
Diploma Thesis

Slice-Level Trading of Quality and
Performance in Decoding H.264 Video

Michael Roitzsch <mroi@os.inf.tu-dresden.de>
Operating Systems Group

Computer Science Department
Technische Universität Dresden

June 7, 2006

tutored by Dipl. Inf. Martin Pohlack,
department headed by Prof. Dr. rer. nat. Hermann Härtig

Acknowledgments

I want to thank Prof. Dr. Hermann Härtig for assembling an outstanding research group and
creating a collaborative working environment that is both productive and pleasant to work in.
This environment and the dedication of the staff members have been a strong and supporting
foundation for my studies and have helped to make this diploma thesis possible. Among the staff
members, I am especially thankful to Dipl. Inf. Martin Pohlack, who has tutored my diploma thesis
and who has been a reliable source of useful suggestions and helpful comments. He encouraged
me to find and follow my own working style while still providing the guidance I needed to get this
work on the right tracks. I also thank Adam Lackorzyński for satisfying the hardware needs and
Dr. rer. nat. Claude-Joachim Hamann for his help on a mathematical question. Furthermore I
want to express my gratitude and respect to the entire team of the xine media player as I own a
lot of my experience to my collaboration with them. Finally, I thank my friends who participated
in a verification test and my parents for all their enduring support.

Contents

When a demanding video decoding task requires more CPU resources then available,
playback degrades ungracefully today: The decoder skips frames selected arbitrarily or
by simple heuristics, which is noticed by the viewer as jerky motion in the good case or
as images completely breaking up in the bad case. The latter can happen due to missing
reference frames. This thesis provides a way to schedule individual decoding tasks based
on a cost for performance trade. Therefore, I will present a way to preprocess a video,
generating estimates for the cost in terms of execution time and the performance in
terms of perceived visual quality. The granularity of the scheduling decision is a single
slice, which leads to a much more fine-grained approach than dealing with entire frames.
Together with an actual scheduler implementation that uses the generated estimates,
this work allows for higher perceived quality video playback in case of CPU overload.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Vision . 1
1.3 Outline . 2

2 Related Work 3
2.1 H.264 . 3
2.2 Decoding Time Prediction . 5
2.3 Perceptional Importance . 7
2.4 Video Quality Loss Metrics . 9

3 Video Preprocessor Design 17
3.1 Metrics for Decoding Time . 17
3.2 Partition Replacement . 21
3.3 Error Propagation Estimation . 34

4 Implementation 47
4.1 Video Preprocessor . 47
4.2 Sideband Data Format . 52
4.3 Scheduling the Slices . 57
4.4 Integration into Verner . 62

5 Evaluation and Conclusion 63
5.1 Preliminary Results . 63
5.2 Comparison to Other Methods . 65
5.3 Flexibility . 67
5.4 Future Work . 68
5.5 Summary . 69

List of Figures

List of Figures

1 H.264 Profiles . 5
2 Decoder Execution Model . 7
3 Decoding Time Prediction for a MPEG-4 Part 2 High Definition Movie 8
4 Comparison of MSE and SSIM . 14
5 H.264 Execution Time Profile . 17
6 Execution Time Estimation for Bitstream Parsing 18
7 Execution Time Estimation for CABAC Decompression 19
8 Execution Time Estimation for CAVLC Decompression 19
9 Execution Time Estimation for Inverse Block Transform 19
10 Execution Time Estimation for Spatial Prediction 20
11 Execution Time Estimation for Temporal Prediction 20
12 Execution Time Estimation for Post Processing 21
13 Visualization of H.264 Motion Vectors . 24
14 Quadtree Subdivision Example . 25
15 Quadtree Cutting Alternatives . 28
16 Motion Blur Leading to Intra Compression . 30
17 Motion Vector Coverage . 30
18 Skipping Partitions and Replacement Partitions 31
19 Decoding and Replacement Times . 31
20 Execution Time Estimation for Slice Replacement 31
21 Relative Difference of Y’-only SSIM . 32
22 Relative Error of Imprecise SSIM Calculation . 32
23 Relative Error for SSIM Precision 0.05 . 33
24 Quality Loss Difference when Cutting Off Nodes 35
25 Sideband Data Sizes for Different Subdivision Thresholds 35
26 Visual Effect of Different Subdivision Thresholds 36
27 Visual Effect of a Multiplicative Threshold . 37
28 Example Error Propagation Estimation . 39
29 Accumulated SSIM Error Map for Error Propagation 40
30 Absolute Error for the Estimation of Quality Loss Propagation 41
31 Mean Squared Error Depending on the Correction Factor 41
32 Error Propagation Diminishment . 41
33 Reference Lifetime Histogram . 42
34 Absolute Error of the Estimation of Quality Loss Accumulation 43
35 Absolute Error of Quality Loss Estimation Plotted over Time 44
36 Example for Error Propagation to Future Slices 44
37 Quadtree Node Indices . 49
38 Quadtree Coordinate Calculation . 49
39 Quality Influence of Decoding versus Replacing a Slice 57
40 Lookahead Depth Leading to a Skip Decision . 61
41 Relative Error of Decoding Time Prediction . 63
42 Detail of Decoding Time Prediction . 63
43 Quadtree Subdivisions Visualized . 64
44 SSIM Quality Losses with Different Scheduler Methods 67
45 Subjective Quality with Different Scheduler Methods 68

1 Introduction

1.1 Motivation

Modern video coding standards achieve incred-
ible compression efficiency: datarates around
0.1 bits per pixel are enough to satisfy even
high quality needs. Unfortunately, such state-
of-the-art compression comes at a price: The
system recommendations for Apple’s high def-
inition gallery [1] list only the latest dual-core
processors for full 1080p playback at 24 frames
per second. But the computing demands fluc-
tuate heavily over time during video playback.
Therefore those immense peak requirements are
caused by only a minuscule fraction of the total
decoding process. However, it is difficult to re-
lax these requirements as current video players
cannot cope with resource shortage in a graceful
way. What usually happens is that the decod-
ing of a frame does not finish in time and it is
discarded. But current video standards do not
easily allow to skip a frame’s decoding, so subse-
quent frames will also be late and the playback
stalls. The user perceives this as jerky motion. If
the decoder skips the decoding of a frame, ignor-
ing the frame interdependencies, future frames
cannot be decoded correctly and the image will
totally break up.

What is needed is a way to deal with resource
shortages more gracefully. This would allow
to reduce the current resource overprovisioning,
which is especially interesting in embedded and
power-aware systems, but also in video software
like players or compositing and editing systems,
where the handling of multiple high definition
streams is common.

1.2 Vision

The model of a video is a three-dimensional
function in two spatial and the temporal direc-
tion. Initially, this function is continuous along
all three axes, but is typically discretized along
the time axis into frames and along the spa-
tial axes into pixels. A modern video coding

algorithm will exploit both spatial and tempo-
ral redundancy in this representation to reduce
the amount of data. Further compression is
achieved by approximating the video function
instead of matching it exactly. This yields a
good compression ratio, but recreating the ap-
proximated video function from the resulting bit-
stream is expensive. If this is to be done with
lower resource usage, some deficiencies in the
final video function will have to be tolerated.
The obvious candidate is the quality of the ap-
proximation. Hence, the goal of this thesis is to
provide a way to trade resource usage against
the perceived difference of the recreated video
to its original.

I therefore provide a way to skip the decoding
of certain parts of the bitstream. These outages
would lead to parts of the video function being
undefined, so these parts are synthesized differ-
ently. The key problem is to divide the video
into partitions and then judge, which of these
parts are visually important. This importance
should convey, how much the user would notice
or object, if the given partition is not fully de-
coded but synthesized otherwise. This synthesis
should be visually close to the original content,
but should consume less resources.

The synthesis of a video partition is done by
filling it with video content from previously de-
coded partitions. This brings up the challenge
of selecting visually similar replacement content.
The remaining perceptional difference between
the original video and the replacement has to
be quantified. This difference also affects the
decoding of future video partitions, as current
decoding standards exploit inter-partition redun-
dancy to increase coding efficiency. This affec-
tion has to be quantified as well. All the data
necessary for these steps is gathered by prepro-
cessing the video and is stored alongside the
video bitstream as an additional sideband chan-
nel.

Finally, the perceptional relevance value can be
used by a decoding scheduler to admit parti-
tions for decoding or to select them for skip-
ping, if short on resources. The entire approach

1

1 Introduction

should be modular, with video partitioning, par-
tition replacement, quality loss quantification,
and scheduling being largely independent to al-
low for easy incorporation of future research re-
sults on these individual topics.

1.3 Outline

I begin with a coverage of related work on re-
source usage prediction (Section 2.2), percep-
tional classifications for video (Section 2.3) and
on quality loss algorithms (Section 2.4). This
also includes an introduction into the chosen
decoding algorithm (Section 2.1). I continue
by explaining, how the video preprocessor parti-
tions the video and selects content to replace the
partitions (Section 3.2) and how it handles error
propagation into future partitions (Section 3.3).
The implementation of the preprocessor is de-
scribed in Section 4.1, followed by the sideband
data format (Section 4.2), and the design of the
scheduler (Section 4.3). A thorough evaluation
(Sections 5.1 and 5.2), followed by an outlook
into future work (Section 5.4) concludes the the-
sis.

2

2 Related Work

My thesis is tied to current technologies in video
coding and draws from a variety of previous re-
search results. In this section, I portray the video
decoding algorithm used, summarize previous
work on decoding time prediction, provide an
overview of existing approaches to exploit per-
ceptional importance, and I compare methods
to calculate the visual difference of two images.

2.1 H.264

The video decoding algorithm of choice for this
work is H.264 [2]. The most important reason
is that amidst other emerging technologies like
VC-1 [3] or VP7 [4], H.264 is established as one
of the most important modern coding standards,
as proven by the fact that both upcoming high
definition DVD successors, the Blu-ray [5] and
HD-DVD [6] associations have elected H.264 as
mandatory technology for their players. H.264’s
popularity grew even further, when Apple’s lat-
est incarnation of the iPod portable music device
featured H.264 based video playback on the go
[7]. Production quality H.264 decoder and en-
coder software is also available from Apple as
part of their QuickTime media architecture [8].

Apart from industry interests, H.264 is also in-
teresting for the technology itself. The standard
targets the entire scale of video playback from
low bitrate, low resolution handheld usage as in
DVB-H [9] over video conferencing and video on
demand applications [10] up to high definition
broadcast quality content distribution [11]. It
offers the same quality as MPEG-2 with about
half the bitrate [12] and it also includes a lossless
mode for archiving needs [13].

2.1.1 H.264 Improvements

This increased efficiency and wide scalability
stems from a number of improvements com-
pared to previous algorithms, the major ones of

which I will name here. A more thorough walk-
through can be found in [14]. The reader is
expected to be familiar with basic video coding
terminology. Those not comfortable with the
subject are invited to refer to [15] for some in-
troductory reading.

In-Loop Deblocking: One of the most no-
table changes, which also raised discussion
among experts regarding its usefulness [16, 17],
is the integrated deblocking filter, which is used
to smooth fake edges introduced by coding ar-
tifacts. This filter is mandatory because it is
in-loop, meaning that the filter is applied before
the image is kept for reference. If this step was
skipped, the reference images intended by the
encoder and the ones used by the decoder would
drift apart. This behavior is different from pre-
vious post processing filters, which were applied
after the frame was ready for referencing.

Enhanced Entropy Coding: The combina-
tion of Huffman and run length encoding used
previously has been replaced with two alter-
native entropy coding methods: The variable
length coding is similar to the previous ap-
proach. A new binary arithmetic coding ac-
counts for a large share of the bitrate reduction
achieved with H.264 [18]. Both coding methods
are context adaptive.

Network Abstraction Layer: The H.264
standard includes a packaging layer that allows
easy integration into various carrier media. It
is also possible to partition the data into more
important and less important syntax elements,
which can be transmitted independently.

Flexible Slice and Macroblock Structure:
Coding options previously assigned on a frame
level by using frame types (I-frame, P-frame, B-
frame) are now assigned on a slice level. The
slice structure is much less rigid than in pre-
vious standards. With flexible macroblock or-

3

2 Related Work

dering (FMO), slice groups can now cover arbi-
trary regions of a frame. Arbitrary slice ordering
(ASO) allows to transmit the slices of one frame
in any order.

Adaptive Interlacing: With adaptive
frame/field coding (AFF), the encoder can
select interlaced or progressive coding for each
macroblock individually. The bitstream stores
the macroblocks in a different order, so that
pairs of vertically adjacent macroblocks are
combined in the resulting image either by plac-
ing them in their natural order for progressively
coded areas or by interweaving their lines for
interlaced areas.

Switching Pictures: The new SI (switching
intra) and SP (switching predictive) slice types
can be used to encode switching frames that al-
low the decoder to switch seamlessly between
different representations of the same video, like
parallel live streams of different quality and com-
plexity.

Motion compensation: H.264 is more flex-
ible when assigning motion vectors to image
areas. Blocks can be as large as 16×16 and
as small as 4×4 pixels. Motion vectors offer
quarter pixel accuracy, which was first avail-
able in the MPEG-4 Part 2 coding standard
[19], but the interpolation scheme has been im-
proved to better preserve the sharpness of the
image. Global motion compensation was used
in MPEG-4 Part 2 as a completely separate pre-
diction mode. This has been integrated into the
normal motion compensation step as an efficient
way to store otherwise unchanged consecutive
macroblocks with identical motion.

Weighted Prediction: Fades and flashes can
be coded more efficiently, because the motion
predicted image component can be scaled and
offset before it is applied to the final frame.

Deep Referencing: Unlike the limitation to
two frames in previous standards, H.264 allows
motion compensation to choose freely among up
to 32 reference frames. The display order of the
frames is largely decoupled from the referencing.
In addition, any frame can be used as a refer-
ence frame now, whilst in previous standards,
images using certain coding methods (like the
bi-predictive encoding used in B-frames) were
not allowed as references for other frames.

Spatial Prediction: Intracoded regions can
be predicted by extrapolating image features of
already decoded neighboring parts of the frame.
Unlike the intra prediction found in MPEG-
4 Part 2, this prediction is not done in the fre-
quency domain, but in the spatial domain.

Hierarchical Block Transform: H.264 does
not use the up to then common 8×8 IDCT any
more. Instead, it uses a 4×4 integer transform,
which can be implemented without rounding er-
rors using only 16 bit registers. The transform’s
low frequency components can be enlarged to
16×16 pixels areas, which will receive the high
frequency components from the smaller sub-
blocks superimposed.

2.1.2 H.264 Profiles

Video coding algorithms commonly specify the
abilities required at the decoder by defining pro-
files and levels. Profiles restrict the set of cod-
ing options and tools a video stream is allowed
to use, whereas levels restrict parameters of the
bitstream.

Previous video coding standards usually had to-
tally ordered profiles (so that with any pair of
profiles, one would be a true subset of the
other). This does not apply to H.264, whose
three profiles have been designed more use-case
oriented (see Part V in [14]):

• The Baseline Profile is intended for con-
versational services like video chats.

4

2.2 Decoding Time Prediction

Figure 1: H.264 profiles

• Pre-encoded video for distribution on pre-
recorded media or for broadcast purposes is
targeted by the Main Profile.

• The Extended Profile is designed for high
quality video streaming.

The features included in the various profiles can
be seen in Figure 1. I will primarily focus on
the Main Profile, but will make comments and
suggestions regarding the features of the other
profiles later in this thesis, mainly in Sections
3.1.1 and 3.2.1.

Levels in H.264 are completely orthogonal to
profiles. The standard defines fifteen levels,
which specify upper limits for parameters such
as picture size, macroblock processing rate,
overall video bitrate, and buffer sizes.

Decoder implementations can choose to support
only some profiles, so they do not have to imple-
ment the entire feature set of the standard; or
they can choose to support only some levels, so
they can make assumptions on maximum CPU
or memory usage derived from the constraints
of the level.

2.1.3 H.264 Challenges for Selective
Decoding

The ability to degrade playback gracefully in re-
source constrained situations is based on the

ability to skip decoding of parts of the bitstream,
selected in a way to minimize the visual impact.
But H.264 poses new challenges to this task,
which prevents the majority of earlier research
results from being reused as is.

• The coding type is now assigned per slice
instead of per frame.
This alone makes it difficult to apply pre-
vious results that make use of the coding
type, because the assumption of the type
being constant throughout the frame no
longer holds.

• Every frame can be used as a reference
frame.
In previous standards, the knowledge that
a B-frame would never be used as a refer-
ence frame could be exploited easily to skip
their decoding. This use of B-frames is no
longer possible.

• Frames that inhibit all error propagation are
far apart.
Previous standards use I-frames to com-
pletely reset the decoder. But an I-slice
in H.264 does not reset the decoder, be-
cause it may appear together with a B- or
P-slice in the same frame. An I-slice not
even completely resets the area of the frame
it covers, because spatial prediction might
use neighboring pixels from previously de-
coded non-I slices of the same frame. To
fully reset the decoder’s state, a frame must
consist entirely of I-slices. Such a frame is
tagged in the bitstream and is called an
instantaneous decoder refresh frame (IDR-
frame).

These circumstances support the necessity to
conduct new research on the subject or at least
to reevaluate existing work, which I will do more
thoroughly in Section 2.3.

2.2 Decoding Time Prediction

As I want to trade decoding quality for decod-
ing performance, we need to know the decoding

5

2 Related Work

cost with fine granularity. The key resources
used during video decoding are CPU and mem-
ory. But while the memory requirement is fixed
and can be obtained easily from the frame size
of the video, the CPU resource is more challeng-
ing. It varies greatly with playback time and is
not trivially calculated. In addition, memory re-
sources of today’s desktop machines are usually
sufficient to handle the decoding requirements,
whereas the CPU is often not capable of coping
with the load of a high definition video stream.
For this reason, good estimates of CPU resource
usage, quantified as decoding times, are vital for
this work. They provide one half of the infor-
mation required for the scheduling decision dis-
cussed later.

Previous work exists in the research area of de-
coding time prediction, but I will base my thesis
on results obtained by myself [20]: I developed
a method to obtain good estimates of execu-
tion times for the decoding of individual video
frames of MPEG-1/2 and MPEG-4 Part 2 video.
The remaining part of this section will provide
a summary of my work. Those readers already
familiar with this are invited to skip to Section
2.3.

My overall idea is to find a vector of metrics
extractable from the bitstream for each frame.
This vector is scalar multiplied with a vector of
fixed coefficients to estimate the decoding time.
I started with an execution model fit for recent
decoder algorithms. This model can be seen in
Figure 2. Mapping the decoding steps of the
actual algorithms to the steps of this model,
I had a simple way to break down a decoding
algorithm into small subtasks. I then took an
implementation for the decoding algorithm and
rigged it with time sampling code to get execu-
tion times for the various subtasks.

For each of these subtasks, I searched for a met-
ric that would provide a good linear fit with the
execution time of this subtask. The choice of
metrics was limited by the constraint that the
values had to be extractable from the bitstream
without fully decoding it. But it became clear
that the subtasks were small and simple enough

so that straightforward metrics like macroblock
count provided quite accurate matches with ex-
ecution time.

I used numerical algorithms, namely a linear
least square problem solver, to calculate the co-
efficient vector that would, given the metrics
vector for a frame, estimate the decoding time
for that frame with the smallest error. I en-
hanced the linear least square solver to avoid
negative coefficients and to provide numerically
stable results.

Evaluation has shown that a coefficient vector
obtained once with a set of training videos would
apply to a large range of other videos with good
estimation results. An example prediction plot
can be found in Figure 3.

Compared to other approaches, my method has
several advantages: Unlike Altenbernd, Bur-
chard, and Stappert in [21], I do not need to
modify the decoder itself, a preprocessor inde-
pendent of the actual decoder to extract the
metrics on the fly is sufficient. It is also not re-
quired to do detailed source code analysis, which
would become outdated as decoder implemen-
tations improve. Also, the predictor has to be
trained only once for a given machine to learn
the necessary coefficient vector. Once this has
been done, predictions can be made for other
videos without any further calibration. These
properties make this method well suited for this
thesis.

However, the preceding findings are limited to
MPEG-1/2 and MPEG-4 Part 2 video. It re-
mains to be seen, how the technique can be
adapted to predict the decoding times for H.264
video with all its coding features. In addition,
the prediction needs to be broken down to work
on a level smaller than frames, because I want
to handle more fine grained video partitions. I
discussed in [20] already, how H.264 can fit into
the presented decoder model and I will present
the final results for H.264 decoding time predic-
tion in Section 3.1.

6

2.3 Perceptional Importance

Figure 2: Decoder execution model as developed in [20]

2.3 Perceptional Importance

Earlier video coding standards, but also H.264
have already been subject to research on ex-
ploiting perceptional importance of video parti-
tions. The objective is often to improve network
streaming behavior in packet loss situations.
I introduce model-based approaches, analysis-
by-synthesis approaches and hybrid approaches,
which combine ideas of the former two.

2.3.1 Model-based Approaches

Previous work exists that uses bitstream syntax
to varying degrees to estimate the visual impor-
tance of video frames. Isović and Fohler pro-
posed the quality aware frame selection algo-
rithm (QAFS) in [22], which prioritizes frames
of a group of pictures (GOP) according to an
estimated visual importance index. The key cri-
teria for this index are the frame type and the
position of the frame within the GOP. As QAFS
is targeted for MPEG-2, it assigns the lowest im-
portance to B-frames, because these frames are
never used as references. But as this assertion
is no longer true for H.264 (see Section 2.1.3),
the approach seems not beneficial. In addition,
the importance index is only a relative order-
ing amongst the frames of one GOP, I require
an absolute measure for all frames. However,
the paper also shows a decision algorithm that
uses the importance index to select the frames
to skip if deadlines are missed. The slice sched-

uler I will describe in Section 4.3 is similar to
this algorithm.

In [23], Zhang, Regunathan, and Rose describe
a method to estimate the overall degradation
caused by packet losses at the decoder, includ-
ing distortion introduced by spatial and tempo-
ral prediction. The recursive optimal per-pixel
estimate (ROPE) is calculated through precise
accounting for the error of each pixel. It tra-
verses all the different paths that might con-
tribute an error caused by a degraded decoder
state. The paper presents the calculations for
the H.263 video compression algorithm, but sim-
plifies by not handling subpixel motion compen-
sation. The accuracy by which the algorithm
estimates errors caused by losses in the video
stream is impressive, but the required computa-
tion is difficult and it would need to be adapted
to H.264 which is much more complicated than
H.263. The in-loop deblocking would be hard to
integrate into ROPE. And even if that could be
done, the entire calculation is intrinsically tied
to mean squared error as the distortion metric,
which I will argue in the next section as being
a bad choice for measuring visual importance.
Changing the underlying metrics would require
recreating ROPE from scratch, which seems too
complicated.

2.3.2 Analysis-by-Synthesis Approaches

In contrast to the previous methods, the im-
portance of parts of the bitstream can be de-
rived with varying granularity by decoding the

7

2 Related Work

Figure 3: Decoding time prediction for a MPEG-4 Part 2 high definition movie. See [20] for details.

bitstream with and without the part in question
and quantifying the resulting differences. These
methods are usually called analysis-by-synthesis
approaches.

Masala, Quaglia, and De Martin present such a
method in [24]. For MPEG-2 video, they clas-
sify the visual importance of each macroblock
individually by replacing it with the area at the
same position in the previous image and mea-
suring the differences using mean squared error.
Although this method is fine grained, its prob-
lems are the simplistic error concealment and
the use of mean squared error, which is not a
good model of human perception. Even if those
problems were fixed, this method is entirely un-
able to account for distortion caused by error
propagation. As discussed in Section 2.1.3, this
is one of the major challenges with H.264, as it

can preserve errors much longer than previous
coding standards.

De Vito, Farinetti, and De Martin then enhance
the previous approach in [25] by measuring the
difference caused by a lost macroblock not only
for the current frame, but for all potentially de-
graded subsequent frames of that GOP. This
GOP-level distortion is considerably more ex-
pensive to compute than frame-level distortion,
because for each dropped and concealed mac-
roblock, all frames until the end of the GOP
have to be decoded.

Their goal is to find those macroblocks most
important for the visual quality to optimize
network streaming behavior in the presence of
packet losses. They compare the behavior using
both their GOP-level distortion calculation and
frame-level distortion calculation similar to [24]
and come to the conclusion that GOP-level cal-

8

2.4 Video Quality Loss Metrics

culation does not provide enough gain to justify
the heavy computational burden. This result is
based on MPEG-2, so I doubt this conclusion is
still valid for H.264. However, in Section 5.2,
I directly compare my final scheduling method
with an H.264-adaptation of frame-level distor-
tion calculation to prove my doubts.

Another interesting result of this paper is the
way network bandwidth is allocated for those
macroblocks classified to be more important:
The authors compare a frame-level allocation
scheme with a GOP-level allocation scheme and
find the latter to be superior. In Section 4.3.2,
where I present my CPU allocation scheme,
I also argue that allocating processing power
works better, when data on more frames than
just the current one is available.

Bucciol, Masala, and De Martin present a
method tailored for H.264 video streaming in
[26]. Their approach classifies the importance
not per macroblock, but on a packet-level. Each
packet is dropped and concealed, the resulting
bitstream decoded and compared to the unde-
graded video in a pure analysis-by-synthesis ap-
proach. The paper admits that the method gets
more expensive the more prediction is used in
H.264, as for each packet, the entire sequence
has to be decoded until the propagated error
has diminished sufficiently. The authors sug-
gest to remedy this by precomputing and stor-
ing the results, which resembles my preprocess-
ing idea. They combine the derived importance
value with expected deadlines to a single char-
acterizing value per packet. I pursue a similar
idea in 4.3.1.

However, an open problem is error accumula-
tion: If a packet is dropped and concealment
applied by the decoder, it is unclear how errors
propagate if the material used for concealment
is already degraded. The authors briefly men-
tion the problem, but claim that this situation
is unlikely. However, as H.264 can preserve de-
coding errors for a long time, I do not want to
rely on this claim in my context. But account-
ing for error accumulation with an analysis-by-
synthesis approach is entirely impractical, be-

cause the computational burden explodes: As
each packet dropping pattern of N packets re-
sults in a different error propagation behavior,
2N such patterns would have to be analyzed.

2.3.3 Hybrid Approaches

The most promising idea is to combine the
analysis-by-synthesis and the model-based ap-
proaches to get the elegance and good results
of analysis-by-synthesis with the lower compu-
tational cost of model-based methods.

Extending on an idea already started in [25],
De Vito, Quaglia, and De Martin present such
a hybrid approach in [27] for H.264: The dis-
tortion introduced by a loss event is divided
into distortion in the current frame and distor-
tion in future frames through error propagation.
The former is again quantified using analysis-by-
synthesis, whereas the latter is estimated using
an error propagation model. I will make exactly
the same distinction and will discuss both errors
in Section 3.2.5 and 3.3.2, respectively. How-
ever, the authors use a rather simplistic prop-
agation model, which essentially estimates the
error of all future frames to be equal to the er-
ror of the current frame until a decoder refresh
takes place. Additionally, the paper works with
H.264 video, but uses the terms GOP and I-
frame, which have no clear meaning in H.264,
because it does not operate with GOPs and as-
signs coding types on the slice level and not on
frame level. The paper further states that mac-
roblocks are never referenced when they belong
to a B-frame, which is wrong. Therefore, al-
though reusing ideas of their work, I redesign
the propagation model more thoroughly in Sec-
tion 3.3, taking the exact H.264 semantic into
account. But nevertheless, I compare the per-
formance of my final scheduler with a derivative
of their propagation model in Section 5.2.

2.4 Video Quality Loss Metrics

As seen in the previous section, a building block
for quantifying the quality degradation when

9

2 Related Work

skipping parts of the decoding is the quantifi-
cation of differences between the original video
and a degraded version. The basic problem is
to reduce two different, but similar sections of
video to a number that correlates with the de-
coding error the user sees. The decoding sched-
uler I introduce later makes its skipping decisions
on parts that lie within one video frame only,
so the time dimension can be ignored, reducing
the problem to the difference between two pic-
tures. Of course, due to the usage of reference
frames for temporal prediction, an error in one
frame can affect other frames, but I deal with
this separately in Section 3.3.

My preprocessor-based approach uses such a
picture quality loss metric as a black-box func-
tion. Different methods to assess perceptional
picture similarity can be dropped in there, given
that they satisfy two basic requirements:

• The function works in a full-reference man-
ner, meaning that it takes two aligned rect-
angular pictures as input. One of those pic-
tures is considered the original image, the
other the distorted image.

• The function returns a single value that cor-
relates positively with the quality loss be-
tween two pictures as perceived by a hu-
man viewer. The correlation should be of
reasonable linearity, because this is needed
in Sections 3.2.7, 3.3.2, and 3.3.3.

For later speed optimization, the following ad-
ditional properties are helpful, but not strictly
required:

• The function can benefit from knowing,
that differences of interest between the
images are limited to a rectangular area
smaller than the full picture.

• The function can be computed with scal-
able precision, where the result gets more
accurate as more computation time is in-
vested.

Of course, the“most correct” image quality loss
function that can be used here is subjective eval-
uation by actual humans. But that is not fea-
sible in the context of video decoding, where
such an analysis would have to be done for every
frame. Hence I was looking for existing mathe-
matical approximations of image quality loss.

2.4.1 Error Sensitivity Approaches

The existing quality metrics range from sim-
ple mathematical operations to complex psy-
chophysical models. The most widely used met-
ric is the mean squared error (MSE), which is
convenient, because it is easy to compute. It
simply averages the squared difference of orig-
inal and distorted image. Unfortunately, this
does not always match perceived quality loss
[28, 29], because errors with an equal impact
on the MSE can vary greatly in their visibility.
A related metric is peak signal to noise ratio
(PSNR) [30], which is derived from MSE with

PSNR = −10 log10

MSE

L2

where L is the maximum signal amplitude,
which is 255 for an image component coded
with 8 bit resolution. Being just a logarithmi-
cally scaled version of MSE, it performs equally
bad in respect to perceived quality loss.

Within the group of psychophysical quality met-
rics, errors are not treated equally, but accord-
ing to their estimated visibility. As with MSE
and PSNR, the basic assumption is that per-
ceived loss of quality relates to the visibility of
an error signal superimposed on the image. The
algorithms then quantify the visibility of the er-
ror signal by leveraging psychophysical measure-
ments on humans. An example for such work
can be found in [31]. Three inherent problems
of these approaches (as listed in greater detail
in [32]) shall be summarized here:

Quality Definition Problem: Loss of quality
is not necessarily equivalent to error visi-

10

2.4 Video Quality Loss Metrics

bility, as some errors may be visible, but
not disturbing.

Natural Image Complexity Problem: The
psychophysical measurements often use
simple patterns like spots or bars as stimuli
and treat natural images as combinations of
those patterns. The results from the mea-
surements are then similarly combined to
results for natural images. Given the non-
linearity of the human visual system, it is
questionable if such a combination is ade-
quate.

Cognitive Interaction Problem: The cogni-
tive processing and understanding of an
image influences the perception of errors.
When the viewer recognizes a known real-
world object, the human brain can exploit
a priori knowledge to cover up errors.

2.4.2 Structural Similarity Index

Motivated by those deficiencies, Wang, Bovik,
Sheikh, and Simoncelli developed the Structural
Similarity (SSIM) Index [32], which I chose to
use. The reasons for this decision are:

• The elegance of the approach, which com-
bines interesting properties from both cat-
egories discussed previously:

◦ It is not a simplistic mathematical
formula like MSE, but is still calcu-
lated easily enough to use it for video,
where the function will be used often.

◦ It does not use a complicated model
of the human visual system, but still
performs good compared to actual vi-
sual evaluation.

• Implementations of the algorithm are pub-
licly available, although it turned out later,
that these could not be used due to licens-
ing issues (see Section 4.1).

The basic assumption of SSIM is that the hu-
man visual system is highly adapted to extract
structural information from images. Therefore,
this approach does not try to estimate degrada-
tion through the visibility of errors, but considers
quality loss as perceived changes in structural
information. This marks the change from the
previous bottom-up algorithms, which tried to
mimic the behavior of low-level components of
the human visual system, to a top-down algo-
rithm, which emulates the overall function of the
human visual system. These differences make
this method less vulnerable to the three prob-
lems listed in the previous section.

SSIM works by iteratively comparing aligned,
limited local areas of two images. I first sum-
marize the operation on a single local area, then
I explain how this operation is expanded to cal-
culate one result for an entire picture. More
details can be found in [32]. Lastly, I comment
on applying SSIM to video and how it satisfies
my requirements for a video quality loss metric.

The local SSIM algorithm expects two aligned
two-dimensional image areas as input, each spa-
tially discretized into n pixels. The pixel values
of the two image areas are scanned into two col-
umn vectors x and y, which need to have their
components (xi, yi) in matching order. The sig-
nal intensity1 is quantified by the mean value µ
for each vector:

µx =
1
n

n∑
i=1

xi

µy =
1
n

n∑
i=1

yi

1The original work in [32] talks about“luminance”here,
but this is misleading in the video context, because
luminance denotes a linear light transfer characteris-
tic. As sample values in video are gamma corrected,
the term “luma” would be more appropriate. But as
SSIM is later applied to chroma samples as well, I
chose the more generic term“intensity”here.

11

2 Related Work

An intensity comparison value i is defined as:

i(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

where C1 is a constant to avoid instability when
µ2

x +µ2
y is close to zero. The empirical variance

σ2 for each vector estimates the signal contrast:

σ2
x =

1
n− 1

n∑
i=1

(xi − µx)2

σ2
y =

1
n− 1

n∑
i=1

(yi − µy)
2

The contrast comparison value c is defined as:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

The structural information is represented by the
empirical covariance σxy of both vectors:

σxy =
1

n− 1

n∑
i=1

(xi − µx) (yi − µy)

The structural comparison value s is defined as:

s(x, y) =
σxy + C3

σxσy + C3

This resembles the correlation coefficient
σxy

σxσy
,

so SSIM interprets correlating image areas as
structurally similar. The constants C2 and C3

were introduced for similar reasons as C1 and
the SSIM authors suggest

C1 = (K1L)2 , C2 = (K2L)2 , C3 =
C2

2

with L being the peak signal amplitude (255 for
8-bit images) and K1 = 0.01, K2 = 0.03.

Now, the three comparison values i(x, y),
c(x, y) and s(x, y) are multiplicatively combined
to form the local SSIM index:

SSIM(x, y) = i(x, y) · c(x, y) · s(x, y)

This can be simplified to the final formula of the
local SSIM index:

SSIM(x, y)=
(2µxµy + C1)(2σxy + C2)(

µ2
x + µ2

y + C1

)(
σ2

x + σ2
y + C2

)
Three interesting properties can be derived from
this equation:

• Symmetry: SSIM(x, y) = SSIM(y, x)

• Boundedness: SSIM(x, y) ≤ 1

• Unique Maximum:
SSIM(x, y) = 1 iff x = y

This local SSIM index is then applied within a
sliding window that moves pixel by pixel over the
entire picture. The average over all local SSIM
results gives the mean SSIM (MSSIM) index,
which quantifies the similarity of two images.

2.4.3 Extending SSIM for Video

The application of SSIM to video has been dis-
cussed in [33]. Like MSSIM, the local SSIM is
applied inside a sliding window across individual
frames. This window is now specified to be an
8×8 pixel square. But other than for MSSIM,
the individual local SSIM results are not aver-
aged uniformly, but in a weighted fashion along
three criteria:

1. For video frames in the Y’CBCR colorspace
[34] used in H.264, the local SSIM values
are calculated for each component sepa-
rately. The local value from the Y’ (luma)
component is then weighted with 0.8, the
values from the CB and CR color difference
components are weighted with 0.1 each.
These weighted values are added to form
the local SSIM index for the given position
of the sliding window.

2. Because bright areas are known to attract
the observer more than dark areas, the lo-
cal values are weighted according to their

12

2.4 Video Quality Loss Metrics

corresponding window’s average intensity
µx before being aggregated over the whole
frame.

3. Due to the motion blur effect, structural
loss is more tolerable in high motion scenes.
Therefore the aggregated values for each
frame are weighted by the average motion
vector length when evaluating motion from
each frame to its direct successor.

Wang, Lu, and Bovik compared the performance
of the given algorithm with the candidate algo-
rithms of the VQEG Phase I FR-TV test [35].
The goal of this test was to compare various
video quality metrics against a given test set of
video streams. The test set provides the video
streams in different quality levels, for which the
VQEG derived subjective quality values by con-
ducting test viewings with real people. The can-
didate algorithms calculated objective quality in-
dices for the videos, which were fitted to the
subjective values. Some statistical indicators al-
lowed to quantify the precision of the fit. SSIM
was not part of the original test, but the au-
thors ran it against the same test set and calcu-
lated the same statistical indicators. Table I on
page 7 of [33] shows, that the algorithm de-
scribed above outperforms all VQEG Phase I
contenders. Even a simplified version, where the
weightings 2 and 3 were replaced with uniform
averaging, is better than most VQEG Phase I al-
gorithms and only slightly outperformed by one
of the candidates (the KPN/Swisscom CT algo-
rithm, see [35] for details). Because of this good
performance and the reduction in computational
load due to the skipped motion analysis, I chose
to use this simplified version.

The paper also proposes an even simpler version
that additionally replaces weighting step 1: The
CB and CR components are ignored and only the
local SSIM value of the Y’ component is used
with a weight of 1.0. The original paper gives no
evaluation of this simplification, so I conducted
a small analysis, which I present in Section 3.2.6.
This way of applying SSIM to video is equivalent
to calculating MSSIM for the Y’ component of

each frame. A visualization compared to MSE
can be seen in Figure 4.

In addition to the speed up by the simplification,
the authors also provide a way to calculate SSIM
faster with less precision. The idea is to not con-
sider all possible positions of the sliding window,
but a randomly selected portion thereof. Vary-
ing the ratio of calculated against ignored win-
dow positions is a straightforward way to scale
the precision and performance of the computa-
tion. Also in Section 3.2.6, I determine, what
values are beneficial.

Another approach toward expanding SSIM to
videos is to extend the sliding window from a two
dimensional to a three dimensional one, with
time complementing the spatial dimensions as
the third coordinate. The local SSIM operates
on vectors of linearly ordered image samples,
so it does not care about the dimensionality of
the window. This SSIM version would be closer
to the video model I presented in Section 1.2
and would be capable of quantifying degrada-
tions along the time axis like reduced framer-
ate. However, a quality loss metric that works
on single images is sufficient for my work and
[33] briefly mentions that a three dimensional
window does not yield significant improvements.
Therefore I did not pursue this idea, but it re-
mains an interesting point for future work to
develop and analyze a three dimensional quality
loss metric.

2.4.4 Electing SSIM

As I intend to use SSIM as my quality loss met-
ric, I have to discuss, how it matches the require-
ments established in Section 2.4 on page 10.

SSIM clearly fulfills the first requirement of tak-
ing two aligned rectangular images as input.
One does not even have to take care, which im-
age is the original and which is the degraded
version, because we saw that SSIM treats its
inputs symmetrically.

The second requirement needs discussion: It
states that the return value of the algorithm

13

2 Related Work

Figure 4: Comparison of MSE and SSIM; upper left: original video frame (from BBC video, see
Table 1 on page 18); upper right: video frame degraded by compression artifacts (reen-
coded original at 384 kbit MPEG-4 Part 2); lower left: map of Y’ component MSE values
(black represents 0, white represents 50-1 or larger); lower right: map of Y’ component
local SSIM values (black represents 1, white represents 0). It is clearly visible that SSIM
detects the structural loss in the grass regions much better than MSE, which in turn
penalizes errors in the zebras that are less disturbing to the viewer.

needs to correlate in a positive linear way with
the perceived quality loss. SSIM(x, y) returns
the maximum of 1 for identical images and de-
creases as structural loss increases. By design
of this metric, structural loss models the per-
ceived quality loss, so a lower SSIM value indi-
cates higher quality loss. This negative correla-
tion is unwanted, so I will use 1 − SSIM(x, y),
which results in 0 for identical images and corre-
lates positively, because it increases with quality
loss. However, to ensure a linear correlation,
test viewings have to be conducted where hu-
man observers rate videos on a linear scale. For-
tunately, two independent analyses have pub-
lished plots of SSIM values against mean opinion
scores (MOS) for videos. Both plots (Figure 5 c
in [33] and Figure 17 in [29]) show acceptable
linearity for pure SSIM indices without any fit-
ting.

SSIM additionally fulfills the two optional op-
timization criteria: It can easily benefit from
knowing that interesting differences between im-
ages are limited to a given area of the image
by simply not calculating any positions of the
sliding window that do not touch the area of
changes. And by not calculating all possible
window positions but only a portion of them,
SSIM can be calculated with scalable precision.

2.4.5 Compressed Domain Metrics

Although I selected SSIM for use in my work,
I want to make some additional comments on
compressed domain metrics:

It is possible to develop a quality evaluation met-
ric that does not operate on images represented
as pixels, but on a representation closer to the

14

2.4 Video Quality Loss Metrics

one used in a compressed video stream. The
video quality metric (VQM) presented in [36]
for example uses the existing DCT coefficients.
This might reduce computational load, because
images do not need to be fully decoded to cal-
culate a quality metric on them. With such a
technique, it may even become feasible to turn
the preprocessing approach my entire thesis is
based on into an on-line method.

The compressed domain metrics are also appeal-
ing, because instead of reinventing the wheel by
defining a new perception model, they make use
of the perception model built into today’s video
coding algorithms. Since it is the goal of the en-
coding process to reduce the video size without
reducing the quality, the encoder already needs
a built-in notion of quality, which a compressed
domain metric can exploit.

But despite their advantages, such a compressed
domain metric is naturally highly dependent on
the video coding algorithm it is based on and
reuse for different coding standards may be dif-
ficult or even impossible. Applying the VQM
mentioned above to H.264 would not be trivial,
because H.264 does not use DCT. Developing
a metric more fit to H.264 is outside the scope
of this thesis, but is left open for future work.
In addition, [29] shows that SSIM matches per-
ceived quality loss better than VQM.

As I have now discussed the video coding al-
gorithm and the quality loss metric in depth, I
continue by developing the video preprocessor
from these building blocks.

15

2 Related Work

16

3 Video Preprocessor Design

The video preprocessor partitions the video and
provides a faster alternative to synthesize the
content of each partition. Together with a quan-
tification of the resulting costs and quality dif-
ferences to the original video, the extracted data
is stored in a sideband bitstream.

3.1 Metrics for Decoding Time

A good estimate of decoding time is vital for a
sensible decision on which parts of the video to
decode and which to skip. However, I already
described the method for obtaining such esti-
mates in [20], so not all details will be reiterated
here. I first comment on the set of videos used
throughout this thesis. Then I go through the
various decoding steps and present the metrics
used to estimate their execution time.

3.1.1 Test Videos

Table 1 lists the videos used throughout this
thesis. Note that material from two different
encoders is being tested: Three videos were en-
coded using the commercial FastVDO encoder,
three others were reencoded with the open-
source x264 encoder [40]. The reencoding was
performed to control the number of slices per
frame and to manufacture Baseline Profile con-
tent. I deliberately left out interlaced content,
because the adaptive frame/field coding (AFF)
of H.264 would render a large portion of my
code more complicated without any benefit in
proving the feasibility of my method.

Although x264 does not support several interest-
ing features of the Extended Profile, like flexible
macroblock ordering (FMO), arbitrary slice or-
dering (ASO) or slice data partitioning (SDP),
it supports most coding options of the Main
and Baseline Profiles like all slice types and all
macroblock types with all prediction modes. It
also supports both CAVLC and CABAC entropy
compression methods. Consequently, [29] has

 23%

26%

2% 6%

39%

4% Bitstream Parsing and
Decoder Preparation

Decompression and
Inverse Scan

Inverse Quantization and
Inverse Block Transform

Spatial Prediction

Temporal Prediction

Post Processing

Figure 5: Execution time profile for the BBC
test video

shown that x264 visually outperforms other en-
coders, so the quality should be sufficient for my
needs. However, the missing support for FMO
forces me to use slices that are simple horizontal
stripes.

3.1.2 Decoding Steps

The decoder model from my earlier work [20]
can be applied here quite straightforwardly (see
Figure 2). Figure 5 shows an execution time
profile for the BBC test video to give a feel-
ing for the importance of the various decoding
steps. All measurements have been made with
the FFmpeg [41] H.264 decoder on an AMD
Sempron 2200+ (1.5 GHz) under Linux.

Unlike [20], where I predicted video decoding
times on frame level, I need something more fine
grained here, because I want the scheduler to be
able to handle parts of the video smaller than
frames. Slices are an obvious candidate, because
they are decoded mostly independently of one
another and are potentially smaller than frames.
I further elaborate why slices are a good choice
for my purposes in Section 3.2. However, there
are parts of the decoding process taking place
outside a slice context, the most prominent be-
ing header parsing. These parts can be regarded
as pseudo-slices between the actual ones.

The H.264 standard describes I-, P- and B-slice
types, similar to the frame types in previous cod-
ing standards. But other than in previous stan-
dards, the actual decoding does not differ much

17

3 Video Preprocessor Design

Name Content Duration Resolution Size Profile Slices/

Frame

Properties Source

Freeway cars on a freeway 0:09min 704×576 2.1MB Main 1 fixed camera scene [37]*

Golf golfer making a

swing

0:12min 176×144 55KB Main 1 fixed camera scene,

very little motion

[37]*

Shore flight over a

shoreline at dawn

0:27min 352×288 758KB Main 1 camera moving all

the time

[37]*

BBC various combined

broadcast quality

clips from BBC

motion gallery

1:29min 1280×720 57MB Main 5 clips with very

different properties

(low/high motion,

local/global motion)

[38]**

Lady1 movie trailer for

“Lady In The

Water”

1:44min 1920×1080 92MB Main 20 high detail images

with calm motion

[39]**

Lady2 movie trailer for

“Lady In The

Water”

1:44min 1920×1080 92MB Base-

line

4 high detail images

with calm motion

[39]**

* videos have not been reencoded, the original FastVDO encoded material was used
**videos have been reencoded using x264

Table 1: Test videos used throughout this thesis

between those types, as they merely state, which
coding options are allowed to be used in the
respective slice. Consequently, I will not dis-
tinguish between those types in the following
discussion, but rather come up with one set of
metrics useful for all slice types.

Bitstream Parsing and Decoder Prepara-
tion: This decoding step is the one not directly
associated with an actual slice. The decoder
reads in and prepares the bitstream of the up-
coming frame and processes any header infor-
mation available. The number of slices in this
frame is not even known yet. This step should
therefore be treated as a pseudo-slice that pre-
cedes the first real slice of each frame. The
decoder preparation part mainly consists of pre-
computing symbol tables to speed up the up-
coming decompression. Its execution time is
negligible, so I chose to treat these two steps
as one. Because each pixel is represented some-
how in the bitstream and the parsing depends
on the bitstream length, the candidate metrics
here are the pixel and byte counts. Figure 6

Figure 6: Frame-based execution time estima-
tion for bitstream parsing

shows that a linear fit of both actually matches
the execution time.

Decompression and Inverse Scan: The exe-
cution profile (see Figure 5) showed the decom-
pression step to be the most expensive. This
sets H.264 apart from other coding technolo-
gies like MPEG-4 Part 2, where the tempo-
ral prediction step was by far the most expen-

18

3.1 Metrics for Decoding Time

Figure 7: Slice-based execution time estimation
for CABAC decompression

sive. The reason for this shift is that the H.264
Main Profile uses a new binary arithmetic cod-
ing (CABAC) for compression, that is much
harder to compute than the previous Huffman-
like schemes. A less expensive variable length
compression (CAVLC) is also available in H.264
and is used in the Baseline and Extended Pro-
files, where CABAC is not allowed. Both meth-
ods decompress the data for the individual mac-
roblocks and already sort the data according to
a scan pattern, so the inverse scan is a part of
this step. Using the same rationale as for the
preceding bitstream parsing, a linear fit of pixel
and byte counts predicts the execution time well
(Figures 7 and 8). As this step accounts for a
large share of total execution time, it is fortu-
nate that the match is accurate

Coefficient Prediction: Because H.264 con-
tains a spatial prediction step, the coefficient
prediction found in earlier standards is not used
any more.

Inverse Quantization and Inverse Block
Transform: These two steps convert the mac-
roblock coefficients from the frequency domain
to spatial domain, similarly to the IDCT in pre-
vious standards. However, H.264 knows two
different transform block sizes of 4×4 or 8×8
pixels, which can even be applied hierarchically.

Figure 8: Slice-based execution time estimation
for CAVLC decompression

Figure 9: Slice-based execution time estimation
for inverse block transform

Therefore, I count, how often each block size
is transformed and use a linear fit of these two
counts to predict the execution time. Figure 9
shows that this works. The remaining deviations
are most likely caused by optimized versions of
the block transform function for blocks, where
only the DC coefficient is nonzero. But given
the small percentage of total execution time this
step contributes, I did not try to improve this
prediction any further.

It is interesting to note that H.264 allows for
another, entirely different type of macroblock:
PCM macroblocks. Those are not transformed
at all, the coefficients derived from the bitstream
are already in the spatial domain, so they are
merely copied directly into the output image. I

19

3 Video Preprocessor Design

Figure 10: Slice-based execution time estima-
tion for spatial prediction

did not experience such macroblocks in any test
material and I assume they will only be inserted
when H.264 is used in lossless mode. How-
ever, I am going to assign a metric for those
macroblocks, should they ever occur in future
videos.

Spatial Prediction: In this step, already de-
coded image data from the same frame is ex-
trapolated with various patterns into the target
area of the current macroblock. This prediction
can use blocksizes of 4×4, 8×8, or 16×16 pix-
els, so I count those prediction sizes separately.
A linear fit of those counts adequately predicts
the execution time (see Figure 10).

Temporal Prediction: This step was the
hardest to find a successful set of metrics for,
because it is exceptionally diverse. Not only
can motion compensation be used with square
and rectangular blocks of different sizes, each
block can also be predicted by a motion vec-
tor of full, half or quarter pixel accuracy. In
addition to that, bi-predicted macroblocks use
two motion vectors for each block and can ap-
ply arbitrary weighting factors to each contri-
bution. In [20], I broke this problem down for
MPEG-4 Part 2 to counting the number of mem-
ory accesses required. I used a similar approach
here, but counting memory accesses in the code

Figure 11: Slice-based execution time estima-
tion for temporal prediction

was impractical, as FFmpeg uses carefully inter-
woven preprocessor macros beyond my compre-
hension to generate the motion compensation
code. Instead, I consulted the H.264 standard
[2] and also did some empirical improvements
to come up with motion cost values, depend-
ing on the pixel interpolation level (full, half or
quarter pixel, independently for both x- and y-
direction). These cost values are then accounted
separately for the different blocksizes of 4×4,
8×8, or 16×16 pixels. The possible rectangu-
lar blocksizes of 4×8, 8×4, 8×16, or 16×8 are
treated as two adjacent square blocks. Bidirec-
tional prediction is treated as two separate mo-
tion operations. The resulting fit can be seen
in Figure 11. This result is clearly not perfect,
but evaluation will show it to be good enough.
The reason for the rather large deviations from
a linear match are probably caused by the re-
maining variation not tightly accounted for by
the chosen metrics. Another obstacle toward a
better fit are different memory access times due
to largely unpredictable cache misses with the
high definition images and H.264’s exceptionally
large reference buffers.

Post Processing: The mandatory post pro-
cessing step tries to reduce block artifacts by
selective blurring of macroblock edges. A suffi-
ciently precise execution time prediction is pos-

20

3.2 Partition Replacement

Figure 12: Slice-based execution time estima-
tion for post processing

sible by just counting the number of edges being
treated (see Figure 12).

3.1.3 Metrics Summary

The metrics selected for execution time predic-
tion therefore are:

• pixel count,

• byte count,

• PCM-type macroblock count,

• count of intracoded blocks of size 4×4,

• count of intracoded blocks of size 8×8,

• count of intracoded blocks of size 16×16,

• motion cost for intercoded blocks of size
4×4,

• motion cost for intercoded blocks of size
8×8,

• motion cost for intercoded blocks of size
16×16,

• count of block transforms of size 4×4,

• count of block transforms of size 8×8,

• count of deblocked edges.

These metrics are accounted for each slice indi-
vidually and stored in sideband data. With exe-
cution time discussed, the next section focuses
on the partitioning of the video.

3.2 Partition Replacement

I want the final decoder to be able to decide
for each video partition individually, whether to
decode it or not. This immediately brings up
two requirements:

• When a partition is not decoded, it must
be easily skippable in the video bitstream.
After the skipping, the decoder must be in
a consistent state to be able to decode the
next partition.

• When a partition is not decoded, it must
be replaced with visually similar image ma-
terial, so the resulting video does not have
“holes”, where its content is undefined. The
resulting overall quality loss introduced by
the replacement must be known in advance
to help the decoder’s scheduling decision.

The first requirement is fulfilled by H.264’s built-
in network abstraction layer (see Section 2.1).
This layer divides the bitstream into individ-
ual packets (network abstraction layer units or
NALUs), which always start byte aligned. Un-
less the transport medium provides a natural
packetization of the bitstream, as common con-
tainer formats like QuickTime do, each NALU is
prefixed with a unique three byte start code of
0x00 0x00 0x01, which does not appear any-
where else inside the NALU. This allows a de-
coder to easily find NALU boundaries in the
bitstream and because one NALU can contain
at most one slice of a coded frame, finding
NALU boundaries automatically means finding
slice boundaries. Therefore, I use slices as the
video partitions the decoder will later schedule.

Of course I could combine multiple slices into
one partition, but I expect the decreased gran-
ularity to be counterproductive. Slices are al-
ready large in videos found today. One to four

21

3 Video Preprocessor Design

slices per frame are common, but I will use self-
encoded material with more slices to demon-
strate the effect of a finer scheduling granularity.

Using entities smaller than slices as skipping par-
titions is not immediately possible, because the
slice bitstream is so densely compressed that it
is hard to find boundaries of syntax elements
without fully decompressing it. And as decom-
pression is a large chunk of the entire decoding
process (see Figure 5), such an approach does
not appear beneficial. However, even if the skip-
ping cannot use partitions beneath slice level,
the replacement strategy can, as I show in the
following section.

3.2.1 Replacement Partitions

To fulfill the second requirement, I need to
find replacement content to fill in the parts
the decoding scheduler might decide to skip.
At first I wanted to find such replacements
again on the slice level, but I quickly realized
that to be infeasible, because replacement de-
cisions have to be based on structural prop-
erties of the frame. Although hard to imple-
ment, an example that makes this rationale clear
immediately is foreground/background separa-
tion: Low-motion background areas of the im-
age might need a different replacement than
more dynamic foreground objects. But in the
H.264 videos commonly found, the slice struc-
ture does not follow any structural or semanti-
cal properties of the frame. Today, dividing a
frame into slices is mostly done to exploit mul-
tiprocessor machines that can use slices to par-
allelize the decoding. With more sophisticated
encoders, this can be changed, because H.264
allows arbitrarily shaped slices with its flexible
macroblock ordering (FMO) feature (see Sec-
tion 2.1). This can be leveraged in the future to
encode slice structures that follow the structure
of the frame’s content. But in the open-source
world, neither an encoder nor a decoder support-
ing FMO are available today. In addition, FMO
might also be currently neglected, because only
the Baseline and Extended Profiles of H.264 in-

clude it, but the Main Profile, which exclusively
supports the highly efficient CABAC compres-
sion, does not allow FMO (see Figure 1).

To somewhat emulate the advantages of FMO, I
decided to develop a replacement strategy using
replacement partitions that are completely de-
coupled from the skipping partitions discussed
previously. Of course, once the decoding sched-
uler decides to skip decoding of a frame’s slice,
exactly this slice’s pixels will be reconstructed
by replacing them. But different areas of the
slice in question might be replaced differently. I
will call these areas replacement partitions and
skipping partitions, respectively. I already de-
termined above that the skipping partitions are
going to be identical to slices. The replacement
partitions are left to be discussed now.

3.2.2 Replacement Strategy

Replacement content cannot be synthesized
knowing just the frame, whose “hole” is to be
filled. Although there are algorithms known
in still image and video retouching [42], that
can fill a specified region by extrapolating from
surrounding image content, these methods are
computationally far too demanding to be used
during video decoding. Therefore, the best way
to replace parts of a frame is to copy portions
of previously decoded images into the hole. Be-
cause reference frames are previously decoded
images the decoder keeps in memory, it is clear
I should use them for my purposes. This idea
is especially adequate for H.264, which, with its
large buffer of up to 32 reference frames, offers
a wide choice of candidate replacement regions
to choose from.

Image content should also not be replaced by
always copying from the same location of a dif-
ferent frame. I tried that, but the unsatisfy-
ing results made clear I should consider copying
from a different region of a different frame to
compensate for motion between the two images.
This compensation is of additional importance,
as I will apply the previously discussed quality

22

3.2 Partition Replacement

loss metric to the replacements to quantify the
visual error they introduce. In Section 2.4 on
Page 10, I defined the requirements for a qual-
ity loss metric and the first requirement includes
the prerequisite of aligned images. This can be
fulfilled or at least approximated by compensat-
ing for motion.

While motion analysis of a series of images
is generally expensive, the H.264 coded video
stream already provides motion vectors of good
quality, because the reduction of temporal re-
dundancy is vital to reduce the size of the
compressed video. An example visualization of
H.264 motion vectors can be seen in Figure 13.

However, I cannot simply extract and store all
motion vectors, because then, the data rate of
the preprocessor output could easily rival the
data rate of the original H.264 feed as I would es-
sentially duplicate a large portion of the stream.
Therefore, a representation needs to be found
that is considerably more lightweight, but still
capable of approximating the motion of the
frame to provide good partition replacement. In
the next section, I lay out my idea of using a
quadtree to accomplish that.

3.2.3 Motion Vector Quadtree

Quadtrees [43] are used in computer graph-
ics contexts to partition two dimensional data.
Starting with the root node representing the
complete frame, I recursively and adaptively
subdivide each node’s region into four subre-
gions. This leads to a nonuniform subdivi-
sion of the frame, represented by a nonuniform
quadtree, meaning that nodes of maximal depth
do not necessarily have the same depth. But the
tree should cover the whole frame, so each node
has either zero or four subnodes. An example of
a possible quadtree subdivision is given in Fig-
ure 14. The subdivisions always cut a region in
half vertically and horizontally, regardless of the
frame’s aspect ratio. But all cuts are rounded
to integer multiples of the macroblocks size.

Algorithm 1 Fully subdividing the quadtree
// Step 1
initialNode = entireFrame;
populateQuadtreeNode(initialNode);

function populateQuadtreeNode(quadtreeNode) {
// Step 2
referenceAccess[] = 0;
foreach (macroblock in quadtreeNode)
referenceAccess[macroblock.reference]++

mostOftenUsedReference =
indexOfMaximum(referenceAccess);
quadtreeNode.reference = mostOftenUsedReference;

// Step 3
averageVector = 0;
foreach (macroblock in quadtreeNode)
if (macroblock.reference ==
mostOftenUsedReference)
averageVector += macroblock.vector;

quadtreeNode.vector = averageVector;

// Step 4
quadtreeNode.subnodes[] =
subdivideNode(quadtreeNode);
foreach (subnode in quadtreeNode.subnodes)
if (subnode.area >= singleMacroblock.area &&
subnode.motionVectorCount >= 1)
populateQuadtreeNode(subnode);

else
quadtreeNode.subnodes = null;

}

To associate motion vectors to quadtree nodes, I
developed the following algorithm, which works
in two parts. The first part recursively creates
a fully subdivided quadtree. A pseudo-code de-
scription can be found in Algorithm 1, a textual
description follows:

1. Start the iteration with the root node of
the quadtree covering the entire frame.

2. For the region covered by the current node,
iterate over all macroblocks and count, how
often each reference frame is accessed. De-
termine the reference frame used most of-
ten. This reference is stored in the current
node.

3. For the region covered by the current node,
iterate over all macroblocks and select
those motion vectors that use the reference

23

3 Video Preprocessor Design

Figure 13: Visualization of H.264 motion vectors. Images are neighboring (but not directly con-
secutive) frames of BBC video, with motion vectors represented as arrows. Between
frame one and two, the monkey looks up, between frame two and three, the camera
zooms back. Both of these motions (the first being more local, the second global) are
followed by the motion vectors.

24

3.2 Partition Replacement

Figure 14: Quadtree subdivision example. For
illustration, three pairs of corre-
sponding nodes have been colored in
both the 2D-plane and the tree rep-
resentation.

frame determined in Step 2. Average all se-
lected motion vectors. The resulting vector
is stored in the current node, rounded to
full pixel accuracy.

4. Subdivide the current node’s region into
four subregions, thus creating four sub-
nodes of the current node. If the areas cov-
ered by the subnodes are each at least the
size of one macroblock and contain each
at least one motion vector, repeat Steps 2
to 4 for each subnode, otherwise delete the
subnodes and return.

This yields a fully subdivided quadtree with a hi-
erarchy of reference frames and motion vectors.
All leaf nodes of this tree together fully cover
the frame and provide the motion approxima-
tion needed to replace the image content. How-
ever, storing all these nodes results in too much
data, so the algorithm continues by pruning the
quadtree without sacrificing too much quality.
The second part adaptively cuts off nodes from
the leaves toward the root node to reduce the
amount of data. The finer subdivisions provide
better approximation of the frame’s motion, so
every time nodes are removed from the tree, the
resulting quality loss is checked. A pseudo-code
version is available in Algorithm 2.

1. Start the iteration with the root node of
the quadtree covering the entire frame. Be-
cause the iteration in the following steps
is a head-recursion, the algorithm will first
descend into the tree and then process the
nodes on the way up.

2. Return to the parent node, if the current
node has no subnodes.

3. If the current node has subnodes, recurse to
prune them first. This ensures bottom-up
pruning.

4. Return to the parent node, if the current
node’s subnodes are not leaves (that is:
they in turn have subnodes). This ensures
that cutting is not performed here if it failed
on one of the subnodes.

5. Perform region replacement for the entire
frame by iterating over all leaves of the cur-
rent version of the tree. The region cov-
ered by each leaf node is replaced with a
region of equal size, taken from the refer-
ence frame stored in the corresponding leaf
node. The replacement region is offset by
the average motion vector stored in the leaf
node.
The replacement is performed for the en-
tire frame so that the quality loss metric
in the next step can compare two complete
frames.

25

3 Video Preprocessor Design

Algorithm 2 Adaptive pruning of the quadtree
// Step 1
initialNode = entireFrame;
pruneQuadtreeNode(initialNode);

function pruneQuadtreeNode(quadtreeNode) {
if (!quadtreeNode.subnodes)
return; // Step 2

else
foreach (subnode in quadtreeNode.subnodes)
pruneQuadtreeNode(subnode); // Step 3

// Step 4
foreach (subnode in quadtreeNode.subnodes)
if (subnode.subnodes) return;

// Step 5
replaceFrame = clone(originalFrame);
doReplacement(initialNode, replaceFrame);
// Step 6
qualityLoss1 = compare(replaceFrame, originalFrame);

// Step 7
temp = quadtreeNode.subnodes;
quadtreeNode.subnodes = null;
replaceFrame = clone(originalFrame);
doReplacement(initialNode, replaceFrame);
// Step 8
qualityLoss2 = compare(replaceFrame, originalFrame);

// Step 9
if (acceptable(qualityLoss2 – qualityLoss1))
temp = null;

else
quadtreeNode.subnodes = temp;

}

function doReplacement(quadtreeNode,
replaceFrame) {
if (quadtreeNode.subnodes)
foreach (subnode in quadtreeNode.subnodes)
doReplacement(subnode, replaceFrame);

else
replaceFrame[quadtreeNode.area] =
quadtreeNode.reference[quadtreeNode.vector];

}

6. Calculate the quality loss of the entire
frame with the replacements, compared to
the original frame. This step can be ac-
celerated by confining the quality metric to
the area of the current node as will be dis-
cussed in Section 3.2.6.

7. Remove all subnodes of the current node,
so that the current node becomes a leaf and
execute the replacement again as described
in Step 5.
As the current node is now a leaf, the re-
placement will be determined by the refer-
ence frame and motion vector taken from
the current node instead of the multiple ref-
erence/vector pairs from its subnodes.

8. Calculate the quality loss of the frame with
the replacements again. This can again be
accelerated by applying the quality metric
to the current node only.

9. I expect the coarser subdivision with the
subnodes removed to lead to a higher qual-
ity loss than the finer subdivision. If the
coarser subdivision has increased the qual-
ity loss only moderately compared to the
finer subdivision, the subnodes removed in
Step 7 are discarded. Otherwise they are
reattached. In both cases, control flow re-
turns. What constitutes an acceptable in-
crease is yet to be defined.

The result of this algorithm is a nonuniformly
subdivided quadtree that approximates the mo-
tion in the frame with less data than the fully
subdivided quadtree.

I now discuss two possible alterations to this al-
gorithm, which I examined until I settled for the
described method:

• The algorithm creates the final tree in
bottom-up order, as formulated in steps 2
and 3 of the second part. The bottom-
up traversal needs a fully subdivided tree
as a starting point, which is why the first
part of the algorithm is needed. Top-down
creation which builds the nodes as it pro-
gresses down would be an alternative.

• Once a cutting step has not been performed
because of a too high increase in quality
loss, all subsequent nodes along the path
to the root node will not be cut off either.

26

3.2 Partition Replacement

This inhibitive behavior is caused by Step 4
of the second part. Considering all possible
cuts would be an alternative.

Figure 15 illustrates these options.

Alternative 1: Top-Down Creation. In a
first iteration, I tried a different approach to
build the quadtree, effectively traversing the
nodes in reverse order, from the root toward
the leaves and stopping at the first subdivision
that appears to be beneficial. This top-down ap-
proach would have to look at considerably fewer
nodes, so it is faster. However, this solution
turned out to be inferior to the one presented
above.

The reason why the strategy of adaptive subdi-
vision by threshold is better suited for bottom-
up order compared to top-down order seems
to be that sometimes the subdivisions of low
depths, where nodes cover large areas, have a
reversed effect on the quality: The quality loss
with the subdivision may be higher than with-
out, although one would expect the finer subdi-
vision to have lower quality loss. I explain this
behavior with edges in the frame’s interior intro-
duced by the subdivision: On subdivision depth
zero, the frame is treated as a whole, whereas
the first division introduces the two region bor-
ders crossing at the frame’s center. Those bor-
ders might be disruptive to the structure of the
image, resulting in a quality loss. While this sit-
uation basically occurs recursively in every ad-
ditional subdivision, the quality increase by the
more fine grained motion vectors seems to over-
compensate for the potential negative effects of
those edges with increasing depth.

Therefore, I chose to traverse the tree in
bottom-up direction, starting with the most fine
grained subdivision. To countereffect the speed
loss caused by the larger number of visited
nodes, the given algorithm is optimized as noted
above by limiting replacement and quality loss
calculation to the areas that actually change.

Alternative 2: Non-Inhibitive Cutting. I
also tried to apply the original cutting algorithm
without Step 4, so even if a cutting step fails
because of a too high increase in quality loss,
the algorithm does not bail out for that part of
the tree, but still tries cutting all nodes of lower
depths. With this change, I hoped to find the
optimal cut regarding quality versus node count.

However, it turned out that this change causes
the algorithm to destroy an already found ben-
eficial subdivision too often by collapsing the
quadtree into a few large nodes. Of course this
can be compensated by more strongly penaliz-
ing the quality loss of those cuts in Step 8. But
this countereffects the advantage, because it en-
larges the sideband data size again. Another
strong disadvantage of this modification is that
the preprocessing takes a lot longer, due to all
nodes being always examined.

Therefore I ultimately decided to use the al-
gorithm as originally presented: Traversing the
tree in bottom-up order and with a cutting fail-
ure inhibiting further cuts of ancestors of that
node.

3.2.4 Encoder Assumptions

This approach makes heavy use of the motion
vectors already present in the coded video, but
aggregates them spatially into a considerably
smaller number of vectors. For this to work,
I make several implicit assumptions about the
encoder:

• Areas of related motion are spatially con-
tiguous.

• For an area of related motion, the encoder
picks the perceptionally most similar refer-
ence frame.

• For an area of related motion, the mo-
tion vectors do not jump erratically, but
are smooth in the sense that neighboring
vectors are similar in direction and length.

27

3 Video Preprocessor Design

Figure 15: Alternative ways of cutting nodes off the quadtree. For simplification, the diagram
uses a binary tree instead of a quadtree. Please note that the cuts must respect the
invariant of each node having either zero or two subnodes (four in the original quadtree
case).

These assumptions can be justified with the help
of two other assumptions, which I consider to be
assured:

• The encoded video content has natural mo-
tion.

• The encoder tries to minimize the size of
the coded video bitstream.

Motion in video can only be perceived by an
observer, if certain features in the moving part
make it recognizable in every frame and thus
trackable for the human eye. Although this
claim can be weakened by occlusion or transpar-
ent objects, such recognizable features are most
often spatial patterns. So in images with nat-
ural motion, the moving parts can be assumed
spatially contiguous.

28

3.2 Partition Replacement

If the encoder tries to encode the video with as
few bits as possible, it will have to pick a similar
reference frame, because that results in a small
residual error after temporal prediction and a
smaller error needs fewer bits to be corrected.
So the reference frames selected by the encoder
can be assumed perceptionally similar.

Furthermore, it is a property of modern video
coding standards, that neighboring motion vec-
tors can be coded with fewer bits, if they follow
a fluent pattern, because the motion vectors are
not stored in the bitstream directly, but are also
predicted. In addition, when searching for the
best matching motion vector, the encoder does
not employ brute-force search over the complete
reference frame, but usually starts at a posi-
tion, where the vector is expected to point to
and then searches a small area in the vicinity of
that point. Therefore, motion vectors can be
assumed smooth. Figure 13 supports that.

A special case worth mentioning is the situation
where a frame is only sparsely using motion vec-
tors with the extreme case of no motion vectors
at all. The latter happens regularly at frames
consisting only of intracoded slices, which are
usually IDR frames. Because the first part of
the quadtree building algorithm stops the recur-
sion when it would create a node with no mo-
tion vectors in them, the resulting tree for such
frames will be shallow or even empty. I con-
sidered to do my own motion analysis to create
additional motion vectors, but quickly dropped
the idea as the approach would lose its elegance
of only reusing data already provided by the en-
coder. In the light of the discussed assumptions,
it is clear that the encoder does not make use of
reference frames when using them would provide
no benefit.

However, there are two situations, where this
justification for not performing an additional
motion analysis does not hold:

• When objects with high motion are ren-
dered blurry in the frame, the encoder
chooses intracoded macroblocks without

any motion vectors, because the blurriness
leads to a lack of high frequency contribu-
tions, making intra compression more effi-
cient than motion compensated compres-
sion. Figure 16 gives an example for such
a frame. But as can be seen in Figure 17,
frames are typically densely covered with
motion vectors, so such situations are not
frequent enough to justify special treat-
ment. I will show in Section 3.3 that this
encoder behavior can even be beneficial for
error propagation.

• The encoder might insert an IDR frame
even though coding with reference frames
is beneficial. Because IDR frames use no
references, they are the possible starting
positions when decoding is to begin in the
middle of a video stream. Therefore, a cer-
tain rate of IDR frames has to be main-
tained for those starting positions not be
too far apart. However, the encoder typi-
cally tries to conserve bandwidth by placing
IDR frames at scene changes, where coding
with reference frames would indeed be less
effective.

I decided that special casing these situations
does not yield enough benefit compared to the
expected increase in computation time by an ad-
ditional motion analysis.

I have now proposed and thoroughly discussed
an algorithm to build a motion vector quadtree.
I now continue by showing, how this quadtree is
used and examine the influence on the decoded
video’s quality.

3.2.5 Performing a Replacement

The quadtree generated by the preprocessor de-
scribes what I call replacement partitions: ar-
eas of the frame that can be replaced with ar-
eas from previously decoded frames. What the
decoder will later schedule are skipping parti-
tions: portions of the bitstream whose decoding

29

3 Video Preprocessor Design

Figure 16: Frame from BBC video with visualized motion vectors as an example for motion blur
leading to intra compression. The ball on the right is moving fast toward the camera
and will exit the frame on the right edge. Notice that although it is a moving object,
no motion vectors encode that motion. Instead, the ball is fully intracoded.

Figure 17: Motion vector coverage histogram
over the entire BBC video. For each
frame, the ratio of macroblocks bear-
ing a motion vector is plotted. Note
the spike on the very left, which is
caused by IDR frames.

can be skipped because the decoder can be re-
aligned to continue decoding after the skipped
partition. Those two partition types are orthog-
onal in my approach, but they could be unified
in the future, when encoder and decoder support
for H.264’s built-in partitioning features, namely
FMO and ASO, receive more attention.

When the decoder decides to skip a skipping
partition, exactly that area of the frame covered
by the skipping partition is replaced. The re-
placement image data is patched together from
the replacement partitions in that area as illus-
trated in Figure 18. By evaluating the motion
vectors from the leaves of the quadtree, content
is copied from the reference frames. When the
motion vector exceeds the boundaries of the ref-
erence frame, it is clipped to the closest location
within the frame.

This replacement is supposed to be consider-
ably faster than the actual decoding. Figure 19
gives a feeling for the magnitudes of execution

30

3.2 Partition Replacement

Figure 18: Skipping partitions and replacement partitions

times for full decoding compared to replacing. In
average, replacing is 7.54 times faster than de-
coding and it has proven hard to optimize this
further, as the replacement is mostly memory
bandwidth limited. Because the scheduler will
need both execution times, a replacement time
prediction complements the decoding time pre-
diction. This prediction is done similarly to the
decoding time metrics discussed in Section 3.1,
with the macroblock count of the skipping par-
tition as the only metric, because the memory
copying is by far the dominant task here. Fig-
ure 20 shows the quality of this metric. There
are runaway values and mispredictions, but as
this prediction basically tries to estimate mem-
ory access speed, I assume they are caused by
unfortunate memory accesses, which are hard to
predict more accurately.

Of course, when such a skipping and replace-
ment happens, the resulting image will be dif-
ferent from the fully decoded original. To make
a sensible decision on which parts to skip, the
scheduler needs information about this quality
loss. Therefore, once the preprocessor has built
the quadtree, it will perform a replacement for
each skipping partition individually and mea-
sure the error between replacement and original.
These quality loss values are stored in sideband
data for each skipping partition.

Figure 19: Decoding time and replacement time
histograms, measured over BBC
video on an AMD Sempron 2200+
(1.5 GHz)

Figure 20: Execution time estimation for slice
replacement

31

3 Video Preprocessor Design

3.2.6 Quantifying Quality Loss

We have seen that throughout the partition re-
placement analysis, the preprocessor needs to
calculate the quality loss between images mul-
tiple times. This comparison is a task for the
SSIM algorithm, which I introduced in Sec-
tion 2.4. There I mentioned two simplifications
for SSIM that will reduce the computational load
to speed up preprocessing:

• Instead of considering all three components
of the Y’CBCR colorspace, calculate SSIM
for the Y’ (luma) component only.

• Instead of considering all possible positions
of the local SSIM sliding window, select
only a portion of them.

The first simplification of omitting the chroma
information has a moderate effect on the accu-
racy of SSIM as proven by Figure 21. The peak
error being greater zero shows that Y’-only re-
sults are generally higher, presumably because
the chroma components have less structure than
the luma component. For a Y’CBCR SSIM, Y’ is
only weighted with 0.8 compared to 1.0 for Y’-
only. Due to chroma subsampling, the chroma
planes are each only a quarter the size of the
luma plane. Therefore, the achievable reduction
in computation time is only 2/3, so I decided not
to take the path of ignoring the chroma planes.
I think the loss in precision is not adequately
translated into speedup and I do not want to
disregard color information completely. While
this may not be a problem for natural images,
where color structure usually follows brightness
structures, it may be problematic for synthetic
images.

I tested the effect of the second simplification by
introducing a precision value between 0 and 1 in
the SSIM calculation. Sliding window positions
are then selected randomly, with the precision
value representing the probability for a specific
position to be selected. Using various different
precisions to calculate SSIM yields the results

Figure 21: Histogram of the relative difference
of Y’-only SSIM results compared to
Y’CBCR SSIM results

Figure 22: Relative error of imprecise SSIM cal-
culation

presented in Figure 22. Because the execution
time of SSIM decreases linearly with the preci-
sion, I chose a relatively low precision of 0.05, re-
sulting in computation time being reduced down
to 5 %. The overall error of a SSIM with this
precision against a full-precision SSIM result can
be seen in Figure 23. The standard deviation of
the relative error is 0.031, which I consider ac-
ceptable.

Combining the findings from Section 2.4 with
the ones above, the final quality loss metric
which will be used throughout the remainder of

32

3.2 Partition Replacement

Figure 23: Relative error histogram for a SSIM
precision of 0.05

this thesis is therefore

1−
(
0.8 ·MSSIMY’(x, y)

+ 0.1 ·MSSIMCB(x, y)

+ 0.1 ·MSSIMCR(x, y)
)

with MSSIM(x, y) being the mean SSIM index
for a single image component, which is in turn
calculated as a scaled sum of local SSIM values
over a set W of selected sliding window posi-
tions. N is the amount of pixels in that im-
age component. Each window is selected with
a probability of p = 0.05:

MSSIM(x, y) =
1

Np

∑
W

SSIM(xlocal, ylocal
)

This calculation is similar to [33].

Further speed enhancement is possible by ex-
ploiting the locality of SSIM: When interesting
changes between the two images are known to
occur only within a confined region, a rectangle
of interest allows to only select sliding window
positions within that region. This locality is a
specific property of SSIM and might not apply to
other quality loss metrics. Therefore, my thesis
does not rely on this behavior.

Because of the sliding window selection being
random, I also considered, whether it is neces-

sary to special case small rectangles of interest
down to the size of one macroblock to avoid the
situation of no sliding window being selected at
all. However, with a sliding window size of 8×8
pixels, the chances of even a single pixel not
being covered by any sliding window are small:
(1− 0.05)8·8 = 0.0375, chances of an entire
16×16 pixel macroblock being ignored are mi-
nuscule: (1− 0.05)(8+16−1)(8+16−1) < 10−11.
As this probability roughly results in an aver-
age of one completely ignored macroblock every
35 days of continuously running 25 frames per
second high definition video, I decided that spe-
cial casing is not necessary.

3.2.7 Adaptive Subdivision Threshold

The quadtree subdivision algorithm given in Sec-
tion 3.2.3 left open, what increases in quality
loss are considered acceptable. The algorithm
adaptively cuts off subnodes by comparing the
quality loss of finer and coarser subdivisions and
choosing the coarser one, if the quality differ-
ence is acceptable. This threshold balances the
replacement quality against the size of the side-
band data: A too low threshold will result in
many quadtree subdivisions for the preprocessor
to store without proportionate benefit, whereas
a higher threshold results in a coarse subdivi-
sion with potentially too few motion vectors to
properly approximate the motion in the frame.

As I assumed the quality loss metric to behave
linearly (see Section 2.4), the quality decrease
for a node should be weighted by the size of the
area it covers. This area shrinks exponentially
with increasing depth, so the threshold should
shrink accordingly. In the quadtree, the number

of nodes per depth level is
(
2depth

)2
, so the size

of one node is proportional to 1/
(
2depth

)2 =
1/22·depth. Therefore, I use a threshold of
0.01/22·depth to constitute an acceptable qual-
ity loss for the SSIM metric. The threshold fac-
tor of 0.01 has been determined empirically, but
the magnitude of my choice is supported by Fig-
ure 24. The effect of other threshold factors are

33

3 Video Preprocessor Design

shown in Figure 26, with the different resulting
sideband data sizes in Figure 25.

It is visible that the chosen threshold factor of
0.01 uses sufficiently fine subdivision along the
areas of motion at the tips of the crystals while
still maintaining an overall low node count re-
sulting in moderately sized sideband data. The
higher threshold of 0.1 subdivides too coarsely
to approximate the frame’s motion adequately.
The lower threshold of 0.001 starts to subdivide
areas of the background with no motion that can
be represented well enough with larger nodes,
resulting in an unnecessary increase of sideband
data size. Threshold 0.0001 applies an almost
full subdivision, further increasing sideband data
size. This visual inspection should suffice to jus-
tify my choice of 0.01 as the threshold factor.

In addition to the additive threshold, I also tried
a multiplicative threshold, where not the differ-
ence between the higher and the lower quality,
but their ratio would be compared to the thresh-
old. This value would not have to be weighted
by the size of the node’s area, because the ra-
tio is automatically relative. I used a threshold
of 1.7, meaning that an increase in quality loss
of 70 % would be tolerable for nodes to be cut
off. This might appear quite high, but I deter-
mined the value so that the sideband data size
would be roughly the same as for the chosen
additive threshold of 0.01/22·depth. It is 12.0%,
which is about the same as the 12.3% for 0.01
in Figure 25, but Figure 27 shows that the re-
sulting visual quality is worse. It appears that
the relative nature of the threshold – high initial
error leading to high tolerable error, low initial
error leading to low tolerable error – distributes
the subdivision pattern evenly across the frame,
not particularly following the areas of motion.
This leads to unnecessary subdivisions in low-
error areas as well as missing subdivisions in
high-error areas. Therefore I dropped the idea of
a multiplicative threshold in favor of the additive
threshold 0.01/22·depth.

3.2.8 Summary of Partition Replacement

I have developed a strategy of dividing the frame
into skipping partitions and replacement parti-
tions. I formulated an algorithm in Section 3.2.3
to exploit existing motion vectors when creating
a quadtree to describe the replacement parti-
tions. The soundness of the algorithm was sup-
ported by a discussion of encoder behavior. The
scheduler can use the replacement partitions to
skip decoding of slices to save execution time
and a quality loss metric enables the estimation
of the error introduced in doing so. But so far,
the effect of such a replacement has only been
examined for the frame in which it takes place.
The upcoming section deals with that limitation.

3.3 Error Propagation Estimation

Until now, I examined the error caused by skip-
ping and replacing a slice strictly within the
frame directly affected. But today’s decoder
algorithms in general and H.264 in particular
draw a large part of their compression efficiency
from the exploitation of inter-frame redundancy
by using temporal prediction to encode frames.
This causes errors in one frame to be propagated
into other frames, which then in turn cause fur-
ther frames to have errors. This way, an error
introduced in one frame can affect any number
of frames decoded later.

In addition, H.264 uses spatial prediction to ex-
ploit intra-frame redundancy, which could lead
to errors in one slice being propagated into other
slices of the same frame, spreading the error over
a larger portion of the current frame, which also
increases the pollution of future frames. How-
ever, I have not observed this effect during my
analysis, so I will ignore it. I assume that en-
coders deliberately avoid cross-slice spatial pre-
diction, because they want to allow decoders to
decode multiple slices simultaneously when mul-
tiple CPU cores are available.

34

3.3 Error Propagation Estimation

Figure 24: Quality loss difference histograms for cutting off nodes of higher depths, leaving one
node of the given depth as a leave. The abscissae have each been multiplied by 22·depth

for comparability. Note that the individual histograms have similar properties, which
indicates that the weighing factor 22·depth is correct.

0%

5%

10%

15%

20%

25%

30%

0.1 0.01 0.001 0.0001 0

Threshold Factor

S
id

e
b

a
n

d
 D

a
ta

 S
iz

e

(i
n

 P
e

rc
e

n
t

o
f

V
id

e
o

 S
tr

e
a

m
 S

iz
e

)

Figure 25: Sideband data sizes in relation to the
video size (BBC video) for different
threshold factors

3.3.1 Estimation or Measurement

Of course the most accurate way to quantify the
propagated error is to measure it similarly to the
error directly induced by replacement (see Sec-
tion 3.2.5). But what was straightforward for
this direct error is a lot more complex for the
propagated error: Errors are potentially propa-
gated over great distances, only an IDR frame
definitely inhibits all propagations. Therefore,
the current slice’s error can depend on the er-
ror of every slice back to the previous IDR. The
number of those slices can reach 100 and more
and is generally unbounded. Every single one of
those slices could be skipped or not, which would
change the error inflicted on the current slice.
So for a thorough error measurement, given a
slice that is n slices away from the previous IDR,

35

3 Video Preprocessor Design

The original sequence of growing ice crystals:

Threshold Factor 0.1:

Threshold Factor 0.001:

Threshold Factor 0.01:

Threshold Factor 0.0001:

Figure 26: Visual effect of different subdivision thresholds for BBC video. The top row gives an
idea about the movement: The ice crystals are growing from the lower right corner
toward the upper left corner. Motion vectors encode the growth at the tips of the
crystals. The four images below that visualize the quadtree subdivisions of the same
video frame for various threshold factors.

36

3.3 Error Propagation Estimation

Figure 27: Visual effect of a multiplicative
threshold of 1.7. Subdivision is visu-
alized for the same frame as in Fig-
ure 26

2n different slice skipping patterns would have
to be simulated and measured. This procedure
would be repeated for every slice. It is quite
clear that this way of measuring the error is com-
pletely infeasible.

Therefore I am using a different approach, try-
ing to estimate the error instead of measuring
it. For this, I will analyze and quantify a single
propagation step. That is: Quantify how errors
propagate into the current slice from those slices
used by it directly. With this step, any propa-
gation path can be predicted as proven by the
following well-founded induction:

Let S be a set of contiguous slices in which er-
ror propagation occurs. S is totally ordered by
the binary relation D representing the decoding
order, hence (s1, s2) ∈ D if and only if s1 is
fully decoded before s2 is fully decoded. S shall
be chosen in a way that all propagation is con-
fined to slices in S. Such a selection is possible
because IDR frames naturally inhibit any prop-
agation, so if for example S starts with the first
degraded slice and ends with the last slice of
the frame before the next IDR, the requirement
is met. I will now prove that, given a quantifi-
cation for a single propagation step, the error of
every slice in S can be estimated.

Induction Basis: The error estimate of every
D-minimal element in S must be known. Be-

cause D is a total order on S, there is only one
D-minimal element, which is the slice in S first
to be decoded. Because there is by construction
no error propagation from a frame outside of S
into this slice, it is either error-free, in which
case the error estimate is trivially 0, or it is a
slice which will be skipped and replaced. In this
case, the error is directly inflicted by the replace-
ment and this error has been measured and is
provided with sideband data as stated in Sec-
tion 3.2.5. This value is used as the estimate.

Induction Premise: For an arbitrary but fixed
slice s, the error estimates of all slices r are
known, if (r, s) ∈ D (slice r is decoded before
slice s).

Induction Hypothesis: The error of s can be
estimated.

Induction Step: The decoding of slice s uses
other slices as references. These can already
be degraded, which is the basis for error prop-
agation. However, as assumed previously, the
amount of error propagated in a single step
from the reference slices into the current slice
is known. Thus, if we had an estimate of the
error of those reference slices, the error of the
current slice could be estimated as well. Be-
cause any reference slice r must be fully de-
coded before s, (r, s) ∈ D holds. Therefore,
the induction premise yields the required error
estimates of the reference slices. Using the sin-
gle propagation step quantification now gives an
error estimate for s, which proves the induction
hypothesis. Note that the slice s itself could
be skipped and replaced, in which case the er-
ror inflicted directly by the replacement is accu-
mulated to the propagated error. This will be
discussed in Section 3.3.3.

Applying the principle of well-founded induction
leads to the conclusion, that the error of every
slice in S can be estimated and since S can
encompass an entire video without violating any
requirement, the errors of all slices in any video

37

3 Video Preprocessor Design

can be estimated, given a quantification for the
single step propagation.

3.3.2 Single Propagation Step

I can now reduce the problem of arbitrary prop-
agation paths to just analyzing and estimating
propagation to a slice from those slices it di-
rectly references. The key property of referenc-
ing potentially degraded slices is that the error
from that reference slice is copied to a certain
degree into the current slice. The approach I
am going to pursue is to estimate that error in
a straightforward way by checking motion vec-
tors to see, what fraction of a particular ref-
erence slice’s area is used by the current slice.
The referenced area of one motion vector can
differ in size due to motion vector subblocking,
so some vectors will contribute a smaller area,
others contribute larger ones. As these areas
may cross slice boundaries, I always check for
each pixel of the referenced area to what slice it
belongs to account the areas coming from dif-
ferent reference slices separately. Another pecu-
liarity to consider is that for B-slices, every mac-
roblock may use two different references, which
are overlaid in a weighted fashion. Disregard-
ing the actual weighing factors, I multiply each
contributed area with 0.5.

Of course, the actual temporal prediction is a lot
more complex than just simple copying of refer-
ence frame data. Besides the subpixel interpola-
tion and B-slice weighing, the result is overlaid
with a block of correction samples and is sub-
ject to H.264’s in-loop deblocking filter. But I
hope that the simple approach of using motion
vectors to determine area fractions being copied
will be sufficient.

The result of this motion vector analysis is a ta-
ble per slice that stores for each slice of each
reference frame the area fraction that is copied
into the current slice. The actual error estima-
tion for a slice is then calculated by multiplying
the error estimates of the reference slices with
their respective area fraction and summing up

these individual contributions. Remember that
the error of the reference slices is known by in-
duction premise. Figure 28 illustrates this with
example tables.

Error Behavior Assumptions: It is clear that,
using such a simple calculation for a process as
complex as error propagation, I must make as-
sumptions on error behavior. First, I derive the
error contribution from a single reference slice
by multiplying the reference slice’s error esti-
mate with the fraction of the area being copied.
This assumes that the error is distributed equally
over the reference slice, which is a pretty strong
assumption. By skipping and replacing 100 ran-
domly selected slices, obtaining the resulting de-
graded frames with the propagated error, I cal-
culated an accumulated SSIM error map, which
can be seen in Figure 29. This map shows, that
the error does not follow any obvious patterns,
like becoming smaller toward the frames’ bor-
ders. Although the slice structure is visible in
the map, the error does not clearly follow it ei-
ther. Instead, the error more dominantly follows
structures in the image content, which is proven
by the clearly visible“BBC Motion Gallery” logo
in the bottom right, with its very distinctive i-
dot. So, although knowing that the error is not
necessarily equally distributed, but might con-
centrate somewhere, I found no easy way to de-
termine where such concentrations are. Without
such a-priori knowledge, uniform distribution is
the best assumption available. Of course, one
way to increase the accuracy of the error local-
ization is to use smaller slices. It remains open
for future research to derive more efficient ways
of localizing errors.

The second assumption made is that the indi-
vidual error contributions can simply be summed
up to a total error estimate. This works because
the contributions are made up of area fractions
of the current slice, which are spatially indepen-
dent of one another and because the SSIM in-
dex has a linear behavior as discussed in Sec-
tion 2.4.4.

38

3.3 Error Propagation Estimation

Figure 28: Example propagation step calculated from propagation tables and reference frame error
estimates

Estimation Quality: I randomly selected 100
slices of the BBC video to be skipped and re-
placed and calculated the actual SSIM quality
loss and the estimated quality loss for every
frame. The absolute error of this estimation can
be seen in Figure 30. The average absolute es-
timation error is -0.0002 at a standard deviation
of 0.0011. As the measured actual SSIM qual-
ity loss ranges from 0 to 0.027, the estimation
is reasonably good, despite the approximations
mentioned.

Correction Factor: The average absolute er-
ror is negative, so the estimate is typically
smaller than the actually measured quality loss.
I tried compensating for this with a correction
factor to be applied to the area fractions in
the propagation tables: Each such table entry
would simply be multiplied with a fixed factor.
If this factor is slightly larger than 1, the table
entries would all grow a bit and thus, the fi-
nal quality loss estimate would grow with them.
The problem is therefore finding a single, fixed
factor, which is optimal in regard of reducing
the absolute value of the average absolute er-
ror. Because there is a monotone bijection be-
tween the absolute value and the squared value,

this problem is equivalent to finding a factor,
which minimizes the mean squared error. The
problem is therefore one-dimensional, but non-
linear. Figure 31 visualizes the function to min-
imize. As expected, the minimum of this func-
tion is slightly larger than 1: I calculated a min-
imum of 1.01417913 by searching for the root
of the first derivation using the Pegasus algo-
rithm [44]. Unfortunately, this factor reduces
the mean squared error by only 3.66 %. Given
this rather small improvement and that this fac-
tor may depend on the video, I gave up on this
idea. Future research could analyze more elab-
orate ways to apply correction to improve the
estimation.

Error Diminishment: Figure 32 shows an ex-
emplary error propagation for the skipping of
one slice. Although the initial error is quite high,
it can be observed that the error diminishes over
time, which is caused by three effects:

• The decoding of a frame can use any frame
currently available in the reference frame
buffer. If a frame preferably uses references
with smaller errors or no error at all, it will

39

3 Video Preprocessor Design

Figure 29: Accumulated SSIM error map of the error propagation processes from 100 randomly
selected skipped and replaced slices. For each of those 100 slices individually, the entire
BBC video would be compared to the undegraded original. This results in an SSIM error
map for each frame, which were added up to the picture shown here. White represents
the maximum error, black an error of zero. Therefore, dark areas were generally less
affected by errors than bright areas. The arrows to the left and right mark the slice
boundaries, which are faintly visible in the image.

in turn show a smaller error or even be error
free.

• The reference frame buffer is of limited size.
Therefore, frames are regularly pushed out
of this buffer as new frames are added to
it. If a frame with a high error is removed
and a frame with a lower error is added, the
potential for future frames to show errors
is decreased. On the other hand, Figure 33
proves that some frames are alive as ref-
erences for a long time, so that errors can
also be preserved in the reference buffer.

• Even the intercoded slice types (P- and B-
slices) can contain intracoded macroblocks.
Because such macroblocks do not need any
reference frames, they usually reduce the
error. The amount of intracoded mac-
roblocks is the reason, why the area frac-
tions represented in the propagation tables

for each slice do not necessarily sum up to
1 (see Figure 28).

The final point is particularly advantageous
when remembering encoder behavior as de-
scribed in Section 3.2.4: Encoders will often
represent objects of high motion with more in-
tracoded macroblocks, as the blurriness makes
intracoding more effective than intercoding (see
Figure 16). The result is a less accurate rep-
resentation of the frame’s motion in the mo-
tion vector quadtree used during replacement.
So whereas low motion leads to a good replace-
ment, high motion will generate rougher replace-
ments due to more intracoded macroblocks.
But on the other hand, high motion with more
intracoded macroblocks has the advantage that
the error diminishes more quickly.

40

3.3 Error Propagation Estimation

Figure 30: Absolute error histogram for the esti-
mation of quality loss propagation of
100 randomly selected skipped and
replaced slices. The plot is presented
with both a linear and a logarithmic
ordinate. The linear plot gives a bet-
ter feeling for the accuracy of the
method, whereas the logarithmic plot
shows the distribution of the lower
contributions.

Figure 31: Mean squared error depending on the
correction factor. Note that the or-
dinate is in logarithmic scale.

Figure 32: Measured and estimated error prop-
agation for the skipping of one slice.
The unmentioned slices 0, 1, and 2 of
this 5-slices-per-frame video (BBC)
showed no error in either estimation
or propagation.

41

3 Video Preprocessor Design

Figure 33: Histogram of the duration a frame
is kept in the reference frame buffer.
For the chosen Lady1 video, a high
number of frames is never used as
reference, but several frames are
long-living. This behavior highly de-
pends on encoder choices.

3.3.3 Error Accumulation

Now that I have thoroughly discussed a single
propagation step, I will verify error propagation
over an entire video, including error accumu-
lation from multiple skipped slices in this sec-
tion. In the induction-based explanation of er-
ror propagation, I already mentioned the need
for differentiation between a single propagation
step, where the slice in question is fully decoded,
and a single propagation step, where the slice is
skipped and replaced. So far, I have only ana-
lyzed the situation of a slice being fully decoded,
but receiving an error from existing errors in ref-
erence frames. Those errors are initially caused
by a slice being skipped and replaced. But what
happens, if the replacement of a slice already
uses degraded reference frames, has not been
investigated yet. This basis for error accumula-
tion is discussed now:

As the replacement copies data from various ref-
erence frames to fill in the skipped slice, it is
obvious that I will use the same approach of
using area fractions to quantify, how much the

error of the reference in use will propagate into
the current slice. The most accurate way to do
this would be to check for each pixel of the re-
placement from which reference slice its value is
copied and then account this reference slice’s
error accordingly. However, to speed up the
replacement, this is approximated by checking
only one pixel per macroblock.

This error propagation estimate using area frac-
tions will only tell, how much the degraded
replacement differs from the real replacement.
But what is needed for error accumulation to
be estimated properly is the difference between
the degraded replacement and the original. Dur-
ing the creation of the motion vector quadtree,
we already measured the difference between the
undegraded replacement and the original (see
Section 3.2.5). To obtain the full difference, I
add both difference contributions, which should
work thanks to the linearity of SSIM (see Sec-
tion 2.4.4).

With error accumulation, we have all the tools
for the complete error propagation estimation
algorithm at hand:

1. If a slice is not skipped, its error estimate is
calculated by multiplying all area fractions
with the error estimate of the respective
reference slice.

2. If a slice is skipped and replaced, its error
estimate is calculated by multiplying ap-
proximated area fractions (only one pixel
per macroblock is examined to increase
speed) with the error estimate of the re-
spective reference slice and adding the error
directly induced by the replacement, which
is available via sideband data from earlier
measurement.

To evaluate this procedure, I ran the entire BBC
video through the error propagation estimation,
skipping randomly selected slices at an average
rate of one slice every other frame. The actual
quality loss was measured by comparing each
slice to its original. It ranges from 0 to 0.067.

42

3.3 Error Propagation Estimation

Figure 34 shows a histogram of the absolute
error of the estimate. With an average abso-
lute error of -0.0020 at a standard deviation of
0.0042, the estimation works quite well, despite
all approximations made. Figure 35 shows the
estimation error plotted over time to show that
the estimation does not get worse as the video
progresses, but fluctuates and recovers through-
out the video’s runtime.

The achieved quality supports the conclusion
that error estimates can be made by

• multiplying area fractions and

• summing up individual errors to form a to-
tal error estimate.

This conclusion may be valid only for the specific
type of errors considered here, which are small
compared to errors caused by severe outages in
the video stream like the loss of entire slices
or frames. Such small errors are more likely
spatially disjoint and thus do not interact too
strongly with one another, reducing effects like
error amplification or annihilation.

But using this propagation estimation to ac-
count for each slice’s error and propagate it to
a potentially large number of future slices is still
far too expensive to do online during schedul-
ing, so a much more lightweight representation
of error propagation is needed. In the next sec-
tion, I build on the above findings to explain,
how such a simplification is done so the sched-
uler does not need to iterate over large amounts
of sideband data.

3.3.4 Error Emission

I have discussed, how decoding errors propagate
from a reference slice decoded earlier into the
current slice, so the point of view was from the
current slice into the past. Now I am going to
look from the current slice into the future and
explain, how to provide an easy quantification
of how errors propagate from the current slice

Figure 34: Absolute error histogram for the es-
timation of quality loss propagation
including quality loss accumulation.
About one randomly selected slice
every other frame was skipped. The
plot is presented with both a linear
and a logarithmic ordinate. The lin-
ear plot gives a better feeling for the
accuracy of the method, whereas the
logarithmic plot shows the distribu-
tion of the lower contributions.

43

3 Video Preprocessor Design

Figure 35: Absolute error of the quality loss estimation plotted over the video playback time. Each
frame of the used BBC video contains five slices.

Figure 36: Example for error propagation to fu-
ture slices. Slices A to E are given in
decoding order with arrows indicat-
ing error propagation.

into any future slices. To differentiate between
those two concepts, I will call them error immis-
sion and error emission, with error propagation
being the superordinate term. Error immission
has been the subject of the previous sections.
Error emission will follow in this section.

The way an error is propagated is the same
for immission and emission, only the standpoint
differs, so the single propagation step quantifi-
cation using area fractions still applies. How-
ever, for immission, those fractions were used
against reference slices, now I am going to use
those fractions against future slices: The idea is
to condense all errors in future slices that will
be caused by degradation of the current slice
into one single number. According to the single
propagation step, every error in a future slices
is caused by directly or indirectly copying image
content from the current slice into said future
slice.

As the example in Figure 36 illustrates, the er-
ror from slice A is propagated along multiple
paths to the slices B to E. For this example,
let us assume that propagation ends at slice E.

Integrating over time, the total error caused by
degradation of A is the sum of all errors induced
into B to E. The individual propagation steps are
already described by area fractions, so that for
example the error eB in slice B is the error eA

in slice A multiplied by the respective immission
factor iAB given by the area fraction.

eB = eA · iAB

The total error caused by A (EA) is therefore:

EA = eA + eB + eC + eD + eE

eB = eA · iAB

eC = eA · iAC

eD = eB · iBD

= eA · iAB · iBD

eE = eD · iDE + eC · iCE

= eA · iAB · iBD · iDE + eA · iAC · iCE

Notice that my notion of future error includes
the initial error eA. This will be beneficial for the
scheduler. But the actual error eA of A is only
known at decoding time, so I use fA = EA/eA

as the factor to quantify error emission:

fA = 1 + iAB + iAC + iAB · iBD +
iAB · iBD · iDE + iAC · iCE

Calculating fA this way can become very expen-
sive, as the propagation chains are potentially
very long and diverse. But reformulating the

44

3.3 Error Propagation Estimation

problem in an equivalent way leads to:

fA = 1 + iAB · (1 + iBD · (1 + iDE)) +
iAC · (1 + iCE)

= 1 + iAB · fB + iAC · fC

with
fB = 1 + iBD · fD

fC = 1 + iCE

fD = 1 + iDE

This shows that the emission factors f can
be calculated recursively by accounting only for
propagations directly starting at the given slice
(iAB and iAC for slice A) and multiplying them
with the emission factor of the slice directly
propagated to (fB and fC for slice A). To re-
solve the recursion, those emission factors have
to be known, which is possible because

• all error propagation is inhibited at IDR
frames and

• the propagation paths are cycle-free.

Starting at the next future IDR, the error emis-
sion factors can be calculated backwards, in the
example from E down to A:

fE = 1
fD = 1 + iDE · fE

fC = 1 + iCE · fE

fB = 1 + iBD · fD

fA = 1 + iAB · fA + iAC · fC

The resulting emission factors are then stored
in sideband data. With these values available,
the scheduler can multiply the current error of
a slice with the given emission factor to quickly
get a quantification of how much degradation
will be visible to the user. This condenses all
the previous results on error propagation in one
single and easy to handle number.

In the next sections, I explain how the side-
band data is extracted practically and how the
scheduling is done with this data.

45

3 Video Preprocessor Design

46

4 Implementation

4.1 Video Preprocessor

I now describe the steps I took in implementing
a preprocessor for H.264 that extracts sideband
data, which will be used later in Section 4.3 to
improve the scheduling of the decoding task.

4.1.1 Prerequisites

To implement the video preprocessor, I first
needed an H.264 decoder I could instrument
to export the required data. As I already de-
cided on x264 as the encoder of choice (see
Section 3.1), I explored the possibility of using
x264’s decoder as well. Unfortunately, their de-
coder appears to be unmaintained and is not
even compiled in a default x264 installation.
Therefore, I dropped this idea and chose FFm-
peg [41], whose avcodec decoder library is a
quasi standard in the open source world. I con-
stantly used a recent version from their CVS to
always get the latest improvements.

Although the FFmpeg decoder is already quite
mature and offers optimized SIMD assembler
code for time consuming parts of H.264 de-
coding, it does not yet support all features of
the standard. It especially lacks flexible mac-
roblock ordering (FMO) and arbitrary slice or-
dering (ASO), but the H.264 Main Profile is fully
implemented and I could neither find nor create
content using these ordering features. There-
fore, the shortcomings of FFmpeg’s decoder are
clearly outweighed by its high speed and stabil-
ity, by it is wide use, and by the quality of its
maintenance.

Next, I needed an implementation of the SSIM
index. The authors of the original SSIM paper
provide a Matlab implementation [45], but its
use is limited to educational and research pur-
poses and it requires a copyright notice. These
restrictions are incompatible with the GNU Gen-
eral Public License [46] and, although FFmpeg
is LGPL-licensed, I wanted to retain the possi-
bility of linking with GPL code so no troubles

occur when integrating my work in existing me-
dia players. Existing C++ implementations of
SSIM claim to be derived from the Matlab code,
so their licensing is unclear. Therefore I decided
to cleanly reimplement SSIM from the original
paper [32], which turned out to be less difficult
than expected, thanks to the clarity of the de-
scription.

4.1.2 Instrumentation

To extract all the metrics and other metadata,
like reference frame lists, macroblock types,
and motion vectors, I instrumented the FFm-
peg decoder to export the required informa-
tion after the decoding of each slice via a pro-
cess_slice() callback function. I decided not
to support adaptive frame/field coding (AFF),
because it stores macroblocks in a different or-
der and thus introduces error-prone special cases
in the handling of slice information without any
benefit in the context regarded here.

To determine the metrics for the decoding time
prediction (see Section 3.1), I also inserted time
measurements at key positions in the decoder
code. For that, the read_time() function of
FFmpeg was helpful, as it provides easy ac-
cess to low-overhead time measurement by us-
ing the timestamp counters on both the x86 and
PowerPC architectures. The overall changes to
FFmpeg are under 200 lines of added code, most
of them being trivial value copying to make data
visible outside the scope of the decoder.

The extraction of metadata for the sideband
datastream requires the macroblock types and
motion vectors for each slice of a frame. But
the processing has to be done after the frame
has been completely decoded, because I need
to calculate the quality loss metric to evaluate
possible replacements for parts of the frame. At
first, I considered passing arbitrary-shaped im-
age areas to the quality loss metric, so I could
process each part individually. But I quickly dis-
missed this idea, because it would imply that the
quality loss metric operates on locally confined

47

4 Implementation

areas. But a quality loss metric that uses the
overall structure of the entire frame to quantify
local errors is conceivable. Therefore I decided
that the quality loss metric is supposed to“see”
the same image as the viewer, which is the entire
frame. A metric that works locally can be pro-
vided for speedup with a rectangular bound that
confines the area where the change of interest
occurs.

This decision entails storing all per-slice data
until all slices of the frame have been decoded.
Fortunately, FFmpeg already keeps track of all
required data internally and makes it easily us-
able through the AVFrame structure. In addition
the AVFrame member opaque can be used to
attach application specific data to each frame,
which is helpful to store information that trav-
els with the frame through H.264’s reference
buffers.

4.1.3 Directly Extracted Data

The following sideband data can be extracted
directly from the stream:

• the size of the frame,

• the index of the first and last macroblock
for each slice, and

• the decoding time metrics as listed in Sec-
tion 3.1.3.

This data is gathered within FFmpeg by means
of simple counters in the decoder code or it is
taken directly from the decoder’s internal state
storage.

4.1.4 Replacement Partitions

To describe the replacement partitions I intro-
duced in Section 3.2 the preprocessor has to
build the motion vector quadtree, which is then
linearized into the sideband data channel. Al-
though conceptionally clear, this poses a num-
ber of practical problems, which I will address
here:

When to build? First is the question, when to
build the motion vector quadtree. As it needs
the fully decoded frame to calculate the qual-
ity loss properly, the tree has to be built after
the last slice of the frame has been decoded.
But on the other hand, this step needs the ref-
erence frame buffer in the same state it was
during the frame’s decoding, because the anal-
ysis of the motion vectors will require exactly
those reference frames. Unfortunately, the de-
coder reorders the reference frames right after
the frame’s decoding finishes. This might push
now obsolete reference frames out of the buffer
and these may be deallocated right away. There-
fore, the motion vector analysis for creating the
quadtree must be done right between the decod-
ing of the last slice and the frame finalization.

Coordinate Calculation. The next interest-
ing implementation detail is the calculation of
the boundaries of the region covered by a spe-
cific quadtree node. I describe a quadtree node
with two numbers: its depth in the tree, start-
ing with 0 for the root node, and the index of
the node within this depth. This index is hard
to explain. It is the number of nodes with the
same depth as the current node that are visited
before the current node during tree traversal of
a hypothetical fully subdivided quadtree. Fig-
ure 37 should help to understand the concept.
The order in which the subnodes of a given node
are visited during traversal is of course arbitrary,
but I chose to visit them in the order of a raster
scan.

Given a node’s depth and index, we can now
imagine the node’s region as one field in a regu-
lar checkerboard pattern. The row and column
numbers of the region can be derived by looking
at the binary representation of the index. As il-
lustrated in Figure 38, the even numbered bits
form the column number, the odd numbered bits
the row number. Once row and column num-
bers are known, the coordinates of the node’s
region in multiples of the macroblock size can
be calculated by multiplying the row and column
numbers with the width of one row or column,

48

4.1 Video Preprocessor

Figure 37: Quadtree node indices. The indices for each individual depth are determined using a
fully subdivided quadtree. For any actual nonuniform subdivision, the indices are merely
taken from the corresponding locations of the depth planes.

respectively. For a frame of width w and a cur-
rent tree depth d, one column is w/2d wide.
The result is rounded to an integer multiple of
the macroblock size. The row number is treated
analogously.

Reference Number Translation. The next
problem arises, when trying to count the ref-
erence frames to determine the reference used
most often as suggested in my algorithm in
Section 3.2.3. FFmpeg exports the reference
frame numbers for each macroblock. But those
numbers are indices into a slice-local reference
buffer, which is refilled with different reference
frames and in varying order at the start of each
slice to always list the references in the way most
suitable for coding efficiency. But because the
motion vector quadtree spans an entire frame
and therefore multiple slices, those slice-local in-
dices have to be translated into a global number-
ing scheme. The decoder always keeps reference
frames in two global buffers, one for short-term
and one for long-term reference frames. I use
the indices of frames in these buffers as global

Figure 38: Quadtree coordinate calculation.
Given the binary representation
of a node’s index, the row and
column numbers are derived by
combining the odd-numbered and
even-numbered bits, respectively.

49

4 Implementation

reference numbers and translate the slice-local
numbers after each slice. A positive reference
number i then denotes the i’th frame counting
from 1 in the short-term buffer, a negative num-
ber −i denotes the i’th frame counting from 1
in the long-term buffer. The value 0 is therefore
unmapped and can be used otherwise.

Recursion. The recursion, which is done to
subdivide the quadtree, is straightforward to im-
plement. But I want to mention the calculation
of the index numbers for the subnodes. Clearly,
every node with the current depth results in four
subnodes in the next depth. So, when the algo-
rithm subdivides a node with index i, the sub-
nodes get 4i, 4i+1, 4i+2, and 4i+3 assigned
as their indices.

CPU specifics. The final problem I stumbled
across was a peculiarity of the x86 architecture.
The H.264 decoder implementation of FFmpeg
uses optimized assembler code with MMX in-
structions to speed up the decoding. My own
code is called from within this decoder to build
the motion vector quadtree at the position in
decoder control flow determined previously. The
problem is that my code, especially the quality
loss evaluation with SSIM, uses floating point
computation. But because MMX instructions
trash the FPU state, I have to remember is-
suing the emms assembler instruction to recover
the FPU before I use it. Fortunately, FFmpeg al-
ready provides the C Function emms_c(), which
encapsulates this in a platform-independent way.

4.1.5 Optimization

One optimization I implemented early on is a
rectangle of interest for the SSIM calculation
and the frame replacement during the quadtree
creation. This ensures that, working with one
quadtree node, all computation takes place only
within the area of that node, because other areas
are known not to change. As discussed in 3.2.6,

I also use a version of SSIM that is a bit less
precise, but much faster.

Another important optimization concerns the
implementation of the SSIM algorithm. As pre-
sented in Section 2.4, SSIM uses a sliding win-
dow in which it calculates the mean values, vari-
ances and covariance for the sample vectors of
both images. Using the usual formulae

σ2
x =

1
n− 1

n∑
i=1

(xi − µx)2

σ2
y =

1
n− 1

n∑
i=1

(yi − µy)
2

σxy =
1

n− 1

n∑
i=1

(xi − µx) (yi − µy)

for variances and covariance, we can see that we
have to know the mean values µx and µy be-
fore calculation of the variances can start. This
results in the need to iterate over each sliding
window twice. Because memory accesses are
generally expensive, it is beneficial to calculate
all required values with one iteration only. This
optimization is possible by reorganizing the co-
variance formula as commonly known:

σxy =
1

n− 1

n∑
i=1

(xi − µx) (yi − µy)

=
1

n− 1

n∑
i=1

(xiyi − µyxi − µxyi + µxµy)

=
1

n− 1

(
n∑

i=1

xiyi − µy

n∑
i=1

xi−

µx

n∑
i=1

yi + nµxµy

)

=
1

n− 1

(
n∑

i=1

xiyi − µynµx−

µxnµy + nµxµy)

=
1

n− 1

(
n∑

i=1

xiyi − nµxµy

)

50

4.1 Video Preprocessor

=
1

n− 1

n∑
i=1

xiyi −
n

n− 1
µxµy

This shows that we can move the mean values
out of the summation. The variance σ2

x of x is
equal to the covariance of x with itself (σ2

x =
σxx), so the variance formula can be reorganized
similarly:

σ2
x =

1
n− 1

n∑
i=1

(xi − µx)2

=
1

n− 1

n∑
i=1

x2
i −

n

n− 1
µ2

x

Therefore, I can calculate all five values (µx, µy,
σx, σy, σxy) in one iteration, by summing up

n∑
i=1

xi,

n∑
i=1

yi,

n∑
i=1

x2
i ,

n∑
i=1

y2
i , and

n∑
i=1

xiyi

and combining these afterward to the final re-
sults.

Seeing these cumulative sums, which are later
operands in subtractions, I thought about the re-
quired precision to avoid truncation errors. The
size of a sliding window is eight by eight sam-
ples, with each sample lying in the 0 to 255
range. Two such samples are multiplied in the
variance and covariance cases, yielding a worst
possible sum of:

82 · 2552 <
(
23
)2 · (28

)2 = 2(2·3+2·8) = 222

A single precision floating point number with its
23 mantissa bits [47] is therefore sufficient, so
I used C’s float type within the local SSIM
calculation. Outside the iteration over a sin-
gle sliding window, I used double precision float-
ing point variables to not loose significant bits,
when the values are aggregated into the final
SSIM result.

In addition to the speedup already gained by
using the faster float instead of double, I
implemented SSE and AltiVec versions of the

summations to leverage the vector units of x86
and PowerPC. These instruction set extensions
both use 128 bit registers to store vectors of four
single precision floating point values and pro-
vide operations that work with such vectors in a
SIMD fashion.

4.1.6 Error Propagation Factors

The sideband data must contain information
that will allow the scheduler to estimate the ef-
fect on quality, when a slice is skipped and re-
placed instead of decoded. For that, the prepro-
cessor needs to quantify error emission, which
describes, how much an error in the current
slice will be propagated into future slices. To
calculate the error emission, the preprocessor
must first establish, to what degree errors in ref-
erence frames are propagated into the current
slice. This error immission data is not stored as
sideband data itself, but is needed as an inter-
mediate result.

Error Immission: The preprocessor extracts a
matrix for every slice, which stores a coefficient
for every slice of every available reference frame.
This coefficient quantifies, how much an error
from the reference slice will be immitted into
the current slice. According to Section 3.3.2,
this coefficient equals to the fraction of the ref-
erence slice that is copied to the current slice.
Therefore, the coefficients are straightforward to
generate by iterating over all motion vectors of
the current slice and calculating, what portion
of the motion vector target area falls into which
slice of the reference frame. Care must be taken
here, because the target area pointed to by the
motion vector has a size that depends on the
macroblock type due to subblocking and a slice
boundary might run through it, so more than
one slice has to be accounted. To decide that,
the slice structure of the reference frame must
be known, so metadata for the reference frame
has to be kept by the preprocessor. I elaborate
on that later in this section.

51

4 Implementation

Error Emission: This error propagation is
condensed for the scheduler into one value: the
accumulated emission factor. Starting from the
current slice, errors along all propagation paths
are accumulated by multiplying along a path and
summing up different paths as explained in Sec-
tion 3.3.4. Unfortunately, the calculation of this
value for the current slice uses information from
future slices of the video. The only exploitable
limitation here is the knowledge that error prop-
agation never crosses an IDR frame, therefore
the calculation of this value requires all slices
up to the next IDR.

Frame Sideband Data Buffering: As we
have seen, both the error immission and emis-
sion require knowledge of other frame’s meta-
data. The immission needs the slice structure
of past frames that are used as references, the
emission needs future frames’ error propagation
and reference frame information. In both cases
however, the frames will never be used across an
IDR boundary: Reference frames get invalidated
and error propagation is inhibited by IDR frames.
Therefore, the clear way to solve this problem is
to keep all frame’s sideband data starting with
the previous IDR. Always appending the current
frame to the end of this list, the sideband data
of any reference frame is available for the deriva-
tion of the immission factors. To easily find a
frame’s sideband data structure in memory when
accessing one of FFmpeg’s AVFrame structures,
I populate the earlier mentioned opaque mem-
ber of the AVFrame structure with a pointer to
the sideband data. Once the decoding reaches
the next IDR, the created frame list is traversed
backward to calculate the accumulated emission
factor for all kept frames, for which all necessary
information is available at that point. Then the
frame list is flushed and the current IDR frame
becomes the new first element.

Having explained how all separate elements of
sideband data are extracted, I continue by de-
scribing how to store them.

4.2 Sideband Data Format

Before considering how to store the sideband
data, I want to summarize, what information is
to be stored:

• the metrics for decoding time prediction for
each slice of each frame,

• a serialized version of the motion vector
quadtree for each frame,

◦ a reference frame identifier for each
quadtree node,

◦ a motion vector for each quadtree
node,

• the direct quality loss induced by replace-
ment for each slice of each frame,

• the accumulated error emission factor for
each slice of each frame,

• housekeeping data for each frame,

◦ frame size,

◦ slice count,

◦ index of the first macroblock for each
slice.

As I do not support the H.264 features flexible
macroblock ordering (FMO), arbitrary slice or-
dering (ASO), and adaptive frame/field coding
(AFF) for reasons stated earlier, the sideband
data format contains no provisions to leverage
those features. Instead, I tried to keep the data
format as simple and straightforward as possible,
because this helps in debugging and has no dis-
advantageous effects in the context of this the-
sis. Extending the format to support additional
features as well as streamlining it for compres-
sion is possible, but left open for future work.

52

4.2 Sideband Data Format

4.2.1 Storing in Custom NALUs

My initial plan was to store the preprocessor out-
put in a separate file, which would have to be
provided to the decoder together with the orig-
inal video. But it is beneficial for usability, if
the sideband data is embedded directly into the
video stream. As the data is specific to H.264,
it should preferably be stored in the raw H.264
stream, without relying on a specific container
format like QuickTime.

Fortunately, H.264 with its built-in network
abstraction layer already delivers a packetized
stream of individual network abstraction layer
units (NALUs). Each NALU in the bitstream
is preceded by the three byte start prefix 0x00
0x00 0x01, followed by a five bit type number
in the first byte. Several types are reserved to
parameter data NALUs and slice data NALUs,
but types 0 and 24 to 31 are still unassigned.
Therefore, I decided to store the sideband data
in NALUs of a custom type. I chose type 31
(0x1F), in the hope that future type reserva-
tions will happen in ascending order. The side-
band data NALUs are inserted into the bitstream
between the existing NALUs. The latter can
simply be copied, because there are no syntac-
tical dependencies among NALUs. Without ad-
ditional manipulation, this will create a valid
H.264 bitstream.

As I pack the sideband data for one complete
frame into one NALU, I simply insert each side-
band data NALU before the first slice NALU of
a frame. But the decoder, who will read the
sideband data NALUs and derive its schedul-
ing decisions from their content, needs to know
the information about a frame in advance, be-
cause it may be favorable to skip the decoding
of earlier slices to accommodate for a later slice
with a higher decoding time. For that reason,
the sideband data NALUs are not inserted be-
fore the first slice NALU of their correspond-
ing frame, but a fixed amount of frames earlier.
This provides the decoder with a lookahead win-
dow when linearly reading the stream. I chose
a lookahead window of 25 frames, equaling one

second of video for PAL content. The implica-
tions of this size will be discussed in Section 4.3.

Of course, sideband data for the first frames
cannot be inserted earlier, so sideband data
NALUs worth the lookahead window size will
pile up at the beginning of the video to fill the
lookahead pipeline.

Another problem is that accessing an H.264
video stream at arbitrary positions gets more dif-
ficult, when sideband lookahead is involved. The
H.264 decoder can only cleanly start decoding
at IDR frames. Once the decoder has found a
frame close to the position requested by the user
where decoding can start, the sideband data for
this frame has already passed. This can happen
with live streams, where users can tune in on
an ongoing broadcast, or when the user seeks to
a different position in the video. The possible
options to remedy this are:

• Decode the first frames with no sideband
data available or drop them completely.
Start using sideband data once the looka-
head window has filled.

• Search backward in the stream or prebuffer
the sideband channel until sideband data
for the intended first frame is available.
When the amount of slices per frame is
constant, the length of this preroll phase
can be determined easily.

4.2.2 Bitstream Syntax

I will describe the sideband data syntax with a
tabular format similar to the one used in the
H.264 standard itself. The format should be
clear to a reader familiar with the syntax of the
C programming language. Others are invited to
refer to Section 7.1 of [2], where the format is
explained in more detail.

The syntax descriptors I use are:

i(n): signed integer value of n bits written in
big-endian byte order.

53

4 Implementation

u(n): unsigned integer value of n bits written
in big-endian byte order.

f(n): IEEE 754 [47] floating point value of n bits
written in big-endian byte order.

ic(n), uc(n), fc(n): the same as above, but
subject to data compression presented in
Section 4.2.4.

The one function I use is:

next bits(n): Returns the next n bits from the
bitstream without advancing the current
reading position.

NALU Syntax

nalu() {
nal unit type /* equal to 0x1F */ u(8)

mb width uc(16)

mb height uc(16)

slice count uc(8)

decoding time metrics(slice count)

replacement quadtree()

skipping partitions(slice count)

error propagation factors(slice count)

}

Decoding Time Metrics Syntax

decoding time metrics(slice count) {
for (slice = 0; slice < slice count;

slice++) {
slice type[slice] uc(8)

byte count[slice] uc(24)

intra pcm count[slice] uc(24)

intra 4x4 count[slice] uc(24)

intra 8x8 count[slice] uc(24)

intra 16x16 count[slice] uc(24)

inter 4x4 count[slice] uc(24)

inter 8x8 count[slice] uc(24)

inter 16x16 count[slice] uc(24)

idct 4x4 count[slice] uc(24)

idct 8x8 count[slice] uc(24)

deblock edges count[slice] uc(24)

}
}

Replacement Partitions Syntax

replacement quadtree() {
empty quadtree = true

quadtree node(0)

}

quadtree node(depth) {
if (next bits(8) == depth) {
node depth uc(8)

node reference number ic(8)

if (node depth ||
node reference number) {
motion vector x ic(16)

motion vector y ic(16)

empty quadtree = false

}
} else {
quadtree node(depth+1)

quadtree node(depth+1)

quadtree node(depth+1)

quadtree node(depth+1)

}
}

Skipping Partitions Syntax

skipping partitions(slice count) {
for (slice = 0; slice < slice count;

slice++) {
slice start mb index[slice] uc(16)

if (!empty quadtree) {
direct quality loss[slice] fc(32)

}
}

}

Error Propagation Syntax

error propagation factors(slice count)

{
for (slice = 0; slice < slice count;

slice++) {
emission factor[slice] fc(32)

}
}

The entire bitstream is subject to potential
byte stuffing to avoid sequences with a special

54

4.2 Sideband Data Format

meaning to appear inside a NALU. Those se-
quences are the consecutive bytes 0x00 0x00
0x0n, with n being any 4-bit value less than
4. For any such sequence, an additional byte
of 0x03 is inserted between the second and
third byte. This extra byte has to be removed
again when reading the bitstream, by dropping
any 0x03 that follows two consecutive 0x00
bytes. Fortunately, FFmpeg already processes
the NALUs in that way.

4.2.3 Bitstream Semantics

NALU Semantics: One NALU encodes the
sideband data for exactly one frame of video.
The NALU starts with the chosen type of
0x1F (nal unit type), which is followed by the
frame’s dimensions in macroblocks (mb width,
mb height) and the number of slices for that
frame (slice count).

Decoding Time Metrics Semantics: The
decoding time metrics derived in Section 3.1
are stored for each slice. The pixel count met-
ric is not stored, as it can be derived from the
macroblock information in the skipping partition
data.

Replacement Partitions Semantics: The
quadtree is linearized by prepending each node’s
data with the depth of the node (node depth).
This information is sufficient to recover the
structure of the tree. The inner nodes are
not needed later, so only the leaves are stored.
The invariant remains that every node must
have either zero of four subnodes, as repre-
sented in the else-path of the syntax description.
The data stored for each node is the number
of the reference frame (node reference number)
and the motion vector (motion vector x, mo-
tion vector y). For those frames, where replace-
ment is completely impossible, an empty tree is
stored, represented with both node depth and
node reference number being zero for the first
and only node. The variable empty quadtree,

which is not a syntax element by itself, displays
this condition.

Skipping Partitions Semantics: The skip-
ping partitions are described by the in-
dex of the first macroblock of each slice
(slice start mb index), which is accompanied by
the quality loss directly induced when skipping
and replacing this slice (direct quality loss).
How this value is derived has been discussed in
Section 3.2.5.

Error Propagation Semantics: The required
error propagation information is condensed into
one value per slice: The accumulated error emis-
sion factor (emission factor) states, how much
an error in the current slice will propagate into
the future video stream as a whole. See Sec-
tion 3.3.4 for a detailed explanation of this value.

4.2.4 Bitstream Compression

Looking at the way sideband data is stored, it
is clear that directly storing the bytes given in
Section 4.2.2 would not be very efficient. Most
of the time the values do not remotely fill up
the possible range:

• The frame size is stored as a 16 bit value
for each coordinate, but the higher byte is
usually small.

• The slice count per frame usually is consid-
erably less than 256. Especially, the x264
encoder only allows a minimum slice size of
one complete macroblock row, so even for
a frame 1080 pixels high, just 68 slices are
possible.

• The decoding time metrics contain various
macroblock type counts. While it is pos-
sible that all macroblocks are of the same
type and thus one number would become
exceptionally high, most of the time, all
sorts of macroblocks are found, so each

55

4 Implementation

individual count is small. Especially the
higher bytes are often unused.

• The serialized quadtree stores node index
and node depth values, especially the latter
is small.

• Motion vectors are stored as two 16 bit val-
ues, but the average motion vector is short.

I tried to keep the byte count per value as low as
possible, but the potential for each number to
assume larger values is there and although only
rarely occurring, I have to dedicate a sufficient
number of bits. I also wanted to keep things
simple, so I always used an integer byte count
and offloaded the handling of non-integer byte
counts entirely on the compression algorithm to
be used.

The compression is supposed to be lightweight
and easy to implement. The compressed output
cannot be written to disk directly, because it
is subject to potential byte-stuffing to prevent
forbidden byte sequences like the start code to
appear inside a NALU. I also wanted to retain
control over the implementation to be able to
adapt it more easily. Therefore I decided against
using a standard compression library and instead
chose an algorithm to implement myself.

Because of the observation that the stored val-
ues are typically a lot smaller than the possible
maximum, the algorithm should provide an ele-
gant way to assign fewer bits to small values and
more bits to larger values to achieve the desired
compression effect. To simplify the code, I also
decided to separate the sideband bitstream syn-
tax and the compression completely: The com-
pression algorithm just receives the stream of
bytes marked with the syntax descriptors ic(n),
uc(n), or fc(n) and compresses each byte indi-
vidually, without knowing what syntax element
it belongs to. Therefore, the compression only
has to handle values within a fixed range.

Although it could be optimized using knowledge
about the specific properties of the bitstream,
designing a compression algorithm from scratch

is outside the scope of this thesis. Therefore I
browsed through existing coding methods and
found Fibonacci Coding [48] to be quite fit for
my needs: It codes small values with fewer bits,
down to just two bits for the value 1 and it is
elegant and lightweight.

Encoding a positive nonzero integer value into
Fibonacci Coding is done by first deriving the
Fibonacci decomposition of the given number:
Search for the largest Fibonacci number smaller
than or equal to the given number and sub-
tract it. Do the same with the remainder. This
yields a representation of the value to encode
as a sum of Fibonacci numbers, for example
40 = 34 + 5 + 1. Now, starting with 1, all
Fibonacci numbers up to the highest contribu-
tion in the sum are checked in ascending order.
For every Fibonacci number that is part of the
sum, a 1-bit is written, for every Fibonacci num-
ber not part of the sum, a 0-bit is written. The
example leads to the bitstream 10010001, writ-
ten from left to right. This bitstream obviously
always ends with a 1-bit, so an additional 1-bit
is written to mark the end of the coded rep-
resentation. This works, because two adjacent
1-bits otherwise never appear in the bitstream
due to the structure of the Fibonacci numbers.
The final coding for the example is therefore
100100011.

As this coding can only encode positive nonzero
integers, I converted each incoming byte b,
treated as a signed value in the range -128 to
127, to the compression input n using this bi-
jection:

n =

−2b + 1 if b < 0

1 if b = 0
2b if b > 0

This mapping ensures, that small values n are
assigned to both positive and negative bytes b
close to zero, thus supporting their compressibil-
ity. I also tried treating the inputs b as unsigned
values, using them directly as compression input
n, but this decreased the compression effect.

56

4.3 Scheduling the Slices

The resulting compression of this method was
roughly by a factor of 2, reducing the sideband
data overhead to 6.1%, so the improvement
over the previous 12.3% (compare to Figure 25)
is notable. The overhead introduced by the en-
tire sideband reading process with this compres-
sion is acceptable. I measured 1.7 % for BBC
video, comparing complete decoding with and
without sideband decompression and parsing.

Of course this compression is not a final solu-
tion, as a domain-specific algorithm should be
even more efficient, but as a proof-of-concept,
it shows that the data is compressible. A quick
comparison by compressing the sideband chan-
nel as a whole with common command line tools
shows that gzip and bzip2 yield compression fac-
tors of 3 and 4, respectively. Although I expect
both algorithms to perform worse if applied to
the sideband data of each frame individually,
these results indicate that additional compres-
sion can be achieved with methods more sophis-
ticated than the easily implemented, yet simplis-
tic Fibonacci Coding.

4.3 Scheduling the Slices

With the preprocessor finished, I now have avail-
able at decoding time:

• execution time metrics, from which I derive
execution times,

• the motion vector quadtree, from which I
construct replacements for a slice, and

• a quantification of error severity caused by
skipping and replacing a slice.

Due to the sideband lookahead window, this in-
formation is even available ahead of time, before
the slice in question is about to be decoded.
This look into the future of the stream can be
exploited to decide for each slice, whether it
should be decoded for the sake of visual qual-
ity or skipped and replaced, favoring lower ex-
ecution times. In the following, I discuss what

Figure 39: Quality influence of decoding versus
replacing a slice. The errors of both
past and future slices have each been
accumulated into one value.

model the scheduling decision is based on and
how the scheduling algorithm works.

4.3.1 Slice Benefit Model

Compared to a skipped slice, the decoding of
a slice has a cost in terms of additional execu-
tion time and a visual effect in terms of smaller
quality loss. A higher expense in execution time
makes a slice more preferable as a skipping can-
didate. Similarly, a higher quality should dis-
courage the scheduler from skipping this slice.
Therefore, I decided to combine both measures
in a benefit value for each slice.

Whereas the execution times are conceptually
clear as they do not depend on other slices, the
quality impact should respect both past slices,
from which this slice might inherit errors, and
future slice, to which this slice might propagate
errors. Figure 39 illustrates the concept for an
example slice:

• The previously decoded slices show a qual-
ity loss of e−, which is immitted into the
current slice (see Section 3.3.2) and causes
an error of e0 there.

• If the slice is not skipped but regularly de-
coded, this error e0 will be emitted into

57

4 Implementation

multiple future slices, causing a total error
of e+.

• If the slice is skipped and replaced, the re-
placement induces an extra error d directly
into the current slice, increasing the error
to e′0.

• This increased error e′0 causes an emitted
error of e′+ in future slices.

The direct error d is known from measurements
as explained in Section 3.2.5 and can simply be
added to e0 according to Section 3.3.3:

e′0 = e0 + d

Also known is the estimated error emission by
the error emission factor f received from side-
band data. As I included the contribution of the
current slice into f , I can formulate:

e0 + e+ = f · e0

e′0 + e′+ = f · e′0

The emission factor f stays the same in both
cases, since the area fractions of future slices,
which are responsible for this error propagation,
do not depend on the absolute value of the error.

The value relevant for scheduling is the quality
difference ∆q between the skipped and the fully
decoded situation:

∆q =
(
e′0 + e′+

)
− (e0 + e+)

Using the preceding equations, this can be re-
formulated equivalently:

∆q =
(
e′0 + e′+

)
− (e0 + e+)

= f · e′0 − f · e0

= f · d

This allows to calculate the quality influence
without knowing the error of the reference slices,
which is quite beneficial, because tracking these
errors would require more knowledge on error

propagation to be available to the scheduler and
it would make the scheduling itself more expen-
sive.

Using the difference between the predicted ex-
ecution time for decoding td and the predicted
execution time for replacement tr, I model the
benefit b for each slice as a price-performance-
ratio:

b =

{
∆q

td−tr
= f ·d

td−tr
if td > tr

∞ if td ≤ tr

A higher benefit implies that the slice should
better be decoded, whereas a lower benefit
makes it a candidate for skipping. The rare cases
of decoding time being smaller than replacement
time are accounted with an infinite benefit, be-
cause such slices should never be skipped and
replaced. Slices of fully intracoded frames where
no replacement is possible are also assigned an
infinite benefit.

Apart from the predicted execution times being
machine-dependent, these benefit values do not
use runtime information, so they allow for two
optimizations:

• The values have to be calculated only once
for each slice and can be cached for all sub-
sequent scheduling decisions.

• The size of sideband data can be further re-
duced by storing information only for slices
with a low benefit, as slices with a bene-
fit above a certain threshold should not be
skipped.
I did not pursue this optimization, because I
wanted to keep sideband data for all slices
to ease testing how far the scheduler will
scale.

With the benefit for a slice’s decoding at hand,
I can describe the actual scheduler.

4.3.2 Scheduler Design

Video playback relies on the decoder being able
to deliver decoded frames at a constant rate.

58

4.3 Scheduling the Slices

The objective of the slice scheduler is therefore
to maintain the natural deadlines of the frames
while keeping the perceived visual quality as high
as possible. Thanks to a lookahead window, the
scheduler knows the sideband data of upcoming
slices ahead of time, so it can look into the fu-
ture and accumulate predicted execution times
to check, if a deadline is expected to be missed.
If all deadlines inside the lookahead window ap-
pear to be met, no action is required and slices
are to be fully decoded. However, if a deadline
will be missed, the scheduler needs to select a
slice for skipping to help meeting the deadline
by reducing the execution time. Because the
actual execution times can still differ from the
predicted ones, this deadline checking should be
repeated after every slice to compensate for un-
expected overtime during processing of an ear-
lier slice.

Given a deadline expected to be missed and the
execution times for decoding and replacement
of the individual slices, the core problem is to
select a set of slices for skipping and replacing
such that the deadline is met and the loss in
visual quality minimized. Considering the com-
plementary problem of selecting a set of slices
for decoding while maximizing achieved visual
quality, we can easily see that this problem is
equivalent to the binary Knapsack Optimization
Problem [49]:

• The slices from the current one to the
last one before the missed deadline are the
items to be included in the knapsack.

• Each item has a weight, given by the extra
time decoding requires over replacement:
td − tr.

• Each item has a value, given by the quality
improvement that results from the decod-
ing of the slice: ∆q = f · d

• The knapsack can hold a maximum weight
given by the remaining wallclock time tw
until the deadline, reduced by the sum of
the replacement times of the slices chosen

from: tw −
∑

tr
This ensures that for a slice left out of the
knapsack and therefore not decoded, but
replaced, the replacement time is still ac-
counted against the deadline. For a slice
that is included in the knapsack, an extra
td − tr is accounted in addition to tr, sum-
ming up to a total of td − tr + tr = td.

• The optimization problem is to fill the
knapsack with items of maximal value, but
not exceeding the maximum weight. The
problem is binary, because an item can ei-
ther be included once or left out of the re-
sult set. A solution for this problem there-
fore maximizes the quality, while the weight
constraint enforces the deadline to be met.

Because the binary Knapsack Optimization
Problem is known [51] to be NP-hard [50], so is
our problem2. But scheduling is supposed to be
fast and I do not require the optimal solution,
just one which is good enough but fast to com-
pute. Therefore I am going to solve the problem
using a greedy algorithm similar to the Decreas-
ing Density Greedy (DDG) algorithm discussed
in [52], with the density being the benefit value
b explained in the previous section. However,
I am not going to start with all slices skipped
and then iteratively including slices, but rather
the other way around: Starting with an infeasi-
ble knapsack solution that violates the deadline
by decoding all slices, I will iteratively exclude
slices with increasing density until the deadline
is met. As I expect in average more slices to
be decoded than replaced, this dual algorithm
should be faster than DDG. In [53] Bank et al.
have shown this dual greedy algorithm to per-
form sufficiently close to the optimum.

Although the decoder processes frames in de-
coding order, an actual player would output

2The correct way to show this would be a polynomial
reduction of the Knapsack Problem to this problem.
The required mapping would be reverse to the more
intuitive one presented here and can be constructed
easily.

59

4 Implementation

Algorithm 3 Scheduling decision
function skipCurrentSlice(lookaheadWindow) {
// Step 1
foreach (slice in lookaheadWindow)
slice.skip = false;

do {
deadlineMissed = false;

// Step 2
budget = currentFrameDeadline – time();
// Step 3
leastBeneficialSlice = null;

// Step 4
foreach (slice in lookaheadWindow) {
if (slice.skip) {
// Step 4 a
budget –= slice.replacementTime;

} else {
// Step 4 b
budget –= slice.decodingTime;
if (slice.benefit < leastBeneficialSlice.benefit)
leastBeneficialSlice = slice

}
// Step 4 c
if (slice.lastSliceOfFrame) {
// Step 4 c i
if (budget < 0) {
deadlineMissed = true;
leastBeneficialSlice.skip = true;
break;

}
// Step 4 c ii
budget += frameDuration;

}
}

} until (!deadlineMissed ||
lookaheadWindow.slice[0].skip); // Step 5

return lookaheadWindow.slice[0].skip;
}

frames in display order, which differs from de-
coding order due to frame reordering. However,
my scheduler deals entirely with decoding or-
der and therefore schedules the slices to be de-
coded at a given rate. Because the maximum
display delay is bounded by the H.264 levels, a
decoding-order deadline can be transformed to
a display-order deadline with an output frame
queue of fixed size.

The complete algorithm, which decides for every
slice whether to decode or to skip it is given now.
For a pseudo-code notation, see Algorithm 3.

1. Initialize the boolean skipping variable with
false for all slices in the sideband lookahead
window, meaning that all slices will be de-
coded.

2. Calculate the current execution time bud-
get as the difference between the current
frame’s deadline and the current wallclock
time. This time is available for decoding
the remaining slices of this frame.

3. To exclude slices in the order of increas-
ing benefit, the slice with the least benefit
has to be remembered. The variable stor-
ing the least beneficial slice found is invali-
dated here, meaning that no slice has been
examined yet.

4. Iterate over all slices from the current one
up to the last one in the lookahead window.

a) If the skipping variable for this slice is
true, deplete the execution time bud-
get by this slice’s estimated replace-
ment time.

b) If the skipping variable for this slice is
false, deplete the execution time bud-
get by this slice’s estimated decoding
time. If the benefit of this slice is be-
low the one of the currently remem-
bered least beneficial slice, store this
slice as the new least beneficial one.

c) If the current slice is the last one of a
frame, then:

i. Check if the execution time bud-
get dropped below zero, mean-
ing we exceeded the deadline for
this frame. If so, the remem-
bered least beneficial slice’s skip-
ping variable is set to true and
the iteration bails out to Step 5.

60

4.3 Scheduling the Slices

ii. If the deadline has been met, re-
plenish the execution time bud-
get with the display duration of
one frame, because the deadline
of the next frame will be later by
this amount of time. Continue
the iteration.

5. If no deadlines have been missed or the
skipping variable of the current slice is set,
the algorithm terminates. Otherwise the
algorithm restarts at Step 2.

Once the algorithm terminates, the skipping
variable of the current slice determines, whether
this slice is skipped or decoded. As the actual
execution time might differ from the predicted
one, the algorithm is reran from Step 1 for the
next slice.

For the execution times accounted against the
budget, underestimating the actual time is far
more problematic than overestimation, as the
former leads to unexpected deadline misses in
the future that could have been remedied by
skipping more slices earlier. For that reason,
I decided to add a safety margin to both the
estimated decoding time and the estimated re-
placement time. To reduce underestimation to
less than 10 % of all predictions, the decoding
times need to be corrected by a factor of 1.1,
the replacement times by 1.2.

The worst case runtime complexity of this algo-
rithm is O(n2) for a lookahead window of size n,
but as the iteration bails out once no deadlines
have been missed or once it has been determined
that the current slice is to be skipped, the av-
erage runtime is lower. I measured an average
per-slice scheduling overhead of a mere 28 mi-
croseconds for BBC video. Given that decoding
times are in the magnitude of milliseconds, this
overhead is quite acceptable.

Besides the execution time, the lookahead win-
dow size also influences the achieved quality, be-
cause with a larger window, a potential future
deadline miss can be detected earlier and re-
acted upon better, as more slices are available

Figure 40: Lookahead depth leading to a skip
decision for the current slice. Count-
ing from the current frame, an
expected deadline miss that many
frames in the future will drive the
scheduler to skip the current slice.

to choose a skipping candidate from. I used a
lookahead window of 25 frames for all experi-
ments. Figure 40 shows this window to provide
enough room to detect and compensate dead-
line misses.

4.3.3 Scheduler Implementation

The implementation of the actual scheduler
was straightforward, as all information is read-
ily available from sideband data. The execution
time predictions and the benefit value for each
slice are calculated once and then stored for the
scheduler, which uses the algorithm discussed
previously to decide for every slice separately,
whether it is to be skipped. However, the fol-
lowing practical problems had to be considered:

Synthesizing Frame Metadata: A slice that
is skipped is filled with replacement image con-
tent as laid out earlier in Section 3.2. This re-
placement is done at the time where the slice
would be decoded, so that later slices, which
might use pixels of the skipped slice for spa-
tial or temporal prediction, see image data at

61

4 Implementation

least roughly similar to what they expect. How-
ever, this surrogate content is not sufficient to
minimize errors in the future decoding process:
With H.264, the next frame in decoding order
can reuse macroblock type information, refer-
ence numbers, and motion vectors of the cur-
rent frame. To provide the next frame with use-
ful values here, this frame metadata has to be
synthesized in addition to the image data. For-
tunately, this synthesis is not difficult to accom-
plish, as motion vectors and reference numbers
approximating the results of a completely de-
coded slice are available in the motion vector
quadtree. These values are merely copied into
the frame’s metadata. The macroblock type
is synthesized with a constant single-reference
intercoded macroblock type without any sub-
blocking. Visual examination proved the next
frame to be closer to its original with this meta-
data synthesis.

The one difficulty with this synthesis step is
that reference numbers from the motion vector
quadtree are frame-global numbers, but FFm-
peg expects metadata to contain slice-local ref-
erence numbers. These differ, because the per-
slice reference buffer is reordered for every slice
to increase compressibility. This problem has al-
ready been dealt with in the reverse direction in
Section 4.1.4. Now I translate back to slice-local
numbers in a similar way.

The entire metadata synthesis introduces a
slowdown on the replacement, but the execution
time discussion in Section 3.2.5 already included
these extra calculations.

Unit Stride Copying: The replacement of a
slice is created by iterating over all macroblocks
of that slice, looking up the motion vector and
reference number in the motion vector quadtree
and then copying the macroblock from the ref-
erence image into the current one. But if done
strictly that way, copying would always take
place in blocks of 16×16 pixels, meaning that
only 16 consecutive bytes are copied with unit
stride access. Unit stride memory accesses are

the fastest because DRAM can use burst trans-
fers to serve them. Therefore I combine mac-
roblocks, if they fall into the same quadtree node
and copy from adjacent areas of the reference
image. This results in longer unit stride trans-
fers, which speeds up the replacement by about
10 %.

Output Queue Simulation: When running
the scheduler outside an actual video player to
simulate results, I have to ensure that the ex-
ecution time budget does not accumulate un-
boundedly. If the decoder gets too far ahead
of time, the output frame queue of an actual
player would fill up, which would block the de-
coder. I simulate this by limiting the execution
time budget to the time equivalent to 10 frames.

4.4 Integration into Verner

Verner [54] is a real-time-capable video player
built on top of the DROPS [55] operating sys-
tem. To integrate my scheduler into Verner, I
reused work done for [20], namely the handling
of the coefficients file for the execution time pre-
dictor. To get H.264 support in Verner, I had
to update the included copy of FFmpeg’s libav-
codec to the latest version. The integration of
my own scheduler code was then rather straight-
forward.

In the learning phase, Verner measures
the actual execution times for decoding
and replacement for every slice using the
get_thread_time_microsec() function.
These times are fed into the LLSP solver, which
derives the prediction coefficients from them
and stores them in a file. These coefficients are
then used by the actual scheduler to predict
the execution times. From those times and
the benefit values derived from sideband data,
the scheduler decides for each slice, whether it
should be skipped to ensure that deadlines are
met.

62

5 Evaluation and Conclusion

I now present the results of my thesis. Start-
ing with preliminary evaluation in Section 5.1, I
finally compare my method to other slice clas-
sification and error concealment approaches in
Section 5.2. Remarks on the achieved flexibility
and an outlook into future work conclude my
work.

All results have been obtained under Linux on
an AMD Sempron 2200+ (1.5 GHz) machine.

5.1 Preliminary Results

The slice scheduler builds primarily upon three
accomplishments: decoding time prediction,
slice replacement and error propagation estima-
tion. I will briefly present these results in the
following sections. The time required to prepro-
cess the videos to extract this data as well as the
resulting bitstream size overhead can be seen in
Table 2.

5.1.1 Decoding Time Prediction

I used the videos Freeway, Golf, Shore, and BBC
as the training set to calculate the prediction co-
efficients. The prediction results can be found
in Table 3. Especially the results of the Lady1
video, which was not part of the training set
are remarkable. Figure 41 illustrates the rela-
tive error of that prediction. A detail plot in
Figure 42 shows, that the prediction follows the

Video Runtime (h:mm:ss) Size Overhead

Freeway 0:02:46 4.4%

Golf 0:00:10 26.4%

Shore 0:01:28 17.7%

BBC 0:54:47 6.1%

Lady1 3:57:04 3.0%

Lady2 3:49:00 1.5%

Table 2: Preprocessor runtime and bitstream
size overhead caused by sideband data

Figure 41: Relative error histogram of decoding
time prediction for Lady1 video

Figure 42: Prediction detail of Lady1 video.
Vertical lines show frame boundaries.

decoding time variations of different slices of the
same frame as well as the same slice of different
frames.

5.1.2 Slice Replacement

The slice replacement is best evaluated by visual
inspection. Figure 43 tries to illustrate, that the
quadtree subdivision follows the areas of motion
in the frame. The replacements are generally of
high quality.

63

5 Evaluation and Conclusion

Figure 43: Quadtree subdivisions overlaid on their corresponding replacement frames from Freeway
(top) and Lady1 (bottom) videos. Note that the subdivision appears finer in the Lady1
video due to its higher resolution.

64

5.2 Comparison to Other Methods

Video Avg. Relative Error Avg. Absolute Error Values within Values within 99% Quantile*

(Std. Deviation) (Std. Deviation) ±0.2 Rel. Error ±1ms Abs. Error

Freeway 0.128 (0.016) 1.67ms (0.60ms) 99.6% 0.0% -1.327ms

Golf 0.222 (0.052) 0.09ms (0.03ms) 34.8% 100.0% -0.049ms

Shore 0.158 (0.045) 0.47ms (0.22ms) 89.4% 99.7% -0.184ms

BBC 0.107 (0.093) 0.84ms (0.76ms) 89.0% 58.1% 0.931ms

Lady1 0.044 (0.130) 0.12ms (0.39ms) 90.2% 97.9% 0.766ms
* Increasing the predictions by this value results in 99% overestimation

Table 3: Per-slice decoding time prediction for various videos. The Lady1 video was not part of
the training set.

5.1.3 Error Propagation Estimation

I estimated the resulting error propagation for
the skipping of randomly selected slices at a rate
of about one slice out of ten. Comparing this
estimate to the real error yields the differences
listed in Table 4. The values obtained for the
two versions of the Lady video allow the conclu-
sion, that more slices lead to a more accurate er-
ror estimation. Although practically irrelevant,
each macroblock could in the extreme be a slice
of its own. This could move the error estima-
tion closer to the accuracy of the ROPE algo-
rithm [23], which accounts for error propagation
on single pixel level. For practical uses, I would
expect the potential for better estimates using
slices that follow the structure of the frame, like
combining areas of coherent motion in one slice.
Even checkerboard-like patterns should be ben-
eficial, because such slices would cover a smaller
number of different objects in the picture. But
this requires encoder support for flexible mac-
roblock ordering (FMO), which is not available
yet, so the slices in these videos are merely hor-
izontal stripes.

5.2 Comparison to Other Methods

My slice scheduling method selects slices for
skipping based on their benefit value. Slices with
the lowest benefit are skipped first. A skipped
slice is replaced with content copied from refer-
ence frames using the motion vector quadtree.
To evaluate this method in its entirety, I am

Video Slices/

Frame

Avg. Difference

(Std. Deviation)

Max. Error

Value

Freeway 1 0.0645 (0.0514) 0.128

Golf 1 0.0097 (0.0113) 0.048

Shore 1 0.0662 (0.0830) 0.106

BBC 5 -0.0020 (0.0042) 0.067

Lady1 20 -0.0005 (0.0013) 0.019

Lady2 4 -0.0020 (0.0039) 0.046

Table 4: Error propagation estimation for vari-
ous videos. For each video, randomly
selected slices have been skipped at an
average rate of one slice out of ten.
The resulting errors were predicted for
each slice and compared to the mea-
sured error.

going to compare it to various other slice selec-
tion strategies, some of which have already been
mentioned in Section 2.3, and to one alternative
slice replacement strategy:

No Skip: Slices are not skipped at all. Instead,
when frames miss their deadline, the pre-
vious frame remains visible until playback
recovers at an IDR frame. Current video
players behave similarly.

Highest Cost Skip: The slice with the highest
cost, that is: the highest decoding time,
is skipped first. The reasoning behind this
idea is that skipping the slices of the highest
cost, a minimal amount of slices is skipped
to meet the deadlines.

65

5 Evaluation and Conclusion

Highest Cost, FFmpeg-Concealed: Like the
preceding strategy, but replacement is done
using FFmpeg’s built-in error concealment,
which is related to the error concealment
in the H.264 test model. (see [56] on page
13 f.)

Least Direct Error Skip: The slice with the
least directly introduced error, disregarding
any error propagation, is skipped first. This
method is similar to the frame-level distor-
tion calculation suggested in [25]. The as-
sumption behind this method is that mini-
mizing the first order error will also reduce
the propagated error.

Lifetime-Based Skip: Slices are skipped ac-
cording to a benefit value, but instead of
multiplying the directly induced error with
the error emission factor from sideband
data, it is multiplied with the frame’s refer-
ence lifetime. This lifetime is the number of
future frames, which can access the current
frame in the reference buffer. It is current
practice for MPEG-2 to skip B-frames first,
because they are never used as references.
This scheduling method extends this idea
to H.264 as has been suggested in [26].

Least Benefit Skip: Finally, this is the method
developed in this thesis.

To compare the different approaches, I wanted
to simulate playback on a machine incapable of
decoding the video completely without missing
deadlines. This could have been done by actu-
ally using a slower machine and then scheduling
the videos to their native framerate of 25 fps.
However, the much easier and more flexible way
is to use one machine of fixed speed and adjust
the target framerate of the scheduler. A higher
framerate thus allows to simulate a slower ma-
chine and vice versa. For each video, I took
the 95 % quantile of all slice’s decoding times
as the basis for calibration. This means: a ma-
chine capable of decoding 95% of all slices in
time is considered just fast enough. A fraction
of that quantile was then used to determine the

Video Fraction Framerate

Freeway 80% 90 fps

Golf 80% 2446 fps

Shore 80% 334 fps

BBC 50% 35 fps

Lady1 50% 19 fps

Table 5: Target framerates for the scheduling

speed of the simulated machine. I used rather
low fractions down to 50 %, meaning that a ma-
chine with only half the required CPU power is
simulated. This was done to make the errors
induced by the different schedulers more dis-
tinctive. The scheduling with higher fractions
will skip fewer slices, so the results will be bet-
ter. The target framerates I chose can be seen
in Table 5. All the scheduling methods had to
compete at those same framerates.

I evaluated the different strategies by running
each video through each contender algorithm at
the selected framerate. The resulting video was
compared to the original using SSIM over the
entire video. These quality differences can be
seen in Figure 44.

Except for the Golf video, were the results are
too close together to be conclusive, my method
outperforms or is on par with the contenders for
all videos. It is also visible that FFmpeg’s error
concealment always yields the worst or second
worst result, proving that my error concealment
method has considerable benefit. On the other
hand, the FFmpeg concealment and the No Skip
strategy require only little to no preprocessing.
But as preprocessing needs to be done only once
for each video and the size overhead of the side-
band data is acceptable, this extra work seems
a reasonable price for the achieved quality on
resource-limited systems. The other contenders,
Highest Cost, Least Direct Error, and Lifetime-
Based Skip, all used the motion vector quadtree
to replace slices, so they all require the same pre-
processing as my Least Benefit Skip scheduler.
It is also interesting, that the performance com-
parison of the Least Direct Error method, which
ignores error propagation completely, and the

66

5.3 Flexibility

0

100

200

300

400

Freeway Golf Shore BBC Lady1

4841
20

2

26

73
5253

8
29

6364

20
2

26

136

388

110101
88 97

214

21
2

31

223

324

27

1

29

No Skip Highest Cost Skip

Highest Cost, FFmpeg-Concealed Least Direct Error Skip

Lifetime-Based Skip Least Benefit Skip

S
S

IM
 Q

u
a
lit

y
 L

o
s
s

Figure 44: SSIM quality losses introduced by the various scheduler methods. The smaller the value
the higher the quality of the video.

Lifetime-Based method, which uses a simplistic
error propagation model, seems to depend on
the video, but most of the time, the Lifetime-
Based method performs worse. This indicates
that no notion of error propagation can be bet-
ter than a simple one. It also shows that my
detailed analysis of error propagation can suc-
cessfully improve visual performance over the
propagation model presented in [26].

To confirm the results from the objective quality
measurements, I also performed a test screening
with six human test viewers. Having them watch
the same 13 s clip from the BBC video for all
scheduling methods, they were asked to judge
the quality of each clip. Of course the test was
made blindly. I included the undegraded clip in
the test set, which acts as a plausibility check
for the results. Because all viewers voted the
original best and the FFmpeg-concealed High-
est Cost Skip clip worst, I was able to scale
the votes of each viewer to a common scale.
The aggregated results can be seen in Figure 45
and although six viewers are not representative,

they confirm the objective values from SSIM.
My method is rated to be of best quality after
the original. This test also shows that the video
quality is visually acceptable even with a sim-
ulated machine of only half the required CPU
power (see Table 5).

5.3 Flexibility

The slice scheduling method presented is not
a monolithic algorithm, but rather a framework
that draws on many individual concepts, which
can be improved upon separately.

• SSIM can be replaced by a different quality
loss metric. Only little, well-documented
assumptions were made on the inner work-
ings of this metric. Improving SSIM with
foveation [57] or brightness weighing (sug-
gested in [33]) is easily possible.

• The video is partitioned in skipping and
replacement partitions. This separation

67

5 Evaluation and Conclusion

0

25

50

75

100
100

69

62

56

31

20

No Skip

Highest Cost Skip

Highest Cost, FFmpeg-Concealed

Least Direct Error Skip

Lifetime-Based Skip

Least Benefit Skip

Original

0

S
u
b
je

c
ti
v
e
 Q

u
a
lit

y
 S

c
o
re

Figure 45: Subjective quality for BBC video clip.
The bar shows the average score, the
two auxiliary marks give the mini-
mum and maximum score for each
scheduler strategy.

was necessary because the available en-
coders did not support flexible macroblock
ordering (FMO) or arbitrary slice ordering
(ASO). Once these features are supported,
partition shapes can follow structural prop-
erties of the frame like areas of interest. It
should be easy to adapt my method, be-
cause I made no assumptions on the shape
of the partitions.

• ASO allows to order slices of one frame in
decreasing benefit order, so the most im-
portant slices can be decoded first while
the deadline is further away. As the dead-
line draws closer, only slices of lower benefit
remain, which can be skipped should time
demand it. ASO is easy to exploit as my
method imposes no constraints on slice or-
der.

• The partition size is arbitrary. Skipping
partitions can be reduced down to individ-
ual macroblocks or increased to full frames.
Table 4 indicated that smaller partitions
can improve the error propagation estima-
tion and the scheduler comparison showed
that a good propagation estimate can im-
prove the achieved quality.

• The error concealment using the motion
vector quadtree is orthogonal to the actual
scheduling using benefit values. It is easy
to integrate improved concealment meth-
ods. Only the concealment information it-
self and the measured directly induced error
change in sideband data.

• The error propagation estimate can be en-
hanced separately. This would only change
the error emission factor in sideband data.
Error concealment and scheduling could be
reused.

• Finally, most of the concepts can be applied
to coding standards other than H.264.

5.4 Future Work

The flexibility listed in the previous section pro-
vides an interesting space of options to explore.
I consider the improvement of perceptional prop-
erties without sacrificing the lightweight ap-
proach of scheduling according to a single ben-
efit value to be most interesting. Improving
the quality loss metric from the frame-based
SSIM toward incorporating temporal structure
is a promising idea. This would allow to bet-
ter quantify errors caused by frame drops and
other sudden disruptions to the movement in
the video, which SSIM might not penalize ade-
quately. The error propagation estimation would
need considerable improvement to predict this
type of errors. Such a three-dimensional qual-
ity loss metric could even allow to extend my
currently strictly frame-based approach beyond
frame borders, defining video partitions for skip-
ping or replacement that stretch not only in

68

5.5 Summary

space, but also in time. Ultimately, this could
lead to the elimination of the assumption that
video is discretized into frames along the time
axis, which would bring the method even closer
to the initial model of a video as a continuous
three-dimensional function.

Another area for follow-up work is to make the
approach more practical. Despite the low inva-
siveness already achieved, reducing the required
preprocessing would make the method more ap-
pealing for incorporation into future decoding
standards. One idea to accomplish this is to
use a quality loss metric like VQM [36] operat-
ing in the compressed domain. Together with
encoders using ASO and slice priorities to dis-
tinguish slices of interest from less important
background areas, this can allow for a method
that preprocesses the video much faster, leading
to a method that works online. Unfortunately,
I expect a trade-off between speed and percep-
tionality, because the most expensive part of the
preprocessing is the creation of the motion vec-
tor quadtree with all its SSIM comparisons to
achieve a visually similar slice replacement.

If the preprocessing approach is kept, the com-
pression and layout of the sideband data could
be enhanced to allow the preprocessor output to
be more tightly integrated into the bitstream.
This may allow a more fine grained error con-
cealment or a scalable decoding with visual qual-
ity tunable on demand. H.264 already provides
a way of choosing different quality levels using
multiple versions of the same stream. Switching
to a different stream during playback is possible
using switching slices. It would be interesting
and I think not difficult to include this switching
decision into my scheduler. The stream of lower
quality would be handled as an alternate set of
slices with shorter decoding times, but a contin-
uous quality loss to the high quality stream. If
the scheduler receives this quality loss from the
preprocessor via sideband data, it can decide,
whether switching to a lower quality stream ac-
tually leads to a higher quality, because slice
skipping is prevented. However, switching slices
are currently targeted for streaming video, be-

cause the increased storage size makes this im-
practical for prerecorded media.

Lastly, it should be possible to apply the schedul-
ing according to visual benefit not only to the
CPU resource, but to network bandwidth as
well. What would change in the determina-
tion of the benefit value is the cost component,
which would then be measured in network band-
width instead of processing time. But as the
replacement information for each slice is much
smaller than the slice data itself, basically the
same scheduling ideas can be used: Slices are
sent in decreasing benefit order. If the network
saturates, slices of low benefit are not transmit-
ted, but their replacement information is sent
instead.

5.5 Summary

In this thesis, I developed a lightweight met-
ric quantifying the perceptional importance of
H.264 slices. This metric is based on a slice re-
placement scheme that provides a visually simi-
lar replacement for each slice, using lower com-
putation time and bitstream size than the origi-
nal slice. I measured the error induced by this re-
placement with an algorithm modeled after the
human vision system, not with the otherwise of-
ten employed but unsuitable mean squared er-
ror. I analyzed error propagation and integrated
it into the metric as an error emission factor,
resulting in a single importance value for each
slice. This value is complemented by an es-
timate of the computational cost, derived us-
ing methods I developed earlier. I combined
cost and perceptional importance to formulate a
scheduling algorithm, which uses preprocessor-
provided sideband data of acceptable size to ad-
mit the individual slices for decoding or to se-
lect them for skipping. This allows video play-
back of acceptable quality on machines other-
wise severely underpowered for the task. Both
subjective and objective evaluation have shown
my method to outperform all competing ap-
proaches. These results can be used to improve
the behavior of current video playback systems,

69

5 Evaluation and Conclusion

which currently present the user with stuttering
video on CPU shortage. My method allows for
a much more graceful degradation of playback
quality.

70

References

References

[1] Apple HD Gallery – System
Recommendations http://www.
apple.com/quicktime/guide/hd/
recommendations.html

[2] ISO/IEC 14496-10: Coding of audio-visual
objects – Part 10: Advanced Video Coding

[3] Microsoft VC-1 http://www.microsoft.
com/windows/windowsmedia/forpros/
events/NAB2005/VC-1.aspx

[4] On2 Technologies Truemotion VP7 http:
//www.on2.com/technology/vp7/

[5] Blu-ray Disc Association http://www.
blu-raydiscassociation.com/

[6] HD DVD Promotion Group http://www.
hddvdprg.com/

[7] Apple iPod Technical Specifications http:
//www.apple.com/ipod/specs.html

[8] Apple QuickTime H.264 Technology
http://www.apple.com/quicktime/
technologies/h264/

[9] Specification for the use of Video
and Audio Coding in DVB services
delivered directly over IP Protocols
http://www.dvb-h.org/PDF/a084r1.
tm2821r9.dTs102005.V1.2.1.pdf

[10] iChat AV uses H.264 http://www.apple.
com/macosx/features/ichat/

[11] PREMIERE HD http://info.
premiere.de/inhalt/eng/
medienzentrum_news_uk_05122005.jsp

[12] Tobias Oelbaum, Vittorio Baroncini,
Thiow Keng Tan, Charles Fenimore: Sub-
jective Quality Assessment of the Emerging
AVC/H.264 Video Coding Standard, Inter-
national Broadcasting Conference (IBC),
September 2004, http://www.itl.nist.
gov/div895/papers/IBC-Paper-AVC%
20VerifTestResults.pdf

[13] Gary J. Sullivan, Pankaj Topiwala,
Ajay Luthra: The H.264/AVC Advanced
Video Coding Standard: Overview and
Introduction to the Fidelity Range
Extensions, SPIE Conference on Ap-
plications of Digital Image Processing
XXVII, August 2004, http://www.
cdt.luth.se/~peppar/kurs/smd151/
spie04-h264OverviewPaper.pdf

[14] Thomas Wiegand, Gary J. Sullivan,
Gisle Bjontegaard, Ajay Luthra: Overview
of the H.264/AVC Video Coding Stan-
dard, IEEE Transactions on Circuits
and Systems for Video Technology, July
2003, http://iphome.hhi.de/wiegand/
assets/pdfs/csvt_overview_0305.pdf

[15] MPEG Overview http://www.
fh-friedberg.de/fachbereiche/e2/
telekom-labor/zinke/mk/mpeg2beg/
beginnzi.htm

[16] Peter List, Anthony Joch, Jani Lainema,
Gisle Bjøntegaard, Marta Karczewicz:
Adaptive Deblocking Filter, IEEE Trans-
actions on Circuits and Systems for
Video Technology, July 2003, http:
//vc.cs.nthu.edu.tw/home/paper/
codfiles/shihyu/200408061426/
Adaptive_Deblocking_Filter.pdf

[17] Y. Zhong, I. Richardson, A. Miller, Y.
Zhao: Perceptual Quality of H.264/AVC De-
blocking Filter, http://www.rgu.ac.uk/
files/Perceptual%20quality%20of%
20H264AVC%20deblocking%20filter_
final.pdf

[18] Detlev Marpe, Heiko Schwarz, Thomas
Wiegand: Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video
Compression Standard, IEEE Transactions
on Circuits and Systems for Video Technol-
ogy, 2003, http://ip.hhi.de/imagecom_
G1/assets/pdfs/csvt_cabac_0305.pdf

[19] ISO/IEC 14496-2: Coding of audio-visual
objects – Part 2: Visual

71

http://www.apple.com/quicktime/guide/hd/recommendations.html
http://www.apple.com/quicktime/guide/hd/recommendations.html
http://www.apple.com/quicktime/guide/hd/recommendations.html
http://www.microsoft.com/windows/windowsmedia/forpros/events/NAB2005/VC-1.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/events/NAB2005/VC-1.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/events/NAB2005/VC-1.aspx
http://www.on2.com/technology/vp7/
http://www.on2.com/technology/vp7/
http://www.blu-raydiscassociation.com/
http://www.blu-raydiscassociation.com/
http://www.hddvdprg.com/
http://www.hddvdprg.com/
http://www.apple.com/ipod/specs.html
http://www.apple.com/ipod/specs.html
http://www.apple.com/quicktime/technologies/h264/
http://www.apple.com/quicktime/technologies/h264/
http://www.dvb-h.org/PDF/a084r1.tm2821r9.dTs102005.V1.2.1.pdf
http://www.dvb-h.org/PDF/a084r1.tm2821r9.dTs102005.V1.2.1.pdf
http://www.apple.com/macosx/features/ichat/
http://www.apple.com/macosx/features/ichat/
http://info.premiere.de/inhalt/eng/medienzentrum_news_uk_05122005.jsp
http://info.premiere.de/inhalt/eng/medienzentrum_news_uk_05122005.jsp
http://info.premiere.de/inhalt/eng/medienzentrum_news_uk_05122005.jsp
http://www.itl.nist.gov/div895/papers/IBC-Paper-AVC%20VerifTestResults.pdf
http://www.itl.nist.gov/div895/papers/IBC-Paper-AVC%20VerifTestResults.pdf
http://www.itl.nist.gov/div895/papers/IBC-Paper-AVC%20VerifTestResults.pdf
http://www.cdt.luth.se/~peppar/kurs/smd151/spie04-h264OverviewPaper.pdf
http://www.cdt.luth.se/~peppar/kurs/smd151/spie04-h264OverviewPaper.pdf
http://www.cdt.luth.se/~peppar/kurs/smd151/spie04-h264OverviewPaper.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/csvt_overview_0305.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/csvt_overview_0305.pdf
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://vc.cs.nthu.edu.tw/home/paper/codfiles/shihyu/200408061426/Adaptive_Deblocking_Filter.pdf
http://vc.cs.nthu.edu.tw/home/paper/codfiles/shihyu/200408061426/Adaptive_Deblocking_Filter.pdf
http://vc.cs.nthu.edu.tw/home/paper/codfiles/shihyu/200408061426/Adaptive_Deblocking_Filter.pdf
http://vc.cs.nthu.edu.tw/home/paper/codfiles/shihyu/200408061426/Adaptive_Deblocking_Filter.pdf
http://www.rgu.ac.uk/files/Perceptual%20quality%20of%20H264AVC%20deblocking%20filter_final.pdf
http://www.rgu.ac.uk/files/Perceptual%20quality%20of%20H264AVC%20deblocking%20filter_final.pdf
http://www.rgu.ac.uk/files/Perceptual%20quality%20of%20H264AVC%20deblocking%20filter_final.pdf
http://www.rgu.ac.uk/files/Perceptual%20quality%20of%20H264AVC%20deblocking%20filter_final.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_cabac_0305.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_cabac_0305.pdf

References

[20] Michael Roitzsch: Principles for the
Prediction of Video Decoding Times
applied to MPEG-1/2 and MPEG-
4 Part 2 Video, undergraduate thesis,
2005, http://os.inf.tu-dresden.de/
papers_ps/roitzsch-beleg.pdf

[21] Peter Altenbernd, Lars-Olof Burchard,
Friedhelm Stappert: Worst-Case Execution
Times Analysis of MPEG-2 Decoding, Pro-
ceedings of the 12th Euromicro Conference
on Real Time Systems (ECRTS)

[22] Damir Isović, Gerhard Fohler: Qual-
ity aware MPEG-2 Stream Adaptation
in Resource Constrained Systems, Pro-
ceedings of the 16th Euromicro Confer-
ence on Real Time Systems (ECRTS),
2004, http://www.mrtc.mdh.se/
publications/0679.pdf

[23] Rui Zhang, Shankar L. Regunathan, Ken-
neth Rose: Video Coding with Opti-
mal Inter/Intra-Mode Switching for Packet
Loss Resilience, IEEE Journal on Se-
lected Areas in Communication, June
2000, http://scl.ece.ucsb.edu/pubs/
pubs_A/a00_5.pdf

[24] Enrico Masala, Davide Quaglia, Juan
Carlos De Martin: Adaptive Picture
Slicing for Distortion-based Classification
of Video Packets, IEEE Fourth Work-
shop on Multimedia Signal Processing,
2001, http://www.cercom.polito.it/
Publication/Pdf/92.pdf

[25] Fabio De Vito, Laura Farinetti, Juan
Carlos De Martin: Perceptual Classifica-
tion of MPEG Video for Differentiated-
Services Communications, Proceedings
of the 2002 IEEE International Confer-
ence on Multimedia and Expo, 2002,
http://demartin.polito.it/papers/
DeVito_ICME2002.pdf

[26] Paolo Bucciol, Enrico Masala, Juan Car-
los De Martin: Perceptual ARQ for H.264
Video Streaming over 3G Wireless Networks,

IEEE International Conference on Communi-
cations, 2004, http://media.polito.it/
papers/masala_icc2004.pdf

[27] Fabio De Vito, Davide Quaglia, Juan
Carlos De Martin: Model-based Dis-
tortion Estimation for Perceptual Clas-
sification of Video Packets, Proceed-
ings of the IEEE International Work-
shop on Multimedia Signal Processing
(MMSP), 2004, http://media.polito.
it/papers/devito_mmsp2004.pdf

[28] Bernd Girod: What’s wrong with mean-
squared error?, Digital Images and Human
Vision, MIT Press, 1993, pp. 207-220

[29] Dmitriy Vatolin, Alexander Parshin,
Oleg Petrov, Artem Titarenko: Sub-
jective Comparison of Modern Video
Codecs, CS MSU Graphics & Media Lab
Video Group, January 2006, http:
//www.compression.ru/video/codec_
comparison/pdf/msu_subjective_
codecs_comparison_en.pdf

[30] Peak Signal to Noise Ratio http:
//en.wikipedia.org/w/index.
php?title=Peak_signal-to-noise_
ratio&oldid=54382448

[31] Michael P. Eckert, Andrew P. Bradley: Per-
ceptual quality metrics applied to still image
compression, Signal Processing 70, 1998,
pp. 177-200, http://www.itee.uq.edu.
au/~bradley/Papers/APB%20IQ79.pdf

[32] Zhou Wang, Alan C. Bovik, Hamid
R. Sheikh, Eero P. Simoncelli: Image
Quality Assessment: From Error Visibility
to Structural Similarity, IEEE Transac-
tions on Image Processing, April 2004,
http://www.cns.nyu.edu/~zwang/
files/papers/ssim.pdf

[33] Zhou Wang, Ligang Lu, Alan C. Bovik:
Video Quality Assessment Based on Struc-
tural Distortion Measurement, Signal Pro-
cessing: Image Communication, February

72

http://os.inf.tu-dresden.de/papers_ps/roitzsch-beleg.pdf
http://os.inf.tu-dresden.de/papers_ps/roitzsch-beleg.pdf
http://www.mrtc.mdh.se/publications/0679.pdf
http://www.mrtc.mdh.se/publications/0679.pdf
http://scl.ece.ucsb.edu/pubs/pubs_A/a00_5.pdf
http://scl.ece.ucsb.edu/pubs/pubs_A/a00_5.pdf
http://www.cercom.polito.it/Publication/Pdf/92.pdf
http://www.cercom.polito.it/Publication/Pdf/92.pdf
http://demartin.polito.it/papers/DeVito_ICME2002.pdf
http://demartin.polito.it/papers/DeVito_ICME2002.pdf
http://media.polito.it/papers/masala_icc2004.pdf
http://media.polito.it/papers/masala_icc2004.pdf
http://media.polito.it/papers/devito_mmsp2004.pdf
http://media.polito.it/papers/devito_mmsp2004.pdf
http://www.compression.ru/video/codec_comparison/pdf/msu_subjective_codecs_comparison_en.pdf
http://www.compression.ru/video/codec_comparison/pdf/msu_subjective_codecs_comparison_en.pdf
http://www.compression.ru/video/codec_comparison/pdf/msu_subjective_codecs_comparison_en.pdf
http://www.compression.ru/video/codec_comparison/pdf/msu_subjective_codecs_comparison_en.pdf
http://en.wikipedia.org/w/index.php?title=Peak_signal-to-noise_ratio&oldid=54382448
http://en.wikipedia.org/w/index.php?title=Peak_signal-to-noise_ratio&oldid=54382448
http://en.wikipedia.org/w/index.php?title=Peak_signal-to-noise_ratio&oldid=54382448
http://en.wikipedia.org/w/index.php?title=Peak_signal-to-noise_ratio&oldid=54382448
http://www.itee.uq.edu.au/~bradley/Papers/APB%20IQ79.pdf
http://www.itee.uq.edu.au/~bradley/Papers/APB%20IQ79.pdf
http://www.cns.nyu.edu/~zwang/files/papers/ssim.pdf
http://www.cns.nyu.edu/~zwang/files/papers/ssim.pdf

References

2004, pp. 121-132, http://www.cns.nyu.
edu/~zwang/files/papers/vssim.pdf

[34] Charles Poynton: Frequently Asked Ques-
tions about Color http://www.poynton.
com/PDFs/ColorFAQ.pdf

[35] Final Report from the Video Quality
Experts Group on the Validation of Objec-
tive Models of Video Quality Assessment,
June 2000 ftp://ftp.its.bldrdoc.gov/
dist/ituvidq/phase1_final_report/
COM-80E.pdf

[36] Feng Xiao: DCT-based Video Qual-
ity Evaluation, Winter 2000, http://
www-ise.stanford.edu/class/ee392j/
projects/projects/xiao_report.pdf

[37] FastVDO Test Videos http:
//www.fastvdo.com/H.264.html

[38] BBC Test Video http://www.
apple.com/quicktime/guide/hd/
bbcmotiongalleryreel.html

[39] ”Lady In The Water” Test Video
http://www.apple.com/trailers/
wb/ladyinthewater/hd/

[40] x264 http://developers.videolan.
org/x264.html

[41] FFmpeg http://www.ffmpeg.org/

[42] Marcelo Bertalḿıo, Guillermo Sapiro, Vi-
cent Caselles, Coloma Ballester: Im-
age Inpainting, Proceedings of SIGGRAPH
2000, July 2000, http://www.iua.upf.
es/~mbertalmio/bertalmi.pdf

[43] Raphael A. Finkel, J. L. Bentley: Quad
Trees: A Data Structure for Retrieval on
Composite Keys, Acta Informatica 4, 1974,
pp. 1-9

[44] M. Dowell, P. Jarrat: The “Pegasus”
method for computing the root of an equa-
tion, BIT Numerical Mathematics, Springer
Netherlands, December 1972

[45] Matlab implementation of SSIM http://
www.cns.nyu.edu/~lcv/ssim/

[46] GNU General Public License http://www.
gnu.org/copyleft/gpl.html

[47] IEEE Standard for Binary Floating-Point
Arithmetic, 1985 http://754r.ucbtest.
org/standards/754.pdf

[48] Aviezri S. Fraenkel, Shmuel T. Klein: Ro-
bust Universal Complete Codes for Trans-
mission and Compression, Discrete Ap-
plied Mathematics, January 1996, pp. 31-
55, http://www.cs.biu.ac.il/~tomi/
Postscripts/robust.ps

[49] Michael R. Garey, David S. Johnson: Com-
puters and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Free-
man & Co. New York, 1979, p. 247

[50] Michael Sipser: Introduction to the The-
ory of Computation, PWS Publishing, 1997,
Section 7.4

[51] Richard Manning Karp: Reducibility
among combinatorial problems, Complexity
of computer computations, 1972, pp. 85-
103, Slides: http://dclab.cs.nthu.edu.
tw/~kwc/20030808/karp.pdf

[52] James M. Calvin, Joseph Y-T. Leung:
Average-case analysis of a greedy algo-
rithm for the 0/1 Knapsack Problem,
February 2003, http://www.cis.njit.
edu/~calvin/knapsack.pdf

[53] B. Bank, G. Diubin, A. Korbut, I. Si-
gal: The average behaviour of greedy
algorithms for the knapsack prob-
lem: Computational experiments, 2004,
http://edoc.hu-berlin.de/series/
mathematik-preprints/2004-6/PDF/6.
pdf

[54] Carsten Rietzschel: VERNER – ein Video
EnkodeR uNd playER für DROPS, Master’s
Thesis, http://os.inf.tu-dresden.de/
papers_ps/rietzschel-diplom.pdf

73

http://www.cns.nyu.edu/~zwang/files/papers/vssim.pdf
http://www.cns.nyu.edu/~zwang/files/papers/vssim.pdf
http://www.poynton.com/PDFs/ColorFAQ.pdf
http://www.poynton.com/PDFs/ColorFAQ.pdf
ftp://ftp.its.bldrdoc.gov/dist/ituvidq/phase1_final_report/COM-80E.pdf
ftp://ftp.its.bldrdoc.gov/dist/ituvidq/phase1_final_report/COM-80E.pdf
ftp://ftp.its.bldrdoc.gov/dist/ituvidq/phase1_final_report/COM-80E.pdf
http://www-ise.stanford.edu/class/ee392j/projects/projects/xiao_report.pdf
http://www-ise.stanford.edu/class/ee392j/projects/projects/xiao_report.pdf
http://www-ise.stanford.edu/class/ee392j/projects/projects/xiao_report.pdf
http://www.fastvdo.com/H.264.html
http://www.fastvdo.com/H.264.html
http://www.apple.com/quicktime/guide/hd/bbcmotiongalleryreel.html
http://www.apple.com/quicktime/guide/hd/bbcmotiongalleryreel.html
http://www.apple.com/quicktime/guide/hd/bbcmotiongalleryreel.html
http://www.apple.com/trailers/wb/ladyinthewater/hd/
http://www.apple.com/trailers/wb/ladyinthewater/hd/
http://developers.videolan.org/x264.html
http://developers.videolan.org/x264.html
http://www.ffmpeg.org/
http://www.iua.upf.es/~mbertalmio/bertalmi.pdf
http://www.iua.upf.es/~mbertalmio/bertalmi.pdf
http://www.cns.nyu.edu/~lcv/ssim/
http://www.cns.nyu.edu/~lcv/ssim/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://754r.ucbtest.org/standards/754.pdf
http://754r.ucbtest.org/standards/754.pdf
http://www.cs.biu.ac.il/~tomi/Postscripts/robust.ps
http://www.cs.biu.ac.il/~tomi/Postscripts/robust.ps
http://dclab.cs.nthu.edu.tw/~kwc/20030808/karp.pdf
http://dclab.cs.nthu.edu.tw/~kwc/20030808/karp.pdf
http://www.cis.njit.edu/~calvin/knapsack.pdf
http://www.cis.njit.edu/~calvin/knapsack.pdf
http://edoc.hu-berlin.de/series/mathematik-preprints/2004-6/PDF/6.pdf
http://edoc.hu-berlin.de/series/mathematik-preprints/2004-6/PDF/6.pdf
http://edoc.hu-berlin.de/series/mathematik-preprints/2004-6/PDF/6.pdf
http://os.inf.tu-dresden.de/papers_ps/rietzschel-diplom.pdf
http://os.inf.tu-dresden.de/papers_ps/rietzschel-diplom.pdf

References

[55] The Dresden Real-Time Operating
Systems Project http://os.inf.
tu-dresden.de/drops/overview.html

[56] Thomas Stockhammer, Miska M. Han-
nuksela, Thomas Wiegand: H.264/AVC
in Wireless Environments, IEEE Trans-
actions on Circuits and Systems
for Video Technology, July 2003,
http://ip.hhi.de/imagecom_G1/
assets/pdfs/csvt_wireless_0305.pdf

[57] Zhou Wang, Ligang Lu, Alan C. Bovik:
Foveation Scalable Video Coding with Auto-
matic Fixation Selection, IEEE Transactions
on Image Processing, February 2003,
http://www.cns.nyu.edu/~zwang/
files/papers/fsvc.pdf

74

http://os.inf.tu-dresden.de/drops/overview.html
http://os.inf.tu-dresden.de/drops/overview.html
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_wireless_0305.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_wireless_0305.pdf
http://www.cns.nyu.edu/~zwang/files/papers/fsvc.pdf
http://www.cns.nyu.edu/~zwang/files/papers/fsvc.pdf

	1 Introduction
	1.1 Motivation
	1.2 Vision
	1.3 Outline

	2 Related Work
	2.1 H.264
	2.2 Decoding Time Prediction
	2.3 Perceptional Importance
	2.4 Video Quality Loss Metrics

	3 Video Preprocessor Design
	3.1 Metrics for Decoding Time
	3.2 Partition Replacement
	3.3 Error Propagation Estimation

	4 Implementation
	4.1 Video Preprocessor
	4.2 Sideband Data Format
	4.3 Scheduling the Slices
	4.4 Integration into Verner

	5 Evaluation and Conclusion
	5.1 Preliminary Results
	5.2 Comparison to Other Methods
	5.3 Flexibility
	5.4 Future Work
	5.5 Summary

