 3 plots/site, 5 spade samples

(1 center, 4 satellite)/plot
15

V2 6.5–12 2.5–5 4–7 3–5
V3 4–12 2–5 2–7 3–4
V4 4–6 2–2.5 2–3.5 2–3
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Box plots for depth level wise measurements at Burgkemnitz (zone I) and Tornau (zone III)
displayed: median, box: 25 - 75 %, whisker: without outliers

 1 cm  2 cm  5 cm  10 cm  20 cm

Burgkemnitz Tornau

site

0

20

40

60

80

100

120

140

160

180

200

220

240

260

m
ag

ne
tic

 s
us

ce
pt

ib
ili

ty
 S

I-
U

ni
ts

 1
0 

-5

Fig. 3 Box plots for depth
level-wise measurements at
site Burgkemnitz (zone I)
and site Tornau (zone III),
displayed is median, box
(25–75%), and whisker
without outliers

Table 2 Mean value (x), standard deviation (σ), and coefficient of variation (vc [%]) for the suitability test sites

Site Burgkemnitz (zone I) Tornau (zone III) Pretzsch (zone IV)

Sample size n n=132a per horizon and depth levelb N=132c/horizonb

�x σ vc [%]
�x σ vc [%]

�x σ vc [%]

Depth (cm)
1 124.8 57.9 46.4 45.8 22.3 48.7 – – –
2 156.0 46.9 30.0 64.6 22.2 34.3 – – –
5 154.0 49.3 32.0 63.9 26.8 42.0 – – –
10 88.0 42.9 48.7 39.9 18.1 45.3 – – –
20 40.2 24.9 61.9 22.1 11.1 50.1 – – –
Horizons
Oe 126.4 42.7 33.8 47.7 16.5 34.6 37.6 12.4 33.1
Oa 182.1 50.6 27.8 78.0 21.1 27.1 69.7 13.6 19.5
A(h) 66.0 32.2 48.8 48.1 15.7 32.6 37.1 13.9 37.6
B(w) 28.5 11.1 38.8 20.8 8.1 39.2 19.1 9.8 51.0

a Burgkemnitz/Tornau: 10 m transect, measurements each 0.5 m, measurement in spade sample and at spade probe, three repetitions
per measurement = sample size of 132/horizon or depth level
b ntotal/site: depth level-wise measurements, 660, horizon-wise measurement, 528
c Pretzsch: 110 m transect, measurements each 5 m, measurement in spade hole and at spade sample, three repetitions per measurement =
sample size of 132/horizon
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invariable along the gradient from zone I (Burgkemnitz)
to zone IV (Pretzsch), but most times, it is higher for the
lower soil. The reasons might be various. For the upper
top soil, a high likeliness of disturbance by bioturbation
or other turbation processes is assumed, forming a
highly variable mixture of younger and older material.
For the lower soil, a varying influence of fly-ash
deposited at the surface and later vertically transported
into the lower soil to a various extent is assumed.

Regarding the sites Burgkemnitz and Tornau, the
coefficient of variation seems to be higher at depth
level-wise measurements compared to the horizon-
wise measurement, which was the reason for the
horizon-wise measurement of the magnetic suscepti-
bility at the site Pretzsch. Regarding the coefficient of
variation at the horizon-wise measurements for all
sites, there is no clear trend along the gradient in
contrast to mean and standard deviation. On average,
the variance is approximately 30–40% of the mean.

At site Pretzsch, the correlation between the thick-
ness of the humus layer2 and magnetic susceptibility is

calculated. The magnetic susceptibilities of the Oe
horizon were slightly negatively correlated with humus
thickness (r=−0.19) with a coefficient of determination
of r2=0.04 (ρ<0.001). The indicative value of the Oe
horizon is rather low. However, the values of the Oa
horizon are positively correlated (r=0.46) with a
coefficient of determination of r2=0.21 (ρ<0.001).
Consequently, the horizon Oa seems to have a high
indicative value for the former fly-ash deposition,
which is in accordance with results from Klose et al.
(2001) and Koch et al. (2002).

3.2 Test of the Verification of the Former Deposition
Gradient with Magnetic Susceptibility

The results from the measurements of magnetic
susceptibility were the basis for the test design along
the historically documented deposition gradient
according to Lux and Stein (1977). Since a lower
variation coefficient was obtained from the horizon-
wise measurement, the measurements of magnetic
susceptibility focussed on the horizons Oe, Oa, A(h),
and B(w).

The means (Table 3 and Fig. 5) of sites represent-
ing zones I, III, and IV show a comparable level
within the suitability test. Standard deviation and

Box plots for horizon wise measurements at Burgkemnitz (zone I), Tornau (zone III) and Pretzsch
(zone IV)

displayed: median, box: 25 - 75 %, whisker: without outliers
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Fig. 4 Box plots for hori-
zon-wise measurements at
all three sites (Burgkemnitz,
zone I; Tornau, zone III; and
Pretzsch, zone IV), dis-
played is median, box (25–
75%), and whisker without
outliers

2 In the test region, a high spatial variability of humus layer
thickness was observed in dependence from stand characteristics
and local topography. “Thickness” is here used as a proxy indicator
for humus compactness and consistency: very thick humus
horizons in the test region are often related to a higher bulk density.
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coefficient of variation tend to be lower compared to
the suitability test. This might be a result of the
different test designs between the two test series,
although the verification test intended to cover the
spatial variability of the humus under different stand
situations. The coefficients of variation are highest in
zone I (site V1) and indicate again that the spatial
variation of magnetic susceptibility values near to the
former emitters is higher than in more distant zones.

The mean values of magnetic susceptibility and the
related confidence intervals decrease from zone I (site

V1) to zone IV (site V4; Fig. 5 and Table 3). The Oa
horizon shows—with exception of site V3—again a
distinct peak of magnetic susceptibility. At site V3,
the peak is located in the Oe horizon. Hydromorphic
soil characteristics at this site indicate a slowing down
of the humus turnover, which might have led to a
longer conservation of the magnetic ash particles in
the Oe.

Comparing the means of the three test plots per test
site, which were situated under different stand
situations with and without understory, slightly higher

Table 3 Mean value x), standard deviation (σ) and coefficient of variation (vc [%]) for the verification test sites

Site Site V1 (zone I) Site V2 (zone II) Site V3 (zone III) Site V4 (zone IV)

Sample size n n=90a/horizonb

Horizons
�x σ vc [%]

�x σ vc [%]
�x σ vc [%] x σ vc [%]

Oe 88.8 42.2 47.6 81.2 9.8 12.0 73.7 24.1 32.8 48.2 17.1 35.4
Oa 151.1 24.6 16.3 98.0 18.5 18.9 58.2 8.9 15.3 75.4 6.7 8.8
A(h) 61.5 33.9 55.0 42.3 7.1 16.9 17.6 4.4 24.7 48.2 6.9 14.4
B(w) 37.7 37.0 98.2 18.8 6.5 34.6 18.4 6.3 34.3 31.8 5.9 18.7

a Three plots per stand, five measuring points per plot, measuring at spade hole and spade sample, three repetitions/measurement =
sample size of 90/horizon
b ntotal per site, 360

Mean value plots for the sites V1 (zone I), V2 (zone II), V3 (zone III) and V4 (zone IV)

displayed: mean value, whisker: mean value +/- 95 % confidence interval

 Oe  Oa  A(h)  B(v)

V1 V2 V3 V4
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-60

-40

-20

0

20

40

60

80

100

120

140

160

180

Fig. 5 Mean values and
confidence intervals of
magnetic susceptibility
measurements for the veri-
fication sites
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susceptibility values could be detected at all four test
sites under European beech understory, whereas under
pure Scots pine or Scots pine with other hardwood
understory, magnetic susceptibility ranges on a com-
parable level. These differences could not be statisti-
cally verified. The influence of stand composition will
be one focus of future investigations.

4 Discussion and Conclusions

The high fly-ash deposition for the Dübener Heide
ended more than 20 years ago. But it still results in
elevated magnetic susceptibilities, which are highest
close (up to 8 km) to former emitters and decreased
with increasing distance from the emitters. These
results are in accordance with studies by Klose et al.
(2001, 2002), Klose and Makeschin (2005), and Koch
et al. (2002). The variability of the measured values
expressed by standard deviation and coefficient of
variation tends also to decrease with increasing
distance from the former emitters (Table 3). However,
the results support rather a differentiation into an area
with clearly detectable fly-ash input (former zone I)
and an area with lesser likelihood of fly-ash deposi-
tion (former zone II, III and IV). The high variability
of the measured values at zone I and the trend of
decreasing variability along the former deposition
indicate that the use of indicators for statistical
transfer should be taken into consideration for spatial
transfer (regionalization) of the results.

The horizon-wise measurements resulted in lowest
standard deviation and coefficient of variation. The
Oa horizon showed—with exception of site V3—a
peak of magnetic susceptibility. Its indicative value
was also reported in preliminary laboratory studies
and could be confirmed by our field measurements
(Klose et al. 2002; Koch et al. 2002). However, this
might change with ongoing humus turnover and site
development and will be subject of further inves-
tigations (Olson et al. 2004).

The two different test designs of the suitability and
the verification test—longitudinal transect and plot-wise
investigations—delivered comparable susceptibility
values. The variability of the values expressed by
standard deviation and coefficient of variation is lower
at the plot-wise measurements in the verification test.
Both designs supported a differentiation of the test sites
into an area with clearly detectable fly-ash input (zone I)

and a larger area with constricted detectability of fly-ash
deposition (zone II, III and IV). For the development of
an optimal test design, which includes (1) the spatial
variability of fly-ash deposition in dependence from the
distance to the emitters and (2) the additional influence
of stand and soil properties on the humus layer and thus
on the measured susceptibility values, a broader
sampling basis and a statistically sound area-related
approach are requested as basis for a spatial transfer (up-
scaling) model in order to get better information for a
deposition zone-adapted forest management. A regular
grid-based sampling with different grid sizes will
therefore be tested for the Dübener Heide in the future.

Compared to the laboratory measurements of
Klose et al. (2001, 2002) and Koch et al. (2002),
which referred to mass susceptibility, a major weak-
ness of the field measurements with the KT 9 is the
use of volume susceptibility. Furthermore, the pene-
tration depth of the sensor measurements is dependent
from the measured material and ranges from 0.5 to
2 cm. Therefore, an extrapolation of the quantity of
magnetic particles in the sampled sites based on the
measured susceptibility values is not possible. How-
ever, it is sufficient for a differentiation of the test sites
along the regional deposition gradient. For referencing
the volume susceptibility to mass susceptibility, accom-
panying laboratory measurements are planned. They
will support a qualitative estimation of the actual fly-ash
storage and in the consequence also an estimation of the
potential heavy metal storage at the test sites as
regionalization and planning basis (e.g., Strzyszcz and
Magiera et al. 2004; Wang and Qin 2005).

Additionally, comparative measurements in regions
with similar geological conditions and forest vegeta-
tion but without fly-ash deposition are needed to
show the natural level of susceptibility as reference
for the test region. These reference values are
necessary as correction basis for an intended extrap-
olation of the fly-ash storage in forest soils on basis of
the field measurements of magnetic susceptibility.

In summary, the study supports the conclusion that
(1) magnetic susceptibility field measurements are
suitable for detecting fly-ash from former industrial
deposition in the study area. (2) Noticeable differ-
ences to the deposition zones defined by Lux and
Stein (1977) were found with the tested approach. In
contrast to their findings based on visual forest health
assessment, a spatially explicit differentiation could
only be concluded for a zone with clearly detectable
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fly-ash deposition and a larger zone where the
likelihood of fly-ash deposition is lower.
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Abstract The article presents results of a case study
in northeastern Germany, where magnetic susceptibil-
ity assessment was carried out at grid-wise field
measurements. The measurements were clustered into
three different depth levels, which represent the
humus layer, the transition zone between humus layer
and mineral horizon, and the mineral horizon. Taking
these three depth levels, a multiple regression-based
regionalization approach was applied, testing and
using additional environmental parameters derived
from geology, topography, and stand type with the
aim to develop a comprehensive model for spatial
variability of magnetic susceptibility. Spatial variation
of magnetic susceptibility was predicted with a high
precision by the multiple linear regression models. A
slightly differing set of model parameters was
selected for the single depth levels. In tendency,
magnetic susceptibility values in depth level 6–10 cm
were best explained by the distance to Bitterfeld and
by soil properties. In depth level 11–15 cm, variables

which describe the orographic conditions and stand
properties gain in importance. In depth level 21–
25 cm, variables indicating soil and site properties
disappear completely. Here, aspect and land surface
characteristics play a major role together with stand
properties. A spatial stratification of the model for a
distance of up to 25 km to the former emitters
provided a further improvement of the model quality
considering the prediction of small-scale variations of
magnetic susceptibility.

Keywords Fly ash .Magnetic susceptibility
assessment . Regionalization of magnetic
susceptibility .Multiple regression . Stepwise model
parameter selection

1 Introduction

For supporting forest ecosystem management deci-
sions, mostly information on stand parameters and on
geologically determined site properties is used (Brand
1997; Slocombe 1998; Hickey et al. 2005). In contrast,
information on variable impact factors such as depo-
sition, which are also major drivers for site properties
and vegetation development, is rarely considered,
though information from environmental monitoring
(levels I and II) is available (Hansen et al. 2007; Fürst
et al. 2007b). A major reason might be that information
from permanent monitoring is only available on plot
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level with a high temporal resolution but with
missing spatial transfer. This complicates the consid-
eration of deposition loads in regional or manage-
ment planning unit-oriented decisions (Riley 2001;
Zirlewagen et al. 2006, 2007). A further complica-
tion arises by the fact that many agents are deposed
in combination but with heterogeneous relevance
for short-, medium-, and long-term management
decisions.

As an example, fly ash from combustion of fossil
fuels is known to be stored in forest sites for many
decades (Klose and Makeschin 2003, 2005; Fürst et
al. 2007a, 2009). Its average geochemical composi-
tion comprising mostly sulfur oxides, metal oxides,
and black carbon is variable in dependence from the
origin of combusted material (Magiera and Strzyszcz
2000; Klose and Makeschin 2003). Fly ash deposition
provokes a long-term widening of the C/N and C/P
relation in the affected humus layers. Even after total
stop of fly ash deposition, it can take more than one
century until increased pH values and base saturation
reach values, which reflect the original natural
potential (Fritz and Makeschin 2007). Fly ash
accumulation in the humus layers improves the
nutrient supply at poor sites with consequences for
tree species composition and productivity of the forest
stands (Fürst et al. 2006; Fürst and Makeschin 2006).
On the other hand, the Al, Fe, and heavy metal
content in forest ecosystems are raised. This provokes
a disturbance of litter decomposition and leads to the
development of adverse humus forms, which still can
be found many years after an active fly ash deposition
(Strzyszcz and Magiera 1998; Magiera et al. 2002;
Klose et al. 2003). In the long run, the deposed heavy
metals can be mobilized by re-acidification of the
soils (Koch et al. 2002; Klose et al. 2003). Recently,
black carbon is discussed to play a role in hindering
the organic matter decomposition (Goldberg 1985;
Klose et al. 2003).

To integrate the multiple effects of such a single
impact factor “fly ash deposition” in management
decisions, a combination of information frommonitoring
and grid-wise measurement of fast assessable character-
istics could be used to transfer the information to the
right scale as proposed, e.g., by Morvan et al. (2008).

In a number of studies, the suitability of the indicator
magnetic susceptibility for obtaining proxy information
on fly ash deposition was proved (Strzyszcz and
Magiera 1998; Magiera and Strzyszcz 2000; Schibler

et al. 2002; Grimley et al. 2004; Boyko et al. 2004;
Magiera et al. 2007; Magiera and Zawadzki 2007).
Magnetic susceptibility assessment is based on the
detection of magnetic Fe-oxides such as magnetite
(Fe3O4) and maghemite (γ-Fe2O3), which are enriched
in fly ash (Strzyszcz et al. 1996; Magiera and
Strzyszcz 2000). The magnetic signal can be correlat-
ed with Fe, Al, Mn, and heavy metals (Strzyszcz
1999; Goluchowska 2001; Wang and Qin 2005; Lu
and Bai 2006; Magiera and Zawadzki 2007; Zawadzki
et al. 2009) and to some extent also with base cations
and black carbon. A restriction is that these correla-
tions cannot easily be transferred between different
regions as they depend from geographical origin and
type of the combustion material. Also, the land-use
type and even the forest type itself can impact the
correlation (Strzyszcz and Magiera 1998; Fialova et al.
2006; Magiera and Zawadzki 2007). In consequence,
the impact of different environmental parameters on the
magnetic signal should be considered in the regionali-
zation approach.

The article presents a case study in northeastern
Germany, where magnetic susceptibility was assessed
at grid-wise field measurements. The aim of the study
was to develop a comprehensive spatial model of
former fly ash depositions by using magnetic suscep-
tibility as proxy indicator. The spatial variability of
magnetic susceptibility was modeled, testing and
using additional environmental parameters derived
from geology, topography, and stand type. To im-
prove the model precision with regard to small-scale
variations of magnetic susceptibility, a spatial strati-
fication of the model was tested. Finally, the stratified
and the global models were cross-validated to test the
model quality.

2 Material and Methods

2.1 Study Area

The case study was carried out in a regionally most
important forested area in the eastern neighborhood of
the industrial triangle Leipzig–Halle–Bitterfeld, the so
called Dübener Heide (Fig. 1). The Dübener Heide
was impacted by fly ash deposition from five large
scale power plants mainly in Bitterfeld and Zschorne-
witz and a number of smaller fly ash emission sources
in the whole industrial triangle. In the mid of the
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1960s, the period of the highest emission activity, the
average fly ash emission amounted to estimative
800 tons per day (Lux 1965), i.e., approximately
0.3 Mio.tons per year. Starting at the nearest power
plant in Zschornewitz, Dübener Heide is situated in a
horizontal distance of 8 km (western boundary)–
50 km (eastern boundary) to the emitters. The area is
known to be one of the most polluted forest
ecosystems in Germany with more than 100 years
history of industrial deposition: based on the available
monitoring information, the deposition in the period
1910–2000 is estimated to amount to approximately
18 Mio.tons of fly ash and 12 Mio.tons of SO2 (Fürst
et al. 2007a, 2009). When extrapolating the above
mentioned emission quantity of 0.3 Mio.tons of fly
ash per year to a period of about 100 years, the real
deposition amount could be even higher. However,
respective data were hardly published and were
partially lost after the German reunification.

An intensive fly ash impact on forest health and
forest soil characteristics was observed since the
1960s up to a horizontal distance of 25–30 km to
the emitters with decreasing intensity of the fly ash
impact from the western to the eastern part of
Dübener Heide. From the 1980s on, fly ash filters
were introduced, and after the 1990s, the emitters
were either closed or technically upgraded. In conse-
quence, fly ash deposition plays no longer a role.
However, the above-mentioned distance-dependent
fly ash deposition gradient allowed for testing the
spatial variation and performance of the proxy

indicator magnetic susceptibility under more or less
homogeneous environmental conditions (Fürst et al.
2007a, 2009).

2.2 Magnetic Susceptibility Measurements

Magnetic susceptibility field assessment was con-
ducted in a 4×4-km2 grid (38 plots) and a 1×1-km2

grid (72 plots). Both grids were overlapping (nested
approach). The 4×4-km2 basic grid allowed for
linking the magnetic susceptibility measurements to
chemical soil data from level I monitoring. The 1×1-
km2 grid built on the basic grid. For the presented
article, the 110 plots are jointly analyzed. The grid-
wise measurements were done to map with sufficient-
ly high resolution the spatial variation of magnetic
susceptibility and to test if the formerly observed
distance-dependent fly ash deposition gradient can be
validated. Additional magnetic susceptibility labora-
tory measurements were carried out to adjust and
correct the field assessments.

Magnetic susceptibility was measured with the
MS2 meter susceptibility system of Bartington Instru-
ments. The system is developed for detecting very
low quantities of magnetic Fe-oxides in compact
(rocks) or loose substrates (mineral soil, humus layer).
The susceptibility meter has a sensitivity of 0.1−1×
10−5 SI units and can be used in a single readout
mode or transfers the measured values to a PC, where
the data can be processed with the software Multisus
(© Bartington). The Multisus program uses the

Fig. 1 Localization of the
study area
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Windows 3.1 or Windows 95/NT interface to record
the magnetic susceptibility measurements of different
field assessment sensors. The program allows for
saving as file the results from a batch of individual
samples or from a core. For single samples, the results
can be volume or mass specific, and provision is
made for automatic increments of depth for core
measurements (source: Operation Manual of Multisus
2.0, Bartington Instruments Ltd.).

The MS2 meter susceptibility system comprises a
portable measuring instrument, the MS2 meter, and a
variety of sensors. The meter displays the magnetic
susceptibility value of the tested substrates when these
are brought within the influence of one of the sensors,
which are each designed for a specific application and
sample type (source: Operation Manual of the MS2
system, Bartington Instruments Ltd.).

At the field assessment, volume magnetic suscep-
tibility was measured in 30-cm-deep boreholes with
the MS2H down-hole-probe sensor. The MS2H is a
subsurface probe for profiling the magnetic suscepti-

bility of strata in 25-mm-nominal-diameter auger
holes. Strata with a thickness down to 15 mm can
be discriminated. The starting point 1 of the measure-
ments was defined as first measurement after remov-
ing the litter (Oi). The Oi was removed, as a prestudy
has shown that fly ash particles could never be
detected in this layer. Magnetic susceptibility was
measured centimeter wise at five bore holes per test
plot (i.e., N=150/plot). If a soil profile was opened up
(e.g., in the frame of the second level I assessment),
the bore holes were installed along the head sides of
the profiles in a distance of 0.5 m to the profile wall
and a distance of 0.5 m between the single bore holes.
In the case that no profile was opened up, four bore
holes were oriented around one central bore hole with
a radius of 0.5 m.

The described design with five repetitions/mea-
surement plot was chosen to represent as best as
possible small-scale spatial variations in the humus
layer thickness (Oe, Oa) and the border zone to the
mineral soil (A(h)), which occur often in Dübener

Fig. 2 Test design
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Heide due to extensive wild boar activities. Figure 2
illustrates the test design.

2.3 Regionalization Approach

For the regionalization of magnetic susceptibility,
mean values of the measurements at three depth
levels were used: Depth level 6–10 cm represents the
zone in the humus layer, where in average, the highest
magnetic susceptibility values were observed. In this
zone, biased measurements which occur at the
interface between airspace and humus layer due to
technical particularities of the sensor can be excluded.
Also, the likelihood of an impact of admixed particles
from the mineral soil is low. Depth level 11–15 cm is
situated in the transition zone between humus layer
and upper mineral horizon, which is characterized by
great local variation of the content of humus particles
in mineral soil and vice versa due to bioturbation. In
most cases, an absolutely clear and sharp border does
not exist in the model area. In this zone, increased
magnetic susceptibility values are still observed.
Depth level 21–25 cm represents the local back-
ground value spectrum for the mineral horizon as
reference for the height and indicative value of the
magnetic susceptibility signal. At the same time, a
possible falsification of the measurements due to
organic material, which can drop down into the bore
hole when taking out the auger, can more or less be
excluded in this zone.

The three above-described depth levels are used in
the context of the level I assessment and thus offer a
good interface to a respective appraisal of soil
chemical characteristics. In a horizon-oriented ap-
proach, a correlation of the magnetic susceptibility
values with chemical values would not have been
possible. Another reason for choosing this depth level
oriented approach is the applied magnetic suscepti-
bility assessment approach (MS2H down-hole-probe
sensor). The data were assessed in 1-cm-depth level
resolution in auger holes, and a direct assignment
from the measured value to a humus or soil horizon
was not always possible as soil profiles were not
opened up at each of the 110 plots. The assignment of
the above-described three depth levels to whether
humus horizon, transition zone, or mineral soil was
based on the existent soil profile descriptions, where
with high accordance humus layers, thickness was
almost never smaller than 10 cm and where the

transition zone (11–15 cm) includes the regionally
typical variability of sometimes even thicker humus
layers.

The aim of the regionalization was to explain the
spatial variation of the response variable magnetic
susceptibility by auxiliary variables, which are char-
acterized by a pertinent correlation with the response
variable (Zirlewagen and von Wilpert 2004) and
which are available in digital form. Examples for
auxiliary variables are the horizontal distance to the
former emitters, relief attributes, geological attributes
(substrate/soil type), and stand attributes. The hori-
zontal distance to the emitters, e.g., explains gradual
differences in the magnetic signal along the deposi-
tion gradient. Topographical height and exposure give
information on deposition intensity. Digital relief
parameters, which describe convex or concave orog-
raphy, can explain hydrological soil and site proper-
ties and support also the prediction of the response
variable magnetic susceptibility (Zirlewagen and von
Wilpert 2004). The soil type can give information on
the water regime and matter dynamics and thus
indicates how long fly ash is stored in the humus

Fig. 3 Flowchart of the iterative modeling procedure
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layers. Stand properties such as tree species compo-
sition include information on how intensive dust
particles were combed out and—in coherence with
the soil type—which humus dynamics can be
expected. A preselection of auxiliary variables was
based on experiences with the regionalization of soil
chemical values in the federal state of Saxony
(Zirlewagen et al. 2006, 2007).

For Dübener Heide, information from the digital
elevation model (DEM; resolution 25 m) with the
topographic position indices (TPI) grids TPI 500, TPI
1000, and TPI 2000 from the digital soil map
(1:50,000), from Corine Landcover 1990 and 2000
and downscaled climate data from 1971–2000 were
used. Based on the DEM, geomorphometric attrib-
utes, such as aspect, slope, and vertical, horizontal,
and tangential curvature, were calculated from neigh-
borhood relationships in geographic information
system (GIS), while soil type attributes and hydro-
logical properties could be taken directly from the
digital soil map. Forest stand attributes were taken
from the Corine Landcover 1990 and 2000, as digital
maps for a comparable time frame could not be
provided by forest inventory.

The selection of the variables and the formulation
of the spatial model were carried out as combination
of a multiple regression analysis and geostatistical
analysis in six substeps (Zirlewagen and von Wilpert
2004; Zirlewagen et al. 2007). (a) The measurement

results were processed and prepared for statistical
analysis including a digital relief analysis. (b) An
explorative data analysis was carried out including a
control of the statistical distribution of the data with a
set of statistical analysis methods (e.g., descriptive
statistics, scatter plots, variograms, moving window
statistics, etc.). Potential auxiliary variables were
defined and their ranges were checked. The auxiliary
variables with the highest predictive value were
identified and integrated iteratively into the model.
The number of model parameters was limited to
maximally nine to avoid an overparameterization. (c)
The formulation of the model itself was based on
stepwise multiple linear regressions using the REG
procedure of the SAS statistical package Release
9.2. In an iterative process, possible impact factors
on the response variable were formulated and
tested (Backhaus et al. 2000; Zirlewagen and von
Wilpert 2004; see Fig. 3). An optimization of the
model and a test of the model quality were done by
selected statistical characteristics such as root mean
square error (RMSE), R2 and partial R2 of the
auxiliary variables, and numerous graphical analyses
(residual plots, variogram plots, etc.). If necessary, a
log-transformation of the data was carried out to
improve the model quality (i.e., to achieve an
approximate Gaussian distribution of the residuals).
Variogram analyses of the residuals gave no indica-
tion of spatial dependence, which would have been

Fig. 4 Trend of magnetic
susceptibility from 1 to
30 cm (mean values,
whiskers 0.95 confidence
intervals)
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necessary for a kriging of residuals. Based on the
intermediate results (e.g., spatial variation revealed
by moving window statistics), a submodel was built
for the spatial stratum up to 25 km distance to the
emitters, which experienced a higher deposition
impact than the rest of Dübener Heide. The predic-
tion precision of this stratified model approach was
compared with the respective characteristics of the
global model without stratification. (d) To quantify
the quality of the spatial prediction, a k-fold cross-
validation with k=5 was carried out with the SAS
9.2 GMLSELECT procedure. (e) Finally, the regres-
sion equations were imported into ArcGIS, and the
spatial distribution of magnetic susceptibility in
different depth levels was mapped and visualized
on the basis of these equations.

Figure 3 resumes the described procedure of an
iterative model formulation according to Zirlewagen
and von Wilpert (2004).

3 Results

3.1 Magnetic Susceptibility Values

Magnetic susceptibility (volume susceptibility) values
in Dübener Heide ranged from 0 up to 565 SI units×
10−5. Figure 4 shows the trend of magnetic suscep-
tibility over depth (mean values, whiskers 0.95
confidence interval). The highest mean values were
achieved in a depth of 8 and 9 cm. The highest
variability of the measured values was observed in a
depth from 10 to 12 cm. The lowest mean values were
found in the upper humus layer from 1 to 4 cm depth
and in the mineral horizon from 22 cm depth on.
Going along with the lower absolute values, also the
variability of the measured values was lower in these
two depth levels. Table 1 gives an overview on the
mean, minimum, and maximum values as well as on
standard deviation and coefficient of variation of the
measurement values in the three depth levels selected
for regionalization. In depth level 6–10 cm, the
highest mean values were observed, but standard
deviation and coefficient of variation were lower
compared to depth level 11–15 cm. Here, the value
range is the highest and the statistical characteristics
express the heterogeneity of this depth level. In depth
level 21–25 cm, the low standard deviation of the
measured values stands for a lower variability of the

observed values, despite some outliers, such as the
observed maximum value, which lead to a coefficient
of variation, which is higher than the one observed in
depth level 6–10 cm. The findings support the
selection of the three depth levels for the regionaliza-
tion of magnetic susceptibility.

Considering the spatial variability of magnetic
susceptibility, the highest single values were observed
at the southwestern part of Dübener Heide, which was
situated the nearest and in the major regional wind
direction to the former power plants. Here, however,
also the broadest variability of the measured values
was observed, which is supported by previous
findings (Fürst et al. 2009). The lowest values and
the lowest variability were observed in the northeast-
ern part of Dübener Heide, which is situated farthest
from the power plants.

3.2 Selection of the Model Parameters (Auxiliary
Variables)

A total number of 21 auxiliary variables resulted from
the stepwise selection process, which includes a
global modeling approach for the whole area of
Dübener Heide and a stratified modeling approach
for the near distance zone up to 25 km. Table 2 gives
an overview on the selected auxiliary variables, their
type, and a short explanation of their meaning.

Table 3 gives an overview on the statistical
characteristics of the different variables related to the
depth levels. It shows the results for the global model
and the respective model validation, gives the results
for the stratified model, and contains the results of the
respective model validation.

Table 1 Overview on the mean values xð Þ, minimum,
maximum values, standard deviation (σ), and coefficient of
variation (vc (%)) of volume magnetic susceptibility (SI units×
10−5) for the depth levels 5–10, 11–16, and 21–25 cm

Depth level (cm) x Min Max σ vc (%)

6–10 45.54 1 338 33.00 72.46

11–15 32.43 0 565 42.52 131.13

21–25 15.42 0 279 17.04 110.55

The high values especially in the depth level 11–15 cm result
from regional fly ash deposition. Pure fly ash deposed directly
in the neighborhood of the regional power plants reaches
volume magnetic susceptibility values of up to 800 SI units×
10−5
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The application and explanatory value of each
variable varies for the different depth levels, going
along with the specific characteristics of each depth
level, and varies also between global model and
stratified model. The validation of the model
parameters helped to exclude depth level wise
variables, which do not contribute to a higher model
quality or to include additional variables. The
excluded and additionally included variables are
marked in italics, bold, and bold italics in Table 3.
Table 4 resumes the applicability and ranking of
the single variables for the validated global and

the validated stratified model and for each depth
level. The ranking of the explanatory value of the
variables was based on their partial R2 and their
significance.

Some variables, such as the logarithmic distance to
Bitterfeld (L-BITTERFELD-LOG) and the stream
power index (MFD-STRP), show for almost all depth
levels and for global and stratified model a high
explanatory value. In contrast to the logarithmic
distance to Bitterfeld as regionally most important
emitter, the logarithmic distance to Zschornewitz must
have been rejected. Neither for the global nor for the

Table 2 Auxiliary variables, which resulted from the step-wise selection process and were finally used for spatial modeling of
magnetic susceptibility

Auxiliary variables Type Description Indicative for

L-BITTERFELD-LOG Metric Logarithmic horizontal distance to the main
emitters in Bitterfeld

Distance to emitters

L-ZSCHORNEW-LOG Logarithmic horizontal distance to the main
emitters in Zschornewitz

MPV71-00 Mean precipitation in the vegetation period
from 1971 to 2000

Hydrological dynamics

PODSOL Podzol sites from the soil map 1:50,000
(surface area of the respective shape (0–100%))

Soil type, soil and site properties

SEMI-S Semiterrestrial sites (alluvial sites, gley sites,
and swamp sites from soil map 1:50,000,
surface area of the respective shape (0–100%))

SLOPE Inclination (in degrees) Orographic conditions: landscape
form and surface dynamics,
exposure

PRCURV Surface curvature

DIVCONV Divergence–convergence index

COS-ASP Divergence from western aspect
(cosinus transformation of the aspect)

MFD-STRP Stream power index (according to the
multiple-flow-direction algorithm)

BR-SLF Slope length factor (according to the
Braunschweig digital elevation
model algorithm)

MFD-TWI Topographic wetness index
(after the multiple-flow-direction algorithm)

SLOPEPOS10_5_6 Binary Slope position (lower slope/valley) derived
from TPI 1000

SLOPEPOS20_5_6 Slope position (lower slope/valley) derived
from TPI 2000

LFORM_4 Landform category—U-shaded valleys

LFORM_5 Landform category—plains

LFORM_10 Landform category—mountain tops, high ridges

LF-MTOP Landform category—mountain tops

CONIF1990 Coniferous forest type, Corine Landcover 1990 Vegetation properties/forest
stand propertiesMIXED1990 Mixed forest type, Corine Landcover 1990

MIXED2000 Mixed forest type, Corine Landcover 2000
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Table 3 Results of the stepwise selection of the auxiliary variables for the global model (total Dübener Heide) with differing
explanatory value of the single variables for the different depth levels, validation of the global model variables, selected variables for
the stratified model and statistical parameters for the depth levels, and validation of the variables for the stratified model

Variable name Depth levels (cm) Standardized estimate Partial R2 Significance

Global model

L-BITTERFELD-LOG 6–10 −0.6564 0.5491 <0.0001

11–15 −0.5861 0.4519 <0.0001

21–25 −0.2818 0.1385 0.0003

MPV71-00 6–10 – – –

11–15 – – –

21–25 0.1552 0.0276 0.0604

PODSOL 6–10 0.1867 0.0302 0.0027

11–15 0.1406 0.0194 0.250

21–25 – – –

PRCURV 6–10 −0.1382 0.0103 0.0186

11–15 – – –

21–25 – – –

COS-ASP 6–10 – – –

11–15 −0.1967 0.0220 0.0010

21–25 −0.2900 0.0594 0.0002

MFD-STRP 6–10 0.1812 0.0087 0.0036

11–15 0.4414 0.0277 <0.0001

21–25 0.2130 0.0138 0.0131

BR-SLF 6–10 – – –

11–15 −0.25893 0.0403 0.0013

21–25 −0.1753 0.0212 0.0370

MFD-TWI 6–10 – – –

11–15 −0.3338 0.0133 <0.0001

21–25 – – –

LFORM_4 6–10 – – –

11–15 – – –

21–25 −0.3428 0.0677 <0.0001

LFORM_5 6–10 0.1788 0.0147 0.0058

11–15 0.1806 0.0150 0.0139

21–25 – – –

LFORM_10 6–10 0.0945 0.0072 0.1110

11–15 0.1615 0.0262 0.0087

21–25 – – –

LF-MTOP 6–10 – – –

11–15 – – –

21–25 0.1933 0.0337 0.0129

CONIF1990 6–10 – – –

11–15 – – –

21–25 −0.2606 0.0612 0.0004

MIXED2000 6–10 0.0881 0.0075 0.1183

11–15 0.1024 0.0100 0.0747

21–25 – – –

Table 3 Results of the stepwise selection of the auxiliary variables
for the global model (total Dübener Heide) with differing
explanatory value of the single variables for the different depth

levels, validation of the global model variables, selected variables
for the stratified model and statistical parameters for the depth
levels, and validation of the variables for the stratified model
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Table 3 (continued)

Variable name Depth levels (cm) Standardized estimate Partial R2 Significance

Global model validation

L-BITTERFELD-LOG 6–10 −0.6618 0.5491 <0.0001

11–15 −0.6488 0.4519 <0.0001

21–25 −0.2372 0.1385 0.0018

MPV71-00 6–10 – – –

11–15 – – –

21–25 0.1552 0.0276 0.0604

PODSOL 6–10 0.1888 0.0302 0.0025

11–15 – – –

21–25 – – –

PRCURV 6–10 −0.1359 0.0153 0.0213

11–15 0.1180 0.0122 0.0583

21–25 – – –

COS-ASP 6–10 – – –

11–15 −0.1793 0.0220 0.0029

21–25 −0.2815 0.0594 0.0003

MFD-STRP 6–10 0.1684 0.0142 0.0066

11–15 0.4469 0.0277 <0.0001

21–25 0.2685 0.0234 0.0017

BR-SLF 6–10 – – –

11–15 −0.3175 0.0456 0.0002

21–25 −0.2215 0.0363 0.0080

MFD-TWI 6–10 – – –

11–15 −0.3681 0.0117 <0.0001

21–25 – – –

LFORM_4 6–10 – – –

11–15 – – –

21–25 −0.3330 0.0677 <0.0001

LFORM_5 6–10 0.1636 0.0042 0.0110

11–15 0.1535 0.0145 0.0399

21–25 – – –

LFORM_10 6–10 0.0907 0.0072 0.1277

11–15 0.1623 0.0262 0.0088

21–25 – – –

LF-MTOP 6–10 – – –

11–15 – – –

21–25 – – –

CONIF1990 6–10 – – –

11–15 – – –

21–25 −0.2768 0.0612 0.0002

MIXED2000 6–10 – – –

11–15 0.1003 0.00960 0.0826

21–25 – – –
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Table 3 (continued)

Variable name Depth levels (cm) Standardized estimate Partial R2 Significance

Stratified model

L-BITTERFELD-LOG 6–10 −0.5123 0.4090 <0.0001

11–15 −0.5729 0.2901 <0.0001

21–25 −0.4180 0.2019 <0.0001

L-ZSCHORNEW-LOG 6–10 −0.1764 0.0176 0.0813

11–15 – – –

21–25 – – –

MPV71-00 6–10 – – –

11–15 – – –

21–25 0.2094 0.0289 0.0434

PODSOL 6–10 0.1431 0.0407 0.0789

11–15 0.2023 0.0202 0.0154

21–25 – – –

SEMI-S 6–10 0.2579 0.0200 0.0054

11–15 – – –

21–25 – – –

SLOPE 6–10 – – –

11–15 – – –

21–25 −0.2768 0.0405 0.0044

DIVCONV 6–10 – – –

11–15 0.1762 0.0149 0.0974

21–25 – – –

COS-ASP 6–10 – – –

11–15 −0.1721 0.0237 0.0242

21–25 −0.2376 0.0261 0.0082

MFD-STRP 6–10 0.5770 0.0202 <0.0001

11–15 0.6480 0.0943 <0.0001

21–25 – – –

BR-SLF 6–10 −0.3262 0.0169 0.0039

11–15 −0.5463 0.0381 <0.0001

21–25 – – –

MFD-TWI 6–10 −0.2767 0.0266 0.0136

11–15 −0.2333 0.0581 0.0358

21–25 – – –

SLOPEPOS10_5_6 6–10 – – –

11–15 – – –

21–25 0.2145 0.0200 0.0223

SLOPEPOS20_5_6 6–10 −0.1805 0.0140 0.0353

11–15 −0.1519 0.0141 0.0692

21–25 – – –

LFORM_4 6–10 – – –

11–15 – – –

21–25 −0.2208 0.0289 0.0439
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Table 3 (continued)

Variable name Depth levels (cm) Standardized estimate Partial R2 Significance

CONIF1990 6–10 – – –

11–15 0.1542 0.0667 0.0608

21–25 −0.3476 0.0802 0.0003

MIXED1990 6–10 0.1766 0.0228 0.0326

11–15 – – –

21–25 0.2099 0.0585 0.0495

Stratified model validation

L-BITTERFELD-LOG 6–10 −0.5823 0.4090 <0.0001

11–15 −0.5407 0.2901 <0.0001

21–25 −0.4520 0.2019 <0.0001

L-ZSCHORNEW-LOG 6–10 – – –

11–15 – – –

21–25 – – –

MPV71-00 6–10 – – –

11–15 – – –

21–25 0.2108 0.0289 0.0463

PODSOL 6–10 0.1661 0.0244 0.0515

11–15 0.2324 0.0555 0.0056

21–25 – – –

SEMI-S 6–10 0.1546 0.0215 0.0810

11–15 – – –

21–25 – – –

SLOPE 6–10 – – –

11–15 – – –

21–25 −0.2701 0.0321 0.0066

DIVCONV 6–10 – – –

11–15 0.1794 0.0154 0.0971

21–25 – – –

COS-ASP 6–10 – – –

11–15 −0.1889 0.0273 0.0146

21–25 −0.2047 0.0345 0.0224

MFD-STRP 6–10 0.3465 0.0355 0.0015

11–15 0.6678 0.0350 <0.0001

21–25 – – –

BR-SLF 6–10 −0.1838 0.0320 0.0545

11–15 −0.5638 0.0973 <0.0001

21–25 – – –

MFD-TWI 6–10 – – –

11–15 −0.2680 0.0728 0.0167

21–25 – – –

SLOPEPOS10_5_6 6–10 – – –

11–15 – – –

21–25 0.1465 0.0200 0.0984

Water Air Soil Pollut



Table 3 (continued)

Variable name Depth levels (cm) Standardized estimate Partial R2 Significance

SLOPEPOS20_5_6 6–10 −0.1483 0.0035 0.0840

11–15 −0.1931 0.0077 0.0196

21–25 – – –

LFORM_4 6–10 – – –

11–15 – – –

21–25 – – –

CONIF1990 6–10 – – –

11–15 – – –

21–25 −0.3505 0.0802 0.0004

MIXED1990 6–10 – – –

11–15 – – –

21–25 −0.3195 0.0585 0.0009

The variables which were excluded in the global model validation are in italics, the variables which were integrated additionally after
the validation are in bold, and the variables which were excluded after the validation of the stratified model are in bold italics

Table 4 Applicability and ranking of the auxiliary variables for the global and the stratified model after model validation and
according to the different depth levels

Variable name Depth levels (cm) Global model Stratified model

Applicability Ranking Applicability Ranking

L-BITTERFELD-LOG 6–10 Yes 1 Yes 1

11–15 Yes 1 Yes 1

21–25 Yes 1 Yes 1

L-ZSCHORNEW-LOG 6–10 No – No –

11–15 No – No –

21–25 No – No –

MPV71-00 6–10 No – No –

11–15 No – No –

21–25 No – Yes 6

PODSOL 6–10 Yes 2 Yes 4

11–15 No – Yes 4

21–25 No – No –

SEMI-S 6–10 No – Yes 5

11–15 No – No –

21–25 No – No –

SLOPE 6–10 No – No –

11–15 No – No –

21–25 No – Yes 5

PRCURV 6–10 Yes 3 No –

11–15 Yes 7 No –

21–25 No – No –

DIVCONV 6–10 No – No –

11–15 No – Yes 7

21–25 No – No –
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Table 4 (continued)

Variable name Depth levels (cm) Global model Stratified model

Applicability Ranking Applicability Ranking

COS-ASP 6–10 No – No –

11–15 Yes 5 Yes 6

21–25 Yes 4 Yes 4

MFD-STRP 6–10 Yes 4 Yes 2

11–15 Yes 3 Yes 5

21–25 Yes 6 No –

BR-SLF 6–10 No – Yes 3

11–15 Yes 2 Yes 2

21–25 Yes 5 No –

MFD-TWI 6–10 No – No –

11–15 Yes 8 Yes 3

21–25 No – No –

SLOPEPOS10_5_6 6–10 No – No –

11–15 No – No –

21–25 No – Yes 7

SLOPEPOS20_5_6 6–10 No – Yes 6

11–15 No – Yes 8

21–25 No – No –

LFORM_4 6–10 No – No –

11–15 No – No –

21–25 Yes 2 No –

LFORM_5 6–10 Yes 6 No –

11–15 Yes 6 No –

21–25 No – No –

LFORM_10 6–10 Yes 5 No –

11–15 Yes 4 No –

21–25 No – No –

LF-MTOP 6–10 No – No –

11–15 No – No –

21–25 No – No –

CONIF1990 6–10 No – No –

11–15 No – No –

21–25 Yes 3 Yes 2

MIXED1990 6–10 No – No –

11–15 No – No –

21–25 No – Yes 3

MIXED2000 6–10 No – No –

11–15 Yes 9 No –

21–25 No – No –
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stratified model a stable correlation was found.
Figure 5a–f provides an overview on the depth level
wise distance dependence of magnetic susceptibility.
Figure 5a–c shows the results for the combination

magnetic susceptibility—horizontal distance to Bit-
terfeld; Fig. 5d–f shows in comparison the findings
for the combination magnetic susceptibility—hori-
zontal distance to Zschornewitz.

Fig. 5 a Dependence of
magnetic susceptibility
from the horizontal distance
to Bitterfeld at depth level
6–10 cm. The small dashed
lines show the approximate
0.95 confidence interval for
an individual prediction.
b Dependence of magnetic
susceptibility from the hori-
zontal distance to Bitterfeld
at depth level 11–15 cm.
The small dashed lines
show the approximate 0.95
confidence interval for an
individual prediction.
c Dependence of magnetic
susceptibility from the
horizontal distance to
Bitterfeld at depth level
21–25 cm. The small
dashed lines show the
approximate 0.95 confidence
interval for an individual
prediction. d Dependence of
magnetic susceptibility from
the horizontal distance to
Zschornewitz at depth level
6–10 cm. The small dashed
lines show the approximate
0.95 confidence interval for
an individual prediction.
e Dependence of magnetic
susceptibility from the
horizontal distance to
Zschornewitz at depth level
11–15 cm. The small dashed
lines show the approximate
0.95 confidence interval for
an individual prediction.
f Dependence of magnetic
susceptibility from the
horizontal distance to
Zschornewitz at depth level
21–25 cm. The small dashed
lines show the approximate
0.95 confidence interval for
an individual prediction
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Fig. 6 a Spatial variability
of magnetic susceptibility in
the global model at depth
level 6–10 cm. b Spatial
variability of magnetic
susceptibility in the global
model at depth level
11–15 cm. c Spatial variabil-
ity of magnetic susceptibility
in the global model at depth
level 21–25 cm. d Compari-
son of spatial variability of
magnetic susceptibility in the
global and stratified model at
depth level 6–10 cm.
e Comparison of spatial
variability of magnetic
susceptibility in the global
and stratified model at depth
level 11–15 cm. f Compari-
son of spatial variability of
magnetic susceptibility in the
global and stratified model at
depth level 21–25 cm.
g Zoom-in into differences
between global and stratified
model considering high
resolution information on
small-scale differences in
magnetic susceptibility in the
humus layer for the near
distance zone of up to 25 km
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Fig. 6 (continued)
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The impact of Bitterfeld becomes most evident
in the depth levels 6–10 and 11–15 cm (Fig. 5a, b)
and goes up to 40 km. However, up to a distance
of about 10 km, the impact is also visible in the
depth layer 21–25 cm (Fig. 5c). Considering the
impact of the power plant in Zschornewitz, a rather
small-scale impact can be detected up to a distance
of maximally 10 km in the depth levels 6–10
and 11–15 cm (Fig. 5d, e), while the impact on the
depth level 21–15 cm is almost not quantifiable
(Fig. 5f). The missing R2 and RMSE in Fig. 5d–f
express the impossibility to fit a nonlinear regres-
sion between magnetic susceptibility and the hori-
zontal distance to Zschornewitz. The nonlinear
least-squares estimations did not converge, at least
for the tested prediction equations. The higher
emission quantity from a larger number of power
plants in Bitterfeld with a larger spatial impact due
to higher flues superposed evidently the influence
of the single local power plant in Zschornewitz,
despite this power plant was always assumed to be
the major regional pollutant (see, e.g., Fritz and
Makeschin 2007).

3.3 Spatial Transfer of Magnetic Susceptibility

Finally, the regression equations were imported into
ArcGIS and the spatial variability of magnetic

susceptibility in dependence on the model parameters
was mapped and visualized for the different depth
levels. Figure 6a–c shows the spatial variation of
magnetic susceptibility in the three depth levels for
the global model; Fig. 6d–f compares the information
on spatial variability between global and stratified
model. Figure 6g demonstrates for a selected section
of the Dübener Heide near the former power plants
the differences between global and stratified model
considering high resolution information on spatial
variability of magnetic susceptibility in the humus
layer (depth level 6–10 cm).

The global model allows for identifying zones of
more or less comparable height of the magnetic
signal. These are especially evident in the depth level
6–10 cm (Fig. 6a) and become less pronounced with
increasing depth (Fig. 6b, c). The maps show that fly
ash was mostly deposed from western direction into
the northeastern parts of Dübener Heide with a local
peak above Bitterfeld-Wolfen, while the southeastern
part of Dübener Heide is much less affected. By the
use of topographical, geographical, and forest stand
type parameters, also the spatial variability within
the zones of comparable impact height can be
modeled. This provides much more detailed infor-
mation for forest management planning than a
simple zoning as proposed by Lux (1965). Addi-
tionally, the improved representation of small-scale

Fig. 6 (continued)
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differences by the stratified model becomes clear
(Fig. 6d–g).

3.4 Model Quality Test

Table 5 compares finally some statistical character-
istics of the global and the stratified model. The
statistical characteristics for the global model are
shown (a) on the basis of the complete data set of
Dübener Heide and (b) on the basis of the same
spatial data collective up to 25 km distance as it is
used for the stratified model (numbers in brackets for
R2, adjusted R2, root mean square error, and
standard deviation). Comparing the statistical char-
acteristics for global and stratified model for the
same spatial data collective (numbers in brackets
for global model), the stratified model led to an
improvement of the model precision in the up to
25 km distance area at all depth levels: R2 and
adjusted R2 are higher for the stratified model, while
the root mean square error becomes lower and the
standard deviation reaches identical values. This
benefit of the model stratification is also supported
by Fig. 6d–g.

The fivefold cross validation was done to test the
quality of the global and the stratified model for
their proper spatial validity area, i.e., in this case, the
spatial data sets are not identical and a comparison
of the statistical characteristics is only possible
between original and validated model. The statistical
characteristics of the cross validation highlights the
yet high quality of the original models and resulted

in a reduced number of model parameters for depth
level 6–10 and 21–25 cm at the global model and
for all depth levels at the stratified model (see also
Section 3.2).

The results of the fit diagnostics of the cross-
validated models reveal some differences in the model
quality between the different depth levels, which are
in tendency equal for the global and the stratified
model. The differences are exemplarily shown for the
cross-validated global model (Fig. 7): In depth level
6–10 and 11–15 cm, a very narrow distribution of the
measured and predicted values, and the residual plots
indicate a high prediction quality which is lower in
the depth level 21–25 cm, where the fly ash impact is
minor compared to other factors. At depth level 6–
10 cm, the residuals follow a normal distribution,
while the residuals in depth level 11–15 cm are
slightly right skewed and at depth level 21–25 cm,
they are slightly left skewed. To achieve optimal
results, a combination of the global model for the
depth levels 6–10 and 11–15 with the stratified model
for depth level 21–25 cm could be taken into
consideration.

4 Discussion and Conclusions

The mapping of magnetic susceptibility in Dübener
Heide delivered high resolution information on the
range and spatial variation of this proxy indicator for
fly ash deposition. The plot-wise assessment was
regionalized by a multiple regression-based approach

Table 5 Statistical characteristics of the global and stratified model for the regionalization of ferrimagnetic susceptibility for the
original model and for the cross-validated model

Model Depth level (cm) Original Cross-validation

P FG R2 Adj. R2 RMSE σ P FG R2 adj. R2 RMSE σ

Global 6–10 9 121 0.65 (0.43) 0.62 (0.37) 14.6 (18.1) 23.9 (25.4) 7 124 0.62 0.60 15.1 23.9

11–15 10 120 0.63 (0.56) 0.60 (0.50) 0.46 (0.47) 0.72 (0.65) 10 121 0.62 0.59 0.46 0.72

21–25 9 121 0.42 (0.36) 0.38 (0.29) 0.46 (0.51) 0.59 (0.62) 7 123 0.39 0.36 0.47 0.59

Stratified 6–10 10 73 0.59 0.54 17.30 25.4 7 76 0.53 0.49 18.10 25.4

11–15 10 72 0.62 0.57 0.42 0.65 9 73 0.60 0.56 0.43 0.65

21–25 9 75 0.49 0.43 0.47 0.62 8 76 0.46 0.41 0.48 0.62

The numbers in brackets at the global model are referred to the same data collective as the stratified model

P number of variables including the intercept, FG error degrees of freedom, R2 coefficient of determination, Adj. R2 adjusted R2 ,
RMSE, root mean square error, σ standard deviation of the measurements
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with a stepwise selection of highly indicative param-
eters for the magnetic signal in different depth levels.

In tendency, magnetic susceptibility values in the
humus layer (depth level 6–10 cm) were best
explained by the distance to Bitterfeld, the occurrence
of the soil type podzol (PODSOL), and in the case of
the stratified model also by the occurrence of
semiterrestrial sites (SEMI-S). The properties podzol
and semiterrestrial sites indicate a slowed down
humus dynamics, which supports a long-term accu-
mulation of fly ash (Magiera and Zawadzki 2007).
Further variables, such as stream power index (MFD-
STRP), surface curvature (PRCURV, global model),
and slope length factor (BR-SLF, stratified model)
indicate the probability of humus accumulation or
humus erosion, which explains their high relevance
for the model in this depth layer. Additionally, some
few exposure variables (valleys (LFORM_4) and
plains (L-FORM_5) in the global model and slope
position (SLOPEPOS20_5_6) in the stratified model)
play a role. They also explain the probability of a
humus accumulation (see, e.g., McKenzie and Ryan

1999; Moore et al. 1993). In contrast, stand character-
istics have no explanatory value for the magnetic
signal in the depth level 6–10 cm. This is contradictory
to findings from Zawadzki et al. (2007) which high-
lights the impact of the forest type on the magnetic
signal. A reason might be that Zawadzki et al. (2007)
did not differentiate the impact according to different
depth levels. Also in the presented findings, stand
properties play a role for magnetic susceptibility
modeling, not for the humus layer (depth level
6–10 cm) but for the transition zone (depth level
6–11 cm) and especially for the mineral soil (depth
level 21–25 cm). Probably, the stand type impact on
the findings in the humus layer is by far superposed
by soil type and orographic parameters, which decide
upon the humus dynamics.

In the transition zone between humus layer and
mineral soil (depth level 11–15 cm), variables which
describe the orographic conditions gain in impor-
tance. New variables occur, such as the divergence
from western aspect (COS-ASP), which indicates the
exposure against the major wind direction and thus

Fig. 7 Fit statistics of the
validated global model at
depth levels 6–10, 11–15,
and 21–25 cm
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the probability of deposition. Also, stand properties
(mixed forest—MIXED2000, global model) contribute
to the model in this depth layer, though their
explanatory value is lower compared to their impor-
tance for the model in the mineral horizon (depth level
21–25 cm).

In the mineral horizon (depth level 21–25 cm),
variables indicating soil and site properties, such as
PODSOL, disappear completely. Here, aspect (COS-
ASP) and land surface characteristics (valleys—
LFORM_4, global model, inclination—SLOPE, strat-
ified model), which indicate the deposition probabil-
ity, play a major role together with stand properties
(CONIF1990, MIXED1990). The latter one can
explain the probability that deposition was combed
out by the stand. This, however, would raise the
question why the stand type is not relevant for the
model in the humus layer. Probably, in the case of
depth level 21–25 cm, the stand type might indicate
a vertical displacement of magnetic iron complexes
together with sesquioxides and humus complexes
by initial podzolization processes. This is supported
by the findings that (a) only coniferous or mixed
types show an explanatory value and not deciduous
types and that (b) the elder Corine Landcover
classification from 1990 contribute to the modeling
in this depth layer and not the classification of
2000. Finally, also the precipitation amount from
1971 to 2000 (MPV71-00) contributed to the model
in the mineral horizon. This could go along with
the hypothesis formulated before: Locally, higher
precipitation amounts can support podzolization
processes.

Comparing the global and the stratified model,
differences in some variables occur, which go along
with the higher importance of small-scale variations
of site, orographic, and stand properties in the
stratified model. The parameters, which apply addi-
tionally in the stratified model or instead of variables
in the global model, give more detailed information
on the surface structure and exposure, such as the
divergence–convergence index (DIVCONV) or the
slope position (SLOPEPOS10_5_6 and SLOPE-
POS20_5_6). Also, variables indicating specific hy-
drological frame conditions, such as the existence of
semiterrestrial sites (SEMI-S) and the amount of
precipitation in the vegetation period (MPV71-00)
contribute exclusively in the stratified model to
explain the height of the magnetic signal. This

supports the assumptions that small-scale variations
of the magnetic signal are also impacted by the
hydrological dynamic of a site.

The high impact of the logarithmic distance to
Bitterfeld (L-BITTERFELD-LOG) was unexpected in
comparison to other findings (e.g., Fritz and Makeschin
2007), which assumed a major importance of the
power plant in Zschornewitz due to its closeness to
the study area and the high amounts of fly ash
produced by this single power plant over more than
a century. The power plant in Zschornewitz was one
of the first and largest power plants in the region
(Lux 1965). However, or despite of this fact, its minor
impact on the study area compared to Bitterfeld might
be a result of its ancient combustion technology, which
produced much more coarse ash particles compared to
more modern power plants in Bitterfeld. In the
consequence, the fly ash particles of Zschornewitz
were deposed primarily in the immediate vicinity of the
power plant and not transported over longer distances
(Fürst and Makeschin 2006). To differentiate the
impact areas of Bitterfeld and Zschornewitz in
Dübener Heide, a chemical analysis on the differences
in the fly ash particles compared to the fly ash emitted
by the different power plants would be necessary. This,
however, is complicated by the fact that the yet stored
fly ash particles in the forest soils were superposed at
least for 20 years by weathering and decomposition
processes. Furthermore, local fly ash composition
variability is also impacted by historical and actual
domestic fuel deposition (Strzyszcz and Magiera
2001).

In conclusion, spatial variation of magnetic sus-
ceptibility could be predicted with a high precision by
the multiple linear regression model. The use of a
slightly differing set of model parameters for the
different depth levels according to their explanatory
value improved the prediction quality and supported
also the understanding of major drivers for magnetic
particle deposition, storage, and vertical displacement
in the forest soils.
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Abstract 10 
The article presents results of testing the indicative value of magnetic susceptibility for fly ash 11 
deposition and its effects on forest site properties. Base saturation and concentrations of Ca 12 
and Mg were used as indicators for nutrient pools resulting from fly ash deposition. 13 
Concentrations of Fe, Al, Mn, Cd and Black Carbon were used as indicators for risks of 14 
leaching. The correlation of magnetic susceptibility with concentrations of nutrient, acidic 15 
cations, heavy metals, base saturation and Black Carbon was calculated. Additionally, we 16 
tested the suitability of magnetic susceptibility as parameter in a linear regression based 17 
model to predict the concentrations of Ca, Mg, Fe, Al, Mn, Cd and Black Carbon. We were 18 
able to prove a positive correlation between magnetic susceptibility and the selected 19 
indicators. In contrast to previous studies, we were also able to prove the suitability of 20 
magnetic susceptibility to predict the size of fly ash deposition influenced nutrient pools 21 
mainly for humus layers, especially for Oa horizons. The spatial distribution of magnetic 22 
susceptibility showed also a positive correlation with regionalized base saturation. However, 23 
caused by the data base and other factors impacting the measurement and modeling results, 24 
some shortcomings of using a linear regression model must be noticed. From these results, 25 
we concluded that magnetic susceptibility might be a valuable parameter in a multiple 26 
regression based approach, but should not be used alone for predicting effects of fly ash 27 
deposition.  28 
 29 
Key words Magnetic susceptibility, fly ash deposition, predictive value of magnetic 30 
susceptibility, Level-I monitoring, linear regression based modeling, regionalization of fly ash 31 
deposition. 32 
 33 

1. Introduction 34 

The use of indicators to support ecosystem management is a widely used approach 35 
(Bockstaller and Girardin 2003, Cloquell-Ballester and others 2006). In forest ecosystem 36 
management soil vegetation and forest stand properties are used to conclude on forest 37 
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health and forest growth and to adjust management targets (Brand 1997, Slocombe 1998, 38 
Hickey and others 2005). Indicators for atmospheric deposition and other forms of 39 
anthropogenic impacts are rarely used, although, it is well known that deposition might affect 40 
forest ecosystem development over decades (Fürst and others 2007 a, b). A possible reason 41 
might be that information on deposition is mostly not available on management planning unit 42 
level, but only on larger scales (see e.g. Lorenz and others 2008) or on monitoring plot level. 43 
The discussion on monitoring strategies and reduction of monitoring plots emphasizes the 44 
need for simple and low-cost approaches. To tackle this problem, advanced regionalization 45 
approaches were developed e.g. by Erhard and Flechsig (1998), Gauger and others (2002), 46 
Zirlewagen and others (2006, 2007), who used also data from soil monitoring programs as 47 
input. We tested for a fly ash impacted area if a combination of detailed measurements at 48 
few plots and spatial transfer by using grid-wise assessed proxies might be a suitable 49 
approach to transfer management information onto the target scale without loss of 50 
information depth (e.g. Percy and Ferretti 2004, Morvan and others 2008).  51 
A major problem in the assessment of effects of atmospheric deposition is that agents with 52 
different relevance for forest management can be deposed at the same time. Taking fly ash 53 
as an example, the most important components are sulphur oxides and oxides of alkali and 54 
earth-alkali metals, metal and heavy metal oxides, and Black Carbon (Magiera and Strzyszcz 55 
1999, Klose and Makeschin 2003). Fly ash deposition affects forests in all industrial 56 
influenced regions in Europe where unfiltered combustion residuals of fossil fuels have been 57 
or are still deposited. One of the most affected regions in Europe was the so called “Black 58 
Triangle”, a heavily industrialized area in the Czech-German-Polish border region. For this 59 
area, fly ash deposition amounted up to 457 t km-2 a-1 (Upper Silesia, Poland) (Strzyszcz and 60 
others 1996, Strzyszcz and Magiera 2001, Klose and Makeschin 2003). 61 
Fly ash particles might be stored in forest soils for many decades and might have a strong 62 
impact on humus properties and soil microbial communities as well as on the composition of 63 
the soil vegetation and forest growth (Koch and others 2002, Klose and Makeschin 2003, 64 
2005, Klose and others 2001, 2003 a, b, 2004, Fürst and others 2007 b, 2009 a, b). Fly ash 65 
has ambiguous effects for the forest ecosystem: it might cause wider C:N and C:P ratios in 66 
forest soils, increase the pH-value and base saturation. As an additional effect, fly ash 67 
accumulation improves the nutrient pools of poor soils with consequences for composition 68 
and productivity of forest stands (Koch and others 2002, Klose and others 2001, 2003a, b, 69 
2004, Fürst and others 2006 a, b). On the other hand, fly ash deposition might cause higher 70 
concentrations of Al, Fe, and heavy metal in forest soils. This can provoke a disturbance of 71 
litter decomposition and lead to the development of adverse humus forms (Strzyszcz and 72 
Magiera 1998, Magiera and others 2002, Koch and others 2002, Klose and others 2001, 73 
2003 a, b, 2004). The deposed heavy metals can be mobilized by re-acidification of the soils, 74 



 3

when fly ash deposition is stopped (Koch and others 2002, Klose and others 2003). Last but 75 
not least, Black Carbon might play a role in hindering the organic matter decomposition 76 
(Goldberg 1985). 77 
 78 
Magnetic susceptibility has been used frequently as a proxy for the intensity of fly ash 79 
deposition (Strzyszcz and Magiera 1998, Magiera and Strzyszcz 1999, Klose and others 80 
2001, Schibler and others 2002, Grimley and others 2004, Boyko and others 2004, Magiera 81 
and others 2006, Magiera and Zawadzki 2007). Magnetic susceptibility measures the 82 
magnetization of a material in dependence from the magnetic field strength. According to 83 
their magnetic properties materials are divided into diamagnetic, paramagnetic, 84 
ferrimagnetic, and ferromagnetic substances (Glaser 2001). The detection of fly ash by 85 
magnetic susceptibility is based on its content of ferrimagnetic Fe-oxides. These are mainly 86 
magnetite (Fe3O4) and maghemite (γ-Fe2O3). Magnetite occurs as natural component of 87 
lignite and both, magnetite and maghemite emerge from pyrite (FeS2) oxidation during the 88 
combustion process (Strzyszcz and others 1996, Magiera and Strzyszcz 1999).  89 
Magnetic susceptibility can be correlated with Fe, Al, Mn and other heavy metals 90 
(Goluchowska 2001, Schmidt and others 2005, Wang and Qin 2005, Lu and Bai 2006, 91 
Magiera and Zawadzki 2007, Zawadzki and others 2009). However, this correlation varies in 92 
dependence from geographic origin, type of combustion material (lignite or coal) and land 93 
use and might not be transferable (Strzyszcz and Magiera 1998, Fialova and others 2006, 94 
Magiera and Zawadzki 2007).  95 
The detection of magnetic susceptibility is a suitable method for areas with a strong fly ash 96 
deposition, because a natural enrichment of magnetic substances due to geochemical and 97 
microbial processes is observed also in non-industrial areas and might superpose the effect 98 
of minor fly ash deposition (Le Borgne 1955, Scollar 1965, Thompson and Oldfield 1986, 99 
Faßbinder 1994, de Jong and others 2005, Zawadzki and others 2007). Therefore, the 100 
method is also not suitable for areas with high content of magnetic particles in the bedrock 101 
such as basalt (Fürst and others 2006 b).  102 
The research hypothesis of our study is that magnetic susceptibility can be used as a proxy 103 
to predict the impact of fly ash deposition on site properties relevant for management, such 104 
as nutrient and heavy metal concentrations. Zawadzki and others (2009) used magnetic 105 
susceptibility as an indicator to predict the spatial extent of heavy metal pollution in two 106 
forested test areas. If our hypothesis is true, magnetic susceptibility might be used as fast 107 
and cost efficient indicator complementary to plot-wise monitoring to provide a broader basis 108 
for the regionalization of deposition driven changes of chemical site properties (Fürst and 109 
others 2009 a, b). In our study, field assessment was carried out for two test regions of 110 
different deposition intensity. We tested if differences of the magnetic signal reflect 111 
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adequately the differences in deposition intensity. The correlation of magnetic susceptibility 112 
with base saturation, base cations Ca and Mg, acidic cations Fe, Al and Mn, the heavy metal 113 
Cd (humus layer) and with Black Carbon was tested. Base saturation and base cations are 114 
assumed to be an indicator for nutrient pools resulting from fly ash deposition. The 115 
mobilization of acidic cations, heavy metals and Black Carbon might be seen as a possible 116 
risk for (ground)water. Therefore, we assessed the suitability of magnetic susceptibility as 117 
predictor for the concentrations of the above mentioned elements and Black Carbon in a 118 
linear regression model.  119 
 120 

2. Material and Methods 121 

2.1 Test regions 122 
The presented study was carried out in two test regions, the Dübener Heide and the 123 
Dahlener Heide. These regions are situated in different distance to the former industrial 124 
triangle Leipzig-Halle-Bitterfeld. Dübener Heide is located in direct neighborhood to this 125 
industrial area, with distances of 8 - 50 km to the nearest former power plants 126 
(Gräfenhainichen / Zschornewitz). In contrast, Dahlener Heide is located in greater distance, 127 
50 - 75 km, to the industrial triangle. 128 
In the industrial triangle Leipzig-Halle-Bitterfeld an intensive industrialization took place since 129 
almost 100 years and extensive deposition amounts resulted from lignite combustion for 130 
energy production. The estimated deposition for Dübener Heide amounts for the period 131 
1910-2000 to 18 Mio. t fly ash and 12 Mio t SO2. Only for the decade 1961-1970 the forest 132 
soils of the region received up to 3 t / ha * a fly ash (Klose and Makeschin 2004, Fürst and 133 
others 2007 b). Substantial impacts on forest health and forest soil characteristics was 134 
reported for the Dübener Heide up to a distance of 30 km to the industrial triangle since the 135 
1960ies, while Dahlener Heide was not impacted (Lux 1965, Fürst and others 2007).  136 
Dahlener Heide is characterized by comparable geological conditions and forest stand types 137 
as exist in the Dübener Heide. Therefore, we used this region as reference to assess the 138 
regional background value of magnetic susceptibility and to test if the correlation of magnetic 139 
susceptibility with the base cations, base saturation, metals, heavy metals and Black Carbon 140 
shows comparable or diverging trends to Dübener Heide.  141 
Fig. 1 gives information on the localization of the two test regions and on the research plots 142 
used in the presented study (chapter 2.2).  143 
 144 

Fig. 1. 145 
 146 
Both test regions are characterized by geological frame conditions, which are representative 147 
for the lowlands of Middle and Eastern Europe (Fürst and others 2009 a). Dominant parent 148 
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materials are pre-Weichsel glacial and glaciofluvial sands, which are covered by sandy to 149 
loamy periglacial deposits of the late Weichsel glacial. The predominant soil types are Eutric 150 
and Distric Cambisols with small areas of Glossic Podzo-Luvisols, Spodo-Dystric Cambisols 151 
and Orthic Podzols (Kopp and Schwanecke 1997). According to the national forest inventory, 152 
the main stand type is pure Scots pine (Pinus sylvestris, [L.]) plantation, partially in mixture 153 
with European beech (Fagus sylvatica [L.]), birch (Betula pendula [Roth]) and Sessile oak 154 
(Quercus petrea [(Matt) Liebl.]) from artificial or natural regeneration.  155 
 156 
2.2 Test plots 157 
Several types of plots were included in our study following a hierarchic approach (Fig. 2). 158 
Chemical soil properties and magnetic susceptibility were assessed at 12 project and 22 159 
monitoring plots. These data were the basis for testing the correlation of magnetic 160 
susceptibility with chemical characteristics and for developing the linear regression based 161 
modeling approach. They formed also the basis for the regionalization of base saturation as 162 
integrative characteristic, which was used to test the quality of the regionalized magnetic 163 
susceptibility. For the regionalization of magnetic susceptibility, a grid wise assessment with 164 
110 assessment plots was carried out additionally to the plot wise assessment to provide a 165 
broader data basis on its spatial variability.  166 
 167 

Fig. 2. 168 
 169 
The plot type properties are presented in the following and differences between the plot 170 
types are described as far as they are relevant for the interpretation of the results.  171 
 172 
A. ENFORCHANGE plots: a subset of 12 plots was taken from the research project 173 

ENFORCHANGE (2005 - 2009, Fürst and Makeschin 2009) in Dübener Heide. The aim 174 
of this project was to assess the long-term influence of fly ash deposition on forest 175 
ecosystem development including soil and stand parameters. The plots were oriented 176 
along a distance dependent gradient of fly ash deposition, first described by Lux (1965), 177 
by using a part of his 150 original monitoring sites (Fürst and others 2009 a, b). The plots 178 
are located on the most important regional soil type (Eutric Cambisols) to minimize the 179 
influence of variable soil properties on the assessed chemical characteristics and the 180 
magnetic susceptibility. The influence of different stand types at the plots (pure Scots 181 
pine stands and mixed stands with English oak and European beech) might be not fully 182 
excluded (Zawadzki and others 2007).  183 
Only at the ENFORCHANGE plots it was possible to assess chemical parameters and 184 
magnetic susceptibility at identical sampling spots and soil samples. Magnetic 185 
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susceptibility was first assessed in situ (i.e. volume magnetic susceptibility) at soil profiles 186 
at the same location where soil samples were taken.  187 
In consequence, the plot collective delivered the most proper basis for correlating the 188 
content of Ca, Mg, Fe, Al, Mn, Cd and Black Carbon with magnetic susceptibility. A 189 
restriction for statistical analysis was the limited number of plots, which was predefined 190 
by the project frame. However, there were no reference plots in a non-fly-ash-impacted 191 
region, such as Dahlener Heide, in the ENFORCHANGE study. 192 
 193 
To widen the data basis for spatial trend analysis, plot collective B was included in our 194 
study. 195 
 196 

B. Monitoring plots: in Dübener Heide and Dahlener Heide, 20 plots from Level-I monitoring 197 
and two other plots from a prevailing study were included. The precondition for their 198 
selection was the availability of soil chemical data, which were assessed according to the 199 
same standard as at the ENFORCHANGE plots. The Level-I plots belong to a European 200 
wide network of 6,000 soil monitoring plots for the assessment of long range 201 
transboundary air pollution (see: www.icp-forests.org and BMELV 2006) with regular 202 
assessment of soil chemical values each five years. Two more monitoring plots were 203 
taken from a study by Lorz (2008) to broaden the data base for Dahlener Heide.  204 
Chemical parameters and field assessment of magnetic susceptibility (i.e. volume 205 
magnetic susceptibility) were carried out at the same plot, but sampling spots and soil 206 
samples for magnetic susceptibility and for the chemical analysis were not identical. 207 
Chemical analyses were carried out up to five years earlier than magnetic susceptibility 208 
assessment and original soil samples were not available anymore.  209 
 210 
Plot collective A and B formed the basis for testing the correlation between magnetic 211 
susceptibility and chemical soil parameters in Dübener Heide and Dahlener Heide. For 212 
the spatial transfer, which had to include other environmental parameters, a broader data 213 
base for magnetic susceptibility was needed (Fürst and others 2009 b). Therefore, plot 214 
collective C was established.  215 
 216 

C. Grid-wise field-assessment plots: in Dübener Heide, a grid-wise assessment of volume 217 
magnetic susceptibility was conducted for a 1x1 km (110 plots) and a 4x4 km grid (38 218 
plots, nested approach) as basis for a multiple regression based regionalization of the 219 
magnetic signal (Fürst and others 2009 b).  220 
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In our study the data material formed the basis for a depth level wise spatial regression of 221 
magnetic susceptibility and base. This was done to approve the quality of magnetic 222 
susceptibility as spatial indicator for chemical soil properties.  223 

 224 
2.3 Assessment of soil chemical parameters and magnetic susceptibility 225 
The concentrations of Ca, Mg, Fe, Al, Mn and Cd and base saturation were assessed at all 226 
plots according to the Level-I standard procedure (BMELV 2006). The design and the results 227 
of the chemical analysis are in detail described by Fritz and Makeschin (2007), Lorz (2008) 228 
and Fritz and others (2009). The Black Carbon content in the humus layer was assessed 229 
according to the method described by Glaser and others (1998, modified by Glaser 2008 non 230 
published, see Koschke and others [subm.] for details).  231 
 232 
Magnetic susceptibility - the focus of the presented study - was measured with the MS2 233 
meter susceptibility system of Bartington Instruments, Oxford (GB). The system was 234 
developed for detecting very low quantities of magnetic Fe-Oxides in compact (rocks) or 235 
loose substrates (mineral soil, humus layer). The susceptibility meter has a sensitivity of 0.1 - 236 
1 × 10−5 S.I. units and can be used either in a single readout mode or can also transfer the 237 
data to a PC using a specially adapted software (Multisus). The system comprises a portable 238 
measuring instrument, the MS2 meter, and a variety of sensors. The meter displays the 239 
magnetic susceptibility value of the tested substrates when these are brought within the 240 
influence of one of the sensors, which are each designed for a specific application and 241 
sample type (source: Operation Manual of the MS2 system, Bartington Instruments Ltd., 242 
Oxford GB).  243 
In situ, magnetic susceptibility was measured in 30 cm deep boreholes with the MS2H down-244 
hole-probe sensor, where the starting point, i.e. depth = 0, was defined as first measurement 245 
after removing the Oi horizon. The material of this horizon was removed as pre-tests have 246 
shown that no ferrimagnetic particles could be detected in this layer (Fürst and others 2009 247 
a) since fly ash deposition stopped around 20 years ago.  248 
The MS2H sensor is a sub-surface probe for profiling the magnetic susceptibility of strata in 249 
25 mm diameter auger holes. Strata with a thickness up to 15 mm can be discriminated. 250 
Volume susceptibility was measured centimeter wise at five bore holes per test plot (five bore 251 
holes * 30 measurements / hole => 150 measurements / plot). If a soil profile existed at the 252 
test plots (plot collectives A and partially B), the bore holes were drilled along the head sides 253 
of the profile in a distance of 0.5 m to the profile face and with a distance of 0.5 m between 254 
each bore hole. In case there was no profile (plot collective C and partially plot collective B), 255 
four bore holes were oriented around one central bore hole in a distance of 0.5 m (see Fig. 3) 256 
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The described field assessment design is a result of a pre-test series (Fürst and others 2009 257 
a) and was chosen to compensate small scale variations in the humus layer thickness.  258 
Additionally, at the 12 ENFORCHANGE plots and 7 Level-I plots samples were taken for 259 
laboratory analyses of magnetic susceptibility, which were carried out with the MS2B dual 260 
frequency sensor. These samples were used to derive a correction factor for in situ 261 
measurements of volume susceptibility (see chapter 2.4). The MS2B dual frequency sensor 262 
was used for mass or volume specific susceptibility measurements and accepts 10 ml and 20 263 
ml cylindrical bottles. For our study, volume and mass susceptibility were measured in 10 ml 264 
bottles. Mixed samples of five samples per horizon for Oe, Oa, A(h) and B(w) horizon were 265 
measured, each with five repetitions. The Oi horizon was again excluded from 266 
measurements (see Fürst and others 2009 a). Also the C horizon was not included to 267 
achieve comparability with the field measurements.  268 
 269 

Fig. 3. 270 
 271 
2.4 Mathematical operations and statistics 272 
The magnetic susceptibility field assessment delivers volume susceptibility values, which 273 
were corrected in a two step approach to mass susceptibility (1. field => laboratory, 2. 274 
volume => mass) on the basis of laboratory analysis (see Fig. 2). This was done, because 275 
previous studies had shown that correlation between mass susceptibility and acid or heavy 276 
metal cation concentrations is higher than between volume susceptibility and element 277 
contents or element stocks (Magiera and others 2007, Schmidt and others 2005). Studies for 278 
Ca, Mg, Black Carbon and base saturation do not exist.  279 
 280 
A separate correction factor was calculated for Oe, Oa and mineral horizon (rOe, Oa = 0.52 and 281 
rmin = 0.78). Comparative tests of the data quality and the correlation with soil chemical 282 
characteristics, supported the use of these factors, while a regression equation based 283 
correction resulted in higher variation and lower correlation. The findings in the results 284 
section (chapter 3) are based on measured or recalculated mass susceptibility values. 285 
 286 
In a first step, the correlation between mass susceptibility and concentrations of Ca, Mg, Fe, 287 
Al, Mn, Cd and Black carbon was calculated by using Pearson’s correlation coefficient (r). 288 
The calculation was done separately for the two plot collectives A and B to assess 289 
differences in the correlation quality, which result from the before described differences in 290 
sampling and which could indicate problems in using both data sets together.  291 
Furthermore, r was also calculated for distance clusters < 10 km, < 20 km, < 30 km, < 50 km 292 
and < 75 km to test if evident spatial trends occur in dependence from increasing distance to 293 
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the emission source Leipzig-Halle-Bitterfeld. If such trends are found, they would question 294 
the indicative value of magnetic susceptibility. The test was carried out for the data sets of 295 
both plot collectives A and B together. 296 
 297 
Based on plot collective C, magnetic susceptibility was regionalized by using a multiple 298 
regression approach (Fürst and others 2009 b). In a subsequent step, a spatial regression 299 
was calculated for regionalized base saturation (Zirlewagen 2009) and magnetic 300 
susceptibility (Fürst and others 2009 b). The test of the connectivity of these two spatial data 301 
sets by using the coefficient of determination R² as statistical indicator was done to evaluate 302 
if the proxy indicator magnetic susceptibility is suitable as model parameter to predict 303 
chemical soil properties in a spatial model. The regression was calculated for three depth 304 
level clusters, which are common in Level-I plot data analysis (BMELV 2006) 6 - 10 cm 305 
(humus layer), 11-15 cm (A horizon), 21 - 25 cm (B horizon) (see also Fürst and others 2009 306 
b). 307 
 308 
Linear regression based models were developed for predicting concentrations of Ca, Mg, Fe, 309 
Al, Mn, Cd and Black Carbon in the Oe and Oa horizons by magnetic susceptibility. The 310 
assessment was restricted to the humus layer for reasons of comparability, because 311 
concentrations of Cd and Black Carbon content were only assessed for the humus layer. For 312 
better visualization of the trends, mass susceptibility (abscissa) and the concentrations of Ca, 313 
Mg, Fe, Al, Mn, Mg, Cd and Black Carbon (ordinate) were transformed to natural logarithm.  314 
The coefficient of determination (R²) was calculated as indicator for linear regression 315 
between magnetic susceptibility and the element concentrations. This coefficient was used 316 
as indicator for the quality of predictions by the linear regression model. R² is the square of 317 
the sample correlation coefficient between the element contents and the predictor magnetic 318 
susceptibility. R² can take values between 0 (no linear regression) and 1 (perfect linear 319 
regression).  320 
For evaluating the quality of the linear regression based predictions, the relation between 321 
measured and predicted values and the residuals were calculated. 322 
 323 
Finally, a stratified approach was tested to try if the model quality can be improved. Linear 324 
regression based models were calculated separately for distance clusters (< 10 km, < 20 km, 325 
< 30 km, < 50 km and < 75 km) and for the two plot collectives A and B. 326 
The correlation and regression analysis were carried out using the software Statistica 8.0. 327 
The multiple regression based regionalization of the base saturation and the magnetic 328 
susceptibility was performed using SAS 9.2 and ArcGIS 9.3. 329 
 330 
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3. Results 331 

3.1 Magnetic susceptibility measurements  332 
Magnetic susceptibility (mass susceptibility, χ * 10-8 m³ kg-1) of Oe, Oa and upper mineral 333 
horizon was highest for distance up to 10 km from the former fly ash emitters (Fig. 4). The 334 
means for the Oe horizon amounted up to 400 χ * 10-8 m³ kg-1, for the Oa horizon up to 500 χ 335 
* 10-8 m³ kg-1, and for the mineral horizon up to 20 χ * 10-8 m³ kg-1. Outliers for the Oa horizon 336 
reached values up to 800 χ * 10-8 m³ kg-1 (not displayed in Fig. 4). For distance > 20 km, the 337 
value range for mineral soil showed only minor differences in Dübener Heide and Dahlener 338 
Heide. In the Oe and Oa horizon magnetic susceptibility decreased up to a distance of 30 km 339 
to mean values of up to 200 χ * 10-8 m³ kg-1 in Oe and Oa.  340 
For distances > 30 km, in most parts of Dübener Heide magnetic susceptibility values are on 341 
a comparable level to the value range in Dahlener Heide (50 and 75 km clusters). Comparing 342 
Oe and Oa horizon, values of regions in the Dübener Heide with a very strong impact of fly 343 
ash deposition were substantially higher for Oa horizons. For the Dahlener Heide, the 344 
differences between Oe and Oa horizons were in general smaller. For the greatest distances 345 
to the emitters (75 km) values for the Oe horizon were slightly higher than for Oa horizons. A 346 
slight trend of decreasing spatial variability of susceptibility indicated by a lower standard 347 
deviation was found for increasing distances to the industrial triangle. This was also 348 
supported by previous findings (Fürst and others 2009 a).  349 
Fig. 4 resumes the measurement results and the spatial trends (box and whisker plots with 350 
mean value, 95 % confidence interval and standard deviation) for the Oe, Oa and mineral 351 
horizon. 352 
 353 

Fig. 4. 354 
 355 
3.2 Correlations and spatial trends 356 
Tab. 1 provides an overview of results of correlation test at plot collectives A and B. The 357 
comparison between the two plot collectives A and B shows some differences. The 358 
correlation between mass susceptibility and concentrations of Ca and Mg is higher for the 359 
ENFORCHANGE plots except for Mg concentrations of Oe horizons. For concentrations of 360 
Fe, Al, Mn and Cd the results are the opposite. The correlation with Fe and Al (with exception 361 
of Oa horizons in case of Fe) is negative for all horizons at the ENFORCHANGE plots. For 362 
plot collective B this is only true for Fe in the mineral soil horizon 3 (21 - 30 cm) and for Al at 363 
all three mineral horizons.  364 
The correlation with Black Carbon is negative for all plot types. For absolute values, the 365 
correlation with Black Carbon for the ENFORCHANGE plots is higher compared to plot 366 
collective B. The correlation of mass susceptibility over all horizons was higher at the 367 
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ENFORCHANGE plots for Ca, Mg, Cd and (absolute value) Black Carbon. The results are 368 
vice versa for Fe, Mn and Al.  369 
For both plot collectives Pearson’s correlation coefficient (r) between mass susceptibility and 370 
concentrations of Ca, Mg and Mn is in trend slightly lower for single horizons compared to 371 
the total correlation coefficients for each single plot collective. In contrast, r is higher for Fe, 372 
Al and Cd for the two humus horizons. For Black Carbon r reached values in between the 373 
two plot collectives.  374 
When calculating r over all horizons, it is higher compared to each single plot collective for 375 
Ca, Mg and Fe and slightly lower for Al. The correlation coefficient for Mn and Black Carbon 376 
reached values in between both plot collectives and only for Cd it was considerably lower.  377 
 378 

Tab. 1. 379 
 380 
When calculating the correlation coefficients of all plots of collective A and B distance cluster-381 
wise, no clear spatial trends were found. Figures 5a, 5b and 5c show exemplarily the results 382 
for Ca, Mg, Fe, Al, Cd and Black Carbon. The results for Mn were comparable to those of Ca 383 
and Mg and thus are not displayed.  384 
The Pearson’s correlation coefficient r for Ca and Mg (Fig. 5a) was slightly higher for nearest 385 
and farthest distances to former emitters than for intermediate distances. Although, variability 386 
expressed by standard error did not show a spatial trend. For Fe and Al (Fig. 5b) r remained 387 
on the same level for all distance clusters. Only the standard error reached higher values for 388 
clusters of nearest and farthest distances. For Cd and Black Carbon (Fig. 5c), which were 389 
both only analyzed for humus layers, no spatial trends were found for distances > 50 km. For 390 
distances of 10 - 30 km, r was substantially higher for Cd, but unstable for Black Carbon. The 391 
standard error for Cd showed a spatial trend, but nearer to former emitters it is lower than for 392 
distances > 50 km.  393 
 394 

Fig. 5a. 395 
Fig. 5b. 396 
Fig. 5c. 397 

 398 
The results of the spatial regression between ferrimagnetic susceptibility and base saturation 399 
and the coefficients of determination (R²) for depth levels are displayed in Tab. 2. The 400 
coefficients of determination were highest for the combination of the depth levels 0-5, 6-10 401 
and 11-30 cm (base saturation) with the depth levels 5-10 cm and 10-15 cm (magnetic 402 
susceptibility). This indicates that magnetic susceptibility values measured in humus layers 403 
(uppermost depth levels) are best suitable as model parameters and that their predictive 404 
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value for chemical soil characteristics is also higher for the humus layer. Therefore, the 405 
following test of magnetic susceptibility as model parameter was restricted to the humus 406 
layer. 407 
 408 

Tab. 2. 409 
 410 
3.3 Linear regression based modeling 411 
Following the findings of 3.1, a linear regression based model was calculated for Oe and Oa 412 
horizon, where the best modeling results were expected. Figs 6 a - 6c show exemplarily the 413 
results for Ca, Cd and Fe.  414 
A distinct linear regression model with comparably high coefficients of determination (R²) has 415 
been derived for Ca (Fig. 6a), Mg and Mn (without illustration). R² for Ca was 0.51, for Mg 416 
0.52 and for Mn 0.37, with ρ < 0.01. For all three cases, also small 95 % confidence intervals 417 
were found, indicating a high precision of the linear regression model. In contrast, the linear 418 
regression was rather weak for Cd (Fig. 6b) and Black Carbon (without illustration). For both 419 
elements, R² was much lower (0.09) and the 95 % confidence intervals were much broader. 420 
No linear regression was found for Fe (Fig. 6c) and Al (without illustration). In both cases, R² 421 
was nearly 0 and the 95 % confidence intervals were very broad.  422 
 423 

Fig. 6a. 424 
Fig. 6b. 425 
Fig. 6c. 426 

 427 
Model quality was tested by using the relation between measured and predicted values 428 
(without illustration). Residuals showed an obvious coherence between measured and 429 
predicted values for Ca, Mg and Mn with small 95 % intervals. The test of model quality for 430 
Cd and Black Carbon showed a weaker coherence with broader 95 % intervals. In contrast, 431 
supported by previous findings, no such coherence was found for Fe and Al, which have also 432 
very broad 95 % intervals.  433 
 434 
Residual histograms (without illustration), which were used as second indicator for model 435 
quality, were slightly right skewed for Ca, Mg and Mn. A good coherence with the expected 436 
distribution of the observations was given. Also for Cd, the distribution corresponded very 437 
well to a standardized normal distribution. For Fe, Al and Black Carbon the distribution of the 438 
residuals was left skewed and did not fit very well together with the expected distribution.  439 
 440 
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The stratification of regression models into distance clusters (without illustration) resulted in 441 
an improvement of R² for Fe and Al to 0.05 and 0.06, respectively. The coherence between 442 
measured and predicted values and the distribution of the residuals were also improved. 443 
However, rather small sample sizes within each of the distance clusters and broad 95 % 444 
confidence intervals question the quality of the respective models.  445 
Contradictory results were obtained by a stratification of the regression models for the two 446 
plot collectives A and B. Taking Fe as an example, a linear regression was calculated for the 447 
subset of the ENFORCHANGE plots (plot collective A) with R² = 0.43. However, the 95 % 448 
confidence interval became very broad due to the low number of plots. In contrast, the linear 449 
regression for the subset of the monitoring plots (plot collective B) was rather weak (R² = 450 
0.12), but the 95 % interval was smaller due to the higher number of plots. However, in both 451 
cases the distribution of the residuals fits not very well with a standardized normal 452 
distribution. The trends for Al were similar.  453 
 454 

4. Discussion  455 

Magnetic susceptibility is a well approved proxy indicator for fly ash deposition. Its suitability 456 
and application was subject of the EU project MAGPROX (http://www.geophysics.uni-457 
tuebingen.de/index.php?id=54) and a great number of other studies (e.g. Blaha and others 458 
2008, Fialova and others 2006, Magiera and others 2006, Boyko and others 2004). The here 459 
presented study intended to test the suitability of magnetic susceptibility as indicator for 460 
management relevant agents deposited with fly ash. In addition to previous studies, we 461 
tested, if the concentration of major nutrients such as Ca and Mg can be predicted.  462 
 463 
The range of values of magnetic susceptibility is in agreement with previous studies in the 464 
test region Dübener Heide (Koch and others 2002, Klose and others 2001). Values for 465 
Dahlener Heide were not available. For humus layers of Dübener Heide magnetic 466 
susceptibility shows a distinct spatial trend for distances < 20 km (Fig. 4). For distances > 30 467 
km magnetic susceptibility value ranges stayed more or less on the same level. There are no 468 
differences between the spatial clusters < 30 km, < 50 km (Dübener Heide) and < 75 km 469 
(Dahlener Heide). This indicates, in agreement with previous studies (Fürst and others 2009 470 
a, b), that from a distance of 30 km on, detectable fly ash deposition plays an inferior role.  471 
 472 
Correlation coefficients for magnetic susceptibility and concentrations of Fe and Cd were on 473 
a comparable level to data by Stryszcz and Magiera (1998) for highly polluted agricultural 474 
and forest soils in Southern Poland or by Wang and Qin (2005) and by Lu and Bai (2006) for 475 
urban soils in China. The correlation with Mn was slightly lower as found by Magiera and 476 
others (2007). In contrast to observations of Wang (2009) for urban roadside top soils, a 477 
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weaker and negative correlation between magnetic susceptibility and Black Carbon was 478 
found. Data from other studies for comparing the correlation with the Al concentrations could 479 
not be found.  480 
 481 
A comparison of the differences between the correlation for humus layers and mineral soils 482 
with published data was not possible, as this was not tested in other studies. In the 483 
presented study, the correlation between mass susceptibility and all horizons (“total”) was 484 
mostly higher than the mean value of the correlation coefficients for single horizons (Tab. 1). 485 
A reason might be that in situ assessment of magnetic susceptibility is done centimeter wise 486 
in bore holes and the values must have been assigned depth level wise to chemical 487 
characteristics assessed according to the Level-I standard depth levels. A problem in the 488 
correct matching of both data sets, especially at the plot collective B, is the unevenness of 489 
the soil surface at small distances due to a high variability of thickness of humus layers in 490 
Dübener and Dahlener Heide (Fürst and others 2009 a, b).  491 
 492 
Also some differences in the correlation coefficients for the two plot collectives A and B were 493 
found (Tab. 1). These result from the difficulty to harmonize the sampling for the chemical 494 
analyses and the magnetic susceptibility measurements for the subset of the monitoring plots 495 
(plot collective B). Factors influencing the quality of magnetic susceptibility measurements 496 
such as differences in soil type, humus form and thickness of humus layers for the subset of 497 
monitoring plots could not be excluded (Kapicka and others 2001, Schibler and others 2002, 498 
Fialova and others 2006, Magiera and others 2006, Zawadzki and others 2007). The findings 499 
do not contradict the use of data from both plot collectives together as modeling basis, but 500 
indicate that the intention to get a broader data base for modeling might have caused some 501 
problems with model quality.  502 
 503 
For the correlation of both plot collectives for distance clusters no spatial trends were found 504 
for Ca, Mg, Fe and Al. In contrast, spatial trends for Cd and Black Carbon for the distance 505 
clusters < 10 km, < 20km and < 30 km were found. Missing spatial trends support the use of 506 
magnetic susceptibility as model parameter. However, a missing trend could only be 507 
expected for the correlation with Fe as main source of magnetism but not for Ca or Mg. The 508 
observation allows several possible interpretations. The indicative value of magnetic 509 
susceptibility for fly ash and related nutrients and pollutants is superposed to a higher extend 510 
by natural humus properties, than assumed at the beginning of the studies (Faßbinder 1994, 511 
Zawadzki and others 2007). The humus layer in forests is an important nutrient reservoir and 512 
magnetizable Fe or Mn compounds occur also in “natural” humus layers (Faßbinder 1994, 513 
Scollar 1965, LeBorgne 1955). This is supported by the finding that for distances >30 km 514 
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magnetic susceptibility levels are more or less the same for Dübener Heide and the 515 
reference region Dahlener Heide.  516 
For Ca and Mg liming might also be of importance. Liming effects are likely for the zone >10 - 517 
20 km distance, where the deposition of alkaline fly ash particles was only marginal (Fritz 518 
and Makeschin 2007). For this zone, acidic deposition components have caused even higher 519 
forest health damages than near to former emitters and in consequence extensive 520 
compensation measures were carried out (Fürst and others 2007 b). This might explain why 521 
the correlation between magnetic susceptibility and Ca and Mg in this zone was slightly lower 522 
and the standard error was slightly higher than for other distance clusters (Fig. 5a).  523 
 524 
Finally, we cannot exclude that some fly ash fractions might be transported much wider than 525 
assumed before. In addition, deposits from domestic fuel from settlements in the vicinity of 526 
both test regions might have had an influence on the results. The latter is supported by 527 
observations on the spatial distribution of the Black Carbon content in the humus layers 528 
(Koschke and others subm.) in Dübener and Dahlener Heide, where also no clear 529 
dependence between distance to the emitters and Black Carbon concentrations was found. 530 
 531 
Based on linear regression, the concentrations of important nutrients such as Ca (Fig. 6a.) or 532 
Mg and acidic cations such as Mn could be predicted. The quality of this prediction for the 533 
base cations Ca and Mg was even higher (higher R², smaller 0.95 confidence interval, better 534 
distribution of the residuals), than for Fe (Fig. 6c) and Al. In contrast, the prediction quality for 535 
Cd (Fig. 6b) and for Black Carbon as pollutants was lower. For Black Carbon the influence of 536 
the applied Black Carbon measurement method and the hereby isolated part of the Black 537 
Carbon combustion continuum (Masiello 2004, Koschke and others subm.) on the correlation 538 
with magnetic susceptibility, are not known. This aspect will be part of future research 539 
activities.  540 
 541 

5. Conclusions and Perspectives  542 

The results of our study have shown that magnetic susceptibility cannot exclusively be used 543 
as proxy for fly ash in soils. However, it might be used to a certain extent as model 544 
parameter to predict important fly ash components, which impact forest soils and forest 545 
ecosystem development. Following previous findings (e.g. Zawadzki 2009) magnetic 546 
susceptibility might be used to predict the spatial extent of heavy metal pollution as a major 547 
risk factor in fly ash impacted regions.  548 
Our study supports the assumption that magnetic susceptibility might be also used as model 549 
parameter to predict the concentrations of Ca and Mg and pedo-chemical characteristics 550 
such as base saturation.  551 
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The high potential of magnetic susceptibility as spatial predictor is given by its high cost 552 
efficiency (Schibler and others 2002, Magiera and others 2007). Being used as predictor in a 553 
multiple regression approach, we were able to prove a very high sensitivity and indicative 554 
value for small scale variations of fly ash deposition in dependence from orographic and 555 
stand characteristics (Fürst and others 2009 b). The obtained data sets provide information 556 
with a high spatial resolution on fly ash deposition for different depth levels, which 557 
complements very well data sets from site classification (Zirlewagen and von Wilpert 2004, 558 
Fürst and others 2009 b).  559 
The experiences obtained from the presented study and in modeling the spatial distribution 560 
of fly ash (Fürst and others 2009) lead to the conclusion that the applied linear regression 561 
based modeling approach should be transformed to a multiple regression approach. By using 562 
additional information on orographic, climatic or stand parameters together with magnetic 563 
susceptibility, the prediction quality of the deposed agents might be improved and small 564 
scale variations in nutrient potentials and risks driven by fly ash deposition could be better 565 
identified and used for forest management decisions.  566 
 567 
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Figure Captions 763 
 764 
Fig. 1: Map of the test regions including localization of the different test plot collectives.  765 
 766 
Fig. 2: Research strategy of the study. The plot-wise and grid-wise assessment followed a 767 
hierarchical research approach, where each of the plot collectives contributed to the stepwise 768 
test of the suitability of magnetic susceptibility as spatial predictor for deposed nutrients, acid 769 
and heavy metals and Black Carbon. 770 
 771 
Fig. 3: Test design at plots with / without soil profile in Dübener and Dahlener Heide. 772 
 773 
Fig. 4: Spatial trend of magnetic susceptibility in the study areas Dübener and Dahlener 774 
Heide. The box and whisker plot show the mean value, the 0.95 confidence interval (box) 775 
and the standard deviation (whiskers) for the Oe, Oa and mineral horizons. The plots were 776 
bundled in 5 distance dependent clusters: Dübener Heide: up to 10 km distance, up to 20 km 777 
distance, up to 30 km distance, up to 50 km distance; Dahlener Heide: up to 75 km distance.  778 
 779 
Fig. 5a: Spatial trend in correlation between magnetic susceptibility and Ca and Mg content 780 
for the plot collectives A and B. 781 
 782 
Fig. 5b: Spatial trend in correlation between magnetic susceptibility and Fe and Al content for 783 
the plot collectives A and B. 784 
 785 
Fig. 5c: Spatial trend in correlation between magnetic susceptibility and Cd and Black 786 
Carbon content for the plot collectives A and B. 787 
 788 
Fig. 6a: Linear regression between magnetic susceptibility and the Ca content. Comparable 789 
results were obtained for Mg and Mn. 790 
 791 
Fig. 6b: Linear regression between magnetic susceptibility and the Cd content. Comparable 792 
results were obtained for Black Carbon. 793 
 794 
Fig 6c: Linear regression between magnetic susceptibility and the Fe content. Comparable 795 
results were obtained for Al. 796 
 797 
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Tables and table captions 798 
 799 
Tab. 1: Pearsons correlation coefficient r for mass susceptibility (χ * 10-8 m³ kg-1) and 800 
contents of Ca, Mg, Fe, Mn, Al, Cd, Black Carbon. The correlation was calculated for the 801 
total plot collective and separately for the collectives A (ENFORCHANGE plots) and B 802 
(monitoring plots) to test the quality of the correlation. The depth levels are oriented on the 803 
Level-I standard assessment approach (BMVEL 2006).  804 
Depth (horizon) Correlation magnetic susceptibility (χ * 10-8 m³ kg-1) 
all plots  Ca Mg Fe Mn Al Cd Black Carbon 
Oe (0-5) 0.12** 0.33* 0.73* -0.10 0.72* 0.58* -0.09 
Oa (6-10) 0.42** 0.64* 0.72* 0.55* 0.70* 0.53 -0.38 
Mineral soil 1 (11 - 15) 0.50** 0.55 -0.18 0.19 -0.15 
Mineral soil 2 (16 - 20) 0.50* 0.42 -0.08 0.33* 0.06 
Mineral soil 3 (21 - 30) 0.26* 0.21 -0.29 0.36* -0.03 

 
 

  

Total 0.76** 0.76* 0.86* 0.49* 0.72* 0.13 -0.26 
ENORCHANGE plots  
Oe (0-5) 0.49** 0.21* 0.38* 0.03 -0.26* -0.48 -0.18 
Oa (6-10) 0.90** 0.84* -0.28 0.10* -0.43* -0.03 -0.45 
Mineral soil 1 (11 - 15) 0.38** 0.51 -0.29 0.19 -0.42 
Mineral soil 2 (16 - 20) 0.71* 0.78 -0.07 0.09 -0.34 
Mineral soil 3 (21 - 30) 0.63* 0.84 -0.25 0.12 -0.44 

 
 

  

Total 0.65** 0.58** 0.85* 0.46* 0.75* 0.80* -0.39 
Level-I plots  
Oa (0-5) 0.39** 0.66* 0.66* 0.70 0.68* 0.55* -0.04 
Oe (6-10) 0.45** 0.57* 0.62* 0.70* 0.65* 0.46 -0.34 
Mineral soil 1 (11 - 15) 0.08* 0.43 0.27 0.15 -0.41 
Mineral soil 2 (16 - 20) 0.00 0.06 0.10 0.37 -0.52 
Mineral soil 3 (21 - 30) 0.31 0.28 -0.19 0.43 -0.56 

    

Total 0.52** 0.52* 0.75* 0.75* 0.74* 0.51 -0.20 
* ρ < 0.05, ** ρ < 0.01  805 
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Tab. 2: Coefficients of determination (R²) for the spatial regression of magnetic 806 
susceptibility against base saturation. The horizons with the highest R² are grey shaded.  807 

Magnetic susceptibility R² 
6-10 cm 11-15 cm 21-25 cm  

0 - 5 cm 0.3714** 0.3347** 0.0571* 
6 - 10 cm 0.3542** 0.2966** 0.0659* 
11 - 30 cm 0.4006** 0.3392** 0.0553* 
31 - 60 cm 0.2054* 0.1318* 0.0505* B

as
e 

sa
tu

ra
tio

n 

61 - 90 cm 0.0426* 0.0139* 0.0105* 
* ρ < 0.05, ** ρ < 0.01  808 
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Correlation (r) between magnetic susceptibility and Ca and Mg content (all plots)

(mean value, whiskers: standard error)
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Correlation (r) between magnetic susceptiblity and Fe and Al content (all plots)

(mean values, whiskers: standard error)
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Correlation (r) between magnetic susceptibility and Cd and Black Carbon (humus layers, all plots)

(mean values, whiskers: standard error)
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Regression Ca-Ms 
R² = 0.51, ρ < 0.01

Y = -1.640 + 2.0132 * X
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Regression Cd-MS (all plots)
R² = 0.09

Y = -2.377 + 0.51352 * X
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Regression Fe-MS (all plots)
R² = 0.00

Y = 2.6270 - 0.0070  * X
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