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1. Motivation

When atoms come together to form a single crystal the result is quite a
remarkable object. People visiting mineralogical exhibitions enjoy its beauty
which is a mere consequence of the regular arrangement of the atoms inside

of it. Nonetheless, most of the visitors might find it astonishing to learn that it is the
absence of regularity—their low symmetry—which makes them interesting from a more
scientific point of view. Although it may sound surprising at first, it is precisely this
lack of symmetry which results in an aching toe when trying to kick a stone on the
beach—a fact that everybody believes immediately. This particular manifestation of a
so called “broken symmetry”—in the case of the crystal this is the broken translational
invariance—is one of the rare examples of this phenomenon which are known already
since ages. The other one is probably magnetism which was already familiar to the
ancient Greeks and Chinese. It was however only the advent of modern experimental
and theoretical methods that allowed scientists to figure out that a piece of a solid may
intrinsically host a myriad of other and even more exotic symmetry-broken phases. P. W.
Anderson nicely paraphrased this in 1972 by remarking that “More is different!” [1].
Nowadays it is certainly not overstated to say that each particular degree of freedom an
electron has in a simple atom will eventually find itself forming its own specific ordered
phase inside a solid. The spin may order to form different magnetic ground states, the
occupation of particular wavefunctions may condense into orbital order, ferroelectricity
can arise as a consequence of ordered dipole moments, superconductivity may be
induced by the pairing of electrons into pairs and even the charges of the electrons can
be ordered under certain circumstances.

Even more importantly it was found in recent years that different ordering phenom-
ena quite often reside in close proximity to each other and that only small changes
in an external parameter like the temperature, pressure or magnetic field may suffice
to swap a system from one phase to a possibly totally different one. All this can be
traced back to the often strong coupling between the constituents of the solid, with the
electron-electron interaction being of special relevance. It is therefore not surprising
that compounds containing elements with 3d- or 4 f -electrons are ubiquitous in this
particular field of solid-state physics often referred to as “strongly-correlated electron
physics”. Typical examples are superconductivity in cuprate-, heavy-fermion- or re-



1. Motivation

cently even iron-based superconductors or magnetic-, charge- and orbital-order in
systems containing manganese.

All the above mentioned types of order have consequences that are observable in
the laboratory and allow to probe the different phases in great detail. There appear
more or less sharp phase transitions that are traditionally probed by second derivatives
of the free energy like the magnetization or the specific heat. Moreover and also
more interesting in the context of the present work is the fact that a broken symmetry
always results in particular excitations that are observable in a spectroscopic experiment.
Typical examples for this are acoustic phonons for the case of the broken translational
invariance, magnons if the rotational symmetry in spin-space is broken or phasons
when the charges become periodically modulated. These acoustic branches of the
quasiparticle spectrum follow from the Goldstone theorem which basically states that
every broken global symmetry results in the appearance of a massless bosonic mode.
These excitations can in principle be probed by spectroscopic methods—magnons and
phonons are routinely investigated by neutron scattering for example. Nevertheless,
inelastic electron scattering which forms the experimental method employed throughout
this work does not provide access to those kinds of modes. While it is not sensitive
to magnetic degrees of freedom rendering magnons invisible, it can potentially detect
phonons or low lying charge excitations but still they are normally not detected due to
an insufficient resolution in energy.

If, however, the gauge symmetry of the electromagnetic field becomes broken as
in the case of a plasma [2, 3] another optical—or massive, in the language of particle
physics—mode appears that is called plasmon in the solid-state literature. This is the
analog of the up to now still speculative Higgs mechanism in particle physics and one
may therefore extend Anderson’s above given statement to “More is ahead!”.

Disentangling the properties of plasmons is one of the traditional tasks for inelastic
electron scattering and the present thesis will basically do exactly this for two compound
classes that can be considered as paradigms for all the things mentioned above.

The outline of this work is as follows: In Ch. 2 the experimental method and some vo-
cabulary required for the later discussion are introduced. Ch. 3 starts with some general
remarks on cuprates—the nowadays already traditional high-temperature superconduc-
tors. The focus is on the electronic properties, in particular in the underdoped region
of the phase diagram where antiferromagnetism, spin-/charge-order and superconduc-
tivity can be found. The first experimental part deals with the doping dependence of
the charge-transfer excitations between copper and oxygen and their momentum de-
pendence, exemplified on the model system Ca2−xNaxCuO2Cl2. In addition for doping
concentrations above the metal-insulator transition the behavior of the charge-carrier
plasmon is investigated which turns out to be highly anomalous. In Ch. 4 the focus will
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be on systems which were known to show charge- and superconducting order already
well before the discovery of the cuprates, namely the transition-metal dichalcogenides.
Again, the main point of interest will be the behavior of the charge-carrier plasmon that
exhibits a behavior that differs substantially from the generic expectation for ordinary
metals. Finally, we discuss a possible relation between the dichalcogenides and the
recently discovered iron-based superconductors based on possible similarities in their
optical properties.

A final remark on units. Whenever formulas appear in the text it may happen that
natural constants and proportionality factors are treated with little care. This is done
for convenience but also in order to emphasize the main physical statements. Only
in the rare cases when explicit numbers are needed every parameter is (hopefully)
plugged in properly.

§
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2. Electron Energy-Loss Spectroscopy

2.1. Introduction

Our understanding of the microscopic mechanisms governing the world around
us crucially depends on the fact of being able to perform accurate measure-
ments for systems of different complexity, ranging from atoms or molecules

to condensed matter like liquids and solids. To this end scattering of different probe
particles has played an indispensable role ever since the beginning of the 20th cen-
tury when Rutherford first employed α-particles to study the nature of the atom
[4]. The decades since then have seen an enormous development of experimental and
theoretical facilities and, as a consequence, there is a wealth of information available
on the electronic structure of matter. Nowadays scattering experiments are routinely
employed to study quantum objects over many orders of magnitude in energy, ranging
from lattice and spin dynamics in solids on the meV to hadron physics on the GeV or
even TeV scale.

For a solid electrons form an important ingredient and they carry a charge as a
particularly important degree of freedom. With the things mentioned above it cannot
be considered as a surprise that there are also well established scattering methods for
this channel available: (resonant) inelastic x-ray and electron scattering. The latter one,
also termed electron energy-loss spectroscopy (EELS) has been and probably still is the
de facto standard method to measure the dynamics of collective charge modes in a solid
since the pioneering efforts of Ruthemann and Lang in the 1940s [5–8]. In addition,
state of the art transmission electron microscopes are equipped with suitable detectors
to measure chemical compositions of materials by investigating core edges with very
high spatial resolution [9].

The spectrometer employed for the present work was, however, built with different
purposes in mind and is optimized not for high spatial but momentum resolutions.
With this at hand it becomes possible to measure k-space dynamics of different types
of excitations in a wide range of samples from simple metals to complex oxides and
even molecular solids.



2. Electron Energy-Loss Spectroscopy

In the following we will first of all describe the general principle of an EELS exper-
iment in transmission∗, supplemented by some theoretical remarks, basically about
scattering in general and the role and properties of the dielectric function for the
interpretation of the EELS data. Finally some facts about experimental subtleties like
sample preparation and the spectrometer performance will be listed.

2.2. Working Principle

The basic principle of an EELS experiment is shown in Fig. 2.1. A beam of rather fast
(see Appendix A) electrons is focused on a thin (≈ 100 nm) film of the sample under
investigation. While passing through the sample a fraction of the beam electrons is
scattered an angle θ away from the initial direction defined by k0. This leads to a
momentum- (q) and energy-transfer (ω) and will as a consequence leave the sample in
an excited state, which is characterized by the energy and momentum it acquired from
the electrons in the beam.

k0, E0 θ γ

k0 q‖

k1, E1 q
q⊥

Sample

Figure 2.1.: The basic scheme for an EELS experiment in transmission. The electrons with incoming
momentum k0 and energy E0 are focused on the sample and scattered under an angle θ. The momentum
transfer q which takes place during the scattering process results in an energy transfer ω in the sample.

2.3. Theoretical Remarks

The aim of this section is to establish the connection between the microscopic excitations
caused by the electron energy-loss spectroscopy process to the intensity which is
measured at the detector of the EELS spectrometer. This is of great importance in order
to understand what is actually observed in the experimental spectra and it allows in
principle to calculate the EELS response with the help of microscopic theories.

∗It is also possible to perform EELS in reflection to study, e. g., surface dynamics, but we will not
elaborate on this in the remainder of this work.
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2.3.1. Kinematics

The scattering preserves energy and momentum conservation

k0 = k1 + q

ω = E0 − E1 .

According to Fig. 2.1 the momentum transfer q can be decomposed into components
parallel and perpendicular to the incoming momentum k0

q2 = q2
‖ + q2

⊥ .

The energy loss ω that causes the excitations within the solid can be related to the
momentum transfer q via

ω =
q2

2m
∼=
(
k2

0 − k2
1

)
2m

.

Now it is important to realize that the primary energy of the electrons is rather high
(E0 = 172 keV in the present case) which in turn leads to a large value of k0 ∼ 230 Å

−1

(see Eq. A.2). Comparing this to typical extensions of a Brillouin zone inside a solid
which are of the order 1 Å

−1
one arrives at small scattering angles θ and therefore

q⊥ = k1 sin θ ∼= k1θ ∼= k0θ .

In addition, one obtains from the cosine theorem (see Fig. 2.1)

k2
1 = k2

0 + q2 − 2k0q cos γ ∼= k2
0 − 2k0q cos γ .

Therefore the excitation energy reads

ω ∼=
(
k2

0 − k2
1

)
2m

∼= k0

m
· q cos γ =

k0

m
· q‖ .

For a typical energy-loss of ω ∼ 10 eV and experimentally observed scattering angles
of θ ∼ 0.25◦ we obtain the important result

q‖
q⊥

=
mω

k2
0 θ
∼ 10−3

and so the momentum transfer can be considered to be confined entirely to the sample
plane perpendicular to the incoming electron beam. To obtain information beyond this
particular plane one has to rotate the sample with respect to the beam for this will
create a projection parallel to k0 proportional to sin ξ, with ξ being the angle between
the sample normal and k0.

13



2. Electron Energy-Loss Spectroscopy

In addition to the possibility of inelastic scattering processes which lead to a finite
energy loss it is also possible to perform Bragg scattering by setting the energy-
loss to zero. This allows the analysis of the lattice structure and is an important
tool in particular for investigations on single-crystals where the electronic properties
may depend on the direction in the reciprocal lattice. With the above derived two-
dimensionality of the momentum transfer it is clear that one may write

q⊥ ≡ q = q0 eiφ

and as can be seen from Fig. 2.2 by varying either φ or q0 it is possible to adjust q within
the reciprocal lattice in order to find directions fulfilling the Bragg condition which
may then be taken to measure, e. g., the dispersion of a particular excitation along a
well defined axis.

k0
φ

q

Figure 2.2.: A sketch of the momentum transfer in the a-b-plane (note the direction of k0 compared to
Fig. 2.1) for the special case of a square lattice. Whenever the momentum transfer q connects two points
of the reciprocal lattice the Bragg condition is fulfilled and there appears a peak in the elastic scattering

2.3.2. Scattering Theory

The essential quantity which is of interest for all inelastic scattering experiments is the
doubly differential cross section [10–14]

d2σ

dΩdω
.

It describes the probability of detecting a particle in a solid angle element dΩ having
lost an energy dω compared to its initial energy E0 and this is exactly the intensity

14
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which is measured in an EELS experiment shown in Fig. 2.1.The cross section can be
shown to be given by

d2σ

dΩdω
= ∑

n0,n1

|〈n1, k1 |Hint| n0, k0〉|2 δ(En0 + E0 − En1 − E1) , (2.1)

with the initial (final) states of the incoming (outgoing) electrons

|kl〉 ∝ eiklr l = 0, 1

and the corresponding ones for the sample |nl〉. In writing Eq. 2.1 use is made of the
Born approximation which assumes only weak interaction of the electrons with the
sample. This is equivalent to demand that the initial and final states can be written as
simple products

|nl , kl〉 = |nl〉 |kl〉 .

The interaction between the sample and the scattered electrons is driven by the
Coulomb potential which reads

Hint =
e2

q2 .

With this, one is lead to the result

d2σ

dΩdω
= A(q, ω) · S(q, ω)

with
A(q, ω) =

1
q4

and
S(q, ω) =

1
N ∑

n0,n1

pn0

∣∣∣〈n1
∣∣∑

j
eiqrj

∣∣n0
〉∣∣∣2δ(En0 − En1 + ω) .

The term A(q, ω) and S(q, ω) are the Rutherford cross-section and the dynamic
structure factor, respectively. While the former arises due to the particular nature of the
Coulomb potential and is specific for the case of electron scattering† the latter describes
the response of the sample, i. e., the spectrum of possible excitations and is therefore
the quantity of interest in a scattering experiment.

†In particular the appearance of the 1/q4 term leads to a limited applicability of electron energy-loss
spectroscopy in momentum space. In contrast to that inelastic x-ray scattering does not suffer from this
drawback which allows measurements up to rather high values of momentum transfer, without such a
dramatic loss of countrate. This flexibility has already been employed to invert the response function
from the (q, ω)- to the (r, t)-domain thereby allowing the extraction of real-space dynamics of density
fluctuations in real solids see, e. g., Refs. 15, 16.
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It was van Hove who first realized the close relationship between the structure factor
and the density-density correlation function [17] which can be established with the
definition of the density operator

ρ(r) = ∑
j

δ(r− rj) =
1
V ∑

q

ρq eiqr ⇐⇒ ρq = ∑
j

e−iqrj , (2.2)

its Heisenberg representation

ρ(q, t) = eiH0tρ(q)e−iH0t ,

the definition of the δ-function

δ(En0 − En1 + ω) =
1

2π

∫
dt ei(En0−En1+ω)t ,

and the completeness relation for the states ∑i |i〉 〈i| = 1 .
It reads

S(q, ω) =
1
N ∑

n0,n1

pn0

∣∣∣〈n1
∣∣∑

j
eiqrj

∣∣n0
〉∣∣∣2δ(En0 − En1 + ω)

=
1

2πN

∫
dt eiωt ∑

n0

pn0 〈n0 |ρq(t)ρ−q(0)| n0〉

=
1

2πN

∫
dt eiωt 〈ρq(t)ρ−q(0)〉T

=
1

2πN

∫
dt eiωt

∫
d3r d3r′e−iq(r−r′) 〈ρ(r, t)ρ(r′, 0)

〉
T ,

where we introduced the notation 〈O〉T = ∑i piOii = ∑i pi 〈i |O| i〉. Therefore it is
always the spectrum of the density fluctuations which is probed in a scattering experi-
ment.

With the help of the Kubo formalism of linear-response theory [18] ( for the present
case see also [19]) and the fluctuation-dissipation theorem one may establish a relation
between the dynamical structure factor S(q, ω) and a quantity which is an actually
more familiar one, namely the dielectric function ε(q, ω). This is an example of a
very general principle in statistical physics, namely the fluctuation-dissipation theorem
which always connects some sort of correlation function (the density-density correlation
in this case) with a response function ε(q, ω) [20, 21]

S(q, ω) =
q2

4πe2
1

1− e−βω
Im
(
− 1

ε(q, ω)

)
.

For typical electronic excitation energies ω � 1/T and we may neglect the Bose factor
in the previous relation to obtain the final result

d2σ

dΩdω
=

const.
q2 Im

(
− 1

ε(q, ω)

)
, (2.3)
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2.4. The Dielectric Function

which relates the intensity measured in an EELS experiment to the dielectric function
ε(q, ω) the quantity which provides access to the electronic structure of a sample under
investigation.

A brief remark is in order. The relation Eq. 2.3 is a typical one for spectroscopy where
the intensity measured at the detector is always proportional to the imaginary part of a
retarded Green’s G(k, ω) function. Another typical example for this is photoemission
where under certain approximations the current reads (see, e. g., Ref. 22)

j(k, ω) ∝ A(k, ω) = Im G(k, ω).

This can be understood because the spectral function A(k, ω) in the photoemission case
or the loss function in the case of EELS describe the distribution of possible excitations
in the many-body system via the Lehmann-representation [23] in the sense that each
transition which can be observed as a peak (actually this corresponds to a pole of the
Green’s function) in an experiment carries a characteristic weight which is determined
by the corresponding spectral function. The important consequence of this is that
the experimental spectrum always yields only an implicit relation for the electronic
structure ω(k) and as experimentalist one can only hope to make judgments on it by
tracking the spectral function. In reality even this interpretation is often hampered by
the influence of other factors like matrix elements.

2.4. The Dielectric Function

As it was shown in Sect. 2.3.2 (Eq. 2.3) it is the dielectric function ε(q, ω) which provides
the main ingredient for the signal measured in an electron energy-loss spectroscopy-
experiment. It is therefore instructive to introduce some of its properties which are
particularly relevant for the later discussions. A relation which may be employed to
define ε(q, ω) is

E(r, t) =
∫

dr′
∫

dt ε−1(r, r′, t− t′)D(r′, t′) .

On a macroscopic scale the system may be considered to be homogeneous and therefore
the dielectric function depends only on the difference r− r′ which translates the above
relation after a Fourier transform into

E(q, ω) = ε−1(q, ω)D(q, ω) . (2.4)

From classical electrodynamics it is well known that the electric field E and the
displacement D are caused by the total and external charges, respectively

iq ·D(q, ω) = ρext(q, ω)
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2. Electron Energy-Loss Spectroscopy

iq ·E(q, ω) = ρtot(q, ω) ,

where the total charge density is given by

ρtot(q, ω) = ρext(q, ω) + ρind(q, ω) ,

with the a priori unknown reaction of the system, contained in the induced charge
density ρind(q, ω). With the relations given above it is however possible to connect it to
the external sources (that are assumed to be known, by setting appropriate conditions
in the laboratory) with the help of the dielectric function

ρind(q, ω) =

(
1

ε(q, ω)
− 1
)

ρext(q, ω) . (2.5)

This is an important relation because it shows that in the case of vanishing ε(q, ω)

the system hosts an intrinsic instability, i. e., there is a redistribution of the charges
without an external driving force. It also shows that ε(q, ω) or more precisely ε−1(q, ω)

contains the response of the system to an external perturbation.
Another quantity of interest is the susceptibility

χ(q, ω) =
ρind(q, ω)

vext(q, ω)
(2.6)

where vext(q, ω) stands for the external potential that is created by the external charge
density according to the Poisson equation. It is possible to relate the susceptibility to
the dielectric function according to

1
ε(q, ω)

= 1 + vqχ(q, ω) , (2.7)

with vq = 1/q2 the Fourier transform of the Coulomb potential. In the following we
will describe some properties of ε(q, ω) or equivalently χ(q, ω) for a simple model
of interacting electrons, namely the jellium which is at the heart of the so called
random-phase approximation.

2.4.1. The Electron Gas In RPA

It is not the aim of this paragraph to give an extensive treatment of the subject because
there are excellent and comprehensive reviews available (see, e. g., Refs. 24–29). The
purpose is to introduce some ideas that will be of relevance in the subsequent discussion
of the data. The starting point is the Hamiltonian for the jellium-model, i. e., the
toy-model of electrons interacting with a homogeneous positive background. It reads

H = ∑
k

ωkc†
k ck + ∑

k 6=0

2πe2

k2

(
ρ†
k ρk − N

)
= ∑

i

p2
i

2m
+ ∑

k 6=0

2πe2

k2

(
ρ†
k ρk − N

)
(2.8)
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2.4. The Dielectric Function

with the single particle energies ωk, the fermionic operators ck, the density operator ρk

given by Eq. 2.2 and the number operator N. With the help of the equation of motion

ρ̈k = −
[
[ρk, H] , H

]
,

one may verify that

ρ̈k + ω2
pρk = −∑

i

(
k · pi

m
+

k2

2m

)2

e−ikri − ∑
q 6=k

4πe2

mq2 q · k ρk−qρq (2.9)

with the plasma frequency

ωp ≡
√

4πne2

m
, (2.10)

which was first derived for classical plasmas in Ref. 30. The rather cumbersome Eq. 2.9
may be simplified by realizing that the first term on the right-hand side is of the
order (kvF)

2ρk and that the two coupled density oscillations in the second term will
average to zero provided their phases are chosen randomly. This is what led Bohm and
Pines [31] to introduce the term random-phase approximation (RPA) for this particular
description. With this it is clear that the density of the electron gas will oscillate at a
characteristic frequency ωp pretty much like a harmonic oscillator provided that its
wavelength is longer than a characteristic cutoff 1/qc

k2v2
F

ω2
p
� 1⇐⇒ k2 � q2

c .

The quanta of these collective density fluctuations were first coined plasmons by David

Pines in Ref. 32. For higher momenta the collective motion of the electron gas as a
whole loses its meaning and the individual properties of the single electrons become
more important.

Instead of the density n which is actually the characteristic property of the electron
gas it is another parameter which is often found in the literature, namely the Wigner-
Seitz radius defined as

rs =
1
a0

(
3

4πn

)1/3

with a0 the Bohr radius. It measures the mean distance between two electrons in the
system and it provides access to the ratio of the kinetic to the correlation energy. The
latter point can be seen from the fact that the kinetic energy of the electrons scales with
the Fermi energy according to

Ekin ∼ EF =
k2

F
2m0

∼ n2/3 ∼ r−2
s
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2. Electron Energy-Loss Spectroscopy

whereas the correlation energy between the electrons scales with r−1
s . Hence, it follows

that
Ekin

Vc
∼ EF

Vc
∼ rs

r2
s
=

1
rs

rs�1−−→ ∞⇐⇒ n→ ∞

which means that in the high-density limit the kinetic energy dominates the correlation
energy. This seems to be paradoxical at first sight because one would expect strong
interactions between the electrons in a very dense plasma. Although this is of course the
case (the correlation energy diverges in the high-density limit), it is overcompensated
by the kinetic term as a consequence of the Pauli principle. It is however important to
realize that the rs-values for realistic metallic systems like the alkali metals lie in the
range rs = 2 . . . 6 [25]. Therefore one may expect some influences of the electron-electron
interaction on the electronic properties already of simple metals (see the discussion on
correlation effects in the next section).

Given its importance for the interpretation of the EELS spectra, the density-density
correlation or susceptibility χ(q, ω) forms another quantity which is worth studying.
It can be calculated with the help of Eq. 2.8 the result being

χ(q, ω) =
χ0(q, ω)

1− vqχ0(q, ω)

with the susceptibility of the non-interacting system

χ0(q, ω) =
2
V ∑

k

n0
k+q − n0

k

ω− (ω0
k+q −ω0

k) + iδ
, (2.11)

where the n0
k refer to the occupation numbers of the free system and δ→ 0+. Together

with Eq. 2.7 the dielectric function in the RPA is given by

ε(q, ω) = 1− vqχ0(q, ω)

which is frequently referred to as the Lindhard function [33] in the literature. It has
several important properties in both variables which shall be discussed briefly (an
exhaustive treatment of its properties may be found in the references given at the
beginning of this section and additionally in [34]).

From Eq. 2.5, Eq. 2.7 and the remarks made there it is clear that finding the zeros
of ε(q, ω) or equivalently the points where χ0(q, ω) = v−1

q is of particular interest.
For this Fig. 2.3 shows the behavior of Re χ0(q, ω) as a function of energy. As can be
seen there exists a dense manifold of poles whenever ω = ω0

k+q −ω0
k. Between these

singularities there are points which fulfill the required condition to produce a zero
in ε(q, ω). These points contain the single-particle excitations, i. e., the formation of
particle-hole pairs. But there is another solution which is outside the single-particle
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ω

ωp

Re χ0(ω)

Figure 2.3.: The susceptibility as a function of energy. The horizontal dashed line indicates the position
where Re χ0(ω) = 1/vq corresponding to possible electronic transitions. There is a very dense manifold
of them corresponding to single-particle excitations and a collective mode—the plasmon—lying at ωp.

continuum at higher energies which corresponds to a collective excitation in the electron
gas. This is the plasmon mentioned above.

Furthermore, the susceptibility χ(q, ω) has (with respect to the energy variable) the
typical property of a retarded Green’s function of being analytic in the upper half
plane which it transmits via Eq. 2.7 also to the dielectric function. ‡ As a consequence
of this the real and imaginary parts of Im (−1/ε(ω)) are connected via the well known
Kramers-Kronig relations

Re
(

1
ε(q, ω)

)
− 1 =

1
π
P
∫

dω′

 Im
(

1
ε(q, ω′)

)
ω′ −ω


Im
(

1
ε(q, ω)

)
= − 1

π
P
∫

dω′

1− Re
(

1
ε(q, ω′)

)
ω′ −ω

 , (2.12)

which are an indispensable tool to deduce the complete dielectric function from the
signal measured in the EELS spectrometer. With this at hand it is possible to derive, in
principle, all optical constants like, e. g., the refractive index, the optical conductivity
etc. [35]. It is, however, important to stress that for q 6= 0 the Kramers-Kronig relations
(Eq. 2.12) which are ubiquitous in the spectroscopic literature hold for the inverse of the
dielectric function but not for ε(q, ω) itself because only 1/ε(q, ω) fulfills the requirement

‡This is the reason why it is possible to identify the zeros of ε(q, ω) as transitions in the many-particle
system which are always given as poles of a “suitable” Green’s function.
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2. Electron Energy-Loss Spectroscopy

of a true response function, namely being determined entirely by external sources (cf.
Eq. 2.5) that can be switched on and off at will. §

Besides the Kramers-Kronig equations there exist more relations that are important
for the evaluation of data as well as for the interpretation of theoretical models. They
come in the shape of particular sum rules. The the most prominent one reads∫ ∞

0
dω ω Im

(
− 1

ε(q, ω)

)
=

π

2
ω2

p , (2.13)

and it states that the strengths of possible transitions are not independent from each
other but are balanced in such a way that enhancing the weight in a particular energy
range of the spectrum by, e. g., the appearance of a phase transition will reduce the
intensity in another energy window to keep the above given integral at a constant value.
In practice, calculations as well as experiments are of course always restricted to a finite
energy window and one may evaluate partial sum-rules according to∫ ω1

ω0

dω ω Im
(
− 1

ε(q, ω)

)
=

π

2
ω2

p(ne f f /n) , (2.14)

that provide access to an effective number of charge carriers ne f f contributing to a
particular type of excitation within a given energy range.

Concerning the momentum dependence of the Lindhard function there is a pecu-
liarity related to the dimensionality of the system. Evaluating the k-sum in Eq. 2.11
results in different structures for the susceptibility with the most interesting behav-
ior occurring for the one-dimensional electron gas [40] (see Fig. 2.4). In this case the
Fermi “surface” consists only of two points separated by 2kF from each other and
this leads to a strong singularity in the susceptibility. From Eq. 2.6 it can be seen that
this scenario corresponds to the appearance of a spontaneous redistribution of the
electron density—a so called charge-density wave (CDW)—in the system which was
first predicted by Peierls in 1956 [41]. To avoid this singularity the system opens a
gap at the Fermi surface and this is an archetypical route for a metal-insulator—in this
case the so called Peierls—transition, a cartoon of which is shown in Fig. 2.5 for the
particular case of a monoatomic chain with a half-filled band. Besides the electronic
spectrum also other quasi-particle branches of a solid are effected by this singularity.
Most prominently there appears a so called Kohn anomaly [42] which is a softening
of the phonon mediating the transition from −kF to kF. As can be seen from Fig. 2.4
for higher dimensions the effect is strongly reduced but may still be present whenever

§This has, among others, important consequences for possible (but so far only speculative) electronic
mechanisms of superconductivity (see, e. g., Refs. 36, 37) which are a matter of long-term arguments
between the students of V. L. Ginzburg from the Lebedev institute in Moscow and P. W. Anderson (for
recent examples see Refs. 38, 39).
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2.4. The Dielectric Function

the Fermi surface contains a substantial portion (a finite measure in the sum Eq. 2.11)
of parallel segments that can be connected by a single q vector. This scenario is called
nesting and we will come back to this point in Ch. 4. In contrast to the perfect gapping
of the electronic excitation spectrum occurring in 1D, in this case only the portions of
the Fermi surface connected by the ordering vector q become gapped which results
in a so called pseudogap—an only partial suppression of the density of states at the
Fermi level. Still, this is considered one of the prototypical routes to turn a metal into
an insulator in 2D.

3

2

1

2.01.51.00.50.0

 1D

  2D

  3D

q/2kF

Re χ0(q)

Figure 2.4.: The static susceptibility (Eq. 2.11) evaluated for different dimensions. Note the strong peak
which is present for the one-dimensional case but missing for higher dimensions.

A feature of special relevance for the later discussions is the momentum dependence
of the plasma frequency, i. e., the plasmon dispersion which can be derived from the
Lindhard function under some assumptions. Expanding Eq. 2.11 yields (see, e. g.,
[25, 43])

ω(q) = ωp + αq2 +O(q4) α =
3
5

EF

ωp
∝ v2

F . (2.15)

This is the generic behavior of the collective modes in the RPA and there are numerous
examples in the literature, that this is also realized for real materials. We will however
observe and discuss partly remarkable deviations from this functional form in the
following chapters. The intuitive reasoning for the positive plasmon velocity ∇qωq

is the fact that it costs energy to compress the electron gas for shorter distances, i. e.,
higher momenta.

To conclude this section Fig. 2.6 summarizes the most important results for the rela-
tion between the single-particle and collective modes in the RPA. There is a continuum
of particle-hole excitations which scales quadratically with momentum (due to the
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ρ = ψ∗ψ

a

k

E(k)

−π
a

π
a

EF

−kF kF

2.5.1: The linear chain (undistorted)

ρ = ψ∗ψ

a− δ a + δ

k

E(k)

−π
a

π
a

EF

−kF kF

2.5.2: The linear chain (distorted)

Figure 2.5.: Schematic view of the Peierls transition in 1D. The linear arrangement of the atoms in the
left panel becomes unstable for the case of a half-filled band leading to a doubling of the unit cell
accompanied by the appearance of a characteristic modulation of the charge density ρ (right panel).

implicitly assumed spherical Fermi surface) and a collective (optical, offset by the
plasma frequency Eq. 2.10) mode—the plasmon—which is also quadratic in q and
propagates freely without any damping up to a critical wave vector qc where it starts to
decay into particle-hole pairs.

2.4.2. Effects Beyond RPA

Of course the foregoing discussion of the RPA behavior of the electron gas is not the
end of the story and real materials show a number of properties that may complicate
a theoretical treatment significantly. Here we will briefly touch upon some of them
which are of relevance for the later discussions. The first one will be the effect of
correlations, i. e., electron-electron interaction and the second crystal local field effects.
Unfortunately in the literature the nomenclature is misleading because both effects are
often termed local field effects due to their shared feature of becoming more important
for higher values of momentum, i. e., higher “locality”. Nevertheless they originate
from entirely different physical phenomena, the former from the Pauli principle and
the latter from the crystal structure of a solid and in order not to be too confusing here
we will talk about correlation and local field effects, respectively.
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q2kFqc

ω

ωp

Figure 2.6.: The (q, ω)-plane and the relation between the plasmon mode (solid line) and the single
particle continuum (hatched area). In the RPA the plasmon exists only up to a critical momentum qc

where it enters the continuum and decays into particle-hole pairs.

Correlations

It was mentioned above that the EELS experiment basically probes the fluctuations in
the density of the electron system and the essential quantity which characterizes those
fluctuations in reciprocal space is the dynamical structure factor S(q, ω). Of course it
is possible to Fourier transform this quantity to real space and the result of this is the
dynamic pair distribution function

G(r, t) =
∫

dq dω e−i(qr−ωt) S(q, ω)

which

“In all cases . . . describes the correlation between the presence of a particle
in position r′ + r at time t′ + t and the presence of a particle in position r′

at time t′, averaged over r′.” [17]

It is clear that for increasing momentum transfer the wavelength of the density fluctua-
tions under investigation become shorter and one therefore probes more and more local
properties. As a consequence the Pauli principle and the electron-electron repulsion
become more and more effective leading to the exchange-correlation hole: around an
electron the probability to find another electron is strongly reduced. This naturally
reduces the density, or in other (classical) words the spring constant in Eq. 2.9, i. e., the
plasma frequency becomes reduced for non-zero q which leads to deviations from the
generic quadratic RPA plasmon dispersion. As a consequence in general there appears
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a softening of the plasmon velocity ∇qω(q) for large momenta. Neglecting those
effects yields negative values for the static pair distribution function G(r) =

∫
dt G(r, t)

which is of course an unphysical value and provides together with the violation of the
compressibility sum rule [28, 44] severe shortcomings of the RPA approach. There are of
course numerous efforts to incorporate those effects into a proper theoretical treatment
of the electron gas. We will come back to this point in Sect. 4.3 when discussing the
plasmon dispersion in the transition-metal dichalcogenides.

Crystal Local Fields

The reasoning which led to Eq. 2.4 is no longer justified for a periodic solid where
the symmetry is lowered to that of the underlying Bravais lattice. Naturally this has
also consequences for the optical properties of a solid which were first studied by
Ehrenreich, Cohen [45], Adler [46] and Wiser [47]. The periodicity within a crystal
leads to the condition

ε(r, r′, t) = ε(r+R, r′ +R, t)

for the dielectric function with R a lattice vector. The appearance of different bands in
a solid together with the existence of the reciprocal lattice lead to a more cumbersome
expression for the susceptibility in Eq. 2.11 which now reads

χGG′(q, ω) =
2
V ∑

n,n′,k

〈
n′,k

∣∣∣e−i(q+G)r
∣∣∣ n,k+ q

〉 〈
n,k+ q

∣∣∣e−i(q+G′)r′
∣∣∣ n′,k

〉
×

× f (ωn,k+q)− f (ωn′,k)

ω− (ωn,k+q −ωn′,k) + iδ

(2.16)

with the notation χGG′(q, ω) ≡ χ(q +G, q +G′, ω). In contrast to Eq. 2.11 the single
particle energies carry now a band index n and the numerator ( f stands for the Fermi

function) is supplemented by matrix elements between the different Bloch states |n,k〉.
From this the dielectric function follows to be

ε−1
GG′(q, ω) = δGG′ + vq+G χGG′(q, ω) ,

which leads to a more complex expression for the electric field E

E(q +G, ω) = ∑
G′

ε−1
GG′(q, ω)D(q +G′, ω) .

Therefore a monochromatic external source D(q, ω) (or the corresponding external
charge density) creates microscopic electric fields with the same frequency but different
spatial components on length scales of the unit cell. The field-components with G 6= G′
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are called crystal local field effects. For small values of momentum one averages over
several unit cells the result being the macroscopic response given by

ε(q, ω) =
1

ε−1
GG′(q, ω)

∣∣
G=G′=0

.

This means in particular that for higher values of q one cannot, in general, neglect the
influence of the lattice potential and one has to take the crystal local field effects into
account [48]. From the experimental point of view caution is always required as these
processes are known to modify peak positions and heights upon leaving the center
of the Brillouin zone [49]. From Eq. 2.16 one can however see that these effects are
characteristic features of a particular crystal- and the resulting band-structure and one
may therefore expect that similar compounds are subject to similar crystal local field
effects.

2.4.3. The Drude-Lorentz-Model

After the more general arguments in the last section we will now discuss a particular
model for the energy dependence of the dielectric function in a solid, namely the Drude-
Lorentz-model [35, 50]. Though very simple it is nevertheless widely employed as it
provides an easy understanding of the physical processes behind optical properties and
the vocabulary for their description. In addition it has the advantage of following the
causality principle in the sense that the real and imaginary parts automatically fulfill
the Kramers-Kronig relations Eq. 2.12. There are of course refinements to it—the so
called extended Drude-model—but we will not employ this here (see however Ref. 51
for an introduction).

The starting point for the treatment within the (conventional) Drude-Lorentz-model
is a classical ansatz for the electron movement assuming them to be describable by a
driven harmonic oscillator where the external field forms the inhomogeneity in the
equation of motion, i. e., the driving force oscillates with a characteristic frequency ω.
The outcome of the straightforward calculation for the dielectric function is

ε(ω) = 1 + ω2
p ∑

i

fi

ω2
i0
−ω2 − iγiω

.

Here the fi are the oscillator strengths that measure the transition probability in the
dipole regime according to

fi = 2ωi0 |Mi|2 Mi = 〈i |r| 0〉 =
∫

drϕ∗i rϕ0
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where |0〉 and |i〉 are considered to be Bloch states in the case of a solid, ωi0 ≡ ωi −ω0

describes the energy of the transition and the γi are the dampings of the excitations,
i. e., their inverse lifetimes. As can be seen ε(ω) ∈ C and we can split it according to

ε1(ω) = 1 + ω2
p ∑

i

fi(ω
2
i0 −ω2)

(ω2
i0
−ω2)2 + γ2

i ω2

ε2(ω) = ω2
p ∑

i

fiγiω

(ω2
i0
−ω2)2 + γ2

i ω2
,

In the special case of a metallic system the electrons are assumed to be free, i. e.,
ω0 ≡ 0 which reduces the above equations to

ε1(ω) = 1−ω2
p ∑

i

fi

ω2 + γ2
i

ε2(ω) = ω2
p ∑

i

fiγi

ω(ω2 + γ2
i )

.

and Fig. 2.7 summarizes the qualitative behavior of the three quantities ε1(ω), ε2(ω)

and Im (−1/ε(ω)) for a single oscillator. The most important feature is that for a non-
metallic system the peak in the loss function does not necessarily correspond to the
value of the true transition at ω = ω0 which can be seen from the condition

Im
(
− 1

ε(ω)

)
=

ε2(ω)

ε2
1(ω) + ε2

2(ω)

ε2(ω)�1−−−−−→
ε1(ω)=0

∞ .

The exact position of the loss function peak can be evaluated according to

d
dω

Im
(
− 1

ε(ω)

)
!
= 0

γ→0⇐⇒ ω =
√

ω2
0 + ω2

p
ω0�ωp
= ωp , (2.17)

which in this case (vanishing damping) corresponds exactly to the second zero of ε1(ω).
For a metallic system the loss function peaks exactly at ω = ωp which is also the point
where ε1(ω) = 0, in agreement with what has been said on the general properties of the
electron gas in the last section. Another subtlety of the loss function is the fact that in
contrast to ε2 (and quantities derived therefrom, in particular the optical conductivity)
Im (−1/ε(ω)) is not simply a linear superposition of two oscillators, i. e., two neighboring
transitions are decoupled in ε2 but they do interfere with each other in Im (−1/ε(ω)) in
a way that depends on the values of the parameters in the Drude-Lorentz-model. As
a rule of thumb one can keep in mind that they always try to repel each other.
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2.7.1: The dielectric function of a metal
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2.7.2: The dielectric function of an insulator

Figure 2.7.: The loss function Im (−1/ε(ω)) (solid line), ε1 (short dashed line) and ε2 (long dashed line) for
a single oscillator as a function of energy in the Drude-Lorentz-Model. The model parameters are
ω0 = 0, ωp = 1 eV, γ = 0.1 eV (left panel) and ω0 = 1 eV, ωp = 4 eV, γ = 0.2 eV (right panel). In both
cases fi = 1 as the oscillator strengths obey the sum rule ∑i fi = 1 [50].

2.5. Experimental Details

This part intends to give an at least brief account of what constitutes actually the main
part of the work, namely the everyday business in the laboratory. ‖

2.5.1. The Spectrometer

The experimental setup employed is a purpose-built transmission electron energy-loss
spectrometer developed and constructed mainly by J. Fink [52]. It became very famous
by enlightening the doping mechanism in high-Tc superconductors [53] and has, since
then, proved to be a valuable tool for investigations on a number of issues related to the
electronic structure of solids (for an incomplete overview see, e. g., [54]) partly due to
some specialties it has making it particularly appropriate for the desired investigations:

• high energy and momentum resolution (see Fig. 2.9)

• sample on ground potential⇒ easy sample exchange and manipulation

• possibility of in situ intercalation

As a detailed description of the spectrometer is far beyond the scope of the present
work, only the main features shall be addressed here. For an elaborate discussion see

‖According to I. Y. Pomeranchuk the book of physics has two volumes: volume one is pumps and
manometers and volume two is quantum field theory. As an experimentalist one routinely faces volume
one often leaving not enough time to deal with volume two.
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2. Electron Energy-Loss Spectroscopy

[52]. The main parts can be seen in Fig. 2.8. The electron source consists of a tungsten

�

�

�
� �

�

� �

�	 


�

Figure 2.8.: The EELS spectrometer (schematically) according to Ref. 52: electron source (1); monochroma-
tor (2); zoom lenses (3,8); accelerator (4); sample (5); deflection plates (6); decelerator (7); analyzer (9);
detector (10) The arrow indicates the fast entry for the samples.

cathode followed by a lens system that focuses the electron beam on the entrance
of the monochromator. Afterward the electron beam is guided by so called zoom
lenses to the accelerator producing the high value of incoming energy E0 = 172 keV.
Momentum selectivity is achieved by two pairs of horizontal and vertical deflection
plates, the voltage of which can be directly translated into momentum transfer, forcing
the scattered electrons back on the optical axis. After being decelerated the electrons
reach the analyzer and finally the detector where a photo multiplier produces the signal
transfered to the computer.

In addition to what is shown in Fig. 2.8 in the course of this work a helium flow-
cryostat was installed on the spectrometer which allows to measure in a temperature
range T ≈ 20 . . . 400 K. It is possible to employ different beam characteristics for optimal
investigations on distinct types of electronic excitations (valence or core transitions).
The settings required for a certain beam are stored in files containing all necessary
adjustments for the power supplies, deflection plates and so on. Nevertheless each beam
is tuned before a new sample is loaded for best possible performance and Fig. 2.9 shows
the properties of the beam that was used to collect the majority of the experimental
data shown in the following.

2.5.2. Sample Preparation

From Fig. 2.1 it is obvious that the experiments are performed in a transmission
geometry. Therefore having thin samples (with a thickness of only about 100 nm) forms
an issue of particular importance and is the main criterion whether or not a system can
be investigated by electron energy-loss spectroscopy. There are several possibilities to
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2.9.1: Energy Resolution
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2.9.2: Momentum Resolution

Figure 2.9.: The energy and momentum resolution curves for the pure electron beam (without sample).
The data are fitted to Gaussians (solid lines). The obtained FWHM values are ∆E ≈ 65 meV and
∆q ≈ 0.03 Å

−1
, respectively.

obtain the required thickness of the films depending on the microscopic structure of the
particular compound. For the present work samples were prepared either by cutting
thin slices from a macroscopic single crystal with the help of an ultramicrotome—a
special device allowing precise cuts with the help of a diamond knife—or cleaved with
the help of adhesive tape which was afterwards dissolved in acetone. In all cases the
films are put on standard electron-microscopy grids (see Fig. 2.10), mounted in a sample
holder and then transferred to the spectrometer.

Figure 2.10.: A typical snapshot of a single crystal placed on a standard TEM grid (diameter of ≈ 5 mm)
intended for usage in the EELS spectrometer. The image shows a TiOCl sample prepared with the help
of adhesive tape and is reproduced here with kind permission from R. Krauss.

§
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3. EELS On Underdoped Cuprates

3.1. Introduction

Given the myriad of publications and known facts about cuprates one may ask
whether it is possible to add anything new to their story which has not been
said already in one or the other way. In fact since their discovery by Bednorz

and Müller [55] the cuprates have become the paradigm for a lot of—now already
longstanding—topics in condensed matter physics and triggered tremendous devel-
opments in the theoretical treatment of solids, accompanied by remarkable progress
of important experimental issues like the growth of high-quality single crystals and
spectrometer performance.

However, somebody new to the field will quickly realize that the puzzle is not yet
solved. Instead he will perhaps get the feeling that the truth seems to be hidden behind
some magical curtain: There appear “pseudo”-gaps, cuprates are “unconventional”
superconductors which show “anomalous” behavior not only in their “strange”-metal
phase to mention just a few of the phrases that appear ubiquitously in the literature. In
addition there are considerable arguments in particular about the mechanism behind
the superconductivity with a strong party in favor of spin-mediated pairing (see, e. g.,
[56, 57] for recent reports) arguing a lot with the advocates of phonons (see [58] for
a recent comprehensive summary) and there is also a, though smaller, community
favoring electronic excitations (for an introduction [59]) as the mediator between the
electrons.∗

All these things are basically driven by low-energy physics occurring in the vicinity
of the Fermi surface. In the following we will—for most of the time—focus on processes
that happen on a higher energy scale on the order of some eV and only occasionally
have reason to come back to this “low-energy battlefield”. Still, we will also find
“anomalous” behavior that has been unknown so far to the cuprates story.

∗There is a joke alleged to have circulated in the community in the early days of the cuprates hype
that nicely captures the existing rivalries: Two high-Tc researchers are sentenced to death but each of them
is allowed to express one last wish in front of the king. Researcher number one says: “His Majesty, I will
readily disappear from mother earth, but before that, please, let me explain you my point of view about
the cuprates.” This causes researcher number two to jump up and beg: “Oh no, please kill me first!”



3. EELS On Underdoped Cuprates

3.2. Electronic Properties Of The Cuprates

This is a vast field and still a matter of intense debate. Therefore we will not even try to
cover it to any satisfactory level of completeness. A more exhaustive overview can be
found in numerous reviews, e. g., [60–63].

The crystal structures of two archetypal representatives of the different cuprate
families—Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4—are shown in Fig. 3.1. Though they
differ in some respects (the former contains a rare-earth element, the latter does not)
they exhibit all the features the cuprates became famous for. They are layered perovskite-
like materials with rather complex unit cells consisting of numerous atoms all sharing
the main ingredient of the cuprates mystery: the CuO2 plane. To be more precise in
La2−xSrxCuO4 there is an octahedron of oxygen atoms surrounding the copper site.
This led to the initial belief that the additional apical oxygens are of relevance for
the mechanism of high-temperature superconductivity (HTSC) in the cuprates as also
other families show this structural subtlety. But the detection of superconductivity
in Ca2−xNaxCuO2Cl2 at Tc ∼ 25 K [64] clearly showed that the essentials are hidden
within the 2D arrangement of the copper and oxygen atoms which will be discussed
below.

Figure 3.1.: The crystal structure of Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4. Both compounds are nearly
identical except for the missing apical oxygen in the Ca2−xNaxCuO2Cl2. Image taken from Ref. 65.

In a purely ionic picture one may simply count the valencies in the undoped La2CuO4

system to realize that Cu is in a 3d9 configuration, i. e., a single hole is left in an
otherwise completely filled d-shell. Due to the presence of the crystal field the d-
levels which are degenerate in free space split and as it turns out [66] the remaining
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3.2. Electronic Properties Of The Cuprates

hole is primarily of dx2−y2 character. Now, in the band picture of simple metals the
result would be a half-filled band leading to a metallic ground state. However, this is
not what is observed in the undoped cuprates. Instead they are insulators [67] with
antiferromagnetic order [68] which disappears only well above room-temperature. This
clearly points to the breakdown of simple band theory in this case and signals the
presence of strong electron-electron interactions. It was Mott who introduced the
concept of a metal-insulator transition driven by electron-electron interaction which is
nowadays called a Mott insulator [69] and the drosophila for its theoretical treatment
is the single-band Hubbard model

H = −∑
i,j,σ

ti,jc†
i,σcj,σ + U ∑

i
ni,σni,−σ

pioneered by Gutzwiller, Kanamori and Hubbard. The operators c(†)i,σ annihilate
(create), in this case, a hole on lattice site i with spin projection σ and ni,σ = c†

i,σci,σ

counts the electrons on a particular site. The two parameters in the model are the
hopping term t and the famous Hubbard U which mimics the Coulomb interaction of
the electrons. Depending on their ratio one may distinguish three different regimes
for the single-particle spectral function shown in Fig. 3.2. In the non-interacting case
W � U there exists a quasiparticle band of width W ∝ t around the Fermi level which
becomes weakened upon increasing U—accompanied by the appearance of satellite
features at finite energy—and finally totally absent in the strong-coupling regime
W < U where there appear well separated lower (occupied) and upper (unoccupied)
Hubbard bands. It is exactly this disappearance of quasiparticle weight that causes
the Mott transition for interactions larger than some critical value on the order of the
bandwidth.

Experimentally the ratio t/U may be altered in a number of different ways. Typical
approaches are either chemical or mechanical pressure to change predominantly the
numerator or doping which, in a first approximation, lowers the denominator by
screening the Hubbard term via the presence of additional charge carriers.

Naturally this has important consequences for all experimental probes, in particular
for the optical response. In the framework of dynamical mean-field theory (DMFT)
which provides an exact description of strong-correlation physics (at least in the limit of
infinite dimensions) [70] the optical conductivity may be written as the auto-correlation
of the single-particle spectral function A(ω)

σ(ω) ∝
t2

ω

∫ ∞

−∞
dω′ A(ω′)A(ω′ + ω)

[
nF(ω

′)− nF(ω
′ + ω)

]
which was extensively studied in Refs. 71, 72. For the non-interacting case the optical
response consists of a well-defined Drude peak centered at zero energy caused by the
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ω

Figure 3.2.: A schematic view of the metal-insulator transition in the single-band Hubbard model. For
W � U (left panel) there is a well defined quasiparticle peak in the single-particle spectral function
A(ω). In the intermediate regime W ≈ U (middle panel) there appear satellite structures which develop
into the upper and lower Hubbard band for W < U (right panel). Shaded regions correspond to the
occupied part of the spectrum.

intra-band transitions within the quasiparticle band. On the contrary, in the strong-
coupling limit (U �W) there is a pronounced charge gap and the response consists of
a very broad and incoherent feature reflecting the electronic transitions from the lower
to the upper Hubbard band. In the intermediate case the Drude and Hubbard features
are supplemented by transitions between the Hubbard bands and the quasiparticle
branch which results in a characteristic three-peak structure. In the cuprates community
the third feature has been termed mid-infrared peak due to its energetic position.

Though, the exact strength of the correlations in the cuprates is still a matter of
debate [73] there is consensus that indeed U is by far the largest energy scale in the
problem ([61, 66]). This means that the cuprates may be approached from the strong
coupling side and one may therefore perform a perturbative treatment of the Hubbard

model in the small parameter t/U � 1 which, in second order, yields the t− J-model

H = −∑
i,j,σ

ti,j c̃†
i,σ c̃j,σ + J ∑

i,j

(
Si ·Sj −

1
4

ninj

)

with J = 4t2/U. Here a double occupancy of a site is explicitly forbidden by the projected
hopping operators c̃j,σ = cj,σ(1− nj,−σ) (see, e. g., [66, 74]). Though a system described
by this model is highly correlated the kinetic energy term proportional to t still plays an
important role as it establishes an antiferromagnetic order. This is caused by a lowering
of the total energy of the system via virtual hopping processes between neighboring
sites that are only possible in the case of alternating spins on adjacent copper atoms
thereby favoring the antiferromagnetic alignment of the copper spins [74]. All this
makes the Hubbard model or its strong-coupling cousin the t− J-model very appealing
as they are obviously able to predict many of the features observed experimentally in
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3.2. Electronic Properties Of The Cuprates

the cuprates and they therefore confirm what P. W. Anderson initially supposed [75].
Nevertheless the story is actually much more involved and this is due to the strong
hybridization of the copper with the oxygen degrees of freedom.

In a seminal paper which appeared already before the discovery of the cuprates Zaa-
nen, Sawatzky and Allen suggested a classification of transition-metal oxides which
characterizes different compounds not only in terms of the hopping matrix element t
and the value of the Hubbard U but also with the help of an additional parameter, the
so called charge-transfer energy ∆ which measures the difference between the highest
occupied oxygen level and the lowest unoccupied level of the transition-metal ion. In a
conventional Mott insulator ∆ > U and one can indeed consider the rather narrow and
therefore strongly correlated (un)occupied transition metal 3d orbitals as the (upper)
lower Hubbard bands, respectively. In the opposite case, however, when ∆ < U there
is a broad and uncorrelated oxygen 2p manifold which separates the two Hubbard

branches. One therefore describes compounds showing this behavior more precisely as
charge-transfer insulators as in this case the lowest possible electronic transitions occur
between oxygen and the transition metal and therefore imply a transfer of charges
between the anion and the cation.

In the beginning of the research on the cuprates it was not clear whether they fall
in one or the other regime. However, high-energy spectroscopy helped to clarify the
situation. Employing EELS it was possible to show that doping holes which effectively
moves the chemical potential towards the occupied part of the spectrum strongly effects
the oxygen edges while leaving the copper states mostly unaffected. This was the
experimental proof that the lowest hole addition states are predominantly of oxygen
character classifying the cuprates as charge-transfer insulators [53].

U
∆

∆
U

A(ω)

ω

Figure 3.3.: Mott (left panel) vs. charge-transfer insulator (middle panel). The right panel shows in
addition the appearance of a sharp resonance within the charge-transfer gap due to the formation of a
Zhang-Rice-singlet which becomes gradually filled upon doping charge carriers into the CuO2 plane.
The image is highly schematic as in general one has to distinguish between bonding, anti-bonding and
non-bonding combinations of the oxygen and copper orbitals (see, e. g., [66] for details).
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3. EELS On Underdoped Cuprates

This suggests that the oxygen degrees of freedom may play an essential role for a
proper understanding of the electronic structure and also calls for an extension of the
single-band Hubbard model taking into account the px- and py-orbitals seen in Fig. 3.4.
The result of such a multiband approach is the Emery model [76]

H = εp ∑
iσ

ni
pσ + εd ∑

iσ
ni

dσ + tpd ∑
〈ij〉σ

(
d†

iσ pjσ + h.c.
)
+ tpp ∑

〈ij〉σ

(
p†

iσ pjσ + h.c.
)

+ Ud ∑
iσσ′

ni
dσni

dσ′ + Up ∑
iσσ′

ni
pσni

pσ′ + Upd ∑
〈ij〉

ni
dnj

p
(3.1)

with the on-site energies εp and εd, the Coulomb repulsions Up, Ud and Upd and the
hopping integrals tpp and tpd where p and d label oxygen and copper sites, respectively.
The operators create and annihilate holes in the corresponding orbitals and the notation
〈ij〉 implies summation over pairs of nearest neighbors. The realization of the charge-
transfer insulator situation in the cuprates implies that the original Hubbard term
U = Ud is the largest energy scale and therefore ∆ ≡

∣∣εp − εd
∣∣ < Ud.

Figure 3.4.: The CuO2 plane of the undoped cuprates. Small (large) circles correspond to Cu (O),
respectively. The left panel shows the orbitals involved in the Emery model (Eq. 3.1) whereas the right
panel sketches the antiferromagnetic order on the copper sites. The distinction between the left and
right image is, of course, artificial and employed here only for better visibility. In reality spins and
orbitals are simultaneously present.

The model Eq. 3.1 is a formidable task to analyze and a simplification is highly
desirable. Zhang and Rice could show that this is indeed possible [77]. As discussed
above, additional charges will occupy oxygen hole states and the strong overlap between
oxygen and copper will lead to an interference with the holes that are present on the
copper sites. Now, there are two possibilities. The two spins may align either parallel to
form a triplet or—and this is the situation which is energetically favored and therefore
realized—antiparallel to form a singlet which is then called a Zhang-Rice-singlet. With
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3.2. Electronic Properties Of The Cuprates

this it is possible to consider the physics of the cuprates in terms of an effective approach
with the ZRS forming the lower and the unoccupied branch of the copper 3d spectrum
the upper Hubbard band thereby returning to the simpler description in terms of the
single-band Hubbard or the t− J model. Naturally, the strong hybridization between
copper and oxygen that can be anticipated from the orbital configuration shown in
Fig. 3.4 is also present for the case of zero doping and therefore the Zhang-Rice band
is always present and the single hole within the unit cell will fluctuate between copper
and oxygen leading to a dynamic occupation of the ZRS. If, however, additional charge
carriers are introduced into the system the band derived from the ZRS will become
gradually occupied. This in turn leads to a breakdown of the charge gap which is on the
order of some eV in the undoped compounds and low-lying charge excitations become
possible between occupied and unoccupied states within the ZR band. Nevertheless,
this does not imply that doping leads immediately to a conventional conductor. Instead,
metallic features like a zero-frequency Drude response set in only after a finite amount
of charges has been introduced (see below).

An important issue related to the doping of holes into the CuO2 plane shown in
Fig. 3.4 is the resulting strong disturbance of the antiferromagnetic background which
becomes gradually destroyed upon increasing hole doping (see, e. g., [78, 79]). But it is
not only the antiferromagnetism that becomes affected by the charges. Effects occur also
the other way around, in particular the spin configuration dresses the doped charges,
the resulting quasiparticle being a so called spin-polaron. Again, these phenomena had
been known already before the cuprates were discovered [80, 81] but they naturally
revived the interest in the problem of a single hole in an antiferromagnet. The authors
of Ref. 82 could show that there are indeed quasiparticle solutions, i. e., there are well
defined peaks in the single-particle spectral function

A(k, ω) = Im G(k, ω)

where the coherent (quasiparticle) part of the propagator is given by

G(k, ω) =
Zk

ω− Σ(k, ω)
Zk =

(
1− ∂

∂ω
Σ(k, ω)

)−1

,

with the quasiparticle weight Zk and the self-energy Σ(k, ω) arising from a diagram-
matic series for the hole propagator interacting with the propagator for the spin
excitations created during the movement of the hole in the presence of the antiferro-
magnetic order. As in ordinary Fermi liquid theory the self-energy term gives rise to
an effective mass according to

1
mij

=
∂2

∂ki∂kj
ωk = Zk

∂2

∂ki∂kj
Σ(k, ω)

∣∣∣
ω=ωk
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3. EELS On Underdoped Cuprates

where ωk gives the energy of the quasiparticle pole. It can be shown that in the
parameter range relevant for the cuprates

J =
4t2

U
� t

Zk ∼ J/t � 1 [82]. In addition the bandwidth of this dressed spin-polaron is renor-
malized from the bare value t down to J. A graphical representation of these effects is
shown in Fig. 3.5 from which it becomes obvious that the hopping of a single hole in an
otherwise antiferromagnetic surrounding creates chains of frustrated spins (sometimes
also called strings) that lead to an enhancement of the exchange energy scaling linearly
with the length of the string. This produces a confining potential that binds the hole
to the site where it was initially created. Experimentally this behavior was indeed
observed in the ARPES spectra of the oxychloride Sr2CuO2Cl2 [83] though also other
explanations have been put forward for their understanding. In particular Laughlin

argued that the observed dispersion reflects the decay of the photo-hole indicating the
presence of spin-charge separation [84].

Figure 3.5.: The motion of a single hole in an antiferromagnet. It is clearly seen that a hole (solid circle)
created at a particular site (left panel) leaves behind a chain of frustrated spins (right panel) along its
path (thick solid line). This is accompanied by a large mass enhancement for the hole propagation.

If the doping is pushed further, things get even more involved and this is also
the region where most of the arguments take place. Macroscopically, the behavior is
probably best reflected in the generic phase diagram shown in Fig. 3.6.

As already mentioned above the antiferromagnetic order becomes quickly destroyed
upon hole doping and what emerges is a phase that is often referred to as the pseudogap
observed in a large variety of experimental probes [85–87]. There is a widespread belief
within the community that charges in this so called underdoped (labeled as UD in
Fig. 3.6) range of the phase diagram are agglomerated into regular patterns termed
stripes or checkerboards [88–90] forming domain walls for the diminished but still
present antiferromagnetism. A problem of particular relevance in this regard is whether
these inhomogeneities promote or suppress superconductivity. There is evidence for
either possibility. On the one hand it is known that in the lanthanum-based cuprates the
superconducting Tc is strongly reduced [91] at the doping concentration of x = 0.125

40



3.2. Electronic Properties Of The Cuprates

Nd Ce CuO2-x x 4 La Sr CuO2-x x 4

Doping (x)

Te
m

pe
ra

tu
re

 (K
)

100

200

300

Fermi-Liquid

0.1 0.2 0.30.10.20.3

SC
AF AF UD OD

SC

Pseudogap

T*

TC

Figure 3.6.: The generic phase diagram of the cuprates. The hole-doped (right) side is of particular
relevance in this work. There the antiferromagnetism (AF) which characterizes the parent compounds
disappears quickly upon hole-doping and the most complicated phase, often called pseudogap phase
sets in. At even higher doping concentrations the superconducting dome appears which contains the
underdoped (UD), optimally doped (OP) and the overdoped (OD) regimes. For still higher carrier
concentrations one finally recovers a phase which can be described in terms of a Fermi liquid picture.

where stripes are very robust [88]—an effect that has been termed “1/8-anomaly”.
On the other hand theoretical models incorporating fluctuating stripes [92] are able
to reproduce the 40 meV resonance mode that is observed in neutron scattering and
argued—by many researchers (see, e. g., [56])—to be the boson required† to bind the
Cooper pairs in the superconducting state.

Besides the spin degrees of freedom the charges are naturally of great interest. It is
known from transport measurements [67] that upon doping there is a metal-insulator
transition which is also consistent with the increase of spectral weight in the low-energy
region and finally the appearance of a Drude-like response in the optical conductivity
[93, 94], in accord with what has been discussed in relation to Fig. 3.2.

A typical hallmark of a metal is of course the Fermi surface and its development
is another big open issue. It is known to exist in optimally and overdoped systems
[22] for T > Tc and Fig. 3.7 gives a schematic view of it. The peculiar dx2−y2-shape of
the superconducting order parameter [95] leaves only a point along the (0, 0)→ (π,π)
line ungapped below Tc and therefore the area of momentum space around this
point is called the nodal region. In contrast to that on the underdoped side of the
superconducting dome the Fermi surface becomes destroyed already at temperatures
above Tc signaling the onset of the pseudogap. What remains are disconnected segments
of the original Fermi surface the length of which shrink with decreasing temperature

†It is not even clear whether a coupling boson is at all necessary to bind the charges into pairs [38].
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Figure 3.7.: A schematic view of the Fermi surface of cuprates in the optimally and overdoped regime of
the phase diagram. The point labeled as ‘Node’ marks the position where the superconducting gap is
zero.

[96] and doping [97]. This phenomenon was coined “arc” by Norman et al. [98]. If the
temperature is then further lowered down to Tc the phase space for superconductivity
is strongly reduced and the true superconducting gap opens only along the arc [97].
Therefore currently there is increasing experimental evidence for a so called dichotomy
between electrons from the nodal and antinodal direction: below Tc not all the electrons
enter the superconducting condensate because a substantial part is no longer available
being tied already by the pseudogap. This leads some researchers to ask if “Two gaps
make a high-temperature superconductor?” [99]. In remarkable disagreement with
this, quantum oscillation experiments [100, 101] indicate the existence of small (closed)
pockets instead of disconnected arcs and there are now arguments that, due to some
peculiar feature of the photoemission matrix element, these pockets simply appear as
arcs in the ARPES spectra. This is a completely open field which will probably not
be settled in the near future due to a well-known problem persisting since the very
beginning: not all samples can be measured with all spectroscopies leaving plenty of
space for speculations.

To summarize this short and very incomplete overview of the present status on the
cuprates-physics one may say that the endless efforts spent for a better understanding
of the electronic properties of the cuprates already led to a wealth of information on
all kinds of details but the very essential question, how the Mott insulator transforms
into an unconventional superconductor upon adding just a slight amount of charges,
remains to a large extend unsolved. Of course, the disagreement on the precise pairing
mechanism is not satisfying, but it is not so much the superconducting phase that
is complicated to understand. Instead the underdoped regime with its plethora of
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different ground states: antiferromagnetism, charge-ordered and superconducting
phases where only small changes in one experimental parameter like doping, pressure
etc. might be enough to disturb this fragile equilibrium thereby replacing one order by
the other forms the biggest puzzle.

We are going to add some pieces to it in the following.

3.3. Charge-Transfer Excitons
In Underdoped Oxychlorides

Now, we turn to the investigation of the doping dependence of the CT processes
between copper and oxygen investigated for the special case of the Ca2−xNaxCuO2Cl2
system. It is known that single crystals of those compounds are very air-sensitive
which provides a substantial obstacle for the preparation of films thin enough for EELS
measurements as described in Sect. 2.5.2. To avoid oxidation of the single crystals
grown and provided by the group of H. Takagi [65] as far as possible the samples were
cut by S. Pyon with the help of the microtome under nitrogen atmosphere. Indeed,
the films obtained in this way turned out to be well defined single crystals as can be
seen from Fig. 3.8 which exemplarily shows the lattice structure for Ca1.9Na0.1CuO2Cl2
as measured in the EELS spectrometer with the help of elastic scattering. The sharp
Bragg-peaks observed correspond to the reciprocal lattice vectors parallel to the copper-
oxygen bonds (labeled (100), equivalent to Γ→ (π, 0) in Fig. 3.7) and diagonal to them
(labeled (110), equivalent to Γ → (π,π) in Fig. 3.7) and their fourfold symmetry (not
shown) with respect to the angle within the CuO2 plane (see Fig. 2.2) proves that the
square lattice indeed survived the elaborate sample preparation procedure, at least
within the resolution of the spectrometer.

Naturally, the next step is to investigate the behavior of the loss function‡ for different
values of the charge carrier concentration. A first overview for q = 0.1 Å

−1
is provided

by Fig. 3.9 where we see numerous things that will be disentangled in the following.
As the reference spectrum we take the data for Sr2CuO2Cl2 as described in [102, 103].
There is zero intensity up to about 1.5 eV followed by a well pronounced double peak
structure§ that is also reported for optical spectra of Sr2CuO2Cl2 [104, 105], the actual

‡According to Eq. 2.3 the intensity measured and also displayed is only proportional to the loss
function. Nevertheless, we will often ignore this and simply take this proportionality as an equality. In
any case, the axis label always provides the correct description.

§It should be noted that when the Sr2CuO2Cl2 data were measured, the beam performance shown in
Fig. 2.9 was not yet available. Therefore, in principle it would be interesting to repeat these measurements
with higher resolution. As no single crystals with x = 0 were available in the course of this work the data
shown in Fig. 3.9 are nevertheless taken for comparison.
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Figure 3.8.: The Bragg spectra for Ca1.9Na0.1CuO2Cl2 in the high-symmetry directions shown in Fig. 3.7.
The values in parentheses give the corresponding Miller indices and their positions are in fair
agreement with the structural data described in Ref. 65.

parent compound Ca2CuO2Cl2 (see Fig. 3.13) and also other cuprate parent compounds
[106]. In contrast to that for the Ca1.95Na0.05CuO2Cl2 spectra there is intensity in the
tail of the elastic line (which has not been subtracted for this very purpose) and the
two features seen in the insulating case merge into a single sharp structure situated
roughly halfway between the two humps seen in the Sr2CuO2Cl2 case. For still higher
doping values (the Ca1.9Na0.1CuO2Cl2 spectra) the single sharp feature between 2 eV
and 2.5 eV is further softened and even more intriguingly—and in sharp contrast
to the case of zero and five percent doping—the spectra for the two shown lattice
directions become different. For momentum transfer parallel to the copper oxygen
bonds (left panel in Fig. 3.9) the single peak already visible in the Ca1.95Na0.05CuO2Cl2
spectra acquires significant spectral weight in the shown energy range whereas it looses
substantial strength for the (110) direction (right panel in Fig. 3.9) in favor of an intensity
enhancement around 1 eV. According to the tetragonal lattice structure one would
expect symmetric spectra within the CuO2 plane, i. e., spectra for a constant doping
concentration should be independent of the angle within the CuO2 plane, which is
obviously not the case for Ca1.9Na0.1CuO2Cl2. This points to some kind of symmetry
breaking which is discussed in more detail in Sect. 3.4. Before that we will focus on the
behavior in the 2.0− 2.5 eV range.

3.3.1. Origin Of The Observed Features

To begin the discussion, one should probably comment on why Fig. 3.9 compares
spectra of a particular insulator (Sr2CuO2Cl2) with the doped counterparts of another
one (Ca2−xNaxCuO2Cl2). The main reason for this are the difficulties in the growth of
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Figure 3.9.: The doping evolution for the EELS intensity in the low energy region for Sr2CuO2Cl2
(blue circles) and Ca2−xNaxCuO2Cl2 for momentum transfers parallel to Γ → (π, 0) (left panel) and

Γ→ (π,π) (right panel) for q = 0.1 Å
−1

. For comparison, the spectra are normalized on the high-energy
side between 3.5 eV and 4 eV. The Sr2CuO2Cl2 data are reproduced from [102, 103].

Ca2CuO2Cl2 single crystals which were not available for the present study. Nevertheless,
as Ca and Sr have the same valency they can be considered iso-electronic. They do,
of course, differ in size but as both ions are well separated from the CuO2 plane (see
Fig. 3.1) which is the main structural unit as discussed above this effect will be neglected
in the following.

As can be seen from Fig. 3.9 the undoped compounds show a well pronounced
gap. This is in agreement with what has been said in Sect. 3.2 reflecting the insulating
behavior. To understand what microscopic mechanisms drive the finite intensity above
the gap edge it is important to realize that EELS creates by definition particle-hole
pairs. Together with the fact that the lowest possible electronic transitions within the
CuO2 plane correspond to charge-transfer excitations between oxygen and copper (see
Fig. 3.3) the resulting object can be visualized as shown in Fig. 3.10.

Figure 3.10.: The image shows two plaquettes from the CuO2 plane in Fig. 3.4 with one electron transferred
from oxygen to copper producing a particle-hole pair consisting of a Zhang-Rice-singlet on the left
and a copper 3d10-site on the right plaquette.

Obviously, an electron is transfered from an oxygen atom of one plaquette (one
CuO4-unit within the CuO2 plane) to another one. What remains on the “donor-site”
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are two holes (the original one from the copper 3d9-configuration and the one created
by the charge-transfer) forming a Zhang-Rice-singlet and the transfered electron fills
up the d-shell of the copper on the “acceptor-site” to form a 3d10-configuration. We will
call such an object a charge-transfer-exciton in the following.

Although this seems straightforward given that the cuprates are generally accepted
to be charge-transfer-insulators there have been considerable arguments in the literature
[107–109] about the precise nature of these entities, mostly motivated by the presence
of two features in close proximity to each other as indicated by the optical spectra on
several cuprate families as discussed above. This suggests that the charge-transfer is
actually more involved than what is shown in Fig. 3.10. In particular, the authors of
Ref. 109 analyzed possible excitonic modes based on a group-theoretical analysis of
possible transitions within the manifold of copper and oxygen states. The low energy
feature seen in the Sr2CuO2Cl2 spectra was attributed to a so called one-center exciton
(OCE) and the higher one to a two-center exciton (TCE). While the latter one corresponds
to the object shown in Fig. 3.10 and involves the pσ-orbitals of oxygen shown in Fig. 3.4
the former describes a quasiparticle that is localized on a single plaquette—hence
the name OCE—and involves pπ-states whose lobes are oriented perpendicular to
the dx2−y2-orbital of the central copper ion. Although the OCE scenario is potentially
of great interest because it would indicate the necessity of multiband approaches to
describe the low-energy physics of the CuO2 plane—even beyond the Emery model
that has been discussed in Sect. 3.2—we will argue below that there is no need and also
no true experimental evidence for this approach.

To this end it is instructive to realize that besides the CuO2 plane shown in Fig. 3.4
there exist other cuprate systems with different geometries that provide further insight
into the physics of the more general class of copper-oxygen networks. In the following
we will concentrate on Sr2CuO3 which forms a so called corner-sharing chain of
Cu and O (see Fig. 3.11). It can be considered as a 1D cut through the CuO2 plane
and is therefore believed on the one hand to be equivalent to the “true” cuprates
for polarizations parallel and on the other hand to reflect the physics of an isolated
plaquette for polarizations perpendicular to the chain direction. This is of importance
for the discussion whether or not OCE and TCE excitations are indeed realized because
the TCE is extended over two plaquettes (and can therefore be observed in the Sr2CuO3

case only along the chain direction) whereas the OCE is confined to a single plaquette
and should therefore be observable parallel and perpendicular to the chain. Indeed,
the optical spectra of Sr2CuO3 [110, 111] observe two features in the 2 eV range for
light polarizations parallel to the chain. There is however no feature in the absorption
perpendicular to the chain direction but parallel to the plaquettes. This argues strongly
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against the possibility of an OCE mode. We therefore abandon the notion of the OCE
in the following.

Figure 3.11.: A one-dimensional chain of corner-sharing copper (small circles) and oxygen (large circles)
atoms realized in the compound Sr2CuO3 which can be understood as an analog of the CuO2 plane
along the chain axis but reflecting the physics of an isolated plaquette perpendicular to it.

So, what is the origin of the two-peak structure for the Sr2CuO2Cl2 data? Again,
optical experiments on Sr2CuO3 [112] prove rather helpful in this respect. For com-
parison and in order to facilitate the discussion Fig. 3.12 compares the behavior of
the optical conductivity as reported for Sr2CuO3 in Ref. 112 with the one calculated
via a Kramers-Kronig transformation from the EELS data. Though they differ in
their absolute values which possibly points to different sample qualities (impurity
concentrations etc.) they both share a common behavior in the energy range of interest.
There is a sharp peak slightly below 2 eV with a small additional hump on the high
energy tail (around 2.5 eV) which translates to the double-peak structure in the loss
function also for Sr2CuO3 [112]. Note that this behavior is also reported in the DMFT
literature (see [113]).

500

250

0

s
 (

W
-1

 c
m

-1
)

6420
Energy  (eV)

Figure 3.12.: The optical conductivity for Sr2CuO3 (left panel, reproduced from [112]) and Sr2CuO2Cl2
(right panel) as derived by a Kramers-Kronig transformation of the EELS intensity shown in Fig. 3.9.
In both cases there is a sharp feature below 2 eV (labeled A in the left panel) followed by a small
shoulder (labeled B).

Therefore, in agreement with Ref. 112, we identify the sharp feature in the conductiv-
ity (corresponding to the lower of the two features in the loss function) as the transition
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to the TCE shown in Fig. 3.10 and the hump on the high energy side to a resonance of
this excitonic mode that can be understood as an unbound electron-hole pair, similar
to the scattering states in a hydrogen atom. This scenario will turn out to provide a
consistent description of all experimental phenomena as discussed in the remainder of
this section.

As the authors of Ref. 112 correctly point out, the presence of a sharp peak in the
conductivity spectra indicate the presence of a sizable intersite Coulomb-attraction
which leads to the formation of the excitonic mode. Were it absent, the EELS spectra
for Sr2CuO2Cl2 would consist only of a single peak, caused by the resonance. This
is similar to what is known for conventional semiconductors where the inclusion of
electron-hole attraction between the valence and conduction band leads to a strong
modification in the absorption spectrum and most importantly to the presence of sharp
excitonic peaks that acquire substantial spectral weight in the energy region of the gap
edge [114]. Nevertheless, the “exciton physics” in a strongly correlated system is much
more involved than in conventional semiconductors, in particular due to the strong
interference between the charge- and the spin-channel, exemplified already in Fig. 3.5
and further discussed below.

The theoretical foundation for the formation of a true excitonic mode is given by
the extended single band Hubbard model where in addition to the onsite repulsion
U there is a nearest neighbor Coulomb term characterized by the parameter V that is
known to produce a bound, i. e., excitonic state for V > 2t in the one-dimensional and
for higher values in the two-dimensional case [115–118]. On qualitative grounds one
can understand this in a straightforward manner at least for the 1D case: the excitation
energy for a particle-hole pair on nearest neighbor sites is given by ∆E = U−V, instead
of U were they created further apart from each other. If the hopping parameter t is
not too large compared to the Coulomb attraction parametrized by V, the resulting
object will have no reason to dilute into its constituents in order to gain kinetic
energy. Remarkably, these bound states have been experimentally verified also in other
transition-metal compounds like Ni halogenides [116] which points to their general
importance for correlated electron systems.

Concerning the doping induced changes observed in Fig. 3.9 they are also readily
explained within the above given framework. Naturally the introduction of additional
charge carriers in the system will influence the exciton formation. This is due to
the screening which will lower the binding energy of the exciton, for high enough
dopant concentrations eventually even below the critical value to produce the bound
state. Note, however that according to Fig. 3.13 at least for the Ca1.95Na0.05CuO2Cl2

sample the carrier density is not yet high enough to establish metallic behavior and
therefore the screening may be too weak to reduce the probability for the creation of an
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exciton to zero. Nevertheless, as a result of it the exciton will be strongly quenched
and it will acquire less and less spectral weight thereby enhancing the resonance.
Unfortunately the increasing intensity in the energy range up to 1 eV causes a lot of
ambiguities when trying to subtract the elastic line which was therefore not removed
in Fig. 3.9. Consequently it is also not possible to perform a reliable Kramers-Kronig

transformation for the Ca2−xNaxCuO2Cl2 spectra and the spectral weight redistribution
between the exciton and the resonance cannot be truly quantified.

Lying in close proximity to each other the intensity-loss of the bound state will also
shift the resonance mode to lower energies due to the non-linear superposition of two
adjacent features in the loss function. This is all in line with what is observed in Fig. 3.9
where upon doping the double structure quickly disappears leaving a single feature
behind that becomes increasingly softened upon doping. Further experimental evidence
for this interpretation comes from doping dependent spectra where it is always the
low energy part of the 2 eV structure that becomes more affected by additional charges,
pointing to the excitonic origin of the excitation on the low energy side. This can be
observed in La2−xSrxCuO4 [93], in the yttrium family [119], the optical conductivity of
the Ca2−xNaxCuO2Cl2 system shown in Fig. 3.13 and even theoretical DMFT results
[113] support this reasoning. In contrast to the observations in EELS, however, the
experimental optical conductivity does not show an energetic shift upon doping. This
is because—as pointed out already in Sect. 2.4.3—σ(ω) ∝ ωε2(ω) reflects a linear
superposition of several excitations, i. e., changing the parameters of one oscillator will
leave another one unaffected, as can be easily verified within the Drude-Lorentz-model
(Sect. 2.4.3).

3.3.2. Dispersion Of The CT-Exciton

Now we turn to the momentum dependence of the charge-transfer-exciton. To set
the stage Fig. 3.14 summarizes what has been obtained for the parent compound and
the corresponding spectra for the Ca2−xNaxCuO2Cl2 system are shown in Fig. 3.15.
Again, the present section will lay the focus only on the features around 2 eV and the
low-energy peculiarities are postponed until Sect. 3.4.

Already this superficial comparison reveals remarkable differences for the momentum
dependence. The parent compound obviously shows a sizable dispersion (see also
Fig. 3.16). This is in line with other reports from EELS [121] and with what has
been observed—though with worse resolution—in x-ray scattering experiments on
Ca2CuO2Cl2 [122, 123]. In remarkable contrast to that, for the Ca2−xNaxCuO2Cl2 system
the feature of interest is strongly localized and rapidly looses strength upon leaving
the center of the Brillouin zone. This behavior is obviously rather independent
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3. EELS On Underdoped Cuprates

Figure 3.13.: The resistivity (left panel) and the optical conductivity (right panel) for the
Ca2−xNaxCuO2Cl2 samples. Both panels show the typical behavior of the cuprates. There is in-
sulating behavior for zero and small doping concentrations followed by a metal-insulator transition at
larger values of x. Images taken from Ref. 120.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

q  [ A - 1 ]
0 . 7

0 . 5

0 . 4

0 . 3

0 . 2

0 . 1

[ 1 0 0 ]

No
rm

ali
zed

 in
ten

sity
 (a

rb.
 un

its)

E n e r g y  l o s s  ( e V )

q  [ A - 1 ]  
0 . 7

0 . 5

0 . 4

0 . 3

0 . 2

0 . 1

[ 1 1 0 ]

E n e r g y  l o s s  ( e V )

Figure 3.14.: The dispersion of the charge-transfer exciton in Sr2CuO2Cl2 according to Ref. 102, 103. One
can observe a sizable dispersion of the structure in both lattice directions.

of the exact doping concentration. To give a more quantitative impression of the
different behavior for (non)zero doping Fig. 3.16 compares the dispersion of the main
Sr2CuO2Cl2 feature (around 2.5 eV in Fig. 3.9) with the peak seen in the doped samples
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Figure 3.15.: The EELS intensity in Ca2−xNaxCuO2Cl2 for doping concentrations and lattice directions
indicated in the subfigure captions. All spectra have been normalized on the high-energy side between
3.5 eV and 4 eV.

(Ca1.95Na0.05CuO2Cl2 is taken as the example). The energy positions are taken to be the
local maxima of the EELS intensity in the given energy range around 2 eV. Again, it is
clearly visible that the insulator disperses significantly, in stark contrast to the data for
x > 0.

As discussed in Sect. 3.2 the undoped cuprates show well pronounced antiferromag-
netism. Zhang and Ng developed a theoretical understanding for the exciton dynamics
in this particular case [108]. They elaborated that the geometry of the CuO2 plane
leads to four excitonic modes of different symmetry. Due to symmetry reasons only
one of them is dipole active, i. e., can be excited in the limit q → 0 and it corresponds,
in extension to the schematic view presented in Fig. 3.10 to a fourfold symmetric
combination of oxygen contributions forming the additional hole around the central
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Figure 3.16.: The dispersion of the charge-transfer exciton as a function of momentum transfer for
Ca1.95Na0.05CuO2Cl2 (open circles) and Sr2CuO2Cl2 (solid squares).

copper site. Upon increasing momentum the different modes are allowed to propagate
due to tpp and tpd discussed already in connection with Eq. 3.1. Now, the important
thing to realize is that the binding of the two spinless objects forming the exciton
shown in Fig. 3.10 leads to their ability to move through the lattice without disturbing
the antiferromagnetic surrounding.‖ This is in contrast to the processes discussed
in relation with Fig. 3.5 where the frustration of the antiferromagnetic order led to a
strong confinement of the single-particle excitations. We therefore conclude that the
dispersion of the Sr2CuO2Cl2 features is driven by the exciton which is essentially free
with respect to the antiferromagnetism. It shifts to higher energies with increasing
momenta (in agreement with the theoretical prediction of Ref. 108) thereby merging
into the resonance. The remaining single feature that is observed for q > 0.3− 0.4 Å

−1

in Fig. 3.14 disperses further up. But this is always driven by the exciton which is
however not resolved anymore at higher momenta. Therefore Fig. 3.16 tracks only the
behavior of the (at q = 0.1 Å

−1
) second feature.

The fact that the Ca2−xNaxCuO2Cl2 spectra consist only of a single structure reveals
that the exciton is strongly quenched which provides also the clue why the disper-
sion breaks down. The continuum state that survives the doping corresponds to an
essentially unbound particle-hole pair. Though the antiferromagnetism is suppressed
upon doping there remain fluctuations of the magnetic order at least on a local scale.
Therefore with the particle and the hole created during the EELS process we have
twice the situation shown in Fig. 3.5 with the same result: The magnetic order leads

‖There are hopping paths possible which would eventually disturb the spin order but they are only
higher order corrections in a perturbative treatment and therefore negligible.
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to a confinement observable as the absence of a dispersion in Fig. 3.15 and Fig. 3.16.
Another contribution to this may come from the fact that the doped charges occupy
randomly distributed Zhang-Rice-singlets which act as scattering centers confining
the wavefunctions of the particle and the hole forming the resonance to a small area
within the CuO2 plane. This corresponds to the famous disorder induced Anderson

localization [124] and may be the dominant contribution for x = 0.1 as on the one hand
the concentration of the Zhang-Rice-singlets is already rather high and on the other
hand the antiferromagnetism no longer effective enough in localizing the particle-hole
pair.

3.4. Evolution Of The Charge Carrier Plasmon

Now we turn our attention to the increasing intensity around 1 eV in general and to
the apparent asymmetry in the dielectric response for the two lattice directions in
Ca1.9Na0.1CuO2Cl2 system (see Fig. 3.9 and Fig. 3.15) in particular.

Before discussing this intriguing behavior in more detail we shall establish the
microscopic origin of the intensity increase for E 6 1 eV. It has been discussed above
that the doping leads to a strong increase of low-energy spectral weight and the optical
conductivity presented in Fig. 3.13 is in accord with this. In recent years it has become
clear, however, that the charge response in the underdoped regime is not just created by
the emergence of a coherent Drude term. Instead, there is ample experimental evidence
for at least two excitation channels in the infrared (IR) range of the spectrum [120, 125].
There is a coherent Drude term accompanied by a mid-IR structure of, to a large extend,
still mysterious origin. This feature shows, among other things, a scattering rate that
is nearly temperature independent which is in contrast to the Drude term narrowing
considerably for lower temperatures. Both features should and also will in principle
contribute to the intensity enhancement in the tail of the elastic line seen in Fig. 3.9
and Fig. 3.15. Nevertheless, we will neglect this two-component behavior and identify
in particular the peak in the (110) direction of Ca1.9Na0.1CuO2Cl2 around 1 eV as the
charge carrier plasmon, driven by the free charge carriers responsible for the Drude

characteristic in the optical conductivity [93, 120, 125]. This is motivated by several
experimental observations.

According to the resistivity data (see Fig. 3.13) Ca1.9Na0.1CuO2Cl2 shows metallic
behavior which is also in line with the appearance of a rather well defined plasma
edge in the reflectivity spectra leading to the optical conductivities of Fig. 3.13 [120]. In
addition, also other cuprates in particular from the yttrium and bismuth families [126–
130] and even electron-doped systems [131] are known to exhibit analogous behavior in
their optical spectra and the peak around 1 eV has therefore also been attributed to the
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Drude plasmon in those cases. In addition the 1 eV-peak seems to be strong enough
to produce a zero crossing in ε1(ω) (the defining condition of a plasmon), though this
cannot be proved rigorously due to the ambiguities arising from the subtraction of the
elastic line and the resulting impossibility of a reliable Kramers-Kronig transformation.
Moreover the peak shape for q = 0.1 Å

−1
does not reflect simple Drude-like behavior

in the loss function. Nevertheless, the facts discussed above strongly argue in favor of
the plasmon scenario for the 1 eV-feature in Fig. 3.15.4.

From Eq. 2.15 it is clear that an “ordinary” metallic plasmon should exhibit a quadratic
dispersion. But this, as can be seen from Fig. 3.17, is obviously not the case.
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Figure 3.17.: Plasmon dispersion in Ca1.9Na0.1CuO2Cl2 along the two high-symmetry directions. Within
the error bars the plasmon scales linearly with momentum and the bandwidth amounts to ≈ 200 meV
in the considered momentum range.

To avoid any ambiguities arising from the subtraction of the zero-loss peak the
following procedure has been adopted to extract the curves shown in Fig. 3.17. For
the (110) spectra the points in Fig. 3.17 simply track the peak position of the curves in
Fig. 3.15.4. For the (100) direction the plasmon is strongly suppressed and in order to
get any information about the plasmon position the points in Fig. 3.17 were obtained
by extracting the zero crossing (between 1 eV and 1.5 eV) of the second derivatives
from the data in Fig. 3.15.3. This explains the different onset energies for the two
directions which should therefore be considered as an artifact of the data evaluation.¶

The plasmon scales almost linearly with momentum and definitely not quadratically,
at least for small momentum transfers. This is in contrast to the older reports for
other cuprates mentioned above where in all cases the plasmon was found to show a

¶If the same procedure is applied to the (110) direction the onsets coincide within the error bars.
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conventional RPA like q2 behavior. As an example Fig. 3.18 reproduces the behavior
for (optimally doped) Bi2Sr2CaCu2O8+δ reported in [128] and indeed in both high-
symmetry directions the plasmon scales quadratically (note the quadratic scale on the
momentum axis in Fig. 3.18!). Another striking feature is the strong reduction of the
plasmon bandwidth. It amounts to more than 400 meV in Bi2Sr2CaCu2O8+δ and is
lowered to roughly 200 meV for Ca1.9Na0.1CuO2Cl2. In the spirit of an RPA reasoning
this suggests a smaller Fermi velocity for the underdoped Ca1.9Na0.1CuO2Cl2 compared
to the optimally doped Bi2Sr2CaCu2O8+δ or, equivalently, a higher effective mass of the
charge carriers. This may be understood realizing that the underdoped cuprates host a
myriad of possible excitations that can couple to the charge carriers. To give just one
specific example it was shown that there is a strong tendency of the additional holes to
form polarons [132] which may lead to a dressing of the charges in close analogy to
what has been said in Sect. 3.2 in relation to the string-formation.

Figure 3.18.: The dispersion of the charge carrier plasmon for Bi2Sr2CaCu2O8+δ [128]. In both shown
lattice directions the plasmon scales quadratically (note the quadratic scale on the abscissa), reminiscent
of an “ordinary” metal. This is also consistent with the large Fermi surface extracted from this data
[133].

In order to quantify the anisotropy in Ca1.9Na0.1CuO2Cl2 further, measurements have
been performed over a wide range of temperatures and angles within the CuO2 plane.
The two maps shown in Fig. 3.19 summarize these results.

As can be seen there is a substantial angular range with an intensity enhancement
around 1 eV at the expense of the charge-transfer-peak. This angular range is, though
not perfectly symmetric, clearly located around the nodal region defined in Fig. 3.7
indicated by the dashed lines marking the different high-symmetry directions derived
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Figure 3.19.: The EELS intensity in Ca1.9Na0.1CuO2Cl2 displayed as a function of the angle with respect

to the (π, 0) direction as indicated in Fig. 3.7 for q = 0.1 Å
−1

. There is an apparent increase of the signal
around 1 eV in the vicinity of the nodal direction. The maps have been normalized on the high-energy
side between 4 eV and 5 eV.

from the lattice structure shown in Fig. 3.8. From the comparison of the low- and
high-temperature maps it is not directly clear whether or not the length of this “reef in
front of the lagoon” changes its length with temperature. To this end Fig. 3.20 presents
angular cuts at a constant energy-loss of 1 eV. For a more quantitative estimate the data
points have been fitted to a single Gaussian and the results of this fitting clearly argue
against a temperature dependent shrinking or expansion of the 1 eV-peak but support
the mismatch concerning the centering around the nodal direction. This asymmetry
is rather puzzling, as the uncertainty of the spectrometer is normally less than the
roughly ten degree mismatch between the peak maximum seen in Fig. 3.20 and the
high-symmetry direction (π,π).

Another instructive presentation of these phenomena is given by Fig. 3.21. It was
produced by measuring constant energy cuts at three different energy-losses: ∆E = 1 eV
(the energy of the plasmon), ∆E = 2.4 eV (the energy of the charge-transfer-peak) and
∆E = 4 eV. Then the first two cuts were divided by the third one which, as can be seen
from the maps in Fig. 3.19, can be considered momentum independent. Obviously, there
is a fourfold symmetry in the intensity swapping between the charge-transfer-peak and
the plasmon. From this we can conclude that it reflects an intrinsic feature that is not
caused by inhomogeneities resulting from the cutting of the crystals along a particular
direction in the microtome. If this were the case, the symmetry would only be twofold
as the knife would produce two distinguished axes: one parallel to the cutting direction
and the other one perpendicular to it. In accord with Fig. 3.20 the symmetry breaking
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Figure 3.20.: A constant energy (E = 1 eV) cut through the maps from Fig. 3.19. The solid lines correspond
to Gaussian fits (central position: 35◦ (30 K), 38◦ (300 K); angular widths: 21◦ (30 K), 23◦ (300 K)). The
dashed line indicates again the position of the node according to the Bragg spectra (see Fig. 3.8).

turns out to be robust against temperature variations as there are no obvious changes,
neither in the periodicity nor the amplitude of the effect between the lowest and highest
achievable temperatures. This holds also for intermediate temperatures values (not
shown). Finally, Fig. 3.22 shows the behavior of the normalized partial spectral weight
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Figure 3.21.: The EELS intensity in Ca1.9Na0.1CuO2Cl2 displayed as a function of the angle for the
given values of the energy-loss and temperature. The intensities have been normalized to a similar
measurement at an energy-loss of 4 eV (not shown). The vertical dashed bars indicate “nodal” directions
defined in Fig. 3.7 as determined from the crystal structure (Fig. 3.8).

W(φ) =

∫ ω1
ω0

dω ω Im
(
− 1

ε(ω,φ)

)
∫ ω1

ω0
dω ω Im

(
− 1

ε(ω,φ0)

) , (3.2)

evaluated between the low- (ω0) and high-energy (ω1) cutoff. The angle φ is measured
with respect to the antinodal direction and φ0 corresponds to the angle where the weight
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has its maximum (see the caption of Fig. 3.22 for details). Note that the calculated
integrals do not directly measure the density of the charge carriers as given by Eq. 2.14
because the measured intensities are not given on an absolute scale via a Kramers-
Kronig transformation and the elastic line still contributes to the spectral weight in the
vicinity of the low-energy cutoff (see also Fig. 3.15). But the anisotropy shown in Fig. 3.22
is definitely not caused by an angular dependent quasi-elastic line as the normalization
indicated in Fig. 3.19 results also to elastic tails that are angular independent. Therefore
we take the integrals shown in Fig. 3.22 as a qualitative measure of the charge density
which is then inhomogeneously distributed, with the periodicity of 90◦ also observed
for the intensities (Fig. 3.19 and Fig. 3.21). The plasmon carries most of the weight for
ω 6 2 eV, which becomes overcompensated by the charge-transfer-peak for higher
energy cutoffs. This could be expected already by visual inspection of Fig. 3.19 and
remembering that the spectral weight is given by the first moment of the loss function.
This is a remarkable fact given that the sum-rule for the loss function is actually
independent of momentum as discussed in relation to Eq. 2.13. In other words the
weights shown in Fig. 3.22 are expected to be the same for all angles if the integrals are
evaluated up to high enough cutoffs, which is implicitly assumed to be the case for
ω1 = 3 eV (see also the caption of Fig. 3.22).
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Figure 3.22.: The normed spectral weight (see Eq. 3.2) as extracted from the maps in Fig. 3.19 integrated
between ω0 = 0.5 eV and ω1 = 3 eV, φ0 = 0◦ (left panel) and ω0 = 0.5 eV, ω1 = 1.5 eV, φ0 = 40◦ (right
panel) as a function of the angle within the CuO2 plane. For ω1 > 3 eV the results do not change as the
energy where the weight is nearly independent of the angle lies around 2.5 eV.

To emphasize it from the very beginning, at present it is not clear what microscopic
mechanisms are responsible for the intriguing findings described above. But, naturally
there is room for speculations and in the following we are going to discuss possible
scenarios for an at least qualitative understanding.
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3.4. Evolution Of The Charge Carrier Plasmon

“Charge-Order Scenario” In general, i. e., for inhomogeneous systems the di-
electric function described in Sect. 2.4 is a symmetric tensor of rank two

ε =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 with εij = εji i, j ∈ {x, y, z} .

According to the general wisdom [65, 120, 134] and also the experimental finding from
Fig. 3.8 Ca2−xNaxCuO2Cl2 is a perfect tetragonal system without any orthorhombicity
or buckling that is often found in other cuprate families. Therefore following a group-
theoretical analysis of this crystal symmetry [135, 136], the above given tensor is
diagonal and has a particularly simple inverse

ε =

εxx 0 0
0 εxx 0
0 0 εzz

 =⇒ ε−1 =

ε−1
xx 0 0
0 ε−1

xx 0
0 0 ε−1

zz

 ,

where the indices x, y, z correspond to the axes of the real and—even more importantly,
in the present case—reciprocal lattice. Consequently the EELS response within the
CuO2 plane is given by

d2σ

dΩdω
∝ Im

(
ε−1
)
= Im

(
ε−1

xx

)
,

and therefore should be isotropic in the plane, i. e., characterized by a single term in
the limit q → 0. As can be seen from the spectra of Ca1.95Na0.05CuO2Cl2 and also
Sr2CuO2Cl2 (cf. Fig. 3.9) in general this is fulfilled for the smallest possible values of
momentum. Note, that setting the momentum transfer to q 6 0.1 Å

−1
enhances the

influence of surface scattering which will then dominate the spectrum [137] prohibiting
a reliable data evaluation. Moreover the contribution of the elastic line will become
more and more important in this momentum range. Motivated by the smallness of q—
which amounts to only about 6% of the size of the Brillouin zone in the experiments
leading to the asymmetry for Ca1.9Na0.1CuO2Cl2—one may consider this effect as being
caused by the appearance of a second in-plane component in the dielectric tensor that is
(for q ≡ 0) only possible for a twofold symmetric system [135, 136]. This leads naturally
to charge- and/or spin-order scenarios.

On the one hand it was mentioned in Sect. 3.2 that the underdoped regime of the
cuprates is characterized by the appearance of inhomogeneous charge- and spin-
densities. In particular the system Ca2−xNaxCuO2Cl2 was reported to show a 4a0 × 4a0

superstructure (with a0 the lattice constant)—called “checkerboard”—in the scanning-
tunneling microscope (STM) for temperatures well below 1 K [138]. There is however
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experimental evidence for the absence of long-range bulk order from x-ray scattering
for the compound with x = 0.08 [139]. This is in perfect agreement with what is
observed in the EELS where no evidence of superstructure reflections (not even at low
temperatures) could be found. It also agrees with the theoretical treatment of Ref. 140
where it was argued that the checkerboard is a peculiarity of the surface—probed by
STM—and does not reflect the bulk behavior accessible for the EELS. On the other
hand there is also evidence for short-range glassy behavior in the underdoped cuprates
[90, 141, 142]. If there are stripe-like domains inside the CuO2 plane they will create a
so called nematic order by locally breaking the symmetry from C4 down to C2. This
leads naturally to the appearance of two in-plane components of the dielectric tensor
[135, 136]. According to Refs. 141–144 the checkerboard pattern observed in the STM is
compatible with this local symmetry breaking. Along such a stripe domain there will be
metallic characteristics like easy charge propagation and also a large screening whereas
perpendicular to it charges are confined and the screening is weak. If there was a single
domain of this order there would, however, be a distinguished axis (parallel to the
stripes) and the symmetry would really become broken on a large scale from tetragonal
to orthorhombic. This is not what we observe. Instead there must be spatially separated
domains of stripes that are perpendicular to each other. Otherwise there is no reason for
perpendicular directions to produce an identical signal in EELS. A schematic account of
the effect is given in Fig. 3.23. Note that the size of these domains must be substantial.
Translating q = 0.1 Å

−1
to real space results in a typical length scale of l ≈ 60 Å which

is significantly larger than the structures that appear as checkerboards in the STM. If
they were smaller the wavelength of the EELS electrons would average over them, with
the result being a homogeneous signal, in contrast to the experimental observation.
The orientation of the domains is not necessarily constant in time. Instead they may be
fluctuating [89]. But assuming that the reorientation of these glassy stripes involves
also the lattice via electron-phonon coupling these fluctuations can be considered very
slow compared to the short timescale of the EELS process so that the experimentally
observed effect is just a snapshot of the order that has structure in space and time.
It is also important to realize that the presence of charge order does not necessarily
exclude the existence of well-defined quasiparticles. In La2−xBaxCuO4 with x = 0.125
a compound which is known to exhibit long-range order in the bulk, photoemission
finds quasiparticle states along the nodal direction [145]. A similar effect is observed in
Ca2−xNaxCuO2Cl2 [146].

There are nevertheless several problems related to this interpretation. It is known
from La2−xSrxCuO4 that the stripes run along the diagonal direction for x < xc below
but parallel to the principal axes for x > xc where xc is the concentration of the metal-
insulator transition [147] an effect also found in the nickelates [148]. As discussed
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Γ

Figure 3.23.: Possible effect of a glassy order on the optical response. The ellipses describe different
domains inside the CuO2 plane with metallic (insulating) character along their long (short) axes. The
solid barrels correspond to the underlying Fermi surface of the optimally doped compounds and the
shading indicates the regions where the plasmon appears. The image is highly schematic as it combines
real (ellipses) and reciprocal space (the Fermi surface). See text for details.

above Ca1.9Na0.1CuO2Cl2 is metallic but the metallicity seen in the EELS—reflected by
the appearance of the plasmon—is obviously more pronounced along the diagonal
direction which contradicts the foregoing. Note that the checkerboards in the STM are
also oriented along the principal axes. Another effect that contradicts the observations
discussed above is that in the compounds which are known to exhibit long-range order
the anisotropy of the charge transport is strongly temperature dependent [149]. Maybe
this can be reconciled assuming that a glassy like order is highly fluctuating and only
locks in at very low temperatures which are not accessible in the EELS where cooling
below T ∼ 20 K is hampered by the transmission geometry. Finally, it is important to
keep in mind that EELS never measures at q = 0. Therefore the above given reasoning
concerning the appearance of a second in-plane component of the dielectric tensor—
which is strictly valid only for zero momentum—should be handled with care, although
it is nevertheless quite astonishing that the discussed effect has never been observed in
any other system.

“Arc-Scenario” Another possible approach which does not directly require the
existence of charge- and/or spin-order involves the development of the Fermi surface
with doping.From ARPES investigations on the Ca2−xNaxCuO2Cl2 system it is known
that the underdoped compounds exhibit the Fermi surface arc that was mentioned
already in Sect. 3.2 [146, 150]. This means that well defined quasiparticles exist only in
the nodal region whereas the spectrum in the antinodal region is dominated by broad
features. Moreover the existence of the pseudogap leads to a strong suppression of
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the spectral weight away from the node. In other words in this region of momentum
space the pseudogap, whatever its origin is, does not allow the existence of a metallic
band that may host a plasmon as its characteristic feature in the two-particle channel.
Therefore one may conclude that the intensity enhancement around 1 eV observed for
momentum transfers parallel to the (100), i. e., the arc direction simply reflects the
response of the Fermi surface arc. This, however, is misleading, for several reasons.

Starting from the perspective of the large Fermi surface of the overdoped compounds
and employing a framework developed for Bi2Sr2CaCu2O8+δ where the susceptibility
χ(q, ω) being related to the dielectric function via Eq. 2.7 can be expressed according to

χ(q, ω) ∝
〈
(q · v)2〉

FS +

〈
(q · v)4〉

FS
(h̄ω)2 +

1
12

〈
(q · v)

(
q · ∂

∂k

)2

(q · v)
〉

FS

(3.3)

with v = ∇kE(k) and 〈. . .〉FS indicates an averaging over the Fermi surface [128, 133]
it can be seen that the EELS signal within a particular direction q is influenced by
all other areas of the Fermi surface due to the averaging procedure. Consequently,
the signal measured “in the nodal direction” always contains information from the
region where the pseudogap is largest. Therefore the signal along the diagonal does
not solely probe the arc. In addition the size of the pseudogap in underdoped cuprates
is smaller than 100 meV—an energy scale well below the plasmon energy of 1 eV. In
more conventional systems like silicon with a band gap of ∼ 1.1 eV the volume plasmon
located at 16.7 eV in this case behaves essentially as if it were created by free electrons
[151] (in agreement with Eq. 2.17). Assuming this to be a generic feature of an electron
gas, this implies that the pseudogap should not be visible at all in the EELS signal at the
energies of the plasmon and therefore the plasmon should behave like in the optimally
doped compounds. The data are in obvious conflict with this reasoning. Another point
arguing against “arc physics” is the temperature independence of the angular range
over which the plasmon is visible (cf. Fig. 3.20). This is in contrast to the behavior which
is observed in ARPES where the arc clearly shrinks with decreasing temperature [96].
If EELS were indeed able to probe the arc, one should see its temperature dependence,
which is not the case. Finally it is clear that the development of the Fermi surface with
doping does not break the symmetry of the underlying lattice, i. e., independent of
whether the underdoped compounds show arcs or closed pockets around the nodal
direction there are four of them (one at each node) arranged in a tetragonal symmetry.
It is therefore not clear how the shape of the Fermi surface alone can produce several
components of the dielectric tensor, necessary to induce the anisotropic response in
Ca1.9Na0.1CuO2Cl2.
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“Momentum-Dependent Metal-Insulator Transition” There is another pos-
sible scenario which is certainly related to the physics of the Fermi arc and might even
provide an explanation for its physical origin.

It was mentioned above that the metal-insulator transition in a strongly-correlated
system is driven by the redistribution of spectral weight between the upper/lower
Hubbard band and the quasiparticle states in the vicinity of the Fermi level. There is a
subtlety related to this [152, 153]. Considering first a conventional semiconductor with
N sites, it is clear that the spectral weight for removing (adding) an electron from (to)
the valence (conduction) band is 2N. If such a system is doped with a single hole the
chemical potential will shift into the valence band and the spectral weight for electron
removal (addition) will become 2N − 1 (2N + 1), with the weight for electron addition
being distributed between a high-energy part (the conduction band) and a low-energy
part (the empty state in the vicinity of the Fermi level). The important point to realize
is that the high-energy part is unaffected by the doping and the low energy spectral
weight simply scales with the doping.

This situation is different for a Mott insulator in the strongly correlated regime
(U/t � 1). There, both, the lower and the upper Hubbard band have a weight equal
to N − 1 when one hole is doped. This is because states in the upper Hubbard band
can only be occupied if the state in the lower Hubbard band is already filled, which is
not the case if a hole is doped (an electron is removed) from the chain. Simultaneously,
there are two possibilities to add an electron near the Fermi level to the site which
is empty. Hence, there occurs a transfer of spectral weight from the upper to the
lower Hubbard band, i. e., states are transferred from high to low energies with the
low-energy weight scaling with twice the doping.

While the former two scenarios are particle-hole symmetric the special point behind
the cuprates is that they are charge-transfer insulators. This means that in the localized
limit (t → 0) doping the system with electrons corresponds to the case of the Mott

insulator—because electrons are doped into the upper Hubbard band—but the addi-
tion of holes with which we are concerned with in the Ca2−xNaxCuO2Cl2 system is
reminiscent of the conventional band insulator. As a consequence one would, at first
sight, not expect a spectral weight transfer between high and low energy scales. This
situation changes considerably as soon as hybridization is switched on [153]. Then
the Zhang-Rice-singlet-band forms which has substantial contributions from the Cu
d-orbitals. It is because of this effect that cuprates, though being of charge-transfer-type,
also exhibit spectral weight transfer upon hole doping.

With this at hand it is also clear, how to relate the observations summarized in
Fig. 3.19 to this scenario. The spectral weight around 1 eV corresponds to states created
at the Fermi level around the nodal direction. Due to the EELS process—which probes
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collective excitations (see Ch. 2)—these states show up at finite energies but one may
speculate that the arc seen in ARPES is just the single-particle image of the same physics.
The prize the system has to pay for the enhancement of the quasiparticle states is a loss
of weight in the upper Hubbard band which explains the drop in the intensity around
2 eV in Ca1.9Na0.1CuO2Cl2. This spectral-weight depletion is, however, not accessible
for photoemission where the unoccupied part of the spectrum is invisible.

This scenario is also compatible with theoretical investigations. Cluster extensions
of DMFT [154, 155] and variational cluster approaches [156] indeed show that upon
doping spectral weight at the Fermi level is created first around the nodal direction, in
agreement with the results shown in Fig. 3.19.

The problem with this approach is that the creation of a “nodal metal” [125] also
preserves the symmetry of the lattice as this momentum dependent metal-insulator
transition happens simultaneously around all four nodes in the Brillouin zone. To
reconcile this with the observed asymmetric signal which actually breaks the underlying
lattice symmetry (see above) one has to postulate a momentum dependent joint-density
of states [50] which produces the observed intensity oscillations. This is clearly a task
for theory. A further drawback of this model is that the averaging (Eq. 3.3) also has
to be performed and this always leads to the appearance of a “nodal signal” in the
antinodal direction. The benefit compared to the “arc-physics” discussed in the ARPES
community is that the energy scale involved in the spectral weight transfer is on the
order of eV rather than the pseudogap range of meV. Therefore even EELS is sensitive to
this physics and this may also provide the reason why the observed effect is so robust
against temperature variations.

In conclusion there is an obvious dilemma and the way out of it is to perform more
experiments. To this end several approaches may be taken. An effect of the pseudogap
on the plasmon is rather unlikely due to the large mismatch in the involved energy
scales. The spectral weight transfer is something which should be observable in other
cuprates as well. Therefore one may probe La2−xSrxCuO4 or also Bi2Sr2CaCu2O8+δ.
The latter one has several additional advantages: it can be prepared rather easily for
EELS, there are plenty of results from photoemission available that may help to relate
the potential outcome to the properties of the observed arc and there are so far no
reports about stripe-physics or other types of charge order so that this effect can be
excluded in this case.

To disentangle the role of order on the plasmon peak it is necessary to investigate
compounds which have proved to show charge- and/or spin-order, in particular from
the lanthanum family or even the nickelates. If stripes are responsible for the anisotropic
charge response, than one can expect even larger effects than those discussed above. In
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particular there is a characteristic momentum—corresponding to the periodicity of the
ordering pattern—that should be visible in the elastic channel as well as the electronic
spectrum, i. e., the loss function.

Beyond this there is clearly a need for theoretical input that has to clarify how to
understand the emergence of the collective mode on the background of a strongly
incoherent single-particle spectrum.

§
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4. EELS On
Transition-Metal Dichalcogenides

4.1. Introduction

Compared to the cuprates the transition-metal dichalcogenides are much longer
known. The first comprehensive experimental survey of their structural and
electronic properties date back to the 1960s [157, 158]. Since then there are

naturally numerous investigations on them but it is probably not overstated that interest
in them changed with time. When first discovered it was quickly realized that they may
be considered as prototype materials for the occurrence of charge-density waves (CDW)
in low dimensions [158–160]. After the seminal contributions by Little [161] and
Ginzburg (for a review see [162], and in particular [163]) predicting possible supercon-
ductivity due to electron-electron interactions without the explicit need for a mediating
phonon, research on these compounds was revived as it was realized that intercalating
them with organic molecules can enhance the superconducting Tc [164, 165]. Taking
these statements together already tells that the transition-metal dichalcogenides show
several order parameters, most prominently CDW and superconductivity. The hype
of the cuprates and the discovery that they also reveal—at least in some regions of
their phase diagram—these two ordering phenomena in close proximity to each other
breathed new fire into the research on the chalcogenides and with time claims appeared
that cuprates and the transition-metal dichalcogenides share common features in partic-
ular concerning “pseudogap-physics” [166]. To be more precise there is evidence from
ARPES that the temperature evolution of the pseudogap is universal between these
two classes [167, 168] and also the optical properties argue for similarities namely the
coexisting of metallic transport with a gap in the single-particle spectrum [169, 170]
and even the presence of the still mysterious mid-IR peak [120, 125, 170] is observed in
both material classes.

Another common feature of cuprates and dichalcogenides is the absence of a pro-
found theoretical understanding of the mechanisms leading to the phase transitions,
although in both cases there is a large amount of data available. Some scenarios for
the CDW formation in the chalcogenides will be briefly mentioned below and there
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are hints that the recently discovered superconductivity in the iron-pnictides [171] may
add another piece to this puzzle.

4.2. Basic Properties

Figure 4.1.: The periodic table of the elements showing possible combinations to realize compounds in
the family of the transition-metal dichalcogenides.

The family of the transition-metal dichalcogenides is huge. To give a first impression
the periodic table shown in Fig. 4.1 summarizes the elements to realize their most
important members. The general stoichiometry is TX2 with a transition metal T=Ti, Nb,
Ta, . . . bound to two chalcogenides X=S, Se, Te. All members show layered structures
with only weak van der Waals interlayer interactions and a stacking X-T-X. The
layering allows several geometrical arrangements leading to numerous polymorphs
which are labeled according to the scheme nPα with n the number of layers in the
unit-cell, P the polymorph indicating the bonding geometry between the transition-
metal and the chalcogenide and α an optional letter that is used if the former two
characteristics do not suffice to determine the structure uniquely. The two basic
building blocks are the trigonal prismatic (2H) and octahedral (1T) arrangement which
form polymorphs of their own but can also be combined into larger unit cells. An
overview can be found in Fig. 4.2. In the following we will concentrate mostly on the
2H modification.
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Figure 4.2.: The different polymorphs of the transition-metal dichalcogenides with the transition-metal
(chalcogenide) shown as solid (empty) circles, respectively. The labels with(out) the superscript indicate
the polymorph (point-group). Image taken from [160].

We will further limit ourselves to representatives containing group V elements, in
particular 2H-TaSe2, 2H-NbSe2, 2H-TaS2 and 2H-NbS2. This is due to the fact that
in an ionic picture the TX2 stoichiometry with X2− requires four valence electrons
from the transition metal for the bonding. Therefore the members of group IV and
IV have an empty and completely filled conduction band, respectively and only the
five valence electrons of the group V elements form a half filled dz2 band, and hence
metallic behavior [165]. Indeed, the most interesting physical properties like the charge
order and (multiband [172]) superconductivity are observed for the members of this
group.

A more detailed impression of the 2H polymorph is depicted in Fig. 4.3. Obviously
each transition-metal site sits in the center of a trigonal prism that is aligned along the
crystallographic c-axis. Within the plane the transition-metal atoms are organized in a
hexagonal pattern which naturally leads also to a hexagonal Brillouin zone. From
Fig. 4.2 it is clear that the different modifications are basically distinguished by the
stacking along the c-axis and together with the layered structure one would conclude
that the in-plane physics should be very similar.

Indeed bandstructure calculations [173–177] indicate that for both polymorphs the
dominant orbital contribution to the density of states comes from the dz2 states. However
the different geometrical surroundings—the crystal field—seen by the transition metal
in the octahedral and trigonal prismatic structure influence, in particular the d manifold
[177]. This leads to different properties for the 2H and 1T modification. In particular
the resulting Fermi surface pockets are substantially larger for the 2H resulting in a
much higher electron density.
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Figure 4.3.: The crystal structure of the 2H modifications. The perspective view in the left panel indicates
the trigonal prismatic surrounding of the transition-metal (large blue circles) and the top-view (right
panel) their hexagonal arrangement in the plane when considering more than one unit-cell.

Another, certainly related, difference lies in the much stronger CDW effects in the
1T polymorphs [178]. To this end Fig. 4.4 compares the temperature dependence of
the resistivities for the most important members. There are anomalies in both families
associated with the appearance of the charge order. While the phase transitions in
the 1T polymorph partly lie above room temperature and invoke a strong increase of
the resistivity, the ordering occurs at much lower temperatures for the 2H members
and causes a decreasing resistivity. This forms a significant puzzle as it contradicts
the simple expectation that the appearance of charge order opens up a gap on the
Fermi level (see Fig. 2.5). We will briefly discuss possible reasons for this below when
mentioning some of the proposed scenarios for the CDW origin.

A further peculiarity is provided by Tab. 4.1 where the transition temperatures to the
superconducting and charge-ordered states are summarized.

All members, except for 2H-NbS2 (see also Fig. 4.4) exhibit a transition to a charge
ordered phase and there is an obvious tendency for the two order parameters—
superconductivity and CDW—to compete for the Fermi surface. In a mean-field
approach this can be understood at least qualitatively as Tc and TCDW are both depend-
ing on the density of states and if the CDW is strong enough to gap already a large
portion of the Fermi surface there is little phase space left for superconductivity and
the resulting Tc values tend to be rather small.

The subtle interplay between both orders is further corroborated by the observation
that it is possible to “switch on” superconductivity by intercalating the host material
with metallic donors [181–183]. In particular the recent observation of superconductivity
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Figure 4.4.: Resistivity vs. temperature for several transition-metal dichalcogenides of the 2H modification
taken from Ref. 179. There is a well pronounced kink for all compounds except for 2H-NbS2, indicating
the absence of CDW order in this particular case (left panel). Comparison of the resistivities for
representatives of the 1T and the 2H polymorphs taken from [160] (right panel).

Table 4.1.: Critical temperatures for the phase transition to the superconducting state (Tc) and the CDW
ordered phase TCDW for selected representatives of the 2H modification, taken from Refs. 158, 180 (see
also Ref. 179). All TCDW temperatures are for the transition to an incommensurate state. 2H-TaSe2 also
has a commensurate phase that appears at about T = 90 K.

Tc (K) TCDW (K)

2H-TaSe2 0.15 120
2H-TaS2 0.65 77
2H-NbSe2 7.2 33.5
2H-NbS2 6.1 −

induced by copper intercalation into 1T-TiSe2 [184] triggered substantial interest; all
the more because this compound appears rather special in that it seems to be a rare
manifestation of the so called excitonic insulator [185]—a particular type of CDW
ordered state that has been predicted to occur under certain circumstances [186, 187].
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4. EELS On Transition-Metal Dichalcogenides

In any case the critical temperatures for the onset of superconductivity remain below
10 K which is hard to access in the transmission geometry of the EELS and we therefore
concentrate on the CDW in the following.

To gain a deeper inside into the processes related to the CDW transition Fig. 4.5
shows the Fermi surface of 2H-TaSe2 measured for temperatures above and below the
transition to the charge-ordered state [167].

Figure 4.5.: The Fermi surface of 2H-TaSe2 and its reconstruction for temperatures above (upper panel)
and below (lower panel) the transition to the commensurate CDW phase. The yellow arrows indicate
the nesting vectors. Image taken from Ref. 167.

The electronic structure is indeed very complex. There are two bands observable.
One is responsible for the electron-like pocket aroung the M point and the other one
forms the hole-like barrels around Γ and K. In addition the onset of the charge-order
causes a substantial folding of the bands accompanied by the occurrence of gaps in the
single-particle spectrum which open predominately at those points that are connected
by the nesting vectors. From similar measurements on 2H-NbSe2 [188] it is also known
that these so called “hot-spots” are also the points where the superconducting gap is
zero. This underlines once more the obvious competition between the two ordering
phenomena and it points to a prominent role of the conventional Peierls-like nesting
scenario for the origin of the CDW.

While this is certainly appealing and the majority of past investigations adopt this
line of reasoning, there is evidence that other mechanisms might also be able to capture
at least some parts of the relevant physics. It was realized early on that the conventional
nesting scenario is not capable of describing the simultaneous appearance of gaps
in the single-particle spectrum and the enhanced metallic character (see Fig. 4.4) in
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the ordered state. Therefore the authors of Ref. 189 developed a different approach
that relies on the presence of saddle points on the Fermi level that are connected by
the CDW vector and the gap therefore opens only in this momentum range. With
the gapping of these regions of high-density of states, the scattering of the charges is
strongly reduced, leading to a drop in the resistivity when entering the ordered state.
Later investigations revealed however that the saddle points are too far away from the
Fermi level suppressing the required singularity in the susceptibility [173, 178] and
that the corresponding points are not connected by the CDW vector [190]. This argues
strongly against this often called saddle-point scenario.

More recently it has been argued that the coexistence of metallic conduction and the
charge order can be understood with a peculiarity of the Wannier functions (WFs)
constructed from the dz2 dominated band structure at the Fermi surface [191]. It
could be shown that the particular shape of the WFs leads to an enhancement of the
next-nearest-neighbor compared to the nearest-neighbor-hopping and this leads to a
decoupling into three independent sublattices in the ordered states with one staying
undistorted forming the reason for the still metallic conduction below TCDW.

Other approaches based on an extended Hubbard model emphasize different aspects
for the explanation of the CDW transition and its competition with superconductivity
[192]. There it is shown that only the combined effect of saddle-points and inter-
site Coulomb interaction V may give rise to a singularity in the susceptibility and
that it is the V-term that decides in favor of superconducting or charge order in that
superconducting pairing is driven by spin-exchange and that enhanced fluctuations
in the charge channel will enhance the CDW order. Hence the problem of which
order appears first is basically one that relies on the strength of spin- and/or charge
fluctuations. It is, however, not clear whether the Coulomb interaction in the 4d and
5d shells is strong enough to produce substantial spin fluctuations according to the
mechanism discussed in Sect. 3.2.

To conclude this incomplete list of possible mechanisms for the CDW order there are
also claims that it is “simply” the influence of momentum dependent electron-phonon
coupling that drives the instability [193–195].

In summary the emerging picture is still unclear on the theoretical as well as on
the experimental side and besides all these mostly weak-coupling scenarios there is
also evidence for substantial many-body effects in the dichalcogenides and the recent
discovery of superconductivity in iron-based compounds may open the door to add
another possible source or at least contribution to the CDW mechanism. We come back
to this point in Sect. 4.4.
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4. EELS On Transition-Metal Dichalcogenides

4.3. Plasmon Dispersion

To give a a first overview of the optical response in the 2H representatives Fig. 4.6
shows the EELS intensity for 2H-TaSe2 in a large energy range for momentum transfer
polarized along ΓM. Due to the D6h symmetry of the lattice the signal is isotropic within
the plane [135] and the spectrum looks identical in the ΓK direction. The observed
behavior is consistent with earlier reports [157, 196]. There is a peak around 21 eV
corresponding to the bulk plasmon and several interband transitions. From the above
given discussion it is clear that the 2H modification is metallic and one can therefore
expect the appearance of a Drude plasmon. Indeed this is observed at about 1 eV
(indicated by the arrow). Its behavior will be our main concern in the following.
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Figure 4.6.: The EELS intensity for 2H-TaSe2 for q = 0.1 Å
−1

along ΓM. Besides several interband
transitions and the volume plasmon around 21 eV there is the charge carrier plasmon indicated by the
arrow. Except for details (see below) the response of the other representatives is very similar.

The momentum evolution in the low-energy region of the charge carrier plasmon is
shown in the left panel of Fig. 4.7 along the ΓM direction of the Brillouin zone. The
dispersion is isotropic within the hexagonal plane and we therefore focus only on this
particular polarization in the following. To minimize the influence of the elastic line
the EELS intensity was fitted to a function of the form

I(ω) = I0

[
ζ exp(−ηω2) + Im

(
−1/ε(ω)

)]
ε(ω) = 1−

ω2
p

ω2 + iγω
(4.1)

where ζ and η account for the behavior of the elastic line which is assumed to have
a Gaussian shape and the model dielectric function is the Drude behavior discussed
in Sect. 2.4.3. The result of the fitting—after the subtraction of the Gaussian part —is
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4.3. Plasmon Dispersion

the loss function of the sample, multiplied by the intensity factor I0 that contains all
experimental details like the beam intensity or the sample quality. To obtain the true
loss function Im (−1/ε(ω))it is necessary to perform a Kramers-Kronig transformation.

The plasmon obviously loses strength upon leaving the zone center and even more
importantly it shifts to lower frequencies. This is in strong contrast to the generic
metallic behavior with a positive dispersion discussed in relation to Eq. 2.15.
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Figure 4.7.: The EELS intensity of 2H-TaSe2 in the energy range of the charge carrier plasmon before (left
panel) and after (right panel) the subtraction of the elastic line according to Eq. 4.1 for the indicated
values of momentum transfer polarized along ΓM. The spectra are normalized on the high-energy side.
Image taken from Ref. 197.

To investigate the possible influence of the CDW order on this intriguing behavior
similar spectra have been measured for T = 60 K. From Fig. 4.8 it is obvious that
this temperature corresponds already to a well-ordered state with well pronounced
superstructure reflections due to the rearrangement of the atoms within the transition-
metal plane caused by the electron-phonon coupling.

The dispersion extracted from the local maximum of the EELS intensity is shown
for temperatures above and below the transition to the commensurate CDW phase in
Fig. 4.9. For all temperatures the plasmon velocity vp = ∇qω(q) is clearly negative and
the bandwidth amounts to approximately 100 meV at room temperature and 150 meV in
the ordered state for the considered momentum range. For higher values of momentum
transfer the intensity below the plasmon peak is strongly enhanced (cf. Fig. 4.7). This
makes it rather ambiguous to extract the plasmon behavior and we therefore restrict
the discussion to q 6 0.5 Å

−1
in the following.

In addition the onset energy shifts to higher values entering the ordered state. This
is shown in more detail in Fig. 4.10 where the behavior for the loss function and ε1
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Figure 4.8.: Temperature dependence of the superstructure in 2H-TaSe2 parallel to the given lattice
directions. The insets show a cut at T = 70 K thereby illustrating the ratio between the superstructure
reflections and the main Bragg peak. The intensity ratio for q‖(110) amounts to ≈ 1/100. Therefore the
superstructure reflections are hardly visible in the right inset. The observed pattern is consistent with
earlier reports [198–200] about the tripling of the in-plane lattice constant in the ordered state.
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Figure 4.9.: The dispersion of the charge carrier plasmon in 2H-TaSe2 in the ΓM direction for temperatures
above and below the transition to the CDW-ordered state as extracted from the peak maxima in Fig. 4.7.
Image taken from Ref. 197.

is depicted. Obviously there is no change of the peak-shape upon cooling through
the transition but there is clearly a blueshift of the zero-crossing in ε1(ω) causing the
different onsets of the plasmon dispersion in Fig. 4.9. This behavior is consistent with
earlier optical experiments [201]. There it was also discussed that this is not caused by
the lattice contraction upon cooling which would lead to an enhanced electron density
thereby enhancing the plasma frequency (cf. Eq. 2.10). Instead this effect is induced
by the appearance of new interband transitions below the plasma energy that become
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4.3. Plasmon Dispersion

allowed owing to the band-folding in the CDW phase.∗ Interestingly systems where
correlations are more pronounced like VO2 show exactly the opposite trend, i. e., a
red-shift of the plasmon upon cooling through the phase transition [202]. In this case
the electron-electron interaction and the proximity to the Mott insulator leads to a
reduced density at the Fermi surface (see Fig. 3.2) and an enhanced effective mass, both
lowering the plasma energy (see Eq. 2.10) when crossing the metal-insulator transition.
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Figure 4.10.: The evolution of the loss function (upper panel) and ε1 in the vicinity of the plasmon energy
for temperatures above (solid) and below (dashed) the transition to the ordered phase for 2H-TaSe2.

Given the obviously robust observation of a negative plasmon dispersion in 2H-TaSe2

one may wonder whether this is a subtlety of 2H-TaSe2. From Fig. 4.11 it can however
be seen that it is a general feature of the transition-metal dichalcogenides at least in the
2H modification. The spectral shape looks almost identical to the 2H-TaSe2 case and
from this one may conclude that the underlying physics is universal.

This is further motivated by Fig. 4.12 where the spectral weight evolution with
momentum is shown. In all cases the redshift of the plasmon energy is accompanied
by a sizable loss of spectral weight in the energy range of the plasmon which together
with Eq. 2.14 signals a loss of free charge carriers that could contribute to the plasmon.

Finally Fig. 4.13 summarizes the behavior of the plasmon dispersion for all the
investigated compounds and compares it to the data reported in Ref. 203 for 2H-NbS2.
There is an obvious discrepancy between this compound and all the others in that
2H-NbS2 clearly shows a positive slope. With the absence of a CDW transition in
2H-NbS2 (see Fig. 4.4) naturally the question arises whether these two phenomena may
be linked.

∗We still employ Eq. 4.1 to subtract the elastic line as the new transitions are not detected in the EELS.
The same holds true for the opening of the CDW gap. The influence of both effects on the plasmon
dispersion is discussed below.
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Figure 4.11.: Plasmon dispersion of 2H-TaS2 and 2H-NbSe2 after the subtraction of the elastic line accord-
ing to Eq. 4.1 measured at room temperature. The behavior is analogous to Fig. 4.7 for 2H-TaSe2. The
peak around 2.4 eV in 2H-TaS2 is probably an artifact of the employed electron-microscopy grid. The
spectra are normalized on the high-energy side.
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Figure 4.12.: The spectral weights of the plasmon peak integrated up to 2 eV normalized to their onset

values for q = 0.1 Å
−1

for different representatives of the 2H-modification.

Therefore the dichalcogenides were intercalated in situ with potassium. This corre-
sponds to doping additional electrons into the dz2 conduction band and from earlier
optical reports [204] it is known that this suppresses the CDW signatures, often even
accompanied by a simultaneous enhancement of Tc [205]. From Fig. 4.14 it is clear
that intercalation of K indeed causes, besides a blurring of the spectra due to the
induced disorder, strong changes in the electronic structure in a large energy window.
In particular there appear new interband transitions and more importantly the plasmon
energy is lowered with increasing K concentration (see the inset).

This behavior was predicted in Ref. 201 in a tight-binding approach supplemented
by a rigid-band model. Considering the narrow dz2 band with a maximal filling of
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Figure 4.13.: The plasmon dispersion for different compounds of the 2H-modification. The energy

positions are normalized to their onset values at q = 0.1 Å
−1

: ωp = 0.947 eV (2H-NbS2), ωp = 1.095 eV
(2H-TaS2), ωp = 0.875 eV (2H-NbSe2) and ωp = 1.024 eV (2H-TaSe2). The data for 2H-NbS2 are
reproduced from [203].
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n0 the half filling—corresponding to the plain system—leads to the highest plasmon
frequency as shifting the chemical potential by adding either electrons or holes will
lower the effective number of charges by filling or emptying pockets of the Fermi

surface. The resulting plasma energy was shown to be given by

ω2
p =

4πne2

m∗ε∞

(
1− n

n0

)
, (4.2)
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which has a maximum for n/n0 = 0.5. Under the precondition that the only parameter
that changes upon doping is the density it is therefore possible to estimate the density
and from this the doping concentration only by knowing the plasma frequency. Assum-
ing a free-electron mass and that each potassium atom donates exactly one electron
to the host one can derive doping values as high as x ∼ 0.8 in the 2H-KxTaS2 system.
Note that according to this scenario for x = 1 the dz2 band is completely filled and the
system would then be insulating. Similar high numbers could be reached also in the
2H-KxTaSe2 system. In principle one could cross-check this estimate by measuring the
raising intensity of the potassium core edges and relate them to those of the transition
metals. However, the high bandwidth of the unoccupied states in the dichalcogenides
smears out the transition-metal edges the result being only poorly defined features.
Therefore one has to rely on the estimates based on the density. Earlier photoemission
investigations [206] employing sodium and cesium evaporation deduced xNa = 0.3 and
failed to extract a value for Cs. How reliable estimates from photoemission are for
the EELS remains unclear because the former is a surface-sensitive technique and the
concentration on the surface does not necessarily correspond to the bulk value. It might
well be that the surface saturates at x = 0.3 but the bulk can host more potassium
especially as the presence of a potassium plasmon in Fig. 4.15 signals a substantial
alkali content inside the lattice.
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Figure 4.15.: The momentum dependence of potassium intercalated 2H-TaSe2 and 2H-TaS2. The spectra
have been corrected for the elastic line according to Eq. 4.1 and are normalized on the high-energy
side. Note the blue-shift of the plasmon peak that contrasts the behavior for the undoped compounds
(Fig. 4.13 and Fig. 4.11)

The momentum dependence of the intercalated compounds is shown in Fig. 4.15.
In remarkable contrast to the behavior reported in Fig. 4.13 and Fig. 4.11 the plasmon
dispersion changed its slope after the intercalation. It is even possible to adjust the
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value of the plasmon dispersion by suitably changing the potassium content as can be
seen from Fig. 4.16.
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Figure 4.16.: The plasmon dispersion for different values of potassium intercalation normalized to their

onset values at q = 0.1 Å
−1

. The plain values are: ωp = 1.02 eV (2H-TaSe2), ωp = 0.93 eV (2H-
K0.33TaSe2), ωp = 0.78 eV (2H-K0.64TaSe2), ωp = 0.65 eV (2H-K0.77TaS2). Note the changing slope for
increasing potassium content.

With the above mentioned observation of an intercalation-suppressed CDW order,
one may consider the switching of the plasmon dispersion as supporting the notion of
the interference of the CDW order with the plasmon. Though this is a potentially quite
interesting idea, it is rather unlikely. First, the observed negative plasmon velocity in
the plain compounds does not change much upon entering the ordered state and if one
assumes that for T < TCDW a substantial part of the charges enter the CDW condensate
then one would actually expect a downshift of the plasmon peak when crossing the
phase transition due to a lowering of the number of the charges. While this effect is
certainly at work it is obviously only of minor importance and it contradicts the above
given observation of an enhancement of the plasmon energy due to the reorganized
band structure which overcompensates the lowered electron density. Another point
concerns the smallness of the gaps that open on the Fermi surface. They are on the
order of 50 . . . 100 meV [167, 188, 207] and hence much smaller than the energy scale of
the plasmon. As a consequence one would expect this low energy scale to be irrelevant
for the collective mode (see also Eq. 2.17). This is also corroborated by the observation
that the appearance of the CDW order, though leading to a substantial redistribution of
the charges on the Fermi level, hardly influences the plasmon behavior. In addition
the Fermi surfaces of 2H-NbSe2 and 2H-TaSe2 are not identical but the plasmon shows
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4. EELS On Transition-Metal Dichalcogenides

virtually the same behavior. We therefore conclude that the plasmon dispersion is not
caused by the CDW order. Moreover from the doping dependent spectra showing
that doping immediately triggers a switching of the plasmon velocity, the deviating
behavior for 2H-NbS2 is maybe purely accidental, in that the crystals employed for the
investigations in Ref. 203 were perhaps non-stoichiometric. This is underlined by the
instability of this compound during the growth process† also forming the reason why
it was not possible to simply investigate 2H-NbS2 again. Finally, if the CDW order is
able to interfere with the plasmon dispersion then one can naturally expect this to be
observed even better in quasi 1D systems where the instability to form density order is
much stronger (see Fig. 2.4). The experimental situation is, however ambiguous in that
the blue bronze K0.3MoO3 which is known to undergo a Peierls transition [208] shows
a positive plasmon slope [209] in the vicinity of the Brillouin zone-center. In the
organic charge-transfer salt TTF-TCNQ that also shows density ordering [210] there is
admittedly a negative plasmon dispersion [211] but this was explained with correlation
effects [212].

We take all this as evidence for the negative dispersion being a general feature of the
pure dichalcogenides—most likely not driven by the CDW order—and are left with the
question, how to reconcile it as this forms an interesting subject in itself.

To this end it is worthwhile to check if a negative plasmon dispersion has ever been
observed before and if so, how the effect which strongly contradicts the generic behavior
expected from the RPA was explained then. Indeed a negative plasmon velocity was
found in elemental Cs [213, 214]. This observation triggered a lot of theoretical efforts
as the alkali metals were initially believed to be nature’s closest realization of a free
electron gas. As the deviations from the RPA prediction are gradually enhanced for
the heavier alkali metals with Cs having the largest Wigner-Seitz radius of rs = 5.62 it
was initially believed that the discrepancies are caused by the increasing importance
of electron correlations. Those effects are incorporated in the dielectric function via a
static [44] or dynamic [215] local-field correction G(q, ω)

ε(q, ω) = 1− vqχ0(q, ω)

1 + vqG(q, ω)χ0(q, ω)

which effectively reduces the coefficient of the quadratic term in the plasmon dispersion
(Eq. 2.15, see also the remarks in Sect. 2.4.2). With this at hand it was possible to obtain
a better quantitative agreement between theoretical predictions and the experimental
plasmon data of the heavy alkali metals but no qualitative one, i. e., inclusion of
correlations indeed lowered the plasmon bandwidth but it was not possible to change
the sign of the plasmon velocity. Note, that in principle strong enough interactions

†H. Berger, EPFL Lausanne, private communication
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can give rise to a negative dispersion in classical plasmas [216, 217]. However, the rs

values required to achieve this are already in the range required for the formation of a
Wigner crystal and the clearly metallic features in the 2H-compounds rules out this as a
possible reason for the negative dispersion. To make a long story short the Cs problem
was finally settled to be more easily understood as an effect of the single-particle band
structure as was shown in Ref. 218. By increasing the atomic number in the first row
of the periodic table the unoccupied d-orbitals move closer to the Fermi level which
opens up new excitation channels for interband transitions in the energy range above
the plasma frequency. Due to the momentum dependence of the EELS matrix elements
[219] these optically (q = 0) forbidden s-d transitions become accessible and gain more
and more spectral weight for increasing values of momentum. Then, if one truncates
the expansion of ε1(ω) in the vicinity of the plasmon already after the linear term

ε1(ω) = β(ω−ωp) β =

(
dε1

dω

)
ωp

> 0 ,

it is clear that additional interband transitions will lower the zero-crossing of ε1 pro-
portional to δε1/β where δε1 contains the influence of the higher lying contributions.
Similar, though in details differing conclusions concerning the importance of interband
transitions were also obtained by the authors of Ref. 220.

To see whether a comparable effect is at work to explain the dispersion in the 2H-
compounds one has to refer to the single particle density of states which is provided
by Fig. 4.17. One can clearly see dominant contributions from the transition metal at
the Fermi level. Possible interband transitions for q → 0 lying above the plasmon
energy are between the chalcogen p and the transition-metal d-states. This corresponds
to the increasing EELS intensity for ω > ωp (see Fig. 4.7 and Fig. 4.11). For non-zero
values of momentum there is obviously also a potentially rather large phase-space for
transitions within the d-manifold. This is then in close analogy to the Cs case. The
behavior reported in Fig. 4.17 further emphasizes the close similarity between 2H-TaSe2

and 2H-NbS2 and this provides further evidence that the different plasmon behavior
shown in Fig. 4.13 is probably not intrinsic.

Besides interband transitions lying above the plasma edge, the band structure
[194, 223, 224] in principle allows also excitations below the plasmon energy that
are potentially hidden in the EELS signal due to a non-sufficient energy resolution
and/or the appearance of the elastic line below the plasmon peak. From the optical data
on 2H-TaSe2 and 2H-NbSe2 [170, 225, 226] there is indeed—though weak—evidence
for an additional contribution below 1 eV which has to become weaker upon increasing
momentum transfer in order to pull down the plasmon peak in the loss function. This
is in line with the rather large values of the Fermi velocities of the involved bands
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Figure 4.17.: The orbital projected density of states (DOS) for 2H-NbS2 (left panel) taken from Ref. 221
and for 2H-TaSe2 reproduced from Ref. 222.

within the hexagonal plane which indeed should lead to a decreasing spectral weight
for the interband contribution for higher momenta. Apparently this contradicts the
increasing intensity on the low-energy side of the plasmon when leaving the center
of the Brillouin zone (see , e. g., Fig. 4.7). Furthermore, the interband contribution
appears weaker in 2H-NbSe2 but the plasmon shows essentially the same behavior
and upon entering the CDW ordered state, the optical spectra [170, 225, 226] and also
the transport data (see Fig. 4.4) all congruently show that below the phase transition
the metallic character is strongly enhanced. This lowers the possible influence of
additional contributions in the infrared. But even with this possibly diminished role of
single-particle excitations, the plasmon still shows its negative dispersion (see Fig. 4.9
where the bandwidth is even larger in the ordered state) hindering a straightforward
interpretation of the plasmon behavior in terms of interband transitions.

Except for the possible role of interband transitions on the plasmon dispersion there
is, however, another factor arising from the single-particle band structure that may
drive the plasmon dispersion which stayed widely unrecognized for the alkali metals.
The authors of Ref. 227 could show that already intraband transitions alone are able to
influence the plasmon in such a way as to soften upon increasing momentum transfer.
They could prove that the coefficient α in front of the quadratic term of the plasmon
dispersion (see Eq. 2.15) actually consists of two contributions. While the first one
coincides with the expression given in Eq. 2.15 and is always positive, the second is
much more complicated. For a single isotropic band it reads

α2 ∼
kF

ωp
sgn

(
dE(k)

dk

)
k=kF

[
∂

∂(ln k)
Tr
(

m0
∂2E(k)
∂ki∂k j

)]
k=kF

.
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4.3. Plasmon Dispersion

This rather cumbersome expression obviously vanishes only in the case of a spherical
Fermi surface where the curvature or the effective mass is constant. But the weak
deviations from the E(k) = k2 behavior present in the alkali metals are already strong
enough to make this term dominating the positive one [227]. Although the (in principle
known) tight-binding geometry for the dichalcogenides [228] would allow an evaluation
of the above given relation for α2 the situation is even more complicated. The Fermi

surface for 2H-TaSe2 and 2H-NbSe2 contains several sheets originating from different
bands and forming electron- as well as hole-like pockets. It is neither clear how to
augment the above given relation to incorporate the presence of several bands on the
Fermi level nor what additional momentum dependence the matrix elements mediating
the transitions between those bands (see also Eq. 2.16) may induce. This makes the
whole problem highly non-trivial as in principle a knowledge of the Fermi surface
and the wavefunctions is required in order to judge on the significance of these effects.
Given that the importance of this second term was also shown for other systems with a
simpler Fermi surface topology [133, 209, 229] it is easily conceivable that they cannot
be neglected for the dichalcogenides in particular due to the presence of saddle-points in
the band structure [189] which should make the role of the conduction-band curvature
an even more serious one according to Ref. 227.

There is in principle room for more speculations on the possible origin of the peculiar
plasmon behavior which involve, however, more exotic explanations. In general the
collective mode spectrum can be expected to be more complex than just the simple
optical plasmon mode of a homogeneous 3D electron gas. As first discussed by Pines

[230] a solid containing two electronic subsystems with different masses can host
an additional acoustic branch in the plasmon spectrum. In analogy with the case of
phonons the acoustic and optical mode correspond to the in- and out-of phase oscillation
of the two components. This situation is in principle realized in the dichalcogenides by
the presence of several Fermi surface sheets originating from two different bands [167].
A similar effect is triggered by the bilayer nature of the unit cell which also allows for
the presence of an additional acoustic mode [231].

The result of this could be a highly complicated collective mode spectrum with a
possible interference of the optical and acoustic branch. But this is probably not the
reason for the negative plasmon dispersion. The necessary condition for the appearance
of the two-band related acoustic mode is a large difference in the mean squared velocity
and density of the different bands [230] which is not observed in the photoemission
data—showing similar Fermi velocities and pocket sizes—ruling out this effect. The
bilayer-related acoustic branch possibly exists and one could in principle investigate
its role by measuring the plasmon dispersion of the 1T modification. But as it turns
out the plasma frequency of them is much lower [232] possibly due to the smaller
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4. EELS On Transition-Metal Dichalcogenides

Fermi surface pockets [233] and therefore below the accessible limit of the EELS set
by the width of the elastic line. Such a mode should, however, be observable also in
other bilayer system like Bi2Sr2CaCu2O8+δ where there is no evidence for it playing a
substantial role in the understanding of the plasmon dynamics. Moreover the positive
slope of the acoustic mode should shift the optical one—which is observed in the
EELS—to higher energies and not to smaller ones contradicting the findings reported
above.

Finally, the layering of the dichalcogenides certainly calls for a proper consideration
of crystal local field effects. Again this provides a very ambitious task as it requires
in principle to solve Eq. 2.16 which in turn needs the whole electronic structure (wave-
functions and eigenvalues) as input parameters. Moreover it is not clear why other
layered systems—like the cuprates discussed above—which are certainly similarly
inhomogeneous, do not show such a peculiar negative plasmon velocity.

In summary, a possible influence of the CDW order on the plasmon dispersion is
rather unlikely. This also holds for other more unconventional explanations in terms
of acoustic modes. At present the interference of single-particle excitations with the
plasmon seems to be the most reasonable explanation for its subtleties described above,
although it is hard to judge on their importance without a more detailed theoretical
and experimental understanding. In particular the “switching” of the plasmon with
doping may be reconciled by this idea. In a rigid band model the additional electrons
provided by the potassium intercalation fill the hole pockets around the Γ point thereby
reducing the phase space for band-to-band transitions.

4.4. Possible Relation To Pnictides

It was explained above that there are numerous ideas how to reconcile the tendency
of the chalcogenides to form CDWs and the lack of a generally accepted consensus
may one allow to add another possible scenario. To this end we will briefly discuss the
recently discovered [171] iron-based pnictide superconductors and in particular the
theoretical model suggested by Sawatzky and co-workers [234, 235].

The main ingredient of the mentioned approach is the large polarizability α of the
anions (As, P, Se) in the pnictide lattice, i. e., the ease for electrical fields to induce
charge inhomogeneities in their atomic shells. This ansatz can provide an explanation
of the unexpectedly small value of the Hubbard U that can be inferred from the good
agreement between the photoemission signal and the predictions based on the local-
density approximation [236]. It was even argued that U is smaller than the bandwidth
[237], putting the pnictides in an at most weakly correlated regime. From this one can
expect that the relationship between them and the cuprates is probably smaller than

86



4.4. Possible Relation To Pnictides

initially predicted as for the latter there is consensus on U being the, by far, largest
energy scale involved.

The conventional definition for the Hubbard interaction in terms of the ionization
energy EI and the electron affinity EA reads

U0 = EI − EA

= E(N)− E(N − 1)−
(
E(N + 1)− E(N − 1)

)
= E(N + 1) + E(N − 1)− 2E(N) ,

where E is the energy of the system containing the number of particles given in
parenthesis. The ionization energy describing the willingness of a system to release an
electron is, in a strongly polarizable medium mostly determined by the surrounding
heavily interfering with the energetics on the ionized site. This is in analogy to the
case of the solvation of, say, ionic salts in water and for the case of a solid the anions
may therefore be regarded as the “solvent”. With this the electron-electron interaction
becomes renormalized by nearest-neighbor point-charge interactions according to

U = U0 − 2Ep with Ep ∼∑
i

αiE2
i =

Zαe2

2R4 ,

where Ep is the polarization (or solvation) energy on the anion site, Z the number of
polarizable nearest neighbors and R measures the distance from the transition metal
to the anion. The additional energy term originates from an electric field Ei, i. e., an
additional charge on the transition-metal site. Of course the effect of a polarizable
medium does not only affect local physics but has also long-range components which
can be captured in a first approximation by a nearest neighbor interaction V that also
becomes renormalized from its plain value V0 to

V = V0 −
1
2 ∑ α

[
(E2

1 +E2
2)− E2

1 − E2
2
]
= V0 − 2αE1 ·E2 = V0 −

2αe2 cos(θ)
R4 .

Here the sum runs over the number of arsenic atoms shared by two iron sites and θ

measures the Fe-As-Fe bond angle. For θ < π/2 as is the case for the pnictides [234] it
is clear that this can reduce the nearest-neighbor Coulomb repulsion possibly even
providing a mechanism to bind charges into pairs.

In general—with the presence of a band structure inside the solid—the situation
is of course more complicated and a microscopic model has to take into account the
substantial overlap between the cation and anion states that are known to exist in the
pnictides (see , e. g., [238]). Nevertheless, the above described framework is interesting
as it potentially leaves its traces in the dynamics of the charge-carriers and it can
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therefore be probed with the help of optical experiments. To see this, it is important
to realize that there is a close connection between the polarizability and the dielectric
function given, for the case of a cubic lattice, by the Clausius-Mosotti relation [239]

4π
3

nα =
ε∞ − 1
ε∞ + 2

,

with the electron density n. The background dielectric function ε∞ is a phenomenologi-
cal parameter that captures the influence of higher-lying electronic transitions, i. e., the
reorganization of charges triggered by and acting back on the propagation of the charge
carriers in the vicinity of the Fermi level. With this at hand the plasma frequency
Eq. 2.10 can be generalized to

Ωp =

√
4πne2

m ε∞
=

ωp√
ε∞

,

where Ωp is now the screened plasma frequency. From this it is clear that the po-
larizability can be derived from an optical spectrum by extracting ε∞. Indeed there
is strong experimental evidence for a prominent role of these effects in the pnictides
where values of ε∞ = 12 . . . 15 are reported [240, 241].

So, where is the relation to the dichalcogenides? To this end Fig. 4.18 shows the reflec-
tivity for 2H-TaSe2 and 2H-NbSe2 as derived from a Kramers-Kronig transformation
of the EELS intensity compared to a Drude-Lorentz fit with ε∞ taken as an additional
fitting parameter.
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Figure 4.18.: The reflectivity obtained from a Kramers-Kronig transformation of the EELS intensity

at q = 0.1 Å
−1

(circles) together with a fit to a Drude-Lorentz model (solid lines). The fitting was
extended to ω = 2 eV and the obtained parameters are: ωp = 4.01 eV, γ = 0.4 eV, ε∞ ≈ 15 (2H-TaSe2)
and ωp = 4.08 eV, γ = 0.4 eV, ε∞ ≈ 20 (2H-NbSe2)

As can be seen the behavior for both compounds is very similar, which could be
expected from the almost identical EELS signal, and in both cases the fitting to a single
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4.4. Possible Relation To Pnictides

Drude term supplemented by ε∞ provides an excellent description of the low-energy
optical response, given the simplicity of the model.

It is the very high value of the background dielectric constant that turns out to be the
most remarkable issue behind the fitting as this directly signals the presence of a high
polarizability felt by the charges on the Fermi surface (the Clausius-Mosotti relation
is steeply rising in the relevant parameter range ε∞ = 1 . . . 20). In particular the strongly
pronounced dip at the position of the plasmon peak in the EELS is a clear-cut indication
of a strong polarizability felt by the free charges as can be easily deduced from a
Drude-Lorentz model. This statement also remains valid if the infrared response
consists of more than just the plasma edge (see the discussion above) because electronic
transitions below the plasma edge will not produce the dip and the subsequent rise in
the reflectivity.

One could of course argue that the plasma frequency is also influenced by the
appearance of an effective mass m∗ instead of the bare electron mass in the denominator
but while this is certainly true it does not allow for an appropriate description of the
shape of the reflectivity. We therefore can conclude that it is not a conventional mass-
renormalization that softens the plasma frequency from its bare value of ωp = 4 eV
down to the experimentally observable Ωp = 1 eV but the strong polarization of the
charges leads to an object one could possible call an electronic polaron, in analogy to
the pnictides [235].

There is also a structural similarity. Like the FeAs-superconductors two transition-
metal ions share two chalcogenide atoms in the 2H modification (see Fig. 4.3) with
a bond angle of about 83◦, again allowing for a reduction of the repulsion between
electrons on the transition-metal sites. It is not a priori clear why this effect should not
be able to favor density ordering, instead of superconductivity. This would then also
provide a possible route to reconcile the evidence for substantial many-body effects
in the dichalcogenides which were constantly reported in the past: the thermopower
deviates from the expectation for an ordinary metal [242], the susceptibility is larger
than predicted by band-theory [178] and from tunneling [127, 243, 244], optical [245]
and even ARPES [167, 207] investigations it is known that the ratio

2∆CDW

kTCDW
� 3.53 ,

clearly signaling the importance of strong-coupling phenomena.
Further support for the prominent role of the chalcogenide atoms on the transition-

metal behavior comes from recent photoemission results on Ta2NiSe5 [246] which also
point to a strongly reduced U = 3 eV on the Ni site and the decisive influence of a
strongly polarizable medium on electronic instabilities. A reliable determination of the
Hubbard U for 2H-TaSe2 and 2H-NbSe2 is therefore desirable although the generally
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good agreement between the band-structure calculations [173] and the observed Fermi

surfaces indicates weak correlations although the larger extension of the 4d and 5d
orbitals in Ta and Nb certainly plays a role in this respect.

All this may be taken as evidence for the nesting of the Fermi surface being insuffi-
cient to capture all the physics of the dichalcogenides which is also in line with recent
theoretical investigations [194, 195] pointing out the fragileness of the criteria for a
nesting-driven CDW instability and that they are hardly fulfilled in a real quasi-2D sys-
tem. This is further corroborated by the observation that different dichalcogenides—in
particular 2H-TaSe2, 2H-NbSe2 and 2H-NbS2–show essentially the same nesting vector
[228] but 2H-NbS2 does not develop the CDW order (see also Fig. 4.4). In the above
mentioned framework this could be related to the observation that the polarizability
scales with the volume of the anions and therefore Se2− is more polarizable than S2−

[247]. On the other hand Nb has a smaller extension of the d-shell than Ta. Hence,
it is conceivable that the polarizability of the sulfur ion is strong enough to “switch
on” the CDW order in 2H-TaS2 but the expected higher U value on the Nb site may
keep 2H-NbS2 from adopting the charge-ordered state although the nesting criterion is
fulfilled. For this it would also be interesting to see whether systems containing the
even larger tellurium are stable and show the ordering in the charge channel.

While there are even more analogies between pnictides and chalcogenides like the
layered structure, the linear dependence of the resistivity over a broad temperature
range [248] and the tendency to form density order [249] one should not forget that
there exist also substantial differences: the pnictides have partly much higher Tc values
and a proper treatment of the dichalcogenides certainly calls for the inclusion of
spin-orbit coupling which is needed to capture particular details of the Fermi surface
geometry [224].

Nevertheless one could argue that the simultaneous appearance of density order
and superconductivity is ubiquitous in nature, as both are present in the cuprates,
pnictides and the dichalcogenides. Cuprates and pnictides certainly have the higher Tc

values and one may take this as a hint that magnetism boosts the superconductivity.
But the story could also be different. If one takes the close relation between density
order and superconductivity as a sign that the corresponding system is in principle
willing to adopt one or the other ordered state and if the nesting of the Fermi surface
is just the—though maybe weak—final breath to favor the density order, what would
happen if one were able to make a compound with highly-polarizable atoms without a
nested Fermi surface? The result could be a superconductor with really high transition
temperatures.

§
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A. Properties Of The EELS Electrons

To extend the discussion in Sect. 2.3.1 the aim of this appendix is to calculate the wave
vector of the primary electrons in the EELS spectrometer. We start from the relativistic
conservation of energy, given by

m(v)c2 = m0c2 + E0 = γm0c2 ,

with the primary energy E0 = 172 keV, m0 the rest mass of the electrons and c the speed
of light. This leads immediately to an expression for the relativistic factor

γ ≡ 1√
1− v2

c2

= 1 +
E0

m0c2 ,

which is necessary to get a connection between the energy of the electrons and their
velocity

v2 = c2 − m2
0c6

(m0c2 + E0)2 .

On the other hand the 4-vector of the momentum reads

pµ =

(
E
c

, p
)
=

(
E
c

, mv

)
=

(
E
c

, γm0v

)
=

(
h̄ω

c
, h̄k0

)
.

So the spatial part of the momentum 4-vector is related to the wave vector to be
calculated according to

k0 =
m0

h̄
γ v .

Hence,

k0 =
m0c

h̄
·
(

1 +
E0

m0c2

)
·
√

1−
(

m0c2

m0c2 + E0

)2

.

and inserting all the known quantities

m0 = 512
keV
c2

E0 = 172 keV

c = 3 · 108 m
s

h̄ = 1.054 · 10−34 Js



justifies the relativistic approach, as

v
c
≈ 0.66 (A.1)

and yields an approximate value for the wave vector

k0 ≈ 230 Å
−1

. (A.2)
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