
Diplomarbeit

Request tracking in DROPS

Björn Döbel

30. Mai 2006

Technische Universität Dresden
Fakultät Informatik

Institut für Systemarchitektur
Professur Betriebssysteme

Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann Härtig
Betreuende Mitarbeiter: Dipl.-Inf. Martin Pohlack

Dipl.-Inf. Ronald Aigner

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236365557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 30. Mai 2006

Björn Döbel

Acknowledgements

I’m so happy, ’cause today I found my friends...
(Nirvana - Lithium)

I would like to thank Prof. Hermann Härtig for giving me the opportunity to work in the TU
Dresden Operating Systems Group. Martin Pohlack and Ronald Aigner supported me with
ideas, talks, comments and a lot of their time. Adam Lackorzynski helped me with his nev-
erending knowledge about L4Linux and by making kProbes work on this system.

Carsten Weinhold, Sven Schneider, Thomas Friebel, Stephan Diestelhorst, and Christelle Braun
colorized my life in the lab with their presence. Lars Iwer, Stefan Schiffner, and Christian Bitter
proofread this thesis. Coffee and sweets were supported by the infamous “Club Dürerstraße”
(R.I.P.).

My family highly influenced my life through the last 25 years and I wouldn’t be what I am
without them. I especially thank Christiane Berndt who gave me her support in terms of love
and criticism whenever one of these was necessary.

Contents

1 Introduction 1

2 Related work 3
2.1 The Dresden Real-Time Operating System . 3
2.2 Monitoring . 4

2.2.1 Overview . 4
2.2.2 Monitoring in Linux . 7
2.2.3 Monitoring in Windows . 11
2.2.4 Monitoring in DROPS . 12
2.2.5 Evaluation and visualization tools . 14

2.3 Code generation . 16
2.3.1 Overview . 16
2.3.2 The DROPS IDL Compiler . 17
2.3.3 Aspect-oriented programming . 17

2.4 Autonomic computing . 19
2.5 Benchmarking . 21

3 Design 23
3.1 Defining goals . 23

3.1.1 Basic requirements . 23
3.2 Event retrieval . 26

3.2.1 Review of existing facilities . 26
3.2.2 Communication tracing . 27
3.2.3 Event layout . 29
3.2.4 Instrumentation rules . 30
3.2.5 Sensors and monitors . 33

3.3 Instrumenting the L4 Environment . 33
3.4 Instrumenting L4Linux . 36
3.5 Storing data . 38
3.6 Data processing . 38

VII

Contents

4 Implementation 39
4.1 A tracing plugin for Dice . 39
4.2 Network data transfer . 44
4.3 Instrumenting L4Linux . 45

4.3.1 Porting kProbes . 45
4.3.2 Ferret emulation for Linux . 46
4.3.3 Improving L4Linux task management 46

4.4 A self-healing web server . 48
4.5 Magpie enhancements . 52

5 Evaluation 53
5.1 Test setup . 53
5.2 Analysis of DROPS . 54

5.2.1 IPC sizes . 54
5.2.2 String IPC throughput . 56
5.2.3 String IPC vs. shared-memory communication 59
5.2.4 Semaphore usage . 61

5.3 Analysis of L4Linux . 62
5.3.1 kProbes Overhead . 62
5.3.2 Native Linux vs. L4Linux . 63
5.3.3 Task caching in L4Linux . 68

6 Conclusion and outlook 69
6.1 Conclusion . 69
6.2 Future work . 70

Bibliography 73

VIII

List of Figures

2.1 Linux Trace Toolkit component layout . 8

3.1 DROPS . 25
3.2 Event layout for dice_trace events . 30

4.1 Dice tracing hooks . 41
4.2 L4Linux task creation . 47

5.1 Proportional distribution of IPC sizes for the DOpE+L4VFS scenario 55
5.2 Proportional distribution of IPC sizes for the DOpE+L4VFS scenario without

ORe . 56
5.3 Send time for indirect strings . 57
5.4 Sending a 2MB buffer with different send buffer sizes 58
5.5 String IPC cache and TLB misses . 59
5.6 Comparing DSI and indirect string IPC . 60
5.7 DSI w/o zero-copy, different packet configurations 61
5.8 Execution times for the sys_read system call 66

IX

List of Tables

3.1 Monitor-sensor combinations . 33

5.1 Native kProbes Overhead . 62
5.2 L4Linux kProbes Overhead . 62
5.3 Unixbench results . 64
5.4 Top 15 Linux system calls . 65
5.5 System call execution times . 65
5.6 TLB and cache misses for sys_read . 67
5.7 TLB and cache misses for sys_getpid . 67
5.8 Effects of improved L4Linux task management 68

XI

1 Introduction

It’s something unpredictable,
But in the end it’s right...

(Green Day - Time of your life)

Overview

Donald Knuth once stated that “premature optimization is the root of all evil (or at least most
of it) in programming.” His observation was that programmers often try to write optimized
code before their application is working at all. This is bad, because on the one hand these
optimizations often increase the error rate in software, and on the other hand they are performed
without even knowing where the performance problems are.

According to Knuth, the correct way of optimization is to start with a working but unoptimized
application and perform only necessary improvements. With the evolution of software develop-
ment, tools have been developed to support the task of tracking down performance issues.

These tools monitor the behavior of a single application or a whole system, collect data and visu-
alize it for easier evaluation. My thesis aims at monitoring and evaluation of system behavior
in the context of the Dresden Real-Time Operating System (DROPS). I reuse existing facili-
ties and add new means as needed. Sensors and monitors are added to the system that support
tracing of requests throughout system components. Data obtained by monitoring will be made
available for offline as well as online evaluation. I show use cases for both scenarios.

L4Linux is a para-virtualized version of Linux running on top of DROPS. Monitoring events
from L4Linux and its processes is another main topic of this thesis, because L4Linux is one of
the most complex use cases for DROPS. I evaluate existing Linux tracing solutions to be ported
to L4Linux and investigate ways of comparing L4Linux to native Linux.

With the help of the means introduced by this thesis, I am able to point out that system call
overhead is one of the main reasons for L4Linux’ performance problems. By implementing an
optimization to L4Linux task management, I show that the cooperation between L4Linux and
its environment can still be improved.

1

1 Introduction

Outline

Section 2 introduces basic terms related to monitoring and reviews existing facilities in several
operating systems. Thereafter I introduce means of code generation, because they can be used
to automate the task of inserting sensors into applications. I introduce autonomic computing as
another research area requiring efficient monitoring, and I give an overview of benchmarking as
a means of evaluating performance.

In Section 3 I analyze the requirements needed for tracking requests within DROPS. I review
existing tracing facilities and discuss how to instrument existing applications. I especially
explain why and how to instrument the L4 Environment and L4Linux.

Section 4 explains the implementation of a trace plugin for the DROPS IDL Compiler that I used
for automated instrumentation of DROPS applications. I describe the port of a TCP/IP stack to
the ORe network switch to enable transfer of monitoring data through a network. Adam Lack-
orzynski’s port of kProbes to L4Linux is introduced as well as my own work on the L4Linux
task management. Thereafter I introduce a self-healing web server as an example for autonomic
computing. Finally, my enhancements to the Magpie event postprocessor are described.

In Section 5 I evaluate the performance of DROPS and L4Linux using the means introduced in
this thesis. Section 6 sums up my thesis and outlines ideas for future work.

2

2 Related work

The idea is good,
But the world isn’t ready yet.

(Tocotronic)

In this section I will introduce basic terms necessary for the understanding of my thesis and
present related work covering the discussed problems.

First, I will introduce the working environment of this thesis, which is the Dresden Real-Time
Operating System (DROPS) in Section 2.1.

As my thesis covers tracing of events inside DROPS, I will thereafter give an introduction to
monitoring in Section 2.2, followed by an overview of monitoring architectures and tool chains
for the Linux, Windows, and DROPS systems. The section is concluded by an explanation of
evaluation and visualization tools that support monitoring.

Tracking requests1 in DROPS requires existing applications to be instrumented with event-
generating sensors. Manual insertion of sensor code is time-consuming. Therefore I need to
inspect techniques for automated sensor injection. I will introduce code generation as means of
injecting sensor code into applications in Section 2.3.

Section 2.4 contains a description of autonomic computing, a concept that opens up new appli-
cations of monitoring. As a large part of my thesis will cover performance evaluation, I conclude
this chapter with an overview of benchmarking.

2.1 The Dresden Real-Time Operating System

At first, I will introduce the environment in which my thesis is located. Fiasco is a microkernel
implementing the L4 ABI [Lie96a]. It was implemented at TU Dresden in the context of the
Dresden Real-Time Operating System (DROPS). DROPS consists of a set of cooperating servers
running on top of the microkernel. Inter-process communication (IPC) is used by the servers to
communicate. IPC performance is considered the main issue for microkernel-based operating
systems [Lie93].

1In the context of my thesis, a request is a structured set of events.

3

2 Related work

The L4 Environment (L4Env) [TUDa] is a programming environment for DROPS. It provides
a number of servers and libraries performing common tasks such as thread management, global
naming, synchronization, and many more.

L4Linux [TUDb] is a para-virtualized version of Linux running as a DROPS server using the
L4 Environment. Linux applications can run on top of it. They are handled as L4 tasks, system
calls are translated into IPC to the L4Linux server. To enable native Linux binaries to run
unmodified on L4Linux, exception IPC is introduced. A native binary issuing an int80 to
enter the kernel raises an exception in DROPS. The microkernel delegates this exception to an
exception handling user-space application. In the case of L4Linux this is the L4Linux server,
which thereby detects that a system call was issued and handles it.

2.2 Monitoring

My thesis aims at evaluation of performance and behavioral properties in the context of DROPS.
To accomplish this task, I added sensors to basic system services and applications and obtained
events from these sensors using the Ferret monitoring framework [Poh06]. One or more mon-
itors filter this data and then transfer it to an external storage where it will be retained for later
evaluation. Furthermore, I use tools to visualize and analyze the obtained data.

Being able to trace events inside an OS kernel as well as within applications running on top
of the operating system helps developers finding bugs and detecting performance problems.
Therefore, a lot of work has been invested to develop monitoring solutions for a wide range of
operating systems. The following sections give an overview of monitoring and existing imple-
mentations.

2.2.1 Overview

In the field of system diagnostics several approaches exist for test and evaluation of systems, the
most widespread approach being hardware and software debuggers. These tools enable devel-
opers to control their applications by setting breakpoints at arbitrary positions within their code.
Reaching one of these breakpoints, the application is stopped. The developer may then inspect
and change values of variables, so that he is able to find errors within the code or influence the
application’s further control flow.

4

2.2 Monitoring

Unfortunately, the debugging approach has several disadvantages rendering it useless in the
following situations:

• Kopetz [Kop97] defines real-time systems as systems, “in which the correctness of their
operation is defined not only in terms of functionality (what) but also in terms of timeli-
ness (when).” Debugging timeliness of real-time applications is impossible using break-
points, because they must not be stopped completely.

• Adding debugging code to an application may lead to situations, where the application
runs fine with the debugging code enabled, but produces errors when the debugging code
is removed, because the application’s timely behavior is changed.

• Often developers and analysts are not able to predict, which parts of an application are
error prone or critical with respect to performance or when these parts of the application
will be executed. Working with breakpoints then will require plenty of time and work. It
is often not possible to put a human being in front of a long running system for all the
time. Critical moments may thus be missed.

• Performance measurements and online evaluation are impossible with software debug-
gers.

System monitors [Tha00] provide another approach to diagnostics and performance analysis and
remedy the disadvantages of debugging systems. Monitors automate the task of collecting data
over a long period of time and consist of the following elements:

1. Sensors are inserted into applications at arbitrary positions and generate events, which
may then be read from a monitoring application running in parallel to the monitored
system on the same computer or even on a separate one. The sensor approach is basically
similar to the breakpoints provided by debugging systems but sensors do not stop the
whole application.

Inserting sensors often leads to an increase of runtime, the so-called probe effect. It is
caused by more code being executed in an instrumented application, an increased number
of cache misses caused by accessing more code and data, and because obtained data needs
to be sent to a persistent storage. The monitoring code developer needs to ensure that the
probe effect is as small as possible, because it can influence application behavior as well
as falsify measurements.

While it is possible to step through an application line-by-line using breakpoints and
check for unexpected behavior by checking the complete application state, users of mon-
itoring systems need to know the data they are interested in before running the monitor.

5

2 Related work

This is because locations for sensor insertion need to be selected (e. g., by hard-coding
the sensor into the application’s source code or by using dynamic instrumentation as
explained in Section 3.4).

2. Efficient data storage is needed so that storing events adds as little storage access overhead
as possible. Furthermore, events must be available in a timely order for later evaluation.
To meet this goal, most monitoring frameworks add a kind of timestamp to each event at
the moment it is written to the sensor. 2

3. Triggers and Filters are used to restrict the amount of events that need to be stored. Trig-
gers are used to start and stop measuring at specific points in time or under specific cir-
cumstances, so that only relevant data is collected. Filters are applied to the collected
events and classify them.

An example: A system consists of a processor serving requests and a wait queue of length
10 to store incoming requests, which may not be served at the moment. The system
administrator wants to check if the queue’s length is large enough and therefore inserts a
sensor into the system displaying the current number of elements within the queue. If this
output is sent every second, the administrator receives 86,400 numbers a day needing to
be checked.

If the administrator knows that the system is under heavy load mainly from 11 a.m. to 3
p.m., she could insert a trigger into her monitor starting the collection of data at 10.50 a.m.
and stopping it at 3.10 p.m. She then would receive only 15,600 numbers, which is still a
lot. As the administrator wants to know if the queue is long enough, she is not interested
in all the data telling her that the queue is long enough, she only needs to know whenever
the queue is full. To obtain only these events, she can use a filter storing data only when
the number of elements within the queue is equal to the maximum queue length. This
will once again decrease the amount of data collected.

4. Monitors may produce an immense quantity of data. This data is used to

• evaluate specific properties (for instance performance) of the monitored system,

• obtain behavioral models of a system with respect to the events measured, and

• detect abnormal system behavior by comparing the events to behavioral models.

All the previously mentioned tasks are time consuming and error prone when performed
manually. Therefore there exist diagnostic tools (such as Magpie introduced in Section
2.2.5) supporting the user. The most basic way of support is visualization, which presents
the collected data in a more handsome way.

2Writing an event is sometimes called committing.

6

2.2 Monitoring

2.2.2 Monitoring in Linux

As Linux is maintained and improved by a large open-source community, several approaches to
monitoring have been developed. Basic facilities come with programs such as top and ps, which
use special files in the /proc file-system to gather data about which processes are running
at the moment, and how much memory and CPU time they consume. However, they lack
the possibility to determine dependencies and interaction between processes and therefore are
inapplicable for complex monitoring tasks.

This section introduces three major tracing facilities for Linux in detail: the Linux Trace Toolkit
(LTT), Dynamic Probes, and kProbes. I chose the latter facility for instrumenting L4Linux
within the scope of this thesis.

The Linux Trace Toolkit

One approach directly focusing on complex interactions and dependencies is the Linux Trace
Toolkit (LTT) [YD00]. LTT consists of several cooperating services, whose interaction is shown
in Figure 2.1.

• A kernel tracing facility is added to the Linux kernel and enables its subsystems to pro-
duce events by static instrumentation,

• A tracing kernel module collects all events and provides them to user-space applications
through a character device,

• A daemon in user-space reads out the data from the tracing device and stores it for later
use, and

• A visualization tool can be used to present the collected events to the user.

LTT comes with several predefined sensors and events inside the Linux kernel. Measurements
in [YD00] show that the execution overhead caused by LTT sensors is below 2.5%, which the
authors consider to be negligible.

Recent work [Des06] resulted in the Next Generation Linux Trace Toolkit (LTTng), which
supports more flexible event layouts, 100-nanosecond timing accuracy, and writing events to
multiple traces. The project furthermore develops the LTT visualization part under the name
LTTV. I did not find any new evaluation of the probe effect implied by newer versions of LTT.

Dynamic Probes

Moore and his group at the IBM Linux Technology Centre developed the Dynamic Probes
mechanism — DProbes in short — which is described in [Moo01]. Originally, it was planned to

7

2 Related work

Linux kernel

Kernel tracing
facilityTracing

kernel module

trace device

userlevel
trace daemon

visualization
tool

Logs,
visualizations

Figure 2.1: Linux Trace Toolkit component layout

be an automated kernel debugger for OS/2 and Linux. DProbes then were enhanced to cooperate
with other existing commercial and non-commercial frameworks. One of these frameworks is
the previously introduced LTT.

Dynamic Probes introduces the concept of probe points. A probe point is an arbitrary location
within the source code of the kernel, a kernel module, or a user-space program. When a probe
point is hit, a probe handler is executed. This handler is implemented in a low-level assembler-
like language3. This language gives the implementer access to user and kernel memory as well
as hardware registers. Probe points and handlers may be inserted into the code dynamically.
This is achieved by replacing the original instruction with a trapping instruction — int3 on
the IA32 architecture — leading to a kernel entry where the trap is caught by the probe manager,
which then executes the probe handler and returns to the trapping instruction at last.

To evaluate its overhead, DProbes’ developers added probe points to certain locations within the
OS/2 source code, their number ranging from only a few probes up to having a probe at every
kernel API function. The results in [Moo01] show that the overhead is nearly unnoticeable even
for large-scale instrumentation, as long as the overall system load is within a normal range.
However, it can become noticeable if the machine is running under a workload causing high
CPU utilization.

3An ANSI-C-to-DProbes compiler is also available.

8

2.2 Monitoring

kProbes

Kernel Probes (kProbes) are an enhancement of DProbes especially focused on the Linux kernel.
They are Linux’ default means for dynamic instrumentation since the 2.6 series of kernels. An
introduction to the use of kernel probes is available with [Kri05] and [Coh05].

kProbes are implemented as Linux kernel modules and inserted into the running kernel. This
makes them easier to use than the widespread habit of inserting printk statements allover
the kernel, which is difficult for complex instrumentation tasks. Instrumentors do not need to
recompile the kernel and reboot the machine every time an instrumentation is inserted, there is
no instrumentation overhead with instrumentation turned off, and kProbes are a clean way of
inserting and removing complex instrumentation code.

There are three variants of kernel probes available:

• kProbes are used to instrument an arbitrary address within the kernel. This address is lin-
ear within the kernel image and may be determined by either giving a pointer to a publicly
exported kernel function or by inspecting the System.map file for private functions.
The address is not restricted to function addresses, but the instrumentor may also specify
a certain offset within the function to trap at a special instruction.

An instrumentor may specify three function pointers to handlers within a kProbe, one for
a pre-handler, one for a post-handler and one for an error handler that is executed if the
normal probe execution fails. Conceptually, this is similar to aspect-oriented program-
ming, which is introduced in Section 2.3, however AOP uses static instrumentation.

• As kProbes are related only to linear addresses, it is not easily possible to access the
parameters of the currently executed function. If one wants to inspect such values, it is
possible to write a jProbe 4 trapping at a function entry. The current register and stack
context is saved and a handler function specified by the jProbe is called. This handler
function needs to have the same signature as the instrumented one and provides easy
access to the function parameters.

• Return probes (kRetProbes) can be registered to inspect the return value of a function.
Upon registration of a return probe, kProbes inserts a probe at the function entry. When
this probe is hit, the return address of the function is stored and replaced by a special
trampoline instruction. Therefore, the function returns to this trampoline handler and
kProbes is able to invoke the return handler before jumping to the real return address.

4jump probe

9

2 Related work

kProbes provide a powerful tool for instrumenting the Linux kernel, although there exist restric-
tions:

• Probe handlers are called with preemption disabled. Therefore using primitives such as
semaphores that rely on preemption being enabled is not possible.

• Probe handlers cannot be specified for inline functions, because their code is inlined by
the compiler and there is no easy way to detect occurrence of such functions within the
running binary kernel image.

• The kProbes code itself cannot be instrumented. The kProbes subsystem rejects such
instrumentation requests during registration of a probe5.

• If a probed function is called inside a probe handler for the second time, no instrumenta-
tion is executed.

• Handling an exception caused by a kProbe and single-stepping the original instruction
causes some overhead. I evaluate kProbes’ overhead in Section 5.3.1.

Further tool chains

Hiramatsu describes and evaluates Dynamic Jump Probes (djProbes) in [Hir05]. This kProbes
enhancement inserts a jmp instruction instead of an int3 — the original instruction is over-
written by a simple jump instruction pointing to a handler function. To make sure that also the
two-byte jmp instruction is written atomically, djProbes uses a kProbe to insert the opcode.
djProbes are limited to the functionality of the previously explained jProbes. Their main benefit
is that a jmp does not lead to an exception inside the kernel, thereby saving runtime overhead.

Eigler et al. describe a probe scripting tool chain called Systemtap in [FCE05]. They authors
want to develop a script language that is able to generate probe code for arbitrary tracing APIs.
Their first implementation aims at generating kProbes code from this script language and is
motivated by the difficulties of getting own kProbes implemented correctly.

The Frysk project [fry05] develops an execution analysis tool interfacing all available trace
tools to provide users with the information and possibilities they need to achieve their runtime
monitoring task. Use cases stated on the project web page range from simple execution tracking
up to logging all necessary data upon the crash of a certain application.

Sun’s Solaris operating system includes DTrace [CSL04]. Like kProbes, DTrace does not have
a probe effect, if tracing is switched off. In addition to kProbes it is able to trace user-space
events similar to dynamic probes explained in Section 2.2.2. DTrace probes are written in

5This is achieved by placing the kProbes subsystem in an own section.

10

2.2 Monitoring

D, a high-level probe description language providing efficient filtering and event aggregation
mechanisms. Cantrill and colleagues [CSL04] do not mention the probe effect for active tracing
in their paper.

2.2.3 Monitoring in Windows

Event Tracing for Windows (ETW) [Mic06] is relevant for this thesis, because it inspired exist-
ing L4 monitoring frameworks. Furthermore, I use the Magpie tool chain for event visualiza-
tion. This tool is described in Section 2.2.5 and was primarily designed to be used with traces
obtained from ETW.

The Windows 2000 and XP operating systems support tracing of performance events. The
operating system supports collection of the following kinds of events:

1. Throughput measures the number of requests serviced in a certain period in time and is
used to characterize server applications. It can be obtained at several locations within the
server and can be used to determine the weakest link in the chain of request processing.
Throughput data is reported for disks and network devices.

2. Queue lengths can also be used to determine the load that is posed on a system component.
It can be the cause of delays in request processing. Windows 2000 reports queue lengths
for devices such as processors and disks.

3. Response time is the request processing time a client perceives at its side of a client-server
environment.

The Windows monitoring infrastructure is provided by the operating system and can be used in
two ways:

• Sampling performance counters can be read out from the system registry. This has a
low overhead, but the measurements may be inaccurate, because sampling is performed
periodically. Data within a period of time may be missed.

• ETW can be used to obtain accurate traces from the operating system, because it allows
users to trace all operating system actions that are related to a request. However, it poses
a larger probe effect on the system.

ETW comes with a number of event providers built into the operating system and some of the
applications such as the Internet Explorer web browser and the IIS web server. These providers
emit events, which then can be consumed by a monitoring application. [Pie04] states that the

11

2 Related work

advantage of ETW being built into the system is that it has a considerably low overhead. How-
ever, I could not find any real numbers supporting this statement and did not perform measure-
ments myself, because it was not necessary in the scope of this thesis. Events generated by
ETW event providers consist of a common header describing the event with the global UID of
its provider and an event type specifying the type of this special event. Furthermore the com-
mon header contains information that is obtained for every event, for instance in which process
and on which CPU the event occurred. Additionally, each event contains its own private data.
The layout of this data differs and monitors need to determine the event UID to interpret the
information correctly. To review the path of a request through the system, several events have
to be combined. They provide exact information about when the request triggered which action
inside the operating system.

The Windows Management Instrumentation (WMI) contains a hierarchy of all events known to
the operating system. It may be read out by the monitors and provides information about names
and types of the events.

2.2.4 Monitoring in DROPS

As my thesis aims at tracing events in DROPS, it is necessary to investigate, which facilities
already exist within this context. These include the Fiasco trace buffer for collecting kernel
events and the evolution of a user-level monitoring framework from rt_mon through GRTMon
to Ferret.

Tracing events in an L4 environment was first implemented as an addition to the microkernel.
Andreas Weigand implemented the Fiasco trace buffer [Wei03], which trace buffer enables users
to collect kernel-related events such as context switches, inter-process communication and page
faults. Logging of such events can be switched on and off from the Fiasco kernel debugger.
Logged events may be inspected using the debugger.

The trace buffer approach to monitoring is relatively coarse-grained because you can only select
single event types to be collected. It is not possible to perform event filtering that is more
complex than filtering out a single event producer. The lack of such filtering mechanisms leads
to a high probe effect. Weigand measured the overhead caused by logging IPC and context
switch events in [Wei03]. The overhead is about 100% for a short IPC. Tracing only IPC
events still caused an overhead of about 60%. Note that these numbers give the pure system
call overhead obtained using a synthetic micro-benchmark. Previously mentioned overheads
for LTT specified influence the instrumentation had on the whole system using an application
benchmark, therefore LTT overhead was lower. Because of the differences between these types
of benchmarking explained in Section 2.5, they are not directly comparable.

12

2.2 Monitoring

The trace buffer also provides the option of writing events from user-space applications. This
however has several drawbacks with respect to event tracing allover the system:

1. If monitoring is implemented inside the microkernel, every event needs to be posted using
a system call which increases the probe effect by the system call overhead. Recent work
on GRTMon [Rie05] and Ferret [Poh06] shows that user-space monitoring can be imple-
mented without kernel support using a shared memory solution and a monitoring server.

2. A single trace buffer prevents us from having different sensors for different events and
building sensor hierarchies from existing sensors as explained in Section 3.1.1.

rt_mon [Poh04] was the first user-space monitoring tool for DROPS. It consists of

• A server for managing all available sensors,

• A monitoring library used by event producers and monitors, and

• Monitoring applications reading the data produced.

rt_mon uses shared memory for data transfer between event producers and monitors. This has
two major advantages: First, event creation is faster, because data is not copied into another
buffer. Second, event generation and reception is typically not a synchronous task. Therefore
asynchronous shared-memory protocols are more suitable than synchronous L4 IPC.

rt_mon supports different types of sensors:

• A scalar sensor provides a single value. It may be used for instance to implement software
performance counters.

• A list sensor provides a fixed-sized ring buffer sensors. This is a general-purpose sensor
type that can be used for arbitrary use cases.

• Histograms are a special sensor type that automatically generate a histogram view of
generated data.

Torvald Riegel implemented a generalized version of rt_mon with the name GRTMon [Rie05].
GRTMon was written in C++ and only provides one kind of sensor: an event list. To create an
event, producers need to dequeue a piece of memory from the list sensor. The retrieved event
buffer can then be filled with arbitrary data. After this is done, the producer commits the event.
At this point, a timestamp is added to the event, so that the event stream may be ordered later
on. Monitors may now read the event from the sensor. Access to the shared-memory sensor is
synchronized, so that multiple producers can write to the same sensor.

13

2 Related work

GRTMon’s major contribution to real-time monitoring is guaranteed processing of events. To
achieve this goal, the allocated event ring buffers need to be large enough to not wrap around
before the oldest event has been read by a monitor. Riegel uses jitter-constrained streams
[Ham97] to set up a ring buffer that is large enough.

Ferret [Poh06] is a re-implementation of a sensor framework making use of the lessons learned
from rt_mon and GRTMon. Ferret sensors are identified by major and minor numbers in anal-
ogy to the identification of Unix devices. Furthermore, Ferret is able to handle several instances
of a sensor (e.g., from multiple instances of L4Linux running in parallel) by adding an instance
number to each sensor’s identifier. Thereby it is able to manage hierarchies of sensors. Unlike
GRTMon, Ferret is implemented in pure C, thereby making it easier to use in the L4 environ-
ment.

2.2.5 Evaluation and visualization tools

Evaluation and visualization tools help to analyse monitoring data. In this section I introduce
Magpie, an event processing tool chain that was developed by Microsoft Research. It was
designed to serve as event processor and visualization backend for ETW, which I introduced in
Section 2.2.3. I use it for visualization and evaluation purposes throughout my thesis.

Magpie

As explained in Section 2.2.3, events in Windows 2000 and Windows XP are generated from a
variety of producers allover the system services and applications running on top of it. Monitors
register for a session and specify from which producers they want to obtain events. One or more
events forming a request will not necessarily appear next to each other in the event stream,
but interleaved with events from different requests. It is up to the analyst to figure out which
information is needed for his purposes.

Magpie [BIMN03, BDIM04] targets this problem. Requests are extracted from an event stream
according to a request description, called schema. A schema consists of the exact layout of
events belonging to a request and a description of how events and resources like CPUs and
threads interact.

Magpie first parses the event stream to extract valid events with respect to the currently applied
schemata and drops those that do not match. Afterwards, Magpie combines extracted events to
requests by binding them to timelines. A timeline is an attribute common to all events that are
bound to it.

For example, in Unix the open operation returns a file descriptor, subsequent read and write
operations use this descriptor and finally it is invalidated during close. All events regarding

14

2.2 Monitoring

this file descriptor can be joined to form a file I/O request. This join needs to consider temporal
properties, because after closing a file, a new open may return the same file descriptor while
pointing to a completely different file. Therefore in Magpie’s terminology it is called a temporal
join.

With the preceding example it is clear, that different events influence a request in different
ways. Opening a file starts up a new request and creates a new valid file descriptor. Reading
and writing does not change it, and closing a file invalidates the descriptor. Furthermore, it
might be of interest if another client accesses the same file while the observed process is using
it. Such information does not directly belong to our file I/O request, but it may be useful for
visualization.

To express the different types of events, a Magpie request schema binds events to a timeline
with one of the following four types:

• A START binding shows that this event starts a new timeline section,

• A STOP binding ends a timeline section, and

• A BASIC binding marks this event belonging to the current current timeline section.

The main feature of timeline binding is that events may be bound to multiple timelines. An
open event for a file I/O request can for instance be bound to the file descriptor it produces
as well as to the ID of the thread issuing the operation. Thereby cooperating resources are
connected.

An alternative to binding events to timelines is the assignment of global request IDs. Instead of
binding file I/O events to the file descriptor as in the preceding example, it is also possible to
generate a unique identifier at the beginning of each request. However, this would require the
UID to be passed through the system and even over system boundaries when tracing requests
spanning multiple computers. This approach is less flexible than Magpie’s timeline approach.

The Magpie visualizer displays all timelines as horizontal lines. Events are marked at each
timeline they are bound to. Requests are visualized starting from a seed event. A flood-fill
algorithm is used to mark all timelines from this seed point until a STOP binding is reached.

15

2 Related work

2.3 Code generation

2.3.1 Overview

Code generation can help programmers to develop better code in shorter time by relieving them
from time-consuming and repetitive tasks. In this section I will give a short overview of the
topic in general and then introduce a code generator that is commonly used for DROPS devel-
opment — the DROPS IDL Compiler (Dice). The section is concluded by an overview of
aspect-oriented programming (AOP) which I consider to be helpful in the context of application
instrumentation.

Code generation is used to transform a high-level specification of a problem or its solution into
a lower-level implementation. It has two advantages:

1. The generated code usually contains less errors. A compiler translates templates from the
source code into templates of the target language. As many developers use the compiler,
errors in the translated code are found and removed faster.

2. Compiler designers usually have a better understanding of the target language than an
application developer. Therefore compilers can perform optimizations with respect to an
application’s speed or binary size. Generated code is faster in many cases.

The evolution of software engineering took code generation to higher levels. Modern software
technologies generate high-level source code from even more abstract descriptions of the pro-
gram. Model-driven architectures (MDA) [Gro03] use a high-level description or graphical
language to design a software system. A code generator then translates it into source code that
with few or no modifications can be compiled into machine code. MDA is meant to speed up
application development.

Other techniques target the problem, that in some cases generic programming languages are not
the easiest or most efficient solution for a certain problem. A domain-specific language (DSL)
[AvD00] “is a programming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and usually restricted to, a
particular problem domain.” DSLs therefore on the one hand speed up development in their spe-
cial domain and on the other hand the underlying code generator can apply better optimizations
to the generated code resulting from domain-specific knowledge.

Aspect-oriented programming as described in Section 2.3.3 is used to manage different concerns
of software separately to improve clarity of complex software.

16

2.3 Code generation

2.3.2 The DROPS IDL Compiler

As explained in Section 2.1, DROPS consists of a set of servers providing services to each other.
Fiasco provides IPC mechanisms to enable communication between servers. Communication
between a client and a server always invokes the following steps:

1. The client packs its data into a buffer. This step is called marshaling.

2. IPC is issued using a Fiasco system call. Is is always synchronous. The client is blocked
until the server gets ready or a timeout expires. Upon timeout expiration the IPC operation
is canceled.

3. The server receives IPC using a Fiasco system call. It is blocked until a client actually
sends data, or a timeout expires.

4. The server unpacks the data buffer according to the type of call the client issued. This
step is called unmarshaling.

5. The server handles the request by executing a user-defined component function. There-
after result data is once again marshaled and sent back to the client using IPC.

This task of writing IPC code can be automated. The DROPS IDL Compiler (Dice) [Aig01]
does so by compiling a high-level interface description of a server into real IPC code performing
all the steps mentioned above. For reasons of standardization the CORBA Interface Definition
Language (IDL) is used for interface description. Most DROPS applications use Dice-generated
communication code. As I will show in Section 3.2.2, this fact can be exploited for automated
instrumentation by adding such means to Dice.

2.3.3 Aspect-oriented programming

Aspect-oriented programming is an interesting concept for my thesis, because I will need to
insert event-generating code into the large amount of existing L4 user-space applications. It was
invented by researches at Xerox PARC in the late 1990s as a concept orthogonal to the existing
object-oriented approach to software development. The researches concluded that there exist
software demands that cannot be expressed with objects and interfaces. An obvious example
for this is logging: one can of course have a logger class to collect logged data. But the code
creating log output needs to be spread allover the software system, which is complex and hard
to maintain.

Concerns that cannot be solved with means of pure object-orientation are called cross-cutting
concerns. The more of such concerns are found within a project, the more tangled the project’s

17

2 Related work

code becomes. Crosscutting concerns can even lead to interleaving of these concerns that may
result in errors, as stated by Fiuczynski and colleagues in [FGCW05].

Furthermore, experience from operating systems implementation shows that at the system level
a clear separation of components cannot always be established. Coady et al. [CKFS01] state
that in low level software often the clear arrangement is sacrificed for the sake of optimization
shortcuts. They argue that structured architectures often lead to performance decreases being
unacceptable at the operating system level.

The solution to the problem of cross-cutting concerns is to keep these concerns, aspects, separate
from the rest of the project. At compile time, the aspect code is inserted into the real code
at certain joinpoints. Joinpoints can either be static, for instance function calls or variable
declarations, or dynamic, for instance when an exception is raised.

Along with the aspects developers store information about how to apply these aspects to the
joinpoints. The aspect information is called advice.

Advices can be applied

• Before certain code,

• After certain code,

• Around certain code, or

• Instead of certain code.

The process of applying advices to joinpoints is called aspect weaving.

Implementations providing aspect-oriented design are mostly targeted at a certain program-
ming language and consists of a parser to process aspect files with differing grammars for each
implementation, and an aspect weaver to insert aspect code into the actual software. Most exist-
ing implementations were developed for object-oriented programming languages, for instance
AspectJ [Aspd] for Java. It is the reference implementation for so-called AspectX tools, where
X can be the language of your choice, for instance Aspect# for the Microsoft .NET Framework
and AspectS for Smalltalk.

Evangelists of aspect-oriented programming, like Matthews et al. [MSC+05], state that this
approach to software design is also valuable for operating systems development, because the
compile time overhead is low compared to the benefits resulting from better code written with
AOP.

DROPS applications are mainly written in pure C, because they reuse Linux and FreeBSD
device drivers (which in turn are written in C) and because a C environment is easier to imple-
ment than a full-featured C++ Standard Template Library, for instance because it does not need

18

2.4 Autonomic computing

to support exceptions. I therefore unsucessfully searched for an AOP implementation support-
ing pure C code:

• AspectC++ [Aspc] implements AspectX for C/C++. The code generated by its aspect
weaver unfortunately is C++ code. Therefore the current version of AspectC++ cannot
easily be used for AOP in L4. Future versions might support a set of AOP bindings for
pure C code, too.

• AspectC [Aspa] aimed at providing AOP for pure C. Unfortunately, there is no public
aspect compiler and weaver available.

• The “Crosscutting C Compiler” [C4], developed at Princeton University is currently able
to compile code with aspects woven in, but there is no aspect weaver at the moment.
Mark Fiuczynski states in [C406] that this weaver will at earliest be available by the end
of summer 2006.

• The Arachne project [DFL+05, Ara] aims at providing AOP for running Linux applica-
tions by dynamically patching binary code. It depends on a Linux application running
along to the instrumented applications that patches running binaries. Using it in DROPS
would require a port of this application which I do not consider to be in scope of this
thesis.

• Aspicere [Aspb] is a C code weaver, developed at the University of Gent and used in a
project re-extracting forgotten programmer knowledge from legacy C and Cobol applica-
tions. Unfortunately, it is part of a complex set of tools depending on each other and I
could not get it to work within an acceptable amount of time.

As can be seen from the previous listing, there is currently no AOP implementation available
that suits my needs. Therefore I did not use AOP for automated instrumentation.

2.4 Autonomic computing

With my thesis aiming at monitoring DROPS components, I will need to investigate areas in
which monitoring can be applied. In addition to performance and behavioral evaluation, auto-
nomic computing will be a major application domain.

Pervasive computing names software components running in parallel while being connected
over a network, for instance the internet. These components interact to achieve a certain goal
and therefore depend on each other. With the number of connected components rising, this
interaction becomes more complex and will finally reach a point where a single programmer

19

2 Related work

cannot cope with the complexity anymore. This situation is described as a software complexity
crisis for instance in [IBM].

Since 2001 IBM propagate their solution to the complexity crisis under the term autonomic
computing. The name derives from the autonomous nervous system that keeps a human’s vital
functions, for instance the heartbeat, running without direct brain activity. In analogy to this
system, the authors of [KC03] propose that software systems should automatically monitor
themselves and their environment to take the burden of managing complexity from the system
designer or administrator and move it to the collaborating software components.

Autonomic computing therefore aims at providing software that possesses certain properties,
called self-* properties:

• Self-configuration: Components should automatically discover hardware and software
components in their environment. Each component propagates the services it provides
and upon introduction of a new component, this component may discover the available
service providers. As well, other components will perceive a new service provider and
may adapt their configuration.

• Self-repair: Errors in complex software environments take time and manpower to dis-
cover. Autonomic components perform this discovery themselves by detecting error situ-
ations and then using available patches to correct the error or alert a human individual if
there is no automatic solution.

• Self-optimization: In a system consisting of tens, hundreds, or thousands of separate soft-
ware components, it is hard to tweak all the configuration options of a component so that
it can provide its service in the most efficient way. Autonomic components will tune their
runtime parameters and automatically find the best parameters for a certain situation.

• Self-protection: A system of autonomic components will be able to defend itself against
failures caused by malicious software or by cascading failures that could not be corrected
by self-repairing features.

The vision of autonomic computing is far from being reality and the authors of [KC03] expect it
to take years of research until such components exist. To provide features as the self-* properties
described in the preceding section, non-intrusive runtime monitoring will have to be a vital part
of autonomic components.

20

2.5 Benchmarking

2.5 Benchmarking

One goal of my thesis is to detect performance-critical paths inside DROPS components. Bench-
marks are a common way of measuring performance and are therefore interesting in the context
of my work.

Balsa [Bal97] defines a benchmark as a “documented procedure that will measure the time
needed by a computer system to execute a well-defined computing task. It is assumed that
this time is related to the performance of the computer system and that somehow the same
procedure can be applied to other systems, so that comparisons can be made between different
hardware/software configurations.”

Benchmark results may be given with an arbitrary dimension, for instance “iterations per sec-
ond.” Furthermore, it is possible to compare the obtained values to a reference implementation
by normalizing the obtained results to the ones measured from the reference component. The
normalized results are called indices.

Balsa defines the resolution of a benchmark to be the minimum time interval that can be mea-
sured on the evaluated system. Furthermore, he defines the precision of a benchmark, which
gives a measure about how much the obtained results vary. Variation may result from cache
effects and other tasks being scheduled during a benchmark run.

Balsa distinguishes two types of benchmarks:

1. Synthetic benchmarks are designed to measure the best performance of a certain sub-
system. Many benchmarks exist to evaluate performance of certain Linux subsystems.
Tim Bray’s Bonnie [Bra] is a synthetic benchmark for Unix file systems. David Niemi’s
Unixbench [Nie99] is a benchmark suite covering several parts of Linux/Unix’ subsys-
tems such as system calls, file systems, and hardware.

2. Application benchmarks measure the execution time of a commonly used application. For
Linux systems, kernel compilation is often used as an application benchmark, because it
tests several components of the system: file system operations, the compiler, the C library,
and the hardware used.

One needs to be careful when comparing the results of synthetic and application benchmarks,
because they are usually used to describe different things. A synthetic benchmark describes the
behavior of one component with respect to a certain load. An application benchmark tests the
behavior of a whole system without focusing a single part of it.

21

3 Design

The hands of time have brought you here
To make a change, to break down the walls.

(Hammerfall - Templars of Steel)

3.1 Defining goals

The goal of my thesis is to establish means for tracing requests in DROPS. With such means, it
will be possible to

• Analyze and optimize existing client-server protocols,

• Compare multiple existing implementations of a protocol, and

• Determine performance-critical paths inside the system.

In this chapter I will explain design decisions that I made to achieve these goals. At first, it is
necessary to define basic requirements for the tracing architecture. Thereafter I will inspect the
points within DROPS that I need to take care of when tracing events. I will inspect and evaluate
existing monitoring solutions, as well as discuss layout of events and use of instrumentation
techniques. Furthermore, I will present thoughts about instrumentation of two special cases:
the L4 Environment (L4Env) and L4Linux. Finally, I will inspect ways of storing, transferring,
and post-processing the obtained data.

3.1.1 Basic requirements

The following list contains basic requirements for instrumentation and monitoring that influ-
enced my design decisions.

• Small probe effect: Instrumenting applications leads to a certain probe effect. It needs to
be as small as possible, because it influences the behavior of instrumented applications,
which is especially critical when monitoring real-time systems.

23

3 Design

• Sensor hierarchies: In a system with many event producers, a monitor needs to use
efficient filtering techniques to keep the amount of processed data low. Having multiple
sensors instead of one global sensor is a natural way of filtering. A monitor can choose
to obtain and evaluate data from a subset of sensors.

A monitor may aggregate information from several low-level sensors into higher-level
events, which then are published through a new sensor. Thereby sensor hierarchies are
established.

• Automated instrumentation: Because of the large amount of existing DROPS applica-
tions, manual instrumentation is costly. I will find ways of automating the task of adding
sensors to applications.

• Minimize the amount of data: Data that is not needed to achieve a monitoring goal
needs to be dropped as soon as possible. This reduces the amount of processed data during
evaluation and therefore speeds up this process. Online monitors especially benefit from
short processing times.

• Flexibility: While this thesis focuses on communication tracing, the means established
for monitoring will be kept as flexible as possible to also fit future needs.

Achieving the previously defined goals and considering the basic requirements results in mod-
ifications to be made to DROPS and facilities to be created within the system. Figure 3.1.1
defines the points within DROPS that I need to take care of. I will discuss each point in the
following list.

1. It is necessary to trace events from Fiasco, because some events such as context switches
are only available from the kernel. 1

A kernel tracing facility exists with the Fiasco trace buffer. This buffer is made available
to Ferret clients as a special sensor.

2. The basic services of the L4 Environment will be instrumented. This includes the existing
servers as well as widely-used L4Env libraries such as the thread and semaphore libraries.
Some instrumentation in this layer will be difficult, because those components that are
used by the tracing framework itself (e. g., the dm_phys dataspace manager, and the
global names service) need special attention.

3. A basic requirement is tracing communication between running DROPS applications.
Part of this information (communication partners, timestamp, type of IPC, timeouts) is

1Unless we use a user-level scheduler, which is not available in DROPS.

24

3.1 Defining goals

L4Linux
server

Fiasco

Root pager

Application X Application Y

OS kernel

L4Env

L4 applications
(realtime and
nonrealtime)

Linux Application Z

Sensor directory Monitor(s)

Offline
data

processing

Roottask

L4 Environment servers

Hybrid L4Linux task

10

1

2

3

4

8

5 6

7

9

Linux
11

Figure 3.1: Instrumentation points within DROPS

available from the trace buffer. Additional information such as the message sizes can
be extracted by instrumenting the IPC code generated by Dice, which was introduced in
Section 2.3.2. Most DROPS developers use Dice to compile their IPC interface into code,
therefore instrumenting Dice covers a wide range of L4 applications.

4. L4Linux is one of the most complex workloads for DROPS. Therefore I want to be able
to trace events within the L4Linux kernel. Solutions for this exist for native Linux and it
seems promising to adapt one of these implementations for L4Linux.

5. A system-wide sensor directory is needed, where clients can register their sensors and
monitors can request sensor data. The Ferret monitoring framework comes with an imple-
mentation that is suitable for my purposes.

6. Monitors are needed to collect and process sensor data. I will have a look at what kinds
of monitors are necessary and how these can be used.

7. When data is transferred from the L4 system to another computer for offline evaluation,
means for efficient data transfer are needed.

25

3 Design

8. Linux applications running in L4Linux shall be traced, because they are a part of the
running system, even though they are not aware of running along DROPS applications.
Connecting Linux programs to default L4 tracing facilities is possible, but in most cases
I’d prefer not to make these applications L4Linux hybrid tasks just for monitoring. There-
fore I will inspect other available means.

9. Hybrid L4Linux tasks should benefit from L4 tracing and Linux tracing.

10. Both online as well as offline evaluation need to be performed. Online monitoring can be
used to detect and verify behavioral and runtime properties, but it is limited to a subset
of available evaluation methods, because there is only a limited amount of execution time
available. Furthermore online monitoring is a vital part of autonomic computing, which
was introduced in Section 2.4.

Offline monitoring can use more powerful and time-consuming methods of evaluation. It
is used to obtain behavioral models of a system and compare these models to execution
traces from abnormal situations.

11. Data obtained from instrumenting L4Linux shall be compared to data that can be collected
by instrumenting the same points in a native Linux operating system. This may prove to
be helpful for determining performance differences between both systems and for tuning
L4Linux.

In the remainder of this chapter I will discuss the use and layout of events in the context of this
thesis. I will explain and how existing applications can be instrumented for event generation.
Furthermore, I will investigate efficient ways of instrumentation, so that the probe effect is kept
low.

3.2 Event retrieval

3.2.1 Review of existing facilities

Before designing an event tracing system, it is necessary to investigate already existing means
of tracing communication in DROPS. As introduced in Section 2.2.4, Andreas Weigand has
implemented the Fiasco trace buffer. With the help of the trace buffer, user applications can
trace kernel events. Measurements show that using the trace buffer for low-overhead tracing
is insufficient. The amount of produced data is extremely high — a simple startup of DROPS
and some basic servers produced more than 10,000 IPC events (about 700 kB of data) within a
few seconds. For efficient processing, it is necessary to filter data early. There are basic means
of filtering events inside the trace buffer, such as restricting the collected events to the ones

26

3.2 Event retrieval

originating from one special thread. However, these means are limited, because the trace buffer
is part of a kernel that is targeted at real-time systems and it is not possible to use complex
filter mechanisms in a bounded amount of time. The trace buffer’s filtering is too inflexible for
the need of a low-overhead event tracing system. The design of an own tracing facility should
circumvent the drawbacks of the trace buffer approach and provide improvements such as

1. Low monitoring overhead,

2. Filtering of monitoring data, and

3. Use of arbitrary user-defined event types.

Generalized monitoring frameworks for DROPS exist with GRTMon and Ferret. These frame-
works enable users to define whatever type of events they want to collect. They provide
low monitoring overhead and even real-time guarantees for sensor producers and monitors as
described in 2.2.4 and [Rie05].

Ferret provides means of data filtering, by using different sensor types which I introduced in
Section 2.2.4. Within this thesis I will use this framework for monitoring.

Because of the high amount of data produced by the trace buffer and its lack of filtering mech-
anisms, I will not consider using the Fiasco trace buffer for general tracing. However, I will
investigate its use in special cases, for instance when it provides data that cannot be obtained in
a different way, such as scheduling information.

3.2.2 Communication tracing

As a next step I need to determine how communication inside DROPS can be traced. Manual
instrumentation of all applications is not an option, because it requires a lot of work, whereas
future changes to applications potentially render the current instrumentation useless.

Five solutions remain for consideration:

1. Fiasco developers recently introduced an alien state for L4 threads. If a thread is marked
alien, every system call it performs raises an exception and an alien handler is called.
This handler can allow or refuse the thread from performing this system call. This can be
considered a mechanism for IPC tracing: all threads that shall be monitored are marked
alien and the monitor becomes their alien handler. After storing the necessary data from
an IPC system call, the monitor will allow this call. This solution’s advantage is that it is
transparent to the system and no source code modifications are necessary for IPC tracing.
Unfortunately, alien handling is extremely slow, because it translates one IPC system call
into four (exception IPC to the alien handler + exception reply + original IPC + result IPC
to exception handler). Therefore it cannot be used for low-overhead tracing.

27

3 Design

2. Most DROPS applications use the l4sys library for performing system calls. This
library provides C wrappers for all calls, which can be instrumented to trace IPC system
calls. Applications to be traced then need to be relinked against the new library version,
no further changes are required. This kind of tracing enables users to perform event filter-
ing at compile time by providing only events about instrumented applications. This is an
improvement in comparison to Fiasco trace buffer events, but it is still too coarse-grained.

3. Jan Stöss [Stö05] uses dynamic instrumentation in his implementation of a user-level
scheduler for L4Ka::Pistachio. To make the right scheduling decisions, he needs infor-
mation from the OS kernel and as scheduling decisions need to be made often, this infor-
mation must be retrieved with a low overhead. Stöss proposes to dynamically insert
instrumentation at runtime, whenever it is needed. For this, he adjusted a compiler to
insert a certain number of noop instructions at the instrumentation points. These instruc-
tions are replaced by the real instrumentation code, when instrumentation is switched on.
This dynamic approach has the advantage that practically no monitoring overhead occurs
with monitoring switched off and only those points suffer a probe effect that are really
being traced at the moment. The drawback of Stöss’ solution is the need for a special
compiler that inserts noops.

4. Aspect-oriented programming can be used to instrument application source code. Devel-
opers can write aspects fitting their instrumentation needs. In comparison to the trace
buffer, this option is not restricted to special kernel events. As opposed to l4sys

instrumentation this option is not restricted to system calls. Furthermore, developers
can include high-level information into their application-specific IPC events, that is not
available at the system call level. An example for such knowledge are the parameter val-
ues of an IPC call, which are easily available before marshaling, but not at the moment
ipc_call() is executed. Using AOP therefore provides the highest degree of freedom
for instrumentation.

Unfortunately, as explained in Section 2.3.3, there is currently no AOP tool for pure C
available and implementing one is out of the scope of this thesis. Therefore an AOP solu-
tion for automated instrumentation needs to be postponed until such an implementation
exists. AspectC++ developers promise to have this in Q2/2006 [Asp06], C4 developers
plan to have an implementation by the end of the same year [C406].

5. As explained in Section 2.3.2, most DROPS applications use the DROPS IDL Compiler
(Dice) to generate their IPC code. The IPC code generated by Dice can be instrumented
by extending Dice. Ronald Aigner [Aig] recently enabled Dice to use trace plugins.
These plugins are user-provided libraries that can be used to generate tracing code at
certain points within the Dice-generated code.

28

3.2 Event retrieval

The advantage of tracing Dice code is that it provides the same degree of freedom with
respect to event types and high-level information as an AOP solution. However, it is
restricted to tracing of Dice-generated IPC code. In this thesis I will introduce an imple-
mentation of a Dice tracing plugin. For tracing applications that do not use Dice, such as
L4Linux, other means of tracing need to be found.

3.2.3 Event layout

Just like in the Magpie request extraction tool introduced in Section 2.2.5, a request in the scope
of this thesis is a structured set of events obtained from locations within the system. In this
section I will discuss how these events are laid out and present rules that instrumentation should
obey in order to reduce the probe effect.

The first constraints upon event layout derive from the Ferret monitoring framework and the
Magpie event processor. Ferret classifies events with respect to a common event header consist-
ing of at least:

• Major and minor numbers are used to identify a sensor and the events produced by this
sensor globally. This concept is similar to the concept of major and minor numbers iden-
tifying devices in Linux.

• The monitoring framework adds an instance number to each event and each sensor so
that several instances of a sensor may be distinguished. This may be the case if there
are multiple instances of L4Linux running in parallel and monitors want to obtain events
from all their kernel sensors.

• In order to be compatible with future SMP versions of L4Linux and DROPS, the frame-
work adds a CPU field to each event.

• Each event is furthermore augmented with a timestamp so that a monitor can receive these
events in a timely order.

The previously described fields define the common event header. Additionally, most events
have a data area, whose structure is specific to the event type defined by the major and minor
numbers. For the dice_trace-generated instrumentation, this data area differs in client-side
and server-side events. Figure 3.2 shows the layout of both event types. Each event contains a
producer ID as well as start and stop timestamps, which tell when the IPC call was sent and the
answer was received by the client and vice versa for the server. Server-side events additionally
contain timestamps storing timing information about the component function. At the client side
additional data describes the size of sent and received data and the opcode with which the server
is called.

29

3 Design

Timestamp

E
ve

nt
he

adMajor number
Minor number

Instance number
CPU ID

Producer ID Producer ID

A
dd

iti
on

al
da

taStart timestamp Start timestamp
Stop timestamp Stop timestamp

Send size
Component start

Receive size
Dice opcode

Component stop
-

Client-side Server-side

Figure 3.2: Event layout for dice_trace events

3.2.4 Instrumentation rules

In addition to the design of an event layout, I need to determine where instrumentation code
is placed. During design and implementation of the dice_trace plugin as well as for other
instrumentation purposes, the following rules proved to be helpful.

1. Event packing: GCC enables programmers to mark data structures as __packed__,
which means that the single components are not aligned in memory. This makes access
to single fields of the structure a bit slower, because on IA32 accessing addresses aligned
to the size of a data type is faster. Compilers may therefore choose to align members of
a data structure to a multiple of their size and leave padding bytes in between. This is
difficult for two reasons:

a) We do not always know if and how the compiler performs such an optimization.
However, later post-processing needs such knowledge to unpack data correctly.
Using the __packed__ attribute ensures a deterministic data layout.

b) The padding introduced by the compiler contains no data at all and increases the
size of an event by a few bytes. With typical event counts reaching tens or hundreds
of thousands, saving this padding results in a perceivable reduction of consumed
memory space.

30

3.2 Event retrieval

2. Use of large events: When measuring calls to functions, it seems tempting to have one
event before the function call and one event after return from the function. However, there
are two reasons against this:

a) The two single events are of no use at all when retrieved separately. Only a combi-
nation of a before- and an after-event make sense for later evaluation.2

b) Calls to the monitoring framework cost time. Therefore it is better to pack all data
into one event and pay the overhead only once instead of twice. This argument
can further be extended, so that N events are packed into one monitoring event,
thereby reducing the monitoring overhead to one dequeue and one commit for every
N events.

If event processing needs smaller events, for instance if a visualization later on needs
a before_call and an after_call event, an event postprocessor can split large
events into smaller ones.

BAD:

e = get_event_buffer();

e.ts = rdtsc();

e.commit();

ret = func();

e2 = get_event_buffer();

e2.ts = rdtsc();

e2.return_val = ret;

e2.commit();

GOOD:

e = get_event_buffer();

e.start = rdtsc();

ret = func();

e.stop = rdtsc();

e.return_val = ret;

e.commit();

Note that this technique is only applicable if the complete function call is the event we
are interested in. By putting a lot of data into one event, the monitoring overhead is
reduced, but real-time capabilities such as online debugging are lost, because in this case
it is necessary to have information available as soon as possible.

3. Keep out monitoring overhead: Instrumenting code falsifies performance measure-
ments, because the overhead to retrieve a new event from Ferret, inserting data, and
commiting the event to the sensor is added.

An example for such falsification is the Dice instrumentation. At the server side a new
event needs to be dequeued from Ferret every time a client issues a request. Therefore
the measured server-side execution time is incorrect. Monitors and post-processors can
remove the monitoring overhead from the measured data if the events contain enough

2This is a more philosophical reason.

31

3 Design

information. To achieve this, I added not only a start and stop timestamp to each Dice
server event, but also provided a start_dequeue timestamp. The timestamps are obtained
as follows:

msg = ipc_reply_and_wait(old_mesg);

/* Instrumentation overhead */

rdtsc(start_dequeue);

event = ferret_dequeue();

fill_event(event);

/* Real processing */

rdtsc(start);

dice_handling(msg);

rdtsc(stop);

/* Instrumentation overhead */

ferret_commit(event);

This solution adds runtime overhead for taking another timestamp and storing it into the
event. Measurements show that this overhead is approximately 50 CPU cycles on the test
machine introduced in Section 5. Furthermore, this solution adds another 8 bytes to the
event size, which is not always negligible.

4. Hide behind latency: As instrumentation has its costs, it is good to find instrumentation
locations that are not performance-critical. Engler and colleagues [ECC01] developed a
tool that uses static analysis of source code to find bugs in it. They introduce the con-
cept of beliefs that can be derived from the source code. For instance, if a programmer
dereferences a pointer p in her code, we can deduce that she believes that this pointer is
never NULL at this point of execution. Static analysis can now detect all paths leading to
this location and produce an error message if one or more of these paths may be executed
without ensuring that the belief p != NULL is true.

Instrumentation can also benefit from beliefs in the following way: At locations where
an application performs an ipc_send with an infinite timeout, the programmer expects
this operation to potentially last forever. This means that the instrumented application will
not have problems if this operation takes more cycles caused by the monitoring overhead.
Placing instrumentation code at such locations is less intrusive than at a point where
ipc_send is called with zero timeout, where the programmer expects the system call to
return as soon as possible.

32

3.3 Instrumenting the L4 Environment

3.2.5 Sensors and monitors

Varying needs for request tracking devise different requirements for the layout of sensors in a
system as well as for the monitors. On the one hand, performance needs to be evaluated. Under
these circumstances analysts only want to obtain as few data as possible, because this keeps the
probe effect low. The higher the probe effect, the more it falsifies the obtained performance
results. On the other hand, for applications such as protocol analysis we want to collect as
much information as possible. The probe effect is less important for protocol analysis, unless
the protocols themselves contain a timing effect such as IPC timeouts, where a low probe effect
again becomes worthwhile.

Furthermore, we can distinguish global common sensors, where many producers insert events
versus local specialized sensors that are used by a special application for its own purposes.

The same classification can be applied to monitors. When collecting lots of data that is simply
handed over for offline evaluation, a global monitor merging all events from the sensors into one
buffer its our needs. For online monitoring the monitor needs to perform its tasks fast. Therefore
it should not be burdened with the task of filtering the required events from a large stream of
unwanted ones. Table 3.1 shows the possible combinations of sensor and monitor types, as well
as their implications.

Common monitor Specialized monitor
Common suited for collecting data difficult: may lead to high load
Sensor for offline evaluation caused by filtering unnecessary

events
Specialized may be used for offline best solution for online
Sensor evaluation, bad performance monitoring

for online monitoring

Table 3.1: Monitor-sensor combinations

3.3 Instrumenting the L4 Environment

The L4Env introduced in Section 2.1 is a set of servers and libraries that is used by many
applications running on L4. Because it provides basic services that are used by most DROPS
applications, it is interesting for instrumentation. To support self-monitoring capabilities for
these programs, I propose to add one or more common sensors to the L4Env, so that applications
can monitor their behavior at runtime. Such sensors can also be used for offline evaluation of
application and L4Env performance. In the following section, I will discuss which parts of the
L4Env services can be instrumented and for which purposes this instrumentation may be used.

33

3 Design

The L4 thread library can be instrumented to obtain data about thread creation and shutdown
as well as access to thread-local memory. The region mapper library can be instrumented to
generate statistics about page faults. This information is local to an application and may be
used to implement a local page replacement strategy. This approach is similar to the concept of
application-level hints presented in [Döb05a]. I propose not to rely on page fault events from
the Fiasco trace buffer here, because of its lack of filtering mechanisms.

Instrumentation in the semaphore library can be used for performance evaluation as well as for
answering the following questions:

• It is interesting to determine the contention of semaphores. Recent discussion with
Alexander Böttcher [Böt] showed that it interesting to know whether the semaphore
library needs to be optimized for the contention or non-contention case.

• I can evaluate the length of critical sections. For the implementation of delayed preemp-
tion [SAG04] it is interesting to know exactly how short a short critical section is — this
may then be used as a limit for the delay of preemption.

Furthermore, this information can be used for application profiling, because if many
threads are waiting while one is inside a very long critical section, this might be a design
flaw leading to bad throughput.

Instrumentation of the semaphore library is not possible with only trace buffer events, because
a call to semaphore_down does not necessarily lead to a perceivable IPC event. Manual
instrumentation with a Ferret histogram sensor can be used to evaluate semaphore contention.
Only the semaphore_down() function needs to be modified for that.

Evaluating the time spent in a critical section is more difficult because events come from two
different functions: semaphore_down() and semaphore_up(). Further difficulties arise,
because semaphores are used in at least three different manners:

1. Mutexes ensure that only one thread enters a critical section. For this case instrumentation
is easy. We can simply add a timestamp field to the l4_semaphore_t struct and insert
the start time of the critical section during semaphore_down(). When leaving the
critical section, another timestamp is taken and the difference can be calculated.

2. Counting semaphores allow more than one threads to be inside a critical section. A sin-
gle timestamp field in the semaphore struct is therefore not enough, but a list of thread-
timestamp mappings is needed.

3. Semaphores are used to solve producer-consumer problems, where no critical section
is involved at all. As in this case a thread calling semaphore_down() will never

34

3.3 Instrumenting the L4 Environment

call semaphore_up() again, the critical section time is not of interest. Instead, the
time spent waiting for a semaphore can be measured by instrumenting semaphore_-
down().

The only generic solution covering all the previously introduced cases is to have a list sensor
for semaphores, emitting

• producer thread ID, semaphore ID, wait queue length, and start time ts for
semaphore_down(), and

• producer thread ID and semaphore ID for semaphore_up().

In addition, timestamps tdown and tup are added to each event by the monitoring framework.
We can therefore calculate:

tcritical_section = tup − tdown

twait = tdown − ts

Offline evaluation can furthermore detect if a semaphore is for a consumer-producer problem or
for a critical section by having a look at the thread ID of the producers. Critical sections run in
the same thread, whereas producers and consumers are different.

As the Ferret monitoring framework is a DROPS application, it also makes use of services
provided by the L4Env. It uses the names server to register its name and the dm_phys server
to create sensor dataspaces. Instrumenting these services is therefore difficult. names cannot
register a sensor at Ferret, because this requires Ferret to be known at names. dm_phys cannot
register a sensor, because Ferret then will call dm_phys in turn to create a sensor dataspace.
This results in a deadlock, because the dataspace manager is single-threaded and the worker
thread is still waiting for a reply from Ferret.

Possible solutions for these problems are

• Modification of Fiasco to map a fixed event buffer to a fixed location in memory. Clients
can then rely on this buffer and write their events into it. Ferret can make this buffer
available to monitors in the same way it does for the Fiasco trace buffer.

• Specialized solutions for the small amount of applications that suffer from the bootstrap-
ping problem can be found.

Martin Pohlack [Poh] solved the names problem by modifying the server. names waits until
Ferret registers its name and then registers its sensor at Ferret. Events from earlier points in time
are stored locally and can be committed when the sensor has been established.

35

3 Design

A similar solution can be used to instrument dm_phys. When registering a sensor at Ferret, the
dataspace manager can hand in a proper dataspace for its sensor, so that Ferret does not need to
contact dm_phys again.

3.4 Instrumenting L4Linux

L4Linux is of special interest for event tracing, because it is an elaborate application on top
of DROPS. Incorporating event tracing into this complex environment is a major focus of
this thesis, because it will help users and developers to understand their applications’ behavior,
detect behavioral differences to original Linux and its applications, and detect performance-
critical paths.

As L4Linux is an adaption of the Linux operating system, it seems natural to use an existing
Linux tracing solution for L4Linux. kProbes and the Linux Trace Toolkit are available in this
context and have been introduced in Section 2.2.2.

The LTT is restricted to a fixed set of instrumentation points inside the Linux kernel. However,
newer versions like LTTng also support user-defined events and instrumentation of user-space
applications. kProbes support instrumentation of arbitrary locations inside the Linux kernel.
User-level instrumentation is not yet available.

For my thesis, I chose to use kProbes for instrumentation inside the Linux kernel, because of its
flexibility. Upon startup the L4Linux server registers a kernel event sensor with Ferret. This list
sensor can then be used by kProbes to commit their events.

As I show in Section 5.3.1, due to different implementations, kProbes lead to a higher overhead
in L4Linux than in native Linux and can therefore not directly be used for performance eval-
uation. However, the overhead is constant for L4Linux and native Linux. Therefore I can use
kProbes for differential analysis and comparisons between both versions of Linux. To do so,
I register kProbes at certain locations inside the Linux kernel and measure the relative amount
of time Linux spends inside a piece of code in comparison to the total amount of time spent in
all pieces. This can also be done for L4Linux and the results can be used to detect behavioral
differences.

A minor requirement for differential analysis is that both Linux and L4Linux execute the same
kProbe module. L4Linux kProbes use the internal Ferret kernel sensor to commit their events.
Native Linux does not possess such a sensor. I chose to simulate the Ferret interface in native
Linux using a kernel module. This module is introduced in Section 4.3.2.

Tracing user-space applications requires different means. For Linux there is a range of instru-
mentation applications available. ATOM [SE94] and the Flexible Instrumentation Toolkit (FIT)
[BCS+04] use static binary instrumentation, which means that they instrument an application

36

3.4 Instrumenting L4Linux

binary before running it. Pin [LCM+05] and Valgrind [NS03] use dynamic binary instrumen-
tation by translating the application’s binary code into a meta language that is then executed
inside a virtual machine (VM). The VM supports injection of instrumentation code at runtime.

Binary instrumentation requires no source code access and therefore can handle every Linux
binary. I tried to use static instrumentation with FIT, but this tool was developed for Intel CPUs
and did not run on my test computer having an AMD Duron CPU. Dynamic instrumentation
tools proved to be extremely slow, therefore I discarded this option.

The alternative to binary instrumentation is source code instrumentation, which is only applica-
ble for open source applications. The easiest way to instrument applications running on top of
L4Linux is to instrument them with Ferret sensors directly. This is possible, because L4Linux
supports hybrid tasks that perform Linux system calls as well as Fiasco system calls. Unfortu-
nately, registering a Ferret sensor returns a dataspace to the registering application and if this
is a Linux application, it does not know where to map this dataspace. There are three possible
solutions for this problem:

• The application can use mmap to map an anonymous memory area of the same size as the
sensor. It is then safe to over-map this area with the dataspace retrieved from Ferret.

• The L4Linux server can be modified to register a Ferret user-space sensor at startup. The
sensor can then be mapped to a reserverd address range. As L4Linux is the pager of
all L4Linux applications, it will receive page faults whenever such applications access
an address inside this address range and may map the user space sensor to applications
if they trigger such faults. This approach is restricted to one sensor for L4Linux user
applications.

• Linux applications can request mapping of a sensor area using a system call to a special
Ferret kernel module in L4Linux. This has the advantage, that the kernel module can be
more elaborate and map different sensors to one or more applications.

Martin Pohlack [Poh] implemented the second option in L4Linux. Source code instrumentation
of Linux applications therefore consists of triggering a page fault to map the sensor into an
application’s address space and then committing events to it the same way as if it was a normal
Ferret list sensor.

37

3 Design

3.5 Storing data

With the design presented in the preceding sections, producers can generate and monitors can
obtain events from allover DROPS. Online monitors can directly evaluate this data. For offline
monitoring data needs to be stored permanently. Two alternatives seem possible:

1. Data can be transferred to another computer through a network. The amount of stored
data is limited by the speed and bandwidth of the network connection, but this solution is
flexible, because data can be sent to any computer on the internet.

2. Raw data can be stored on a hard disk and this disk may then be read out for offline
evaluation. The amount of stored data here is only limited by the size and bandwidth of
the hard disk. However, it is less flexible, because offline evaluation needs to physically
access the disk.

Both alternatives are possible to implement. Network devices as well as hard disks may be
accessed by DROPS applications through a network and a block device server. Sending data
to these servers and to the hardware induces an overhead to the system. If possible, moni-
tors should therefore perform measurements at first, temporarily save data in memory during
monitoring and write it to permanent storage right after monitoring.

For my design I settled upon the first alternative for flexibility reasons. I ported a TCP/IP stack
to the ORe network switch [Döb05b] as described in Section 4.2.

3.6 Data processing

As introduced in Section 2.2.5, I used the Magpie event processor for offline evaluation of event
data. With its capabilities, it is able to parse and visualize request traces from an event stream.
To be useful in the DROPS environment, an L4 request schema needs to be implemented.

Because Magpie schemata are written in Python, they can also be used for event processing
not directly targeted at visualization. In Section 4.5, I will introduce several Magpie modules
that perform offline evaluation tasks, such as generating statistics about an event stream, and
producing output for different visualization backends.

38

4 Implementation

Welcome to the jungle,
We take it day by day.

(Guns’n’Roses - Welcome to the jungle)

In this chapter I will describe the implementation of facilities that were needed for this thesis. I
will start with a description of my tracing plugin for Dice, which is used for automatic instru-
mentation of Dice-generated IPC code. Thereafter I will introduce my port of a TCP/IP stack
to the ORe network switch. This section is followed by a description of implementation issues
related to the instrumentation of Linux and L4Linux. I conclude this chapter by describing a
sample application: a self-healing web server using on-line monitoring to improve its availabil-
ity.

4.1 A tracing plugin for Dice

Overview

To gather IPC events from as many applications as possible one needs to insert event-generating
code into these programs. The instrumentation code looks similar in many cases, so this task
can easily be solved by automated code insertion. Aspect-oriented programming (AOP) — as
introduced in Section 2.3 — can be a solution for automating this instrumentation. A large part
of DROPS applications to be instrumented is written in C. Unfortunately, at the time of this
writing no AOP implementation for C is available, therefore I needed to use other means for
large-scale instrumentation.

As introduced in Section 2.3.2, most DROPS applications use the DROPS IDL Compiler (Dice)
for generation of communication code from a simple interface definition. I extended Dice with
a tracing plugin that generates instrumentation code.

39

4 Implementation

A tracing plugin is compiled as a C++ library and must provide two functions:

• void dice_tracing_init(int argc, char **argv) This function is
called during Dice initialization. It receives Dice’s command line arguments and can
be used to pass additional arguments to the plugin. My dice_trace implementation
handles the following arguments:

– performance: generate sensor code with main focus on performance, which
means to collect as few data as possible to generate as few monitoring overhead
as possible.

– cflow: generate code which collects as many data as possible to support event
visualization and later generation of statistics.

– eventname, sensorname: set the sensor and event identifiers to be used by the
generated code.

• CBETrace *dice_tracing_new_class(void) This function is called when-
ever a new trace class needs to be generated. A trace plugin will return one of its own
tracing classes here, all of which are derived from Dice’s tracing class CBETrace.

Depending on the command line arguments dice_trace returns a performance trace
class or a control flow trace class from this function.

Dice’s basic tracing class defines a number of hooks, which are implemented by the plugin
subclasses. Table 4.1 shows the hooks and describes the points during the code generation
process at which they are called.

Instrumentation code

Instrumentation code needs to handle two tasks: setting up a Ferret sensor and producing events
through this sensor. Sensor setup can be implemented in two ways:

1. Add a constructor function to setup a sensor for each instrumented application. Construc-
tor functions are currently used by the semaphore and region manager libraries to startup
their specific worker threads before any other application thread.

2. Setup sensors lazily. This requires insertion of sensor setup code into every Dice-function
on the client side. This setup code checks, whether the sensor has already been set up and
in the negative case performs sensor registration at the Ferret sensor directory.

40

4.1 A tracing plugin for Dice

Hook Action
DefaultIncludes() Called when the default include files are written

to an implementation or header file.
InitServer() Called before the Dice server initialization code

is written.
VariableDeclaration() Called at the beginning of each function to

insert local variable declarations.
BeforeCall() Called at client side before the ipc_call() code

is written.
AfterCall() Called at client side after the ipc_call() code

was written.
BeforeDispatch() Called at server side before the current request is

handed over to the dispatch() function.
AfterDispatch() Called at server side after return from the

dispatch() function.
BeforeReplyOnly() Special case at server side. Functions with the

allow_reply_only attribute set have a special
reply() function to be called for delayed response
This hook is called at the beginning of this function.

AfterReplyOnly() Called at server side at the end of a reply() function.
BeforeReplyWait() Called at server side at the beginning of a general

reply_and_wait() function.
AfterReplyWait() Called at server side before return from a general

reply_and_wait() function.
BeforeComponent() Called at server side before calling the user-defined

component function.
AfterComponent() Called at server side after return from the component

function.
BeforeUnmarshal() Called before unmarshaling of incoming parameters at server

and unmarshaling of return parameters at the client.
AfterUnmarshal() Called after unmarshaling of incoming parameters at server

and unmarshaling of return parameters at the client.
BeforeMarshal() Called before marshaling of return parameters at server

and marshaling of parameters at the client.
AfterMarshal() Called after marshaling of return parameters at server

and of the parameters at the client.

Figure 4.1: Hook functions that need to be implemented by Dice tracing plugins

41

4 Implementation

For my implementation of dice_trace I chose the first option, because it results in less code
being generated and reduces to probe effect. With the latter alternative, event producers have to
check for a valid sensor before each access to the sensor, although only the first check will fail.

After sensors have been set up, the Dice-generated code is ready to produce events. We need
to be aware that the instrumentation code needs to be thread-safe. The client-side code always
needs to be thread-safe, because Dice does not limit the number of client threads using it in
parallel. For servers, the code needs to be thread-safe as soon as more than one server thread
runs a server loop for the instrumented Dice interface.

For the client case, at the begin of each call to the server, memory for an event is retrieved
from the monitoring framework. Then event startup data is written and the normal IPC call
is performed. Afterward, final data is written (e.g., the IPC’s return value or error code) and
the event is committed. All data used by the instrumentation code is local to the function and
therefore resides on the thread’s stack. This ensures thread-safeness by design.

Server-side code is more difficult for two reasons. The first problem is caused by the server
code using more than one function. Therefore the instrumentation cannot simply store event
data in local variables. Instead, a pointer to the currently processed event needs to be handed
over between functions. 1

The second difficulty arises, because servers may postpone replies to a client and serve another
request in the meantime. Events belonging to such a postponed reply need to be stored until the
request is finished. Unfortunately, the number of events to be stored is not known beforehand.
It is only limited by the number of possible client threads. This problem is caused by an opti-
mization in my instrumentation code. As explained in Section 3.2.4, data for a whole function
call is stored into one event, so that the probe effect caused by calls to the monitoring frame-
work is reduced. By sacrificing this optimization and accepting a higher probe effect caused by
posting more events, this problem can be solved. However, a low probe effect is one of the main
instrumentation requirements, therefore a different solution is needed.

Server-side Dice code calls a user-defined component function after unmarshaling data. This
function returns with a DICE_DEFERRED_REPLY flag set, if the current client request shall
not be answered immediately. In this case, the event is stored inside a list along with the corre-
sponding client ID. The client ID is used as an index to find this event later on. Using this ID
is sufficient, because the client thread at this time is sleeping in its ipc_call until the server
answers and therefore will not issue another request.

Of course the client may perform this IPC with a timeout set and stops waiting after the timeout
expires. This cannot be detected by the server directly, because the kernel does not notify it

1Aspect-oriented programming can be helpful here, because it enables to add arguments to functions. Thereby the
currently handled event can be handed over between functions.

42

4.1 A tracing plugin for Dice

about expiration of a client timeout. The instrumentation code can detect this situation, if the
client starts a new ipc_call. Then inserting a new event into the list will reveal that there
already is such an event and we can deduce that it has timed out. Unfortunately, no information
about the correct time of expiration is available at the server and if such information is needed,
it has to be retrieved by instrumenting the client.

Using the afore mentioned list can also be used to circumvent the multiple-function problem.
After memory for an event has been retrieved from the Ferret library, this buffer is stored in the
list and further function calls inside the Dice-generated server code can retrieve the event buffer
belonging to the currently served client.

Because the list is accessed often, its implementation needs to be fast in order to reduce the
probe effect. I implemented the list as a linked list as well as a hash table using an m2 mod n

hash algorithm2. Normally, one would expect the hash table implementation to perform better,
but measurements show that the linked list implementation is faster, because of the following
reasons:

• A hash table becomes fast, because the search effort is minimized by keeping many small
lists instead of one large one. As long as the linked list itself remains small, searching it is
as fast as for the hash table. The list used in my implementation typically stores less than
10 elements and measurements show that the hash table is faster only for larger element
counts.

• Typically, the instrumentation code queries the list for the same element several times in
a row. To support this, I implemented a cache for the last inserted or queried entry.

Sensor support library

The instrumentation code is supported by a sensor support library. This is currently a custom-
tailored version for dice_trace, but it can easily be generalized. The library encapsulates
common sensor tasks such as:

• Setting up a dice_trace sensor using a constructor,

• Getting a new event from Ferret and filling its header with default values,

• Committing an event to a sensor, and

• Managing the list of pending events.

2m is the checksum of the element to insert, n is the number of hash buckets. m2 mod n is calculated to determine
the bucket an element is stored into. If multiple elements map to the same bucket, a linked list is used.

43

4 Implementation

4.2 Network data transfer

To transfer monitored data to another computer for offline evaluation, I decided to use a local
network connection. In DROPS the ORe network switch [Döb05b] handles multiplexing of
hardware network interface cards for several clients. It works at the ethernet level and therefore
does not provide TCP/IP communication, which is needed for efficient data transfer. This task
is laid upon its clients. To provide a TCP stack to ORe clients I ported Adam Dunkels’ micro
IP stack (uIP) [Dun03] to ORe. Originally it was developed as a TCP stack implementation
for small embedded systems such as 8-bit micro-controllers. Such systems need to cope with a
limited amount of resources, therefore most of them will not be able to run a fully-fledged TCP
stack.

uIP is an implementation that comes with all the necessary features to provide TCP communi-
cation between hosts, but it removes some functionality from the interface between application
and TCP stack that are rarely used in small embedded devices, such as soft error reporting.
Furthermore, uIP does not support segmentation of TCP frames, therefore the size of a packet
is limited to the frame length of the underlying network protocol. Protocols supported on top of
TCP are IP, ICMP, and ARP. UDP is not completely supported.

The advantage of porting uIP instead of a full implementation is simplicity. Porting it to ORe is
easy, because it is only necessary to implement a device driver interfacing ORe. Then developers
can write a uIP application loop invoking the uIP stack for incoming and outgoing packets. A
user-defined callback function is called by the TCP stack whenever application interaction is
necessary, for instance upon arrival of a packet or when a connection to a remote host has been
established.

The last step in porting uIP was to improve its usability for DROPS applications. The original
uIP implementation has several inconveniences, because it requires the uIP files to be compiled
statically with the application. Furthermore, users need to implement the previously mentioned
callback function, requiring knowledge about uIP internals.

To circumvent these problems, I implemented uIP as a library that can be linked to every appli-
cation. The library provides a function taking care of communication with the uIP stack, once
it has been set up with all information needed by the IP stack (IP address, port to listen on).
Furthermore, during configuration pointers to callback functions are set, where each callback
function is executed upon a certain TCP event:

• recv: called upon reception of a packet. The packet is provided to the callback function.
After return from the callback, this packet is not valid anymore, so the user needs to make
a copy of the packet if the obtained data is needed outside this callback.

44

4.3 Instrumenting L4Linux

• ack: called upon arrival of an acknowledgment. uIP can only handle one TCP segment
traveling around at a time, so this is the point where users might want to send the next
data packet.

• rexmit: called if a packet was not acknowledged for a certain amount of time. uIP does
not store pending packets but relies on the user to re-send data here.

• connect: called when a connection is established, either because a connect request was
issued by the application or a remote host connected to the application.

• abort: called when a connection has been aborted.

• timeout: called upon a connection timeout.

• close: called when a connection has been closed.

It is up to the library’s user, whether the uIP thread is started in parallel to the client application.

With the uIP port, there is a working TCP stack available for clients using the ORe network
switch. It is used by the monitoring applications implemented for my thesis to transfer obtained
data to a remote host for further processing.

Unfortunately, uIP’s limitations are a problem when monitoring data is produced at a high rate.
The uIP implementation can only cope with one packet being on the way at a time, which leads
to a low data transfer rate of up to 3 MB per second for local connections. This is only a
quarter of what theoretically should be possible with a 100 Mbit ethernet network. To improve
this situation, a more flexible TCP stack should be made available for ORe. Candidates are
the L4 Flexible IP Stack (FLIPS) maintained by Christian Helmuth [Hel], and Adam Dunkels’
Lightweight IP stack (lwIP) [Dun01].

4.3 Instrumenting L4Linux

4.3.1 Porting kProbes

Adam Lackorzynski [Lac] ported the Linux kProbes mechanism to L4Linux. The major prob-
lem was that Linux uses the int3 instruction to patch instrumented code. This cannot be
used for L4Linux, because int3 is already used for entering the L4 kernel debugger. The
x86 instruction set contains an undefined instruction ud2 that causes a general protection fault.
Unfortunately, this instruction is already used by Linux for the BUG macro. It was therefore
necessary to find another one-byte instruction, that is able to cause an exception.

45

4 Implementation

Lackorzynski chose to use hlt which triggers an exception, because L4Linux is running at
privilege level 3, whereas hlt requires the privilege level to be 0. This implies that kProbes in
L4Linux only work if L4Linux is not running in privileged mode.

4.3.2 Ferret emulation for Linux

As explained in Section 3.4, comparing native Linux and L4Linux is easier if the same kProbe
modules may be run with each kernel. To support this task, I added a ferretlx kernel module
to native Linux. This module simulates the L4Linux kernel sensor inside native Linux and
provides access similar to the methods used to access Ferret list sensors.

Data stored by the simulated sensor is available to user space monitors through a special Ferret
device. This approach is similar to the one taken by the Linux Trace Toolkit.

I also implemented a histogram sensor inside the Linux kernel. It was used for manual instru-
mentation besides the kProbes approach and is currently located inside the kernel. Future work
will incorporate this sensor into ferretlx and add support for multiple list, scalar and his-
togram sensors.

To evaluate cache and TLB misses in both versions of Linux, I used hardware performance
counters. In DROPS these counters can be programmed using the Fiasco kernel debugger and
can be read out using rdpmc() functions provided by the L4util library. For native Linux,
setting up the performance counters leads to modifications to the kernel, because programming
the event selection registers is not allowed from user space. Reading the performance counters
is possible from user space, if the kernel switches on the PCE bit in the CR4 register.

4.3.3 Improving L4Linux task management

As I explain in Section 5.3, two major performance problems showed up during my evaluation
of L4Linux. The first problem arises from L4Linux running in a different context than its
applications, so that a system call always leads to at least two context switches.

The second problem results from L4Linux depending on services provided by L4 servers run-
ning in parallel. This leads to IPC and context switches between the service providers and the
L4Linux server. One example for this problem is task creation and deletion.

Figure 4.2 shows the steps that are necessary to create an L4 task that represents an L4Linux
process:

1. An application calls fork().

2. The L4Linux server receives the system call and contacts the L4 task server to allocate a
new task. The task is not yet started.

46

4.3 Instrumenting L4Linux

3. The L4Linux server sets up the task’s internal data structures and then calls the task server
again to start the task.

4. The L4 task server only manages tasks that are owned by the Resource Manager (RMGR).
The task server therefore needs to contact RMGR to start the task.

5. The Linux process runs in the L4 task.

6. The task calls exit() or is terminated by a signal.

7. The L4Linux server calls the task server to stop the task.

8. The task server terminates the task by calling RMGR.

9. The L4Linux server cleans up the internal task state and thereafter returns the task to the
task server.

Figure 4.2: L4Linux task creation

There are four possible optimizations to this procedure:

1. Remove the task server from the chain: L4Linux can be modified to directly request tasks
from RMGR. However, the task server allocates all tasks from RMGR during boot up.
Therefore requesting tasks directly from RMGR may result in inconsistent task server
state, when an application requests a task from it, while L4Linux is trying to get the same
task from RMGR simultaneously.

2. Unify RMGR and task server: RMGR and the task server can be unified to reduce con-
text switches. This is not a completely new idea, but has not yet been implemented for
complexity reasons.

47

4 Implementation

3. Transfer task creation rights: Starting and stopping tasks can be performed using the
l4_task_new system call. Unfortunately, this is not possible for tasks that were
obtained through the L4 task server, because in L4 only a task’s chief is allowed to per-
form these operations and the task server does not transfer these rights. Adapting the task
server to transfer chief rights to its clients will remove steps 3, 4, 7, and 8 from L4Linux
task creation as shown in Figure 4.2.

4. Task caching: When a Linux user-space application terminates, L4Linux does not neces-
sarily need to return the corresponding L4 task to the task server. It can keep this task and
reuse it for another application instead, saving the overhead of returning and requesting a
task several times in a row.

For my implementation I decided to pursue task caching. It soon became obvious that for a task
cache to work, L4Linux needed to possess task creation rights. Therefore before implementing
a task cache, I needed to provide a means to transfer task creation rights to the L4Linux server.

To pass task creation and deletion rights to arbitrary DROPS applications, I enhanced the task
server interface by a allocate_task_chief call that allocates a task from RMGR and
hands chief rights over to the requesting client. Thereafter, the client does not need to use the
task_create and task_kill operations of the task server for starting and stopping a task.
It can use the l4_task_new system call instead.

The L4Linux task cache consists of a static array of task entries. 3 When allocating a new task,
L4Linux uses the task_from_pool function to get a cached task. If this does not succeed,
the task server is queried for a new task. During task termination, L4Linux adds the now unused
task to the cache using task_to_pool and only returns this task to the task server, if the task
cache is already full.

I evaluate performance implications of my adaptions to task management and task caching in
Section 5.3.3.

4.4 A self-healing web server

As introduced in Section 2.4, runtime monitoring is an essential part of autonomic computing.
To show that the infrastructure developed for this thesis also supports self-monitoring in the
sense of autonomic computing, I implemented a self-healing application. For this example I
chose a small web server running with the uIP TCP stack.

The web server is a port of the mini_http web server originally developed for FLIPS. Run-
time monitoring is achieved by running the server with two threads:

3The size is user-configurable. For my experiments I used a cache size of 5 entries.

48

4.4 A self-healing web server

1. One thread handles TCP/IP communication by running the uIP library thread and the
callbacks specified by the web server.

2. Another thread monitors the communication caused by the uIP library thread, detects
error situations in this thread and restarts it upon an error.

Errors can be detected by using internal knowledge about the uIP stack. The stack provides
address resolution through the ARP protocol. ARP entries have a time-to-live and therefore the
uIP stack needs to have a way of timing. This is achieved by calling ORe with a timeout of 500
ms. If this call times out, the ARP timer is updated. Therefore, an application using the uIP
stack and ORe will produce at least two IPC events per second. A periodic monitor can obtain
the IPC events generated by this communication and deduce a failure situation if no IPC event
was generated during the last monitoring period.

Failures in the mini_http server can be recovered by microrebooting the server’s worker
thread by adding a runtime monitor to the application that restarts the worker thread whenever
it detects a failure as described previously. Microreboots are introduced by Candea et al. in
[CKF+04]. The authors state that many software failures can be solved, without knowing the
correct error leading to a crash, by rebooting the system. They argue that rebooting a whole
machine is time-consuming and introduce the concept of microrebootable components, where
upon an error only a small software component is restarted. This takes much less time than a
complete reboot and can already be a solution to the failure. If this is not the case, a complete
reboot will be necessary.

Five preconditions must be fulfilled to support microrebooting:

1. Fine-grained components: To keep time for a microreboot low, software consists of small
componentes with well-defined interfaces. The mini_http server is such a small com-
ponent.

2. State segregation: Failing components must not corrupt any global state. Candea et al.
[CKF+04] propose to manage software state in an external state storage so that it can
be recovered after microrebooting. The mini_http server keeps no global state apart
from a visitor counter. For my example I assume that this counter is not corrupted by the
server’s worker thread.

3. Decoupling: Components must not be tightly-coupled, for instance by storing a pointer
to data in component A inside component B, because this pointer will be invalid after
microrebooting component A. In my mini_http there are two components: the worker
thread and the monitor. They are not directly coupled.

49

4 Implementation

4. Retryable requests: The system must tolerate the inavailability of components. If a
request fails because a component is not present at a moment, the caller must retry its
request after a certain amount of time. Requests to mini_http are issued from a web
browser using the HTTP protocol. HTTP assumes that clients retry their requests if nec-
essary, no modifications to mini_http need to be made.

5. Resource leases: Resources used by software components need to be returned to the oper-
ating system even if the component fails. This is achieved by leasing resources. Compo-
nents request a resource and need to request it again after their lease time expires. If the
component fails, all its resources will automtically be returned to the resource managers
upon expiration.

The only resource used by the mini_http server is its connection to the ORe network
switch. This connection needs to be cleaned up before restarting the worker thread.

To extend the web server with runtime monitoring capabilities, there exist several possible solu-
tions. The first option is to use IPC events from the Fiasco trace buffer to detect errors. The trace
buffer filter is able to filter events for exactly one task, therefore this alternative is applicable
exactly for the web server example. However, it is not possible to support further self-healing
applications in the same way without taking into account a large overhead caused by the need
to filter a lot of unwanted events.

I chose a simpler and nearly non-intrusive solution by instrumenting the uIP library with a
sensor that simply provides the number of calls to the ORe network switch. This Ferret sensor
is a scalar, which means that the sensor overhead is smaller than for other sensors, such as a list
sensor. It adds only 5 lines of code to the uIP library 4.

The monitoring code in the web server is also simple. After setting up the TCP stack and
starting the uIP library thread, the web server’s main thread starts running a periodic monitoring
function:

/* - attach to Ferret sensor */

while (1)

{

val = ferret_scalar_get(sensor);

if (val == oldval) // ERROR!

restart_worker_thread();

/* sleep for some time */

l4_sleep(4000);

}

4The uIP library consists of 600 lines of code.

50

4.4 A self-healing web server

These small enhancements are enough to provide the web server with self-healing capabilities,
which lead to the following improvements for the web server:

• User-experienced downtime caused by server failures is decreased because failures are
repaired within an amount of time that is smaller than the one needed to restart the whole
machine.

• In the case of restart, the newly started worker may reuse the global server state. If user
sessions contain more data than the simple counter used by mini_http, an external
reliable storage needs to be used.

A drawback of this solution is that it uses manual instrumentation of the uIP library and the
web server. Again, aspect-oriented programming will be helpful to automate this task, but is not
available at the time of this writing.

I also considered using the dice_trace plugin introduced in Section 4.1. We can instru-
ment the ORe client library with the help of this plugin and compile the web server with this
instrumented library. I discarded this solution due to the following drawbacks:

1. dice_trace instruments all functions in an interface and all applications instrumented
using this plugin commit their events into one single sensor. The web server’s runtime
monitoring code therefore has to filter out the data it needs from a potentially large amount
of superfluous data. This drawback is caused by the layout of the tracing plugin. It can
be circumvented by a custom-tailored trace plugin for this use case.

2. dice_trace uses a list sensor instead of a scalar, which leads to a considerably higher
probe effect.

51

4 Implementation

4.5 Magpie enhancements

Martin Pohlack [Poh] adapted Magpie to be used with events originating from DROPS applica-
tions and designed the Ferret monitoring framework to be compatible with Magpie. During my
experiments I enhanced the L4 request schema to handle the events from my instrumentation. It
soon became obvious, that the Magpie event parser can also be used for tasks beyond preparing
data for visualization with the Magpie visualizer.

I adapted Magpie to work with multiple request schemata. This enables us to perform different
types of evaluation of the event stream at once. Schemata are handed over to Magpie as modules
from the command line. Each module needs to provide

• An init method, performing initializations,

• A dispose method for unloading the module and cleaning up, and

• Event handlers to collect data about single events.

Up to now, I implemented four modules in addition to the original L4 request schema. Two
of them create visualization output by drawing a graph of communication relationships derived
from dice_trace events. One of the modules targets the GraphViz [gra] graph visualizer,
the other one produces output for the uDrawGraph [UB05] tool.

A third module collecs information from dice_trace events and turns them into overall
statistics. It produces statistics about connections, which are unidirectional IPC relationships
in the context of this module. A usage rating shows the number of IPCs sent through each
connection. The timeout hit ratio shows the amount of IPCs that have been canceled because
their timeout expired. Furthermore, cumulative statistics give information about how many
connections made up N% of all communication with respect to the number of IPC messages
sent and to the size of the sent data.

While instrumenting the L4 Environment with a semaphore sensor as described in Section 3.3, I
also implemented a semaphore evaluation module for Magpie. This module takes data generated
from the l4semaphore_down() and l4semaphore_up() methods and evaluates

• Average waiting time to enter a critical section,

• Average length of the wait queue, and

• Average time to execute the critical section.

52

5 Evaluation

Take your time, think a lot,
Think of everything you’ve got,

For you will still be here tomorrow,
But your dreams may not.

(Cat Stevens - Father and Son)

In this chapter I will discuss experiments that were carried out during my thesis. At first, I will
evaluate DROPS’ IPC performance. Thereafter I will evaluate L4Linux, especially in compar-
ison to native Linux. I will point out the overhead of the different kProbes implementations in
both systems and analyze overall and system call performance. Finally, I will evaluate the per-
formance gains resulting from my implementation of L4Linux task caching which I described
in Section 4.3.3.

5.1 Test setup

The experiments presented in this chapter were all run on the same test computer, if not stated
otherwise:

• AMD Duron 800 MHz CPU,

• 256 MB RAM,

• 64 kB L1 Instruction Cache (2-way associative),

• 64 kB L1 Date Cache (2-way associative), and

• 64 kB L2 Universal Cache (8-way associative)

53

5 Evaluation

Fiasco was configured with the following performance-critical options:

• No assembler IPC shortcut, because L4Linux needs the exception IPC feature and this
does not work with the IPC shortcut, and

• Fine-grained CPU time in order to get correct thread execution times.

Experiments comparing L4Linux and native Linux were run with Linux 2.6.16 versions of the
kernels on the same test machine. If not stated otherwise, no hard disk was used and the sys-
tems were completely booted and operated from a 16 MB ramdisk. For the kernel compile
benchmarks, a hard disk was mounted in both systems:

• Fujitsu MPG3204AT ATA

• 20 GB split into 6 logical partitions

• 512 kB disk Cache

• cached read throughput: 402.2 MB/s 1

• buffered disk read throughput: 3.97 MB/s 2

5.2 Analysis of DROPS

5.2.1 IPC sizes

A first experiment regarding IPC was the analysis of average message sizes. For this experiment
I used the dice_trace plugin to instrument the following IDL interfaces:

• The ORe network switch,

• The L4 Virtual File System (L4VFS), and

• The DOpE Window Manager.

Using the generated sensors I collected IPC data for the following scenario: The DOpE Window
Manager and the ORe network switch are running on top of the standard L4Env servers. The
L4Loader is used to load

• The L4VFS virtual console server vc_server,

1hdparm -T
2hdparm -t

54

5.2 Analysis of DROPS

• The L4VFS fstab server,

• The L4VFS console test application,

• The DOpE logging console dmon,

• The DOpE vscrtest, and

• The ORe arping client

from the network. The binaries are retrieved using TFTP and ORe and then make extensive use
of the instrumented interfaces during execution.

Figure 5.1 shows how IPC message sizes cumulate. The drawn through line shows the propor-
tion of packets in relation to the complete number of packets obtained. We can see that about
85% of all IPC messages have a size below 90 bytes. The dotted line shows how the pack-
ets’ message sizes add up to the complete amount of data sent. From this line we see that the
85% of the packets with message sizes below 90 bytes make up less than 10% of the total data
sent. The reason for this observation is that only ORe and its clients perform data-intensive
communication in my scenario.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 80 160 240 320 400 480 560 640 720 800 880 960 1040 1120 1200 1280 1360 1440 1520

P
ro

po
rt

io
n

of
 a

ll
pa

ck
et

s
in

 %

Message size

Size and packet count for DOpE + generic_fprov + ORe + L4VFS

Packet count
Sent data

Figure 5.1: Proportional distribution of IPC sizes for the DOpE+L4VFS scenario

I then removed the ORe instrumentation and repeated the experiment. The results are com-
pletely different now and are shown in Figure 5.2. Now 98% of all messages have a message
size below 30 bytes and only a few more messages are larger.

55

5 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

P
ro

po
rt

io
n

of
 a

ll
pa

ck
et

s
in

 %

Message size

Size and packet count for DOpE + generic_fprov + L4VFS

Packet count
Sent data

Figure 5.2: Proportional distribution of IPC sizes for the DOpE+L4VFS scenario without ORe

Lessons learned

It is not possible to determine correct averages for L4 IPC message sizes, because these numbers
largely depend on the chosen scenario and the instrumented interface. The means developed
with my thesis can be used to evaluate scenario-specific measurements.

One interesting fact from the results in Figures 5.1 and 5.2 is the large amount of short messages.
In both cases more than 40% of all messages are at most 8 bytes large and can be sent using
short IPC, which is reasonably faster than string IPC in DROPS. There are two main reasons
for that:

1. Programmers know of the advantages of short IPC and optimize their interfaces to use it.

2. Many IPC calls are remote procedure calls (RPC). Typically, functions return at least an
int value to signal success or failure. On 32-bit machines an int is four bytes large and
can be sent with a short IPC.

5.2.2 String IPC throughput

The next experiment regarding IPC in DROPS covered indirect string IPC [Lie96a]. I sent
data with sizes up to 16 MB from a client to a server application and used dice_trace

instrumentation to measure the transmission times. As can be seen from Figure 5.3, transmission

56

5.2 Analysis of DROPS

times for large strings grow linear to the string size. With this in mind, a naive approach to
sending a fixed-size buffer is to send the buffer directly with one IPC call, because this leads to
the lowest number of kernel entries and therefore reduces overall cost.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18

S
en

d
tim

e
in

 m
ill

io
n

cy
cl

es

Buffer size in million bytes

Figure 5.3: Send time for indirect strings

I tried to support this thesis by performing another benchmark: This time I transfered a 2 MB
buffer between client and server and used IPC message sizes varying from 256 bytes up to 2
MB. The client sends a message and this message is written into a fixed-size receive buffer at the
server side. The server does not touch the received data but only acknowledges it. In addition
to my test computer, I performed the benchmark on two other machines:

• An Intel Celeron 900 MHz CPU with 16 kB L1 data and instruction caches, and 128 kB
universal L2 cache, and

• An Intel Pentium 4 1.6 GHz CPU with 12 kB L1 instruction cache, 8 kB L1 data cache
and 256 kB universal L2 cache.

Figure 5.4 shows, that the previously stated thesis is wrong. Surprisingly, sending the 2 MB
data with send sizes ranging from 16 kB to 64 kB depending on the test machine is up to two
times faster than sending the buffer at once.

Figure 5.5 gives hints about the reasons for this unexpected behavior. IPC with small send sizes
wastes time by performing too many context switches between the IPC partners, which cause a

57

5 Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2M1M512k256k128k64k32k16k8k4k2k1k512256

T
im

e
/ m

s

Packet size in bytes

Time to transfer 2 MB using string IPC with different packet sizes

Duron 800 MHz, 2x64kB L1 cache, 64kB L2 cache
Celeron 900 MHz, 2x16 kB L1 cache, 128 kB L2 cache

Pentium 4 1.6 GHz, 8kB L1 data, 12 kB L1 instr. cache, 256 kB L2 cache

Figure 5.4: Sending a 2MB buffer with different send buffer sizes

high number of TLB misses, because TLBs are flushed at every context switch. For large send
sizes, the number of context switches and TLB misses is smaller.

However, the number of cache misses during one 2 MB transfer rises from a certain point and
increases transfer time once again. The results from Figure 5.4 imply that the optimal send
size depends on the CPU’s cache sizes. If the send size closes in on the cache size, it becomes
more probable, that kernel data and instructions are thrown out of the cache during an IPC’s
copy operation. If the send size gets higher than the cache size, the cache is always completely
thrashed by the IPC operation. Figure 5.5 correlates send times, cache misses, and TLB misses.

Future work shall investigate whether using cache coloring [Lie96b] to separate kernel and user-
space cache usage can help to improve performance of indirect string IPC. Another option is
to not cache the data copied during an IPC operation — this will reduce IPC overhead caused
by cache misses, but it will lead to more cache misses later on, when the receiver accesses the
received data.

Lessons learned

Because of cache effects copying data in smaller packets into a single receive buffer can be
faster than copying a whole buffer at once. This is not always possible, but it can be an option

58

5.2 Analysis of DROPS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2M1M512k256k128k64k32k16k8k4k2k1k512256
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000
T

im
e

/ m
s

of

 m
is

se
s

Packet size in bytes

Time to transfer 2 MB using string IPC with different packet sizes

Copy time on 800 MHz Duron
Cache misses

TLB misses
Cache + TLB misses

Figure 5.5: Cache and TLB misses for sending a 2 MB buffer using indirect string IPC

for multimedia-applications that process one piece of data at a time. Therefore this knowledge
should be taken into account when designing DROPS servers.

5.2.3 String IPC vs. shared-memory communication

The DROPS Streaming Interface (DSI) [LHR] is an implementation of a shared-memory com-
munication protocol for DROPS. It uses a producer-consumer protocol on a ring buffer and
therefore only needs to use IPC when producers or consumers need to be woken up.

For my experiments, I tried to compare the performance of DSI and indirect string IPC for the
scenario of transferring a 2 MB buffer with varying packet sizes. DSI cannot be instrumented
using dice_trace, therefore I chose to perform manual instrumentation by taking global
timestamps before and after sending the whole buffer. I furthermore evaluated DSI with respect
to two different ways of sending data:

1. When performing a zero-copy send operation, the sender prepares all of its data directly
inside the shared memory buffer. No copy operation is then needed to transfer data. DSI
was designed for this use case.

2. A sender can also use DSI as a replacement for indirect string IPC. Then it is necessary to
copy the data into the shared memory buffer before sending a packet through DSI. This

59

5 Evaluation

adds a whole copy operation, but might still be faster than string IPC because it leads to
less kernel entries and exits.

Figure 5.6 shows the obtained results. Zero-copy outperforms both string IPC and manual copy-
ing — it takes not more than 4,000 CPU cycles when sending a single 2 MB packet. However,
string IPC proves to be faster than manual copying. Interestingly, the cache effect described in
Section 5.2.2 did not occur in the DSI experiment.

The difference between both experiments is the string IPC experiment copying all packets into
the same target buffer, thereby touching only a small amount of memory. By contrast, the
DSI experiment copies a packet from the target buffer to exactly the same offset in the shared-
memory buffer. Thereby a larger address range is touched during the copy operation, leading to
more cache misses.

 0

 10

 20

 30

 40

 50

2M1M512k256k128k64k32k16k8k4k2k1k512256

T
im

e
/ m

s

Packet size in bytes

Time to transfer 2 MB using the DSI

Zero-copy send
Copy and send

Indirect string IPC

Figure 5.6: Comparing DSI and indirect string IPC

To prove this, I experimented with different configurations for the DSI connection by altering
the maximum number of DSI packets. Figure 5.7 shows that the more packets are used with a
DSI connection, the smaller the observed cache effect becomes. Using only a single DSI packet
works the same way as indirect string IPC and shows the same cache effect. More packets
increase parallelism between producer and consumer, but show more cache misses which in
turn decrease performance.

60

5.2 Analysis of DROPS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2M1M512k256k128k64k32k16k8k4k2k1k512256

T
im

e
/ m

s

Packet size in bytes

Transferring 2 MB with DSI (no zero-copy) and indirect string IPC

DSI, 1 packet
DSI, 4 packets

DSI, 16 packets
DSI, 8192 packets
Indirect string IPC

Figure 5.7: DSI w/o zero-copy, different packet configurations

Lessons learned

Shared-memory communication using the DSI is extremely fast when performing zero-copy
send operations. If zero-copy is impossible for a scenario, indirect string IPC is faster than DSI
with manual copying.

5.2.4 Semaphore usage

In Section 3.3 I described how the semaphore library can be instrumented with sensors that
produce data for profiling applications. With the help of this instrumentation I tried to answer
the question, whether a semaphore implementation for DROPS needs to be optimized for the
case where no other threads are requesting the semaphore or for the case where multiple threads
are waiting to enter a critical section.

I evaluated semaphore usage for a range of scenarios:

1. DOpE client and server semaphores while running the vscrtest application and the
dmon log server.

2. ORe client and server semaphores while loading L4Linux via tftp.ore, and

3. Three instances of L4Linux loaded via tftp.ore, and performing wget each.

61

5 Evaluation

Lessons learned

For all three scenarios the vast majority of semaphore accesses was without a need to wait for
the semaphore. Semaphore implementations therefore definitely need to be optimized for the
non-contention case.

5.3 Analysis of L4Linux

5.3.1 kProbes Overhead

As a first experiment, I compared the overhead induced by using kProbes in L4Linux to the
kProbes overhead in native Linux. I expected the kProbes overhead in L4Linux to be different
from native Linux, because the implementations are different, too.

For my experiment I used a simple benchmark, performing 10,000 calls to the fork(),
vfork(), and execve() functions provided by the Standard C Library and measuring their
execution time. This was done without any kProbes in the system and with only one kProbe with
a single pre-handler function registered on the first instruction of do_fork(). As kProbes
overhead might vary depending on the instrumented location, I chose to perform the same
test with the getpid() function and a kProbe registered upon the first instruction of sys_-
getpid().

All tests were run on my test computer running a (L4)Linux 2.6.16 kernel with a small ram disk
containing my benchmark and the kProbes kernel module.

Table 5.1 shows the resulting execution times for native Linux, Table 5.2 shows the results for
L4Linux. All values are CPU cycles.

Without kProbes With kProbes Overhead
getpid 277 1,046 769 (277.6 %)
fork 90,798 92,061 1,263 (1.4 %)
vfork 21,407 22,164 757 (3.5 %)
execve 90,369 92,916 2,574 (2.8 %)

Table 5.1: kProbes overhead for native Linux system calls

Without kProbes With kProbes Overhead
getpid 3,408 9,171 5,763 (169.1 %)
fork 329,818 345,556 15,738 (4.8 %)
vfork 44,564 52,818 8,254 (18.5 %)
execve 236,731 257,240 20,509 (8.7 %)

Table 5.2: kProbes overhead for L4Linux system calls

62

5.3 Analysis of L4Linux

Lessons learned

The results show, that using kProbes definitely results in a performance overhead, which is
higher in the L4Linux implementation than in the native one. While for long-running system
calls such as sys_fork and sys_exec, the overhead becomes negligible, this is not the case
for short-running calls such as sys_getpid.

5.3.2 Native Linux vs. L4Linux

Adam Lackorzynski adapted L4Linux to use the L4 Environment [Lac02]. According to his
measurements [Lac04], L4Linux has a considerable overhead in comparison to native Linux.
With the help of the tracing facilities presented in my thesis, I tried to find reasons for these
performance problems.

A system benchmark

As a first step, I used the Unixbench system benchmark [Nie99] to get an overview of where
performance problems are. Unixbench is a benchmark suite consisting mostly of synthetic
benchmarks testing the following subsystems of Linux and the underlying hardware:

1. Arithmetic operations: Unixbench runs the Whetstone [CW76] floating point bench-
mark, the Dhrystone [Wei84] integer benchmark, and five synthetic benchmarks testing
the arithmetic performance for arithmetic data types (int, short, long, double, and
float).

Results for the arithmetic benchmarks should not differ much between Linux and
L4Linux, because they only measure hardware performance.

2. File input–output: Unixbench tests reading, writing, and copying a file with different
buffer sizes (256 bytes, 1024 bytes, 4096 bytes).

3. System performance: System performance is tested with respect to process creation,
system call overhead, pipe throughput and execl performance.

4. Application benchmark: Unixbench also performs an application benchmark by run-
ning a shell script alone, followed by 8 and 16 instances of the script running in parallel.

Table 5.3 shows the Unixbench results. They were obtained by running L4Linux 2.6.16 and
Linux 2.6.16 on the same computer with the same ram disk setup.

The first section in Table 5.3 covers arithmetic benchmarks. As both versions of Linux ran on
the same machine, the results are practically equal.

63

5 Evaluation

The second section contains results for the system call benchmarks. They show that major
performance problems result from the system call overhead and from process creation. Native
Linux can perform eight times more system calls in a period of time than L4Linux. Furthermore,
process creation is five times faster in native Linux.

The results for file input–output in the third section and for the application benchmark in the
fourth section show that there are further performance differences. However, because of the
large penalty for system call overhead I cannot deduce the penalty for these areas without further
investigation.

Test Dimension native Linux L4Linux relative difference
L4Linux vs. native

Dhrystone loops/second 1,810,146 1,819,542 +0.5%
Whetstone MWIPS 558 557 -0.2%
Arithmetics (short) loops/second 156,815 157,058 +0.2%
Arithmetics (int) loops/second 163,164 163,470 +0.2%
Arithmetics (long) loops/second 163,140 163,397 +0.2%
Arithmetics (float) loops/second 311,530 311,436 0.0%
Arithmetics (double) loops/second 310,705 311,366 +0.2%
Arith. Overhead loops/second 3,687,234 3,693,022 +0.2%
Syscall overhead loops/second 358,526 43,161 -88.0%
Pipe Throughput loops/second 218,889 70,857 -67.6%
Pipe-based loops/second 68,960 31,275 -54.6%Context Switches
Process creation loops/second 4,426 845 -80.0%
Execl Throughput loops/second 956 401 -58.1%
Read(1024/2000) kB/second 238,209 115,824 -51.4%
Read(256/500) kB/second 89,721 31,378 -65.0%
Write(1024/2000) kB/second 171,200 86,086 -49.7%
Write(256/500) kB/second 52,666 25,104 -52.3%
Copy(1024/2000) kB/second 97,745 49,591 -49.3%
Copy(256/500) kB/second 33,556 13,837 -58.8%
Shell scripts (1) loops/minute 1,775 829 -53.3%
Shell scripts (8) loops/minute 258 120 -53.5%
Shell scripts (16) loops/minute 129 60 -53.5%

Table 5.3: Unixbench results. (Numbers in the file I/O section give the buffer size and the number of
accesses, for shell scripts it is the number of scripts running in parallel.)

System call performance

As a next step I tried to inspect the runtime of certain system calls inside the kernel to find
out whether there are performance penalties for some of them. Such an investigation is espe-
cially useful for frequently used system calls, because improving their performance can improve
overall system performance most. Using the system call counter introduced in Section 4.3, I
obtained statistics about the frequency of system calls for a run of the Unixbench benchmark

64

5.3 Analysis of L4Linux

and the kernel compile benchmark. This resulted in a list of the top 15 system calls used for
these scenarios. I show these 15 system calls in Table 5.4.

sys_read sys_write sys_open
sys_close sys_mmap2 sys_oldmmap
sys_munmap sys_llseek sys_stat64
sys_fstat64 sys_rt_sigaction sys_rt_sigprocmask
sys_getpid sys_clone sys_brk

Table 5.4: Top 15 Linux system calls for Unixbench and kernel compile benchmark

As sys_getpid is one of the most short-running system calls, I skipped it for further evalu-
ation, because its execution time depends mainly on the overall system call overhead. For the
remaining 14 system calls, I measured their average execution times for five executions of the
kernel compile benchmark on each system.

The results in Table 5.5 show, that for most of the evaluated system calls there is no extreme
difference between native Linux and L4Linux. The sys_read and sys_clone calls are
the ones differing most between the two versions. I therefore further investigated these calls’
behavior.

Syscall min. time avg. time max. time min. time avg. time max. time
Linux Linux Linux L4Linux L4Linux L4Linux

read 2,699,180 2,776,963 3,018,419 3,698,098 3,871,975 4,263,079
write 325,209 372,634 451,814 293,765 463,279 540,126
open 20,865 30,869 36,222 18,765 26,022 33,307
close 233 308 412 126 141 166
mmap2 10,962 11,772 12,654 12,520 13,968 15,221
oldmmap 5,787 6,089 6,466 8,522 8,941 10,159
munmap 5,302 5,400 5,646 10,239 10,656 11,610
llseek 952 994 1,597 931 998 1,195
stat64 9,510 13,604 17,071 3,821 4,193 4,748
fstat64 1,440 1,522 1,597 7,837 10,104 14,605
sigaction 827 1,137 2,298 1,484 1,550 1,754
sigprocmask 655 754 929 1,423 1,491 1,702
clone 6,607,959 7,115,684 7,417,643 143,032 149,739 169,353
brk 1,654 1,750 1,884 2,147 2,266 2,551

Table 5.5: Average system call execution times for L4Linux and native Linux. All values are clock
cycles.

Runtime for sys_read varies between subsequent calls. The call returns fast if the read oper-
ation is asynchronous or the data to be read is already available from a cache. In contrast,
blocking read operations to disk take a lot of time. Therefore, I first expected the differences
between L4Linux and Linux to derive from unpredictable disk read overhead. However, the

65

5 Evaluation

average execution times proved to be very stable. As a next step I tried to visualize the distribu-
tion of execution times, which is shown in Figure 5.8.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2e+06 4e+06 6e+06 8e+06 1e+07

C
ou

nt

Execution time / cycles

Distribution of execution times for sys_read

native Linux
L4Linux

Figure 5.8: Execution times for the sys_read system call

The visualization shows high counts of short-running and extremely long-running read opera-
tions. In between there is one peak for each system3. Interestingly, the offset between the peaks
is nearly as high as the offset between the two measurements’ averages. I therefore deduced
that this is the cause for the differing execution times. As the peaks are located nearer to the low
values than to the high ones, disk overhead does not seem to be an explanation for this.

I decided to compare the average hardware cache and TLB misses for sys_read. The results
shown in Table 5.6 can give hints about the cause for higher execution times in L4Linux. As
L4Linux system calls always lead to one context switch from the application to the L4Linux
server and one context switch back to the application, TLBs are flushed more often. This leads
to a higher amount of cache and TLB misses and slows down operation. This especially affects
sys_read, because it is one of the longest-running calls in the system, but it is also an expla-
nation for the other system calls in Table 5.5 that have a slightly larger runtime in L4Linux.

3The peaks are at x=1,200,000 for native Linux and at x = 2,000,000 for L4Linux

66

5.3 Analysis of L4Linux

native Linux L4Linux
Instr. cache misses 10,441 12,598
Data cache misses 7,677 8,337
ITLB misses 88 973
DTLB misses 676 1,715

Table 5.6: Average cache and TLB misses for one read system call

To support my thesis, that cache and TLB misses are a major cause of performance problems in
L4Linux, I ran another synthetic benchmark. This time I executed sys_getpid for 100,000
times. This system call simply returns current->tgid, taking only about 14 cycles to exe-
cute inside the kernel. This means that when measuring this system call from user space, it
will result in information about the real system call overhead of native and L4Linux. Table 5.7
shows the obtained results, which support my thesis.

native Linux L4Linux
User-space execution

274 3,778
time in cycles
Instruction cache misses

544 1,703,332
for 100,000 calls
Data Cache misses

286 402,398
for 100,000 calls
ITLB misses for 100,000 calls 35 501,679
DTLB misses for 100,000 calls 141 1,052,520

Table 5.7: TLB and cache misses for sys_getpid

Lessons learned

System-call performance in L4Linux is decreased by the fact, that each system call leads to at
least two context switches, which in turn lead to a much higher amount of TLB misses than for
native Linux.

A solution for this problem needs to remove either the necessity of switching between different
contexts for a system call, or the necessity of flushing TLBs during a context switch:

1. Tagged TLBs add an address space identifier to each TLB entry. Therefore it is not nec-
essary to flush the TLB during a context switch.

2. Cache coloring [Lie96b] is a memory allocation strategy splitting the cache between
applications, for instance between the L4Linux server and its applications. This results in
less memory and cache being available for each application, but it ensures that application
A accessing the cache does not trash a cache line that is used by application B.

67

5 Evaluation

3. Small address spaces [Lie95] split one address space into several smaller ones. Thereby
the L4Linux server and its applications can run in the same context, but with less memory
available. This leads to no context switch for system calls and thereby decreases the
number of TLB flushes.

5.3.3 Task caching in L4Linux

As explained in Section 4.3.3, I tried to improve L4Linux’ task management by

• Obtaining chief rights during task creation in order to start and stop tasks using the l4_-
task_new system call, and

• Caching a fixed number of tasks instead of returning them to the task server, so that future
task creations do not necessarily result in communication with the task server and RMGR.
The task cache’s size was set to 5 tasks for my experiment.

To evaluate these improvements, I reused the benchmark introduced in Section 5.3.1, this time
only measuring execution times of fork(), vfork(), and execve(). Table 5.8 shows the
results in CPU cycles.

L4Linux L4Linux with new L4Linux with new task
unmodified task management management and caching

fork() min. 330,425 292,857 255,087
fork() avg. 998,971 911,580 858,967
vfork() min. 45,502 44,274 45,510
vfork() avg. 56,556 55,565 56,185
execve() min. 237,014 243,574 207,376
execve() avg. 901,274 848,268 771,902

Table 5.8: Effects of improved L4Linux task management

Lessons learned

Execution time of sys_fork is sped up by 11.4% with the new task creation mechanism.
Using task caching improves this even more, resulting in a 22.8% performance gain. vfork
execution time remains unchanged, because this system call does not use task creation. Instead,
task creation is postponed until the vforked application calls execve.

Interestingly, best-case performance for the exec system call is not improved by the new task
management, while the average-case execution time is improved by 5.9%. Using task caching
even shows up in best-case execution times, speeding up the system call by 12.5%.

68

6 Conclusion and outlook

On and on ’cause the road is never-ending.
At least we know, we’re on our way.

(Fiddler’s Green - On and on)

6.1 Conclusion

In my thesis I integrated means for tracing requests into DROPS. I reused existing DROPS
solutions such as the kernel trace buffer and the Ferret monitoring framework. Furthermore, I
defined general sensors as well as monitors to be used by tracing facilities.

I extended the DROPS IDL Compiler with a plugin that is able to automatically generate IPC
tracing code and ported a small TCP/IP stack for the ORe network switch to send monitoring
data through the network for offline evaluation. I used the Magpie event processing tool chain
and extended it for event processing and visualization.

With the help of sensors inside the L4Linux kernel, I was able to instrument L4Linux as well
as applications running on top of it. Using a device driver providing the Ferret monitoring
interface, I could reuse L4Linux kProbes modules in native Linux and carry out comparative
measurements.

Using the previously mentioned facilities, I evaluated and analyzed the behavior of DROPS
components:

• I showed that the performance of indirect string IPC depends on a processor’s cache setup.

• I compared the DROPS Streaming Interface to indirect string IPC and showed that the
communication using the DSI is faster only for zero-copy send operations.

• I evaluated L4Linux and pointed out that context switches for every system call are one
main cause of performance penalties in comparison to native Linux. Solutions for these
problems can be tagged TLBs, cache coloring, and use of small address spaces.

• I implemented a task cache in L4Linux, thereby improving task creation performance by
up to 20%.

69

6 Conclusion and outlook

6.2 Future work

In this section I will outline ideas for future work based upon my thesis. These ideas came to
my mind during my work and were not put into practice because there either was not enough
time available for it, or the implementation was out of scope for this thesis.

1. Generic tracing: In order to make future versions of DROPS be usable in the context of
autonomic computing which was introduced in Section 2.4, we need generic means of
instrumentation, so that instrumentation becomes easier for application developers. The
dice_trace plugin presented in Section 4.1 is an example for automated instrumenta-
tion. As mentioned earlier, using aspect-oriented programming can be another major step
towards this goal.

As proposed in Section 3.3, basic DROPS system services such as the L4 Environment
shall be modified to provide default sensors to all their clients.

The Systemtap project [FCE05] aims at providing a high-level scripting language that can
then be translated into many different probe languages. It will be interesting to follow
Systemtap’s evolution and I consider it to become the language of choice for automated
instrumentation in DROPS.

2. Automating generation of Magpie schemata: Writing a Magpie event schema requires
some understanding of the underlying event processor and the Python programming lan-
guage. Although a schema written in a real programming language has the advantage of
being flexible, it may not always be the easiest solution. From my point of view, it is
sufficient to describe the events and do simple bindings to timelines. For these scenarios,
it will be interesting to have a high-level schema-description — for instance in an XML
file — which then is compiled into a Magpie event description and an event schema by a
code generator 1

3. Port Linux tracing tool chains: Within my thesis I used kProbes to dynamically instru-
ment the L4Linux kernel at runtime. Several other options can be considered for Linux
tracing. At the one hand improvements to kProbes have been proposed, for instance
djProbes [Hir05], which are used to speed up a subset of kProbes called jProbes. Recent
discussion on the Linux kernel mailing list [Hir06] proposes further speedups for kProbes
and kRetProbes. The corresponding patches have been merged into the Linux kernel and
may be adapted for L4Linux as soon as it is moved to the next kernel version.

I furthermore plan to port the Next Generation Linux Tracing Toolkit (LTTng) [Des06]
to L4Linux. This will enhance usability of process tracing in L4Linux and the LTTng

1As an alternative, Magpie can be altered to parse the XML file directly instead of the event description.

70

6.2 Future work

visualizer can then be used with L4Linux applications. In addition to the LTT kernel
module that makes kernel events available to a user-level daemon, L4Linux will enable
us to have an interface between LTT and the Ferret monitoring framework. Thereby
monitors can even collect LTT data from several instances of L4Linux running in parallel.

The ferretlx kernel module for native Linux will be extended to support multiple list,
scalar and histogram sensors in a manner similar to Ferret running on top of DROPS,
because this provides a handy way of instrumenting L4Linux and native Linux using the
same kind of sensors.

4. IPC patterns: Future use of the means developed for my thesis will show whether there
are specific patterns of communication between DROPS components. If such patterns
are found to be essential, the Fiasco IPC path can be extended to support them more
efficiently.

One example for this is a multicast notification pattern I observed within the ORe network
switch: When a multicast or broadcast ethernet packet arrives, this packet is sent to all
clients by sending their worker threads a notification message. Currently I use one intra-
task short IPC for each notification. An optimization might be to provide an ipc_-

multicast system call delivering the notifications to a set of threads at once.

5. Model-carrying code [SVB+03] is an approach to provide safe execution of applications.
Each program comes with a state machine describing the type and sequence of system
calls issued by the application. A local policy enforcer can then check if this specification
fits its local security policy, and an execution monitor is able to verify that the application
matches its specification at runtime.

Model-carrying code can be implemented on top of DROPS using the instrumentation
techniques developed during my thesis. It can be used to determine communication pat-
terns between an application and certain service providers. An online monitor can then
use instrumentation to verify that the application adheres to these patterns.

6. Pinpoint [CKF+02] is a framework that uses internal and external monitoring of a system
to dynamically detect faulty software and hardware components. Its approach can be
adapted to be used to improve dependability of DROPS modules.

71

Bibliography

[Aig] Ronald Aigner. http://www.tudos.org/~ra3.

[Aig01] Ronald Aigner. The development of an IDL-compiler for micro-kernel based
components. Diploma thesis, Technische Universität Dresden, Lehrstuhl für
Betriebssysteme, 2001.

[AMW+03] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of
black boxes. In SOSP ’03: Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 74–89, New York, NY, USA, 2003. ACM
Press.

[Ara] Arachne - dynamic aspect execution. http://www.emn.fr/x-info/

arachne/index.html.

[ASAWM99] Ehab S. Al-Shaer, Hussein M. Abdel-Wahab, and Kurt Maly. HiFi: A new mon-
itoring architecture for distributed systems management. In International Con-
ference on Distributed Computing Systems, pages 171–178, 1999.

[Aspa] AspectC. http://www.cs.ubc.ca/labs/spl/projects/

aspectc.html.

[Aspb] Aspicere C code weaver. http://users.ugent.be/~kdschutt/

aspicere.

[Aspc] The AspectC++ project. http://www.aspectc.org.

[Aspd] AspectJ homepage. http://www.aspectj.org.

[Asp06] Personal communication with olaf spinczyk, February 2006.

[AvD00] Joost Visser Arie van Deursen, Paul Klint. Domain-specific languages: An
annotated bibliography. http://homepages.cwi.nl/~arie/papers/
dslbib/, 2000.

73

http://www.tudos.org/~ra3
http://www.emn.fr/x-info/arachne/index.html
http://www.emn.fr/x-info/arachne/index.html
http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
http://users.ugent.be/~kdschutt/aspicere
http://users.ugent.be/~kdschutt/aspicere
http://www.aspectc.org
http://www.aspectj.org
http://homepages.cwi.nl/~arie/papers/dslbib/
http://homepages.cwi.nl/~arie/papers/dslbib/

Bibliography

[Bal97] Andre D. Balsa. Linux benchmarking - article series in the Linux Gazette.
http://linuxgazette.net/issue22/bench.html, 1997.

[Bat88] Peter Bates. Debugging heterogeneous distributed systems using event-based
models of behavior. In PADD ’88: Proceedings of the 1988 ACM SIGPLAN and
SIGOPS workshop on Parallel and distributed debugging, pages 11–22, New
York, NY, USA, 1988. ACM Press.

[BCS+04] Bruno De Bus, Dominique Chanet, Bjorn De Sutter, Ludo Van Put, and Koen De
Bosschere. The design and implementation of fit: a flexible instrumentation
toolkit. In PASTE ’04: Proceedings of the ACM-SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, pages 29–34, New York,
NY, USA, 2004. ACM Press.

[BDIM04] Paul T. Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
magpie for request extraction and workload modelling. In OSDI, pages 259–272,
2004.

[BIMN03] Paul T. Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan.
Magpie: Online modelling and performance-aware systems. In HotOS, pages
85–90, 2003.

[Bra] Tim Bray. Bonnie - a unix filesystem benchmark. http://www.

textuality.com/bonnie/.

[Böt] Alexander Böttcher. http://www.tudos.org/~ab764283.

[C4] C4 - the CrossCutting C Compiler. http://c4.cs.princeton.edu.

[C406] Personal communication with marc e. fiuczynski, January 2006.

[CKF+02] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem
determination in large, dynamic, internet services, 2002.

[CKF+04] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot–a
technique for cheap recovery, 2004.

[CKFS01] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using AspectC
to improve the modularity of path-specific customization in operating system
code. In Volker Gruhn, editor, ESEC’01. ACM Press, 2001.

[Coh05] William Cohen. Gaining insight into the Linux kernel with kprobes. http:

//www.redhat.com/magazine/005mar05/features/kprobes/,
2005.

74

http://linuxgazette.net/issue22/bench.html
http://www.textuality.com/bonnie/
http://www.textuality.com/bonnie/
http://www.tudos.org/~ab764283
http://c4.cs.princeton.edu
http://www.redhat.com/magazine/005mar05/features/kprobes/
http://www.redhat.com/magazine/005mar05/features/kprobes/

Bibliography

[CSL04] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instru-
mentation of production systems. In USENIX Annual Technical Conference,
General Track, pages 15–28. USENIX, 2004.

[CW76] H. J. Curnow and Brian A. Wichmann. A synthetic benchmark. Comput. J.,
19(1):43–49, 1976.

[Des06] Mathieu Desnoyers. The LTTng usertrace package. http://ltt.polymtl.
ca/svn/ltt-usertrace/README, 2006.

[DFL+05] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc
Ségura-Devillechaise, and Mario Südholt. An expressive aspect language for
system applications with arachne. In Proceedings of the 4th international con-
ference on Aspect-oriented software development, Chicago, USA, March 2005.
ACM Press.

[Dun01] Adam Dunkels. Minimal tcp/ip implementation with proxy support. http:

//www.sics.se/~adam/thesis.pdf, 2001.

[Dun03] Adam Dunkels. Full TCP/IP for 8-bit architectures. In Proceedings of The
First International Conference on Mobile Systems, Applications, and Services
(MOBISYS ‘03), San Francisco, California, May 2003.

[Döb05a] Björn Döbel. Improving system performance using application-level hints.
Großer Beleg, Technische Universität Dresden, Lehrstuhl für Betriebssysteme,
2005.

[Döb05b] Björn Döbel. ORe - a software network switch for l4. not yet published, 2005.

[ECC01] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as inconsistent behav-
ior: A general approach to inferring errors in systems code. In Symposium on
Operating Systems Principles, pages 57–72, 2001.

[FCE05] William Cohen Hien Nguyen Martin Hunt Jim Keniston Brad Chen F. Ch. Eigler,
Vara Prasad. Architecture of systemtap: a Linux trace/probe tool. http://

sourceware.org/systemtap/archpaper.pdf, 2005.

[FGCW05] Marc E. Fiuczynski, Robert Grimm, Yvonne Coady, and David Walker. patch
(1) considered harmful. In HotOS, 2005.

[fry05] The Frysk execution analysis tool. http://sourceware.org/frysk,
2005.

75

http://ltt.polymtl.ca/svn/ltt-usertrace/README
http://ltt.polymtl.ca/svn/ltt-usertrace/README
http://www.sics.se/~adam/thesis.pdf
http://www.sics.se/~adam/thesis.pdf
http://sourceware.org/systemtap/archpaper.pdf
http://sourceware.org/systemtap/archpaper.pdf
http://sourceware.org/frysk

Bibliography

[GLM05] Jan Glauber, Jochen Liedtke, and Frank Mehnert. Fiasco kernel debug-
ger manual. http://os.inf.tu-dresden.de/~fm3/doc/fiasco/

manual.pdf, 2005.

[gra] GraphViz - graph visualization software. http://www.graphviz.org.

[Gro03] Object Management Group. Model-driven architectures. http://www.omg.
org/mda/, 2003.

[Ham97] C. Hamann. The quantitative specification of jitter constrained periodic streams,
1997.

[Hel] Christian Helmuth. http://www.tudos.org/~ch12.

[Hir05] Masami Hiramatsu. Overhead evaluation of kprobes and djprobe
(direct jump probes). http://lkst.sourceforge.net/docs/

probes-eval-report.pdf, 2005.

[Hir06] Masami Hiramatsu. kprobes boosting explained on the Linux kernel mail-
ing list. http://www.ussg.iu.edu/hypermail/linux/kernel/

0601.3/1975.html, 2006.

[IBM] IBM. The Autonomic Computing Manifesto. http://www.research.

ibm.com/autonomic/manifesto/autonomic_computing.pdf.

[JLSU87] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger. Monitoring dis-
tributed systems. ACM Trans. Comput. Syst., 5(2):121–150, 1987.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[Kop97] Hermann Kopetz. Real-Time Systems, Design Principles for Distributed Embed-
ded Applications. Kluwer Academic Publishers, 1997.

[Kri05] R. Krishnakumar. Kernel korner: kprobes-a kernel debugger. Linux J.,
2005(133):11, 2005.

[Lac] Adam Lackorzynski. http://www.tudos.org/~adam.

[Lac02] Adam Lackorzynski. L4Linux on L4Env. Großer Beleg, Technische Universität
Dresden, Lehrstuhl für Betriebssysteme, 2002.

[Lac04] Adam Lackorzynski. L4Linux porting optimizations. Diploma thesis, Technis-
che Universität Dresden, Lehrstuhl für Betriebssysteme, 2004.

76

http://os.inf.tu-dresden.de/~fm3/doc/fiasco/manual.pdf
http://os.inf.tu-dresden.de/~fm3/doc/fiasco/manual.pdf
http://www.graphviz.org
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.tudos.org/~ch12
http://lkst.sourceforge.net/docs/probes-eval-report.pdf
http://lkst.sourceforge.net/docs/probes-eval-report.pdf
http://www.ussg.iu.edu/hypermail/linux/kernel/0601.3/1975.html
http://www.ussg.iu.edu/hypermail/linux/kernel/0601.3/1975.html
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.tudos.org/~adam

Bibliography

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 190–200, New York, NY, USA, 2005. ACM
Press.

[LHR] Jork Löser, Hermann Härtig, and Lars Reuther. A streaming interface for real-
time interprocess communication.

[Lie93] J. Liedtke. Improving IPC by kernel design. In Proceedings of the 14th ACM
Symposium on Operating System Principles (SOSP), pages 175–188, Asheville,
NC, December 1993.

[Lie95] Jochen Liedtke. Improved address-space switching on pentium processors by
transparently multiplexing user address spaces. Technical Report 933, GMD,
November 1995.

[Lie96a] J. Liedtke. L4 reference manual (486, Pentium, PPro). Arbeitspapiere der GMD
No. 1021, GMD — German National Research Center for Information Technol-
ogy, Sankt Augustin, September 1996. Also Research Report RC 20549, IBM T.
J. Watson Research Center, Yorktown Heights, NY, September 1996.

[Lie96b] Jochen Liedtke. Colorable memory, 1996.

[Mic06] Microsoft Corporation. Windows 2000: Overview of performance mon-
itoring. http://www.microsoft.com/technet/prodtechnol/

Windows2000Pro/reskit/part6/proch27.mspx, 2006.

[Moo01] Richard J. Moore. A universal dynamic trace for Linux and other operating
systems. In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, pages 297–308, Berkeley, CA, USA, 2001. USENIX Association.

[MSC+05] Chris Matthews, Owen Stampflee, Yvonne Coady, Jonathan Appavoo, Marc E.
Fiuczynski, and Robert Grimm. Hey ... you got your paradigm in my operating
system! In Proceedings of the 2nd ECOOP Workshop on Programming Lan-
guages and Operating Systems, Glasgow, UK, 2005.

[Nie99] David C. Niemi. Unixbench - a unix system benchmark. http://www.tux.
org/pub/tux/benchmarks/System/unixbench/, 1999.

[NS03] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2), 2003.

77

http://www.microsoft.com/technet/prodtechnol/Windows2000Pro/reskit/part6/proch27.mspx
http://www.microsoft.com/technet/prodtechnol/Windows2000Pro/reskit/part6/proch27.mspx
http://www.tux.org/pub/tux/benchmarks/System/unixbench/
http://www.tux.org/pub/tux/benchmarks/System/unixbench/

Bibliography

[Pie04] Matt Pietrek. A series of blog entries related to work with event tracing for win-
dows (etw). http://blogs.msdn.com/matt_pietrek/archive/

2004/09/16/230700.aspx, 2004.

[Poh] Martin Pohlack. http://www.tudos.org/~mp26.

[Poh04] Martin Pohlack. The rt_mon monitoring framework. Implementation of a moni-
toring framework, 2004.

[Poh06] Martin Pohlack. The ferret monitoring framework. not yet published, 2006.

[Rie05] Torvald Riegel. A generalized approach to runtime monitoring for real-time sys-
tems. Diploma thesis, Technische Universität Dresden, Lehrstuhl für Betrieb-
ssysteme, 2005.

[SAG04] Universität Karlsruhe System Architecture Group, Dept. of Computer Science.
L4 experimental kernel reference manual, version x.2. http://l4ka.org/
projects/pistachio/l4-x2-r5.pdf, 2004.

[SE94] Amitabh Srivastava and Alan Eustace. Atom: a system for building customized
program analysis tools. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages 196–
205, New York, NY, USA, 1994. ACM Press.

[SS97] M. I. Seltzer and C. Small. Self-monitoring and self-adapting operating systems.
Proceedings of the Sixth workshop on Hot Topics in Operating Systems, 1997.

[Stö05] Jan Stöß. Using operating system instrumentation and event logging to sup-
port user-level multiprocessor schedulers. Diploma thesis, System Architecture
Group, University of Karlsruhe, Germany, March 24 2005.

[SVB+03] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. DuVarney. Model-
carrying code: A practical approach for safe execution of untrusted applications,
2003.

[Tha00] H. Thane. Monitoring, testing and debugging of distributed real-time systems,
2000.

[TUDa] Operating Systems Group Technische Universität Dresden. The l4 environment.
www.tudos.org/l4env.

[TUDb] Operating Systems Group Technische Universität Dresden. L4Linux. http:

//www.tudos.org/L4/LinuxOnL4/.

78

http://blogs.msdn.com/matt_pietrek/archive/2004/09/16/230700.aspx
http://blogs.msdn.com/matt_pietrek/archive/2004/09/16/230700.aspx
http://www.tudos.org/~mp26
http://l4ka.org/projects/pistachio/l4-x2-r5.pdf
http://l4ka.org/projects/pistachio/l4-x2-r5.pdf
www.tudos.org/l4env
http://www.tudos.org/L4/LinuxOnL4/
http://www.tudos.org/L4/LinuxOnL4/

Bibliography

[UB05] AG Programmiersprachen Übersetzer und Softwaretechnik Universität Bre-
men, Fachbereich Mathematik/Informatik. Homepage of the uDraw-
Graph visualization tool. http://www.informatik.uni-bremen.de/
uDrawGraph/, 2005.

[Wei84] Reinhold P. Weicker. Dhrystone: a synthetic systems programming benchmark.
Commun. ACM, 27(10):1013–1030, 1984.

[Wei03] Alexander Weigand. Tracing unter L4/Fiasco. Großer Beleg, Technische Uni-
versität Dresden, Lehrstuhl für Betriebssysteme, 2003.

[YD00] Karim Yaghmour and Michel Dagenais. Measuring and characterizing system
behavior using kernel-level event logging. In USENIX Annual Technical Confer-
ence, General Track, pages 13–26, 2000.

79

http://www.informatik.uni-bremen.de/uDrawGraph/
http://www.informatik.uni-bremen.de/uDrawGraph/

	Introduction
	Related work
	The Dresden Real-Time Operating System
	Monitoring
	Overview
	Monitoring in Linux
	Monitoring in Windows
	Monitoring in DROPS
	Evaluation and visualization tools

	Code generation
	Overview
	The DROPS IDL Compiler
	Aspect-oriented programming

	Autonomic computing
	Benchmarking

	Design
	Defining goals
	Basic requirements

	Event retrieval
	Review of existing facilities
	Communication tracing
	Event layout
	Instrumentation rules
	Sensors and monitors

	Instrumenting the L4 Environment
	Instrumenting L4Linux
	Storing data
	Data processing

	Implementation
	A tracing plugin for Dice
	Network data transfer
	Instrumenting L4Linux
	Porting kProbes
	Ferret emulation for Linux
	Improving L4Linux task management

	A self-healing web server
	Magpie enhancements

	Evaluation
	Test setup
	Analysis of DROPS
	IPC sizes
	String IPC throughput
	String IPC vs. shared-memory communication
	Semaphore usage

	Analysis of L4Linux
	kProbes Overhead
	Native Linux vs. L4Linux
	Task caching in L4Linux

	Conclusion and outlook
	Conclusion
	Future work

	Bibliography

