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Abstract

The Levenberg-Marquardt algorithm is a classical method for solving
nonlinear systems of equations that can come from various applica-
tions in engineering and economics.

Recently, Levenberg-Marquardt methods turned out to be a valuable
principle for obtaining fast convergence to a solution of the nonlin-
ear system if the classical nonsingularity assumption is replaced by a
weaker error bound condition. In this way also problems with noniso-
lated solutions can be treated successfully. Such problems increasingly
arise in engineering applications and in mathematical programming.

In this thesis we use Levenberg-Marquardt algorithms to deal with
nonlinear equations, multi-objective optimization and complementar-
ity problems. We develop new algorithms for solving these problems
and investigate their convergence properties.

For sufficiently smooth nonlinear equations we provide convergence re-
sults for inexact Levenberg-Marquardt type algorithms. In particular,
a sharp bound on the maximal level of inexactness that is sufficient for
a quadratic (or a superlinear) rate of convergence is derived. More-
over, the theory developed is used to show quadratic convergence of
a robust projected Levenberg-Marquardt algorithm.

The use of Levenberg-Marquardt type algorithms for unconstrained
multi-objective optimization problems is investigated in detail. In par-
ticular, two globally and locally quadratically convergent algorithms
for these problems are developed. Moreover, assumptions under which
the error bound condition for a Pareto-critical system is fulfilled are
derived.

We also treat nonsmooth equations arising from reformulating com-
plementarity problems by means of NCP functions. For these reformu-
lations, we show that existing smoothness conditions are not satisfied
at degenerate solutions. Moreover, we derive new results for positively
homogeneous functions. The latter results are used to show that ap-
propriate weaker smoothness conditions (enabling a local Q-quadratic
rate of convergence) hold for certain reformulations.





Zusammenfassung

Der Levenberg-Marquardt-Algorithmus ist ein klassisches Verfahren
zur Lösung nichtlinearer Gleichungssysteme. Diese findet man u.a. in
vielen Anwendungen der Ingenieur-und Wirtschaftswissenschaften.

Kürzlich erwiesen sich Levenberg-Marquardt-Methoden als wichtiges
Prinzip zur Erreichung schneller Konvergenz gegen eine Lösung des
nichtlinearen Systems, wenn die klassische Regularitätsbedingung
durch eine schwächere Fehlerschranke ersetzt wird. So lassen sich auch
Probleme mit nicht isolierten Lösungen erfolgreich behandeln. Solche
Probleme treten zunehmend in ingenieurwissenschaftlichen Anwen-
dungen und in der mathematischen Optimierung auf.

In dieser Arbeit werden Levenberg-Marquardt-Methoden für nicht-
lineare Gleichungen, multikriterielle Optimierung und Komplemen-
taritätsprobleme verwendet. Neue Algorithmen werden entwickelt
und ihre Konvergenzeigenschaften untersucht.

Für nichtlineare Gleichungssysteme mit hinreichend glatten Funktio-
nen werden Konvergenzergebnisse für inexakte Levenberg-Marquardt-
Algorithmen gezeigt. Insbesondere wird eine verbesserte scharfe obere
Schranke für das Maß der Inexaktheit hergeleitet, die noch quadratis-
che (oder superlineare) Konvergenz erlaubt. Außerdem wird die en-
twickelte Theorie benutzt, um die quadratische Konvergenz eines ro-
busten projizierten Levenberg- Marquardt-Algorithmus zu zeigen.

Die Verwendung von Levenberg-Marquardt-Algorithmen für unrestrin-
gierte multikriterielle Optimierungsprobleme wird im Detail unter-
sucht. Insbesondere wurden zwei global und lokal quadratisch konver-
gente Algorithmen für diese Optimierungsprobleme entwickelt. Außer-
dem konnten Bedingungen hergeleitet werden, unter denen die Fehler-
schranke für ein Pareto-kritisches System gilt.

Die Arbeit behandelt auch nichtglatte Gleichungssysteme, die aus
der Umformulierung von Komplementaritätsproblemen durch NCP-
Funktionen entstehen. Dafür wird gezeigt, dass übliche Glattheits-
voraussetzungen im Falle degenerierter Lösungen nicht erfüllt sind.
Außerdem werden neue Ergebnisse für positiv homogene Funktionen
hergeleitet. Diese Ergebnisse werden verwendet um zu zeigen, dass
für einige Umformulierungen bestimmte (für die lokal schnelle Kon-
vergenz ausreichende) schwächere Glattheitsvoraussetzungen gelten.
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Basic Notation

R Real numbers.
R
n ={x = (x1, . . . , xn)

⊤|xi ∈ R for all i = 1, 2, . . . , n}.
R
n
+ non-negative orthant i.e., Rn

+ := {x ∈ R
n|xi ≥ 0, for all i = 1, 2, . . . , n}.

N Natural numbers i.e., N = {1, 2, . . .}.
N0 N ∪ {0}.
Z set of integers i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
0n null vector in R

n.
1n (1, 1, . . . , 1)⊤ ∈ R

n.
bd(S) boundary of a set S.
int(S) interior of a set S.

‖x‖ Euclidean norm of a vector x i.e., ‖x‖ :=
√

x21 + . . .+ x2n.

‖x‖q ℓq norm of a vector x, q ∈ (1,∞) i.e., ‖x‖q := (|x1|q + . . .+ |xn|q)
1

q .
‖x‖∞ max norm of a vector x i.e., ‖x‖∞ := max{|x1|, . . . , |xn|}.
B(x, δ) the ball around x with radius δ i.e., B(x, δ) := {y|‖y − x‖ ≤ δ}.
dist [x, S] distance of x to a set S i.e., dist [x, S] := infy∈S ‖y − x‖.
f a scalar valued function from R

n to R.
F a vector valued function from R

n to R
m (or to R

n).
Df set of all points at which the function f is Fréchet differentiable.
∇f(x) gradient of f at x.
∇2f(x) Hessian of f at x.
JF (x) Jacobian matrix of F at x.
∇F (x) =JF (x)⊤.
Xp set of all Pareto-optimal points.
Xw set of all weakly Pareto-optimal points.
Xpp set of all properly Pareto-optimal points.
Xpc set of all Pareto-critical points.
Null (M) Null space of matrix M .
r(M) Rank of matrix M .
R
n×p Set of (n× p)-matrices with elements in R.





Chapter 1

Introduction

1.1 Overview

In this thesis we deal with nonlinear equations, multi-objective optimization and
complementarity problems. We develop new algorithms for solving these problems
and investigate their convergence properties.

The new algorithms developed are based on the Levenberg-Marquardt algo-
rithm. This algorithm is a classical method for solving nonlinear systems of
equations and least squares problems that come from various applications in en-
gineering, physics and economics. The algorithm can be regarded as a regularized
Gauss-Newton method.

Recently, Levenberg-Marquardt algorithms turned out to be a valuable means
for ensuring fast convergence to a solution of the nonlinear system if the classical
nonsingularity assumption is replaced by a weaker error bound condition so that
problems with nonisolated solutions can be treated successfully. Computing a
nonisolated solution is a difficult task and the algorithms in this area are much
less developed than say Newton’s method. Nonisolatedness is a kind of degeneracy
coming from several sources.

A first source for problems with nonisolated solutions are Karush-Kuhn-Tucker
(KKT) systems that belong to an optimization problem with constraints. If no
suitable constraint qualification holds the Lagrange multipliers can be nonunique
and nonisolated. For this type of difficulties, a number of techniques have been
developed during the last years, see [19; 25; 35; 68].

Sources for more difficult problems with nonisolated solutions are underdeter-
mined nonlinear equations, optimization problems with nonisolated primal solu-
tions (often caused by redundant variables), multi-objective optimization prob-
lems or complementarity problems that do not arise from optimization problems
(like reformulations of generalized Nash equilibria, see [20]).

This thesis aims at the design and analysis of new and improved Levenberg-
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1.1 Overview

Marquardt type algorithms for solving nonlinear equations, multi-objective op-
timization and complementarity problems. These algorithms share basic advan-
tages of existing Levenberg-Marquardt methods like fast convergence under weak
conditions and the promising practical robustness.

In the remaining sections of this chapter we will briefly discuss these problems
and some basic tools that we will use to tackle them. We will also describe the
Levenberg-Marquardt subproblem and discuss the relations between the classical
nonsingularity assumption versus an error bound.

For nonlinear equations Levenberg-Marquardt type algorithms were shown
to have a quadratic rate of convergence if an appropriate error bound condition
holds, see [24; 26; 69; 71]. These results are valid if the map H defining the
nonlinear equation is sufficiently smooth (basically H has to be differentiable with
locally Lipschitz continuous derivative). The results differ in the possible range
for the regularization parameter and in the proof techniques. The result in [69]
allow this parameter to be chosen proportional to the square of ‖H‖. In contrast
to this, according to approaches in [26] and [24] the regularization parameter can
be chosen proportional to ‖H‖ without destroying the convergence rate. This
could lead to more stable subproblems.

Since the subproblems of a Levenberg-Marquardt type algorithm will usually
be solved only inexactly it is important to know the level of accuracy required to
preserve the convergence rate. Corresponding results require that the accuracy
is proportional to the power of 4 [10] or to the power of 3 [23] of ‖H‖. However,
this shows a significant gap to the accuracy level (power of 2) that holds for
the classical inexact Newton method. This is investigated in detail Chapter 2
where it is shown that an accuracy, proportional to the power of 2, is sufficient
to preserve the Q-quadratic convergence rate. In the same chapter, we also show
Q-quadratic convergence of a projected Levenberg-Marquardt algorithm with a
large regularization parameter.

The use of Levenberg-Marquardt type algorithms for multi-objective opti-
mization problems are investigated in Chapters 3 and 4. Many methods have
been proposed in the literature to find a Pareto-critical point (which satisfies the
first order KKT optimality conditions for an unconstrained multi-objective prob-
lem). The most notable among them are the steepest descent based methods
in [16; 31; 32; 33; 51; 52; 55]. These methods use gradient information of all
the objective functions to find a search direction. However, all of these methods
converge only quite slowly (comparable to gradient methods for programs with a
single objective). Multi-objective optimization problems usually possess a set of
nonisolated Pareto critical points. The nonisolatedness of Pareto-critical points
has never been looked at in the past. This view gives fresh insights into devel-
oping new algorithms with a local Q-quadratic convergence rate. In particular,
two quadratically and globally convergent algorithms are developed. Moreover,
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1.2 Problems

assumptions are derived under which the error bound for a Pareto-critical system
is fulfilled.

In Chapter 5, we discuss nonsmooth nonlinear equations arising from refor-
mulating nonlinear complementarity problems. This reformulation is done by
so called NCP functions. In [43], a smoothness condition on the reformulated
nonlinear equation near a solution is employed for showing local Q-quadratic
convergence of the constrained Levenberg-Marquardt method. In Chapter 5,
we provide results in detail that this smoothness condition does not hold near
some special types of solutions (known as degenerate solutions). Recently [27],
this smoothness condition has been weakened so that the constrained Levenberg-
Marquardt method can have local Q-quadratic convergence if the NCP function
is defined as the min function. All the smoothness conditions are discussed in
detail in Chapter 5. In Chapter 5 we use positively homogeneous NCP func-
tions to investigate the weaker smoothness properties. In particular, we examine
for what class of NCP functions the weaker smoothness conditions in [27] are
satisfied. For this, we extend some fundamental identities known for differen-
tiable homogeneous functions, like Euler’s and derivative identity, to nonsmooth
homogeneous functions.

Finally, conclusions and possible extensions will be presented in the last chap-
ter of our work.

1.2 Problems

Nonlinear Equations

In many applications one needs to find values of variables that satisfy a number
of conditions in the form of equations. This can be described by

H(z) = 0, (1.1)

where z ∈ R
n is the unknown variable and H : Rn → R

m is a given function.
If the equations are all linear then (1.1) is a linear system. There are many

exact methods for solving a linear system, for example, Gaussian elimination.
However, most real-world problems, especially those encountered in engineering,
mathematics and physics are inherently nonlinear in nature. Systems of nonlinear
equations are much more difficult to solve than linear ones. Numerical solution
techniques almost exclusively rely on iterative procedures. We will mostly as-
sume H to be continuously differentiable and, will discuss solution procedures for
general functions H .

Many times one cannot model a real-world problem in the form given by (1.1).
For example, one has to consider additional constraints. Time, for example, can-

3



1.2 Problems

not be negative (except possibly in a relativistic setting). In chemical equilibrium
problems, the concentration of a substrate must always be non-negative. Or, the
mapping H might not be defined everywhere. A constrained system of nonlinear
equations can be described by

H(z) = 0, s.t. z ∈ Ω, (1.2)

where Ω ⊆ R
n is the constraint set. Usually, for simplicity we will restrict our-

selves to the case when Ω is convex.
There are many sources of nonlinear (or constrained) nonlinear equations. In

this thesis will discuss in detail two such sources: Multi-objective optimization
problems and complementarity problems.

Multi-objective Optimization Problems

There are usually multiple conflicting objectives in engineering design problems
(see for example [12; 62]) and they all shall be minimized (or maximized, as the
case may be) in some sense. For example, while buying a car we would like to
pay as less as possible (minimize the cost) and also would like to have a car with
minimal fuel consumption (minimize fuel consumption). However, usually a point
that is a simultaneous minimizer of all the objective functions usually does not
exists (in our example, the cheapest car might not be fuel efficient).

In this thesis we will be concerned with unconstrained multi-objective opti-
mization problems. The concept of Pareto-optimality (defined in Chapter 3) is
often used to characterize a desirable point of such a problem (see [18]). It will
be shown in Chapter 3 that finding a Pareto-optimal point amounts to solving a
constrained system of equations, i.e., solving (1.2) with particular choices of H
and Ω. Thus, we can adapt some classical techniques to solve (1.2), depending
upon the choice of H and Ω.

Complementarity Problems

For a given function F : Rn → R
n, solving the nonlinear complementarity prob-

lem (NCP(F ) in short) is to find a vector x ∈ R
n so that

x ≥ 0, F (x) ≥ 0, x⊤F (x) = 0. (1.3)

Complementarity problems arise in a variety of engineering applications, espe-
cially in equilibrium problems from economics, transportation sciences and fric-
tional contact problems (see [22] for further details). Another very common source
of complementarity problems are constrained optimization problems (both single

4



1.3 Algorithmic Principles and Preliminaries

objective and multi-objective). It will be shown in Chapter 5 that solving the
nonlinear complementarity problem amounts to solving a constrained system of
equations, i.e., solving (1.2) with particular choices of H and Ω. Hence, as in
the case of unconstrained multi-objective problems, we can adapt some classical
techniques to solve (1.2), depending upon the choice of H and Ω.

1.3 Algorithmic Principles and Preliminaries

The solution set of (1.2) is denoted by

Z := {z ∈ Ω|H(z) = 0}. (1.4)

Let us first consider the case when H is continuously differentiable, Ω := R
n

and n = m. For this case, among the many iterative methods for solving (1.2),
Newton’s method is the most popular. In this method, if zk is the point at
iteration k the next iterate is zk+1 := zk + dk, where

dk := −(∇H(zk))−1H(zk). (1.5)

Obviously, Newton’s method requires that ∇H(zk) is nonsingular (invertible).
Now let us relax the condition m = n by m 6= n. For such a case, a popular
method for solving (1.2) is the Gauss-Newton method. In this method, if zk is
the point at iteration k the next iterate is zk+1 := zk + dk, where

dk := −(∇H(zk)∇H(zk)⊤)−1∇H(zk)H(zk). (1.6)

Obviously, the Gauss-Newton method requires that ∇H(zk)∇H(zk)⊤ is nonsin-
gular. The classical Levenberg-Marquardt method on the other hand, does not
require that ∇H(zk)∇H(zk)⊤ is nonsingular. The Levenberg-Marquardt method
goes back to Levenberg [45] and Marquardt [49]. In this method, if zk is the point
at iteration k the next iterate is zk+1 := zk + dk, where

dk := −
(

∇H(zk)∇H(zk)⊤ + α(zk)I
)−1∇H(zk)H(zk), (1.7)

with α(zk) > 0. Obviously, the matrix ∇H(zk)∇H(zk)⊤ + α(zk)I is positive
definite and dk from (1.7) is well-defined. This method can also be regarded as a
regularized Gauss-Newton (or regularized Newton) method and does not require
that m = n or invertibility of any matrix. Rather, the following assumption is
crucial for the convergence analysis of this method.

5



1.3 Algorithmic Principles and Preliminaries

Error Bound For some z∗ ∈ Z, there are C > 0 and δ > 0 so that

‖H(z)‖ ≥ Cdist [z, Z], for all z ∈ B(z∗, δ), (1.8)

holds.
Let us define the concept of isolated and nonisolated solutions of (1.2).

Definition A solution z∗ ∈ Z is called an isolated solution if there exists a δ > 0
so that B(z∗, δ) ∩ Z = {z∗}. If this condition does not holds then we call z∗ a
nonisolated solution.

Taylor’s theorem implies the following.

Lemma Let z∗ ∈ Z, m = n, H be continuously differentiable and let ∇H(z∗) be
nonsingular. Then, z∗ is an isolated solution. Moreover, the Error Bound holds.

Proof: By Taylor’s theorem we obtain

H(z∗ + h) = H(z∗) +∇H(z∗)⊤h+ o(h).

As z∗ ∈ Z, this simplifies to

H(z∗ + h) = ∇H(z∗)⊤h+ o(h). (1.9)

The nonsingularity of ∇H(z∗), shows that ∇H(z∗)⊤h = 0 holds if and only if
h = 0. Hence, from (1.9) we obtain that z∗ is an isolated solution. Moreover, we
have that

dist [z∗ + h, Z] = ‖h‖ ≤
∥

∥∇H(z∗)−1
∥

∥ ‖H(z∗ + h)‖+
∥

∥∇H(z∗)−1
∥

∥ ‖o(h)‖,

for all h with ‖h‖ sufficiently small. This simplifies to

1

2
dist [z∗ + h, Z] ≤ ‖h‖ −

∥

∥∇H(z∗)−1
∥

∥ ‖o(h)‖ ≤
∥

∥∇H(z∗)−1
∥

∥ ‖H(z∗ + h)‖,

for all h with ‖h‖ sufficiently small. This obviously implies that the Error Bound
holds. △
Hence, if H is continuously differentiable, the Error Bound is a weaker condition
than nonsingularity of ∇H(z∗). It is strictly weaker since for H : R

2 → R
2

defined by

H(x, y) :=
(

x, x(1 + y2)
)⊤
,

it is easy to see that the Error Bound holds but ∇H(z∗) is singular for any z∗ ∈ Z.
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Chapter 2

Robust Levenberg-Marquardt
Algorithms for Nonlinear
Equations

2.1 Introduction

For a continuously differentiable mapping H : R
n → R

m, let us consider the
equation

H(z) = 0. (2.1)

Its solution set is denoted by

Z := {z ∈ R
n|H(z) = 0} (2.2)

Levenberg-Marquardt methods for solving Equation (2.1) are known ([69]) to
possess superlinear convergence properties, if the starting point is sufficiently
close to some z∗ ∈ Z, and if a certain local error bound condition holds. This
condition requires that C > 0 and δ > 0 exist so that

‖H(z)‖ ≤ Cdist [z, Z] (2.3)

for all z in a ball of radius δ around z∗. It is well known that this condition can
hold even for problems (2.1) which have nonisolated solutions. Such problems
arise in different fields such as optimization, variational inequalities, and game
theory, for examples see [21; 43].

In this chapter, we will improve the inexactness level for robust Levenberg-
Marquardt methods. The Levenberg-Marquardt method is called robust, if its
regularization parameter is chosen as large as possible without destroying a de-
sired convergence rate. The issues of inexactness and robustness will be detailed

7



2.1 Introduction

in the following text. We first consider a subproblem of the Levenberg-Marquardt
method. Given an iterate s ∈ R

n and a parameter α(s) > 0, such a subproblem
consists of the following linear equation

∇H(s)H(s) +
(

∇H(s)∇H(s)⊤ + α(s)I
)

(z − s) = 0. (2.4)

Obviously, the matrix ∇H(s)∇H(s)⊤ + α(s)I is positive definite and Equa-
tion (2.4) has a unique solution that provides the next iterate. The resulting
method is thus well defined for any starting point and goes back to Levenberg
[45] and Marquardt [49]. This method can also be regarded as a regularized
Gauss-Newton method. The inexact (perturbed) Levenberg-Marquardt subprob-
lem is given by

∇H(s)H(s) +
(

∇H(s)∇H(s)⊤ + α(s)I
)

(z − s) = p(s), (2.5)

where p(s) denotes the value of a perturbation function p : Rn → R
n. Again,

Equation (2.5) has a unique solution. This solution will be denoted by z(s).
For a given starting vector z0 ∈ R

n, the inexact Levenberg-Marquardt method
generates a sequence zk of iterates defined by,

zk+1 := z(zk), k ∈ N0. (2.6)

For later use, the solution of the unperturbed subproblem (3) is denoted by
z0(s). Obviously, z0(s) is the unique solution of Equation (2.5) with p(s) = 0.
The inexact subproblem (2.5) can be equivalently written as the unconstrained
quadratic program

minψ(z),

where ψ : Rn → [0,∞) is defined by

ψ(s) :=
1

2

∥

∥H(s) +∇H(s)⊤(z − s)
∥

∥

2
+

1

2
α(s)‖z − s‖2 − p(s)⊤(z − s). (2.7)

This is easily seen using the necessary optimality condition ∇ψ(z) = 0 which,
due to the (strong) convexity of ψ, is also sufficient.

Based on the error bound condition (2.3) convergence rate results for the in-
exact LevenbergMarquardt method have been developed by Dan et al. [10] and
by Fan and Pan [23]. Regardless slightly different smoothness assumptions, they
obtained a quadratic rate of the inexact Levenberg-Marquardt method under dif-
ferent assumptions on the magnitudes of α(s) and ‖p(s)‖ in terms of ‖H(z)‖, see
Table 2.1. The result in [10] is based on [69], the first paper showing a superlinear
rate for the Levenberg-Marquardt method under the error bound condition (2.3).
The improved result in [23] exploits a technique developed in [24], that makes use
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2.1 Introduction

of singular value decompositions of Jacobians of H at certain points. Obviously,
the result in [23] allows a larger perturbation term p(s). Moreover, it guarantees
a numerically more robust solution of the subproblems, since the regularization
term α(s)I within the inexact Levenberg-Marquardt subproblems is locally much
larger, if α(s) is proportional to ‖H(s)‖ instead of being proportional to ‖H(s)‖2.

If we compare the results in [10] and [23] with the magnitude of the perturba-
tion term in inexact Newton methods for regular solutions of quadratic systems
of equations, the question arises whether it is possible to show a quadratic rate of
convergence for the inexact Levenberg-Marquardt method with the more robust
choice of α(s) = O(‖H(s)‖) (see [23] in Table 2.1), but with a significantly larger
perturbation term p(s).

Table 2.1: Results from literature
α(s) ‖p(s)‖

[10] O(‖H(s)‖2) O(‖H(s)‖4)
[23] O(‖H(s)‖1) O(‖H(s)‖3)

In more detail, let us consider the case when m = n and the Jacobian ∇H
is locally Lipschitz continuous. Then, if H(z∗) = 0 and ∇H(z∗) is nonsingular
(z∗ is said to be a regular solution), it is well known by the work of Dembo et al.
[14] that inexact Newton methods with perturbations not larger than O(‖H(s)‖2)
converge Q-quadratically to the isolated solution z∗. It is also known ([14]) that
the quadratic rate is lost (decreases), if perturbations with

‖p(s)‖ = O
(

‖H(s)‖1+t
)

and t ∈ (0, 1) (2.8)

are allowed. Under the conditions stated in this paragraph the Levenberg-Marquardt
subproblem (2.4) can be rewritten as the following inexact Newton subproblem

H(s) +∇H(s)⊤(z − s) = pα(s) (2.9)

with

pα(s) :=
[

I −∇H(s)⊤
(

∇H(s)∇H(s)⊤ + α(s)I
)−1∇H(s)

]

H(s)

=
[

I −
(

I + α(s)(∇H(s)⊤∇H(s))−1
)−1
]

H(s),

if s belongs to a sufficiently small neighborhood of z∗. This can be verified by
checking that the solution of Equation (2.4) solves (2.9). Moreover, without
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2.2 Local Convergence Analysis

giving details here, it can be further shown that

‖pα(s)‖ = O(α(s)‖H(s)‖)

is valid for all s in some neighborhood of z∗. This means that according to
([14]), the quadratic rate of the Levenberg-Marquardt method is lost in general
if α(s) = O(‖H(s)‖t) with t ∈ (0, 1). Since t = 1 is the smallest value for which
the Q-quadratic rate is possible (see above), the Levenberg-Marquardt method
is called robust if α with α(s) = ‖H(s)‖1 is used. A more general notion of
robustness that depends on a desired convergence rate will be given in Section 2.5.

The first purpose of this chapter (see Section 2.2) is to improve the level of
inexactness that can be allowed in a robust Levenberg-Marquardt method without
destroying quadratic convergence. It will be shown that

p(s) = O(‖H(s)‖2)

is sufficient. To this end we use an approach that is different from [10] and [23].
Rather, we exploit a result given by Fischer [26]. Roughly speaking, it says that
the error bound condition (2.3) provides an error bound for the equation

F (z) := ∇H(z)H(z) = 0, (2.10)

see Lemma 2.2.1.
The second purpose of this chapter is to apply the improved inexactness level

to a projected Levenberg-Marquardt method suggested by Kanzow et al. [69].
The projections guarantee the feasibility of the iterates with respect to a given
convex set. It will turn out that the projected Levenberg-Marquardt method
can be regarded as an inexact Levenberg-Marquardt method. Based on this and
on the results on inexact robust Levenberg-Marquardt methods we will show in
Section 2.3 that a projected robust Levenberg-Marquardt method also converges
Q-quadratically. Section 2.4 presents some numerical experiments, whereas the
concluding remarks at the end of the chapter show possible extensions.

Most of the results in this chapter can be found in [29].

2.2 Local Convergence Analysis

Throughout this section the assumptions given below are required to be fulfilled.
For the sake of clarity we also repeat assumptions that were already used in
Section 2.1

Assumption 2.2.1 The function H : Rn → R
m is differentiable and ∇H : Rn →

10



2.2 Local Convergence Analysis

R
n×m is locally Lipschitz continuous.

Assumption 2.2.2 For some z∗ ∈ Z, there are C > 0 and δ > 0 so that

‖H(s)‖ ≥ Cdist [z, Z], for all z ∈ B(z∗, δ). (2.11)

Obviously, Assumption 2.2.2 implicitly assumes that the solution set Z is nonempty.
Now, a condition on the level of inexactness within the subproblems (2.5) of the
Levenberg-Marquardt method (2.6) is stated.

Assumption 2.2.3 There is cp > 0 so that

‖p(s)‖ ≤ cp‖H(s)‖2 for all s ∈ B(z∗, δ). (2.12)

with z∗ ∈ Z and δ from Assumption 2.2.2.

The remaining assumption guarantees not only the robustness of the sub-
problems but also that for technical reasons, the subproblem (2.5) has a unique
solution even if s ∈ Z.

Assumption 2.2.4 Let α : Rn → (0,∞) be defined by

α(s) =

{

‖H(s)‖ if s ∈ R
n \ Z;

1 if s ∈ Z.
(2.13)

Blanket Assumption for Section 2.2: Assumptions 2.2.1, 2.2.2, 2.2.3 and
2.2.4 hold.

Replacing the definition of α(s) for s ∈ R
n \ Z by the more general condition

that
α0‖H(s)‖ ≤ α(s) ≤ α1‖H(s)‖ (2.14)

(with some α1 ≥ α0 > 0) would lead to the same results but is avoided here for
the sake of simplicity. In particular, under Assumptions 2.2.1 and 2.2.2,

α(s) := ‖F (s)‖ = ‖∇H(s)H(s)‖ (2.15)

satisfies condition (2.14) for all s in an arbitrary ball around z∗ with suitably
chosen α0, α1 > 0. To verify this claim the following Lemma 2.2.1 can be em-
ployed. Lemma 2.2.1 is an immediate consequence of [26, Corollary 2] and plays
an important role in deriving the convergence results in this section.
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2.2 Local Convergence Analysis

Lemma 2.2.1 With F : R
n → R

n defined by (2.10), there are CF > 0 and
δF > 0 so that

‖F (z)‖ ≥ CFdist [z, Z] for all z ∈ B(z∗, δF ). (2.16)

The next lemma provides smoothness properties following from the Blanket
Assumption for this section.

Lemma 2.2.2 There is L > 0 so that the inequalities

‖∇H(z)−∇H(s)‖ ≤ L‖z − s‖, (2.17)

‖H(z)−H(s)−∇H(s)⊤(z − s)‖ ≤ L‖z − s‖2, (2.18)

‖H(z)−H(s)‖ ≤ L‖z − s‖, (2.19)

‖∇H(z)‖ ≤ L, (2.20)

are satisfied for all z, s ∈ B(z∗, 2δ).

Proof: Since B(z∗, 2δ) is compact, the inequalities (2.17)-(2.20) follow easily from
Assumption 2.2.1. △

Lemma 2.2.3 There is κ > 0 so that

‖z(s)− s‖ ≤ κdist [s, Z] for all s ∈ B(z∗, δ). (2.21)

Proof: Let s denote an arbitrary but fixed element of B(z∗, δ) \ Z. By Assump-
tions 2.2.1 and 2.2.2, the set Z is closed and nonempty. Thus, a point s⊥ ∈ Z
exists with

‖s− s⊥‖ = dist [s, Z]. (2.22)

Moreover, s⊥ ∈ B(z∗, 2δ) since

‖s⊥ − z∗‖ ≤ ‖s⊥ − s‖+ ‖s− z∗‖ ≤ 2δ. (2.23)

Thus, s⊥ can be used in Lemma 2.2.2 as a possible instance for z.
The function ψ defined in (2.7) has a unique minimizer. For p(s) := 0 the

minimizer was denoted by z0(s) (see Section 2.1). This immediately leads to

α(s)‖z0(s)− s‖2 ≤ 2ψ(z0(s)) ≤ 2ψ(s⊥). (2.24)

From (2.7) with p(s) = 0 and the definition of α in (2.13) we obtain

2ψ(s⊥) = ‖H(s) +∇H(s)⊤(s⊥ − s)‖2 + ‖H(s)‖‖s− s⊥‖2. (2.25)
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2.2 Local Convergence Analysis

Taking into account inequalities (2.18) and (2.19) for z := s⊥ and H(s⊥) = 0, we
have

2ψ(s⊥) ≤ L2‖s− s⊥‖4 + L‖s− s⊥‖3. (2.26)

Together with Equations (2.24), (2.22) and the definition of α this yields

‖z0(s)− s‖2 ≤ 2α(s)−1ψ(s⊥) ≤ ‖H(s)‖−1(L2δ + L)dist [s, Z]3 (2.27)

and, with Assumption 2.2.2,

‖z0(s)− s‖ ≤
√

C−1(L2δ + L) dist [s, Z] (2.28)

follows. According to the definition of z0(s) and z(s) as solution of Equations
(2.4) and (2.5), respectively, we have

F (s) + A(s)(z0(s)− s) = 0, F (s) + A(s)(z(s)− s) = p(s), (2.29)

where A(s) := ∇H(s)∇H(s)⊤ + α(s)I and F (s) = ∇H(s)H(s) (see Equation
(2.10)). Subtracting both equations leads to

z(s)− z0(s) = A(s)−1p(s). (2.30)

Obviously, the matrix A(s) is symmetric and positive definite. Its smallest eigen-
value is bounded below by α(s) = ‖H(s)‖. Thus, the largest eigenvalue of A(s)−1

is bounded above by ‖H(s)‖−1 and

‖A(s)‖−1 ≤ ‖H(s)‖−1. (2.31)

Due to Assumption 2.2.3, (2.19) and (2.22) it follows that

‖z(s)− z0(s)‖ ≤ ‖A(s)‖−1 ≤ ‖p(s)‖
≤ cp‖H(s)‖
= cp‖H(s)−H(s⊥)‖
≤ cpLdist [s, Z].

With (2.28) we therefore have

‖z(s)− s‖ ≤ ‖z(s)− z0(s)‖+ ‖z0(s)− s‖ ≤ κdist [s, Z], (2.32)

where
κ := cpL+

√

C−1(L2δ + L). (2.33)
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2.2 Local Convergence Analysis

For s ∈ Z, Assumption 2.2.3 implies p(s) = 0. Then, with Equation (2.13),
z(s) = s follows so that the assertion of the lemma is shown for all s ∈ B(z∗, δ).
△

Lemma 2.2.4 There are Ĉ > 0 and δ̂ > 0 so that

dist [z(s), Z] ≤ Ĉdist [s, Z]2 for all s ∈ B(z∗, δ̂). (2.34)

Proof: With δF from Lemma 2.2.1 and κ from Lemma 2.2.3 we define

δ̂ :=
1

κ+ 1
δF . (2.35)

Note that 0 < δ̂ < δF ≤ δ and let s ∈ B(z∗, δ̂)\Z and z ∈ B(z∗, δF ) be arbitrarily
chosen. By the definitions of ψ in (2.7) and of F in (2.10) we have

∇ψ(z) = ∇H(s)
(

H(s) +∇H(s)⊤(z − s)
)

+ α(s)(z − s)− p(s) (2.36)

and

F (z)−∇ψ(z) = ∇H(s)
(

H(z)−H(s)−∇H(s)⊤(z − s)
)

− α(s)(z − s) + p(s)

+(∇H(z)−∇H(s))H(z).

Therefore, with formulas (2.20), (2.18), (2.13), Assumption 2.2.3 and the inequal-
ity (2.17) it follows that

‖F (z)−∇ψ(z)‖ ≤ L2‖z − s‖2 + ‖H(s)‖‖z − s‖+ cp‖H(s)‖2 + L‖z − s‖‖H(z)‖.
(2.37)

Since Lemma 2.2.3 implies

‖z(s)− z∗‖ ≤ ‖z(s)− s‖+ ‖s− z∗‖ ≤ κdist [s, Z] + δ̂ ≤ (κ+ 1)δ̂ ≤ δF ,

we have
z(s) ∈ B(z∗, δF ) (2.38)

so that z ∈ B(z∗, δF ) in (2.37) can be replaced by z(s). Taking into account
Lemma 2.2.1 and ∇ψ(z(s)) = 0 we get

‖F (z(s))−∇ψ(z(s))‖ = ‖F (z(s))‖ ≥ CF dist [z(s), Z]. (2.39)

Defining s⊥ ∈ Z according to (2.22) then, similarly to (2.23),

‖s⊥ − z∗‖ ≤ 2δ̂ ≤ 2δ (2.40)
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follows. Therefore, (2.19) yields

‖H(s)‖ = ‖H(s⊥)−H(s)‖ ≤ Ldist [s, Z]. (2.41)

Furthermore, by Equations (2.38), (2.40), (2.18) and Lemma 2.2.3, we obtain

‖H(z(s))‖ = ‖H(z(s))−H(s⊥)‖
≤ L‖z(s)− s⊥‖
≤ L‖z(s)− s‖+ L‖s− s⊥‖
≤ (κ + 1)Ldist [s, Z].

This together with (2.41), Lemma 2.2.3 and (2.37) yields

‖F (z(s))−∇ψ(z(s))‖ ≤ dist [s, Z]2L
(

κ2L+ κ + cpL+ κ(κ+ 1)L
)

.

This inequality and Equation (2.39) provide the desired assertion for all s ∈
B(z∗, δ̂) \ Z, where

Ĉ := C−1
F L

(

κ2L+ κ+ cpL+ κ(κ + 1)L
)

. (2.42)

For s ∈ Z, the assertion is obviously true, just apply the arguments at the end
of the proof of Lemma 2.2.3. △

The next result does not depend on a particular algorithm and seems also
useful for other applications. It gives sufficient conditions for the convergence of
a general sequence to a limit and for a certain Q-order of this convergence.

Lemma 2.2.5 Let {wk} ⊂ R
n, {rk} ⊂ [0, 1) be sequences, and r ∈ [0, 1), R > 0

numbers so that, for k ∈ N0,

‖wk − w0‖ ≤ r0
R

1− r
(2.43)

implies
rk+1 ≤ rrk and ‖wk+1 − wk‖ ≤ Rrk. (2.44)

Then, the following assertions hold:

(a) {rk} converges to 0 and {wk} converges to some ŵ ∈ R
n.

(a) If, for some τ > 1 and c > 0,

rk+1 ≤ crτk and ‖ŵ − wk‖ ≥ rk (2.45)
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is satisfied for k ∈ N0, then {wk} converges to ŵ with the Q-order of τ . In
particular,

‖wk+1 − ŵ‖ ≥ cR

1− r
‖wk+1 − ŵ‖τ

is valid for k ∈ N0.

Proof: (a) We first show by induction that Equations (2.43) and (2.44) hold
for all k ≥ 0. Obviously, (2.43) is valid for k = 0. Let us now assume that for
some k, inequality (2.43) is satisfied for ν = 1, . . . , k. Then, by assumption, the
inequalities in (2.44) are valid for ν = 0, . . . , k and we have that for ν, ℓ, with
k + 1 ≥ ν > ℓ ≥ 0

rν ≤ rrν−1 ≤ rℓr
ν−ℓ (2.46)

and

‖wν − wℓ‖ ≤
ν−ℓ−1
∑

i=0

‖wℓ+i+1 − wℓ+i‖ ≤ R

ν−ℓ−1
∑

i=0

rℓ+i ≤ Rrℓ

ν−ℓ−1
∑

i=0

ri. (2.47)

By 0 ≤ r < 1, (2.47) implies

‖wν − wℓ‖ < rℓ
R

1− r
(2.48)

for ν, ℓ with k+ 1 ≥ ν ≥ ℓ ≥ 0. Taking ν = k+1 and ℓ = 0 in (2.48) we see that
(2.43) is valid for ν = 0, . . . , k+ 1. By induction it follows that (2.43) and (2.44)
hold for all k ≥ 0, and that (2.46) , (2.47) and (2.48) hold for arbitrary integers
ν, ℓ, with ν ≥ ℓ ≥ 0. Hence, by 0 ≤ r < 1 and by (2.46) , the sequence {rk} must
converge to 0. Furthermore, with (2.48) we then conclude that {wk} is a Cauchy
sequence and, thus, converges to some ŵ ∈ R

n.
(b) For ν > ℓ := k+1 we obtain from (2.48) and the first inequality in (2.45)

that

‖wν − wk+1‖ < rk+1
R

1− r
≤ rτk

cR

1− r
. (2.49)

Passing to the limit for ν → ∞ and using the second inequality in (2.45) yields

‖wν − wk+1‖
‖wν − wk‖τ ≤ cR

1− r
<∞ (2.50)

for k ∈ N0. Hence, the sequence {wk} converges to ŵ with the Q-order of τ . △

Theorem 2.2.1 Let {zk} be a sequence generated by the inexact Levenberg Mar-
quardt method (2.6) . Then, there are δ̃ > 0 and C̃ > 0 so that z0 ∈ B(z∗, δ̃)
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implies that {zk} belongs to B(z∗, δ̃) and converges to some ẑ ∈ Z with

‖zk+1 − ẑ‖ ≤ C̃‖zk − ẑ‖2 for k ∈ N0, (2.51)

i.e. the inexact LevenbergMarquardt method converges Q-quadratically to a solu-
tion of (2.1).

Proof: As noted in Section 2.1 the inexact Levenberg-Marquardt method is well
defined for any starting vector z0. Moreover, it generates an infinite sequence
{zk}. Let δ̃ > 0 be chosen so that

δ̃(2κ + 1) ≤ δ̂ and δ̃Ĉ(2κ+ 1) ≤ 1

2
(2.52)

with κ from Lemma 2.2.3 and Ĉ, δ̂ from Lemma 2.2.4. To apply Lemma 2.2.5 we
first set

wk := zk, rk := dist [zk, Z], R := κ, r :=
1

2
, c := Ĉ, τ := 2 (2.53)

for k ∈ N0. Then, if we suppose that (2.43) is valid for some k, z0 ∈ B(z∗, δ̃)
implies

‖zk − z∗‖ ≤ ‖zk − z0‖+ ‖z0 − z∗‖
≤ r0R(1− r)−1 + δ̃

= 2κdist [z0, Z] + δ̃

≤ (2κ+ 1)δ̃

≤ δ̂ (2.54)

and

Ĉdist [zk, Z] ≤ Ĉ‖zk − z∗‖ ≤ Ĉ(2κ+ 1)δ̃ ≤ 1

2
= r.

Now, we see that Lemmas 2.2.3 and 2.2.4 with s := zk lead to

‖wk+1 − wk‖ = ‖zk+1 − zk‖ ≤ κdist [zk, Z] = Rrk (2.55)

and
rk+1 = dist [zk+1, Z] ≤ Ĉdist [zk, Z]2 = cr2k ≤ rrk. (2.56)

Thus, the assumption in Lemma 2.2.5 that (2.43) implies (2.44) is satisfied
for k ∈ N0. Therefore, according to part (a) of Lemma 2.2.5, the sequence
{dist [zk, Z]} converges to 0 and {zk} converges to some ẑ := ŵ. As a consequence,
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2.3 A Projected Robust Levenberg-Marquardt Algorithm

ẑ belongs to Z. Moreover, due to (2.56), the first inequality in (2.45) is fulfilled.
The second inequality in (2.45) is valid as well since

‖ŵ − wk‖ = ‖ẑ − zk‖ ≥ dist [zk, Z] = rk. (2.57)

Hence, the assumptions used in Lemma 2.2.5 are fulfilled and with (2.53) the
assertions of the theorem (with C̃ := 2κĈ) follow except that {zk} ⊂ B(z∗, δ̃).
The latter is valid due to (2.54). △

2.3 A Projected Robust Levenberg-Marquardt

Algorithm

Let us consider the problem of solving

H(z) = 0, z ∈ Y, (2.58)

where Y ⊂ R
n is a nonempty closed convex set. The solution set of problem

(2.58) is denoted by Y ∗. In [43] a projected Levenberg-Marquardt method for
computing a solution of (2.58) is suggested. To detail this method let for any
z ∈ R

n, and any closed nonempty set S ⊆ R
n, πS(z) denote the the Euclidean

projection of z ∈ R
n onto the set S i.e., ‖πS(z)−z‖ = dist [z, S] holds. Recall that

z0(s) denotes the solution of the unperturbed Levenberg-Marquardt subproblem
(2.4), see Section 2.1. Then, for any starting vector y0 ∈ R

n, the projected
Levenberg-Marquardt method generates a sequence {yk} defined by

yk+1 := πY (z0(y
k)), k = 0, 1, 2, ... (2.59)

Obviously, all iterates (possibly except y0) belong to Y . Under certain as-
sumptions the local Q-quadratic convergence of {yk} to a solution of (2.58) is
shown in [43] if the regularization parameter in the subproblem (2.5) is defined
by α(s) := ‖H(s)‖2. By means of the results in the previous section we will now
show that the Q-quadratic convergence is not destroyed if the robust version of
the subproblems (2.5) is used, i.e., if α(s) is defined according to (2.13).

Instead of Assumption 2.2.2 the following error bound condition is required
in [43].

Assumption 2.3.1 For some y∗ ∈ Y ∗, there are ωY > 0 and δY > 0 so that

‖H(z)‖ ≥ ωY dist [z, Y
∗] for all z ∈ B(y∗, δY ).
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2.3 A Projected Robust Levenberg-Marquardt Algorithm

Blanket Assumption for Section 2.3: Assumptions 2.2.1, 2.2.4 and 2.3.1
hold.

As a consequence of Assumption 2.3.1, we have the following.

Lemma 2.3.1 It holds that y∗ belongs to Z,

Y ∗ ∩B(y∗, δY ) = Z ∩B(y∗, δY ), (2.60)

and

dist [z, Z] = dist [z, Y ∗] for all z ∈ B

(

y∗,
1

2
δY

)

.

Proof: Obviously, Y ∗ ⊆ Z. This implies Y ∗ ∩ B(y∗, δY ) ⊆ Z ∩ B(y∗, δY ). Now,
consider any z ∈ Z ∩ B(y∗, δY ). Then, H(z) = 0. From Assumption 2.3.1 it
follows that dist [z, Y ∗] = 0. By Assumption 2.2.1, Y ∗ is closed so that z belongs
to Y ∗ ∩B (y∗, δY ). Thus, (2.60) is valid. Now, with the definitions of πZ and πY ∗

in Section 2.1, z ∈ B
(

y∗, 1
2
δY
)

implies

‖y∗ − πZ(z)‖ ≤ ‖y∗ − z‖ + ‖z − πZ(z)‖ ≤ 1

2
δY +

1

2
δY = δY

and, similarly, ‖y∗ − πY ∗(z)‖ ≤ δY . So, we have πZ(z) ∈ B(y∗, δY ) and πY ∗(z) ∈
B(y∗, δY ). Therefore, with (2.60), dist [z, Z] = dist [z, Y ∗] follows for all z ∈
B
(

y∗, 1
2
δY
)

. △

We now show that the projected Levenberg-Marquardt method (2.59) is a
particular inexact Levenberg-Marquardt method that locally satisfies Assump-
tion 2.2.3 on the level of inexactness. To this end define

p̂(s) :=
(

∇H(s)∇H(s)⊤ + α(s)I
)

(πY (z0(s))− z0(s))

for all s ∈ R
n. Then,

∇H(s)H(s) +
(

∇H(s)∇H(s)⊤ + α(s)I
)

(πY (z0(s))− s) = p̂(s), (2.61)

i.e., πY (z0(s)) can be regarded as the solution of the robust Levenberg-Marquardt
subproblem (5) with the particular perturbation p(s) := p̂(s).

Lemma 2.3.2 There are ǫ > 0 and cp̂ > 0 so that

‖p̂(s)‖ ≤ cp̂‖H(s)‖2 for all s ∈ B(y∗, ǫ). (2.62)

Proof: First note that, due to Assumption 2.3.1 and Lemma 2.3.1, Assump-
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2.3 A Projected Robust Levenberg-Marquardt Algorithm

tion 2.2.2 is satisfied for z∗ := y∗, C := ωY and δ := 1
2
δY . As defined at the

beginning of this section, z0(s) denotes the solution of the Levenberg-Marquardt
subproblem (2.6) with perturbation p(s) := 0. Thus, for such subproblems As-
sumption 2.2.3 holds with cp = 0. Therefore, Lemmas 2.2.1-2.2.4 from Section 2.2
are valid and can be exploited later within this proof. In particular, the constants
κ, Ĉ and δ̂ are given by Lemmas 2.2.3 and 2.2.4. Now, let ǫ > 0 be given by

ǫ := min

{

δ̂,
1

4(κ0 + 1)
δY

}

. (2.63)

Since Y ∗ ⊆ Y and with πY according to the definition at the beginning of this
section, we have

‖πY (z0(s))− z0(s)‖ ≤ dist [z0(s), Y
∗]. (2.64)

For any s ∈ B(y∗, ǫ), Lemma 2.2.3 and (2.63) ensure

‖z0(s)− y∗‖ ≤ ‖z0(s)− s‖+ ‖s− y∗‖ ≤ κ0dist [s, Z] +
1

4
δY ≤ 1

2
δY . (2.65)

This together with Lemma 2.3.1 and (2.64) yields

‖πY (z0(s))− z0(s)‖ ≤ dist [z0(s), Y
∗] = dist [z0(s), Z].

Taking into account Lemma 2.2.4, (2.63), and Assumption 2.2.2 (which is fulfilled
according to the first lines of this proof) it follows that

‖πY (z0(s))− z0(s)‖ ≤ dist [z0(s), Z] ≤ Ĉdist [s, Z]2 ≤ Ĉ

ω2
Y

‖H(s)‖2

is satisfied for all s ∈ B(y∗, ǫ). Combining this with (2.19) and (2.20) of Lemma 2.2.2
and with the definition (2.13) of α, we obtain

‖p̂(s)‖ ≤
(

‖∇H(s)∇H(s)⊤‖+∇H(s)‖
) Ĉ

ω2
Y

‖H(s)‖2 ≤ cp̂‖H(s)‖2

for all s ∈ B(y∗, ǫ) with

cp̂ :=
Ĉ

ω2
Y

(L2 + Lǫ).

△

Now, the convergence theorem for the projected robust Levenberg-Marquardt
method can be given.
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Theorem 2.3.1 Let {yk} be a sequence generated by the projected Levenberg-
Marquardt method (2.59). Then, there is δ̃ > 0 so that y0 ∈ B(y∗, δ̃) implies that
{yk} converges Q-quadratically to some ŷ ∈ Y ∗.

Proof: With z∗ := y∗, δ := ǫ (according to (2.63)), ωH := 1
2
ωY (from Assump-

tion 2.3.1) it can easily be verified that Assumptions 2.2.2 and 2.2.3 are fulfilled,
just use Assumption 2.3.1, Lemmas 2.3.1 and 2.3.2, and the definition of ǫ in
(2.63). Therefore, the theorem is an immediate consequence of Theorem 2.2.1.
△

2.4 Computational Results

We have applied an inexact version of the Levenberg-Marquardt method to the
four test problems given in [10]. It will turn out that a larger level of inexactness
is numerically more efficient. This underlines the value of the theory presented
in the chapter.

The subproblems of the Levenberg-Marquardt method are solved by the con-
jugate gradient (CG) method up to a certain accuracy level. Given an iterate
s := z0 the CG method is stopped if a vector z1 is computed that solves the
inexact LM subproblem (2.5), where

‖p(s)‖ ≤ ‖H(s)‖ζ‖F (s)‖1 (2.66)

is required with some positive integer ζ . As detailed in Section 2.2 it is known
that, under Assumptions 2.4 and 2.5, ‖F (s)‖ = O(‖H(s)‖) holds in any ball
around z∗. Therefore, (2.66) means

‖p(s)‖ ≤ O
(

‖H(s)‖ζ+1
)

. (2.67)

For the numerical tests in [10] the stopping rule (2.67) was used for ζ = 2 together
with α(s) = ‖H(s)‖ (regardless of modifications to deal with iterates that are
farther from a solution which we will not encounter in our local setting). Interest-
ingly, the convergence analysis in [10] does not guarantee a quadratic convergence
for this choice of ζ and α(s).

In our numerical tests we always use α(s) according to (2.13) and choose ζ
from {1, 2, 3}. Thus, one can easily estimate the level of inexactness according
to (2.67). In particular, for ζ = 1 we have ‖p(s)‖ ≤ O(‖H(s)‖2) which due
to the results in Section 2.2 provides Q-quadratic convergence. For ζ = 2 we
have ‖p(s)‖ ≤ O(‖H(s)‖3) which meets the theoretical setting for quadratic
convergence analyzed in [23] and the test setting in [10]. Finally, ζ = 3 yields
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2.4 Computational Results

‖p(s)‖ ≤ O(‖H(s)‖4) and corresponds to the conditions for quadratic convergence
in [10] except the choice of α(s).

We only report results on Problem 1 of the four test problems in [10] since the
results for the remaining three are similar. The mapping H : Rn → R

n defining
Problem 1 (for n even) is given by

Hi(z) =

{ √
i exp (zi + zi+1)/n−

√
i if mod (i, 2) = 1;√

i(zi−1 + zi)(zi−1 + zi − 1) otherwise,

As in [10] we set n equal to 1000. The starting points z0 for the inexact LM
method were generated as

z0 := z∗ +∆
u

‖u‖ , (2.68)

where z∗ := (2,−2, 2,−2, . . . , 2,−2)⊤ is a nonisolated solution of H(z) = 0 and
u ∈ R

n is chosen randomly from an n-dimensional uniform distribution in the
cube {z ∈ R

n|−1 ≤ zi ≤ 1, i = 1, . . . , n}. Several values of ∆ (like 10−3, . . . , 10−6

in Table 2.2) are used to explore the behavior of the inexact Levenberg-Marquardt
method for starting points in larger and smaller neighborhoods of z∗. For each ∆
we generated 10 starting points according to (2.68). Table 2.2 shows the average
number of Conjugate Gradient iterations (#CG) required for computing z1 by one
step of the inexact Levenberg-Marquardt method for different levels of accuracy
within the stopping rule (2.66). In addition, for each ∆ and each accuracy level,
Table 2.2 shows the average of the experimental convergence rates E defined as
solution of

‖H(z1)‖ = ‖H(z0)‖E.
A reasonable comparison of the efficiency of the inexact Levenberg-Marquardt

method for different accuracy levels is now possible by comparing the average
ratios #CG/ln(E) in the last three columns of Table 2.2. These ratios tell us
how many CG iterations were required in average to obtain one more digit of
accuracy. A related efficiency measure was introduced by Ostrowski, see [54,
Chapter 3, §11]. The last three columns of Table 2.2 show that the largest
level of inexactness (‖p(s)‖ ≤ O(‖H(s)‖2) for ζ = 1) requires less conjugate
gradient iterations per digit of accuracy than the smaller levels (ζ = 2, 3) do.
Our numerical results for the other problems in [10] show a similar behavior.
Moreover, the behavior did not change much if the dimension of z is varied (at
least up to n = 5000). It is also noted that using α(s) = ‖H(s)‖2 (or even
lesser values) instead of α(s) = ‖H(s)‖ did not worsen the behavior. It might
be interesting to figure out the reason for this observation. In contrast to this,
if a direct method is used for solving the Levenberg-Marquardt subproblem the
magnitude of α(s) turns out to be crucial for achieving a reasonable accuracy;
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the smaller the value of α(s) is the earlier the linear algebra of the direct method
breaks down and the earlier the Levenberg-Marquardt method stops.

Table 2.2: Numerical results for one step of the inexact Levenberg-Marquardt
method

#CG averaged E averaged #CG/ln(E)
∆ ζ = 1 ζ = 2 ζ = 3 ζ = 1 ζ = 2 ζ = 3 ζ = 1 ζ = 2 ζ = 3

10−3 6.0 30.4 70.7 1.89 2.70 3.47 9.4 30.6 56.9
10−4 39.4 91.6 121.1 2.20 2.92 2.92 49.9 85.4 112.9
10−5 82.6 124.4 154.2 2.45 2.67 2.67 92.0 126.6 157.0
10−6 106.8 149.0 176.1 2.51 2.53 2.53 115.8 160.8 190.0

Using a level of inexactness ‖p(s)‖ larger than O(‖H(s)‖2) will destroy the
local quadratic convergence, see (2.8) in Section 2.1. The same will happen if
the regularization parameter α(s) is larger than O(‖H(s)‖). However, allowing
such a larger value of ‖p(s)‖ might be computationally favorable since less CG
iterations are needed per Levenberg-Marquardt subproblem. To explore this we
applied the inexact Levenberg-Marquardt method under the same circumstances
as before but with ζ = 0.5 in the stopping rule (2.66) and with α(s) = ‖H(s)‖0.5.
Again, for each value of ∆, 10 starting points were randomly generated. The
results can be found in Table 2.3, their meaning is the same as in Table 2.2.
On the one hand, the experimental convergence rate E is now less than 2 and
corresponds to the theoretical rate of 1.5 predicted by Theorem 2.5.1, see Section
2.5. On the other hand, the computational expense per digit of accuracy (i.e.,
the ratio #CG/ ln(E)) is even smaller than in Table 2.2. Similar results were
obtained for the other test problems in [10].

2.5 Discussion

The local smoothness assumptions we use and those in [23] are the same but
we were able to provide a significantly larger inexactness level. Slightly weaker
smoothness assumptions are employed in [10]. However, the inexactness level for
quadratic convergence is even smaller than in [23]. In general, it might be a fruit-
ful and challenging task to weaken smoothness conditions needed for analyzing
the local behavior of Levenberg-Marquardt methods. We discuss some weaker
smoothness condition in Chapter 5.

We can extend the notion of robust Levenberg-Marquardt methods if, instead
of a quadratic convergence rate, a desired rate τ ∈ (1, 2] is fixed. Then, we speak
of a robust Levenberg-Marquardt method for the rate τ if the exponent a = τ −1
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Table 2.3: Numerical results for convergence rate of 1.5
#CG E #CG/ln(E)

∆ (averaged) (averaged) (averaged)

10−3 2.0 1.53 5.2
10−4 11.8 1.86 21.2
10−5 43.6 1.91 66.7
10−6 77.9 2.03 108.7
10−7 97.9 1.98 142.3
10−8 114.1 1.90 177.0
10−9 129.4 1.69 245.8
10−10 141.8 1.49 351.4

is used in the definition of the regularization parameter

α(s) =

{

‖H(s)‖a if s ∈ R
n \ Z;

1 if s ∈ Z.
(2.69)

since for values of a smaller than τ − 1 the convergence rate of an (unperturbed)
Levenberg-Marquardt method becomes less than τ . Then, following the lines
in Section 2.2, Theorem 2.2.1 can be extended accordingly to show the maximal
possible level of inexactness. For the sake of completeness we now present this
result but omit its proof. In Section 2.4 the practical value of the following
theorem is exemplified.

Theorem 2.5.1 Let Assumptions 2.2.1 and 2.2.2 be satisfied. For some τ ∈
(1, 2] suppose that α : Rn → (0,∞) is given by (2.69) with a := τ − 1. Moreover,
let the sequence {zk} be generated by the inexact Levenberg-Marquardt method
(2.6). Then {zk} converges to some ẑ ∈ Z with the Q-order τ if there are δ̃ > 0
and cp > 0 so that z0 ∈ B(z∗, δ̃) and

‖p(s)‖ ≤ cp‖H(s)‖τ for all s ∈ B(z∗, δ).

With reference to Section 2.3 it is easily seen that for inexact projected ro-
bust Levenberg-Marquardt methods a convergence result similar to that of The-
orem 2.3.1 must hold. This might be of particular interest for projections onto
general convex sets where inexactness can be caused by numerical errors in the
projection.
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Chapter 3

A Levenberg-Marquardt
Algorithm for Multi-objective
Optimization

3.1 Introduction

A multi-objective optimization problem (MOP) is characterized by multiple and
(usually) conflicting objective functions F1, . . . , Fm : Rn → R, all of them need
to be minimized. However usually there does not exists a point that is a simul-
taneous minimizer of all the objective functions. Such problems commonly occur
in engineering design, management sciences among others (see for example [62]).
In this chapter we will be concerned with unconstrained MOP’s. To characterize
a desirable point of an unconstrained MOP the concept of Pareto-optimality is
often used.

Definition 3.1.1 A point x∗ ∈ R
n is called Pareto-optimal if no y ∈ R

n exists so
that Fi(y) ≤ Fi(x

∗) for all i = 1, . . . , m with strict inequality for at least one index
i. If, as a slightly weaker requirement, there is no y ∈ R

n so that Fi(y) < Fi(x
∗)

for all i = 1, . . . , m, the point x∗ is called weakly Pareto-optimal.

Another well known optimality notion in multi-objective optimization is that of
a properly Pareto-optimal solution. It is a slightly restricted definition of Pareto-
optimality that eliminates solutions of anomalous types (in a certain sense). One
such widely used definition of a properly Pareto-optimal solution is as follows
(Geoffrion [34]).

Definition 3.1.2 A point x∗ ∈ R
n is called properly Pareto-optimal if x∗ is

Pareto-optimal and if there exists an M > 0 such that for each (x, i) ∈ R
n ×
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{1, 2, . . . , m} satisfying Fi(x) < Fi(x
∗) there exists an index j 6= i with Fj(x) >

Fj(x
∗) and

Fi(x
∗)− Fi(x)

Fj(x)− Fj(x∗)
≤M.

Let Xp, Xw and Xpp denote the set of all Pareto-optimal, weakly Pareto-
optimal and properly Pareto-optimal points of (MOP), respectively. It is well
known that (see [18])

Xpp ⊆ Xp ⊆ Xw. (3.1)

We call the set {(F1(x), F2(x), . . . , Fm(x))
⊤ ∈ R

m|x ∈ Xp} the efficient front.
Under appropriate differentiability assumptions on F := (F1, . . . , Fm)

⊤ any
(weakly, properly) Pareto-optimal point can be characterized by necessary opti-
mality conditions. More in detail, let I denote the index set {1, 2, · · · , m} and
for any ε ∈ [0, 1

m
], let

Λε :=

{

λ ∈ R
m|

m
∑

i=1

λi = 1, λi ≥ ε, i ∈ I

}

. (3.2)

denote the set of (nonempty) weight vectors. Then, x∗ is called Pareto-critical if a
weight vector λ∗ ∈ Λ0 exists so that ∇F (x∗)λ∗ = 0. The set of all Pareto-critical
points will be denoted by Xpc. It is well known that each weakly Pareto-optimal
point is Pareto-critical, i.e.,

Xw ⊆ Xpc. (3.3)

From (3.1) and (3.3) we obtain that each Pareto-optimal or properly Pareto-
optimal point is also Pareto-critical. Moreover, if F1, . . . , Fm are convex functions
any Pareto-critical point is also weakly Pareto-optimal. If under this convexity as-
sumption, there exists a weight vector λ∗ ∈ Λε with ε > 0 so that ∇F (x∗)λ∗ = 0,
then x∗ is properly Pareto-optimal (and by (3.1) is also Pareto-optimal). Details
about these statements can be found in [18, Section 3.3], for example.

To determine Pareto-critical points, we suggest in this chapter to directly
solve the following constraint system of equations

H(z) := ∇F (x)λ = 0, λ ∈ Λ0, (3.4)

where z = (x, λ). Usually system (3.4) has infinitely many and nonisolated
solutions. Therefore, for solving (3.4) a Levenberg-Marquardt type method is
chosen. Under appropriate assumptions such methods are known to possess a
fast local convergence even in cases where nonisolated solutions occur. Regarding
these assumptions the most crucial question is under which conditions ‖H‖ is (in
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some local sense) an error bound for the solution set

Z := {z ∈ R
n+m |H(z) = 0, λ ∈ Λ0}

of system (3.4). We will derive such conditions in Section 3.2. Then, in Section
3.3, the Levenberg-Marquardt method applied to the constraint system (3.4) is
described and its global and local convergence behavior is analyzed. The global-
ization is done by means of an Armijo type line-search and solely uses the search
directions generated by the Levenberg-Marquardt subproblems. This technique
and corresponding convergence results can also be applied to the solution of
other constraint systems of equations. In Section 3.4 we derive stronger results
under additional convexity assumptions. Some numerical results are presented
in Section 3.5. Finally, globalization techniques and desirable modifications are
discussed in Section 3.6.

For ease of use we define the sets

Ωε := {z = (x, λ) ∈ R
n+m | λ ∈ Λε} and X(λ) := {x ∈ R

n | (x, λ) ∈ Z}.

Most of the results in this chapter can be found in [28].

3.2 Existence of a Local Error bound

First of all, we state the following assumption.

Blanket Assumption for Chapter 3: For all i ∈ I, the function Fi : R
n → R

is twice continuously differentiable. Moreover, the function α : Rn+m → (0,∞) is
given by

α(z) =

{

‖H(z)‖2 if z ∈ R
n+m \ Z;

1 if z ∈ Z.
(3.5)

As a basic ingredient for the Levenberg-Marquardt method and its fast con-
vergence we first provide conditions under which a certain local error bound for
the solution set Z of system (3.4) holds. To this end let z∗ := (x∗, λ∗) ∈ Z be
fixed throughout this section.

Definition 3.2.1 If there are δ > 0 and C > 0 so that

‖H(z)‖ ≥ Cdist [z, Z] for all z ∈ B(z∗, δ) ∩ Ω0, (3.6)

then we say that ‖H‖ has the error bound property around z∗.

27



3.2 Existence of a Local Error bound

The following two lemmas provide sufficient conditions for this.

Lemma 3.2.1 If, for some δ0 > 0, there is a continuous function ξ : B(λ∗, δ0)∩
Λ0 → R

n so that

(i) ξ(λ) ∈ X(λ) for all λ ∈ B(λ∗, δ0),

(ii) ξ(λ∗) = x∗, and,

(iii) for some δ1 > 0 and C > 0, it holds that

‖H(x, λ)‖ ≥ Cdist [x,X(λ)]

for all (x, λ) satisfying λ ∈ B(λ∗, δ0) ∩ Λ0 and x ∈ B(ξ(λ), δ1)

then ‖H‖ has the error bound property around z∗.

Proof: Choose any x ∈ B(x∗, δ1/2). Then, by the continuity of ξ and condition
(ii) in Lemma 3.2.1, there is δ̃ ∈ (0, δ0] such that

‖ξ(λ)− x∗‖ ≤ δ1/2 for all λ ∈ B(λ∗, δ̃) ∩ Λ0.

Using the triangle inequality,

‖x− ξ(λ)‖ ≤ ‖x− x∗‖+ ‖x∗ − ξ(λ)‖ ≤ δ1

follows for all λ ∈ B(λ∗, δ̃) ∩ Λ0.
Now, for δ ∈ (0,min{δ̃, δ1/2}], condition (iii) in Lemma 3.2.1 yields

‖H(z)‖ = ‖H(x, λ)‖ ≥ Cdist [x,X(λ)] = Cdist [z, (X(λ), λ)] ≥ Cdist [z, Z]

for all z ∈ B(z∗, δ) ∩ Ω, where, for any λ ∈ Λ0, (X(λ), λ) denotes the set
{(x, λ) | x ∈ X(λ)} which is obviously contained in Z. △

Remark 3.2.1 Conditions (i) and (ii) in Lemma 3.2.1 seem quite weak for a
sufficiently smooth MOP. Although condition (i) is not explicitly needed within
the proof of Lemma 3.2.1 it is required if condition (iii) comes into play. More-
over, we can easily verify that most of the continuous problems in [12; 39] satisfy
these conditions. Let us fix any λ in B(λ∗, δ0) ∩ Λ0 then condition (iii) requires
that ‖H(·, λ)‖ is a local error bound for the set X(λ) around ξ(λ). This is only
reasonable if ξ(λ) belongs to X(λ) which is guaranteed by condition (i). For any
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λ ∈ Λ0 we have that X(λ) = {x ∈ R
n | ∇F (x)λ = 0} is exactly the set of Karush-

Kuhn-Tucker points of the scalarized (single objective) optimization problem

min fλ(x) :=
m
∑

i=1

λiFi(x).

For single objective optimization problems a local error bound condition for the
set of KKT points is among the weakest regularity conditions used for designing
algorithms with fast local convergence properties. Therefore, condition (iii) in
Lemma 3.2.1 does not seem too strong.

Lemma 3.2.2 Suppose that∇2F1, . . . ,∇2Fm are Lipschitz continuous in a neigh-
borhood of x∗. If ∇2fλ∗(x

∗) is nonsingular then ‖H‖ has the error bound property
around z∗.

Proof: By assumption we have that ∇xH(z∗) = ∇2fλ∗(x
∗) is nonsingular.

Therefore, the result directly follows from Lemma 2 in [20]. △

3.3 Convergence of a Constrained Levenberg-

Marquardt Method

In [43] a Levenberg-Marquardt type method is applied to a constraint system of
equations the first time. There, to obtain global convergence, a hybrid technique
is suggested that combines Levenberg-Marquardt steps with projected (damped)
gradient steps, where the gradient of a merit function is meant. Here, instead
of this technique, we show the same global convergence result for an Armijo
type line-search applied to the Levenberg-Marquardt steps itself. Thus, only
Levenberg-Marquardt steps are required. Lemma 3.3.1 and the Theorems 3.3.1
and 3.3.2 do not rely on the particular definitions of H and Ωε so that they can be
easily extended to a more general setting. The merit function φ : Rn+m → [0,∞)
with

φ(z) :=
1

2
‖H(z)‖2

will be used within the Armijo stepsize procedure.
The algorithm is formally stated on page 30.

Lemma 3.3.1 Algorithm 3.1 generates a well defined sequence {zk} ⊂ Ω0.

Proof: Obviously, step (S1) is well defined since Ω0 is nonempty and closed.
Assume that Algorithm 3.1 has determined an iterate zk ∈ Ω0 with H(zk) 6= 0.
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Algorithm 3.1
(S1) Choose z0 = (x0, λ0) ∈ Ω0, β ∈ (0, 1), κ ∈ (0, 1/2), and set k = 0.

(S2) Determine dk as the solution of

min θk(d) := ‖H(zk) +∇H(zk)⊤d‖2 + α(zk)‖d‖2 s.t. zk + d ∈ Ω0.

(S3) Determine tk as the largest t ∈ {1, β, β2, . . .} satisfying

φ(zk + tdk)− φ(zk) ≤ −κtα(zk)‖dk‖2

(S4) Set zk+1 := zk + tkd
k, k := k + 1, and go to (S2)

Then, the minimization problem in step (S2) has a unique solution dk since θ is a
strongly convex quadratic function and Ω0 is nonempty, convex and closed. This
implies θk(d

k) ≤ θk(0). With the definition of θk and ∇φ(z) = ∇H(z)H(z) we
see that this is equivalent to

2φ(zk) + 2∇φ(zk)⊤dk + (dk)⊤(∇H(zk)∇H(zk)⊤ + αkI)d
k ≤ 2φ(zk).

Hence,

∇φ(zk)⊤dk ≤ −1

2
α(zk)‖dk‖2 (3.7)

follows. Therefore, a Taylor expansion of φ at zk shows the existence of tk > 0 ac-
cording to step (S3). Note that the merit function φ is continuously differentiable
because F is a twice continuously differentiable function. Since Ω0 is convex z

k+1

belongs Ω0. Thus, by induction, it can be verified that {zk} is well defined and
lies in Ω0. △

Theorem 3.3.1 Any accumulation point generated by Algorithm 3.1 is a sta-
tionary point of the minimization problem

minφ(z) s.t. z ∈ Ω0. (3.8)

Proof: Suppose that there is a subsequence {zk}k∈K converging to a non-
stationary point z̄ of (3.8). Then, H(z̄) 6= 0 and, by the definition of α(zk) in
(S2), ᾱ > 0 exists so that α(zk) ≥ ᾱ for all k ∈ K sufficiently large. With (3.7)
and the continuity of ∇φ this implies the boundedness of the sequence {dk}K .
By the non-stationarity of z̄ there is some z̃ ∈ Ω0 with ∇φ(z̄)⊤(z̃− z̄) < 0. Thus,
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by continuity arguments, κ > 0 exists so that

−∇φ(zk)⊤(d̃k) ≥ κ > 0

for all k ∈ K sufficiently large, where d̃k := z̃ − zk. By z̃ ∈ Ω0 it follows that
θk(d

k) ≤ θk(τ d̃
k) for all τ ∈ [0, 1]. This inequality gives

2∇φ(zk)⊤dk ≤ −2τκ + τ 2(d̃k)⊤(∇H(zk)∇H(zk)⊤ + α(zk)I)d̃k

for all τ ∈ [0, 1] and k ∈ K. Due to the boundedness of {‖∇H(zk)∇H(zk)⊤ +
α(zk)I‖}K there is some κ̄ > 0 so that ∇φ(zk)⊤dk ≤ −κ̄ for all k ∈ K. There-
fore, lim infk∈K,k→∞ ‖dk‖ > 0 follows from the boundedness of {∇φ(zk)}K . Since
{φ(zk)} is monotonically decreasing we obtain from (3.7) by standard arguments
that limk→∞ φ(zk) = −∞. This is a contradiction. Hence z̄ is a stationary point
of (3.8). △

Lemma 3.3.2 Let z∗ = (x∗, λ∗) be a stationary point of (3.8). If ∇2fλ∗(x
∗) is

nonsingular then x∗ is Pareto-critical. Moreover, if x∗ ∈ Xpc then z
∗ ∈ Z.

Proof: Due to the stationarity of z∗ and the convexity of Ω0 we have that
∇φ(z∗)⊤(z − z∗) ≥ 0 for all z ∈ Ω0.

Since

∇φ(z∗)⊤(z − z∗) =H(z∗)⊤∇H(z∗)⊤(z − z∗)

=H(z∗)⊤
(

∇2fλ∗(x
∗)(x− x∗) +∇F (x∗)(λ− λ∗)

)

(3.9)

we obtain H(z∗)⊤∇2fλ∗(x
∗)(x−x∗) ≥ 0 for all x ∈ R

n because z = (x, λ∗) belongs
to Ω0 for all x ∈ R

n and can be used in (3.9). Hence, H(z∗)⊤∇2fλ∗(x
∗) = 0 and,

under the nonsingularity condition on ∇2fλ∗(x
∗), H(z∗) = 0 follows.

In a similar way, from (3.9) we obtain

H(z∗)⊤(H(x∗, λ)−H(z∗)) ≥ 0 (3.10)

for all λ ∈ Λ0 because z = (x∗, λ) belongs to Ω0 for all λ ∈ Λ0 and can be used
in (3.9). Now if x∗ ∈ Xpc then, by definition, there exists a λ̃ ∈ Λ0 so that
H(x∗, λ̃) = 0. Hence using (3.10) we obtain

−‖H(z∗)‖2 = H(z∗)⊤(H(x∗, λ̃)−H(z∗)) ≥ 0.

This gives ‖H(z∗)‖ = 0 and hence z∗ ∈ Z. △
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Theorem 3.3.2 Suppose that ∇2F1, . . . ,∇2Fm are Lipschitz continuous in a
neighborhood of x∗, that ‖H‖ has the error bound property around z∗ = (x∗, λ∗),
and that Algorithm 3.1 generates the sequence {zk}. Then there is δ̂ ∈ (0, δ) so
that zℓ ∈ B(z∗, δ̂) implies the Q-quadratic convergence of {zk} to some ẑ ∈ Z.

Proof: In [43] the local Q-quadratic convergence of a constrained Levenberg-
Marquardt method is shown in a general setting. If we apply these results to
our more special case we find that the assumptions required in [43] are satisfied.
Therefore, for δ̂ > 0 sufficiently small, ‖zℓ − z∗‖ ≤ δ̂ implies ‖dℓ‖ = O(‖H(zℓ)‖),
‖H(zℓ+dℓ)‖ = O(‖H(zℓ)‖2) and, thus φ(zℓ+dℓ) = O(‖H(zℓ)‖4). Combining this
with the definitions of φ(zℓ) and αl (see step (S2) of Algorithm 3.1) we obtain,
for δ̂ > 0 sufficiently small,

φ(zℓ + dℓ)− φ(zℓ) ≤ −1

4
‖H(zℓ)‖2 ≤ −καℓ‖dℓ‖2.

Hence, a step length is accepted in step (S3) of Algorithm 3.1 for any zℓ ∈ B(z∗, δ̂)
with δ̂ > 0 sufficiently small. The Q-quadratic convergence now follows with The-
orem 2.11 in [43]. △

3.4 Results under Convexity Assumptions

Theorem 3.4.1 Let z∗ = (x∗, λ∗) be a stationary point of (3.8). Then the fol-
lowing assertions hold:

a) If the functions F1, . . . , Fm are strongly convex then x∗ is weakly Pareto-
optimal.

b) If the functions F1, . . . , Fm are convex and if, for one i, the function Fi is
strongly convex and λ∗i > 0, then x∗ is weakly Pareto-optimal.

Proof: In both cases a) and b) we have that ∇2fλ∗(x
∗) =

∑m

i=1 λ
∗
i∇2Fi(x

∗)
is nonsingular. Thus, by Lemma 3.3.2, x∗ is Pareto-critical. The convexity of
F1, . . . , Fm then implies that x∗ is weakly Pareto-optimal (see [18, Chapter 3.3],
for example). △

Lemma 3.4.1 Suppose that, for some z∗ ∈ Z, ∇2F1, . . . ,∇2Fm are Lipschitz
continuous in a neighborhood of x∗. If the functions F1, . . . , Fm are convex and
if there is i ∈ {1, . . . , m} so that Fi is strongly convex and λ∗i > 0 then ‖H‖ has
the error bound property around z∗.
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Proof: According to the assumptions the matrix ∇2fλ∗(x
∗) is positive definite.

Thus, Lemma 3.2.2 yields the result. △

Theorem 3.4.2 If the functions F1, . . . , Fm are strongly convex then any se-
quence {zk} generated by Algorithm 3.1 converges Q-quadratically to a solution
(x∗, λ∗) ∈ Z such that x∗ is weakly Pareto-optimal.

Proof: Let z0 ∈ Ω0 be arbitrarily chosen. We first verify that the level set

Lφ(z
0) := {z ∈ Ω0 | φ(z) ≤ φ(z0)}

is bounded. To this end suppose that a sequence {zν} ⊂ Lφ(z
0) exists with

limν→∞ ‖zν‖ = ∞. By the definition of Ω0 and with zν = (xν , λν) this implies
limν→∞ ‖xν‖ = ∞. Moreover, we can find a subsequence {zν}K , an index i ∈
{1, . . . , m}, and c > 0 with λνi ≥ c for all ν ∈ K. The strong convexity of
F1, . . . , Fm implies limν→∞,ν∈K ‖H(zν)‖ = ∞. This contradicts to {zν} ⊂ Lφ(z

0).
Hence, Lφ(z

0) is bounded.
The sequence {zk} generated by Algorithm 3.1 belongs to Lφ(z

0) and, thus,
has at least one accumulation point z∗. Taking into account Theorems 3.3.1 and
3.4.1 a) it follows that z∗ = (x∗, λ∗) ∈ Z such that x∗ is weakly Pareto-optimal.
By Lemma 3.4.1, ‖H‖ has the error bound property around z∗. Then, Theorem
3.3.2 yields the Q-quadratic convergence of {zk} to z∗. △

Remark 3.4.1 To further weaken the convexity assumptions used in this section
it is possible to replace the sets Λ0 and Ω0 throughout the paper by Λε and Ωε
respectively, for some ε ∈ (0, 1

m
]. Then, the results in Sections 3.2, 3.3, and 3.4

remain valid. Moreover, in Theorems 3.4.1 and 3.4.2 the point x∗ turns out to be
properly Pareto-optimal which (by 3.1) is also Pareto-optimal.
In addition, by the use of Λε and Ωε the condition that λ∗i > 0 in part b) of
Theorem 3.4.1 is no longer needed (since it is automatically satisfied). The same
applies for Lemma 3.4.1. Finally, the strong convexity of all functions F1, . . . , Fm
in Theorem 3.4.2 can be replaced by their convexity plus the strong convexity of
only one of the functions F1, . . . , Fm.

3.5 Computational Results

In this section we solve two unconstrained test problems using Algorithm 3.1.
Both of these problems have nonisolated solutions. The first of these is taken
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from [41] and is known as JOS. It is bi-objective and F is given by:

F1(x) :=
1

50

50
∑

i=1

x2i

F2(x) :=
1

50

50
∑

i=1

(xi − 2)2.

Both of the objective functions of JOS are strongly convex. The Pareto-optimal
set of JOS is the set {(a, a, . . . , a) ∈ R

50|a ∈ [0, 2]}. We choose 100 starting points
from a uniform random distribution from the set

Ω := {(x, λ) ∈ R
52|λ ∈ Λ0, x ∈ [−5, 5]50}.

The algorithm parameters β and κ are chosen to be 0.5 and 0.1 respectively.
The maximum number of iterations is set to be 100. The results (in the objective
space) form the simulation are shown in Figure 3.1. We see that Algorithm 3.1
is able to find multiple Pareto-optimal solutions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

F
1

F
2

solutions generated by Algorithm 3.1

Efficient front

Figure 3.1: Performance of Algorithm 3.1 on the problem JOS.
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(0,1,0)

(0,0,1)

(1,0,0)

(0,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

(0,1,1)

F1

F2
F 3

solutions generated by Algorithm 3.1
Efficient front boundary

Figure 3.2: Performance of Algorithm 3.1 on the problem DTLZ2.

As a second test problem we have chosen the non-convex, 12 dimensional,
3-objective DTLZ2 problem from [13]. Its objective functions are given as:

F1(x) := (1 + g(x)) cos
(x1π

2

)

cos
(x2π

2

)

,

F2(x) := (1 + g(x)) cos
(x1π

2

)

sin
(x2π

2

)

,

F3(x) := (1 + g(x)) sin
(x1π

2

)

,

with g(x) :=
∑12

i=3(xi − 0.5)2.
Its Pareto-optimal set is {x ∈ R

12|x3 = x4 = . . . = x12 = 0.5}. In the
objective space the Pareto-optimal solutions satisfy F 2

1 + F 2
2 + F 2

3 = 1. We
choose 100 starting points from a uniform random distribution from the set

Ω := {(x, λ) ∈ R
15|λ ∈ Λ0, x ∈ [0, 1]12}.

The other parameters are chosen in the same way as for the JOS problem. The
results (in the objective space) form the simulation of Algorithm 3.1 are shown
in Figure 3.2. We see that the algorithm is able to find multiple Pareto-optimal
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solutions for this non-convex problem.

3.6 Discussion

An interesting aim is to ensure that an accumulation point of Algorithm 3.1 yields
a Pareto-optimal point of (MOP) under weaker conditions than the convexity
assumptions used in the present chapter. From single objective minimization
several techniques are known which avoid or reduce the cases where an accu-
mulation point (generated by some algorithm) is not a local minimizer. Such
globalization techniques take into account the objective function in some way.
This raises the question whether similar techniques can be designed for Algo-
rithm 3.1. A simple idea to tackle this question is a hybrid method that combines
Levenberg-Marquardt subproblems with subproblems that generate directions of
simultaneous decrease for all the objective functions F1, . . . , Fm. Algorithms that
generate directions for simultaneous decrease have been suggested in [31; 52]. In
a local phase of such a hybrid technique projected Levenberg-Marquardt sub-
problems (see Chapter 2, [43] and [29]) could be used. This would lead to less
expensive subproblems. Another idea of globalizing is the use of (more sophisti-
cated) Levenberg-Marquardt type subproblems that itself lead to a simultaneous
decrease. The last topic is thoroughly discussed in the next chapter.
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Chapter 4

A Simultaneous Descent
Levenberg-Marquardt Algorithm
for Multi-objective Optimization

4.1 Introduction

To determine Pareto-critical or (weakly) Pareto-optimal points of an MOP we
suggested in Chapter 3 to solve the following constrained system of equations

H(z) := ∇F (x)λ = 0, λ ∈ Λ0, (4.1)

where z := (x, λ) and Λ0 and F are defined in Chapter 3. In the same chapter (and
also in an earlier work [28]), for globalizing the Levenberg-Marquardt method
we used a line search technique with ‖H‖2 as the merit function. As already
discussed in Section 3.6, using such a globalization scheme has some limitations.
For example, such an algorithm may converge to a non Pareto-critical point if
appropriate assumptions do not hold. To alleviate this behavior, in this chapter
objective function values are used for globalization. This might be of use in MOPs
having non-convex objective functions.

Here we present a globally convergent Levenberg-Marquardt method for find-
ing a Pareto-critical point. The error bound condition and other assumptions re-
quired for local convergence analysis of the method are discussed. In this method,
each iteration provides a decrease in all the objective function values. This is
achieved locally by using a suitably modified form of a constrained Levenberg-
Marquardt method (presented in [43]) where now the constraint set changes at
each iteration. For globalization our method combines the Levenberg-Marquardt
direction and a simultaneous descent direction ([31; 52]). Global convergence to
Pareto-optimal points is shown under convexity assumptions. An important fea-
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4.2 The Levenberg-Marquardt Algorithm with Simultaneous Descent

ture of our method is that for non-convex problems, convergence to Pareto-critical
points can still be shown.

Many methods have been proposed in the literature to find a Pareto-critical
point. The most notable among them are the steepest descent based methods
in [16; 31; 32; 33; 51; 52; 55]. These methods use gradient information of all
the objective functions to find a search direction. However, all of these methods
converge only quite slowly (comparable to gradient methods for programs with
a single objective). The methods in [28; 30] are the first to present an algorithm
with a local Q-quadratic convergence rate. These methods use the Hessian in-
formation of all the objective functions. In this chapter we will present another
algorithm with a local Q-quadratic convergence rate. It has similarities to the
Newton based approach in the recent work [30]. Advantages and disadvantages
of both approaches are discussed later in detail.

For the sake of brevity, if the usage is clear, we sometimes use row vectors
instead of column vectors. For an (n+m)-dimensional vector, say u ∈ R

n+m, we
denote by ux the vector of the first n components and by uλ the vector of the last
m components, respectively. Instead of u we also write (ux, uλ). Inequality (also
strict) or equality signs between vectors are understood componentwise. The
other notations in this chapter are the same as defined in Chapter 3.

Although throughout the rest of this chapter we use Λ0 and get convergence re-
sults for weakly Pareto-optimal points, the corresponding results can be obtained
also for properly Pareto-optimal points by replacing the set Λ0 by Λε throughout
with some ε ∈

(

0, 1
m

]

.
The chapter is divided into six sections, of which this is the first. The next

section presents the Levenberg-Marquardt algorithm with simultaneous descent,
while its convergence is discussed in Section 4.3. Section 4.4 describes a duality
based approach for solving the Levenberg-Marquardt subproblems. Section 4.5
analyzes the algorithm under convexity assumptions. Concluding remarks, com-
parisons with other methods and extensions to MOPs with a polyhedral ordering
cone are presented in the last section.

4.2 The Levenberg-Marquardt Algorithm with

Simultaneous Descent

In the following we shall investigate a constrained Levenberg-Marquardt algo-
rithm with simultaneous descent for finding a Pareto-critical point of an uncon-
strained MOP. Before we do so, we state the following smoothness condition on
the objective functions.
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4.2 The Levenberg-Marquardt Algorithm with Simultaneous Descent

Assumption 4.2.1 For all i ∈ I, the function Fi : R
n → R is twice continuously

differentiable and ∇2Fi : R
n → R

n×n is locally Lipschitz continuous.

Next, we state a condition on the regularization parameter to be used in the
Levenberg-Marquardt method.

Assumption 4.2.2 The function α : Rn+m → (0,∞) is given by

α(z) =

{

‖H(z)‖2 if z ∈ R
n+m \ Z;

1 if z ∈ Z.
(4.2)

For each x ∈ R
n, let ν(x) ∈ R

m denote a global minimizer of the convex
quadratic optimization problem (QP (x))

min
ν

‖H(x, ν)‖2 s.t. ν ∈ Λ0, (4.3)

where we recall that Λ0 is defined in (3.2). As discussed later, we need the optimal
value of (QP (x)) to bound the search directions of our algorithm. It is shown
in [59, Theorem 2.1] that the function q : Rn → R

n defined as

q(x) := −H(x, ν(x)) (4.4)

is locally Lipschitz continuous. Moreover, the direction q(x) ∈ R
n is a descent

direction for all the objective functions Fi, i ∈ I, at x. More in detail,

∇Fi(x)⊤q(x) < 0, for all i ∈ I. (4.5)

A direction which is a descent direction for all the objective functions will be
called a simultaneous descent direction.

Remark 4.2.1 We note that instead of solving (QP (x)), the value ‖H(x, ν(x))‖
(or ν(x)) can also be found out by solving the following equivalent problem (QP (x))

min
ν

∥

∥

∥

∥

∥

H

(

x,

(

ν, 1−
m−1
∑

i=1

νi

))∥

∥

∥

∥

∥

2

s.t. ν ≥ 0,
m−1
∑

i=1

νi ≤ 1.

If ν(x) ∈ R
m−1 is a solution of (QP (x)) then a solution of (QP (x)) can be easily

computed by

ν(x) :=

(

ν(x), 1−
m−1
∑

i=1

νi(x)

)

.
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For a bi-objective MOP, the objective function of (QP (x)) is a quadratic function
in one variable, and hence an explicit formula can be given for obtaining ν(x)
and hence, ν(x).

Remark 4.2.2 An analytic expression for the set of all simultaneous descent
direction can be found in [6].

For any z ∈ R
n+m, let θ(·, z) : Rn+m → R be the function defined by

θ(d, z) := ‖H(z) +∇H(z)⊤d‖2 + α(z)‖d‖2. (4.6)

The function θ(·, z) is the quadratic function that is minimized in standard
Levenberg-Marquardt methods, see [29; 43; 69], where z is the current iterate.
However, as we need to guarantee a simultaneous decrease in all the objective
functions we need additional constraints within the Levenberg-Marquardt sub-
problems. The constraint set Ω(z) that we choose depends on z = (x, λ) and is
given by

Ω(z) := {d := (dx, dλ) ∈ R
n+m|λ+ dλ ∈ Λ0, ‖dx‖ ≤ ‖H(x, ν(x))‖0.9,

∇Fi(x)⊤dx +
1

2
d⊤x∇2Fi(x)dx ≤ −‖H(x, ν(x))‖2.5 for all i ∈ I}.

For any z ∈ R
n+m, let us define the constrained Levenberg-Marquardt sub-

problem (P (z)) as

min
d
θ(d, z) s.t. d ∈ Ω(z).

(P (z)) is a Quadratically Constrained Quadratic Programming problem (QCQP).
Note that θ(·, z) is a strongly convex function and Ω(z) is compact. Hence, if Ω(z)
is nonempty and all the objective functions are convex then Ω(z) is convex and
(P (z)) has a unique solution. On the other hand if Ω(z) is nonempty and non-
convex, by the theorem of Weierstrass the minimum value of θ(·, z) is attained at
some point in Ω(z). Later we use duality results to obtain a sufficient condition
for infeasibility of Ω(z).

Let d(z) denote a global solution of (P (z)) for each z ∈ R
n+m such that

Ω(z) 6= ∅. Let Ω0 := R
n × Λ0 and Y := {F (x) ∈ R

m|x ∈ R
n} be the feasible set

in the objective space. Moreover, for each z = (x, λ) ∈ R
m+n, we define the sets

S(z) ⊆ Z and Y(x) ⊆ Rm (shown in Figure 4.1) by

S(z) := Z ∩ (z + Ω(z)) , and

Y(x) := (F (x)− R
m
+) ∩ Y.
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F (x)

F1(x)

F2(x)
Y

Y(x)

Figure 4.1: Illustration of the set Y(x) in the bi-objective space.

In the objective space, a simultaneous decrease in all the objective functions
implies that we move the point F (x) into the region int(Y(x)).

The algorithm is formally stated on page 42. A short description of the
various steps in the algorithm is as follows. Step (S1) of Algorithm 4.1 is the
initialization step while step (S2) is the stopping criterion. Step (S3) finds a
Levenberg-Marquardt based local search direction while step (S4) is an Armijo-
type line search based on a simultaneous descent direction. Finally, step (S5)
updates the current iterate. The parameter ̺ is used to make sure that d(zk)
gives a sufficient decrease in ‖H‖ if step (S3) is employed. This is needed for
global convergence of Algorithm 4.1 and is discussed later in detail.

Lemma 4.2.1 Algorithm 4.1 generates a well defined sequence {zk+1} ⊂ R
n+m

with F (xk+1) ∈ int(Y(xk)) and λk ∈ Λ0 for all k ∈ N0 := {0, 1, 2, . . .}.
Proof: Obviously, λ0 ∈ Λ0 and step (S1) is well defined since Ω0 is nonempty.
The algorithm terminates if the current iterate is a solution of (4.1), which is
checked in step (S2). For any k ∈ N0, if (P (z

k)) is infeasible then the algorithm
continues with step (S4). On the other hand, if Ω(zk) 6= ∅ then the subprob-
lem (P (zk)) has a solution. Then, if (4.7) or (4.8) is violated the algorithm
continues with (S4), else dk is obtained from step (S3). Thus step (S3) is well
defined. The Armijo-type line search in step (S4) is well defined as the direction
q(xk) is a simultaneous descent direction for all the objective functions (see (4.5)
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Algorithm 4.1
(S1) Choose β, κ ∈ (0, 1) and z0 = (x0, λ0) ∈ Ω0. Set ̺ := ‖H(z0)‖ and

k := 0.

(S2) If H(xk, ν(xk)) = 0 then Stop.

(S3) If (P (zk)) is infeasible go to (S4). If

‖H(zk + d(zk))‖ ≤ κ̺ and (4.7)

F (xk + d(zk)x) < F (xk) (4.8)

then set dk := d(zk), ̺ := ‖H(zk + dk)‖ and go to (S5).

(S4) Determine tk as the largest t ∈ {1, β, β2, . . .} satisfying

F
(

xk + tq(xk)
)

− F
(

xk
)

≤ κt∇F (xk)⊤q(xk).

Let x̃ := xk + tkq(x
k) and set dk := (x̃, ν(x̃))− zk.

(S5) Set zk+1 := zk + dk, k := k + 1 and go to (S2)

and [52; 59] for details). If ‖H(xk, ν(xk))‖ 6= 0 then q(xk) is also non-zero and
F
(

xk + tkq(x
k)
)

−F
(

xk
)

∈ int(Y(xk)), where the tk is obtained from Armijo line
search in step (S3). Hence, for all k ∈ N0, the direction dk in step (S5) is always
such that F (xk+1) ∈ int(Y(xk)) and λk+1 ∈ Λ0. This is irrespective of whether dk

is obtained from step (S3) or (S4). △

An efficient way to solve the quadratically constrained quadratic programming
problem (P (z)) is by using a dual method discussed in Section 4.4. The duality
based method also gives information about the infeasibility of (P (z)) which is
needed in step (S3) of Algorithm 4.1. We note that if all the objective func-
tions are convex then the infeasibility can also be detected (in a computationally
efficient way) using techniques from [53].

Lemma 4.2.2 If z ∈ Z then d(z) = 0. Moreover, if x ∈ Xpc then d(z)x = 0 and
vice versa.

Proof: Let z = (x, λ) ∈ Z. Hence, we have that H(z) = H(x, ν(x)) = 0. We also
see that 0 ∈ Ω(z) and that θ(0, z) = 0. Hence 0 is a global minimizer of (P (z)).
Moreover, any d 6= 0 cannot be a global minimizer of (P (z)) as then θ(d, z) > 0.
Hence d(z) = 0 is the only global minimizer of (P (z)).
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If d(z)x = 0, then from the definition of Ω(z), x is Pareto-critical. On the
other hand if x ∈ Xpc, then the constraint

‖dx‖ ≤ ‖H(x, ν(x))‖0.9

implies that d(z)x = 0. △

Remark 4.2.3 In the approach [30] at each iteration the following subproblem
(P ′(x)) has to be solved

min
(t,s)∈R×Rn

t

s.t. ∇Fj(x)⊤s+
1

2
s⊤∇2Fj(x)s− t ≤ 0 for all i ∈ I.

A solution of (P ′(x)) exists if at least one of the functions Fi is assumed to be
strongly convex. However, as the next two examples will show, the above sub-
problem can be unbounded for both convex and non-convex objective functions. A
simple way to alleviate this difficulty is to modify (P ′(x)) by adding constraints
of the form ‖s‖2 ≤ Ĉ. However, for such a modification the convergence anal-
ysis presented in [30] fails. In contrast to this, in our method (P (z)) is a kind
of a regularized subproblem. A further discussion of assumptions employed for
Q-quadratic convergence rate in our method and in method of [30] is given in
Section 4.6.

Example 4.2.1 Consider the bi-objective, non-convex MOP where the objective
functions F1, F2 : R → R are given by

F1(x) := x3 − x

F2(x) :=

{

x if x ≤ −2;
(x+ 2)4 + x otherwise.

Both of the objective functions are three times continuously differentiable. Fig-
ure 4.2 shows the plot of both objective functions.

Now, at a non Pareto-critical point x = −1, we can easily see that (P ′(−1))
is

min
(t,s)∈R×R

t

s.t. 2s− 3s2 ≤ t

s ≤ t,
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Figure 4.2: Plot of the objective functions F1 and F2 in Example 4.2.1. The arrow
at x = −1 shows the simultaneous descent direction (−1) found out by solving
P (−1, λ).

and that it is unbounded.
On the other hand, let us take an arbitrary but fixed λ ∈ Λ0 and consider the

problem P (−1, λ). It is easy to see that

‖H(−1, ν(−1))‖ = 1.

Hence, P (−1, λ) can be written as

min
d

‖H(−1, λ) +∇H(−1, λ)⊤d‖2 + α(−1, λ)‖d‖2

s.t. λ+ dλ ∈ Λ0

|dx| ≤ 1

2dx − 3(dx)
2 ≤ −1

dx ≤ −1

and has a unique solution d(−1, λ) with d(−1, λ)x = −1. Moreover, d(−1, λ)x is
a simultaneous descent direction.
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Figure 4.3: Contours of the objective functions F1 and F2 in Example 4.2.2.
Curved lines are contours of F2 while straight lines are contours of F1. The arrow
at (1, 0) shows a simultaneous descent direction (−1, 0) found out by solving
P (1, 0, λ).

Example 4.2.2 Consider the bi-objective, convex MOP where the objective func-
tions F1, F2 : R

2 → R are given by

F1(x) := x21
F2(x) := x1 + x22.

Both of the objective functions are analytic. Figure 4.3 shows the contour plot of
both of the objective functions.

Now, at the non Pareto-critical point (x1, x2) = (1, 0), we can easily see that
(P ′(1, 0)) is

min
(t,s)∈R×R2

t

s.t. 2s1 ≤ t

s1 + s22 ≤ t,

and that it is unbounded.
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4.3 Convergence of Algorithm 4.1

On the other hand, let us take an arbitrary but fixed λ ∈ Λ0 and consider the
problem P (1, 0, λ). It is easy to see that

‖H(1, 0, ν(1, 0))‖ = 1.

Hence, P (1, 0, λ) can be written as

min
d

‖H(1, 0, λ) +∇H(1, 0, λ)⊤d‖2 + α(1, 0, λ)‖d‖2

s.t. λ+ dλ ∈ Λ0

‖dx‖ ≤ 1

2(dx)1 ≤ −1

(dx)1 + (dx)
2
2 ≤ −1

and has a unique solution d(1, 0, λ) with d(1, 0, λ)x = (−1, 0). Moreover, d(1, 0, λ)x
is a simultaneous descent direction.

4.3 Convergence of Algorithm 4.1

In this section we provide a convergence analysis for Algorithm 4.1. In step (S3)
of Algorithm 4.1 a constrained Levenberg-Marquardt subproblem is solved where
the constraint set is changing with each iteration. This is in contrast to all the
existing Levenberg-Marquardt methods where the constraint set (if any) is fixed
throughout the iterations (see for example [43]). Hence, the existing technique
for local convergence analysis cannot be applied to our algorithm.

We now state the assumptions that we will require to hold in this section.
The first is an error bound property for the solution set Z. Let z∗ := (x∗, λ∗) ∈ Z
be fixed. This implicitly means that Z is nonempty.

Assumption 4.3.1 There are constants C, δ̂ > 0 so that

‖H(z)‖ ≥ Cdist [z, Z] for all z ∈ B(z∗, δ̂) ∩ Ω0. (4.9)

Sufficient conditions for Assumption 4.3.1 to hold are discussed in Chapter 3. The
next assumption is needed in the local convergence analysis of the constrained
Levenberg-Marquardt method with constraints changing at each iteration.

Assumption 4.3.2 There are constants c⊲, δ > 0 so that

dist [z, S(z)] ≤ c⊲dist [z, Z] for all z ∈ B(z∗, δ) ∩ Ω0. (4.10)
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4.3 Convergence of Algorithm 4.1

If Assumption 4.3.2 holds then, since Z is non-empty, it is clear that

S(z) 6= ∅ and Ω(z) 6= ∅ for all z ∈ B(z∗, δ) ∩ Ω0.

Assumption 4.3.2 is discussed in detail in Section 4.5 where a sufficient condition
for it to hold is also given. Here, we just note that convexity of the objective func-
tions is in general not necessary for either Assumption 4.3.1 or Assumption 4.3.2
to hold.

Assumption 4.3.3 There exists an x⊲ ∈ R
n so that the level set

LF (x
⊲) := {x ∈ R

n|F (x) ≤ F (x⊲)}

is bounded.

Assumption 4.3.2 is used for local convergence analysis while we use Assump-
tion 4.3.3 for global convergence analysis (to show existence of accumulation
points). Assumption 4.3.3 is a standard sufficient condition assumed in the liter-
ature for existence of weakly Pareto-optimal points (see for example in [31; 52]).

Blanket Assumption for Sections 4.3 and 4.4: Assumptions 4.2.1, 4.2.2,
4.3.1, 4.3.2 and 4.3.3 hold.

Let δ := min{δ̂, δ} and c := c⊲
C . It is easy to see that Assumptions 4.3.1 and

4.3.2 imply that

dist [z, S(z)] ≤ c⊲dist [z, Z] ≤ c‖H(z)‖ for all z ∈ B(z∗, δ) ∩ Ω0, (4.11)

and vice versa.

Definition 4.3.1 If, for some z⊲ ∈ Z, (4.11) holds with some c⊲, c, δ > 0 then
we say, in short, that ‖H‖ has the constrained error bound property around z⊲.

Lemma 4.3.1 For all z ∈ B(z∗, δ)∩Ω0, the set Z is non-empty and closed and,
the sets Ω(z) and S(z) are nonempty and compact. Moreover, d(z) exists for all
z ∈ B(z∗, δ) ∩ Ω0.

Proof: Take an arbitrary but fixed z ∈ B(z∗, δ)∩Ω0. Obviously, under Assump-
tions 4.3.1 and 4.3.2, Z and S(z) are nonempty. From the structure of Ω(z), it
is easy to deduce that Ω(z) is compact. Moreover, under Assumption 4.2.1, Z is
closed. Since both the sets Z and Ω(z) are closed, the set S(z) = Z∩(z+Ω(z)) is
also closed and bounded and hence compact. As noted earlier, θ(·, z) is a strongly
convex function. By the compactness and nonemptiness of Ω(z) the subproblem
(P (z)) has at least one solution d(z). △
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4.3 Convergence of Algorithm 4.1

Lemma 4.3.2 There is L > 0 so that the inequalities

‖H(z)−H(s)‖ ≤ L‖z − s‖, (4.12)

‖∇H(z)−∇H(s)‖ ≤ L‖z − s‖, (4.13)

‖H(z)−H(s)−∇H(s)⊤(z − s)‖ ≤ L‖z − s‖2, (4.14)

‖H(z)‖ ≤ L, (4.15)

are satisfied for all z, s ∈ B(z∗, δ), and

‖F (x)− F (y)‖ ≤ L‖x− y‖ (4.16)

‖∇2Fi(x)−∇2Fi(y)‖ ≤ L‖x− y‖, for all i ∈ I (4.17)

‖H(x, ν(x))−H(y, ν(y))‖ ≤ L‖x− y‖ (4.18)

are satisfied for all x, y ∈ B(x∗, δ).

Proof: Inequalities (4.12), (4.13), (4.16) and (4.17) follow directly from Assump-
tion 4.2.1. From [59, Theorem 2.1] we obtain that the function q : Rn → R

n

is locally Lipschitz continuous and hence (4.18) also follows. The compactness
of B(z∗, δ) and the continuity of ‖H‖ ensures (4.15). Finally, Taylor’s formula
together with Assumption 4.2.1 yields (4.14). △

In the following, for a given z ∈ B(z∗, δ)∩Ω0, we denote by z
x and z⊥ vectors

in S(z) and Z, respectively, so that

‖z − zx‖ = dist [z, S(z)], and (4.19)

‖z − z⊥‖ = dist [z, Z] (4.20)

hold. Note that as S(z) = (z + Ω(z)) ∩ Z, we have that

zx − z ∈ Ω(z). (4.21)

Recall that for any z ∈ R
n+m such that Ω(z) 6= ∅, d(z) denotes an arbitrary

global minimizer of (P (z)).

Lemma 4.3.3 There is C1 > 0 so that the inequalities

‖d(z)‖ ≤ C1dist [z, S(z)],

‖H(z) +∇H(z)⊤d(z)‖ ≤ C1dist [z, S(z)]
2

are satisfied for all z ∈ B

(

z∗, δ
1 + c⊲

)

∩ Ω0.
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4.3 Convergence of Algorithm 4.1

Proof: As B

(

z∗, δ
1 + c⊲

)

⊂ B (z∗, δ), Lemma 4.3.1 shows that S(z) is non-

empty and that d(z) exists. From Lemma 4.2.2 it easy to see that the statement
of the lemma holds if z ∈ Z. Hence, we consider an arbitrary but fixed z ∈
B

(

z∗, δ
1 + c⊲

)

\ Z. Using the triangle inequality, Assumption 4.3.2 and that

z ∈ B

(

z∗, δ
1 + c⊲

)

, we obtain

‖zx − z∗‖ ≤ ‖zx − z‖+ ‖z − z∗‖ ≤ c⊲‖z − z∗‖+ ‖z − z∗‖ ≤ δ,

which means that zx ∈ B(z∗, δ). Hence it follows from (4.11), (4.2) and (4.12)
that α(z) satisfies

1

c2
‖zx − z‖2 ≤ ‖H(z)‖2 = α(z) ≤ L2‖zx − z‖2. (4.22)

Since d(z) is a global minimizer of θ(·, z), using (4.21), (4.6), (4.14) and (4.22)
we obtain

‖d(z)‖2 ≤ θ(d(z), z)

α(z)

≤ θ(zx − z, z)

α(z)

=
‖H(z) +∇H(z)⊤(zx − z)‖2 + α(z)‖(zx − z)‖2

α(z)

≤ L2c2‖zx − z‖2 + ‖zx − z‖2
≤ (L2c2 + 1)‖zx − z‖2.

The above inequality implies that

‖d(z)‖ ≤
√
L2c2 + 1dist [z, S(z)]. (4.23)

We also observe that,

‖H(z) +∇H(z)⊤d(z)‖ ≤
√

θ(d, z)

≤
√

θ(zx − z, z)

=
√

‖H(z) +∇H(z)⊤(zx − z)‖2 + α(z)‖zx − z‖2.

This together with (4.14) and the last part of (4.22) yields,

‖H(z) +∇H(z)⊤d(z)‖ ≤
√

L2‖zx − z‖4 + L2‖zx − z‖4
≤

√
2Ldist [z, S(z)]2.
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This inequality together with (4.23) shows that the result of the lemma follows
by setting

C1 := max{
√
L2c2 + 1 ,

√
2L}.

△

Lemma 4.3.4 Let z ∈ B

(

z∗, δ
1 + c⊲

)

be such that z + d(z) ∈ B

(

z∗, δ
1 + c⊲

)

.

Then, there is C2 > 0 so that

dist [z + d(z), S(z + d(z))] ≤ C2dist [z, S(z)]
2.

Proof: Using the triangle inequality we obtain

‖H(z + d(z))‖ ≤ ‖H(z) +∇H(z)⊤d(z)‖+ ‖H(z + d(z))−H(z)−∇H(z)⊤d(z)‖.

Since both z + d(z) and z belong to B

(

z∗, δ
1 + c⊲

)

and by (4.14), we have

‖H(z + d(z))‖ ≤ ‖H(z) +∇H(z)⊤d(z)‖+ L‖d(z)‖2. (4.24)

With Lemma 4.3.3, (4.24) further simplifies to

‖H(z + d(z))‖ ≤ C1‖z − zx‖2 + LC2
1‖z − zx‖2. (4.25)

Using Lemma 4.3.1 we obtain that S(z+d(z)) is non-empty. Now, (4.11) together
with (4.25) gives

dist [z + d(z), S(z + d(z))] ≤ c‖H(z + d(z))‖
≤ C2dist [z, S(z)]

2,

where the last inequality follows by setting C2 := cC1(1 + LC1). △

Lemma 4.3.5 For any δ̄ ∈ (0, δ], there is an ǫ
(

δ̄
)

∈
(

0, δ̄
1 + c⊲

]

so that, if

z̃0 ∈ B
(

z∗, ǫ
(

δ̄
))

then, for all k ∈ N0, d(z̃
k) is well defined and

z̃k+1 := z̃k + d(z̃k) ∈ B

(

z∗,
δ̄

1 + c⊲

)

.
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Proof: Take an arbitrary but fixed δ̄ ∈ (0, δ] and let

ǫ
(

δ̄
)

:= min

{

δ̄

(1 + c⊲)(1 + 3C1c
⊲)
,

1

2C2c⊲

}

(4.26)

with C1 from Lemma 4.3.3, C2 from Lemma 4.3.4 and c⊲ from Assumption 4.3.2.
We use induction to show the desired result. To this end suppose z̃0 ∈ B

(

z∗, ǫ(δ̄)
)

.

Obviously, z̃0 ∈ B

(

z∗, δ̄
1 + c⊲

)

from the definition of ǫ(δ̄). Now, from the triangle

inequality, Lemma 4.3.1, Lemma 4.3.3, Assumption 4.3.2 and the definition of
ǫ
(

δ̄
)

if follows that

‖z̃1 − z∗‖ = ‖z̃0 + d(z̃0)− z∗‖
≤ ‖z̃0 − z∗‖+ ‖d(z̃0)‖
≤ ‖z̃0 − z∗‖+ C1dist [z̃

0, S(z̃0)]

≤ ‖z̃0 − z∗‖+ C1c
⊲‖z̃0 − z∗‖

≤ (1 + C1c
⊲)ǫ
(

δ̄
)

≤ δ̄

1 + c⊲
,

which means that z̃1 ∈ B

(

z∗, δ̄
1 + c⊲

)

.

Suppose that z̃i ∈ B

(

z∗, δ̄
1 + c⊲

)

for i = 1, 2, . . . , k. Then d(z̃i) exists for

all i = 1, 2, . . . , k. Now, for an arbitrary but fixed i ∈ {1, 2, . . . , k}, using
Lemma 4.3.4 we obtain that

‖z̃i − (z̃i)x‖ = ‖z̃i−1 + d(z̃i−1)− (z̃i)x‖
= ‖z̃i−1 + d(z̃i−1)− (z̃i−1 + d(z̃i−1))x‖
= dist [z̃i−1 + d(z̃i−1), S(z̃i−1 + d(z̃i−1))]

≤ C2dist [z̃
i−1, S(z̃i−1)]2

= C2‖z̃i−1 − (z̃i−1)x‖2

holds. Hence, using Lemma 4.3.4 repeatedly and the definition of ǫ
(

δ̄
)

we further
obtain that

‖z̃i − (z̃i)x‖ ≤ C2‖z̃i−1 − (z̃i−1)x‖2
≤ C2 (C2‖z̃i−2 − (z̃i−2)x‖2)2
≤ . . .

≤ C
(2i−1)
2 ‖z̃0 − (z̃0)x‖2i.

(4.27)
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From the definition of ǫ(δ̄) and Assumption 4.3.2 we obtain that

‖z̃0 − (z̃0)x‖ ≤ c⊲dist [z̃0, Z]
≤ c⊲‖z̃0 − z∗‖
≤ c⊲ǫ(δ̄),

(4.28)

and

C2i−1
2 ‖z̃0 − (z̃0)x‖2i−1 ≤ C2i−1

2

(

c⊲ 1
2C2c

⊲

)2i−1

=
(

1
2

)2i−1 (4.29)

hold. Using (4.28) and (4.29) in (4.27) yields

‖z̃i − (z̃i)x‖ ≤ c⊲ǫ(δ̄)

(

1

2

)2i−1

= 2c⊲ǫ(δ̄)

(

1

2

)2i

.

Hence, it follows from Lemma 4.3.3 and the definition of ǫ
(

δ̄
)

that

‖z̃k+1 − z∗‖ ≤ ‖z̃0 − z∗‖+
k
∑

i=0

‖d(z̃k)‖

≤ ǫ
(

δ̄
)

+ C1

k
∑

i=0

‖z̃i − (z̃i)x‖

≤ ǫ
(

δ̄
)

+ 2ǫ
(

δ̄
)

C1c
⊲

k
∑

i=0

(

1

2

)2i

≤ (1 + C1c
⊲)ǫ
(

δ̄
)

+ 2ǫ
(

δ̄
)

C1c
⊲

∞
∑

i=1

(

1

2

)i

≤ (1 + 3C1c
⊲)ǫ
(

δ̄
)

≤ δ̄

1 + c⊲
.

Hence, we see that z̃k+1 ∈ B

(

z∗, δ̄
1 + c⊲

)

and, by Lemma 4.3.1, d(z̃k+1) is well

defined. The statement of the lemma follows as the choice of δ̄ ∈ (0, δ] was arbi-
trary. △
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Lemma 4.3.6 There are ε, δ̄ ∈ (0, δ) so that z̃0 ∈ B(z∗, ε) implies z̃k ∈ B(z∗, δ̄)
and

‖H(z̃k+1)‖ ≤ κ‖H(z̃k)‖, (4.30)

F (x̃k+1) ≤ F (x̃k) (4.31)

for all k ∈ N0, where κ is from Algorithm 4.1 and the sequence {z̃k} is defined
in Lemma 4.3.5. Moreover, equality in (4.31) occurs if and only if x̃k is Pareto-
critical.

Proof: Let δ̄ := min

{

δ
1 + c̄ ,

1
L4.5 ,

κ
c2L2C2

}

and let ǫ := ǫ(δ̄) be given by (4.26).

From Lemma 4.3.5 we obtain that z̃k ∈ B

(

z∗, δ̄
1 + c⊲

)

for all k ∈ N0.

Let us assume that for some k ∈ N0, x̃
k is Pareto-critical. Then, ‖H(x̃k, ν(x̃k))‖ =

0 and it is easy to see that Ω(z̃k) is non-empty. Moreover, x̃k+1 = x̃k and hence
(4.31) holds with equality. On the other hand, if z̃k ∈ Z for some k ∈ N0 then,
applying Lemma 4.2.2, (4.30) and (4.31) follows. In the remaining part of the
proof we assume that z̃k /∈ Z and x̃k is not Pareto-critical for any k ∈ N0.

For an arbitrary but fixed k ∈ N0, (4.12) together with the definition of δ̄
gives

‖H(z̃k)‖ = ‖H(z̃k)−H(z∗)‖ ≤ L‖z̃k − z∗‖ ≤ Lδ̄

1 + c⊲
≤
(

κ

c2LC2

)

. (4.32)

Using (4.12), (4.20) and Lemma 4.3.4 we obtain

‖H(z̃k+1)‖ ≤ L‖z̃k+1−(z̃k+1)⊥‖ ≤ L‖z̃k+1−(z̃k+1)x‖ ≤ LC2‖z̃k−(z̃k)x‖2. (4.33)

Furthermore, (4.33), (4.11), (4.32) and that z̃k /∈ Z give

‖H(z̃k+1)‖
‖H(z̃k)‖ ≤ cLC2‖z̃k − (z̃k)x‖2

‖z̃k − (z̃k)x‖
= cLC2‖z̃k − (z̃k)x‖
≤ c2LC2‖H(z̃k)‖
≤ κ.

Hence, (4.30) is satisfied. This proves the first part of the lemma.
For showing (4.31), observe that by Lemma 4.3.1, d(z̃k) is well defined. Since

d(z̃k) is optimal to (P (zk)), it must also be feasible to Ω(zk) i.e., d(z̃k) ∈ Ω(z̃k)
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and we obtain

∇Fi(x̃k)⊤d(z̃k)x +
1

2
d(z̃k)⊤x∇2Fi(x̃

k)d(x̃k)x ≤ −
∥

∥H
(

x̃k, ν(z̃k)
)∥

∥

2.5
(4.34)

for all i ∈ I. As x̃k is not Pareto-critical, from (4.34) we easily see that

‖d(z̃k)x‖ 6= 0. (4.35)

We further obtain
‖d(z̃k)x‖ ≤

∥

∥H
(

x̃k, ν(x̃k)
)∥

∥

0.9
, (4.36)

and hence (4.34) yields

∇Fi(x̃k)⊤d(z̃k)x +
1

2
d(z̃k)⊤x∇2Fi(x̃

k)d(z̃k)x ≤ −‖d(z̃k)x‖
2.5
0.9 (4.37)

for all i ∈ I. Now, for any i ∈ I, using Assumption 4.2.1 and Taylor’s theorem
we obtain (see [15, Lemma 4.1.14] for example)

Fi(x̃
k+1)− Fi(x̃

k)−∇Fi(x̃k)⊤d(z̃k)x −
1

2
d(z̃k)⊤x∇2Fi(z̃

k)d(z̃k)x ≤
L

6
‖d(z̃k)x‖3.

This together with (4.37), the definition of ǫ and (4.35) implies

Fi(x̃
k+1)− Fi(x̃

k) ≤ −‖d(z̃k)x‖
2.5
0.9 +

L

6
‖d(z̃k)x‖3

= ‖d(z̃k)x‖
2.5
0.9

(

−1 +
L

6
‖d(z̃k)x‖

2

9

)

≤ −
(

5

6
‖d(z̃k)x‖

2.5
0.9

)

< 0.

Since the choice of index i was arbitrary we obtain a simultaneous descent, i.e.,
F (x̃k+1) < F (x̃k). The statement of lemma holds since the choice of k ∈ N0 was
arbitrary. △

Remark 4.3.1 Let us define the constraint set Ω(z, p) depending on z = (x, λ)
and p := (p1, p2) ∈ R

2 by

Ω(z, p) := {d := (dx, dλ) ∈ R
n+m|λ+ dλ ∈ Λ0, ‖dx‖ ≤ ‖H(x, ν(x))‖p1,

∇Fi(x)⊤dx +
1

2
d⊤x∇2Fi(x)dx ≤ −‖H(x, ν(x))‖p2 for all i ∈ I}.
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Following the proof of Lemma 4.3.6 we easily observe that it goes through even if
instead of Ω(z) we take Ω(z, p) with any

p ∈ P :=
{

(p1, p2) ∈ R
2|0 < p1 < 1, 2 < p2 < 3, 2p1 < p2 < 3p1

}

. (4.38)

Definition 4.3.2 A sequence {zk} := {(xk, λk)} ⊂ R
n+m is called a Pareto-

decreasing sequence if

- F (xk+1) < F (xk) for all k ∈ N0, and

- there is a sub-sequence of {zk} converging to some z̄ := (x̄, λ̄) ∈ Z.

Lemma 4.3.7 Let {zk} be a Pareto-decreasing sequence. Then, the sequence
{F (xk)} converges to F (x̄).

Proof: From the definition of the Pareto-deceasing sequence we observe that
the sequence {F (xk)} is component-wise monotonically decreasing and bounded
below by F (x̄), where F (x̄) is from Definition 4.3.2. Hence, it is easy to see that
{F (xk)} converges to F (x̄). △

The next theorems present the convergence results for Algorithm 4.1. Note
that if the algorithm stops after a finite number of iterations then from (S2) it
stops at a Pareto-critical point. Moreover, from step (S2) of Algorithm 4.1, the
algorithms stops if a Pareto-critical point is found. Hence in the remaining part
of this section we assume that an infinite sequence {zk} is generated such that
xk is not Pareto-critical for all k ∈ N.

Theorem 4.3.1 Let {zk} be an infinite sequence generated by Algorithm 4.1 so
that z0 ∈ LF (x

⊲)×Λ0 (see Assumption 4.3.3). Then, this sequence has at least one
accumulation point. Let ẑ := (x̂, λ̂) be any of these accumulation points. Then
ẑ belongs to Z and x̂ is Pareto-critical. Moreover, the entire sequence {F (xk)}
converges to F (x̂).

Proof: Using Assumption 4.3.3 and the definition of Λ0 we see that the set
LF (x

⊲)× Λ0 is bounded. From Lemma 4.2.1 the entire sequence {zk} lies in the
set LF (x

⊲)× Λ0. Hence, by the Bolzano-Weierstrass theorem, the sequence {zk}
has at least one accumulation point. Let us take a convergent subsequence {zk}U
of {zk}. There are three cases:

1. dk−1 is obtained from (S3) for all k ∈ U sufficiently large. From (4.7) the
sequence {‖H(zk)‖}U converges to zero. By continuity ofH we easily obtain
that {zk}U converges to some ẑ ∈ Z.
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4.3 Convergence of Algorithm 4.1

2. dk−1 is obtained from (S4) for all k ∈ U sufficiently large. Now, as {xk} is
convergent to x̂, we have that x̂ is Pareto-critical (see [31, Theorem 1] or
[52, Theorem 2]). By (4.18) ‖H(·, ν(·))‖ is continuous and we easily obtain
that the sequence {‖H(zk)‖}U converges to zero and hence, {zk}U converges
to some ẑ ∈ Z.

3. dk−1 is obtained from both (S3) and (S4) for all k ∈ U sufficiently large.
Then, using the analysis of case 1., we see that {zk}U has a convergent
sub-sequence that converges to ẑ ∈ Z. Hence the sequence {zk}U itself
converges to ẑ ∈ Z.

Thus, in all the cases we showed that any accumulation point ẑ = (x̂, λ̂) of
{zk} is a solution of (4.1). Now invoking Lemma 4.3.7, we obtain that the se-
quence {F (xk)} converges to F (x̂). △

Theorem 4.3.2 Let {zk} be a sequence generated by Algorithm 4.1 so that z0 ∈
LF (x

⊲) × Λ0. Suppose that {zk} converges to some ẑ ∈ B

(

z∗, ǫ2

)

, with ǫ from

Lemma 4.3.6. Then, there exists k̃ ∈ N so that dk = d(zk) for all k ≥ k̃.
Moreover, the sequence {zk} converges Q-quadratically to ẑ and ẑ belongs to Z.

Proof: As z0 ∈ LF (x
⊲) × Λ0, by Theorem 4.3.1 any convergent subsequence

converges to a point in Z. Hence, by the assumption that {zk} is convergent to
some ẑ, we have that ẑ ∈ Z.

We first show that the sequence {dk} is obtained from (S3) infinitely many
times. Assume on the contrary, that there exists k1 ∈ N so that dk is obtained
from (S4) for all k ≥ k1. Let ρ be the value of the parameter ̺ at iteration k1.
Since the sequence {zk} converges to ẑ ∈ Z, the sequence {‖H(zk)‖} goes to
zero. Hence, there exists a k2 > k1 so that for all k ≥ k2, ‖H(zk)‖ < ρ and

‖zk − z∗‖ ≤ ‖z∗ − ẑ‖+ ‖ẑ − zk‖
≤ ǫ

2
+

ǫ

2
= ǫ.

This means that zk ∈ B (z∗, ǫ) for all k ≥ k2. Note that xk is not Pareto-critical
(else the algorithm would stop at step (S2)). Hence, by Lemma 4.3.6, if we set
z̃0 := zk, we obtain that

‖H(zk + d(zk))‖ ≤ κ‖H(zk)‖ < κρ, and

F ((xk + d(zk)x) < F (xk)
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hold. Thus, both (4.7) and (4.8) are satisfied and dk+1 is obtained from (S3),
which is a contradiction. This means that dk is obtained from (S3) infinitely
many times.

Let k̃ ∈ N be sufficiently large so that zk̃ ∈ B(z∗, ǫ) and that dk̃−1 = d(zk̃−1),
i.e.,

zk̃ = zk̃−1 + d(zk̃−1).

Now, by Lemma 4.3.6, if we set z̃0 := zk̃, we obtain that both (4.7) and (4.8) are
satisfied and thus, dk is obtained from (S3) for all k ≥ k̃.

We next show that {zk} converges Q-quadratically to ẑ. From Lemma 4.3.5,
Lemma 4.3.4 and (4.26) we obtain that zk ∈ B(z∗, δ̄) for all k ≥ k̃ and that

dist [zk+1, S(zk+1)] ≤ C2dist [z
k, S(zk)]2 ≤ 1

2
dist [zk, S(zk)] (4.39)

holds. Now for any l1 ≥ l2 ≥ k̃ with l1, l2 ∈ N, using Lemma 4.3.3 and (4.39) we
obtain

‖zl1 − zl2‖ ≤
l1−1
∑

i=l2

‖zi+1 − zi‖

=

l1−1
∑

i=l2

‖di‖

≤ C1

l1−1
∑

i=l2

dist [zi, S(zi)]

≤ C1dist [z
l2 , S(zl2)]

l1−l2−1
∑

i=0

2−i

≤ 2C1dist [z
l2 , S(zl2)].

In the above estimation using Lemma 4.3.3, Assumption 4.3.2 and l2 + 1, l2 + j
instead of l2, l1 respectively leads to

‖zl2+j − zl2+1‖ ≤ 2C1dist [z
l2+1, S(zl2+1)]

≤ 2C1C2dist [z
l2 , S(zl2)]2 ≤ 2c⊲C1C2dist [z

l2 , Z]2

for any l2, j ∈ N. Passing to the the limit as j → ∞ we obtain

‖ẑ − zl2+1‖ ≤ 2c⊲C1C2dist [z
l2 , Z]2
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and, by ‖ẑ − zl2‖ ≥ dist [zl2 , Z], we obtain that

lim
l2→∞

‖ẑ − zl2+1‖
‖ẑ − zl2‖2 ≤ 2c⊲C1C2.

Hence the statement of the theorem follows. △

Remark 4.3.2 From Theorem 4.3.1, we obtain that if z1 and z2 are two accu-
mulation points of the sequence {zk} generated by Algorithm 4.1 then, F (x1) =
F (x2). Thus, the assumption that the sequence {zk} converges to some ẑ seems
reasonable. Later in Section 4.5, Lemma 4.5.3 gives a condition under which
F (x1) = F (x2) implies that x1 = x2. Moreover, we can avoid this assumption by
requiring that for any ẑ from Theorem 4.3.1, a z̃ ∈ B

(

ẑ, ǫ
2

)

∩Z exists so that ‖H‖
has the constrained error bound property around z̃. The proof of this is involved
and is not presented here.

Remark 4.3.3 We observe that in Theorem 4.3.2 the local rate of convergence
is ρ+2

2
for ρ ∈ [1, 2), if α(z) := ‖H(z)‖ρ is chosen instead of α(z) := ‖H(z)‖2.

4.4 A Duality Based Method for Solving (P (z))

In the dual method instead of solving (P (z)) (which we call primal problem),
we solve its dual instead. This is one of the standard approaches for solving
quadratically constrained quadratic problems [1]. If strong duality holds we can
obtain the solution of the primal problem as well. Convexity of the primal prob-
lem and Slater’s constraint qualification guarantee strong duality for a general
nonlinear programming problem. Details about these statements can be found
in [7, Chapter 5].

Recall the Blanket Assumption in the beginning of Section 4.3. Hence, through-
out this section Assumptions 4.2.1, 4.2.2, 4.3.1, 4.3.2 and 4.3.3 hold. By 0k ∈ R

k

and by 1k ∈ R
k we denote the vectors having zero everywhere and one everywhere,

respectively.
Let us define the matrices Qi(z) ∈ R

(n+m)×(n+m) for i = 0, . . . , m+ 1 by

Q0(z) := 2
(

∇H(z)∇H(z)⊤ + α(z)I
)

Qi(z) := 2

(

∇2Fi(x) 0
0 0

)

, for all i ∈ I and,

Qm+1(z) := 2

(

In 0
0 0

)

.
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The vectors bi(z) ∈ R
n+m for i = 0, . . . , 2m+ 1 are as follows.

b0(z) := ∇H(z)H(z)

bi(z) :=

(

∇Fi(x)
0m

)

, for all i ∈ I,

bm+1(z) := 0n+m,

b2m+2 :=

(

0n
1n

)

.

Moreover, for all i ∈ I, bm+i+1(z) ∈ R
n+m is the vector with −1 in the (n + i)th

place and 0 elsewhere. The scalars ci(z) and cm+i+1(z) for i = 0, . . . , 2m+ 2 are
defined by

c0(z) := ‖H(z)‖2,
ci(z) := −‖H(x, ν(x))‖2.5, for all i ∈ I,

cm+1(z) := −‖H(x, ν(x))‖1.8,
cm+i+1(z) := −zm+i for all i ∈ I and,

c2m+2(z) := 0.

Using the above definitions, we can write (P (z)) in a simplified way as

min
d

1

2
d⊤Q0(z)d + b0(z)⊤d+ c0(z)

s.t.
1

2
d⊤Qi(z)d+ bi(z)⊤d+ ci(z) ≤ 0, ∀i = 1, 2, . . . , m+ 1

bm+1+i(z)⊤d+ cm+1+i(z) ≤ 0, ∀i = 1, 2, . . . , m

b2m+2(z)⊤d+ c2m+2(z) = 0.

The Lagrangian L : Rn+m × R
2m+2 → R associated with the problem (P (z))

is given by

L(d, υ) :=
1

2
d⊤

(

Q0(z) +

m+1
∑

i=1

υiQ
i(z)

)

d+

(

b0(z) +

2m+2
∑

i=1

υib
i(z)

)⊤

d

+

(

c0(z) +

2m+2
∑

i=1

υic
i(z)

)

.

We will construct the dual of (P (z)) following the results in [7, Section 5.2.4].
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Let ϑ(·, z) : R2m+2 → R be the concave function defined as

ϑ(υ, z) :=−
(

b0(z)+

2m+2
∑

i=1

υib
i(z)

)⊤(

Q0(z)+

m+1
∑

i=1

υiQ
i(z)

)−1(

b0(z)+

2m+2
∑

i=1

υib
i(z)

)

−
2m+2
∑

i=1

υic
i(z)

The concave dual problem (DP (z)) of (P (z)) is given by (see [7, Section 5.2.4]):

max
υ

ϑ(υ, z)

s.t. υ ∈ Υ :=
{

x ∈ R
2m+2|xi ≥ 0, for all i = 1, 2, . . . , 2m+ 1

}

.

Let f̄ : Rm+n → R be the function defined by

f̄(z) := χmax(Q0(z))
(

1 + ‖H(x, ν(x))‖0.9
)2

+ ‖H(z)‖2
+‖2b0(z)‖

(

1 + ‖H(x, ν(x))‖0.9
)

where we recall that χmax(Q0(z)) is the maximal eigenvalue of the matrix Q0(z).
Using the dual method, we replace step (S3) of Algorithm 4.1 by the following
steps (S3a) and (S3b).

(S3a) If, while solving (DP (zk)), a ῡ ∈ Υ is found so that ϑ(ῡ, z) > f̄(z) then go
to (S4).

(S3b) Let υ∗ be optimal to (DP (zk)). If the linear system

∇dL(d, υ
∗) = 0. (4.40)

has no solution then go to (S4). Otherwise, let d∗ be a solution of (4.40).
If

‖H(zk + d∗)‖ ≤ κ̺ and (4.41)

F (xk + d∗x) < F (xk) (4.42)

then set dk := d∗, ̺ := ‖H(zk + dk)‖ and go to (S5).

The new algorithm having the above changes in step (S3) of Algorithm 4.1
is called Dual Algorithm 4.1. Step (S3a) of the Dual Algorithm 4.1 detects
infeasibility of the primal problem (P (z)) as shown by the following lemma.

Lemma 4.4.1 If for some z ∈ R
n+m there exists ῡ ∈ Υ such that ϑ(ῡ, z) > f̄(z)

then Ω(z) is empty.
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Proof: Let, for some z ∈ R
n+m, ῡ ∈ Υ be so that ϑ(ῡ, z) > f̄(z). Assume on the

contrary that Ω(z) is nonempty. Then, since

max
λ∈Λ0

‖λ‖ = 1,

any d that is feasible to (P (z)) must satisfy

‖d‖ ≤ ‖dx‖+ ‖dλ‖ ≤ ‖H(x, ν(x))‖0.9 + 1. (4.43)

Consider the problem P̄ (z) as

max
d

θ(d, z) :=
1

2
d⊤Q0(z)d+ b0(z)⊤d+ ‖H(z)‖2

s.t. d ∈ Ω(z).

The objective function of P̄ (z) is a continuous function of d and the constraint
set Ω(z) is non-empty and compact. Hence, by the theorem of Weierstrass there
is a d̄ where the maximum of P̄ (z) is attained. From (4.43) we obtain that

θ(d̄, z) ≤ χmax (Q
0(z)) (1 + ‖H(x, ν(x))‖0.9)2 + ‖H(z)‖2

+‖b0(z)‖ (1 + ‖H(x, ν(x))‖0.9)
= f̄(z).

(4.44)

Let d∗ be optimal to (P (z)). From weak duality we obtain

ϑ(υ, z) ≤ θ(d∗, z) for all υ ∈ Υ.

Therefore, we have

ϑ(ῡ, z) ≤ θ(d∗, z)

≤ θ(d̄, z) (as d̄ is optimal to P̄ (z))

≤ f̄(z) (from (4.44)).

This is a contradiction to ϑ(ῡ, z) > f̄(z). Hence the statement of the lemma
follows. △

Remark 4.4.1 In the general case infeasibility of the primal problem cannot
be determined by the dual problem even if the problem is convex. See a convex
example in [3] where the primal feasible set is empty whereas the dual optimal
value can take any value on the extended real line R̄ = [−∞,+∞]. However we
were able to provide a condition (see Lemma 4.4.1) for the infeasibility of (P (z)).

61



4.4 A Duality Based Method for Solving (P (z))

Remark 4.4.2 The dual based approach for solving a quadratically constrained
quadratic program is one of the standard methods. If all the objective func-
tions are strongly convex, the dual problem (DP (z)) can be solved using an ef-
ficient gradient projection method presented in [1]. This method consists only
of matrix vector multiplications and avoids computing the inverse of the matrix
(

Q0(z) +
∑m+1

i=1 υiQ
i(z)
)

at each iteration of a gradient projection method used to
solve (DP (z)).

The next lemma discusses strong duality for (P (z)).

Lemma 4.4.2 Let all the objective functions Fi, i ∈ I be convex and suppose
that Ω(z) is nonempty for some z ∈ R

n+m. Then, strong duality holds for (P (z)).

Proof: If, for some z ∈ R
n+m, Ω(z) is nonempty then, obviously, (P (z)) has a

solution and
−∞ < θ(d(z), z) <∞

holds. Furthermore, since all the objective functions Fi are assumed to be convex,
(P (z)) is a convex quadratically constrained quadratic programming problem.
Then, we obtain from [4, Proposition 6.5.6] that strong duality holds for (P (z)).
△

Lemma 4.4.3 Let the same conditions as in Lemma 4.4.2 hold. Then, the linear
system (4.40) has a unique solution d∗ ∈ Ω(z) and d∗ is optimal to (P (z)).

Proof: The result easily follows by [7, Section 5.5.5]. △
The next theorem presents the convergence results for Dual Algorithm 4.1

Theorem 4.4.1 Let us consider Dual Algorithm 4.1. For this:

1. Theorem 4.3.1 holds.

2. Let there exist an ǭ > 0 so that for all z ∈ B(z∗, ǭ) strong duality holds for
(P (z)) and (4.40) has a unique solution. Then, Theorem 4.3.2 holds.

Proof:

1. If, in step (S3b), d∗ exists so that (4.41) and (4.42) hold, it can be used
instead of d(zk) in step (S3) of Algorithm 4.1 and satisfies (4.7) and (4.8)
in step (S3). This is all what is needed in Theorem 4.3.1.

2. If strong duality holds and the solution of (4.40) is unique, then this is also
a solution of the primal problem (P (z)). In such a case we obtain d(zk) for
all z ∈ B(z∗, ǭ). Hence, Theorem 4.3.1 holds. △
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4.5 Results under Convexity/ Non-singularity

Assumptions

In this section we will give sufficient conditions for some assumptions used in this
chapter. The next lemma presents a sufficient condition for Assumption 4.3.3.

Lemma 4.5.1 If, for some i ∈ I, the function Fi is strongly convex then As-
sumption 4.3.3 holds.

Proof: Take any x⊲ ∈ R
n. Now, strong convexity of Fi implies that the level set

LFi
(x⊲) := {x ∈ R

n|Fi(x) ≤ Fi(x
⊲)}

is bounded (see for example [7, Section 9.1.2]). Hence the statement of the lemma
follows by noting that LF (x

⊲) ⊆ LFi
(x⊲). △

Some of the sufficient conditions for Assumption 4.3.1 to hold are given in
Chapter 3 (see Lemma 3.2.1, 3.2.2 and 3.4.1). In the rest of this section we
discuss Assumption 4.3.2.

Blanket Assumption for Section 4.5: Assumptions 4.2.1 and 4.3.3 hold.
Moreover, all the objective functions Fi, i ∈ I are convex.

As discussed at the beginning of Chapter 3, we then have that the set of Pareto-
critical points is equal to the set of weak Pareto-optimal points, i.e.

Xpc = Xw.

We first discuss a condition under which S(z) is nonempty in a neighborhood
of z∗. Since S(z) ⊆ z + Ω(z), S(z) 6= ∅ implies Ω(z) 6= ∅.

Lemma 4.5.2 Let α ∈
(

0, 1
m

]

and (x, λ) ∈ LF (x
⊲) × Λα with x⊲ from Assump-

tion 4.3.3 be given. Then, the single-objective problem (SP (x, λ))

max
(y,t)∈Rn×R

φ(y, t) := t

s.t. F (y) = F (x)− tλ

t ≥ 0,

has at least one solution. Moreover, let (x̄, t̄) be a solution of (SP (x, λ)), then

0 ≤ Fi(x)− Fi(x̄) ≤
1

α
‖H(x, ν(x))‖‖x− x̄‖ for all i ∈ I. (4.45)
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Proof: Let us first consider the case when x is weakly Pareto-optimal. Then, from
the definition of weak Pareto-optimality, it easily follows that (x̄, t̄) := (x, 0) is a
solution of (SP (x, λ)). Moreover, for any solution (x̄, t̄) := (x, 0) of (SP (x, λ)) it
holds that F (x̄) = F (x) and t̄ = 0. Weak Pareto-optimality of x also gives that
H(x, ν(x)) = 0. Thus, in this case, (4.45) holds.

In the remaining part of the proof we assume that x /∈ Xw. Let

Ψ := {(y, t) ∈ R
n × R|F (y) = F (x)− tλ, t ≥ 0}

be the constraint set for (SP (x, λ)). It is easy to see that (x, 0) ∈ Ψ and hence
Ψ is nonempty. Let (y, t) ∈ Ψ be an arbitrary point. As

F (y) ≤ F (x) ≤ F (x⊲),

we have that y ∈ LF (x
⊲). Hence, from Assumption 4.3.3, the set

{y ∈ R
n|∃t ≥ 0, (y, t) ∈ Ψ}

is bounded. With this, we obtain the boundedness of {F (y)|∃t ≥ 0, (y, t) ∈ Ψ}.
Thus,

{t ∈ R|∃y ∈ R
n, (y, t) ∈ Ψ}

is bounded. Together, we have that Ψ is bounded. Since Ψ is also closed, it Ψ

is compact. Furthermore, note that φ is a continuous function. Hence, by the
theorem of Weierstrass, a point (x̄, t̄) ∈ Ψ exists where the maximum of φ on Ψ

is attained.
For any solution (x̄, t̄) of (SP (x, λ)), we obviously have

0 ≤ Fi(x)− Fi(x̄) for all i ∈ I. (4.46)

Since ν(x) is a minimizer of QP (x) (see 4.3), for any λ ∈ Λ0 we obtain

∥

∥

∥

∥

∥

m
∑

i=1

λi∇Fi(x)
∥

∥

∥

∥

∥

= ‖H(x, λ)‖ ≥ ‖H(x, ν(x))‖.

As x /∈ Xw we have ‖H(x, ν(x))‖ 6= 0 and we can define the unit vector

θ :=
H(x, ν(x))

‖H(x, ν(x))‖ . (4.47)
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Now, for any y ∈ R
n, using (4.47) and convexity of Fi for all i ∈ I (see Blanket

Assumption for this section) we obtain

ν(x)⊤F (y)− ν(x)⊤F (x) ≥
(

m
∑

i=1

ν(x)i∇Fi(x)
)⊤

(y − x) = ‖H(x, ν(x))‖θ⊤(y − x).

Since ‖θ‖ = 1, the Cauchy-Schwartz inequality gives

|θ⊤(y − x)| ≤ ‖y − x‖ for all y ∈ R
n.

Hence for all y ∈ R
n we obtain

ν(x)⊤F (y) + ‖H(x, ν(x))‖‖y − x‖ ≥ ν(x)⊤F (x). (4.48)

Claim:

t̄ ≤ 1

α
‖H(x, ν(x))‖‖x̄− x‖. (4.49)

To show this, assume on the contrary that

t̄ >
1

α
‖H(x, ν(x))‖‖x̄− x‖.

Hence, since F (x)− F (x̄) = t̄λ we obtain

F (x̄) +
1

α
‖H(x, ν(x))‖‖x̄− x‖λ < F (x). (4.50)

Since λ ∈ Λα, we have that λi ≥ α for all i ∈ I. This together with (4.50) yields

F (x̄) + ‖H(x, ν(x))‖‖x̄− x‖1m < F (x), (4.51)

where by 1m we denote the vector in R
m having 1 in all its components. Multi-

plying this by ν(x)⊤ further gives

ν(x)⊤F (x̄) + ‖H(x, ν(x))‖‖x̄− x‖ < ν(x)⊤F (x), (4.52)

since ν(x) ∈ Λ0 implies ν(x)⊤1m = 1. This contradicts to (4.48). Thus, (4.49) is
proved and we have

Fi(x)− Fi(x̄) = λit̄ ≤ t̄ ≤ 1

α
‖H(x, ν(x))‖‖x̄− x‖,

for all i ∈ I. △
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-λ

F1(x)

F2(x)
Y

F (x)

F (x̄)

Figure 4.4: Illustration of the point F (x̄) obtained by solving (SP (x, λ)) in the
bi-objective space. The dark portion of the efficient front is obtainable by solving
(SP (x, λ)) with λ ∈ Λα for some α > 0

.

We next describe some characterization of the efficient front. We recall that
Xp andXw denote the set of all Pareto-optimal and weakly Pareto-optimal points,
respectively.

Lemma 4.5.3 If Fi is strictly convex for at least i ∈ I, then the mapping F
restricted on the domain Xp is injective.

Proof: Assume on the contrary that the restriction of mapping F on Xp is not
injective. Hence

F (x∗) = F (y∗),

for some distinct x∗, y∗ ∈ Xp. This together with the convexity of all the objective
functions and strict convexity of Fi gives

Fj

(

x∗ + y∗

2

)

≤ 1

2
Fj(x

∗) +
1

2
Fj(y

∗) = Fj(x
∗),

for all j ∈ I with strict inequality for at least one j = i. This gives a contradiction
to the Pareto-optimality of x∗. △
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Remark 4.5.1 If we assume that all the functions Fi, i ∈ I are strictly convex
then, in a similar way, we obtain that the restriction of mapping F on Xw is
injective.

Property 4.5.1 Let α ∈
(

0, 1
m

]

be given. Then, there is δ̃ ∈ (0, δ] so that

B

(

x∗, δ̃
)

⊆ LF (x
⊲). Moreover, for any x ∈ B

(

x∗, δ̃
)

there is λx ∈ Λα so that

xs ∈ Xp, where (xs, ts) is a solution of (SP (x, λx)).

For an arbitrary but fixed α ∈
(

0, 1
m

]

and (x, λ) ∈ LF (x
⊲) × Λ0, solving

(SP (x, λ)) and finding the corresponding x̄ amounts to shooting a ray from the
point F (x) in the objective space in the direction −λ and obtaining the corre-
sponding point F (x̄) on the boundary of Y (see Figure 4.4 for an illustration for the
case of two objective functions). Since all the efficient points are a subset of the
boundary of Y, it is reasonable that x̄ belongs to Xp, especially if x is taken from
a sufficiently small neighborhood of a Pareto-optimal point. Thus Property 4.5.1
seems reasonable and quite weak. The direction of the ray−λ ∈ −R

m
+ and the fact

that (SP (x, λ)) is a maximization problem, makes sure that F (xs) ∈ F (x)−R
m
+ .

Such direction based approaches for solving an (MOP) have been emphasized in
the last four decades [2; 11; 44; 50; 57; 58; 61].

In our next remark we present a sufficient condition for Property 4.5.1 to
hold. Before this, we recall from Chapter 3 that corresponding to any λ ∈ Λ,
fλ : R

n → R
n is the weighted objective function defined as

fλ(x) :=
m
∑

i=1

λiFi(x).

Remark 4.5.2 If λ∗ > 0, the matrix ∇2fλ∗(x
∗) is non-singular, ∇F (x∗) is of

rank m− 1 and ∇F (x) is of rank m for some x ∈ B(x∗, δ) then, Property 4.5.1
holds. This statement can be shown using concepts from differential geometry
([67]) and from [36, Theorem 2.2]. The proof is involved and is not presented
here.

Given a function f : Rn → R, consider the following unconstrained nonlinear
programming problem (NLP)

min f(x).

For this problem, the notion of a strict local minimizer of order p is defined as
follows (see for example [9; 65]).
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Definition 4.5.1 A point x⋄ ∈ R
n is a strict local minimizer of order p ≥ 1 for

the (NLP) if there exist constants α⋄, δ⋄ > 0 so that

f(x) > f(x⋄) + α⋄‖x− x⋄‖p for all x ∈ B(x⋄, δ⋄) \ {x⋄}. (4.53)

This classical notion has been extended to multi-objective problems in the fol-
lowing way (see [40]).

Definition 4.5.2 A point x⋄ ∈ R
n is a strict local minimizer of order p ≥ 1 for

(MOP) if there exist constants α⋄, δ⋄ > 0 so that

(F (x) + R
m
+) ∩B(F (x⋄), α⋄‖x− x⋄‖p) = ∅ for all x ∈ B(x⋄, δ⋄) \ {x⋄}. (4.54)

Note that for an (MOP) any strict local minimizer of any order p ≥ 1 is Pareto-
optimal (see [40, Proposition 3.3]). Our next lemma relates a strict local mini-
mizer of order p of a scalarized problem to a strict local minimizer of order p for
an (MOP).

Lemma 4.5.4 Let, for some λ ∈ Λ0, x
⋄ be a strict local minimizer of order p

(with constants α⋄ and δ⋄) for the following unconstrained problem

min fλ(x). (4.55)

Then, x⋄ is a strict local minimizer of order p for (MOP) with the constants α⋄

and δ⋄.

Proof: Let x⋄ be a strict local minimizer of order p for problem (4.55) with some
constants α⋄, δ⋄ > 0. Using Definition 4.5.1 this translates to

fλ(x) > fλ(x
⋄) + α⋄‖x− x⋄‖p for all x ∈ B(x⋄, δ⋄) \ {x⋄}. (4.56)

Now assume that the assertion of the lemma does not hold. Hence, from Defini-
tion 4.5.2 we obtain that there exists an x̂ ∈ B(x⋄, δ⋄) \ {x⋄} such that

(F (x̂) + R
m
+ ) ∩B(F (x⋄), α⋄‖x̂− x⋄‖p) 6= ∅. (4.57)

This further implies that there exist d ∈ R
m
+ and b ∈ B(0n, α

⋄‖x̂ − x⋄‖p) such
that

F (x̂) + d = F (x⋄) + b.

The inner product of both sides with λ yields

fλ(x̂)− fλ(x
⋄)− λ⊤b = −λ⊤d ≤ 0.
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Further simplification gives

fλ(x̂) ≤ fλ(x
⋄) + 〈λ, b〉

≤ fλ(x
⋄) + ‖λ‖‖b‖ (using the Cauchy-Schwartz inequality)

≤ fλ(x
⋄) + ‖b‖ (since ‖λ‖ ≤ 1)

≤ fλ(x
⋄) + α⋄‖x− x⋄‖p (since b ∈ B(0n, α

⋄‖x̂− x⋄‖p)).

This is a contradiction to (4.56). Hence the statement of the lemma follows. △

Remark 4.5.3 A similar result can also be found in [47, Proposition 5.1]. The
main difference to [47] is that Lemma 4.5.4 shows that the constants α⋄ and δ⋄

are the same for the scalarized problem (4.55) and the (MOP). In [47, Proposition
5.1] just the existence of these constants for the (MOP) is shown. Hence the result
of Lemma 4.5.4 is more general than that of [47]. Moreover, we will explicitly
make use of these constants in the next lemma.

Lemma 4.5.5 Let the matrix ∇2fλ∗(x
∗) be positive definite. Then, there exist

constants α⋄, δ⋄, δ1 > 0 so that

(F (x) + R
m
+) ∩B(F (x⋄), α⋄‖x− x⋄‖2) = ∅

for all x⋄ ∈ B(x∗, δ1) ∩Xw and for all x ∈ B(x⋄, δ⋄) \ {x⋄}.
Proof: Let M(z) := ∇2fλ(x). By Assumption 4.2.1, M(z) is a continuous
function of z. Since the matrix ∇2fλ∗(x

∗) is assumed to be positive definite we
obtain that u⊤M(z∗)u ≥ χ‖u‖2 for all u ∈ R

n with some χ > 0. By continuity
of M there exists a δ̄1 > 0 so that

u⊤M(z)u ≥ χ

2
‖d‖2 for all u ∈ R

n and all z ∈ B(z∗, δ̄1). (4.58)

Let δ1 := min{δ̄, δ}. Take some arbitrary but fixed z⋄ ∈ B(z∗, δ1)∩Z. A Taylor’s
expansion of fλ⋄ around x⋄ together with [15, Lemma 4.1.14] shows that

fλ⋄(x
⋄ + dx⋄)=fλ⋄(x

⋄) +∇fλ⋄(x⋄)⊤dx⋄ +
1

2
d⊤x⋄∇2fλ⋄(x

⋄)dx⋄ +O(‖dx⋄‖3), (4.59)

and

|O(‖dx⋄‖3)| ≤
L

6
‖dx⋄‖3 (4.60)

hold. Since (x⋄, λ⋄) ∈ Z we obtain

∇fλ⋄(x⋄) = 0. (4.61)
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Moreover, using (4.58) we obtain

1

2
d⊤x⋄∇2fλ⋄(x

⋄)dx⋄ ≥
1

4
χ‖dx⋄‖2. (4.62)

It is easy to see that (4.17) is also valid if Fi is replaced by fλ⋄ . Now, in (4.59),
using (4.61), (4.62) and (4.17) for fλ⋄ we easily obtain

fλ⋄(x
⋄ + dx⋄) > fλ⋄(x

⋄) +
1

8
χ‖dx⋄‖2 ∀dx⋄ ∈ B

(

0n,
3χ

8L

)

\ {0}. (4.63)

Hence x⋄ is a strict local minimizer of order 2 for the unconstrained problem

min fλ⋄(x).

A simple application of Lemma 4.5.4 and setting α⋄ := 1
8
χ, δ⋄ := 3χ

8L
gives the

desired result. △

We next state a continuity type assumption on the objective function.

Property 4.5.2 For any δ̄ ∈ (0, δ], there is a τ(δ̄) ∈ (0, δ̄] so that for all u ∈
B
(

F (x∗), τ(δ̄)
)

∩ Y there is xu ∈ B(x∗, δ̄) with F (xu) = u.

This property relates points in the objective space close to F (x∗) to points in
the variable space close to x∗ and seems quite weak. We can easily verify that
most of the problems in [12; 39] satisfy Property 4.5.2. Moreover, the next lemma
presents a sufficient condition for Property 4.5.2 to hold.

Lemma 4.5.6 Let λ∗ > 0, F (x∗) ∈ int
(

F (x⊲)− R
m
+

)

and let for some i ∈ I, Fi
be strictly convex. Then, Property 4.5.2 holds.

Proof: Since λ∗ > 0, we have that x∗ ∈ Xp (see Section 3.1). Under these
assumptions by Lemma 4.5.3 we obtain that x∗ is the only solution of the equation

F (x)− F (x∗) = 0. (4.64)

Although Lemma 4.5.3 says that F is injective only on the set Xp, we do not need
to put the x ∈ Xp constraint to (4.64) because any x ∈ R

n with F (x) = F (x∗)
belongs to Xp by definition.

Now, corresponding to a parameter u ∈ R
m, let us define the following para-

metric problem (PM(u))

min
x

‖F (x)− u‖
s.t. x ∈ LF (x

⊲).
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Let S(u) denote the set of global minimizers of (PM(u)). Note that since F (x∗) ∈
int
(

F (x⊲)− R
m
+

)

is assumed, we have that x∗ ∈ LF (x
⊲). This together with

(4.64) yields
S(F (x∗)) = {x∗}. (4.65)

Moreover, we easily see that

y ∈ S(F (y)) for all y ∈ LF (x
⊲). (4.66)

Now, as the set LF (x
⊲) is bounded (from Assumption 4.3.3), this parametric

problem satisfies both the Local Compactness and Constraint Qualification con-
ditions described in [63] for u∗ := F (x∗). Hence [63, Lemma 6] gives that the
(set-valued) mapping S is outer semi-continuous (osc) at u∗.

From the definition of outer semi-continuity (see [63, Definition 2b]) we there-
fore obtain that, for any sequences {ũl} ⊂ R

m, {x̃l} ⊂ R
n, l ∈ N with ũl → u∗,

x̃l ∈ S(ũl), it holds that
‖x̃l − x∗‖ → 0 (4.67)

as l → ∞. Since F (x∗) ∈ int
(

F (x⊲)− R
m
+

)

there is a δ� > 0 so that

(

B(F (x∗), δ�) ∩ Y
)

⊂ int
(

F (x⊲)− R
m
+

)

. (4.68)

Let us assume on the contrary that Property 4.5.2 does not hold. Then, a

δ̄ ∈ (0, δ] exists so that, for any l ∈ N, there is ul ∈
(

B(F (x∗), δ
�

l

)

∩ Y so that

{

x ∈ R
n|F (x) = ul

}

∩B(x∗, δ̄) = ∅. (4.69)

As ul ∈
(

B(F (x∗), δ
�

l

)

∩ Y and l ∈ N, (4.68) shows that

ul ∈ int
(

F (x⊲)− R
m
+

)

.

Hence, corresponding to the sequence {ul}, there is a sequence {xl} ⊂ LF (x
⊲) so

that F (xl) = ul.
Setting y := xl in (4.66) yields

xl ∈ S(F (xl)) for all l ∈ N. (4.70)

Moreover, we easily see that, for all l ∈ N,

S(ul) = S(F (xl)) ⊆
{

x ∈ R
n|F (x) = ul

}
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F1(x)

F2(x)

Y

Bs

Bb

Figure 4.5: Illustration of Property 4.5.3. Bs := B

(

F (x∗), δ̄
w

)

and Bb :=

B(F (x∗), δ̄).

holds. With this (4.69) gives

S(F (xl)) ∩B(x∗, δ̄) = ∅,

and, using (4.70) we further obtain that

{xl} ∩B(x∗, δ̄) = ∅ for all l ∈ N. (4.71)

Setting ũl := ul, x̃l := xl and taking into account (4.70), (4.67) yields

‖xl − x∗‖ → 0,

as l → ∞. This is a contradiction to (4.71) and hence the assertion of the lemma
follows. △

Remark 4.5.4 As F is locally Lipschitz continuous, from Property 4.5.2 we eas-
ily see that τ(δ̄) → 0 as δ̄ → 0.
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Property 4.5.3 There is a w ≥ 1
L
, so that for any δ̄ ∈ (0, δ]

Y ∩
(

B

(

F (x∗),
δ̄

w

)

− R
m
+

)

⊆ B(F (x∗), δ̄) ∩ Y. (4.72)

Property 4.5.3 is illustrated in Figure 4.5.

Remark 4.5.5 If λ∗ > 0 and the matrix ∇2fλ∗(x
∗) is non-singular then we can

show that Property 4.5.3 holds. This constant w depends upon the ratios λi
λj
, i 6= j

for λ vectors in a ball around λ∗ of sufficiently small radius. The idea of the proof
is geometrical and is not presented here.

Lemma 4.5.7 Let Properties 4.5.1, 4.5.2 and 4.5.3 hold, let the matrix ∇2fλ∗(x
∗)

be positive definite and, for one i ∈ I, let Fi be strictly convex. Then, there exist
constants α⋄, δ⋄ > 0 so that

Fi(x) > Fi(x
s) + α⋄‖x− xs‖2 for all i ∈ I, x ∈ B(x∗, δ⋄) \ {xs}, (4.73)

where xs ∈ Xp comes from Property 4.5.1.

Proof: As ∇2fλ∗(x
∗) is assumed to be positive definite, from Lemma 4.5.5 we

obtain the constants α⋄ > 0, δ1 > 0 and δ⋄ > 0. Let

δ̂1 :=
min{δ1, δ⋄, δ̃}

2
> 0 and δ⋄ :=

τ(δ̂1)

wL
> 0, (4.74)

where δ̃ is from Property 4.5.1, τ(δ̂1) ∈ (0, δ̂1] is from Property 4.5.2 and w > 0
is from Property 4.5.3. From (4.16) we obtain that

F (B(x∗, δ⋄)) ⊆ B

(

F (x∗),
τ(δ̂1)

w

)

. (4.75)

Now take an arbitrary but fixed

x ∈ B(x∗, δ⋄) \ {xs}, (4.76)

where xs ∈ Xp comes from Property 4.5.1 (note that xs ∈ Xp is well-defined as
δ⋄ ≤ δ̃). From (4.75) we obtain that

F (x) ∈ B

(

F (x∗),
τ(δ̂1)

w

)

. (4.77)
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Moreover, from Lemma 4.5.2, it is clear that

F (xs) ∈ F (x)− R
m
+ . (4.78)

This together with (4.77) yields

F (xs) ∈ B

(

F (x∗),
τ(δ̂1)

w

)

− R
m
+ . (4.79)

Using Property 4.5.3 with δ̄ := τ(δ̂1), we further obtain

u := F (xs) ∈ B(F (x∗), τ(δ̂1)) ∩ Y. (4.80)

From (4.80) and using Property 4.5.2 we obtain xu ∈ B(x∗, δ̂1) such that F (xu) =
F (xs). As for some i ∈ I, Fi is assumed to be strictly convex and xs ∈ Xp,
invoking Lemma 4.5.3,

xu := xs

follows. Hence, we have that

xs ∈ B(x∗, δ̂1). (4.81)

From the triangle inequality, (4.81), (4.76), (4.74) and from Property 4.5.2 we
obtain

‖x− xs‖ ≤ ‖xs − x∗‖+ ‖x∗ − x‖ ≤ δ̂1 + δ⋄ ≤ 2δ̂1 ≤ δ⋄, (4.82)

and hence, x ∈ B(xs, δ⋄) follows. This together with (4.81) and Lemma 4.5.5
(with x⋄ := xs) yields

(F (x) + R
m
+) ∩B(F (xs), α⋄‖x− xs‖2) = ∅.

This translates to
‖F (x)− F (xs)‖ > α⋄‖x− xs‖2. (4.83)

Now, recall from Property 4.5.1 that (xs, ts) is a solution of (SP (x, λx)). This
implies that

F (x)− F (xs) = tsλx, (4.84)

with ts > 0 and λx ∈ Λα. This together with (4.83) shows that

ts >
α⋄‖x− xs‖2

‖λx‖ ≥ α⋄‖x− xs‖2, (4.85)

where the last inequality follows as max ‖λ‖ = 1.
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From (4.85) and (4.83) we obtain that

Fi(x)− Fi(x
s) = tsλxi ≥ tsα > αα⋄‖x− xs‖2.

The statement of the lemma follows by setting α⋄ := αα⋄. △

Next we provide a new error bound result.

Lemma 4.5.8 Let Properties 4.5.1, 4.5.2 and 4.5.3 hold, let the matrix ∇2fλ∗(x
∗)

be positive definite and, for one i ∈ I, let Fi be strictly convex. Then, there exists
C̄ > 0 so that

‖x− xs‖ ≤ C̄‖H(x, ν(x))‖ for all x ∈ B(x∗, δ⋄), (4.86)

where xs is from Property 4.5.1 and δ⋄ is from Lemma 4.5.7.

Proof: If x ∈ Xw then, by (4.45), (4.86) holds. The statement of this lemma,
for x /∈ Xw follows by an immediate application of Lemma 4.5.2 (set x̄ := xs),

Lemma 4.5.7 and by setting C̄ := 1
αα⋄ . △

Lemma 4.5.9 Let Properties 4.5.1, 4.5.2 and 4.5.3 hold, the matrix ∇2fλ∗(x
∗)

be positive definite and for one i ∈ I let Fi be strictly convex. Then there exists
δ⋆ > 0, so that (xs, ν(xs)) ∈ S(z) for all z ∈ B(z∗, δ⋆).

Proof: Since S(z) := Z ∩ {z + d|d ∈ Ω(z)} we have to equivalently show that
(xs, ν(xs)) ∈ Z and that d := (xs − x, ν(xs) − λ) ∈ Ω(z) for all z ∈ B(z∗, δ⋆)
with δ⋆ > 0 sufficiently small. Obviously (xs, ν(xs)) ∈ Z since xs is weakly
Pareto-optimal under the assumptions (and hence H(xs, ν(xs)) = 0).

By Lemma 4.5.8,
‖xs − x‖ ≤ ‖H(x, ν(x))‖0.9

holds for all points in a sufficiently small neighborhood around x∗. Let us take
an arbitrary but fixed i ∈ I. Then, for all x in a sufficiently small neighborhood
around x∗, Taylor’s theorem together with (4.73) and (4.18) yields,

∇Fi(x)⊤(xs − x) +
1

2
(xs − x)⊤∇2Fi(x)(x

s − x) = Fi(x
s)− Fi(x) +O(‖xs − x‖3)

≤ −α⋄‖x− xs‖2 +O(‖xs − x‖3)
≤ −‖xs − x‖2.4
≤ −‖H(xs, ν(xs)−H(x, ν(x))‖2.5
= −‖H(x, ν(x))‖2.5.
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Hence, we see that d ∈ Ω(z) and the result of the lemma follows. △

Remark 4.5.6 In a similar way, one can show that Lemma 4.5.9 holds also if
we take Ω(z, p) instead of Ω(z) (see (4.38)).

We present a Lipschitz property of ν as a function of x.

Lemma 4.5.10 Let λ∗ > 0 and the rank of the matrix ∇F (x∗) be m− 1. Then,
L̆, δ̆ > 0 exist so that for all x ∈ B(x∗, δ̆) ∩ Xp problem (QP (x)) has a unique
solution and

‖ν(x)− ν(y)‖ ≤ L̆‖x− y‖ for all x, y ∈ B(x∗, δ̆) ∩Xp. (4.87)

Proof: Consider the convex problem (QP (x))

min
ν

∥

∥

∥

∥

∥

H

(

x,

(

ν, 1−
m−1
∑

i=1

νi

))∥

∥

∥

∥

∥

2

s.t. ν ≥ 0,

m−1
∑

i=1

νi ≤ 1 (4.88)

as a parametric optimization problem with parameter x and let ν(x) ∈ R
m−1 be

a solution of (QP (x)). Consider the linear system

H(x∗, λ) := ∇F (x∗)λ = 0. (4.89)

As the rank of ∇F (x∗) is m − 1, the rank of the nullity of ∇F (x∗) equals one.
Imposing the additional constraint

∑m

i=1 λi = 1 will thus give an unique solution
of (4.89). This solution is given by ν(x∗) = λ∗ as z∗ := (x∗, λ∗) ∈ Z. Thus, we
have that the set of minimizers of (QP (x∗)) is a singleton with

(

ν(x∗), 1−
m−1
∑

i=1

νi

)

= ν(x∗) = λ∗.

Moreover, we see that



∇2
λ̄

∥

∥

∥

∥

∥

H

(

x,

(

λ̄, 1−
m−1
∑

i=1

λ̄i

))∥

∥

∥

∥

∥

2




(x∗)

= A⊤A, (4.90)

where A is the n× (m− 1)-matrix having ∇Fi(x∗)−∇Fm(x∗) as columns for all
i = 1, 2, . . . , m− 1. From elementary linear algebra we have that ranks of (A⊤A)
and A are same and equal to m − 1. Hence the square matrix A⊤A is of full
rank and nonsingular. Moreover, note that as λ∗ > 0, we have that ν(x∗) is an

76



4.5 Results under Convexity/ Non-singularity Assumptions

unconstrained minimizer of (QP (x∗)). Now the desired result follows by using
[63, Theorems 2,4]. △

Lemma 4.5.11 Let Properties 4.5.1, 4.5.2 and 4.5.3 hold, the matrix ∇2fλ∗(x
∗)

be positive definite and for one i ∈ I let Fi be strongly convex. If λ∗ > 0 and
∇F (x∗) is of rank m− 1 then, there exist c⊲, δ△ > 0 such that

dist [(x, λ), S(x, λ)] ≤ ‖(x, λ)− (xs, ν(xs))‖ ≤ c⊲dist [(x, λ), Z], (4.91)

for all z := (x, λ) ∈ B(z∗, δ△) ∩ Ω0 and hence Assumption 4.3.2 is satisfied.

Proof: The first part of (4.91) holds since by Lemma 4.5.9 (xs, ν(xs)) ∈ S(x, λ).
Recall from Chapter 3 thatX(λ) is the set defined asX(λ) := {x ∈ R

n | (x, λ) ∈
Z} and ξ : Rm → R

n is a function so that Conditions (i) and (ii) in Lemma 3.2.1
are satisfied. In particular, ξ(λ) ∈ X(λ) holds.

As λ∗ > 0 and one Fi, i ∈ I is strongly convex we obtain that the function
fλ, for all λ > 0 is strongly convex. The matrix ∇2fλ(x) is nonsingular for all
λ > 0 and x ∈ R

n. Hence, from Lemma 3.2.2 in Chapter 1, using H = ∇fλ,
Error Bound for scalarized problems hold. Thus, there exist c1, r1 > 0 so that

‖H(x, λ)‖ ≥ c1dist [x,X(λ)] for all z ∈ B(z∗, r1). (4.92)

Let
δ△ ≤ min

{

r1, δ̌, δ
⋄} ,

be sufficiently small so that any λ̃ ∈ B(λ∗, δ△) satisfy λ̃ > 0. Consider an
arbitrary but fixed z ∈ B(z∗, δ△). Now from (4.12) we obtain that

dist [(x, λ), Z] ≥ L−1‖H(x, λ)‖. (4.93)

Moreover, the triangle inequality, (4.86) and (4.87) yield

‖(x, λ)− (xs, ν(xs))‖ ≤ ‖x− xs‖+ ‖λ− ν(xs)‖
≤ C̄‖H(x, ν(x))‖+ ‖λ− ν(xs)‖
≤ C̄‖H(x, ν(x))‖+ L̆‖ξ(λ)− xs‖
≤ C̄‖H(x, ν(x))‖+ L̆(‖ξ(λ)− x‖+ ‖x− xs‖).

Note that as λ > 0, we have that ξ(λ) ∈ Xp. Using (4.92) and (4.86) we can
further simplify the last inequality as

‖(x, λ)− (xs, ν(xs))‖ ≤ C̄‖H(x, ν(x))‖ + L̆

(‖H(x, λ)‖
c1

+ C̄‖H(x, ν(x))‖
)

.
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This together with (4.93) gives

‖(x, λ)− (xs, ν(xs))‖
dist [(x, λ), Z]

≤
C̄‖H(x, ν(x))‖+ L̆

(

‖H(x,λ)‖
c1

+ C̄‖H(x, ν(x))‖
)

L−1‖H(x, λ)‖ .

Hence the result of the Lemma follows by noting that ‖H(x), ν(x)‖ ≤ ‖H(x, λ)‖
and defining

c⊲ := L

(

C̄ +
L̆

c1
+ L̆C̄

)

.

△

4.6 Discussion

Let us consider the following convex bi-criteria problem (from [32]):

min
x∈R

F (x) :=
(

x,
√
x2 + 1

)⊤

For this problem Xw = {x|x ≤ 0}. The weighted sum method is one of the most
popular methods for solving multi-objective optimization problems [18]. The
application of this method requires the decision maker to specify some a-priori
weights for the objectives (not all zero) which are used to convert the multi-
objective optimization problem into a single-criteria optimization problem. In
general, the choice of the weight vector is of prime importance. For example, it
can be easily checked that the scalarized optimization problem

min
x∈R

fλ(x) := λ1x+ λ2
√
x2 + 1

has no solutions if λ1 ≥ λ2 since then infx∈R fλ(x) does not exist. Hence, the
weighted sum method fails for this example for all λ ∈ Λ0 ∩ {(λ1, λ2)|λ1 ≥ λ2}.
However, Algorithm 4.1 is well defined for this problem for any starting point
and it can be easily verified that Assumption 4.3.1, 4.2.1, 4.3.2 and 4.3.3 hold.
Moreover, it can be verified that Step (S2) is used locally. Thus, Algorithm 4.1
converges locally Q-quadratically to a weak-Pareto optimal point from any start-
ing point.

To recapitulate, the algorithm presented in this chapter is a viable way to
obtain Pareto-critical points with a local fast convergence. The solvability of
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subproblems of our algorithm and their relations to the subproblems in [30] has
already been discussed in Section 4.2. Instead of requiring that all the objective
functions are strongly convex as in [30], we need that only one objective functions
is strongly convex. The convergence analysis of the method in [30] fails if one of
the objective functions is not strongly convex ([30, Lemma 4.3] does not hold).
Even for non-convex problems our method is able to converge to Pareto-critical
points. However, the subproblems for a non-convex MOP are also non-convex
and in practise these are difficult problems to solve.

As a final remark we mention that using results from [66], Algorithm 4.1 can
be easily generalized when an arbitrary polyhedral ordering cone is used instead
of Rm

+ .
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Chapter 5

Levenberg-Marquardt
Algorithms for Nonlinear
Complementarity Problems

5.1 Introduction

For a given function F : Rn → R
n, solving the nonlinear complementarity prob-

lem (NCP(F ) in short) is to find a vector x ∈ R
n so that

x ≥ 0, F (x) ≥ 0, x⊤F (x) = 0. (5.1)

When the function F is linear i.e., F (x) := Mx + q (M being an n × n ma-
trix and q an n-dimensional vector), NCP(F ) is commonly known as the linear
complementarity problem (LCP(M, q)). Complementarity problems (both linear
and nonlinear) arise in a variety of engineering applications (see [22] for further
details).

The solution set of NCP(F ) is given by

S := {x ∈ R
n|x ≥ 0, F (x) ≥ 0, x⊤F (x) = 0}.

A well-known approach for solving nonlinear complementarity problems is to re-
formulate them as an equivalent systems of nonlinear equations. This is achieved
by means of a so called NCP function ψ : R2 → R having the property that

ψ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0 for all (a, b) ∈ R
2.

A well-known NCP function is the min function, i.e., ψmin(a, b) := min{a, b}.
Over the years many more NCP functions have been proposed [22].
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5.1 Introduction

Using a given NCP function ψ, one possible way to reformulate NCP(F ) is as
follows:

Hψ(z) = 0, (5.2)

where

Hψ(z) :=



















ψ(x1, y1)
...

ψ(xn, yn)
F1(x)− y1

...
Fn(x)− yn



















, (5.3)

z := (x⊤, y⊤)⊤ ∈ R
2n and x, y ∈ R

n. For the ith component Hψ(z)i of Hψ(z) we
then have

ψ(zi, zn+i) = ψ(xi, yi) for all i ∈ I := {1, 2, . . . , n}.

The solution set of (5.2) is denoted by Z, i.e.,

Z := {z ∈ R
2n|Hψ(z) = 0}.

It is easy to see that if ẑ = (x̂⊤, ŷ⊤)⊤ ∈ Z then x̂ ∈ S and if x̂ ∈ S then
(x̂⊤, F (x̂)⊤)⊤ ∈ Z. Hence we can obtain a solution of NCP(F ) by solving (5.2)
and vice versa.

In this chapter we investigate the use of a constrained Levenberg-Marquardt
method (discussed in [43]) for solving (5.2). In [43] this method is suggested for
solving the following constrained nonlinear equation

H(z) = 0, s.t. z ∈ Ω, (5.4)

where Ω ⊆ R
2n is some nonempty convex set. We restrict Ω to ensure that Z ⊆ Ω.

In this way the solution set of (5.2) and of (5.4) coincide when H := Hψ. In [43],
a smoothness condition on Hψ near a solution of (5.4) is employed for showing
local Q-quadratic convergence of the constrained Levenberg-Marquardt method.
However, as we discuss later in detail, this smoothness condition does not hold for
H = Hψ near some special types of solutions of (5.2) (known as degenerate solu-
tions). Recently ([27]), this smoothness condition has been weakened so that the
constrained Levenberg-Marquardt method has local Q-quadratic convergence if
the NCP function ψ is defined as the min function. All the smoothness conditions
are discussed later in detail.

In this chapter we use positively homogeneous NCP functions to investigate
the smoothness properties of Hψ. In particular, we examine for what class of
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5.2 Preliminaries

NCP functions the new smoothness conditions in [27] are satisfied. For the sake
of brevity, if the usage is clear, we sometimes write (a, b) instead of (a, b)⊤ and
(x, y) instead of (x⊤, y⊤)⊤, where a, b ∈ R and x, y ∈ R

n.
This chapter is divided into five sections of which this is the first. Some

assumptions and preliminary results required for local convergence analysis of
the constrained Levenberg-Marquardt method are discussed in the next section.
Section 5.3 analyzes the smoothness assumptions in [43]. In Section 5.4 we extend
some fundamental identities known for differentiable homogeneous functions to
nonsmooth homogeneous functions. Using these identities, in Section 5.5 we
discuss the new weaker smoothness condition of [27] for several choices of the
NCP function ψ.

At the end of every section and sub-section we recapitulate and highlight the
important results therein.

5.2 Preliminaries

First we state some assumptions required for local convergence analysis of the
constrained Levenberg-Marquardt method (see [43] for the description of this
method).

Assumption 5.2.1 The function F : Rn → R
n is differentiable and ∇F : Rn →

R
n×n is locally Lipschitz continuous.

Assumption 5.2.2 The NCP function ψ : R2 → R is locally Lipschitz continu-
ous.

Assumptions 5.2.1 and 5.2.2 are smoothness assumptions on F and ψ, respec-
tively. The smoothness assumptions discussed in Section 5.3 and 5.5 are condi-
tions on Hψ. A basic assumption for local convergence analysis of the Levenberg-
Marquardt method is given next. To this end let z∗ := (x∗, y∗) ∈ Z be fixed
throughout this chapter. This implicitly means that Z is nonempty.

Assumption 5.2.3 There are constants C, δ > 0 so that

Cdist [z, Z] ≤ ‖Hψ(z)‖ for all z ∈ B(z∗, δ) ∩ Ω. (5.5)

This assumption has been introduced in ([43]) for H instead of Hψ. For Ω = R
2n,

Assumption 5.2.3 is commonly known in the literature as error bound condition,
see [26; 43; 69]. This condition may hold also in cases where the Jacobian of Hψ

(if it exists at all) is singular at z∗. It is easy to see that Assumptions 5.2.1 and
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5.2 Preliminaries

5.2.2 imply that Hψ is locally Lipschitz continuous. Hence there is an L > 0 so
that

‖Hψ(z
1)−Hψ(z

2)‖ ≤ L‖z1 − z2‖ for all z1, z2 ∈ B(z∗, δ). (5.6)

Blanket Assumption Chapter 5: Assumptions 5.2.1, 5.2.2 and 5.2.3 hold.
Moreover, Ω is a set of the form

Ω := S× . . .× S ⊇ R
2n
+ , (5.7)

where S is a closed convex cone in R
2.

The convex cone S can always be described by

1. {(a, b) ∈ R
2|caa+ cbb ≥ 0}, or

2. {(a, b) ∈ R
2|ca1a+ cb1b ≥ 0, ca2a+ cb2b ≥ 0}, or

3. R
2,

with some constants ca, cb, ca1, c
b
1, c

a
2, c

b
2 ≥ 0. Under the blanket assumption it is

clear that Ω is a polyhedral cone since S is polyhedral.

Definition 5.2.1 Let J := {i ∈ I|x∗i = y∗i = 0}. The solution z∗ is said to be
degenerate if the index set J is nonempty. Otherwise, we call z∗ non-degenerate.
J is called the set of degenerate indices.

For any ẑ := (x̂, ŷ) ∈ Z, let the set D(ẑ) ⊆ R
2n be defined as

D(ẑ) := {d|∃(i, t̂ ) ∈ I× (0,∞), (x̂i, ŷi) + t(di, dn+i) 6= (zi, zn+i), ∀(z, t) ∈ Z × (0, t̂ ],

ẑ + t̂d ∈ Ω}.

D(ẑ) is the set of all directions d ∈ R
2n such that, for at least one index i ∈ I,

(x̂i, ŷi) + t(di, dn+i) 6= (zi, zn+i) for all z ∈ Z,

holds for all t > 0 sufficiently small. Hence, ẑ + td /∈ Z for all t > 0 sufficiently
small. This means that

(ẑ +D(ẑ)) ∩ Z = ∅.

However, there can be a direction d ∈ R
2n with d /∈ D(ẑ) and ẑ + td /∈ Z.

Obviously, D(ẑ) 6= ∅ for all ẑ ∈ Z, as any d ∈ R
2n such that d1 = dn+1 = 1

always belongs to D(ẑ). It is clear that 0 /∈ D(ẑ) and, if ẑ ∈ int(Ω) and ẑ is an
isolated solution of (5.2), then D(ẑ) = R

2n. As Ω is a cone, z + Ω ⊆ Ω holds
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for any z ∈ Ω, and thus we further have that if ẑ ∈ bd(Ω) and ẑ is an isolated
solution of (5.2), then D(ẑ) ⊇ Ω. Moreover, since Ω is convex and ẑ, ẑ + t̂d ∈ Ω
we have that ẑ + td ∈ Ω for all t ∈ [0, t̂ ].

Lemma 5.2.1 For any d ∈ D(z∗), there exist c1(d), c2(d), t(d) > 0 so that

c1(d)t ≤ ‖Hψ(z
∗ + td)‖ ≤ c2(d)t for all t ∈ [0, t(d)]. (5.8)

Proof: First of all, let us define Z̄ as

Z̄ := {(x, y) ∈ R
2n|ψ(xi, yi) = 0 for all i ∈ I}. (5.9)

Obviously, we have that z∗ ∈ Z̄ and Z ⊆ Z̄.
Let D1(z

∗) ⊆ D(z∗) be defined as

D1(z
∗) := {d ∈ D(z∗)|∃(i, t̂ ) ∈ I× (0,∞), ψ(x∗i + tdi, y

∗
i + tdn+i) 6= 0, ∀t ∈ (0, t̂ ]}.

D1(z
∗) is the set of all directions d ∈ R

2n such that z∗ + td /∈ Z̄ for all t > 0
sufficiently small. We easily see that the set D1(z

∗) is nonempty as any d ∈
R

2n such that d1 = dn+1 = 1 always belongs to D1(ẑ). In contrast, the set
D(z∗) \ D1(z

∗) could be empty (for example, if Z = Z̄ then D(z∗) \ D1(z
∗) is

empty).
Now, take an arbitrary but fixed d ∈ D(z∗). For any t ≥ 0 let z̄(t) :=

(x̄(t), ȳ(t)) ∈ Z̄ be so that

‖z∗ + td− z̄(t)‖ = dist [z∗ + td, Z̄]. (5.10)

Such a z̄(t) ∈ Z̄ exists for all t ≥ 0 as Z̄ is closed and nonempty. We have the
following two cases.

Case A: d ∈ D(z∗) \D1(z
∗). Let (i, t̃ ) ∈ I× (0,∞) be so that

(x∗i , y
∗
i ) + t(di, dn+i) 6= (zi, zn+i), for all (z, t) ∈ Z × (0, t̃ ], and

z∗ + td ∈ Ω, for all t ∈ (0, t̃ ].

This together with d /∈ D1(z
∗) easily gives

dist [z∗ + td, Z] = ‖z∗ + td− z̄(t)‖
≥ ‖(x∗i + tdi, y

∗
i + tdn+i)− (x̄(t)i, ȳ(t)i)‖

≥ t ‖(di, dn+i)‖ ,
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(x∗i , y
∗
i )

i-axis

(n+ i)-axis

Case 3 Case 1

Case 2

(x∗i , y
∗
i )

(x∗i , y
∗
i )

Figure 5.1: Illustration of the three cases in the proof of Lemma 5.2.1.

for all t ∈
[

0, t̃
2

]

. Using (5.5) and (5.6) we further obtain

tC ‖(di, dn+i)‖ ≤ ‖Hψ(z
∗ + td)‖ ≤ tL‖d‖ for all t ∈

[

0,min

{

δ,
t̃

2

}]

.

Hence, we set c1(d) := C ‖(di, dn+i)‖, c2(d) := L‖d‖ and t(d) := min
{

δ, t̃
2

}

and obtain the desired result.

Case B: d ∈ D1(z
∗). For such a d, let (i, t̃ ) ∈ I× (0,∞) be so that

ψ(x∗i + tdi, y
∗
i + tdn+i) 6= 0 for all t ∈ (0, t̃ ].

We observe that z∗ + td /∈ Z for all t ∈ (0, t̃ ]. Moreover, z∗ + td ∈ Ω
for all t ∈ (0, t̃ ]. For any t ≥ 0, since (x̄(t), ȳ(t)) ∈ Z̄, we obtain that
ψ(x̄(t)i, ȳ(t)i) = 0.

We now analyze three subcases (illustrated in Figure 5.1)

Case 1: x∗i 6= 0, y∗i = 0. Due to d ∈ D1(z
∗), dn+i 6= 0. Hence,

‖z∗ + td− z̄(t)‖ ≥ ‖(x∗i + tdi, y
∗
i + tdn+i)− (x̄(t)i, ȳ(t)i)‖ = t|dn+i|,
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holds for all t ∈
[

0,min
(

t̃,
x∗i
4

)]

.

Case 2: x∗i = 0, y∗i 6= 0. Due to d ∈ D1(z
∗), di 6= 0. Hence,

‖z∗ + td− z̄(t)‖ ≥ ‖(x∗i + tdi, y
∗
i + tdn+i)− (x̄(t)i, ȳ(t)i)‖ = t|di|,

holds for all t ∈
[

0,min
(

t̃,
y∗i
4

)]

.

Case 3: x∗i = y∗i = 0. In this case as d ∈ D1(z
∗), (di, dn+i) /∈ {s1, s2 ≥

0, s1s2 = 0}. Let the sets A, B and C be defined as

A := {s ∈ R
2|s1 < 0, s2 > 0} ∪ {s ∈ R

2|s1 > 0, s1 ≤ s2}
B := {s ∈ R

2|s2 < 0, s1 > 0} ∪ {s ∈ R
2|s2 > 0, s2 ≤ s1}

C := R
2 \ (A ∪B ∪ {s1, s2 ≥ 0, s1s2 = 0}).

Note that C is equal to the set {s ∈ R
2|s1, s2 < 0}. From the structure

of the above three sets, we easily obtain

di 6= 0 if (di, dn+i) ∈ A

dn+i 6= 0 if (di, dn+i) ∈ B

di, dn+i 6= 0 if (di, dn+i) ∈ C,

and,

‖z∗ + td− z̄(t)‖ ≥ ‖(x∗i + tdi, y
∗
i + tdn+i)− (x̄(t)i, ȳ(t)i)‖

=







t|di| if (di, dn+i) ∈ A;
t|dn+i| if (di, dn+i) ∈ B;
t‖(di, dn+i)‖ if (di, dn+i) ∈ C,

for all t ∈ [0, t̃ ].

Hence, taking results from Cases 1, 2 and 3, there is a c(d) > 0 so that

dist [z∗ + td, Z̄] = ‖z∗ + td− z̄(t)‖ ≥ tc(d),

for all t ≥ 0 sufficiently small.

Since Z ⊆ Z̄,

dist [z∗ + td, Z] ≥ dist [z∗ + td, Z̄] ≥ tc(d), (5.11)

holds for all t ≥ 0 sufficiently small. Since z∗+td ∈ B(z∗, δ)∩Ω, there exists
a t(d) > 0 sufficiently small so that for all t ∈ [0, t(d)], Assumption 5.2.3
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together with (5.6) gives

Cdist [z∗ + td, Z] ≤ ‖Hψ(z
∗ + td)‖ = ‖Hψ(z

∗ + td)−Hψ(z
∗)‖ ≤ Lt‖d‖.

Using (5.11), we further obtain,

tc(d)C ≤ ‖Hψ(z
∗ + td)‖ ≤ Lt‖d‖ for all t ∈ [0, t(d)]. (5.12)

Hence, in Case B, setting c1(d) := c(d)C, c2(d) := L‖d‖ in (5.12) gives the
desired result.

The proof of the lemma follows by noting that both in Case A and in Case B, we
can find c1(d), c2(d), t(d) > 0 so that (5.8) holds and that these constants can be
chosen independent of i ∈ I. △

Lemma 5.2.2 Let z∗ = (x∗, y∗) ∈ R
2n be a degenerate solution of Hψ(z) = 0.

Then, exactly one of the following statements is true.

(i) ψ is not differentiable everywhere.

(ii) If d ∈ Null (JHψ(z
∗)) then d /∈ D(z∗).

Proof: Let us assume that (i) does not hold. Then, ψ is differentiable every-
where. In particular, ψ is differentiable at (0, 0). Let (č1, č2)

⊤ := ∇ψ(0, 0).
Differentiability of ψ at (0, 0) implies that

lim
r→(0,0)

|ψ(r)− ψ(0, 0)− (č1, č2)(r − (0, 0))⊤|
‖r − (0, 0)‖ = 0.

Equivalently,

lim
r→(0,0)

|ψ(r)− (č1, č2)r
⊤|

‖r‖ = 0. (5.13)

Taking the limit in (5.13) along the positive a-axis and the positive b-axis respec-
tively we easily obtain that č1 = č2 = 0. Hence,

∇ψ(0, 0) = (0, 0)⊤. (5.14)

Since both ψ and H are differentiable everywhere (from Assumption 5.2.1) we
obtain that Hψ is differentiable everywhere, in particular at z∗. Due to assuming
that z∗ is degenerate, we have J 6= ∅. Using the definition of Hψ (see (5.3))
together with (5.14) we obtain that the jth-row of JHψ(z

∗), for all j ∈ J, is zero.
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Thus, the dimension of the null space of JHψ(z
∗) is greater than zero and there

exists a non-zero d ∈ Null (JHψ(z
∗)).

Assume further that d ∈ D(z∗). Then, Lemma 5.2.1 gives the existence of
c1(d), c2(d), t(d) > 0 so that

c1(d)t ≤ ‖Hψ(z
∗ + td)‖ ≤ c2(d)t for all t ∈ [0, t1(d)]. (5.15)

Differentiability of Hψ at z∗ gives

lim
z→z∗

‖Hψ(z)−Hψ(z
∗)− JHψ(z

∗)(z − z∗)‖
‖z − z∗‖ = 0. (5.16)

In particular, taking the limit in (5.16) along the direction d and using z∗ ∈ Z
we obtain

lim
t→0

‖Hψ(z
∗ + td)− JHψ(z

∗)(td)‖
t‖d‖ = 0.

Since d ∈ Null (JHψ(z
∗)), JHψ(z

∗)d = 0, we further get

lim
t→0

‖Hψ(z
∗ + td)‖
t

= 0.

This is clearly a contradiction to (5.15). Hence, the result of the lemma follows.
△

Remark 5.2.1 A similar result can be found in [22, Proposition 9.1.1]. There,
it is shown that continuous differentiability of ψ and F together with z∗ being de-
generate implies that JHψ(z

∗) is singular. The result of Lemma 5.2.2 is stronger
than that of [22, Proposition 9.1.1] as it shows that Assumption 5.2.3 (which is
weaker than non-singularity of JHψ(z

∗)) does not hold if ψ is assumed differen-
tiable everywhere and there exists a d ∈ Null (JHψ(z

∗)) ∩D(z∗).

Lemma 5.2.3 Let Ω = R
2n and z∗ = (x∗, y∗) ∈ R

2n be a solution of the linear
complementarity problem LCP (M, q) with M 6= 0. Then, there exist c′1, c

′
2, t

′ > 0,
v ∈ R

2n so that

c′1t ≤

∥

∥

∥

∥

∥

∥

∥







ψ(x∗1 + tv1, y
∗
1 + tvn+1)

...
ψ(x∗n + tvn, y

∗
n + tv2n)







∥

∥

∥

∥

∥

∥

∥

≤ c′2t for all t ∈ [0, t′]. (5.17)
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Proof: Let e1, e1, . . . , en ∈ R
n denote the canonical basis vectors of Rn. Since

M 6= 0 by assumption, without loss of generality, we assume that the first row of
M is non-zero.

Let ê ∈ Rn denote the vector

ê =

{

e1 if M11 6= 0;
e1 + eℓ otherwise,

(5.18)

where ℓ ∈ I is any index satisfying M1ℓ 6= 0. The vector ê is well defined as the
first row of M is non-zero. Let v ∈ R2n be defined as

v :=

(

ê
M ê

)

. (5.19)

We observe that z∗+ tv /∈ Z̄ for all t > 0 sufficiently small, since v1 = ê1 6= 0 and
vn+1 = (M ê)1 6= 0 holds. Note that Z̄ is defined by (5.9).

It is easy to see that Hψ(z
∗+ tv)n+i = 0 for all i ∈ I. By Ω = R

2n, v belonging
to D(z∗) and

Hψ(z
∗ + tv) =



















ψ(x∗1 + tv1, y
∗
1 + tvn+1)

...
ψ(x∗n + tvn, y

∗
n + tv2n)

0
...
0



















, (5.20)

Lemma 5.2.1 gives constants c1(v), c2(v), t(v) > 0 so that

tc1(v) ≤

∥

∥

∥

∥

∥

∥

∥







ψ(x∗1 + tv1, y
∗
1 + tvn+1)

...
ψ(x∗n + tvn, y

∗
n + tv2n)







∥

∥

∥

∥

∥

∥

∥

≤ tc2(v) for all t ∈ [0, t(v)]. (5.21)

Hence, the lemma follows by setting c′1 := c1(v), c
′
2 := c2(v) and t

′ := t(v). △

Definition 5.2.2 A function f : Rn → R is said to be homogeneous of degree
k ∈ Z if, for all y ∈ R

n and all t ∈ R \ {0},

f(ty) = tkf(y). (5.22)

Lemma 5.2.4 An NCP function ψ cannot be homogeneous of any degree.
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Proof: Let ψ be a homogeneous function of degree k ∈ Z. We obtain a contra-
diction to the definition of an NCP function by observing that

0 6= ψ(−1, 0) = (−1)kψ(1, 0) = 0.

△

Definition 5.2.3 A function f : Rn → R is said to be positively homogeneous of
degree k ∈ R if, for all y ∈ R

n and all t > 0,

f(ty) = tkf(y). (5.23)

Table 5.1 shows some of the commonly used NCP functions (see for example
[22; 38; 42]) where (a, b) ∈ R

2, a+ := max{0, a}, b+ := max{0, b}, ‖ · ‖q denotes

Table 5.1: Commonly used ψ-functions used in (5.2)
ψ(a, b) Parameter Type

ψmin(a, b) := min(a, b); I
ψFB(a, b) :=

√
a2 + b2 − (a+ b); I

ψLT (a, b) := ‖(a, b)‖q − (a+ b); q ∈ (1,∞], I
ψpoly(a, b) := ‖(a, b)‖poly − (a+ b); I

ψKK(a, b) :=

√
(a−b)2+2qab−(a+b)

2−q ; q ∈ [0, 2), I

ψCCK(a, b) := ψFB(a, b)− qa+b+; q > 0, II

ψKP (a, b) :=

(

λψFB(a, b)
(1− λ)a+b+

)

; λ ∈ (0, 1), III

the Lq-norm of vectors and ‖ · ‖poly denotes those polyhedral (or block) vector
norms (see [56; 60]) such that

{(a, b) ∈ R
2 : ‖(a, b)‖poly = 1} ∩ {(a, b) ∈ R

2 : a+ b = 1} = {(0, 1), (1, 0)}

is satisfied. Note that, similar to the Lq-norm of (a, b) ∈ R
2, any polyhedral (or

block) vector norm of (a, b) satisfies

‖(a, b)‖poly = ‖(|a|, |b|)‖poly for all (a, b) ∈ R
2, (5.24)

see [60]. Some of the above ψ-functions are equivalent for some parameter values.
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Definition 5.2.4 An NCP function will be called a ψ-function of Type-I, if it
is positively homogeneous of degree one. An NCP function will be called a ψ-
function of Type-II, if it can be written as a sum of a ψ-function of Type-I and
of a positively homogeneous function ψk : R2 → R of degree k > 1, such that
ψk 6≡ 0. A function ψ : R2 → R

2 will be called a ψ-function of Type-III, if

ψ(a, b) :=

(

λψ1(a, b)
(1− λ)ψk(a, b)

)

,

where λ ∈ (0, 1), ψ1 is a ψ-function of Type-I and ψk is a positively homogeneous
function of degree k > 1, such that ψk 6≡ 0.

All the NCP functions we have found in the literature such that Assumption 5.2.3
with Ω = R

2n can be satisfied, are either ψ-function of Type-I or of Type-II.
Apart from the reformulation (5.2), other reformulations of NCP(H) are also
possible. For example, such a reformulation of NCP(H) (see [42]) could be

HψKP
(z) = 0,

where ψKP comes from Table 5.1 and is a ψ-function of Type-III. Assump-
tion 5.2.3 with Ω = R

2n can also be satisfied for such kind of reformulations.
A way to construct an NCP function from positively homogeneous functions of
degree one can be found in [38].

We next present two basic results about differentiable homogeneous functions.

Theorem 5.2.1 (Euler’s homogeneous function theorem) Let a function
f : R

n → R be differentiable at some x̃ ∈ R
n. Moreover, let f be homoge-

neous of degree k ∈ Z or positively homogeneous of some degree k ∈ R. Then,

∇f(x̃)⊤x̃ = kf(x̃). (5.25)

Proof: Let f be homogeneous of degree k ∈ Z. The proof when f is positively
homogeneous of some degree k ∈ R is very similar. Let us consider two cases:

Case 1: x̃ 6= 0. Since f is differentiable at x̃, we obtain

lim
t→1

f(tx̃)− f(x̃)−∇f(x̃)⊤(tx̃− x̃)

‖tx̃− x̃‖ = 0.
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This together with (5.22) and L’Hôpital’s rule gives

0 = lim
t→1

tkf(x̃)− f(x̃)−∇f(x̃)⊤x̃(t− 1)

‖x̃‖(t− 1)

= lim
t→1

(tk − 1)f(x̃)− (t− 1)(∇f(x̃)⊤x̃)
(t− 1)‖x̃‖

= lim
t→1

ktk−1f(x̃)−∇f(x̃)⊤x̃
‖x̃‖

=
kf(x̃)−∇f(x̃)⊤x̃

‖x̃‖ .

Since ‖x̃‖ 6= 0 this is equivalent to ∇f(x̃)⊤x̃ = kf(x̃).

Case 2: x̃ = 0. In this case (5.22) with y := 0 gives

f(0) = tkf(0) for all t ∈ R \ {0}. (5.26)

This is possible only if f(0) = 0 or k = 0 and in both these situations
∇f(x̃)⊤x̃ = kf(x̃) holds.

Hence, the theorem follows as in both Case 1 and 2, (5.25) is satisfied. △

Theorem 5.2.2 (Derivative identity) Let f : R
n → R be differentiable at

some x̃ ∈ R
n. Moreover, let f be homogeneous of degree k ∈ Z (or positively

homogeneous of some degree k ∈ R). Then, f is differentiable at tx̃ for all
t ∈ R \ {0} (for all t > 0) and

∇f(tx̃) = tk−1∇f(x̃). (5.27)

Proof: Let f be homogeneous of degree k ∈ Z. The proof when f is positively
homogeneous of some degree k ∈ R is very similar.

Let t ∈ R \ {0} be fixed. Differentiability of f at x̃ gives

lim
y

t
→x̃

∣

∣f(y
t
)− f(x̃)−∇f(x̃)⊤(y

t
− x̃)

∣

∣

‖y
t
− x̃‖ = 0.

Hence

lim
y

t
→x̃

tk
∣

∣f(y
t
)− f(x̃)−∇f(x̃)⊤(y

t
− x̃)

∣

∣

t‖y
t
− x̃‖ = 0,
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and, applying (5.22) we obtain that

0 = lim
y→tx̃

∣

∣f(y)− f(tx̃)− tk−1∇f(x̃)⊤(y − tx̃)
∣

∣

‖y − tx̃‖

Thus, we obtain that f is differentiable at tx̃ with ∇f(tx̃) = tk−1∇f(x̃). △

Remark 5.2.2 Although Theorems 5.2.1 and 5.2.2 are basic results about differ-
entiable homogeneous functions ([48, Page 138]), we did not find many references
for them. In the few references ([5; 48]), the proof of these results assumes that f
is differentiable everywhere. However, this is not needed as Theorems 5.2.1 and
5.2.2 show.

Remark 5.2.3 In Theorem 5.2.2 we showed that if a positively homogeneous
function is differentiable at some point x̃ then it is differentiable along the entire
ray tx, with t > 0. This is an improvement over the usual derivative identity that
we find in existing texts. We need this improvement in later sections for proving
some results.

Remark 5.2.1 together with Theorems 5.2.1 and 5.2.2 are the main results of
this section.

5.3 Existing Smoothness Assumption

Besides Assumptions 5.2.1, 5.2.2 and 5.2.3 additional smoothness conditions are
needed to prove local Q-quadratic convergence of a Levenberg-Marquardt method.
We are now going to discuss such conditions/ properties and their relations. One
such assumption used in the literature (see for example [43]) is given next.

Assumption 5.3.1 There exist c, ε > 0 and a function G : B(z∗, ε)∩Ω → R
2n×2n

so that
‖Hψ(z)−Hψ(ẑ)−G(ẑ)(z − ẑ)‖ ≤ c‖z − ẑ‖2 (5.28)

holds for all pairs (z, ẑ) with z, ẑ ∈ B(z∗, ε) ∩ Ω.

In (5.28), ẑ and z can be regarded as the current and the next iterate, respec-
tively. However, the Levenberg-Marquardt method stops if ẑ is the solution of
(5.2). Hence, the following weaker form of the assumption will be used.
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Assumption 5.3.2 There exist c, ε > 0 and a function G : B(z∗, ε)∩Ω → R
2n×2n

so that
‖Hψ(z)−Hψ(ẑ)−G(ẑ)(z − ẑ)‖ ≤ c‖z − ẑ‖2 (5.29)

holds for all pairs (z, ẑ) with z ∈ B(z∗, ε) ∩ Ω, ẑ ∈ (B(z∗, ε) ∩ Ω) \ Z.
If Hψ is differentiable and ∇Hψ locally Lipschitz continuous then Assump-

tions 5.3.1 and 5.3.2 hold if G(ẑ) is chosen to be ∇Hψ(ẑ)
⊤. For the last n compo-

nents of Hψ this might be regarded as a reasonable condition. However, for the
first n components of Hψ whether or not Assumption 5.3.2 holds depends upon
the NCP function ψ and upon z∗. The next lemma shows that Assumption 5.3.2
implies differentiability of Hψ at some points.

Lemma 5.3.1 Let Assumption 5.3.2 hold. Then, Hψ is differentiable at all
points ẑ ∈ int ((B(z∗, ε) ∩ Ω) \ Z). Moreover, for all such points ẑ,

G(ẑ) := ∇Hψ(ẑ)
⊤

holds.

Proof: The proof follows easily by noting that Assumption 5.3.2 together with
ẑ ∈ int(B(z∗, ε) ∩ Ω) gives

lim
z→ẑ

‖Hψ(z)−Hψ(ẑ)−G(ẑ)(z − ẑ)‖
‖z − ẑ‖ = 0. (5.30)

Hence, Hψ is differentiable at ẑ and G(ẑ) := ∇Hψ(ẑ)
⊤ is the unique matrix sat-

isfying (5.30). △

Lemma 5.3.2 Let Assumption 5.3.2 hold and, for k ∈ I, let the set Tk ⊆ R
2n
+ be

defined as

Tk :=
{

z ∈ R
2n
+ ∩B

(

z∗,
ε

2

)

|zk, zn+k > 0
}

. (5.31)

Then, for any k ∈ I and ẑ ∈ Tk, ψ is differentiable at (ẑk, ẑn+k) and

(G(ẑ)k,k, G(ẑ)k,n+k) = ∇ψ(ẑk, ẑn+k)⊤ (5.32)

holds.

Proof: For an arbitrary but fixed k ∈ I take any ẑ ∈ Tk. Observe that ẑk, ẑn+k >
0. Consider an arbitrary but fixed sequence {al, bl} ⊂ B

(

(ẑk, ẑn+k),
ε
2

)

, l ∈ N,
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converging to (ẑk, ẑn+k). For l ∈ N, let the vector v(l) ∈ R
2n be defined as

v(l)j =







al if j = k;
bl if j = n+ k;
ẑj otherwise.

We can easily see that v(l) /∈ Z for all l ∈ N sufficiently large since both al and
bl become positive.

Now, Assumption 5.3.2 gives for z = v(l),

∣

∣

∣

∣

ψ(v(l)k, v(l)n+k)− ψ(ẑk, ẑn+k)− (G(ẑ)k,k, G(ẑ)k,n+k)

(

al − ẑk
bl − ẑn+k

)∣

∣

∣

∣

≤ c‖v(l)− ẑ‖2

for all l ∈ N sufficiently large.
This implies

lim
l→∞

∣

∣

∣

∣

ψ(al, bl)− ψ(ẑk, ẑn+k)− (G(ẑ)k,k, G(ẑ)k,n+k)

(

al − ẑk
bl − ẑn+k

)∣

∣

∣

∣

‖(al, bl)− (ẑk, ẑn+k)‖
= 0. (5.33)

Hence, ψ is differentiable at (ẑk, ẑn+k) and

(G(ẑ)k,k, G(ẑ)k,n+k) = ∇ψ(ẑk, ẑn+k)⊤.

△

Remark 5.3.1 Lemma 5.3.2 shows that if z∗ is degenerate Assumption 5.3.2
excludes all such NCP functions which have points of non-differentiability in
int(R2

+) ∩ B((0, 0), ε) for all ε > 0. For example, Assumption 5.3.2 does not
hold if z∗ is degenerate and ψ = ψmin or ψ = ψpoly are used. This result is not
based on positive homogeneity of ψ. Later, we show that Assumption 5.3.2 also
does not hold for other NCP functions from Table 5.1.

Remark 5.3.2 For any k ∈ I, there are points zk ∈ Tk with z
k /∈ int (B(z∗, ε) ∩ Ω).

Hence, although it might seem, it is not possible to derive Lemma 5.3.2 from
Lemma 5.3.1.

Lemma 5.3.3 An NCP function ψ that is positively homogeneous of degree one
cannot be continuously differentiable everywhere.
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Proof: Let us assume on the contrary that ψ is continuously differentiable ev-
erywhere and let

(ã, b̃)⊤ := ∇ψ(0, 0).

For any r ∈ R
2, using the Lemma 5.2.2 we obtain

∇ψ(tr) = ∇ψ(r) for all t > 0. (5.34)

Since ψ is continuously differentiable at (0, 0) using (5.34) we obtain

(ã, b̃)⊤ = ∇ψ(0, 0) = lim
t→0

∇ψ(tr) = lim
t→0

∇ψ(r) = ∇ψ(r), (5.35)

for all r ∈ R
2. Hence

∂ψ(r)

∂a
= ã and

∂ψ(r)

∂b
= b̃ for all r ∈ R

2.

By integration, we easily obtain

ψ(a, b) := ãa+ b̃b+ c̃ for all (a, b) ∈ R
2,

with some constants ã, b̃ and c̃. This gives a contradiction as this is not an NCP
function for any values of ã, b̃ and c̃. △

Lemma 5.3.4 Let ψ be a given NCP function and Λ : R+ ⇉ R
2
+ be a set-valued

map defined as

Λ(γ) :=
{

(a, b)⊤ ∈ R
2|a+ b = γ, a, b ≥ 0

}

. (5.36)

Then, for any g ∈ R
2 and γ > 0, there exists a point (ã, b̃)⊤ ∈ Λ(γ) so that

ψ(ã, b̃)− g⊤
(

ã

b̃

)

6= 0. (5.37)

Proof: Let us assume the contrary. For any fixed g ∈ R
2 and any fixed γ > 0

this leads to

ψ(a, b) = g⊤
(

a
b

)

for all (a, b)⊤ ∈ Λ(γ). (5.38)
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By taking (a, b) = (γ, 0) and (0, γ) in (5.38) (both these points are in Λ(γ)) we
obtain

0 = ψ(γ, 0) = g1γ and,

0 = ψ(0, γ) = g2γ,

and hence g1 = g2 = 0. Thus,

ψ(a, b) = 0 for all (a, b)⊤ ∈ Λ(γ).

This is clearly a contradiction to the definition of an NCP function. Hence the
result follows. △

The next theorem is the main result of this section.

Theorem 5.3.1 Let ψ : R2 → R be an NCP function. Moreover, let ψ be given
by

ψ(a, b) := ψ1(a, b) + ψk(a, b) for all (a, b) ∈ R
2,

where ψ1 and ψk are positively homogeneous functions of degree one and of de-
gree k > 1 respectively, and ψ1 is a locally Lipschitz NCP function. If z∗ is a
degenerate solution of Hψ(z) = 0 then Assumption 5.3.2 does not hold.

Proof: Let us assume that Assumption 5.3.2 holds. With ε > 0 from As-
sumption 5.3.2 there is a r̂ := (r̂1, r̂2)

⊤ ∈ int
(

B((0, 0)⊤, ε
2

)

∩ R
2
+) at which ψ1 is

differentiable. This follows by Rademacher’s theorem since ψ1 is locally Lipschitz.
From Lemma 5.3.2 we obtain that ψ is differentiable at r̂. Since both ψ and ψ1

are differentiable at r̂ it follows that ψk = ψ − ψ1 is differentiable at r̂ as well.
From Theorem 5.2.2 both ψ1 and ψk (and hence ψ) are differentiable at tr̂ for all
t > 0.

Let Ĉ be the optimal value of the following maximization problem (P1)

max

∣

∣

∣

∣

ψ1(a, b)−∇ψ1(r̂)
⊤
(

a
b

)∣

∣

∣

∣

s.t. (a, b) ∈ Λ(r̂1 + r̂2),

where the constraint set Λ(r̂1 + r̂2) is defined by (5.36). The objective function
of (P1) is continuous and the feasible set is compact. Hence, by the theorem of
Weierstrass the maximal value Ĉ is attained at some point ŝ := (â, b̂) ∈ Λ(r̂1+r̂2).
From Lemma 5.3.4 we obtain that Ĉ > 0. Moreover, using Theorem 5.2.1, we
observe that ŝ 6= r̂, otherwise the objective function of (P1) would vanish at ŝ.
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Since z∗ is degenerate by assumption, the index set J is nonempty. For some
j ∈ J, let d1, d2 ∈ R

2n
+ be defined as follows

d1i =







r̂1 if i = j;
r̂2 if i = n+ j;
0 otherwise,

and d2i =







â if i = j;

b̂ if i = n+ j;
0 otherwise.

It is easy to see that there exists t1 > 0 so that z∗ + td1 ∈
(

B
(

z∗, ε
2

)

∩ Ω
)

\Z for
all t ∈ (0, t1] and z

∗+td2 ∈ B
(

z∗, ε
2

)

∩Ω for all t ∈ [0, t1]. Hence, for all t ∈ (0, t1],
z∗ + td1 and z∗ + td2 can be used for ẑ and z, respectively, in Assumption 5.3.2.
Moreover we see that z∗ + td1 6= z∗ + td2 for all t > 0.

Now, using the definition of a positive homogeneous function, and applying
Theorems 5.2.1 and 5.2.2 we will simplify the left hand side of (5.29). Using
Lemma 5.3.2 and j ∈ J we obtain

(G(z∗ + td1)j,j, G(z
∗ + td1)j,n+j) = ∇ψ(tr̂)⊤ for all t ∈ (0, t1). (5.39)

For all t ∈ (0, t1), and in view of (5.29) let E(t) be defined as

E(t) := [Hψ(z
∗ + td2)−Hψ(z

∗ + td1)−G(z∗ + td1)
(

t(d2 − d1)
)

]j . (5.40)

Now,

[G(z∗ + td1)
(

t(d2 − d1)
)

]j =
(

G(z∗ + td1)j,j, G(z
∗ + td1)j,n+j

)

t(ŝ− r̂). (5.41)

Applying (5.39) and (5.41) together with x∗j = y∗j = 0 (since j ∈ J), E(t) can be
simplified as

E(t) = ψ(tŝ)− ψ(tr̂)− t∇ψ(tr̂)⊤(ŝ− r̂). (5.42)

Theorems 5.2.1 5.2.2 further give,

t∇ψ(tr̂)⊤r̂ = t
(

∇ψ1(r̂) + tk−1∇ψk(r̂)
)⊤
r̂

= tψ1(r̂) + ktkψk(r̂).

This together with (5.42) and the homogeneity properties of ψ1 and ψk show

E(t) = tψ1(ŝ) + tkψk(ŝ) + (k − 1)tkψk(r̂)−
(

∇ψ1(r̂) + tk−1∇ψk(r̂)
)⊤
tŝ

= t
(

ψ1(ŝ)−∇ψ1(r̂)
⊤ŝ
)

+ tk
(

ψk(ŝ) + (k − 1)ψk(r̂)−∇ψk(r̂)⊤ŝ
)

.

Since ŝ is optimal to (P1),

|ψ1(ŝ)−∇ψ1(r̂)
⊤ŝ| = Ĉ > 0. (5.43)
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For t ∈ (0, t1), using the triangle inequality and (5.43) we obtain

|E(t)|
t

≥
∣

∣ψ1(ŝ)−∇ψ1(r̂)
⊤ŝ
∣

∣−
∣

∣tk−1
(

ψk(ŝ) + (k − 1)ψk(r̂)−∇ψ1(r̂)
⊤ŝ
)∣

∣

= Ĉ −
∣

∣tk−1
(

ψk(ŝ) + (k − 1)ψk(r̂)−∇ψ1(r̂)
⊤ŝ
)∣

∣ .

Since k > 1, for t ∈ (0, t1) sufficiently small, we have

|E(t)| ≥ t

2
Ĉ > t2c‖ŝ− r̂‖2. (5.44)

However, on the other hand, from Assumption 5.3.2

|E(t)| ≤ c‖z + td1 − (z + td2)‖2
= t2c‖ŝ− r̂‖2.

This is a contradiction to (5.44) and hence the result of the theorem follows. △

Remark 5.3.3 Due to the appearance of the constraint set Ω in (5.29), As-
sumption 5.3.2 is weaker than assuming the differentiability of Hψ together with
local Lipschitz continuity of ∇Hψ. However, as the above theorem shows, even
this weaker smoothness Assumption 5.3.2 is not satisfied at degenerate solutions.
This holds for any choice of the convex set Ω such that Z ⊂ Ω.

Remark 5.3.4 If we choose ψk ≡ 0 then ψ is a positively homogeneous NCP
function of degree one. Thus, any reformulation Hψ(z) = 0 of NCP(H) with a
positively homogeneous NCP function ψ of degree one does not satisfy Assump-
tion 5.3.2 if z∗ is degenerate. Moreover, obviously Theorem 5.3.1 holds also for
reformulations based on Type III-ψ functions (see Definition 5.2.4). This shows
that Theorem 5.3.1 is applicable for all ψ-functions of Type I, II and III and,
in particular, for all the ψ-functions listed in Table 5.1.

Remark 5.3.5 If ψk ≡ 0, then ψ = ψ1 and the local Lipschitzness of ψ1 is not
required. Local Lipschitzness of ψ1 is only needed to ensure that both ψ1 and ψk
(= ψ − ψ1) are differentiable at r̂.

Remark 5.3.6 It is interesting to note that Theorem 5.3.1 only requires z∗ ∈ Z
being degenerate and that ψ is locally Lipschitz continuous and positively homo-
geneous. In particular no condition on H is assumed. For example, even if H is
linear then Assumption 5.3.2 cannot hold.
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5.4 Fundamental Identities for Nonsmooth Homogeneous Functions

Remark 5.3.1, Lemma 5.3.3, Theorem 5.3.1 and Remarks 5.3.3, 5.3.4, 5.3.5
and 5.3.6 are the main results of this section. If we restrict ourselves to the ψ-
functions from Table 5.1, then, Table 5.2 gives summarizes the satisfiability of
Assumption 5.3.2 on these ψ-functions.

Table 5.2: Satisfiability of Assumption 5.3.2 on the ψ-functions from Table 5.1
ψ-functions Conditions Assumption 5.3.2

ψmin, ψFB,
ψLT , ψpoly,
ψKK , ψCCK ,
ψKP

z∗ degenerate Does not hold

5.4 Fundamental Identities for Nonsmooth Ho-

mogeneous Functions

Here we present a nonsmooth version of Euler’s theorem and the derivative iden-
tity for homogeneous (or positively homogeneous) functions. These results are
based on Clarke’s subdifferential (see, for example, [8]). Although the results of
this section are used for NCP functions later, we present the results in a general
setting.

For a given function f : Rn → R, let Df ⊆ R
n be the set of points at which f is

differentiable. Similarly, for a vector valued function F : Rn → R
m, let DF ⊆ R

n

be the set of points at which F is differentiable. The B-subdifferential and Clarke’s
subdifferential play a major role in the study of convergence analysis of nonsmooth
Newton methods. The B-subdifferential of a locally Lipschitz continuous function
is given as follows (see [17])

Definition 5.4.1 Let f : Rn → R be a locally Lipschitz continuous function.
Then, the B-subdifferential is given by

∂Bf(x) :=
{

lim
k→∞

∇f(xk)⊤|xk → x, xk ∈ Df

}

. (5.45)

If f is a locally Lipschitz continuous function, using Rademacher’s theorem we
obtain that the set Rn \Df is of measure zero (in the sense of Lebesgue measure).
Thus, if f is locally Lipschitz continuous then ∂Bf(x) 6= ∅. A characterization of
Clarke’s subdifferential is (see [8, Theorem 2.5.1]) as follows.
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Definition 5.4.2 Let f : Rn → R be a locally Lipschitz continuous function.
Then, Clarke’s subdifferential is given by

∂f(x) := co {∂Bf(x)} , (5.46)

where co (·) denotes the convex hull of a set.

From Proposition 2.1.2 in [8], we know that ∂f(x) is nonempty, convex and
compact for each x ∈ R

n if f is locally Lipschitz continuous. Moreover, it is clear
that ∂Bf(x) ⊆ ∂f(x).

Extending 5.4.2 to vector valued functions, see [8], the notion of Clarke’s
generalized Jacobian is defined as follows.

Definition 5.4.3 Let F : Rn → R
m be a locally Lipschitz continuous function.

Then, Clarke’s generalized Jacobian is given by

∂F(x) := co
{

lim
k→∞

JF(xk)|xk → x, xk ∈ DF

}

. (5.47)

Moreover, let the set ∂̄F(x) be defined by

∂̄F(x) := ∂F1(x)× ∂F2(x)× . . .× ∂Fm(x), (5.48)

where the latter denotes the set of all matrices whose ith row belongs to ∂Fi(x)
⊤

for each i = 1, 2, . . . , m.

From [8, Proposition 2.6.2], we obtain that ∂F(x) ⊆ ∂̄F(x).
Next we state and prove Euler’s identity for locally Lipschitz continuous ho-

mogeneous (or positively homogeneous) functions.

Theorem 5.4.1 Let f : Rn → R be locally Lipschitz continuous and homoge-
neous of degree k ∈ Z or positively homogeneous of some degree k ∈ R. Then,
for each x ∈ R

n and each g with g⊤ ∈ ∂f(x),

g⊤x = kf(x) (5.49)

holds.

Proof: Let f̃ : R2n → R be the function defined as

f̃(x, y) := y⊤x− kf(x). (5.50)

Since f is locally Lipschitz continuous we obtain that f̃ is also locally Lipschitz
continuous. Now take x ∈ R

n and g ∈ ∂f(x). Now, since ∂f(x) is the convex
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5.4 Fundamental Identities for Nonsmooth Homogeneous Functions

hull of ∂Bf(x), Carathéodory’s theorem gives a subset of ∂Bf(x) consisting of at
most n+ 1 points such that g lies in the convex hull of the subset. Equivalently,

g =

n+1
∑

i=1

λjg
j, λj ≥ 0 and

∑n+1
j=1 λj = 1 (5.51)

where every gj is in ∂Bf(x). For all j = 1, 2, . . . , n+1, let {∇f(xjl)} be sequences
so that ∇f(xjl) → gj, xjl → x (such sequences exist by definition of gj). Now as
(xjl,∇f(xjl)) → (x, gj), continuity of f̃ gives

lim
l→∞

f̃(xjl,∇f(xjl)) = f̃(x, gj), for all j = 1, 2, . . . , n+ 1. (5.52)

Using (5.50), this further simplifies to

lim
l→∞

(

∇f(xjl)⊤xjl − kf(xjl)
)

= (gj)⊤x− kf(x). (5.53)

Now, by Theorem 5.2.1, we obtain that ∇f(xjl)⊤xjl − kf(xjl) = 0 for all l ∈ N

and j = 1, 2, . . . , n+ 1. Hence, (5.53) gives

(gj)⊤x− kf(x) = 0. (5.54)

This together with (5.51) and
∑n+1

j=1 λj = 1 shows that

g⊤x− kf(x) =

(

n+1
∑

i=1

λjg
j

)⊤

x− kf(x) =

n+1
∑

i=1

λj
(

(gj)⊤x− kf(x)
)

= 0.

Hence, g⊤x = kf(x) and the statement of the theorem follows. △

Remark 5.4.1 In [70], Euler’s identity is extended to non-smooth functions us-
ing the β-subdifferential defined on a β-smooth Banach space.

Next, we generalize Theorem 5.2.2 for locally Lipschitz continuous homoge-
neous (or positively homogeneous) functions.

Theorem 5.4.2 Suppose that the function f : Rn → R is locally Lipschitz con-
tinuous and homogeneous of degree k ∈ Z (positively homogeneous of some degree
k ∈ R). Then, for any t ∈ R \ {0} (t > 0),

∂f(tx) = tk−1∂f(x) (5.55)

holds.

102



5.4 Fundamental Identities for Nonsmooth Homogeneous Functions

Proof: Let f be homogeneous of degree k ∈ Z. Using (5.46) and Lemma 5.2.2
we obtain, for any x ∈ R

n, k ∈ Z and t ∈ R \ {0},

g⊤ ∈ ∂f(tx) ⇐⇒ g⊤ ∈ co

{

lim
j→∞

∇f(xj)⊤|xj → tx, xj ∈ Df

}

⇐⇒ g⊤ ∈ co

{

lim
j→∞

∇f(xj)⊤|
xj
t

→ x,
xj
t

∈ Df

}

⇐⇒ g⊤ ∈ co

{

lim
j→∞

tk−1∇f
(xj
t

)⊤
|xj
t

→ x,
xj
t

∈ Df

}

⇐⇒ g⊤ ∈ tk−1co

{

lim
j→∞

∇f
(xj
t

)⊤
|xj
t

→ x,
xj
t

∈ Df

}

⇐⇒ g⊤ ∈ tk−1∂f(x).

The case when f is positively homogeneous of some degree k ∈ R can be proved
similarly. Hence (5.55) follows. △

Remark 5.4.2 From the proof of Theorem 5.4.2 it is clear that (5.55) holds even
when ∂ is replaced by ∂B. This means, if f is locally Lipschitz continuous and
homogeneous of degree k ∈ Z (positively homogeneous of some degree k ∈ R) then
for any t ∈ R \ {0} (t > 0)

∂Bf(tx) = tk−1∂Bf(x)

holds.

As the next theorem shows, Theorems 5.4.1 and 5.4.2 are also valid if the
function f : Rn → R is replaced by F : Rn → R

m. We note that, if the function f
is replaced by F then Definitions 5.2.2 and 5.2.3 can be correspondingly modified.

Theorem 5.4.3 Suppose that the function F : R
n → R

m is locally Lipschitz
continuous and homogeneous of degree k ∈ Z (positively homogeneous of some
degree k ∈ R). Then, for each x ∈ R

n, G ∈ ∂̄F(x) and t ∈ R \ {0} (t > 0),

Gx = kF(x), (5.56)

∂F(tx) = tk−1∂F(x) and (5.57)

∂̄F(tx) = tk−1∂̄F(x) (5.58)

hold.
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5.5 New Smoothness Assumption

Proof: The proof is omitted as it is very similar to that of Theorems 5.4.1 and
5.2.2. △

Theorems 5.4.1 and 5.4.2 are the main results of this section.

5.5 New Smoothness Assumption

Recently (see [27]), Assumption 5.3.2 has been weakened so that the constrained
Levenberg-Marquardt method applied to nonsmooth equation based reformula-
tion of NCP by the min function can be shown to have quadratic rate of conver-
gence. The weaker smoothness assumption consists of the following two condi-
tions, where G : R2n → R

2n×2n is some function.

Condition 5.5.1 There are ω1 > 0 and δ1 > 0 so that for any z ∈ B(z∗, δ1) ∩
Ω \ Z there is z⋄ ∈ Z with

‖z − z⋄‖ ≤ ω1dist [z, Z], and

‖Hψ(z) +G(z)(z⋄ − z)‖ ≤ ω1dist [z, Z]
2.

Condition 5.5.2 There are ω2 > 0 and δ2 so that

w ∈
{

w ∈ Ω|‖w − z‖ ≤ α, ‖Hψ(z) +G(z)(w − z)‖ ≤ α2
}

implies

‖Hψ(w)‖ ≤ ω2α
2

for all z ∈ B(z∗, δ2) ∩ Ω\Z and all α ∈ [0, δ2].

In this section we discuss in detail Conditions 5.5.1 and 5.5.2 for several choices
of the NCP function ψ.

It is shown in [27] that Assumption 5.3.2 implies Conditions 5.5.1 and 5.5.2.
Assumption 5.3.2 as well as Conditions 5.5.1 and 5.5.2 require a suitable choice
of a function G which maps z ∈ R

2n to a matrix G(z) ∈ R
2n×2n. If Hψ is

differentiable at z := (x, y) ∈ R
2n then we take G(z) := ∇Hψ(z)

⊤. However,
if Hψ is non-differentiable at z, an element from ∂Hψ(z) (or ∂̄Hψ(z)) seems a
natural choice for the matrix G(z).

Blanket Assumption for Section 5.5: The functions G : R2n → R
2n×2n and

g : R2 → R
2 are such that G(z) ∈ ∂̄Hψ(z) and g(r)⊤ ∈ ∂ψ(r) for any z ∈ R

2n

and r ∈ R
2, respectively.
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5.5 New Smoothness Assumption

For all i ∈ I, the blanket assumptions for Section 5.5 gives that the ith and (n+i)th

rows of G(z) are given by

(

0⊤i−1, g(xi, yi)1, 0
⊤
n−i, g(xi, yi)2, 0

⊤
n−i
)

and

(

∇xHi(x̂)
⊤, 0⊤i−1,−1, 0⊤n−i

)

,

respectively, where 0i−1 and 0n−i are (i− 1) and (n− i) dimensional null vectors.
For some vector w ∈ R

2n and an index i ∈ I, the ith and the (n+ i)th components
of G(z)w ∈ R

2n are given by

(G(z)w)i = g(xi, yi)
⊤
(

wi
wn+i

)

(5.59)

and

(G(z)w)n+i = ∇xHi(x)
⊤







w1
...
wn






− wn+i, (5.60)

respectively. Note that, for all i ∈ I, the ith row of Hψ(z) is only a function of
(xi, yi). Hence, G(z)i,j = G(z)i,n+j = 0 for all j 6= i, i, j ∈ I.

Lemma 5.5.1 Let the NCP function ψ be positively homogeneous of degree one.
Then, for any w, z ∈ R

2n and i ∈ I,

(Hψ(z) +G(z)(w − z))
i
= (G(z)w)i. (5.61)

Proof: For any w, z := (x, y) ∈ R
2n and i ∈ I, using (5.3), (5.59) and Theo-

rem 5.4.1 we obtain that

(Hψ(z) +G(z)(w − z))i = ψ(xi, yi) + (G(z)(w − z))i

= ψ(xi, yi) + (G(z)w)i − (G(z)z)i

= ψ(xi, yi) + (G(z)w)i − (xi, yi)g(xi, yi)

= (G(z)w)i

follows. △

We can assume without loss of generality that δ ≤ min{δ1, δ2} (if not just
replace δ in Assumption 5.2.3 by min{δ1, δ2}). Recall the blanket assumption for
Chapter 5 and the definition of Hψ. As a result, the last n components of Hψ
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are differentiable and their derivatives are locally Lipschitz continuous. Thus, for
the last n components, Assumption 5.3.1 holds and it is easy to see that the next
two lemma’s hold.

Lemma 5.5.2 For any C̃ ≥ 1 there exits δC̃ ∈ [0, ε] so that for z ∈ B (z∗, δC̃),
z⋄ ∈ Z and ‖z − z⋄‖ ≤ C̃dist [z, Z] implies

|(Hψ(z) +G(z)(z⋄ − z))n+i| ≤ cC̃2dist [z, Z]2 for all i ∈ I,

where c, ε > 0 are from Assumption 5.3.1.

Proof: Let δC̃ := ε
2C̃

. As z ∈ B (z∗, δC̃), we have that z ∈ B (z∗, ε). Now, we

note that
‖z⋄ − z∗‖ ≤ ‖z⋄ − z‖ + ‖z − z∗‖ ≤ ε

2
+

ε

2C̃
≤ ε.

Hence z⋄ ∈ B (z∗, ε) and we can use z, z⋄ as instances of ẑ, z, respectively, in
Assumption 5.3.1. Then, it is easy to see the assertion of the lemma holds.

Lemma 5.5.3 There are β, δ > 0 so that

w ∈
{

w ∈ Ω|‖w − z‖ ≤ α, |(Hψ(z) +G(z)(w − z))n+i| ≤ α2
}

(5.62)

implies

|Hψ(w)n+i| ≤ βα2

for all i ∈ I, z ∈ B(z∗, δ) ∩ Ω\Z and all α ∈ [0, δ].

5.5.1 Discussion of Condition 5.5.1

Taking into account Lemma 5.5.2, we will consider only the first n components
of Hψ and, accordingly, present a sufficient condition for Condition 5.5.1 to hold.

Condition 5.5.3 The NCP function ψ : R2 → R is positively homogeneous of
degree one. Moreover, there are c⋄, δS > 0 so that for any z ∈ B(z∗, δS) ∩ Ω \ Z
there is z⋄ ∈ Z with

‖z − z⋄‖ ≤ c⋄dist [z, Z] (5.63)
∣

∣

∣

∣

g(xi, yi)

(

z⋄i
z⋄n+i

)∣

∣

∣

∣

≤ c⋄dist [z, Z]2 for all i ∈ I. (5.64)

Lemma 5.5.4 Condition 5.5.3 implies Condition 5.5.1.
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b

Sa

Sb

O a

Figure 5.2: Illustration of the cones Sa and Sb.

Proof: Let Condition 5.5.3 hold. It is clear that c⋄ ≥ 1. Using C̃ := c⋄

in Lemma 5.5.2 we obtain a δ1 := δc⋄ > 0. Take an arbitrary but fixed z ∈
B(z∗,min{δ1, δS}) \ Z. Using Lemma 5.5.1 and Condition 5.5.3, we obtain that
there is a z⋄ so that

‖z − z⋄‖ ≤ c⋄dist [z, Z], and
∣

∣(Hψ(z) +G(z)(z⋄ − z))
i

∣

∣ ≤ c⋄dist [z, Z]2 for all i ∈ I,

holds.
Now, applying Lemma 5.5.2, we further obtain that

|(Hψ(z) +G(z)(z⋄ − z))n+i| ≤ c(c⋄)2dist [z, Z]2 for all i ∈ I,

Thus we see that Condition 5.5.1 is satisfied with ω1 := max{c⋄, c(c⋄)2}
√
2n and

δ1 := min{δ1, δS}. △

Lemma 5.5.5 Let ψpoly : R
2 → R be any NCP function as described in Table 5.1.

Then, there are c1, c2 > 0 and closed and convex cones Sa ⊂ R
2 and Sb ⊂ R

2 such
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that {(a, b) ∈ R
2
+|a = 0, b > 0} ∈ int(Sa) and {(a, b) ∈ R

2
+|b = 0, a > 0} ∈ int(Sb),

and

ψpoly(a, b) = c1a for all (a, b) ∈ Sa, (5.65)

ψpoly(a, b) = c2b for all (a, b) ∈ Sb (5.66)

hold.

Proof: Since ψpoly(a, b) := ‖(a, b)‖poly − (a + b) and ‖ · ‖poly is a polyhedral
(block) norm [60], we obtain that ψpoly is positively homogeneous of degree one
and piecewise-linear. Hence, by (5.24), there exists a closed and convex cone Sa

such that {(a, b) ∈ R
2
+|a = 0, b > 0} ∈ int(Sa) and

ψpoly(a, b) = c1a+ c̃1b for all (a, b) ∈ Sa.

Now, as ψpoly(a, b) is an NCP function we further obtain

0 = ψpoly(0, 1) = c̃1.

Hence (5.65) holds. The proof of (5.66) is very similar. Both these cones are
illustrated in Figure 5.2. △

Lemma 5.5.6 Let f : R2 → R be locally Lipschitz continuous and homogeneous
of degree k ∈ Z or positively homogeneous of some degree k ∈ R. Moreover, let
L ⊂ R

2 be a line not passing through the origin and L̄ be a segment of L with
distinct end points. Then, there exists a point in L̄ at which f is differentiable.

Proof: Let us assume the contrary, i.e.,

L̄ ∩Df = ∅.

Now, applying Theorem 5.2.2 and that L is not passing through the origin, we
obtain that f is not differentiable at all the points in the triangle formed by the
origin and the (distinct) end points of L̄. This triangle has a non-zero measure
in R

2. Since f is not differentiable on the whole triangle this is a contradiction
to Rademacher’s theorem. Hence the result of the lemma follows. △

Property 5.5.1 There is c◦ > 0 so that

|∇ψ(1, t)1| ≤ c◦t2, for all t ∈ [−2, 1] such that (1, t) ∈ Dψ, (5.67)
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and

|∇ψ(t, 1)2| ≤ c◦t2, for all t ∈ [−2, 1] such that (t, 1) ∈ Dψ. (5.68)

Lemma 5.5.7 Property 5.5.1 holds for ψpoly(a, b).

Proof: As noted earlier, ψpoly is positively homogeneous of degree one and
piecewise-linear. Hence, from Theorem 5.2.2 there exists k ∈ N and constants
c1j , c2j , for j = 1, 2, . . . , k, such that

∇ψ(r) ∈ {(c1i, c1j)⊤ ∈ R
2| for some i, j = 1, 2, . . . , k}, ∀r ∈ Dψ. (5.69)

Let c1 be the maximum among the constants |c1j|, |c2j|, for all j = 1, 2, . . . , k.
Without loss of generality, let the angle of cones Sa and Sb be 2φ ∈

(

0, π
4

]

. Using
Lemma 5.5.5 we obtain that

|∇ψ(1, t)1| = 0, for all t ∈ [− tanφ, tanφ] such that (1, t) ∈ Dψ, (5.70)

and

|∇ψ(t, 1)2| = 0, for all t ∈ [− tanφ, tanφ] such that (t, 1) ∈ Dψ. (5.71)

Hence, we see that (5.67) and (5.68) hold with c◦ := c1
tan2 φ

. △

Remark 5.5.1 We can easily verify that Property 5.5.1 is satisfied for all posi-
tively homogeneous NCP functions of degree one which are discussed in [22; 64]
or given in Table 5.1. Property 5.5.1 requires checking only at differentiable points
of two line segments.

Lemma 5.5.8 Let the NCP function ψ be of Type I (see Definition 5.2.4) and
satisfy Property 5.5.1. Then for any t ∈ [−2, 2], we have the following.

(a) For any g⊤ ∈ ∂ψ(1, t) it holds that

|g1| ≤ c◦t2 and, (5.72)

(b) for any g⊤ ∈ ∂ψ(t, 1) it holds that

|g2| ≤ c◦t2. (5.73)
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Proof: Let

U := {(a, b) ∈ R
2|a+ b ≥ 0, ‖(a, b)‖∞ = 1},

where we recall that ‖ · ‖∞ is the infinity norm. This set U can be equivalently
described by

U := {(1, t) ∈ R
2|t ∈ [−1, 1]} ∪ {(t, 1) ∈ R

2|t ∈ [−1, 1]}.

Take an arbitrary but fixed point ŝ ∈ U. We claim that

∂ψ(ŝ) = co

{

lim
j→∞

∇ψ(ξj)⊤|ξj → ŝ, ‖ξj‖∞ = 1, ξj ∈ Dψ

}

. (5.74)

Since ψ is of Type-I, it is positively homogeneous of degree one. Hence, (5.46),
Theorem 5.2.2 and ŝ ∈ U gives

ĝ⊤ ∈ ∂ψ(ŝ) ⇐⇒ ĝ⊤ ∈ co

{

lim
j→∞

∇ψ(sj)⊤ |sj → ŝ, sj ∈ Dψ

}

⇐⇒ ĝ⊤ ∈ co

{

lim
j→∞

∇ψ
(

sj
‖sj‖∞

)⊤ ∣
∣

∣

∣

sj
‖sj‖∞

→ ŝ,
sj

‖sj‖∞
∈ Dψ

}

⇐⇒ ĝ⊤ ∈ co

{

lim
j→∞

∇ψ(ξj)⊤ |ξj → ŝ, ‖ξj‖∞ = 1, ξj ∈ Dψ

}

.

Hence (5.74) holds.
Now, due to (5.74), we easily see that any element from ∂ψ(ŝ) satisfies con-

ditions (5.67) and (5.68). Hence, (5.72) and (5.73) hold. Hence the statement of
the lemma holds. △

Definition 5.5.1 The solution z∗ will be called isolated in the degenerate com-
ponents (IDC), if, either J is empty (z∗ is non-degenerate), or, if there exists
δ1 > 0 so that

ẑi = ẑn+i = 0 for all i ∈ J and all ẑ ∈ (B(z∗, δ1) ∩ Z) \ {z∗}. (5.75)

It is clear that without loss of generality we can also assume that δ1 ≤ δ.
Convergence analysis of the constrained Levenberg-Marquardt method ap-

plied to solving NCPs requires less conditions if z∗ is IDC. On the other hand,
the case when z∗ is not IDC is difficult to handle. These are shown in the next
theorems.
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Theorem 5.5.1 Let the NCP function ψ be of Type I and satisfy Property 5.5.1.
Moreover, let S ⊆ {(a, b) ∈ R

2|a + b ≥ 0}. Then, Condition 5.5.1 is satisfied if
z∗ is IDC.

Proof: Let z∗ be IDC and let

S ⊆ {(a, b) ∈ R
2|a + b ≥ 0}. (5.76)

Hence, from Definition 5.5.1, z∗ is either non-degenerate or there exist δ1, δ2 > 0
so that (5.75) holds. Let δ̂ be defined as

δ̂ :=















min

{

max
i∈I

{

x∗i
4
,
y∗i
4

}

,
δ

2

}

if z∗ is non-degenerate, and

min

{

max
i∈(I\J)

{

x∗i
4
,
y∗i
4

}

,
δ1
2

}

otherwise.

It is easy to see that δ̂ > 0 and that for any z ∈ B(z∗, δ̂), dist [z, Z] is realized at
a point in the ball B(z∗, δ).

From Lemma 5.5.4, we know that Condition 5.5.3 suffices Condition 5.5.1. Let
us consider a point z := (x, y) ∈ B(z∗, δ̂) ∩ Ω. Let z⋄ := (x⋄, y⋄) be a projection
of z onto Z. Such a z⋄ always exists as Z is closed and nonempty.

In the first part of the remaining proof we deal with the case that z∗ is non-
degenerate. Now for an arbitrary but fixed i ∈ I consider the point (xi, yi) ∈
B((x∗i , y

∗
i ), δ̂) ∩ S. From the definition of δ̂, we obtain that

(xi, yi) 6= (0, 0) for all i ∈ I, (5.77)

and that either xi < yi or xi > yi holds. We discuss these two cases in detail.

Case A: xi < yi. Here, obviously x
⋄
i = 0 and thus,

g(xi, yi)
⊤
(

x⋄i
y⋄i

)

= g(xi, yi)
⊤
(

0
y⋄i

)

= g(xi, yi)2y
⋄
i .

Moreover, as (xi, yi) ∈ S and xi < yi, using (5.76), we see that yi > 0. From

Theorem 5.4.2, we obtain that there exists g̃ such that g̃⊤ ∈ ∂ψ
(

xi
yi
, 1
)

and

g(xi, yi) = g̃. (5.78)
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As yi > 0 and x⋄i = 0, from the definition of δ̂ we have that

∣

∣

∣

∣

xi
yi

∣

∣

∣

∣

=
|xi|
yi

≤ δ̂

y∗i − δ̂
≤ 1.

Now using (5.78) and Lemma 5.5.8 we obtain

|g(xi, yi)2y⋄i | = |g̃2| y⋄i
≤ c◦

(

xi
yi

)2

y⋄i

=

(

c◦y⋄i
y2i

)

x2i

≤
(

c◦y⋄i
y2i

)

‖(xi, yi)− (0, y⋄i )‖2

≤
(

c◦y⋄i
y2i

)

dist [z, Z]2.

(5.79)

Case B: yi < xi. In this case, proceeding along the lines of Case A, we obtain

g(xi, yi)
⊤
(

x⋄i
y⋄i

)

= g(xi, yi)
⊤
(

x⋄i
0

)

= g(xi, yi)1x
⋄
i ,

and

|g(xi, yi)1x⋄i | ≤
(

c◦x⋄i
x2i

)

dist [z, Z]2. (5.80)

Now, we easily see that

max
i∈I

z,ẑ∈B(z∗,δ̂)∩Ω

{

c◦y⋄i
ŷ2i

,
c◦x⋄i
x̂2i

}

≤ c◦
maxi∈I{x∗i , y∗i }+ δ̂

(mini∈I{x∗i , y∗i } − δ̂)2
=: c1. (5.81)

From the definition of δ̂ we observe that c1 > 0. Hence from (5.79) and (5.80), it
is easy to see that Condition 5.5.3 is satisfied for c⋄ defined as

c⋄ := max{1, c1}.
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In the second part we consider the case when z∗ is degenerate and IDC. Then,
for all i ∈ I \ J, (5.79) and (5.80) still hold. The constant c1 is now given by

max
i∈I\J

z,ẑ∈B(z∗,δ̂)∩Ω

{

c◦y⋄i
ŷ2i

,
c◦x⋄i
x̂2i

}

≤ c◦
maxi∈I{x∗i , y∗i }+ δ̂

(mini∈I\J{x∗i , y∗i } − δ̂)2
=: c1. (5.82)

(5.64) holds for all i ∈ I \ J. For all i ∈ J, (x⋄i , y
⋄
i ) = (z⋄i , z

⋄
n+i) = (0, 0) and hence

(5.64) holds trivially. Thus, Condition 5.5.3 is also satisfied if z∗ is degenerate
and IDC.

Hence, the statement of the theorem follows. △

Theorem 5.5.2 Let the NCP function ψ be of Type II, i.e.,

ψ(a, b) := ψ1(a, b) + ψk(a, b) for all (a, b) ∈ R
2,

or let ψ be of Type III, i.e.,

ψ(a, b) :=

(

ψ1(a, b)
ψk(a, b)

)

for all (a, b) ∈ R
2,

(see Definition 5.2.4). Let the NCP function ψ1(a, b) satisfy Property 5.5.1.
Moreover, let Assumption 5.3.1 hold with Hψ := Hψk

for some S ⊆ {(a, b) ∈
R

2|a+ b ≥ 0}. Then, Condition 5.5.1 is satisfied if z∗ is IDC.

Proof: Let us assume the NCP function ψ to be of Type II. Observe that by
[8, Proposition 2.3.3],

∂ψ(r) ⊆ ∂ψ1(r) + ∂ψk(r), for all r ∈ R
2.

Since ψ1 is positive homogeneous of degree one, applying Theorem 5.2.1, we
obtain that

(Hψ(z) +G(z)(z⋄ − z))i = g1(xi, yi)
⊤
(

x⋄i
y⋄i

)

+ ψk(xi, yi) + gk(xi, yi)
⊤
(

x⋄i − xi
y⋄i − yi

)

,

for all z := (x, y), z⋄ := (x⋄, y⋄) ∈ R
2n and i ∈ I, where g1, gk : R2 → R

2 are
functions such that g1(r) ∈ ∂ψ1(r) and gk(r) ∈ ∂ψk(r) for all r ∈ R

2. Using the
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5.5 New Smoothness Assumption

triangle inequality in the above expression further shows that

|(Hψ(z) +G(z)(z⋄ − z))i| ≤
∣

∣

∣

∣

ψk(xi, yi) + gk(xi, yi)
⊤
(

x⋄i − xi
y⋄i − yi

)∣

∣

∣

∣

+

∣

∣

∣

∣

g1(xi, yi)
⊤
(

x⋄i
y⋄i

)∣

∣

∣

∣

.

Now, Assumption 5.3.1 is satisfied with Hψ := Hψk
, hence the ψk term in the

above inequality satisfies Assumption 5.3.2 and also Condition 5.5.1. Moreover,
from Theorem 5.5.1, the ψ1 term also satisfies Condition 5.5.1 (as ψ1 is an NCP
function of Type-I).

For showing the other part, let ψ be of Type III. Again, the statement of the
theorem follows by noting that from Theorem 5.5.1 and Assumption 5.3.1, both
ψ1 and ψk terms satisfy Condition 5.5.1. △

Remark 5.5.2 If ψk(a, b) := ab then it is easy to see that Assumption 5.3.1 holds
if Ω := R

2m
+ . Note that ψk(a, b) = ab = a+b+ for all (a, b) ∈ R

2
+ and then, ψKP

and ψCCK satisfy Condition 5.5.1.

We investigate next what happens if the solution z∗ is not IDC. To discuss
Condition 5.5.1 in this case, we first state the following property.

Property 5.5.2 There is a t̄ ∈
(

0, 1
2

]

so that the NCP function ψ satisfies

(i) ∇ψ(1, t)1 6= 0, for all t ∈ (0, t̄ ] such that (1, t) ∈ Dψ, and

(ii) ∇ψ(t, 1)2 6= 0, for all t ∈ (0, t̄ ] such that (t, 1) ∈ Dψ.

It is easy to verify that all the NCP functions from Table 5.1 except ψmin and
ψpoly satisfy Property. 5.5.2. Let us define a weaker smoothness condition than
Condition 5.5.1.

Condition 5.5.4 There are ω1 > 0, δ1 > 0 and ρ > 0 so that for any z ∈
B(z∗, δ1) ∩ Ω \ Z there is z⋄ ∈ Z with

‖z − z⋄‖ ≤ ω1dist [z, Z], and

‖Hψ(z) +G(z)(z⋄ − z)‖ ≤ ω1dist [z, Z]
1+ρ.

Conditions 5.5.4 and 5.5.2 together with the blanket assumption for Chapter 5
are sufficient for a local convergence rate of (1+ ρ) of the constrained Levenberg-
Marquardt method for

Hψ(z) = 0, s.t. z ∈ Ω,
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b

arctan(m̃)
aO A

L1

B

C

Figure 5.3: Illustration of the line L1.

(see [27]).

Theorem 5.5.3 Let the NCP function ψ be of Type I and satisfy Property 5.5.2.
If z∗ is not IDC then Condition 5.5.4 and hence, Condition 5.5.1 is not satisfied.

Proof: As z∗ is not IDC, without loss of generality, we can assume that 1 ∈ J

and that
∀ζ > 0 ∃ẑ ∈ B(z∗, ζ) ∩ Z : ẑ1 ∈ B(0, ζ) \ {0}. (5.83)

Hence, there exists a sequence of positive reals {ζ̄k} and {ζk} converging to zero,
such that there exists ẑk ∈ B(z∗, ζ̄k) ∩ Z with ẑk1 = ζk, for all k ∈ N.

Let the function m : [
√
2,∞) →

(

0, 1
2

]

be defined by

m(c) :=
1

2
√
c2 − 1

. (5.84)

It is clear that m is strictly monotonically decreasing and it holds that

lim
c→∞

m(c) = 0. (5.85)

Now let us assume that Condition 5.5.4 holds. Therefore, it is clear that
ω1 ≥ 1. Let ω̄1 ≥ 1 be so that

m̄ := m(ω̄1) = t̄ ≤ 1

2
, (5.86)

where t̄ comes from Property 5.5.2. Moreover, let

ω := max{ω1, ω̄1}, and m̃ := m (ω) . (5.87)
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From (5.87), it is clear that Condition 5.5.4 holds if ω1 is replaced by ω. As m
is monotonically decreasing, from (5.86) we have that

m̃ ≤ m̄ ≤ 1

2
(5.88)

and
ω ≥

√
2. (5.89)

We can assume that ψ is differentiable at the point (1, m̃). Otherwise, from
Lemma 5.5.6, there exists a point (1, m̃1) in the line segment {(1, t)|t ∈

[

m̃
2
, m̃]
}

at which ψ is differentiable. With this, we take m̃1 and the corresponding ω̄ > ω

such that m(ω̄) = m̄1 and redefine appropriately.
Since ψ is differentiable at (1, m̃), from Theorem 5.2.2, it is differentiable at

(t, tm̃) for all t > 0.
Let us consider the line L1 ⊂ R

2 (illustrated in Figure 5.3) with L1 :=
{(a, b)⊤ ∈ R

2|b = m̃a} and consider the sequence {zk} ⊂ R
2n given by

zki =







ẑki if i 6= 1 or i 6= n+ 1;
ζk (= ẑk1 ) if i = 1;
m̃ζk if i = n+ 1.

For all k ∈ N sufficiently large, zk ∈ B(z∗, δ1)∩Ω\Z with δ1 from Condition 5.5.4.
Hence, zk can be used as z in Condition 5.5.4 for k ∈ N sufficiently large.

Claim A:
dist [zk, Z] = m̃ζk for all k ∈ N. (5.90)

To show this, consider an arbitrary but fixed k ∈ N and let z⊥ ∈ Z be such that
dist [zk, Z] = ‖zk − z⊥‖. Then, z⊥ ∈ Z together with (5.88) gives that

dist [zk, Z] = ‖zk − z⊥‖
≥ ‖(zk1 , zkn+1)− (z⊥1 , z

⊥
n+1)‖

≥ min{ζk, m̃ζk}
= m̃ζk.

This together with ẑk ∈ Z yields

dist [zk, Z] ≤
∥

∥zk − ẑk
∥

∥ = m̃ζk,

which proves Claim A.
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Now, as the NCP function ψ is of Type-I, it is positively homogeneous of
degree one. Using Property 5.5.2 and Theorem 5.2.2, we note that

0 < |∇ψ(1, m̃)1| = |∇ψ(t, tm̃)1| = |∇ψ(zk1 , zkn+1)1| (5.91)

for all t > 0 and all k ∈ N. For any k ∈ N, let us consider Figure 5.3 and let
B := (zk1 , z

k
n+1) and let C := (zk1 , 0). From Claim A, we obtain that

dist [zk, Z] = |BC|. (5.92)

Claim B: For any k ∈ N and z⋄ ∈ Z such that

‖zk − z⋄‖ ≤ ωdist [zk, Z],

we have that
z⋄n+1 = 0 (5.93)

and

z⋄1 ≥
1− 1√

2

2
· dist [z

k, Z]

m̃
> 0. (5.94)

To show this, consider an arbitrary but fixed k ∈ N and take an arbitrary but
fixed z⋄ ∈ Z such that ‖zk− z⋄‖ ≤ ωdist [zk, Z]. Now, (5.93) follows, as from the
definitions of zk and z⋄, we see that

z⋄1 ≥ zk1 −ωdist [zk, Z] = ζk−ωm̃ζk = ζk

(

1− ω

2
√
ω2 − 1

)

>
1− 1√

2

2
ζk, (5.95)

where the last inequality follows as the function m1 : (
√
2,∞) →

(

1, 1
2

)

defined
by

m1(c) := 1−m(c)c

is monotonically increasing. Using Claim A, (5.95) can be further simplified as

z⋄1 >
1− 1√

2

2
· dist [z

k, Z]

m̃
> 0, (5.96)

and hence (5.94) also holds. This proves Claim B.
Now applying Lemma 5.5.1 and taking into account Equations (5.59), (5.93)

and (5.91) we obtain

|(Hψ(z
k) +G(zk)(z⋄ − zk))1| = |(G(zk)z⋄)1| = |G(zk)11z⋄1 | = |∇ψ(1, m̃)1|z⋄1.

(5.97)
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This together with (5.94) yields,

|(Hψ(z
k) +G(zk)(z⋄ − zk))1| ≥ |∇ψ(1, m̃)1|

1− 1√
2

2
· dist [z

k, Z]

m̃
. (5.98)

For k ∈ N sufficiently large we obtain a contradiction to (5.98) by noting that
Condition 5.5.4 implies

|(Hψ(z
k) +G(zk)(z⋄ − zk))1| = |G(zk)z⋄1 | ≤ ωdist [zk, Z]1+ρ.

△

Remark 5.5.3 Theorem 5.5.3 holds also for Type-II and Type-III ψ functions
if the NCP function ψ1(a, b) satisfies Property 5.5.2.

Remark 5.5.4 Theorem 5.5.3 gives a negative answer for obtaining a superlinear
rate of convergence if a certain class of ψ function is employed. It might be
interesting to investigate if superlinear convergence without any particular rate is
possible or not.

Property 5.5.2 is satisfied by many non piecewise-linear NCP functions like
ψFB, ψLT (for any q ∈ (1,∞)), ψCCK and ψKK . With no hope to obtain a
superlinear rate of convergence using such NCP functions if z∗ is not IDC, we
next turn to piecewise-linear NCP functions like ψmin or ψpoly. For this, we need
an additional error bound condition. Before this is presented, let us introduce
some new notation.

Let K be a nonempty subset of the index set I. For a given z ∈ R
2n, let

zK := (xK, yK) ∈ R
2n denote the vector defined by

zKi :=

{

0 if i ∈ K or i ∈ n+K;
zi otherwise.

Moreover, let ZK ⊆ Z be defined as

ZK := {zK ∈ Z|∃z ∈ Ω : Hψ(z
K) = 0}.

Note that for any K ⊆ J, z∗ = (z∗)K ∈ ZK.
Now we are in a position to state an error bound condition which we will use

to analyze the case when z∗ is not IDC.

Condition 5.5.5 There are cJ, δJ > 0 so that, for any K ⊆ J

cJdist [ẑK, ZK] ≤
∥

∥F (x̂K)− ŷK
∥

∥ for all ẑ ∈ B(z∗, δJ) ∩ Z. (5.99)
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Remark 5.5.5 It is important to note that Condition 5.5.5 is independent of the
choice of the NCP function ψ. This is in contrast to most of the other conditions
in this chapter.

We can easily see that Condition 5.5.5 is equivalent to a number of error bound
conditions, that is exponential in the number of degenerate indices. Moreover,
note that by K ⊆ J in Condition 5.5.5,

∥

∥F (x̂K)− ŷK
∥

∥ =
∥

∥Hψ(ẑ
K)
∥

∥ for all ẑ ∈ B(z∗, δJ) ∩ Z (5.100)

holds. As shown by the next lemma, Condition 5.5.5 does not seem too strong.

Lemma 5.5.9 Condition 5.5.5 holds for LCP(M, q).

Proof: Let us assume that the set J (corresponding to the solution z∗) is
nonempty, since otherwise, there is nothing to prove. Consider an arbitrary but
fixed, nonempty subset K of J. Recall that Z̄ is defined in (5.9). Let, for any
z̄ := (x̄, ȳ) ∈ Z̄, the index sets I1(z̄), I2(z̄), I3(z̄) ⊆ I be defined as

I1(z̄) := {i ∈ I|x̄i > 0}
I2(z̄) := {i ∈ I|ȳi > 0}
I3(z̄) := {i ∈ I|x̄i = ȳi = 0},

and let the set S(z̄) ⊆ R
2n be defined as

S(z̄) := {z := (x, y) ∈ R
2n|xi ≥ 0, yi = 0 ∀i ∈ I1(z̄), xi = 0, yi ≥ 0 ∀i ∈ I2(z̄),

xi = yi = 0 ∀i ∈ I3(z̄)}.

We can easily see that I1(z̄) ∪ I2(z̄) ∪ I3(z̄) = I, S(z̄) is polyhedral, and that

z̄ ∈ S(z̄) and, (5.101)

S(z̄) ⊂ Z̄ (5.102)

hold.
Let δ̂ be defined as

δ̂ := min

{

max
i∈(I\J)

{

x∗i
4
,
y∗i
4

}

, δ

}

.
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For an arbitrary but fixed ẑ ∈ B(z∗, δ̂) ∩ Z consider the following (linearly)
constrained system of linear equations

Mx+ q − y = 0, s.t. (x, y) ∈ S(ẑK). (5.103)

From the definitions of δ̂ and S(ẑK) and byK ⊆ J we can easily see that z∗ ∈ S(ẑK)
and hence z∗ is a solution of (5.103). It is also clear that the solution set of (5.103)
is polyhedral and nonempty.

Claim: The solution set of (5.103) is equal to the set Z ∩ S(ẑK).
To show this, let us take an arbitrary but fixed z̃ := (x̃, ỹ) that solves (5.103).

Hence,
Mx̃+ q − ỹ = 0 z̃ ∈ S(ẑK). (5.104)

From (5.102) and by ẑ ∈ K ∈ Z̄ we obtain that

ψ(x̃Ki , ỹ
K
i ) = 0 for all i ∈ I

Hence, Hψ(z̃) = 0 and, z̃ ∈ Z ∩ S(ẑK). In a similar way one can show that any
element from Z ∩ S(ẑK) is a solution of (5.103). This proves our claim.

Since ẑK ∈ S(ẑK) from (5.101), applying Hoffman’s error bound result [37]
yields that there exists τ > 0 so that

τdist [ẑK, Z ∩ S(ẑK)] ≤ ‖Mx̂K + q − ŷK‖. (5.105)

As Z ∩ S(ẑK) ⊆ ZK,

τdist [ẑK, ZK] ≤ ‖Mx̂K + q − ŷK‖ (5.106)

follows. The constant τ depends on the index sets I1(ẑ), I2(ẑ) and I3(ẑ). How-
ever as I1(ẑ), I2(ẑ), I3(ẑ) ⊆ I, the number of such subsets is finite. Hence, Con-
dition 5.5.5 holds with cJ defined as the minimum of τ ’s for all possible subsets
I1(ẑ), I2(ẑ) and I3(ẑ) for all ẑ ∈ B(z∗, δ̂) ∩ Z and, δJ := δ̂. △

Remark 5.5.6 As the proof of the above lemma shows, a condition stronger than
Condition 5.5.5 holds for LCP(M, q) (when the set ZK is changed to a smaller
set Z ∩ S(ẑK))

Without loss of generality we assume that

C ≥ cJand δ ≤ δJ, (5.107)

where we recall that C, δ are from (5.5) (else just replace C by cJ and δ by δJ

everywhere).
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R

a

b

Sb

Sa

O

P

P ′P⊥2φ

2φ

Figure 5.4: Illustration of the sets Sa, Sb and R.

Theorem 5.5.4 Let Condition 5.5.5 hold and ψ := ψpoly. Then, Condition 5.5.1
is satisfied.

Proof: By Lemma 5.5.4, we have to show that Condition 5.5.3 holds. The
function ψpoly is (always) a positively homogeneous function of degree one , see [56;
60]. The proof that the remaining parts of Condition 5.5.3 are valid will be done
by finding a solution z⋄ satisfying (5.63) such that the left side of the inequality
in (5.64) is always zero.

Recall that J is the set of degenerate indices corresponding to the solution
z∗ = (x∗, y∗). Let δ̂ be defined by

δ̂ := min

{

max
i∈(I\J)

{

x∗i
4
,
y∗i
4

}

,
δ

2

}

.
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It is easy to see that δ̂ > 0 and that for all z ∈ B(z∗, δ̂), dist [z, Z] is realized at
a point in the ball B(z∗, δ).

Without loss of generality, we assume that the cones Sa and Sb from Lemma 5.5.5
are symmetric with respect to the b-axis and the a-axis, respectively. Moreover,
let the angle of each cone be 2φ and let φ ∈

(

0, π
4

)

. Let us define R by

R := S \ (int(Sa) ∪ int(Sb)).

The situation is illustrated in Figure 5.4. From Lemma 5.5.5, we can easily see
that

∂ψpoly(a, b) =

{

{(c1, 0)} if (a, b) ∈ int(Sa);
{(0, c2)} if (a, b) ∈ int(Sb),

where the constants c1, c2 > 0 are from Lemma 5.5.5. For any z̃ := (x̃, ỹ) ∈ Z
and z := (x, y) ∈ Ω, let the index set I(z, z̃) be defined by

I(z, z̃) := {i ∈ J|(xi, yi) ∈ int(Sa), (x̃i, ỹi) /∈ Sa or (xi, yi) ∈ int(Sb), (x̃i, ỹi) /∈ Sb

or (xi, yi) ∈ R, (x̃i, ỹi) 6= (0, 0)}

Let us take an arbitrary but fixed z := (x, y) ∈ B(z∗, δ̂) ∩ Ω \ Z. Moreover,
note that G(z) ∈ ∂Hψ(z) from the blanket assumption for Section 5.5. For this
z let z⊥ := (x⊥, y⊥) be a point in Z so that

‖z − z⊥‖ = dist [z, Z]. (5.108)

If I(z, z⊥) is empty then we use z⋄ := z⊥ and then, with c⋄ = 1, (5.63) holds due
to (5.108). Moreover, (5.64) also holds as the left side of the inequality in (5.64)
is zero. In the remaining part of the proof we assume that I(z, z⊥) is nonempty.

In Figure 5.4, for an arbitrary but fixed i ∈ I(z), let P := (xi, yi), P
⊥ :=

(x⊥i , y
⊥
i ), and P

′ := (xi, 0). A simple geometrical analysis gives

|PO|
|PP⊥|

≤ |PO|
|PP ′|

=
1

sin(∡POP ′)
= csc(∡POP ′) ≤ csc(φ).

Hence,

|PO| = ‖(xi, yi)‖ ≤ csc(φ)|PP⊥| ≤ csc(φ)dist [z, Z]. (5.109)

Although, for simplicity, we assumed that (xi, yi) ∈ R, it is easy to deduce that
(5.109) holds for any i ∈ I(z) and any z ∈ B(z∗, δ̂) ∩ Ω \ Z. Let K := I(z, z⊥).
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Now, using (5.109) we obtain

‖z − (z⊥)K‖ ≤
∑

i∈K
‖(xi, yi)‖+

∑

i∈I\K

∥

∥(xi, yi)−
(

(z⊥)i, (z
⊥)n+i

)∥

∥

≤ |K| csc(φ)dist [z, Z] + dist [z, Z]
≤ (|J| csc(φ) + 1)dist [z, Z],

(5.110)

where the last inequality follows as K ⊆ J.
As K = I(z) and δJ ≥ δ by (5.107), Condition 5.5.5 with ẑ := z⊥ together

with (5.100) give
cJdist [(z⊥)K, ZK] ≤ ‖Hψ((z

⊥)K)‖. (5.111)

Let z̄ := (x̄, ȳ) ∈ ZK be such that

‖z̄ − (z⊥)K‖ = dist [(z⊥)K, ZK],

where we recall that ZK is nonempty (as z∗ ∈ ZK). From the definition of ZK,
x̄i = ȳi = 0 for all i ∈ K follows. Repeated application of the triangle inequality
together with z⊥ ∈ Z, (5.6) and (5.110) gives

cJ‖z̄ − (z⊥)K‖ ≤ ‖Hψ((z
⊥)K)−Hψ(z)‖+ ‖Hψ(z)‖

= ‖Hψ((z
⊥)K)−Hψ(z)‖+ ‖Hψ(z)−Hψ(z

⊥)‖
≤ L‖(z⊥)K − z‖ + Ldist [z, Z]
≤ (|J| csc(φ) + 2)Ldist [z, Z].

(5.112)

Again using the triangle inequality and (5.109) we obtain

‖z − z̄‖ ≤ ‖z − (z⊥)K‖+ ‖(z⊥)K − z̄‖
≤

∑

i∈K
‖(xi, yi)‖+ ‖z − z⊥‖+ ‖(z⊥)K − z̄‖

≤ c⋄1dist [z, Z],

(5.113)

where

c⋄1 := |J| csc(φ) + 1 +
(|J| csc(φ) + 2)L

cJ
. (5.114)

If I(z, z̄) is empty then we use z⋄ := z̄ and then, with c⋄ := c⋄1, (5.63) holds due
to (5.113). Moreover, (5.64) also holds as the left side of the inequality in (5.64)
is zero. In the remaining part of the proof we assume that I(z, z̄) is nonempty.

We will now use Condition 5.5.5 with K := I(z, z⊥) ∪ I(z, z̄) to get z̄1 ∈ Z
such that (5.63) is satisfied. For this, consider the vector z̄K. Now, with (5.109)

123



5.5 New Smoothness Assumption

and (5.113) we obtain that

‖z − z̄K‖ ≤
∑

i∈K
‖(xi, yi)‖+ ‖z − z̄‖

≤ |J| csc(φ)dist [z, Z] + c⋄1dist [z, Z]
= (|J|+ c⋄1) dist [z, Z].

(5.115)

Let

δ̂1 := min

{

δ̂,
δ

|J|+ c⋄1

}

. (5.116)

Now, take any arbitrary but fixed z ∈ B(z∗, δ̂1). If still, both the sets I(z, z⊥)
and I(z, z̄) are nonempty then we proceed further. The fact that z ∈ B(z∗, δ̂1)
together with (5.115) and (5.116) ensures that

‖z − z̄K‖ ≤ δ ≤ δJ. (5.117)

Hence, Condition 5.5.5 with ẑ := z̄ together with (5.100) gives

cJdist [z̄K, ZK] ≤ ‖Hψ(z̄
K)‖. (5.118)

Let z̄1 ∈ ZK be such that

‖z̄1 − z̄K‖ = dist [z̄K, ZK]. (5.119)

Repeated application of the triangle inequality together with (5.118), (5.119),
z⊥ ∈ Z, (5.6) and (5.115) gives

cJ‖z̄1 − z̄K‖ ≤ ‖Hψ(z̄
K)−Hψ(z)‖+ ‖Hψ(z)‖

= ‖Hψ(z̄
K)−Hψ(z)‖+ ‖Hψ(z)−Hψ(z

⊥)‖
≤ L‖z̄K − z‖ + Ldist [z, Z]

≤ (|J|+ c⋄1 + 1)Ldist [z, Z].

Again using the triangle inequality and (5.115), we obtain

‖z − z̄1‖ ≤ ‖z − z̄K‖+ ‖z̄K − z̄1‖ ≤ c⋄2dist [z, Z], (5.120)

where

c⋄2 := |J|+ c⋄1 +
(|J|+ c⋄1 + 1)L

cJ
. (5.121)

If I(z, z̄1) is empty then we use z⋄ := z̄1 and then, with c⋄ := c⋄2, (5.63) holds due
to (5.120). Moreover, (5.64) also holds as the left side of the inequality in (5.64)
is zero.
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On the other hand, if I(z, z̄1) 6= ∅ we repeat the procedure again, i.e., with
K := I(z, z⊥)∪ I(z, z̄)∪ I(z, z̄1) and replace z̄ by z̄1. We note that the procedure
stops since |J| is finite. Hence the statement of the theorem follows. △

Remark 5.5.7 In a similar way one can show that Theorem 5.5.4 also holds for

ψ(a, b) := ψ′(a, b) :=

(

λψpoly(a, b)
(1− λ)a+b+

)

with λ ∈ (0, 1).

Remark 5.5.8 From the proof of the above theorem we observe that this theorem
holds regardless of the behavior of the NCP function ψ in the region R.

Theorems 5.5.1, 5.5.2, 5.5.3 and 5.5.4 are the main results of this section. If
we restrict ourselves to the ψ-functions from Table 5.1, then, Tables 5.3 and 5.4
summarize the satisfiability of Condition 5.5.1 on these ψ-functions.

Table 5.3: Satisfiability of Condition 5.5.1 on the ψ-functions from Table 5.1, if
z∗ is IDC

ψ-functions Conditions Condition 5.5.1

ψmin, ψFB,
ψLT , ψpoly,
ψKK , ψCCK

Blanket Assumptions for Chapter 5
and Section 5.5, S from (5.76), z∗ is
IDC

Satisfied

ψKP Blanket Assumptions for Chapter 5
and Section 5.5, S := R

2
+, z

∗ is IDC
Satisfied

Table 5.4: Satisfiability of Conditions 5.5.4 and 5.5.1 on the ψ-functions from
Table 5.1, if z∗ is not IDC

ψ-functions Conditions Conditions 5.5.4 and 5.5.1

ψFB , ψLT ,
ψKK , ψKP ,
ψCCK

Blanket Assumption for Section 5.5 Not satisfied

ψmin, ψpoly Blanket Assumptions for Chapter 5
and Section 5.5, LCP(M, q)

Satisfied

ψmin, ψpoly Blanket Assumptions for Chapter 5
and Section 5.5, Condition 5.5.5

Satisfied
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5.5.2 Discussion of Condition 5.5.2

We first present a sufficient condition for Condition 5.5.2 to hold.

Condition 5.5.6 The NCP function ψ : R2 → R is positively homogeneous of
degree one. Moreover, there is β > 0 so that

s ∈ L(s̃, α) :=
{

s ∈ S||g(s̃)⊤s| ≤ α2
}

⇒ |ψ(s)| ≤ βα2 (5.122)

for all s̃ ∈ S and all α > 0.

Lemma 5.5.10 Condition 5.5.6 implies Condition 5.5.2.

Proof: Recall that β and δ are given by Lemma 5.5.3. Take an arbitrary but
fixed z ∈ B(z∗, δ) ∩ Ω\Z, α ∈ (0, δ] and let ŵ be an arbitrary but fixed element
from the set

L :=
{

w ∈ Ω|‖w − z‖ ≤ α, ‖Hψ(z) +G(z)(w − z)‖ ≤ α2
}

.

Looking at (5.62) and (5.122), it is easy to see that

ŵ ∈
{

w ∈ Ω|‖w − z‖ ≤ α, |(Hψ(z) +G(z)(w − z))n+i| ≤ α2
}

(5.123)

and by Lemma 5.5.1,
(ŵi, ŵn+i) ∈ L((zi, zn+i), α) (5.124)

hold for all i ∈ I.
Now, applying Lemma 5.5.3 and Condition 5.5.6 we obtain that

‖Hψ(ŵ)‖ ≤ ‖(Hψ(ŵ)1, . . . , Hψ(ŵ)n)
⊤‖+ ‖(Hψ(ŵ)n+1, . . . , Hψ(ŵ)2n)

⊤‖
= ‖(ψ(ŵ1, ŵn+1), . . . , ψ(ŵn, ŵ2n))

⊤‖+ ‖(Hψ(ŵ)n+1, . . . , Hψ(ŵ)2n)
⊤‖

≤
√
nβα2 +

√
nβα2

= 2
√
nβα2,

holds. Hence, if α ∈ (0, δ], we see that Condition 5.5.2 hold with ω2 := 2
√
nβ

and δ2 := δ. Moreover, if α = 0, then Condition 5.5.2 holds trivially. Hence the
statement of the lemma follows. △
We discuss how to choose the constraint set S so that Condition 5.5.6 can be
satisfied. Before this, we present some results to be used later.

Lemma 5.5.11 Let f : Rn → R be a positively homogeneous function of degree
one. Then, for any α > 0 and t > 0 the level set Lf (α) := {x ∈ R

n|f(x) ≤ α}
satisfies

Lf (tα) = tLf (α). (5.125)
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Proof: By definition,

x ∈ Lf (tα) ⇐⇒ f(x) ≤ tα

⇐⇒ f(x)

t
≤ α

⇐⇒ f
(x

t

)

≤ α

⇐⇒ x ∈ tLf (α).

△

The following lemma also follows by definition of positively homogeneous func-
tions.

Lemma 5.5.12 Let f : Rn → R be a positively homogeneous function of degree
k. Then |f | is also positively homogeneous of degree k.

Let us define T : R+ ⇉ R
2 as the following set-valued map

T(κ) :=
(

R
2
+ − (κ, κ)

)

\
(

R
2
+ + (κ, κ)

)

.

Figure 5.5 illustrates the set T(κ).

Lemma 5.5.13 Let ψ be a positively homogeneous NCP function of degree one.
Then, there exists κ > 0 so that

T(κ) ⊆ L|ψ|(1).

Proof: Since ψ is locally Lipschitz by Assumption 5.2.2, we obtain that |ψ| is
also locally Lipschitz. Let L̃ > 0 be so that

||ψ(s̃)| − |ψ(r̃)|| ≤ L̃‖r̃ − s̃‖,

for all r̃, s̃ ∈ B((0, 0), 1). For any s, r ∈ R
2, there exists k̃ > 0 sufficiently large

so that
(

s
k̃
, r
k̃

)

∈ B((0, 0)⊤, 1). Hence using positive homogeneity of degree one
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a

T(κ)

b

O

(κ, κ)

Figure 5.5: Illustration of the set T(κ), for some κ > 0. The shaded non-convex
region is the set T(κ).

of ψ, we obtain

||ψ(s)| − |ψ(r)|| = k̃

∣

∣

∣

∣

∣

∣

∣

∣

ψ

(

s

k̃

)∣

∣

∣

∣

−
∣

∣

∣

∣

ψ

(

r

k̃

)∣

∣

∣

∣

∣

∣

∣

∣

≤ L̃k̃

∥

∥

∥

∥

s

k̃
− r

k̃

∥

∥

∥

∥

= L̃‖s− r‖.

This shows that |ψ| is globally Lipschitz continuous.
Let κ := 1√

2L̃
. For an arbitrary but fixed r ∈ T(κ), let r⊥ be a point such

that

‖r − r⊥‖ := dist [r, {(a, b) ∈ R
2|a, b ≥ 0, ab = 0}].

By the definition of T(κ), we have that

‖r − r⊥‖ ≤
√
2κ.
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Using global Lipschitz continuity of |ψ| we further obtain that

|ψ(r)| = ||ψ(r)| − |ψ(r⊥)|| ≤ L‖r − r⊥‖ ≤ L
√
2κ ≤ 1.

Hence, r ∈ L|ψ|(1) and the result of the lemma follows. △

Corollary 5.5.1 Let ψ be a positively homogeneous NCP function of degree one.
Then, for any t > 0

T(tκ) ⊆ L|ψ|(t), (5.126)

where κ is from Lemma 5.5.13.

Proof: The statement of the lemma easily follows using Lemma 5.5.11 and by
observing that T(tκ) = tT(κ) for t > 0. △

Remark 5.5.9 Homogeneity of degree one is crucial both for Lemma 5.5.13 and
for Corollary 5.5.1 to hold. Basically (5.126) holds since for positively homoge-
neous functions of degree one level curves satisfy (5.125).

Assumption 5.5.1 Let ψ : R2 → R be an NCP function. There is ̺ > 0 so
that, for all

r ∈ {(a, b)⊤ ∈ R
2|a+ b = 1, (a, b)⊤ ∈ S ∩Dψ}, (5.127)

it holds that

(i) ‖∇ψ(r)‖ ≥ ̺ and

(ii) ∂ψ(r)
∂a

· ∂ψ(r)
∂b

≥ 0.

All NCP functions of Types I and II that we have found in the literature
(for example that are discussed in [22; 64]) satisfy Assumption 5.5.1. Part (ii) of
Assumption 5.5.1 has been useful for showing that every stationary point of the
merit function (used for globalization of algorithms) is a solution of NCP(F ) (see
[46], for example). Lemma 5.5.15 gives a sufficient condition for Assumption 5.5.1
to hold.

Lemma 5.5.14 Let the NCP function ψ be positively homogeneous of degree one
and satisfy Assumption 5.5.1. Then for any r ∈ int(S) and any g(r)

(i) ‖g(r)‖ ≥ ̺, and

(ii) g(r)1 · g(r)2 ≥ 0.
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Moreover, for any r ∈ bd(S), (i) and (ii) hold for some g.

Proof: The proof easily follows from the definition of ∂ψ(â, b̂). △

Lemma 5.5.15 Let the NCP function ψ be positively homogeneous of degree one
and be either convex or concave. Then, Assumption 5.5.1 holds.

Proof: Suppose that the NCP function ψ is positively homogeneous of degree
one and convex. The case when ψ is concave is handled in the same manner
by taking −ψ instead of ψ (note that if ψ is an NCP function then so is −ψ).
Assume on the contrary that part (i) of Assumption 5.5.1 is not satisfied. Hence,
for a sequence {ǫk} converging to zero, we can find a sequence {rk} ⊂ {(a, b)⊤ ∈
R

2|a+ b = 1, (a, b)⊤ ∈ S ∩Dψ} so that

‖∇ψ(rk)‖ ≤ ǫk.

Corresponding to {rk}, let us consider the sequence {r̃k} converging to (0, 0)⊤

and defined by

r̃k := ǫk
rk

‖rk‖
. (5.128)

This together with Lemma 5.2.2 gives

‖∇ψ (r̃k)‖ = ‖∇ψ(rk)‖ ≤ ǫk. (5.129)

From this, by the definition of Clarke’s subdifferential we obtain that

(0, 0)⊤ ∈ ∂ψ(0, 0),

which further shows that (0, 0)⊤ is a minimizer of the function ψ. Convexity of
ψ further gives that

0 6= ψ(1, 1) ≤ 1

2
ψ(2, 0) +

1

2
ψ(0, 2) = 0.

Hence ψ(1, 1) < 0 = ψ(0, 0) contradicting that (0, 0)⊤ is a minimizer of ψ. Hence,
part (i) of Assumption 5.5.1 holds.

To prove part (ii) of Assumption 5.5.1 let us assume the contrary, i.e., there
exists a point r ∈ {(a, b)⊤ ∈ R

2|a+ b = 1, (a, b)⊤ ∈ S ∩Dψ} so that

∂ψ(r)

∂a
· ∂ψ(r)

∂b
< 0. (5.130)
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Without loss of generality, let us assume that ∂ψ(r)
∂b

< 0, ∂ψ(r)
∂a

> 0. For such an
r, it is easy to see that there exists s ∈ int(R2

+) such that ∇ψ(r)⊤s > 0. Now
consider the one dimensional convex function ψs defined as

ψs(t) := ψ(r + ts).

From the chain rule, ψ′
s(0) = ∇ψ(r)⊤s > 0. Hence, ψs is a strictly increasing

function and at some t̂ > 0, ψr(t̂) > 0 and r+t̂s ∈ int(R2
+). This is a contradiction

as convexity of ψ easily gives that ψ(a, b) < 0 for all (a, b) ∈ int(R2
+). △

Remark 5.5.10 It can be seen that many of the functions in Table 5.1 (for
example, ψmin, ψFB) are either convex or concave.

Next, we go on to show how to choose Ω to satisfy Condition 5.5.6 and,
thus, Condition 5.5.2 for a large class of locally Lipschitz continuous positively
homogeneous NCP function ψ of degree one (Type-I).

Theorem 5.5.5 Let S := R
2
+ and let the NCP function ψ be of Type-I and satisfy

Assumption 5.5.1. Then, Condition 5.5.2 holds.

Proof: Using Lemma 5.5.10, it is sufficient to show that Condition 5.5.6 holds.
Take any arbitrary but fixed α > 0, s̃ ∈ S, s := (s1, s2) ∈ L(s̃, α) and g(s̃)⊤ ∈
∂ψ(s̃). Let g(s̃)⊤ =: (c1, c2). Taking into account Assumption 5.5.1 and that
s̃ ∈ R

2
+ we have the following three cases.

Case 1: |c1| > 0, c2 = 0. Here, |g(s̃)⊤s| = |c1|s1. Since s ∈ L(s̃, α),

|s1| ≤ α2

|c1|
≤ α2

̺
with (s1, s2) ∈ R

2
+

⇒ (s1, s2) ∈ T

(

α2

̺

)

⇒ (s1, s2) ∈ L|ψ|

(

α2

κ̺

)

(from Corollary 5.5.1)

⇒ |ψ(s)| ≤ α2

κ̺
.

Hence Condition 5.5.6 holds with β := 1
κ̺ .

Case 2: |c1| > 0, |c2| > 0. Then, |g(s̃)⊤| = |c1|s1+ |c2|s2. Without loss of gener-
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ality we assume that s1 ≤ s2. This together with (s1, s2) ∈ L(s̃, α) gives

s1 ≤
|c1|s1

|c1|+ |c2|
+

|c2|s2
|c1|+ |c2|

≤ α2

|c1|+ |c2|
.

Hence,

(s1, s2) ∈ T

(

α2

̺

)

⇒ (s1, s2) ∈ L|ψ|

(

α2

κ̺

)

(from Corollary 5.5.1).

Hence Condition 5.5.6 holds with β := 1
κ̺ .

Case 3: |c2| > 0, c1 = 0. Then, |g(s̃)⊤s| = |c2|s2 and the rest analysis is similar
to that in Case 1.

Thus, in all cases Condition 5.5.6 holds with β := 1
κ̺ . Hence the result of the

theorem follows. △

Theorem 5.5.6 Let S := {(a, b) ∈ R
2|a+ b ≥ 0} and let the NCP function ψ be

of Type-I and satisfy Assumption 5.5.1. Moreover, assume that the function g is
such that g1(r)g2(r) = 0 for all r ∈ S. Then, Condition 5.5.2 holds.

Proof: Using Lemma 5.5.10, it is sufficient to show that Condition 5.5.6 holds.
Take any arbitrary but fixed α > 0, s̃ ∈ S, s := (s1, s2) ∈ L(s̃, α) and g(s̃)⊤ ∈
∂ψ(s̃). Let us consider the case g(s̃)⊤ =: (c1, 0). Then, |g(s̃)⊤s| = |c1s1| and then
taking into account Assumption 5.5.1 we obtain

|s1| ≤ α2

|c1|
≤ α2

̺
with s1 + s2 ≥ 0

⇒ (s1, s2) ∈ T

(

α2

̺

)

⇒ (s1, s2) ∈ L|ψ|

(

α2

κ̺

)

(from Corollary 5.5.1)

⇒ |ψ(s)| ≤ α2

κ̺
.

Hence Condition 5.5.6 holds with β := 1
κ̺ .

The proof of the other case is similar and is not presented here. △
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Theorem 5.5.6 is useful for ψmin(a, b) NCP function and other similar NCP
functions where it is always possible to find a subdifferential element having one
of its components as zero (by taking an element from the B-subdifferential).

Theorem 5.5.7 Let the NCP function ψ be of Type-I and satisfy Assumption 5.5.1.
Moreover, assume that for some k ∈ N and some (c11, c21), (c12, c22), . . . , (c1k, c2k) ∈
R

2, the function g(r) can always be chosen from the set S := {(c1j, c2j)|j =
1, 2, . . . , k}. Then there exist constants c̃1, c̃2 ≥ 0 so that with

S := {(a, b) ∈ R
2|c̃1a + b ≥ 0, c̃2a+ b ≥ 0}

Condition 5.5.2 holds.

Proof: Let S1 := {(c1j , c2j) : |c1j |, |c2j| > 0, j = 1, 2, . . . , k} and S̄1 := S \S1.
Let

n := min

{

c1j
c2j

∈ S1, j = 1, 2, . . . , k

}

and M := max

{

c1j
c2j

∈ S1, j = 1, 2, . . . , k

}

.

From the definition of S1 we have that n,M ∈ (0,∞).
We claim that the statement of the theorem holds with c̃1 :=

n
2
and c̃2 := 2M .

Using Lemma 5.5.10, it is sufficient to show that Condition 5.5.6 holds. Take any
arbitrary but fixed α > 0, s̃ ∈ S, s := (s1, s2) ∈ L(s̃, α) and g(s̃)⊤ ∈ ∂ψ(s̃). We
have the following two cases.

Case 1: g(s̃) ∈ S1. Let c̃ denote the minimum among {c2j |j = 1, 2, . . . , k}. For
some β > 0 the lines s1+2Mt2 = 0 and s1+Mt2 = β intersect at (−β

M
, 2β).

Similarly the lines s1 +
n
2
s2 = 0 and s1 + mt2 = β intersect at (2β

n
,−β).

Moreover, let T1(β) be the triangle formed by the vertices (−β
M
, 2β), (0, 0)

and (2β
n
,−β). It is easy to see that

L(s̃, α) ⊆ T1

(

α2

c̃

)

. (5.131)

This implies that s = (s1, s2) ∈ L|ψ|

(

2α2

c̃

)

. Hence

|ψ(s)| ≤ 2α2

c̃
,

and the statement of the theorem follows.

Case 2: gψ(r) ∈ S̄1. In this case the proof follows along the lines of Theo-
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rem 5.5.6. In this case we obtain

|ψ(s)| ≤ α2

κ̺
.

Hence in all cases Condition 5.5.6 holds with β := max{2c̃ ,
1
κ̺}. Hence the result

follows. △

Theorem 5.5.7 is useful for

ψ(a, b) := ‖(a, b)‖∞ − (a+ b) = max(|a|, |b|)− (a+ b), or

ψ(a, b) :=

{

|a|+ |b|/2− a− b if a ≥ b;
|a|/2 + |b| − a− b otherwise

NCP functions and other similar NCP functions like ψpoly(a, b). In these kind
of NCP functions it is always possible to find a subdifferential element from the
finite set gψ(r) ∈ {(c1j, c2j)|j = 1, 2, . . . , k, k ∈ N}.

Remark 5.5.11 Theorems 5.5.5, 5.5.6 and 5.5.7 (with their choice of Ω’s) can
also be used for ψ-functions of Type-III.

An interesting topic currently under investigation is whether it is possible to
apply the results of last three theorems, for NCP functions of Type-II. For such
functions, although Assumption 5.5.1 holds, it is not clear how to bound their
level sets and hence Condition 5.5.2 might not hold.

Theorems 5.5.5, 5.5.6, and 5.5.7 are the main results of this section. If we
restrict ourselves to the ψ-functions from Table 5.1, then, Table 5.5 summarizes
the satisfiability of Condition 5.5.2 on these ψ-functions.

Table 5.5: Satisfiability of Condition 5.5.2 on the ψ-functions from Table 5.1
ψ-functions Conditions Condition 5.5.2

ψmin, ψFB,
ψLT , ψpoly,
ψKK , ψKP

Blanket Assumptions for Chapter
5 and Section 5.5, S from Theo-
rems 5.5.5, 5.5.6 or 5.5.7

Satisfied

ψCCK Blanket Assumptions for Chapter 5
and Section 5.5

Not known
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Chapter 6

Conclusions and Outlook

The final chapter presents a summary of the mathematical contributions made in
this thesis. Moreover, some possible directions of future research are presented.

6.1 Conclusions

The thesis is primarily devoted to solving nonlinear equations using Levenberg-
Marquardt algorithms. In Chapter 2 we improved the level of inexactness of
Levenberg-Marquardt methods without destroying their Q-quadratic rate of con-
vergence. The bound on the level of inexactness is shown to be a tight one. We
called a Levenberg-Marqurdt algorithm robust, if its regularization parameter is
chosen as large as possible without destroying a desired convergence rate. Nu-
merical experiments showed the efficiency of the robust algorithm over existing
inexact Levenberg-Marquardt methods. The theory is also used to show that a
projected robust Levenberg-Marquardt method also converges Q-quadratically.

In Chapters 3-4, we reformulated multi-objective optimization problems as a
constrained system of nonlinear equations. In Chapter 3, we developed a descent
based Q-quadratically convergent algorithm for unconstrained multi-objective op-
timization. Conditions for the error bound property to hold were derived. Global
convergence to weakly Pareto-optimal points was shown under appropriate con-
vexity assumptions.

Chapter 4 presents another Levenberg-Marquardt type algorithm for uncon-
strained multi-objective optimization. In this algorithm, each iteration provides
a decrease in all the objective function values. This is achieved locally by us-
ing a suitably modified form of a constrained Levenberg-Marquardt method [43]
where, in contrast to [43], the constraint set changes from iteration to iteration.
As changing constraint sets have never been earlier used in Levenberg-Marquardt
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methods, we presented a detailed local convergence analysis. This analysis is
based on a new error bound property which was shown to hold for multi-objective
optimization problems under suitable conditions. Global convergence to weakly
Pareto-optimal points was shown under appropriate convexity assumptions.

Chapter 5 deals with equation based reformulations of nonlinear complemen-
tarity problems. These reformulations are done by means of so called NCP
functions. It was shown in detail that an existing smoothness conditions does
not holds for these equation based reformulations near degenerate solutions. Re-
cently ([27]), this smoothness condition has been weakened so that the constrained
Levenberg-Marquardt method can have local Q-quadratic convergence if the NCP
function is defined as the min function. In this chapter we provided a general
framework for analyzing the weaker smoothness conditions for positively homo-
geneous NCP functions. Using this, we also analyzed various cases where the
weaker smoothness conditions are satisfied and where they do not hold.

6.2 Outlook

This thesis has opened various possible directions for future research. Some
important ones are discussed now.

It may be useful to develop a robust constrained Levenberg-Marquardt al-
gorithm, with a robust choice of the regularization parameter. This should be
done without destroying the Q-quadratic rate of convergence. Moreover, inex-
act versions of the (robust) constrained Levenberg-Marquardt can be developed,
so that both the maximal level of inexactness and the Q-quadratic convergence
are retained. In Section 2.4, from the numerical experiments we observed that
using the regularization parameter α(s) to be smaller than O(‖H(s)‖2) did not
worsen the results, if a CG method is used. It would be interesting to figure out
a theoretical reason for this behavior. Moreover, an inexact version of the robust
projected Levenberg-Marquardt method can be investigated for projections onto
general convex sets

The results from Chapter 2 could be applied to design various new algorithms.
We envisage the following three.

• Algorithm 4.1 could be modified using a hybrid technique. In a local
phase of such a technique, projected Levenberg-Marquardt subproblems
(see Chapter 2, [43] and [29]) could be used. This would lead to less expen-
sive subproblems. For globalization, simultaneous descent directions could
be employed.

• For multi-objective problems with a general domination structure Algo-
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rithm 4.1 could be easily modified to take care of this domination structure.
This is possible by including additional constraints for the λ variable (as
the multipliers belong to the dual of the domination cone).

• It would be interesting to use Algorithm 4.1 to find a good representation
of the set of efficient points. For this techniques from [11; 61] are useful.
For example, the equality constraints from [11] could be appended to the
H(x, λ) vector.

As the subproblems of Chapter 4 are quadratically constrained, it might be
useful to have simpler subproblems. This could be tackled by incorporating
a quadratic penalty term in the objective function and by using a projected
Levenberg-Marquardt.

As the new weaker smoothness conditions seem too strong for some NCP
functions, it would be interesting to weaken these conditions further. In general
weakening of smoothness conditions is a challenging task.
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Gültig-keit vom 16. April 2003 und vom 01.10.2008 an.

Datum: 25.02.2010

Unterschrift


	1 Introduction
	1.1 Overview
	1.2 Problems
	1.3 Algorithmic Principles and Preliminaries

	2 Robust Levenberg-Marquardt Algorithms for Nonlinear Equations
	2.1 Introduction
	2.2 Local Convergence Analysis
	2.3 A Projected Robust Levenberg-Marquardt Algorithm
	2.4 Computational Results
	2.5 Discussion

	3 A Levenberg-Marquardt Algorithm for Multi-objective Optimization
	3.1 Introduction
	3.2 Existence of a Local Error bound
	3.3 Convergence of a Constrained Levenberg-Marquardt Method
	3.4 Results under Convexity Assumptions
	3.5 Computational Results
	3.6 Discussion

	4 A Simultaneous Descent Levenberg-Marquardt Algorithm for Multi-objective Optimization
	4.1 Introduction
	4.2 The Levenberg-Marquardt Algorithm with Simultaneous Descent
	4.3 Convergence of Algorithm 4.1
	4.4 A Duality Based Method for Solving (P(z))
	4.5 Results under Convexity/ Non-singularity Assumptions
	4.6 Discussion

	5 Levenberg-Marquardt Algorithms for Nonlinear Complementarity Problems
	5.1 Introduction
	5.2 Preliminaries
	5.3 Existing Smoothness Assumption
	5.4 Fundamental Identities for Nonsmooth Homogeneous Functions
	5.5 New Smoothness Assumption
	5.5.1 Discussion of Condition 5.5.1
	5.5.2 Discussion of Condition 5.5.2


	6 Conclusions and Outlook
	6.1 Conclusions
	6.2 Outlook

	References

