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Abstract

It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear
envelope during mitosis and it undergoes an interesting shape change during cell
division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell
shape. However, the biomechanical system behind this amazing transformation
is still not understood. What we know is, that the shape must change due to
forces acting on the membrane surrounding the nucleus and the microtubule
based mitotic spindle is thought to play a key role. To estimate the locations
and directions of the forces, the shape of the nucleus was recorded by confocal
light microscopy. But such data is often inhomogeneously labeled with gaps
in the boundary, making classical segmentation impractical. In order to accu-
rately determine the shape we developed a global parametric shape description
method, based on a Fourier coordinate expansion. The method implicitly as-
sumes a closed and smooth surface. We will calculate the geometrical properties
of the 2-dimensional shape and extend it to 3-dimensional properties, assuming
rotational symmetry. Using a mechanical model for the lipid bilayer and the so
called Helfrich-Canham free energy we want to calculate the minimum energy
shape while respecting system-specific constraints to the surface and the en-
closed volume. Comparing it with the observed shape leads to the forces. This
provides the needed research tools to study forces based on images.

Zusammenfassung

Es ist wohlbekannt, dass die Spalthefe Schizosaccharomyces pombe während der
Mitose ihren Zellkern aufrechterhält, welcher dafür einen interessanten Gestalt-
wandel durchläuft - von einem anfänglich sphärischen über einen ellipsoiden und
erdnussähnlichen bis hin zu einem hantelförmigen Gebilde. Der zugrundeliegen-
de biomechanische Mechanismus, der hinter dieser faszinierenden Verwandlung
steckt, ist bis heute unbekannt. Es müssen Kräfte auf die Zellkernmembran
wirken und man geht davon aus, dass die aus Mikrotubuli bestehende polare
Spindelfaser hierbei eine entscheidende Rolle spielt. Um Ort und Richtung
der wirkenden Kräfte zu bestimmen, wird der Zellkern mittels konfokaler Licht-
mikroskopie erfasst. Die hierbei oft ungleichmässige Markierung kann zu Lücken
in der Umrandung führen, wodurch klassische Segmentierungstechniken nur
schwer nutzbar sind. Um dennoch die Gestalt genau zu bestimmen entwickelten
wir eine parametrische Beschreibungsmethode, die auf Fourierreihenentwicklung
basiert. Diese Methode geht implizit von einer geschlossenen, glatten Oberfläche
aus. Es werden sowohl die geometrischen Eigenschaften der zweidimension-
alen Kontur berechnet, als auch diejenigen, die bei der Rotation dieser Kontur
entstehenden Dreidimensionalen. Mit Hilfe des Lipid-Doppelschichten-Modells,
bei dem keine Scherfestigkeit angenommen wird, wollen wir die minimalener-
getische Gestalt unter Vorgabe von Randbedingungen wie der Oberfläche und
dem eingeschlossenen Volumen berechnen. Die Kräfte können dann aus dem
Vergleich mit der tatsächlich vorkommenden Form gewonnen werden. Damit
können wir Kräfte untersuchen, die auf Bildinformationen beruhen.
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Introduction

1.1 General Introduction

Forces are important for life, not only on a macroscopic but also on a micro-
scopic scale. They organize things (and therein reduce the entropy) by directed
movement, for example in cells. Schizosaccharomyces pombe is a frequently used
model organism and a well investigated biological system. Understanding its cell
cycle helps in cancer research and contributes knowledge about the phenomenon
of aging. In this project we focus on the nucleus and examine its morphogenesis.
There are descriptions of interphase nuclear geometry [47] using simulated an-
nealing, but there are no models to describe the complex morphological changes
of mitotic nuclei. The shape transformations are thought to be driven by the
intranuclear mitotic spindle, but the mechanical basis is still not known. First
we highlight the biological background in section 1.2 and explain the used terms.
As we record confocal images, a short overview about confocal microscopy and
the used setup is given in section 1.3. We assume the observed system to be
quasi-static during the time of imaging one particular stage. The method to
analyze the acquired images is based on Fourier series. A similar approach has
been used for confocal images of red blood cells [43], but using spherical har-
monics. In section 2.1 the concepts and the advantages of using this technique
are presented. The determination of a set of parameters (only few) that glob-
ally encodes a given shape provides a powerful tool for shape description. Using
continuous basis functions, we get rid of any resolution limitations imposed by
the mesh (section 2.3). The key step of connecting the confocal image with a
set of parameters, that can be used to calculate geometrical properties and the
difficulties in determining them is illustrated in section 2.4. All the programs
used therefor (besides 2 image-batch-processing ones, that are adapted from
Saleh and Tolić-Nørrelykke, both working at MPI-CBG, Dresden, Germany)
were developed and written by myself using MATLAB®. To deduce the forces
acting on the nucleus we have to calculate the minimum energy shape by fixing
the boundary conditions of surface area and volume (invoking Lagrange multi-
pliers) and minimizing an energy functional. In this model the area difference
elasticity [20] is not considered. The energy is calculated using the mean squared
curvature integrated over the entire surface. The prediction is that there is a
phase transition between shapes that can be described by the used model and
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shapes of later stages, that require additional constraints like the overall length
along the long axis (that can be provided by the mitotic spindle).

1.2 Biological background

The fission yeast Schizosaccharomyces pombe (S. pombe) is a unicellular eukary-
ote belonging to the Ascomycetes (fungi). It is a rod-shaped cell that grows by
elongation at its ends. Division occurs by the formation of a septum, or cell
plate, in the center of the rod [4]. S. pombe has been found to be one of the best
experimental models for the study of cell cycle control [29] and its mechanisms
of cell cycle control are remarkably similar to mammalian ones. This makes
it a rewarding subject for investigation in cancer research. The eukaryotic cell
cycle is divided into four major phases [50]. During the synthesis (S) phase
the DNA is replicated, followed by a gap phase (G2) to prepare and check all
conditions that have to be met for proper continuation. The next step is the
mitotic (M) phase, consisting of mitosis and cytokinesis. Mitosis in turn is sub-
divided into several stages: During the prophase, the chromosomes condense by
tightly folding loops. The chromosomes become aligned at the equator, ready
for segregation during metaphase. In anaphase, the sister chromatids separate
and move to the opposite poles of the spindle (in case of yeast cells). As a last
mitotic step, the decondensation of the sepearated chromosomes takes place in
telophase and the physical division of the cytoplasm (cytokinesis) results in two
daughter cells. They enter another gap phase (G1), that is - apart from cell
growth - especially important to monitor the internal and external environment
and to assure all preparations are being completed. The cycle is closed by en-
tering again in S phase now. G1, S and G2 together are called interphase. In
rapidly dividing S. pombe cells, the S phase follows so shortly the nuclear divi-
sion, that nearly all the newly separated daughter cells emerge as G2 cells from
the start [22].
Generally in eukaryotic cells, microtubules (MTs) [39] play an important role
in cell dynamics and cell polarity. During interphase in S. pombe, they posi-
tion the nucleus at the center of the yeast cell, forming a basket of 6 - 8 MTs.
They are anti-parallel spanned along the long axis of the cell, with their plus
end pointing towards the cell tips and the minus end overlapping in the vicinity
of the nucleus [55]. All of them are entirely cytoplasmic. MTs generally start
to polymerize from microtubule-organizing centers (MTOCs). In fission yeast
a specialized MTOC, called the spindle pole body (SPB) [17], is the origin of
nucleating spindle MTs, that occur within the nucleus at the beginning of mi-
tosis. In late G2 phase the SPB has duplicated and the two SPBs are moved to
opposite sides of the nucleus. At this time the interphase MTs in the cytoplasm
depolymerize. Concerning the spindle in S. pombe, mitosis can be described in
three steps: i) spindle formation (prophase) and subsequently spindle elonga-
tion to span the nucleus in prometaphase. ii) period of constant spindle length
(metaphase plus anaphase A), where alignment of the chromosomes between
the poles and separation of the sister chromatids occur. iii) spindle elongation
(anaphase B), where the two poles pull the two genomes to either end of the
cell [69], [22]. The focus of this project lies on the nucleus during anaphase B,
telophase and cytokinesis. So the nucleus is regarded in more detail.
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Figure 1.1: Confocal images of a S. pombe strain PG2747, genotype: h90, leu1-32
ura4-D18 ade6-216 [D817] during division (telophase to cytokinesis). The inner struc-
ture (ellipsoid, peanut, dumbbell) is the nucleus, the surrounding structure belongs to
the yeast cell membrane. Time interval between subsequent pictures is 120 seconds,
scale bar is 4 µm. Pictures are kindly provided by Tolić-Nørrelykke-group, MPI-CBG,
Dresden, Germany. Note that the dumbbell-shaped nucleus is explicitly derived in
Figure 2.5(d).

1.2.1 The nucleus

In common with other fungi, the nuclear envelope (NE) remains intact through-
out mitosis. It consists of a bilayer of lipids [3], which are amphilic molecules
[9]. More precise, it is a system of two lipid bilayers that are thought to be
connected at the nuclear pores (for details about the nuclear pore complex see
next section). There is found no lamina that provides structural support to the
NE, so that we have a pure lipid bilayer (neglecting membrane proteins) and
therein no extra shear resistance. Even if there is a lamina analog in fission
yeast, it does not influence the NE geometry during interphase [47]. The me-
chanical properties of fission yeast nuclei and vesicles consisting of lipid bilayers
are therein very similar. Also during interphase the nuclear size doubles, corre-
sponding to the doubling of the chromosomes during each cell cycle. Whereas all
the volume increase occurs completely during interphase, the surface increases
partly in interphase, partly in M phase [47]. So there must be a different area to
volume ratio during mitosis, explaining the nonspherical shapes of the nucleus
to some extent. In order to increase the surface area, the NE must be connected
to an external membrane reservoir (for mitosis most likely the endoplasmatic
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reticulum), because lipid bilayers lacking this reservoir can only sustain a small
area increase (≤ 5%) without disruption [61]. The SPB is considered a key
role for proper division and an indispensable part for anchoring the intranuclear
MTs [54] like the spindle to the membrane. An improper anchored spindle or
absence of one of the SPBs (via the msd1 null mutant [71], or mia1 overexpres-
sion [77]) on elongating nuclear spindles leads to formation of a tether at the
side of the mis-anchored or missing SPB, whereas the opposite well-anchored
or SPB-containing side remains undeformed [47]. The SPB is permanently as-
sociated with the NE. During interphase it consists of a main body on the
outside of the NE, but always has a raft of material on the nucleoplasmic side
directly beneath and connected to the main body [17]. Entering mitosis, the
SPB becomes embedded in the NE membrane. This insertion of the mitotic
SPB into the NE requires cut11p (see next section). The most important in-

Figure 1.2: Electron microscopic image of a S. pombe cell during prophase. The
big circular shape within the cell is the nuclear membrane. The dimmer parts on the
nuclear membrane are the spindle pole bodies and they are connected via the bipolar
spindle, which consists of microtubules. The mitotic spindle moves the spindle pole
bodies to opposing sites of the nucleus such that the spindle gets aligned to the long
axis of the cell. The smaller, dark filled structures are vacuoles and the small ring-like
contours mitochondria. Scale bar is 1 µm. The image is kindly provided by M. Storch,
MPI-CBG, Dresden, Germany.

tranuclear MTs for our considerations are those, that are thought to push the
two poles away from each other. They grow from one SPB towards the other
(polar MTs) and interdigitate at the midzone, where kinesin-like proteins (Klp)
crosslink the spindle MTs [65], [69]. The Klp moves towards the polymerizing
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MT plus ends (away from the nucleation site of the MT at the SPB) and as
they connect MTs of opposite direction, they push away the SPBs from each
other. The interdigitating MTs from the two SPBs interact in a way that forms
a mechanically stable bundle [16] and therefore increases the flexural rigidity
[30]. This bundle can clearly be seen in Figure 1.2 (in an early stage, where the
SPBs still move towards opposing sides and get aligned along the long-axis of
the cell). The SPBs also link intranuclear spindle MTs with cytoplasmic astral
MTs, that start to grow tangentially to the NE into the cytoplasm at anaphase
(for details see [34]). One might imagine some cytoplasmic MTs like the astral
MTs anchored at opposite cell ends pulling the spindle poles apart, but it is
highly unlikely in S. pombe since a substantial astral pull was not found and
the pulling motor (dynein) is not essential for proper mitosis [69].

1.2.2 Labeling with Cut11-GFP

Fluorescence is some kind of luminescence process in which susceptible molecules
are electronically excited. By relaxation back to their ground state they emit
light. The energy level system is typically illustrated by a Jablonski diagram
[57]. When a photon is being absorbed whose energy matches the distance be-
tween the ground state and some non-ground state of that fluorophore, it will
be excited into a vibrational state within the excited singlet band. The rate of
excitation per fluorophore is proportional to the excitation intensity I[W/cm2]
and is calculated by αex = Iσ

hν , where σ[cm2] is the wavelength-dependent ab-
sorption cross section and hν the absorbed photon energy [56].
The fluorophore relaxes radiationless and very quickly (∼ 10−12s) to the lowest
vibrational state within the singlet band, leading to the so-called Stokes shift
[33] and therefore to the difference in the excitation and emission spectra (see
Figure 1.3). The desired fluorescence emission that can occur by falling back to
its ground state has to compete with other processes like intersystem crossing
(where a spin-flip occurs that leads to an energetically lower, intermediate state
with a much longer lifetime → phosphoresence) and photobleaching (where the
dye molecule changes chemically to a non-fluorescent one).
As photobleaching, Rayleigh and Raman scattering [44] as well as autofluores-
cence depend on the intensity I, they are limiting factors for increasing αex by
only raising the intensity. The scattering and the autofluorescence further in-
crease the background signal and decrease contrast therein, because they don’t
saturate as fast as the desired fluorescence signal does [57]. GFP [48] (Green
fluorescent protein) is such a fluorophore described above. The excitation and
emission spectra of GFP can be seen in Figure 1.3 (see Legend for details). It is
a relatively small (≈27 kDa) protein and very convenient for labeling biological
samples, especially if the sample is not fixed and intracellular delivery to the
structure of interest (SOI) is complicated. Unlike quantum dots that almost
always require invasive methods, GFP can be synthesized and folded in situ.
Thus, the most elegant way to label the desired region inside a cell is, to express
GFP together with a protein that localizes at this specific region. Here the
NE is the SOI, making the nuclear pore complex (NPC) a promising candidate.
The NPC forms the exclusive conduit to exchange macromolecules between the
nucleus and the cytoplasm, making it an important control point for the regula-
tion of gene expression. In yeast it is a large structure with a molecular weight
of ≈66 MDa. Around 200 of the NPC are distributed over the nucleus [2] and
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Figure 1.3: The excitation- and emission spectrum of GFP. The green line displays
the receptivity of the fluorophore according to the wavelength of the exciting light,
the so called absorption bands. The red one shows the composition of the emitted
light. The black arrow indicates the wavelength of the exciting laser. The plot is
based on data provided by George McNamara on the PubSpectra website, available
under http://home.earthlink.net/~pubspectra

they are embedded in the pore membrane domain of the NE, where the inner
and outer nuclear membranes fuse [64].
Cut11-GFP, which localizes constitutively to the NPC as well as to the mitotic
and meiotic SPBs [70] hence stains precisely the NE for fluorescence microscopy
in a non-invasive manner. Cut11p itself is thought to anchor the NPC (and addi-
tionally the SPBs from prophase to early anaphase) in the NE [75] and therefore
is an integral-like protein (it sits in the membrane instead of just being attached
to it). The accumulation of cut11p around the embedded SPBs leads to cumula-
tive staining and subsequently to the bright spots seen in Figure 1.4 in the first
few stages. Not using Cut11-GFP would consequently suppress the bright spots
of labeled SPBs. A possible disadvantage of using the NPC-related Cut11-GFP
for labeling the membrane could be, that there are potentially no such NPC
in the axial tube that connects the two bulbs of the dumbbell-shape in later
stages of the nuclear division. At least this could explain the bad signal of the
tube compared to other methods of staining the membrane like S. Baumgärtner
(Tolić-Nørrelykke group, MPI-CBG, Germany) used for the images in Figure
1.1. Baumgärtner took the S. pombe strain PG2747, genotype: h90, leu1-32
ura4-D18 ade6-216 [D817]. The plasmid D817 harbours NADPH-cytochrome
(SPBC365.17) P450 reductase-GFP under its natural promotor (see [1] and [52]
for details). This means NADPH-cytochrome P450 reductase-GFP (with a mo-
lecular weight of 76 kDa + 27 kDa from GFP) is the membrane-labeling protein.
It is integral to the membrane alike the NPC, but much smaller. It labels the
membrane material less specifically, so the outer membrane is also visible.

http://home.earthlink.net/~pubspectra
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Figure 1.4: Sequence of a Cut11-GFP labeled nucleus (cell strain: FN41 cut11-
GFP-ura4 + ura4-D18, h−) from telophase to cytokinesis. These pictures are used for
analyzation (Also compare the dumbbell shapes to Figure 2.5(d)). The bright spots
in the membrane of pictures in the left row are the spindle pole bodies. The region
slightly brighter than the background defines the cell outline. Time step between
subsequent pictures (top to bottom, left to right) is 120 s. Scale bar is 5 µm.
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1.3 Confocal fluorescence microscopy

This technique of imaging is based on fluorescent dyes (like Cut11-GFP de-
scribed in section 1.2.2) being excited by a focal spot of laser light. The exci-
tation wavelength (here: λex = 488 nm) is being separated from the emission
wavelength (here: λem = 510 nm) by a dichroic mirror (here: 405/488), which
serves basically as a wavelength-dependent beam-splitter. The specification
405/488 means that light with a wavelength of 405±5 nm and 488±5 nm will
be blocked and hence that it deflects excitation light and transmits the red-
shifted fluorescence, which in turn can be detected without the outshine of the
exiting light (see Figure 1.3 and 1.5).

1.3.1 Principles of laser scanning confocal microscopy

A laser scanning confocal microscope (LSCM) is not much different from a con-
ventional scanning microscope but it allows a better control of the depth by
suppressing the out-of-focus information as well as an enhanced lateral resolu-
tion. The first one because of the fact that only information of a thin region
in the neighborhood of the focal plane is detected. This is done by the pin-
hole which is situated in a plane conjugate to the intermediate image plane
and thus in the focus of the lens. All light from outside the focal plane will be
blocked by the pinhole as one can see following the dashed vertical line in Figure
1.5. The spatial separation gives rise to optical sectioning [76] and therein the
3-dimensional reconstruction of the imaged structure by connecting the slices.
The latter one - the lateral resolution - is dependent on the contrast, which in
turn is dependent on the signal-to-noise ratio. Any contrast reduction decreases
the cut-off distance and therefore degrades the resolution. A better signal-to-
noise ratio therein increases also lateral resolution. The pinhole blocks scattered
light so that it helps to suppress noise. The coordinate system is defined here
as follows: x and y representing the lateral dimension and so the orientation
of the focal plane (see Figure 1.5). They also refer to the axes of the detector
plane. The z-axis is perpendicular to the focal plane and therefore displays the
depth of the object.
One of the big advantages of confocal microscopy is the non-destructive vi-
sualization that allows recording the evolution of one and the same cell over
time. Visualizing membrane structure and organelle morphology by electron
microscopy has improved [5] and would give a higher resolution (see images in
Figure 1.2), but requires fixation and preparation of the sample.

1.3.2 The Point-Spread-Function

Any object imaged by an optical microscope will be blurred by processes like
diffraction, scattering, refractive index mismatches (e.g. between immersion oil
and sample) and general imperfections in optical components. The mathemat-
ical function to describe this process is called the point spread function (PSF).
It is simply the pattern that one single point (it must be smaller as the used
wavelength) provokes in the image plane after having passed through the optical
system. The object is convoluted with the PSF to give the image

I(x, y, z, t) = O(x, y, z, t)⊗ PSF(x, y, z, t) (1.1)
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beampath in a confocal microscope

detector

laser

objective

sample

beam splitter

pinhole

lens
lens

focal plane

Figure 1.5: Principal beamline: The exciting laser light (green) is deflected by
the beam splitter and focused at the sample in the focal plane. The dye is excited
and emits light of longer wavelength(red) than the exciting one. The emitted light is
transmitted by the beam splitter and detected after passing the pinhole. Note that
the specimen has to be moved for scanning the sample in the focal plane. Another
possibility would be to invoke a deflection mirror that enables the focus to be moved.
Drawing from MTZ Light Microscopy Facility, Dresden, Germany.

where I is the image and O the object. The symbol ⊗ denotes convolution of O
and PSF . If we take the Fourier transform F of equation (1.1), the ⊗ becomes
an ordinary multiplication

F [I(x, y, z, t)] = F [O(x, y, z, t)] · F [PSF(x, y, z, t)] (1.2)

This is an important feature for image deconvolution. The full-width-half-
maximum (FWHM) of the PSF in lateral (Wx,y) and axial direction (Wz) can
be approximated by [56]

Wx = Wy =
0.47 · λ
η sin(α)

and Wz =
0.44 · λ

η sin2(α/2)
(1.3)

where λ is the wavelength of the used light (here: λem = 510 nm), η the
refractive index of the medium between the specimen and the objective (here:
immersion oil η = 1.518) and α = sin−1(NA/η) the semi-aperture angle of the
objective. (NA denotes the numerical aperture.) With these values specified we
get

Wx = Wy ≈ 177 nm and Wz ≈ 544 nm

The lateral extension is the same in x- and y-direction as the PSF is rotationally
symmetric about the z-axis. In z-direction, the main intensity is distributed
ellipsoidal with the semi-major axis aligned (prolate).
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1.3.3 Microscope setup

Olympus Fluoview

The microscope used in this work is an Olympus FV-1000. It is an inverted
laser scanning confocal microscope. An oil immersion objective (ULSAPO 60x)
with NA = 1.35 was used. The immersion oil refractive index is η = 1.518. An
argon laser with a wavelength of 488 nm was choosen to excite the fluorophore.
In this setup the diameter of the pinhole is 105 µm. Together with the objective
magnification (60x), the system magnification (3.82 - provided by Olympus engi-
neers) the backprojected pinhole radius is calculated to≈229 nm. Backprojected
means the size of the pinhole as it appears in the specimen plane: the physical
pinhole size rphys divided by the total magnification of the detection system.
This total magnification is the product of the (usually variable) objective magni-
fication times a fixed internal magnification: rbackfocal = rphys

mobj ·msys where mobj

is the magnification factor of the objective and msys is the fixed magnification
of the system (see also: http://support.svi.nl/wiki/NyquistCalculator).
This calculated backprojected pinhole radius matches with the optical resolution
(Rayleigh criterion) of about 200 nm to get best possible results. The Rayleigh
criterion shortly displays the necessary separation of two self-luminous point
sources such that their diffraction patterns show a detectable drop in intensity
between them.
The detector is a photomultiplier tube (PMT) sensitive to light of 494 - 545 nm.
Binning of registered photons into a raster of pixels makes it reasonable to di-
vide the optical resolution by at least a factor of about 2 to avoid the loss of
information. This is explained by the Nyquist sampling rate that roughly says:
If you want to convert an analog signal into a digitized one, you have to use a
sampling rate of at least two times the highest frequency of the actual analog
signal. The chosen pixel resolution of 98 nm/pixel in both directions (x and
y) satisfies the criterion. Any much finer sized raster would not improve the
amount of information and a coarser one would produce undersampling, reduc-
ing the recorded brightness of small features. As the image size here is 120 by
192 pixels it represents 11.7 by 18.8 µm.
Z-resolution (the distance between subsequent z-stacks) is 300 nm. As 14 dif-
ferent z-slices are taken, the overall scanning depth is 3.9 µm, slicing the whole
nucleus (the average size of a S. pombe nucleus is 7-15 µm in length and around
4 µm in diameter [29]). One could blame for oversampling as the PSF in z-
direction was calculated to 544 nm (using equation 1.3) and subsequently there
is always a part of information from neighboring z-stacks in the actual slice.
But oversampling is not critical and only increases the amount of data - assum-
ing that it is not an exaggerated oversampling, because this would imply either
more damage to the dye by longer excitation or fewer photons/pixel - explained
by the sampling speed.
Sampling speed in turn is a critical value and always a compromise between
signal quality and bleaching. Usually, the longer the dwell time on a particular
pixel, the more signal will be detected and the less it will be distorted by Pois-
son noise. On the other side the longer the laser focus excites a certain region,
the more bleaching will occur and the worse the signal will become over time.
The used 12.5 µs/pixel is such a compromise. Time intervals between subse-
quent series of z-stacks are chosen to be ∆t = 2 min. This is a good balance

http://support.svi.nl/wiki/NyquistCalculator
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between the recording of all the different shapes of the nucleus and minimiza-
tion of photodamage for not losing so much signal quality over time. 590 µW
is the optimal laser power calculated to balance between fluorophore excita-
tion and background-increasing events (autofluorescence, Raman and Rayleigh
scattering) [57].

Zeiss UV

Most of the features are similar to the Olympus setup, that only the main
settings are mentioned.

• Objective: Plan Apochromat 63x/1.4 oil DIC

• Excitation wavelength 488 nm

• Longpass filter 505

• Pinhole radius: 104 µm

• Pixel time 5-6 µs

• x, y-resolution: mostly 80 nm

• z-resolution: 300 nm

1.3.4 Sample preparation

The used S. pombe strain (FN41 cut11-GFP-ura4 + ura4-D18, h−) was cul-
tured and bountiful provided by I. Raabe (Tolić-Nørrelykke group, MPI-CBG,
Germany). The EMM (Edinburgh Minimal Medium; for details see Appendix
on page 53) is used to nourish the culture both in the case of solid and liquid
culturing.
First, 4-5 ml of liquid EMM is inoculated by taking a swab of a solid cultured
strain. This so called preculture is incubated at 25℃ for 24 hours. Then, ≈1 ml
of the preculture is used to inoculate 50 ml of a fresh EMM, that is subsequently
incubated for another 24 hours. This culture now is used to prepare the sample.
Lectin (2 mg/ml) is given on a coverslip (No. 1.5) and dried. This serves as a
glue to fix the yeast cells. Silikon at the rim of the coverslip is used to attach it
to the previously prepared Microwell dish (35 mm petri dish, 10 mm microwell)
in a way, that the glutinous part of the coverslip is freely accessible through the
hole in the bottom of the dish. The silicon seals the gap between coverslip and
dish, so that the final culture can be dripped onto without leaking. After sed-
imentation for about 10 minutes, the not yet settled cells are carefully washed
away. The dish is filled with fresh EMM during all the time of imaging.





2

Methods

2.1 Fourier series and Fourier expansion

An arbitrary complicated shape is not trivial to describe without using a large
number of parameters or losing generality. Polygon or chain code approxima-
tions would require a lot of segments to describe a general contour. To overcome
this problem, we use the Fourier expansion up to frequencies where the ampli-
tudes are negligible. We developed a tool (that we will call 2d-contour-explorer)
to create significantly different shapes by manipulating very few parameters.
Obvious not completely closed contours as they may occur in confocal images
due to a partially bad fluorescence signal or imperfect labeling will be automat-
ically represented as closed structures, making it an interesting kind of descrip-
tion for life sciences. Even if there are only a few dots along the contour, the
mathematical description by Fourier series (FS) contains all the intermediate
points due to the use of continuous basis functions (see next section).

2.1.1 Introduction to Fourier series

Every regular (without singularities), periodic function f(x) can be represented
by a infinite sum of sines and cosines (the basis functions).

f(x) =
a0

2
+
∞∑
n=1

[an cos(n · x) + bn sin(n · x)] (2.1)

where the coefficients calculate to

an =
1
π

∫ π

−π
f(x) cos(n·x)dx bn =

1
π

∫ π

−π
f(x) sin(n·x)dx and a0 =

1
π

∫ π

−π
f(x)dx

These are the so called Fourier coefficients. The only limitations that have to
be set on f(x)are:

1. f(x) has only a finite number of maxima and minima

2. f(x) has only a finite number of (finite) discontinuities

3. f(x) must be 2π-periodic
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For even functions bn = 0 and the series reduces to

feven(x) =
a0

2
+
∞∑
n=1

an cos(n · x)

likewise for odd functions, where an = 0, it becomes

fodd(x) =
∞∑
n=1

bn sin(n · x)

The derivatives are easily calculated, as one can see e.g. for the first derivative

f ′(x) =
df(x)
dx

= 0 +
∞∑
n=1

[n{bn cos(n · x)− an sin(n · x)}] (2.2)

The Fourier coefficients are the amplitudes of the diverse frequencies (the so
called harmonics [41]). They weight every frequency to define how much this
particular frequency contributes to the whole function. Usually the low fre-
quencies are more important, as they already give a crude approximation. The
higher the frequencies, the more details they represent.
Note, that the sum goes up to infinity. However, in most cases it is sufficient to
respect the first N terms and to neglect all frequencies greater than a certain N .
There is an interesting tool available at http://www.falstad.com/fourier/
to visualize how the number of harmonics affect the accuracy of representing a
given function. It can also be seen in Figure 2.1, which shows a different number
of low order harmonics trying to fit the given (rectangular) function. The FS
in this special case becomes

f(x) =
4
π

N∑
n=1,3,5,...

1
n

sin(n · x) (2.3)

The peculiarity that additionally can be seen in this figure is the behavior near a
(finite) discontinuity, called Gibbs phenomenon. This leads to certain difficulties
when such a finite series is used to compute a value of this function near its
discontinuity. It is clear that the first N terms of a FS cannot fit the infinite
slope demanded by the discontinuity. The overshooting at the upper end of the
discontinuity is equal to the undershooting at the lower end. The over- and
undershooting together is calculated to be ≈18% of the ’jump’ [66]. However,
this can be removed by the Lanczos sigma factor [74]. The FS then becomes

f(x) =
a0

2
+
m−1∑
n=1

sinc(
nπ

m
)[an cos(n · x) + bn sin(n · x)] (2.4)

where m is the last term and sinc(nπm ) are the Lanczos σ factors. The sinc
function’s full name is ’sine cardinal’ and is defined as

sinc(x) =
{

1 x = 0
sin(πx)
πx otherwise

(2.5)

It is displayed in Figure 2.2. The function of the above definition is the contin-

http://www.falstad.com/fourier/
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Figure 2.1: As explained in the text, there is a natural over- and undershooting at
the discontinuities (the Gibbs phenomenon), even if high frequencies are included in
the Fourier series (FS). All the functions are plotted from 0 to 2π. The black line is
the given rectangular function. The colored graphs show the different adaption level
by using equation (2.3) with different values for N . In red, only the first harmonic
is considered and thus it shows the ordinary sine function. The more harmonics are
included, the better the FS fits to the original function.
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Figure 2.2: The sine cardinal (sinc)
function as defined in equation (2.5) dis-
played from −2π to 2π. If it would be
defined like sinc(x) = sin(x)

x
for x 6= 0

(and sinc(x) = 1 for x = 0), it would turn
out that sinc(x) ≡ j0(x) (spherical Bessel
function of the first kind).
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Figure 2.3: Removing of over- and un-
dershooting by Lanczos σ factors (equa-
tion (2.4) is used). Comparing the graphs
in this Figure with the corresponding ones
in Figure 2.1 shows the much better adap-
tion to the given function. (The rectan-
gular function (black) is the same in both
figures.)
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uous inverse Fourier transform of a rectangular pulse of width 2π and height 1.
There are alternative definitions (see [74]), but in any case it is closely related
to the spherical Bessel function of the first kind j0(x).
A different but equivalent description [8] of the FS is

f(x) =
a0

2
+
∞∑
n=1

An sin(n · x+ ϕn) (2.6)

where in this case An =
√
a2
n + b2n and tanϕn = an

bn
. If we represent the series

in its extended complex form (by replacing cos(n · x) = 1
2 (einx + e−inx) and

sin(n · x) = 1
2i (e

inx − e−inx) in equation (2.1) it becomes

f(x) = c0 +
∞∑
n=1

(cneinx + c−ne
−inx) =

∞∑
n=−∞

cne
inx (2.7)

where i is the complex number and cn = 1
2π

∫ π
−π f(x)e−inxdx, n = 0,±1,±2, ....

Note that the coefficients can be written as

cn =


1

2π

∫ π
−π f(x)[cos(n · x) + i sin(n · x)]dx = 1

2 (a−n + ib−n) for n < 0
1

2π

∫ π
−π f(x)dx = 1

2a0 for n = 0
1

2π

∫ π
−π f(x)[cos(n · x)− i sin(n · x)]dx = 1

2 (an − ibn) for n > 0

Moreover the cn are the basis for the Fourier transform, which is obtained
by denoting cn = 1

L

∫ L/2
−L/2 f(x)e−i(

2πn
L x)dx and converting the discrete cn to a

continuous F (k) by letting the length of the periodic function L −→ ∞, while
letting n

L −→ k.

2.1.2 Fourier series representation

All the properties of the previous section are maintained when we map the func-
tion to another representation like a polar one. The function is then ’wrapped’
on a circle and x 7→ θ while f(x) 7→ R(θ). In Figure 2.4(b) can be seen that θ
denotes the angle between the x-axis and the radius-vector ~R, where θ ranges
from 0 to 2π. Now the radius of a contour is expressed as a FS by

R(θ) =
∞∑
k=0

(ak cos(k · θ) + bk sin(k · θ)) (2.8)

As all sine- and cosine-terms in the infinite sum are at least 2π-periodic the
contour is closed. The π/3-periodicity of the function plotted in Figure 2.4
leads to a 6-fold symmetry in the polar representation. (More about symmetry
in section 2.1.3). An amazingly high number of completely different shapes can
be produced by varying the amplitudes of the first 10 harmonics only, whereas
the rest of the coefficients is being kept to zero. Note that all sequences {cn} for
which the series in equation (2.7) converges describe closed curves [59]. However,
one big disadvantage still remains: As R(θ) is a unique function, we are limited
to star-like shapes !
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(a) Usual cartesian representation
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(b) Mapped polar representation

Figure 2.4: In both figures the same function is plotted. In figure (a) it is represented
in cartesian coordinates, whereas in figure(b) it is mapped to polar coordinates. The
function value f becomes the length of the ~R-vector and the x-coordinate the angle
between the x-axis and the ~R-vector. The angle is denoted counterclockwise. The
graph in figure (b) is closed, due to the 2π-periodicity of the function. The additional
π/3-periodicity causes the observed 6-fold symmetry. A cartesian coordinate system
is superimposed to the polar coordinate system.

2.1.3 Fourier coordinate expansion

To create non-star-like shapes we expand x and y separately in a complete
Fourier expansion and then represent every point of the contour with a pair
(x, y). Both x and y depend on a parameter t that is to be considered different
from the angle θ as defined for equation (2.8). One can think of a parametric
2-dimensional vector ~p, where x and y are the components

~p(t) =
(
x(t)
y(t)

)
(2.9)

The parameter t then can be seen as the arc length (see ’Concept of a Curve’
[49]), or more advanced: The time when we trace out the way along the curve
(yet at constant velocity). Assuming that we prevent self-intersection, every
pair (x(t), y(t)) determines a unique point on the perimeter for every different
t. The two expansions that we have to consider now are

x(t) =
∞∑
k=0

(Axk cos(k · t) +Bxk sin(k · t)) (2.10)

y(t) =
∞∑
k=0

(Ayk cos(k · t) +Byk sin(k · t)) (2.11)

with the Axk, Bxk , Ayk and Byk being the coefficients. The upper indices are not
to be mistaken for exponents ! In the following we will always refer to this
parametric expansion of equations (2.10) and (2.11) and their coefficients.
All coefficients k ≥ 2 can be normalized by the ’radius of the 1st harmonic circle’
(
√

[Ax,y1 ]2 + [Bx,y1 ]2 respectively for x and y) to get relative amplitudes, but we
just keep in mind, that we use absolute values.
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Székely et al. [68] used the same approach for the parameterization of 2-D
contours in their segmentation of midsagittal MR (magnetic resonance) images.
They used it as a basis for Fourier snakes, whereas we will use a different method
(see section 2.4). Kuhl and Giardina [45] in turn used the Fourier series expan-
sion successfully in combination with chain-encoded contours. They therefore
used well defined contours where subsequent pixels are 8-connected, so that it is
unstated how the procedure will deal with noise. (In 2-D, pixels are 8-connected
if their edges or corners touch and so subsequent pixels are connected along the
horizontal, vertical or diagonal direction.) A different approach worked out by
Gielis [28] is the ’Superformula’ which is based on a tuned ellipsoidal equation.
It is also a powerful tool regarding the creation of diverse shapes by changing
few parameters, but without intersection it cannot create closed non-starlike
contours.

Simple shapes

To show the simplicity of obtaining very basic shapes like a circle or an ellipse,
see some examples in Table 2.1. Already here it becomes clear that there is

Ax1 Bx1 Ay1 By1
Circle 1 0 0 1
Ellipse oblate 1 0 0 < 1
Ellipse prolate < 1 0 0 1

Table 2.1: The most basic shapes and their coefficients. All higher harmonics (k ≥ 2)
are equal to zero. This is just one example, there are other possible combinations to
create the very same shapes. Changing the values of Ax

1 ↔ Bx
1 and Ay

1 ↔ By
1

for example will not change the resulting shapes (but the orientation of the tangent
vector → see chapter 2.3.2). Also an arbitrary chosen k 6= 1 is valid, when all other
harmonics except the chosen one are set to zero. In this case the same shape will be
drawn k times.

not only one set of coefficients unambiguously connected to a particular shape.
In the regarded case of high symmetric shapes (circle and ellipse) exists even
an infinite number of possible sets that describe the identical shapes ! Fixing
the values of the amplitudes in Table 2.1 makes it clear. The subindex k can
be chosen arbitrarily without changing the resulting shape. Like in the case
k = 1 (which is displayed in the table), where all other amplitudes k 6= 1 must
have been equal to zero, we just have to set all amplitudes to zero that are not
corresponding to the kth harmonic that has been chosen. The circle or ellipse
will then be drawn k times.
A few remarkable things can be seen in the slightly less basic shapes displayed
in Figure 2.5. First, cusps and spicules may arise already at low harmonics,
resulting in highly curved regions. Second, almost straight lines can be produced
that are connected by sharp edges. Note that only harmonics k ≤ 5 are used.
Third, there is the ’proof’ that non-starlike shapes are easily obtained. Remarks
about the symmetry will be made in the next section.
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(b) Star
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(c) Square
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(d) Dumbbell

Figure 2.5: Some shapes and their coefficients. Figure (a) displays a clover-like
structure with highly curved cusps. All coefficients are zero except Ax

1 = 1, Ax
5 =

−0.2, By
1 = 1 and By

5 = −0.2. Compared to Figure (b) that shows a starlike shape, the
only difference is the sign of By

5 , making it obvious that only using the 5th coefficients
(besides of the 1st ones) can lead to a 4-fold symmetry or a 6-fold symmetry - depending
on the combination of their sign. The nearly rectangle contour plotted in Figure (c)
illustrates quite straight lines and sharp edges by exerting only 6 coefficients (Ax

1 =
−1, Ax

3 = 0.2, Ax
5 = −0.04, By

1 = −1, By
3 = −0.2 and By

5 = −0.04). The dumbbell
shape in Figure (d) is an example of a non-selfintersecting, non-starlike outline (Ax

1 =
1, Ax

5 = 0.1, By
1 = 0.2, By

3 = 0.3 and By
5 = 0.125) and coevally reflects the observed

shapes (see Figure 1.1 and 1.4).
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Symmetry

In usual Fourier series, symmetry can only be achieved, by imposing some con-
straints on the coefficients. The same holds for the Fourier coordinate expansion.
If we want to have axial symmetry to both the x- and the y-axis, we can use
the symmetry of the 4th kind [8]. This means that the x coordinate has to obey
x(t+T/2) = −x(t) and additionally be an even function, whereas the y coordi-
nate also has to obey y(t+T/2) = −y(t) but supplementary be an odd function.
See Figure 2.6 to validate these properties and assume (t = 0) =̂ (x = 0). T is

α
α

(−x,y) (x,y)

(−x,-y) (x,-y)

x

y
Figure 2.6: For axis-symmetry to both,
x- and y-axis, it holds:
x(−t) = x(t) → x is an even function.
y(−t) = −y(t) → y is an odd function.
We assume therefore (t = 0) b= (y = 0) (If
we assume (t = 0) b= (x = 0), x is odd
and y is even).
x(t + T/2) = −x(t) and y(t + T/2) =
−y(t) → both are point-symmetric to
O(0, 0).

the period and can be considered as the time needed for one revolution (provided
the whole curve from its beginning to the end makes not more than one revo-
lution). The angular frequency is defined as ω = 2π

T and the notation therein
should be changed to ... cos(k ·ω · t) and ... sin(k ·ω · t). But as T in our notation
is set equal to 2π, nothing has to be modified. T just helps to get rid of the
idea the parameter t being an angle. The coefficients for symmetry of the 4th

kind then become

Ax2k+1 =
4
π

∫ π/2

0

x(t) cos[(2k + 1) · t]dt k = 0, 1, 2, ... (2.12)

By2k+1 =
4
π

∫ π/2

0

y(t) sin[(2k + 1) · t]dt k = 0, 1, 2, ... (2.13)

whereas the constraints are Bxk = Ax2k = 0 and Ayk = By2k = 0. The same sym-
metrical shape, but rotated to 90◦ can be achieved by assuming (t = 0) =̂ (y = 0)
and therefore x to be odd and y to be even. All coefficients then just have to
be modified by swapping x↔ y. This can always be done with axis-symmetric
shapes. The only difference is the orientation of the curve (see section 2.3.2).
Considering only axis-symmetry to the x-axis, we put away the point-symmetry
(x(t+ T/2) = −x(t) and y(t+ T/2) = −y(t)) and therefore the dashed arrows
in Figure 2.6. The constraints now are Bxk = 0 and Ayk = 0 and the coefficients
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calculate to

Axk =
2
π

∫ π

0

x(t) cos(k · t)dt k = 0, 1, 2, ... (2.14)

Byk =
2
π

∫ π

0

y(t) sin(k · t)dt k = 0, 1, 2, ... (2.15)

Now let us fix all values of the coefficients and only change their signs. Consider
the case: |Ax1 | = 1, |Ax5 | = 0.2, |By1 | = 1 and |By5 | = 0.2, whereas all other coeffi-
cients are zero. Denote the signs of the four nonzero-coefficients in a quadruple
according to the order specified.
(+,−,+,−) ; (−,+,−,+) ; (−,+,+,−) ; (+,−,−,+) all give the clover-like
shape in Figure 2.5(a) and
(+,+,+,+) ; (−,−,−,−) ; (+,+,−,−) ; (−,−,+,+) lead to the same shape
rotated by 45◦ (half of the angle of its 4-fold symmetry).
(−,+,+,+) ; (+,−,−,−) ; (+,−,+,+) ; (−,+,−,−) in contrast result in the
starlike structure of Figure 2.5(b) and as expected
(+,+,+,−) ; (−,−,−,+) ; (+,+,−,+) ; (−,−,+,−) is the same star rotated
by 30◦.
If |Ax4 | = 0.2 and |By4 | = 0.2 are chosen to be nonzero instead of |Ax5 | and |By5 |,
the resulting 3-fold symmetric ’clover’ will behave similar regarding the first and
second set of quadruples but rotate to 60◦ and therein half of the angle of its
3-fold symmetry. The last and the second last set of quadruples now leads to a
5-fold-symmetric ’star’ and consequently to a 36◦ rotation.
Slicing the nuclear envelope that will be described here in its middle section -
which therein contains the long axis - leads to a 2-fold symmetric contour (ne-
glect the orbital shape) and in any case there is a certain similarity to Cassini
ovals or toric sections (when the torus is cut by a plane parallel to its rotational
axis). Hence, instead of using common Cartesian coordinates one may think
of using Bipolar coordinates [24] to describe the shape. But this should not
simplify things, because in either way there are two variables to fix for defining
a particular point. The transformation from Cartesian coordinates to Bipolar
coordinates is unique when the x-axis-symmetric case is considered and hence
only positive y-values for example.

2.1.4 Meaning of the coefficients

The interpretation of the coefficients is an interesting subject. A possible visual-
ization are elliptic approximations to a contour based on the system of Ptolemy’s
epicycles like in [45]. For an interactive tool about epicycles see http://
physics.syr.edu/courses/java/demos/kennett/Epicycle/Epicycle.html
First, we consider curves in two dimensions. This is based on [49] and un-
published material of J. Howard (MPI-CBG, Dresden, Germany). Having a
regular parametric representation ~p(t) like in equation (2.9), the time derivative
calculates to

~p(t)′ =
d~p

dt
= lim

∆t→0

~p(t+ ∆t)− ~p(t)
∆t

= ~t(t)|~p ′| = v(t) · ~t(t) (2.16)

where ~t(t) is the unit tangent vector (pointing in the direction of travel) and
v(t) its magnitude (which can be seen as the speed). The faster the speed, the

http://physics.syr.edu/courses/java/demos/kennett/Epicycle/Epicycle.html
http://physics.syr.edu/courses/java/demos/kennett/Epicycle/Epicycle.html
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more distant are subsequent ’points’ when they are marked at a constant time
interval while going along the curve. Thinking in terms of intensity or bright-
ness: The slower the speed, the brighter the curve.
Herein lies the key advantage of such a parameterization: Additionally to defin-
ing a curve, it also comprises its intensity and therein includes the description
of shapes with non-uniform intensity like they may occur in biological, stained
samples due to some intrinsic gradient or samples with imperfect labeling.
Using a representation in terms of the arc length, we come to a natural represen-
tation, where |d~p(s)ds | = 1. This means equidistant ’points’ and therein uniformly
distributed brightness of the curve. Inversely, curves of speed |v| = 1 are called
’parameterized by arc length’ [31]. Note that if the arc length is defined as

s = s(t) =
∫ t

t0

∣∣∣∣d~pdt
∣∣∣∣ dt (2.17)

then ~p(t(s)) is also a natural representation and therefore no squeezing nor
stretching of the curve occurs. The reparameterization ~p(s) = ~p(t(s)) then just
yields

~t(s) =
d~p(s)
ds∣∣∣ ~p(s)ds

∣∣∣ =
d~p(s)
ds

=
d~p(t(s))
ds

=
d~p(t)
dt

dt

ds
=

d~p(t)
dt
ds
dt

=
d~p(t)
dt∣∣∣d~p(t)dt

∣∣∣ =
~p(t)′

v(t)
= ~t(t) (2.18)

provided that the speed v(t) is always positive (⇒ t(s) can be inverted ⇒
dt
ds

∣∣
t(s)

= [ dsdt
∣∣
s(t)

]−1 ). Due to the positive v, the curves have the same ori-
entation.
The average of a function f is defined as

〈f〉t =
1

b− a

∫ b

a

f(t)dt (2.19)

When we weight every increment of arc length by the intensity of the curve
i(t) = 1

v(t) = dt
ds we get

1
∆t

t0+∆t∫
t0

f(t)dt =
1

s0(t)+∆s∫
s0(t)

dt
dsds

s0(t)+∆s∫
s0(t)

f(s)
dt

ds
ds (2.20)

whereas, when we weight by both the brightness and the amount of arc length
within the incrementing angle (and therefore by the overall curve material within
that angle) we obtain

1
∆t

t0+∆t∫
t0

f(t)dt =
1

Θ0(t)+∆Θ∫
Θ0(t)

dt
ds

ds
dΘdΘ

Θ0(t)+∆Θ∫
Θ0(t)

f(Θ)
dt

ds

ds

dΘ
dΘ (2.21)

Now back to the coefficients of the Fourier coordinate expansion. For the zero
order coefficients (also called the DC components) we have

Ax0 =
1

2π

∫ 2π

0

x(t)dt = 〈x〉t and Ay0 =
1

2π

∫ 2π

0

y(t)dt = 〈y〉t (2.22)
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so that they represent the coordinates of the center of mass. For a contour of
uniform intensity, paramtererized by the arc length it is also the center of the
perimeter. For higher order coefficients it yields

Axk =
1

2π

∫ 2π

0

x(t) cos(k · t)dt = 〈x(t) cos(k · t)〉t (2.23)

Bxk =
1

2π

∫ 2π

0

x(t) sin(k · t)dt = 〈x(t) sin(k · t)〉t (2.24)

and likewise for Ayk and Byk . These higher order coefficients correspond to the
closest fit in the least squares sense. For the best fit ellipse for example

Ω2(Ax0 , A
x
1 , B

x
1 , A

y
0, A

y
1, B

y
1 ) =

1
2π

∫ 2π

0

{
[x(t)−Ax0 −Ax1 cos(k · t)−Bx1 sin(k · t)]2

+ [y(t)−Ay0 −A
y
1 cos(k · t)−By1 sin(k · t)]2

}
dt (2.25)

is minimized. This gives an ellipse with minimal deviation to the curve, re-
specting the whole contour at the same time. If uniform intensity is expected
and therein parameterization by arc length is used (see Figure 2.7), the best fit
ellipse has not definitely to be traceed out at constant velocity !

x

y

ds

Figure 2.7: An arbitrary contour
is plotted as a green, dashed line. It
is parameterized by the arc length
and therefore has uniform intensity
and equidistant ’points’. The best fit
ellipse according to equation (2.25)
minimizes the overall deviations to
the curve. Note that while the curve
is traced out at constant velocity it
is not necessarily the case for the
ellipse. Remark: This figure is a
thumbsketch, not a graph.

2.2 The 2-d-contour-explorer

By using the developed interface shown in Figure 2.8 one can get a good esti-
mation how the different frequencies contribute to the appearance of a shape
that is described by a Fourier expansion. The upper row of sliders represents
the coefficients of the x-coordinate, the lower row the ones of the y-coordinate.
Each row is divided in two groups of sliders. The group on the left-hand side
provides the interface to manipulate the amplitudes of the first 5 harmonics of
the cosine-part in the Fourier series in equations (2.10) and (2.11). The group
situated to the right is connected to the harmonics of the sine-part. There is no
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Figure 2.8: The interface to create a particular shape out of manipulating (slider
or input field) the first 5 Fourier-coefficients both for x and y and for the cosine and
sine in each case therein. On the graph to the left is plotted the actual shape and its
center of mass corresponding to the slider values. The right-hand sided graph displays
the local curvature of the actual shape drawn on the left - the blue line belongs to the
program output, the green circles reproduce the analytical solution.
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slider for the coefficient with subindex zero, because it would only dislocate the
center of mass (as mentioned in section 2.1.4) and therefore only shift the whole
shape without changing its appearance. Additionally the local curvature that
corresponds to the shape of the sinistral graph is plotted in the dexter window.
For basic shapes like the circle and the ellipse, the local curvature is compared
to the analytic result (green circles).

2.3 Shape analysis

With our approach we can analyze shapes by tracing their boundary and redraw
them using a particular set of coefficients. As we cut off high frequencies at some
degree to avoid infinitive sums, only quite low frequencies will be used. This
approximates the given shape to some order but represents a smoothed struc-
ture. The coefficients of the frequencies in the Fourier expansion are determined
numerically by solving the matrix equation

A · cx = x (2.26)

for the cx array, where A are the basis functions (cos(k · t), sin(k · t)), cx the
coefficients (Axk, B

x
k ) and x the x-projection of the outline. The cy coefficients

are calculated likewise. The cx and cy coefficients now equally represent the
(smoothed) shape. Note that the shape is not uniquely associated to the set of
coefficients found here, but there are other possible sets of coefficients that have
the same resulting shape (as already mentioned in section 2.1.3). Generally the
determination of the FS-coefficients is also called ’harmonic analysis’ [8].

2.3.1 Decreasing amplitudes and truncation of the series

The amplitudes of the harmonics usually tend to decrease with increasing fre-
quencies [26]. At a certain frequency order that depends on the specific shape,
the coefficients are small enough to be negligible. To demonstrate this, the cap-
ital letter E will be analyzed. The (x, y) coordinates - one pixel corresponds
to one unit - of a pixelated image of the letter are taken as original shape (see
dashed lines in Figure 2.9(b), 2.11(a) and 2.11(b)). Using a different number of
harmonics to do the analysis gives a different degree of adaptation. In the case
of first order approximation the best fit ellipse is obtained (see Figure 2.9(a)).
The solid lines in Figure 2.9(b) show the first harmonics modulated by the cal-
culated amplitudes. Although the DC components of the series are zero as the
center of mass is put to the origin of the represented coordinate system, the
original and recalculated (x, y) coordinates are displaced due to better visibil-
ity - especially when taking more harmonics into account (see Figures 2.11(a)
and 2.11(b)). Within the limits of only using the lowest frequency, the best fit
is already visible in Figure 2.9(b). The frequency spectra of Figures 2.10(b),
2.10(d) and 2.11(d) correspond to the cross-labeled red shape to their left re-
spectively. Comparing the first two it is obvious, that the amplitudes are the
very same for each frequency and therein the truncation of a FS is equal to
simplifying a shape or expressed in terms of frequencies just to remove high
frequency-features of the contour. The decrease of the amplitudes with increas-
ing order k is evident in Figure 2.11(d), making it reasonable that truncation
does not matter in a pixelated image, as far as the truncation is chosen at an
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(a) 1st order approximation
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(b) Comparison of the coordinates (original to
approximated) for the 1st order approximation

Figure 2.9: (a): The tilted letter E and the best fit ellipse yielded by solving the
matrix equation (2.26) for the set of x- and y-coordinates starting counterclockwise
in the lower left corner. Although the ellipse seems to be too small it is right, having
in mind the negative y-value of some upper part and a relative big part of the curve
near zero in x-direction. (b): The dashed lines are the x- and y-values of the letter E
plotted over the parameter t (natural representation). The solid lines display the 1st

harmonic representation. They are dislocated in y-direction for better visability.

appropriate high order. Amplitudes much smaller than one should have no ef-
fect to the pixelated shape. Also frequencies with a wavelength smaller than
a pixel should definitely not be considered. As we implicitly assume some de-
gree of smoothness for the nuclear membrane, the truncation can be done even
earlier (at lower frequencies). A way of thinking about the different harmon-
ics of the truncated FS is similar to Ptolemy’s epicycles (mentioned in section
2.1.4). As Kuhl and Giardina [27] already showed, the points (x, y) all have
elliptic loci. So the truncated FS can be seen as the additive accumulation of
rotating phasors, each in proper phase relationship. Each rotating phasor has
its origin on the elliptic locus of the previous one and rotates k times faster
than the first harmonic (k being its harmonic number). The resulting shape
then is drawn by the end of the phasor of highest respected order. A different
starting point on the contour does not change the elliptic loci but the phasors
will take a different orientation [45]. Figure 2.12 shows a sketch of the situation.
How the different elliptic loci play together to produce the resulting particular
shape is visualized at http://lmb.informatik.uni-freiburg.de/lectures/
mustererkennung/WS0405/FourierDemo/fourdem.html and choosing a differ-
ent number of harmonics clearly shows what the truncation of the FS causes.

2.3.2 Calculating the 2-dimensional properties

Calculation of the properties is an important point, because it allows to draw
conclusions about more general features of a particular shape and they are
the basis for more advanced calculations. Given a set of coefficients the local
curvature, the area and the contour length are easily calculated as they depend
only on the first and second derivatives as well as on the x and y values itself.

http://lmb.informatik.uni-freiburg.de/lectures/mustererkennung/WS0405/FourierDemo/fourdem.html
http://lmb.informatik.uni-freiburg.de/lectures/mustererkennung/WS0405/FourierDemo/fourdem.html
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(b) Spectrum of the 4th order approximation
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(c) 10th order approximation
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Figure 2.10: (a) and (c) show the gradually better adaption to the given shape,
including an increasing number of harmonics. Note the non-uniform distribution of
the approximation compared to the uniform original shape. (b) and (d) show the
corresponding spectra of the approximations in (a) and (c) respectively. The first
4 orders in (b) and (d) are the very same, showing in (d) the usual decrement of
amplitudes of higher order frequencies [26]. The additionally incorporated higher
frequencies in (d) are responsible for finer adaption to the original. The zero-order
amplitudes are not displayed as the center is chosen to be O(0, 0).
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approximated) for the 4th order approximation
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(b) Comparison of the coordinates for the 35th

order approximation
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(c) 35th order approximation
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(d) Spectrum of the 35th order approximation

Figure 2.11: (a) and (b) illustrate the increasing adaption of details by higher
harmonics. The crude main features are already visible by 4th order approximation.
Like in Figure 2.9(b), the original and approximated curves are displaced against each
other. (c): The 35th order approximation nearly shows no difference to the original
shape. (d): Obvious decreasing of the amplitudes by increasing k. Here it becomes
visible that frequencies higher than 30 can be neglected, as they only try to match
the pixel-to-pixel digital structure of the object, wich is probably not an important
feature of the real object.



2.3 Shape analysis 29

x

y

ω
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Figure 2.12: The first three rotat-
ing phasors that represent the first
three harmonics: The black, dashed
elliptic locus is the 1st harmonic. The
red, solid ellipse represents the 2nd

harmonic, that rotates with double
the frequency of the first one. The
green, dotted locus with three times
the frequency of the first one acts for
the 3rd harmonic. Letting rotate all
phasors, the end of the highest con-
sidered order will trace out the con-
tour. Given a determined shape, the
same elliptic loci are used regardless
of the starting point on the contour.
The only difference will be their ori-
entation [45].

Local curvature

The local curvature κ in 2 dimensions equals 1
r(t) , where r(t) is the radius of

a circle that snuggles itself to the curve at the considered point (the so called
osculating circle). In other words the curvature is the derivative of the tangent
angle φ with respect to the arc length κ = dφ

ds . Using differential geometry
calculations for a curve given by Cartesian parametric equations x(t) and y(t),
the curvature is calculated to

κ =
x′y′′ − y′x′′

(x′2 + y′2)3/2
(2.27)

where x′ = dx
dt and x′′ = d2x

dt2 , respectively for y. This is done using the identity

tanφ =
dy

dx
=

dy
dt
dx
dt

≡ y′

x′
(2.28)

and therein

d

dt
(tanφ) = sec2 φ

dφ

dt
= (1 + tan2 φ)

dφ

dt
≡ x′y′′ − y′x′′

x′2
(2.29)

Note that ’time parameterization’ is used and therefore

κ =
dφ

ds
=

dφ
dt
ds
dt

=
1

1+tan2 φ
x′y′′−y′x′′

x′2√
x′2 + y′2

=
x′y′′ − y′x′′

(x′2 + y′2)3/2
(2.30)

For the 3-dimensional, rotational symmetric shape there are the two principal
curvatures, one along the meridians κm and - perpendicular to it - the second
one along the parallels of latitude κp, both defined as in [15]. (More details in
section 2.5.1)
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Area, perimeter and center of perimeter

Area: For the parametrically specified curve, the area calculates to

A =
1
2

∫ 2π

0

(xy′ − yx′)dt (2.31)

assuming that the parameter t ranges from 0 to 2π. This equation is
derived by the help of Green’s theorem or the isoperimetric inequality
[19] and therefore we do have a signed area and have to travel around the
region such that it lies on the left of our way to get a positive result. In the
special case of having only first-harmonic amplitudes, the area becomes
the simple form A = π(Ax1 · B

y
1 − Bx1 · A

y
1). Here it becomes obvious:

When we put Bx1 = Ay1 = 1 and Ax1 = By1 = 0, the resulting circle will be
drawn clockwise. The enclosed area is on the right side of the way and
therefore is denoted negative. Areas of curves with self-intersections must
be computed as a sum of absolute values of the areas of their components
and should be excluded here.

Perimeter: The arc length is defined as the length along a curve (see also
2.1.4) and so the perimeter here calculates to

L =
∫ 2π

0

√
x′2 + y′2dt (2.32)

because it is just the sum of the differential arc length ds =
√
dx2 + dy2

in infinitesimal steps from the starting point along the curve back to its
origin (=̂ t = 0...2π). Note that this integral (like any property of a curve )
is independent of the parameterization [67] (always assuming that a simple
regular curve is considered and hence excluding self-intersection).

Center of perimeter: As it is calculated as a weighted sum over the way along
a curve, its x-component is

x̄ =

∫ 2π

0
x(t)

√
x′(t)2 + y′(t)2dt

L
(2.33)

where L is the perimeter length calculated in equation (2.32). The ȳ
component is calculated correspondingly.

2.3.3 Program testing

To be sure the programed code works properly and calculates the right prop-
erties, it is crucial to test the written programs by comparing its results with
the analytic solution of well known shapes. Therefore we compare the area,
the perimeter length (see Table 2.2) and the local curvature with the expected
values derived by the well known formulas A = πr2 for the area and L = 2πr
for the perimeter length of a circle as well as the local curvature. Let be r = 1
for the unit circle, then the local curvature is constant and equals 1 for any
point on the circle. Two different methods are used for the calculation of the
perimeter, one using differential geometry (showed in equation (2.32)), the other
one summing up the polygon parts of adjacent points (Archimedes calculated
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Circle (r = 1) program output analytic solution
Area 3.1416 3.1426
Perimeter (diff geometry) 6.2832 6.2832
Perimeter (point to point) 6.2831 6.2832

Table 2.2: Comparison of the program output with the analytical result for the
circle

π up to the 2nd significant by a polygon with 96 points approximating a circle.
Using an increasing number of steps, we got the same result for summing up
the polygon parts with our program and by ≈100 (equally spaced) steps and
above, the length converged to 2πr).
Additionally we are looking on a non-uniform shape with known analytical so-
lutions like the ellipse. Here the area is to be A = πab, with ’a’ being the
semimajor axis and ’b’ being the semiminor axis. For the perimeter length we
have to use an approximation to avoid the infinite sum

L = π · (a+ b) ·
∞∑
n=0

(
n

k

)2

· hn ≈ π · (a+ b) · (1 +
1
4
h+

1
64
h2 +

1
256

h3 + . . .)

where h = (a−ba+b )
2. For a = 1, b = 0.5 it is reasonable to neglect terms of the

order O(n > 3) if we are interested up to the 4th significant, because the next
term (for n = 4) would contribute ≈ 1.88 · 10−5 to the sum on the right-hand
side (Formula by WolframMathWorld or in a modified form by [8]). See Table
2.3 for the results.

Ellipse (a = 1, b = 0.5) program output analytic solution
Area 1.5708 1.5708
Perimeter (diff geometry) 4.8442 4.8442
Perimeter (point to point) 4.8441 4.8442

Table 2.3: Comparison of the program output with the analytical result for the
ellipse

The center of perimeter differed in the worst case up to ≈ 10−5 from zero,
what would be the expected value for symmetrical shapes like the circle and
the ellipse (natural parameterization). The local curvature calculated by the
program (blue line in the graph on the right-hand side in Figure 2.8) matches
very well the analytically derived curvature (green rings in the graph on the
right-hand side in Figure 2.8) that is gained by

κ =
a · b

[b2 cos2(t) + a2 sin2(t)]3/2

which is derived by plugging x = a·cos(t) and y = b·sin(t) into equation (2.27).

2.3.4 The Elephant

In the spring of the year 1953 - during a meeting with Freeman Dyson - Enrico
Fermi said [21]: ”I remember my friend Johnny von Neumann used to say, with
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four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.” Wei [73] used a least square Fourier sine series to do this, but
required about 30 terms. With the method described here and the outline of a
hand drawn elephant we can fulfill Fermi’s quotation ! Analyzing the picture
in Figure 2.13 A) and eliminating amplitudes less than 5.9, we get the ’raw’
spectrum. Slightly modifying the remaining amplitudes leads to the spectrum
seen in Figure 2.13 B). By applying these coefficients to complex numbers,
we have the equivalent of an elephant contour coded in a set of 4 complex
parameters. The 5th parameter can be used to let the trunk wiggle (see Figure
2.13 C)). More precisely, the real part of the 5th parameter is assigned to a
’wiggle parameter’ that sets the x-component where the trunk is supposed to
be attached to the body. Its imaginary part is used to determine the coordinates
of the eye (both x- and y-component). The parameters are compiled in Table
2.4 (for details see Legend).
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Figure 2.13:
A) This outline of an elephant
is used as the pattern that is an-
alyzed with the algorithm men-
tioned in section 2.3 ’Shape anal-
ysis’ to get the coefficients. As
explained in section 2.3.1 ’De-
creasing amplitudes and trunca-
tion of the series’ it is reasonable
to neglect coefficients that con-
tribute very little compared to
the major amplitudes, which will
lead to a smoothed shape like in
Figure 2.13 C).
B) The frequency spectrum
of the shapes seen in Figure
2.13 C). All high frequencies
from the original picture in Fig-
ure 2.13 A) are suppressed as
well as all frequencies whose am-
plitude is smaller than 5.9. Small
modifications are then applied to
the remaining ones. The fre-
quency order k corresponds to
the summation index in equa-
tions (2.10) and (2.11).
C) 3 different stages of the wig-
gling trunk. 4 parameters are
used to determine the shape.
The 5th is used for the wiggling
and the position of the eye.
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The resulting shape is quite schematic and cartoon-like, but still recognizable
as an elephant.

Parameter real part stands for imaginary part stands for
p1 = −60− 30i Ay1 = −60 By1 = −30
p2 = 8− 10i By2 = 8 By3 = −10
p3 = 12− 14i Ax3 = 12 Ax5 = −14
p4 = 50 + 18i Bx1 = 50 Bx2 = 18
p5 = 40 + 20i wiggle coefficient = 40 xeye = yeye = 20

Table 2.4: The 5 parameters p1 - p5 that encode the elephant including its wiggling
trunk and what their components stand for. The notation corresponds to that used in
equations (2.10) and (2.11), whereas the wiggle coefficient is the x-value of the body
+ trunk-attaching-line.

2.4 Application to confocal images

In case of real data images, the contours are mostly not that well defined as is
an artificially designed image or even a binary image. The crucial question is to
find the borders of an object in a way that is robust against noise and respects
its properties, such that a best adaption is achieved without falling into pixel
artefacts. This is usually done by active contours ([23], [42], [58]) where the
gradient and energy functionals are being used. We in our case use the χ2-
method and the bending energy to calculate the position of the membrane. So
we use intrinsic knowledge about the smoothness of the nuclear envelope for
determining a pareto optimality [10], [13] by computing the L-curve.

2.4.1 From the coefficients to the shape

Having a given set of coefficients, we can mimic a confocal image by translating
the coefficients to a contour and then convolve it with a PSF and adding Gaus-
sian noise. The two latter things just simulate what happens in the microscope.
The natural way of thinking to design a curve in a pixelated world is to take
the contour and to cover it with a tiny mesh (several times tinier than the pixel
mesh). Every box of this tiny mesh that is intersected by the curve is assigned
the value 1, all the other boxes become 0. This creates a binary image. Then
binning is applied to regain the original number of pixels. The pixels then have
different values according to the length of curve material within the specific
pixel. This is to be convolved with the PSF.
Another - more analytical - idea is just to convolve the cuve with the PSF. Nu-
merically this can be imagined as follows: A symmetric 2-dimensional Gaussian
centered at one particular point of the curve. Then integration over the pixel
containing this point and also integration over every single pixel in a reasonable
neighborhood (≈ 4σ) of the center-pixel is applied and the calculated values are
assigned to the corresponding pixels. When this is done for every point of the
curve, we get the desired broadened contour.
If we want to create a uniformly distributed intensity, we have to be aware that
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the strength S of the line impulse [6] of a function f(x, y) is

S =
∣∣∣∣∂f∂~n

∣∣∣∣−1

=
1

|grad f |
(2.34)

and can be interpreted as the intensity i(t) = 1
v(t) defined in section 2.1.4. So

either we have to parameterize by arc length or to multiply by v(t). In the latter
case the points of a curve primarily of uniform intensity but probably different
distance to its neighbors become values corresponding to the length of its tan-
gent vector. Now the convolution with the PSF delivers the broadened contour
of uniform intensity. This method will be preferred, as it is computationally less
expensive than using a finer meshsize (see above) and more accurate because
no binning is needed.
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Figure 2.14: (a): The ellipse represented here is not of uniform intensity, but twice
as intense at y = 0 (semimajor axis) as it is at x = 0 (semiminor axis). Every single
point however is of the same intensity as all the others. (b): After multiplying the
intensity of every point by v(t) and convolving the result with a PSF, the displayed
intensity profile is obtained. The intensity is visualized in z-direction. Now the ellipse
is of uniform intensity.

As an example consider the ellipse with semimajor axis a = 1 and semiminor
axis b = 0.5 in Figure 2.14(a). The elliptical line impulse [6] and therefore the
intensity is twice as great at the ends of the major axis as it is at the end of
the minor axis (and equally: Neighboring points are twice as dense). Secondary
this reflects the fact that the radial beam coates the same area in a time interval
∆t (this is proven using Heron’s formula [8] to calculate the area) and the only
difference to Keplers third law is that the beam originates in the center instead
of originating in one focus of the ellipse. By multiplying every point (that all
have the same intensity) by v(t) before convolving with the PSF we get the
uniformly distributed intensity of Figure 2.14(b). For a better visualization, the
intensity is plotted in z-direction.

2.4.2 From the shape to the coefficients

Principally, the way to get the coefficients of a contour is described in section 2.3,
but there we assumed a well defined contour. In images like the used confocal
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images of the S. pombe nucleus, the boundaries are not so well defined. To
get a connection between the shape and the coefficients, the ’artificial’ image
Isynth with known coefficients that we create using the method described in the
previous section is compared with the data image Idata. This is done calculating

χ2 =
N∑
i=1

[Idata − Isynth(Axk, B
x
k , A

y
k, B

y
k)]2 (2.35)

what is a pixelwise subtraction of the two images, and summing up the squared
differences. The Idata, Isynth are matrices and the summation index i is going
over all matrix elements. χ2 therefore is a measure for the similarity of the two
(grayscale) pictures and called the ’merit function’. Altering the coefficients
leads to a different image and therein a different χ2. The more similar the
pictures, the smaller is χ2 and its minimization yields the best-fit-parameters.
These hereby found set of coefficients then reproduce the given shape. Mini-
mization of χ2 though is equivalent to the maximization of the likelihood of the
model that is optimized, because the probability of the data set is the product
of the probabilities of each point [60], so that here it is

P =
N∏
i=1

e−[Idata−Isynth(Axk,B
x
k ,A

y
k,B

y
k)]2 (2.36)

Maximizing this is equivalent to maximizing its logarithm or equally minimizing
the negative of its logarithm, what leads to equation (2.35).

Data image enhancement

Even though we do have several sections of the nucleus in z-direction, there is
no maximum projection applied, because this accumulates also the noise and as
different z-stacks have different radii will result in a less accurate determination
of the position of the membrane. The middle section is selected by eye. To
make it more easy for the algorithm to minimize χ2, the noise in the data image
is suppressed. This is done in two similar steps. First, the 3-by-3 neighborhood,
then the 5-by-5 neighborhood of every pixel is examined if there are a specific
number of pixels below a certain threshold (which is derived by analyzing the
histogram). In the positive case, the accordant pixel is set to zero. As it is
very unlikely to fulfill the conditions near the labeled membrane, there is no
loss of information, but most of the noise will be erased. The best results for
smoothing the hereby acquired picture were obtained by using a Gaussian filter.
The smoothing makes it easier for the minimization routine (see next section)
to find the minimum. Note that the smoothing does not change the center of
the pattern, it just smears the intensity.

Downhill-simplex- and interior-reflective Newton- method

The problem that we have to solve is to find the minimum of a multivariable
function, so that we have an unconstrained nonlinear optimization. In MATLAB®

the best two functions to perform min
x

f(x) are fminsearch and fminunc. The

first uses the simplex search method of Lagarias et al. [46] and is a direct search
method that does not use gradients. It just oozes downhill in the parameter
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space until it encounters a minimum (at least a local one). The second is based
on the interior-reflective Newton method described in [11] and either needs a
gradient provided or locally calculates the gradient. In both methods and even
generally in optimization problems, the main difficulty is not to fall into a local
minimum, when searching for a global one. Starting the algorithm already close
to the global minimum by providing an appropriate set of initial parameters is
very helpful (see next section).
No matter which method is used, simply using equation (2.35) and trying to
minimize χ2 will rarely lead to success in our case. To be able to compare the
two images we have to ’normalize’ or scale one of them. This must be done by
no other method than calculating a scaling factor γ that minimizes the norm of
the vector ~sγ = ~d (and therefore its length), so that

γ = min


√√√√ N∑

i=1

(siγ − di)2

 (2.37)

where di are the pixel-intensities of Idata, si the pixel-intensities of Isynth and
N the overall number of pixels in the images. In other words, γ is the solution
to the system of equations ~sγ = ~d in the least squares sense. Equation (2.35)
then has to be modified to

χ2 =
N∑
i=1

[Idata − γ · Isynth(Axk, B
x
k , A

y
k, B

y
k)]2 (2.38)

A good starting guess

To guarantee a successful result, the initial guess should be very close to the
sought contour or at least not too far away. This is best done automatically.
The method should provide the initial set of coefficients for a confocal image
of the nucleus in any particular stage during the division. Images obtained by
the procedure explained in section ’Data image enhancement’ (see above) are
considered. Depending on the quality two different methods were used. The
easier one is thresholding, neglecting small objects and analyzing the resulting
binary image following section 2.3. The initial contour then is very likely to
the outer edge of the shape in the image. The other one rotates the image
horizontally (if necessary), calculates the center of the structure, divides the
image at the calculated x-centroid into two pictures (left and right) and again
calculates the center of the structure in the two pictures individually. The
two parts are treated likewise and so the following steps are explained only
for one part. The centroid becomes the origin O(0, 0) of a jet that scans the
image radial-like to get an intensity profile. A Gaussian profile is fitted to every
single intensity profile and its center is stored as ~r(Θ). The polar notation
is transformed to cartesian coordinates (x,y) and then put together with the
corresponding (x,y) of the other part. The combined (x,y) now represent a
closed contour that lies in the middle of the broad fluorescent structure seen in
the image. These x and y arrays are plugged in the matrix equation (2.26) to
get the desired initial coefficients. This is computationally not expensive and
the preferred method. In case of the interior of the shape not clearly belonging
to the background (and O(0, 0) therefore not close to zero intensity), the first
method is used.
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Program testing

To assure that - in principle - the algorithm works, an artificially created image
is used as a Idata. Hence, we know exactly all the amplitudes of the coefficients
and can compare them to the ones delivered by the minimization process. The
initial guess for the coefficients is chosen to be quite far away from the objective
ones. Figure 2.15 shows the iterative process of minimizing χ2 and therein the
convergence of the initial coefficients to their target (which is an ellipse, as all
objective coefficients except Bx1 and Ay1 are chosen to be zero). The first three
harmonics are used, so the minimization is done in a 12 dimensional parameter
space. To estimate how far away the initial guess can be from the objective
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Figure 2.15: χ2 (top) and the corresponding amplitudes (bottom) of the used co-
efficients are plotted over the iterations of the minimization procedure. An artificial
image (of an ellipse with semiaxes Bx

1 = 30 and Ay
1 = 20) is used as the data image.

The initial guess for the semiaxes (Bx
1 = 40 and Ay

1 = 30) converges towards the ob-
jective values. The three first harmonics are used but only 8 of the used 12 coefficients
are displayed in the legend, as most of them do not depart much from zero.

set of coefficients, an exemplary real data image (nearly circle-shaped) is taken
and different combinations of initial parameters are fed to the minimization
algorithm. It turned out that for the real data it is highly crucial to have a
good initial set, as the energy landscape is more jagged.
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2.4.3 Bending energy and the L-curve

In addition to the visual information that we get out of the image, we do have
extra knowledge about the nuclear membrane. It is assumed not to be too
wrinkled, instead it is supposed to be quite smooth. In general, any bending of a
membrane away form its preferred state requires energy, so that the membrane’s
resistance to bending stabilizes its shape [38]. Similar to the elastic energy of
the surface in [15], the bending energy becomes

Eb = kb

∫ 2π

0

(κ− C0)2dt (2.39)

where kb is the elastic modulus, κ the local curvature calculated in equation
(2.27) and C0 the spontaneous curvature [37] (the curvature in the natural,
stress-free state of the contour). Therewith enters the area difference elasticity
(ADE) model, that is connected to the spontaneous curvature model [20], be-
cause the effective spontaneous curvature (or equivalently an effective relaxed
area difference) do not enter independently into the model [53]. The Gaussian
curvature and the global curvature are not included due to the fact that they are
constant for the integral over the closed 2-dimensional contour (Gauss-Bonnet
theorem and ’turning tangent’ [19]). In accordance to [14] the spontaneous cur-
vature can be considered zero, so that we can finally denote the normalized
bending energy as

Eb =
1

2π

∫ 2π

0

κ2dt (2.40)

This can be used as a regularization term in our problem of χ2 minimization
(originally an ill-posed problem). The energy functional that has to be mini-
mized now is

G(Idata, A
x
k, B

x
k , A

y
k, B

y
k) = χ2(Idata, A

x
k, B

x
k , A

y
k, B

y
k)

+ λ · Eb(Axk, Bxk , A
y
k, B

y
k) (2.41)

where λ is the regularization parameter, that balances between the external im-
age energy (χ2) and the internal contour energy (Eb). In other words it weights
the importance of smoothing the whole contour and the accuracy of fitting to
the data image. The bigger λ, the smoother the shape and equivalently the
lower Eb. The other way round: The smaller λ (and therein less important Eb),
the closer the fit to the data and the more wrinkled the contour.
The same arguments as in [43] (computational affordable and incorporation of
prior knowledge) account for using the L-curve method [36] to determine λ in-
stead of minimizing the cross-validation or minimizing a Bayesian information
criterion. Therefore the functional G is minimized every time, while λ is varied.
Having reached the minimum for a particular λ, the logarithm of the achieved Eb
is plotted over the logarithm of the corresponding χ2 and the point is assigned
the actual λ. The resulting ’curve’ is L-shaped and is a trade-off between two
quantities that both should be controlled. The λ-values in the corner of the L
correspond to a transition between the two legs and the graphically determined
optimal λ reflects the pareto optimality. Vogel [72] pointed out that the com-
puted optimal λ is not the optimal parameter λopt, when the dimension of the
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system increases significantly. This limitation to the L-curve is not met here,
but in general the method tends to over-regularize and so to over-smoothing
[35]. Additional attention has to be paid to the corner, when the regularization
parameter is discrete (as in our case), because then the L-curve tends to clus-
ter in a neighborhood of the corner [62]. Taking the image (processed by the
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Figure 2.16: A double logarithmic plot of Eb against χ2. Every star is the result
of minimizing G in equation (2.41) having a different, fixed λ value. The bottom, left
image in Figure 1.4 is used as raw data image. The corner of the L-curve (λ = 107) is
the optimal λ that respects both, the smoothness of the fit as well as closeness to the
data. It is marked in red and displayed vertically. The ’horizontal’ branch of the ’L’
stands for the overregulated system, the vertical branch for the underregularized.

method described in section ’Data image enhancement’) of the peanut-shaped
nucleus and variating λ in equation (2.41) from 101 to 109 before minimizing G,
we get the L-curve seen in Figure 2.16. The optimal λ is chosen to be λ = 107

(marked in red and written vertically), what expresses best the corner of the ’L’.
The first point belonging to different λ values reflects the fact that the bending
energy is weighted too lightly to play any role in the minimization of the energy
functional G and the problem is not regularized. To recognize the influence
of λ concerning the calculated shape see Figure 2.17. The resulting shape is
overlaid with the analyzed image. If λ is too small (top), the contour sticks too
much to to the data, giving it an uneven appearance. Having a λ that is too
high (bottom) results in a very smooth contour, but does not reflect the given
data any more. Every additional curvature (more bending energy) would be
too expensive for the energy functional. A further increase of λ would enforce
a more and more circle-like contour. The chosen λ = 107 (middle) does both,
smoothing the curve (and therefore respecting the additional knowledge about
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Figure 2.17: Overlay of the
data image (after removing back-
ground and smoothing in the raw
data image, see section ’Data im-
age enhancement’) and the re-
sulting contour by minimizing
the functional G in equation
(2.41) for different, fixed λ val-
ues. For a wide range of small λ
values there is no difference, be-
cause Eb is weighted too small
and hence is not important com-
pared to χ2. The problem is still
unregulated and the contour fits
best to the data (top), but has
irregularities respective its cur-
vature. λ = 109 (bottom) pro-
duces an over-smoothed shape,
because of over-regularization.
The bending energy has become
very important and outweighs
the closeness to the data. Only
the best-fit parameter λ = 107

(middle) balances the two ne-
cessities and we have a smooth
curve, that also reflects the data.
The additional knowledge about
the smoothness of the membrane
is incorporated without disre-
garding the data.

the membrane) as well as reproducing the given data. This best λ value is then
used to calculate the properties of the nucleus.

2.5 Extension to 3-d

The yeast nucleus is a 3-dimensional structure, so we should not restrict our-
selves to 2 dimensions. Considering the space curve ~p(t) in three dimensions we
get

~t(t) =
d~p(t)
dt∣∣∣d~p(t)dt

∣∣∣ =
d~p(t)
dt
ds
dt

as already showed in equation (2.18) and the curvature calculates to [32]

κ =
∣∣∣∣ d~tds
∣∣∣∣ =

∣∣∣d~pdt × d2~p
dt2

∣∣∣∣∣∣d~pdt ∣∣∣3 =
|~p ′ × ~p ′′|
|~p ′|3

(2.42)
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where

~p(t)′′ = ~t(t)′ =
d

dt
~t(t) = κ

ds

dt
~n(t) (2.43)

and ~n being the unit normal vector with

~n =
d~t
ds∣∣∣ d~tds ∣∣∣ =

d~t
dt∣∣∣d~tdt ∣∣∣ =

1
κ

d~t

ds
(2.44)

so that we have very important derivative relations (that are related to the
Frenet formulas)

d~p(s)
ds

= ~t(s) (2.45)

d2~p(s)
ds2

= κ~n(s) (2.46)

d3~p(s)
ds3

= κ~n(s) + κ
[
τ~b(s)− κ~t(s)

]
(2.47)

det
(
d~p(s)
ds

d2~p(s)
ds2

d3~p(s)
ds3

)
= κ2τ (2.48)

where ~b(s) is the binormal vector and τ the torsion [12]. A curve however is
not enough, as we have to deal with surfaces and volumes. A surface can be
described by its principal curvatures. The Gaussian curvature

K = κmκp =
1

RmRp
(2.49)

is the product of the two principal curvatures (that is identical to the inverse
product of the principal radii of curvature) and is an intrinsic feature. The
Gauss-Bonnet theorem [19] for a compact, boundaryless 2-dimensional surface∮

surface

KdA = 2πχ (2.50)

displays the fact that the integral of the Gaussian curvature over the surface
is topologically invariant and means that all surfaces with the same number
of handles or holes have the same integral Gaussian curvature. This is an
interesting fact, because χ - the Euler-Poincaré characteristic [40] - does not
at all depend on differential geometry, but puts a constraint on the curvature
(what is a local property). Imagine a closed surface without holes like the sphere
(χ = 2). It can be arbitrarily deformed (for example to the dumbbell shape of
the nucleus where also χ = 2) but the total curvature is maintained, because
implying an additional region of negative curvature will always be compensated
by a corresponding positive integral curvature in other regions. This fact is used
to assure the correctness of our computations. The mean curvature calculates
to

H =
1
2

(κm + κp) =
1
2

(
1
Rm

+
1
Rp

) =
1
2

(Rm +Rp)K (2.51)
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and is used in the energy calculation of a membrane. The so called Helfrich-
Canham free energy [14] is defined as

FH−C =
∮
surface

[
kb
2

(2H)2 − kb2HC0

]
dA (2.52)

where kb is the bending rigidity of the membrane and C0 the spontaneous curva-
ture (that characterizes the asymmetry of the membrane due to different inner
and outer medium or lipid composition on the two sides). The model assumes
the inner and outer NE as axisymmetric with a fixed interbilayer distance, con-
nected via the NPCs. Minimizing this free energy, whereas respecting system-
specific constraints and boundary conditions, we come to the equilibrium state
of the membrane. The surface area A and the enclosed volume V (that are
both calculated in the next section) can be considered constant analyzing one
particular image of the nucleus during its division. They are denoted A0 and
V0 respectively. These constraints can be implemented into equation (2.52) by
the terms σA− pV , where σ and p are the Lagrange multipliers [18]. The free
energy therein becomes

FH−C =
∮
surface

[
kb
2

(2H)2 − kb2HC0 + σ

]
dA− pV (2.53)

The Lagrange multipliers have to be chosen in a way that the corresponding
constraints (A = A0, V = V0) are fulfilled and their physical meaning will
become the surface tension (σ) and the pressure difference between inside and
outside the nucleus (p).

2.5.1 Calculating the 3-dimensional properties

For visualization of the 3-D appearance, we processed data acquired by the Zeiss
UV (see section 1.3.3), using Imaris® (Bitplane AG) - software (threshold level
20/200, Gaussian filter width 0,2 µm). Figure 2.18 shows the nucleus during
a stage similar to the one examined in section 2.4.3. To describe a figure in

Figure 2.18: 3-d recon-
struction of the nucleus dur-
ing telophase, using data ac-
quired by the Zeiss UV. Despite
smoothing, the surface is still
corrugated due to the irregular
labeling of the membrane. Us-
ing the (aligned) rotating curve
calculated by the L-curve (see
section 2.4.3), we will get rid of
these surface irregularities.

3 dimensions in terms of an expansion of basis functions we could use spherical
harmonics (that are the 3-D equivalent to the FS) as Khairy [43] in his work
about red blood cells or Brechbühler [7] describing closed surfaces. We then
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could use for x, y and z the alike expansion separately

x(Θ, φ) =
∞∑
l=0

l∑
k=−l

Cx
k
l Y

k
l (Θ, φ) (2.54)

where Θ = 0...π and φ = 0...2π. The Cxkl are the coefficients and Y kl (Θ, φ) the
spherical harmonics [25].
But we take advantage of the rotational symmetry of the nucleus and assume
the x-axis to be the rotational axis. Adapting Helfrich’s notation [15] for shapes
of rotational symmetry to our notation, we have: κm is along the meridians and
κp along the parallels of latitude. But note that the surface normal generally lies
not in the plane containing these parallels and the radius of curvature therefore
is not the radius of these circles. In fact Rp is the distance between the two
points where the surface normal penetrates the surface and where it intersects
the x-axis. Helfrich’s notation is changed from z(x) to y(x) and the axis of
revolution is flipped from vertical to horizontal, which is equivalent to flipping
x ↔ y. As the angle ψ still denotes the angle between the axis of revolution
(here the x-axis) and the surface normal, we get κp = sinψ

y . In our case of
having the parameterized curve (x(t), y(t)) defined above, this leads to

κp =
|x′|

|y|
√
x′2 + y′2

(2.55)

Coevally this is the 2nd principal curvature. The 1st principal curvature (κm)
is the curvature calculated in equation (2.27) on page 29. For accuracy we
should mention that the usual calculation in the above equation is done by −x′
instead of |x′| and equation (2.27) additionally is multiplied by sgn(y). This
would become important dealing with overhangs. However, we can keep the
notation for convenience in calculating the Gaussian and mean curvature using
the whole, closed contour instead of only [0, T2 ] (see section 2.5.2).

Volume of revolution

The rotational symmetry suggests to use cylindrical coordinates and we there-
fore calculate the volume of a rotational symmetric corpus by

V =
∫ R

0

∫ 2π

0

∫ L

−L
rdrdθdl =

∫ L

−L
πR2dl

This is the intuitive way of summing up infinitesimal thin disks of radius R(l).
In our case this leads to

V = π

∫ x1

x0

[y(x)]2dx (2.56)

as used in [8], where we are bound to have a unique function, so that we must
exclude overhangs in x-direction. But as one can see in the exemplary images
of Figure 1.1 this condition is not violated. The integration goes from the
minimum x-value to the maximum x-value. (If one would integrate vice versa,
the absolute value would have to be taken because of the negative dx.) Using
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the parameterization this formula becomes

V = π

∫ t1

t0

[y(t)]2x(t)′dt (2.57)

where t0 and t1 correspond to x0 = x(t0) and x1 = x(t1). Now, even overhangs
can occur, because x′ is of the opposite sign in the overhang-region and hence
subtracts the volume between the overhang and the x-axis. Another possibility
to calculate the volume is using the formula provided in [15], what leads to

dV = πy3κp(1− y2κ2
p)
−1/2dx (2.58)

Surface of revolution

The area element of a curve rotated around the x-axis is dA = 2πyds (ds is the
differential arc length calculated in section 2.3.2 ’Area, perimeter and center of
perimeter’). Replacing ds and using the integral over the parameter t gives

A = 2π
∫ t1

t0

y(t)
√
x(t)′ 2 + y(t)′ 2dt (2.59)

for the entire surface area. Here there is also no constraint to avoid overhangs
and t ranges from 0 to 2π (as stated calculating the perimeter in section 2.3.2),
what automatically reflects the fact that we have a closed contour.
Following [15] there is the alternative calculation

dA = 2πx(1− x2κ2
p)
−1/2dx (2.60)

2.5.2 Program testing

Like for the 2-D properties, it is equally important to test the programmed code
for the 3-D ones. First, take a circle with radius r = 2 (Ax1 = By1 = 2) and
compare the output with the result of the formulas S = 4πr2 for the surface of
a sphere and V = 4

3πr
3 for its volume.

Plugging the principal curvatures from equation (2.27) and (2.55) into equation
(2.49) for the Gaussian curvature and into (2.51) for the mean curvature leads
to

K =
y′′x′|x′| − y′|x′|x′′

|y|(x′2 + y′2)2
(2.61)

H =
1
2
|y|(y′′x′ − y′x′′) + |x′|(x′2 + y′2)

|y|(x′2 + y′2)3/2
(2.62)

These formulas uses the program for its calculations and their results are there-
fore compared to the analytic solutions. Table 2.5 shows the results for the
sphere. The ellipsoid with semi-axes a, b and c is a good non-uniform curved
object to test the program. As rotational symmetry is assumed, the ellipsoid
becomes a spheroid and b = c. A spheroid’s volume is V = 4/3πab2. For its sur-
face the calculation differs between a prolate (a > b) and an oblate (a < b) one.
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Sphere (r = 2) program output analytic solution
Surface 50.2655 4π(2)2 ≈ 50.2655
Volume 33.5103 4

3π(2)3 ≈ 33.5103
Gaussian curvature 0.25 0.25
Mean curvature 0.5 0.5

Table 2.5: Comparison of the program output with the analytical result for the
sphere. Surface, volume, Gaussian and Mean curvature are compared and approve the
correctness of the calculations.

Using the notation from WolframMathWorld, the surface of a prolate spheroid
is

S = 2πb2 +
2πab
e

arcsin(e) (2.63)

where e =
√

a2−b2
a2 denotes the ellipticity and (a > b). In the case of an oblate

spheroid, the formula becomes

S = 2πb2 +
2πa2

e
ln
(

1 + e

1− e

)
(2.64)

In this case the ellipticity e =
√

b2−a2

b2 and naturally (a < b). The results
therefor can be seen in Table 2.6. The Gaussian and mean curvature for a non-
uniform curved object like the spheroid are obviously different from point to
point and are compared in the graphs seen in Figure 2.19. It is sufficient to use
a 2-dimensional plot, because κp remains constant for every fixed parameter t
(due to the rotational symmetry). The continuously plotted curves refer to the
curvatures calculated by the program, the circles and diamonds are derived by
an analytic calculation using the formulas

K =
4a2

[b2 + a2 + (b2 − a2) cos(2t)]2
(2.65)

for the Gaussian curvature of a spheroid and

H =
a[3b2 + a2 + (b2 − a2) cos(2t)]√

2 · b · [b2 + a2 + (b2 − a2) cos(2t)]3/2
(2.66)

for its mean curvature. The same notation is used as before (a, b: semi-axes; t:
parameter).

2.5.3 Alignment

Before we can rotate the contour however, we have to assure that the long axis
is aligned with the x-axis. Therefor we can calculate the covariance matrix

V =
 cov(X,X) cov(X,Y )

cov(X,Y ) cov(Y, Y )

 (2.67)

where cov(X,Y ) =
∑N
i=1

(xi−x̄)(yi−ȳ)
N , and then search for the eigenvector with

the larger eigenvalue. This vector is along the long axis of the contour, which
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Figure 2.19: Comparison of the program output [using the formulas (2.61) and
(2.62)] with the analytically derived results [given by equations (2.65) and (2.66)] for
the Gaussian and mean curvature. The upper graph shows the results for a prolate
spheroid (a = 1, b = 0.5), the lower graph for an oblate one (a = 0.5, b = 1). The blue
line denotes the Gaussian curvature calculated by differential geometry and matches
well the analytical solutions (green circles). The same does apply to the red line and
the black diamonds that express the mean curvature in both cases respectively
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Spheroid (a = 1, b = 0.5)→ prolate program output analytic solution
Surface 5.3696 5.3696
Volume 1.0472 4

3π · 1 · (0.5)2 ≈ 1.0472
Spheroid (a = 0.5, b = 1)→ oblate program output analytic solution
Surface 8.6719 8.6719
Volume 2.0944 4

3π · 0.5 · (1)2 ≈ 2.0944

Table 2.6: Comparison of the program output with the analytical result for a prolate
and an oblate spheroid. In both cases the surface as well as the volume are compared
and the results coincide.

has to be rotated to the x-axis. Or we can follow Khairy [43] and therewith
Brechbühler [7] in finding the translational and rotational invariant form. The
object is rotated to canonical positions in parameter space and in object space.
The set of parametric equations for a general ellipse is written

~p(t) =
 x(t)

y(t)

 =
 Ax1 Bx1

Ay1 By1

 · sin(t)
cos(t)

 =
 Ax1 sin(t) +Bx1 cos(t)

Ay1 sin(t) +By1 cos(t)

 (2.68)

where the matrix of coefficients

M =
 Ax1 Bx1

Ay1 By1

 (2.69)

determines the length of the semi-axes and the orientation of the ellipse in the
coordinate system. The matrix H = MT ·M has to be rotated into its principal
axis system by transforming it into a diagonal matrix. More precisely it is

H =
 a c

c b

 =
 [Ax1 ]2 + [Ay1]2 Ax1B

x
1 +Ay1B

y
1

Bx1A
x
1 +By1A

y
1 [Bx1 ]2 + [By1 ]2

 = MT ·M (2.70)

what yields

a = [Ax1 ]2 + [Ay1]2 b = [Bx1 ]2 + [By1 ]2 c = Ax1B
x
1 +Ay1B

y
1 (2.71)

That is the direct connection to the general ellipse equation

ax2 + by2 + 2cxy = 0 (2.72)

where indeed the equations (2.71) hold and c = 0 then gives the canonical form
with the length of the semi-axes 1√

a
and 1√

b
.
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Conclusions and Outlook

So far the described methods work and we take advantage of incorporating
additional knowledge about the assumed closeness and smoothness of the mem-
brane into our calculations. The expected behavior plotting the area and the
bending energy over time would be some remarkable change coincident with an
additional force acting on the nucleus. The additional force could be integrated
into equation (2.53) by an additional Lagrange multiplier [14], respecting the
additional constraint on the length along the x-axis. The new energy functional
to minimize then would be

FH−C =
∮
surface

[
kb
2

(2H)2 − kb2HC0 + σ

]
dA− pV − fL (3.1)

where f is the additional force (and simultaneously the new Lagrange multiplier)
and L the overall length of the nucleus. This force is most likely exerted by the
mitotic spindle, as explained in section 1.2.1 and it is shown [47] that this force
only can be assigned to a broad area of the membrane by a spindle properly
anchored at the SPB. Otherwise the membrane tries to minimize surface area at
the expense of high curvature regions, yielding to tether formation. The same
reason should hold for the formation of the tube in the dumbbell-shape. The
curious thing about the visibility of the tube connecting the two bulbs in the
dumbbell-shape stage is (see Figure 1.4 on page 7) that there is often no signal,
although it should be ≈ 1

4 of the intensity of the bulb region considering the bare
membrane material (see also section 1.2.2). Hereby a tube diameter of ≈100 nm
(enough for 6-8 MT’s) is assumed and the fact that the tube is not always in the
focus plane of the LSCM. But even without any signal, the algorithm completes
the dumbbell, showing its full supremacy compared to classical segmentation
methods. The delicate part here is to avoid self-intersection, which can easily
occur dealing with shapes similar to Figure 2.5(d). The pareto-optimum includ-
ing the bending energy delightfully avoids sharp edges and cusps by smoothing
the surface, but there is no elegant way to inhibit self-intersection. At the cost
of computationally expensive calculations however, we can impede it. The oc-
currence of turnings at the transition from the bulb to the tube will provoke
overshootings, even using a huge amount of coefficients. They can indeed be
suppressed using Lanczos sigma factor, as explained in section 2.1.1.
In summary we will calculate the surface area and the enclosed volume of the
observed nuclei and use them as constraints on the free energy function mini-
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mization like outlined before. After minimization we expect to get shapes very
similar to the observed ones until a certain time during morphogenesis (for ex-
ample after the peanut-like shape) where the observed shape differs from the
’natural’ minimal energy shape. This is the time where new constraints must
occur. An experiment to prove the idea of the spindle being mainly responsible
would be to cut the spindle of a dumbbell-shaped nucleus by laser ablation and
to see if the nucleus shrinks back to an earlier stage. The central assumption of
the model is that the nucleus assumes a shape that minimizes its overall mem-
brane energy subject to the appropriate constraints, first without the additional
length constraint, then including it.
Regarding the nuclear envelope like an artificial vesicle may be too simple as the
nuclear membrane embeds other proteins like the NPC or consist of different
types of lipids and therefore may be spatially inhomogeneous. But taking two
different molecular species, it has been shown that it simply rescales the elastic
parameters of the membrane [14].
Additionally to the very useful investigation of the fission yeast nucleus, there is
a wide field of possible applications for our method describing shapes. It could
be used for an automated pollen recognition like in [63] where fluorescence mi-
croscopy is used to image the pollen. The description in terms of coefficients
should be sensitive enough to distinguish between them. The registration of
plant leaves using shape analysis [51] where Kuhl and Giardina’s method [45]
was successfully applied is another example, or thinking of C. elegans embryos
with a non-uniformly distributed signal, our method could also be very helpful.
It is a very promising project, where further investigation is worthwhile.
The presented work makes it possible to use equation (3.1) and subsequently
is a tool to derive forces based on images ! When we will have determined the
forces, we can prove or reject the idea of the mitotic spindle applying the main
force that drives the spatial division of the forming daughter nuclei or rather
where other or additional mechanisms have to participate. The answer to this
question will be a big step forward in understanding the cell cycle and a long
awaited push giving rise to further investigations. We have developed a new
method that is particularly suitable for image processing of confocal images,
that especially occur in a wide range of life sciences, but is generally applicable
for any pattern recognition in terms of determining shapes.



Appendix A

Protocol

Protocol for 1liter of EMM (Edinburgh Minimal Medium):

3 g C8H5KO4

2.2 g Na2HPO4

5 g NH4Cl
20 g Glucose → final concentration: 2%
20 ml 50x salt solution
1 ml solution A1(minerals)
1 ml solution A2a (vitamins)
1 ml solution A2b
(20 g agar for the plates)

wherein the solutions consist of the following:

A1: 5 g/l boric acid 80.9 mM
4 g/l MnSO4 23.7 mM
4 g/l ZnSO4.7H2O 13.9 mM
2 g/l FeCl2.6H2O 7.40 mM
0.4 g/l molybdic acid 2.47 mM
1 g/l KI 6.02 mM
0.4 g/l CuSO4.5H2O 1.60 mM

A2a: 1 g/l pantothenic acid 4.20 mM
10 g/l nicotinic acid 81.2 mM
10 g/l inositol 55.5 mM

A2b: 10 mg/l biotin 40.8 µM





Appendix B

List of abbreviations

S phase synthesis phase
G1, 2 phase gap phase 1, 2
M phase mitotic phase
MT microtubule
MTOC microtubule-organizing centers
SPB spindle pole body
NE nuclear envelope
Klp kinesin-like proteins
GFP Green fluorescent protein
SOI structure of interest
NPC nuclear pore complex
LSCM laser scanning confocal microscope
PSF point spread function
FWHM full-width-half-maximum
NA numerical aperture
PMT photomultiplier tube
EMM Edinburgh Minimal Medium
FS Fourier series
MR magnetic resonance
ADE area difference elasticity
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