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Abstract

This thesis is concerned with nonlinear analyses of BWR stability behaviour, contrib-
uting to a deeper understanding in this field. Despite negative feedback-coefficients
of a BWR, there are operational points (OP) at which oscillatory instabilities occur. So
far, a comprehensive and an in-depth understanding of the nonlinear BWR stability
behaviour are missing, even though the impact of the significant physical parameters
is well known. In particular, this concerns parameter regions in which linear stability
indicators, like the asymptotic decay ratio, lose their meaning.

Nonlinear stability analyses are usually carried out using integral (system) codes,
describing the dynamical system by a system of nonlinear partial differential equa-
tions (PDE). One aspect of nonlinear BWR stability analyses is to get an overview
about different types of nonlinear stability behaviour and to examine the conditions of
their occurrence. For these studies the application of system codes alone is inappro-
priate. Hence, in the context of this thesis, a novel approach to nonlinear BWR stabil-
ity analyses, called RAM-ROM method, is developed. In the framework of this ap-
proach, system codes and reduced order models (ROM) are used as complementary
tools to examine the stability characteristics of fixed points and periodic solutions of
the system of nonlinear differential equations, describing the stability behaviour of a
BWR loop. The main advantage of a ROM, which is a system of ordinary differential
equations (ODE), is the possible coupling with specific methods of the nonlinear dy-
namics. This method reveals nonlinear phenomena in certain regions of system pa-
rameters without the need for solving the system of ROM equations. The stability
properties of limit cycles generated in Hopf bifurcation points and the conditions of
their occurrence are of particular interest. Finally, the nonlinear phenomena predicted
by the ROM will be analysed in more details by the system code. Hence, the thesis is
not focused on rendering more precisely linear stability indicators like DR.

The objective of the ROM development is to develop a model as simple as possible
from the mathematical and numerical point of view, while preserving the physics of
the BWR stability behaviour. The ODEs of the ROM are deduced from the PDEs de-
scribing the dynamics of a BWR. The system of ODEs includes all spatial effects in
an approximated (spatial averaged) manner, e.g. the space-time dependent neutron
flux is expanded in terms of a complete set of orthogonal spatial neutron flux modes.
In order to simulate the stability characteristics of the in-phase and out-of-phase os-
cillation mode, it is only necessary to take into account the fundamental mode and
the first azimuthal mode.

The ROM, originally developed at PSI in collaboration with the University of lllinois
(PSI-1llinois-ROM), was upgraded in significant points:

e Development and implementation of a new calculation methodology for the
mode feedback reactivity coefficients (void and fuel temperature reactivity)



e Development and implementation of a recirculation loop model; analysis and
discussion of its impact on the in-phase and out-of-phase oscillation mode

e Development of a novel physically justified approach for the calculation of the
ROM input data

e Discussion of the necessity of consideration of the effect of subcooled boiling
in an approximate manner

With the upgraded ROM, nonlinear BWR stability analyses are performed for three
OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one for
NPP Brunsbittel (cycle16) for which measuring data of stability tests are available. In
this thesis, the novel approach to nonlinear BWR stability analyses is extensively
presented for NPP Leibstadt. In particular, the nonlinear analysis is carried out for an
operational point (OP), in which an out-of-phase power oscillation has been observed
in the scope of a stability test at the beginning of cycle 7 (KKLc7_rec4). The ROM
predicts a saddle-node bifurcation of cycles, occurring in the linear stable region,
close to the KKLc7_rec4-OP. This result allows a new interpretation of the stability
behaviour around the KKLc7_rec4-OP.

The results of this thesis confirm that the RAM-ROM methodology is qualified for
nonlinear BWR stability analyses.
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Introduction 1

1 Introduction

Boiling water reactor (BWR) stability analysis is of paramount interest since it affects
the operation of a large number of commercial nuclear reactors. Due to power in-
crease which is the current trend, stability becomes a limiting design concern. The
introduction of high efficiency fuels, triggered by improved design of fuel assemblies,
enables operation at higher power densities resulting in higher void feedback reactiv-
ity and decreased heat transfer time constants which destabilize the BWR system.
Another trend of future design of BWRs is to increase the core size which causes a
weaker spatial coupling within the neutron field leading to a stronger susceptibility to
regional power oscillations. In fact, these trends affect unfavourably the BWR stability
behaviour. Hence, in order to guarantee safe and stable BWR operation, an in-depth
understanding of the BWR stability behaviour is necessary [1,2].

From theoretical and experimental studies, it is well known that for dynamical sys-
tems where two phase flow occurs like BWRs there are operational points (OP) in
which unstable behaviour is observed. Instabilities of such systems can be subdi-
vided into two main classes. These are

1) static instabilities (thermal-hydraulic nature such as excursive Ledingegg in-
stability [3,4]) and

2) dynamic instabilities [3,4].

A common feature of the class of static instabilities is that the system suddenly de-
parts from the initial operational point to reach a new operational point. In contrast to
static instabilities, dynamic instabilities are characterized by either self-sustained pe-
riodic or diverging oscillations of the state variables. Examples of dynamic instabilities
are density wave oscillations, pressure-drop oscillations, acoustic instabilities, con-
densation-induced instabilities (appearing in TH-systems) and power oscillations
(neutron kinetic — thermal hydraulic coupled oscillations).

In the context of the nonlinear BWR stability analysis, dynamic instabilities, in particu-
lar power oscillations of coupled TH-neutron kinetic systems are of paramount inter-
est. The physical mechanism behind stable and unstable oscillatory behaviour is
based on the nonlinear character of the hydraulic equations and on the nonlinear
coupling between the neutron kinetics and the thermal hydraulics via void and Dop-
pler feedback reactivity [5-14].

In BWRs, stable or unstable power oscillations usually occur in the low-flow high-
power region of the power flow map. Concerning operational safety, this region
should be excluded from the nominal operating domain. If the amplitudes of the
power oscillations become large enough, technical safety limit values, such as the
critical power ratio, could be exceeded and fuel element failure could be expected, if
monitoring systems fail. To this end, in GE-BWRs, the so-called exclusion region en-
closing the low-flow high-power region is conservatively defined for the specific cycle.
Thereby, the definition of the exclusion region is based on validated system code
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analyses in combination with stability experiments. In addition to that, the definition of
specific counteractive measures allows leaving operational points in which power
oscillations are detected by the installed measuring equipment. Figure 1.1 shows the
exclusion region for NPP Leibstadt (KKL) cycle 7 [5].

Power Flow Map for NPP Leibstadt cycle 7

100 LRI LA T T T ' T

< 80F A
X I
< [| exclusion region | /
S 6ol tl
3 I ®
(Al
© [ ]
g 40 i L~ e KKLc7record4 OP: ]
g - Thermal Power (59.5%)
= [ Core Flow (36.5%)

20 -

[ 112% rod-line
-l -l -l AAAAIAAAAIAAAlllAAAlAAlAlAAAAlAAAA

0
O 10 20 30 40 50 60 70 80 90 100
Core Flow (%)

Figure 1.1:  Power flow map for NPP Leibstadt cycle 7. An out-of-phase power
oscillation was observed in the KKLc7_rec4-OP (KKL cycle 7 record
#4) during the stability test at the beginning of cycle 7 [6].

Global or in-phase oscillations and regional or out-of-phase oscillations are two kinds
of observed power oscillations. Detailed investigations revealed [1] that in the in-
phase mode, the fundamental mode oscillates, while in the out-of-phase mode the
first (and/or second) azimuthal mode(s) oscillates: when the power or flow rises in
one half of the core, it decreases in the other half whereas the total mass flow and
the core power remain constant. The detection of regional power oscillation requires
more effort then for the detection of global power oscillation because the phase shifts
between signals of all LPRMs have to be evaluated separately to determine the re-
gional power oscillation state [12].

NPP owners are generally interested in minimizing the exclusion region because it
restricts significantly the nominal operation domain. For shrinking of the exclusion
region sufficient knowledge about the cycle specific BWR stability behaviour is nec-
essary. In particular, conditions of the excitation of power oscillation and its stability
behaviour should be taken into account.
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1.1 Focus of the thesis

In general, the dynamics of a BWR can be described by a system of coupled nonlin-
ear partial differential equations. From nonlinear dynamics, it is well known that such
systems show, under specific conditions, a very complex temporal behaviour which is
reflected in the solution manifold of the corresponding system of equations. Conse-
quently, to understand the nonlinear stability behaviour of a BWR, the solution mani-
fold of the system of differential equations must be examined. In particular, with re-
gard to the existence of operational points in which stable and unstable power oscil-
lations are observed, stable or unstable fixed points and stable or unstable periodic
solutions are of specific interest [16] in the frame of this thesis. Note that stable or
unstable periodical solutions correspond to stable or unstable limit cycles. Saddle-
node bifurcation of cycles (turning points or fold bifurcations) [17], period doubling
and other nonlinear phenomena [17-22] could also be important from the reactor
safety point of view.

It is stressed here that unstable limit cycles (repellors) require special attention re-
garding safe BWR operation. If the unstable limit cycle is “born” in a subcritical Hopf
bifurcation point, stable fixed points and unstable limit cycles will coexist in the linear
stable region [16,17]. The corresponding phase space portrait (see Appendix A) is
depicted in Figure 1.2. If a sufficiently small perturbation is imposed on the system,
the state variables will return to the steady state solution. The terminology “suffi-
ciently small perturbation” means that the trajectory starts within the basin of attrac-
tion of the fixed point (see Appendix A). Roughly speaking, the perturbation ampli-
tude of the phase state variables is less than the repellor amplitude (see Appendix
A). But if a sufficiently large perturbation is imposed on the system, the state vari-
ables will diverge in an oscillatory manner. The terminology “sufficiently large pertur-
bation” means that the perturbation amplitude is larger than the repellor amplitude. In
this case the trajectory will start out the basin of attraction of the fixed point.

repellor

stable fixed point

@

Figure 1.2:  Phase space portrait of an unstable limit cycle (unstable periodical
solution) close to subcritical Hopf bifurcation (see Appendix A).
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It should be noticed here that a linear stability analysis does not allow to examine the
existence of unstable limit cycles, e.g. the asymptotic decay ratio is less than one (
DR <1). This example shows that conceivably unstable conditions (from the nonlin-
ear point of view) are not recognized and the operational safety limits could be vio-
lated. Hence, in order to reveal this kind of phenomena, nonlinear BWR stability
analysis is necessary.

This thesis is concerned with nonlinear analyses of BWR stability behaviour, contrib-
uting to a deeper understanding in this field. Despite negative feedback-coefficients
of a BWR, there are operational points (OP) at which oscillatory instabilities occur. So
far, a comprehensive and an in-depth understanding of the nonlinear BWR stability
behaviour are missing, even though the impact of the significant physical parameters
is well known. In particular, this concerns parameter regions in which linear stability
indicators, like the asymptotic decay ratio, lose their meaning.

Nonlinear stability analysis is usually carried out using integral (system) codes, de-
scribing the dynamical system by a system of nonlinear partial differential equations
(PDE). One aspect of nonlinear BWR stability analyses is to get an overview about
different types of nonlinear stability behaviour and to examine the conditions for
which they occur. This means:

1) to find the critical values of selected parameters at which the dynamical sys-
tem experiences a bifurcation and

2) to analyse the bifurcation type revealing the type of oscillatory instabilities
generated at the bifurcation point.

For these studies, the application of system codes alone is inefficient and cumber-
some. System codes are not able to exactly determine, for instance, the critical val-
ues of parameters at which subcritical Hopf bifurcations, generating unstable limit
cycles, occur. These critical values of parameters can be calculated by system codes
in an approximated manner under large computational effort only. In addition to that,
the behaviour of the algorithms, employed by system codes, in the close neighbour-
hood of bifurcation points is not well known. They should, however, correctly simulate
the temporal behaviour sufficient far away from bifurcation points.

In the context of this thesis, a novel approach to nonlinear BWR stability analyses,
called RAM-ROM method, is developed. Here, “RAM” is a synonym for system
codes. In the framework of this approach, integrated BWR (system) codes
(RAMONADS5, Studsvik/Scandpower) and simplified BWR models (reduced order
model, ROM) are used as complementary tools to examine the stability characteris-
tics of fixed points and periodic solutions of the nonlinear differential equation system
describing the stability behaviour of a BWR loop [23-26]. The intention is, firstly, to
identify the stability properties of certain operational points by performing ROM
analysis and, secondly, to apply the system code RAMONAS for a detailed nonlinear
stability investigation in the neighbourhood of these operational points. The advan-
tage of ROMs is the possible straightforward coupling with specific methods of the
nonlinear dynamics. From this methodology, new stability indicators for nonlinear
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phenomena like limit cycles can be calculated [16-22]. In the scope of this work, the
ROM is coupled with methods of the semi-analytical bifurcation analysis (bifurcation
code BIFDD [16]). This method allows the calculation of a stability indicator (Floquet
parameter) for limit cycles which are generated particularly by Hopf bifurcations
[16,19].

In other words, in the context of the ROM analysis, an overview about different types
of nonlinear behaviour of the BWR for selected parameter spaces will be obtained. In
particular, the stability properties of limit cycles generated in Hopf bifurcation points
and the conditions under which they occur will be analysed. The nonlinear analysis
using system codes is applied to verify the ROM results and to perform a more de-
tailed analysis. Hence, the use of RAM and ROM as complementary tools leads to a
more reliable nonlinear BWR stability analysis.

The objective of the ROM development is to develop a model as simple as possible
from the mathematical and numerical point of view while preserving the physics of
the BWR stability behaviour. The ODEs of the ROM are deduced from the PDEs de-
scribing the dynamics of a BWR. The system of ODEs includes all spatial effects in
an approximated (spatial averaged) manner, e.g. the space-time dependent neutron
flux is expanded in terms of a complete set of orthogonal spatial neutron flux modes.
In order to simulate the stability characteristics of the in-phase and out-of-phase os-
cillation mode, for instance, it is only necessary to take into account the fundamental
mode and the first azimuthal mode®. The neglecting of all the other higher modes
reduces the number of ODEs significantly because each neutron flux mode requires
an ODE for its mathematical description.

Note that, in some cases, the application of linear stability analyses is sufficient for
BWR stability analysis (see Appendix A). Here, the decay ratio (DR) is often used as
linear stability indicator that loses its physical meaning in nonlinear operational re-
gime. The thesis, however, is not focused on rendering more precisely linear stability
indicators like DR.

This work is a continuation of the previous work at the Paul Scherrer Institute (PSI,
Switzerland) and the University of lllinois (USA) on this field [7-15]. The current ROM
developed originally at PSI in collaboration with the University of lllinois (PSI-lllinois-
ROM) was upgraded in two significant points:

e Development and implementation of a new calculation methodology for the
mode feedback reactivity coefficients (void and fuel temperature reactivity)

e Development and implementation of a recirculation loop model, analysis and
discussion of its impact on the in-phase and out-of-phase oscillation mode

e Development of a novel physically justified approach for the calculation of the
ROM input data

! In the neutron kinetic model of the ROM, only the fundamental mode and the first/second azimuthal
mode are taken into account, because the higher modes have never been observed.



e Discussion of the necessity of consideration of the effect of subcooled boiling
in an approximate manner

With the upgraded ROM, nonlinear BWR stability analyses are performed for three
OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cyclel4) and one for
NPP Brunsbittel (cycle16) for which measuring data of stability tests are available. In
this thesis, the novel approach to nonlinear BWR stability analyses is extensively
presented for NPP Leibstadt. The nonlinear stability analysis for NPP Leibstadt and
NPP Ringhals will be carried out for operational points (KKLc7_rec4-OP [6], see Fig-
ure 1.1 and KKRc14 rec9-OP [28]) in which linear unstable out-of-phase power oscil-
lations were observed during stability tests. In contrast to KKL and KKR, the investi-
gation for NPP Brunsbuttel was conducted for an operational point in which an in-
creasing in-phase power oscillation was observed during the stability test at the be-
ginning of cycle 16 [29].
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1.2 State of the art and previous work

Complex system codes such as RAMONA [30-32] are common practice for BWR
stability analyses. System codes include relative, detailed physical models of all nu-
clear power plant components significant for specific transient analyses. For BWR
stability analyses, the 3D core models used by system codes are of particular impor-
tance to simulate spatial effects such as regional power oscillations [8].

In preparation of the RAMONA input, as a first step, it is necessary to calculate the
microscopic and macroscopic cross sections for a defined uniform cell using lattice
codes such as CASMO or HELIOS [7,8,12,30-32]. The resulting macroscopic cross
sections (XS) are stored in multidimensional XS-tables. Here the XS are functional-
ized with respect to the actual parameters (like void, fuel temperature...) and history
parameters (like burn-up, void history...). The steady state core simulators
(PRESTOZ2, POLCA7, SIMULATE, ...) calculate the 3D distributions of all significant
reactor parameters such as power, burn-up, 3D xenon distribution and 3D void distri-
bution. These 3D distributions are code inputs for system codes that calculate the
BWR transient behaviour in selected operational points.

In the framework of BWR stability analysis, application of so-called linearized ver-
sions of system codes is common practice to calculate the linear stability boundary.
In these system codes, the system of differential equations, describing the BWR sta-
bility behaviour, are linearized. Hence, these code versions are only able to calculate
the local stability characteristics of fixed points as long as the Hartmann-Grol3mann-
theorem [16-22] is fulfilled. As stated before, a linear stability analysis is not capable
to reveal nonlinear phenomena such as limit cycles.

In order to analyse the stability characteristics of limit cycles and the conditions under
which they occur in the exclusion region and its close neighbourhood, nonlinear sta-
bility analysis is necessary. It should be pointed out that user of system codes must
pay attention to the stability behaviour of their algorithms employed. In particular,
physical and numerical effects [33,34] regarding power oscillations and the behaviour
of numerical damping of the algorithms should be known in detail. Numerical diffu-
sion, for example, can corrupt the results of system codes significantly, which is ex-
plained in more detail in the following. Consider the one-dimensional advection equa-
tion

ob oD

—+V—=

S . 1.1
ot 0z (1.1)

This type of differential equation is frequently used in thermal-hydraulics. The solu-
tion is ®(z,t) = F(z-vt) where v is the propagation velocity. If ®(z,t=0)=F(z) is an
initial condition, and S (S =0) is the source term (is not considered continuously),
the solution describes a translation of the initial distribution of the transported quantity
@ with the propagation velocity v.
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In order to integrate the partial differential equation (1.1), a spatial discretization
method using an explicit time-integration algorithm is applied. It follows

OF? = N OF, +(1-N,)DF (1.2)

TE=Az(VD,, /2-A7D,,, [6+...) + At(Dy / 2+ AtD, 16+....) (1.3)

77

where TE is the truncation error of the spatial and time discretization. The truncation
error specifies the spatial and temporal approximations introduced by the discretiza-
tion (represented in this case by a Taylor expansion of the third order). In other
words, the discretization changes the original partial differential equation significantly.
For small At and Az, the resulting equation in this approximation contains a disper-
sion term as well as a diffusion term
2 3
a;()+va¥():8 © 62+V6£_S:ﬂ8_?+88_? : (1.4)
ot oz ot 0z 0z 0z
where u=v/2(Az-vAt)=vAz/2(1-N,) is the numerical diffusivity, N, =VAt/Az is
the Courant number, &=v(Az)?/6-(1- N.)(N. -1) is the numerical dispersion coeffi-
cient, At is the time step and Az is the lattice spacing. The corresponding solution

can be written as
[—y(zlﬂjzt + i[zlﬁ)(z—cAt)]

Here, ®,=®d(z,t =0) is the initial condition. Roughly speaking, the solution (1.5) is a
damped wave with dispersion. This means, the solution will be dampened and
broadened during the time evolution.

D(z,t) =D, (1.5)

As can be seen in the above example, the errors introduced by the numerical algo-
rithms including discretization method, change both the amplitude of the initial distri-
bution (numerical dissipation) and the translational velocity (numerical dispersion).
This means, during the time evolution an initial ® -distribution is deformed and the
summary effect, called numerical diffusion, corrupts the correct solution significantly.
As a consequence, after a sufficient number of time steps the numerical algorithms
deliver a wrong solution.

Numerical diffusion can be reduced by a suitable choice of algorithm related con-
stants like e.g. the Courant number (see equations (1.3) and (1.4)) and time integra-
tion algorithms (e.g. explicit time integration has often less numerical diffusion than
implicit) [33,34]. Note that, some minimal numerical diffusion is necessary to prevent
the growth of numerical induced oscillations. In some modern thermal-hydraulics
codes like RETRAN-3D numerical diffusion is eliminated by the method of character-
istics (MOC). By using system codes with a free nodalization like TRAC(-B) or some
RELAP versions, strong damping effects by numerical diffusion should be expected.
Hence, this type of codes is not suitable for stability analysis without modifications
(as introduction of higher order difference schemes). It is stressed that the integration
of the momentum equation along a closed recirculation loop as defined in RAMONA
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reduces significantly the numerical diffusion effect caused by the momentum equa-
tion (see Appendix C).

In reduced order models, where the partial differential equation (PDE) system is
transformed into an ordinary differential equation (ODE) system, numerical diffusion
does not exist. A question then arises: Is it in principle possible to describe the
nonlinear BWR stability behaviour with a system of ODEs instead of a system of
PDEs? The goal of application of ROMs is to reveal the solution manifold of the BWR
system.

One of the first simplified BWR models was published by March-Leuba, Cacuci and
Perez [35-37]. The intention was to demonstrate the solution manifold of a relatively
simple system of nonlinear differential equations (phenomenological, reduced order,
five-equation model), where the nonlinear analyses were carried out entirely numeri-
cally. This model is represented by a nonlinear dynamic feedback system including a
point kinetic model with one effective group of delayed neutrons, a model for fuel
heat transport with a fuel heat transfer constant, and a second-order void reactivity
model describing the void reactivity behaviour. In order to yield the transfer function
measured from real BWRs, the parameters of the model were adjusted appropriately.
They showed that bifurcating solutions exist (see also Rizwan-uddin [38]) when se-
lected parameters are varied. In particular, they demonstrated that higher bifurcations
(bifurcating periodical solutions) and aperiodic states in certain parameter regions
also exist.

It should be pointed out that this simple reduced order model does not include the
momentum transport [8]. The second-order equation of the void reactivity is devel-
oped only from the mass and energy balance equations. Hence, the March-Leuba
model is not able to describe the density wave phenomenon because of the absence
of the pressure drop balance. However limit cycle power oscillations have been found
with this model. This shows that density wave mechanism does not play a significant
role in power oscillations. This means that the BWR system can be unstable even if it
is stable in a purely hydraulic sense [8]. Later, an extended version (including mo-
mentum balance and recirculation loop) of this model was used to investigate the fuel
behaviour under large amplitude oscillations.

Munoz-Cobo and Verdu (1991) performed an analytical local bifurcation analysis of
the March-Leuba five-equation system using Hopf bifurcation theory [39]. This is the
first BWR stability analysis (known from literature research) for which purely analyti-
cal bifurcation analysis was performed. To this end, they selected one of the system
parameters to be the bifurcation parameter. In order to find the critical value of the
bifurcation parameter, this parameter was varied systematically as long as the Hopf-
conditions are fulfilled while keeping all the other parameters in this model fixed.
Passing the critical parameter value, the fixed points bifurcate to periodic solutions
(limit cycles). To determine the stability characteristics of the periodic solution, they
applied the centre manifold reduction technique for the critical parameter value to
reduce the five-equation system to a two-dimensional equation system [19]. After-
wards, they transformed the resulting two-dimensional equation system into the
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Poincaré normal form [19,20] which yields the information of the stability properties of
the periodic solution at the critical point. This analysis confirmed the results obtained
by March-Leuba et al. (1986) [35-37].

Later, Munoz-Cobo et al. [40-43] developed a ROM in order to study the stability
characteristics of in-phase and out-of-phase power oscillations by performing nu-
merical integration. The neutron kinetic model of this ROM is based on the mode ex-
pansion approach where the space and time dependent neutron flux is expanded in
terms of the LAMBDA modes [44-46]. The thermal-hydraulic behaviour is described
by two hydraulic heated channels which are divided into two axial regions, namely
the single phase region and the two phase region, respectively. The two phase re-
gion is represented by a homogeneous equilibrium model (HEM). They demonstrated
that limit cycle out-of-phase power oscillations only appear when the reactivity feed-
back of the first azimuthal mode is increased artificially. This ROM was later ex-
tended by a mechanistic subcooled boiling model [43]. This means, they introduced a
third axial channel region between the single and two phase region. In effect, they
pointed out qualitatively that the feedback gain necessary to achieve out-of-phase
power oscillations when subcooled boiling is not included in the ROM is more than
twice the gain that is necessary when subcooled boiling is included.

Karve et al. [47] developed an advanced ROM consisting of three sub-models: the
neutron kinetic model (fundamental and first azimuthal mode), the fuel heat conduc-
tion model (three radial regions) and the thermal-hydraulic model (two heated flow
channels, HEM). In the neutron kinetics the mode expansion approach is also ap-
plied (see Munoz-Cobo et al [40-43]) but the space and time dependent neutron flux
Is expanded in terms of the so-called OMEGA modes [48] (In particular, Karve used
analytical expression for the OMEGA modes instead of the real 3D power distribu-
tions as used by Munoz-Cobo et al. [40-43] and Dokhane et al. [12]). The fuel heat
conduction model is based on the one-dimensional (radial), time dependent heat
conduction equation (PDE) for the fuel rod where three distinct radial regions, the fuel
pellet, the gap and the clad are modelled (see Appendix B). In order to reduce the
PDE to ODEs, they assumed a two-piecewise quadratic spatial approximation for the
fuel rod temperature and applied the variation principle approach. To test the validity
of the model (four ODES) using the variation principle method, they also developed a
model (sixty-four ODES) which is based on the eigenfunction expansion method.
They chose the variation principle method as a reasonable compromise between the
accuracy of the solution and the simplicity of the model. In order to convert the PDEs
of the thermal-hydraulics into ODEs, they applied the weighted residual approach
introduced by Clausse and Lahey [49]. Thereby, instead of simple linear approxima-
tions for the space dependence of the single phase enthalpy and the two phase qual-
ity, they introduced simple quadratic approximations for these quantities (see Appen-
dix B). These approximations lead to a five equation system (ODE) describing the
thermal-hydraulics of a heated (or boiling) flow channel. The author's showed, that
these approximations yield stability results of a boiling flow channel that compare well
with the rather complicated functional differential equation (FDE) analysis performed
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in [50]. The BWR stability analysis with this ROM was carried out entirely by numeri-
cal integration.

Most of the previous studies mentioned above applied either pure analytical mathe-
matical manipulations, or pure numerical integration. The application of pure analyti-
cal bifurcation analysis, for instance as applied in [51], is limited to few dimensional
equation systems (few order models like 3 or 4 dimensions) with a fixed parameter
configuration because the algebraic complexity increases rapidly with the number of
system equations. This method is not suited for parameter variation studies because
the specific mathematical manipulation must be repeated for each changed parame-
ter value. Numerical integration, on the other hand, can only be carried out for a lim-
ited number of parameter values. Hence, both methods are limited to a small region
of the rather large parameter space. Hence, computer programs which are capable
to evaluate appropriately the differential equation system could be helpful to avoid
cumbersome algebra. Tsuji et.al. (1993) [81] used a computer program called
BIFOR2 [16] to perform bifurcation analysis of a simplified BWR model.

Van Bragt et al. [52-54], Dokhane et al. [9-15], Zhou et al. [55-57] and Rizwan-uddin
[38] used a new version of BIFOR, called BIFDD, to perform semi-analytical bifurca-
tion analysis of their own simplified BWR models. Firstly, they carried out semi-
analytical bifurcation analysis using BIFDD to examine the stability properties of fixed
points and periodical solutions in selected parameter spaces and secondly they ap-
plied numerical integration method for selected parameters. Note that, the results of
the bifurcation analysis using BIFDD are restricted to Hopf bifurcation points (local
bifurcation analysis). Hence, numerical integration methods are necessary, on one
hand, to independently confirmation the results of the bifurcation analysis using
BIFDD and, on the other hand, to study the solution manifold in parameter regions far
away from Hopf bifurcation points.

The ROM analysis method explained in the previous paragraph was used by van
Bragt et al. [52-54] for stability analyses of natural circulation BWRs. Zhou and Riz-
wan-uddin coupled the Karve-ROM [47] with BIFDD and carried out semi-analytical
bifurcation analysis to obtain a better physical understanding of BWR instabilities.
One of their studies was focused on the role of the pairs of complex conjugated ei-
genvalues of the Jacobian matrix (see Appendix A) with the largest and second larg-
est real parts in determining the in-phase and out-of-phase oscillation modes (eigen-
state) [55,56].

In any of the studies (except van Bragt et al. [54]) mentioned in the last two para-
graphs, the existence of turning points has not been a focus. Rizwan-uddin [38] was
the first who showed the existence of turning points in the March-Leuba five-equation
system. For this purpose: (1) he coupled the March-Leuba model with BIFDD to per-
form semi-analytical bifurcation analysis where (in contrast to Munoz-Cobo and
Verdu (1991)) any of the model parameters can be used as bifurcation parameter
and (2) he carried out numerical integration to confirm the predictions of the bifurca-
tion analysis and to investigate the nonlinear behaviour more distant from the Hopf
bifurcation point. The study of van Bragt et al. [54] was devoted to analyse the impact
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of the void distribution parameter C, and the axial power profile on the thermal-
hydraulic stability behaviour (heated channel model [54]). He found a turning point for
a symmetrically peaked axial power profile. This type of bifurcation does not exist for
a uniformly heated channel.

Dokhane et al. [9-15] developed the PSI-lllinois-ROM and performed nonlinear BWR
stability analysis where the RAM-ROM method was applied for the first time. The
PSI-Illinois-ROM (summarized in Appendix B) consists of three coupled sub-models
which are similar to the Karve-ROM. These are a neutron kinetic model, a fuel heat
conduction model and a thermal-hydraulic model. The goal was to develop a BWR
model as simple as possible from the mathematical and numerical point of view while
preserving the physics of the BWR stability behaviour. A further demand was that the
solution manifold of the ROM should be as close as possible to that one of
RAMONAGS. Hence the physical sub-models of the ROM should be similar to that one
of RAMONAS. The neutron kinetic model of this ROM is based on the two energy
group diffusion approach, where the mode expansion approach is used. Thereby the
space and time dependent neutron flux is expanded in terms of the LAMBDA modes
[46]. The diffusion problem is transformed into the mode-kinetic equations in which
the mode-feedback reactivities describe the feedback from the thermal-hydraulics to
the neutron kinetics via the void- and Doppler-effect. In the expressions for the mode-
feedback reactivities, the so-called mode-feedback reactivity coefficients will be cal-
culated from the specific RAMONAS model.

The fuel heat conduction model of the PSI-lllinois ROM is completely adopted from
the Karve-ROM [47]. The thermal-hydraulic model is described by two representative
heated flow channels. As used by Karve et al. [47], the single phase enthalpy and the
two phase quality have spatially quadratic profiles and the partial differential equation
system is transformed into an ordinary differential equation system by applying the
weighed residual procedure [12,47]. The main advantage of the thermal-hydraulic
model of the PSI-lllinois-ROM is that the behaviour of the two phase flow is repre-
sented by the drift flux model developed by Rizwan-uddin [58-61].

Dokhane et al. (2004) [12] applied the PSI-lllinois-ROM to analyse the Leibstadt op-
erational point KKLc7 record 4. Comprehensive parameter variation study was per-
formed and its impact on the stability boundary and nature of the Hopf bifurcation
was analysed. This investigation allowed the first direct assessment of the sensitivity
of the developed ROM, viz. of both its applicability and its limitations. It was found
that the SB and bifurcation characteristics are sensitive regarding variation of certain
operating and design parameters, e.g. the drift flux parameters (V; and C;) or the
inlet and exit pressure loss coefficients (K, . and K, ) [12]. From these results fol-
lows that particular attention should be paid to evaluate adequately the design and
operating parameters.

The main discrepancies between RAMONA and PSI-lllinois-ROM are:

1) The PSI-lllinois-ROM could not predict the correct oscillation mode. While the
stability test and RAMONA predict an increasing out of phase power oscilla-
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tion,

the ROM predicts an in-phase power oscillation. This was justified only

by the limitations of the feedback reactivity model [12].

2) The location of the reference OP with respect to the stability boundary in the

N

sub

- DP,, -operating plane is not correct predicted by the PSI-lllinois-ROM

(see Figure 1.3) [12]:

RAMONA predicts the qualitative behaviour in the neighbourhood of the
reference OP as follows: (1) The higher the core inlet subcooling, the
more unstable the system is. (2) The reference OP is located in the lin-
ear unstable region close to the SB whereby N, . <N, « (N, is the
critical core inlet subcooling for which the Hopf conditions are fulfilled
and N, . is the core inlet subcooling corresponding to the reference
OP).

The opposite behaviour is predicted by the PSI-lllinois-ROM: (1) The
higher the core inlet subcooling, the more stable the system become.
(2) The reference OP is located in the linear unstable region close to
the SB whereby N_, . >N

sub,c sub,ref *

Predictions of
' S
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Figure 1.3: Locations of the reference OP respect to the stability boundary pre-

dicted by RAMONAGS and PSI-lllinois-ROM.
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1.3 Thesis outline
The thesis has two principle aspects:
- ROM extensions (chapter 3) and
- BWR stability analysis using the RAM-ROM method (chapter 4).

In particular, the RAM-ROM method is applied to NPP Leibstadt, NPP Ringhals and
NPP Brunsbittel. A detailed demonstration of the RAM-ROM method is given for
NPP Leibstadt in chapter 4. The analysis for NPP Brunsbittel and NPP Ringhals are
summarized briefly in Appendix G and Appendix H.

Chapter 2 provides an introductory description of the methodology of the present
nonlinear BWR stability analysis research. This chapter includes general remarks to
nonlinear stability analysis (section 2.2, more details of the mathematical description
is given in Appendix A). Sections 2.3 and 2.4 present the two independent ROM-
techniques: (a) the semi-analytical bifurcation analysis with the bifurcation code
BIFDD and (b) numerical integration of the ROM differential equation system. A gen-
eral description of the new calculation method of the ROM-input is presented in sec-
tion 2.6 and a corresponding example is presented in section 4.2 of chapter 4 for
NPP Leibstadt.

In section 3.1, a brief overview about the three sub-models of the PSI-lllinois ROM is
shown, while a detailed description is presented in Appendix B. In section 3.2 the
mode feedback reactivity calculation is discussed and the new calculation methodol-
ogy of the mode feedback reactivity coefficients is presented.

The recirculation loop model and its effect on the stability behaviour are presented in
section 3.3. The physical model of the recirculation loop and the final ODE for the
channel inlet velocities is developed in subsection 3.3.1. As a starting point, its effect
on the stability behaviour of a simple thermal-hydraulic one heated channel model
(sub-model of the ROM) is analysed in subsection 3.3.2. The following investigation,
carried out in subsection 3.3.3, is devoted to study the effect of the recirculation loop
on the BWR stability behaviour using the ROM. Thereby the effect on the in-phase
and out-of-phase oscillation modes (oscillation state) are analysed.

In section 3.4, the necessity of consideration of the effect of subcooled boiling in an
approximate manner using a profile fit model will be discussed [27]. In subsection
3.4.1 is presented the profile fit model developed originally by Levy et al. (1967) [27].
The first analysis with the profile fit model carried out in subsection 3.4.2 was de-
voted to study the differences between the axial void profiles provided by the original
two-phase flow model and the subcooled boiling model. The aim of the analysis per-
formed in subsection 3.4.3 is to compare the effect of the use of the uniform axial
power profile in the ROM with the effect of neglecting subcooled boiling on the axial
void profiles.

An in-depth nonlinear BWR stability analysis employing the RAM-ROM method is
demonstrated in chapter 4. To this end, at first, in section 4.1 RAMONA analysis at
the reference OP is performed. In particular, the steady state analysis and the corre-
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sponding transient analyses are presented in subsections 4.1.1 and 4.1.2. After the
RAMONA analysis, the calculation of the ROM input parameters is carried out in sec-
tion 4.2. The adjustment of the axial void profile, the estimation of the drift flux pa-
rameters (V; and C,) and the calculation of the ROM pressure drops are presented
explicitly in the subsections 4.2.1, 4.2.2 and 4.2.3. In section 4.3 the ROM analysis at
the reference OP is performed and semi-analytical bifurcation analysis is carried out
in appropriated parameter spaces. The comparative study with RAMONA and ROM
IS carried out in section 4.4, where a parameter variation study is performed for the
core inlet subcooling and the steady state external pressure drop.

In section 4.5, an in-depth nonlinear stability analysis is carried out in which the dis-
crepancy between results of the semi-analytical bifurcation analysis, achieved with
BIFDD, and numerical integration of the ROM equation system is explained by the
existence of saddle-node bifurcation of cycles (also called fold bifurcation or turning
point).

Section 4.6 is devoted to reveal the relation of the stability boundary, calculated in
the N, -DP,, -parameter space, to the N, -N, -parameter space. This section is
organized in three parts. In the first part is discussed the physical meaning of the SB
calculated in the N, - N, -parameter space. In Part 2 is shown the relation of the SB
calculated in the N, -DP,, -parameter space to the SB calculated in the N, -N
parameter space. The last part of this section is an extension of part 2.

sub ~ 'Npch ~
Finally, summary and conclusions based on the thesis results are given in chapter 5.
Besides, recommendations to future work are also given in this chapter.

1.4 Codes and programs used in this thesis

In this section, a brief overview over the different codes employed in this thesis is
given.

e System code RAMONADS: All system code analyses carried out for BWR sta-
bility analyses have been performed with the Studsvik-Scanpower-BWR code
RAMONAS [30-32]. This code is described shortly in Appendix C.

e Bifurcation code BIFDD: The local bifurcation analysis (semi-analytical bifur-
cation analysis) is performed with the bifurcation code BIFDD [16] written in
FORTRAN language. A short description of BIFDD is given in section 2.3. The
input parameter vector, the initial guess for the phase space variables, the
ROM equation system and its Jacobian matrix are also represented by
FORTRAN-subroutines calling the BIFDD code.

e MATLAB: The numerical integration is carried out with the numerical integra-
tion code written in the MATLAB environment (see section 2.4) [12].

e LAMBDA_REAC code: The LAMBDA REAC code is used to calculate the
mode reactivities, the spatial neutron flux modes (LAMBDA-modes, eigenvec-
tors ‘i’n(F)) and the corresponding eigenvalues (see subsection 3.2.2) [46].
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2 Methodology

2.1 An overview

In the framework of the applied methodology of nonlinear BWR stability analyses,
integrated BWR (system) codes and simplified BWR models are used as comple-
mentary tools to examine the stability properties of fixed points and periodical solu-
tions (Figure 2.1). It will be repeated that this thesis is devoted to reveal and
identify nonlinear core behaviour of a BWR. A refinement, for instance, of the
DR (as linear stability indicator) estimation is not the objective of this work. The
intention is, firstly, to identify the stability properties of certain operational points by
performing ROM analysis and, secondly, to apply the system code for a detailed sta-
bility investigation in the neighbourhood of these operational points. All system code
analyses reported in this thesis have been carried out with the Studsvik-Scanpower-
BWR code RAMONAS.

Detailed BWR-Model (RAM) Reduced order BWR-Model (ROM)

- System Code Analysis “ - Semi-analytical Bifurcation Analysis
- Numerical Integration

\d \d

Characteristic: Characteristic:
Relative detailed physical models of all - Minimum number of system equations
significant NPP-components - Reduction of the geometrical complexity
- The most of the stability related effects are
Advantage: modeled
Stability characteristic of a BWR is modeled
close to physical reality Advantage:
Coupling with methods of the nonlinear dynamics
Disadvantage: =» new stability indicators!!!
- In general parameter tuning is necessary
- The behaviour of the algorithms used for the " ]
solution of the differential equations close to Disadvantage:
i : R - Many additional approximations
bifurcation points is not well-known A .
- Area of validity has to be known

Figure 2.1:  Overview over the methodology applied for the nonlinear BWR stability
analyses where RAMONAS5 and ROM are used as complementary
tools.

System codes are computer programs which include detailed (space-dependent)
physical models of all nuclear power plant components which are significant for a
particular transient analysis. Therefore, such detailed BWR models should be able to
represent the stability characteristics of a BWR close to the physical reality. Nonlinear
BWR stability analysis using large system codes is currently common practice in
many laboratories [12]. A particular requirement is the integration of a 3D neutron
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kinetic model, which permits the analysis of regional or higher mode stability behav-
iour. A detailed investigation of the complete solution manifold of the nonlinear equa-
tions describing the BWR stability behaviour by applying system codes needs com-
prehensive parameter variation studies which require large computational effort.
Hence system codes are inappropriate to reveal the complete nonlinear stability
characteristics of a BWR. Furthermore, in section 1.2 was mentioned that user of
system codes must pay attention to the stability behaviour of the algorithms em-
ployed [33,34]. In particular, physical and numerical effects regarding power oscilla-
tions and the behaviour of numerical damping of the algorithms should be known in
detail. As demonstrated in section 1.2, numerical diffusion can corrupt the results of
system codes significantly. Therefore, reduced order analytical models could be help-
ful to get a first overview over the stability landscape to be expected.

The ROM is characterized by a minimum number of system equations which is real-
ized by the reduction of the geometrical complexity. One demand on the ROM is, be-
cause the ROM sub-models should be as close as possible to the sub-models used
in RAMONA, that the solution manifold of the RAMONA model should be as close as
possible to the solution manifold of the ROM. E.g., both neutron kinetic models (ROM
and RAMONA) are based on the two neutron energy group diffusion equations. Both
thermal-hydraulic two phase flow models are represented by models which consider
the mechanical non-equilibrium (different velocities of the phases of the fluid) [9-
15,30,32].

The main advantage of employing ROM’s is the possible coupling with codes which
include methods of nonlinear dynamics like bifurcation analysis. In the framework of
application of such techniques, the scope of BWR stability analyses can be ex-
panded significantly. For example, bifurcation analysis of a BWR system leads to an
overview over types of instabilities. The existence of stable and unstable periodical
solutions (correspond to limit cycles) can be examined reliably. Further, the stability
behaviour of global and regional power oscillation states can be investigated in detalil.

In the scope of the present ROM analyses two independent techniques are em-
ployed. These are the semi-analytical bifurcation analysis with the bifurcation code
BIFDD and the numerical integration of the ROM differential equation system. Bifur-
cation analysis with BIFDD determines the stability properties of fixed points and pe-
riodical solutions. For independent confirmation of these results, the ROM system will
be solved directly by numerical integration for selected parameters.

Another advantage of the present ROM application is that the ROM-input is based on
the specific RAMONAS model and its steady state solution for a selected operational
point, called reference operational point (reference OP). This means, in the frame-
work of our approach, a steady state RAMONAS run for the reference OP is neces-
sary before the ROM analyses can be performed. One principle demand on the pro-
cedure for calculating the ROM-input is that the steady state conditions of the refer-
ence OP, predicted by the RAMONAS model, are simulated correctly by the ROM.
Only in this case it is reasonable to perform specific system code investigations in an
environment where unstable behaviour is predicted by the ROM analysis.
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2.2 Nonlinear stability analysis

Generally, stability analysis is the investigation of the temporal behaviour of the state
variables after an internal or external perturbation is imposed on the dynamical sys-
tem, while one or more system parameters will be varied in their domain of definition.
If the system is stable, all state variables converge to the equilibrium point also called
singular fixed point (or in its close neighbourhood, also called “Lyapunov stability”
[17-20,22]). If the system is unstable, at least one of the state variables is diverging in
an oscillatory or exponential manner. The critical value of the system parameter(s)
which separates stable fixed points from unstable ones is the so-called stability
boundary. A detailed description is given in Appendix A.

For BWR stability analysis, application of linear stability analysis is common practice.
A linear stability analysis allows analysing the local stability behaviour of fixed points
only (see Figure 2.2). It can be applied as long as the Hartmann-Grofimann-theorem
(HG-theorem, see Appendix A) is fulfilled. The terminology “analysing the local stabil-
ity behaviour of fixed points” means to reveal all solutions of the dynamical system
near an equilibrium point (or singular fixed point) of the state space (or phase space).
The HG-theorem is of particular importance because it justifies the application of lin-
ear stability analysis of nonlinear dynamical systems.

A @ o

Stable fixed points \\y ke @ Unstable fixed pointg

Figure 2.2:  Linear stability analyses reveal only the local stability behaviour of
fixed points, while the stability behaviour of limit cycles cannot be ana-
lysed. Figuratively, a linear stability analysis can reveal only the phase
space portrait in a close neighbourhood of the singular fixed point.

In order to explain the limitation of a linear stability analysis more in detail, the follow-
ing consideration is made. Supposing the system parameter y, (will be defined later)
is varied in its domain of definition. For all y, € R the temporal behaviour of the state
variables is analysed. The local stability behaviour of the fixed point can change
when reaching the critical value y, =y, .. When passing y, ., the fixed point will lose
its local stability, viz. the phase space portrait will change significantly at y, =y, .. At
7« the dynamical system will have at least one eigenvalue (pair of complex conju-
gated eigenvalues) with a zero real part (Re(4) =0 with 4(y,.)). As a consequence,
at y,. the dynamical system lost its hyperbolicity [17-20,22] and thus the HG-
theorem is not fulfilled. Hyperbolicity is an important property of nonlinear dynamic
systems: If only hyperbolic fixed points exist (the real part of all eigenvalues of the
(system) Jacobian matrix is different from zero), the application of linear stability



20

analysis methods is allowed (In this case, there exist either stable or unstable fixed
points, either decreasing or increasing oscillations for all system parameter values).
Hence in many cases linear stability analysis is sufficient (e.g. frequency domain
codes use the transfer function technique). But if a so-called Hopf bifurcation occurs
at y,. the solution of the nonlinear systems can bifurcate from a singular fixed point
solution to a limit cycle solution (periodic solution) and a singular fixed point solution.
The limit cycle which is born at y, . can either be stable (see Figure 2.3) or unstable
(see Figure 2.4) depending on the nature of the bifurcation (bifurcation characteris-
tics). It should be noted that at y, . the HG-theorem is not fulfilled and thus nonlinear
stability analysis like bifurcation analysis is necessary to analyse the system behav-
iour. Independently on whether a stable or an unstable limit cycle exist, a linear sta-
bility analysis is able to analyse only the local stability behaviour of fixed points (de-
picted in Figure 2.2) while the bifurcation analysis carried out at y, . reveals the exis-
tence of limit cycles and provides their stability characteristics (depicted in Figure 2.3
and Figure 2.4).

[ stable limit cycle
@ ’.\{k’c () ;

Supercritical
Hopf Bifurcation

—— Stable fixed points
---- Unstable fixed points

Figure 2.3:  The nature of the Hopf bifurcation at y, . is supercritical. This means,
at y, . a stable limit cycle is born and coexist with unstable fixed points
in the linear unstable region.

unstable limit cycle

------

Subcritical
€ Hopf Bifurcation

—— Stable fixed points
--=-- Unstable fixed points

Figure 2.4.  The nature of the Hopf bifurcation at y, . is subcritical. This means, at
7«c an unstable limit cycle is born and coexist with stable fixed points
in the linear stable region.
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The existence of a Hopf bifurcation is the (mathematical) reason for the sudden
appearance of periodic oscillations (limit cycles). These periodic solutions will be
observed in the BWR dynamics as global (in-phase) or regional (e.g. out-of-phase or
azimuthal mode) power oscillations.

In the literature, the nonlinear phenomenon limit cycle is defined to be an isolated
closed trajectory in the state space [17]. The term isolated means that neighbouring
trajectories are not closed which means that they spiral either toward or away from
the limit cycle. The limit cycle is stable, if all neighbouring trajectories approach it
(see linear unstable region in Figure 2.3). In this case, the limit cycle acts as an at-
tractor. The limit cycle is unstable, if all neighbouring trajectories are repelled from it.
In this case, the limit cycle acts as a repellor (see linear stable region in Figure 2.4).

As indicated in the previous paragraphs, in the framework of the present nonlinear
BWR stability research (in particular, the semi-analytical bifurcation analysis), the so-
called Hopf bifurcations play a dominant role. The occurrence of such type of dy-
namical bifurcations is ensured by the Hopf theorem [16-19]. This theorem, which is
also called Poincaré-Andronov-Hopf bifurcation (PAH-B) theorem, guarantees the
existence of stable and unstable periodic solutions of nonlinear differential equations
if certain conditions are satisfied [16-19]. For a mathematical description, the
autonomous dynamical system,

%)Z(t) = F(X®).7) (2.1)

is considered. Thereby, X € R" is the state vector, F (with F:R"xR —>R" is C”)is
a vector field and y € R™ is a parameter vector (also called control parameter vector
with m components). Let X, be the steady state solution 0 = F(X,, ) of Eq. (2.1)
for all y and J(y) be the Jacobian matrix of F(X,, ) [16]. It is assumed that one
parameter y, (with k €[1...,m]) of the vector y is selected as bifurcation parameter.
This means, y, is varied in a region of interest. If the following Hopf conditions are
fulfilled:

1) For a critical parameter value y, . there exists a pair of complex conjugate ei-
genvalues A(y, ) =tio,

2) all the other eigenvalues have strictly negative real parts, and

aﬂ’(yk = 7/k,c)

3)
0%

= 0

a family of periodic solutions
i27t

X(t7) = Xo(re) + SR{GT“) fh] + 0(&%) (2.2)

of (2.1) with small amplitude & exist in X, for 7«c [16], where P, is the eigenvector
of the linearized system associated with the pair of complex conjugated eigenvalues
responsible for the bifurcation and T is the period of the oscillation.



22

In order to get information about the stability property of the periodic solution, the
(linear) Floquet theory is applied where the so-called Floquet exponent (Floguet pa-
rameter, see Appendix A) £ appears [19] which determines the stability of the peri-
odic solution. If #<0, the periodic solution is stable (supercritical bifurcation, see
Figure 2.3) while if >0, the periodic solution is unstable (subcritical bifurcation, see
Figure 2.4) [16,19]. Roughly spoken, the Floquet parameter can be interpreted as a
stability indicator for limit cycles. It is a result of a special technique from nonlinear
dynamics. A more detailed description is given in Appendix A.

If the Hopf theorem is satisfied, the nonlinear equation system can be reduced to a
two-dimensional nonlinear equation system by applying the centre manifold reduction
approach [16-19]. The resulting equation system, which represents the dynamical
behaviour of the complete system of equations in a close neighbourhood of the fixed
point where the Hopf theorem is fulfilled, will be transformed into the Poincare normal
form [16-20] (see Appendix A). From this equation system parameters (in particular
the Floquet exponents) which determine the stability properties of the fixed point, can
be extracted numerically.
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2.3 Semi-analytical bifurcation analysis using BIFDD

As mentioned in the previous sections, the bifurcation code BIFDD is used to perform
semi-analytical bifurcation analysis of the ROM differential equation system. BIFDD
was developed by Hassard in 1980 to perform numerically bifurcation analysis for
ordinary differential equations (ODEs) with time delays [16]. Methods applied in
BIFDD allow determining the stability properties of fixed points and periodical solu-
tions without the need for solving the corresponding equation system.

In order to calculate the critical value y, . of the bifurcation parameter, the fre-
quency » and the amplitude & of the oscillation and the Floquet parameter £,
BIFDD applies several methods, such as Lindstedt-Poincaré asymptotic expansion
[21], centre manifold reduction technique and transformation technique into the Poin-
care Normal Form, commonly used in nonlinear dynamics [16-20]. These methods
are summarized in Appendix A. In the scope of the Lindstedt-Poincare expansion,
(for example) the Floquet exponent S is expanded in terms of small amplitudes ¢ as
B=¢gB +&°B,, where B =0 and thus B~ B, [21].

Figure 2.5 summarizes the bifurcation analysis using BIFDD.

Initial Guess for Phase
variables T

Im(det(J - iw) =

Output Data

BIFDD
Main T
Program ! ) _ '
: ,| Incremented Bifurcation :
e o e e e e o e S ’ ! Parameter Parameter " '
Input Vector of Design ' : E
Parameters - : ;
i ! Frequency !
b - N i
: Guess Waess '
Provide the Vectorfield # | | | :
rovide the Vectorfield F ! [ '
and the Jacobian J ! ' A1 i
P F=0 .
i - i
E & Re(det(J - iwl)) = 0 :
: E
i
i
]
| ]

- Stability Boundary

- Nature of Hopf Bifurcation
- Frequency and Amplitude
of the oscillation

Figure 2.5: Sketch summarizing the bifurcation analysis using BIFDD [12,16].
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The user has to provide the input parameter vector, a set of nonlinear ODEs, the cor-
responding Jacobian matrix and the initial guess for the phase space variables.

The bifurcation analysis starts with selection of the so called iteration and bifurcation
parameter. Thereby the iteration parameter will be varied in the interval defined by
the user. For each iteration step BIFDD computes the critical value y, . of the bifurca-
tion parameter, the amplitude ¢ of the oscillation and the expansion parameters ,,
7, and f,. The parameters ¢, 7,, u, and g, determine the nature of the PAH bifur-
cation and thus called bifurcation characteristics (see Appendix A). Thereby 7, is a
correction factor of the oscillation frequency and , is a expansion factor for y, and
relates the oscillation amplitude ¢ to the bifurcation parameter y, according to

&= Yk = Ye . (23)
H
unstable limit cycle
§ - — singular stable
HE T TS A { Iae S . fixed points
' sy Ye AUk ) a)
S H 7 7 ---- singular unstable
- 9 - fixed points
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€ Hopf Bifurcation \
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linear stablé"'.,_ P J Supercritical Subcritical
N e — . .
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_.GC_J‘ 5 g B2<0 32>0
GEJ 5]
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ST R
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§_Fabfe periodical solutions
Bifurcation ,
Parameter-.\* 32=0 32
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((\\ "\{k,c \
< =
Yk )

Supercritical
Hopf Bifurcation

Figure 2.6:  Stability boundary in the two dimensional parameter space which is
spanned by the iteration and bifurcation parameter and the corre-
sponding bifurcation characteristics.
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As a result of the semi-analytical bifurcation analysis using BIFDD, a set of fixed
points where the Hopf conditions are fulfilled will be obtained in the two dimensional
parameter space, which is spanned by the iteration and bifurcation parameter (left
diagram of Figure 2.6 b)). This set of fixed points is called linear stability boundary. In
each of these fixed points a periodical solution is born whose stability property is de-
termined by the Floquet exponent. The right diagram of Figure 2.6 b) shows the Flo-
quet exponent g~ g, for each iteration step.

To summarize, in all fixed points where the Hopf conditions are fulfilled limit cycles
will be born and exist in the neighbourhood of y, .. As stated previously, a stability
indicator for limit cycle solutions can be derived from the Floquet theory for differen-
tial equations with periodical coefficients (see Floquet theory in Appendix A). The
Floquet exponent g, determining the stability characteristics of the limit cycle
emerges from this theory. If 3, <0, supercritical Hopf bifurcation occurs in y, . and
their corresponding periodical solution is stable (blue part of SB in Figure 2.6 b)). In
this case stable limit cycles exist in the linear unstable region close to the stability
boundary (Figure 2.6 c)). This means, all trajectories in phase space will approach
the limit cycle in this region. If B, >0, subcritical Hopf bifurcation occurs in y, . and
their corresponding periodical solution is unstable (red part of SB in Figure 2.6 b)). As
depicted by Figure 2.6 a), unstable limit cycles exist in the linear stable region. If
small perturbations are imposed on the system the trajectories will return to the
steady state solution (stable behaviour) while, if a critical perturbation amplitude is
exceeded, the trajectories will diverge in an oscillatory manner, which means the dy-
namical system becomes unstable [19]. Roughly speaking, an unstable limit cycle
“born” in a subcritical Hopf bifurcation separates a set of trajectories (in phase space)
which spiral into the steady state solution (singular fixed point) from a set of trajecto-
ries which spiral away ad infinitum of the phase space.

2.4 Numerical integration

Semi-analytical bifurcation analysis is only valid in the vicinity of the critical bifurcation
parameter (SB). In order to get information of the stability behaviour beyond the local
bifurcation findings numerical integration of the set of the ODEs is necessary. Be-
sides, the predictions of the semi-analytical bifurcation analysis can be confirmed
independently [9-15,23-26,38].

The numerical integration code which is written in the MATLAB environment was ex-
tended by an option which allows performing separately steady state or transient
analysis. Thereby the steady state output contains the steady state solution X,, the
axial void and quality profiles within the thermal-hydraulic flow channels and the di-
mensional pressure drops Ap; along the closed flow path.

The numerical integration starts with choosing the point on the two dimensional pa-
rameter space, spanned by the iteration and bifurcation parameter. Further, the user
has to define the value of the transient time t ... If t =0, the numerical inte-

transient
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gration code will only perform steady state calculation. If t
will be carried out. In this case, according to

K@) = X, + oK, (2.4)

>0, transient analysis

transient

the steady state X, will be perturbed by the small perturbation §X and the code
starts numerical integration. As a result, the solution X (t) will be obtained which cor-
responds to the time evolution of all phase space variables for t seconds. Figure
2.7 shows the flow diagram of the numerical integration code.

transient

Numerical integration code

Input Vector of Design | i ¢ | Choosing the point on the two dimensional parameter
Parameters ~ plane, spanned by the iteration and bifurcation parameter

Y
Provide the Vectorfield F T Bincahe seay Siats
! - solution
P
Steady state output: Xo, axial | No A it <
void and quality profile, Api......
Yes

Disturbance of the steady state solution

—->

X(t) = Xo + 0X

\ 4

Find the solution of
the set of ODEs

Transient output: X(t) [«

.

Figure 2.7:  Summarizing (flow diagram) the analysis using the numerical integra-
tion code

2.5 ROM analysis with both, BIFDD code and numerical integration
code

In order to check the results of BIFDD and of numerical integration for consistencies,
in a first step, the steady state solution X, provided by BIFDD will be compared with
the solution provided by the numerical integration code. This check reveals e.g. in-
consistencies in the input parameter vector. Secondly, the transient behaviour pre-
dicted by BIFDD will be verified by numerical integration for selected points. In par-
ticular, the location of the SB will be examined for some significant points. When the
point of interest is located on the SB, the numerical integration should result in a self-
sustained oscillation.
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2.6 Novel approach for calculation of the ROM input

Dokhane et al. [12] have shown that discrepancies exist between ROM predictions
and RAMONADS results for the kkic7_rec4 OP. They can be explained by significant
differences of modelling assumptions between RAMONA and ROM and the uncer-
tainties in evaluating the design and operating parameters (input parameters of the
ROM) as core averaged values. Hence, the calculation of the ROM input parameters
should be reconsidered (by taking into account differences of modelling assumptions
between RAMONAS and ROM) in a critical way. To this end, the principles of the TU
Dresden ROM will be summarized.

It was mentioned in section 2.1, that the main advantage of employing ROM’s is the
possibility of coupling them with methods of semi-analytical bifurcation analysis.
Within this framework the stability properties of fixed points and periodic solutions are
investigated analytically without the need for solving the system of nonlinear differen-
tial equations [9-15,23-26,38]. The ROM result is the basis for systematic system
code analyses. For this purpose, the solution manifold of the ROM should be as
close as possible to that of RAMONADS.

The objective of the ROM development is to construct a model as simple as possible
from the mathematical and numerical point of view while preserving the physics of
the BWR stability behaviour [23-26]. Hence, the partial differential equations (PDE)
describing the BWR will be converted into ordinary differential equations (ODE) for
example. The ODE system includes all spatial effects in an approximated (spatial
averaged) manner because e.g. by application of the mode expansion methodology
[44-46] spatial effects are taken into account by calculation of the amplitude functions
of the higher spatial modes and realistic assumptions to the higher mode spatial dis-
tributions (calculated by a 3D code called LAMBDA [46]). Furthermore, the PDE of
the single and two phase region of the thermal-hydraulic heated channels are con-
verted into ODEs by applying the weighted residual method in which spatial approxi-
mations (spatially quadratic time dependent profiles) for the single phase enthalpy
and the two-phase quality are used (is equivalent to a coarse grained axial discretiza-
tion) [12,47]. Hence, the final ODE describes the dynamics of spatial averaged vari-
ables where the 3D distributions are taken into account in an approximated manner
by appropriate parameters.

The multi-channel system is reduced to a few channel system. This means, the geo-
metrical complexity is reduced considerably. The actual ROM is represented by two
thermal-hydraulic flow channels. It should be noted that all spatially averaged vari-
ables of the ROM correspond to a real stationary core. This means the 3D distribu-
tions (power, void) are calculated by solution of the steady state 3D diffusion equa-
tion. As a consequence, all steady state 3D distributions corresponding to the se-
lected operational point must be determined before a ROM analysis is conducted.
Hence, in preparation of the ROM inputs, at first, a steady state RAMONAS run is
necessary. Secondly, the spatial averaging of the appropriate ROM input variables
can be conducted [26].
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Note, if the reactor core configuration will be changed significantly (e.g. by control rod
movement) all 3D-distributions have to be recalculated. This means, a parameter
variation in the ROM equation system shouldn’t lead to a significant change of the
3D-distributions based on the considered operational point. In other words, present
ROM analyses are valid in an appropriate environment of the selected (reference)
operational point along a rod line (with fixed control rod configuration).

According to the main characteristics of the ROM, the approach depicted in Figure
2.8 is proposed for nonlinear BWR stability analyses using RAMONAS and ROM as
complementary tools (RAM-ROM methodology) [26].

1) Selection of an operational point (OP) of interest (reference OP)

2) All ROM inputs will be calculated from the specific RAMONAS5 model and its steady solution

RAM ROM

steady state run in ref. OP steady state run in ref. OP

RAM-Output ROM-Output

L ] L]
- Mitot,

- Mitot,

. . . . bty . . .
- axial void profile, (radially s - axial void profile,
averaged) - channel pressure drops,

- channel pressure drops,

3) Nonlinear stability analyses in the neighborhood of the ref. OP

ROM Analysis
—» Semi-Analytical Bifurcation Analysis with BIFDD
- Examination of stable and unstable fixed points
- Examination of stable and unstable periodic solutions
—» Numerical Integration of the ROM equations
- Verification of the results, optained from the semi-analytical bifurcation analysis

System Code Analysis with RAMONAS

- Reproduction of the optained results from the ROM-Analysis for choosen parameters
- Detailed investigation in a close neighborhood of the ref. OP

Figure 2.8:  Novel approach for nonlinear BWR stability analyses using RAMONAS
and ROM as complementary tools. The demand is that the ROM
should provide the correct steady state values at the reference opera-
tional point. Thereby the most essential values are the mode feedback
reactivity coefficients, the core inlet mass flow, the axial void profile
and the channel pressure drops over the reactor vessel components
along the closed flow path [26].
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The goal is to analyse the stability behaviour of the power plant with the ROM as
close as possible to a real BWR (RAMONAS model is the reference system) in a
neighbourhood of a selected operational point. Hence, at first the reference OP has
to be determined for which the nonlinear BWR stability analysis will be performed.
Secondly, a novel approach for the ROM input calculation is applied. All ROM inputs
are calculated from the specific RAMONAS model and its steady state solution corre-
sponding to the reference point. Thereby differences of model assumptions between
RAMONAS and ROM are taken into account as far as possible in the ROM input cal-
culation. Because the axial power profile and the pressure drop along the closed flow
path are calculated by different types of models and different calculation methodolo-
gies in both codes the subcooling number and the pressure loss coefficients cannot
be calculated directly from the RAMONAS model and its steady state output. Hence a
calculation procedure for the pressure loss coefficients and the core inlet subcooling
by taking into account the different axial power profiles used by RAMONAS5 and ROM
is developed and applied [26].

In the framework of the new calculation methodology of the ROM input parameters it
is assumed that when the steady state solution of the reference OP is described by
the ROM as close as possible to the real one (system code prediction), the stability
behaviour of the BWR system can be represented properly by the ROM in a close
neighbourhood of this reference point. In particular the specific thermal-hydraulic and
neutron kinetic states should be described correctly. Thermal-hydraulic states are
mainly characterized by system pressure, (axial) power profile, core mass flow, core
inlet subcooling and the pressure drops along the closed flow path [26]. These quan-
tities should provide the correct (axial) void and (axial) quality profile of the heated
channel. It is assumed when the axial void profiles and the pressure drops along the
flow channels of two different models or of an experimental facility and its model are
sufficiently similar, the corresponding thermal hydraulic states and thus their stability
behaviour should be equivalent (defined similitude-criteria) [26].

2.7 Stability map

In general, the stability boundary which separates linear stable singular fixed points
from linear unstable one, is a multi dimensional structure in the m-dimensional pa-
rameter space. The task “calculation of the stability boundary” means: 1) selection of
one or more parameters y, which will be varied within the domain of definitions and
2) calculate the critical parameters y, . for which the Hopf-conditions are fulfilled. As
explained previously, in the framework of the semi-analytical bifurcation analysis us-
ing BIFDD, the stability characteristics are projected into the two dimensional pa-
rameter space (stability map) spanned by the iteration and bifurcation parameter.

From the mathematical point of view, arbitrary design and operating parameters of
the ROM can be selected to be the iteration and bifurcation parameter in bifurcation
analyses with BIFDD. But the two parameters N, (subcooling number) and DP.

ext

(steady state external pressure drop) yield the most practical information about BWR
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operating conditions. The variation of DP,, corresponds to a variation of the pump
head which changes the coolant mass flow. When the coolant mass flow is changed,
the power will also be changed while the spatial neutron flux distribution will not be
changed significantly because the control rod positions are kept constant. As a con-
sequence, the stability properties of fixed points and periodical solutions along the

rod-line of the power flow map which crosses the reference OP can be examined.

In literature, the Ng,-N_, -parameter space (N, is the phase change number) is
commonly used as stability map for thermal-hydraulic systems. In a BWR, a variation
of the N, is effected by variation of the control rod positions which changes the
spatial neutron flux distribution within the multiplying medium while DP,, (and thus
the pump head) is fixed. As stated previously, a significant change of the neutron flux
distribution is not allowed during a parameter variation. In addition to that the N, -
N ., -parameter space is an unfavourable stability map which will be explained in de-
tail in section 4.6. In this section is also shown that in the N, - DP,, -parameter space
the phase change number is a function of the subcooling number and the steady
state external pressure drop while in the N, -N_, -parameter plane the phase
change number is only a function of the subcooling number. Hence, if the bifurcation
analysis is carried out in the N_, - DP, -parameter space, all information of the N
N, -parameter space will be included. In other words, the N
space provides more information than the N
4.6).

sub ~

s - PP, -parameter
N . -parameter space (see section

sub -
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3 ROM extensions

Firstly, a brief overview about the physics models of the simplified BWR model is
given (section (3.1)). Secondly, the main ROM extensions in the neutron kinetics and
thermal hydraulics will be described. The original ROM developed at PSI (PSI-lllinois-
ROM) is summarized in Appendix B.

3.1 Summary of the ROM

The current BWR reduced order model (TU Dresden ROM, TUD-ROM) consists of
three coupled sub-models. These are a neutron kinetic model, a fuel heat conduction
model and a two-channel thermal-hydraulic model (presented in detail in [12,47]).
The main characteristics of the ROM are depicted in Figure 3.2. The sub-models of
the ROM are presented in detail in Appendix B. To summarize, the ROM is a dy-
namical system consisting of 22 ODEs, four from the neutron kinetic model, eight to
describe the fuel rod heat conduction (two equations for each phase, in each chan-
nel) and ten that describe the thermal hydraulic model (five for each channel) [12].
Consequently X (t) is a vector of 22 state variables presented in detail in [12].
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3.1.1 Neutron kinetic model
The neutron kinetic model is based on the following assumptions:
1) Two effective energy groups (thermal and fast neutrons)

2) Spatial mode expansion approach of the neutron flux in terms of lambda
modes ( 4 -modes) [46,62,63]

3) Only the first two modes (fundamental and first mode) are considered [12].

4) Only a single, effective group of delayed neutron precursors is consid-
ered [12].

5) The contribution of the delayed neutron precursors to the feedback reactivity
is neglected [12].

Taking into account these assumptions, four mode kinetic equations could be devel-
oped, coupled to equations of the heat conduction and the thermal-hydraulic via the
feedback reactivity terms (void and Doppler feedback reactivities). The methodology
to calculate the feedback reactivity is presented in 3.2.

The time dependent two-group neutron diffusion equation can be written compactly
as

v 12280 Ta gy B0 - L |- &F.0+ X 4-C (10X
a = (3.1)
%c,(r,t)iq = BE-®(F,t) -4 -C(F,O)X'
where X} =[ﬂ [12,64-67].
@(F,t) is the neutron flux vector consisting of
NN X (8)
CD(r,t)_LDz(r’tJ (3.2)

the fast (first component) and thermal neutron fluxes (second component), L is the
net-loss operator including leakage by diffusion, scattering and absorption, and F is
the fission production operator. 4,C, and g, are the decay constants, concentrations
and delayed neutron fractions, respectively, for the |-th delayed neutron precursor
group. A detailed description is given in Appendix B.

In the steady state case of (3.1), the so-called A -Eigenvalue problem can be written
as

1~ - ~ -

ZR(F)P,(F) = Lo(F) P, (F

CHOF@ = LE 0 3.3)
with n=0,...,.

where ¥ _(F) are the eigenvectors, k =1/ are the corresponding eigenvalues and

F,, L, are the steady state fission production and steady state net-loss operators.
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The eigenvectors ¥ (F) are so-called Lambda-Modes (A-modes) and satisfy the
biorthogonality relation
R

mn " n

[ave R¥, = <qu
\%

P,) = 5 F (3.4)

where ¥ " are the adjoint eigenvectors.

The space and time dependent neutron flux ®(F,t) and the space and time depend-
ent delayed neutron precursor concentration C,(r,t) of (3.1) can be expanded in
terms of the 1-modes as

B(F,1) =D P (1) P, (F) (3.5)
C(FHX =D Cu() Ky ¥, (N A, (3.6)
where

(3.7)

ﬁn(t):[a ® P (t)HPn(t) 0 }

P P2(t)] | 0 P

P!(t) are the time dependent expansion functions of the first energy group, P’(t) are
the time dependent expansion functions of the second energy group and C,,(t) are
the time dependent expansion functions of the delayed neutron precursor concentra-
tion. Physically, the time and space dependent neutron flux ®(F,t) is proportional to
the reactor power Q(t) . Thus, in the current neutron kinetic model it is assumed that
both neutron energy groups have the same time evolution. In other words, the ampli-
tude functions are energy independent. In this case, according to P! (t)=P?(t)=P,(t),
the matrix (3.7) reduces to (the matrix is “collapsing” to a scalar)

. IP® 0
Pn(t)—{ o P (t)} (3.8)

and the expansion (3.5) can be written as

O(F,1)=D P(1)-F () . (3.9)

Substituting (3.9) into the biorthogonality relation (3.4)
[av [(MFR®, () = RO [dVE (MFRY,(F) = R.OF, (3.10)
\ n N

S

mn

F

justifies the definition of the time dependent amplitude functions P, (t) according to

1

1 - -
P () =—=—|dv¥ '(NFD, (F,t)= —
n(0) = VR OFRS,0= 2

<@m\ﬁ0\&>n(r,t)> . (3.11)

In order to solve the diffusion equation (3.1) for the space and time dependent neu-
tron flux ®(F,t) the expansion (3.9) and (3.6) are substituted into (3.1)
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Sv1%,072 = YR o[a-p)-[F + oF ] 9,0
(3.12)
—ZP(t)[L +§L] +Zﬂ1 ch,(t) F 9 (F)A,
and
) R0 A, (cn.(t)) =Y ARMOF,- P (N+Y. 4P 1) 5F- P (V) 013)
IR RORWYSHO |
where the operators L and F are expressed as
L=0,+6L (3.14)
F=F +0oF (3.15)

in terms of a steady state plus an oscillating term (small perturbation), respectively. In
the next step, (3.12)and (3.13) will be multiplied by ¥ " from the left hand side. Af-
terwards the equations are weighted (divided) by (3.4) and integrated over the whole
multiplying medium of the reactor core. The result is presented in Appendix B.

In the next step, the following definitions will be introduced:

<\?m‘[v-l]‘q}n>. F <\¥lm _5|:]‘ql”>. s <\_{3m [AO _I:O] fp“>
Amn = T 1~ = Vv Pm = — ~ | = v Pm = — ~ - (316)
(%, [E %) (. [E %) . [E%.)
P2 = ﬁm; PR = ﬂw (3.17)
<LPm FO \Pn> <\Pm I:O \Pn>

Taking into account that A, >> A, with n=m [12] and using the definitions in (3.16)
and (3.17), the final neutron kinetic (spatial) mode equations can be written as

SR0 = —[(o-pPR.O ]+Ai[zp;n PO-Y 00 FL(t)} >4 G (1)

) . (3.18)
G Cm® = A—m[ﬂ. P,(t) +§p§;; Pn(t)}— 4 Coi(®)

where p: is the static reactivity, p' are the dynamical feedback reactivities, and p>,
, po are the delayed feedback reactivities.

As mentioned above, in the current neutron kinetic model only a single group of de-
layed neutron precursors | =1 is considered and the contributions of p°, and p> are
neglected [12]. Furthermore, only the fundamental and the first modes are consid-
ered. Hence, the modal kinetic equations can be written as
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@R = (b ARO+ARO]+ A,

] 5 (3.19)
aco(t) = A_Opo(t) — AC,(t)

GRO= (RO (5 -PRO+ RO

14 C, (3.20)

ey = Le -
5 G0 = RO - 160

0
A comprehensive discussion is given in Appendix B.

The dynamical feedback reactivities, p- represent the coupling between the A -
modes and describe the main feedback mechanism between the neutron kinetics
and thermal hydraulics via void fraction in the two-phase flow region and fuel tem-
perature. In the framework of the ROM development the approximate calculation
[12,68] of the mode feedback reactivities is one of the crucial tasks. In the approxi-
mations used in previous work [12], the required reactivities p,, were given by
Pun ~ Poo - (Weighting factors) .. ; this means that in both cases certain weight factors for
terms different from n=m =0 have to be calculated (see section 3.2).
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3.1.2 Fuel heat conduction model

The fuel rod heat conduction model in the current reduced order model was com-
pletely adopted from Karve et al. [47]. This model is based on the one-dimensional
(radial), time-dependent heat conduction equation for the fuel rod and is based on
the following assumptions:

1) Two axial regions, corresponding to the single and two-phase regions, are
considered,

2) three distinct radial regions, the fuel pellet, the gap and the clad are modelled
in each of the two axial regions,

3) azimuthal symmetry for heat conduction in the radial direction is assumed,
4) heat conduction in the z-direction is neglected,
5) time-dependent, spatially uniform volumetric heat generation is assumed.

These assumptions result in a one-dimensional (radial) time dependent partial differ-
ential equation (PDE). By assuming a two-piecewise quadratic spatial approximation
for the fuel rod temperature, the PDE can be reduced to a system of ODEs by apply-
ing the variation principle. A detailed derivation is presented in [12,47].

In summary, for each channel, four ODEs are developed from the heat conduction
PDE. These ODEs are for the two coefficients of each of the two spatially piecewise
guadratic representations of the fuel pellet temperature in the single and two-phase
regions of the channel. In an explicit index form, these ODEs can be written as

dTl,gf?. ® _ i T g (O F 10 50T g0 () + 11555 [cq (P(t)-P)+ cqul(t)] (3.21)
de,ég,;:J (t) — ||1,2,j¢,|T1vj¢’| (t)+ ||212’j¢,|T2’j¢’| )+ ”3,2,j¢,| I:Cq (Po () - Iso) + cqé‘Pl(t):' (322)

where £ =41, j¢ stands for single (1¢) or two-phase (2¢) region, | stands for chan-
nel number (1 or 2) and |50 is the steady state (reference) value of the amplitude
function corresponding to the 1-modes. Note that, the final ODEs were derived using
the symbolic toolbox of MATLAB. A detailed description is given in Appendix B and a
complete derivation is presented in [47].
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3.1.3 Thermal hydraulic model

The thermal hydraulic behaviour of the BWR is represented by two heated channels
coupled by the neutron kinetics via the mode feedback reactivities and by the recircu-
lation loop (hydraulic coupling). This sub-model is based on the following assump-

tions:

1)

2)
3)

4)
5)
6)

7)

8)

9)

10)

11)

The heated channel, which has a constant flow cross section, is divided into
two axial regions, the single and the two-phase region.

All thermal hydraulic values are averaged over the flow cross section.

The dynamical behaviour of the two-phase region is presented by a drift flux
model (DFM) [58-61,69-71] where mechanical non equilibrium is assumed,
i.e. difference between the two phase velocities, and a radial non-uniform
void distribution is considered. The DFM represents the stability behaviour of
the two-phase more accurately than a homogeneous equilibrium model, in
particular for high void content.

The two phases are assumed to be in thermodynamic equilibrium.
The system pressure is considered to be constant.

The fluid in both axial regions and the downcomer is assumed to be incom-
pressible.

Around the closed flow path, mechanical energy terms are very small com-
pared with the thermal energy terms. Consequently, the kinetic energy, po-
tential energy, pressure gradient and friction dissipation are neglected in the
energy balance.

The PDEs (three-dimensional mass, momentum and energy balance equa-
tion) are converted into the final ODEs by applying the weighted residual
method in which spatial approximations (spatially quadratic but time-
dependent profiles) for the single phase enthalpy [12,47] and the two-phase
quality are used (is equivalent to a coarse grained axial discretization).

The downcomer (constant flow cross section) region is considered to be a
single phase region.

All physical processes which are connected with energy increase and energy
decrease are neglected in the downcomer. Consequently the core inlet sub-
cooling is a boundary condition which is nearly realized by the nuclear power
plants (predicted by RAMONAD).

The pump head due to the recirculation pumps is considered to be constant (
AR,.., =const)

Figure 3.2 depicts a schematic sketch of the thermal hydraulic model including the
recirculation loop. The sub-model consists of three parts. These are the two heated
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channels and the downcomer section. The common lower plenum and the common
upper plenum are only shown to indicate that all channels are coupled hydraulically.
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Figure 3.2:  Schematic sketch of the thermal hydraulic two-channel model includ-
ing outer loop section.

The coolant enters the core channel i inlet (single phase region) with the inlet veloci-
ties v« and the inlet enthalpy h, ., and the heat is released by nuclear fissions in
the fuel, conducted to the coolant. At a certain axial level (boiling boundary u(t)),
where the coolant reaches the saturation state, the coolant starts to boil. Above the
boiling boundary (two-phase region), the coolant is a mixture of water and steam.
Because of the thermodynamic equilibrium between the two phases, the heat gener-

ated in the fuel is completely used for steam production.
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Single phase region [12,47,69-74]

The single phase region extends from the channel inlet to the boiling boundary x(t).
As mentioned above the dynamical behaviour within this region is represented by the
three conservation laws (mass, energy and momentum) for the liquid phase. In order
to convert the energy balance from a PDE into an ODE, a time-dependent, spatially
guadratic distribution

h(z,t) ~h . +a(t)z+a,(t)z? (3.23)
for the enthalpy is introduced [47] and the weighted residual procedure is applied.

Thereby, it will be integrated from the channel inlet to the boiling boundary. As a re-
sult, the ODEs

%al(t) =- 2Vinlet (t)az (t) +%|:Np ’ Nr ‘N pch,1d (t) ~ Vintet (t)al(t)] (324)
d 6
aaZ (t) =- ?[Np ’ Nr ’ Npch,l«b (t) ~ Vinlet (t)al(t):l (325)

for the time dependent functions a (t) and a,(t) of the quadratic distribution (3.23)
are obtained. a (t) and a,(t) are the state variables of the single phase region. A
detailed derivation is presented in Appendix B.

Two phase region [10-15]

The two phase region extends from the boiling boundary x(t) to the channel exit. As
mentioned above the dynamical behaviour within this region is represented by a drift
flux model which is based on four conservation laws [58-61,69-76], i.e. the continuity
equation of the gas phase and the three conservation laws (mass, energy and mo-
mentum) for the two phase mixture. In the current work, the density wave phenome-
non plays a dominant role so that the mass transport problem was transformed into
the void propagation formulation [75,76].

As mentioned above (for the conversion from PDE’s into ODE’s), the flow quality
X(z,t) in the two phase region will be described by a time dependent, spatially quad-
ratic distribution

Xai)zNPM{%GHZ—ﬂGH+%aHZ—ﬂGH1 (3.26)

analogous to the enthalpy distribution in the single phase region [12]. The ODEs can
be obtained by applying the weighted residuals method with the weight functions
wg =1 and wg=z. Thereby, it will be integrated from the boiling boundary to the
channel exit. The final ODE’s can be written as

dVinlet (t)
dt

ds, 1 d u(t)
EF_Fﬁ{mm_E_+mm

1 dN pch,2® (t)
}+mm{mm - +mm}@2n
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dsz _ 1 d,U(t) dvinlet(t) 1 deChvsz(t)
T - ffm(t)[f (O 4= 1, () = }+ffm(t)[ff8(t) - +ff9(t)}.(3.28)

A detailed derivation is presented in Appendix B.

Channel inlet velocity

The channel inlet velocity v, ;. (t) of the n-th heated channel is a further state vari-
able of the ROM. In order to get the final ODEs for the channel inlet velocities, the
momentum equations of all considered regions have to be integrated over the closed
loop

op
0=@¢p—dz
95 0z
1o P )
0= [Pog 4 [Rewg (3.29)
o Oz 1 Oz
AI:)lnlet + AI:)ch + Pexn '

where AP, and P, are the channel inlet and channel exit pressure drops and AP,
is the pressure drop over the heated channel. AP, with AP, = AP,, +AP,, is the sum
of the single phase AP, and two phase AP,, pressure drops. In the PSI-lllinois-

ROM, the second integral of (3.29) was set equal to the steady state external pres-

sure drop DP,, . In this case, the closed loop integration can be written as
APn inlet + AI:)n 10 + APr:ZcD + AI:)n exit — AI:)e;t ) (330)

In the PSI-lllinois-ROM, the final ODE for the inlet channel velocity of the n-th heated
channel can be derived from equation (3.30). The result can be written as ([12])

d _ 1 dﬂn (t) n, pch( )
Evn,inlet (t) - ffn’14(t)|: nll( ) nlz() ffn,ls(t):| ' (331)

The derivation of the final ODE for the channel inlet velocity, where the recirculation
loop is included, is discussed in section 3.3.
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3.2 Mode feedback reactivity calculation

3.2.1 Calculation of the mode feedback reactivity in the ROM

In this section two different methods to calculate the void and fuel temperature mode
feedback reactivity coefficients are compared. The first of them is the original method
used in the PSI-lllinois ROM [12,46,63]. The second method has been developed at
UPV Valencia (Spain) in cooperation with the TU Dresden (Germany) during this
work [68].

As presented in section 3.1.1, the mode feedback reactivity is defined as
(%,
(%,

and can be split to a sum of the mode void feedback reactivity pf """

mn

[5|A:_5|:]‘q]n> — pFVoid o Doppler (3.32)
‘i’n> mn mn

Fo_
pmn_

A

Fo

and the mode

Doppler feedback reactivity p" "™ . Thereby p " and p. > are defined sepa-
rately as
¥ oF_o sa|¥,
F Void 60[ aa
PRl = - (3.33)
<\Pm FO an>
and
|| E-L o9,
or oT
F,Doppler _ . (3 ] 34)

pmn —
<\P

A

I:O

]

For generalization, the mode feedback reactivity p..* due to the effect X with

X =void, Doppler will be defined as
g ([ F L)\ xle
oX oX
IEO \?n>

P = -
(¥,

The idea of the original method is, first, to express the mode feedback reactivity in
terms of the fundamental mode feedback reactivity of;* and second, to approximate
the fundamental mode void feedback reactivity by a linear dependence around its
steady state value in terms of the void fraction perturbation and to approximate the
fundamental mode Doppler feedback reactivity by a linear dependence around its
steady state value in terms of the fuel temperature perturbation, respectively.

m

(3.35)

In order to take into account the in-phase and out-of-phase oscillation modes, the
reactor core is divided into two radial regions r (with r=1,2) of the same size and
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approximately the same steady-state properties. In the following, the contribution of
each core region to the feedback reactivity p":*" regarding to the effect X will be
calculated. The feedback reactivities p:*" and pi;*" are defined as

L (s;—ﬂ \ )

P = <q (3.36)
and
¥, || F L X, g || F L X,
. 0X oX oX oX (3.37)
P = = = , -
B (| & | %) R
where
<@0 F, @0>=500F0=F0 . (3.38)
According to the definition of F;, F, can be defined as
R =6Fs = (PR [ ¥5) (3.39)

With the definition (3.39), expression (3.37) can be rewritten as
7, [GF_GL}sx 7, o
£ oX X F 1 /s |[6F oL
o " 3 F R\ X Tx
0 0 0
where WDy, is a weight factor. In the next step, the definition (3.36) is multiplied by

WD},
FX,I‘/ F,X,r
S | PRE
oX X F X
FoXr _ Poo

\ifo> ‘WD), , (3.40)

Poo Poo

pmn - <\.{.j IA: \i’ > pFXr (341)
m| o n 00
and then be written as
(*5)) (oaey
r F r of°0 0 r WDr:m
Ph =2 P —— AL 2 pp e (3.42)
R - |(oF oL - <‘Pm K ‘Pn> WDy,
Yoll == — == |X|¥,
oX oX
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where WD, are the reactivity weight factors. In expression (3.42) the mode feed-
back reactivity p~*" of region r due to the effect X is expressed by means of

mn
F,X,r

Pw " and by the weight factor WD;,, /WDy, .

It should be emphasized that in a BWR the mode feedback reactivity p-*" has an
axial quadratic dependence of the form

PEM - TG+ O+CF () O W0 . (349)

where W,” is a square power weight factor
sz

2R

k

WP = (3.44)

of the k -th axial node. In the context of the ROM development, the axial dependence
of pf:*" is ignored and the averaged (weighted) value of region r, see definition
(3.36), is used. The reason is that the axial dependence of the reactor power is also
ignored in the ROM. Instead of a real axial power profile, an uniform axial power pro-
file represented by the core averaged reactor power is used. Note that, if the real ax-
ial power profile including the real axial dependence of p:*" is taken into account in
the ROM, the system of equations would become complicated and non-transparent
which is a contradiction in the framework of the ROM methodology [43,83]. This sim-
plification can be the reason for the necessity of introducing the artificial factor fact
(introduced later) used to increase the feedback gain coupling the first and funda-
mental mode in order to excite the out-of-phase oscillation mode. This was shown by

Ginestar et al. [83]. But an independent proof is recommended in a future work.

For the sake of simplicity, a linear dependence around the mean void and mean fuel
temperature in terms of the void fraction perturbation and fuel temperature perturba-
tion can be assumed for the void and fuel temperature feedback reactivity. This as-
sumption is reasonable because the amplitudes of the power oscillations generate
only small void and fuel temperature oscillations [68]. Thus, it is not necessary to
take into account the exact dependence of the mode feedback reactivities on the void
and the fuel temperature.

The time dependence of the fundamental mode feedback reactivity is approximated
as

Poo " (®) =C"-8X" (1) WDy, (3.45)

where C*" is artificially defined as the reactivity coefficient of the considered region
I respect to the effect X .

After substituting the approximation (3.45) in (3.42) the mode feedback reactivity (re-
lated to the region r) due to the effect X can be written as

LT = CXTL8XT(©)- WD, (3.46)

The expression for the weight factor WD,,, can be approximated by substituting the
perturbations in the production and loss operators by average values [12]. In addition
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to that the steady-state production operator is substituted by an average value for the
whole reactor core. Then the reactivity weight factor WD, , in (3.46) can be written as

(112])

(%s]%)
Consequently, the void mode feedback reactivity and the Doppler mode feedback
reactivity can be written as

pnF";Void,r(t) — CI/oid,r ébzr(t)WDr:m

WD', = (3.47)

m

G WDy, (' (1)~

Void ,r
_ Cm (3.48)
= Cl" . 5a" (t)

and

pF, Doppler,r — ClDOPPIer,r . é—]- r (t) WDr:m

mn

ClDOPp|eI’,I’ 'WDI.:m . (T r (t) _TO )
—

cams (3.49)
— Crg:ppler,r .5Tr (t)

and pF, Doppler,r

mn

respectively. The calculation of the mode feedback reactivities p" V"

mn

in the PSI-Illinois-ROM is based on the approximations (3.48) and (3.49) [12].

The second way of computing the mode void feedback reactivity and the mode Dop-
pler feedback reactivity is based on the same concept as described above. The dif-

ference is that the mode feedback reactivities p= """ and p5:"P*" will be
calculated with the linear relationship according to

p;r,]Void,r — Crztr)]id,r 5ar(t) (350)

prir;Doppler,r — Crg:ppler,r é—l-r(t) . (351)

They depend on the void and the fuel temperature perturbations and the coefficients
Cyd and CP™*"" which are called void and Doppler mode feedback reactivity coef-
ficients. The idea of this method is to avoid the approximation (3.42) and the calcula-
tion of the weight factors WD, . The calculation of the mode feedback reactivities

F,Void,r

o and """ in the current ROM version is based on (3.50) and (3.51).

To summarize, the original way of computing the mode feedback reactivities is based
on the approximations (3.48) and (3.49) where the coefficients C;/** and C ™" and
the weight factors WD;,, have to be calculated before ROM analyses are performed
while in the second method, which is based on the approximations (3.50) and (3.51),
only the mode feedback reactivity coefficients (C**" and C """ have to be calcu-
lated. The computation of the mode feedback reactivity coefficients C'*" and
CPowlert s explained in the next section.

Finally, according to (3.32), the mode feedback reactivity p"  of the ROM differential
equation system can be calculated as
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2
F _ F,Void,r F, Doppler,r
pmn - faCtng(pmn + pmn )
r=1

, (3.52)
= fact,,, > (Co" - 5a' (1) +C2™™ - 5T (1))
=1
where fact . with
1 m=n=0,1
fact_ :{ (3.53)
fact m=n

is an artificial factor, introduced as a multiplier of the corresponding feedback reactiv-
ity, in order to increase the feedback gain coupling the first and fundamental mode.
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3.2.2 Calculation of C_,

In order to calculate the mode reactivity coefficients C'**" and C2®*"" of both core
regions r=1 and r=2, steady state RAMONA runs are necessary. At first, a
RAMONA run is performed at the reference OP. Afterwards the corresponding mac-
roscopic cross sections (reference cross sections) were extracted from the RAMONA
output file and converted such that the result can be used for solving the steady state
A -Eigenvalue problem (3.3) with the code LAMBDA REAC. As a result, the eigen-
values k =1/ and the corresponding eigenvectors ¥, (f) (1-modes) are calcu-
lated [12,44-46,62,63].

Secondly, artificial cross section perturbations corresponding to void and fuel tem-
perature perturbations (éa and oT) are imposed on the steady state system and
steady state RAMONA runs are performed, respectively. RAMONA provides options
to introduce separately artificial cross section perturbations in the void fraction and
fuel temperature. In particular, imposed a perturbation on the void fraction involves
the void feedback reactivity only and imposing a perturbation on the fuel temperature
involves the Doppler feedback reactivity. The perturbed macroscopic cross sections
for each artificial effect are then converted to the LAMBDA_REAC-format. Finally, the
LAMBDA_REAC code is applied to calculate the mode feedback reactivities p-*" of
the effect X (da and 6T ) and region r, separately [12].

Input LAMBDA-REAC
Core Specification Data —i—i» Solution of the eigenvalue problem
b Lo i o o
' : k—FO(r) ¥Y,(7) =L,(F)¥,(F)
3D Macroscopic Cross E i ;
Sections (XS) forthe | +—3
reference case

Calculation othhe mode feedback
reactivities p,,,

(\T/m [BF-5L]%, )

@

3D Macroscopic Cross
Sections (XS) for the
perturbed case

(Void and

Fuel Temperature

Fro _
pnm -

K,

v)

i

Output: k,, ¥,(7). p,’
Figure 3.3:  Flow-chart of the LAMBDA_REAC code
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The mode feedback reactivity coefficients C°“" and C>™*"" can be calculated using
the linear approximations (3.50) and (3.51), respectively.

In the following, some results of the original calculation methodology (M1) for CY°!"

and CP™*"" are compared with the results of the new method (M2) for NPP Leibstadt
and NPP Ringhals. The results for C/°“" and C """ are summarized in Table 3.1
and Table 3.2.

Table 3.1: Void mode feedback reactivity coefficients in pcm/%void for NPP
Leibstadt (KKL) and NPP Ringhals (KKR)

KKL KKL KKR KKR

M1 M2 M1 M2
Co? -38.2 -37,1 -31.2 -25.4
Cye? -38.8 -37.6 -31.3 -25.4
Colt -31.9 -30.8 -28.7 -24.0
Cy? 31.9 30.8 28.7 24.0
Cyt -30.6 -30.4 -28.9 -24.9
Cy? 30.5 30.2 28.9 24.9
C/* -36.5 -35.8 -31.2 -27.4
C? -36.2 -35.6 -31.1 -27.3
Table 3.2: Doppler mode feedback reactivity coefficients in pcm/K for NPP

Leibstadt (KKL) and NPP Ringhals (KKR)

KKL KKL KKR KKR

M1 M2 M1 M2
Coowpert -1.0 -1.04 -1.17 -1.08
coweer? -1.0 -1.06 -1.17 -1.08
Coovplert -0.86 -0.86 -1.07 -0.99
Chovpter? 0.86 0.87 1.07 0.99
Coopert -0.83 -0.83 -1.08 -1.01
Coowper? 0.82 0.83 1.08 1.01
Coovpert -0.99 -0.99 -1.17 -1.09
Coovper? -0.98 -0.98 -1.17 -1.09
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According to the technical documentation of the NPP Leibstadt for the begin of cycle
7 (KKLc7rec4) [5,6] the void feedback reactivity coefficient is about 100 pcm/%void
and the Doppler feedback reactivity coefficient is between 2 and 4 pcm/K . The cor-
responding void feedback reactivity coefficient of the ROM is approximately the sum
of the coefficients Cx“' and CY** for both core regions. The results are
38+38 =76 pcm/%void and 2pcm/K  for the original method and
37+37=74pcm/%void and 2pcm/K for the new method.

Table 3.1 and Table 3.2 show that both methods for the calculation of C°*" and
Co®Per" provide similar results for both nuclear power plants. This result was ex-
pected from the reactor theory point of view. The disadvantage of the original method
is that the weight factors WD and the coefficients C*" and C ™" have to be
calculated cumbersomely before ROM analyses are performed. This is not necessary
in the second method. Here only the mode feedback reactivity coefficients (CY°"
and C2®"*"") have to be calculated. Consequently, the new calculation methodology
for the coefficients C“" and C2®"*"" is qualified for ROM analyses. In addition to
that the general effort for the calculation of C°“" and C2®""" by employing the new

method is significantly lower.
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3.3 Recirculation loop

3.3.1 The recirculation loop model

The PSI-lllinois-ROM used a fixed total pressure drop AP,, =const with respect to
time as a boundary condition (equation(3.55)) [12]. According to

¢ 0 e :
C_‘S@dz =0 = Imdz + j%dz (3.54)
oz y 0L . Oz
16p .
= 0=~ J‘#dz ~ AP, (3.55)

0

the outer loop (second integral in (3.54)) was replaced by the boundary condition
(first integral represents the pressure drop of the heated channel). This is a reason-
able approximation to represent the real stability behaviour in an out-of phase oscilla-
tion mode. Note, however, in this case the stability behaviour of the in-phase oscilla-
tion mode can not be simulated correctly. Hence, the ROM was extended by a recir-
culation loop model [23,24].

In the following, a short description of the recirculation loop model is given. In this
notation, an asterisk on a variable or parameter indicates the original dimensional
quantity, while any quantity without an asterisk is dimensionless.

The mass balance of the downcomer can be written as

0 .«
() = 0 (3.56)

and the total mass flow m_ (t)
M) = S0 = | XA 0] 357)

can accordingly be expressed by the sum of the core channel mass flows m’(t), be-
cause the coolant in all hydraulic regions is considered to be incompressible. Here, n
is the channel number and A, is the flow cross section of the n-th heated chan-
nel.

The energy balance of the downcomer is reduced to a boundary condition

hiet = Nios e = CONSt because the energy gain and the energy loss are neglected.
The momentum balance of the downcomer can be written as
* L * * L * 2
— 0 pdfc — i mtoi(t) + ]ilq) _ mwi(t) + g* p: (358)
a z at Aioc 2pf Ddoc Aioc

where the term on the left hand side describes the pressure drop in the downcomer,
the first term on the right hand side describes the pressure drop due to inertial effects
of the coolant, the second term states the downcomer friction and the last term is the
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gravity term. A, . is the downcomer flow cross section, D, is the hydraulic diameter
of the downcomer, i, is the total mass flow, p; is the liquid density and f;, is the
single phase friction factor. Substitution (3.57) into (3.58) and transforming into di-

mensionless form lead to

0 pdoc - _ i _ 2 ’ -1
_W - Ab| (Zn:at Vn,inlet (t)} Nfl<1> Aa| Dol |:Zn:Vn,in|et (t)} + Fr (3-59)

where A, and D, are defined as A, =A,,../A,and D, =D, /D,
ameter of the heated channel).

(D, hydraulic di-

doc

The ODEs for the channel inlet velocities v, (t) are determined by expres-
sion (3.54) in which the pressure drop over the recirculation loop is given by

0 0
OP, i 0 Py
recirc 7 = | ZHdc 47 — AP . 3.60
! oz .!‘ 01 head ( )

The evaluation of equation (3.54) with expression (3.60) was performed by using the
symbolic toolbox of MATLAB. The final ODE for the n-th heated channel can be writ-
ten as

((jj nlnlet(t) = A1(t) - B (t) (Z dt nlnlet(t)j - Bn(t)me)AolDol (zvn,inlet(t)] (361)

where A (t) is defined as

A (D) =

(o[ O 28 1 11,0 “p°“”+ffn,13<t>+1+Fr-APhead} (3.62)

Fr-DF,

ext

and B, (t) is defined as B, (t)=FrA,/ff ,({). The time dependent intermediate
terms ff (), ff (), ff ,;(t) and ff ,(t) are calculated in [12]. The time inde-
pendent terms of (3.60) are included in function A (t), where DP,, is the steady state
external pressure drop with DP,, = Fr +AP,__,, where the downcomer friction is ne-
glected. In the steady state case, the integral (3.60) can be approximated as

0
j%dz ~ —Fr' — AP

- -DP
head
. Oz

ext '

(3.63)

because the contribution of the downcomer friction is very small in (3.61). In section
3.3.2 will be demonstrated that the effect of the downcomer friction on the thermal-
hydraulic stability behaviour is very small. In addition to that the downcomer friction is
not considered in RAMONADS. Hence, it can be neglected for BWR stability analyses.

Equation (3.63) relates the steady state external pressure drop to the pump head. In
addition to that (as expected) it can be seen that the steady state core inlet velocity
V.o does not depend on the downcomer flow cross section. This means, v
depends on AP, or DP,, only.

ext

n,inlet,0

ead
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As expected, each ODE for v, ;.. (t) is hydraulically coupled because of (3.57) with
all the other heated channels. Equation (3.61) is the ODE for the channel inlet veloc-
ity V, .« (t) Of the n-th heated channel.

Due to practical relevance, the ODEs for v, ;.. (t) was written separately for the one-
and the two-heated channel cases. The result for the one-heated- channel case is

d 1

avinlet = E[A + B Nfl(D Aﬂ Dol (Vinlet )1 (3-64)

and the ODEs for v, ;. (t) in the two-heated-channel case (n=1,2) can be written as

—_A . . B, N D
d_Vl,inlet = A2 Bl . Al BZ u Ai + = AOI . l:vl,inlet + V2,in|et :|2
dt 1+B,+B, 1+B,+B, (3.65)
A : B, N D '
d_vz,inlet = Ai 82 i A2 Bl u A2 + e AOI : [Vl,inlet + V2,in|et :|2
dt 1+B,+B, 1+B,+B,

According to equation (3.61) (second and third term on the right hand side), V. (t)
depends on all heated channels. The inertial term contributes to the mass flow
changes of all heated channels. Thus, the inertial term of the downcomer momentum
balance describes the impact of all heated channels on the n-th heated channel.
From the physical point of view, if the downcomer flow cross section is increased ( A,
decreases), the inertial effects of the downcomer mass flow decrease. For A, — o«
the ratio A, — 0 which corresponds to the constant external pressure drop boundary
condition. In this case (A, =0), the inertial term in the downcomer momentum bal-
ance vanishes and the n-th heated channel is independent of all the other heated
channels. This means, the change of the mass flow in the k -th heated channel does
not affect the n-th heated channel. Consequently, if the ratio A, is zero (A, =0) the
inertial effects of the downcomer vanish and (3.61) is reduced to v ;... = A, (original
ODE) which is the result of expression (3.55) evaluated in [12] (final ODEs for the
heated channel inlet velocities presented by Dokhane [12] with DP,, = Fr "+ AP,__,).
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3.3.2 The effect of the recirculation loop model on the stability behaviour
of a simple thermal-hydraulic one heated channel model

In this subsection, the impact of the recirculation loop of the thermal hydraulic one
heated channel model in the HEM limit on the stability boundary (SB) and bifurcation
characteristics (BCH) are investigated [23,24]. This sub-model, in the following re-
ferred to as TH-model, is a subset of the TUD-ROM. In particular, the TH-model is a
set of 5 nonlinear ODE’s ((3.24), (3.25), (3.27), (3.28) and (3.64)) for the state vari-
ables a,(t), a,(t), s,(t), s,(t) and v, (t). The input parameters of the TH-model are
based on the TH-model used originally by Dokhane et al. [12,13] for its validation
against experimental data (Saha et al. [77]).

3.3.2.1 Bifurcation analysis using BIFDD

In order to study the impact of the recirculation loop of the TH-model on the SB and
BCH, the ratio A, is varied in small steps (which corresponds to the variation of the
downcomer flow cross section A,.) and semi-analytical bifurcation analysis is carried
out by employing BIFDD. The bifurcation parameter is N, and the iteration parame-
teris N, . By setting D, =0 downcomer friction is not considered in (3.64). Because
of practical relevance the ratio A, and N,, were varied in the interval
A, €[0.0,...,2.0] and N_, €[0.1,...,4.0], respectively. Figure 3.4 shows SB’s in the N,
-N ., -parameter space and the corresponding BCH's for different A, -values.

Stability boundaries Bifurcation characteristic

p AR\

I subcritical region

| stable region |

3 A =00
: — A,=04
Newo| A =08
' — A,=12

2 o]
[ A =16
A =20

ol

;tablp M

Sta 1
ab/e "SGioy, \;§ supercritical - /
region /

6 7 8 9 -2 0 2 4 6
Npch B 2

Figure 3.4:  Results of the SB’s and the corresponding BCH’s for different ratios
A, €[0.0,...,2.0] are presented.
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The stability boundaries shift to the right hand side for increasing A, values. The set
of stable fixed points increases in the N, -N_, -parameter space and thus the sys-
tem becomes more stable. This behaviour is in line with the well-known density wave
oscillation (DWO) mechanism [69-74,77,78]: the larger the bypass cross section, the
better the boundary condition DP,,,.., =const is fulfilled (constant external pressure
drop over the channel) and thus self-sustained density wave oscillations can occur.
The set of fixed points, where unstable limit cycles exist, decreases for increasing A,
values because the set of subcritical PAH bifurcation points decreases. This fact has
safety relevance (in a general sense) because such fixed points may deceptively ap-
pear as stable fixed points if the perturbation is sufficiently small. If the disturbance

overcomes the critical amplitude, however, the fixed point becomes unstable.

To analyse the influence of the downcomer friction separately, the ratio D, was var-
ied in D, €[0.0,...,0.14] where A, was set A, =1.2. Figure 3.5 and Figure 3.6 pre-
sent the results of the bifurcation analyses for the D, variation.

3.0 One Channel Thermo-Hydraulic
“ [ ] Homogeneous Mixture Model =
T =
N |
sub - .
"t stability boundaries |
’ . Z — b =000l
stable region 7 D, =0.00 ]
/ D, =0.02
2,0 z D, =004}
/ D, =0.06 |
15 / //\ | unstable region | Dy =008
W D, =0.10]
N\ D, =0.12 ]
1,0 == || p,=014]
» e |
0,5 .
6,5 7,0 N 7,5 8,0
pch

Figure 3.5:  Stability boundaries in the N, -
tios D, with D, €[0.0,...,0.14].

N . -parameter space for different ra-

Figure 3.5 clearly shows that the stability boundaries shift to the left hand side for
increasing D, values. Consequently, the system becomes more unstable. On the
other hand, the number of subcritical fixed points decreases for increasing D,, values
shown in Figure 3.6. But both figures also show that the stability behaviour of the dy-
namical system is not significantly sensitive to the D, variation. Practical values of
D, are within the interval D, €[0.02,...,0.04]. As shown in Figure 3.5, the effect of
D, -deviations is small. Thus, the downcomer friction can be neglected in further in-
vestigations.
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One Channel Thermo-Hydraulic
A \ Homogeneous Mixture Model
N
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_" —— D_=0.00 ’\\’\
D =0.02 NN
Newo [ D, =0.04 \\\
| |—— D,=0.06 RN
\
1t+{— D, ,=0.08
D, = 0.10 )
—— D =0.12
ol Ve
[ D, =0.14 P
O 1 1 1 1 1 1 1 1
-2 -1 0 [32 1 2 3

Figure 3.6:  Poincare-Andronov-Hopf bifurcation characteristics in the N, -/5,-
parameter space for different ratios D, with D, €[0.0,...,0.14].
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3.3.2.2 Numerical integration

The semi-analytical bifurcation analysis is valid only in the vicinity of the SB. Hence,
to obtain information about of the stability behaviour beyond the local bifurcation find-
ings, numerical integration of the set of the ODEs is necessary. In addition to that,
the predictions of the semi-analytical bifurcation analysis can be confirmed inde-
pendently by employing numerical integration. To this end, the ODEs are integrated
(in the time domain) in the MATLAB environment, where a Runge-Kutta method was
used.

The aim of this section is to show the numerical integration method by means of the
thermal-hydraulic one heated channel model in a close neighbourhood of two points,
defined in Figure 3.7, respectively.

8

[ H H H H T H H H H T H T T T T '__ L] I L] L] L] L] I L] L] L] L] I L] L] L] L)
| stability boundary | 1 | bifurcation characteristic
TH—— A, =12 I \
o i

S | point: A /\

5 N
: &/ & [N, =60
[ & N sub

Al % N  =10.7671
r pch

2} / point: B
[ [N, =10 - k
Lf — N, = 7.2156 T

6 8 N 10 12 -8 -4 B 0 4
2

Figure 3.7:  Definition of two points, A and B on the SB for A, =1.2. In point A su-
percritical PAH-B are predicted. In point B subcritical PAH-B are pre-
dicted.

Numerical integration results with parameter configurations corresponding to point A
and B are presented in the following.

Analysis at point A:

On the left hand side of point A, stable fixed points are predicted. For the analysis in
this region the phase change number was changed from the critical value
N, =10.7671 to N, =10.7 and a perturbation in the inlet velocity ov,,, was intro-
duced to the system (steady state). Figure 3.8 presents the time evolution of v It
is clearly shown that the system is stable.

inlet *
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One Channel Thermo-Hydraulic
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Figure 3.8:  Time evolution of v,

inlet *

The system is stable.

On the right hand side of the SB, stable limit cycles of the dynamical system are pre-
dicted. In order to confirm this prediction, N, was changed from the critical value
N, =10.7671 to N, =10.78 and the same perturbation amplitude Jv,,, was im-
posed on the system. As shown in Figure 3.9, the existence of a stable periodic solu-
tion is confirmed by numerical integration at this point.

One Channel Thermo-Hydraulic
Homogeneous Mixture Model

1,15 .
]
1,10 f — time evolution of v_
1,05 point:
N, =6.0
Viae® N,,, = 10.78
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|
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[ Bifurc.: N_, = 6.0
0800 yer: N =107671
[ pch }
0 100 200 300 400 500
S

Time

Figure 3.9:  Time evolution of v, (stable periodic solution).
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Analysis at point B:

A subcritical bifurcation is predicted at point B. Consequently, unstable limit cycles
are expected in the stable region close to point B. The numerical integration was car-
ried out in the linear stable region at N, =7.2151. At first, a small perturbation (
ov.... =0.01) is imposed on the system and numerical integration is carried out. The

inlet

result is shown in Figure 3.10. In the second step, a six times larger perturbation am-

plitude (ov,,, =0.06) was imposed on the system. The result is shown in Figure 3.11.
0,898 One Channel Thermo-Hydraulic
Homogeneous Mixture Model
0,896
0,894 LT
inlet fjf POIN:
N =1.0
0,892 NS”b - critical parameter:
peh — - Bifurc.: N_, = 1.0
with lter. N_ =7.21562
0,890 Ao| =1.2 er.. pch — °°
v, = 0.01
0,888 {
—— time evolution of v
0,886 I I T T T
0 20 40 _. 60 80 100
Time s
Figure 3.10: Time evolution of v,,,. The system is stable for the relative small per-
turbation amplitude dv,,, =0.01.
One Channel Thermo-Hydraulic
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1.1 i i
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0,6 L~ I I
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Figure 3.11: Time evolution of v, . The system is unstable for the relative large

perturbation amplitude of ov

=0.06.

inlet
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The results of the numerical integration at the point B confirm the prediction of the
semi-analytical bifurcation analysis. Roughly speaking, the system is stable for suffi-
cient small perturbations and unstable for sufficient large perturbations.

On the right hand side of point B the system is unstable. The results of the numerical
integration carried out in this region are not presented here.

3.3.2.3 Summary

The study of the impact of the recirculation loop on the SB and PAH-B was carried
out by variation of the downcomer flow cross section. The results show clearly that
the stability behaviour of the thermal hydraulic one heated channel model is very
sensitive to variations of the downcomer flow cross section. The larger the down-
comer flow cross section the more unstable the system is. If the downcomer flow
cross section is infinitely large, the boundary condition of a constant external pres-
sure drop will be fulfilled.

The dominant term in the momentum balance of the downcomer is the inertial term.
In contrast, the friction term in this balance equation do not have a significant impact
on the thermal-hydraulic stability characteristics. This result is in line with the
RAMONAS5 model in which downcomer-friction is not taken into account. Hence,
downcomer friction will be neglected in all further analyses.

Additionally, numerical integration of the TH-model was carried out in the close re-
gion of two points located on the SB. The dynamical behaviour predicted by the
semi-analytical bifurcation analysis could be confirmed independently by the numeri-
cal integration.
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3.3.3 The effect of the recirculation loop model on the stability behaviour
of the ROM (coupled model)

In the framework of this investigation, the impact of the recirculation loop on both in-
phase and out-of-phase oscillation mode of the ROM based on NPP Leibstadt cycle
7 record #4 (KKLc7_rec4 [5,6,79]) data is analysed. To this end, semi-analytical bi-
furcation analysis with BIFDD is performed. Besides, a modified BIFDD version is
employed to examine the set of fixed points where the complex conjugated eigenval-
ues with the second largest real parts are zero.

In the scope of this analysis, the following definitions are made:

e eigenvalue or pair of complex conjugated eigenvalues (4,) of the Jacobian
matrix of the ROM differential equation system with the largest real part:
Re(4)>Re(4) V4 with i=1or |Re(4)|<|Re(4) V4 with izl

e eigenvalue or pair of complex conjugated eigenvalues (4,) with the second
largest real part: Re(4)>Re(4,)>Re(4) VA with i#12 or
Re(4)| <|Re(4,)|<|Re(4)| VA4 with i=12

e The eigenvectors p,, and p,, of the linearized BWR system (ROM) corre-
spond to specific eigenstates which are referred to as in-phase oscillation
mode and out-of-phase oscillation mode, respectively. The eigenvalues corre-
sponding to p;, and p,, are 4, and A4, . As will be shown later, 4,, and 4,

are the eigenvalues with the largest and second largest real parts for the ref-
erence OP of KKLc7rec4.

Before continuing, the general solution of the linearized system of the dynamical sys-
tem (2.1) in section 2.2 is discussed (also presented in Appendix A). In order to lin-
earize the dynamical system (2.1) at the steady state solution X, the Ansatz

X() = X, + sX(t) (3.66)
is substituted in (2.1) and a Taylor-expansion is applied
d ¢ d .o - >
o Ko+ 50X = F(X, + 6X,7)
- ) o i (3.67)
= F(Xp70) + DXF(XO,;/O)[X—XOJ + O(H(sxu ) ,
=0 j = X 0

where the linear term is taken into account, only. The result is
d

—6X = J6X (3.68)
dt

where J is the Jacobian matrix defined as
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oF, oF,
T ae

J=| ] (3.69)
oF, oF,
N

Equation (3.68) is the linearized system of (2.1) at X,. The solution of equation
(3.68) can be written as

SX(t) = e" 5X, . (3.70)

Roughly speaking, the solution (3.70) describes the time evolution of the small per-
turbation X which is imposed on the steady state X, at t=t,=0 with
SX(t=t,) = 6X,. According to equation (3.70), the time evolution of 5X only de-
pends on J. Inturn, J depends on the parameter vector y .

In order to evaluate (3.70), the linear transformation
SX(@t) = PU(t) (3.71)
is performed such that the Jacobian matrix can be transformed into the Jordan nor-
mal form. To this end, the eigenvalue problem
JP=4D (372)
has to be solved, where p, are the eigenvectors with their corresponding eigenvalues
A of the Jacobian matrix. The transformation matrix P can according to

P=[P,, ... B.... P,] be written in terms of the eigenvectors p,. In other words, the
columns of P are the eigenvectors p, of the Jacobian matrix.

In the linear system (3.68) the vector §X is substituted by Ansatz (3.71) and the final
equation is multiplied by P~ from the left hand side. The result can be written as

%u _puypPy =DU , (3.73)
where D
Ay ooeeenmnnnnnnnns 0
a b.
D=PYP=|: ( ' 'J : (3.74)
_bi &
O coverreereeeneenns A

Is the Jacobian matrix transformed into the Jordan normal form. If all eigenvalues of
J are real and distinct, the matrix D will have a diagonal form.

The solution of (3.73) can be written as

G(t) = ePu, (3.75)
0
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where 6X, = PU,. The inverse transformation gives
SX = PU(t) = Pe’™™U, = PePIpisX . (3.76)

The general solution of the linearized system (3.68) can be written as
X(t) = X, + D_c,Pe*
i=1

x0) (%®) . (P (3.77)

= P+ Dl et

i=1

Xn (t) XOn (t) pin
where the constants ¢, can be calculated from the initial conditions.

As can be seen in (3.77), the stability behaviour of the linearized system in the vicin-
ity of X, depends on the real parts of the eigenvalues 4 of J with 4 = A(y). Ac-
cording to (3.77) all components x,(t) of the general solution contain all eigenvalues
A of J. This means, if there is at least one pair of complex conjugate eigenvalues
with a positive real part, the system will be unstable. If all eigenvalues have strictly
negative real parts, the system will be stable. When a selected control parameter is
changed and the eigenvalue with the largest real part becomes zero, bifurcation
analyses as explained in sections 2.2 and 2.3 are necessary.

3.3.3.1 Bifurcation analysis using BIFDD

The selection of the reference OP and the procedure to calculate the ROM (the artifi-
cial factor fact is fact=5) input is presented in section 4.2. In the scope of the bifur-
cation analysis, N,, and DP,, are defined to be the iteration and bifurcation parame-
ters, respectively, and the downcomer friction is neglected. In order to study the ef-
fect of the recirculation loop on the BWR stability behaviour, the ratio A, was varied.
Thereby, a change of A, = A . /A, corresponds to a change of the downcomer flow
cross section A,.. For calculation of ratio A, from the RAMONAS model, the flow
cross section of downcomer 2 (DC2, see [32]) was taken into account. The result is
A, =12.68 and is considered to be the reference value for this analysis.

At first, the bifurcation analysis is carried out for A, =12.68. The stability boundary is
shown in Figure 3.12. The analysis has shown that the pair of complex conjugate
eigenvalues with the largest real part corresponds to the out-of-phase oscillation
mode (4, =4, with Re(4)>Re(4) V A,i=1). For this parameter configuration, all
the other eigenvalues have strictly negative real parts. This means, only the out-of-
phase mode is excited at operational points for which Re(4)>0 (linear unstable re-
gion).

The bifurcation characteristics are presented in Figure 3.13 and show that g, is al-
ways positive (S, >0). This means, unstable periodical solutions are predicted in the
linear stable region close to the stability boundary. Figure 3.14 show the SB trans-
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formed into the power flow map where the 112% rod-line and the exclusion region for
cycle 7 are included.

Stability boundary for A  =12.68

1.6
,// \\\\~\
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// —— SB PAH-B (Re(%,)=0) ™~ "
with 2, =%, ™
1.2 / e reference OP:
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Re(r,)>0 (linear unstable region) |
0.8 —
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o —T
\ /////
\ -
I Re(r,)<0 (linear stable region)
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Figure 3.12: Stability boundary for A, =12.68.
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Figure 3.13: Bifurcation characteristics for A, =12.68.
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Power Flow Map for A =12.68
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Figure 3.14: SB transformed into the power flow map.

Secondly, the ratio A, was changed to A, =6.75 and bifurcation analysis has been
carried out. The analysis has shown (Figure 3.15) that there is a small region close to
the reference OP where the in-phase mode is excited (Re(4,) >0) for A, =6.75. But
at the reference OP, only the out-of-phase mode is excited, because Re(4,)>0 and
Re(4,) <0 with 4, =4 . The SB and the nature of the PAH-B have not changed.
Stability boundary for A = 6.75
1.6 —m—mm—m—m— 7771

o
] ] —— SB PAH-B (Re(%,)=0)
— Re(2,)=0
e reference OP:

N,, =0.67
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sub
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Figure 3.15: Stability boundary for A, =6.75. The bifurcation characteristics are
unchanged.
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Furthermore, bifurcation analyses for the ratios A, =6.00 and A, =4.00 have been
performed, respectively. The stability boundaries for both cases are presented in
Figure 3.16 and Figure 3.17, respectively. The nature of the PAH-B for A, =4 and

A, =12.68 is shown in Figure 3.18.
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Bifurcation characteristic A0I =12.68
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Figure 3.18: Nature of the PAH-B for the reference case and A, =4.00.

The bifurcation analysis has shown that the downcomer flow cross section variation
does not have an effect on the out-of-phase oscillation mode because the A, varia-
tion does not change the locations of operational points where Re(4,)=0, in the
N, - DP,, -parameter map. On the other hand, the A, (A,.) variation has a signifi-
cant effect on the in-phase oscillation mode. If A, is decreased (A, will be in-
creased), the set of fixed points for which the in-phase mode is excited, will grow. In
other words, if the downcomer flow cross section is increased, the region where
Re(4,) =0 (inthe N, - DP,, -parameter space) is growing.

sub

Furthermore, as can be seen in Figure 3.15, Figure 3.16 and Figure 3.17 the real part
of the pair of complex conjugated eigenvalues associated with the in-phase oscilla-
tion mode is passing the real part of the pair of complex conjugated eigenvalues as-
sociated with the out-of-phase oscillation mode with increasing downcomer flow
cross section (A, -> decreasing). E.g. such crossing points are depicted in Figure
3.17, point A and B. The effect of passing real parts of both pairs of complex conju-
gated eigenvalues associated with the in- and out-of-phase oscillation modes on the
bifurcation characteristics are presented in Figure 3.18. In point A and B the bifurca-
tion characteristics are changing significantly. If Re(4,)>Re(4,), £,<0 and if
Re(4,,)>Re(4,), £,>0.
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3.3.3.2 Numerical integration

Numerical integration was performed at the reference OP for different A, ratios
A, =[12.68,8.0,7.0,6.0]. The transient was initiated by introducing perturbations in the
channel inlet velocities with opposite sign (an in-phase oscillation is triggered).

Time evolutions of the fundamental and first azimuthal mode and
the channel inlet velocities for AOI =12.68
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Time evolutions of the fundamental and first azimuthal mode and
the channel inlet velocities for Aol =7.00
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Figure 3.21: Numerical integration for A, =7.00.

Time evolutions of the fundamental and first azimuthal mode and
the channel inlet velocities for AOI =6.00
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Figure 3.22:  Numerical integration for A, =6.00.

The numerical integrations for different downcomer flow cross section confirm the
prediction of the bifurcation analyses.
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3.3.3.3 RAMONAGS analysis

In the following subsection, RAMONAS analyses are performed at the reference OP
(but with h,, =120 kJ /kg ) where the downcomer flow cross section (DC2) is varied.
The reference value of A, is A, =0.25m’. The transient is initiated by imposing a
sinusoidal control rod perturbation into the steady state system (additional informa-
tion about the KKL-RAMONAS5 model and the locations of the LPRM'’s is given in

section 4.1).
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Figure 3.23: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. The global power oscillation is strong decaying.
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Figure 3.24: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. The global power oscillation is decaying.
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Figure 3.23 to Figure 3.26 show results where A, was varied in the interval
A..=[0.25,...,1.0] m?. It can be seen, the larger the downcomer flow cross section
the slower the decay of the in-phase oscillation mode is, while the out-of-phase oscil-
lation mode is not affected.
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Figure 3.25: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. This figure clearly show that the global power oscillation
is decaying not so strong as in Figure 3.24 and Figure 3.25.
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Figure 3.26: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively.
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From the first 80 seconds (Figure 3.26), it can be seen that the global and regional
power oscillations are superposed. When the amplitudes of the global power oscilla-

tions become small enough, the regional power oscillation will dominate. The nature
of the regional power oscillation, however, is not affected.

0.02 - : —
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Figure 3.27: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. The global oscillation is unstable
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Figure 3.28:

Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. The global oscillation is unstable.
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In Figure 3.27 and Figure 3.28 show that the growing regional power oscillation is
superposed by a growing global power oscillation. The larger the downcomer flow
cross section, the more unstable the global power oscillation is.

The analysis of the downcomer flow cross section variation with the system code
RAMONAS has shown that A, has a strong impact on the stability property of the in-
phase oscillation mode while the stability behaviour of the out-of-phase oscillation
mode is not affected. This result is consistent with the result of the ROM analysis.

3.3.3.4 Physical interpretation

In the following, the momentum balance (3.58) of the recirculation loop and the final
ODE'’s (3.65) for the channel inlet velocities are taken into account. Thereby the out-
of-phase oscillation mode ( p,, ) and the in-phase oscillation mode ( jj;,) are consid-
ered separately. The goal is to show that the out-of-phase oscillation mode is inde-
pendent of the downcomer flow cross section while the in-phase oscillation mode
depends on it. In other words, it will be shown that the out-of-phase eigenstate p,, is
approximately (if downcomer friction is neglected) independent of A,.. In this case,
Re(4,,:) will not change significantly under A, variations.

The out-of-phase mode (out-of-phase eigenstate, see definition in section 3.3.3) is
characterized by thermal-hydraulic and heat conduction properties that have opposite
sign in both channels. In particular, if both channels are identical, the derivatives of
the inlet channel mass flows (m, and m,) respect to time have opposite sign
M =-m, and thus the total mass flow is constant m_, (t)=const in relation (3.57).
Consequently, the inertial term (first term on the right hand side) in the momentum
balance (3.58) vanishs for n (t) =const (downcomer friction is not considered) and
thus the downcomer pressure drop only depend on the gravity term which is a con-
stant. Hence, for the out-of-phase oscillation mode, the momentum balance (3.58) is
independent of A,.. In this case, the integral (3.60) is constant and is equal to the
steady state external pressure drop

japfec'” dz j pd°° dz - AR_,=Fr*+AP_,=DP,..

1
The final ODEs are then reduced to the form of v ;. (t) = A (t) (where A (t) is de-
fined in (3.62)). Function A (t) is independent of the downcomer flow cross section.
Hence, the variation of A,. has none effect on the out-of-phase oscillation mode be-
cause due to m,, (t) =const the downcomer momentum balance becomes independ-
ent of A,, and thus the integral (3.60) is equal to the steady state external pressure
drop. As a conclusion, the stability properties of the out-of-phase oscillation mode (or
out-of-phase eigenstate) are independent of the downcomer flow cross section. This
is consistent with the RAMONAS and ROM results.

(3.78)

The in-phase oscillation mode (in-phase eigenstate) is characterized by thermal-
hydraulic and heat conduction properties that have the same sign in both channels.
In particular, the derivatives of the inlet channel mass flows (m;, and n,) respect to
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time have the same sign and thus the total core mass flow is not constant with re-
spect to time. Hence, the downcomer momentum balance (3.58) depends on A,,.
Consequently, the final ODEs (3.65) for the channel inlet velocities depend on A,
(see definition of B, (t)). Consequently, the in-phase oscillation mode depends on
A,.. From the coupled system (3.61), it can be deduced that, the more A, will be
increased (A, is decreased) the more of the momentum of the n-th channel is
transferred to the downcomer which has (according to the RAMONAS and ROM re-
sults) a stabilizing effect for the in-phase oscillation mode.

3.3.3.5 Conclusions

This analysis has shown that the recirculation loop has a significant impact on the
stability properties of the in-phase oscillation mode, while the out-of-phase oscillation
mode is not affected. The larger the downcomer flow cross section, the more unsta-
ble the in-phase oscillation mode is. The limit A, =0 corresponds to the constant
external pressure drop boundary condition. Consequently, BWR stability analysis
should always be performed including the recirculation loop. It should be emphasized
that the stability properties for the reference OP of KKLc7rec4 can only be repro-
duced correctly by the ROM if the correct downcomer flow cross section of the
RAMONAS5 model (DC2) is used. In this case, ROM and RAMONADS results are con-
sistent.

In other words, the new ROM, where the recirculation loop is implemented, simulates
correctly the oscillation mode: the out-of-phase oscillation is excited and the in-phase
mode is decaying. As mentioned in the introduction of the thesis, the original ROM
was not able to correctly predict the oscillation mode. Responsible for the correct
simulation of the oscillation mode is the implemented recirculation loop model, in
which the downcomer flow cross section of the RAMONAS (DC2) model is used as
input parameter, and the increased artificial factor fact,, =5 with m=n.
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3.4 Subcooled boiling

3.4.1 The modified profile fit model

As mentioned in section 3.1.3, the two phase region of the thermal-hydraulic model
of the ROM is represented by a Drift-Flux-model where thermodynamic equilibrium
between the two phases is considered. In real two phase flow systems, however,
there is a region between the single- and two-phase regions where thermodynamic
equilibrium between the two phases does not exist. The liquid phase is subcooled,
but local boiling from the heated surface appears. The void fraction of this region is
not taken into account by the current thermal-hydraulic model of the ROM. Hence the
void fraction axially integrated over the two-phase flow region «,, is underestimated
in the current ROM version.

Note that, the void fraction is the dominant feedback parameter coupling the neutron
kinetics with the thermal hydraulics. The feedback gain, the void profile and the
channel pressure drops determine the thermal-hydraulic state. Hence, it is obvious to
extend the reduced order model by a model which takes into account the subcooled
boiling phenomenon in order to simulate the BWR stability behaviour more realistic.
The questions to be answered in this section are:

e is it necessary to take into account the subcooled boiling phenomenon in the
ROM and,

e which model for describing the subcooled boiling phenomenon is appropriate.

It can be proved that the ROM must be extended by a third region where a mecha-
nistic model describes the thermodynamic non-equilibrium between the two phases
and the void generation on the heated surface. Such a model extension requires ex-
tremely large effort. Therefore, in the scope of this work, the effect of the subcooled
boiling on the BWR stability behaviour has been approximately estimated by a modi-
fied profile fit model (Levy, 1966 [27]).

Before describing the subcooled boiling model used in this analysis, a short summary
of the subcooled boiling phenomenon will be given [27,69-74]. In general subcooled
boiling is characterized by the fact that the mean enthalpy <h> of the liquid phase is
less than saturation (<h>* <h_,), but local boiling from the heated surface appears.
The bubbles removed from the heated surface are travelling through the subcooled
liquid and are collapsing because of condensation processes. One part of the power
is transferred into the subcooled liquid while the rest is invested in steam production.
Consequently, besides the appearance of the additional void fraction « the heat

transfer conditions are changed in the subcooled boiling region.

scool

Figure 3.29 shows a sketch of a typical void profile in a vertical (z-direction) heated
pipe during a forced coolant convection. The subcooled liquid is entering the channel
inlet with the inlet enthalpy h' . and the inlet velocity v . and is heated along the z-
direction. While travelling through the channel the mean coolant enthalpy <h> is in-

*
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creasing. The region between the channel inlet and level 7" = s ... is called the sin-
gle phase region.

<— Single phase region —»<— Subcooled —<— Bulk boiling region ——— »
boili i
iR fegion (h) sat h| = hsat

r o %%%0 C ooo 0© 0000 OcP° Q o
== > ; °°So°§>qgo°§ A

» <> = (i)

oy L gstete s
= =E: \ q,ogoofj;’ ) ogog??cgz%‘?)%go 0 éé%(
<> =|(h)wiese | by <<hd < haat| DI < hea ¢hy> heat = hi
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Wall Detached Void profile, where

thermodynamic
equilibrium is
assumed
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Real void profile
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Z = |lwoidage Z = | Z = Z =Zeg Z

Figure 3.29: Typical axial void profile of forced coolant in a heated pipe [27,69-74].

At level 7" =y, Characterized by <h> = (N )ypigage » the first vapour bubbles appear
and from z° = s, 1O Z" =4, more and more bubbles are forming on the heated
wall. This region, commonly denoted as the wall voidage region, is characterized by
the fact that the forces (for example the buoyant force) exerted on the vapour bub-
bles are smaller than the forces (for example the surface tension force) maintaining
the bubbles on the wall. Consequently, the vapour bubbles remain in contact with the
wall in this region.

At level 7" = g with <h> =(h’),, called void departure point, the vapour bubble size
is large enough to leave the surface and the vapour volumetric fraction rise signifi-
cantly. The region between z =4, and z =4, also termed detached voidage re-
gion, is characterized by a mean enthalpy lower than saturation h < <h> <h,

At location z = the mean enthalpy is at saturation but the liquid enthalpy is less
than saturation h; <<h>* =h_, . Due to this fact, in this region and also in the detached
voidage region heat exchange processes between the two phases occur such that
thermodynamic equilibrium does not exist.
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The liquid phase reaches the saturation state at level z*:z:q. Above this location
thermodynamic equilibrium between the two phases is nearly realized. Heat trans-
ferred into the coolant is completely invested in steam generation.

The subcooled boiling model is based on the following assumptions:

1) Wall voidage is not taken into account so that the subcooled boiling reglon IS
defined to be the detached voidage region plus the region between z" =
and 7' =z,,.

2) The heat transfer conditions in the subcooled boiling region are considered to
be the same as the heat transfer condition in the single phase region

3) For the determination of the void departure point x, , the criteria of Saha and
Zuber (1974) [69-74,77] are applied

4) The drift flux relation [27,69-74] between the volumetric void fraction and the
flow quality is used

The profile fit model used in the current analysis is based on Levy's (1966) [27] rela-
tionship

(x (@) ]
Xscool(zvt) = Xeq(Z,t) - X € Xd (379)

relating the thermodynamic equilibrium quality x,, to the “true” flow quality x
Here, x,, is defined as

scool *

(h(z,t)) - hZ,
Ah;

fg

Xeq (2,1) = (3.80)
Expression (3.80) is the heat balance where thermodynamic equilibrium is assumed
and the quality x, at the void departure point x, is defined as

o~y 0)

hsa
Xg (1) =— s , (3.81)
fg

where <h(,ud,t)>* is the coolant mean enthalpy at x, (below g, the volumetric void
fraction is approximately zero). Because X, (u;)=X,, then X, () =0 [27,73]. On
the other hand, as the “true” flow quality x.,, increases and becomes large enough
X0 >> X4 and positive, where non-thermodynamic equilibrium stop to exist, then
Xseool > Xeq -

'scool

For the description of subcooled boiling in the ROM using the profile fit model (3.79),

the values x, and x,, which are defined in (3.80) and (3.81), have to be estimated.

As mentioned in assumptlon 3), for the determination of the mean enthalpy <h(yd ,t)>

at the void departure point, the criteria of Saha and Zuber (1974)
hex _<h(:“d ’t)> D.q *C*I

- =0.0022-
Ahy, K, AR

(3.82)

g
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are applied [72,73], where c’;l is the specific heat capacity of liquid water. The criteria
(3.82) can be rewritten in terms of dimensionless numbers, the phase change num-
ber N .., and the single phase conversion number N,

Dy (Cy N

cov,1d

—N t
X, (t):L"()O.OOZZ

Ncov,l(l) k: . Ah:g N . (t)
h;,l(DTO*
Xd (t) = M .0.0022. Dh\fhm (tZCpl ) \l‘\nlllejAmg)loﬂg /f
Ncov,l(D kf ) Ahfg ql(b (t)
\AnletAmg)/oﬂg /f
~Nponso Dic,h. 0Ty
cov,1d kf . Ahfg

Xd (t) =-N pch 10 (t) : Cd

_ 00022 Db, TGy
N ki - Ahg

where  C,

cov,1d

The dimensionless parameter N ., and N, ., are defined as

_agry RLTEUs
pchid — * *oook o x x) cov,ld — * * ok x  *
AnletAhi@lVopgpf ) AnletAhfgvopgpf (3.84)
where N, = P and N, = Py
Ap P

where T, is the saturation temperature of the liquid phase.

In order to calculate the thermodynamic equilibrium quality x,,, the mean enthalpy
(h) along the flow channel should be determined. In the current analysis (h) is ex-
pressed by the quadratic enthalpy profile
h(z,t))
(h(z,1)) =<(AZ%E h(z,t)=a,(t)-z* +a,(t)-z+h

fg

(3.85)

inlet !

used for converting the original energy balance (PDE) to an ordinary differential
equation by applying the weighed residual method. Substituting (3.85) into (3.80)
yields

Xeq Zat) = <h(z,t)>* _h:at = <h(z,f)> - h:ai = az(t)' 7° +a1(t) -+ hinlet - h:ai
AR, AhT AR hy,
Ko (2,8) =3, (1) 2% +y(t) 7 + L T
i Ay Ahy (3.86)
%(_/
7NsubNer
:az(t)~zz+a1(t)-z—NsubNer ,

where the definition of the subcooling number N,
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h* — hi;let A,O* _ h:at — hi’;ﬂet Ap* . '0:

Nsu _ lsat * — * ~ f
©oAhg  p, AN py P (3.87)
h:at — hi;let 1
Nsub = *
AN, NN

is used.

The point of bubble departure y, is the level at which the coolant mean enthalpy is
equal to (h(,,t)) . Hence, u, can be obtained by applying the boundary condition
h(gy,t)=(h(y,,t)) in the quadratic enthalpy profile (3.85). Accordingly (as shown in
section 3.1.3), the bulk boiling boundary x is determined by the boundary condition
h(u,t) = (h(u,t)) =h,, . The results for x4, and u are

= 2 Ah, g
‘ a, ++/a’ +4a,Ah, (3.88)
- 2N,N, N, '
a, +,fa? +4a,N,N N,

where Ah, is defined as Ahid:<h(,ud,t)>—h
Ah, =N,N N, +X,.

r'Yp' Vsub

and can be rewritten as

inlet

Finally, the axial void profile « ., = «,,,(z) can be calculated using the drift flux rela-
tion [27,69-74]
1
Vot (1) = T hon 20~V @ (20)] (3.89)
0
where
ahom (Z’t) = XSCOOI (Z1t) Nr (390)
Xeeoot (Z,1) + N N
is the relation for mechanical equilibrium conditions and
e (21) = Ko L) P (3.91)

(Xscool (Z’t) + Ner) -(Coj(z,t) +ng)

can be assumed as a correction term which takes into account the mechanical non-
equilibrium between the two phases.
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3.4.2 Analysis with the TH-model

The first analysis with the included subcooled boiling model was performed with the
simple thermal-hydraulic one heated channel model (TH-model, see subsection
3.3.2). The aim is to analyse the differences between the axial void profiles provided
by the original two-phase flow model (so-called bulk boiling model) and the sub-
cooled boiling model. The investigation is performed for thermal-hydraulic conditions
which are relevant for BWR stability analysis.

The axial void profiles have been calculated by employing the numerical integration
code, where only steady state calculations have been performed (see section 2.4
and Figure 2.7). At first, this analysis has been carried out at the selected reference
OP. This OP is characterized by

*

P = 12.1 bar

m. = 0.5 kg/s

b ’ (3.92)
Q" = 50.0 kW
N., =1.0

sub

Furthermore, the axial void profiles have been calculated for five different OPs,
where the system pressure P and the total coolant mass flow m,, are fixed and the
power and core inlet subcooling have been varied as shown in Table 3.3.

Table 3.3: Variation of the power and core inlet subcooling

Q (kw)
50 (ref.OP)
50

50

40

30

20

Pk kW [N e

The results of this analysis are presented in the following (from Figure 3.30 to Figure
3.35).
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a(z)

Figure 3.30:
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Comparison of the axial void profiles calculated by the bulk boiling

model and the subcooled boiling model for the reference OP.
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Comparison of the axial void profiles calculated by the bulk boiling
model and the subcooled boiling model for N, =2.0.
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Figure 3.32: Comparison of the axial void profiles calculated by the bulk boiling
model and the subcooled boiling model for N, =3.0.
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Figure 3.33: Comparison of the axial void profiles calculated by the bulk boiling
model and the subcooled boiling model for Q" =40.0 kW .
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Axial void profile
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Figure 3.34: Comparison of the axial void profiles calculated by the bulk boiling
model and the subcooled boiling model for Q" =30.0 kW .
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Figure 3.35: Comparison of the axial void profiles calculated by the bulk boiling
model and the subcooled boiling model for Q" =20.0 kW .

In order to quantify the differences between the calculated axial void profiles of the
bulk boiling model and the subcooled boiling model, the mean void fraction of the

channel (a,, and a.,) and the mean void fraction of the two phase region (<a2®>
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und <ocsc00|>) are calculated for all OP’s presented in Table 3.3. These quantities are
defined as

jazm(z) dz 1

o =2 j = [y (2) 2 (3.93)
dz #
0
1
Jascool (Z) dZ 1
a;g(t)ol =2 ‘1[ = Iascool(z)dz (394)
dz Ha
0
1
[z (@)dz
() = “— (3.95)
dz
/
and
j ascool (Z) dZ
<ascool> = #dl— ! (396)

jdz

Hd

which can be used to calculate the relative deviation o™ and 5<a> according to

tot tot
5a10t — ascoolt; Qo (397)
ascool
5<C¥> _ <ascool > - <a2<1>> (398)

(o)

The results for the mean void fractions and the relative deviations are summarized in
Table 3.4 and Table 3.5.

Table 3.4: Mean void fractions and the corresponding relative deviations

Nsub Otg <a2cl>> aéggol <ascool> 5at0t 5<a>

1 0.59017 |0.67841 | 0.60626 | 0.6375 0.02654 | 0.06418
2 0.47914 | 0.64793 | 0.49508 |0.60335 |0.03220 |0.07389
3 0.37133 | 0.60968 |0.38708 | 0.56089 |0.04069 | 0.08698
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Mean void fractions and the corresponding relative deviations

Table 3.5:

Q* (kW) a;(zl‘t) <a2(b> agggol <ascool> 5at0t 5<O(>
20.0 0.26713 0.41169 0.27523 0.37707 0.02943 0.09182
30.0 0.41011 0.53537 0.42120 0.49723 0.02633 0.07670
40.0 0.50360 0.61070 0.51704 0.57088 0.02599 0.06975

The results show that the relative deviations o«

tot

of the channel mean void fractions

are less than 4.1% for operational points relevant for BWR stability analyses.
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3.4.3 Analysis with the ROM for KKLc7rec4

As will be described in more details in section 4.2.1, the axial power profile in the
ROM is approximated by a uniform axial profile. In contrast to this the real axial
power profiles of real BWR systems are typically bottom peaked. Ignoring the true
axial power profile leads to deviations between the axial void profiles calculated with
RAMONAGS and ROM, where the system pressure, the core inlet subcooling, the core
inlet mass flow and the core averaged power of the RAMONAS model are used as
ROM input. The aim of this section is to compare the effect of the use of the uniform
axial power profile in the ROM with the effect of neglecting subcooled boiling on the
axial void profiles.

The present ROM investigation is performed for KKLc7rec4. The goal is to estimate
the deviation between the axial void profile calculated by RAMONAS5 and ROM (with-
out adjustment of the axial void profile, explained in 4.2.1). For this purpose, the
steady state calculations with RAMONAS5 and ROM have been performed for the se-
lected reference OP and afterwards the resulting axial void profiles have been evalu-
ated. Note that for this analysis the correct core inlet subcooling, core averaged
power, system pressure and core inlet mass flow that are obtained from the
RAMONAS model, are used as input for the ROM.

KKL cycle 7 record 4 (N_, = 1.6)

1.0 088 | Axial void profiles |~
0.8 : ’-___//-
0.6f S il
. A
0.4 : L~ / —— RAMONA 5 ]
0.2 E /1 / —— ROM (q,,,(2) bulk boiling model) | 5
Q.o:::..:::::4::""""i""':::
: N Axial power profiles |
1.6 F /
o 12F
Q2 E ]
0.8f // .
o —— RAMONA 5 3
0.4 : —— ROM N
0.0-llll i - i - i - llll{llll}llll i - i - i -
00 01 02 03 04 05 06 07 08 09 10
z=z/L

Figure 3.36: Comparison of the axial power profiles and the corresponding axial
void profiles of RAMONA5S and ROM for the reference OP.

Figure 3.36 shows the significant deviation between the axial void profiles due the
use of different axial power profiles in RAMONAS and ROM while the core inlet sub-
cooling, the core averaged power, the system pressure and the core inlet mass flow
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are equal in both models. The channel averaged void fractions and the correspond-
ing relative deviations between both axial void profiles are calculated as

1
_[aRAMONAs(Z) dz

ag),iMONAS =2 - =0.535 (3.99)

dz
l
1
[0 (2) dz
ag = 01— =0.442 (3.100)

I dz
0
and
tot tot

S = Apamonas ~ %o
o = tot

Zramonas (3.101)
sa' =0.174

Similar analyses have been performed for NPP Ringhals and NPP Brunsbuttel. It
turned out that the use of a uniform axial power profile, instead of the real one (NPP
Leibstadt, NPP Ringhals and NPP Brunsbiittel) induces deviations between axial
void profiles calculated by RAMONAS and ROM in the order of magnitude of about
16% (16% to 19%). In contrast to that the neglecting of subcooled boiling leads to a
relative deviation of about 5% (without adjustment of the axial void profile, described
in subsection 4.2.1). It is repeatedly emphasized that the large discrepancy will exist
only, if the axial void profile of the ROM hasn’t been adjusted. As will be shown in
subsection 4.2.1, after applying the adjustment procedure for the axial void profile of
the ROM, the deviation between the channel averaged void fraction calculated by
RAMONAS and ROM (original two phase flow model) are less than 1% (see Figure
4.20). Consequently, from the thermal-hydraulic point of view and in the framework of
the thesis analysis approach, the considering of the subcooled boiling phenomenon
IS not necessary.
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4 BWR Stability Analyses for NPP Leibstadt

In order to gather stability data for the beginning of cycle 7 of the NPP Leibstadt
(KKL) a stability test was performed on September 6™ 1990 [5,6,79]. In this test,
while the neutron flux was oscillating out-of-phase, both rotational and counter-phase
oscillatory patterns (this means that the symmetry line orientation which divides the
core into two halves during azimuthal out-of-phase oscillations was not fixed but os-
cillating or rotating) were observed. The time evolution of the averaged core thermal
power during the stability test (record #4 and record #5) is shown in Figure 4.1
[5,6,79].

Core Thermal Power during the Stablily Test, 2300 - 0030,

PP fpy 23,01}
&0 lF‘l 2’3.13 A P W.Ui
5 - A !
L] —
8 AN Ve
y =g
57 Vi /.
u--‘_.,.—_‘,.___._M t
" \
55
Re<cording ¥4 \.
54 23,77 - 23.41 "
53 f -
52 7
51
0 A / Rocoang #5[
&7 i I 23.55 » OOP |
44
&7
&5
23,00 23.10 2320 2330 - . 234 23,50 0,00 £0,1¢
’ &.09.50

Figure 4.1:  Core thermal power during the stability test (record 4 and record 5)
[5,6,79].

The test was initiated by pulling out control rods. The onset of un-damped regional
power oscillations occurred at approximately 57% power (100% Power = 3138MW)
and 36.5% coolant mass flow (100% mass flow = 11151 kg/s). Further increase in
power to 59% at 23:38 caused the oscillations to grow to approximately 30% peak-to-
average on several LPRM. In order to suppress the growing power oscillation, the
core thermal power was then reduced to 49% power by inserting control rods. After
about ten minutes, the stability test for the previous operational point was repeated.
Enhanced oscillation amplitudes were observed for this point, again. The oscillations
were then suppressed by reinserting control rods and the stability test was termi-
nated. The time evolution of the LPRM 19 of record #4 is presented in Figure 4.2.
More details of this test are given in [5,6,79]. The locations of the LPRM'’s are pre-
sented in Figure 4.10 of subsection 4.1.2.
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Figure 4.2:  Measured LPRM signal and its corresponding power spectral density
[5,6,79].

The regional power oscillations appear in records #4 and #5 of the stability test. Fig-

ure 4.3 shows the signals of LPRM 9 and LPRM 31 of record #4.

Signals of LPRM 9 and LPRM 31 of KKLc7_rec4
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As a result of the stability test, a growing regional power oscillation with a natural fre-
quency of 0.58 Hz (NF" =0.58s") is occurring in the considered operational point.
Furthermore, the power spectral density shows the higher harmonics of the oscilla-
tion which indicates the nonlinear character of the oscillation, such as a stable limit
cycle.

In the scope of this work, the nonlinear stability analysis is based on data which cor-
responds to record #4. These parameters are input values of the system code
RAMONA given in [5,6,79]. The operational point of record #4 is given by
Power = 59.5% (1867.11 MW)
Flow = 36.5% (4072.12kg/s)
Subcooling = 104.0 kJ / kg
Pressure = 69.74 bar

(4.1)

It should be emphasized that, in order to represent with RAMONAGS the real stability
behaviour of the selected operational point a code tuning was necessary. In particu-
lar the channel inlet loss coefficients, the channel wall friction, the slip correlation co-
efficients, the coolant bypass fraction and the core inlet subcooling were modified in
the known uncertainty region.

Figure 4.4 shows the control rod positions and the corresponding numbers of fuel
elements in a quarter core. This configuration is composed symmetrically around
Xx=8,y=8.

Core shape and control rod positions of NPP Leibstadt
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Figure 4.4:  Control rod positions of a quarter core.
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The control rod configuration of the entire core is shown below (Figure 4.5).
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Figure 4.5:

15

Control rod configuration used in RAMONAS5 for KKL cycle 7 record 4

in units of notches. 1notch =7.62cm. 48 notches means the control
rod is complete out (withdrawed) of the core and 0 means the control

rod is complete inside (inserted) the core.

To analyse the stability behaviour of the operational point, an initial perturbation is
imposed on the system by two control rods (see Figure 4.6) and the LPRM/APRM
histories are calculated. Thereby a sinusoidal control rod movement is introduced.
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Configuration of the control rod perturbation. The amplitude is given in

units of axial RAMONA-nodes. The opposite sign (and colour) indi-
cates that the initial amplitude of the perturbation has an opposite di-

rection.
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For the present nonlinear BWR stability analyses the operational point given in (4.1)
is defined to be the reference OP but the core inlet subcooling is modified to a value
of 125.0-10° kJ /kg .

4.1 RAMONAGS analysis at the reference OP

4.1.1 Steady state analysis

As mentioned in the previously, in the first step of the nonlinear stability analysis with
RAMONAS, the steady state distributions will be evaluated and prepared for the
ROM input calculation. Furthermore, in general, before stability analysis with
RAMONAS can be conducted, selected steady state distributions such as the axial
power and axial void profiles, which are generated by RAMONAS will be compared
with the corresponding PRESTO-2 results. PRESTO-2 is a comprehensive validated
core simulator. The total values should not differ more than 10 % [79]. This check is
not shown in the scope of the thesis. Instead of that it will be indicated that all steady
state results of RAMONAS and PRESTO-2 are consistent within the assumed 10 %
error region. In this section only selected steady state results most significant for the
BWR stability behaviour are presented.

Figure 4.7 and Figure 4.8 show the radial power distribution, axially averaged. As can
be seen, the specific control rod configuration which is depicted in Figure 4.5 influ-
ences the radial power in such away that the radial power distribution has a bowl
form convenient for generating out of phase power oscillations.

Radial Power Distribution, NPP Leibstadt

Figure 4.7  Three dimensional radial power distribution axially averaged for NPP
Leibstadt (reference OP). The Z-Axis corresponds to the relative
power (-107).



92
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Figure 4.8:  Radial power distribution axially averaged for NPP Leibstadt (refer-
ence OP).

Figure 4.9 shows the axial profile of the relative power, radially averaged, and the
corresponding axial void profile calculated by RAMONA 5.2-5 for the reference OP.
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Figure 4.9:  Axial power and axial void profile, radially averaged, respectively.
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The power peak in the lower part of the channel is mainly caused by the moderation
characteristics of neutrons in the single phase region where the coolant has a higher
density respect to the upper parts of the channel. The higher the coolant density
(mixture density!) the more efficient the neutron moderation is and the higher is the
neutron density and accordingly the more energy will be deposed in the coolant
(more elastic and inelastic collision of neutrons with the target material). The axial
power profile (Figure 4.9) is reflected by the axial void profile for a given coolant
mass flow and a fixed parameter configuration.

4.1.2 Transient analysis

The transient behaviour is initiated by introducing a 2 node sinusoidal control rod

movement resulting in a perturbation of the state variables of the BWR system. The

signals of the LPRM 9 (10) and 26 (32) of the fourth level which are located in differ-

ent core half's are selected for the evaluation of the transient behaviour. Note that,

RAMONA predicts a fixed symmetry line. The core shape, symmetry line and the lo-

cations of the LPRM detectors of the fourth level are presented in the next figure.
Locations of the LPRM detectors for KKL
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Figure 4.10: Locations of the LPRM detectors for KKLc7_rec4. The LPRM detec-
tors 9 and 26 are located in different core half’s.
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Figure 4.11 shows the time evolution of the LPRM signals 9 and 26. As can be seen,
an increasing out of phase power oscillation is occurring at the reference OP. The
frequency of the oscillation is NF =0.537s™. All RAMONAS investigations for the
reference OP and its close neighbourhood have shown that the out of phase power
oscillation will not discharge into a stable limit cycle. It should be emphasized that the
existence of a stable limit cycle cannot be verified by RAMONAS and measurement
results but its existence must not be excluded because as shown in the power spec-
tral density of LPRM 26 (Figure 4.12) the higher harmonics occurs. If a limit cycle
with large amplitudes exists (from the mathematical point of view), the RAMONAS
integration can be interrupted before reaching the limit cycle when specific termina-
tion conditions are satisfied.

NPP Leibstadt cycle 7 record 4

Time evolution of the LPRM signals (fourth level)
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Figure 4.11: RAMONAS result for the reference OP. The relative amplitudes of sig-
nals are shown for LPRM 9 and LPRM 26. Both LPRM signals have a
phase shift of 7.

Pxx - X Power Spectral Density

a 0.5 1 15 2 25 3 25 4 45 5
Freguency

Figure 4.12: Power spectral density corresponding to LPRM 26 of the fourth level.
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In order to demonstrate the essential stability properties corresponding to the refer-
ence OP more clear, the core inlet subcooling was reduced from h,, =125kJ /kg to
h,, =120kJ /kg (where h,, =h, —h,.) which is legitimate because the latter value is
located within the uncertainty region.

Figure 4.13: Signals are shown (relative amplitudes) of LPRM 10 and 32 in the
fourth level respectively.

As shown in Figure 4.13, the increasing rate of the oscillation for h,, =120kJ /kg is
smaller than for the reference case. Figure 4.14 depicts clearly a phase shift of =
between both LPRM-signals.
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Figure 4.14: In this figure are shown the signals of LPRM 10 and 32 in the fourth
level (relative amplitudes). The signals have a phase shift of .
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During an out-of-phase power oscillation the power and the total mass flow, aver-
aged over the whole core, are approximately constant. These characteristics are
shown in the next two figures. After twenty seconds, numerical noise only occur.
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Figure 4.15: The relative power, averaged over all nodes is shown.
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Figure 4.16: The total mass flow in the reactor core is presented.
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4.2 Calculation of the ROM input parameters

As stated in section 2.6 all ROM inputs are calculated from the specific RAMONAS
model and its steady state solution corresponding to the reference OP. To this end, a
steady state RAMONADS run for the reference OP is necessary. Afterwards the new
calculation methodology for the ROM input parameters is applied. Thereby the de-
mand is that the ROM should provide the correct steady state values at the reference
OP. Most essential quantities are the mode feedback reactivity coefficients, the core
inlet mass flow, the axial void profile and the channel pressure drops along the
closed flow path.

In the scope of this section, at first, the adjustment of the axial void profile is ex-
plained (section 4.2.1). Thereby the pressure loss coefficients as well as the core
inlet subcooling corresponding to the axial void profile are calculated. Secondly, the
calculation of the mode-feedback reactivity coefficients (section 3.2.2), the estimation
of the drift flux parameters V; and C, (section 4.2.2) and the calculation of the ROM
pressure drops (section 4.2.3) are presented.

4.2.1 Adjustment of the axial void profile

In addition to the core inlet mass flow, the core inlet subcooling and the system pres-
sure, the most essential factor for determining the axial void profile is the axial power
profile. In the actual reduced order model (as an approximation) a uniform axial
power profile is assumed. But the real axial power profile is bottom peaked. Typical
axial peaking factors are around 1.8 for NPP Leibstadt, NPP Ringhals and NPP
Brunsbuttel. This deviation between the real power profile and the approximated
power profile lead to a deviation between the real and calculated axial void profiles
when the core inlet mass flow and the core inlet subcooling are equal for both mod-
els. Figure 3.36 (in subsection 3.4.3) and Figure 4.17 show a comparison of the axial
power and void profiles calculated by RAMONAS5 and ROM for NPP Leibstadt and
NPP Brunsbuttel. Thereby the system pressure, the core inlet mass flow, the core
inlet subcooling and the core averaged power of RAMONAS are used as ROM input.
But due to the different axial power profiles, the axial void profiles are different sig-
nificantly. This discrepancy is shown quantitatively in subsection 3.4.3 for
KKLc7_rec4-OP.

In the scope of the new calculation procedure of the ROM input parameters, the axial
void profile will be adjusted in such a way that the resulting axial void profile of the
ROM is similar to that one of RAMONAS. Thereby selected ROM input parameters
such as the pressure loss coefficients and the core inlet subcooling of the ROM will
be adjusted in an appropriate manner.
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Figure 4.17: Comparison of the axial void and power profiles, calculated by the sys-
tem code RAMONAS and the ROM, where the core averaged inlet
mass flow, the core inlet subcooling and the core averaged power of
RAMONAGS were used as ROM input. (NPP Brunsbuittel)

Due to the bottom peak occurring in a real BWR system, the boiling boundary is
shifted downwards in comparison with the boiling boundary predicted by the ROM. In
order to represent the true axial void profile this shift can be corrected by changing
the subcooling number N, . This can be derived from the single phase energy bal-
ance. The steady state energy balance along the thermal-hydraulic channel can be
described by

ah* Z*,t* T * %
LD @) (42)
VA

pI*V:nlet (t*)
If a uniform axial power profile is used in the ROM, the power density ¢ is constant
along the heated channel. Further, it is assumed that all the power along the channel
is transferred into the coolant as heat (without heat loss). Thus ¢~ can be expressed
as

3

~_Q

=— 4.3
4 =37 (4.3)

where Q" is the core averaged power calculated from the real axial power profile and
A" is the coolant flow cross section. The axial enthalpy profile can be obtained
according to

Lk

Jor 2E) - rgr (4.4)
oz 0 P Viniet
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Wk

h'(2)-h'(0)=— 7" (4.5)
hrn|et I Yinlet
h(Z)=h +—3 7 (4.6)

I Vinlet

by integrating (4.2) from the channel inlet to z". According to (4.4), if ¢~ is constant
(as assumed in the ROM), the enthalpy profile will has a linear dependence along the
heated channel.

Finally (4.6) can be converted into

* * * Z* *

h (Z ):Ner AthLNpch F_ Nsubj + hsat (47)
which is written in terms of dimensionless numbers N,, N, N, and N, . From this
follows the channel exit enthalpy as

h*exit = h*(Z* = L*) = Ner Ah:g (Npch - Nsub) + h:at . (48)
In the above relations, the phase change number was rewritten as
&
/_Jﬁ * ~* *
"ELA A
pch = *q* 52 p* * = *Q I*O * . (4.9)
pf VOAinIet Ahfgpg mtotAhfgpg
%/_/

Y
Meot

If the boundary condition h(z,t) =(h(x,t))=h
boiling boundary

Is used in (4.4) an expression for the

sat

oo h —hig
/u _pl Vinlet q*
(4.10)
« Ngp
u=—=L
Npch
py=Nan (4.11)
Npch
is found. It can be seen, there exists an infinite ensemble of N_, and N_, for the

sub pch
same location x where the coolant starts to boil. However, N is fixed because the

core inlet mass flow r;, and the core averaged power Q" are based on RAMONAGS.
In order to simulate the boiling boundary which is given by RAMONADS the subcooling
number N., must be adjusted. The order of magnitude of N, for the KKLc7_rec4-
OP is around N, =6.5, for example. As can be seen in Figure 4.20 the boiling
boundary 4 of this OP has the order of magnitude of x#=0.1. According to relation
(4.11), the subcooling number can be estimated as Ny, =x-N_, =0.65. This is the

expected order of magnitude for N_, for the KKLc7_rec4-OP.

sub

To summarize, equation (4.11) is the result of the assumption that the power has a
uniform axial power profile within the heated channel. The dimensionless number
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N,, belongs to a specific axial power profile of the considered thermal-hydraulic
state. This means, when the same thermal hydraulic state is represented by two dif-
ferent thermal-hydraulic models where different axial power profiles are used, the
corresponding subcooling numbers are not comparable.

In order to adjust the axial void profile, a special calculation procedure for the sub-
cooling number, the pressure loss coefficients K, ., K N{, N;,, and for the
steady state values «, (mean void fraction of the two phase region) and T, (mean
fuel temperature) has been developed and is applied in the present work. These pa-
rameters are adjusted in such a way that the axial void profile and the pressure drops
of the closed flow path of the ROM becomes similar to that one of RAMONAS for the
reference OP. Note that, the pressure loss coefficients and the values of «, and T,
cannot be calculated directly from the RAMONAS model and its steady state solution
because of the different calculation methodologies applied in both codes. Instead of
the pressure loss coefficients, the corresponding physical pressure drops will be cal-

culated from the RAMONAS output (shown in section 4.2.3), for example.

exit ?

Adjusted parameters:
Kinet, Kexit, Nr.10, Nizs, o,
Taugo, Nsus

Input
parameter
vector

Numerical integration code
(steady state calculation)

'

axial void profile (ROM)

axial void profile (RAM)

AP*ne = APz + APt

AP*oa = APext + APrer

AP*s = AP

OProm 2= OPrau

Figure 4.18: Flow-chart of the adjustment procedure for the axial void profile and
the pressure drops of the ROM.

In Figure 4.18 is shown a flow-chart of the adjustment procedure, where the axial
void profile and pressure drops of the ROM will be adapted by adjusting N_,, K.

Keitr Niior Nioe, o, and T, and then performing steady state calculations of the

exit ? avg0
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ROM equation system. The steady state calculations of the ROM equation system
will be repeated iteratively. In each iteration step, these parameters will be changed
in such a way that the axial power profile and pressure loss coefficients become
more and more similar to that ones of RAMONAGS for the considered operational point
while preserving the correct core inlet mass flow.

4.2.2 Estimation of the drift-flux parameters V; and C,

The local drift-flux velocity v; is defined as
Vg = V-, (4.12)

9l

where v, is the velocity of the gas phase and j is the centre of volume velocity and
can be written as

j=av+l-a’)y, . (4.13)

In expression (4.13), « is the volumetric void fraction and v, is the liquid velocity (an
asterix indicates a dimensional value). The drift flux velocity Vg’} used in the ROM is
called accurately the void-weighted averaged local drift velocity [69-76] and is de-
fined as

v V) (4.14)

where the brackets indicates an area averaging. Accordant to (4.14), the distribution
parameter C, is defined as

_ i)
(o)1)
Depending on the flow regime, there exist several correlations and models recom-
mended for the calculation of V and C, which are based on extensive experimental
database [75,76]. For the purpose of the present reduced order model, these two

parameters are assumed to be independent of flow regimes, especially the void frac-
tion. Based on this assumption, both parameters can be written as

C,=12-02 |2 (4.16)
P

. og Ap o
V. =C, (4.17)

C, (4.15)

*2

|
where C, is a parameter which can be used for an adjustment by the user [52,69].
For example, as described in [69] (Chapter 3.5.2), for the churn-turbulent flow, the
constant C,, is around 1.42. In this case, the void-weighted averaged local drift ve-
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locity is Vg’} =0.173m/s and the distribution parameter is C, =1.156. The correspond-
ing dimensionless value of V; is V; =V /v, =0.326.

An assessment of Vg’; by employing RAMONAS and using definition (4.14) result in
V; =0.33m/s which corresponds to V;=0.62. In this case, the constant C, is
around 2.7. A sensitivity study, where the values of V; and C, have been assessed,
was performed for NPP Leibstadt and NPP Ringhals. All results of Vg*j are between
(0.25-0.4) m/s. From the results of the sensitivity study can be concluded, the val-
ues of V; and C, can be tuned legitimately in the interval V  €[0.2,...,0.5]m/s and
C, €[1.0,..,1.2].

4.2.3 Calculation of the ROM pressure drops

As discussed in section 3.3, in the PSI-Illinois-ROM, only the pressure drop over the
reactor core AP | given by the RAMONA model, was taken into account. In par-
ticular, AP is extracted from the specific RAMONA5 model and is used by the
PSlI-lllinois-ROM as external pressure drop AP, =AP™" . Besides, AP, is assumed

Xt ext

to be constant [12,47]. The core pressure drop can be subdivided according to
AP = APFAM 1 APFAM 4 pRAM (4.18)

ch,inlet ch,exit

the sum of the channel inlet pressure drop AP | the channel pressure drop AP

ch,inlet ?
(single phase plus two phase pressure drop) and the exit pressure drop APcﬁiﬁt.

When the core pressure drop is used as external pressure drop in the ROM, the
ROM pressure drops have to satisfy

AP}, = AP (4.19)
AI:)i:let = Apcﬁj?r’:fet (420)
Ape;it = Apcﬁ,Ae:\(/ilt (421)

at the reference OP.

In order to simulate the stability behaviour more realistic, the TUD-ROM was ex-
tended by a recirculation loop model [23,24]. In addition to that all pressure drops
along the closed flow path are taken into account. Figure 4.19 shows the most rele-
vant pressure drops of the RAMONAS model.

The pressure drop over the lower plenum 1 and the steam dome are very small and
can be neglected. For example, the lower plenuml pressure drop is four orders of
magnitude smaller than other pressure drops considered for the nonlinear stability
analyses.
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Steam Dome
A A
APstse Steam i
Separators
|
APriser | APsp 1 Stand Pipes Down- APeet
I commer1
APup 1 Upper Plenum
\ 4
7 APext
A Apch,exit I
A
APc Apch Core
Down-
"APch,inlett commer2 APgc2
APip ¢ Lower Plenum 2 1) v

Lower Plenum 1

Figure 4.19: Schematic sketch of the components considered in RAMONAS.

The pressure drop along the closed flow path is satisfying the boundary condition
$%Ra -0 . (4.22)
oz

According to the thermal-hydraulic model shown in Figure 4.19, the boundary condi-
tion (4.22) can be expressed as

1 a 0 _
0= jmdz + J.%dz (4.23)
y 0L . Oz

0=APYM + AP+ APAY + APRAM +APRAM +APRAM +APIM 1 (AP + APXM)Y, (4.24)

Ip2 ch,inlet ch,exit stse

riser

RAM
AP, APRAM J' OPrecirc dz

jMdz

oz
where the first integral in (4.23) describes the pressure drops along the upward flow
and the second integral the pressure drops along the downward flow. Therefore the
external pressure drop can be written as

j‘ ph ch J‘apremrc dz . (425)

0
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As mentioned previously, the pressure drops provided by the RAMONAS (at the ref-
erence OP) are presented in Appendix F. It should be pointed out that AP

ch,exit ?

AP and AP™ are not printed in the output file and thus were calculated sepa-

ch,inlet

rately. AP™ and APM™ can be calculated by relation

ch,inlet ch,exit

. *

Amﬂg:%mmgz with G" = Mo (4.26)
| ot
and
AF’cﬁ,AeTn :%kexit G_**zq)izocal ' (4.27)
|

where k. and k, are defined in the RAMONAS input and ®;_, is a two phase mul-

tiplier for irreversible local losses. In the RAMONAS model, @7, is defined as
®: . =1+CRT(2) X, (ﬂ—lJ , (4.28)

g

where x_. is the exit quality and CRT (2) is a constant provided by the user.

exit
Figure 3.2, presented in subsection 3.1.3, depicts the most relevant thermal-hydraulic
components of the ROM including the pressure drops along the closed loop. Accord-
ing to Figure 3.2 the boundary condition (4.22) for the simplified BWR model can be
written as

1o 0 .
0= J' ph_ch dz + J‘aprecwc dz
oz oz
0 t (4.29)
0 = AR, + APy +P + (-AP —AR )

For a steady state forced circulation flow, the second integral in expression (4.29)
can be written in dimensionless form as

DP,, = AP

ext ext

=Fr*+AP_, , (4.30)

where DP,, is the steady state external pressure drop. In the steady state case, all

time dependent terms in AP, are zero (friction in the recirculation loop is neglected)
[23,24]. It can be seen in the steady state expression (4.30), natural circulation oc-
curs, when the pump head becomes zero. Thus natural circulation will appear in op-
erational points for which relation (4.30) becomes DP,, =AP,. <Fr™ (downcomer

ext ext —
friction is ignored).

In addition to the void generation, the pressure drops over the closed flow path are of
paramount importance for the thermal-hydraulic stability properties and thus for sta-
bility behaviour of the whole nuclear reactor system. Therefore, the pressure drops of
the ROM should be simulated as close as possible to the RAMONA pressure drops.
To this end, the following relations should be satisfied by the ROM at steady state
conditions at the reference OP:
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AP, = AR (4.31)
AP = AR + AP, (4.32)
AP, = AR + AP (4.33)

The channel inlet and exit pressure drops in the ROM can be calculated by

AP = Ko Ve - 2 Vo (4.34)

and
AP =Kot P Vi VG (4.35)
where v, is the dimensionless inlet velocity, K, . and K_, are the channel inlet

and exit pressure loss coefficients of the ROM, v; is the dimensional reference
channel inlet velocity, p,, is the dimensionless mixture density and v, is the corre-
sponding dimensionless mixture velocity. Practically, the pressure loss coefficients
can be adjusted (adjustment procedure, see Figure 4.18) in such a way that the
channel inlet and channel exit pressure drops are satisfying relation (4.32) and (4.33)
under steady state conditions (at the reference OP). The satisfaction of (4.31) can be
realized by a tuning of the single phase N, , and two phase friction N, ,, numbers
occurring in the single phase and two phase momentum equation [12,47]. Finally, the
pressure drops which have to be satisfied by the ROM were estimated accordant to
(4.31), (4.32), (4.33). The effect of spacer friction is included in the ROM-coefficients
Niso and N, ,, [12].

4.2.4 Summary of the ROM input calculation for NPP Leibstadt

All design parameters of the ROM have been calculated from the specific KKL-
RAMONAS model at the reference OP. The operating parameters are estimated from
the steady state solution provided by RAMONAGS at this OP. In order to simulate the
correct steady state conditions with the ROM, a new calculation procedure for the
input values was applied. The thermal-hydraulic state of the reference OP will be
simulated correctly by the ROM when its axial void profile and its pressure drops
along the closed flow path are calculated close to the reference case.

Furthermore, the evaluation of the time histories of the LPRM signals, resulting from
the first RAMONAS analysis, reveals the orientation of the symmetry line, which di-
vides the core in region 1 and region 2. This is the symmetry line presented in Figure
4.10. In contrast to the RAMONADS result, the measured LPRM signals show an un-
fixed symmetry line [5]. As a result of the first RAMONAS transient analysis, core re-
gion 1 and core region 2 are determined which is necessary for the application of the
C,,,-calculation procedure.

As can be seen in Table 4.1, the values of the heated channel pressure drops simu-
lated by the ROM are close to the reference values provided by RAMONAS. The
comparison of the axial void profile (radially averaged), calculated by RAMONADS,
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with the axial void profile, provided by the ROM, is presented in Figure 4.20. The
largest deviation between both axial void profiles occurs in the region where sub-
cooled boiling exists. Thereby the deviation of the total volumetric void fraction is less

than 1%.

Table 4.1:

a(z)

Figure 4.20:

This table contains the pressure drops provided by the RAMONAS
output and that one calculated by the ROM (KKLc7_rec4-OP). The
steady state external pressure drop DP., provided by the RAMONA5
output is a ROM input parameter while the channel inlet pressure drop
AP; the channel pressure drop (single and two phase pressure

ch,inlet ?

drop) AP, and the channel exit (outlet) pressure drop AP, ... are ad-
justed by tuning of K; .., K, N, and N ,,.
Pressure drop RAMONAS ROM
APy e -1.654-10* Pa ~1.641-10* Pa
AP, —2.777-10* Pa ~2.763-10" Pa
AP i —2.956-10* Pa ~2.984-10* Pa
DP., ~7.387-10 Pa ~7.387-10* Pa
08 Void profile

i e

i /
0.6 i 7

/

/

/

ol |/

reference OP (RAMONAS5 model) -
- —— TUD-UPV-ROM-Input-Data -
oo LAl T T T

0.0 0.1 02 03 04 05 06 07 08 09 10
z=z]/L

Comparison of the axial void profile (radially averaged) calculated by
RAMONAGS with the axial void profile provided by the ROM.

The drift flux parameters used as input values are V; =0.35 and C, =1.02.
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4.3 Local nonlinear stability analysis

4.3.1 Numerical integration at the reference OP

After calculation of all ROM input data from the RAMONAS5 model and its steady
state solution at the reference OP, the transient behaviour is analysed by employing
the numerical integration code. To this end, the transient is initiated by introducing
small perturbations in the inlet velocities where the perturbation amplitudes have the
same sign (in-phase oscillation is triggered).

Time evolutions of the fundamental and first azimuthal mode and
the channel inlet velocities
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Figure 4.21: Time evolutions of the fundamental P, (t) and first azimuthal mode

P.(t) and the channel inlet velocities v, (t) and v,; . (t).

Jinlet
The time evolution of the fundamental mode P, (t), the first azimuthal mode P,(t) and
the channel inlet velocities v, ;.. (t) and v,; . (t) are shown in Figure 4.21. It can be
seen that the amplitudes of the fundamental mode oscillation are decaying for the
first 250 s and then increasing while the first azimuthal mode oscillation is increasing
continuously, after the perturbation was imposed on the system. Thus, the prediction
of the RAMONAS investigation at the reference OP could be verified by the ROM.
This means, an increasing out of phase power oscillation is occurring at the refer-
ence OP because the first azimuthal mode is excited. It should be emphasized that,
in order to excite the first azimuthal mode, the artificial factor fact was increased
[12,42,43] in the scope of the ROM-input calculation. The oscillation frequency pre-
dicted by the ROM is NF " =0.457s".

The behaviour of the fundamental mode oscillation (decaying for the first 250 s and
then increasing) can be explained by the solution of a linearized system where each
component of the solution depends on each eigenvalue of the Jacobian matrix (see
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subsection 3.3.3 and Appendix A). This means, if there is at least one pair of com-
plex conjugated eigenvalues with a real part larger then zero, all components of the
solution will diverge asymptotically in an oscillatory manner [12,56].
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4.3.2 Bifurcation analysis

Bifurcation analysis is performed in this section. To this end, at first, semi-analytical
bifurcation analysis with the bifurcation code BIFDD is carried out. As a result, the
stability properties of fixed points and periodical solutions are examined in an appro-
priated parameter map. Secondly, numerical integration is carried for independent
confirmation of the results of the bifurcation analysis and for the nonlinear analysis
more far away from the SB. In the scope of the numerical integration of the ROM
equation system the time evolution of all phase space variables are calculated.

4.3.2.1 Semi-analytical bifurcation analysis

In this subsection, semi-analytical bifurcation analysis of the ROM equation system
with the bifurcation code BIFDD is performed. To this end, the subcooling number
N,, and the steady state external pressure drop DP,, are selected to be the bifurca-
tion and iteration parameters. This means, the stability boundary (SB) will be calcu-
lated in the N, -DP,, -operating plane and is referred to the reference OP. A varia-
tion of DP,, corresponds to a movement on the rod-line which crosses the reference
OP while the 3D-distributions will not be affected. Thus the stability properties of op-
erational points along the rod-line and its close neighbourhood are analysed. The

stability boundary and the bifurcation characteristics are shown in Figure 4.22.

16 Stability Boundary Bifurcation Characteristic
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Figure 4.22: Stability boundary and the bifurcation characteristics for the reference
OP. The SB is defined as the set of fixed points where the Hopf condi-
tions are fulfilled.



110

As explained in section 2.3, the stability boundary is defined as the set of fixed points
for which the Hopf conditions are fulfilled. Roughly speaking, this means, in each of
these fixed points a limit cycle is “born” and exists either in the linear stable or (linear)
unstable region. The stability characteristics of the limit cycle are determined by the
Floguet parameter g,. The stability boundary and the bifurcation characteristics, de-
picted in Figure 4.22, are plotted only in the region which is reasonable from the
physical point of view. The ROM results becomes doubtfully for DP,, less than
DP,. =110.

ext

As expected, the reference OP is located in the linear unstable region close to the
SB. This result was predicted by the RAMONAGS analysis as well as by numerical in-
tegration (see section 4.4.1 and 4.4.2) of the ROM equation system. In Figure 4.23 is
depicted the SB projected into the power flow map where the dimensionless power
and core inlet mass flow are scaled to nominal conditions. Hence, the vertical axis
corresponds to the relative thermal core power and the horizontal axis corresponds
to the relative core inlet mass flow.

Power Flow Map for KKL

80

S
© 60
= ® KKLc7 record4 OP:
& Thermal Power (59.5%)
g Core Flow (36.5%)
IE—) —— SB (subcritical PAH-B)

40 112% Rod Line

- — — exclusion region

20 30 40 50 60
Core Flow (%)

Figure 4.23: SB “transformed” into the power-flow map.

Unstable periodical solutions (unstable limit cycle) close to the KKLc7 _rec4-OP are
predicted by the semi-analytical bifurcation analysis. These solutions are located in
the linear stable region close to the stability boundary. This means, in this region co-
exist stable fixed points and unstable limit cycles.



BWR Stability Analyses for NPP Leibstadt 111

4.3.2.2 Numerical integration

Semi-analytical bifurcation analysis is only valid in the vicinity of the critical bifurcation
parameter (SB) in the parameter space and in the close neighbourhood of the singu-
lar fixed point in the phase space. In order to get information of the stability behaviour
beyond the local bifurcation findings numerical integration of the set of the ODEs is
necessary. In addition to that the predictions of the semi-analytical bifurcation analy-
sis can be confirmed independently.

The results of the local numerical integration for selected parameters confirm the
prediction of the bifurcation analysis. The forgoing bifurcation analysis forecasts the
existence of unstable periodical solutions, which are born in the subcritical Hopf-
bifurcation point, in the stable region. Hence, fixed points located in the stable region
were selected to carry out numerical integration.

Figure 4.24 shows the SB in the close neighbourhood of the reference OP (zoomed
in). In addition to that this figure shows the parameters for which the numerical inte-
gration is performed to confirm the existence of an unstable periodical solution.

Stability boundary

0,68 ——
- OP
0,67 [ e
0,66 [ numerical integration:
L _ A
0.65 [ NSub =0.625 \’\?g\()
[| DP_ =165.3 2 ]
- \0® ¢
0,64 | e
NSub N ’ 5\6\0
0,63 | )
0,62 |
0,61 F ]
—— SB (subcritical PAH-Bifurcation)
0’60 i / || S T W S T T T T S T T S N S S S T S S |
155 160 165 170 175
DP_.

Figure 4.24: SB and the point for which the unstable limit cycle is verified by nu-
merical integration

In order to verify the existence of the unstable limit cycle, perturbations of different
amplitudes are imposed on the system. This means, according to X(t) = X, + dX(t),
the steady state solution X, is perturbed by different perturbation amplitudes 5X(t)
and the transient behaviour of the system state X(t) is calculated by numerical inte-
gration of the ROM equation system. If a sufficient small perturbation is imposed on
the system, the state variables will return to the steady state solution. But if a suffi-
cient large perturbation is imposed on the system, the state variables will diverge in
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an oscillatory manner. As shown in Figure 4.25, the results of the numerical integra-
tion method confirm locally the prediction of the bifurcation analysis.

Time evolution of the first azimuthal mode
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Figure 4.25: Numerical integration is carried out in an operational point where an
unstable periodical solution is predicted. The transient was initiated by
imposing perturbations of the core inlet mass flow (small v, . =0.01,
large ov, . =0.025).

inlet

inlet

4.3.2.3 Summary

Stability and bifurcation analysis with the ROM for the reference OP were performed
by employing the bifurcation code BIFDD. The SBs and nature of the PAH-Bs are
determined and visualized in appropriated two-dimensional parameter spaces. In
particular, the subcooling number N, and the steady state external pressure drop
DP,, are selected to be the iteration and bifurcation parameters. Thereby, the varia-
tion of DP,, corresponds to a movement along the rod-line which crosses the refer-
ence OP. Hence, the stability properties of operational points along the rod-line are
analyzed.

Unstable periodical solutions (unstable limit cycle) close to the KKLc7_rec4-OP are
predicted by the semi-analytical bifurcation analysis. These solutions are located in
the linear stable region close to the stability boundary. This means, in this region co-
exist stable fixed points and unstable limit cycles. As mentioned previously, the
asymptotic decay ratio (linear stability indicator) is less than 1 (DR <1) in this region.
A linear stability analysis is not capable to examine the stability properties of limit cy-
cles.
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4.4 Comparative study with RAMONAS and ROM: Local consideration

In this section, a comparative study with RAMONAS5 and ROM is performed in the
parameter space spanned by the core inlet subcooling and the steady state pressure
drop. The goal of this investigation is to study the dependence of the stability behav-
iour regarding variations in the core inlet subcooling and the steady state pressure
drop, respectively. As a result, the relative location of the reference OP respect to the
stability boundary will be obtained. The terminology “local consideration” means that
the comparative study is applied for operational points located in the neighbourhood
of the reference OP and only in the phase space region near the singular fixed point.

4.4.1 Variation of the core inlet subcooling

The effect of the core inlet subcooling variation on the stability behaviour is consid-
ered next. To this end, RAMONAS and ROM analyses were made in a parallel man-
ner. Thereby the core inlet subcooling was varied in small steps and the transient
behaviour was investigated.

441.1 RAMONA results
08 r—————7T 7
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Figure 4.26: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. The regional oscillation is decaying. Consequently, the
BWR system is stable in that operational point. (KKL)
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Figure 4.27: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. The regional oscillation is decaying slowly. (KKL)
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Figure 4.28: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. It seems, the oscillation amplitudes are remaining con-
stant. (KKL)
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Figure 4.33: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. (KKL)

The RAMONAS investigation has shown the more the core inlet subcooling will be
increased the larger the increasing rate of the oscillation amplitudes are. Besides, the
analysis reveals the location of the stability boundary where the oscillation ampli-
tudes are neither decaying nor non-decaying after imposing a perturbation on the
steady state system. According to this, the stability boundary is located between
h,, =117.5 kJ/kg and h, =119.0 kJ/kg . Below the stability boundary, it can be
stated, the lower the core inlet subcooling the more stable the system is.
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4.4.1.2 ROM results

The ROM-results for the core inlet subcooling variation study are shown in Figure
4.34. For this analysis, only the first azimuthal mode is evaluated.

Time evolution of the first azimuthal mode

T T T T T T

N, = 0.68

0.15 —

P,

0.00 F

-0.15 F
| ! ! ! ! |
S E——

0.06 | N_, = 0.67 (Reference)

P.(®

0.00 [

-0.06 |

0.03 [

P.(t)
Z
I
o
o
5}

0.00 [

-0.03 |

S L P 1 L L L L 1 L L L L L L L L

0 100 200 300 S 400
Time

Figure 4.34: Time evolution of the first azimuthal mode for different core inlet sub-
coolings.

As can be seen, the prediction of the system code RAMONAGS can be verified qualita-
tively by the simplified BWR model.
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4.4.2 Variation of the steady state external pressure drop

The effect of the steady state external pressure drop on the stability behaviour is
considered in this section. To this end, RAMONA5 and ROM analyses were per-
formed, where the steady state external pressure drop was varied in small steps. For
each iteration step, the transient behaviour was investigated. In the scope of the
RAMONAS analysis, the core inlet mass flow was varied instead of DP,, (the core
inlet mass flow is proportional to DP,,) because DP,, cannot be varied directly in
RAMONAG.

4421 RAMONA results

In the framework of the present RAMONADS investigation the core inlet mass flow was
varied about +5%. In Table 4.2 the core inlet mass flows and the corresponding
steady state external pressure drops (steady state RAMONAS results) for which the
transient behaviour was analysed are presented.

Table 4.2: Core inlet mass flow and the corresponding steady state external
pressure drop

m, (kg/s) DP, (10°Pa) DP. :%
PtV
3870.00 7.1075 162.42
3970.00 7.2470 165.60
4070.12 (reference) 7.3870 168.82
4105.00 7.4358 169.90
4120.00 7.4570 170.40
4140.00 7.4850 171.00
4170.00 7.5268 172.00
4270.00 7.6665 175.00

The results of the RAMONAGS investigation have shown, the lower the core inlet mass
flow the more unstable the system is. For m,, =3870kg /s the increasing rate of the
oscillation amplitudes are significant larger than the increasing rate for
M, =3970kg/s or for m, =4070kg/s (reference). On the other hand, if the critical
mass flow (corresponds to the stability boundary) which divides the stable region
from the unstable one, is passed, the system becomes more stable, when the core
inlet mass flow will be increased. For example, for m,, =4270kg/s (+5%) the system
is stable (oscillation amplitudes are decaying), while for m,, =4170kg/s the system is
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still unstable (oscillation amplitudes are increasing with time). Hence, the stability
boundary could be located between these both values.

Time evolution of the LPRM signals
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Figure 4.35: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. The calculation was interrupted after about 70 s. (KKL)

Time evolution of the LPRM signals
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Figure 4.36: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. It can be seen, that the increasing rate of the foregoing
figure is larger then in the present one. (KKL)
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Time evolution of the LPRM signals
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Figure 4.37: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. (KKLc7_rec4-OP)

Time evolution of the LPRM signals
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Figure 4.38: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. (KKL)
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Time evolution of the LPRM signals
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Figure 4.39: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. (KKL)

Time evolution of the LPRM signals
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Figure 4.40: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. (KKL)
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Time evolution of the LPRM signals
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Figure 4.41: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. (KKL)

Time evolution of the LPRM signals
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Figure 4.42: Signals (relative amplitudes) of LPRM 10 and 32 in the fourth level
respectively. For this core inlet mass flow, the system is stable. (KKL)
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4.4.2.2 ROM results

In the scope of this analysis the steady state external pressure DP,, drop was varied,

which corresponds to a mass flow variation.

Time evolution of the first azimuthal
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Figure 4.43: Time evolution of the first azimuthal mode.
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Figure 4.44: Time evolution of the first azimuthal mode.
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Time evolution of the first azimuthal
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Figure 4.45: Time evolution of the first azimuthal mode. (KKL)
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Figure 4.46: Time evolution of the first azimuthal mode. This OP is stable. (KKL)

The ROM analysis has shown, the lower DP,, the more unstable the system is.
Thereby the stability boundary could be located between DP, =170 and DP, =195.

ext ext



126

4.4.3 Conclusion

To summarize, the TUD-ROM can reproduce the stability behaviour, predicted by
RAMONAS, in the close neighbourhood of the reference operational point. The TUD-
ROM and RAMONAS predict the following behaviour:

e the higher the core inlet subcooling the more unstable the system is
e the lower the mass flow the more unstable the system is

It can be concluded that the reference OP is located close to the stability boundary.
On the one hand the system becomes stable when the core inlet subcooling will be
decreased about -5% and on the other hand the system becomes stable when the
core inlet mass flow will be increased about +5%. As a final conclusion, the depend-
ence of the BWR stability behaviour on variation of the core inlet subcooling and the
steady state external pressure drop has shown that the results of RAMONAS and
ROM are consistent. The location of the reference OP respect to the stability bound-
ary can also be simulated correctly by the TUD-ROM (see diagram on the right hand
side of Figure 1.3).
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4.5 Global nonlinear stability analysis

Previous ROM analyses have shown that the bifurcation analyses using BIFDD and
the numerical integration method provides (locally in the origin of the dynamical sys-
tem in the vicinity of the control parameter y, . whereby index k is ignored in the fol-
lowing discussion) consistent results. Further analyses at the reference OP and its
neighbourhood, whereby numerical integration is carried out for a time period of 800
s revealed the existence of stable limit cycles (global consideration). The result of the
time integration at the reference OP using the numerical integration code is shown in
Figure 4.47.

Time evolutions of the fundamental and first azimuthal mode and
the channel inlet velocities
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Figure 4.47: Result of the numerical integration at the reference OP where a long
time integration is carried out (reference OP of KKLc7rec4).

The (cursory) conclusion is: The existence of a stable limit cycle in the linear unstable
region is inconsistent with the result of the bifurcation analysis which delivers sub-
critical Hopf bifurcations. Hence, unstable limit cycles are predicted in the linear sta-
ble region for this analysis case. In order to understand this behaviour, more in depth
considerations are necessary.

The above analysis reveals that the system behaviour cannot be examined only by
local considerations such as semi-analytical bifurcation analysis using BIFDD. The
coexistence of a subcritical bifurcation point (where an unstable limit cycle is born)
and stable limit cycles in the linear unstable region could be an unique indicator for a
possible existence of global bifurcation. In contrast to the Hopf bifurcation, global bi-
furcations involve large regions of the phase space rather than just the neighbour-
hood of a singular fixed point. Thus, in the scope of the present work, the post-
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bifurcation state can only be determined through numerical integration of the ROM
equations. For this purpose, the amplitudes of the limit cycles vs. the core inlet sub-
cooling will be determined by numerical integration. Thereby, all the other parameters
are fixed. The results are plotted in Figure 4.48 and Figure 4.49. The diagram shown
in these figures is also known as bifurcation diagram. In particular, the global behav-
lour in the close neighbourhood of the stability boundary will be analysed.

The subcooling number N, is varied between 0.9 and 0.6 and the stable limit cycle
amplitudes of the first azimuthal mode A(F,) are determined. Table 4.3, Figure 4.48
and Figure 4.49 summarises results of this analysis.

Table 4.3: This table summarises the limit cycle amplitudes A(P,) for different

core inlet subcoolings.

No A(R)
0.9 0.707
0.8 0.585
0.75 0.49688
0.7 0.3845
0.67 0.29038
0.64 0.14917
0.639 0.148
0.638 0.143
0.637 0.135
0.636 0.129
0.635 0.11076
0.634 0.096
0.633 0.087
0.6325 0.081
0.631 0.06
0.63 0.049

The results show, that limit cycle amplitudes A(P,) decreases with decreasing core
inlet subcooling. Below the critical value N, .~0.63547 (the Hopf conditions are ful-
filled at N, ) stable limit cycles still exist (see Figure 4.49). This means, stable and
unstable limit cycles coexist in the linear stable region. The coexistence of stable
and unstable limit cycles for N, <N, . is verified by numerical integration for
N,, =0.632 by imposing different perturbation amplitudes on the system. A sufficient
small perturbation leads to a stable behaviour. But when a sufficient large perturba-
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tion is imposed on the system, the state variables are attracted by the limit cycle. This
is presented in Figure 4.50.

Bifurcation Diagram
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Figure 4.48: The results of the numerical integration are plotted as bifurcation dia-
gram, where N, is the bifurcation parameter and DP,, =DP, . .
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Figure 4.49: (“Zoom in” of Figure 4.48) The function of the amplitudes of the unsta-
ble limit cycle is an assessment only, not a calculated one.
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Time evolution of the first azimuthal mode
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Figure 4.50: This figure shows the results of numerical integration for N_, =0.632

and DP,, =DP, ., where a sufficient small Jv,, =0.02 and large
OV, = 0.1 perturbation is imposed on the system. When a small per-
turbation is imposed on the system, the state variables are returning to
the steady state solution (origin of the dynamical system). When a
large perturbation is imposed on the system, the state variables are at-

tracted by the limit cycle.

The amplitudes of the unstable limit cycle correspond to the boundary which sepa-
rates the basin of attraction of the singular fixed point and of the stable limit cycle.

The analysis has shown that stable and unstable limit cycles do not exist for core
inlet subcooling less than N, <0.63. Hence, there is a critical core inlet subcooling
N, Where the two limit cycles coalesce and annihilate. Due to (numerical) conver-
gence problems of numerical integration, N, cannot be calculated exactly. The es-
timated value of N, is N, ~0.63. From this result, it can be concluded that in
N, there is a saddle-node bifurcation of a cycle. This bifurcation type belongs to
the class of global bifurcations and is also referred to as turning point or fold bifurca-
tion.
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Theoretical example for a saddle-node bifurcation of a cycle

Before considering an example for a saddle-node bifurcation of a cycle, a general
remark is given to normal forms. Normal forms of bifurcations are simplified system of
equations that approximates the dynamics of the system in the vicinity of the bifurca-
tion point. After the application of simplification techniques (such as the centre mani-
fold reduction, where the n-dimensional system is reduced to a two-dimensional sys-
tem, when the Hopf-conditions are fulfilled), the resulting equation system can be
transformed into a specific normal form associated with this type of bifurcation.
Hence, in order to understand the above phenomenon, it is sufficient to analysis the
specific normal form of the bifurcation.

In the following, the normal form for a generic Hopf bifurcation of fixed points

dx _ X = yX— oy + (ax—by)(x* + y°)

St (4.36)
d_)tlz Y = oX+ 7Y+ (bx+ay)(x* + y?)
is taken into account. This normal form is frequently discussed in many text books
[17-20] and thus is not repeated in all details here. The equation system (4.36) is ex-
tended (by higher order terms) in such a way that the resulting system becomes

% =X=yX-oy+(@x-by)(x* +y*) —cx(x* + y*)’

(cji_kt/ =y =wx+yy+ (bx+ay)(x* + y?) —cy(x* + y*)?
In (4.37) y with y eR is the control parameter, a, b and c are coefficients and w is
the constant angular frequency. In the first step, the eigenvalues of the Jacobian ma-

trix

(4.37)

de
dx dy
J(y)= 4.38
(7) o o (4.38)
dx dy

are calculated. The Jacobian matrix elements of (4.37) are

? =y+a(x’ + y2)+2x(ax—by)—c(x2 + y2)2 —4ex* (X% +y7)
X
% =-w—b(x* +y®) +2y(ax —by) — dexy(x* + y*)

y (4.39)

g—y = o+b(x* +y?) + 2x(ax + by) — dexy (X% + y?)
X

%:;wa(xz +y?)+2y(ax+by)—c(x* + yz)2 —4cy?(x* +y?)
y

In the origin (x =0, y=0) the Jacobian matrix of (4.37) is reduced to
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J=V _“’} (4.40)
oy

and the corresponding eigenvalues are 4, =y fiw. This result is equal to that one of
the system (4.36). Furthermore, the third Hopf-condition

e Lo with Bz g (4.41)
dy dy
is also fulfilled. Hence, the system (4.37) satisfies the Hopf conditions in the origin at
y=y.=0.
In order to analyse the global characteristics of (4.37), this system is transformed into
its polar form. To this end, the polar coordinates
X=rcosé

4.42
y=rsiné ( )

are introduced and substituted in (4.37). The resulting equation system can be ex-
pressed as

i:F(X,y)=(f]=(7r+ar3_crsj | (4.43)

6 @ +br?

There is no loss in generality in assuming that the coefficients a and ¢ are a=c=1
and b=0 (the case a=c=-1 and b=0 is not considered for KKLc7_rec4 because in
this case a supercritical Hopf bifurcation occurs in the origin). In this case, the equa-
tion system (4.43) can be rewritten as

FY (ypr+r®=r®) (F
G e

where both state variables  and @ are now decoupled. The radial function F. corre-
sponds to the one-dimensional normal form of a subcritical pitchfork bifurcation of
fixed points but with the difference that the higher order term —r° is included.

The global system behaviour of (4.44) only depends on the radial function F, be-
cause function F, describes the rotation of the r-axis around the origin with the con-
stant angular frequency . Hence, in order to examine the dynamics of (4.44), itis
only necessary to evaluate the one dimensional problem r=F, . It will be demon-
strated that the problem r=F, undergoes a saddle-node bifurcation of fixed points.
As a consequence, the two-dimensional system (4.44) undergoes a saddle-node bi-
furcation of cycles (global bifurcation).

The steady state solution of r = F, is determined by solving
Fr=0=F =yr+r’-r°=r(y+r’-r*) . (4.45)
The solution r, of (4.45) can be written as
=0 VyeR (4.46)
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Fo2/03 = i% 2+2\1+4y Vye {—%1---,00] (4.47)
1 1
ro4/05=i§ 2-2\1+4y W{_Z""’O} . (4.48)

In order to examine the stability properties of the steady state solution r,, the first
derivative of F, respect to r (dF,/dr) is determined for all ». If dF,(r,)/dr <0, the
system is locally stable, and if dF,(r,)/dr >0, the system is locally unstable. The re-
sult of dF, /dr can be written as

%Fr — 432 =5 (4.49)

To evaluate the derivative dF, /dr for all steady state solutions separately, the steady
state solutions (4.46), (4.47) and (4.48) are substituted in (4.49) and the results are
plotted in Figure 4.51. The steady state solutions r, vs y are shown in Figure 4.52
(bifurcation diagram).

dF /dr on the steady state solution
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Figure 4.51: Evaluation of the derivative dF, /dr.
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Bifurcation diagram
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Figure 4.52: Bifurcation diagram

The steady state solution r, exists for all y R and is locally stable for y <0 and
locally unstable for » >0. In the two-dimensional system (4.37), this solution corre-
sponds to the fixed point solution, existing for all ¥ e R. The solutions r,,,,; only exist
for y >-0.25 and are locally stable in their domain because of dF,(r,,,,;)/dr <0. The
solutions r,,,,, are only defined for [-0.25<» <0] and are locally unstable because
dF.(r,.)/dr>0. But at the saddle points (7, =-0.25; r,=r,=1/2-4/2) and (
7, =025 ry=r,= ~1/2-~/2), where I, and 1, are coalescing and annihilating)
the solutions r,,,, and r,,. are neither locally stable nor locally unstable. As de-
picted in Figure 4.53 the solutions r,,,; and r,,, corresponds to periodical solutions
of the two-dimensional system (4.37). Note that, roughly speaking, r,,,,; and r,,,. are
rotating around the origin with .

To summarize, for small r the bifurcation diagram looks just like the subcritical pitch-
fork bifurcation case (occurring in equation ¥ =yr+r® at y=y_=0): the origin is lo-
cally stable for » <0 and two backward-bending branches of unstable fixed points
bifurcate from the origin when y =y =0. But in contrast to the subcritical pitchfork
bifurcation case, the unstable branches turn around and become stable at y =y, =0
where y, <0. This behaviour is effected by the r® term in (4.44) (higher order terms
in (4.37)). The stable branches r,,,, existfor y>y,.
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Saddle-node bifurcation of a cycle

(turning point) singular stable
fixed points
-------- singular unstable
v e fixed points
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R

Figure 4.53: This figure depicts a bifurcation diagram of a saddle-node bifurcation
of a cycle and the corresponding radial phase portraits.

In the above analysis, it was helpful to analyse only the one-dimensional (radial) sys-
tem r =F, of the two dimensional system (4.44). As demonstrated above, this system
undergoes a saddle-node bifurcation of fixed points at y =y, =-1/4, where a stable
and an unstable branch of fixed points occur. Returning to the two-dimensional sys-
tem (4.44), these fixed points correspond to circular limit cycles. The global behaviour
of (4.37) is summarized in Figure 4.53 (there is depicted the bifurcation diagram and
the corresponding radial phase portraits).

From the above analysis, the following conclusions can be made:

1) The bifurcation at y =y, =-1/4 is a saddle-node bifurcation of a cycle. In this
point, a stable and an unstable periodical solution (circular limit cycle) are born
(“out the clear blue sky”). As depicted in Figure 4.53, the phase portrait is
changing significantly when passing y,.

2) In the range y, <y <y, =0, two qualitatively different stable states coexist,
namely the origin (fixed point solutions) and the stable limit cycle. Both states
are separated by an unstable limit cycle (see phase portrait in Figure 4.53). In
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other words, due to the saddle-node bifurcation at y =y, =-1/4, a stable and
an unstable limit cycle coexist with stable fixed points within the parameter
range y, <y <y.. One consequence is that the origin is stable to “small” per-
turbations, but not to “large” ones. In this sense the origin is locally stable, but
not globally stable.

3) From the stability analysis point of view, a saddle-node bifurcation is opera-
tional safety significant, if the amplitude of the stable limit cycle is sufficient
large. Supposing the system is in the state r =0 (origin), and the control pa-
rameter y is slowly increased. As long as y <y, the state remains at the ori-
gin. Butat y =y, =0 the origin loses stability and thus the slightest “nudge” will
cause the state to jump to the limit cycle. In this case, the state will start to os-
cillate when reaching y =y, =0 and the oscillations are growing as long as
they will be attracted by the stable limit cycle. With further increase of y, the
state moves out along the limit cycle solution. But if y is now reduced, the
state remains on the stable limit cycle oscillation, even when y is decreased
below y, =0. The system will return to the origin when the control parameter
7 Is reduced below y,. These characteristics (called hysteresis) can be con-
sidered as a loss of reversibility as the control parameter is varied.

4) The system behaviour of (4.37) near the origin is similar to the behaviour of a
system which undergoes a subcritical Hopf bifurcation at y =y_. In particular,
in the origin the Jacobian matrix elements of (4.37) are equal to that one of
(4.36). Hence, the corresponding eigenvalues of both systems are equal too.

Summary

Previous ROM analyses for KKLc7_rec4 (local nonlinear stability analysis) have
shown that the bifurcation analyses and the numerical integration method provide
consistent results only in the Hopf bifurcation points y. (local consistency) and their
close neighbourhoods. In order to study the global character of the nonlinear system,
numerical integration is necessary. For this purpose, numerical integration of the
ROM equation system have been carried out, where N, was varied in the range
[0.62,...,0.9]. The analyses have shown that in the range N, <Ng, <09 (
N, =0.63) stable limit cycles exist, even though the bifurcation analysis predicts
only unstable limit cycles for N, <N, . (N, is the critical bifurcation parameter,
for which the Hopf conditions are fulfilled). Hence, at the reference OP the state vari-
ables will also be attracted by the Ilimit cycle. In addition to that, for
Nop €[Ngypireon Nggo ] With N, - <N, . stable fixed point solution, unstable periodical
solution and stable periodical solution coexist. Below N only stable fixed point
solution exist.

sub,t?

One would think that the predictions of BIFDD and the results of the numerical inte-
gration are inconsistent. Note that, BIFDD is based on local methods. Thus the stabil-
ity investigation using BIFDD is concentrated only in the origin of the system close to
the critical parameter y, (see Figure 4.54).
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In the scope of this section it was shown that the nonlinear stability behaviour pre-
dicted by the ROM for KKLc7_rec4 can be explained by the existence of a saddle-
node bifurcation of cycles. The main (general) characteristics of a system which ex-
perienced a saddle-node bifurcation of cycles are deduced from the normal form of
this bifurcation type. It was shown that in the origin (r =0) of a dynamical system
which undergoes a saddle-node bifurcation at y,, the Hopf conditions are (locally)
fulfilled at » =y, =0. This satisfies the local prediction of BIFDD for KKLc7_rec4. Fur-
thermore, the coexistence of stable fixed point solution, unstable periodical solution
and stable periodical solution for y, <y <y, can be explained. These characteristics
are summarized in Figure 4.54.

Numerical integration examines the behaviour
beyond region I'« (Global prediction)

singular stable fixed points

------- singular unstable fixed points

------- unstable periodical solution
(unstable limit cycle)
stable periodical solution
(unstable limit cycle)

RegionTI'c, where the predictions of BIFDD
are consistent with the results of the
numerical integration. (Local predictions)

Figure 4.54: Summary of the main characteristics of a system, which undergoes a
saddle-node bifurcation of cycles. The results of BIFDD are only valid
locally in the close neighbourhood of the origin of the system close to
7. (region I',). The global character of the nonlinear system can only
be examined by numerical integration.

As a final conclusion, the nonlinear behaviour of the ROM for the KKLc4 rec4 case
fulfils the main characteristics of a system, which undergoes a saddle node bifurca-
tion of cycles, where the coefficients a and c of (4.37) (or (4.43)) are positive.
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4.6 Stability boundary in the N
to the N

« - DP,.-parameter space and its relation
N ., -parameter space

sub ~

This section is devoted to reveal the relation of the stability boundary, calculated in
the N, -DP,, -parameter space, to the N, -N, -parameter space. To this end, the
analysis starts with a brief review of the meaning of the N, -N _, -parameter space.
The Ny, -N_,-parameter space represents thermal hydraulic states within the heated
flow channel [69]. When one or more system parameters are varied, the correspond-
ing change of the thermal-hydraulic conditions of a BWR system can be visualized in
this parameter space. In particular, in a BWR there is a functional dependence be-
tween N., and N, because of the coupling of the neutron kinetics, the fuel rod dy-
namics and the thermal-hydraulics. This dependence (between N, and N, )
should be taken into account when the bifurcation analysis is carried out in the N, -
N ., -parameter space.

This section is organized in three parts. In the first part, the physical meaning of the
SB calculated in the N, - N, -parameter space is discussed. In the second Part, the
relation of the SB calculated in the N, -DP,, -parameter space to the SB calculated
in the N, -N_, -parameter space is shown. The last part of this section is an exten-
sion of the second part. The ROM-input used for this analysis is close to that of
KKLc7_rec4.

4.6.1 Partl:

The location of the reference OP in the N, -N . -parameter space is presented in
Figure 4.55. The diagonal line (where N, =N, ) separates single phase states from
two phase states.
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Figure 4.55:  Location of the reference OP (KKL) in the N, -N . -parameter plane.

sub -
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As stated above, the phase change number is a function of the subcooling number
N =N, (Ng,) (coupled neutron kinetic — thermal-hydraulic system). This curve
N =N, (Ng,) (see Figure 4.56) describes the change of the thermal hydraulic
state (of the reference OP in the N, - N, -parameter plane) depending on N, while
all the other parameters are kept constant. The curve N, (Ng,) was calculated by
applying the numerical integration code. Thereby, steady state calculations were per-
formed where N_, was varied in small steps.

sub

3 Function N (N ) inthe N_ -N__-parameter space
/
//
/

- | reference OP
2 H Nsub,ref =0.67 3 NpCh (NSUb)

i Npch,ref =5.95 //

New (DP_, o = 168.8) //,
h /
: o
/ 4l

0

5 5 . : 8

pch

Figure 4.56: The curve N, (N,) inthe N, -N_, -parameter plane.

Bifurcation analysis in the N, - N, -parameter plane is conducted in the following. In
Figure 4.57 are presented the stability boundary and the curve N, (N,).

3 - . ]
Stability boundary and Function Npch (N,
in the Nsub—Npch—parameter space
L //
reference OP
I Nsub,ref =0.67 Npch (Nsub) /
2H N =5.95 N/
pch,ref \}/ /
| (DP_, . = 168.8)
Nsub vref w / / @
\ [ ; - -
| stable region \ /‘7
\ /
1 \// // I 1
/\ / | unstable region |
Y
5 6 N 7 8
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Figure 4.57: Result of the bifurcation analysis performed in the Ng -N_ -
parameter plane.
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Note that, in the N, -N_,-parameter space, operational points only exist on the
curve N, (N,) for a fixed parameter configuration of a BWR. Hence, the bifurcation
analysis, performed in the N, -N_, -parameter space, provides information about
the stability properties of fixed points located on the curve N, (N,) (for the nuclear
coupled thermal-hydraulic system).

The results of the bifurcation analysis, presented in Figure 4.57, show that all opera-
tional points, located on the curve N, (Ny,) between A and B (red section), are un-
stable fixed points. All the other OPs which are located on N (N, ) are stable fixed
points.

In the scope of this approach, the following conclusions are valid:

e The bifurcation analysis carried out in the N ,-N_, -parameter space reveals
the stability characteristics of all fixed points which are located on the curve

Npch(Nsub) '

e In order to interpret the results of the bifurcation analysis performed in the N,
-N ., -parameter space, the stability boundary should be plotted in conjunction
with N, (N,) . This means, the stability boundary plotted without N (N,)
makes no sense.
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4.6.2 Part 2:

The same analysis is carried out for DP,, =180 (DP,, .. =168.8). The results are plot-
ted in Figure 4.58 and Figure 4.59. As can be seen, the variation of DP,, causes a
shift of N, (N,,) and of the SB in N, -direction, respectively. Thereby, the shift has
the same sign but the sensitivities regarding DP,, -variations are different (is ex-

ext
plained in detail in part 3 of this section).

Comparison of the Functions Npch (N, for different DP_

/

y

in the Nsub-Npch-parameter plane

i Npch (Nsub’ DPext,ref) /
2H —— N_ (N_,, DP_=180)

pch ( sub’

sub

reference OP

1 N o ret =0.67
Npch’ref =5.95
(DPext’ref = 168.8)

5 6 N 7 8

pch

Figure 4.58: Comparison of the curves N (Ng,) for two different external pres-
sure drops, the reference pressure drop and DP,, =180.

In Figure 4.59 are shown the stability boundaries and their corresponding curves

N "™ (Ng,) and N " ®(N,). The SB (in the following referred to as

N 3 (N,)) and the curve N (N,) are moving in N -direction, when DP,, will be

pch ext
varied. The derivatives

d

WNpch(Nsub) (450)
ext
and
d se
d DP Npch(Nsub) (451)
ext
with
d d SB
WNpCh(NSUb)imNpCh(NSUb) (452)

ext ext

represent the sensitivity of the curves N ,(Ny,) and NY (N.,) regarding DP,

variations. Relation (4.52) means, the number of unstable fixed points is changing,
when DP,, is varied. Roughly speaking, under DP,, variation, the stability boundary

ext Xt
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and function N_,(Ng,) are moving with different “velocities” in the Ng, -N -
parameter space. The change of the length of the red section corresponds to a
change of the number of unstable fixed points.

Stability boundary and Function Npch (N,,) inthe N_ -N

sub pch_

parameter plane for two different external pressure drops
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Figure 4.59: Comparison of the SB and the curve N, (N,) for two different exter-
nal pressure drops, the reference pressure drop and DP,, =180.
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DPext,ref ( N DPext=180 ( N

In Figure 4.61 are plotted the curves N w) and N, ) including
the stability boundary calculated in the N, - DP, -parameter space (see section 4.3).
In this map, both curves are straight lines which are parallel to the N, -axis. As pos-
tulated, the points A, A*, B and B* are located on the stability boundary (black line)
which was calculated in the N_, - DP,, -parameter space.
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Figure 4.61:  Projection of the two curves N " (N,) and N, °"*"®(N,,) into
the N,,-DP,, -parameter space and the stability boundary calculated
inthe N, - DP,, -parameter space.
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4.6.3 Part 3:

The described procedure was applied for further selected external pressure drops
that are depicted in Figure 4.62.

T
1,6——l5A ~
[ ! \\\'
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Nsub i @ﬁ _
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48] | 1B

0.4/  [e8] ]

20 40 60 80 100 120 140 160 180 200 220 240
DP
ext
Figure 4.62: Stability boundary calculated in the N, - DP,, -parameter space. This
map shows the locations of the selected DP,, for which the bifurcation

ext
analysis will be carried out in the N, - N -parameter space.

sub ~

The SB depicted in Figure 4.62 was then ,transformed* (projection onto) into the N,
-N ., -parameter space (see Figure 4.63).
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Figure 4.63: Stability boundary calculated in the N, -DP,, -parameter space and
“transformed” into the N, - N, -parameter space.

sub -
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For all of these selected steady state external pressure drops (depicted in Figure
4.62), bifurcation analysis was performed in the N, - N, -parameter plane. The re-
sults are presented in Figure 4.64 and Figure 4.65.

Stability boundaries for different DP__

sub -

2,0 —
{—DpP =42
DP_, =45
[ DP_, =50
1’5 | ext
i | — pr, =60
DP_, =110
sub 11— DF’GXt =168.8
i DP_, =220
10 i ]| — pP_, =232
0,5
3

pch

Figure 4.64:  Stability boundaries, calculated in the N, - N, -parameter space, and
the curves N, (N,,) for different external pressure drops are shown.
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Figure 4.65: Comparison of the stability boundaries calculated in the N, -N_,-
parameter space for different external pressure drops and the stability
boundary calculated in the N_, -DP, -parameter space and “trans-
formed” into the N, - N, -parameter space.
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Figure 4.65 depicts the stability boundaries calculated in the N, -N_ -parameter
space and the stability boundary calculated in the N, -DP,, -parameter space but
transformed into the N, -N_, -parameter space. From this result, it can be con-
cluded that under variation of DR, , the relative movement of N, (Ng,) and

N;&(Ng,) is responsible for the shape of the SB calculated in the N, -DP,,-
parameter plane.

If DP, is increased in small steps, the stability boundary will cross the curve
N (Ng,) for a certain value of DR, (point 3 in Figure 4.63). In this case, the curve
N (Ng,) is tangent to the stability boundary at DP,, =232. The same behaviour is
observed at DP,, = 39. These characteristics are caused by a change of the sensitivi-
ties of the stability boundaries and their curves N, (Ng,) under DP, -variation. In
order to explain the sensitivities of N3 (N,,,) and N, (N,,), the slopes of the curves
N2 Nw=0%(pp ) and NM»=%®(DP ) along DP,, are taken into account (Figure 4.66)

pch pch
for example.

Xt

The curve N ;"»*®(DP,,) describes the change of the critical value of the phase

change number (where the Hopf-conditions are fulfilled) depending on DP,,, while
N, =0.95 is fixed.
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Figure 4.66: This figure shows the critical values of the phase change number de-
pending on DP, (called N>"%(Dp )) and the curve

ext pch

N w=%®(Dp ). Thereby, N, =095 is fixed. The result of

pch sub
N:Nw=0%(DPp_ ) below DP,, <45 is not valid and not clear!

pch ext

Figure 4.66 demonstrates that the derivative (4.51) of the curve N3 "**(DP,) is
approximately constant for all DP,, . Consequently, the sensitivity of the stability

boundary remains approximately constant regarding DP,, variations.

ext
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The slope of the curve N ™%

The slopes of the curves at DP,, =50 and DP.

ext ext

(DR,,) changes significantly with increasing DP,,, .
=200 were estimated as

d N, =0.95 -3

N New DP.. =50) = 61.54-10 4.53

d DPext pch ( ext ) ( )
d SB, N,,,=0.95 -3

N 3B Nw DP_. =50) = 21.09-10 4.54

d Dpext pch ( ext ) ( )

d N, =0.95 -3

N Newo DP.. =200) = 9.8-10 4.55

d DPext pch ( ext ) ( )

d N8 Naw=0%(DPp =200) = 13.556-10° . (4.56)

dDp, ™

ext

The slopes at the both coordinates correspond to the sensitivity of the SB and the
function N, (N,,) regarding DP,, variations. Because of

ext

d Ngup=0.95 d SB, Ngp=0.95
N e DP,, =50) > N . = (DP,, =50 4.57
d DPext pch ( ext ) d Dpe)(t pch ( ext ) ( )
the curve N_,(Ng,) has passed the stability boundary. The comparison at
DP,, =200 yields
d

=200) .  (4.58)

Xt

SNy (DR, =200) < d%’\‘ﬁ?h' 0% (P

ext ext

Relation (4.58) is responsible that the stability boundary is passing the curve
N . (N.).
pch sub

4.6.4 Conclusions

e The bifurcation analysis in the N, -DP,, -parameter plane yields information
about the stability properties of fixed points along the rod line and their corre-
sponding operational conditions in the power flow map. The use of N, and
DP,, for the bifurcation analysis is more general because three parameters
are varied implicitly - N, , DP,, and N, . In other words, N, is a function
of N, and DP

ext *

sub ?

sub

e The bifurcation analysis in the N, -N_ -parameter plane yields information
about the stability properties of fixed points along the curve N, (Ng,) and its
corresponding thermal hydraulic states.

sub

e The slopes of the curves N«»=%*(DP_) and N>"»=%(DP ) (Figure 4.66)

pch pch
describe the sensitivities of function N, (N,) and the stability boundary

N3 (N,) regarding DP,, -variations. In addition to that they describe the rela-

tive movement between N_ (N,,) and N} (N,) under variation of DP,

sub pch sub Xt

e Under variation of DP,,,

N3 (Ng,) is responsible for the shape of the SB calculated in the N
parameter plane.

the relative movement between N, (Ng,) and
DP

sub - ext
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e The shape of the stability boundary which was calculated in the N, -DP,, -
parameter space, can be explained by bifurcation analyses carried out in the

Ny - N, -Parameter space for different DP,

sub ~ ext *

As described in the previous sections, the ROM-input is based on the selected op-
erational point. Accordingly, the stability boundary (SB) which was calculated in the
N, - DP,, -operating plane, is related to the reference operational point with its spe-
cific steady state 3D parameter distributions. The ROM predictions are only valid in
the neighbourhood of the reference OP. Hence, it makes no sense to consider the
predicted stability characteristics of fixed points which are located too far away from
the reference point. Because in such points the 3D parameter distributions are com-
pletely different from the considered reference OP and thus the stability behaviour
may be different as predicted by the ROM. The crucial question is: how large is the

area of validity of the ROM predictions for a considered reference OP?
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5 Summary and conclusions

The thesis is devoted to nonlinear BWR stability analysis of operational points for
which measurement data are available from stability tests. In the context of the the-
sis, a novel approach to nonlinear BWR stability analysis has been developed. This
approach can be summarized as follows:

e Sophisticated integral BWR (system) codes and simplified BWR models
(ROM) are used as complementary tools to examine the stability characteris-
tics of fixed points and periodic solutions of the nonlinear differential equations
describing the stability behaviour of a BWR loop.

e The intention is:

- to identify the stability properties of certain operational points (OP) by
performing ROM analysis. The ROM analysis provides an overview
about types of instabilities which have to be expected in certain pa-
rameter spaces.

- to apply the system code RAMONADS for a detailed stability investigation
in these operational points and their neighbourhoods. In particular, the
nonlinear phenomena revealed by the ROM analysis will be analysed in
detail.

e Because the ROM analysis reveals an overview about the solution types exist-
ing in certain parameter regions and due to the flexible application of certain
methods to the ROM (e.g. variation of specific algorithms for the numerical in-
tegration, application of methods from nonlinear dynamics), the results of the
ROM can help to get a better understanding of the results of the system code.

The novel approach to nonlinear BWR stability analysis improves the reliability of the
BWR stability analysis significantly.

In the scope of the ROM analyses two independent techniques are employed. These
are the semi-analytical bifurcation analysis with the bifurcation code BIFDD and the
numerical integration of the system of the ROM differential equations. Bifurcation
analysis with BIFDD determines the stability properties of fixed points and periodical
solutions (correspond to limit cycle). For independent confirmation of these results,
the ROM system will be solved directly by numerical integration for selected parame-
ters.

The ROM applied in this thesis, the TUD-ROM, was originally developed at PSI in
collaboration with the University of Illinois (PSI-lllinois-ROM). The objective of the
ROM development is to develop a model as simple as possible from the mathemati-
cal and numerical point of view while preserving the physics of the BWR stability be-
haviour. Hence, the partial differential equations (PDE) describing the BWR will be
converted into ordinary differential equations (ODE). The system of ODEs includes all
spatial effects in an approximated (spatial averaged) manner because e.g. by appli-
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cation of the mode expansion methodology spatial effects are taken into account by
calculation of the amplitude functions of the higher spatial modes and realistic as-
sumptions to the higher mode spatial distributions (calculated by a 3D code). In order
to analyse the in-phase and out-of-phase oscillation states, for instance, it is not nec-
essary to solve the full space-dependent equations. In this case, it is sufficient to take
into account only the fundamental mode and the first azimuthal mode. This is justified
by reactor theory [48] as well as by results of stability tests [5].

The TUD-ROM was upgraded in two significant points:

e Development and implementation of a new calculation methodology for the
mode feedback reactivity coefficients (void and fuel temperature reactivity)

e Development and implementation of a recirculation loop model, analysis and
discussion of its impact on the in-phase and out-of-phase oscillation mode

e Development of a novel physically justified approach for the calculation of the
ROM input data

e Discussion of the necessity of consideration of the effect of subcooled boiling
in an approximate manner

With the upgraded ROM, nonlinear BWR stability analyses have been performed for
three OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one
for NPP Brunsbuttel (cyclel6) for which measuring data of stability tests are avail-
able. In this thesis, the novel approach to nonlinear BWR stability analyses was ex-
tensively presented for NPP Leibstadt. In particular, the nonlinear analysis has been
carried out for an operational point (OP), at which an out-of-phase power oscillation
has been observed in the scope of a stability test at the beginning of cycle 7
(KKLc7_rec4). The ROM predicts a saddle-node bifurcation of cycles, occurring in
the linear stable region, close to the KKLc7_rec4-OP. This result allows a new inter-
pretation of the stability behaviour around the KKLc7_rec4-OP.

5.1 Modifications of the ROM

5.1.1 Recirculation loop

In the PSI-lllinois-ROM, the outer loop was replaced by the constant external pres-
sure drop boundary condition. This is a reasonable approximation to represent the
real stability behaviour of an out-of phase oscillation mode. But the stability behaviour
of the in-phase oscillation mode can not be simulated correctly. Hence, the ROM was
extended by a recirculation loop model.

In the first step, the recirculation loop was implemented in a thermal-hydraulic one
heated channel model based on data of the Saha facility [77]. In order to study the
impact of the recirculation loop model on the thermal-hydraulic stability properties,
the downcomer flow cross section A, was varied in the range of interest. In the
scope of this analysis, it has been found that the larger the downcomer flow cross
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section the more unstable the system is. From the linear point of view, the set of sta-
ble fixed points become less with increasing A,.. On the other hand, the set of sub-
critical fixed points (unstable limit cycles solution) increases for increasing A,, val-
ues. It should be emphasized that an infinite large downcomer flow cross section (
A,.—>© = A, —0) corresponds to the constant external pressure drop boundary
condition (AP, =const).

xtern

Further investigations have shown that the downcomer friction has a very small im-
pact on the stability behaviour. Consequently, it can be neglected in further stability
investigations. This result is in agreement with the RAMONAS5 model where down-
comer friction is also ignored.

In the second step, the recirculation loop model has been implemented in the simpli-
fied BWR model and its impact on the BWR stability behaviour has been analysed. In
particular, the effect of the downcomer flow cross section on the in- and out-of-phase
oscillation mode (corresponds to the in- and out-of-phase eigenstates) has been
studied. The analysis of the downcomer flow cross section variation with the ROM
has shown that A,. have a strong impact on the stability property of the in-phase
oscillation mode while the stability behaviour of the out-of-phase oscillation mode is
not affected. The larger the downcomer flow cross section, the more unstable the in-
phase oscillation mode is. The results of the ROM analysis are consistent with the
results of the RAMONAS analysis. It should be emphasized that the stability proper-
ties for the reference OP of KKLc7rec4 can only be reproduced correctly by the ROM
if the correct downcomer flow cross section of the RAMONAS model is used. Conse-
quently, BWR stability analysis should be performed always including the recircula-
tion loop.

5.1.2 Subcooled boiling

In the thermal-hydraulic model of the ROM, two axial regions, the single- and the two
phase region, are considered. Thereby the two phase region is represented by a
Drift-Flux model where thermodynamic equilibrium between the two phases is as-
sumed. Two questions arise: 1) is it necessary to take into account the subcooled
boiling phenomenon for BWR stability analyses? 2) which model for describing the
subcooled boiling phenomenon is appropriated in the framework of this analysis ap-
proach? It has been found out that the ROM must be extended by a third region
where a mechanistic model describes the thermodynamic non-equilibrium between
the two phases and the void generation on the heated surface. But such a model ex-
tension requires extreme large effort. Therefore, in the scope of this work, the effect
of the subcooled boiling on the BWR stability behaviour has been estimated by a
modified profile fit model (Levy, 1966 [27]).

The first analysis with the included subcooled boiling model was performed with the
simple thermal-hydraulic one heated channel model. The aim was to analyse the dif-
ferences between the axial void profiles provided by the original two-phase flow
model (bulk boiling model) and the subcooled boiling model. As a result, the relative
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deviation between the channel averaged void fractions provided by the two-phase
flow model and the subcooled boiling model is less than 5%.

Furthermore, an analysis was performed with the ROM for NPP Leibstadt. The aim
was to compare the effect of using a uniform axial power profile in the ROM (instead
of a real bottom peaked axial power profile) with the effect of ignoring subcooled boil-
ing on the axial void profiles. As a result, it has been found out that the application of
a uniform axial power profile instead of the real one causes relative deviations be-
tween channel averaged void fractions calculated by RAMONAS5 and ROM of at least
16%. In contrast to that the disregard of subcooled boiling lead to relative deviations
less than 5%, mentioned above. Furthermore, after applying the adjustment proce-
dure for the axial void profile of the ROM, the deviation between the channel aver-
aged void fraction calculated by RAMONAS5 and ROM (original two phase flow
model) are less than 1%. Consequently, from the thermal-hydraulic point of view and
in the framework of the analysis approach of the thesis, the consideration of the sub-
cooled boiling phenomenon is not necessary.

5.1.3 Calulation methodology for C_. -coefficients

A new method to calculate the void and fuel temperature (Doppler) mode feedback
reactivity coefficients (C'°“" and CP™*"", section 3.2) has been developed at UPV
Valencia (Spain) in cooperation with the TU Dresden (Germany). The new
methodology was applied for NPP Leibstadt, NPP Ringhals and NPP Brunsbiuittel.

The results of the new calculation methodology for C¥*" and C2®""" are compared
with that of the original method used in the PSI-Illinois ROM. The comparison show
that both methods provide similar results for NPP Leibstadt and NPP Ringhals. In
addition to that the void and Doppler feedback reactivity coefficients of the technical
documentation of NPP Leibstadt (beginning of cycle 7) have the same order of mag-
nitude as calculated by the calculation methodology of the mode feedback reactivity
coefficients. Consequently, the new calculation methodology for the void and Doppler
mode feedback reactivity coefficients is qualified for ROM analysis.

5.2 Novel approach for calculation of the ROM input

The goal is to analyse the stability behaviour of the power plant with the ROM as
close as possible to a real BWR (RAMONAS model is the reference system) in a cer-
tain neighbourhood of the selected OP. At first, it is necessary to define the reference
OP for which the nonlinear BWR stability analysis will be performed. For NPP Leib-
stadt, for instance, the KKLc7_rec4-OP was selected to be the reference OP but with
a modified core inlet subcooling. Secondly, a novel approach for the ROM input cal-
culation is applied. All ROM input parameters are calculated from the specific
RAMONAS5 model and its steady state solution corresponding to the reference OP.
The basic demand on the procedure for calculating the ROM-input is that the steady
state conditions of the reference OP, predicted by the RAMONAS model, are simu-
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lated correctly by the ROM using the calculated input parameters. Only in this case it
is reasonable to perform specific system code analyses which are based on the ROM
analysis results.

In the framework of the novel calculation methodology of the ROM input parameters,
it is assumed that, when the steady state solution of the reference OP is described by
the ROM as close as possible to the real one (system code prediction), the stability
behaviour of the BWR system can be represented properly by the ROM in a close
neighbourhood of the reference OP. In particular the specific thermal-hydraulic and
neutron kinetic states has to be described correctly.

The novel calculation methodology of the ROM input parameters was applied for
three NPPs. The results of the steady state properties of the ROM are consistent with
that of RAMONADS.

5.3 Nonlinear stability analysis for NPP Leibstadt (KKLc7_rec4)

Stability and bifurcation analysis for KKLc7_rec4 has been performed. For this pur-
pose, the KKLc7_rec4-OP is defined to be the reference OP. The stability boundaries
and the nature of the PAH-B are determined and visualized in appropriated two-
dimensional parameter spaces. In particular, the subcooling number N., and the
steady state external pressure drop DP,, are selected to be the iteration and bifurca-
tion parameters. The variation of DP,, corresponds to a variation of the pump head
which changes the coolant mass flow. When the coolant mass flow is changed, the
power will also be changed while the spatial neutron flux distribution will not be
changed significantly because the control rod positions are kept constant. As a con-
sequence, the stability properties of fixed points and periodical solutions along the

rod-line of the power flow map which crosses the reference OP can be examined.

Note that, the two parameters N, and N, can also be selected to be the iteration
and bifurcation parameters in bifurcation analyses with BIFDD. The Ng,-N -
parameter space, used as stability map, is related to the thermal-hydraulic states
within the hydraulic nuclear-heated channels of the BWR. It is important to note that,
in the N, -N_,-parameter space, operational points only exist on the curve
N, (Ng,) for a fixed parameter configuration of a BWR. Hence, the bifurcation
analysis carried out in the N, -N, -parameter space reveals the stability character-
istics of all fixed points which are located on the curve N, (N,) (see section 4.6).
Consequently, the functional dependence between N, and N, (the curve
N (Ng,)) should always be taken into account for an interpretation of the stability
characteristics calculated in the N, - N, -parameter space.

sub ~

In contrast, the bifurcation analysis carried out in the N, -DP,, -parameter space
yield the most practical information about BWR operating conditions. This statement
is verified in section 4.6 where the stability boundary calculated in the N, -DP,,-
parameter space and its relation to the N, -N_,-parameter space has been dis-

cussed. If the bifurcation analysis is carried out in the N_, - DP,, -parameter space, a

sub
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larger parameter region can be analysed in comparison to an bifurcation analysis
carried out in the N, - N, -parameter space.

sub -

5.3.1 Local consideration

The terminology “local analysis” means that the close neighbourhood of the steady
state solution X, (equilibrium point or singular fixed point) is taken into account in the
phase space.

The following conclusions of the local nonlinear stability analyses for the
KKLc7_rec4-OP of NPP Leibstadt were derived:

e Unstable periodical solutions (unstable limit cycle) in the stable region close to
the KKLc7_rec4-OP are predicted by the semi-analytical bifurcation analysis.
Note that, the asymptotic decay ratio for these fixed points is DR<1. A linear
analysis is not capable to examine the stability properties of limit cycles.

e For independent confirmation of the results which are predicted by the bifurca-
tion analyses, numerical integration of the ROM equation system has been
carried out for selected parameters. The results of the numerical integration
method confirm the predictions of the local bifurcation analysis.

e The local nonlinear analysis has shown that the stability behaviour of the ref-
erence OP and its close neighbourhood can be simulated reliably by the new
ROM. In this OP, the results of RAMONA5 and ROM are locally consistent.
Under stability related parameter variations the stability behaviour calculated
by both, ROM and RAM, are consistent.

e The relative location of the reference OP with respect to the stability boundary
is simulated correctly with the new ROM. This is mainly affected by the appli-
cation of the novel approach for calculation of the ROM input data.

e The new ROM simulates correctly the oscillation mode: the out-of-phase oscil-
lation is excited and the in-phase mode is decaying. As mentioned in the in-
troduction of the thesis, the original ROM was not able to predict the correct
oscillation mode. The reason for the correct simulation of the oscillation mode
is the implemented recirculation loop model, in which the downcomer flow
cross section of the RAMONAS (DC2) model is used as input parameter, and
the increased artificial factor fact,, with m=n.

The good agreement between the local RAMONAS and ROM investigations could be
verified for NPP Brunsbuittel and NPP Ringhalsl (see Appendix H and Appendix G).
Hence, the new ROM and the new procedure for the calculation of the ROM input
data are qualified for BWR stability analysis in the framework of the new approach.
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5.3.2 Global consideration

The bifurcation analysis with BIFDD is valid only in a small neighbourhood of the
Hopf bifurcation point of the parameter space and in the vicinity of the equilib-
rium point (origin or singular fixed point) of the phase space (see Figure 4.54). In
order to study the global character of the nonlinear system, numerical integration be-
yond the local bifurcation findings is necessary. For this purpose, numerical integra-
tion of the ROM equation system has been carried out for a larger parameter region.
In addition to that, a larger phase space region for the calculation of the solution of
the system of ROM equations was taken into account. In this analysis, the subcooling
number N_, was selected to be the control parameter and was varied in a specific
range.

sub

The global nonlinear stability analysis has shown that there is a critical core inlet
subcooling N, at which the system undergoes a saddle-note bifurcation of a cycle.
This bifurcation type, which is also called turning point or fold bifurcation, belongs to
the class of global bifurcations. The major feature of this bifurcation type is that a
stable limit cycle and an unstable limit cycle are “born” (“out the clear blue sky”

[17]) at N, , and coexist either with stable or with unstable fixed points.

The numerical integration (global consideration) predicts stable limit cycles for
Ny <Ny, <0.9, even though the bifurcation analysis predicts only unstable limit
cycles for Ny, <N, .. Ny, . is the critical bifurcation parameter, for which the Hopf
conditions are fulfilled. Due to (numerical) convergence problems of the numerical
integration around the bifurcation point, N_, . cannot be calculated exactly. The esti-
mated value of N, . is N, . ~0.63.

sub,t

sub,t sub,t

At the reference OP the state variables will also be attracted by the limit cycle. In ad-
dition to that, for N, €[N, ..., Ny, ] with N, <N, . stable fixed point, unstable
limit cycle and stable limit cycle coexist. In this region, the amplitudes of the unstable
limit cycle correspond to the boundary which separates the basin of attraction of the
singular fixed point and basin of attraction of the stable limit cycle. Below N, ., only
stable fixed point solutions exist.

The nonlinear analyses results for NPP Ringhals, presented in Appendix H, have
also shown that at the reference OP and in its neighbourhood stable limit cycle exist
even though the bifurcation analysis predicts only subcritical Hopf bifurcations. This
result can also be explained by the existence of a saddle-node bifurcation of cycles
occurring in the linear stable region.

As mentioned in the introduction, Rizwan-udding [38] (using the simple March-Leuba
five-equation system) and van Bragt et al. [54] (using the thermal-hydraulic one
heated channel model) also showed the existence of turning points with their simple
models. However, this is the first time that a saddle-note bifurcation of cycles is re-
vealed by an advanced ROM for a real operational point of a BWR.
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5.4 Conclusions

The following conclusions from nonlinear BWR stability analyses can be made:

The recirculation loop model is an essential sub-model of the ROM for simulat-
ing correctly the in-phase oscillation mode. BWR stability analysis should al-
ways be performed including the recirculation loop.

The subcooled boiling phenomenon can be ignored as long as a uniform axial
power profile is used by the ROM.

The new calculation methodology for the void and Doppler mode feedback re-
activity coefficients is qualified for ROM analyses.

The application of the novel approach for calculation of the ROM input data is
one of the crucial tasks of a successfully use of the RAM-ROM methodology. It
enables that the TUD-ROM simulates correctly the steady state conditions of
the reference OP. Thus the novel approach to calculate the ROM input is
strongly recommended for the RAM-ROM methodology.

At the reference OP and its close neighbourhood, the results of RAMONAS
and the TUD-ROM are qualitatively consistent. Hence, the TUD-ROM is quali-
fied for nonlinear BWR stability analyses in the framework of the novel ap-
proach demonstrated in this thesis.

The nonlinear stability analysis for NPP Leibstadt (KKLc7_rec4) has shown
that the stability behaviour occurring in a certain region around the reference
OP can be explained by the existence of a saddle-node bifurcation of cycles
which occurs in the linear stable region. This result allows a new possible in-
terpretation of the stability behaviour around the KKLc7_rec4-OP.

The results of this thesis confirm that the RAM-ROM methodology is qualified
for nonlinear BWR stability analyses.

5.5 Recommendations to future work

In order to increase the reliability of the RAM-ROM methodology the following future
work is recommended:

assessment of the sensitivities and uncertainties of parameters which are sig-
nificant for the BWR stability behaviour.

deepen the physical interpretation of the shape of the stability boundaries and
their change under parameter variations

in-depth analysis of global bifurcations and the conditions of their occurrence,
in particular, of those generating large limit cycle amplitudes

Post-analysis for the SIRIUS-N (T) facility to “validate” the TUD-ROM
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e A critical discussion of the sub-models of the ROM is recommended. In par-
ticular, the necessity of consideration of real axial power profiles should be
discussed. Another unsolved problem is the physical interpretation of the arti-
ficial factor fact, .

e In many analyses using BIFDD, there are convergence problems to find the
critical bifurcation parameter at which the Hopf conditions are fulfilled. This
problem causes interruptions during the bifurcation analysis. Here, a critical
review of the algorithms employed by BIFDD is necessary. In addition to that,
as explained in section 2.3, the user of BIFDD has to provide the Jacobian
matrix of the system of differential equations. If the ROM will be modified, all
corresponding Jacobian matrix elements (in the TUD-ROM there are 22x22
elements) must be analytically recalculated. Hence, ROM modifications are
difficult and cumbersome, when it is coupled with BIFDD. Hence, it is recom-
mended to develop a new bifurcation code which avoids the disadvantages,
mentioned above, and allows a more flexible use, e.g. global bifurcation
analyses.

The reliability of system code analyses should be studied more in detail because it
was figured out that the simulated stability behaviour in the close neighbourhood of
bifurcation points strongly depend on algorithms employed. In addition to that, a criti-
cal discussion of some approximations of RAMONAS regarding their impact on the
stability behaviour is necessary (like VP =0).
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Appendix A: Nonlinear stability analysis

Generally, stability analysis is the investigation of the temporal behaviour of the dy-
namical variables after an internal or external perturbation is imposed on the dynami-
cal system, while one or more system parameters will be varied in their domain of
definition. If the system is stable, all dynamical variables return to the fixed point (or
in a close neighborhood of the fixed point, which is also called “Ljapunov stability” [1-
3]). If the system is unstable, at least one dynamical variable is diverging in an oscil-
latory or exponential manner. Thereby the critical value of the system parameter(s)
which separates stable fixed points from the unstable one is so-called as stability
boundary.

For a mathematical description, the autonomous dynamical system

SX = F(X©.7) (A1)
is considered [2]. Thereby, X(t) with
X, ()
X(@t) =] ° e R" (A2)
X, (1)

is the state vector describing the state of the dynamical system in the state space, F
with
Fl
F=|:] and F:R"xR—R" is C” (A3)
F

n

is a vector field describing the dynamical behaviour of the state variables and y € R"
iIs a parameter vector (also referred to as control parameter vector with m compo-
nents).

Let )ZO be the steady state solution of the dynamical system (A1) for all y, where X,
Is satisfying

=0=F(X,7) . (A4)

dt

In order to get information about the stability properties of the steady state solution
)ZO and its vicinity, the dynamical system will be linearized around )Zo. To this end,
the ansatz

X(t) = X, + oX(t) (A5)

is substituted in (A1) and a Taylor-expansion is applied
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diti‘i + 26X = F(X, + 6X,7)
- , (A6)
= F(Xor70) + DF(Xo o) X=X, + o(uaxu ) ,
=0 J = 6X T

where the linear term is taken into account only.

Figure 1: This figure depicts the linearization of the dynamical system (Al)
around the steady state solution X,. This means, the states X (t) can
be approximated by the steady state solution plus a small perturbation
SX (t) of the steady state. This method is common practice in pertur-
bation theory [5].

The result of the linearization is given by
d

—6X = J5X (A7)
dt
where J is the Jacobian matrix defined as
oX, OX,
J =1 : ' : (A8)
OF, oF,
0%, OX,,

Equation (A7) is the linearized system of (Al) at )ZO. The solution of equation (A7)
can be written as

SX(t) = e" 65X, . (A9)

Roughly speaking, the solution (A9) describes the time evolution of the small pertur-
bation SX which is imposed on the steady state X, at t=t,=0 with
sX(t=t,) = 6X,. According to equation (A9), the time evolution of §X only de-
pends on J. In turn, J depends on the parameter vector y. This means, the local
stability behaviour of the dynamical system (A1) around X, depends only on the
characteristic of the Jacobian matrix, from the linear point of view. It should be noted
that transformation (A5) transforme the singular fixed point )Zo into the origin §X =0.
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This is the reason that the terminologies: “the origin is stable locally” or “the origin is
unstable locally” exist.

In order to evaluate (A9), the linear transformation
SX(t) = PU(t) (A10)

is performed in such a way that the Jacobian matrix can be transformed into the Jor-
dan normal form [1-4]. To this end, the eigenvalue problem

JB=4H (Al11)

has to be solved, where p, are the eigenvectors with their corresponding eigenvalues
A of the Jacobian matrix. This procedure corresponds to a change of the basis vec-
tors which span the state space of the dynamical system. The transformation matrix
P can according to P:[ﬁl,..., [ r)n] be written in terms of the eigenvectors p,.
With other words, the columns of P are the eigenvectors p, of the Jacobian matrix.

In the linear system (A7) the vector §X is substituted by ansatz (A10) and the final
equation is multiplied by P~ from the left hand side. The result can be written as

%U - PYPU =DU , (Al12)
where D with
Ay ooeeenennnnnnns 0
) b.
D=pPYP=|: (a' ] : (A13)
_bi q
O covernrerreennenns A

Is the Jacobian matrix transformed into the Jordan normal form. If all eigenvalues of
J are real and distinct, matrix D will have a diagonal form [3].

The solution of (A12) can be written as
u(t) = e®*U, |, (A14)
where 56X, = PU,. The back transformation gives
X = PU(t) = PeP™U, = PePtWPIsX, . (A15)

The general solution of the linearized system (A7) can be written as
X() = X, + D.cPe*

X () Xou (1) o[ Pa (A16)
Pol=]o e e

i=1

Xn (t) XOn (t) pin
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where the constants ¢, can be calculated from the initial conditions.

From the general solution (A16) it can be seen that the stability behaviour in the vi-
cinity of X, of the linearized system depends on the real parts of the eigenvalues A
of J with 4 = A(y). According to (A16) all components x(t) of the general solution
contain all eigenvalues A4 of J. This means, if there is at least one pair of complex
conjugated eigenvalue with a positive real part, the system will be unstable. If all ei-
genvalues have strictly negative real parts, the system will be stable. When a se-
lected control parameter is changed and the eigenvalue with the largest real part be-
comes zero, additional analyses such as Hopf bifurcation analyses are necessary.
The statements

Re(4) < 0 — local stable
Re(4) > 0 — local unstable (Al7)
Re(4) = 0 — additional analyses are necessary

are basic characteristics of linear systems which are expressed by the theorem of
Hartmann and Grol3mann [1-3].

Theorem of Hartmann and GroRmann: Let X, be the steady state solution for a
given parameter configuration y and J be the Jacobian matrix of the dynamical sys-
tem. Roughly speaking, if all eigenvalues have real parts strictly different from zero
(the corresponding fixed points are so-called hyperbolic fixed points), in this case, the
orbits of the nonlinear dynamical system can be mapped (locally, homeomorphic) on
the orbits of the linear system. This means, if the fixed point is a hyperbolic one, the
stability behaviour of the nonlinear dynamical system can be described locally by the
linear system.

This theorem is of particular importance because it satisfies the application of linear
analysis methods for stability analyses of nonlinear dynamical systems. But if the
condition of the theorem is not fulfilled, this means Re(4) =0, additional investigations
such as bifurcation analyses are necessary.

In general, the stability boundary which separates linear stable fixed points from lin-
ear unstable one, is a multi dimensional structure in the m-dimensional parameter
space. The task “calculation of the stability boundary” means: 1) selection of one or
more parameters y, which will be varied within the domain of definitions and 2) cal-
culate the critical parameters y, . for which Re(4)=0 with 4 (y,.). This means, the
parameter y, will be varied as long as the condition

d -
Re(det[J —iwl]) = 0 (A18)

Im(det[J —iwl]) = 0

is fulfilled for .. In condition (A18) there is i with (i* =-1) the complex number, o
is the frequency of the oscillation, Re and Im stand for real and imaginary parts, re-
spectively and det is the determinant.
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Hopf bifurcation theorem

In the framework of the nonlinear BWR stability research (in particular, the semi-
analytical bifurcation analysis), the so-called Hopf bifurcations play a dominant role.
The occurrence of such type of dynamical bifurcations is ensured by the Hopf theo-
rem [1-4]. This theorem, which is also called Poincare-Andronov-Hopf bifurcation
(PAH-B) theorem, guarantees the existence of stable and unstable periodic solutions
of nonlinear differential equations if certain conditions are satisfied [4]. For a mathe-
matical description, the autonomous dynamical system (A1) and its steady state solu-
tion )ZO is considered. If the following Hopf conditions are fulfilled:

1) For a critical parameter y, . there exists a pair of complex conjugate eigenval-
ues A,(y,.) =i, (this means Re(4,(y,.))=0)

2) all the other eigenvalues have strictly negative real parts
(V4, i#1 - Re(4(y..)) <0), and

8ﬂ’(]/k = 7k,c)
0¥

3) = 0

a family of periodic solutions

27t

X(t,y) = >Z0(7/k,c) + 5Re|:eT(5) p1:| + 0(¢%) (A19)

of (A1) with small amplitude & exist in X, for Y. [4], where p, is the eigenvector of
the linearized system associated with the pair of complex conjugated eigenvalues
responsible for the bifurcation (4,) and T is the period of the oscillation.

To summarize, from the linear point of view, the condition Re(4(y,.)) =0 separates
stable fixed points (Re(4 (y,)) <0 with » <y, or y, >y.) from the unstable one
(Re(4(r,)) >0 with y, >y, . or y, <y..). Note, the linear analysis is possible as long
as the theorem of Hartmann and GofRmann is fulfilled. In nonhyperbolic fixed points
(Re(4(y,.)) =0) additional analyses are necessary. The Hopf theoem implies that
periodical solutions exist in fixed points where the Hopf conditions are satisfied. The
stability properties of the periodical solutions can be analysed by applying the Foquet
theory.
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Floguet theory

In order to get information about the stability property of the periodic solution, the
(linear) Floquet theory is applied where the so-called Floquet exponent (Floquet pa-
rameter) £ appears [2,4] which determine the stability of the periodic solution. If
f <0, the periodic solution is stable (supercritical bifurcation) while if g >0, the peri-
odic solution is unstable (subcritical bifurcation) [2,4]. In simpler terms, the Floquet
parameter can be interpreted to be a stability indicator for limit cycles and is a result
of a special technique from the nonlinear dynamics.

If one or more system parameters y, are varied and a Hopf bifurcation exist for y, .
the system bifurcates from an equilibrium solution X, to a periodic solution (denoted
by X). Itis assumed that the considered dynamical system is time continuous one.
The solution of X =X(t) is period with least period T if X(t+T)=X(t) and
X (t+7) = X(t) for 0<z<T. In order to analysis the stability properties of the periodic
solution, a small disturbance Y (t) is superimposed on X , resulting in

X({t)= X0 +Y() . (A20)

Substituting (A20) into (Al), expanding the result in a Taylor series about X and
retaining only the linear term in the perturbation lead to

%i(m%\?(t) - F(i ; V(t),yo)
EXO-F (X5 )+ V0 = B F(Xp)[ X=X + ofFof ) (a2n)
0 A(t,7,) =Y(t) =0

%Y(t) = ALY ()

where A(t,y,) is a matrix of the first partial derivatives of the vector field F and is
periodic in time with the period T . It should be emphasized that the stability analysis
of the periodic solution is local because of the linearization in Y (t) .

The system (A21) is a n-dimensional linear system with n linearly independent solu-
tions Y, summarized in the form of an nxn matrix Y (t) =[Y,(t),Y,(t),...Y,(t)] where
i=12,..,n. The linear independent solutions are referred to as fundamental set of
solutions. Matrix Y satisfies the matrix equation

S0 = AR (A22)

Because of the periodicity of A(t,y,) it can be written as A(r,y,)=A(r-T,y,) and
thus

%\? = A-T,7,)Y = AT, )Y (A23)
where the dependent variable was changed accorting to z=t+T . If matrix \f(t) is a
fundamental matrix solution, then Y (t+T) is also a fundamental matrix solution. This

means, the matrix \?(t +T) can be expressed as linear combination
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Y(t+T)=Y()-® |, (A24)

where @ is so-called monodromy matrix. The monodromy matrix is an nxn-matrix
with constant coefficients and is not unique. ® can be specified by the initial condi-
tion Y(0)=1 and thus

Y(0+T)=YT)=1-d=0

YM)=d |, (A25)

where 1 is nxn-identity matrix.

Furthermore, the transformation \?(t) :V(t)-ls’1 (matrix P is different from matrix P
introduced in transformation (A10)) can be introduced, where P is an nxn-matrix
with constant coefficients. This transformation can be substituted in (A24). It follows

Y(t+T)=Y(t) @

A n - (A26)
=V({t)-P'd=V({t+T)-P*
and thus
V(t+T)=V(t)-P 0P =V(t)-¥ . (A27)
¥
The back transformation gives
V(t)=Y ()P (A28)
and
V(t+T)=Y(t+T)P . (A29)

Matrix P should be choosen in such a way that the matrix ¥ has the simplest possi-
ble form, dependlng on the eigenvalues and elgenvectors of &. Let @, be the eigen-
values of @. If all eigenvalues @, are distinct, matrix P can be selected in such a
way that the eigenvectors p,, are the columns of P with P= [B,,..., P,]. Thus the ei-
genvalue problem

éF).m = wm r)m (ASO)
is to be solved. Afterwards, ¥ with

@, o o 0
: ®,

E=p)
[l

(A31)

has a diagonal form.

The eigenvalues ¢, of the monodromy matrix are called Floquet multiplier and pro-
vides a measure of the local orbital divergence or convergence along a particular di-
rection. If all ¢, are distinct, then
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Vo (t+T) = @,V (1) (A32)
for m=12,..n, where the v, are the components of V . Generalization of (A32) gives
V. (t+NT)=gMv_(t) . (A33)

The evaluation of (A33) can be summarized as

lon|<1 > v, >0

o] >1 > v, > A3
|(0m|=1 — v, =const with T

|€0m| =-1— v_=const with 2T

Hence, if |p,|=1,v, is periodic with T and if |p,|=-1, v,, has the period of 2T . If only
one Floquet multiplier is located on the unit circle of the complex plane (e.g. |(pm| =1
and |(/)m| =-1), the periodic solution is referred to as a hyperbolic periodic solution. A
hyperbolic periodic solution is asymptotically stable, when all the other Floquet multi-
plier ¢ with i=m are inside the unit circle of the complex plane. A hyperbolic peri-
odical solution is unstable, when one or more of the other Floquet multiplier are lo-
cated outside the unit circle. If all ¢ for i=1,...,n and i=m (¢, is located on the unit
circle) lie outside the unit circle, then all trajectories of the periodical solution are
repelled from it, thus the periodical solution corresponds to an unstable limit cycle or
a period repellor. On the other hand, an unstable hyperbolic periodical solution is
called unstable limit cycle of the saddle type, when some of the Foquet multiplier are
located inside the unit circle of the complex plane.

Floquet multipliers pi with i=1,....,n in the complex plane
;

A Im L Im
8 -] -] R’e ° -] o
o o . v o

A lm

dhW
N

unity cycle

Re N

a) stable limit cycle b) unstable limit cycle c) unstable limit cycle
of saddle type

Figure 2: Three fundamental scenarios for hyperbolic periodical solutions

Figure 2 depicts three fundamental scenarios for hyperbolic periodical solutions (¢,
is located on the unit circle for all three scenarios) and the cooresponding locations of
the Floquet multipliers:

a) All Floquet multipliers ¢, with i=m lie inside the unit circle. Thus the limit cy-
cle is asymptotic stable.

b) only one of the Floquet multipliers lie outside the unit circle. All the others lie
inside the unit circle. In this case, the limit cycle is unstable of the saddle type.



Appendix A: Nonlinear stability analysis 173

This means, the limit cycle is locally unstable but global considerations are
necessary because, in this case, the system behaviour cannot be determined
from local considerations alone [2,6,7]. Recalling, the name “saddle” used in
bifurcation analysis, is always connected with creation and destroying of solu-
tions (“annihilating”, “destroying”, “colliding”, “exploding” solutions such as
saddle-node bifurcation of cycles also called turning points) [2,7]. E.g. in the
one dimensional case, fixed points can be created or destroyed.

c) In this case all Floquet multipliers ¢. with i = m are located outsite the unit cir-
cle. The hyperbolic periodical solution is unstable [2].

A periodical solution is called nonhyperbolic periodical solution if two of the Floquet
multipliers are located on the unit circle of the complex plane [2]. A nonhyperbolic
periodical solution is unstable, if one or more of the Floquet multiplier are located
outside the unit circle. But a nonlinear analysis is necessary if all the Floquet multi-
plier of the nonhyperbolic periodical solution lie inside the unit circle [2].

Equation (A32) can be extended as

ey (t+T) =g e "Dy (1) (A35)

where pg are called the characteristic (or Floguet) exponents and can be defined
such that

@, =eM . (A36)
Hence, equation (A35) can be rewritten as
ey (t+T)=e""'v (1) . (A37)
Equation (A37) show that e”'v_(t) is a period vector and thus v, can be written in
the normal or Floquet form
Vo) =g, (t) (A38)
where ¢, (t+T)=¢,(t). From this equation can be seen that if the real part of g is

negative then v, -0 for t —» . On the other hand, if the real part of g is positive,
then v, > fort—ow.

The Floquet exponents g are defined only after the solution of (A21) is known. In
the scope of the present stability research, the Floquet exponents of the periodical
solution are calculated numerically by BIFDD. In order to determine the solution of
(A21), the Floquet form (A38) can be used

Y(t)=e®gp(t) , (A39)

where ¢(t+T)=4¢(t). After substituting (A39) into (A21), the result can be rewritten
into the form

¢ = [At, 7o)~ All¢ (A40)

where ¢ is expanded in a Fourier series and is usually carried out numerically. A
more in detail description is given in [2].
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To summarize, every fundamental matrix solution of (A21) can be written in the form
(A39) for some nxn T-periodic (differentiable) matrix ¢(t) and some constant matrix
B . The eigenvalues of B are called characteristic exponents or Floquet exponents
p, determining the stability of periodical solutions arising in a Hopf-Bifurcation point.
Hence, in the framework of the bifurcation analyses with BIFDD, one of the crucial
tasks is the estimation of g, .

Center manifold theorem

In the following the linearized dynamical system (A7) corresponding to the fixed point
X, is considered. Generally, a linear system can be broken into its dynamically in-
variant parts. The eigenspaces of a linear flow or map are invariant subspaces of the
dynamical system (Al) [2]. The dynamical behaviour on all subspaces is determined
by the eigenvalues which corresponds to these subspaces.

If the Jacobian matrix J of the system (A7) has s eigenvalues with negative real
parts, ¢ eigenvalues with zero real parts and u eigenvalues with positive real parts,
then the space R" can be represented by the sum of the three subspaces E°, E°
and E" accortingto R"=E°®E" ® E°. Each subspace is defined by

E® =span{p,, Py,---e--- , P} with Re(4) <0
E" =spar{p,,,........ , P} with Re(4,) > 0 (A41)
E® =spar{ P, .1s- Psiusct With Re(4,) =0
where Py, By, , P, are the s eigenvectors associated with the s eigenvalues who-
se real parts are negative, P, ....... , P, are the u eigenvectors associated with the

u eigenvalues whose real parts are positive and p,, ..., P,,,.. are the c eigen-
vectors associated with the ¢ eigenvalues whose real parts are positive. This means,
each of the subspaces is spanned by the corresponding eigenvectors. The sub-
spaces E°, E° and E" are called stable, center and unstable subspaces or local
manifolds. The main characteristic of the local invariant subspaces is that the solution
of the linear system which is initiated in one of the three invariant subspaces remains
in this subspace for all times. In a nonlinear system, the stable manifold is denoted
as W*, the center manifold is denoted as W* and the unstable manifold is denoted
as W".

Generally, simplification methods are often necessary to allow the investigation of
dynamical systems [2]. One class of simplification methods deals with techniques of
reducing the order of the system equation and/or eliminating as many nonlinearities
as possible in the system of equations. The center manifold reduction technique is
one of these methods.

Recalling, when a dynamical system loses its stability, the number of eigenvalues
and eigenvectors which are responsible for this change is typically small. E.g. in the
Hopf bifurcation case, ony one pair of complex conjugated eigenvalues are associ-
ated with the bifurcating solution. Hence the crucial point of the center manifold re-
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duction technique is that the dynamics of the system near the bifurcation point is
governed by the evolution of these critical modes (¢ eigenvalues), while the stable
modes (s eigenvalues) can be considered to be “enslaved” (or they are following a
passive fashion). With other words, when E"=J > R"=E*®E", the dynamical
behaviour of the n-dimensional dynamical system can be described by the c-
dimensional system in a close neighbourhood of the fixed point undergoing the bifur-
cation. In the Hopf bifurcation case the dynamics of the n-dimensional dynamical
system can be reduced to a two-dimensional system. Thus, the center subspace is
spanned according to

E° =span{p,, B} with 4(y.)=tio | (A42)

where p, =Re(p,)+11Im(p,) and 61 =Re(p,)—1Im(p,). Considering the linearized sys-
tem, the solution of (A12) can be written as

u, (t) 1
Ue) =|: = Lfs() (A43)
u. ()
u, (t) ¢
where U_(t)
d, (t):{ef;“’ } (A44)
e Uc’O
and U,(t)
0,(t) =| e™u,, (A45)

V4, i=1..,s > Re(4(y.))<0. Thus, for t > the elements of the vector U,(t)
becomes zero U,(t) — 0 and the solution is collapsed to U, (t). This means, all orbits
are converging to the center manifold E® for t — o0, where W° is tangent to E°. In
the case of ideal smoothness of W*, both, W® and E° are equal. A more in detail
description is given in [1-4].

Lindstedt Poincaré asymptotic expansion

Generally, exact solutions are rare in many branches of dynamical problems [5].
Hence, approximate solutions of the problems are necessary. There are numerous
analytical and numerical techniques to determine solution of the problem. E.g. the
application of perturbation theory is common practice. In nonlinear system analysis
by applying perturbation theory, it is important to account for the nonlinear depend-
ence of the frequency on the nonlinearity. It is turned out, that each expansion that
does not account for a nonlinear frequency is doomed to failure [5]. Hence, a number
of techniques that yield uniformly valid expansions have been developed in the past.
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In the scope of the bifurcation analysis with BIFDD, the so-called Lindstedt Poincaré
asymptotic expansion is applied. The main advantage of this method is to account for
the frequency dependence on the nonlinear terms [5]. To this end, the the transfor-
mation t =t is introduced, where @ is the actual frequency of the system. Accord-
ing to
d_dfd dwyd  d
dt dtdt dt dt dt
the frequency o of the system appears explicitly in the differential equation system,
where both the state variable X(f) and @ are unknowns. Hence, the solutions for
them are approximated by the expansion in the form of power series in terms of a
small perturbation ¢ as
X (1) = X, + X, (D) + &2 X, (0) +.c+ X (1) +...
1

1
= ter &, b T o (A47)
0 o,

(A46)

t:(i+grl+gzrz+...+gkrk+...]t_ ,
Wy

where 7z, can be considered to be a correction factors for the oscillation frequency.
Furthermore, the quantity x is introduced and is defined as u =y, -y, . the distance
between the actual value y, and the critical value y, . of the bifurcation parameter.
4 s expanded as

U=+ +. e +... (A48)
and thus y, can be written as
Ve =Vie teth +E ot et +o . (A49)

The Floquet exponent which determines the stability of the periodical solution is exa-
panded as

B=ef+e P+ AP+ . (A50)

Notice, the solutions after applying perturbation theory are only valid for small .
Thus, the predictions of the bifurcation analysis are only valid for small distance u
from the critical value y, . in the bifurcation diagram.

To summarize, the transformation t = wt and the expansions (A47) to (A50) are sub-
stituted in the equation system that results after applying the center manifold reduc-
tion. As will be discussed below, this two dimensional equation system will be trans-
formed into the Poincaré normal form by applying the near identity transformation
method.
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Poincaré normal form

According to the definition given in [2], normal forms of bifurcations are simplified sys-
tem of equations that approximates the dynamics of the system in the vicinity of the
bifurcation point. After the application of simplification techniques, the resulting equai-
ton system can be transformed into the specific normal form of the bifurcation. As
described above, if the Hopf theorem is satisfied, the nonlinear equation system can
be reduced to a two-dimensional nonlinear equation system by applying the center
manifold reduction approach [1-5]. The resulting equation system, will be transformed
into the Poincare normal form [2] by applying a near identity transformation. From this
equation system parameters (in particular the Floquet exponents) which determine
the stability properties of the fixed point, can be extracted numerically by employing
BIFDD.

The Poincaré normal form is defined as

d

d_)'? = ax, — X, +[Re(c)x - Im(cl)xz][xl2 + xj]

a (A51)
d_t2 = wX, +aX, +[Re(c,)x, - Im(cl)xl][xl2 + xj]

where « and o are real and imaginary parts of the pair of complex conjugated ei-
genvalues of the Jacobian matrix of the two dimensional system of equations. The
coefficient ¢, is a complicated term which is calculated numerically by BIFDD. c, is
the result of the application of center manifold reduction technique and transforma-
tion of the resulting equation system into the Poincare normal form. Thus the coeffi-
cient comprises all information which are necessary to evaluate the stability proper-
ties of the periodical solution occurring in the Hopf bifurcation point. Finally, the Flo-
quet parameter f5,, u, and z, can be calculated as

B, =2-Re[c,(7.)]

= Relato)] (A52)
a'(y,)
B Im[Cl(Vc) +/u2a)l(7c)]

2
2

where 7, is a correction of the oscillation frequency and ., relates the oscillation
amplitude to the value y, . of the bifurcation parameter as
o= 7k_7/k,c . (A53)
H,

A more in detail description is given in [1-3].
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Summary

In order to analyse the stability behaviour of nonlinear dynamical systems, linear sta-
bility analysis can be applied locally in fixed points where the theorem of Hartmann
and Grofmann is fulfilled. It should be emphasized that in this case, the results of the
linear analysis of the nonlinear system are only valid in the neighbourhood of the
considered fixed point. When the theorem of Hartmann and Grol3mann is not fulfilled,
additional investigations are necessary. In the scope of this work, Hopf bifurcation
analysis with the bifurcation code BIFDD is applied.

The Hopf bifurcation analysis using BIFDD starts with the selection of the iteration
and bifurcation parameter. The iteration parameter will be varied in the interval de-
fined by user. For each iteration step, BIFDD computes the critical value y, . of the
bifurcation parameter where the Hopf bifurcation occurs and thus a periodic solution
exists. Up to the present computation of y, . linear analysis is performed. But for the
critical value y, . the considered fixed point is a nonhyperbolic one. For the further
nonlinear analysis, center manifold reduction and Lindsted Poincaré asymptotic ex-
pansion techniques are applied. The resulting two dimensional equation system is
transformed into the Poincare normal form by employing the near identity transforma-
tion method. Finally, the Floquet parameter and all the other parameters characteriz-
ing the nature of the bifurcation can be computed from the Poincare normal form.

To summarize, in the scope of the bifurcation analysis using BIFDD, the nonlinear
system behaviour is determined only by local considerations. This means, global
phenomenons cannot be recognized by this theory. E.g. BIFDD applies the Floquet
theory only for the resulting two dimensional equation system after the center mani-
fold reduction is performed. Consequently, there are only two Floquet exponents, £,
and g,. The first one is equal to zero g =0 (because the corresponding Floquet
multiplier is located on the unit circle |(/)1| =1) and the second one is either inside or
outside the unit circle. If the second Floquet multiplier lie outside the unit circle |¢2| >1
which corresponds to a positive second Floquet exponent g, >0 then information
about the locations of all the other Floquet multipiers of the n-dimensional system
are not known. In this case, it is not possible to keep apart scenario b) (unstable limit
cycle of saddle type) and scenario c¢) (unstable limit cycle) depicted in Figure 2. In
order to study the system behaviour more far away from the bifurcation point, nu-
merical integration is necessary.
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Appendix B: ROM description

1.1 Neutronkinetic model
The neutron kinetics model is based on the following assumptions:

1) The neutron kinetics model is based on an effective two energy groups (ther-
mal and fast neutrons).

2) Spatial mode expansion approach of the neutron flux in terms of lambda
modes (4 -modes).

3) Only the first two modes (fundamental and the first mode) are considered.
4) Only an effective one group of delayed neutron precursors is considered.

5) The contribution of the delayed neutron precursors to the feedback reactivity is
neglected.

Taking into account these assumptions, four mode kinetic equations could be devel-
oped, coupled with the equations of the heat conduction and the thermal-hydraulic
via the feedback reactivity terms (void and Doppler feedback reactivities).

The time dependent two-group neutron diffusion equation can be written compactly
as

12200 _Ta )0 - LEn |- 60 + X A4-CRD-X)
a E (B1)
%C,(F,t)if = BF-®(F,t) —4-C(F,OX'
_ 1
where X/ :[0} [1-5].
®(F,t) is the neutron flux vector consisting of
S K ()
O(r,t) = [ o, (r. t)} (B2)

the fast (first component) and thermal neutron fluxes (second component), L is the
net-loss operator including leakage by diffusion, scattering and absorption, and F is
the fission production operator. 4,,C, and g, are the decay constants, concentrations
and delayed neutron fractions, respectively, for the |-th delayed neutron precursor
group [6].

Next, the operators are presented (for two energy groups). The net-loss operator L
can be written as

-V(D,(F.)V)+2;,,+%; 0

L(F.t)= S ' i
-3, =V(D,(F.t)V)+5;

(B3)



182

where V is the Nabla operator, D, is the diffusion constant of the first group, D, is

the diffusion constant of the second group, X7 is the macroscopic absorption cross

section of the first group, X5 is the macroscopic absorption cross section of the sec-
S

ond group and X; , is the macroscopic scattering (from the first into the second en-
ergy group) cross section. The fission production operator F is defined as

f f
E_ VX, V2, (B4)
0 0

with X the macroscopic fission cross section of the first group, X, the macroscopic
fission cross section of the second group and v the number of neutrons per fissions.
The matrix [v'] in (B1) is called neutron inverse velocity matrix and is defined as

-1

v, O

V=" (B5)
0 v,

where v, and v, are the neutron velocities corresponding to the two neutron energy

groups.

By using the introduced operators, the time dependent two-group neutron diffusion
equation can be written as

Vo0 d[e(rn]
0 v} E[cpz(r,t)}

(- Bz (l—ﬂ)vié] V(D(FYV)+E,+2] 0 _{@Ar,t)} (B6)
.0 0 -2, V(DR YY) +Es ] [D(T1)
n ;ll'Q(Fat)

0

and the precursor concentration equation can be expressed accordingly as

O, onll| o IVEL VE | [ Dy (F1) 1
E(C.(r,t))[o}—ﬂ[o > H@(r,t)}‘”ﬂ'cl‘”){o} NG

The evaluation of (B6) and (B7) lead to the neutron diffusion equation corresponding
to the first group

2d
vfa@l(r,t) =

(B8)
6
(V(DV) =25, - 27 )@, (F, 1) + (L= B)V[ T, Dy (F,1) + TP, (F,1) [+ D" 4 -C (T, 1),
1=1
the neutron diffusion equation corresponding to the second group
- d = S = a r
Vzlacpz(r,t) =3;,®,(F.1)+(V(D,V) -5 ) @,(F.1) (B9)

and to the 6 precursor concentration equations
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0 . s - -
—(C(F.0) = AV[Z{@,(F)+ 2,0, (F.0) |- 4 -C(F.10), (B10)
In the steady state case of (B1), the so-called 1 -Eigenvalue problem is written as:
1~ - - -
—F ()WY () = L,(r) ¥, (F
RO F0 = Lo d,@ (B11)

with n=0,...,.

where ¥ (F) are the eigenvectors, k., =1/ 4 are the corresponding eigenvalues and
IEO, I:0 are the steady state fission production and steady state net-loss operators.
The eigenvectors ‘i’n(F) are so-called Lambda-Modes (A-modes) and satisfy the
biorthogonality relation

A

[ave, Be, = (¥,
\

¥,) = 6 F, (B12)

where ‘i’mT are the adjoint eigenvectors satisfying the adjoint equation

ZEHOP 0 = LOE, 0 (B13)

n

The Eigenvalue problem (B11) can be written in components as
IdV‘T’mTﬁO\?n =5 F.
\%
11z f f 1/ (B14)
Sfavlan ' e [V R O[O o]
v W (T) 0 0 Vo (F) Y

The space and time dependent neutron flux ®(F,t) and the space and time depend-
ent delayed neutron precursor concentration C,(r,t) of (B1l) can be expanded in
terms of the 2-modes as

()= P,1)-¥,(F) (B15)
C,(F, )X/ =>'C,(t) R ¥, (F) A, (B16)

where
ST L) e

P'(t) are the time dependent expansion functions of the first energy group, P’(t) are
the time dependent expansion functions of the second energy group and C (t) are
the time dependent expansion functions of the delayed neutron precursor concentra-
tion. Physically, the time and space dependent neutron flux ®(F,t) is proportional to
the reactor power Q(t) . Thus, in the current neutron kinetic model it is assumed that
both neutron energy groups have the same time evolution. In this case, according to
P'(t) = P*(t) = P,(t), the matrix (B17) reduces (the matrix is “collapsing” to a scalar) to
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. P O
_ B1
P, (1) { N (t)} (B18)

and expansion (B15) can be written as

CTD(F,t):ZPn(t)"?n(f) . (B19)

Substituting of (B19) in the biorthogonality relation (B12)
Jave [(MF®, (1) = Y RO [dvVE (MRT,F) = POF, (B20)
\Y n \

5mn Fn

justifies the definition of the time dependent amplitude functions P, (t) according to

P.(t) = —jdvqf ()R, (F, 1) = Fi<\¥fm

mV

F. > . (B21)

In order to solve the diffusion equation (B1) for the space and time dependent neu-
tron flux @(F,t) expansion (B19) and (B16) are substituted in (B1)

D190 = YR o[a-p)[F + o] 9,0
(B22)
NACI 5L]\¥1n(r)+zﬂ1 S C, ) F ¥,(7) A
and
> Y st(cn.<t)) = A RO R0+ T RO 5F P, ()
" n n (B23)
-2 RPN AL C, W
where the operators L and F are expressed as
L=L,+6L (B24)
F=F +0oF (B25)

in terms of a steady state plus an oscillating term, respectively. In the next step,
(B22)and (B23) will be multiplied by ‘f’mT from the left hand side, afterwards the
equations are weighted (divided) by (B12) and integrated over the whole multiplying
medium of the reactor core. It follows

(T v %) ap ) o (PulFo-La]%,) (¥, lsF-5L1%,)
Zn: <\?m\ﬁo \Pn> it 4 <1ilm F \i}n> P(t)+z <‘I’ F ‘P> P”(t)( 2
- . - L R B
+ZW—%mp(t)+z<Tm‘ﬂ5F‘T >P(t)+221 ZC (t) <\P i LP"> A
n <\ifm F, lifn> B <\?m ﬁolifn> " <\ifm 3 \ifn> "

and
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Zg Eii FLI(HO) ;ﬂ.f Eznipa){ﬂ. (t)g%;:;
(B27)
(FafoR )
_Z < \il> ﬂ'lcm(t)
In the next step, the following definitions will be introduced in (B26) and(B27):

L <\?m‘[\f1]‘@n>; o <\IJ [5ﬁ15f_]\@n>; . <\¥'m [leotlzo]‘an> @29
o (Pa[sF ) (|57 2,)
P = ﬂm1 P = ﬁuﬁ (B29)

Taking into account that A, >> A, with n=m [6] and the definitions in (B28) and
(B29), the final neutron kinetics (spatial) mode equations can be written as

Pa(®) = — [(pm ﬂ)P(t)}—{ZPmn TOED I Pn(t)} >4 Ch(t)

(B30)
icm.(t> - A—[ﬂ' AOESE Pn(t)}— 4 oy 1)

dt
where p’ is the static reactivity, p. are the dynamical feedback reactivities, and
oo, po are the delayed feedback reactivities.

As mentioned above, in the current neutron kinetics model only a single group of de-
layed neutron precursors | =1 is considered and the contributions of p° and p> are
neglected. Furthermore, only the fundamental and the first modes are considered.
Hence the modal kinetic equations can be written as

&R0 = [ PRO+ARO+ i,

d Y (B31)
3G = RO - 160

d_P(t)— [me(t)+<po PR®)+ PO ]

+4 C (B32)

d B
—C,(t) = RP(t) — AC/(t
m (1) = A, 40) ()
The dynamical feedback reactivities, p’ represent the coupling between the A -
modes and describe the main feedback mechanism between the neutron kinetics
and thermal hydraulics via void fraction in the two-phase flow region and fuel tem-
perature. In the framework of the ROM development the approximate calculation of
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the mode feedback reactivities is one of the crucial tasks. In the approximations used
in  previous works [6], the required reactivites p . were given by
Pon ~ Poo - (Weighting factors) .. ; this means that in both cases certain weighting factors for
terms different from n=m=0 have to be calculated.

In general, the total power generated by nuclear fissions within the multiplying me-
dium of the reactor core is given by

NOG

Qt)=¢- j SDIPARCA(AY (B33)

where ¢ is the energy per fission and X! is the macroscopic fission cross section of
the i-th group. Considering only two neutron energy groups (i=2) and substituting
(B19) in (B33) lead to

QW) =Y PO [dV &[] ¥ (1) + 2] Wi(T) |
" A (B34)
QW =Y R.®) [dV Q,(N=>R1)-Q,

where Q, (F) are the so called power modes.

m

The power density q”(t) in the fuel is defined as

"ty =20
WORE (B35)

fuel

the total power divided by the fuel element volume V. It should be noted that the
power density in the fuel is assumed to be constant in all considered fuel elements in
the reduced order model (but is a function of time). Taking into account only the fun-
damental and the first azimuthal mode, the power density (B35) can be expressed as

CHOE Vi,-[Po Q+RQ/ ] (B36)

fuel
where Q] is defined as
QP =[aV &[T/ W (F)+Z,Wi(P)] (B37)
Vi

and j is the considered core region.

In the steady state core, all the higher modes are zero. Consequently, equation (B34)
is reduced to

Q(t) = EQ ’ Qo = Qo (838)
=1
and the steady state power density in the fuel is given as
" Q QJ
®O=7"=y7 (B39)

fuel fuel

The final expression for the power density in the fuel can be written as



Appendix B: ROM description 187

a0 = 2[R0+ RO o]
N (B40)

) =c,[RLO+RM ] |
where ¢/ is the ratio Q/ /Q,. In the fuel rod heat conduction model where two repre-

sentative heated channels including the fuel elements are taken into account there is
£ =q) =+1 (to simplify the nomenclature).

1.2 Fuel heat conduction model

The fuel rod heat conduction model in the current reduced order model was com-
pletely adopted from Karve et al. [8]. This model is based on the one-dimensional
(radial), time-dependent heat conduction equation for the fuel rod and is based on
the following assumptions:

1) two axial regions, corresponding to the single and two-phase regions, are
considered,

2) three distinct radial regions, the fuel pellet, the gap and the clad are modelled
in each of the two axial regions,

3) azimuthale symmetry for heat conduction in the radial direction is assumed,
4) heat conduction in the z-direction is neglected,
5) time-dependent, spatially uniform volumetric heat generation is assumed.

These assumptions result in a one-dimensional (radial) time dependent partial differ-
ential equation (PDE). By assuming a two-piecewise quadratic spatial approximation
for the fuel rod temperature, the PDE can be reduced to a system of ODEs by apply-
ing the variation principle approach. A detailed derivation is presented in [6,8].

In the scope of this section a brief description about the fuel heat conduction model is
given. As mentioned above the fuel rod is modelled separately in the two axial re-
gions corresponding to the single and two-phase regions of the boiling channel. In
each of these regions, it is modelled with three distinct radial regions, the fuel pellet
(0O<r<r,), thegap (r, <r<r), and the clad (r, <r <r,).
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Figure 1: Flow channel including fuel rod.

The heat conduction equations for the fuel rod in dimensionless form can be written
as

1 06 (r,t) %6 (r,t) 106.(r,t)
_ p — p ! += p +q’"(t),
a, ot or r or (B41)

p
Ogrg%

and
1.06,(r,t) _2°6,(r.1) 1 00.(r,t)
a. ot or? r or (B42)

C

rQSrSr

where 6, and 6, are the deviations from the steady state for the pellet and clad tem-
peratures respectively. q"(t) is the dimensionless power density. Note that all the
variables and parameters are in dimensionless form in this chapter. This results in a
transparent formulation of the equations and gives more insight into the key parame-
ters determining the system dynamics. The various dimensionless variables and pa-
rameters are given in [6,8].

The clad heat conduction dynamics can be modeled without solving the transient
heat conduction equation. The idea behind this is that there is no significant change
in the clad temperature profile from its initial steady-state distribution, due to the large
clad thermal diffusivity «,, which is about ten times larger than that of the pellet « .
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Based on the logarithmic spatial distribution of the steady-state clad temperature, the
space and time dependence for 6.(r,t) can be written as

0.(r,t)=b,(t)logr+b,(t) . (B43)
The ODEs for the fuel pellet are deduced by reducing the PDEs for the time-
dependent heat conduction equation for the fuel pellet by employing the variational

principle approach. To this end, the fuel rod temperature is assumed to be captured
by two piecewise quadratic spatial approximations

0,(r,t) =T, () +a,(t)r+a,()r*, 0<r<r,
=T,(t)+ B+ B,Or%, r,<r<r,

where 1, is the point of discontinuity between r=0 and r=r,. The value of r, was
determined empirically [7,8] to be r, =0.83-r,. The «(t) and g (t) with i=12 are
determined using the continuity and boundary equations [8].

(B44)

A variational principle approach is then used to get the final ODEs for T,(t) and T,(t),
which represent the BWR fuel rod heat conduction dynamics. These equations are

dT, ()

=L O+LT O+l [ (RO -R) + e RO | (B45)
LWy 1,041,700+ 1, [0, (PO - B) + 02RO | (B46)

where Il ;, 1I,,, and Il,, are complicated constants which depend on the design
parameters.

In summary, for each channel, four ODEs are developed from the heat conduction
PDE. These ODEs are for the two coefficients of each of the two spatially piecewise
quadratic representations of the fuel pellet temperature in the single and two-phase
regions of the channel. In an explicit index form, these ODEs can be written as

dT, é_¢jt’| ® _ Wy i1 Toign O+ T @+, [ (RO =P +c, R | (BAT)
dT, Jil ® _ Wy T @+ 1 T s O+, 50 [ € (R - B+, ER ()| (B48)

where &£ =+1, j¢ stands for single (1¢) or two-phase (2¢) region, | stands for chan-
nel number (1 or 2) and P, is the steady state value of the amplitude function. Notice,
the final ODEs were developed by using the symbolic toolbox of MATLAB. A detail
description is given in [8].

1.3 Thermal hydraulic model

The thermal hydraulic behavior of the BWR is represented by two heated channels
coupled by the neutron kinetics and by the recirculation loop. This sub-model is
based on the following assumptions [6]:
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1)

2)
3)

4)
5)
6)

7

8)

9)

The heated channel, which has a constant flow cross section, is divided into
two axial regions, the single and the two-phase region.

All thermal hydraulic values are averaged over the flow cross section

The dynamical behavior of the two-phase region is presented by a drift flux
model (DFM) [7] where mechanical non equilibrium (difference between the
two phase velocities, and a radial non-uniform void distribution is considered)
is assumed (the DFM represents the stability behavior of the two-phase more
accurately than a homogeneous equilibrium model, in particular for high void
content).

The two phases are assumed to be in thermodynamic equilibrium.
The system pressure is considered to be constant.

The fluid in both axial regions and the downcomer is assumed to be incom-
pressible.

Around the closed flow path, mechanical energy terms are very small com-
pared with the thermal energy terms. Consequently, the kinetic energy, poten-
tial energy, pressure gradient and friction dissipation are neglected in the en-
ergy balance.

The PDEs (three-dimensional mass, momentum and energy balance equa-
tion) are converted into the final ODEs by applying the weighted residual
method in which spatial approximations (spatially quadratic but time-
dependent profiles) for the single phase enthalpy [6,8] and the two-phase
guality are used (is equivalent to a coarse grained axial discretization).

The downcomer (constant flow cross section) region is considered to be a sin-
gle phase region.

10)All physical processes which are connected with energy increase and energy

decrease are neglected in the downcomer. Consequently the core inlet sub-
cooling is a boundary condition which is nearly realized by the nuclear power
plants.

11)The pump head due to the recirculation pumps is considered to be con-

stant (AP,,,, =const)

ead

Figure 2 depicts a schematic sketch of the thermal hydraulic model including the re-
circulation loop. The sub-model consists of three parts. These are the two heated
channels and the downcomer section. The common lower plenum and the common
upper plenum are only shown to indicate that all channels are coupled hydraulically.
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Figure 2: Schematic sketch of the thermal hydraulic two-channel model includ-
ing outer loop section.

The coolant enters the core channel i inlet (single phase region) with the inlet veloci-
ties v, and the inlet enthalpy h, ., and the heat is released by nuclear fissions in
the fuel, conducted to the coolant. At a certain axial level (boiling boundary wu(t)),
where the coolant reaches the saturation state, the coolant starts to boil. Above the
boiling boundary (two-phase region), the coolant is a mixture of water and steam.
Because of the thermodynamic equilibrium between the two phases, the heat gener-

ated in the fuel is completely used for steam production.

Single phase region [6,8]

The mass balance is reduced to

pl*%v*(z*,t*) =0 with p'(z,t") = p = const (B49)
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due to the incompressibility of the coolant. Consequently, the velocity v'(z",t") within
the single phase region is according to v'(z',t") = v} ., (t") not a function of z".

The energy balance can be written as

oh’ (z L), o (@ W (8 )8h (1) _ Gy t)e (B50)
oz A

where the source term on the right hand side describes the heat density in the cool-

ant created by the wall heat flux q,, . The single phase wall heat flux q,, is related

to the single phase convective heat transfer coefficient h,, as

Gho =h10 (Tere ) = T () Where h’ ., is estimated by the Dittus-Boelter correla-

tion

p (T ) —=—

*

h,

#(Pn**  with 0.7<Pr<100 and Re>1000 . (B51)

001(1)
h

In expression (B51), k; is the liquid thermal conductivity, D; is the hydraulic diameter
of the heated channel, Re is the Reynolds-Number and Pr is the Prandl-Number.

The momentum balance of the single phase region can be expressed as

*

a * * * * * * d * * f
- Pl(b(z 1t ):pl (Z 1t) avinlet(t) + ZE()D leet(t) + g (852)

where the first term on the right hand side describes the pressure drop due to inertial
effects, the second term describes the friction in the coolant and the last term de-
scribes the pressure drop due to the gravitation.

Next, the conservative equations will be transformed into the dimensionless form (not
presented here). The mass, energy and momentum balance can be written as

0
—v(z,t) =0
5 @Y (B53)
with v(z,t) = v,,({t)
oh(z,t oh(z,t
(61: ) mIet(t) ( ) N N Npchltb(t) (854)
_Op -4y N O +Fr, (B55)
62 10 dt inlet f 1ld |n|et

where N, ,(t) is the time-dependent phase change number in the single-phase re-
gion, which is proportional to the wall heat flux in the single-phase region; and
N pen1g (1) = Negyas (T 1y (1) = Touny) - The dimensionless numbers Fr, N, N, and N,
are defined in the appendix.

In order to convert the energy balance (B54) from a PDE into a ODE, a time-
dependent, spatially quadratic distribution

N(Z,t) =~ M +2,(0)2 +2,(1)2° (B56)
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for the enthalpy is introduced [6,8]. Thereby the enthalpy has to satisfy the boundary
conditions

h(z=0,t) = h,, (B57)
and

h(z=pu,t) = hy, : (B58)
where h, ., is the inlet enthalpy of the boiling channel and h,, is the saturation en-

thalpy. The time dependent coefficients a (t) and a,(t) are describing the dynamics
of the single phase enthalpy and can be assumed to be phase space variables.

In the next step, equation (B54) will be rewritten in operator form

oh(z,t oh(z,t A
ét ) |n|et(t) ( ) Np'Nr 'Npch,ld)(t) =0=A-h-S

5 (B59)

with A_at + Ve and S =N _-N_-N_ .., (t)

and the weighted residual method
~ ‘ll ~
:<Wg,Ah—S>:Iwg~(Ah—S)dz (B60)
0

will be applied. To this end, the time-dependent, spatially quadratic distribution (B56)
is substituted in (B60) where the weight function wg =1 and wg =z are used. The
integration from the inlet of the channel z=0 to the boiling boundary z = accordant
to

0=(1 Ah-s)
. (B61)
J.[ |n|et ) ( inlet + al(t) Z+a (t) Z dZ— IN N Npchld)(t) dz
0
and
0=(z,An-s)
:TZ.(E + Vinlet ij ( inlet + ai(t) Z+ a (t) z ) (862)
Lot 01
- .[Np.Nr'Npch,hb(t)'Z'dZ
0
lead to the final ODEs
d 6
aal(t) =- 2Vinlet (t)az (t) +;|:Np ’ Nr ‘N pch,1d (t) ~ Vintet (t)al(t)] (863)

d 6
aa (t) - F[Np ) Nr ' Npch,l«b (t) ~ Vinlet (t)al(t):l : (864)
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The boiling boundary w«(t) is the level at which the enthalpy is equal to the saturation
enthalpy h_. and can be calculated by evaluating the boundary conditions (B57) and
(B58)

sat

h(Z=/J,t) = hsat = hinlet + ai(t)lu + az(t)'luz ' (865)
The boiling boundary can be written as
N, N,N

,U(t) -2 _ r’ Vsub ’ (866)
a,(t)+/a, (1)’ +4a,(t) N, NN,
where the relation N N N, =h, —h, is used.

Two phase region [6]

The two phase region extents from the boiling boundary u(t) to the channel exit. As
mentioned above the dynamical behaviour within this region is represented by a drift
flux model which is based on four conservative equations. This is the continuity equa-
tion of the gas phase and the three conservative equations (mass, energy and mo-
mentum) for the two phase mixture. In the current work, the density wave phenome-
non play a dominant rule so that the mass transport problem was transformed into
the void propagation formulation (In the scope of the report the derivation of the void
propagation equation is not presented). The drift flux equations [6,7] can be written
as

8 * * * * 8 * * * *
Gt*a(z t) + C, ya (z,t) = w (B67)
“Ahl =q. 5—* B68
1—‘gA fg _q2<1> A* ( )
0 _« . x

* 8 * * Lk * *op* a * * g
- P = m VA ,t ' _*Vm z 1t + Vm z ’t _*Vm z 1t
o0 Pa( ) [6’[ ( ) ( )62 ( )}

. 5 e PRVE (B69)
b+ ) v vy O 2 2) Pulily
2D, oz \1-a (z,t) p,(z,t)

where (B67) is the void propagation equation, (B68)is the energy equation and (B69)
is the momentum balance [6,7]. Because of the two phases are assumed to be in
thermodynamic equilibrium and to be incompressible, the energy balance is reduced
to (B68) and the characteristic reaction frequency »  can be expressed as

* K

o2 ) = At (B70)
fpg

It should be noted that the equation

(B71)
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is implicitly comprised by the void propagation equation (B67).

The dimensionless conservative equations [6,7] of the two phase region can be writ-
ten as

2120 =Ny 0 (B72)
%a(z,t)Jr(Co i(z,t)+V,) %a(z,t) =N 20 [N, =C, a(z,1)] (B73)
P = paa | P (e [+ n ) e 0|
__PZtD_pm(zlt) Fr +_Vm(zvt) +pm(zvt) Vm(zvt)_vm(z!t)+Nf2¢>Vm(z’t)
0z ot 0z ’
—, (B74)
6( (04 ng J
+N S| =9
Poz\1-a p,(z,t)
where
V=V, +(Co—1)- j(z,t) (B75)
J(Z,1) = Vi (1) + N (10(2 = (1)) (B76)
pu(at) =1 - 42D (B77)
Va2t = i@t + V, {1 R } | (B78)
Pn(Z,1)

The drift flux relation between the void fraction and the equilibrium quality x(z,t) can
be written as a sum of the void fraction due to the homogenous equilibrium mo-
del ¢, ,, and a correction term ¢

corr

1
(Z(Z,t) :C_(ahomo(z!t) _ng 'acorr(z’t)) (B79)
0
[3] where the corresponding relations are
x(z,t)N
z,t) = : B80
romo (2.1) (x(z,t)+ Ner) (B80)
and
X(z,t)N, (B81)

%o (2:1) = (x@ 1) +N,N,)(Coit)+Vy)

As already mentioned (for the conversion from PDE into ODES), the quality x(z,t) in
the two phase region will be described by a time-dependent, spatially quadratic dis-
tribution

X2 = NN, [ 5,0z - £O]+5,0)[2- O] | (B82)
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analogously to the enthalpy distribution in the single phase region. The ODEs can be
obtained after substituting (B82) and (B76) in(B79), the resulting equation will be
substituted in the void propagation equation (B73) and finally, performing the
weighted residuals method with the weight functions wg =1 and wg =z. Thereby, it
will be integrated from the boiling boundary to the channel exit. The final ODEs can
be written as

% — 1 dlu(t) dVinlet (t)— 1 dech,Zd)(t)
dt ffs(t)[ﬁl(t) praniLEI0 _+ff5(t){ﬁ3(t)—dt +ff4(t)} (B83)

% = 1 dlu(t) dVinlet (t)— 1 dN pch,2® (t)
dt ﬁlo(t)[ﬁﬁ(t) a O ) fflo(t){ﬁg(t) at ﬁg(t)}'(BM)

The derivative of the ODE for the channel inlet velocity is summarized in the main
text in subsection 3.1.3.
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1.4 Summary of the ROM

Mode-kinetic equations (4 equations):

SR = (ol - ARO+ AR,

) ﬂ° (B85)
aco(t) = A_OPO(t) - /1C0(t)
GRO=1[LRO+ (5 - RO+ RO]

+4 C (B86)

e = Lrw -
700 = RO - 460

Fuel heat conduction equations (8 equations):
dT, .., (1) -
Lcjj—¢i[J = ”1,1,j¢,IT1,j¢,I (t)+ ”2,1,j¢,|T2,j¢,| (t)+ ”3,1,j¢,| |:Cq (RM)-F)+ qupl(t)] (B87)

dT, ., (t )
é(il ®) — ||1,2,J'¢,|T1lj¢'| (t)+ ||2,2,j¢,|Tz,j¢,| (t)+ ||3]2,j¢]| I:Cq (R,t)-FR)+ qupl(t)] (888)

with j=1,2 (single phase and two-phase regions) and | =1,2 (two heated channels)

Thermal-hydraulic equations (10 equations):

&)=~ 2,00 000 +%[Np N, N () = Vi 02,0 (B89)

La)=- %[Np N, N0 () = Vi 03,0 (890)

% _ ﬁsl(t):ffl(t)$+ ,(0) d"igett(t)} ffj(t){ffs(t)de°:jiq’(t)+ ff4(t)} (BO1)

% _ ffl:(t) :ffe(t)%+ . (t) d"igett(t)} ﬁj(t){ffg(t)W+ ffg(t)}(B92)
d

avn,inlet(t) = Ah(t) - Bn(t)'[z%vn,inlet(t)J - Bn(t)Nf1¢>AolDol (zvn,inlet(t)j (893)

where (B93) is described in the full text and n corresponds to the n-th channel.
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Appendix C: RAMONA description

Stability analyses with system codes can be performed, depending from the analysis
goal, in the time domain or in the frequency domain. Time domain codes contain a
nonlinear BWR model and can be used for detailed nonlinear BWR stability analysis,
while frequency domain codes, containing a linearized BWR model, are used for lin-
ear stability analysis, in particular, for searching for the (linear) stability boundary.
RAMONAS works in the time domain and simulates the coupled 3 dimensional neu-
tron kinetics, fuel dynamics and thermal hydraulics. A detailed description of
RAMONA is given in [1,2]. Figure 1 shows a schematic sketch of a BWR plant model
(GE-Type) and Figure 2 shows the RAMONAS BWR plant model. In the following, the
main features of the sub models are briefly presented [1-6].

RAMONAS is an extended and improved code version of RAMONAS. But similar to
RAMONAZ it is a ‘hardwired’ nine component model, the neutron diffusion process in
the core is treated 3-dimensional and the thermal-hydraulics is a one-dimensional
parallel channel model.

Typical system pressure 70 bar

Steam Dome
Typical thermal power 3100 MW Steam Line —>

Water Level Steam Separators

<«— Feedwater

Upper Plenum

A/Downcomer
Q\Downcomer

Core Channels
Bypass Channel

Typical core mass flow
11000kgd's

wy

Figure 1: Schematic BWR plant model (GE) [1]

Jet Pump
Jet Pump
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As depicted in Figure 2, the ‘hardwired’ nine components are:
- Downcomer 1 and Downcomer 2
- Lower Plenum 1 and Lower Plenum2
- Core
- Riser = Upper Plenum, Stand Pipes and Steam Separator
- Steam Dome

All recirculation loops (and all steam lines) are represented by a single recirculation
loop with a single jet pump (and a single steam line).

Steam Dome
1 APstsei Steam | |
Separators
|
APriser | APsp I Stand Pipes Down- AP
: commer1
APup I Upper Plenum
Y
v APext
_ ]
A APch.emt’ A
APe Apch Core
Down- ;
“Apch.inlett Gomimerz s
APip ¢ Lower Plenum 2 v \ 4

Lower Plenum 1

Figure 2: RAMONA BWR model [1]

Neutron transport model:

RAMONAS provides the PRESTO 1 option (RAMONA 3) and PRESTO 5 option. In
PRESTO 1 option, the neutron transport is approximated by the 1 % group time-
dependent neutron diffusion equation where 6 groups of delayed neutrons are taken
into account. Thereby finite difference spatial discretization in a coarse mesh lattice is
used and the time integration bases on a implicite predictor/corrector scheme. A real
reflector is not considered. Instead of this, reflector information are taken into account
in boundary conditions (Albedo like extrapolation length).
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PRESTOZ2 option is an extended 2 group nodal kinetic model as it is used in the core
simulator PRESTO2. The spatial diffusion problem (the governed equations are pre-
sented in Appendix B) is solved by applying analytical nodal methods where two
methods for temporal integrations are available. These are the ® -method (Estima-
tion of the time derivative of the flux by using finite difference technique where the © -
parameter determines whether explicit or implicit integration is carried out) and the
frequency transformation method (exponential time behaviour in the nodes, like
quasi-static method). A detail description is given in [1]. Boundary conditions are
given by specifying the extrapolation distance and albedo values for thermal flux.

The cross section model is based on a TABGEN cross section model. Thereby the
cross section data are given by polynomial coefficients to RAMONAS where the phe-
nomena exposure (£), density history (p, ), instantaneous density (o), fuel tem-
perature (\/i), control insertion (CF'), soluble boron (N,) and xenon (N,) are
taken into account. Hence, the nuclear parameters that represent the two-group data
are thus functions

NP = NP(E, py, p.\[T, ,CF,N,, N, (C1)

of seven independent variables. These data are given separately for each fuel type
implemented in the core.

For nuclear data transfer the core simulator PRESTO2 should run in a standard cal-
culation option RAMONAS5 (computes xs, discontinuity factors (DCF), reflector data
like albedos for RAMONAS5-2). In the RAMONADS input file, there is stored the cross
section data, DCF, albedos, power, density, fuel temperature, Xe concentration, bur-
nup, active flow and the core loading.

Thermal-hydraulic model [1,2]:

RAMONAS provides two thermal-hydraulic models, namely, standard thermal-
hydraulic model and advanced therma-hydraulic model. In the scope of the present
stability analysis with RAMONADS, the advance thermal-hydraulic model (seven equa-
tion model) is not used because of the analysis approach (RAM and ROM). The stan-
dard thermal-hydraulic model applies a four equation model based on vapor mass
balance, mixture mass balance, mixture energy balance, mixture momentum
equation including the corresponding constitutive equations. This model is similar to
the drift flux model used in the ROM but with the difference that thermodynamic non-
equilibrium is assumed and the different velocities of the phases are modelled by a
phase-slip model. For the time integration different explicite integration techniques
are available and can be selected by the user.

The mass conservation equation for the gas phase is

(C2)

— +£a v =T
oS P T 4PV

g b
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where T, is local evaporation rate, « is the volumetric void fraction, p, is the gas
density and v, is the gas velocity. The mass conservation equation of the mixture can
be written as

0 0
—p, + = =0 , C3
at pm aZ pmvm ( )
where p, with
p,=ap,+[1-alp (C4)

is the mixture density and v, with

ap, v, +[1-alpyv,

y = (C5)
ap,+[l-alp
is the mixture velocity. The mixture momentum balance is given by
0 0 0 oF
EG + E(apgvgz +[1_a]plvlz) = pmg - ép + E ’ (C6)

where the second term describes the local pressure drop and the third term de-
scribes the local friction with

OF _ o G|G|

—= C7
Oz 4 2pd, (€7)

In the friction term, there is f the single phase friction factor, ® is the two phase
multiplier d, the hydraulic diameter p, is the density of the liquid phase and G is the
mass flux defined as

G =ap,v, +[l-alpy, . (C8)

The mixture energy balance can be written as

0 d o,
a(apgug +(1-a)pﬂl)+a—z(apghgvg +(1-a)p1hzvz)=%+q1 (I-a) , (C9)

where u, and u, are the specific internal energies, h, and 4, are the specific en-
thalpy of the gas and liquid phase, respectively. 4 is the flow cross section, ¢, is the
heat input per unit length of the heated wall and ¢, is the heat per unit volume re-
leased directly in the coolant.

The most essential assumptions are: (a) spatial variation of system pressure is ig-
nored grad(P(z,t))=0 and (b) vapor is assumed to be at saturation. Assumption (a)
decouples the momentum and energy equation. Thus, the momentum equations are
uncoupled from the rest of the equations, and may to a certain extent, be treated
separately. In particular, assumption (a) enables that the momentum equation can be
integrated around the full reactor loop independent on the energy equation. Hence,
this assumption eleminates the numerical diffusion effected by the momentum equa-
tion spatial discretization. All assumptions of the thermal-hydraulic model are summa-
rized and discussed in [2].
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As shown in Figure 2, the hydraulic loop is divided into nine main parts where only
vertical flow is taken into account. The core is devided into (isolated) parallel chan-
nels with a common lower and upper plenum. Thereby, heat exchange between the
parallel channel and heat loss to the surroundings are neglected. A more in detalil
description of the thermal-hydraulic model is presented in [1].

Finally, the thermal hydraulic parallel channel model of RAMONAS provides the 3D
(steam) void distribution (void content in all channel, radially and axially, in the max.
25 axial sections per channel) and the axial coolant velocities. The detailed core pre-
dictions are combined with the capability to describe phase separation and liquid
subcooling or superheating in the two-phase coolant mixture [1,2].

Empirical correlations: Slip (Bankoff-Malnes, Bankoff-Jones, Solberg), 2-phase multi-
pliers (Becker correlation, Martinelli-Nelson, Rolstad), heat transfer correlation
(forced convection in single phase liquid: Dittus-Boelter, nucleate boiling: Jens and
Lottes), evaporation rate correlation.

The fuel model [1,2]:

The fuel model calculates the transport of heat (generated in the fuel pin) to the cool-
ant. Since the fuel temperature field within the fuel pin is known, it is used as feed-
back to calculate the fuel enthalpy rise. The released heat transferred into the coolant
constitutes the volumetric heat source (power density) of the coolant and thus the
hydraulic feedback via void generation.

The fuel model of RAMONAGS is very similar to that one of the ROM. The main char-
acteristics are: One average pin per neutronic node, radial heat conduction only, ra-
dial pellet discretization (less, equal 3 ring zones), temperature dependent data on
heat capacity and conductance, empirical correlations on gap conductance. Further-
more, it is assumed that all fuel rods within one hydraulic node have the same behav-
iour. This means, the nodal calculation is only done for one average rod unless the
user selects the hot pin model (not considered for the stability analysis).

The one dimensional radial fuel heat conduction equation can be written as

or, 10 oT
(pfcp,f)a_tf:;_( k)—fﬂlf ; (C10)

where p, is the density of the fuel, C,, is the specific heat of the fuel, k, is the
conductivity of the fuel, r is the special coordinate, 7, is the fuel temperature and ¢,
is the power deposited in the fuel. ¢, is predicted by the neutron kinetics.

The heat is transported from the surface of the fuel through the gap and gladding to
the coolant. The heat transport in the gap is described by
0 aTgp

0=—%k
or ¥ or

: (C11)

where k_, is the heat tranfere coefficient of the gap and 7, is the gap temperature.
Furthermore, the heat transport in the cladding is given by
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ar aT
= |, C12
(p.Cpe) = (kc arj (C12)

where p, is the density, C,. is the specific heat, k. is the conductivity and T, is the
temperature of the cladding, respectively.

Finally, the heat flux from the cladding surface to the coolant is described by

oT. ) _ B
(—kc w j—h(TC T, ., (C13)

where £ is the heat transfere coefficient and T, is the bulk temperature of the cool-
ant.

All material properties are functions of the temperature and burnup. More information
of the fuel model is presented in [1,2].

To summarize, the main advantage of the system code RAMONAS is the decoupling
of the momentum and energy equation due to ignoring the spatial variation of the
system pressure. The assumption of a constant system pressure along the closed
flow path corresponds to neglecting pressure waves. In addition to that all thermody-
namic properties of the reactor vessel are determined by the same system pressure.
This assumption allows that the momentum balance can be integrated along the
closed flow path independent on the energy balance. Furthermore, numerical diffu-
sion (can cause numerical damping of power oscillation) effected by the momentum
equation spatial discretization is eliminated.
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Appendix D: Nomenclature

Stability analysis:

X state vector
E vector field
/4 parameter vector (y, with ke[l,...,m] is the k-th compo-

nent of the parameter vector, m is the dimension of the
parameter vector, y, . critical value of the k-th component

of the parameter vector)

J Jacobian matrix

P transformation matrix

U state vector, spanned by the new basis

o} eigenvectors of J

A eigenvalues of J

D=PYP Jacobian matrix transformed into the Jordan normal form

o constant in general solution of the linearized dynamical
system, determined by the initial conditions

Re real part

Im imaginary part

det determinant

&£ small amplitude of the periodical solution
period of the periodical solution

p Floquet parameter

T Correction factor of the oscillation frequency

SB Stability boundary

BCH Bifurcation characteristics, nature of PAH bifurcation

PAH Poincaré-Andronov-Hopf
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Neutronkinetic

model:

S

C

A

Subscript |

\%

D, and D,

X and X5
ZS

152

>/ and %]

k, =1/,

mn

P, (1)

neutron flux vector

neutron inverse velocity matrix

neutron velocities corresponding to the two neutron energy
groups

net-loss operator
fission production operator

decay constants
precursor concentrations
delayed neutron fractions

| -th delayed neutron precursor group
Nabla operator

diffusion constant of the first and second group

macroscopic absorption cross section of the first and sec-
ond group

macroscopic scattering (from the first into the second en-
ergy group) cross section

macroscopic fission cross section of the first and second
group

number of neutrons per fissions

Eigenvectors (Lambda-Modes, (A-modes)) of the steady
state problem (steady state two group diffusion equation)

eigenvalues of the steady state problem (steady state two
group diffusion equation)

Delta function (J,,, =1 with m=n and &,,, =0 with m=n)

Amplitude function or time dependent expansion functions
of the corresponding A-modes (¥, )

total power generated by nuclear fissions within the multi-
plying medium of the reactor core
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Q
r
WD,
Void,r
Cmn
Doppler,r
Cmn

fact

energy per fission

dynamical feedback reactivities
delayed feedback reactivities

power density

steady state power density

fuel volume of the core

power modes

weighting factor

Void mode feedback reactivity coefficients
Doppler mode feedback reactivity coefficients

artificial factor, introduced to increase the feedback gain
coupling the first and fundamental mode
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Fuel heat conduc-
tion model:

%y

T,(t) and T,(t)

I, I,,,and Il

fuel pellet radius

clad inner radius

clad outer radius

point of discontinuity 0<r, <r,
clad specific heat

fuel pellet specific heat

clad thermal conductivity
pellet thermal conductivity

BWR lattice cell pitch

temperature, deviations from the steady state for the pellet
temperatures

temperature, deviations from the steady state for the clad
temperatures

clad thermal diffusivity
pellet thermal diffusivity
temperatures

complicated constants, calculated by employing the sym-
bolic toolbox of MATLAB
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Thermal hydraulic

model:

AP g pump head

a,(t) state variable: coefficient of the linear term in the enthalpy
profile

a,(t) state variable: coefficient of the quatratic term in the en-
thalpy profile

s, (1) state variable: coefficient of the linear term in the quality
profile

s, (1) state variable: coefficient of the quatratic term in the quality
profile

Vi infet channel inlet velocity of the i-th channel

Piret core inlet enthalpy

h enthalpy

H boiling boundary

0O = Ps coolant density (liquid)

o coolant density (gas)

o mixture density

O wall heat flux (single phase region)

Uy wall heat flux (two phase region)

h, 10 single phase convective heat transfer coefficient

h, s0 single phase convective heat transfer coefficient

A cross section of the heated channel

Touk10 single phase bulk temperature

T two phase bulk temperature

bulk,2®

T 10 single phase clad surface temperature
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Re

Pr

flo

f.20

cov,1d

cov,2®

pch,1®

pch,2®

sub

sat

fg

two phase clad surface temperature
liquid thermal conductivity
hydraulic diameter of the heated channel

Reynolds-Number
Prandl-Number
pressure

single phase friction factor
two phase friction factor

Froude number

single phase friction number

two phase friction number

conversion number of the single phase region
conversion number of the two phase region

Phase change number or Zuber number (single phase re-
gion)

Phase change number or Zuber number (two phase re-
gion)

subcooling number
liquid saturation enthalpy

gravity constant
volumetric void fraction

characteristic reaction frequency

rate of mass formation of the vapor

volumetric flux density

ahg =h, —h, difference of the saturation enthalpy of the
vapour (gas) and the saturation enthalpy of the liquid
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AP,

extern

= AP

ext
Mot
m

n

A1,inlet
A\ioc

D,

doc

Ay

D

ol
scool

scool

phase

Drift flux parameter characterising the radial void distribu-
tion

Drift flux parameter describing the local drift velocity
velocity of the vapor

velocity of the liquid

steady state inlet velocity

mixture velocity

flow quality

steady state external pressure drop

total mass flow

mass flow of the n-th heated channel

flow cross section of the n-th heated channel
flow cross section of the downcomer

hydraulic diameter of the downcomer

A\)I = ATHet / A\:oc

* *

D, =D;/D

ol doc

true void fraction, where subcooled boiling is included
true flow quality, where subcooled boiling is included
equilibrium quality

equilibrium quality at void departure point

void departure point

specific heat

saturation temperature
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&, heated perimeter

Ap Ap=p =Py =P~ Py

L heated channel length
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Appendix E:

Qs L AP

* Kk *

N chld = p* *
P AnletAhfgvopgpf

_ h; ,1®To*§ rT L*Ap*

cov,ld — * * * Kk *
AnletAhfgvopgpf

p*
N, =28
Ps

A detailed summary of all dimensionless numbers of the ROM is given in [6,8].
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N = h:at — hi;let Ap*
sub Ah:g p;

N

2.5664P*/(6.2-106)T0*4§;L*Ap*

cov,20

A{;IetAh:g VEP;P:

I ML
72D,

Fr= Vf -
gL
_ A{;ﬂet
Ay =—
AjOC
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pP= p*
Ps

[1] M. Ishii; X. Sun; S. Kuran; “NUCLEAR-COUPLED FLOW INSTABILITIES AND THEIR
EFFECTS ON DRYOUT?”; Final Progress Report; PU/NE-04-13; 2004.

[2] Ishii, M.; Thermo-fluid Dynamic Theory of Two-Phase Flow; Eyrolls, Scientific and Medical

Publication of France, Paris, 1975.

[3] Ishii, M.; One dimensional drift flux model and constitutive equations for relative motion
between phases in various two-phase flow regimes; Technical Report ANL-77-47; Argonne
National Laboratory, 1977.



216

[4]

[5]

[6]

[7]

[8]

Collier, G.J.; Thome, R.J.; Convective Boiling and Condensation; Third Edition; Clarendon
Press, Oxford, 1996.

Lahey, Jr., T.R.; Moody, J.F.; The Thermal-Hydraulics of a Boiling Water Nuclear Reactor;
Second Edition; American Nuclear Society; La Grange Park, Illinois USA. 1993

A. Dokhane, “BWR Stability and Bifurcation Analysis using a Novel Reduced Order Model
and the System Code RAMONA,” Doctoral Thesis, EPFL, Switzerland, 2004.

Rizzwan-uddin; “Linear and Nonlinear Stability Analyses of Density-Wave Oscillations in
Heated Channels”; Ph.D. Dissertation of University of Illinois, USA; 1981.

A.A.Karve; “Nuclear-Coupled Thermal-hydraulic Stability Analysis of Boiling Water Reac-
tors”; Ph.D. Dissertation; Virginia University; USA; 1998.



Appendix F: ROM input parameters

217

Appendix F:

ROM input parameters

ROM input parameters for NPP Brunsbuttel (KKB), NPP Leibstadt (KKL) and NPP
Ringhals (KKR) are summarized in the following.

Table 1: Operational points
Operational Points KKB KKL KKR
Power 1079.50 MW 1867.11 MW 1648.02 MW
(47.1%) (59.5%) (72.6%)
Flow (total mass flow including bypass) 2367.00kg /s 4070.12kg /s 3694.00kg /s
(26.14%) (36.5%) (31.98%)
14.35% (bypass 11.29% (by- 13.30% (by-
mass flow) pass mass flow) pass mass flow)
Total mass flow without bypass mass flow
2027.33kg /s 3610.656 kg /s 3202.7kg/s
Core inlet subcooling 118.5kJ / kg 125 kJ / kg 131kJ /kg
System Pressure 69.85 bar 69.7 bar 70.1bar
Table 2: Design and operational parameters
KKB KKL KKR
P, =P, fundamental | 1 1 1
mode amplitude
v, steady state | 0.532m/s 0.77m/s 0.68m/s
mean coolant inlet
velocity
T.. Steady state | 535.93°K 534.46 °K 533.61°K
coolant inlet tem-
perature
T, =T, saturation | 558.83°K 558.69 °K 559.08 °K
temperature
h.. Steady state | 1148.4 kJ /kg 1141.1kJ /kg 1136.9 kJ / kg
coolant inlet en-
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thalpy

h,, =h; saturation | 1266.9 kJ /kg 1266.1kJ / kg 1268.2 kJ / kg
liquid enthalpy

P" system pressure | 6.985MPa 6.97 MPa 7.01MPa
o, =a, steady state | 0.463 0.550667 0.472784
mean void fraction

Ta:g,o steady state | 674.7492°K 778.5833°K 754.3652°K
mean fuel tempera-

ture

DR, external pres- | 7.82217-10* Pa 7.3875-10* Pa 9.57-10*Pa
sure drop

g, =c, steady state
volumetric heat gen-
eration rate

100.451-10° W /m®

143.3134311-10° W /m®

121.2189-10° W /m®

A" heated channel | 1.064-10*m? 1.530-10*m? 1.543-10*m’
flow cross section

D" heated channel | 0.01072m 0.0139m 0.0118 m
hydraulic diameter

h; saturation gas | 2772.8kJ /kg 2773.0 kJ / kg 2772.5kJ /kg
enthalpy

p; liquid density 739.99 kgm 3 740.26 kgm 739.55 kgm
p, 9as density 36.438 kgm® 36.350kgm* 36.583 kgm

u; liquid viscosity

91.304-10°Nms

91.360-10°Nm’s

91.212-10°Nm’s

c; liquid specific | 5399.5 J /(kgK) 5396.5 J /(kgK ) 5404.5 J /(kgK )
heat

k; liquid thermal | 0.57212W /(mK) 0.57235W /(mK) 0.57172W /(mK)
conductivity

A" mean neutron | 3.0-10° s 3.0-10°s 3.32:107°s

life time

R" core radius 2.32m 2.32m 2.32m

L' core length | 3.76 m 3.81m 3.68m
(=downcomer

length)

¢, clad specific heat | 330.0 J /(kgK) 312.32 J /(kgK) 290.15 J /(kgK) is used

in the ROM
287.0 J /(kgK)  techni-

cal documentation (Lefvert)
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c; fuel pellet spe- | 476.6 J/(kgK) 301.03 J /(kgK) 108.12 J /(kgK)

cific heat

g" gravity constant | 9.81m/s? 9.81m/s’ 9.81m/s’

k, clad thermal | 16.0W /mK 16.0W /(mK) 16.0W /(mK) technical

conductivity documentation (Lefvert)

k; pellet thermal | 4.9W /(mK) 4.8525W /(mK) 4.9762W /(mK)

conductivity

p. BWR lattice cell | 16.2-:10° m 16.2:10° m 16.2:10° m

pitch

r, clad outer radius | 5.025-10° m 6.135-10° m 6.125-10° m technical

documentation (Lefvert)

r, clad inner radius | 4.42-10°m 5.325-10°m 5.325-10°m technical

documentation (Lefvert)

r; fuel pellet radius 4.335.10° m 5.321.10°m 5.325-10°m
(RAMONA-Output) BUT-> | (RAMONA-Output) BUT->
5.205-10° m from technical | 5.220-10° m from
documentation (Adreani report) | technical = documentation
and is used in the ROM (Lefvert) and is used in the

ROM

r, point of disconti- | 0.83-r; 0.83-r; 0.83-r;

nuity

A" delayed neutron | 0.08s™ 0.08s™ 0.08s™

precursors mean life

time

B fraction of de- | 0.0056s 0.0056 s 0.0057 s

layed neutrons

p. clad density 6.5-10° kgm 6.5-10° kgm 6.5-10° kgm

p, pellet density

10.422-10° kgm™®

10.422-10% kgm™®

10.5-10° kgm®

cal documentation (Lefvert)

techni-

* 2 2
h; gap heat trans- 3754.28 W /(m2K) 3487.26 W /(m2K)
fere
& heated perimeter | 31.573-10° m 19.27-10° m 19.24-10° m
Pr, liquid Prandl | 0.8617 0.86140 0.86222
number
Pr liquid Prandl | 1.613 1.6117 1.6151

[*)
number
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v, liquid kin. Viscos- | 0.0012339 cm*/s 0.0012342 cm® /s 0.0012333cm’ /s
ity

v, vapor kin. Vis- | 0.0052016 cm’/s 0.0052123 cm? /s 0.0051839 cm* /s
cosity

Re=v,-L/v, liquid | 16.21-10° 26.54837 -10° 23.27414-10°

Reynolds number

h. ., single phase | 677.67-10° W /(m°K) 775.6878-10° W /(m’K) 821.8175-10° W /(m?K)
heat transfer coeffi-
cient
Vi =7-(17 )Z-L*-64-6 10.7465 m* 13.02815 m* 13.59539 m*
volume of the fuel | - ' (@) 01532 | Vi, = (r) L 62-648
elements the
whole core
Table 3: Void and Doppler mode feedback reactivity coefficients

KKB KKL KKR
Channel 1
Cot -1.0992673-10" pcm/Void | -6.9592224.10% pcm/Void | -5.37730960-107 pcm/Void
Cyret 3.3292959-10% pem/Void -5.6921974-102 pcm/Void | -5.0783521-102 pcm/Void
Clowt 7.3885333-107 pcm/Void | -5.5877601-107 pcm/Void | -5.2646601-10° pcm/Void
cret -1.0870970-10" pcm/Void | -6.5884191-107 pcm/Void | -5.7744819-10° pcm/Void

Doppler,1
COO

-1.0561384-10° pcm/K

-1.0561384-10° pem/K

-1.08166290-10° pcm/K

Doppler,1
COl

-8.6464111-10° pcm/K

-8.6464111-10° pcm/K

-9.9173564-10° pcm/K

C Doppler,1
10

-8.2821048-10° pcm/K

-8.2821048-10° pcm/K

-1.006068-10° pcm/K

Doppler,1
Cll

-0.8178657-10° pcm/K

-9.8178657-10° pcm/K

-1.0856649-10° pcm/K

Channel 2

Cp? -1.0992673-10" pcm/Void | -6.9592224-10% pcm/Void | -5.37730960-102 pcm/Void
Cyo2 -3.3292959-102 pcm/Void | 5.6921974-10% pem/Void | 5.0783521-102 pcm/Void
Cyloia 2 —7.3885333-102 pcm/Void | 5.5877601-10% pcm/Void | 5.2646601-10% pcm/Void
Cye? -1.0870970-10" pcm/Void | -6.5884191-10° pcm/Void | -5.7744819-10% pcm/Void

Doppler,2
COO

-1.0561384-10° pcm/K

-1.0561384-10° pcm/K

-1.08166290-10° pcm/K

C Doppler,2
01

-8.6464111-10° pcm/K

8.6464111-10° pcm/K

9.9173564-10° pcm/K

Doppler,2
ClO

-8.2821048-10° pcm/ K

8.2821048-10° pem/K

1.006068-10° pcm/K
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Copnrer2 -9.8178657-10° pcm/K -9.8178657-10° pcm/K -1.0856649-10° pcm/K
Table 4: Pressure drops extracted from the steady state RAMONAS output

KKB KKL KKR
AP -1.4570-10" Pa -1.573-10" Pa —2.1457-10° Pa
AP -0.0773-10* Pa -0.0811-10* Pa -0.0975-10* Pa
AP —2.3080-10 Pa -2.778-10° Pa —2.474-10* Pa
APM -1.1157-10" Pa -1.5805-10" Pa -1.2707-10° Pa
ARH" —2.8632-10" Pa -1.3759-10" Pa -3.5812-10" Pa
AP -0.0007-10* Pa -3.42-107 Pa -0.0006-10* Pa
AP 2.0195-10* Pa 3.8005-10* Pa 4.8015-10* Pa
APM 5.8027-10" Pa 3.5871-10° Pa 4.7685-10* Pa
AP -3.5012-10" Pa -4.439-10* Pa -3.8425-10" Pa
AP ~7.8222-10" Pa ~7.3875-10" Pa -9.57-10* Pa
Table 5: ROM pressure drops

KKB KKL KKR
AP, . -1.534-10* Pa -1.654-10* Pa -2.243-10* Pa
AP; -2.308-10* Pa -2.777-10* Pa -2.474-10* Pa
AP, -3.979-10* Pa -2.956-10* Pa -4.853-10" Pa
Tabelle 6: Drift flux paramters

KKB KKL KKR
Vv, 0.3 0.35 0.25
C, 1.02 1.02 1.01
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Appendix G: Summary of the KKB-Analysis

NPP Brunsbittel cycle 16

Preliminary stability investigations with the system code RAMONA-3 were performed
for cycle 16 of KKB. The input data are valid for a burn-up state of 3000 VLS (Voll-
Last-Stunden) [1,2]. As a result, a decay ratio of 0.8 was found for the case where 3
pumps were in operation on the 104% rod line.

In order to improve the validation-data of RAMONA-3 for the NPP Brunsbiuittel a sta-
bility measurement in the middle of cycle 16 was performed on November 29, 2001.
To this end, at first, the reactor state was appointed on the 104% rod line at 100%
power (xenon-equilibrium). Next, the pump speed of all pumps was reduced to the
minimum (corresponding to the minimum speed level “Linker Eckpunkt”). Thereby the
power was reduced to 62.2% . After tripping 4 ZUP pumps, the power is reduced to
47% and the mass flow is reduced to 26%. In this new operational point, which is
defined to be the reference OP for the present BWR stability analyses, a global
power oscillation was crowing. Because of the fast increasing oscillation amplitudes,
control rods were inserted into the reactor core to suppress the oscillation after the
amplitudes exceeded 5% [1,2].

The Brunsbuttel (KKB) stability data are acquired from the stability test conducted at
the middle of cycle sixteen.

Operational point:
Power = 1079.50 MW  (47.10%) (100% Power = 2291.93 MW)
Flow = 2367.00kg/s (26.14%) (100% Flow = 9055.09kg/s)
Subcooling = 118.5kJ / kg
Pressure = 69.85 bar

(G1)

This operational point was selected for the nonlinear stability analyses because the
onset of un-damped global power oscillations was observed. Thereby 4 pumps are
tripped and the pump derivate is taken from the pressure drop over the pumps.

In the scope of the first RAMONAGS investigation for the NPP Brunsbdttel in the se-
lected operational point, at first the steady state 3D-parameter distributions, most
significant for the BWR stability behavior, will be evaluated (steady state analysis),
secondly the stability behavior will be analysed (transient analysis) and thirdly the
ROM input parameters will be calculated.

The first figure shows the core shape, the control rod positions and the correspond-
ing numbers of fuel elements in a quarter core. This configuration is composed sym-
metrically around x=7,y=7.
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Figure 1: Control rod positions of a quarter core.

The control rod configuration of the entire core is shown next.

Insertion fraction: 2.46 %
Total withdrawal : 45675.0 c.r. units

1 363 363 363 363 363

2 363 363 363 363 363 363 363

3 363 363 363 363 363 363 363 363 363

4 363 363 363 363 363 363 363 363 363 363 363

5 363 363 363 363 363 75 363 363 363 363 363 363 363
6 363 363 363 363 363 363 363 363 75 363 363 363 363
7 363 363 363 363 363 363 363 363 363 363 363 363 363
8 363 363 363 363 75 363 363 363 363 363 363 363 363

9 363 363 363 363 363 363 363 75 363 363 363 363 363

10 363 363 363 363 363 363 363 363 363 363 363
1 363 363 363 363 363 363 363 363 363
12 363 363 363 363 363 363 363
13 363 363 363 363 363

Figure 2: Control rod configuration for KKB cycle sixteen in cm. 363cm means

the control rod is complete out (withdrawed) of the core.
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1.1 Steady state analysis

To summarize, the axial power and axial void profile, radially averaged, are plotted in
Figure 3. Furthermore, radial power distribution, axially averaged is shown in Figure 4
and Figure 5.

NPP Brunstuttel (reference OP)
1.0 N —

i axial void profile ‘}

0.8

0.6 =
a(z) -
0.4

0.2

Q.0 |
16F /N

| axial power profile

1.2|F
:::/::‘:;::“‘;:::\N"
. 0.8F : .
Q@ k. || b TN ]
0.4 F - .
S : \
0.0'xxxx P P M PSS I P P P MR
00 01 02 03 04 05 06 07 08 09 10
z=zI/IL

Figure 3: This figure shows the steady state axial power and void profile (radially
averaged) calculated by RAMONAS.

1500 Radial Power Distribution, NPP Brunsbuttel

Figure 4: Three dimensional radial power distribution axially averaged for NPP
Brunsbittel (reference OP). The Z-Axis corresponds to the relative
power (-107).
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Figure 5: Radial power distribution axially averaged for NPP Brunsbuttel (refer-
ence OP).
Table 1: Results for the pressure drops extracted and calculated from the
RAMONADS output
AP¥M = —1.4570-10* Pa API;jAM =-0.0007-10" Pa
AP, =-0.0773-10" Pa APXM =2.0195-10° Pa
AP =-2.3080-10* Pa APYM =5.8027-10" Pa

APXM =-1.1157-10* Pa

ch,inlet —

AP™M = _35012-10* Pa

AR =

-2.8632-10* Pa

AP = -7.8222.10* Pa

ext
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1.2 Transient analysis

The transient behavior is induced by imposing a system pressure perturbation and
recorded by the LPRM detector system ('STABILITY' Option). The different LPRM
detector locations are despicted in Figure 6.

LPRM MAP
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Next, the LPRM signals of the fourth axial level in units of % are displayed in Figure
7. It can be seen that all signals are in phase. Accordingly, a global power oscillation
is arising in the operational point considered. Furthermore, the oscillation is converg-
ing to a limit cycle (stable global power oscillation).

In Figure 8 the time evolution of the relative power is shown. Because of the global
power oscillation, the oscillation amplitudes have qualitatively the same time evolu-
tion as the LPRM signals. In a regional power oscillation case, the amplitudes of the

relative power would be zero.
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Time evolution of the LPRM signals
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Figure 7: Signals (%) of selected LPRMs located in the fourth level are shown.

All signals are in phase and converging to a stable limit cycle.

Time evolution of the relative power
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Figure 8: This figure presents the time evolution of the relative power.
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Time evolution of the core massflow
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Time S

Figure 9: This figure presents the time evolution of the total mass flow.

Time evolution of the system pressure
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Figure 10: This figure shows the time evolution of the system pressure. The initial
perturbation induced can be seen clearly.

The time evolution of the system pressure is presented in Figure 10. As stated previ-
ously, the transient is initiated by imposing a system pressure perturbation. The cor-
responding perturbation amplitude is displayed in this figure.
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Time evolution of the mean core void fraction
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Figure 11: This figure displays the time evolution of the mean core void (volumet-
ric) fraction.
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1.3 Summary of the ROM analysis

The new calculation procedure for the ROM input parameters was applied for the
reference OP.

Axial void profiles
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Figure 12: Comparison of the axial void profile calculated by RAMONAS (radially
averaged) with the axial void profile provided by the ROM.

In Table 2 are shown the pressure drops of RAMONAS and ROM. The results of the
RAMONAS5- and ROM-pressure drops are consistent.

Table 2: Heated channel pressure drops provided by the RAMONAS output and
calculated by the ROM (reference-OP).

Pressure drop RAMONAS ROM
AP e ~3.979-10° Pa ~3.979-10° Pa
AP, —2.308-10" Pa -2.305-10* Pa
AP o ~1.534-10* Pa -1.538-10" Pa
DP’, ~7.8222.10" Pa | —7.8222-10" Pa
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Figure 13 summarizes the result of the numerical integration in the reference OP. As
predicted by RAMONAS, a growing in-phase power oscillation is occurring in the ref-

erence OP.
Time evolutions of the fundamental and first azimuthal mode and
the channel inlet velocities for A = 12.68
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Figure 13: Time evolutions of the fundamental n,(t) and first azimuthal mode
n (t) and the channel inlet velocities v, . (t) and v, ;. (t).
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Figure 14: Stability boundary and bifurcation characteristic for the reference OP.
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Figure 14 shows the result of the semi-analytical bifurcation analysis. The reference
OP is located in the linear unstable region. The results are only plotted in the region,
which is reasonable from the physical point of view. In this region, only supercritical
PAH bifurcations are occurring. Hence, stable periodical solutions are predicted in
the linear unstable region.

The stability boundary shown in Figure 14 was transformed into the power flow map.
This result is presented in Figure 15 in which the 100% and 104% rodlines are in-
cluded.

Stability boundary transformed into the power flow map

100 1 power  (47.1%)
Mass flow (26.14%)

©
o
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! \
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0 20 40 60 80 100
Core Mass Flow %

Figure 15: Stability boundary transformed into the power flow map.
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1.3.1 Effect of the uncertainty of the measured total power, total mass-
flow and core inlet subcooling on the axial void profiles calculated
by RAMONAS

From the available technical documentation of the NPP Leibstadt, Ringhals and
Brunsbuttel can be seen that the measuring instruments are calibrated for nominal
conditions. The uncertainty of the meassured total power, total core mass flow and
core inlet temperature, corresponding to operational points located in the exclusion
region, is relative large between 5% and 10% .

An uncertainty investigation with the system code RAMONA has shown that a power
or core mass flow or core inlet temperature deviation of 5% corresponds to a devia-
tion in the total volumetric void fraction of around 5%. A RAMONA assessment
where the uncertainty of the power, mass flow as well as the core inlet temperature
are considered, has shown that the deviation in the total volumetric void fraction is
9.2%. In order to calculate the total uncertainty of the total volumetric void fraction
the uncertainty of all measured data has to be taken into account. Consequently, the
total uncertainty of the real total volumetric void fraction is larger as assessed in the
above RAMONA analysis.

Void profile
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Figure 16: This figure shows axial profiles of the volumetric void fraction for differ-
ent reactor power and coolant mass flow calculated by RAMONA 5.
Thereby the power and core mass flow was changed by 5% respec-
tively.



Appendix G: Summary of the KKB-Analysis 235

Literature

[1] Van Teefflen; ,Stabilititsmessung Mitte des 16. Zyklus"; Technischer Bericht; KKB; Kern-
kraftwerk Brunsbitel GmbH; 2001.

[2] S. Lundberg; R.Schuster; J.Wenisch; ,RAMONAS5 qualification for the Brunsbittel NPP
(KKB)"; CMS Users Meeting; April 21-22; Turku; Finland; 2004.

[3] J.Wenisch; “Qualification and Experience with Incore Fuel Management with Modern
Methods at Vattenfall Europe Nuclear Energy”; Annual meeting on Nuclear Technology;
Nurnberg; May 10-12; 2005.



236




Appendix H: Summary of the KKR-Analysis 237

Appendix H: Summary of the KKR-Analysis

NPP Ringhalsl cycle 14

At the begining of cycle 14, a stability test was performed on the Ringhals-1 BWR.
The intension was to determine the stability characteristics on the new minimum
pump speed line, as well as to study the mode of power oscillation at different operat-
ing states. Thereby, the recordings were made in points arranged in a grid layout.
These points are located in the high power low flow region of the power flow map
where unstable behaviour is expected [1]. The measurement data of such instability
events have been widely used in the past in order to tune and to validate various sys-
tem codes. From these data, the decay ratio, stabistical parameters and frequency
were calculated.

During the stability test, a limit cycle regional out-of-phase power oscillation was oc-
curring at 72% power and 32% coolant mass flow (cycle 14, record 9).
Operational point (KKRc14_rec9-OP):
Power = 1648.02 MW  (72.6%)
Flow = 3694.00kg/s (31.98%)
Subcooling = 131kJ /kg
Pressure = 70.1bar

(H1)

Measuring data of this operational point and the corresponding RAMONAS model of
Ringhals-1 BWR are the basis for the nonlinear BWR stability analysis carried out
with the ROM. The signal of LPRM 8 and its power spectral density is shown next.
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Measured signal of LPRM 8 (level 4) of Ringhals-1 BWR cycle 14 record 9
! ! ! \ ! !

20

LPRM signal (%)

i i i ‘ i
0 100 200 300 400 500 600 700
TIME (s)

¥ Power Spectral Density
T T T

10 1 i | i i |
0 0.5 1 15 g 25 3 35 4 45 5
Frequency
Figure 1: Measured LPRM signal and its corresponding power spectral density

(Ringhals-1, cycle 14, record 9). DR~1.0

Figure 2 shows the core shape, the control rod positions and the corresponding
numbers of fuel elements in a quarter core. This configuration is composed symmet-
rically around x =8, y =8. Figure 3 shows the control rod configuration of the core.
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Figure 2: Control rod positions of a quarter core.
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INITIAL CONTROL ROD INSERTION (SCALE = -2)
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1.1 Steady state summary (RAMONADS)

To summarize, the axial power and axial void profile, radially averaged, are plotted
next. Furthermore, radial power distribution, axially averaged is shown in Figure 5

and Figure 6.
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Control rod configuration for the selected OP in mm.
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Figure 4: This figure shows the steady state axial power and void profile (radially
averaged) calculated by RAMONAS.
Radial Power Distribution, NPP Ringhals

Figure 5:

Three dimensional radial power distribution axially averaged for NPP
Ringhals-1 (reference OP). The Z-Axis corresponds to the relative

power (-107).
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Scaling Factor: 1.0 E3

Radial Power Distribution, NPP Ringhals 3
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Figure 6: Radial power distribution axially averaged for NPP Ringhals-1 (refer-

ence OP).

Table 1: Results for the pressure drops extracted and calculated from the
steady state RAMONADS output (reference OP)

APM = _2.1457.10* Pa

riser

AP = _0.0006-10* Pa

Ip1

AP =-0.0975-10* Pa

ch,exit —

AP =4.8015-10" Pa

AP = _2 3080-10° Pa

APYM =4.7685-10" Pa

AP =-1.2707-10" Pa

ch,inlet —

AP = _3.8425.10* Pa

AR =-3.5812-10* Pa

APPM = _957.10* Pa

ext
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1.2 Transient behaviour (RAMONADS)

The transient behaviour is initiated by introducing a 2 node control rod movement.
Thereby an in-phase mode was triggered. The signals of the LPRM 8 and 32 of the
fourth level and located in different core half's (RAMONA predicts a fixed symmetry
line for the present case) are selected for the evaluation of the transient behaviour.
The core shape, symmetry line and the locations of the LPRM detectors of the fourth
level are summarized in Figure 7.
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Figure 7: LPRM locations and symmetry line of the out-of-phase power oscilla-
tion

Figure 8 shows the time evolution of the LPRM signals 8 and 32. As can be seen, an
out of phase power oscillation is occurring in the reference OP. The frequency of the
oscillation is NF™ =0.48s"". All RAMONAGS investigations for the reference OP and its
close neighbourhood have shown that the out of phase power oscillation is dis-
charged into a stable limit cycle.
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NPP Ringhals-1 cycle 14 record 9

Time evolution of the LPRM signals (fourth level)
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Figure 8: RAMONAGS result for the reference OP. The relative amplitudes of sig-

nals are shown for LPRM 8 and LPRM 32. Both LPRM signals have a
phase shift of 7

The power spectral density of the LPRM 8 is shown in Figure 9.

10° Power Spectral Density (RAMONAS, LPRM 8, Ringhals-1 cycle 14 record 9)
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Figure 9: Power spectral density corresponding to LPRM 8 of the fourth level.
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1.3 Summary of the ROM analysis

All design parameters of the ROM have been calculated from the Ringhals-1
RAMONAS model for the reference OP (cycle 14 record 9). Thereby the new calcula-
tion procedure for the ROM input parameters was applied. As a result of the new cal-
culation procedure, the steady state axial void profiles of RAMONA5 and ROM are

consistent (see Figure 10).

Figure 10:

In Table 2 are shown the pressure drops of RAMONAS and ROM. The results of the
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Comparison of the axial void profile calculated by RAMONAS (radially
averaged) with the axial void profile provided by the ROM.

RAMONADS5- and ROM-pressure drops are consistent.

Table 2:

Figure 11 summarizes the result of the numerical integration in the reference OP. As
predicted by the RAMONAS analysis, the oscillation is converging to a stable limit

cycle.

Heated channel pressure drops provided by the RAMONAS output and

calculated by the ROM (KKRc14 rec9-OP).

Pressure drop RAMONAS ROM
APy i -4.853-10* Pa —4.8556-10* Pa
AP; —2.474-10* Pa —2.4735-10" Pa
AP i —2.243-10" Pa —2.2409-10* Pa
DP, -9.57-10* Pa -9.57-10* Pa

ext
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Time evolutions of the fundamental and first azimuthal mode and

the channel inlet velocities
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Figure 11:

Time

n,(t) and the channel inlet velocities v, ;.. (t) and v, . (t).

Time evolutions of the fundamental n,(t) and first azimuthal mode

In Figure 12 are shown the results of the bifurcation analysis. The stability boundary
and the corresponding bifurcation characteristic are only plotted in the region which is

reasonable from the physical point of view.
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Stability boundary and bifurcation characteristic for the reference OP.



246

The reference OP is located in the linear unstable region close to the stability bound-
ary. This result is consistent with the one of RAMONADS. Notice, in the scope of the
nonlinear BWR stability analysis for KKRc14_rec9 a comprehensive RAMONAS pa-
rameter variation study was performed (these results are not presented here) where
selected parameters which have a significant impact on the BWR stability behaviour,
were varied.

As shown in Figure 12 the bifurcation characteristic predicts unstable periodical solu-
tions in the linear stable region. Supercritical PAH bifurcations do not exist in the N_,
- DP,, parameter space. It should be stressed that stable limit cycle solution in the
linear unstable region and unstable limit cycle solution in the linear stable region (but
close to the SB) was found. Hence the occurrence of a saddle-note bifurcation of a
cycle (similar to the KKLc7 _rec4 case) can explain the stability behaviour of this
analysis case.

In Figure 13 is presented the SB projected into the power flow map. In this map, the
operating domain of the low flow-high power region of cycle 14 is included [1].

Power Flow Map for KKR
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Figure 13: SB “transformed” into the power flow map.

Figure 14 presents the power flow map where the SB, the measurement points re-
corded during the stability test at the beginning of cycle 14, and their decay ratios [1]
are included. It can be seen that the reduced order model predicts qualitively well the
location of the reference OP respect to the SB and to the other measurement points.
The comparison study between RAMONAS5 and ROM (results are not presented
here) have shown that the qualitative stability behaviour in the reference OP and its
neighbourhood is simulated correctly by the ROM. Existing quantitative discrepancies
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between measurement data, RAMONAS and ROM are due mainly to the uncertain-
ties in evaluating the design and operating parameters as core averaged values.

Benchmark measureing points in the power flow map of KKR
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Figure 14: SB “transformed” into the power flow map. The measuring points of
the stability test and the operating domain in the low flow-high power
region are included this power flow map.
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Appendix I Comparative study TOBI-ROM

Dokhane et al. carried out a detailed check of the thermal-hydraulic sub-model (TH-
model) of the ROM [12,13] (see Literature of Chapter 6). One aspect was, the valida-
tion of the TH-model against experimental data and the comparison to several other
analytical models able to simulate the stability characteristics of density waves
[12,58,77,80]. Furthermore they compared the use of drift flux and homogeneous
equilibrium models and carried out bifurcation analyses and numerical integrations of
the TH-model equations. A sensitivity analysis was carried out, where the effects of
different parameters (such as inlet and exit pressure loss coefficients, friction num-
bers...) on the stability characteristics have been investigated.

The objective of the current study is to replenish an additional check of the TH-
model. To this end, appropriate results of the TOBI model which was developed by
Wehle et al. [78] will be reproduced by the TH-model. TOBI is a simplified one heated
channel BWR model, where the neutron kinetics, fuel heat transfer and thermal-
hydraulics (boiling length, unheated length and riser) are taken into account. A detalil
description is given in [78]. In the scope of the comparative study TOBI-ROM, the
results of the thermal-hydraulic sub-model of TOBI, without riser and unheated sec-
tion, are compared with results of the TH-model of the ROM for specific OP’s.

In Table 1 are presented the operational and design parameters used to generate the
input parameters of the TH-model. Table 2 summarizes the main TOBI results for
different powers. The pressure loss coefficients (K, ., and K, ) and the friction num-
bers (N, and N,,) of the TH-model have been calculated separately for each
power.

Table 1: Operational and design parameters

system Pressure: P" =70bar

channel inlet mass flow: m =5kg/s

core inlet subcooling: h,, =100kJ /kg corresponds to
T, =19.2K

channel flow cross section: A" =0.01m?

hydraulic diameter: d; =0.011m

length of the heated channel: L'=4.0m

channel inlet pressure drop: Ap; . = 0.049 bar

axial power profile: uniform axial power profile
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Table 2: TOBI-results for different powers Q"

Q DR/Gr Xexi APoi AP; i
[kW] [bar] [bar]
2500 0.15 0.27 0.099 0.344
2750 0.20 0.30 0.110 0.354
3000 0.27 0.33 0.120 0.365
3250 0.33 0.37 0.130 0.378
3500 0.42 0.40 0.141 0.392
3750 0.51 0.43 0.151 0.406
4000 0.61 0.47 0.162 0.421
4250 0.74 0.50 0.172 0.436
4500 0.87 0.53 0.182 0.452
4750 1.01 0.56 0.193 0.469
5000 1.16 0.60 0.203 0.485
5250 1.33 0.63 0.214 0.502

Input data of the TH-model:

In the following the input data for the TH-model are presented for the reference

*

power Q. = 4750 kW .

o N -—2" Pt 1051941496
Pi =Py  Ap
Py

e N, = —— = 0.04937679122
Ps
*2

e Fr= V*OL*:O.01164330537, where v, with v;=0.676m/s is the reference
g

channel inlet velocity.

o K, =145

o K, =81

o N, =25

o N,, =44

C, =1.00 (In this case, a uniform radial void distribution is assumed.)
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e V,=08 (ng was selected in such a way that the TH-model provides a DR/GR

close to TOBI for the reference OP.

1.1 Results of the comparative study TOBI — ROM

After calculation of all input parameters, numerical integration of the TH-model equa-
tions is carried out for all powers given in Table 2. The time evolutions of the state
variables are evaluated and the corresponding DR/GR is calculated. As a result, the
function DR/GR(Q") is determined. The so-called grow ratios (GR) are calculated as

(GR):%ZZh , (11)

where A is the i-th amplitude. The approximation (I11) is only valid for sufficient small
oscillation amplitudes or with other words: in a close neighbourhood of the singular
fixed point in the phase space.

The results of the TOBI model and the TH-model are shown in Figure 1 and Figure 2.
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Figure 1: In this figure are shown the decay ratios (DR) and the grow ratios (GR)
depending on the power imposed on the thermal-hydraulic channel
(DR/GR(Q")).

The comparison shows that the results of the TH-model (THM) are close to that one
of TOBI. The best agreement between both functions DR/GR™(Q") and
DR/GR™"(Q") is achieved for the reference power Q" =4750 kW because the input
data are based on Q’,. The small deviation with increasing distance between Q'

*

ref * ref
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and the actual power Q" can be justified by, firstly, differences of model assumptions
used in TOBI and TH-model and secondly, lack of knowledge about the single phase
and two phase friction. Hence the dimensionless numbers N,, and N,, are un-
known. For this analysis, both friction numbers are only estimated in an approxi-
mated manner.
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Figure 2: Comparison of the TOBI and TH-model results
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1.2 Semi-analytical bifurcation analysis

In the scope of the bifurcation analysis using BIFDD, the core inlet subcooling h;,
and the thermal power Q" are selected to be the iteration and bifurcation parameter.
This means, the bifurcation analysis is carried out in the h:ub-Q* operating plane.
While the core inlet mass flow is assumed to be constant, one point in this plane cor-
responds to a particular thermal-hydraulic state of the heated channel. The result of
the bifurcation analysis is presented in Figure 3. Notice, the stability boundary and
the bifurcation characteristic corresponds to the reference OP because all input data
are based on it.

Stability Boundary Bifurcation Characteristic
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Figure 3: Stability boundary in the h:ub-Q* parameter space and the correspond-

ing bifurcation characteristic in the h_, - 3, plane.

The result of the bifurcation analysis shows that the reference OP is located in the
linear unstable region close to the stability boundary. The Floquet parameter g, for
h,, <328kJ/kg is negative and for h;, >328kJ/kg positive. This means, stable pe-
riodical solutions are predicted in the linear unstable region for h;, <328kJ/kg and
unstable periodical solutions are predicted in the linear stable region for
h,, =328kJ /kg . Hence, near the reference OP stable limit cycles are occurring. This

result is consistent with the one of TOBI.

It should be pointed out that the maximum of the core inlet subcooling occurring in a
real BWR is about h;, ~250kJ /kg which corresponds to T, ~50 K. Thus, only core



254

inlet subcoolings less than h, ~250kJ /kg are taken into account. Consequently, for
the present parameter configuration only stable limit cycles exist.

1.3 Numerical integration

In this section are shown some results of the numerical integration which was carried
out in section 1.1. In order to demonstrate the thermal-hydraulic stability behaviour in
the close neighbourhood of the stability boundary, the results for Q" =4680kwW ,
Q" =4708kW , Q" =4750 kW are shown firstly.

Flow Rate for Q = 4680 kW
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Figure 4: This figure show the time evolutions of the relative mass flow at the

channel inlet and exit for Q" =4680 kW . This operational point is lo-
cated in the stable region.
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Flow Rate for Q = 4708 kW
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Figure 5: This figure show the time evolutions of the relative mass flow at the
channel inlet and exit for Q" =4708kW . This operational point is lo-
cated in the unstable region close to the stability boundary.
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Flow Rate for O = 4750 kW
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Figure 6: This figure show the time evolutions of the relative mass flow at the
channel inlet and exit for Q" = 4750 kW . In this operational point, a sta-
ble limit cycle is predicted by BIFDD and is confirmed by numerical
integration.

1.4 Summary

In section 1.1, numerical integration of the TH-model equations is carried out for se-
lected thermal powers. The time evolutions of the state variables are evaluated and
the corresponding DR/GR is calculated. As a result, the function DR/GR(Q") is de-
termined. The results of the TH-model are compared with the results of TOBI. The
comparison shows that the results of the TH-model (THM) are close to that one of
TOBI.

In section 1.2, semi-analytical bifurcation analysis with BIFDD was carried out.
Thereby the core inlet subcooling h;, and the thermal power Q" are selected to be
the iteration and bifurcation parameter. The result of the bifurcation analysis shows
that the reference OP is located in the linear unstable region close to the stability
boundary. The bifurcation characteristic predicts stable limit cycles near the reference
OP. This result is consistent with the one of TOBI.

The results of the numerical integration confirm the prediction of the bifurcation
analysis.
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