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Abstract 
This thesis is concerned with nonlinear analyses of BWR stability behaviour, contrib-
uting to a deeper understanding in this field. Despite negative feedback-coefficients 
of a BWR, there are operational points (OP) at which oscillatory instabilities occur. So 
far, a comprehensive and an in-depth understanding of the nonlinear BWR stability 
behaviour are missing, even though the impact of the significant physical parameters 
is well known. In particular, this concerns parameter regions in which linear stability 
indicators, like the asymptotic decay ratio, lose their meaning. 

Nonlinear stability analyses are usually carried out using integral (system) codes, 
describing the dynamical system by a system of nonlinear partial differential equa-
tions (PDE). One aspect of nonlinear BWR stability analyses is to get an overview 
about different types of nonlinear stability behaviour and to examine the conditions of 
their occurrence. For these studies the application of system codes alone is inappro-
priate. Hence, in the context of this thesis, a novel approach to nonlinear BWR stabil-
ity analyses, called RAM-ROM method, is developed. In the framework of this ap-
proach, system codes and reduced order models (ROM) are used as complementary 
tools to examine the stability characteristics of fixed points and periodic solutions of 
the system of nonlinear differential equations, describing the stability behaviour of a 
BWR loop. The main advantage of a ROM, which is a system of ordinary differential 
equations (ODE), is the possible coupling with specific methods of the nonlinear dy-
namics. This method reveals nonlinear phenomena in certain regions of system pa-
rameters without the need for solving the system of ROM equations. The stability 
properties of limit cycles generated in Hopf bifurcation points and the conditions of 
their occurrence are of particular interest. Finally, the nonlinear phenomena predicted 
by the ROM will be analysed in more details by the system code. Hence, the thesis is 
not focused on rendering more precisely linear stability indicators like DR.  

The objective of the ROM development is to develop a model as simple as possible 
from the mathematical and numerical point of view, while preserving the physics of 
the BWR stability behaviour. The ODEs of the ROM are deduced from the PDEs de-
scribing the dynamics of a BWR. The system of ODEs includes all spatial effects in 
an approximated (spatial averaged) manner, e.g. the space-time dependent neutron 
flux is expanded in terms of a complete set of orthogonal spatial neutron flux modes. 
In order to simulate the stability characteristics of the in-phase and out-of-phase os-
cillation mode, it is only necessary to take into account the fundamental mode and 
the first azimuthal mode.  

The ROM, originally developed at PSI in collaboration with the University of Illinois 
(PSI-Illinois-ROM), was upgraded in significant points:  

• Development and implementation of a new calculation methodology for the 
mode feedback reactivity coefficients (void and fuel temperature reactivity)  
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• Development and implementation of a recirculation loop model; analysis and 
discussion of its impact on the in-phase and out-of-phase oscillation mode  

• Development of a novel physically justified approach for the calculation of the 
ROM input data 

• Discussion of the necessity of consideration of the effect of subcooled boiling 
in an approximate manner 

With the upgraded ROM, nonlinear BWR stability analyses are performed for three 
OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one for 
NPP Brunsbüttel (cycle16) for which measuring data of stability tests are available. In 
this thesis, the novel approach to nonlinear BWR stability analyses is extensively 
presented for NPP Leibstadt. In particular, the nonlinear analysis is carried out for an 
operational point (OP), in which an out-of-phase power oscillation has been observed 
in the scope of a stability test at the beginning of cycle 7 (KKLc7_rec4). The ROM 
predicts a saddle-node bifurcation of cycles, occurring in the linear stable region, 
close to the KKLc7_rec4-OP. This result allows a new interpretation of the stability 
behaviour around the KKLc7_rec4-OP. 

The results of this thesis confirm that the RAM-ROM methodology is qualified for 
nonlinear BWR stability analyses.  
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1 Introduction 
Boiling water reactor (BWR) stability analysis is of paramount interest since it affects 
the operation of a large number of commercial nuclear reactors. Due to power in-
crease which is the current trend, stability becomes a limiting design concern. The 
introduction of high efficiency fuels, triggered by improved design of fuel assemblies, 
enables operation at higher power densities resulting in higher void feedback reactiv-
ity and decreased heat transfer time constants which destabilize the BWR system. 
Another trend of future design of BWRs is to increase the core size which causes a 
weaker spatial coupling within the neutron field leading to a stronger susceptibility to 
regional power oscillations. In fact, these trends affect unfavourably the BWR stability 
behaviour. Hence, in order to guarantee safe and stable BWR operation, an in-depth 
understanding of the BWR stability behaviour is necessary [1,2].  

From theoretical and experimental studies, it is well known that for dynamical sys-
tems where two phase flow occurs like BWRs there are operational points (OP) in 
which unstable behaviour is observed. Instabilities of such systems can be subdi-
vided into two main classes. These are 

1) static instabilities (thermal-hydraulic nature such as excursive Ledingegg in-
stability [3,4]) and 

2) dynamic instabilities [3,4]. 

A common feature of the class of static instabilities is that the system suddenly de-
parts from the initial operational point to reach a new operational point. In contrast to 
static instabilities, dynamic instabilities are characterized by either self-sustained pe-
riodic or diverging oscillations of the state variables. Examples of dynamic instabilities 
are density wave oscillations, pressure-drop oscillations, acoustic instabilities, con-
densation-induced instabilities (appearing in TH-systems) and power oscillations 
(neutron kinetic – thermal hydraulic coupled oscillations). 

In the context of the nonlinear BWR stability analysis, dynamic instabilities, in particu-
lar power oscillations of coupled TH-neutron kinetic systems are of paramount inter-
est. The physical mechanism behind stable and unstable oscillatory behaviour is 
based on the nonlinear character of the hydraulic equations and on the nonlinear 
coupling between the neutron kinetics and the thermal hydraulics via void and Dop-
pler feedback reactivity [5-14].  

In BWRs, stable or unstable power oscillations usually occur in the low-flow high-
power region of the power flow map. Concerning operational safety, this region 
should be excluded from the nominal operating domain. If the amplitudes of the 
power oscillations become large enough, technical safety limit values, such as the 
critical power ratio, could be exceeded and fuel element failure could be expected, if 
monitoring systems fail. To this end, in GE-BWRs, the so-called exclusion region en-
closing the low-flow high-power region is conservatively defined for the specific cycle. 
Thereby, the definition of the exclusion region is based on validated system code 
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analyses in combination with stability experiments. In addition to that, the definition of 
specific counteractive measures allows leaving operational points in which power 
oscillations are detected by the installed measuring equipment. Figure 1.1 shows the 
exclusion region for NPP Leibstadt (KKL) cycle 7 [5].  
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Figure 1.1: Power flow map for NPP Leibstadt cycle 7. An out-of-phase power 

oscillation was observed in the KKLc7_rec4-OP (KKL cycle 7 record 
#4) during the stability test at the beginning of cycle 7 [6]. 

Global or in-phase oscillations and regional or out-of-phase oscillations are two kinds 
of observed power oscillations. Detailed investigations revealed [1] that in the in-
phase mode, the fundamental mode oscillates, while in the out-of-phase mode the 
first (and/or second) azimuthal mode(s) oscillates: when the power or flow rises in 
one half of the core, it decreases in the other half whereas the total mass flow and 
the core power remain constant. The detection of regional power oscillation requires 
more effort then for the detection of global power oscillation because the phase shifts 
between signals of all LPRMs have to be evaluated separately to determine the re-
gional power oscillation state [12]. 

NPP owners are generally interested in minimizing the exclusion region because it 
restricts significantly the nominal operation domain. For shrinking of the exclusion 
region sufficient knowledge about the cycle specific BWR stability behaviour is nec-
essary. In particular, conditions of the excitation of power oscillation and its stability 
behaviour should be taken into account.  
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1.1 Focus of the thesis 
In general, the dynamics of a BWR can be described by a system of coupled nonlin-
ear partial differential equations. From nonlinear dynamics, it is well known that such 
systems show, under specific conditions, a very complex temporal behaviour which is 
reflected in the solution manifold of the corresponding system of equations. Conse-
quently, to understand the nonlinear stability behaviour of a BWR, the solution mani-
fold of the system of differential equations must be examined. In particular, with re-
gard to the existence of operational points in which stable and unstable power oscil-
lations are observed, stable or unstable fixed points and stable or unstable periodic 
solutions are of specific interest [16] in the frame of this thesis. Note that stable or 
unstable periodical solutions correspond to stable or unstable limit cycles. Saddle-
node bifurcation of cycles (turning points or fold bifurcations) [17], period doubling 
and other nonlinear phenomena [17-22] could also be important from the reactor 
safety point of view. 

It is stressed here that unstable limit cycles (repellors) require special attention re-
garding safe BWR operation. If the unstable limit cycle is “born” in a subcritical Hopf 
bifurcation point, stable fixed points and unstable limit cycles will coexist in the linear 
stable region [16,17]. The corresponding phase space portrait (see Appendix A) is 
depicted in Figure 1.2. If a sufficiently small perturbation is imposed on the system, 
the state variables will return to the steady state solution. The terminology “suffi-
ciently small perturbation” means that the trajectory starts within the basin of attrac-
tion of the fixed point (see Appendix A). Roughly speaking, the perturbation ampli-
tude of the phase state variables is less than the repellor amplitude (see Appendix 
A). But if a sufficiently large perturbation is imposed on the system, the state vari-
ables will diverge in an oscillatory manner. The terminology “sufficiently large pertur-
bation” means that the perturbation amplitude is larger than the repellor amplitude. In 
this case the trajectory will start out the basin of attraction of the fixed point.  

 
Figure 1.2: Phase space portrait of an unstable limit cycle (unstable periodical 

solution) close to subcritical Hopf bifurcation (see Appendix A).  
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It should be noticed here that a linear stability analysis does not allow to examine the 
existence of unstable limit cycles, e.g. the asymptotic decay ratio is less than one (

1DR  ). This example shows that conceivably unstable conditions (from the nonlin-
ear point of view) are not recognized and the operational safety limits could be vio-
lated. Hence, in order to reveal this kind of phenomena, nonlinear BWR stability 
analysis is necessary.  

This thesis is concerned with nonlinear analyses of BWR stability behaviour, contrib-
uting to a deeper understanding in this field. Despite negative feedback-coefficients 
of a BWR, there are operational points (OP) at which oscillatory instabilities occur. So 
far, a comprehensive and an in-depth understanding of the nonlinear BWR stability 
behaviour are missing, even though the impact of the significant physical parameters 
is well known. In particular, this concerns parameter regions in which linear stability 
indicators, like the asymptotic decay ratio, lose their meaning.  

Nonlinear stability analysis is usually carried out using integral (system) codes, de-
scribing the dynamical system by a system of nonlinear partial differential equations 
(PDE). One aspect of nonlinear BWR stability analyses is to get an overview about 
different types of nonlinear stability behaviour and to examine the conditions for 
which they occur. This means:  

1) to find the critical values of selected parameters at which the dynamical sys-
tem experiences a bifurcation and 

2) to analyse the bifurcation type revealing the type of oscillatory instabilities 
generated at the bifurcation point.  

For these studies, the application of system codes alone is inefficient and cumber-
some. System codes are not able to exactly determine, for instance, the critical val-
ues of parameters at which subcritical Hopf bifurcations, generating unstable limit 
cycles, occur. These critical values of parameters can be calculated by system codes 
in an approximated manner under large computational effort only. In addition to that, 
the behaviour of the algorithms, employed by system codes, in the close neighbour-
hood of bifurcation points is not well known. They should, however, correctly simulate 
the temporal behaviour sufficient far away from bifurcation points.  

In the context of this thesis, a novel approach to nonlinear BWR stability analyses, 
called RAM-ROM method, is developed. Here, “RAM” is a synonym for system 
codes. In the framework of this approach, integrated BWR (system) codes 
(RAMONA5, Studsvik/Scandpower) and simplified BWR models (reduced order 
model, ROM) are used as complementary tools to examine the stability characteris-
tics of fixed points and periodic solutions of the nonlinear differential equation system 
describing the stability behaviour of a BWR loop [23-26]. The intention is, firstly, to 
identify the stability properties of certain operational points by performing ROM 
analysis and, secondly, to apply the system code RAMONA5 for a detailed nonlinear 
stability investigation in the neighbourhood of these operational points. The advan-
tage of ROMs is the possible straightforward coupling with specific methods of the 
nonlinear dynamics. From this methodology, new stability indicators for nonlinear 
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phenomena like limit cycles can be calculated [16-22]. In the scope of this work, the 
ROM is coupled with methods of the semi-analytical bifurcation analysis (bifurcation 
code BIFDD [16]). This method allows the calculation of a stability indicator (Floquet 
parameter) for limit cycles which are generated particularly by Hopf bifurcations 
[16,19].  

In other words, in the context of the ROM analysis, an overview about different types 
of nonlinear behaviour of the BWR for selected parameter spaces will be obtained. In 
particular, the stability properties of limit cycles generated in Hopf bifurcation points 
and the conditions under which they occur will be analysed. The nonlinear analysis 
using system codes is applied to verify the ROM results and to perform a more de-
tailed analysis. Hence, the use of RAM and ROM as complementary tools leads to a 
more reliable nonlinear BWR stability analysis.  

The objective of the ROM development is to develop a model as simple as possible 
from the mathematical and numerical point of view while preserving the physics of 
the BWR stability behaviour. The ODEs of the ROM are deduced from the PDEs de-
scribing the dynamics of a BWR. The system of ODEs includes all spatial effects in 
an approximated (spatial averaged) manner, e.g. the space-time dependent neutron 
flux is expanded in terms of a complete set of orthogonal spatial neutron flux modes. 
In order to simulate the stability characteristics of the in-phase and out-of-phase os-
cillation mode, for instance, it is only necessary to take into account the fundamental 
mode and the first azimuthal mode1. The neglecting of all the other higher modes 
reduces the number of ODEs significantly because each neutron flux mode requires 
an ODE for its mathematical description.  

Note that, in some cases, the application of linear stability analyses is sufficient for 
BWR stability analysis (see Appendix A). Here, the decay ratio (DR) is often used as 
linear stability indicator that loses its physical meaning in nonlinear operational re-
gime. The thesis, however, is not focused on rendering more precisely linear stability 
indicators like DR.  

This work is a continuation of the previous work at the Paul Scherrer Institute (PSI, 
Switzerland) and the University of Illinois (USA) on this field [7-15]. The current ROM 
developed originally at PSI in collaboration with the University of Illinois (PSI-Illinois-
ROM) was upgraded in two significant points:  

 Development and implementation of a new calculation methodology for the 
mode feedback reactivity coefficients (void and fuel temperature reactivity)  

 Development and implementation of a recirculation loop model, analysis and 
discussion of its impact on the in-phase and out-of-phase oscillation mode  

 Development of a novel physically justified approach for the calculation of the 
ROM input data 

                                            
1 In the neutron kinetic model of the ROM, only the fundamental mode and the first/second azimuthal 
mode are taken into account, because the higher modes have never been observed.  
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 Discussion of the necessity of consideration of the effect of subcooled boiling 
in an approximate manner  

With the upgraded ROM, nonlinear BWR stability analyses are performed for three 
OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one for 
NPP Brunsbüttel (cycle16) for which measuring data of stability tests are available. In 
this thesis, the novel approach to nonlinear BWR stability analyses is extensively 
presented for NPP Leibstadt. The nonlinear stability analysis for NPP Leibstadt and 
NPP Ringhals will be carried out for operational points (KKLc7_rec4-OP [6], see Fig-
ure 1.1 and KKRc14_rec9-OP [28]) in which linear unstable out-of-phase power oscil-
lations were observed during stability tests. In contrast to KKL and KKR, the investi-
gation for NPP Brunsbüttel was conducted for an operational point in which an in-
creasing in-phase power oscillation was observed during the stability test at the be-
ginning of cycle 16 [29]. 
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1.2 State of the art and previous work 
Complex system codes such as RAMONA [30-32] are common practice for BWR 
stability analyses. System codes include relative, detailed physical models of all nu-
clear power plant components significant for specific transient analyses. For BWR 
stability analyses, the 3D core models used by system codes are of particular impor-
tance to simulate spatial effects such as regional power oscillations [8].  

In preparation of the RAMONA input, as a first step, it is necessary to calculate the 
microscopic and macroscopic cross sections for a defined uniform cell using lattice 
codes such as CASMO or HELIOS [7,8,12,30-32]. The resulting macroscopic cross 
sections (XS) are stored in multidimensional XS-tables. Here the XS are functional-
ized with respect to the actual parameters (like void, fuel temperature…) and history 
parameters (like burn-up, void history…). The steady state core simulators 
(PRESTO2, POLCA7, SIMULATE, …) calculate the 3D distributions of all significant 
reactor parameters such as power, burn-up, 3D xenon distribution and 3D void distri-
bution. These 3D distributions are code inputs for system codes that calculate the 
BWR transient behaviour in selected operational points.  

In the framework of BWR stability analysis, application of so-called linearized ver-
sions of system codes is common practice to calculate the linear stability boundary. 
In these system codes, the system of differential equations, describing the BWR sta-
bility behaviour, are linearized. Hence, these code versions are only able to calculate 
the local stability characteristics of fixed points as long as the Hartmann-Großmann-
theorem [16-22] is fulfilled. As stated before, a linear stability analysis is not capable 
to reveal nonlinear phenomena such as limit cycles.  

In order to analyse the stability characteristics of limit cycles and the conditions under 
which they occur in the exclusion region and its close neighbourhood, nonlinear sta-
bility analysis is necessary. It should be pointed out that user of system codes must 
pay attention to the stability behaviour of their algorithms employed. In particular, 
physical and numerical effects [33,34] regarding power oscillations and the behaviour 
of numerical damping of the algorithms should be known in detail. Numerical diffu-
sion, for example, can corrupt the results of system codes significantly, which is ex-
plained in more detail in the following. Consider the one-dimensional advection equa-
tion  

 v .S
t z

 
 

 
 (1.1) 

This type of differential equation is frequently used in thermal-hydraulics. The solu-
tion is ( , ) ( v )z t F z t    where v  is the propagation velocity. If ( , 0) ( )z t F z    is an 
initial condition, and S  ( 0S  ) is the source term (is not considered continuously), 
the solution describes a translation of the initial distribution of the transported quantity 
  with the propagation velocity v .  
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In order to integrate the partial differential equation (1.1), a spatial discretization 
method using an explicit time-integration algorithm is applied. It follows  

 1
1 (1 )k k k

i c i c iN N
       (1.2) 

 (v / 2 / 6 ....) ( / 2 / 6 ....) ,zz zzz tt tttTE z z t t              (1.3) 

where TE  is the truncation error of the spatial and time discretization. The truncation 
error specifies the spatial and temporal approximations introduced by the discretiza-
tion (represented in this case by a Taylor expansion of the third order). In other 
words, the discretization changes the original partial differential equation significantly. 
For small t  and z , the resulting equation in this approximation contains a disper-
sion term as well as a diffusion term  

 
2 3

2 3v v ,S S
t z t z z z

        
      

     
 (1.4) 

where v / 2( v t) v / 2(1 )cz z N         is the numerical diffusivity, v /cN t z    is 
the Courant number, 2v( ) / 6 (1 )( 1)c cz N N       is the numerical dispersion coeffi-
cient, t  is the time step and z  is the lattice spacing. The corresponding solution 
can be written as  

 

22 2 ( )

0( , ) .
t i z c t

l lz t e
 

                    (1.5) 

Here, 0 ( , 0)z t     is the initial condition. Roughly speaking, the solution (1.5) is a 
damped wave with dispersion. This means, the solution will be dampened and 
broadened during the time evolution.  

As can be seen in the above example, the errors introduced by the numerical algo-
rithms including discretization method, change both the amplitude of the initial distri-
bution (numerical dissipation) and the translational velocity (numerical dispersion). 
This means, during the time evolution an initial  -distribution is deformed and the 
summary effect, called numerical diffusion, corrupts the correct solution significantly. 
As a consequence, after a sufficient number of time steps the numerical algorithms 
deliver a wrong solution.  

Numerical diffusion can be reduced by a suitable choice of algorithm related con-
stants like e.g. the Courant number (see equations (1.3) and (1.4)) and time integra-
tion algorithms (e.g. explicit time integration has often less numerical diffusion than 
implicit) [33,34]. Note that, some minimal numerical diffusion is necessary to prevent 
the growth of numerical induced oscillations. In some modern thermal-hydraulics 
codes like RETRAN-3D numerical diffusion is eliminated by the method of character-
istics (MOC). By using system codes with a free nodalization like TRAC(-B) or some 
RELAP versions, strong damping effects by numerical diffusion should be expected. 
Hence, this type of codes is not suitable for stability analysis without modifications 
(as introduction of higher order difference schemes). It is stressed that the integration 
of the momentum equation along a closed recirculation loop as defined in RAMONA 
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reduces significantly the numerical diffusion effect caused by the momentum equa-
tion (see Appendix C).  

In reduced order models, where the partial differential equation (PDE) system is 
transformed into an ordinary differential equation (ODE) system, numerical diffusion 
does not exist. A question then arises: Is it in principle possible to describe the 
nonlinear BWR stability behaviour with a system of ODEs instead of a system of 
PDEs? The goal of application of ROMs is to reveal the solution manifold of the BWR 
system.  

One of the first simplified BWR models was published by March-Leuba, Cacuci and 
Perez [35-37]. The intention was to demonstrate the solution manifold of a relatively 
simple system of nonlinear differential equations (phenomenological, reduced order, 
five-equation model), where the nonlinear analyses were carried out entirely numeri-
cally. This model is represented by a nonlinear dynamic feedback system including a 
point kinetic model with one effective group of delayed neutrons, a model for fuel 
heat transport with a fuel heat transfer constant, and a second-order void reactivity 
model describing the void reactivity behaviour. In order to yield the transfer function 
measured from real BWRs, the parameters of the model were adjusted appropriately. 
They showed that bifurcating solutions exist (see also Rizwan-uddin [38]) when se-
lected parameters are varied. In particular, they demonstrated that higher bifurcations 
(bifurcating periodical solutions) and aperiodic states in certain parameter regions 
also exist.  

It should be pointed out that this simple reduced order model does not include the 
momentum transport [8]. The second-order equation of the void reactivity is devel-
oped only from the mass and energy balance equations. Hence, the March-Leuba 
model is not able to describe the density wave phenomenon because of the absence 
of the pressure drop balance. However limit cycle power oscillations have been found 
with this model. This shows that density wave mechanism does not play a significant 
role in power oscillations. This means that the BWR system can be unstable even if it 
is stable in a purely hydraulic sense [8]. Later, an extended version (including mo-
mentum balance and recirculation loop) of this model was used to investigate the fuel 
behaviour under large amplitude oscillations.  

Munoz-Cobo and Verdù (1991) performed an analytical local bifurcation analysis of 
the March-Leuba five-equation system using Hopf bifurcation theory [39]. This is the 
first BWR stability analysis (known from literature research) for which purely analyti-
cal bifurcation analysis was performed. To this end, they selected one of the system 
parameters to be the bifurcation parameter. In order to find the critical value of the 
bifurcation parameter, this parameter was varied systematically as long as the Hopf-
conditions are fulfilled while keeping all the other parameters in this model fixed. 
Passing the critical parameter value, the fixed points bifurcate to periodic solutions 
(limit cycles). To determine the stability characteristics of the periodic solution, they 
applied the centre manifold reduction technique for the critical parameter value to 
reduce the five-equation system to a two-dimensional equation system [19]. After-
wards, they transformed the resulting two-dimensional equation system into the 
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Poincarè normal form [19,20] which yields the information of the stability properties of 
the periodic solution at the critical point. This analysis confirmed the results obtained 
by March-Leuba et al. (1986) [35-37].  

Later, Munoz-Cobo et al. [40-43] developed a ROM in order to study the stability 
characteristics of in-phase and out-of-phase power oscillations by performing nu-
merical integration. The neutron kinetic model of this ROM is based on the mode ex-
pansion approach where the space and time dependent neutron flux is expanded in 
terms of the LAMBDA modes [44-46]. The thermal-hydraulic behaviour is described 
by two hydraulic heated channels which are divided into two axial regions, namely 
the single phase region and the two phase region, respectively. The two phase re-
gion is represented by a homogeneous equilibrium model (HEM). They demonstrated 
that limit cycle out-of-phase power oscillations only appear when the reactivity feed-
back of the first azimuthal mode is increased artificially. This ROM was later ex-
tended by a mechanistic subcooled boiling model [43]. This means, they introduced a 
third axial channel region between the single and two phase region. In effect, they 
pointed out qualitatively that the feedback gain necessary to achieve out-of-phase 
power oscillations when subcooled boiling is not included in the ROM is more than 
twice the gain that is necessary when subcooled boiling is included.  

Karve et al. [47] developed an advanced ROM consisting of three sub-models: the 
neutron kinetic model (fundamental and first azimuthal mode), the fuel heat conduc-
tion model (three radial regions) and the thermal-hydraulic model (two heated flow 
channels, HEM). In the neutron kinetics the mode expansion approach is also ap-
plied (see Munoz-Cobo et al [40-43]) but the space and time dependent neutron flux 
is expanded in terms of the so-called OMEGA modes [48] (In particular, Karve used 
analytical expression for the OMEGA modes instead of the real 3D power distribu-
tions as used by Munoz-Cobo et al. [40-43] and Dokhane et al. [12]). The fuel heat 
conduction model is based on the one-dimensional (radial), time dependent heat 
conduction equation (PDE) for the fuel rod where three distinct radial regions, the fuel 
pellet, the gap and the clad are modelled (see Appendix B). In order to reduce the 
PDE to ODEs, they assumed a two-piecewise quadratic spatial approximation for the 
fuel rod temperature and applied the variation principle approach. To test the validity 
of the model (four ODEs) using the variation principle method, they also developed a 
model (sixty-four ODEs) which is based on the eigenfunction expansion method. 
They chose the variation principle method as a reasonable compromise between the 
accuracy of the solution and the simplicity of the model. In order to convert the PDEs 
of the thermal-hydraulics into ODEs, they applied the weighted residual approach 
introduced by Clausse and Lahey [49]. Thereby, instead of simple linear approxima-
tions for the space dependence of the single phase enthalpy and the two phase qual-
ity, they introduced simple quadratic approximations for these quantities (see Appen-
dix B). These approximations lead to a five equation system (ODE) describing the 
thermal-hydraulics of a heated (or boiling) flow channel. The author’s showed, that 
these approximations yield stability results of a boiling flow channel that compare well 
with the rather complicated functional differential equation (FDE) analysis performed 
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in [50]. The BWR stability analysis with this ROM was carried out entirely by numeri-
cal integration.  

Most of the previous studies mentioned above applied either pure analytical mathe-
matical manipulations, or pure numerical integration. The application of pure analyti-
cal bifurcation analysis, for instance as applied in [51], is limited to few dimensional 
equation systems (few order models like 3 or 4 dimensions) with a fixed parameter 
configuration because the algebraic complexity increases rapidly with the number of 
system equations. This method is not suited for parameter variation studies because 
the specific mathematical manipulation must be repeated for each changed parame-
ter value. Numerical integration, on the other hand, can only be carried out for a lim-
ited number of parameter values. Hence, both methods are limited to a small region 
of the rather large parameter space. Hence, computer programs which are capable 
to evaluate appropriately the differential equation system could be helpful to avoid 
cumbersome algebra. Tsuji et.al. (1993) [81] used a computer program called 
BIFOR2 [16] to perform bifurcation analysis of a simplified BWR model.  

Van Bragt et al. [52-54], Dokhane et al. [9-15], Zhou et al. [55-57] and Rizwan-uddin 
[38] used a new version of BIFOR, called BIFDD, to perform semi-analytical bifurca-
tion analysis of their own simplified BWR models. Firstly, they carried out semi-
analytical bifurcation analysis using BIFDD to examine the stability properties of fixed 
points and periodical solutions in selected parameter spaces and secondly they ap-
plied numerical integration method for selected parameters. Note that, the results of 
the bifurcation analysis using BIFDD are restricted to Hopf bifurcation points (local 
bifurcation analysis). Hence, numerical integration methods are necessary, on one 
hand, to independently confirmation the results of the bifurcation analysis using 
BIFDD and, on the other hand, to study the solution manifold in parameter regions far 
away from Hopf bifurcation points.  

The ROM analysis method explained in the previous paragraph was used by van 
Bragt et al. [52-54] for stability analyses of natural circulation BWRs. Zhou and Riz-
wan-uddin coupled the Karve-ROM [47] with BIFDD and carried out semi-analytical 
bifurcation analysis to obtain a better physical understanding of BWR instabilities. 
One of their studies was focused on the role of the pairs of complex conjugated ei-
genvalues of the Jacobian matrix (see Appendix A) with the largest and second larg-
est real parts in determining the in-phase and out-of-phase oscillation modes (eigen-
state) [55,56].  

In any of the studies (except van Bragt et al. [54]) mentioned in the last two para-
graphs, the existence of turning points has not been a focus. Rizwan-uddin [38] was 
the first who showed the existence of turning points in the March-Leuba five-equation 
system. For this purpose: (1) he coupled the March-Leuba model with BIFDD to per-
form semi-analytical bifurcation analysis where (in contrast to Munoz-Cobo and 
Verdù (1991)) any of the model parameters can be used as bifurcation parameter 
and (2) he carried out numerical integration to confirm the predictions of the bifurca-
tion analysis and to investigate the nonlinear behaviour more distant from the Hopf 
bifurcation point. The study of van Bragt et al. [54] was devoted to analyse the impact 
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of the void distribution parameter 0C  and the axial power profile on the thermal-
hydraulic stability behaviour (heated channel model [54]). He found a turning point for 
a symmetrically peaked axial power profile. This type of bifurcation does not exist for 
a uniformly heated channel. 

Dokhane et al. [9-15] developed the PSI-Illinois-ROM and performed nonlinear BWR 
stability analysis where the RAM-ROM method was applied for the first time. The 
PSI-Illinois-ROM (summarized in Appendix B) consists of three coupled sub-models 
which are similar to the Karve-ROM. These are a neutron kinetic model, a fuel heat 
conduction model and a thermal-hydraulic model. The goal was to develop a BWR 
model as simple as possible from the mathematical and numerical point of view while 
preserving the physics of the BWR stability behaviour. A further demand was that the 
solution manifold of the ROM should be as close as possible to that one of 
RAMONA5. Hence the physical sub-models of the ROM should be similar to that one 
of RAMONA5. The neutron kinetic model of this ROM is based on the two energy 
group diffusion approach, where the mode expansion approach is used. Thereby the 
space and time dependent neutron flux is expanded in terms of the LAMBDA modes 
[46]. The diffusion problem is transformed into the mode-kinetic equations in which 
the mode-feedback reactivities describe the feedback from the thermal-hydraulics to 
the neutron kinetics via the void- and Doppler-effect. In the expressions for the mode-
feedback reactivities, the so-called mode-feedback reactivity coefficients will be cal-
culated from the specific RAMONA5 model.  

The fuel heat conduction model of the PSI-Illinois ROM is completely adopted from 
the Karve-ROM [47]. The thermal-hydraulic model is described by two representative 
heated flow channels. As used by Karve et al. [47], the single phase enthalpy and the 
two phase quality have spatially quadratic profiles and the partial differential equation 
system is transformed into an ordinary differential equation system by applying the 
weighed residual procedure [12,47]. The main advantage of the thermal-hydraulic 
model of the PSI-Illinois-ROM is that the behaviour of the two phase flow is repre-
sented by the drift flux model developed by Rizwan-uddin [58-61].  

Dokhane et al. (2004) [12] applied the PSI-Illinois-ROM to analyse the Leibstadt op-
erational point KKLc7 record 4. Comprehensive parameter variation study was per-
formed and its impact on the stability boundary and nature of the Hopf bifurcation 
was analysed. This investigation allowed the first direct assessment of the sensitivity 
of the developed ROM, viz. of both its applicability and its limitations. It was found 
that the SB and bifurcation characteristics are sensitive regarding variation of certain 
operating and design parameters, e.g. the drift flux parameters ( gjV  and 0C ) or the 
inlet and exit pressure loss coefficients ( inletK  and exitK ) [12]. From these results fol-
lows that particular attention should be paid to evaluate adequately the design and 
operating parameters.  

The main discrepancies between RAMONA and PSI-Illinois-ROM are:  

1) The PSI-Illinois-ROM could not predict the correct oscillation mode. While the 
stability test and RAMONA predict an increasing out of phase power oscilla-
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tion, the ROM predicts an in-phase power oscillation. This was justified only 
by the limitations of the feedback reactivity model [12].  

2) The location of the reference OP with respect to the stability boundary in the 
subN - extDP -operating plane is not correct predicted by the PSI-Illinois-ROM 

(see Figure 1.3) [12]:  

- RAMONA predicts the qualitative behaviour in the neighbourhood of the 
reference OP as follows: (1) The higher the core inlet subcooling, the 
more unstable the system is. (2) The reference OP is located in the lin-
ear unstable region close to the SB whereby , ,sub c sub refN N  ( ,sub cN  is the 
critical core inlet subcooling for which the Hopf conditions are fulfilled 
and ,sub refN  is the core inlet subcooling corresponding to the reference 
OP).  

- The opposite behaviour is predicted by the PSI-Illinois-ROM: (1) The 
higher the core inlet subcooling, the more stable the system become. 
(2) The reference OP is located in the linear unstable region close to 
the SB whereby , ,sub c sub refN N . 

 

 
Figure 1.3: Locations of the reference OP respect to the stability boundary pre-

dicted by RAMONA5 and PSI-Illinois-ROM. 
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1.3 Thesis outline 
The thesis has two principle aspects:  

- ROM extensions (chapter 3) and  

- BWR stability analysis using the RAM-ROM method (chapter 4).  

In particular, the RAM-ROM method is applied to NPP Leibstadt, NPP Ringhals and 
NPP Brunsbüttel. A detailed demonstration of the RAM-ROM method is given for 
NPP Leibstadt in chapter 4. The analysis for NPP Brunsbüttel and NPP Ringhals are 
summarized briefly in Appendix G and Appendix H. 

Chapter 2 provides an introductory description of the methodology of the present 
nonlinear BWR stability analysis research. This chapter includes general remarks to 
nonlinear stability analysis (section 2.2, more details of the mathematical description 
is given in Appendix A). Sections 2.3 and 2.4 present the two independent ROM-
techniques: (a) the semi-analytical bifurcation analysis with the bifurcation code 
BIFDD and (b) numerical integration of the ROM differential equation system. A gen-
eral description of the new calculation method of the ROM-input is presented in sec-
tion 2.6 and a corresponding example is presented in section 4.2 of chapter 4 for 
NPP Leibstadt.  

In section 3.1, a brief overview about the three sub-models of the PSI-Illinois ROM is 
shown, while a detailed description is presented in Appendix B. In section 3.2 the 
mode feedback reactivity calculation is discussed and the new calculation methodol-
ogy of the mode feedback reactivity coefficients is presented.  

The recirculation loop model and its effect on the stability behaviour are presented in 
section 3.3. The physical model of the recirculation loop and the final ODE for the 
channel inlet velocities is developed in subsection 3.3.1. As a starting point, its effect 
on the stability behaviour of a simple thermal-hydraulic one heated channel model 
(sub-model of the ROM) is analysed in subsection 3.3.2. The following investigation, 
carried out in subsection 3.3.3, is devoted to study the effect of the recirculation loop 
on the BWR stability behaviour using the ROM. Thereby the effect on the in-phase 
and out-of-phase oscillation modes (oscillation state) are analysed.  

In section 3.4, the necessity of consideration of the effect of subcooled boiling in an 
approximate manner using a profile fit model will be discussed [27]. In subsection 
3.4.1 is presented the profile fit model developed originally by Levy et al. (1967) [27]. 
The first analysis with the profile fit model carried out in subsection 3.4.2 was de-
voted to study the differences between the axial void profiles provided by the original 
two-phase flow model and the subcooled boiling model. The aim of the analysis per-
formed in subsection 3.4.3 is to compare the effect of the use of the uniform axial 
power profile in the ROM with the effect of neglecting subcooled boiling on the axial 
void profiles. 

An in-depth nonlinear BWR stability analysis employing the RAM-ROM method is 
demonstrated in chapter 4. To this end, at first, in section 4.1 RAMONA analysis at 
the reference OP is performed. In particular, the steady state analysis and the corre-
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sponding transient analyses are presented in subsections 4.1.1 and 4.1.2. After the 
RAMONA analysis, the calculation of the ROM input parameters is carried out in sec-
tion 4.2. The adjustment of the axial void profile, the estimation of the drift flux pa-
rameters ( gjV  and 0C ) and the calculation of the ROM pressure drops are presented 
explicitly in the subsections 4.2.1, 4.2.2 and 4.2.3. In section 4.3 the ROM analysis at 
the reference OP is performed and semi-analytical bifurcation analysis is carried out 
in appropriated parameter spaces. The comparative study with RAMONA and ROM 
is carried out in section 4.4, where a parameter variation study is performed for the 
core inlet subcooling and the steady state external pressure drop.  

In section 4.5, an in-depth nonlinear stability analysis is carried out in which the dis-
crepancy between results of the semi-analytical bifurcation analysis, achieved with 
BIFDD, and numerical integration of the ROM equation system is explained by the 
existence of saddle-node bifurcation of cycles (also called fold bifurcation or turning 
point).  

Section 4.6 is devoted to reveal the relation of the stability boundary, calculated in 
the subN - extDP -parameter space, to the subN - pchN -parameter space. This section is 
organized in three parts. In the first part is discussed the physical meaning of the SB 
calculated in the subN - pchN -parameter space. In Part 2 is shown the relation of the SB 
calculated in the subN - extDP -parameter space to the SB calculated in the subN - pchN -
parameter space. The last part of this section is an extension of part 2.  

Finally, summary and conclusions based on the thesis results are given in chapter 5. 
Besides, recommendations to future work are also given in this chapter. 

 

1.4 Codes and programs used in this thesis 
In this section, a brief overview over the different codes employed in this thesis is 
given. 

 System code RAMONA5: All system code analyses carried out for BWR sta-
bility analyses have been performed with the Studsvik-Scanpower-BWR code 
RAMONA5 [30-32]. This code is described shortly in Appendix C. 

 Bifurcation code BIFDD: The local bifurcation analysis (semi-analytical bifur-
cation analysis) is performed with the bifurcation code BIFDD [16] written in 
FORTRAN language. A short description of BIFDD is given in section 2.3. The 
input parameter vector, the initial guess for the phase space variables, the 
ROM equation system and its Jacobian matrix are also represented by 
FORTRAN-subroutines calling the BIFDD code. 

 MATLAB: The numerical integration is carried out with the numerical integra-
tion code written in the MATLAB environment (see section 2.4) [12]. 

 LAMBDA_REAC code: The LAMBDA_REAC code is used to calculate the 
mode reactivities, the spatial neutron flux modes (LAMBDA-modes, eigenvec-
tors ( )n r

  ) and the corresponding eigenvalues (see subsection 3.2.2) [46]. 
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2 Methodology 

2.1 An overview 
In the framework of the applied methodology of nonlinear BWR stability analyses, 
integrated BWR (system) codes and simplified BWR models are used as comple-
mentary tools to examine the stability properties of fixed points and periodical solu-
tions (Figure 2.1). It will be repeated that this thesis is devoted to reveal and 
identify nonlinear core behaviour of a BWR. A refinement, for instance, of the 
DR (as linear stability indicator) estimation is not the objective of this work. The 
intention is, firstly, to identify the stability properties of certain operational points by 
performing ROM analysis and, secondly, to apply the system code for a detailed sta-
bility investigation in the neighbourhood of these operational points. All system code 
analyses reported in this thesis have been carried out with the Studsvik-Scanpower-
BWR code RAMONA5.  

 
Figure 2.1: Overview over the methodology applied for the nonlinear BWR stability 

analyses where RAMONA5 and ROM are used as complementary 
tools. 

System codes are computer programs which include detailed (space-dependent) 
physical models of all nuclear power plant components which are significant for a 
particular transient analysis. Therefore, such detailed BWR models should be able to 
represent the stability characteristics of a BWR close to the physical reality. Nonlinear 
BWR stability analysis using large system codes is currently common practice in 
many laboratories [12]. A particular requirement is the integration of a 3D neutron 
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kinetic model, which permits the analysis of regional or higher mode stability behav-
iour. A detailed investigation of the complete solution manifold of the nonlinear equa-
tions describing the BWR stability behaviour by applying system codes needs com-
prehensive parameter variation studies which require large computational effort. 
Hence system codes are inappropriate to reveal the complete nonlinear stability 
characteristics of a BWR. Furthermore, in section 1.2 was mentioned that user of 
system codes must pay attention to the stability behaviour of the algorithms em-
ployed [33,34]. In particular, physical and numerical effects regarding power oscilla-
tions and the behaviour of numerical damping of the algorithms should be known in 
detail. As demonstrated in section 1.2, numerical diffusion can corrupt the results of 
system codes significantly. Therefore, reduced order analytical models could be help-
ful to get a first overview over the stability landscape to be expected. 

The ROM is characterized by a minimum number of system equations which is real-
ized by the reduction of the geometrical complexity. One demand on the ROM is, be-
cause the ROM sub-models should be as close as possible to the sub-models used 
in RAMONA, that the solution manifold of the RAMONA model should be as close as 
possible to the solution manifold of the ROM. E.g., both neutron kinetic models (ROM 
and RAMONA) are based on the two neutron energy group diffusion equations. Both 
thermal-hydraulic two phase flow models are represented by models which consider 
the mechanical non-equilibrium (different velocities of the phases of the fluid) [9-
15,30,32].  

The main advantage of employing ROM’s is the possible coupling with codes which 
include methods of nonlinear dynamics like bifurcation analysis. In the framework of 
application of such techniques, the scope of BWR stability analyses can be ex-
panded significantly. For example, bifurcation analysis of a BWR system leads to an 
overview over types of instabilities. The existence of stable and unstable periodical 
solutions (correspond to limit cycles) can be examined reliably. Further, the stability 
behaviour of global and regional power oscillation states can be investigated in detail.  

In the scope of the present ROM analyses two independent techniques are em-
ployed. These are the semi-analytical bifurcation analysis with the bifurcation code 
BIFDD and the numerical integration of the ROM differential equation system. Bifur-
cation analysis with BIFDD determines the stability properties of fixed points and pe-
riodical solutions. For independent confirmation of these results, the ROM system will 
be solved directly by numerical integration for selected parameters.  

Another advantage of the present ROM application is that the ROM-input is based on 
the specific RAMONA5 model and its steady state solution for a selected operational 
point, called reference operational point (reference OP). This means, in the frame-
work of our approach, a steady state RAMONA5 run for the reference OP is neces-
sary before the ROM analyses can be performed. One principle demand on the pro-
cedure for calculating the ROM-input is that the steady state conditions of the refer-
ence OP, predicted by the RAMONA5 model, are simulated correctly by the ROM. 
Only in this case it is reasonable to perform specific system code investigations in an 
environment where unstable behaviour is predicted by the ROM analysis.  
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2.2 Nonlinear stability analysis 
Generally, stability analysis is the investigation of the temporal behaviour of the state 
variables after an internal or external perturbation is imposed on the dynamical sys-
tem, while one or more system parameters will be varied in their domain of definition. 
If the system is stable, all state variables converge to the equilibrium point also called 
singular fixed point (or in its close neighbourhood, also called “Lyapunov stability” 
[17-20,22]). If the system is unstable, at least one of the state variables is diverging in 
an oscillatory or exponential manner. The critical value of the system parameter(s) 
which separates stable fixed points from unstable ones is the so-called stability 
boundary. A detailed description is given in Appendix A.  

For BWR stability analysis, application of linear stability analysis is common practice. 
A linear stability analysis allows analysing the local stability behaviour of fixed points 
only (see Figure 2.2). It can be applied as long as the Hartmann-Großmann-theorem 
(HG-theorem, see Appendix A) is fulfilled. The terminology “analysing the local stabil-
ity behaviour of fixed points” means to reveal all solutions of the dynamical system 
near an equilibrium point (or singular fixed point) of the state space (or phase space). 
The HG-theorem is of particular importance because it justifies the application of lin-
ear stability analysis of nonlinear dynamical systems.  

 
Figure 2.2: Linear stability analyses reveal only the local stability behaviour of 

fixed points, while the stability behaviour of limit cycles cannot be ana-
lysed. Figuratively, a linear stability analysis can reveal only the phase 
space portrait in a close neighbourhood of the singular fixed point.  

In order to explain the limitation of a linear stability analysis more in detail, the follow-
ing consideration is made. Supposing the system parameter k  (will be defined later) 
is varied in its domain of definition. For all k   the temporal behaviour of the state 
variables is analysed. The local stability behaviour of the fixed point can change 
when reaching the critical value ,k k c  . When passing ,k c , the fixed point will lose 
its local stability, viz. the phase space portrait will change significantly at ,k k c  . At 

,k c  the dynamical system will have at least one eigenvalue (pair of complex conju-
gated eigenvalues) with a zero real part ( Re( ) 0i   with ,( )i k c  ). As a consequence, 
at ,k c  the dynamical system lost its hyperbolicity [17-20,22] and thus the HG-
theorem is not fulfilled. Hyperbolicity is an important property of nonlinear dynamic 
systems: If only hyperbolic fixed points exist (the real part of all eigenvalues of the 
(system) Jacobian matrix is different from zero), the application of linear stability 
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analysis methods is allowed (In this case, there exist either stable or unstable fixed 
points, either decreasing or increasing oscillations for all system parameter values). 
Hence in many cases linear stability analysis is sufficient (e.g. frequency domain 
codes use the transfer function technique). But if a so-called Hopf bifurcation occurs 
at ,k c  the solution of the nonlinear systems can bifurcate from a singular fixed point 
solution to a limit cycle solution (periodic solution) and a singular fixed point solution. 
The limit cycle which is born at ,k c  can either be stable (see Figure 2.3) or unstable 
(see Figure 2.4) depending on the nature of the bifurcation (bifurcation characteris-
tics). It should be noted that at ,k c  the HG-theorem is not fulfilled and thus nonlinear 
stability analysis like bifurcation analysis is necessary to analyse the system behav-
iour. Independently on whether a stable or an unstable limit cycle exist, a linear sta-
bility analysis is able to analyse only the local stability behaviour of fixed points (de-
picted in Figure 2.2) while the bifurcation analysis carried out at ,k c  reveals the exis-
tence of limit cycles and provides their stability characteristics (depicted in Figure 2.3 
and Figure 2.4).  

 
Figure 2.3: The nature of the Hopf bifurcation at ,k c  is supercritical. This means, 

at ,k c  a stable limit cycle is born and coexist with unstable fixed points 
in the linear unstable region.  

 
Figure 2.4: The nature of the Hopf bifurcation at ,k c  is subcritical. This means, at 

,k c  an unstable limit cycle is born and coexist with stable fixed points 
in the linear stable region. 
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The existence of a Hopf bifurcation is the (mathematical) reason for the sudden 
appearance of periodic oscillations (limit cycles). These periodic solutions will be 
observed in the BWR dynamics as global (in-phase) or regional (e.g. out-of-phase or 
azimuthal mode) power oscillations.  

In the literature, the nonlinear phenomenon limit cycle is defined to be an isolated 
closed trajectory in the state space [17]. The term isolated means that neighbouring 
trajectories are not closed which means that they spiral either toward or away from 
the limit cycle. The limit cycle is stable, if all neighbouring trajectories approach it 
(see linear unstable region in Figure 2.3). In this case, the limit cycle acts as an at-
tractor. The limit cycle is unstable, if all neighbouring trajectories are repelled from it. 
In this case, the limit cycle acts as a repellor (see linear stable region in Figure 2.4).  

As indicated in the previous paragraphs, in the framework of the present nonlinear 
BWR stability research (in particular, the semi-analytical bifurcation analysis), the so-
called Hopf bifurcations play a dominant role. The occurrence of such type of dy-
namical bifurcations is ensured by the Hopf theorem [16-19]. This theorem, which is 
also called Poincarè-Andronov-Hopf bifurcation (PAH-B) theorem, guarantees the 
existence of stable and unstable periodic solutions of nonlinear differential equations 
if certain conditions are satisfied [16-19]. For a mathematical description, the 
autonomous dynamical system, 

  ( ) ( ),d X t F X t
dt


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genvalues ,( )k c i    ,  

2) all the other eigenvalues have strictly negative real parts, and 

3) ,( )
0k k c

k

  


 



 

a family of periodic solutions 
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i t
T

k cX t X e p

   

 
   

  

    (2.2) 

of (2.1) with small amplitude   exist in 0X


 for ,k c  [16], where 1p  is the eigenvector 
of the linearized system associated with the pair of complex conjugated eigenvalues 
responsible for the bifurcation and T  is the period of the oscillation.  
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In order to get information about the stability property of the periodic solution, the 
(linear) Floquet theory is applied where the so-called Floquet exponent (Floquet pa-
rameter, see Appendix A)   appears [19] which determines the stability of the peri-
odic solution. If 0  , the periodic solution is stable (supercritical bifurcation, see 
Figure 2.3) while if 0  , the periodic solution is unstable (subcritical bifurcation, see 
Figure 2.4) [16,19]. Roughly spoken, the Floquet parameter can be interpreted as a 
stability indicator for limit cycles. It is a result of a special technique from nonlinear 
dynamics. A more detailed description is given in Appendix A.  

If the Hopf theorem is satisfied, the nonlinear equation system can be reduced to a 
two-dimensional nonlinear equation system by applying the centre manifold reduction 
approach [16-19]. The resulting equation system, which represents the dynamical 
behaviour of the complete system of equations in a close neighbourhood of the fixed 
point where the Hopf theorem is fulfilled, will be transformed into the Poincarè normal 
form [16-20] (see Appendix A). From this equation system parameters (in particular 
the Floquet exponents) which determine the stability properties of the fixed point, can 
be extracted numerically.  
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2.3 Semi-analytical bifurcation analysis using BIFDD 
As mentioned in the previous sections, the bifurcation code BIFDD is used to perform 
semi-analytical bifurcation analysis of the ROM differential equation system. BIFDD 
was developed by Hassard in 1980 to perform numerically bifurcation analysis for 
ordinary differential equations (ODEs) with time delays [16]. Methods applied in 
BIFDD allow determining the stability properties of fixed points and periodical solu-
tions without the need for solving the corresponding equation system.  

In order to calculate the critical value ,k c  of the bifurcation parameter, the fre-
quency   and the amplitude   of the oscillation and the Floquet parameter  , 
BIFDD applies several methods, such as Lindstedt-Poincarè asymptotic expansion 
[21], centre manifold reduction technique and transformation technique into the Poin-
carè Normal Form, commonly used in nonlinear dynamics [16-20]. These methods 
are summarized in Appendix A. In the scope of the Lindstedt-Poincarè expansion, 
(for example) the Floquet exponent   is expanded in terms of small amplitudes   as 

2
1 2     , where 1 0   and thus 2   [21].  

Figure 2.5 summarizes the bifurcation analysis using BIFDD.  

 
Figure 2.5: Sketch summarizing the bifurcation analysis using BIFDD [12,16]. 
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The user has to provide the input parameter vector, a set of nonlinear ODEs, the cor-
responding Jacobian matrix and the initial guess for the phase space variables. 

The bifurcation analysis starts with selection of the so called iteration and bifurcation 
parameter. Thereby the iteration parameter will be varied in the interval defined by 
the user. For each iteration step BIFDD computes the critical value ,k c  of the bifurca-
tion parameter, the amplitude   of the oscillation and the expansion parameters 2 , 

2  and 2 . The parameters  , 2 , 2  and 2  determine the nature of the PAH bifur-
cation and thus called bifurcation characteristics (see Appendix A). Thereby 2  is a 
correction factor of the oscillation frequency and 2  is a expansion factor for k  and 
relates the oscillation amplitude   to the bifurcation parameter k  according to  

 ,

2

.k k c 





  (2.3) 

 
Figure 2.6: Stability boundary in the two dimensional parameter space which is 

spanned by the iteration and bifurcation parameter and the corre-
sponding bifurcation characteristics.  
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As a result of the semi-analytical bifurcation analysis using BIFDD, a set of fixed 
points where the Hopf conditions are fulfilled will be obtained in the two dimensional 
parameter space, which is spanned by the iteration and bifurcation parameter (left 
diagram of Figure 2.6 b)). This set of fixed points is called linear stability boundary. In 
each of these fixed points a periodical solution is born whose stability property is de-
termined by the Floquet exponent. The right diagram of Figure 2.6 b) shows the Flo-
quet exponent 2   for each iteration step.  

To summarize, in all fixed points where the Hopf conditions are fulfilled limit cycles 
will be born and exist in the neighbourhood of ,k c . As stated previously, a stability 
indicator for limit cycle solutions can be derived from the Floquet theory for differen-
tial equations with periodical coefficients (see Floquet theory in Appendix A). The 
Floquet exponent 2  determining the stability characteristics of the limit cycle 
emerges from this theory. If 2 0  , supercritical Hopf bifurcation occurs in ,k c  and 
their corresponding periodical solution is stable (blue part of SB in Figure 2.6 b)). In 
this case stable limit cycles exist in the linear unstable region close to the stability 
boundary (Figure 2.6 c)). This means, all trajectories in phase space will approach 
the limit cycle in this region. If 2 0  , subcritical Hopf bifurcation occurs in ,k c  and 
their corresponding periodical solution is unstable (red part of SB in Figure 2.6 b)). As 
depicted by Figure 2.6 a), unstable limit cycles exist in the linear stable region. If 
small perturbations are imposed on the system the trajectories will return to the 
steady state solution (stable behaviour) while, if a critical perturbation amplitude is 
exceeded, the trajectories will diverge in an oscillatory manner, which means the dy-
namical system becomes unstable [19]. Roughly speaking, an unstable limit cycle 
“born” in a subcritical Hopf bifurcation separates a set of trajectories (in phase space) 
which spiral into the steady state solution (singular fixed point) from a set of trajecto-
ries which spiral away ad infinitum of the phase space.  

 

2.4 Numerical integration 
Semi-analytical bifurcation analysis is only valid in the vicinity of the critical bifurcation 
parameter (SB). In order to get information of the stability behaviour beyond the local 
bifurcation findings numerical integration of the set of the ODEs is necessary. Be-
sides, the predictions of the semi-analytical bifurcation analysis can be confirmed 
independently [9-15,23-26,38]. 

The numerical integration code which is written in the MATLAB environment was ex-
tended by an option which allows performing separately steady state or transient 
analysis. Thereby the steady state output contains the steady state solution 0X


, the 

axial void and quality profiles within the thermal-hydraulic flow channels and the di-
mensional pressure drops *

ip  along the closed flow path. 

The numerical integration starts with choosing the point on the two dimensional pa-
rameter space, spanned by the iteration and bifurcation parameter. Further, the user 
has to define the value of the transient time transientt . If 0transientt  , the numerical inte-
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gration code will only perform steady state calculation. If 0transientt  , transient analysis 
will be carried out. In this case, according to  

 0( ) ,X t X X 
  

 (2.4) 

the steady state 0X


 will be perturbed by the small perturbation X


 and the code 
starts numerical integration. As a result, the solution ( )X t


 will be obtained which cor-

responds to the time evolution of all phase space variables for transientt  seconds. Figure 
2.7 shows the flow diagram of the numerical integration code.  

 
Figure 2.7: Summarizing (flow diagram) the analysis using the numerical integra-

tion code  

2.5 ROM analysis with both, BIFDD code and numerical integration 
code 

In order to check the results of BIFDD and of numerical integration for consistencies, 
in a first step, the steady state solution 0X


 provided by BIFDD will be compared with 

the solution provided by the numerical integration code. This check reveals e.g. in-
consistencies in the input parameter vector. Secondly, the transient behaviour pre-
dicted by BIFDD will be verified by numerical integration for selected points. In par-
ticular, the location of the SB will be examined for some significant points. When the 
point of interest is located on the SB, the numerical integration should result in a self-
sustained oscillation.  
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2.6 Novel approach for calculation of the ROM input 
Dokhane et al. [12] have shown that discrepancies exist between ROM predictions 
and RAMONA5 results for the kklc7_rec4 OP. They can be explained by significant 
differences of modelling assumptions between RAMONA and ROM and the uncer-
tainties in evaluating the design and operating parameters (input parameters of the 
ROM) as core averaged values. Hence, the calculation of the ROM input parameters 
should be reconsidered (by taking into account differences of modelling assumptions 
between RAMONA5 and ROM) in a critical way. To this end, the principles of the TU 
Dresden ROM will be summarized.  

It was mentioned in section 2.1, that the main advantage of employing ROM’s is the 
possibility of coupling them with methods of semi-analytical bifurcation analysis. 
Within this framework the stability properties of fixed points and periodic solutions are 
investigated analytically without the need for solving the system of nonlinear differen-
tial equations [9-15,23-26,38]. The ROM result is the basis for systematic system 
code analyses. For this purpose, the solution manifold of the ROM should be as 
close as possible to that of RAMONA5.  

The objective of the ROM development is to construct a model as simple as possible 
from the mathematical and numerical point of view while preserving the physics of 
the BWR stability behaviour [23-26]. Hence, the partial differential equations (PDE) 
describing the BWR will be converted into ordinary differential equations (ODE) for 
example. The ODE system includes all spatial effects in an approximated (spatial 
averaged) manner because e.g. by application of the mode expansion methodology 
[44-46] spatial effects are taken into account by calculation of the amplitude functions 
of the higher spatial modes and realistic assumptions to the higher mode spatial dis-
tributions (calculated by a 3D code called LAMBDA [46]). Furthermore, the PDE of 
the single and two phase region of the thermal-hydraulic heated channels are con-
verted into ODEs by applying the weighted residual method in which spatial approxi-
mations (spatially quadratic time dependent profiles) for the single phase enthalpy 
and the two-phase quality are used (is equivalent to a coarse grained axial discretiza-
tion) [12,47]. Hence, the final ODE describes the dynamics of spatial averaged vari-
ables where the 3D distributions are taken into account in an approximated manner 
by appropriate parameters.  

The multi-channel system is reduced to a few channel system. This means, the geo-
metrical complexity is reduced considerably. The actual ROM is represented by two 
thermal-hydraulic flow channels. It should be noted that all spatially averaged vari-
ables of the ROM correspond to a real stationary core. This means the 3D distribu-
tions (power, void) are calculated by solution of the steady state 3D diffusion equa-
tion. As a consequence, all steady state 3D distributions corresponding to the se-
lected operational point must be determined before a ROM analysis is conducted. 
Hence, in preparation of the ROM inputs, at first, a steady state RAMONA5 run is 
necessary. Secondly, the spatial averaging of the appropriate ROM input variables 
can be conducted [26].  
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Note, if the reactor core configuration will be changed significantly (e.g. by control rod 
movement) all 3D-distributions have to be recalculated. This means, a parameter 
variation in the ROM equation system shouldn’t lead to a significant change of the 
3D-distributions based on the considered operational point. In other words, present 
ROM analyses are valid in an appropriate environment of the selected (reference) 
operational point along a rod line (with fixed control rod configuration). 

According to the main characteristics of the ROM, the approach depicted in Figure 
2.8 is proposed for nonlinear BWR stability analyses using RAMONA5 and ROM as 
complementary tools (RAM-ROM methodology) [26].  

 
Figure 2.8: Novel approach for nonlinear BWR stability analyses using RAMONA5 

and ROM as complementary tools. The demand is that the ROM 
should provide the correct steady state values at the reference opera-
tional point. Thereby the most essential values are the mode feedback 
reactivity coefficients, the core inlet mass flow, the axial void profile 
and the channel pressure drops over the reactor vessel components 
along the closed flow path [26].  
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The goal is to analyse the stability behaviour of the power plant with the ROM as 
close as possible to a real BWR (RAMONA5 model is the reference system) in a 
neighbourhood of a selected operational point. Hence, at first the reference OP has 
to be determined for which the nonlinear BWR stability analysis will be performed. 
Secondly, a novel approach for the ROM input calculation is applied. All ROM inputs 
are calculated from the specific RAMONA5 model and its steady state solution corre-
sponding to the reference point. Thereby differences of model assumptions between 
RAMONA5 and ROM are taken into account as far as possible in the ROM input cal-
culation. Because the axial power profile and the pressure drop along the closed flow 
path are calculated by different types of models and different calculation methodolo-
gies in both codes the subcooling number and the pressure loss coefficients cannot 
be calculated directly from the RAMONA5 model and its steady state output. Hence a 
calculation procedure for the pressure loss coefficients and the core inlet subcooling 
by taking into account the different axial power profiles used by RAMONA5 and ROM 
is developed and applied [26]. 

In the framework of the new calculation methodology of the ROM input parameters it 
is assumed that when the steady state solution of the reference OP is described by 
the ROM as close as possible to the real one (system code prediction), the stability 
behaviour of the BWR system can be represented properly by the ROM in a close 
neighbourhood of this reference point. In particular the specific thermal-hydraulic and 
neutron kinetic states should be described correctly. Thermal-hydraulic states are 
mainly characterized by system pressure, (axial) power profile, core mass flow, core 
inlet subcooling and the pressure drops along the closed flow path [26]. These quan-
tities should provide the correct (axial) void and (axial) quality profile of the heated 
channel. It is assumed when the axial void profiles and the pressure drops along the 
flow channels of two different models or of an experimental facility and its model are 
sufficiently similar, the corresponding thermal hydraulic states and thus their stability 
behaviour should be equivalent (defined similitude-criteria) [26].  

 

2.7 Stability map 
In general, the stability boundary which separates linear stable singular fixed points 
from linear unstable one, is a multi dimensional structure in the m -dimensional pa-
rameter space. The task “calculation of the stability boundary” means: 1) selection of 
one or more parameters k  which will be varied within the domain of definitions and 
2) calculate the critical parameters ,k c  for which the Hopf-conditions are fulfilled. As 
explained previously, in the framework of the semi-analytical bifurcation analysis us-
ing BIFDD, the stability characteristics are projected into the two dimensional pa-
rameter space (stability map) spanned by the iteration and bifurcation parameter. 

From the mathematical point of view, arbitrary design and operating parameters of 
the ROM can be selected to be the iteration and bifurcation parameter in bifurcation 
analyses with BIFDD. But the two parameters subN  (subcooling number) and extDP  
(steady state external pressure drop) yield the most practical information about BWR 
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operating conditions. The variation of extDP  corresponds to a variation of the pump 
head which changes the coolant mass flow. When the coolant mass flow is changed, 
the power will also be changed while the spatial neutron flux distribution will not be 
changed significantly because the control rod positions are kept constant. As a con-
sequence, the stability properties of fixed points and periodical solutions along the 
rod-line of the power flow map which crosses the reference OP can be examined.  

In literature, the subN - pchN -parameter space ( pchN  is the phase change number) is 
commonly used as stability map for thermal-hydraulic systems. In a BWR, a variation 
of the pchN  is effected by variation of the control rod positions which changes the 
spatial neutron flux distribution within the multiplying medium while extDP  (and thus 
the pump head) is fixed. As stated previously, a significant change of the neutron flux 
distribution is not allowed during a parameter variation. In addition to that the subN -

pchN -parameter space is an unfavourable stability map which will be explained in de-
tail in section 4.6. In this section is also shown that in the subN - extDP -parameter space 
the phase change number is a function of the subcooling number and the steady 
state external pressure drop while in the subN - pchN -parameter plane the phase 
change number is only a function of the subcooling number. Hence, if the bifurcation 
analysis is carried out in the subN - extDP -parameter space, all information of the subN -

pchN -parameter space will be included. In other words, the subN - extDP -parameter 
space provides more information than the subN - pchN -parameter space (see section 
4.6).  
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3 ROM extensions 
Firstly, a brief overview about the physics models of the simplified BWR model is 
given (section (3.1)). Secondly, the main ROM extensions in the neutron kinetics and 
thermal hydraulics will be described. The original ROM developed at PSI (PSI-Illinois-
ROM) is summarized in Appendix B.  

3.1 Summary of the ROM 
The current BWR reduced order model (TU Dresden ROM, TUD-ROM) consists of 
three coupled sub-models. These are a neutron kinetic model, a fuel heat conduction 
model and a two-channel thermal-hydraulic model (presented in detail in [12,47]). 
The main characteristics of the ROM are depicted in Figure 3.2. The sub-models of 
the ROM are presented in detail in Appendix B. To summarize, the ROM is a dy-
namical system consisting of 22 ODEs, four from the neutron kinetic model, eight to 
describe the fuel rod heat conduction (two equations for each phase, in each chan-
nel) and ten that describe the thermal hydraulic model (five for each channel) [12]. 
Consequently ( )X t


 is a vector of 22 state variables presented in detail in [12].  

 

 
Figure 3.1: Schematic sketch of the TUD-ROM  
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3.1.1 Neutron kinetic model 
The neutron kinetic model is based on the following assumptions: 

1) Two effective energy groups (thermal and fast neutrons) 

2) Spatial mode expansion approach of the neutron flux in terms of lambda 
modes ( -modes) [46,62,63] 

3) Only the first two modes (fundamental and first mode) are considered [12]. 

4) Only a single, effective group of delayed neutron precursors is consid-
ered [12]. 

5) The contribution of the delayed neutron precursors to the feedback reactivity 
is neglected [12]. 

Taking into account these assumptions, four mode kinetic equations could be devel-
oped, coupled to equations of the heat conduction and the thermal-hydraulic via the 
feedback reactivity terms (void and Doppler feedback reactivities). The methodology 
to calculate the feedback reactivity is presented in 3.2.  

The time dependent two-group neutron diffusion equation can be written compactly 
as 
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where 
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
 [12,64-67].  

( , )r t
   is the neutron flux vector consisting of  
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r t

r t
r t

 
    
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the fast (first component) and thermal neutron fluxes (second component), L̂  is the 
net-loss operator including leakage by diffusion, scattering and absorption, and F̂  is 
the fission production operator.  ,  and l l lC  are the decay constants, concentrations 
and delayed neutron fractions, respectively, for the l -th delayed neutron precursor 
group. A detailed description is given in Appendix B. 

In the steady state case of (3.1), the so-called  -Eigenvalue problem can be written 
as 

 0 0
1 ˆ ˆF ( ) ( ) L ( ) ( )

with 0,..., .

n n
n

r r r r
k

n

  

 
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 (3.3) 

where ( )n r
   are the eigenvectors,  1/n nk  are the corresponding eigenvalues and 

0F̂ , 0L̂  are the steady state fission production and steady state net-loss operators. 


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The eigenvectors ( )n r
   are so-called Lambda-Modes ( -modes) and satisfy the 

biorthogonality relation 

 †
0 0

ˆ ˆF F Fm n m n mn n
V

dV      
   

 (3.4) 

where †
m


 are the adjoint eigenvectors. 

The space and time dependent neutron flux ( , )r t
   and the space and time depend-

ent delayed neutron precursor concentration ( , )lC r t  of (3.1) can be expanded in 
terms of the  -modes as  

 ˆ( , ) ( ) ( )n n
n

r t P t r  
    (3.5) 
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1( )nP t  are the time dependent expansion functions of the first energy group, 2 ( )nP t  are 
the time dependent expansion functions of the second energy group and ( )nlC t  are 
the time dependent expansion functions of the delayed neutron precursor concentra-
tion. Physically, the time and space dependent neutron flux ( , )r t

   is proportional to 
the reactor power ( )Q t . Thus, in the current neutron kinetic model it is assumed that 
both neutron energy groups have the same time evolution. In other words, the ampli-
tude functions are energy independent. In this case, according to 1 2( ) ( ) ( )n n nP t P t P t  , 
the matrix (3.7) reduces to (the matrix is “collapsing” to a scalar) 
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and the expansion (3.5) can be written as  

 ( , ) ( ) ( ) .n n
n

r t P t r  
    (3.9) 

Substituting (3.9) into the biorthogonality relation (3.4) 
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justifies the definition of the time dependent amplitude functions ( )nP t  according to 

 †
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In order to solve the diffusion equation (3.1) for the space and time dependent neu-
tron flux ( , )r t

   the expansion (3.9) and (3.6) are substituted into (3.1) 
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and  
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where the operators L̂  and F̂  are expressed as 

 0
ˆ ˆ ˆL = L L  (3.14) 

 0
ˆ ˆ ˆF = F F  (3.15) 

in terms of a steady state plus an oscillating term (small perturbation), respectively. In 
the next step, (3.12)and (3.13) will be multiplied by †

m


 from the left hand side. Af-
terwards the equations are weighted (divided) by (3.4) and integrated over the whole 
multiplying medium of the reactor core. The result is presented in Appendix B.  

In the next step, the following definitions will be introduced: 
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Taking into account that mm mn    with n m  [12] and using the definitions in (3.16) 
and (3.17), the final neutron kinetic (spatial) mode equations can be written as  

 

1 1( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) ( )l

s F D
m m m mn n mn n l ml

n n lmm mm

D
ml l m mn n l ml

nm

d P t P t P t P t C t
dt

d C t P t P t C t
dt

    

  

           

      

  


(3.18) 

where s
m  is the static reactivity, F

mn  are the dynamical feedback reactivities, and D
mn

, lD
mn  are the delayed feedback reactivities.  

As mentioned above, in the current neutron kinetic model only a single group of de-
layed neutron precursors 1l   is considered and the contributions of D

mn  and lD
mn  are 

neglected [12]. Furthermore, only the fundamental and the first modes are consid-
ered. Hence, the modal kinetic equations can be written as 
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 (3.20) 

A comprehensive discussion is given in Appendix B. 

The dynamical feedback reactivities, F
mn  represent the coupling between the  -

modes and describe the main feedback mechanism between the neutron kinetics 
and thermal hydraulics via void fraction in the two-phase flow region and fuel tem-
perature. In the framework of the ROM development the approximate calculation 
[12,68] of the mode feedback reactivities is one of the crucial tasks. In the approxi-
mations used in previous work [12], the required reactivities mn  were given by 

00 weighting factors( )mn mn   ; this means that in both cases certain weight factors for 
terms different from 0n m   have to be calculated (see section 3.2).  

 



36   

3.1.2 Fuel heat conduction model 
The fuel rod heat conduction model in the current reduced order model was com-
pletely adopted from Karve et al. [47]. This model is based on the one-dimensional 
(radial), time-dependent heat conduction equation for the fuel rod and is based on 
the following assumptions: 

1) Two axial regions, corresponding to the single and two-phase regions, are 
considered, 

2) three distinct radial regions, the fuel pellet, the gap and the clad are modelled 
in each of the two axial regions, 

3) azimuthal symmetry for heat conduction in the radial direction is assumed, 

4) heat conduction in the z-direction is neglected, 

5) time-dependent, spatially uniform volumetric heat generation is assumed. 

These assumptions result in a one-dimensional (radial) time dependent partial differ-
ential equation (PDE). By assuming a two-piecewise quadratic spatial approximation 
for the fuel rod temperature, the PDE can be reduced to a system of ODEs by apply-
ing the variation principle. A detailed derivation is presented in [12,47]. 

In summary, for each channel, four ODEs are developed from the heat conduction 
PDE. These ODEs are for the two coefficients of each of the two spatially piecewise 
quadratic representations of the fuel pellet temperature in the single and two-phase 
regions of the channel. In an explicit index form, these ODEs can be written as 

 1, ,
1,1, , 1, , 2,1, , 2, , 3,1, , 0 0 1

( )
( ) ( ) ( ( ) ) ( )j l

j l j l j l j l j l q q

dT t
ll T t ll T t ll c P t P c P t

dt


           
  (3.21) 

 2, ,
1,2, , 1, , 2,2, , 2, , 3,2, , 0 0 1

( )
( ) ( ) ( ( ) ) ( )j l

j l j l j l j l j l q q

dT t
ll T t ll T t ll c P t P c P t

dt


           
  (3.22) 

where 1   , j  stands for single (1 ) or two-phase ( 2 ) region, l  stands for chan-
nel number (1 or 2) and 0P  is the steady state (reference) value of the amplitude 
function corresponding to the  -modes. Note that, the final ODEs were derived using 
the symbolic toolbox of MATLAB. A detailed description is given in Appendix B and a 
complete derivation is presented in [47]. 
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3.1.3 Thermal hydraulic model 
The thermal hydraulic behaviour of the BWR is represented by two heated channels 
coupled by the neutron kinetics via the mode feedback reactivities and by the recircu-
lation loop (hydraulic coupling). This sub-model is based on the following assump-
tions: 

1) The heated channel, which has a constant flow cross section, is divided into 
two axial regions, the single and the two-phase region. 

2) All thermal hydraulic values are averaged over the flow cross section. 

3) The dynamical behaviour of the two-phase region is presented by a drift flux 
model (DFM) [58-61,69-71] where mechanical non equilibrium is assumed, 
i.e. difference between the two phase velocities, and a radial non-uniform 
void distribution is considered. The DFM represents the stability behaviour of 
the two-phase more accurately than a homogeneous equilibrium model, in 
particular for high void content. 

4) The two phases are assumed to be in thermodynamic equilibrium. 

5) The system pressure is considered to be constant. 

6) The fluid in both axial regions and the downcomer is assumed to be incom-
pressible. 

7) Around the closed flow path, mechanical energy terms are very small com-
pared with the thermal energy terms. Consequently, the kinetic energy, po-
tential energy, pressure gradient and friction dissipation are neglected in the 
energy balance.  

8) The PDEs (three-dimensional mass, momentum and energy balance equa-
tion) are converted into the final ODEs by applying the weighted residual 
method in which spatial approximations (spatially quadratic but time-
dependent profiles) for the single phase enthalpy [12,47] and the two-phase 
quality are used (is equivalent to a coarse grained axial discretization). 

9) The downcomer (constant flow cross section) region is considered to be a 
single phase region. 

10) All physical processes which are connected with energy increase and energy 
decrease are neglected in the downcomer. Consequently the core inlet sub-
cooling is a boundary condition which is nearly realized by the nuclear power 
plants (predicted by RAMONA5). 

11) The pump head due to the recirculation pumps is considered to be constant (
headP const  ) 

Figure 3.2 depicts a schematic sketch of the thermal hydraulic model including the 
recirculation loop. The sub-model consists of three parts. These are the two heated 
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channels and the downcomer section. The common lower plenum and the common 
upper plenum are only shown to indicate that all channels are coupled hydraulically. 

 

 
Figure 3.2: Schematic sketch of the thermal hydraulic two-channel model includ-

ing outer loop section. 

The coolant enters the core channel i  inlet (single phase region) with the inlet veloci-
ties ,vi inlet  and the inlet enthalpy inleth  and the heat is released by nuclear fissions in 
the fuel, conducted to the coolant. At a certain axial level (boiling boundary ( )t ), 
where the coolant reaches the saturation state, the coolant starts to boil. Above the 
boiling boundary (two-phase region), the coolant is a mixture of water and steam. 
Because of the thermodynamic equilibrium between the two phases, the heat gener-
ated in the fuel is completely used for steam production. 
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Single phase region [12,47,69-74] 

The single phase region extends from the channel inlet to the boiling boundary ( )t . 
As mentioned above the dynamical behaviour within this region is represented by the 
three conservation laws (mass, energy and momentum) for the liquid phase. In order 
to convert the energy balance from a PDE into an ODE, a time-dependent, spatially 
quadratic distribution 

 2
1 2( , ) ( ) ( )inleth z t h a t z a t z    (3.23) 

for the enthalpy is introduced [47] and the weighted residual procedure is applied. 
Thereby, it will be integrated from the channel inlet to the boiling boundary. As a re-
sult, the ODEs  

 1 2 ,1 1
6( ) 2v ( ) ( ) ( ) v ( ) ( )inlet r pch inlet

d a t t a t N N N t t a t
dt           (3.24) 

 2 ,1 12

6( ) ( ) v ( ) ( )r pch inlet
d a t N N N t t a t
dt          (3.25) 

for the time dependent functions 1( )a t  and 2 ( )a t  of the quadratic distribution (3.23) 
are obtained. 1( )a t  and 2 ( )a t  are the state variables of the single phase region. A 
detailed derivation is presented in Appendix B.  

 

Two phase region [10-15] 

The two phase region extends from the boiling boundary ( )t  to the channel exit. As 
mentioned above the dynamical behaviour within this region is represented by a drift 
flux model which is based on four conservation laws [58-61,69-76], i.e. the continuity 
equation of the gas phase and the three conservation laws (mass, energy and mo-
mentum) for the two phase mixture. In the current work, the density wave phenome-
non plays a dominant role so that the mass transport problem was transformed into 
the void propagation formulation [75,76].  

As mentioned above (for the conversion from PDE’s into ODE’s), the flow quality 
( , )x z t  in the two phase region will be described by a time dependent, spatially quad-

ratic distribution 

    2
1 2( , ) ( ) ( ) ( ) ( )rx z t N N s t z t s t z t         (3.26) 

analogous to the enthalpy distribution in the single phase region [12]. The ODEs can 
be obtained by applying the weighted residuals method with the weight functions 

1wg   and wg z . Thereby, it will be integrated from the boiling boundary to the 
channel exit. The final ODE’s can be written as 

 ,21
1 2 3 4

5 5

( )v ( )1 ( ) 1( ) ( ) ( ) ( )
( ) ( )

pchinlet dN td tds d tff t ff t ff t ff t
dt ff t dt dt ff t dt

           
 (3.27) 
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 ,22
6 7 8 9

10 10

( )v ( )1 ( ) 1( ) ( ) ( ) ( ) .
( ) ( )

pchinlet dN td tds d tff t ff t ff t ff t
dt ff t dt dt ff t dt

           
(3.28) 

A detailed derivation is presented in Appendix B.  

 

Channel inlet velocity 

The channel inlet velocity ,v ( )n inlet t  of the n -th heated channel is a further state vari-
able of the ROM. In order to get the final ODEs for the channel inlet velocities, the 
momentum equations of all considered regions have to be integrated over the closed 
loop  
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 (3.29) 

where *
inletP  and *

exitP  are the channel inlet and channel exit pressure drops and *
chP  

is the pressure drop over the heated channel. *
chP  with * * *

1 2chP P P       is the sum 
of the single phase *

1P  and two phase *
2P   pressure drops. In the PSI-Illinois-

ROM, the second integral of (3.29) was set equal to the steady state external pres-
sure drop extDP . In this case, the closed loop integration can be written as  

 * * * * *
, ,1 ,2 , .n inlet n n n exit extP P P P P           (3.30) 

In the PSI-Illinois-ROM, the final ODE for the inlet channel velocity of the n -th heated 
channel can be derived from equation (3.30). The result can be written as ([12])  

 ,
, ,11 ,12 ,13

,14

( )( )1v ( ) ( ) ( ) ( ) .
( )

n pchn
n inlet n n n

n

dN td td t ff t ff t ff t
d t ff t dt dt

 
   

 
 (3.31) 

The derivation of the final ODE for the channel inlet velocity, where the recirculation 
loop is included, is discussed in section 3.3.  
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3.2 Mode feedback reactivity calculation 

3.2.1 Calculation of the mode feedback reactivity in the ROM 
In this section two different methods to calculate the void and fuel temperature mode 
feedback reactivity coefficients are compared. The first of them is the original method 
used in the PSI-Illinois ROM [12,46,63]. The second method has been developed at 
UPV Valencia (Spain) in cooperation with the TU Dresden (Germany) during this 
work [68].  

As presented in section 3.1.1, the mode feedback reactivity is defined as  

 , ,
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ˆ ˆ[ F L]

ˆ
m nF F Void F Doppler

mn mn mn

m nF

 
  

  
  

 

 

   (3.32) 

and can be split to a sum of the mode void feedback reactivity ,F Void
mn  and the mode 

Doppler feedback reactivity ,F Doppler
mn . Thereby ,F Void

mn  and ,F Doppler
mn  are defined sepa-

rately as 
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and  
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For generalization, the mode feedback reactivity ,F
mn   due to the effect   with 

,void Doppler   will be defined as 
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   (3.35) 

The idea of the original method is, first, to express the mode feedback reactivity in 
terms of the fundamental mode feedback reactivity ,

00
F   and second, to approximate 

the fundamental mode void feedback reactivity by a linear dependence around its 
steady state value in terms of the void fraction perturbation and to approximate the 
fundamental mode Doppler feedback reactivity by a linear dependence around its 
steady state value in terms of the fuel temperature perturbation, respectively.  

In order to take into account the in-phase and out-of-phase oscillation modes, the 
reactor core is divided into two radial regions r  (with 1,2r  ) of the same size and 
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approximately the same steady-state properties. In the following, the contribution of 
each core region to the feedback reactivity , ,F r

mn   regarding to the effect X  will be 
calculated. The feedback reactivities , ,F r

mn   and , ,
00
F r   are defined as  

 , ,
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and  
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where  

 0 0 0 00 0 0F̂ F F .   
 

 (3.38) 

According to the definition of 0F , r
0F  can be defined as  

 r r
0 00 0 0 0 0

ˆF F F .
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 (3.39) 

With the definition (3.39), expression (3.37) can be rewritten as  
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where r
00WD  is a weight factor. In the next step, the definition (3.36) is multiplied by 

, , , ,
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and then be written as  
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 (3.42) 



ROM extensions  43 

where r
mnWD  are the reactivity weight factors. In expression (3.42) the mode feed-

back reactivity , ,F r
mn   of region r  due to the effect X  is expressed by means of 

, ,
00
F r   and by the weight factor 00/r r

mnWD WD .  

It should be emphasized that in a BWR the mode feedback reactivity , ,F r
mn   has an 

axial quadratic dependence of the form  

  2, , , , ,
1 2 3( ) ( ) ( ) ( ) ,F r r r r r r P r

mn k k k k
k

t C C t C t W t               (3.43) 

where P
kW  is a square power weight factor  
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 (3.44) 

of the k -th axial node. In the context of the ROM development, the axial dependence 
of , ,F r

mn   is ignored and the averaged (weighted) value of region r , see definition 
(3.36), is used. The reason is that the axial dependence of the reactor power is also 
ignored in the ROM. Instead of a real axial power profile, an uniform axial power pro-
file represented by the core averaged reactor power is used. Note that, if the real ax-
ial power profile including the real axial dependence of , ,F r

mn   is taken into account in 
the ROM, the system of equations would become complicated and non-transparent 
which is a contradiction in the framework of the ROM methodology [43,83]. This sim-
plification can be the reason for the necessity of introducing the artificial factor mnfact  
(introduced later) used to increase the feedback gain coupling the first and funda-
mental mode in order to excite the out-of-phase oscillation mode. This was shown by 
Ginestar et al. [83]. But an independent proof is recommended in a future work. 

For the sake of simplicity, a linear dependence around the mean void and mean fuel 
temperature in terms of the void fraction perturbation and fuel temperature perturba-
tion can be assumed for the void and fuel temperature feedback reactivity. This as-
sumption is reasonable because the amplitudes of the power oscillations generate 
only small void and fuel temperature oscillations [68]. Thus, it is not necessary to 
take into account the exact dependence of the mode feedback reactivities on the void 
and the fuel temperature.  

The time dependence of the fundamental mode feedback reactivity is approximated 
as  

 , , ,
00 1 00( ) ( ) ,F r r r rt C t WD       (3.45) 

where ,
1

rC  is artificially defined as the reactivity coefficient of the considered region 
r  respect to the effect X .  

After substituting the approximation (3.45) in (3.42) the mode feedback reactivity (re-
lated to the region r ) due to the effect X  can be written as 

 , , ,
1 ( ) .F r r r r

mn mnC t WD       (3.46) 

The expression for the weight factor r
mnWD  can be approximated by substituting the 

perturbations in the production and loss operators by average values [12]. In addition 
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to that the steady-state production operator is substituted by an average value for the 
whole reactor core. Then the reactivity weight factor r

mnWD  in (3.46) can be written as 
([12]) 
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Consequently, the void mode feedback reactivity and the Doppler mode feedback 
reactivity can be written as 
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and  
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respectively. The calculation of the mode feedback reactivities , ,F Void r
mn  and , ,F Doppler r

mn  
in the PSI-Illinois-ROM is based on the approximations (3.48) and (3.49) [12].  

The second way of computing the mode void feedback reactivity and the mode Dop-
pler feedback reactivity is based on the same concept as described above. The dif-
ference is that the mode feedback reactivities , ,F Void r

mn  and , ,F Doppler r
mn  will be 

calculated with the linear relationship according to 

 , , , ( )F Void r Void r r
mn mnC t    (3.50) 

 , , , ( ) .F Doppler r Doppler r r
mn mnC T t    (3.51) 

They depend on the void and the fuel temperature perturbations and the coefficients 
,Void r

mnC  and ,Doppler r
mnC  which are called void and Doppler mode feedback reactivity coef-

ficients. The idea of this method is to avoid the approximation (3.42) and the calcula-
tion of the weight factors r

mnWD . The calculation of the mode feedback reactivities 
, ,F Void r

mn  and , ,F Doppler r
mn  in the current ROM version is based on (3.50) and (3.51). 

To summarize, the original way of computing the mode feedback reactivities is based 
on the approximations (3.48) and (3.49) where the coefficients 1

VoidC  and 1
DopplerC  and 

the weight factors r
mnWD  have to be calculated before ROM analyses are performed 

while in the second method, which is based on the approximations (3.50) and (3.51), 
only the mode feedback reactivity coefficients ( ,Void r

mnC  and ,Doppler r
mnC ) have to be calcu-

lated. The computation of the mode feedback reactivity coefficients ,Void r
mnC  and 

,Doppler r
mnC  is explained in the next section. 

Finally, according to (3.32), the mode feedback reactivity F
mn  of the ROM differential 

equation system can be calculated as 
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where mnfact  with 

 
1 0,1

mn

m n
fact

fact m n
 

  
 (3.53) 

is an artificial factor, introduced as a multiplier of the corresponding feedback reactiv-
ity, in order to increase the feedback gain coupling the first and fundamental mode.  
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3.2.2 Calculation of mnC  

In order to calculate the mode reactivity coefficients ,Void r
mnC  and ,Doppler r

mnC  of both core 
regions 1r   and 2r  , steady state RAMONA runs are necessary. At first, a 
RAMONA run is performed at the reference OP. Afterwards the corresponding mac-
roscopic cross sections (reference cross sections) were extracted from the RAMONA 
output file and converted such that the result can be used for solving the steady state 
 -Eigenvalue problem (3.3) with the code LAMBDA_REAC. As a result, the eigen-
values 1/n nk   and the corresponding eigenvectors ( )n r

   ( -modes) are calcu-
lated [12,44-46,62,63].  

Secondly, artificial cross section perturbations corresponding to void and fuel tem-
perature perturbations (  and T ) are imposed on the steady state system and 
steady state RAMONA runs are performed, respectively. RAMONA provides options 
to introduce separately artificial cross section perturbations in the void fraction and 
fuel temperature. In particular, imposed a perturbation on the void fraction involves 
the void feedback reactivity only and imposing a perturbation on the fuel temperature 
involves the Doppler feedback reactivity. The perturbed macroscopic cross sections 
for each artificial effect are then converted to the LAMBDA_REAC-format. Finally, the 
LAMBDA_REAC code is applied to calculate the mode feedback reactivities , ,F r

mn   of 
the effect X  (  and T ) and region r , separately [12].  

 
Figure 3.3: Flow-chart of the LAMBDA_REAC code 
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The mode feedback reactivity coefficients ,Void r
mnC  and ,Doppler r

mnC  can be calculated using 
the linear approximations (3.50) and (3.51), respectively.  

In the following, some results of the original calculation methodology (M1) for ,Void r
mnC  

and ,Doppler r
mnC  are compared with the results of the new method (M2) for NPP Leibstadt 

and NPP Ringhals. The results for ,Void r
mnC  and ,Doppler r

mnC  are summarized in Table 3.1 
and Table 3.2. 

Table 3.1: Void mode feedback reactivity coefficients in / %pcm void  for NPP 
Leibstadt (KKL) and NPP Ringhals (KKR) 

 KKL 

M1 

KKL 

M2 

KKR 

M1 

KKR 

M2 
,1

00
VoidC  -38.2 -37,1 -31.2 -25.4 

,2
00
VoidC  -38.8 -37.6 -31.3 -25.4 

,1
01
VoidC  -31.9 -30.8 -28.7 -24.0 

,2
01
VoidC  31.9 30.8 28.7 24.0 

,1
10
VoidC  -30.6 -30.4 -28.9 -24.9 

,2
10
VoidC  30.5 30.2 28.9 24.9 

,1
11
VoidC  -36.5 -35.8 -31.2 -27.4 

,2
11
VoidC  -36.2 -35.6 -31.1 -27.3  

 

Table 3.2: Doppler mode feedback reactivity coefficients in /pcm K  for NPP 
Leibstadt (KKL) and NPP Ringhals (KKR) 

 KKL 

M1 

KKL 

M2 

KKR 

M1 

KKR 

M2 
,1

00
DopplerC  -1.0 -1.04 -1.17 -1.08 

,2
00
DopplerC  -1.0 -1.06 -1.17 -1.08 

,1
01
DopplerC  -0.86 -0.86 -1.07 -0.99 

,2
01
DopplerC   0.86 0.87 1.07 0.99 

,1
10
DopplerC  -0.83 -0.83 -1.08 -1.01 

,2
10
DopplerC  0.82 0.83 1.08 1.01 

,1
11
DopplerC  -0.99 -0.99 -1.17 -1.09 

,2
11
DopplerC  -0.98 -0.98 -1.17 -1.09 
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According to the technical documentation of the NPP Leibstadt for the begin of cycle 
7 (KKLc7rec4) [5,6] the void feedback reactivity coefficient is about 100 / %pcm void  
and the Doppler feedback reactivity coefficient is between 2 and 4 /pcm K . The cor-
responding void feedback reactivity coefficient of the ROM is approximately the sum 
of the coefficients ,1

00
VoidC  and ,2

00
VoidC  for both core regions. The results are 

38 38 = 76 / %pcm void  and 2 /pcm K  for the original method and 
37 37 = 74 / %pcm void  and 2 /pcm K  for the new method.  

Table 3.1 and Table 3.2 show that both methods for the calculation of ,Void r
mnC  and 

,Doppler r
mnC  provide similar results for both nuclear power plants. This result was ex-

pected from the reactor theory point of view. The disadvantage of the original method 
is that the weight factors r

mnWD  and the coefficients ,
1
Void rC  and ,

1
Doppler rC  have to be 

calculated cumbersomely before ROM analyses are performed. This is not necessary 
in the second method. Here only the mode feedback reactivity coefficients ( ,Void r

mnC  
and ,Doppler r

mnC ) have to be calculated. Consequently, the new calculation methodology 
for the coefficients ,Void r

mnC  and ,Doppler r
mnC  is qualified for ROM analyses. In addition to 

that the general effort for the calculation of ,Void r
mnC  and ,Doppler r

mnC  by employing the new 
method is significantly lower.  
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3.3 Recirculation loop 

3.3.1 The recirculation loop model 
The PSI-Illinois-ROM used a fixed total pressure drop extP const   with respect to 
time as a boundary condition (equation(3.55)) [12]. According to 

 
1 0

_

0 1

0 h ch recircp pp dz dz dz
z z z

 
  

      (3.54) 

 
1

_

0

0 ,h ch
ext

p
dz P

z


   
  (3.55) 

the outer loop (second integral in (3.54)) was replaced by the boundary condition 
(first integral represents the pressure drop of the heated channel). This is a reason-
able approximation to represent the real stability behaviour in an out-of phase oscilla-
tion mode. Note, however, in this case the stability behaviour of the in-phase oscilla-
tion mode can not be simulated correctly. Hence, the ROM was extended by a recir-
culation loop model [23,24]. 

In the following, a short description of the recirculation loop model is given. In this 
notation, an asterisk on a variable or parameter indicates the original dimensional 
quantity, while any quantity without an asterisk is dimensionless. 

The mass balance of the downcomer can be written as 

 * ( ) 0totm t
z




  (3.56) 

and the total mass flow * ( )totm t  

 * * * * *
, ,( ) ( ) v ( )tot n f n inlet n inlet

n n

m t m t A t       
    (3.57) 

can accordingly be expressed by the sum of the core channel mass flows * ( )nm t , be-
cause the coolant in all hydraulic regions is considered to be incompressible. Here, n  
is the channel number and *

,n inletA  is the flow cross section of the n -th heated chan-
nel. 

The energy balance of the downcomer is reduced to a boundary condition 
* *

_inlet doc inleth h const   because the energy gain and the energy loss are neglected. 

The momentum balance of the downcomer can be written as 

 
2* * **

* *1
* * * * * *

( ) ( )
2

doc tot tot
f

doc f doc doc

p m t m tf g
z t A D A




    
           

   (3.58) 

where the term on the left hand side describes the pressure drop in the downcomer, 
the first term on the right hand side describes the pressure drop due to inertial effects 
of the coolant, the second term states the downcomer friction and the last term is the 
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gravity term. *
docA  is the downcomer flow cross section, *

docD  is the hydraulic diameter 
of the downcomer, *

totm  is the total mass flow, *
f  is the liquid density and *

1f   is the 
single phase friction factor. Substitution (3.57) into (3.58) and transforming into di-
mensionless form lead to 

 
2

2 1
, 1 ,v ( ) v ( )doc

ol n inlet f ol ol n inlet
n n

p A t N A D t Fr
z t




               
   (3.59) 

where olA  and olD  are defined as * */ol inlet docA A A and * */ol h docD D D  ( *
hD  hydraulic di-

ameter of the heated channel). 

The ODEs for the channel inlet velocities ,v ( )n inlet t  are determined by expres-
sion (3.54) in which the pressure drop over the recirculation loop is given by 

 
0

1 1

.
o

recirc doc
head

p pdz dz P
z z

 
  

    (3.60) 

The evaluation of equation (3.54) with expression (3.60) was performed by using the 
symbolic toolbox of MATLAB. The final ODE for the n -th heated channel can be writ-
ten as 

 
2

, , 1 ,v ( ) ( ) ( ) v ( ) ( ) v ( )n inlet n n n inlet n f ol ol n inlet
n n

d dt A t B t t B t N A D t
d t dt 

         
   
  (3.61) 

where ( )nA t  is defined as 

 ,
,11 ,12 ,13

,14

( )( )1( ) ( ) ( ) ( ) 1
( )

ext

n pchn
n n n n head

n Fr DP

dN td tA t ff t ff t ff t Fr P
ff t dt dt





 
      
 
 

  (3.62) 

and ( )nB t  is defined as ,14( ) / ( )n ol nB t Fr A ff t . The time dependent intermediate 
terms ,11( )nff t , ,12 ( )nff t , ,13 ( )nff t  and ,14 ( )nff t  are calculated in [12]. The time inde-
pendent terms of (3.60) are included in function ( )nA t , where extDP  is the steady state 
external pressure drop with 1

ext headDP Fr P   , where the downcomer friction is ne-
glected. In the steady state case, the integral (3.60) can be approximated as  

 
0

1

1

,recirc
head ext

p dz Fr P DP
z


     

  (3.63) 

because the contribution of the downcomer friction is very small in (3.61). In section 
3.3.2 will be demonstrated that the effect of the downcomer friction on the thermal-
hydraulic stability behaviour is very small. In addition to that the downcomer friction is 
not considered in RAMONA5. Hence, it can be neglected for BWR stability analyses. 

Equation (3.63) relates the steady state external pressure drop to the pump head. In 
addition to that (as expected) it can be seen that the steady state core inlet velocity 

, ,0vn inlet  does not depend on the downcomer flow cross section. This means, , ,0vn inlet  
depends on headP  or extDP  only.  
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As expected, each ODE for ,v ( )n inlet t  is hydraulically coupled because of (3.57) with 
all the other heated channels. Equation (3.61) is the ODE for the channel inlet veloc-
ity ,v ( )n inlet t  of the n -th heated channel.  

Due to practical relevance, the ODEs for ,v ( )n inlet t  was written separately for the one- 
and the two-heated channel cases. The result for the one-heated- channel case is 

  2
1

1v v
1inlet f ol ol inlet

d A B N A D
d t B 

   
 (3.64) 

and the ODEs for ,v ( )n inlet t  in the two-heated-channel case ( 1,2n  ) can be written as 

 

21 ,12 1 1 2 1
1, 1, 2,

1 2 1 2

22 ,11 2 2 1 2
2, 1, 2,

1 2 1 2

v v v
1 1

v v v .
1 1

f ol ol
inlet inlet inlet

f ol ol
inlet inlet inlet

B N A DA B A B Ad
d t B B B B

B N A DA B A B Ad
d t B B B B





    
       

    
       

 (3.65) 

According to equation (3.61) (second and third term on the right hand side), ,v ( )n inlet t  
depends on all heated channels. The inertial term contributes to the mass flow 
changes of all heated channels. Thus, the inertial term of the downcomer momentum 
balance describes the impact of all heated channels on the n -th heated channel. 
From the physical point of view, if the downcomer flow cross section is increased ( olA  
decreases), the inertial effects of the downcomer mass flow decrease. For docA   
the ratio 0olA   which corresponds to the constant external pressure drop boundary 
condition. In this case ( 0olA  ), the inertial term in the downcomer momentum bal-
ance vanishes and the n -th heated channel is independent of all the other heated 
channels. This means, the change of the mass flow in the k -th heated channel does 
not affect the n -th heated channel. Consequently, if the ratio olA  is zero ( 0olA  ) the 
inertial effects of the downcomer vanish and (3.61) is reduced to ,vn inlet nA  (original 
ODE) which is the result of expression (3.55) evaluated in [12] (final ODEs for the 
heated channel inlet velocities presented by Dokhane [12] with 1

ext headDP Fr P   ). 
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3.3.2 The effect of the recirculation loop model on the stability behaviour 
of a simple thermal-hydraulic one heated channel model 

In this subsection, the impact of the recirculation loop of the thermal hydraulic one 
heated channel model in the HEM limit on the stability boundary (SB) and bifurcation 
characteristics (BCH) are investigated [23,24]. This sub-model, in the following re-
ferred to as TH-model, is a subset of the TUD-ROM. In particular, the TH-model is a 
set of 5 nonlinear ODE’s ((3.24), (3.25), (3.27), (3.28) and (3.64)) for the state vari-
ables 1( )a t , 2 ( )a t , 1( )s t , 2 ( )s t  and v ( )inlet t . The input parameters of the TH-model are 
based on the TH-model used originally by Dokhane et al. [12,13] for its validation 
against experimental data (Saha et al. [77]).  

3.3.2.1 Bifurcation analysis using BIFDD 
In order to study the impact of the recirculation loop of the TH-model on the SB and 
BCH, the ratio olA  is varied in small steps (which corresponds to the variation of the 
downcomer flow cross section *

docA ) and semi-analytical bifurcation analysis is carried 
out by employing BIFDD. The bifurcation parameter is pchN  and the iteration parame-
ter is subN . By setting 0olD   downcomer friction is not considered in (3.64). Because 
of practical relevance the ratio olA  and subN  were varied in the interval 

[0.0,..., 2.0]olA   and [0.1,..., 4.0]subN  , respectively. Figure 3.4 shows SB’s in the subN
- pchN -parameter space and the corresponding BCH’s for different olA -values.  
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Figure 3.4: Results of the SB’s and the corresponding BCH’s for different ratios 

[0.0,..., 2.0]olA   are presented.  
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The stability boundaries shift to the right hand side for increasing olA  values. The set 
of stable fixed points increases in the subN - pchN -parameter space and thus the sys-
tem becomes more stable. This behaviour is in line with the well-known density wave 
oscillation (DWO) mechanism [69-74,77,78]: the larger the bypass cross section, the 
better the boundary condition externalDP const  is fulfilled (constant external pressure 
drop over the channel) and thus self-sustained density wave oscillations can occur. 
The set of fixed points, where unstable limit cycles exist, decreases for increasing olA  
values because the set of subcritical PAH bifurcation points decreases. This fact has 
safety relevance (in a general sense) because such fixed points may deceptively ap-
pear as stable fixed points if the perturbation is sufficiently small. If the disturbance 
overcomes the critical amplitude, however, the fixed point becomes unstable.  

To analyse the influence of the downcomer friction separately, the ratio olD  was var-
ied in [0.0,...,0.14]olD   where olA  was set 1.2olA  . Figure 3.5 and Figure 3.6 pre-
sent the results of the bifurcation analyses for the olD  variation.  
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Figure 3.5: Stability boundaries in the subN - pchN -parameter space for different ra-

tios olD  with [0.0,...,0.14]olD  .  

Figure 3.5 clearly shows that the stability boundaries shift to the left hand side for 
increasing olD  values. Consequently, the system becomes more unstable. On the 
other hand, the number of subcritical fixed points decreases for increasing olD  values 
shown in Figure 3.6. But both figures also show that the stability behaviour of the dy-
namical system is not significantly sensitive to the olD  variation. Practical values of 

olD  are within the interval [0.02,...,0.04]olD  . As shown in Figure 3.5, the effect of 
olD -deviations is small. Thus, the downcomer friction can be neglected in further in-

vestigations. 
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Figure 3.6: Poincarè-Andronov-Hopf bifurcation characteristics in the subN - 2 -

parameter space for different ratios olD  with [0.0,...,0.14]olD  . 
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3.3.2.2 Numerical integration  
The semi-analytical bifurcation analysis is valid only in the vicinity of the SB. Hence, 
to obtain information about of the stability behaviour beyond the local bifurcation find-
ings, numerical integration of the set of the ODEs is necessary. In addition to that, 
the predictions of the semi-analytical bifurcation analysis can be confirmed inde-
pendently by employing numerical integration. To this end, the ODEs are integrated 
(in the time domain) in the MATLAB environment, where a Runge-Kutta method was 
used. 

The aim of this section is to show the numerical integration method by means of the 
thermal-hydraulic one heated channel model in a close neighbourhood of two points, 
defined in Figure 3.7, respectively.  
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Figure 3.7: Definition of two points, A and B on the SB for 1.2olA  . In point A su-

percritical PAH-B are predicted. In point B subcritical PAH-B are pre-
dicted.  

Numerical integration results with parameter configurations corresponding to point A 
and B are presented in the following.  

 

Analysis at point A: 

On the left hand side of point A, stable fixed points are predicted. For the analysis in 
this region the phase change number was changed from the critical value 

10.7671pchN   to 10.7pchN   and a perturbation in the inlet velocity vinlet  was intro-
duced to the system (steady state). Figure 3.8 presents the time evolution of vinlet . It 
is clearly shown that the system is stable. 
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Figure 3.8: Time evolution of vinlet . The system is stable.  

On the right hand side of the SB, stable limit cycles of the dynamical system are pre-
dicted. In order to confirm this prediction, pchN  was changed from the critical value 

10.7671pchN   to 10.78pchN   and the same perturbation amplitude vinlet  was im-
posed on the system. As shown in Figure 3.9, the existence of a stable periodic solu-
tion is confirmed by numerical integration at this point. 
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Figure 3.9: Time evolution of vinlet  (stable periodic solution). 
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Analysis at point B: 

A subcritical bifurcation is predicted at point B. Consequently, unstable limit cycles 
are expected in the stable region close to point B. The numerical integration was car-
ried out in the linear stable region at 7.2151pchN  . At first, a small perturbation (

v 0.01inlet  ) is imposed on the system and numerical integration is carried out. The 
result is shown in Figure 3.10. In the second step, a six times larger perturbation am-
plitude ( v 0.06inlet  ) was imposed on the system. The result is shown in Figure 3.11. 
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Figure 3.10: Time evolution of vinlet . The system is stable for the relative small per-

turbation amplitude v 0.01inlet  . 
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Figure 3.11: Time evolution of vinlet . The system is unstable for the relative large 

perturbation amplitude of v 0.06inlet  .  
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The results of the numerical integration at the point B confirm the prediction of the 
semi-analytical bifurcation analysis. Roughly speaking, the system is stable for suffi-
cient small perturbations and unstable for sufficient large perturbations.  

On the right hand side of point B the system is unstable. The results of the numerical 
integration carried out in this region are not presented here.  

 

3.3.2.3 Summary 
The study of the impact of the recirculation loop on the SB and PAH-B was carried 
out by variation of the downcomer flow cross section. The results show clearly that 
the stability behaviour of the thermal hydraulic one heated channel model is very 
sensitive to variations of the downcomer flow cross section. The larger the down-
comer flow cross section the more unstable the system is. If the downcomer flow 
cross section is infinitely large, the boundary condition of a constant external pres-
sure drop will be fulfilled.  

The dominant term in the momentum balance of the downcomer is the inertial term. 
In contrast, the friction term in this balance equation do not have a significant impact 
on the thermal-hydraulic stability characteristics. This result is in line with the 
RAMONA5 model in which downcomer-friction is not taken into account. Hence, 
downcomer friction will be neglected in all further analyses.  

Additionally, numerical integration of the TH-model was carried out in the close re-
gion of two points located on the SB. The dynamical behaviour predicted by the 
semi-analytical bifurcation analysis could be confirmed independently by the numeri-
cal integration.  
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3.3.3 The effect of the recirculation loop model on the stability behaviour 
of the ROM (coupled model) 

In the framework of this investigation, the impact of the recirculation loop on both in-
phase and out-of-phase oscillation mode of the ROM based on NPP Leibstadt cycle 
7 record #4 (KKLc7_rec4 [5,6,79]) data is analysed. To this end, semi-analytical bi-
furcation analysis with BIFDD is performed. Besides, a modified BIFDD version is 
employed to examine the set of fixed points where the complex conjugated eigenval-
ues with the second largest real parts are zero.  

In the scope of this analysis, the following definitions are made:  

 eigenvalue or pair of complex conjugated eigenvalues ( 1 ) of the Jacobian 
matrix of the ROM differential equation system with the largest real part: 

1Re( ) Re( ) 1i i with i      or 1Re( ) Re( ) 1i i with i      

 eigenvalue or pair of complex conjugated eigenvalues ( 2 ) with the second 
largest real part: 1 2Re( ) Re( ) Re( ) 1,2i i with i        or 

1 2Re( ) Re( ) Re( ) 1, 2i i with i        

 The eigenvectors inp  and outp  of the linearized BWR system (ROM) corre-
spond to specific eigenstates which are referred to as in-phase oscillation 
mode and out-of-phase oscillation mode, respectively. The eigenvalues corre-
sponding to inp  and outp  are in  and out . As will be shown later, out  and in  
are the eigenvalues with the largest and second largest real parts for the ref-
erence OP of KKLc7rec4.  

Before continuing, the general solution of the linearized system of the dynamical sys-
tem (2.1) in section 2.2 is discussed (also presented in Appendix A). In order to lin-
earize the dynamical system (2.1) at the steady state solution 0X


, the Ansatz  

 0( ) ( )X t X X t 
  

 (3.66) 

is substituted in (2.1) and a Taylor-expansion is applied  
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 (3.67) 

where the linear term is taken into account, only. The result is  

 ,d X J X
dt
 
 

 (3.68) 

where J  is the Jacobian matrix defined as  
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Equation (3.68) is the linearized system of (2.1) at 0X


. The solution of equation 
(3.68) can be written as  

 0( ) .JtX t e X 
 

 (3.70) 

Roughly speaking, the solution (3.70) describes the time evolution of the small per-
turbation X


 which is imposed on the steady state 0X


 at 0 0t t   with 

0 0( )X t t X  
 

. According to equation (3.70), the time evolution of X


 only de-
pends on J . In turn, J  depends on the parameter vector  .  

In order to evaluate (3.70), the linear transformation  

 ( ) ( )X t P U t 
 

 (3.71) 

is performed such that the Jacobian matrix can be transformed into the Jordan nor-
mal form. To this end, the eigenvalue problem  

 i i iJ p p   (3.72) 

has to be solved, where ip  are the eigenvectors with their corresponding eigenvalues 
i  of the Jacobian matrix. The transformation matrix P  can according to 

 1,..., ,...,i nP p p p
    be written in terms of the eigenvectors ip . In other words, the 

columns of P  are the eigenvectors ip  of the Jacobian matrix.  

In the linear system (3.68) the vector X


 is substituted by Ansatz (3.71) and the final 
equation is multiplied by 1P  from the left hand side. The result can be written as  

 1 ,d U P J P U DU
dt

 
  

 (3.73) 

where D   
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 (3.74) 

is the Jacobian matrix transformed into the Jordan normal form. If all eigenvalues of 
J  are real and distinct, the matrix D  will have a diagonal form.  

The solution of (3.73) can be written as  

 0( )
0( ) ,D t tU t e U


 (3.75) 
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where 0 0X P U 
 

. The inverse transformation gives  

 0 0( ) ( ) 1
0 0( ) .D t t D t tX PU t Pe U Pe P X     

  
 (3.76) 

The general solution of the linearized system (3.68) can be written as  
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 (3.77) 

where the constants ic  can be calculated from the initial conditions.  

As can be seen in (3.77), the stability behaviour of the linearized system in the vicin-
ity of 0X


 depends on the real parts of the eigenvalues i  of J  with ( )i i   . Ac-

cording to (3.77) all components ( )ix t  of the general solution contain all eigenvalues 
i  of J . This means, if there is at least one pair of complex conjugate eigenvalues 

with a positive real part, the system will be unstable. If all eigenvalues have strictly 
negative real parts, the system will be stable. When a selected control parameter is 
changed and the eigenvalue with the largest real part becomes zero, bifurcation 
analyses as explained in sections 2.2 and 2.3 are necessary.  

 

3.3.3.1 Bifurcation analysis using BIFDD 
The selection of the reference OP and the procedure to calculate the ROM (the artifi-
cial factor fact  is 5fact  ) input is presented in section 4.2. In the scope of the bifur-
cation analysis, subN  and extDP  are defined to be the iteration and bifurcation parame-
ters, respectively, and the downcomer friction is neglected. In order to study the ef-
fect of the recirculation loop on the BWR stability behaviour, the ratio olA  was varied. 
Thereby, a change of * */ol inlet docA A A  corresponds to a change of the downcomer flow 
cross section *

docA . For calculation of ratio olA  from the RAMONA5 model, the flow 
cross section of downcomer 2 (DC2, see [32]) was taken into account. The result is 

12.68olA   and is considered to be the reference value for this analysis.  

At first, the bifurcation analysis is carried out for 12.68olA  . The stability boundary is 
shown in Figure 3.12. The analysis has shown that the pair of complex conjugate 
eigenvalues with the largest real part corresponds to the out-of-phase oscillation 
mode ( 1 out   with 1Re( ) Re( ) , 1i i i     ). For this parameter configuration, all 
the other eigenvalues have strictly negative real parts. This means, only the out-of-
phase mode is excited at operational points for which 1Re( ) 0   (linear unstable re-
gion).  

The bifurcation characteristics are presented in Figure 3.13 and show that 2  is al-
ways positive ( 2 0  ). This means, unstable periodical solutions are predicted in the 
linear stable region close to the stability boundary. Figure 3.14 show the SB trans-



62   

formed into the power flow map where the 112% rod-line and the exclusion region for 
cycle 7 are included.  
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Figure 3.12: Stability boundary for 12.68olA  .  
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Figure 3.13: Bifurcation characteristics for 12.68olA  .  
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Figure 3.14: SB transformed into the power flow map.  

Secondly, the ratio olA  was changed to 6.75olA   and bifurcation analysis has been 
carried out. The analysis has shown (Figure 3.15) that there is a small region close to 
the reference OP where the in-phase mode is excited ( Re( ) 0in  ) for 6.75olA  . But 
at the reference OP, only the out-of-phase mode is excited, because Re( ) 0out   and 
Re( ) 0in   with 2 in  . The SB and the nature of the PAH-B have not changed.  
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Figure 3.15: Stability boundary for 6.75olA  . The bifurcation characteristics are 

unchanged. 
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Furthermore, bifurcation analyses for the ratios 6.00olA   and 4.00olA   have been 
performed, respectively. The stability boundaries for both cases are presented in 
Figure 3.16 and Figure 3.17, respectively. The nature of the PAH-B for 4olA   and 

12.68olA   is shown in Figure 3.18.  
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Figure 3.16: Stability boundary for 6.00olA  .  
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Figure 3.17: Stability boundary for 4.00olA  .  
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Figure 3.18: Nature of the PAH-B for the reference case and 4.00olA  .  

The bifurcation analysis has shown that the downcomer flow cross section variation 
does not have an effect on the out-of-phase oscillation mode because the olA  varia-
tion does not change the locations of operational points where Re( ) 0out  , in the 

subN - extDP -parameter map. On the other hand, the olA  ( docA ) variation has a signifi-
cant effect on the in-phase oscillation mode. If olA  is decreased ( docA  will be in-
creased), the set of fixed points for which the in-phase mode is excited, will grow. In 
other words, if the downcomer flow cross section is increased, the region where 
Re( ) 0in   (in the subN - extDP -parameter space) is growing.  

Furthermore, as can be seen in Figure 3.15, Figure 3.16 and Figure 3.17 the real part 
of the pair of complex conjugated eigenvalues associated with the in-phase oscilla-
tion mode is passing the real part of the pair of complex conjugated eigenvalues as-
sociated with the out-of-phase oscillation mode with increasing downcomer flow 
cross section ( olA   decreasing). E.g. such crossing points are depicted in Figure 
3.17, point A and B. The effect of passing real parts of both pairs of complex conju-
gated eigenvalues associated with the in- and out-of-phase oscillation modes on the 
bifurcation characteristics are presented in Figure 3.18. In point A and B the bifurca-
tion characteristics are changing significantly. If Re( ) Re( )in out  , 2 0   and if 
Re( ) Re( )out in  , 2 0  .  
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3.3.3.2 Numerical integration 
Numerical integration was performed at the reference OP for different olA  ratios 

[12.68, 8.0, 7.0, 6.0]olA  . The transient was initiated by introducing perturbations in the 
channel inlet velocities with opposite sign (an in-phase oscillation is triggered).  
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Figure 3.19: Numerical integration for 12.68olA  .  
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Figure 3.20: Numerical integration for 8.00olA  . 
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Figure 3.21: Numerical integration for 7.00olA  .  
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Figure 3.22: Numerical integration for 6.00olA  . 

The numerical integrations for different downcomer flow cross section confirm the 
prediction of the bifurcation analyses. 
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3.3.3.3 RAMONA5 analysis 
In the following subsection, RAMONA5 analyses are performed at the reference OP 
(but with 120 /subh kJ kg ) where the downcomer flow cross section (DC2) is varied. 
The reference value of *

docA  is * 20.25docA m . The transient is initiated by imposing a 
sinusoidal control rod perturbation into the steady state system (additional informa-
tion about the KKL-RAMONA5 model and the locations of the LPRM’s is given in 
section 4.1).  
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Figure 3.23: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The global power oscillation is strong decaying. 
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Figure 3.24: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The global power oscillation is decaying.  
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Figure 3.23 to Figure 3.26 show results where *
docA  was varied in the interval 

* 2[0.25,...,1.0]docA m . It can be seen, the larger the downcomer flow cross section 
the slower the decay of the in-phase oscillation mode is, while the out-of-phase oscil-
lation mode is not affected. 
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Figure 3.25: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. This figure clearly show that the global power oscillation 
is decaying not so strong as in Figure 3.24 and Figure 3.25.  
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Figure 3.26: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively.  
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From the first 80 seconds (Figure 3.26), it can be seen that the global and regional 
power oscillations are superposed. When the amplitudes of the global power oscilla-
tions become small enough, the regional power oscillation will dominate. The nature 
of the regional power oscillation, however, is not affected. 
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Figure 3.27: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The global oscillation is unstable 
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Figure 3.28: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The global oscillation is unstable. 
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In Figure 3.27 and Figure 3.28 show that the growing regional power oscillation is 
superposed by a growing global power oscillation. The larger the downcomer flow 
cross section, the more unstable the global power oscillation is. 

The analysis of the downcomer flow cross section variation with the system code 
RAMONA5 has shown that docA  has a strong impact on the stability property of the in-
phase oscillation mode while the stability behaviour of the out-of-phase oscillation 
mode is not affected. This result is consistent with the result of the ROM analysis. 

 

3.3.3.4 Physical interpretation 
In the following, the momentum balance (3.58) of the recirculation loop and the final 
ODE’s (3.65) for the channel inlet velocities are taken into account. Thereby the out-
of-phase oscillation mode ( outp ) and the in-phase oscillation mode ( inp ) are consid-
ered separately. The goal is to show that the out-of-phase oscillation mode is inde-
pendent of the downcomer flow cross section while the in-phase oscillation mode 
depends on it. In other words, it will be shown that the out-of-phase eigenstate outp  is 
approximately (if downcomer friction is neglected) independent of docA . In this case, 
Re( )out  will not change significantly under docA  variations.  

The out-of-phase mode (out-of-phase eigenstate, see definition in section 3.3.3) is 
characterized by thermal-hydraulic and heat conduction properties that have opposite 
sign in both channels. In particular, if both channels are identical, the derivatives of 
the inlet channel mass flows ( *

1m  and *
2m ) respect to time have opposite sign 

* *
1 2m m    and thus the total mass flow is constant * ( )totm t const  in relation (3.57). 

Consequently, the inertial term (first term on the right hand side) in the momentum 
balance (3.58) vanishs for * ( )totm t const  (downcomer friction is not considered) and 
thus the downcomer pressure drop only depend on the gravity term which is a con-
stant. Hence, for the out-of-phase oscillation mode, the momentum balance (3.58) is 
independent of docA . In this case, the integral (3.60) is constant and is equal to the 
steady state external pressure drop  
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    (3.78) 

The final ODEs are then reduced to the form of ,v ( ) ( )n inlet nt A t  (where ( )nA t  is de-
fined in (3.62)). Function ( )nA t  is independent of the downcomer flow cross section. 
Hence, the variation of docA  has none effect on the out-of-phase oscillation mode be-
cause due to * ( )totm t const  the downcomer momentum balance becomes independ-
ent of docA  and thus the integral (3.60) is equal to the steady state external pressure 
drop. As a conclusion, the stability properties of the out-of-phase oscillation mode (or 
out-of-phase eigenstate) are independent of the downcomer flow cross section. This 
is consistent with the RAMONA5 and ROM results.  

The in-phase oscillation mode (in-phase eigenstate) is characterized by thermal-
hydraulic and heat conduction properties that have the same sign in both channels. 
In particular, the derivatives of the inlet channel mass flows ( *

1m  and *
2m ) respect to 
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time have the same sign and thus the total core mass flow is not constant with re-
spect to time. Hence, the downcomer momentum balance (3.58) depends on docA . 
Consequently, the final ODEs (3.65) for the channel inlet velocities depend on docA  
(see definition of ( )nB t ). Consequently, the in-phase oscillation mode depends on 

docA . From the coupled system (3.61), it can be deduced that, the more olA  will be 
increased ( docA  is decreased) the more of the momentum of the n -th channel is 
transferred to the downcomer which has (according to the RAMONA5 and ROM re-
sults) a stabilizing effect for the in-phase oscillation mode.  

 

3.3.3.5 Conclusions 
This analysis has shown that the recirculation loop has a significant impact on the 
stability properties of the in-phase oscillation mode, while the out-of-phase oscillation 
mode is not affected. The larger the downcomer flow cross section, the more unsta-
ble the in-phase oscillation mode is. The limit 0olA   corresponds to the constant 
external pressure drop boundary condition. Consequently, BWR stability analysis 
should always be performed including the recirculation loop. It should be emphasized 
that the stability properties for the reference OP of KKLc7rec4 can only be repro-
duced correctly by the ROM if the correct downcomer flow cross section of the 
RAMONA5 model (DC2) is used. In this case, ROM and RAMONA5 results are con-
sistent.  

In other words, the new ROM, where the recirculation loop is implemented, simulates 
correctly the oscillation mode: the out-of-phase oscillation is excited and the in-phase 
mode is decaying. As mentioned in the introduction of the thesis, the original ROM 
was not able to correctly predict the oscillation mode. Responsible for the correct 
simulation of the oscillation mode is the implemented recirculation loop model, in 
which the downcomer flow cross section of the RAMONA5 (DC2) model is used as 
input parameter, and the increased artificial factor 5mnfact   with m n . 
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3.4 Subcooled boiling 

3.4.1 The modified profile fit model 
As mentioned in section 3.1.3, the two phase region of the thermal-hydraulic model 
of the ROM is represented by a Drift-Flux-model where thermodynamic equilibrium 
between the two phases is considered. In real two phase flow systems, however, 
there is a region between the single- and two-phase regions where thermodynamic 
equilibrium between the two phases does not exist. The liquid phase is subcooled, 
but local boiling from the heated surface appears. The void fraction of this region is 
not taken into account by the current thermal-hydraulic model of the ROM. Hence the 
void fraction axially integrated over the two-phase flow region 2   is underestimated 
in the current ROM version. 

Note that, the void fraction is the dominant feedback parameter coupling the neutron 
kinetics with the thermal hydraulics. The feedback gain, the void profile and the 
channel pressure drops determine the thermal-hydraulic state. Hence, it is obvious to 
extend the reduced order model by a model which takes into account the subcooled 
boiling phenomenon in order to simulate the BWR stability behaviour more realistic. 
The questions to be answered in this section are:   

 is it necessary to take into account the subcooled boiling phenomenon in the 
ROM and,  

 which model for describing the subcooled boiling phenomenon is appropriate.  

It can be proved that the ROM must be extended by a third region where a mecha-
nistic model describes the thermodynamic non-equilibrium between the two phases 
and the void generation on the heated surface. Such a model extension requires ex-
tremely large effort. Therefore, in the scope of this work, the effect of the subcooled 
boiling on the BWR stability behaviour has been approximately estimated by a modi-
fied profile fit model (Levy, 1966 [27]).  

Before describing the subcooled boiling model used in this analysis, a short summary 
of the subcooled boiling phenomenon will be given [27,69-74]. In general subcooled 
boiling is characterized by the fact that the mean enthalpy *h  of the liquid phase is 
less than saturation ( * *

sath h ), but local boiling from the heated surface appears. 
The bubbles removed from the heated surface are travelling through the subcooled 
liquid and are collapsing because of condensation processes. One part of the power 
is transferred into the subcooled liquid while the rest is invested in steam production. 
Consequently, besides the appearance of the additional void fraction scool , the heat 
transfer conditions are changed in the subcooled boiling region.  

Figure 3.29 shows a sketch of a typical void profile in a vertical (z-direction) heated 
pipe during a forced coolant convection. The subcooled liquid is entering the channel 
inlet with the inlet enthalpy *

inleth  and the inlet velocity *vinlet  and is heated along the z-
direction. While travelling through the channel the mean coolant enthalpy *h  is in-



74   

creasing. The region between the channel inlet and level * *
voidagez   is called the sin-

gle phase region. 

 

 
Figure 3.29: Typical axial void profile of forced coolant in a heated pipe [27,69-74].  

At level * *
voidagez  , characterized by * *( )l voidageh h , the first vapour bubbles appear 

and from * *
voidagez   to * *

dz   more and more bubbles are forming on the heated 
wall. This region, commonly denoted as the wall voidage region, is characterized by 
the fact that the forces (for example the buoyant force) exerted on the vapour bub-
bles are smaller than the forces (for example the surface tension force) maintaining 
the bubbles on the wall. Consequently, the vapour bubbles remain in contact with the 
wall in this region. 

At level * *
dz   with * *( )l dh h , called void departure point, the vapour bubble size 

is large enough to leave the surface and the vapour volumetric fraction rise signifi-
cantly. The region between * *

dz   and * *z  , also termed detached voidage re-
gion, is characterized by a mean enthalpy lower than saturation ** *

l sath h h  . 

At location * *z   the mean enthalpy is at saturation but the liquid enthalpy is less 
than saturation ** *

l sath h h  . Due to this fact, in this region and also in the detached 
voidage region heat exchange processes between the two phases occur such that 
thermodynamic equilibrium does not exist. 
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The liquid phase reaches the saturation state at level * *
eqz z . Above this location 

thermodynamic equilibrium between the two phases is nearly realized. Heat trans-
ferred into the coolant is completely invested in steam generation. 

The subcooled boiling model is based on the following assumptions:  

1) Wall voidage is not taken into account so that the subcooled boiling region is 
defined to be the detached voidage region plus the region between * *z   
and * *

eqz z . 

2) The heat transfer conditions in the subcooled boiling region are considered to 
be the same as the heat transfer condition in the single phase region  

3) For the determination of the void departure point *
d , the criteria of Saha and 

Zuber (1974) [69-74,77] are applied 

4) The drift flux relation [27,69-74] between the volumetric void fraction and the 
flow quality is used 

The profile fit model used in the current analysis is based on Levy`s (1966) [27] rela-
tionship  
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relating the thermodynamic equilibrium quality eqx  to the “true” flow quality  scoolx . 
Here, eqx  is defined as  

 
* *

*

( , )
( , ) .sat

eq
fg

h z t h
x z t

h





 (3.80) 

Expression (3.80) is the heat balance where thermodynamic equilibrium is assumed 
and the quality dx  at the void departure point *

d  is defined as  
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 (3.81) 

where 
*

( , )dh t  is the coolant mean enthalpy at *
d  (below *

d  the volumetric void 
fraction is approximately zero). Because ( )eq d dx x  , then ( ) 0scool dx    [27,73]. On 
the other hand, as the “true” flow quality scoolx  increases and becomes large enough 

scool dx x  and positive, where non-thermodynamic equilibrium stop to exist, then 
scool eqx x . 

For the description of subcooled boiling in the ROM using the profile fit model (3.79), 
the values dx  and eqx  which are defined in (3.80) and (3.81), have to be estimated. 
As mentioned in assumption 3), for the determination of the mean enthalpy 

*
( , )dh t  

at the void departure point, the criteria of Saha and Zuber (1974)  
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are applied [72,73], where *
plc  is the specific heat capacity of liquid water. The criteria 

(3.82) can be rewritten in terms of dimensionless numbers, the phase change num-
ber ,1pchN   and the single phase conversion number cov,1N   
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The dimensionless parameter ,1pchN   and cov,1N   are defined as 

 

* * * * *"* * * *
,1 01

,1 cov,1* * * * * * * * * *
0 0

* *

* *

,
v v

,

hh
pch

inlet fg g f inlet fg g f

f g
r

f

h T Lq LN N
A h A h

where N and N

  
   

 
 

 
 


 

 

 


 (3.84) 

where *
0T  is the saturation temperature of the liquid phase.  

In order to calculate the thermodynamic equilibrium quality eqx , the mean enthalpy 
*h  along the flow channel should be determined. In the current analysis *h  is ex-

pressed by the quadratic enthalpy profile  
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used for converting the original energy balance (PDE) to an ordinary differential 
equation by applying the weighed residual method. Substituting (3.85) into (3.80) 
yields  
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where the definition of the subcooling number subN  
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is used.  

The point of bubble departure d  is the level at which the coolant mean enthalpy is 
equal to 

*
( , )dh t . Hence, d  can be obtained by applying the boundary condition 

( , ) ( , )d dh t h t   in the quadratic enthalpy profile (3.85). Accordingly (as shown in 
section 3.1.3), the bulk boiling boundary   is determined by the boundary condition 

( , ) ( , ) sath t h t h   . The results for d  and   are  
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where  idh  is defined as ( , )id d inleth h t h    and can be rewritten as 
id r sub dh N N N x   . 

Finally, the axial void profile ( )scool scool z   can be calculated using the drift flux rela-
tion [27,69-74]  
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is the relation for mechanical equilibrium conditions and  
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can be assumed as a correction term which takes into account the mechanical non-
equilibrium between the two phases.  
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3.4.2 Analysis with the TH-model 
The first analysis with the included subcooled boiling model was performed with the 
simple thermal-hydraulic one heated channel model (TH-model, see subsection 
3.3.2). The aim is to analyse the differences between the axial void profiles provided 
by the original two-phase flow model (so-called bulk boiling model) and the sub-
cooled boiling model. The investigation is performed for thermal-hydraulic conditions 
which are relevant for BWR stability analysis.  

The axial void profiles have been calculated by employing the numerical integration 
code, where only steady state calculations have been performed (see section 2.4 
and Figure 2.7). At first, this analysis has been carried out at the selected reference 
OP. This OP is characterized by  
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Furthermore, the axial void profiles have been calculated for five different OPs, 
where the system pressure *P  and the total coolant mass flow *

totm  are fixed and the 
power and core inlet subcooling have been varied as shown in Table 3.3.  

 

Table 3.3: Variation of the power and core inlet subcooling 

subN  * ( )Q kW  

1 50 (ref.OP) 

2 50 

3 50 

1 40 

1 30 

1 20 

The results of this analysis are presented in the following (from Figure 3.30 to Figure 
3.35).  
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Figure 3.30: Comparison of the axial void profiles calculated by the bulk boiling 

model and the subcooled boiling model for the reference OP. 
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Figure 3.31: Comparison of the axial void profiles calculated by the bulk boiling 

model and the subcooled boiling model for 2.0subN  . 



80   

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

P*    = 12,1 bar
m*tot = 0.5 kg/s
Q*    = 50.0 kW
Nsub  = 3.0

  2(z) bulk boiling model
  scool(z) profile fit model

z = z*/L*

(z)

Axial void profile

 
Figure 3.32: Comparison of the axial void profiles calculated by the bulk boiling 

model and the subcooled boiling model for 3.0subN  .  
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Figure 3.33: Comparison of the axial void profiles calculated by the bulk boiling 

model and the subcooled boiling model for * 40.0Q kW .  
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Figure 3.34: Comparison of the axial void profiles calculated by the bulk boiling 

model and the subcooled boiling model for * 30.0Q kW .  
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Figure 3.35: Comparison of the axial void profiles calculated by the bulk boiling 

model and the subcooled boiling model for * 20.0Q kW .  

In order to quantify the differences between the calculated axial void profiles of the 
bulk boiling model and the subcooled boiling model, the mean void fraction of the 
channel ( 2

tot   and tot
scool ) and the mean void fraction of the two phase region ( 2   
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und scool ) are calculated for all OP’s presented in Table 3.3. These quantities are 
defined as 
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and  
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which can be used to calculate the relative deviation tot  and    according to  

 2
tot tot

tot scool
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The results for the mean void fractions and the relative deviations are summarized in 
Table 3.4 and Table 3.5.  

 

Table 3.4: Mean void fractions and the corresponding relative deviations 

subN  2
tot   2   tot

scool  scool  tot     

1 0.59017 0.67841 0.60626 0.6375 0.02654 0.06418 

2 0.47914 0.64793 0.49508 0.60335 0.03220 0.07389 

3 0.37133 0.60968 0.38708 0.56089 0.04069 0.08698 
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Table 3.5: Mean void fractions and the corresponding relative deviations 

* ( )Q kW  2
tot   2   tot

scool  scool  tot     

20.0 0.26713 0.41169 0.27523 0.37707 0.02943 0.09182 

30.0 0.41011 0.53537 0.42120 0.49723 0.02633 0.07670 

40.0 0.50360 0.61070 0.51704 0.57088 0.02599 0.06975 

 

The results show that the relative deviations tot  of the channel mean void fractions 
are less than 4.1% for operational points relevant for BWR stability analyses.  
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3.4.3 Analysis with the ROM for KKLc7rec4 
As will be described in more details in section 4.2.1, the axial power profile in the 
ROM is approximated by a uniform axial profile. In contrast to this the real axial 
power profiles of real BWR systems are typically bottom peaked. Ignoring the true 
axial power profile leads to deviations between the axial void profiles calculated with 
RAMONA5 and ROM, where the system pressure, the core inlet subcooling, the core 
inlet mass flow and the core averaged power of the RAMONA5 model are used as 
ROM input. The aim of this section is to compare the effect of the use of the uniform 
axial power profile in the ROM with the effect of neglecting subcooled boiling on the 
axial void profiles.  

The present ROM investigation is performed for KKLc7rec4. The goal is to estimate 
the deviation between the axial void profile calculated by RAMONA5 and ROM (with-
out adjustment of the axial void profile, explained in 4.2.1). For this purpose, the 
steady state calculations with RAMONA5 and ROM have been performed for the se-
lected reference OP and afterwards the resulting axial void profiles have been evalu-
ated. Note that for this analysis the correct core inlet subcooling, core averaged 
power, system pressure and core inlet mass flow that are obtained from the 
RAMONA5 model, are used as input for the ROM.  
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Figure 3.36: Comparison of the axial power profiles and the corresponding axial 

void profiles of RAMONA5 and ROM for the reference OP.  

Figure 3.36 shows the significant deviation between the axial void profiles due the 
use of different axial power profiles in RAMONA5 and ROM while the core inlet sub-
cooling, the core averaged power, the system pressure and the core inlet mass flow 
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are equal in both models. The channel averaged void fractions and the correspond-
ing relative deviations between both axial void profiles are calculated as  
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Similar analyses have been performed for NPP Ringhals and NPP Brunsbüttel. It 
turned out that the use of a uniform axial power profile, instead of the real one (NPP 
Leibstadt, NPP Ringhals and NPP Brunsbüttel) induces deviations between axial 
void profiles calculated by RAMONA5 and ROM in the order of magnitude of about 
16% (16% to 19%). In contrast to that the neglecting of subcooled boiling leads to a 
relative deviation of about 5% (without adjustment of the axial void profile, described 
in subsection 4.2.1). It is repeatedly emphasized that the large discrepancy will exist 
only, if the axial void profile of the ROM hasn’t been adjusted. As will be shown in 
subsection 4.2.1, after applying the adjustment procedure for the axial void profile of 
the ROM, the deviation between the channel averaged void fraction calculated by 
RAMONA5 and ROM (original two phase flow model) are less than 1% (see Figure 
4.20). Consequently, from the thermal-hydraulic point of view and in the framework of 
the thesis analysis approach, the considering of the subcooled boiling phenomenon 
is not necessary.  
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4 BWR Stability Analyses for NPP Leibstadt 
In order to gather stability data for the beginning of cycle 7 of the NPP Leibstadt 
(KKL) a stability test was performed on September 6th 1990 [5,6,79]. In this test, 
while the neutron flux was oscillating out-of-phase, both rotational and counter-phase 
oscillatory patterns (this means that the symmetry line orientation which divides the 
core into two halves during azimuthal out-of-phase oscillations was not fixed but os-
cillating or rotating) were observed. The time evolution of the averaged core thermal 
power during the stability test (record #4 and record #5) is shown in Figure 4.1 
[5,6,79].  

 
Figure 4.1: Core thermal power during the stability test (record 4 and record 5) 

[5,6,79].  

The test was initiated by pulling out control rods. The onset of un-damped regional 
power oscillations occurred at approximately 57% power (100% Power = 3138MW) 
and 36.5% coolant mass flow (100% mass flow = 11151 kg/s). Further increase in 
power to 59% at 23:38 caused the oscillations to grow to approximately 30% peak-to-
average on several LPRM. In order to suppress the growing power oscillation, the 
core thermal power was then reduced to 49% power by inserting control rods. After 
about ten minutes, the stability test for the previous operational point was repeated. 
Enhanced oscillation amplitudes were observed for this point, again. The oscillations 
were then suppressed by reinserting control rods and the stability test was termi-
nated. The time evolution of the LPRM 19 of record #4 is presented in Figure 4.2. 
More details of this test are given in [5,6,79]. The locations of the LPRM’s are pre-
sented in Figure 4.10 of subsection 4.1.2. 
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Figure 4.2: Measured LPRM signal and its corresponding power spectral density 

[5,6,79]. 

The regional power oscillations appear in records #4 and #5 of the stability test. Fig-
ure 4.3 shows the signals of LPRM 9 and LPRM 31 of record #4.  
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Figure 4.3: Time evolution of the LPRM signals, measured in KKLc7_rec4. 
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As a result of the stability test, a growing regional power oscillation with a natural fre-
quency of 0.58 Hz ( * 10.58NF s ) is occurring in the considered operational point. 
Furthermore, the power spectral density shows the higher harmonics of the oscilla-
tion which indicates the nonlinear character of the oscillation, such as a stable limit 
cycle.  

In the scope of this work, the nonlinear stability analysis is based on data which cor-
responds to record #4. These parameters are input values of the system code 
RAMONA given in [5,6,79]. The operational point of record #4 is given by 

 

Power 59.5% (1867.11 )
Flow 36.5% (4072.12 / )

Subcooling 104.0 /
Pressure 69.74 .

MW
kg s

kJ kg
bar






 (4.1) 

It should be emphasized that, in order to represent with RAMONA5 the real stability 
behaviour of the selected operational point a code tuning was necessary. In particu-
lar the channel inlet loss coefficients, the channel wall friction, the slip correlation co-
efficients, the coolant bypass fraction and the core inlet subcooling were modified in 
the known uncertainty region.  

Figure 4.4 shows the control rod positions and the corresponding numbers of fuel 
elements in a quarter core. This configuration is composed symmetrically around 

8, 8x y  . 

 
Figure 4.4: Control rod positions of a quarter core. 
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The control rod configuration of the entire core is shown below (Figure 4.5). 
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Figure 4.5: Control rod configuration used in RAMONA5 for KKL cycle 7 record 4 

in units of notches. 1 notch 7.62 cm . 48 notches means the control 
rod is complete out (withdrawed) of the core and 0 means the control 
rod is complete inside (inserted) the core. 

To analyse the stability behaviour of the operational point, an initial perturbation is 
imposed on the system by two control rods (see Figure 4.6) and the LPRM/APRM 
histories are calculated. Thereby a sinusoidal control rod movement is introduced. 
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Figure 4.6: Configuration of the control rod perturbation. The amplitude is given in 

units of axial RAMONA-nodes. The opposite sign (and colour) indi-
cates that the initial amplitude of the perturbation has an opposite di-
rection. 
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For the present nonlinear BWR stability analyses the operational point given in (4.1) 
is defined to be the reference OP but the core inlet subcooling is modified to a value 
of 3125.0 10 /kJ kg .  

4.1 RAMONA5 analysis at the reference OP 

4.1.1 Steady state analysis 
As mentioned in the previously, in the first step of the nonlinear stability analysis with 
RAMONA5, the steady state distributions will be evaluated and prepared for the 
ROM input calculation. Furthermore, in general, before stability analysis with 
RAMONA5 can be conducted, selected steady state distributions such as the axial 
power and axial void profiles, which are generated by RAMONA5 will be compared 
with the corresponding PRESTO-2 results. PRESTO-2 is a comprehensive validated 
core simulator. The total values should not differ more than 10 %  [79]. This check is 
not shown in the scope of the thesis. Instead of that it will be indicated that all steady 
state results of RAMONA5 and PRESTO-2 are consistent within the assumed 10 %  
error region. In this section only selected steady state results most significant for the 
BWR stability behaviour are presented. 

Figure 4.7 and Figure 4.8 show the radial power distribution, axially averaged. As can 
be seen, the specific control rod configuration which is depicted in Figure 4.5 influ-
ences the radial power in such away that the radial power distribution has a bowl 
form convenient for generating out of phase power oscillations.  

 
Figure 4.7: Three dimensional radial power distribution axially averaged for NPP 

Leibstadt (reference OP). The Z-Axis corresponds to the relative 
power ( 110 ). 
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Figure 4.8: Radial power distribution axially averaged for NPP Leibstadt (refer-

ence OP). 

Figure 4.9 shows the axial profile of the relative power, radially averaged, and the 
corresponding axial void profile calculated by RAMONA 5.2-5 for the reference OP. 
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Figure 4.9: Axial power and axial void profile, radially averaged, respectively. 
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The power peak in the lower part of the channel is mainly caused by the moderation 
characteristics of neutrons in the single phase region where the coolant has a higher 
density respect to the upper parts of the channel. The higher the coolant density 
(mixture density!) the more efficient the neutron moderation is and the higher is the 
neutron density and accordingly the more energy will be deposed in the coolant 
(more elastic and inelastic collision of neutrons with the target material). The axial 
power profile (Figure 4.9) is reflected by the axial void profile for a given coolant 
mass flow and a fixed parameter configuration.  

 

4.1.2 Transient analysis 
The transient behaviour is initiated by introducing a 2 node sinusoidal control rod 
movement resulting in a perturbation of the state variables of the BWR system. The 
signals of the LPRM 9 (10) and 26 (32) of the fourth level which are located in differ-
ent core half’s are selected for the evaluation of the transient behaviour. Note that, 
RAMONA predicts a fixed symmetry line. The core shape, symmetry line and the lo-
cations of the LPRM detectors of the fourth level are presented in the next figure. 

 
Figure 4.10: Locations of the LPRM detectors for KKLc7_rec4. The LPRM detec-

tors 9 and 26 are located in different core half’s.  
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Figure 4.11 shows the time evolution of the LPRM signals 9 and 26. As can be seen, 
an increasing out of phase power oscillation is occurring at the reference OP. The 
frequency of the oscillation is * 10.537NF s . All RAMONA5 investigations for the 
reference OP and its close neighbourhood have shown that the out of phase power 
oscillation will not discharge into a stable limit cycle. It should be emphasized that the 
existence of a stable limit cycle cannot be verified by RAMONA5 and measurement 
results but its existence must not be excluded because as shown in the power spec-
tral density of LPRM 26 (Figure 4.12) the higher harmonics occurs. If a limit cycle 
with large amplitudes exists (from the mathematical point of view), the RAMONA5 
integration can be interrupted before reaching the limit cycle when specific termina-
tion conditions are satisfied.  
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Figure 4.11: RAMONA5 result for the reference OP. The relative amplitudes of sig-

nals are shown for LPRM 9 and LPRM 26. Both LPRM signals have a 
phase shift of  .  

 
Figure 4.12: Power spectral density corresponding to LPRM 26 of the fourth level. 
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In order to demonstrate the essential stability properties corresponding to the refer-
ence OP more clear, the core inlet subcooling was reduced from 125 /subh kJ kg  to 

120 /subh kJ kg  (where sub sat inleth h h  ) which is legitimate because the latter value is 
located within the uncertainty region.  
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Figure 4.13: Signals are shown (relative amplitudes) of LPRM 10  and 32  in the 

fourth level respectively. 

As shown in Figure 4.13, the increasing rate of the oscillation for 120 /subh kJ kg  is 
smaller than for the reference case. Figure 4.14 depicts clearly a phase shift of   
between both LPRM-signals. 
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Figure 4.14: In this figure are shown the signals of LPRM 10  and 32  in the fourth 
level (relative amplitudes). The signals have a phase shift of  . 



96   

During an out-of-phase power oscillation the power and the total mass flow, aver-
aged over the whole core, are approximately constant. These characteristics are 
shown in the next two figures. After twenty seconds, numerical noise only occur. 
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Figure 4.15: The relative power, averaged over all nodes is shown.  
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Figure 4.16: The total mass flow in the reactor core is presented.  

 



BWR Stability Analyses for NPP Leibstadt  97 

4.2 Calculation of the ROM input parameters 
As stated in section 2.6 all ROM inputs are calculated from the specific RAMONA5 
model and its steady state solution corresponding to the reference OP. To this end, a 
steady state RAMONA5 run for the reference OP is necessary. Afterwards the new 
calculation methodology for the ROM input parameters is applied. Thereby the de-
mand is that the ROM should provide the correct steady state values at the reference 
OP. Most essential quantities are the mode feedback reactivity coefficients, the core 
inlet mass flow, the axial void profile and the channel pressure drops along the 
closed flow path.  

In the scope of this section, at first, the adjustment of the axial void profile is ex-
plained (section 4.2.1). Thereby the pressure loss coefficients as well as the core 
inlet subcooling corresponding to the axial void profile are calculated. Secondly, the 
calculation of the mode-feedback reactivity coefficients (section 3.2.2), the estimation 
of the drift flux parameters gjV  and 0C  (section 4.2.2) and the calculation of the ROM 
pressure drops (section 4.2.3) are presented.  

 

4.2.1 Adjustment of the axial void profile  
In addition to the core inlet mass flow, the core inlet subcooling and the system pres-
sure, the most essential factor for determining the axial void profile is the axial power 
profile. In the actual reduced order model (as an approximation) a uniform axial 
power profile is assumed. But the real axial power profile is bottom peaked. Typical 
axial peaking factors are around 1.8 for NPP Leibstadt, NPP Ringhals and NPP 
Brunsbüttel. This deviation between the real power profile and the approximated 
power profile lead to a deviation between the real and calculated axial void profiles 
when the core inlet mass flow and the core inlet subcooling are equal for both mod-
els. Figure 3.36 (in subsection 3.4.3) and Figure 4.17 show a comparison of the axial 
power and void profiles calculated by RAMONA5 and ROM for NPP Leibstadt and 
NPP Brunsbüttel. Thereby the system pressure, the core inlet mass flow, the core 
inlet subcooling and the core averaged power of RAMONA5 are used as ROM input. 
But due to the different axial power profiles, the axial void profiles are different sig-
nificantly. This discrepancy is shown quantitatively in subsection 3.4.3 for 
KKLc7_rec4-OP.  

In the scope of the new calculation procedure of the ROM input parameters, the axial 
void profile will be adjusted in such a way that the resulting axial void profile of the 
ROM is similar to that one of RAMONA5. Thereby selected ROM input parameters 
such as the pressure loss coefficients and the core inlet subcooling of the ROM will 
be adjusted in an appropriate manner.  
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Figure 4.17: Comparison of the axial void and power profiles, calculated by the sys-

tem code RAMONA5 and the ROM, where the core averaged inlet 
mass flow, the core inlet subcooling and the core averaged power of 
RAMONA5 were used as ROM input. (NPP Brunsbüttel) 

Due to the bottom peak occurring in a real BWR system, the boiling boundary is 
shifted downwards in comparison with the boiling boundary predicted by the ROM. In 
order to represent the true axial void profile this shift can be corrected by changing 
the subcooling number subN . This can be derived from the single phase energy bal-
ance. The steady state energy balance along the thermal-hydraulic channel can be 
described by  

 
* * *

* * * ''' * * *
*

( , )v ( ) ( , ) .l inlet
h z tt q z t

z
 




  (4.2) 

If a uniform axial power profile is used in the ROM, the power density ''' *q  is constant 
along the heated channel. Further, it is assumed that all the power along the channel 
is transferred into the coolant as heat (without heat loss). Thus ''' *q  can be expressed 
as  

 
*

''' *
* *


 Qq
A L

 (4.3) 

where *Q  is the core averaged power calculated from the real axial power profile and 
*A  is the coolant flow cross section. The axial enthalpy profile can be obtained 

according to 
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by integrating (4.2) from the channel inlet to *z . According to (4.4), if ''' *q  is constant 
(as assumed in the ROM), the enthalpy profile will has a linear dependence along the 
heated channel.  

Finally (4.6) can be converted into  
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which is written in terms of dimensionless numbers rN , N , pchN  and subN . From this 
follows the channel exit enthalpy as 

  * * * * * *( ) .     exit r fg pch sub sath h z L N N h N N h  (4.8) 

In the above relations, the phase change number was rewritten as 
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If the boundary condition ( , ) ( , ) sath t h t h    is used in (4.4) an expression for the 
boiling boundary  
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is found. It can be seen, there exists an infinite ensemble of subN  and pchN  for the 
same location   where the coolant starts to boil. However, pchN  is fixed because the 
core inlet mass flow *

totm  and the core averaged power *Q  are based on RAMONA5. 
In order to simulate the boiling boundary which is given by RAMONA5 the subcooling 
number subN  must be adjusted. The order of magnitude of pchN  for the KKLc7_rec4-
OP is around 6.5pchN  , for example. As can be seen in Figure 4.20 the boiling 
boundary   of this OP has the order of magnitude of 0.1  . According to relation 
(4.11), the subcooling number can be estimated as 0.65sub pchN N   . This is the 
expected order of magnitude for subN  for the KKLc7_rec4-OP.  

To summarize, equation (4.11) is the result of the assumption that the power has a 
uniform axial power profile within the heated channel. The dimensionless number 



100   

subN  belongs to a specific axial power profile of the considered thermal-hydraulic 
state. This means, when the same thermal hydraulic state is represented by two dif-
ferent thermal-hydraulic models where different axial power profiles are used, the 
corresponding subcooling numbers are not comparable.  

In order to adjust the axial void profile, a special calculation procedure for the sub-
cooling number, the pressure loss coefficients inletK , exitK , ,1fN  , ,2fN   and for the 
steady state values 0  (mean void fraction of the two phase region) and 0avgT  (mean 
fuel temperature) has been developed and is applied in the present work. These pa-
rameters are adjusted in such a way that the axial void profile and the pressure drops 
of the closed flow path of the ROM becomes similar to that one of RAMONA5 for the 
reference OP. Note that, the pressure loss coefficients and the values of 0  and 0avgT  
cannot be calculated directly from the RAMONA5 model and its steady state solution 
because of the different calculation methodologies applied in both codes. Instead of 
the pressure loss coefficients, the corresponding physical pressure drops will be cal-
culated from the RAMONA5 output (shown in section 4.2.3), for example.  

 
Figure 4.18: Flow-chart of the adjustment procedure for the axial void profile and 

the pressure drops of the ROM. 

In Figure 4.18 is shown a flow-chart of the adjustment procedure, where the axial 
void profile and pressure drops of the ROM will be adapted by adjusting subN , inletK , 

exitK , ,1fN  , ,2fN  , 0  and 0avgT  and then performing steady state calculations of the 
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ROM equation system. The steady state calculations of the ROM equation system 
will be repeated iteratively. In each iteration step, these parameters will be changed 
in such a way that the axial power profile and pressure loss coefficients become 
more and more similar to that ones of RAMONA5 for the considered operational point 
while preserving the correct core inlet mass flow.  

 

4.2.2 Estimation of the drift-flux parameters gjV  and 0C  

The local drift-flux velocity vgj  is defined as  

 * * *
gv v ,gj j   (4.12) 

where vg  is the velocity of the gas phase and j  is the centre of volume velocity and 
can be written as 

 * * * * *v (1 )v .g lj      (4.13) 

In expression (4.13),   is the volumetric void fraction and lv  is the liquid velocity (an 
asterix indicates a dimensional value). The drift flux velocity *

gjV  used in the ROM is 
called accurately the void-weighted averaged local drift velocity [69-76] and is de-
fined as 
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where the brackets indicates an area averaging. Accordant to (4.14), the distribution 
parameter 0C  is defined as  
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Depending on the flow regime, there exist several correlations and models recom-
mended for the calculation of *

gjV  and 0C  which are based on extensive experimental 
database [75,76]. For the purpose of the present reduced order model, these two 
parameters are assumed to be independent of flow regimes, especially the void frac-
tion. Based on this assumption, both parameters can be written as  

 
*

0 *1.2 0.2 g

l

C



   (4.16) 

 
0.25* *

*
*2gj dr
l

gV C  


 
  

 
 (4.17) 

where drC  is a parameter which can be used for an adjustment by the user [52,69]. 
For example, as described in [69] (Chapter 3.5.2), for the churn-turbulent flow, the 
constant drC  is around 1.42 . In this case, the void-weighted averaged local drift ve-
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locity is * 0.173 /gjV m s  and the distribution parameter is 0 1.156C  . The correspond-
ing dimensionless value of *

gjV  is * *
0/ v 0.326gj gjV V  .  

An assessment of *
gjV  by employing RAMONA5 and using definition (4.14) result in 

* 0.33 /gjV m s  which corresponds to 0.62gjV  . In this case, the constant drC  is 
around 2.7 . A sensitivity study, where the values of *

gjV  and 0C  have been assessed, 
was performed for NPP Leibstadt and NPP Ringhals. All results of *

gjV  are between 
(0.25 0.4) /m s . From the results of the sensitivity study can be concluded, the val-
ues of *

gjV  and 0C  can be tuned legitimately in the interval * [0.2,...,0.5] /gjV m s  and 
0 [1.0,...,1.2]C  .  

 

4.2.3 Calculation of the ROM pressure drops 
As discussed in section 3.3, in the PSI-Illinois-ROM, only the pressure drop over the 
reactor core RAM

cP , given by the RAMONA model, was taken into account. In par-
ticular, RAM

cP  is extracted from the specific RAMONA5 model and is used by the 
PSI-Illinois-ROM as external pressure drop * RAM

ext cP P   . Besides, *
extP  is assumed 

to be constant [12,47]. The core pressure drop can be subdivided according to  

 , ,
RAM RAM RAM RAM

c ch inlet ch ch exitP P P P       (4.18) 

the sum of the channel inlet pressure drop ,
RAM

ch inletP , the channel pressure drop RAM
chP  

(single phase plus two phase pressure drop) and the exit pressure drop ,
RAM

ch exitP .  

When the core pressure drop is used as external pressure drop in the ROM, the 
ROM pressure drops have to satisfy 

 * RAM
ch chP P    (4.19) 

 *
,

RAM
inlet ch inletP P    (4.20) 

 *
,

RAM
exit ch exitP P    (4.21) 

at the reference OP.  

In order to simulate the stability behaviour more realistic, the TUD-ROM was ex-
tended by a recirculation loop model [23,24]. In addition to that all pressure drops 
along the closed flow path are taken into account. Figure 4.19 shows the most rele-
vant pressure drops of the RAMONA5 model.  

The pressure drop over the lower plenum 1 and the steam dome are very small and 
can be neglected. For example, the lower plenum1 pressure drop is four orders of 
magnitude smaller than other pressure drops considered for the nonlinear stability 
analyses. 
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Figure 4.19: Schematic sketch of the components considered in RAMONA5.  

The pressure drop along the closed flow path is satisfying the boundary condition  

 0 .p dz
z



  (4.22) 

According to the thermal-hydraulic model shown in Figure 4.19, the boundary condi-
tion (4.22) can be expressed as 

 
1 0

_

0 1

0 h ch recircp pdz dz
z z

 
 

    (4.23) 

0

1 1
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RAM RAM RAM RAM RAM RAM RAM RAM RAM
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P pP dz
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p
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P P P P P P P P P
 






                 




 


 (4.24) 

where the first integral in (4.23) describes the pressure drops along the upward flow 
and the second integral the pressure drops along the downward flow. Therefore the 
external pressure drop can be written as  

 
1 0

_

0 1

.h ch recirc
ext

p pP dz dz
z z

 
  

    (4.25) 
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As mentioned previously, the pressure drops provided by the RAMONA5 (at the ref-
erence OP) are presented in Appendix F. It should be pointed out that ,

RAM
ch exitP , 

,
RAM

ch inletP  and RAM
chP  are not printed in the output file and thus were calculated sepa-

rately. ,
RAM

ch inletP  and ,
RAM

ch exitP  can be calculated by relation 

 
** 2

*
, * *

1    with   
2

RAM tot
ch inlet inlet

l tot

mGP k G
A

  
  (4.26) 

and  

 
* 2

2
, local*

1 ,
2

RAM
ch exit exit

l

GP k


    (4.27) 

where inletk  and exitk  are defined in the RAMONA5 input and 2
local  is a two phase mul-

tiplier for irreversible local losses. In the RAMONA5 model, 2
local  is defined as  

 
*

2
local *1 (2) 1 ,l

exit
g

CRT x 


 
       

 
 (4.28) 

where exitx  is the exit quality and (2)CRT  is a constant provided by the user.  

Figure 3.2, presented in subsection 3.1.3, depicts the most relevant thermal-hydraulic 
components of the ROM including the pressure drops along the closed loop. Accord-
ing to Figure 3.2 the boundary condition (4.22) for the simplified BWR model can be 
written as  

 

1 0
_

0 1

* * * * *

0

0 ( ) .

h ch recirc

inlet ch exit doc head

p pdz dz
z z

P P P P P

 
 

 

       

 
 

 (4.29) 

For a steady state forced circulation flow, the second integral in expression (4.29) 
can be written in dimensionless form as  

 1 ,ext ext headDP P Fr P      (4.30) 

where extDP  is the steady state external pressure drop. In the steady state case, all 
time dependent terms in *

docP  are zero (friction in the recirculation loop is neglected) 
[23,24]. It can be seen in the steady state expression (4.30), natural circulation oc-
curs, when the pump head becomes zero. Thus natural circulation will appear in op-
erational points for which relation (4.30) becomes 1

ext extDP P Fr    (downcomer 
friction is ignored).  

In addition to the void generation, the pressure drops over the closed flow path are of 
paramount importance for the thermal-hydraulic stability properties and thus for sta-
bility behaviour of the whole nuclear reactor system. Therefore, the pressure drops of 
the ROM should be simulated as close as possible to the RAMONA pressure drops. 
To this end, the following relations should be satisfied by the ROM at steady state 
conditions at the reference OP: 
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 *                 RAM
ch chP P    (4.31) 

 *
2 ,

RAM RAM
inlet lp ch inletP P P      (4.32) 

 *
,

RAM RAM
exit ch exit riserP P P      (4.33) 

The channel inlet and exit pressure drops in the ROM can be calculated by  

 * 2 * *2
0v vinlet inlet inlet lP K      (4.34) 

and  

 * 2 * *2
0v v ,exit exit m m lP K        (4.35) 

where vinlet  is the dimensionless inlet velocity, inletK  and exitK  are the channel inlet 
and exit pressure loss coefficients of the ROM, *

0v  is the dimensional reference 
channel inlet velocity, m  is the dimensionless mixture density and vm  is the corre-
sponding dimensionless mixture velocity. Practically, the pressure loss coefficients 
can be adjusted (adjustment procedure, see Figure 4.18) in such a way that the 
channel inlet and channel exit pressure drops are satisfying relation (4.32) and (4.33) 
under steady state conditions (at the reference OP). The satisfaction of (4.31) can be 
realized by a tuning of the single phase ,1fN   and two phase friction ,2fN   numbers 
occurring in the single phase and two phase momentum equation [12,47]. Finally, the 
pressure drops which have to be satisfied by the ROM were estimated accordant to 
(4.31), (4.32), (4.33). The effect of spacer friction is included in the ROM-coefficients 

,1fN   and ,2fN   [12].  

 

4.2.4 Summary of the ROM input calculation for NPP Leibstadt 
All design parameters of the ROM have been calculated from the specific KKL-
RAMONA5 model at the reference OP. The operating parameters are estimated from 
the steady state solution provided by RAMONA5 at this OP. In order to simulate the 
correct steady state conditions with the ROM, a new calculation procedure for the 
input values was applied. The thermal-hydraulic state of the reference OP will be 
simulated correctly by the ROM when its axial void profile and its pressure drops 
along the closed flow path are calculated close to the reference case.  

Furthermore, the evaluation of the time histories of the LPRM signals, resulting from 
the first RAMONA5 analysis, reveals the orientation of the symmetry line, which di-
vides the core in region 1 and region 2. This is the symmetry line presented in Figure 
4.10. In contrast to the RAMONA5 result, the measured LPRM signals show an un-
fixed symmetry line [5]. As a result of the first RAMONA5 transient analysis, core re-
gion 1 and core region 2 are determined which is necessary for the application of the 

mnC -calculation procedure. 

As can be seen in Table 4.1, the values of the heated channel pressure drops simu-
lated by the ROM are close to the reference values provided by RAMONA5. The 
comparison of the axial void profile (radially averaged), calculated by RAMONA5, 



106   

with the axial void profile, provided by the ROM, is presented in Figure 4.20. The 
largest deviation between both axial void profiles occurs in the region where sub-
cooled boiling exists. Thereby the deviation of the total volumetric void fraction is less 
than 1%. 

 

Table 4.1: This table contains the pressure drops provided by the RAMONA5 
output and that one calculated by the ROM (KKLc7_rec4-OP). The 
steady state external pressure drop *

extDP  provided by the RAMONA5 
output is a ROM input parameter while the channel inlet pressure drop 

*
,ch inletP , the channel pressure drop (single and two phase pressure 

drop) *
chP  and the channel exit (outlet) pressure drop *

,ch exitP  are ad-
justed by tuning of inletK , exitK , ,1fN   and ,2fN  . 

Pressure drop RAMONA5 ROM 
*

,ch inletP  41.654 10 Pa   41.641 10 Pa   

*
chP  42.777 10 Pa   42.763 10 Pa   

*
,ch exitP  42.956 10 Pa   42.984 10 Pa   

*
extDP  47.387 10 Pa   47.387 10 Pa   
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Figure 4.20: Comparison of the axial void profile (radially averaged) calculated by 

RAMONA5 with the axial void profile provided by the ROM. 

The drift flux parameters used as input values are 0.35gjV   and 0 1.02C  . 
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4.3 Local nonlinear stability analysis 

4.3.1 Numerical integration at the reference OP 
After calculation of all ROM input data from the RAMONA5 model and its steady 
state solution at the reference OP, the transient behaviour is analysed by employing 
the numerical integration code. To this end, the transient is initiated by introducing 
small perturbations in the inlet velocities where the perturbation amplitudes have the 
same sign (in-phase oscillation is triggered). 
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Figure 4.21: Time evolutions of the fundamental 0 ( )P t  and first azimuthal mode 

1( )P t  and the channel inlet velocities 1,v ( )inlet t  and 2,v ( )inlet t .  

The time evolution of the fundamental mode 0 ( )P t , the first azimuthal mode 1( )P t  and 
the channel inlet velocities 1,v ( )inlet t  and 2,v ( )inlet t  are shown in Figure 4.21. It can be 
seen that the amplitudes of the fundamental mode oscillation are decaying for the 
first 250 s and then increasing while the first azimuthal mode oscillation is increasing 
continuously, after the perturbation was imposed on the system. Thus, the prediction 
of the RAMONA5 investigation at the reference OP could be verified by the ROM. 
This means, an increasing out of phase power oscillation is occurring at the refer-
ence OP because the first azimuthal mode is excited. It should be emphasized that, 
in order to excite the first azimuthal mode, the artificial factor fact  was increased 
[12,42,43] in the scope of the ROM-input calculation. The oscillation frequency pre-
dicted by the ROM is * 10.457NF s .  

The behaviour of the fundamental mode oscillation (decaying for the first 250 s and 
then increasing) can be explained by the solution of a linearized system where each 
component of the solution depends on each eigenvalue of the Jacobian matrix (see 
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subsection 3.3.3 and Appendix A). This means, if there is at least one pair of com-
plex conjugated eigenvalues with a real part larger then zero, all components of the 
solution will diverge asymptotically in an oscillatory manner [12,56]. 
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4.3.2 Bifurcation analysis 
Bifurcation analysis is performed in this section. To this end, at first, semi-analytical 
bifurcation analysis with the bifurcation code BIFDD is carried out. As a result, the 
stability properties of fixed points and periodical solutions are examined in an appro-
priated parameter map. Secondly, numerical integration is carried for independent 
confirmation of the results of the bifurcation analysis and for the nonlinear analysis 
more far away from the SB. In the scope of the numerical integration of the ROM 
equation system the time evolution of all phase space variables are calculated. 

4.3.2.1 Semi-analytical bifurcation analysis 
In this subsection, semi-analytical bifurcation analysis of the ROM equation system 
with the bifurcation code BIFDD is performed. To this end, the subcooling number 

subN  and the steady state external pressure drop extDP  are selected to be the bifurca-
tion and iteration parameters. This means, the stability boundary (SB) will be calcu-
lated in the subN - extDP -operating plane and is referred to the reference OP. A varia-
tion of extDP  corresponds to a movement on the rod-line which crosses the reference 
OP while the 3D-distributions will not be affected. Thus the stability properties of op-
erational points along the rod-line and its close neighbourhood are analysed. The 
stability boundary and the bifurcation characteristics are shown in Figure 4.22.  
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2  
Figure 4.22: Stability boundary and the bifurcation characteristics for the reference 

OP. The SB is defined as the set of fixed points where the Hopf condi-
tions are fulfilled.  
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As explained in section 2.3, the stability boundary is defined as the set of fixed points 
for which the Hopf conditions are fulfilled. Roughly speaking, this means, in each of 
these fixed points a limit cycle is “born” and exists either in the linear stable or (linear) 
unstable region. The stability characteristics of the limit cycle are determined by the 
Floquet parameter 2 . The stability boundary and the bifurcation characteristics, de-
picted in Figure 4.22, are plotted only in the region which is reasonable from the 
physical point of view. The ROM results becomes doubtfully for extDP  less than 

110extDP  .  

As expected, the reference OP is located in the linear unstable region close to the 
SB. This result was predicted by the RAMONA5 analysis as well as by numerical in-
tegration (see section 4.4.1 and 4.4.2) of the ROM equation system. In Figure 4.23 is 
depicted the SB projected into the power flow map where the dimensionless power 
and core inlet mass flow are scaled to nominal conditions. Hence, the vertical axis 
corresponds to the relative thermal core power and the horizontal axis corresponds 
to the relative core inlet mass flow.  
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Figure 4.23: SB “transformed” into the power-flow map. 

Unstable periodical solutions (unstable limit cycle) close to the KKLc7_rec4-OP are 
predicted by the semi-analytical bifurcation analysis. These solutions are located in 
the linear stable region close to the stability boundary. This means, in this region co-
exist stable fixed points and unstable limit cycles.  



BWR Stability Analyses for NPP Leibstadt  111 

4.3.2.2 Numerical integration 
Semi-analytical bifurcation analysis is only valid in the vicinity of the critical bifurcation 
parameter (SB) in the parameter space and in the close neighbourhood of the singu-
lar fixed point in the phase space. In order to get information of the stability behaviour 
beyond the local bifurcation findings numerical integration of the set of the ODEs is 
necessary. In addition to that the predictions of the semi-analytical bifurcation analy-
sis can be confirmed independently. 

The results of the local numerical integration for selected parameters confirm the 
prediction of the bifurcation analysis. The forgoing bifurcation analysis forecasts the 
existence of unstable periodical solutions, which are born in the subcritical Hopf-
bifurcation point, in the stable region. Hence, fixed points located in the stable region 
were selected to carry out numerical integration. 

Figure 4.24 shows the SB in the close neighbourhood of the reference OP (zoomed 
in). In addition to that this figure shows the parameters for which the numerical inte-
gration is performed to confirm the existence of an unstable periodical solution.  

155 160 165 170 175
0,60

0,61

0,62

0,63

0,64

0,65

0,66

0,67

0,68

  SB (subcritical PAH-Bifurcation)

numerical integration:

Nsub   = 0.625
DPext = 165.3

Stability boundary 

DPext

 

Nsub stable regionunstable region

OP

 
Figure 4.24: SB and the point for which the unstable limit cycle is verified by nu-

merical integration 

In order to verify the existence of the unstable limit cycle, perturbations of different 
amplitudes are imposed on the system. This means, according to 0( ) ( )X t X X t 

  
, 

the steady state solution 0X


 is perturbed by different perturbation amplitudes ( )X t


 
and the transient behaviour of the system state ( )X t


 is calculated by numerical inte-

gration of the ROM equation system. If a sufficient small perturbation is imposed on 
the system, the state variables will return to the steady state solution. But if a suffi-
cient large perturbation is imposed on the system, the state variables will diverge in 
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an oscillatory manner. As shown in Figure 4.25, the results of the numerical integra-
tion method confirm locally the prediction of the bifurcation analysis. 
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Figure 4.25: Numerical integration is carried out in an operational point where an 

unstable periodical solution is predicted. The transient was initiated by 
imposing perturbations of the core inlet mass flow (small v 0.01inlet  , 
large v 0.025inlet  ).  

 

4.3.2.3 Summary 
Stability and bifurcation analysis with the ROM for the reference OP were performed 
by employing the bifurcation code BIFDD. The SBs and nature of the PAH-Bs are 
determined and visualized in appropriated two-dimensional parameter spaces. In 
particular, the subcooling number subN  and the steady state external pressure drop 

extDP  are selected to be the iteration and bifurcation parameters. Thereby, the varia-
tion of extDP  corresponds to a movement along the rod-line which crosses the refer-
ence OP. Hence, the stability properties of operational points along the rod-line are 
analyzed.  

Unstable periodical solutions (unstable limit cycle) close to the KKLc7_rec4-OP are 
predicted by the semi-analytical bifurcation analysis. These solutions are located in 
the linear stable region close to the stability boundary. This means, in this region co-
exist stable fixed points and unstable limit cycles. As mentioned previously, the 
asymptotic decay ratio (linear stability indicator) is less than 1 ( 1DR  ) in this region. 
A linear stability analysis is not capable to examine the stability properties of limit cy-
cles. 
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4.4 Comparative study with RAMONA5 and ROM: Local consideration 
In this section, a comparative study with RAMONA5 and ROM is performed in the 
parameter space spanned by the core inlet subcooling and the steady state pressure 
drop. The goal of this investigation is to study the dependence of the stability behav-
iour regarding variations in the core inlet subcooling and the steady state pressure 
drop, respectively. As a result, the relative location of the reference OP respect to the 
stability boundary will be obtained. The terminology “local consideration” means that 
the comparative study is applied for operational points located in the neighbourhood 
of the reference OP and only in the phase space region near the singular fixed point.  

 

4.4.1 Variation of the core inlet subcooling 
The effect of the core inlet subcooling variation on the stability behaviour is consid-
ered next. To this end, RAMONA5 and ROM analyses were made in a parallel man-
ner. Thereby the core inlet subcooling was varied in small steps and the transient 
behaviour was investigated. 

4.4.1.1 RAMONA results 
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Figure 4.26: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The regional oscillation is decaying. Consequently, the 
BWR system is stable in that operational point. (KKL) 



114   

0 50 100 150 200-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03 hsub = 117,5 kJ/kg

 

Time

 LPRM 104
 LPRM 324

s

relative
Amplitude

 
Figure 4.27: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The regional oscillation is decaying slowly. (KKL) 
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Figure 4.28: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. It seems, the oscillation amplitudes are remaining con-
stant. (KKL) 
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Figure 4.29: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The oscillation amplitudes are increasing slowly. (KKL) 
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Figure 4.30: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The oscillation amplitudes are increasing. (KKL) 



116   

0 50 100 150 200

-0.006

-0.003

0.000

0.003

0.006
h

sub
 = 120 kJ/kg

 

Time

  LPRM 104
  LPRM 324

s

relative
Amplitude

 
Figure 4.31: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKL) 
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Figure 4.32: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKL) 
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Figure 4.33: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKL) 

The RAMONA5 investigation has shown the more the core inlet subcooling will be 
increased the larger the increasing rate of the oscillation amplitudes are. Besides, the 
analysis reveals the location of the stability boundary where the oscillation ampli-
tudes are neither decaying nor non-decaying after imposing a perturbation on the 
steady state system. According to this, the stability boundary is located between 

117.5 /subh kJ kg  and 119.0 /subh kJ kg . Below the stability boundary, it can be 
stated, the lower the core inlet subcooling the more stable the system is.  
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4.4.1.2 ROM results 
The ROM-results for the core inlet subcooling variation study are shown in Figure 
4.34. For this analysis, only the first azimuthal mode is evaluated.  
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Figure 4.34: Time evolution of the first azimuthal mode for different core inlet sub-

coolings. 

As can be seen, the prediction of the system code RAMONA5 can be verified qualita-
tively by the simplified BWR model.  
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4.4.2 Variation of the steady state external pressure drop 
The effect of the steady state external pressure drop on the stability behaviour is 
considered in this section. To this end, RAMONA5 and ROM analyses were per-
formed, where the steady state external pressure drop was varied in small steps. For 
each iteration step, the transient behaviour was investigated. In the scope of the 
RAMONA5 analysis, the core inlet mass flow was varied instead of extDP  (the core 
inlet mass flow is proportional to extDP ) because extDP  cannot be varied directly in 
RAMONA5. 

4.4.2.1 RAMONA results 
In the framework of the present RAMONA5 investigation the core inlet mass flow was 
varied about 5% . In Table 4.2 the core inlet mass flows and the corresponding 
steady state external pressure drops (steady state RAMONA5 results) for which the 
transient behaviour was analysed are presented.  

 

Table 4.2: Core inlet mass flow and the corresponding steady state external 
pressure drop 

( / )totm kg s  * 4(10 )extDP Pa  *

* *
0v

ext
ext

f

DPDP


  

3870.00 7.1075 162.42 

3970.00 7.2470 165.60 

4070.12 (reference) 7.3870 168.82 

4105.00 7.4358 169.90 

4120.00 7.4570 170.40 

4140.00 7.4850 171.00 

4170.00 7.5268 172.00 

4270.00 7.6665 175.00 

 

The results of the RAMONA5 investigation have shown, the lower the core inlet mass 
flow the more unstable the system is. For 3870 /totm kg s  the increasing rate of the 
oscillation amplitudes are significant larger than the increasing rate for 

3970 /totm kg s  or for 4070 /totm kg s  (reference). On the other hand, if the critical 
mass flow (corresponds to the stability boundary) which divides the stable region 
from the unstable one, is passed, the system becomes more stable, when the core 
inlet mass flow will be increased. For example, for 4270 /totm kg s  ( 5% ) the system 
is stable (oscillation amplitudes are decaying), while for 4170 /totm kg s  the system is 
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still unstable (oscillation amplitudes are increasing with time). Hence, the stability 
boundary could be located between these both values.  
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Figure 4.35: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. The calculation was interrupted after about 70 s. (KKL) 
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Figure 4.36: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. It can be seen, that the increasing rate of the foregoing 
figure is larger then in the present one. (KKL) 
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Figure 4.37: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKLc7_rec4-OP) 
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Figure 4.38: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKL) 
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Figure 4.39: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKL) 
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Figure 4.40: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKL) 
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Figure 4.41: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. (KKL) 
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Figure 4.42: Signals (relative amplitudes) of LPRM 10  and 32  in the fourth level 

respectively. For this core inlet mass flow, the system is stable. (KKL) 
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4.4.2.2 ROM results 
In the scope of this analysis the steady state external pressure extDP  drop was varied, 
which corresponds to a mass flow variation.  
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Figure 4.43: Time evolution of the first azimuthal mode. 
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Figure 4.44: Time evolution of the first azimuthal mode. 
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Figure 4.45: Time evolution of the first azimuthal mode. (KKL) 
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Figure 4.46: Time evolution of the first azimuthal mode. This OP is stable. (KKL)  

The ROM analysis has shown, the lower extDP  the more unstable the system is. 
Thereby the stability boundary could be located between 170extDP   and 195extDP  .  
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4.4.3 Conclusion 
To summarize, the TUD-ROM can reproduce the stability behaviour, predicted by 
RAMONA5, in the close neighbourhood of the reference operational point. The TUD-
ROM and RAMONA5 predict the following behaviour:  

 the higher the core inlet subcooling the more unstable the system is  

 the lower the mass flow the more unstable the system is  

It can be concluded that the reference OP is located close to the stability boundary. 
On the one hand the system becomes stable when the core inlet subcooling will be 
decreased about -5% and on the other hand the system becomes stable when the 
core inlet mass flow will be increased about +5%. As a final conclusion, the depend-
ence of the BWR stability behaviour on variation of the core inlet subcooling and the 
steady state external pressure drop has shown that the results of RAMONA5 and 
ROM are consistent. The location of the reference OP respect to the stability bound-
ary can also be simulated correctly by the TUD-ROM (see diagram on the right hand 
side of Figure 1.3).  
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4.5 Global nonlinear stability analysis 
Previous ROM analyses have shown that the bifurcation analyses using BIFDD and 
the numerical integration method provides (locally in the origin of the dynamical sys-
tem in the vicinity of the control parameter ,k c  whereby index k  is ignored in the fol-
lowing discussion) consistent results. Further analyses at the reference OP and its 
neighbourhood, whereby numerical integration is carried out for a time period of 800 
s revealed the existence of stable limit cycles (global consideration). The result of the 
time integration at the reference OP using the numerical integration code is shown in 
Figure 4.47.  
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Figure 4.47: Result of the numerical integration at the reference OP where a long 

time integration is carried out (reference OP of KKLc7rec4).  

The (cursory) conclusion is: The existence of a stable limit cycle in the linear unstable 
region is inconsistent with the result of the bifurcation analysis which delivers sub-
critical Hopf bifurcations. Hence, unstable limit cycles are predicted in the linear sta-
ble region for this analysis case. In order to understand this behaviour, more in depth 
considerations are necessary.  

The above analysis reveals that the system behaviour cannot be examined only by 
local considerations such as semi-analytical bifurcation analysis using BIFDD. The 
coexistence of a subcritical bifurcation point (where an unstable limit cycle is born) 
and stable limit cycles in the linear unstable region could be an unique indicator for a 
possible existence of global bifurcation. In contrast to the Hopf bifurcation, global bi-
furcations involve large regions of the phase space rather than just the neighbour-
hood of a singular fixed point. Thus, in the scope of the present work, the post-
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bifurcation state can only be determined through numerical integration of the ROM 
equations. For this purpose, the amplitudes of the limit cycles vs. the core inlet sub-
cooling will be determined by numerical integration. Thereby, all the other parameters 
are fixed. The results are plotted in Figure 4.48 and Figure 4.49. The diagram shown 
in these figures is also known as bifurcation diagram. In particular, the global behav-
iour in the close neighbourhood of the stability boundary will be analysed.  

The subcooling number subN  is varied between 0.9 and 0.6 and the stable limit cycle 
amplitudes of the first azimuthal mode 1( )A P  are determined. Table 4.3, Figure 4.48 
and Figure 4.49 summarises results of this analysis.  

Table 4.3: This table summarises the limit cycle amplitudes 1( )A P  for different 
core inlet subcoolings.  

subN  1( )A P  

0.9 0.707 

0.8 0.585 

0.75 0.49688 

0.7 0.3845 

0.67 0.29038 

0.64 0.14917 

0.639 0.148 

0.638 0.143 

0.637 0.135 

0.636 0.129 

0.635 0.11076 

0.634 0.096 

0.633 0.087 

0.6325 0.081 

0.631 0.06 

0.63 0.049 

The results show, that limit cycle amplitudes 1( )A P  decreases with decreasing core 
inlet subcooling. Below the critical value , 0.63547sub cN   (the Hopf conditions are ful-
filled at ,sub cN ) stable limit cycles still exist (see Figure 4.49). This means, stable and 
unstable limit cycles coexist in the linear stable region. The coexistence of stable 
and unstable limit cycles for ,sub sub cN N  is verified by numerical integration for 

0.632subN   by imposing different perturbation amplitudes on the system. A sufficient 
small perturbation leads to a stable behaviour. But when a sufficient large perturba-
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tion is imposed on the system, the state variables are attracted by the limit cycle. This 
is presented in Figure 4.50.  
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Figure 4.48: The results of the numerical integration are plotted as bifurcation dia-

gram, where subN  is the bifurcation parameter and ,ext ext refDP DP .  

0.630 0.635 0.640 0.645 0.650
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

critical value of Nsub (bifurcation point)

Nsub

 

  Amplitute of the stable limit cycle
  Amplitute of the unstable limit cycle (estimate) 

A(P1)

Bifurcation Diagram

saddle node bifurcation
of the cycle (turning point)

   linear stable region
   linear unstable region

 
Figure 4.49: (“Zoom in” of Figure 4.48) The function of the amplitudes of the unsta-

ble limit cycle is an assessment only, not a calculated one.  
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Figure 4.50: This figure shows the results of numerical integration for 0.632subN   

and ,ext ext refDP DP , where a sufficient small v 0.02inlet   and large 
v 0.1inlet   perturbation is imposed on the system. When a small per-

turbation is imposed on the system, the state variables are returning to 
the steady state solution (origin of the dynamical system). When a 
large perturbation is imposed on the system, the state variables are at-
tracted by the limit cycle.  

The amplitudes of the unstable limit cycle correspond to the boundary which sepa-
rates the basin of attraction of the singular fixed point and of the stable limit cycle.  

The analysis has shown that stable and unstable limit cycles do not exist for core 
inlet subcooling less than 0.63subN  . Hence, there is a critical core inlet subcooling 

,sub tN , where the two limit cycles coalesce and annihilate. Due to (numerical) conver-
gence problems of numerical integration, ,sub tN  cannot be calculated exactly. The es-
timated value of ,sub tN  is , 0.63sub tN  . From this result, it can be concluded that in 

,sub tN  there is a saddle-node bifurcation of a cycle. This bifurcation type belongs to 
the class of global bifurcations and is also referred to as turning point or fold bifurca-
tion.  
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Theoretical example for a saddle-node bifurcation of a cycle 

Before considering an example for a saddle-node bifurcation of a cycle, a general 
remark is given to normal forms. Normal forms of bifurcations are simplified system of 
equations that approximates the dynamics of the system in the vicinity of the bifurca-
tion point. After the application of simplification techniques (such as the centre mani-
fold reduction, where the n-dimensional system is reduced to a two-dimensional sys-
tem, when the Hopf-conditions are fulfilled), the resulting equation system can be 
transformed into a specific normal form associated with this type of bifurcation. 
Hence, in order to understand the above phenomenon, it is sufficient to analysis the 
specific normal form of the bifurcation.  

In the following, the normal form for a generic Hopf bifurcation of fixed points 

 
2 2

2 2

( )( )

( )( )

dx x x y ax by x y
dt
dy y x y bx ay x y
dt

 

 

     

     




 (4.36) 

is taken into account. This normal form is frequently discussed in many text books 
[17-20] and thus is not repeated in all details here. The equation system (4.36) is ex-
tended (by higher order terms) in such a way that the resulting system becomes 

 
2 2 2 2 2

2 2 2 2 2

( )( ) ( )

( )( ) ( ) .

dx x x y ax by x y cx x y
dt
dy y x y bx ay x y cy x y
dt

 

 

       

       




 (4.37) 

In (4.37)   with    is the control parameter, a , b  and c  are coefficients and   is 
the constant angular frequency. In the first step, the eigenvalues of the Jacobian ma-
trix  

 ( )

dx dx
dx dy

J
dy dy
dx dy



 
 
 
 
 
 

 

 
 (4.38) 

are calculated. The Jacobian matrix elements of (4.37) are  

 

 

 

22 2 2 2 2 2 2

2 2 2 2

2 2 2 2

22 2 2 2 2 2 2

( ) 2 ( ) 4 ( )

( ) 2 ( ) 4 ( )

( ) 2 ( ) 4 ( )

( ) 2 ( ) 4 ( ) .

dx a x y x ax by c x y cx x y
dx
dx b x y y ax by cxy x y
dy
dy b x y x ax by cxy x y
dx
dy a x y y ax by c x y cy x y
dy









        

       

      

        









 (4.39) 

In the origin  0, 0x y   the Jacobian matrix of (4.37) is reduced to 
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 J
 
 

 
  
 

 (4.40) 

and the corresponding eigenvalues are 1/ 2 i    . This result is equal to that one of 
the system (4.36). Furthermore, the third Hopf-condition  

 1/ 2 1/ 20 with 1d d
d d
 
 

   (4.41) 

is also fulfilled. Hence, the system (4.37) satisfies the Hopf conditions in the origin at 
0c   .  

In order to analyse the global characteristics of (4.37), this system is transformed into 
its polar form. To this end, the polar coordinates  

 
cos
sin

x r
y r







 (4.42) 

are introduced and substituted in (4.37). The resulting equation system can be ex-
pressed as 

 
3 5

2
( , ) .

r r ar cr
X F X

br



 

   
          

 
  (4.43) 

There is no loss in generality in assuming that the coefficients a  and c  are 1a c   
and 0b   (the case 1a c    and 0b   is not considered for KKLc7_rec4 because in 
this case a supercritical Hopf bifurcation occurs in the origin). In this case, the equa-
tion system (4.43) can be rewritten as  

 
3 5

,rr Fr r r
F




      
      

   


  (4.44) 

where both state variables r  and   are now decoupled. The radial function rF  corre-
sponds to the one-dimensional normal form of a subcritical pitchfork bifurcation of 
fixed points but with the difference that the higher order term 5r  is included.  

The global system behaviour of (4.44) only depends on the radial function rF  be-
cause function F  describes the rotation of the r -axis around the origin with the con-
stant angular frequency  . Hence, in order to examine the dynamics of (4.44), it is 
only necessary to evaluate the one dimensional problem rr F . It will be demon-
strated that the problem rr F  undergoes a saddle-node bifurcation of fixed points. 
As a consequence, the two-dimensional system (4.44) undergoes a saddle-node bi-
furcation of cycles (global bifurcation). 

The steady state solution of rr F  is determined by solving 

 3 5 2 40 ( ) .rr F r r r r r r          (4.45) 

The solution 0r  of (4.45) can be written as  

 01 0r     (4.46) 
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 02/ 03
1 12 2 1 4 ,...,
2 4

r            
 (4.47) 

 04/ 05
1 12 2 1 4 ,...,0 .
2 4

r            
 (4.48) 

In order to examine the stability properties of the steady state solution 0r , the first 
derivative of rF  respect to r  ( /rdF dr ) is determined for all  . If 0( ) / 0rdF r dr  , the 
system is locally stable, and if 0( ) / 0rdF r dr  , the system is locally unstable. The re-
sult of /rdF dr  can be written as 

 2 4
.3 5rdF r r

dr
    (4.49) 

To evaluate the derivative /rdF dr  for all steady state solutions separately, the steady 
state solutions (4.46), (4.47) and (4.48) are substituted in (4.49) and the results are 
plotted in Figure 4.51. The steady state solutions 0r  vs   are shown in Figure 4.52 
(bifurcation diagram).  
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Figure 4.51: Evaluation of the derivative /rdF dr .  
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Figure 4.52: Bifurcation diagram 

The steady state solution 01r  exists for all    and is locally stable for 0   and 
locally unstable for 0  . In the two-dimensional system (4.37), this solution corre-
sponds to the fixed point solution, existing for all   . The solutions 02 / 03r  only exist 
for 0.25    and are locally stable in their domain because of 02/ 03( ) / 0rdF r dr  . The 
solutions 04 / 05r  are only defined for  0.25 0    and are locally unstable because 

04/ 05( ) / 0rdF r dr  . But at the saddle points ( 0.25t   ; 02 04 1/ 2 2r r   ) and (
0.25t   ; 03 05 1/ 2 2r r    ), where 02 / 03r  and 04 / 05r  are coalescing and annihilating) 

the solutions 02 / 03r  and 04 / 05r  are neither locally stable nor locally unstable. As de-
picted in Figure 4.53 the solutions 02 / 03r  and 04 / 05r  corresponds to periodical solutions 
of the two-dimensional system (4.37). Note that, roughly speaking, 02 / 03r  and 04 / 05r  are 
rotating around the origin with  .  

To summarize, for small r  the bifurcation diagram looks just like the subcritical pitch-
fork bifurcation case (occurring in equation 3r r r   at 0c   ): the origin is lo-
cally stable for 0   and two backward-bending branches of unstable fixed points 
bifurcate from the origin when 0c   . But in contrast to the subcritical pitchfork 
bifurcation case, the unstable branches turn around and become stable at 0t    
where 0t  . This behaviour is effected by the 5r  term in (4.44) (higher order terms 
in (4.37)). The stable branches 02 / 03r  exist for t  . 
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Figure 4.53: This figure depicts a bifurcation diagram of a saddle-node bifurcation 

of a cycle and the corresponding radial phase portraits.  

In the above analysis, it was helpful to analyse only the one-dimensional (radial) sys-
tem rr F  of the two dimensional system (4.44). As demonstrated above, this system 
undergoes a saddle-node bifurcation of fixed points at 1/ 4t    , where a stable 
and an unstable branch of fixed points occur. Returning to the two-dimensional sys-
tem (4.44), these fixed points correspond to circular limit cycles. The global behaviour 
of (4.37) is summarized in Figure 4.53 (there is depicted the bifurcation diagram and 
the corresponding radial phase portraits). 

From the above analysis, the following conclusions can be made: 

1) The bifurcation at 1/ 4t     is a saddle-node bifurcation of a cycle. In this 
point, a stable and an unstable periodical solution (circular limit cycle) are born 
(“out the clear blue sky”). As depicted in Figure 4.53, the phase portrait is 
changing significantly when passing t . 

2) In the range 0t c     , two qualitatively different stable states coexist, 
namely the origin (fixed point solutions) and the stable limit cycle. Both states 
are separated by an unstable limit cycle (see phase portrait in Figure 4.53). In 
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other words, due to the saddle-node bifurcation at 1/ 4t    , a stable and 
an unstable limit cycle coexist with stable fixed points within the parameter 
range t c    . One consequence is that the origin is stable to “small” per-
turbations, but not to “large” ones. In this sense the origin is locally stable, but 
not globally stable.  

3) From the stability analysis point of view, a saddle-node bifurcation is opera-
tional safety significant, if the amplitude of the stable limit cycle is sufficient 
large. Supposing the system is in the state 0r   (origin), and the control pa-
rameter   is slowly increased. As long as c   the state remains at the ori-
gin. But at 0c    the origin loses stability and thus the slightest “nudge” will 
cause the state to jump to the limit cycle. In this case, the state will start to os-
cillate when reaching 0c    and the oscillations are growing as long as 
they will be attracted by the stable limit cycle. With further increase of  , the 
state moves out along the limit cycle solution. But if   is now reduced, the 
state remains on the stable limit cycle oscillation, even when   is decreased 
below 0c  . The system will return to the origin when the control parameter 
  is reduced below t . These characteristics (called hysteresis) can be con-
sidered as a loss of reversibility as the control parameter is varied.  

4) The system behaviour of (4.37) near the origin is similar to the behaviour of a 
system which undergoes a subcritical Hopf bifurcation at c  . In particular, 
in the origin the Jacobian matrix elements of (4.37) are equal to that one of 
(4.36). Hence, the corresponding eigenvalues of both systems are equal too.  

 

Summary 

Previous ROM analyses for KKLc7_rec4 (local nonlinear stability analysis) have 
shown that the bifurcation analyses and the numerical integration method provide 
consistent results only in the Hopf bifurcation points c  (local consistency) and their 
close neighbourhoods. In order to study the global character of the nonlinear system, 
numerical integration is necessary. For this purpose, numerical integration of the 
ROM equation system have been carried out, where subN  was varied in the range 
[0.62,....,0.9] . The analyses have shown that in the range , 0.9sub t subN N   (

, 0.63sub tN  ) stable limit cycles exist, even though the bifurcation analysis predicts 
only unstable limit cycles for ,sub sub cN N  ( ,sub cN  is the critical bifurcation parameter, 
for which the Hopf conditions are fulfilled). Hence, at the reference OP the state vari-
ables will also be attracted by the limit cycle. In addition to that, for 

, ,[ ,...., ]sub sub t sub cN N N  with , ,sub t sub cN N  stable fixed point solution, unstable periodical 
solution and stable periodical solution coexist. Below ,sub tN , only stable fixed point 
solution exist. 

One would think that the predictions of BIFDD and the results of the numerical inte-
gration are inconsistent. Note that, BIFDD is based on local methods. Thus the stabil-
ity investigation using BIFDD is concentrated only in the origin of the system close to 
the critical parameter c  (see Figure 4.54).  
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In the scope of this section it was shown that the nonlinear stability behaviour pre-
dicted by the ROM for KKLc7_rec4 can be explained by the existence of a saddle-
node bifurcation of cycles. The main (general) characteristics of a system which ex-
perienced a saddle-node bifurcation of cycles are deduced from the normal form of 
this bifurcation type. It was shown that in the origin ( 0r  ) of a dynamical system 
which undergoes a saddle-node bifurcation at t , the Hopf conditions are (locally) 
fulfilled at 0c   . This satisfies the local prediction of BIFDD for KKLc7_rec4. Fur-
thermore, the coexistence of stable fixed point solution, unstable periodical solution 
and stable periodical solution for t c     can be explained. These characteristics 
are summarized in Figure 4.54.  

 

 
Figure 4.54: Summary of the main characteristics of a system, which undergoes a 

saddle-node bifurcation of cycles. The results of BIFDD are only valid 
locally in the close neighbourhood of the origin of the system close to 

c  (region c ). The global character of the nonlinear system can only 
be examined by numerical integration.  

As a final conclusion, the nonlinear behaviour of the ROM for the KKLc4_rec4 case 
fulfils the main characteristics of a system, which undergoes a saddle node bifurca-
tion of cycles, where the coefficients a  and c  of (4.37) (or (4.43)) are positive.  
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4.6 Stability boundary in the subN - extDP -parameter space and its relation 
to the subN - pchN -parameter space 

This section is devoted to reveal the relation of the stability boundary, calculated in 
the subN - extDP -parameter space, to the subN - pchN -parameter space. To this end, the 
analysis starts with a brief review of the meaning of the subN - pchN -parameter space. 
The subN - pchN -parameter space represents thermal hydraulic states within the heated 
flow channel [69]. When one or more system parameters are varied, the correspond-
ing change of the thermal-hydraulic conditions of a BWR system can be visualized in 
this parameter space. In particular, in a BWR there is a functional dependence be-
tween subN  and pchN  because of the coupling of the neutron kinetics, the fuel rod dy-
namics and the thermal-hydraulics. This dependence (between subN  and pchN ) 
should be taken into account when the bifurcation analysis is carried out in the subN -

pchN -parameter space.  

This section is organized in three parts. In the first part, the physical meaning of the 
SB calculated in the subN - pchN -parameter space is discussed. In the second Part, the 
relation of the SB calculated in the subN - extDP -parameter space to the SB calculated 
in the subN - pchN -parameter space is shown. The last part of this section is an exten-
sion of the second part. The ROM-input used for this analysis is close to that of 
KKLc7_rec4.  

4.6.1 Part1:  
The location of the reference OP in the subN - pchN -parameter space is presented in 
Figure 4.55. The diagonal line (where pch subN N ) separates single phase states from 
two phase states.  
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Figure 4.55: Location of the reference OP (KKL) in the subN - pchN -parameter plane. 
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As stated above, the phase change number is a function of the subcooling number 
( )pch pch subN N N  (coupled neutron kinetic – thermal-hydraulic system). This curve 
( )pch pch subN N N  (see Figure 4.56) describes the change of the thermal hydraulic 

state (of the reference OP in the subN - pchN -parameter plane) depending on subN  while 
all the other parameters are kept constant. The curve ( )pch subN N  was calculated by 
applying the numerical integration code. Thereby, steady state calculations were per-
formed where subN  was varied in small steps.  
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Figure 4.56: The curve ( )pch subN N  in the subN - pchN -parameter plane.  

Bifurcation analysis in the subN - pchN -parameter plane is conducted in the following. In 
Figure 4.57 are presented the stability boundary and the curve ( )pch subN N .  
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Figure 4.57: Result of the bifurcation analysis performed in the subN - pchN -

parameter plane. 
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Note that, in the subN - pchN -parameter space, operational points only exist on the 
curve ( )pch subN N  for a fixed parameter configuration of a BWR. Hence, the bifurcation 
analysis, performed in the subN - pchN -parameter space, provides information about 
the stability properties of fixed points located on the curve ( )pch subN N  (for the nuclear 
coupled thermal-hydraulic system).  

The results of the bifurcation analysis, presented in Figure 4.57, show that all opera-
tional points, located on the curve ( )pch subN N  between A and B (red section), are un-
stable fixed points. All the other OPs which are located on ( )pch subN N  are stable fixed 
points.  

In the scope of this approach, the following conclusions are valid: 

 The bifurcation analysis carried out in the subN - pchN -parameter space reveals 
the stability characteristics of all fixed points which are located on the curve 

( )pch subN N .  

 In order to interpret the results of the bifurcation analysis performed in the subN
- pchN -parameter space, the stability boundary should be plotted in conjunction 
with ( )pch subN N . This means, the stability boundary plotted without ( )pch subN N  
makes no sense.  
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4.6.2 Part 2:  
The same analysis is carried out for 180extDP   ( , 168.8ext refDP  ). The results are plot-
ted in Figure 4.58 and Figure 4.59. As can be seen, the variation of extDP  causes a 
shift of ( )pch subN N  and of the SB in pchN -direction, respectively. Thereby, the shift has 
the same sign but the sensitivities regarding extDP -variations are different (is ex-
plained in detail in part 3 of this section). 
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Figure 4.58: Comparison of the curves ( )pch subN N  for two different external pres-

sure drops, the reference pressure drop and 180extDP  . 

In Figure 4.59 are shown the stability boundaries and their corresponding curves 
, ( )DPext ref

pch subN N  and 180 ( )DPext
pch subN N . The SB (in the following referred to as 

( )SB
pch subN N ) and the curve ( )pch subN N  are moving in pchN -direction, when extDP  will be 

varied. The derivatives  

 ( )pch sub
ext

d N N
d DP

 (4.50) 

and  

 ( )SB
pch sub

ext

d N N
d DP

 (4.51) 

with  

 ( ) ( )SB
pch sub pch sub

ext ext

d dN N N N
d DP d DP

  (4.52) 

represent the sensitivity of the curves ( )pch subN N  and ( )SB
pch subN N  regarding extDP  

variations. Relation (4.52) means, the number of unstable fixed points is changing, 
when extDP  is varied. Roughly speaking, under extDP  variation, the stability boundary 
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and function ( )pch subN N  are moving with different “velocities” in the subN - pchN -
parameter space. The change of the length of the red section corresponds to a 
change of the number of unstable fixed points.  
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Figure 4.59: Comparison of the SB and the curve ( )pch subN N  for two different exter-

nal pressure drops, the reference pressure drop and 180extDP  . 

Function , ( )DPext ref
pch subN N  and 180 ( )DPext

pch subN N  can be transformed into the subN -
extDP -parameter space (Figure 4.60).  
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Figure 4.60: Projection of the curves , ( )DPext ref

pch subN N  and 180 ( )DPext
pch subN N  into the 

subN - extDP -parameter space. 
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In Figure 4.61 are plotted the curves , ( )DPext ref
pch subN N  and 180 ( )DPext

pch subN N  including 
the stability boundary calculated in the subN - extDP -parameter space (see section 4.3). 
In this map, both curves are straight lines which are parallel to the subN -axis. As pos-
tulated, the points A, A*, B and B* are located on the stability boundary (black line) 
which was calculated in the subN - extDP -parameter space. 

160 165 170 175 180 185 190

0,6

0,8

1,0

1,2

1,4

  SB calculated 
in the Nsub - DPext - 
parameter space 

stable region

stable region
A

DPext

 

 

Nsub

B

A*

B*

Projection of the function Npch (Nsub, DPext=180)
and Npch (Nsub, DPext,ref) into the Nsub - Npch parameter plane

unstable region

 
Figure 4.61: Projection of the two curves , ( )DPext ref

pch subN N  and 180 ( )DPext
pch subN N  into 

the subN - extDP -parameter space and the stability boundary calculated 
in the subN - extDP -parameter space. 
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4.6.3 Part 3: 
The described procedure was applied for further selected external pressure drops 
that are depicted in Figure 4.62.  
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Figure 4.62: Stability boundary calculated in the subN - extDP -parameter space. This 

map shows the locations of the selected extDP  for which the bifurcation 
analysis will be carried out in the subN - pchN -parameter space.  

The SB depicted in Figure 4.62 was then „transformed“ (projection onto) into the subN
- pchN -parameter space (see Figure 4.63).  
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Figure 4.63: Stability boundary calculated in the subN - extDP -parameter space and 

“transformed” into the subN - pchN -parameter space.  
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For all of these selected steady state external pressure drops (depicted in Figure 
4.62), bifurcation analysis was performed in the subN - pchN -parameter plane. The re-
sults are presented in Figure 4.64 and Figure 4.65.  
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Figure 4.64: Stability boundaries, calculated in the subN - pchN -parameter space, and 

the curves ( )pch subN N  for different external pressure drops are shown. 
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Figure 4.65: Comparison of the stability boundaries calculated in the subN - pchN -

parameter space for different external pressure drops and the stability 
boundary calculated in the subN - extDP -parameter space and “trans-
formed” into the subN - pchN -parameter space. 
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Figure 4.65 depicts the stability boundaries calculated in the subN - pchN -parameter 
space and the stability boundary calculated in the subN - extDP -parameter space but 
transformed into the subN - pchN -parameter space. From this result, it can be con-
cluded that under variation of extDP , the relative movement of ( )pch subN N  and 

( )SB
pch subN N  is responsible for the shape of the SB calculated in the subN - extDP -

parameter plane. 

If extDP  is increased in small steps, the stability boundary will cross the curve 
( )pch subN N  for a certain value of extDP  (point 3 in Figure 4.63). In this case, the curve 
( )pch subN N  is tangent to the stability boundary at 232extDP  . The same behaviour is 

observed at 39extDP  . These characteristics are caused by a change of the sensitivi-
ties of the stability boundaries and their curves ( )pch subN N  under extDP -variation. In 
order to explain the sensitivities of ( )SB

pch subN N  and ( )pch subN N , the slopes of the curves 
, 0.95 ( )subSB N

pch extN DP  and 0.95 ( )subN
pch extN DP  along extDP  are taken into account (Figure 4.66) 

for example.  

The curve , 0.95 ( )subSB N
pch extN DP  describes the change of the critical value of the phase 

change number (where the Hopf-conditions are fulfilled) depending on extDP , while 
0.95subN   is fixed.  
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Figure 4.66: This figure shows the critical values of the phase change number de-

pending on extDP  (called , 0.95 ( )subSB N
pch extN DP ) and the curve 

0.95 ( )subN
pch extN DP . Thereby, 0.95subN   is fixed. The result of 

, 0.95 ( )subSB N
pch extN DP  below 45extDP   is not valid and not clear! 

Figure 4.66 demonstrates that the derivative (4.51) of the curve , 0.95 ( )subSB N
pch extN DP  is 

approximately constant for all extDP . Consequently, the sensitivity of the stability 
boundary remains approximately constant regarding extDP  variations.  
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The slope of the curve 0.95 ( )subN
pch extN DP  changes significantly with increasing extDP . 

The slopes of the curves at 50extDP   and 200extDP   were estimated as 

 0.95 3( 50) 61.54 10subN
pch ext

ext

d N DP
d DP

     (4.53) 

 , 0.95 3( 50) 21.09 10subSB N
pch ext

ext

d N DP
d DP

     (4.54) 

 0.95 3( 200) 9.8 10subN
pch ext

ext

d N DP
d DP

     (4.55) 

 , 0.95 3( 200) 13.556 10 .subSB N
pch ext

ext

d N DP
d DP

     (4.56) 

The slopes at the both coordinates correspond to the sensitivity of the SB and the 
function ( )pch subN N  regarding extDP  variations. Because of  

 0.95 , 0.95( 50) ( 50)sub subN SB N
pch ext pch ext

ext ext

d dN DP N DP
d DP d DP

     (4.57) 

the curve ( )pch subN N  has passed the stability boundary. The comparison at 
200extDP   yields  

 0.95 , 0.95( 200) ( 200) .sub subN SB N
pch ext pch ext

ext ext

d dN DP N DP
d DP d DP

     (4.58) 

Relation (4.58) is responsible that the stability boundary is passing the curve 
( )pch subN N .  

4.6.4 Conclusions 
 The bifurcation analysis in the subN - extDP -parameter plane yields information 

about the stability properties of fixed points along the rod line and their corre-
sponding operational conditions in the power flow map. The use of subN  and 

extDP  for the bifurcation analysis is more general because three parameters 
are varied implicitly  subN , extDP  and pchN . In other words, pchN  is a function 
of subN  and extDP .  

 The bifurcation analysis in the subN - pchN -parameter plane yields information 
about the stability properties of fixed points along the curve ( )pch subN N  and its 
corresponding thermal hydraulic states.  

 The slopes of the curves 0.95 ( )subN
pch extN DP  and , 0.95 ( )subSB N

pch extN DP  (Figure 4.66) 
describe the sensitivities of function ( )pch subN N  and the stability boundary 

( )SB
pch subN N  regarding extDP -variations. In addition to that they describe the rela-

tive movement between ( )pch subN N  and ( )SB
pch subN N  under variation of extDP .  

 Under variation of extDP , the relative movement between ( )pch subN N  and 
( )SB

pch subN N  is responsible for the shape of the SB calculated in the subN - extDP -
parameter plane. 
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 The shape of the stability boundary which was calculated in the subN - extDP -
parameter space, can be explained by bifurcation analyses carried out in the 

subN - pchN -parameter space for different extDP .  

As described in the previous sections, the ROM-input is based on the selected op-
erational point. Accordingly, the stability boundary (SB) which was calculated in the 

subN - extDP -operating plane, is related to the reference operational point with its spe-
cific steady state 3D parameter distributions. The ROM predictions are only valid in 
the neighbourhood of the reference OP. Hence, it makes no sense to consider the 
predicted stability characteristics of fixed points which are located too far away from 
the reference point. Because in such points the 3D parameter distributions are com-
pletely different from the considered reference OP and thus the stability behaviour 
may be different as predicted by the ROM. The crucial question is: how large is the 
area of validity of the ROM predictions for a considered reference OP? 
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5 Summary and conclusions  
The thesis is devoted to nonlinear BWR stability analysis of operational points for 
which measurement data are available from stability tests. In the context of the the-
sis, a novel approach to nonlinear BWR stability analysis has been developed. This 
approach can be summarized as follows:  

 Sophisticated integral BWR (system) codes and simplified BWR models 
(ROM) are used as complementary tools to examine the stability characteris-
tics of fixed points and periodic solutions of the nonlinear differential equations 
describing the stability behaviour of a BWR loop.  

 The intention is:  

- to identify the stability properties of certain operational points (OP) by 
performing ROM analysis. The ROM analysis provides an overview 
about types of instabilities which have to be expected in certain pa-
rameter spaces. 

- to apply the system code RAMONA5 for a detailed stability investigation 
in these operational points and their neighbourhoods. In particular, the 
nonlinear phenomena revealed by the ROM analysis will be analysed in 
detail.  

 Because the ROM analysis reveals an overview about the solution types exist-
ing in certain parameter regions and due to the flexible application of certain 
methods to the ROM (e.g. variation of specific algorithms for the numerical in-
tegration, application of methods from nonlinear dynamics), the results of the 
ROM can help to get a better understanding of the results of the system code.  

The novel approach to nonlinear BWR stability analysis improves the reliability of the 
BWR stability analysis significantly.  

In the scope of the ROM analyses two independent techniques are employed. These 
are the semi-analytical bifurcation analysis with the bifurcation code BIFDD and the 
numerical integration of the system of the ROM differential equations. Bifurcation 
analysis with BIFDD determines the stability properties of fixed points and periodical 
solutions (correspond to limit cycle). For independent confirmation of these results, 
the ROM system will be solved directly by numerical integration for selected parame-
ters. 

The ROM applied in this thesis, the TUD-ROM, was originally developed at PSI in 
collaboration with the University of Illinois (PSI-Illinois-ROM). The objective of the 
ROM development is to develop a model as simple as possible from the mathemati-
cal and numerical point of view while preserving the physics of the BWR stability be-
haviour. Hence, the partial differential equations (PDE) describing the BWR will be 
converted into ordinary differential equations (ODE). The system of ODEs includes all 
spatial effects in an approximated (spatial averaged) manner because e.g. by appli-
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cation of the mode expansion methodology spatial effects are taken into account by 
calculation of the amplitude functions of the higher spatial modes and realistic as-
sumptions to the higher mode spatial distributions (calculated by a 3D code). In order 
to analyse the in-phase and out-of-phase oscillation states, for instance, it is not nec-
essary to solve the full space-dependent equations. In this case, it is sufficient to take 
into account only the fundamental mode and the first azimuthal mode. This is justified 
by reactor theory [48] as well as by results of stability tests [5].  

The TUD-ROM was upgraded in two significant points:  

 Development and implementation of a new calculation methodology for the 
mode feedback reactivity coefficients (void and fuel temperature reactivity)  

 Development and implementation of a recirculation loop model, analysis and 
discussion of its impact on the in-phase and out-of-phase oscillation mode  

 Development of a novel physically justified approach for the calculation of the 
ROM input data 

 Discussion of the necessity of consideration of the effect of subcooled boiling 
in an approximate manner 

With the upgraded ROM, nonlinear BWR stability analyses have been performed for 
three OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one 
for NPP Brunsbüttel (cycle16) for which measuring data of stability tests are avail-
able. In this thesis, the novel approach to nonlinear BWR stability analyses was ex-
tensively presented for NPP Leibstadt. In particular, the nonlinear analysis has been 
carried out for an operational point (OP), at which an out-of-phase power oscillation 
has been observed in the scope of a stability test at the beginning of cycle 7 
(KKLc7_rec4). The ROM predicts a saddle-node bifurcation of cycles, occurring in 
the linear stable region, close to the KKLc7_rec4-OP. This result allows a new inter-
pretation of the stability behaviour around the KKLc7_rec4-OP. 

 

5.1 Modifications of the ROM 

5.1.1 Recirculation loop 
In the PSI-Illinois-ROM, the outer loop was replaced by the constant external pres-
sure drop boundary condition. This is a reasonable approximation to represent the 
real stability behaviour of an out-of phase oscillation mode. But the stability behaviour 
of the in-phase oscillation mode can not be simulated correctly. Hence, the ROM was 
extended by a recirculation loop model.  

In the first step, the recirculation loop was implemented in a thermal-hydraulic one 
heated channel model based on data of the Saha facility [77]. In order to study the 
impact of the recirculation loop model on the thermal-hydraulic stability properties, 
the downcomer flow cross section docA  was varied in the range of interest. In the 
scope of this analysis, it has been found that the larger the downcomer flow cross 



Summary and conclusions  151 

section the more unstable the system is. From the linear point of view, the set of sta-
ble fixed points become less with increasing docA . On the other hand, the set of sub-
critical fixed points (unstable limit cycles solution) increases for increasing docA  val-
ues. It should be emphasized that an infinite large downcomer flow cross section (

0doc olA A  ) corresponds to the constant external pressure drop boundary 
condition ( externP const  ).  

Further investigations have shown that the downcomer friction has a very small im-
pact on the stability behaviour. Consequently, it can be neglected in further stability 
investigations. This result is in agreement with the RAMONA5 model where down-
comer friction is also ignored.  

In the second step, the recirculation loop model has been implemented in the simpli-
fied BWR model and its impact on the BWR stability behaviour has been analysed. In 
particular, the effect of the downcomer flow cross section on the in- and out-of-phase 
oscillation mode (corresponds to the in- and out-of-phase eigenstates) has been 
studied. The analysis of the downcomer flow cross section variation with the ROM 
has shown that docA  have a strong impact on the stability property of the in-phase 
oscillation mode while the stability behaviour of the out-of-phase oscillation mode is 
not affected. The larger the downcomer flow cross section, the more unstable the in-
phase oscillation mode is. The results of the ROM analysis are consistent with the 
results of the RAMONA5 analysis. It should be emphasized that the stability proper-
ties for the reference OP of KKLc7rec4 can only be reproduced correctly by the ROM 
if the correct downcomer flow cross section of the RAMONA5 model is used. Conse-
quently, BWR stability analysis should be performed always including the recircula-
tion loop.  

5.1.2 Subcooled boiling 
In the thermal-hydraulic model of the ROM, two axial regions, the single- and the two 
phase region, are considered. Thereby the two phase region is represented by a 
Drift-Flux model where thermodynamic equilibrium between the two phases is as-
sumed. Two questions arise: 1) is it necessary to take into account the subcooled 
boiling phenomenon for BWR stability analyses? 2) which model for describing the 
subcooled boiling phenomenon is appropriated in the framework of this analysis ap-
proach? It has been found out that the ROM must be extended by a third region 
where a mechanistic model describes the thermodynamic non-equilibrium between 
the two phases and the void generation on the heated surface. But such a model ex-
tension requires extreme large effort. Therefore, in the scope of this work, the effect 
of the subcooled boiling on the BWR stability behaviour has been estimated by a 
modified profile fit model (Levy, 1966 [27]).  

The first analysis with the included subcooled boiling model was performed with the 
simple thermal-hydraulic one heated channel model. The aim was to analyse the dif-
ferences between the axial void profiles provided by the original two-phase flow 
model (bulk boiling model) and the subcooled boiling model. As a result, the relative 
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deviation between the channel averaged void fractions provided by the two-phase 
flow model and the subcooled boiling model is less than 5%.  

Furthermore, an analysis was performed with the ROM for NPP Leibstadt. The aim 
was to compare the effect of using a uniform axial power profile in the ROM (instead 
of a real bottom peaked axial power profile) with the effect of ignoring subcooled boil-
ing on the axial void profiles. As a result, it has been found out that the application of 
a uniform axial power profile instead of the real one causes relative deviations be-
tween channel averaged void fractions calculated by RAMONA5 and ROM of at least 
16%. In contrast to that the disregard of subcooled boiling lead to relative deviations 
less than 5%, mentioned above. Furthermore, after applying the adjustment proce-
dure for the axial void profile of the ROM, the deviation between the channel aver-
aged void fraction calculated by RAMONA5 and ROM (original two phase flow 
model) are less than 1%. Consequently, from the thermal-hydraulic point of view and 
in the framework of the analysis approach of the thesis, the consideration of the sub-
cooled boiling phenomenon is not necessary.  

5.1.3 Calulation methodology for mnC -coefficients 

A new method to calculate the void and fuel temperature (Doppler) mode feedback 
reactivity coefficients ( ,Void r

mnC  and ,Doppler r
mnC , section 3.2) has been developed at UPV 

Valencia (Spain) in cooperation with the TU Dresden (Germany). The new 
methodology was applied for NPP Leibstadt, NPP Ringhals and NPP Brunsbüttel.  

The results of the new calculation methodology for ,Void r
mnC  and ,Doppler r

mnC  are compared 
with that of the original method used in the PSI-Illinois ROM. The comparison show 
that both methods provide similar results for NPP Leibstadt and NPP Ringhals. In 
addition to that the void and Doppler feedback reactivity coefficients of the technical 
documentation of NPP Leibstadt (beginning of cycle 7) have the same order of mag-
nitude as calculated by the calculation methodology of the mode feedback reactivity 
coefficients. Consequently, the new calculation methodology for the void and Doppler 
mode feedback reactivity coefficients is qualified for ROM analysis.  

 

5.2 Novel approach for calculation of the ROM input 
The goal is to analyse the stability behaviour of the power plant with the ROM as 
close as possible to a real BWR (RAMONA5 model is the reference system) in a cer-
tain neighbourhood of the selected OP. At first, it is necessary to define the reference 
OP for which the nonlinear BWR stability analysis will be performed. For NPP Leib-
stadt, for instance, the KKLc7_rec4-OP was selected to be the reference OP but with 
a modified core inlet subcooling. Secondly, a novel approach for the ROM input cal-
culation is applied. All ROM input parameters are calculated from the specific 
RAMONA5 model and its steady state solution corresponding to the reference OP. 
The basic demand on the procedure for calculating the ROM-input is that the steady 
state conditions of the reference OP, predicted by the RAMONA5 model, are simu-
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lated correctly by the ROM using the calculated input parameters. Only in this case it 
is reasonable to perform specific system code analyses which are based on the ROM 
analysis results.  

In the framework of the novel calculation methodology of the ROM input parameters, 
it is assumed that, when the steady state solution of the reference OP is described by 
the ROM as close as possible to the real one (system code prediction), the stability 
behaviour of the BWR system can be represented properly by the ROM in a close 
neighbourhood of the reference OP. In particular the specific thermal-hydraulic and 
neutron kinetic states has to be described correctly.  

The novel calculation methodology of the ROM input parameters was applied for 
three NPPs. The results of the steady state properties of the ROM are consistent with 
that of RAMONA5.  

5.3 Nonlinear stability analysis for NPP Leibstadt (KKLc7_rec4) 
Stability and bifurcation analysis for KKLc7_rec4 has been performed. For this pur-
pose, the KKLc7_rec4-OP is defined to be the reference OP. The stability boundaries 
and the nature of the PAH-B are determined and visualized in appropriated two-
dimensional parameter spaces. In particular, the subcooling number subN  and the 
steady state external pressure drop extDP  are selected to be the iteration and bifurca-
tion parameters. The variation of extDP  corresponds to a variation of the pump head 
which changes the coolant mass flow. When the coolant mass flow is changed, the 
power will also be changed while the spatial neutron flux distribution will not be 
changed significantly because the control rod positions are kept constant. As a con-
sequence, the stability properties of fixed points and periodical solutions along the 
rod-line of the power flow map which crosses the reference OP can be examined. 

Note that, the two parameters subN  and pchN  can also be selected to be the iteration 
and bifurcation parameters in bifurcation analyses with BIFDD. The subN - pchN -
parameter space, used as stability map, is related to the thermal-hydraulic states 
within the hydraulic nuclear-heated channels of the BWR. It is important to note that, 
in the subN - pchN -parameter space, operational points only exist on the curve 

( )pch subN N  for a fixed parameter configuration of a BWR. Hence, the bifurcation 
analysis carried out in the subN - pchN -parameter space reveals the stability character-
istics of all fixed points which are located on the curve ( )pch subN N  (see section 4.6). 
Consequently, the functional dependence between subN  and pchN  (the curve 

( )pch subN N ) should always be taken into account for an interpretation of the stability 
characteristics calculated in the subN - pchN -parameter space.  

In contrast, the bifurcation analysis carried out in the subN - extDP -parameter space 
yield the most practical information about BWR operating conditions. This statement 
is verified in section 4.6 where the stability boundary calculated in the subN - extDP -
parameter space and its relation to the subN - pchN -parameter space has been dis-
cussed. If the bifurcation analysis is carried out in the subN - extDP -parameter space, a 



154   

larger parameter region can be analysed in comparison to an bifurcation analysis 
carried out in the subN - pchN -parameter space.  

5.3.1 Local consideration  
The terminology “local analysis” means that the close neighbourhood of the steady 
state solution 0X


 (equilibrium point or singular fixed point) is taken into account in the 

phase space.  

The following conclusions of the local nonlinear stability analyses for the 
KKLc7_rec4-OP of NPP Leibstadt were derived:  

 Unstable periodical solutions (unstable limit cycle) in the stable region close to 
the KKLc7_rec4-OP are predicted by the semi-analytical bifurcation analysis. 
Note that, the asymptotic decay ratio for these fixed points is DR<1. A linear 
analysis is not capable to examine the stability properties of limit cycles.  

 For independent confirmation of the results which are predicted by the bifurca-
tion analyses, numerical integration of the ROM equation system has been 
carried out for selected parameters. The results of the numerical integration 
method confirm the predictions of the local bifurcation analysis. 

 The local nonlinear analysis has shown that the stability behaviour of the ref-
erence OP and its close neighbourhood can be simulated reliably by the new 
ROM. In this OP, the results of RAMONA5 and ROM are locally consistent. 
Under stability related parameter variations the stability behaviour calculated 
by both, ROM and RAM, are consistent.  

 The relative location of the reference OP with respect to the stability boundary 
is simulated correctly with the new ROM. This is mainly affected by the appli-
cation of the novel approach for calculation of the ROM input data.  

 The new ROM simulates correctly the oscillation mode: the out-of-phase oscil-
lation is excited and the in-phase mode is decaying. As mentioned in the in-
troduction of the thesis, the original ROM was not able to predict the correct 
oscillation mode. The reason for the correct simulation of the oscillation mode 
is the implemented recirculation loop model, in which the downcomer flow 
cross section of the RAMONA5 (DC2) model is used as input parameter, and 
the increased artificial factor mnfact  with m n .  

The good agreement between the local RAMONA5 and ROM investigations could be 
verified for NPP Brunsbüttel and NPP Ringhals1 (see Appendix H and Appendix G). 
Hence, the new ROM and the new procedure for the calculation of the ROM input 
data are qualified for BWR stability analysis in the framework of the new approach. 
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5.3.2 Global consideration 
The bifurcation analysis with BIFDD is valid only in a small neighbourhood of the 
Hopf bifurcation point of the parameter space and in the vicinity of the equilib-
rium point (origin or singular fixed point) of the phase space (see Figure 4.54). In 
order to study the global character of the nonlinear system, numerical integration be-
yond the local bifurcation findings is necessary. For this purpose, numerical integra-
tion of the ROM equation system has been carried out for a larger parameter region. 
In addition to that, a larger phase space region for the calculation of the solution of 
the system of ROM equations was taken into account. In this analysis, the subcooling 
number subN  was selected to be the control parameter and was varied in a specific 
range. 

The global nonlinear stability analysis has shown that there is a critical core inlet 
subcooling ,sub tN  at which the system undergoes a saddle-note bifurcation of a cycle. 
This bifurcation type, which is also called turning point or fold bifurcation, belongs to 
the class of global bifurcations. The major feature of this bifurcation type is that a 
stable limit cycle and an unstable limit cycle are “born” (“out the clear blue sky” 
[17]) at ,sub tN  and coexist either with stable or with unstable fixed points.  

The numerical integration (global consideration) predicts stable limit cycles for 
, 0.9sub t subN N  , even though the bifurcation analysis predicts only unstable limit 

cycles for ,sub sub cN N . ,sub cN  is the critical bifurcation parameter, for which the Hopf 
conditions are fulfilled. Due to (numerical) convergence problems of the numerical 
integration around the bifurcation point, ,sub tN  cannot be calculated exactly. The esti-
mated value of ,sub tN  is , 0.63sub tN  .  

At the reference OP the state variables will also be attracted by the limit cycle. In ad-
dition to that, for , ,[ ,...., ]sub sub t sub cN N N  with , ,sub t sub cN N  stable fixed point, unstable 
limit cycle and stable limit cycle coexist. In this region, the amplitudes of the unstable 
limit cycle correspond to the boundary which separates the basin of attraction of the 
singular fixed point and basin of attraction of the stable limit cycle. Below ,sub tN , only 
stable fixed point solutions exist.  

The nonlinear analyses results for NPP Ringhals, presented in Appendix H, have 
also shown that at the reference OP and in its neighbourhood stable limit cycle exist 
even though the bifurcation analysis predicts only subcritical Hopf bifurcations. This 
result can also be explained by the existence of a saddle-node bifurcation of cycles 
occurring in the linear stable region.  

As mentioned in the introduction, Rizwan-udding [38] (using the simple March-Leuba 
five-equation system) and van Bragt et al. [54] (using the thermal-hydraulic one 
heated channel model) also showed the existence of turning points with their simple 
models. However, this is the first time that a saddle-note bifurcation of cycles is re-
vealed by an advanced ROM for a real operational point of a BWR. 
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5.4 Conclusions 
The following conclusions from nonlinear BWR stability analyses can be made:  

 The recirculation loop model is an essential sub-model of the ROM for simulat-
ing correctly the in-phase oscillation mode. BWR stability analysis should al-
ways be performed including the recirculation loop.  

 The subcooled boiling phenomenon can be ignored as long as a uniform axial 
power profile is used by the ROM.  

 The new calculation methodology for the void and Doppler mode feedback re-
activity coefficients is qualified for ROM analyses. 

 The application of the novel approach for calculation of the ROM input data is 
one of the crucial tasks of a successfully use of the RAM-ROM methodology. It 
enables that the TUD-ROM simulates correctly the steady state conditions of 
the reference OP. Thus the novel approach to calculate the ROM input is 
strongly recommended for the RAM-ROM methodology. 

 At the reference OP and its close neighbourhood, the results of RAMONA5 
and the TUD-ROM are qualitatively consistent. Hence, the TUD-ROM is quali-
fied for nonlinear BWR stability analyses in the framework of the novel ap-
proach demonstrated in this thesis.  

 The nonlinear stability analysis for NPP Leibstadt (KKLc7_rec4) has shown 
that the stability behaviour occurring in a certain region around the reference 
OP can be explained by the existence of a saddle-node bifurcation of cycles 
which occurs in the linear stable region. This result allows a new possible in-
terpretation of the stability behaviour around the KKLc7_rec4-OP.  

 The results of this thesis confirm that the RAM-ROM methodology is qualified 
for nonlinear BWR stability analyses. 

 

5.5 Recommendations to future work  
In order to increase the reliability of the RAM-ROM methodology the following future 
work is recommended:  

 assessment of the sensitivities and uncertainties of parameters which are sig-
nificant for the BWR stability behaviour.  

 deepen the physical interpretation of the shape of the stability boundaries and 
their change under parameter variations 

 in-depth analysis of global bifurcations and the conditions of their occurrence, 
in particular, of those generating large limit cycle amplitudes  

 Post-analysis for the SIRIUS-N (T) facility to “validate” the TUD-ROM 
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 A critical discussion of the sub-models of the ROM is recommended. In par-
ticular, the necessity of consideration of real axial power profiles should be 
discussed. Another unsolved problem is the physical interpretation of the arti-
ficial factor mnfact .  

 In many analyses using BIFDD, there are convergence problems to find the 
critical bifurcation parameter at which the Hopf conditions are fulfilled. This 
problem causes interruptions during the bifurcation analysis. Here, a critical 
review of the algorithms employed by BIFDD is necessary. In addition to that, 
as explained in section 2.3, the user of BIFDD has to provide the Jacobian 
matrix of the system of differential equations. If the ROM will be modified, all 
corresponding Jacobian matrix elements (in the TUD-ROM there are 22x22 
elements) must be analytically recalculated. Hence, ROM modifications are 
difficult and cumbersome, when it is coupled with BIFDD. Hence, it is recom-
mended to develop a new bifurcation code which avoids the disadvantages, 
mentioned above, and allows a more flexible use, e.g. global bifurcation 
analyses. 

The reliability of system code analyses should be studied more in detail because it 
was figured out that the simulated stability behaviour in the close neighbourhood of 
bifurcation points strongly depend on algorithms employed. In addition to that, a criti-
cal discussion of some approximations of RAMONA5 regarding their impact on the 
stability behaviour is necessary (like 0P  ). 
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Appendix A:  Nonlinear stability analysis 
Generally, stability analysis is the investigation of the temporal behaviour of the dy-
namical variables after an internal or external perturbation is imposed on the dynami-
cal system, while one or more system parameters will be varied in their domain of 
definition. If the system is stable, all dynamical variables return to the fixed point (or 
in a close neighborhood of the fixed point, which is also called “Ljapunov stability” [1-
3]). If the system is unstable, at least one dynamical variable is diverging in an oscil-
latory or exponential manner. Thereby the critical value of the system parameter(s) 
which separates stable fixed points from the unstable one is so-called as stability 
boundary.  

For a mathematical description, the autonomous dynamical system 

 ( )( ) ( ),d X t F X t
dt

γ=  (A1) 

is considered [2]. Thereby, ( )X t  with  
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is the state vector describing the state of the dynamical system in the state space, F  
with  
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is a vector field describing the dynamical behaviour of the state variables and mγ ∈  
is a parameter vector (also referred to as control parameter vector with m  compo-
nents).  

Let 0X  be the steady state solution of the dynamical system (A1) for all γ , where 0X  
is satisfying  

 0
00 ( , ) .dX F X

dt
γ= =  (A4) 

In order to get information about the stability properties of the steady state solution 
0X  and its vicinity, the dynamical system will be linearized around 0X . To this end, 

the ansatz  

 0( ) ( )X t X X tδ= +  (A5) 

is substituted in (A1) and a Taylor-expansion is applied  
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where the linear term is taken into account only.  

 
Figure 1: This figure depicts the linearization of the dynamical system (A1) 

around the steady state solution 0X . This means, the states ( )X t  can 
be approximated by the steady state solution plus a small perturbation 

( )X tδ  of the steady state. This method is common practice in pertur-
bation theory [5].  

The result of the linearization is given by 

 ,d X J X
dt
δ δ=  (A7) 

where J  is the Jacobian matrix defined as  
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Equation (A7) is the linearized system of (A1) at 0X . The solution of equation (A7) 
can be written as  

 0( ) .JtX t e Xδ δ=  (A9) 

Roughly speaking, the solution (A9) describes the time evolution of the small pertur-
bation Xδ  which is imposed on the steady state 0X  at 0 0t t= =  with 

0 0( )X t t Xδ δ= = . According to equation (A9), the time evolution of Xδ  only de-
pends on J . In turn, J  depends on the parameter vector γ . This means, the local 
stability behaviour of the dynamical system (A1) around 0X  depends only on the 
characteristic of the Jacobian matrix, from the linear point of view. It should be noted 
that transformation (A5) transforme the singular fixed point 0X  into the origin 0Xδ = . 
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This is the reason that the terminologies: “the origin is stable locally” or “the origin is 
unstable locally” exist.  

In order to evaluate (A9), the linear transformation  

 ( ) ( )X t P U tδ =  (A10) 

is performed in such a way that the Jacobian matrix can be transformed into the Jor-
dan normal form [1-4]. To this end, the eigenvalue problem  

 i i iJ p pλ=  (A11) 

has to be solved, where ip  are the eigenvectors with their corresponding eigenvalues 
iλ  of the Jacobian matrix. This procedure corresponds to a change of the basis vec-

tors which span the state space of the dynamical system. The transformation matrix 
P  can according to [ ]1,..., ,...,i nP p p p=  be written in terms of the eigenvectors ip . 
With other words, the columns of P  are the eigenvectors ip  of the Jacobian matrix.  

In the linear system (A7) the vector Xδ  is substituted by ansatz (A10) and the final 
equation is multiplied by 1P−  from the left hand side. The result can be written as  

 1 ,d U P J P U DU
dt

−= =  (A12) 

where D  with  
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is the Jacobian matrix transformed into the Jordan normal form. If all eigenvalues of 
J  are real and distinct, matrix D  will have a diagonal form [3].  

The solution of (A12) can be written as  

 0( )
0( ) ,D t tU t e U−=  (A14) 

where 0 0X P Uδ = . The back transformation gives  

 0 0( ) ( ) 1
0 0( ) .D t t D t tX PU t Pe U Pe P Xδ δ− − −= = =  (A15) 

The general solution of the linearized system (A7) can be written as  
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where the constants ic  can be calculated from the initial conditions.  

From the general solution (A16) it can be seen that the stability behaviour in the vi-
cinity of 0X  of the linearized system depends on the real parts of the eigenvalues iλ  
of J  with ( )i iλ λ γ= . According to (A16) all components ( )ix t  of the general solution 
contain all eigenvalues iλ  of J . This means, if there is at least one pair of complex 
conjugated eigenvalue with a positive real part, the system will be unstable. If all ei-
genvalues have strictly negative real parts, the system will be stable. When a se-
lected control parameter is changed and the eigenvalue with the largest real part be-
comes zero, additional analyses such as Hopf bifurcation analyses are necessary. 
The statements 

 
Re( ) 0   local stable
Re( ) 0   local unstable
Re( ) 0   additional analyses are necessary

i

i

i

λ
λ
λ

< →
> →
= →

 (A17) 

are basic characteristics of linear systems which are expressed by the theorem of 
Hartmann and Großmann [1-3].  

Theorem of Hartmann and Großmann: Let 0X  be the steady state solution for a 
given parameter configuration γ  and J  be the Jacobian matrix of the dynamical sys-
tem. Roughly speaking, if all eigenvalues have real parts strictly different from zero 
(the corresponding fixed points are so-called hyperbolic fixed points), in this case, the 
orbits of the nonlinear dynamical system can be mapped (locally, homeomorphic) on 
the orbits of the linear system. This means, if the fixed point is a hyperbolic one, the 
stability behaviour of the nonlinear dynamical system can be described locally by the 
linear system.  

This theorem is of particular importance because it satisfies the application of linear 
analysis methods for stability analyses of nonlinear dynamical systems. But if the 
condition of the theorem is not fulfilled, this means Re( ) 0iλ = , additional investigations 
such as bifurcation analyses are necessary.  

In general, the stability boundary which separates linear stable fixed points from lin-
ear unstable one, is a multi dimensional structure in the m -dimensional parameter 
space. The task “calculation of the stability boundary” means: 1) selection of one or 
more parameters kγ  which will be varied within the domain of definitions and 2) cal-
culate the critical parameters ,k cγ  for which Re( ) 0iλ =  with ,( )i k cλ γ . This means, the 
parameter kγ  will be varied as long as the condition 

 

( ) 0

Re(det[ ]) 0
Im(det[ ]) 0

d X t
dt

J i I
J i I

ω
ω

=

− =
− =

 (A18) 

is fulfilled for ,k cγ . In condition (A18) there is i  with 2( 1)i = −  the complex number, ω  
is the frequency of the oscillation, Re  and Im  stand for real and imaginary parts, re-
spectively and det  is the determinant.  
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Hopf bifurcation theorem 

In the framework of the nonlinear BWR stability research (in particular, the semi-
analytical bifurcation analysis), the so-called Hopf bifurcations play a dominant role. 
The occurrence of such type of dynamical bifurcations is ensured by the Hopf theo-
rem [1-4]. This theorem, which is also called Poincarè-Andronov-Hopf bifurcation 
(PAH-B) theorem, guarantees the existence of stable and unstable periodic solutions 
of nonlinear differential equations if certain conditions are satisfied [4]. For a mathe-
matical description, the autonomous dynamical system (A1) and its steady state solu-
tion 0X  is considered. If the following Hopf conditions are fulfilled:  

1) For a critical parameter ,k cγ  there exists a pair of complex conjugate eigenval-
ues 1 ,( )k c iλ γ ω= ± , (this means 1 ,Re( ( )) 0k cλ γ = ) 

2) all the other eigenvalues have strictly negative real parts 
( ,, 1 Re( ( )) 0i i k ciλ λ γ∀ ≠ → < ), and 

3) ,( )
0k k c

k

λ γ γ
γ
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a family of periodic solutions 
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of (A1) with small amplitude ε  exist in 0X  for ,k cγ  [4], where 1p  is the eigenvector of 
the linearized system associated with the pair of complex conjugated eigenvalues 
responsible for the bifurcation ( 1λ ) and T  is the period of the oscillation.  

To summarize, from the linear point of view, the condition ,Re( ( )) 0i k cλ γ =  separates 
stable fixed points ( Re( ( )) 0i kλ γ <  with ,k k cγ γ<  or ,k k cγ γ> ) from the unstable one 
( Re( ( )) 0i kλ γ >  with ,k k cγ γ>  or ,k k cγ γ< ). Note, the linear analysis is possible as long 
as the theorem of Hartmann and Goßmann is fulfilled. In nonhyperbolic fixed points 
( ,Re( ( )) 0i k cλ γ = ) additional analyses are necessary. The Hopf theoem implies that 
periodical solutions exist in fixed points where the Hopf conditions are satisfied. The 
stability properties of the periodical solutions can be analysed by applying the Foquet 
theory.  
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Floquet theory 

In order to get information about the stability property of the periodic solution, the 
(linear) Floquet theory is applied where the so-called Floquet exponent (Floquet pa-
rameter) β  appears [2,4] which determine the stability of the periodic solution. If 

0β < , the periodic solution is stable (supercritical bifurcation) while if 0β > , the peri-
odic solution is unstable (subcritical bifurcation) [2,4]. In simpler terms, the Floquet 
parameter can be interpreted to be a stability indicator for limit cycles and is a result 
of a special technique from the nonlinear dynamics.  

If one or more system parameters kγ  are varied and a Hopf bifurcation exist for ,k cγ  
the system bifurcates from an equilibrium solution 0X  to a periodic solution (denoted 
by X ). It is assumed that the considered dynamical system is time continuous one. 
The solution of ( )X X t=  is period with least period T  if ( ) ( )X t T X t+ =  and 

( ) ( )X t X tτ+ ≠  for 0 Tτ< < . In order to analysis the stability properties of the periodic 
solution, a small disturbance ( )Y t  is superimposed on X , resulting in  

 ( ) ( ) ( ) .X t X t Y t= +  (A20) 

Substituting (A20) into (A1), expanding the result in a Taylor series about X  and 
retaining only the linear term in the perturbation lead to  
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 (A21) 

where 0( , )A t γ  is a matrix of the first partial derivatives of the vector field F  and is 
periodic in time with the period T . It should be emphasized that the stability analysis 
of the periodic solution is local because of the linearization in ( )Y t .  

The system (A21) is a n -dimensional linear system with n  linearly independent solu-
tions iY  summarized in the form of an n n×  matrix 1 2

ˆ( ) [ ( ), ( ),..., ( )]nY t Y t Y t Y t=  where 
1,2,...,i n= . The linear independent solutions are referred to as fundamental set of 

solutions. Matrix Ŷ  satisfies the matrix equation  

 0
ˆ ˆ( ) ( , ) ( ) .d Y t A t Y t

dt
γ=  (A22) 

Because of the periodicity of 0( , )A t γ  it can be written as 0 0( , ) ( , )A A Tτ γ τ γ= −  and 
thus  

 0 0
ˆ ˆ ˆ( , ) ( , ) ,d Y A T Y A Y

dt
τ γ τ γ= − =  (A23) 

where the dependent variable was changed accorting to t Tτ = + . If matrix ˆ( )Y t  is a 
fundamental matrix solution, then ˆ( )Y t T+  is also a fundamental matrix solution. This 
means, the matrix ˆ( )Y t T+  can be expressed as linear combination  
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 ˆ ˆ ˆ( ) ( ) ,Y t T Y t+ = ⋅Φ  (A24) 

where Φ̂  is so-called monodromy matrix. The monodromy matrix is an n n× -matrix 
with constant coefficients and is not unique. Φ̂  can be specified by the initial condi-
tion ˆ ˆ(0)Y = Ι  and thus  

 
ˆ ˆ ˆ ˆ ˆ(0 ) ( )
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where Ι̂  is n n× -identity matrix.  

Furthermore, the transformation 1ˆ ˆ( ) ( )Y t V t P−= ⋅  (matrix P̂  is different from matrix P  
introduced in transformation (A10)) can be introduced, where P̂  is an n n× -matrix 
with constant coefficients. This transformation can be substituted in (A24). It follows  
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 (A26) 

and thus  

 1

ˆ

ˆ ˆ ˆˆ( ) ( ) ( ) .V t T V t P P V t−

Ψ

+ = ⋅ Φ = ⋅Ψ  (A27) 

The back transformation gives  

 ˆ ˆ( ) ( )V t Y t P=  (A28) 

and  

 ˆ ˆ( ) ( ) .V t T Y t T P+ = +  (A29) 

Matrix P̂  should be choosen in such a way that the matrix Ψ̂  has the simplest possi-
ble form, depending on the eigenvalues and eigenvectors of Φ̂ . Let mϕ  be the eigen-
values of Φ̂ . If all eigenvalues mϕ  are distinct, matrix P̂  can be selected in such a 
way that the eigenvectors mp  are the columns of P̂  with 1

ˆ [ ,..., ]nP p p= . Thus the ei-
genvalue problem  

 ˆ
m m mp pϕΦ =  (A30) 

is to be solved. Afterwards, Ψ̂  with  
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has a diagonal form.   

The eigenvalues mϕ  of the monodromy matrix are called Floquet multiplier and pro-
vides a measure of the local orbital divergence or convergence along a particular di-
rection. If all mϕ  are distinct, then  
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 ( ) ( )m m mv t T v tϕ+ =  (A32) 

for 1,2,...m n= , where the mv  are the components of V . Generalization of (A32) gives  

 ( ) ( ) .N
m m mv t NT v tϕ+ =  (A33) 

The evaluation of (A33) can be summarized as  
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ϕ

ϕ

ϕ
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= − → =

 (A34) 

Hence, if 1mϕ = , mv  is periodic with T  and if 1mϕ = − , mv  has the period of 2T . If only 
one Floquet multiplier is located on the unit circle of the complex plane (e.g. 1mϕ =  
and 1mϕ = − ), the periodic solution is referred to as a hyperbolic periodic solution. A 
hyperbolic periodic solution is asymptotically stable, when all the other Floquet multi-
plier iϕ  with i m≠  are inside the unit circle of the complex plane. A hyperbolic peri-
odical solution is unstable, when one or more of the other Floquet multiplier are lo-
cated outside the unit circle. If all iϕ  for 1,...,i n=  and i m≠  ( mϕ  is located on the unit 
circle) lie outside the unit circle, then all trajectories of the periodical solution are 
repelled from it, thus the periodical solution corresponds to an unstable limit cycle or 
a period repellor. On the other hand, an unstable hyperbolic periodical solution is 
called unstable limit cycle of the saddle type, when some of the Foquet multiplier are 
located inside the unit circle of the complex plane.  

 

 
Figure 2: Three fundamental scenarios for hyperbolic periodical solutions  

Figure 2 depicts three fundamental scenarios for hyperbolic periodical solutions ( mϕ  
is located on the unit circle for all three scenarios) and the cooresponding locations of 
the Floquet multipliers:  

a) All Floquet multipliers iϕ  with i m≠  lie inside the unit circle. Thus the limit cy-
cle is asymptotic stable.  

b) only one of the Floquet multipliers lie outside the unit circle. All the others lie 
inside the unit circle. In this case, the limit cycle is unstable of the saddle type. 
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This means, the limit cycle is locally unstable but global considerations are 
necessary because, in this case, the system behaviour cannot be determined 
from local considerations alone [2,6,7]. Recalling, the name “saddle” used in 
bifurcation analysis, is always connected with creation and destroying of solu-
tions (“annihilating”, “destroying”, “colliding”, “exploding” solutions such as 
saddle-node bifurcation of cycles also called turning points) [2,7]. E.g. in the 
one dimensional case, fixed points can be created or destroyed.  

c) In this case all Floquet multipliers iϕ  with i m≠  are located outsite the unit cir-
cle. The hyperbolic periodical solution is unstable [2].  

A periodical solution is called nonhyperbolic periodical solution if two of the Floquet 
multipliers are located on the unit circle of the complex plane [2]. A nonhyperbolic 
periodical solution is unstable, if one or more of the Floquet multiplier are located 
outside the unit circle. But a nonlinear analysis is necessary if all the Floquet multi-
plier of the nonhyperbolic periodical solution lie inside the unit circle [2].  

Equation (A32) can be extended as  

 ( ) ( )( ) ( )m mt T t T
m m me v t T e v tβ βϕ− + − ++ =  (A35) 

where mβ  are called the characteristic (or Floquet) exponents and can be defined 
such that  

 .mT
m eβϕ =  (A36) 

Hence, equation (A35) can be rewritten as  

 ( ) ( ) ( ) .m mt T t
m me v t T e v tβ β− + −+ =  (A37) 

Equation (A37) show that ( )mt
me v tβ−  is a period vector and thus mv  can be written in 

the normal or Floquet form  

 ( ) ( ) ,mt
m mv t e tβ φ−=  (A38) 

where ( ) ( )m mt T tφ φ+ = . From this equation can be seen that if the real part of mβ  is 
negative then 0mv →  for t →∞ . On the other hand, if the real part of mβ  is positive, 
then mv →∞  for t →∞ . 

The Floquet exponents mβ  are defined only after the solution of (A21) is known. In 
the scope of the present stability research, the Floquet exponents of the periodical 
solution are calculated numerically by BIFDD. In order to determine the solution of 
(A21), the Floquet form (A38) can be used  

 ( ) ( ) ,BtY t e tφ−=  (A39) 

where ( ) ( )t T tφ φ+ = . After substituting (A39) into (A21), the result can be rewritten 
into the form  

 0[ ( , ) ]A tφ γ β φ= − Ι  (A40) 

where φ  is expanded in a Fourier series and is usually carried out numerically. A 
more in detail description is given in [2].  
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To summarize, every fundamental matrix solution of (A21) can be written in the form 
(A39) for some n n×  T-periodic (differentiable) matrix ( )tφ  and some constant matrix 
B . The eigenvalues of B  are called characteristic exponents or Floquet exponents 

mβ  determining the stability of periodical solutions arising in a Hopf-Bifurcation point. 
Hence, in the framework of the bifurcation analyses with BIFDD, one of the crucial 
tasks is the estimation of mβ .  

 

Center manifold theorem 

In the following the linearized dynamical system (A7) corresponding to the fixed point 
0X  is considered. Generally, a linear system can be broken into its dynamically in-

variant parts. The eigenspaces of a linear flow or map are invariant subspaces of the 
dynamical system (A1) [2]. The dynamical behaviour on all subspaces is determined 
by the eigenvalues which corresponds to these subspaces.  

If the Jacobian matrix J  of the system (A7) has s  eigenvalues with negative real 
parts, c  eigenvalues with zero real parts and u  eigenvalues with positive real parts, 
then the space n  can be represented by the sum of the three subspaces sE , cE  
and uE  accorting to E E En s u c= ⊗ ⊗ . Each subspace is defined by  
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 (A41) 

where 1 2, ,........, sp p p  are the s  eigenvectors associated with the s  eigenvalues who-
se real parts are negative, 1,........,s s up p+ +  are the u  eigenvectors associated with the 
u  eigenvalues whose real parts are positive and 1,...,s u s u cp p+ + + +  are the c  eigen-
vectors associated with the c  eigenvalues whose real parts are positive. This means, 
each of the subspaces is spanned by the corresponding eigenvectors. The sub-
spaces sE , cE  and uE  are called stable, center and unstable subspaces or local 
manifolds. The main characteristic of the local invariant subspaces is that the solution 
of the linear system which is initiated in one of the three invariant subspaces remains 
in this subspace for all times. In a nonlinear system, the stable manifold is denoted 
as sW , the center manifold is denoted as cW  and the unstable manifold is denoted 
as uW .  

Generally, simplification methods are often necessary to allow the investigation of 
dynamical systems [2]. One class of simplification methods deals with techniques of 
reducing the order of the system equation and/or eliminating as many nonlinearities 
as possible in the system of equations. The center manifold reduction technique is 
one of these methods. 

Recalling, when a dynamical system loses its stability, the number of eigenvalues 
and eigenvectors which are responsible for this change is typically small. E.g. in the 
Hopf bifurcation case, ony one pair of complex conjugated eigenvalues are associ-
ated with the bifurcating solution. Hence the crucial point of the center manifold re-
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duction technique is that the dynamics of the system near the bifurcation point is 
governed by the evolution of these critical modes ( c  eigenvalues), while the stable 
modes ( s  eigenvalues) can be considered to be “enslaved” (or they are following a 
passive fashion). With other words, when E Eu n s cE =∅→ = ⊗ , the dynamical 
behaviour of the n -dimensional dynamical system can be described by the c -
dimensional system in a close neighbourhood of the fixed point undergoing the bifur-
cation. In the Hopf bifurcation case the dynamics of the n -dimensional dynamical 
system can be reduced to a two-dimensional system. Thus, the center subspace is 
spanned according to  

 c
1 1 1 ,E { , } ( ) ,k cspan p p with iλ γ ω= = ±  (A42) 

where 1 1 1Re( ) Im( )p p i p= +  and 1 1 1Re( ) Im( )p p i p= − . Considering the linearized sys-
tem, the solution of (A12) can be written as  
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where ( )cu t   

 ,0

,0

( )
i t

c
c i t

c

e u
u t

e u

ω

ω−

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (A44) 

and ( )su t  

 ,0( ) it
s iu t e uλ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (A45) 

,, 1,..., Re( ( )) 0i i k ci sλ λ γ∀ = → < . Thus, for t →∞  the elements of the vector ( )su t  
becomes zero ( ) 0su t →  and the solution is collapsed to ( )cu t . This means, all orbits 
are converging to the center manifold cE  for t →∞ , where cW  is tangent to cE . In 
the case of ideal smoothness of cW , both, cW  and cE  are equal. A more in detail 
description is given in [1-4]. 

 

Lindstedt Poincarè asymptotic expansion 

Generally, exact solutions are rare in many branches of dynamical problems [5]. 
Hence, approximate solutions of the problems are necessary. There are numerous 
analytical and numerical techniques to determine solution of the problem. E.g. the 
application of perturbation theory is common practice. In nonlinear system analysis 
by applying perturbation theory, it is important to account for the nonlinear depend-
ence of the frequency on the nonlinearity. It is turned out, that each expansion that 
does not account for a nonlinear frequency is doomed to failure [5]. Hence, a number 
of techniques that yield uniformly valid expansions have been developed in the past.  
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In the scope of the bifurcation analysis with BIFDD, the so-called Lindstedt Poincarè 
asymptotic expansion is applied. The main advantage of this method is to account for 
the frequency dependence on the nonlinear terms [5]. To this end, the the transfor-
mation t tω=  is introduced, where ω  is the actual frequency of the system. Accord-
ing to  

 ( )d dt d d t d d
dt dt dt dt dt dt

ω ω= = =  (A46) 

the frequency ω  of the system appears explicitly in the differential equation system, 
where both the state variable ( )X t  and ω  are unknowns. Hence, the solutions for 
them are approximated by the expansion in the form of power series in terms of a 
small perturbation ε  as 
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 (A47) 

where iτ  can be considered to be a correction factors for the oscillation frequency. 
Furthermore, the quantity µ  is introduced and is defined as ,k k cµ γ γ= −  the distance 
between the actual value kγ  and the critical value ,k cγ  of the bifurcation parameter. 
µ  is expanded as  

 2
1 2 ... ...k

kµ εµ ε µ ε µ= + + + +  (A48) 

and thus kγ  can be written as  

 2
, 1 2 ... ... .k

k k c kγ γ εµ ε µ ε µ= + + + + +  (A49) 

The Floquet exponent which determines the stability of the periodical solution is exa-
panded as  

 2
1 2 ... ... .k

kβ εβ ε β ε β= + + + +  (A50) 

Notice, the solutions after applying perturbation theory are only valid for small ε . 
Thus, the predictions of the bifurcation analysis are only valid for small distance µ  
from the critical value ,k cγ  in the bifurcation diagram. 

To summarize, the transformation t tω=  and the expansions (A47) to (A50) are sub-
stituted in the equation system that results after applying the center manifold reduc-
tion. As will be discussed below, this two dimensional equation system will be trans-
formed into the Poincarè normal form by applying the near identity transformation 
method.  
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Poincarè normal form 

According to the definition given in [2], normal forms of bifurcations are simplified sys-
tem of equations that approximates the dynamics of the system in the vicinity of the 
bifurcation point. After the application of simplification techniques, the resulting equai-
ton system can be transformed into the specific normal form of the bifurcation. As 
described above, if the Hopf theorem is satisfied, the nonlinear equation system can 
be reduced to a two-dimensional nonlinear equation system by applying the center 
manifold reduction approach [1-5]. The resulting equation system, will be transformed 
into the Poincarè normal form [2] by applying a near identity transformation. From this 
equation system parameters (in particular the Floquet exponents) which determine 
the stability properties of the fixed point, can be extracted numerically by employing 
BIFDD. 

The Poincarè normal form is defined as 
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 (A51) 

where α  and ω  are real and imaginary parts of the pair of complex conjugated ei-
genvalues of the Jacobian matrix of the two dimensional system of equations. The 
coefficient 1c  is a complicated term which is calculated numerically by BIFDD. 1c  is 
the result of the application of center manifold reduction technique and transforma-
tion of the resulting equation system into the Poincarè normal form. Thus the coeffi-
cient comprises all information which are necessary to evaluate the stability proper-
ties of the periodical solution occurring in the Hopf bifurcation point. Finally, the Flo-
quet parameter 2β , 2µ  and 2τ  can be calculated as  
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where 2τ  is a correction of the oscillation frequency and 2µ  relates the oscillation 
amplitude to the value ,k cγ  of the bifurcation parameter as 

 ,

2

.k k cγ γ
ε

µ
−

=  (A53) 

A more in detail description is given in [1-3]. 
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Summary 

In order to analyse the stability behaviour of nonlinear dynamical systems, linear sta-
bility analysis can be applied locally in fixed points where the theorem of Hartmann 
and Großmann is fulfilled. It should be emphasized that in this case, the results of the 
linear analysis of the nonlinear system are only valid in the neighbourhood of the 
considered fixed point. When the theorem of Hartmann and Großmann is not fulfilled, 
additional investigations are necessary. In the scope of this work, Hopf bifurcation 
analysis with the bifurcation code BIFDD is applied.  

The Hopf bifurcation analysis using BIFDD starts with the selection of the iteration 
and bifurcation parameter. The iteration parameter will be varied in the interval de-
fined by user. For each iteration step, BIFDD computes the critical value ,k cγ  of the 
bifurcation parameter where the Hopf bifurcation occurs and thus a periodic solution 
exists. Up to the present computation of ,k cγ  linear analysis is performed. But for the 
critical value ,k cγ  the considered fixed point is a nonhyperbolic one. For the further 
nonlinear analysis, center manifold reduction and Lindsted Poincarè asymptotic ex-
pansion techniques are applied. The resulting two dimensional equation system is 
transformed into the Poincarè normal form by employing the near identity transforma-
tion method. Finally, the Floquet parameter and all the other parameters characteriz-
ing the nature of the bifurcation can be computed from the Poincarè normal form.  

To summarize, in the scope of the bifurcation analysis using BIFDD, the nonlinear 
system behaviour is determined only by local considerations. This means, global 
phenomenons cannot be recognized by this theory. E.g. BIFDD applies the Floquet 
theory only for the resulting two dimensional equation system after the center mani-
fold reduction is performed. Consequently, there are only two Floquet exponents, 1β  
and 2β . The first one is equal to zero 1 0β =  (because the corresponding Floquet 
multiplier is located on the unit circle 1 1ϕ = ) and the second one is either inside or 
outside the unit circle. If the second Floquet multiplier lie outside the unit circle 2 1ϕ >  
which corresponds to a positive second Floquet exponent 2 0β >  then information 
about the locations of all the other Floquet multipiers of the n -dimensional system 
are not known. In this case, it is not possible to keep apart scenario b) (unstable limit 
cycle of saddle type) and scenario c) (unstable limit cycle) depicted in Figure 2. In 
order to study the system behaviour more far away from the bifurcation point, nu-
merical integration is necessary.  
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Appendix B:  ROM description 

1.1 Neutronkinetic model 
The neutron kinetics model is based on the following assumptions: 

1) The neutron kinetics model is based on an effective two energy groups (ther-
mal and fast neutrons). 

2) Spatial mode expansion approach of the neutron flux in terms of lambda 
modes (λ -modes). 

3) Only the first two modes (fundamental and the first mode) are considered. 

4) Only an effective one group of delayed neutron precursors is considered. 

5) The contribution of the delayed neutron precursors to the feedback reactivity is 
neglected. 

Taking into account these assumptions, four mode kinetic equations could be devel-
oped, coupled with the equations of the heat conduction and the thermal-hydraulic 
via the feedback reactivity terms (void and Doppler feedback reactivities).  

The time dependent two-group neutron diffusion equation can be written compactly 
as 
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the fast (first component) and thermal neutron fluxes (second component), L̂  is the 
net-loss operator including leakage by diffusion, scattering and absorption, and F̂  is 
the fission production operator. λ β,  and l l lC  are the decay constants, concentrations 
and delayed neutron fractions, respectively, for the l -th delayed neutron precursor 
group [6].  

Next, the operators are presented (for two energy groups). The net-loss operator L̂  
can be written as  
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where ∇  is the Nabla operator, 1D  is the diffusion constant of the first group, 2D  is 
the diffusion constant of the second group, 1

aΣ  is the macroscopic absorption cross 
section of the first group, 2

aΣ  is the macroscopic absorption cross section of the sec-
ond group and 1 2

s
→Σ  is the macroscopic scattering (from the first into the second en-

ergy group) cross section. The fission production operator F̂  is defined as 

 1 2F̂
0 0

f fv v⎡ ⎤Σ Σ
= ⎢ ⎥
⎣ ⎦

 (B4) 

with 1
fΣ  the macroscopic fission cross section of the first group, 2

fΣ  the macroscopic 
fission cross section of the second group and v  the number of neutrons per fissions. 
The matrix -1[v ]  in (B1) is called neutron inverse velocity matrix and is defined as  
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where 1v  and 2v  are the neutron velocities corresponding to the two neutron energy 
groups. 

By using the introduced operators, the time dependent two-group neutron diffusion 
equation can be written as 
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and the precursor concentration equation can be expressed accordingly as 

 ( ) 11 2

2

( , )1 1
( , ) ( , ) .

( , )0 00 0

f f

l l l l

r tv v
C r t C r t

r tt
β λ

Φ⎡ ⎤Σ Σ ⎡ ⎤⎡ ⎤ ⎡ ⎤∂
= ⋅ − ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Φ∂ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

G
G G

G  (B7) 

The evaluation of (B6) and (B7) lead to the neutron diffusion equation corresponding 
to the first group 
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the neutron diffusion equation corresponding to the second group 

 ( )( )-1
2 2 1 2 1 2 2 2v ( , ) ( , ) ( , )s ad r t r t D r t

dt →Φ = Σ Φ + ∇ ∇ −Σ Φ
G G G  (B9) 

and to the 6 precursor concentration equations 
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In the steady state case of (B1), the so-called λ -Eigenvalue problem is written as: 
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where ( )n rΨ
G G  are the eigenvectors, λ= 1/n nk  are the corresponding eigenvalues and 

0F̂ , 0L̂  are the steady state fission production and steady state net-loss operators. 
The eigenvectors ( )n rΨ

G G  are so-called Lambda-Modes (λ -modes) and satisfy the 
biorthogonality relation 
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where †
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G

 are the adjoint eigenvectors satisfying the adjoint equation 
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The Eigenvalue problem (B11) can be written in components as 
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The space and time dependent neutron flux ( , )r tΦ
G G  and the space and time depend-

ent delayed neutron precursor concentration ( , )lC r tG  of (B1) can be expanded in 
terms of the λ -modes as  

 ˆ( , ) ( ) ( )n n
n

r t P t rΦ = ⋅Ψ∑
GG G G  (B15) 

 0
ˆ( , ) ( ) F ( )v

l l nl n n
n

C r t C t rΧ = Ψ Λ∑
GGG G  (B16) 

where  

 
11 12 1

21 22 2

( ) ( ) ( ) 0ˆ ( ) .
( ) ( ) 0 ( )

n n n
n

n n n

P t P t P t
P t

P t P t P t

⎡ ⎤ ⎡ ⎤
= ≡⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (B17) 

1( )nP t  are the time dependent expansion functions of the first energy group, 2 ( )nP t  are 
the time dependent expansion functions of the second energy group and ( )nlC t  are 
the time dependent expansion functions of the delayed neutron precursor concentra-
tion. Physically, the time and space dependent neutron flux ( , )r tΦ

G G  is proportional to 
the reactor power ( )Q t� . Thus, in the current neutron kinetic model it is assumed that 
both neutron energy groups have the same time evolution. In this case, according to 

1 2( ) ( ) ( )n n nP t P t P t= = , the matrix (B17) reduces (the matrix is “collapsing” to a scalar) to 
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( ) 0ˆ ( )
0 ( )

n
n

n

P t
P t

P t

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (B18) 

and expansion (B15) can be written as  

 ( , ) ( ) ( ) .n n
n

r t P t rΦ = ⋅Ψ∑
GG G G  (B19) 

Substituting of (B19) in the biorthogonality relation (B12) 

 † †
0 0

ˆ ˆ( ) ( , ) ( ) ( ) ( ) ( )

mn n

m n n m n m m
nV V

F

dV r F r t P t dV r F r P t F

δ

Ψ Φ = Ψ Ψ =∑∫ ∫
G G GGG G G G

����	���

 (B20) 

justifies the definition of the time dependent amplitude functions ( )nP t  according to 

 †
0 0

1 1ˆ ˆ( ) ( ) ( , ) ( , ) .m m n m n
m mV

P t dV r F r t F r t
F F

= Ψ Φ = Ψ Φ∫
G GG GG G G  (B21) 

In order to solve the diffusion equation (B1) for the space and time dependent neu-
tron flux ( , )r tΦ

G G  expansion (B19) and (B16) are substituted in (B1) 
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 (B22) 

and  
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∑
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where the operators L̂  and F̂  are expressed as 

 0
ˆ ˆ ˆL = L Lδ+  (B24) 

 0
ˆ ˆ ˆF = F Fδ+  (B25) 

in terms of a steady state plus an oscillating term, respectively. In the next step, 
(B22)and (B23) will be multiplied by †

mΨ
G

 from the left hand side, afterwards the 
equations are weighted (divided) by (B12) and integrated over the whole multiplying 
medium of the reactor core. It follows  
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(B26) 

and  
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(B27) 

In the next step, the following definitions will be introduced in (B26) and(B27): 
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l
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Ψ Ψ Ψ Ψ
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G G G G  (B29) 

Taking into account that mm mnΛ >> Λ  with n m≠   [6]  and the definitions in (B28) and 
(B29), the final neutron kinetics (spatial) mode equations can be written as  

 

1 1( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) ( )l

s F D
m m m mn n mn n l ml
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D
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⎡ ⎤= + −⎢ ⎥Λ ⎣ ⎦

∑ ∑ ∑

∑
(B30) 

where s
mρ  is the static reactivity, F

mnρ  are the dynamical feedback reactivities, and 
D
mnρ , lD

mnρ  are the delayed feedback reactivities.  

As mentioned above, in the current neutron kinetics model only a single group of de-
layed neutron precursors 1l =  is considered and the contributions of D

mnρ  and lD
mnρ  are 

neglected. Furthermore, only the fundamental and the first modes are considered. 
Hence the modal kinetic equations can be written as 
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 (B31) 
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 (B32) 

The dynamical feedback reactivities, F
mnρ  represent the coupling between the λ -

modes and describe the main feedback mechanism between the neutron kinetics 
and thermal hydraulics via void fraction in the two-phase flow region and fuel tem-
perature. In the framework of the ROM development the approximate calculation of 
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the mode feedback reactivities is one of the crucial tasks. In the approximations used 
in previous works [6], the required reactivities mnρ  were given by 

00 weighting factors( )mn mnρ ρ ⋅∼ ; this means that in both cases certain weighting factors for 
terms different from 0n m= =  have to be calculated.  

In general, the total power generated by nuclear fissions within the multiplying me-
dium of the reactor core is given by 

 
1

( ) ( , )
NOG

f
i i

i

Q t dV r tε
=

= ⋅ Σ ⋅Φ∑∫
G�  (B33) 

where ε  is the energy per fission and f
iΣ  is the macroscopic fission cross section of 

the i -th group. Considering only two neutron energy groups ( 2i = ) and substituting 
(B19) in (B33) lead to  
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( ) ( ) ( ) ( )
n

f f
n n n

n
Q r

n n n n
n n

Q t P t dV r r

Q t P t dV Q r P t Q

ε ⎡ ⎤= ⋅ Σ Ψ +Σ Ψ⎣ ⎦

= = ⋅

∑ ∫
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 (B34) 

where ( )nQ rG�  are the so called power modes.  

The power density ( )q t′′′  in the fuel is defined as 

 ( )( )
fuel

Q tq t
V

′′′ =
�

 (B35) 

the total power divided by the fuel element volume fuelV . It should be noted that the 
power density in the fuel is assumed to be constant in all considered fuel elements in 
the reduced order model (but is a function of time). Taking into account only the fun-
damental and the first azimuthal mode, the power density (B35) can be expressed as 

 0 0 1 1
1( ) j j

j j
fuel

q t P Q P Q
V

⎡ ⎤′′′ = +⎣ ⎦
� �  (B36) 

where j
nQ�  is defined as 

 1 2
1 2( ) ( ) ( )

j

j f f
n n n

V

Q r dV r rε ⎡ ⎤= ⋅ Σ Ψ +Σ Ψ⎣ ⎦∫
G G G�  (B37) 

and j  is the considered core region. 

In the steady state core, all the higher modes are zero. Consequently, equation (B34) 
is reduced to 

 N0 0 0

1

( ) ( )Q t P t Q Q
=

= ⋅ =� � �  (B38) 

and the steady state power density in the fuel is given as 

 0 0
0 ( ) .

j

j
fuel fuel

Q Qq t
V V

′′′ = =
� �

 (B39) 

The final expression for the power density in the fuel can be written as 
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Qq t P t P t q
V

q t c P t P t q

′′′ ⎡ ⎤= +⎣ ⎦

′′′ ⎡ ⎤= +⎣ ⎦

�

 (B40) 

where 1
jq  is the ratio 1 0/jQ Q� � . In the fuel rod heat conduction model where two repre-

sentative heated channels including the fuel elements are taken into account there is 
1 1jqξ = = ±  (to simplify the nomenclature).  

 

1.2 Fuel heat conduction model 
The fuel rod heat conduction model in the current reduced order model was com-
pletely adopted from Karve et al. [8]. This model is based on the one-dimensional 
(radial), time-dependent heat conduction equation for the fuel rod and is based on 
the following assumptions: 

1) two axial regions, corresponding to the single and two-phase regions, are 
considered, 

2) three distinct radial regions, the fuel pellet, the gap and the clad are modelled 
in each of the two axial regions, 

3) azimuthale symmetry for heat conduction in the radial direction is assumed, 

4) heat conduction in the z-direction is neglected, 

5) time-dependent, spatially uniform volumetric heat generation is assumed. 

These assumptions result in a one-dimensional (radial) time dependent partial differ-
ential equation (PDE). By assuming a two-piecewise quadratic spatial approximation 
for the fuel rod temperature, the PDE can be reduced to a system of ODEs by apply-
ing the variation principle approach. A detailed derivation is presented in [6,8]. 

In the scope of this section a brief description about the fuel heat conduction model is 
given. As mentioned above the fuel rod is modelled separately in the two axial re-
gions corresponding to the single and two-phase regions of the boiling channel. In 
each of these regions, it is modelled with three distinct radial regions, the fuel pellet 
( 0 pr r< < ), the gap ( p gr r r< < ), and the clad ( g cr r r< < ). 
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Figure 1: Flow channel including fuel rod. 

The heat conduction equations for the fuel rod in dimensionless form can be written 
as 
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 (B41) 

and  

 

2

2
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c
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r t r t r t
t r r r

r r r

θ θ θ
α

∂ ∂ ∂
= +

∂ ∂ ∂
≤ ≤

 (B42) 

where pθ  and cθ  are the deviations from the steady state for the pellet and clad tem-
peratures respectively. ( )q t′′′  is the dimensionless power density. Note that all the 
variables and parameters are in dimensionless form in this chapter. This results in a 
transparent formulation of the equations and gives more insight into the key parame-
ters determining the system dynamics. The various dimensionless variables and pa-
rameters are given in [6,8]. 

The clad heat conduction dynamics can be modeled without solving the transient 
heat conduction equation. The idea behind this is that there is no significant change 
in the clad temperature profile from its initial steady-state distribution, due to the large 
clad thermal diffusivity cα , which is about ten times larger than that of the pellet pα . 
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Based on the logarithmic spatial distribution of the steady-state clad temperature, the 
space and time dependence for ( , )c r tθ  can be written as 

 2 3( , ) ( ) log ( ) .c r t b t r b tθ = +  (B43) 

The ODEs for the fuel pellet are deduced by reducing the PDEs for the time-
dependent heat conduction equation for the fuel pellet by employing the variational 
principle approach. To this end, the fuel rod temperature is assumed to be captured 
by two piecewise quadratic spatial approximations 

 
2

1 1 2

2
2 1 2

( , ) ( ) ( ) ( ) ,   0

          ( ) ( ) ( ) ,   
p d

d p

r t T t t r t r r r

T t t r t r r r r

θ α α

β β

= + + < <

= + + < <
 (B44) 

where dr  is the point of discontinuity between 0r =  and pr r= . The value of dr  was 
determined empirically [7,8] to be 0.83d pr r= ⋅ . The ( )i tα  and ( )i tβ  with 1,2i =  are 
determined using the continuity and boundary equations [8].  

A variational principle approach is then used to get the final ODEs for 1( )T t  and 2 ( )T t , 
which represent the BWR fuel rod heat conduction dynamics. These equations are 

 1
1,1 1 2,1 2 3,1 0 0 1

( ) ( ) ( ) ( ( ) ) ( )q q
dT t ll T t ll T t ll c P t P c P t

dt
ξ⎡ ⎤= + + − +⎣ ⎦

�  (B45) 

 2
1,2 1 2,2 2 3,2 0 0 1

( ) ( ) ( ) ( ( ) ) ( )q q
dT t ll T t ll T t ll c P t P c P t

dt
ξ⎡ ⎤= + + − +⎣ ⎦

�  (B46) 

where 1,sll , 2,sll , and 3,sll  are complicated constants which depend on the design 
parameters. 

In summary, for each channel, four ODEs are developed from the heat conduction 
PDE. These ODEs are for the two coefficients of each of the two spatially piecewise 
quadratic representations of the fuel pellet temperature in the single and two-phase 
regions of the channel. In an explicit index form, these ODEs can be written as 

 1, ,
1,1, , 1, , 2,1, , 2, , 3,1, , 0 0 1

( )
( ) ( ) ( ( ) ) ( )j l

j l j l j l j l j l q q

dT t
ll T t ll T t ll c P t P c P t

dt
φ

φ φ φ φ φ ξ⎡ ⎤= + + − +⎣ ⎦
�  (B47) 

 2, ,
1,2, , 1, , 2,2, , 2, , 3,2, , 0 0 1

( )
( ) ( ) ( ( ) ) ( )j l

j l j l j l j l j l q q

dT t
ll T t ll T t ll c P t P c P t

dt
φ

φ φ φ φ φ ξ⎡ ⎤= + + − +⎣ ⎦
�  (B48) 

where 1ξ = ± , jφ  stands for single (1φ ) or two-phase ( 2φ ) region, l  stands for chan-
nel number (1 or 2) and 0P�  is the steady state value of the amplitude function. Notice, 
the final ODEs were developed by using the symbolic toolbox of MATLAB. A detail 
description is given in [8]. 

1.3 Thermal hydraulic model 
The thermal hydraulic behavior of the BWR is represented by two heated channels 
coupled by the neutron kinetics and by the recirculation loop. This sub-model is 
based on the following assumptions [6]: 
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1) The heated channel, which has a constant flow cross section, is divided into 
two axial regions, the single and the two-phase region. 

2) All thermal hydraulic values are averaged over the flow cross section 

3) The dynamical behavior of the two-phase region is presented by a drift flux 
model (DFM) [7] where mechanical non equilibrium (difference between the 
two phase velocities, and a radial non-uniform void distribution is considered) 
is assumed (the DFM represents the stability behavior of the two-phase more 
accurately than a homogeneous equilibrium model, in particular for high void 
content). 

4) The two phases are assumed to be in thermodynamic equilibrium. 

5) The system pressure is considered to be constant. 

6) The fluid in both axial regions and the downcomer is assumed to be incom-
pressible. 

7) Around the closed flow path, mechanical energy terms are very small com-
pared with the thermal energy terms. Consequently, the kinetic energy, poten-
tial energy, pressure gradient and friction dissipation are neglected in the en-
ergy balance. 

8) The PDEs (three-dimensional mass, momentum and energy balance equa-
tion) are converted into the final ODEs by applying the weighted residual 
method in which spatial approximations (spatially quadratic but time-
dependent profiles) for the single phase enthalpy [6,8] and the two-phase 
quality are used (is equivalent to a coarse grained axial discretization). 

9) The downcomer (constant flow cross section) region is considered to be a sin-
gle phase region. 

10) All physical processes which are connected with energy increase and energy 
decrease are neglected in the downcomer. Consequently the core inlet sub-
cooling is a boundary condition which is nearly realized by the nuclear power 
plants. 

11) The pump head due to the recirculation pumps is considered to be con-
stant ( headP const∆ = ) 

Figure 2 depicts a schematic sketch of the thermal hydraulic model including the re-
circulation loop. The sub-model consists of three parts. These are the two heated 
channels and the downcomer section. The common lower plenum and the common 
upper plenum are only shown to indicate that all channels are coupled hydraulically. 
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Figure 2: Schematic sketch of the thermal hydraulic two-channel model includ-

ing outer loop section. 

The coolant enters the core channel i  inlet (single phase region) with the inlet veloci-
ties ,vi inlet  and the inlet enthalpy inleth  and the heat is released by nuclear fissions in 
the fuel, conducted to the coolant. At a certain axial level (boiling boundary ( )tµ ), 
where the coolant reaches the saturation state, the coolant starts to boil. Above the 
boiling boundary (two-phase region), the coolant is a mixture of water and steam. 
Because of the thermodynamic equilibrium between the two phases, the heat gener-
ated in the fuel is completely used for steam production. 

 

Single phase region [6,8] 

The mass balance is reduced to 

 * * * * * * * *
* v (z , ) 0 with (z , )l l lt t const

z
ρ ρ ρ∂

= = =
∂

 (B49) 
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due to the incompressibility of the coolant. Consequently, the velocity * * *v (z , )t  within 
the single phase region is according to * * * * *v (z , ) v ( )inlett t=  not a function of *z .  

The energy balance can be written as 

 
" * * ** * * * * *

* * * * * * * * 1
* * *

( )( , ) ( , )( , ) ( , )v ( ) h
l l inlet

q th z t h z tz t z t t
t z A

ξρ ρ Φ∂ ∂
+ =

∂ ∂
 (B50) 

where the source term on the right hand side describes the heat density in the cool-
ant created by the wall heat flux " *

1q Φ . The single phase wall heat flux " *
1q Φ  is related 

to the single phase convective heat transfer coefficient *
,1h∞ Φ  as 

" * * * * * *
1 ,1 ,1 ,1( ( ) ( ))s bulkq h T t T tΦ ∞ Φ Φ Φ= −  where *

,1h∞ Φ  is estimated by the Dittus-Boelter correla-
tion 

 
*

* 0.8 0.4
,1 *0.023 (Re) (Pr) with    0.7 Pr 100  and  Re>1000 .f

h

k
h

D∞ Φ = < <  (B51) 

In expression (B51), *
fk  is the liquid thermal conductivity, *

hD  is the hydraulic diameter 
of the heated channel, Re  is the Reynolds-Number and Pr  is the Prandl-Number. 

The momentum balance of the single phase region can be expressed as 

 
*

* * * * * * * * *  2 * *1
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2l inlet inlet
h
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z dt D

ρ Φ
Φ

⎡ ⎤∂
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 (B52) 

where the first term on the right hand side describes the pressure drop due to inertial 
effects, the second term describes the friction in the coolant and the last term de-
scribes the pressure drop due to the gravitation.  

Next, the conservative equations will be transformed into the dimensionless form (not 
presented here). The mass, energy and momentum balance can be written as 

 v(z, ) 0

with   v(z, )   v ( )       ,inlet

t
z

t t

∂
=

∂
=

 (B53) 

 ,1
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h z t h z tt N N N t
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∂ ∂
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∂ ∂
 (B54) 

 2 1
1 ,1v v ( ) ,inlet f inlet

dP N t Fr
z dt

−
Φ Φ

∂
− = + +
∂

 (B55) 

where ,1 ( )pchN tφ  is the time-dependent phase change number in the single-phase re-
gion, which is proportional to the wall heat flux in the single-phase region; and 

,1 cov,1 ,1 ,1( ) ( ( ) )pch s bulkN t N T t Tφ φ φ φ= − . The dimensionless numbers Fr , Nρ , rN  and cov,1N φ  
are defined in the appendix. 

In order to convert the energy balance (B54) from a PDE into a ODE, a time-
dependent, spatially quadratic distribution 

 2
1 2( , ) ( ) ( )inleth z t h a t z a t z≈ + +  (B56) 
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for the enthalpy is introduced [6,8]. Thereby the enthalpy has to satisfy the boundary 
conditions 

 ( 0, ) inleth z t h= =  (B57) 

and 

 ( , ) ,sath z t hµ= =  (B58) 

where inleth  is the inlet enthalpy of the boiling channel and sath  is the saturation en-
thalpy. The time dependent coefficients 1( )a t  and 2 ( )a t  are describing the dynamics 
of the single phase enthalpy and can be assumed to be phase space variables. 

In the next step, equation (B54) will be rewritten in operator form 
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 (B59) 

and the weighted residual method  
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ˆ ˆ0 , ( )wg Ah S wg Ah S dz
µ

= − = ⋅ −∫  (B60) 

will be applied. To this end, the time-dependent, spatially quadratic distribution (B56) 
is substituted in (B60) where the weight function 1wg =  and wg z=  are used. The 
integration from the inlet of the channel 0z =  to the boiling boundary z µ=  accordant 
to 
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and  
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 (B62) 

lead to the final ODEs 

 1 2 ,1 1
6( ) 2v ( ) ( ) ( ) v ( ) ( )inlet r pch inlet

d a t t a t N N N t t a t
dt ρµ Φ⎡ ⎤= − + ⋅ ⋅ −⎣ ⎦  (B63) 

 2 ,1 12

6( ) ( ) v ( ) ( ) .r pch inlet
d a t N N N t t a t
dt ρµ Φ⎡ ⎤= − ⋅ ⋅ −⎣ ⎦  (B64) 
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The boiling boundary ( )tµ  is the level at which the enthalpy is equal to the saturation 
enthalpy sath  and can be calculated by evaluating the boundary conditions (B57) and 
(B58) 

 2
1 2( , ) ( ) ( ) .sat inleth z t h h a t a tµ µ µ= = = + ⋅ + ⋅  (B65) 

The boiling boundary can be written as 
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1 1 2

( ) 2 ,
( ) ( ) 4 ( )

r sub
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N N N
t

a t a t a t N N N
ρ

ρ
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+ +

 (B66) 

where the relation r sub sat inletN N N h hρ = −  is used.  

 

Two phase region [6] 

The two phase region extents from the boiling boundary ( )tµ  to the channel exit. As 
mentioned above the dynamical behaviour within this region is represented by a drift 
flux model which is based on four conservative equations. This is the continuity equa-
tion of the gas phase and the three conservative equations (mass, energy and mo-
mentum) for the two phase mixture. In the current work, the density wave phenome-
non play a dominant rule so that the mass transport problem was transformed into 
the void propagation formulation (In the scope of the report the derivation of the void 
propagation equation is not presented). The drift flux equations [6,7] can be written 
as 

 * * * * * * * *
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t z
α α ω∂ ∂
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 (B67) 
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 (B69) 

where (B67) is the void propagation equation, (B68)is the energy equation and (B69) 
is the momentum balance [6,7]. Because of the two phases are assumed to be in 
thermodynamic equilibrium and to be incompressible, the energy balance is reduced 
to (B68) and the characteristic reaction frequency *ω  can be expressed as 
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It should be noted that the equation 
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is implicitly comprised by the void propagation equation (B67).  

The dimensionless conservative equations [6,7] of the two phase region can be writ-
ten as 

 ,2( , ) ( )pchj z t N t
t Φ

∂
=

∂
 (B72) 
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where  

 0( 1) ( , )gj gjV V C j z t= + − ⋅  (B75) 

 ,2( , ) ( ) ( )( ( ))inlet pchj z t v t N t z tφ µ= + −  (B76) 
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The drift flux relation between the void fraction and the equilibrium quality ( , )x z t  can 
be written as a sum of the void fraction due to the homogenous equilibrium mo-
del homα  and a correction term corrα   

 ( )hom
0

1( , ) ( , ) ( , )o gj corrz t z t V z t
C

α α α= − ⋅  (B79) 

[3] where the corresponding relations are 
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and  
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 (B81) 

As already mentioned (for the conversion from PDE into ODEs), the quality ( , )x z t  in 
the two phase region will be described by a time-dependent, spatially quadratic dis-
tribution 

 [ ] [ ]2
1 2( , ) ( ) ( ) ( ) ( )rx z t N N s t z t s t z tρ µ µ⎡ ⎤≈ − + −⎣ ⎦  (B82) 
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analogously to the enthalpy distribution in the single phase region. The ODEs can be 
obtained after substituting (B82) and (B76) in(B79), the resulting equation will be 
substituted in the void propagation equation (B73) and finally, performing the 
weighted residuals method with the weight functions 1wg =  and wg z= . Thereby, it 
will be integrated from the boiling boundary to the channel exit. The final ODEs can 
be written as 

 ,21
1 2 3 4

5 5

( )v ( )1 ( ) 1( ) ( ) ( ) ( )
( ) ( )

pchinlet dN td tds d tff t ff t ff t ff t
dt ff t dt dt ff t dt

µ Φ⎡ ⎤⎡ ⎤= + + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 (B83) 

 ,22
6 7 8 9

10 10

( )v ( )1 ( ) 1( ) ( ) ( ) ( ) .
( ) ( )

pchinlet dN td tds d tff t ff t ff t ff t
dt ff t dt dt ff t dt

µ Φ⎡ ⎤⎡ ⎤= + + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
(B84) 

The derivative of the ODE for the channel inlet velocity is summarized in the main 
text in subsection 3.1.3.  
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1.4 Summary of the ROM 
 

Mode-kinetic equations (4 equations): 
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Fuel heat conduction equations (8 equations): 
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with 1,2j =  (single phase and two-phase regions) and 1,2l =  (two heated channels) 

 

Thermal-hydraulic equations (10 equations): 

 1 2 ,1 1
6( ) 2v ( ) ( ) ( ) v ( ) ( )inlet r pch inlet

d a t t a t N N N t t a t
dt ρµ Φ⎡ ⎤= − + ⋅ ⋅ −⎣ ⎦  (B89) 

 2 ,1 12

6( ) ( ) v ( ) ( )r pch inlet
d a t N N N t t a t
dt ρµ Φ⎡ ⎤= − ⋅ ⋅ −⎣ ⎦  (B90) 
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where (B93) is described in the full text and n  corresponds to the n -th channel. 
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Appendix C:  RAMONA description 
Stability analyses with system codes can be performed, depending from the analysis 
goal, in the time domain or in the frequency domain. Time domain codes contain a 
nonlinear BWR model and can be used for detailed nonlinear BWR stability analysis, 
while frequency domain codes, containing a linearized BWR model, are used for lin-
ear stability analysis, in particular, for searching for the (linear) stability boundary. 
RAMONA5 works in the time domain and simulates the coupled 3 dimensional neu-
tron kinetics, fuel dynamics and thermal hydraulics. A detailed description of 
RAMONA is given in [1,2]. Figure 1 shows a schematic sketch of a BWR plant model 
(GE-Type) and Figure 2 shows the RAMONA5 BWR plant model. In the following, the 
main features of the sub models are briefly presented [1-6]. 

RAMONA5 is an extended and improved code version of RAMONA3. But similar to 
RAMONA3 it is a ‘hardwired’ nine component model, the neutron diffusion process in 
the core is treated 3-dimensional and the thermal-hydraulics is a one-dimensional 
parallel channel model. 

 
Figure 1: Schematic BWR plant model (GE) [1] 
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As depicted in Figure 2, the ‘hardwired’ nine components are:  

- Downcomer 1 and Downcomer 2 

- Lower Plenum 1 and Lower Plenum2 

- Core 

- Riser  Upper Plenum, Stand Pipes and Steam Separator 

- Steam Dome 

All recirculation loops (and all steam lines) are represented by a single recirculation 
loop with a single jet pump (and a single steam line). 

 
Figure 2: RAMONA BWR model [1] 

Neutron transport model:  

RAMONA5 provides the PRESTO 1 option (RAMONA 3) and PRESTO 5 option. In 
PRESTO 1 option, the neutron transport is approximated by the 1 ½ group time-
dependent neutron diffusion equation where 6 groups of delayed neutrons are taken 
into account. Thereby finite difference spatial discretization in a coarse mesh lattice is 
used and the time integration bases on a implicite predictor/corrector scheme. A real 
reflector is not considered. Instead of this, reflector information are taken into account 
in boundary conditions (Albedo like extrapolation length).  
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PRESTO2 option is an extended 2 group nodal kinetic model as it is used in the core 
simulator PRESTO2. The spatial diffusion problem (the governed equations are pre-
sented in Appendix B) is solved by applying analytical nodal methods where two 
methods for temporal integrations are available. These are the Θ -method (Estima-
tion of the time derivative of the flux by using finite difference technique where the Θ -
parameter determines whether explicit or implicit integration is carried out) and the 
frequency transformation method (exponential time behaviour in the nodes, like 
quasi-static method). A detail description is given in [1]. Boundary conditions are 
given by specifying the extrapolation distance and albedo values for thermal flux.  
The cross section model is based on a TABGEN cross section model. Thereby the 
cross section data are given by polynomial coefficients to RAMONA5 where the phe-
nomena exposure ( E ), density history ( Xρ ), instantaneous density ( ρ ), fuel tem-
perature ( FT ), control insertion (CF ), soluble boron ( BN ) and xenon ( XN ) are 
taken into account. Hence, the nuclear parameters that represent the two-group data 
are thus functions  

 ( , , , , , , )X F B XNP NP E T CF N Nρ ρ=  (C1) 

of seven independent variables. These data are given separately for each fuel type 
implemented in the core.  

For nuclear data transfer the core simulator PRESTO2 should run in a standard cal-
culation option RAMONA5 (computes xs, discontinuity factors (DCF), reflector data 
like albedos for RAMONA5-2). In the RAMONA5 input file, there is stored the cross 
section data, DCF, albedos, power, density, fuel temperature, Xe concentration, bur-
nup, active flow and the core loading.  

 

Thermal-hydraulic model [1,2]: 

RAMONA5 provides two thermal-hydraulic models, namely, standard thermal-
hydraulic model and advanced therma-hydraulic model. In the scope of the present 
stability analysis with RAMONA5, the advance thermal-hydraulic model (seven equa-
tion model) is not used because of the analysis approach (RAM and ROM). The stan-
dard thermal-hydraulic model applies a four equation model based on vapor mass 
balance, mixture mass balance, mixture energy balance, mixture momentum 
equation including the corresponding constitutive equations. This model is similar to 
the drift flux model used in the ROM but with the difference that thermodynamic non-
equilibrium is assumed and the different velocities of the phases are modelled by a 
phase-slip model. For the time integration different explicite integration techniques 
are available and can be selected by the user.  

The mass conservation equation for the gas phase is  

 v ,g g g gt z
α ρ α ρ∂ ∂

+ = Γ
∂ ∂

 (C2) 
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where gΓ  is local evaporation rate, α  is the volumetric void fraction, gρ  is the gas 
density and vg is the gas velocity. The mass conservation equation of the mixture can 
be written as  

 v 0 ,m m mt z
ρ ρ∂ ∂

+ =
∂ ∂

 (C3) 

where mρ  with  

 [1 ]m g lρ α ρ α ρ= + −  (C4) 

is the mixture density and vm  with  
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v
[1 ]

g g l l
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g l

α ρ α ρ
α ρ α ρ

+ −
=

+ −
 (C5) 

is the mixture velocity. The mixture momentum balance is given by 

 2 2( v [1 ] v ) ,g g l l m
FG g P

t z z z
α ρ α ρ ρ∂ ∂ ∂ ∂

+ + − = − +
∂ ∂ ∂ ∂

 (C6) 

where the second term describes the local pressure drop and the third term de-
scribes the local friction with 

 2 .
2 l h

G GF f
z dρ

∂
= Φ

∂
 (C7) 

In the friction term, there is f  the single phase friction factor, Φ  is the two phase 
multiplier hd  the hydraulic diameter lρ  is the density of the liquid phase and G  is the 
mass flux defined as  

 v [1 ] v .g g l lG α ρ α ρ= + −  (C8) 

The mixture energy balance can be written as  

 ( )(1 ) ν (1 ) 1 ,ν
'

'''w
lg g l g g g l lll

q(α u -α u ) + (α h -α h )  q αρ
t z A

ρ ρ ρ
∂ ∂

+ + = + −
∂ ∂

 (C9) 

where gu  and lu  are the specific internal energies, gh  and lh  are the specific en-
thalpy of the gas and liquid phase, respectively. A  is the flow cross section, '

wq  is the 
heat input per unit length of the heated wall and '''

lq  is the heat per unit volume re-
leased directly in the coolant.  

The most essential assumptions are: (a) spatial variation of system pressure is ig-
nored ( ( , )) 0grad P z t =  and (b) vapor is assumed to be at saturation. Assumption (a) 
decouples the momentum and energy equation. Thus, the momentum equations are 
uncoupled from the rest of the equations, and may to a certain extent, be treated 
separately. In particular, assumption (a) enables that the momentum equation can be 
integrated around the full reactor loop independent on the energy equation. Hence, 
this assumption eleminates the numerical diffusion effected by the momentum equa-
tion spatial discretization. All assumptions of the thermal-hydraulic model are summa-
rized and discussed in [2]. 
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As shown in Figure 2, the hydraulic loop is divided into nine main parts where only 
vertical flow is taken into account. The core is devided into (isolated) parallel chan-
nels with a common lower and upper plenum. Thereby, heat exchange between the 
parallel channel and heat loss to the surroundings are neglected. A more in detail 
description of the thermal-hydraulic model is presented in [1]. 

Finally, the thermal hydraulic parallel channel model of RAMONA5 provides the 3D 
(steam) void distribution (void content in all channel, radially and axially, in the max. 
25 axial sections per channel) and the axial coolant velocities. The detailed core pre-
dictions are combined with the capability to describe phase separation and liquid 
subcooling or superheating in the two-phase coolant mixture [1,2]. 

Empirical correlations: Slip (Bankoff-Malnes, Bankoff-Jones, Solberg), 2-phase multi-
pliers (Becker correlation, Martinelli-Nelson, Rolstad), heat transfer correlation 
(forced convection in single phase liquid: Dittus-Boelter, nucleate boiling: Jens and 
Lottes), evaporation rate correlation. 
 

The fuel model [1,2]: 

The fuel model calculates the transport of heat (generated in the fuel pin) to the cool-
ant. Since the fuel temperature field within the fuel pin is known, it is used as feed-
back to calculate the fuel enthalpy rise. The released heat transferred into the coolant 
constitutes the volumetric heat source (power density) of the coolant and thus the 
hydraulic feedback via void generation.  

The fuel model of RAMONA5 is very similar to that one of the ROM. The main char-
acteristics are: One average pin per neutronic node, radial heat conduction only, ra-
dial pellet discretization (less, equal 3 ring zones), temperature dependent data on 
heat capacity and conductance, empirical correlations on gap conductance. Further-
more, it is assumed that all fuel rods within one hydraulic node have the same behav-
iour. This means, the nodal calculation is only done for one average rod unless the 
user selects the hot pin model (not considered for the stability analysis). 

The one dimensional radial fuel heat conduction equation can be written as  

 ,( ) ( ) ,f f
p ff f f

1T T  = r k  + qC
t r r r

ρ
∂ ∂∂

⋅
∂ ∂ ∂

 (C10) 

where fρ  is the density of the fuel, ,p fC  is the specific heat of the fuel, fk  is the 
conductivity of the fuel, r  is the special coordinate, fT  is the fuel temperature and fq  
is the power deposited in the fuel. fq  is predicted by the neutron kinetics.  

The heat is transported from the surface of the fuel through the gap and gladding to 
the coolant. The heat transport in the gap is described by  

 0 ,gp
gp

T= k
r r

∂∂
∂ ∂

 (C11) 

where gpk  is the heat tranfere coefficient of the gap and gpT  is the gap temperature. 
Furthermore, the heat transport in the cladding is given by  
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 ,( ) ,c c
p c cc

T T =C k
t r

ρ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠

 (C12) 

where cρ  is the density, ,p cC  is the specific heat, ck  is the conductivity and cT  is the 
temperature of the cladding, respectively.  

Finally, the heat flux from the cladding surface to the coolant is described by  

 ( ) ,c
c c fl

T h T Tk
r

∂⎛ ⎞− = −⎜ ⎟∂⎝ ⎠
 (C13) 

where h  is the heat transfere coefficient and flT  is the bulk temperature of the cool-
ant.  

All material properties are functions of the temperature and burnup. More information 
of the fuel model is presented in [1,2]. 

To summarize, the main advantage of the system code RAMONA5 is the decoupling 
of the momentum and energy equation due to ignoring the spatial variation of the 
system pressure. The assumption of a constant system pressure along the closed 
flow path corresponds to neglecting pressure waves. In addition to that all thermody-
namic properties of the reactor vessel are determined by the same system pressure. 
This assumption allows that the momentum balance can be integrated along the 
closed flow path independent on the energy balance. Furthermore, numerical diffu-
sion (can cause numerical damping of power oscillation) effected by the momentum 
equation spatial discretization is eliminated.  
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Appendix D:  Nomenclature 
 

Stability analysis:  

X  state vector 

F  vector field 

γ  parameter vector ( kγ  with [1,..., ]k m∈  is the k -th compo-
nent of the parameter vector, m  is the dimension of the 
parameter vector, ,k cγ  critical value of the k -th component 
of the parameter vector) 

J  Jacobian matrix 

P  transformation matrix 

U  state vector, spanned by the new basis 

ip  eigenvectors of J  

iλ  eigenvalues of J  

1D P J P−=  Jacobian matrix transformed into the Jordan normal form 

ic  constant in general solution of the linearized dynamical 
system, determined by the initial conditions 

Re real part 

Im imaginary part 

det determinant 

ε  small amplitude of the periodical solution 

T  period of the periodical solution 

β  Floquet parameter 

τ  Correction factor of the oscillation frequency 

SB Stability boundary 

BCH Bifurcation characteristics, nature of PAH bifurcation 

PAH Poincarè-Andronov-Hopf 
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Neutronkinetic 
model: 

 

Φ  neutron flux vector 

-1[v ]  neutron inverse velocity matrix 

1v  and 2v  neutron velocities corresponding to the two neutron energy 
groups 

L̂  net-loss operator 

F̂  fission production operator 

λl  decay constants 

lC  precursor concentrations 

β l  delayed neutron fractions 

Subscript l  l -th delayed neutron precursor group 

∇   Nabla operator 

1D  and 2D  diffusion constant of the first and second group 

1
aΣ  and 2

aΣ  macroscopic absorption cross section of the first and sec-
ond group 

1 2
s
→Σ  macroscopic scattering (from the first into the second en-

ergy group) cross section 

1
fΣ  and 2

fΣ  macroscopic fission cross section of the first and second 
group 

v  number of neutrons per fissions 

nΨ  Eigenvectors (Lambda-Modes, (λ -modes)) of the steady 
state problem (steady state two group diffusion equation) 

λ= 1/n nk  eigenvalues of the steady state problem (steady state two 
group diffusion equation) 

mnδ  Delta function ( 1mnδ =  with m n=  and 0mnδ =  with m n≠ ) 

( )nP t  Amplitude function or time dependent expansion functions 
of the corresponding λ -modes ( nΨ ) 

Q  total power generated by nuclear fissions within the multi-
plying medium of the reactor core  
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ε  energy per fission 

F
mnρ  dynamical feedback reactivities 

D
mnρ  delayed feedback reactivities 

( )q t′′′  power density 

0qc q′′′=  steady state power density 

fuelV  fuel volume of the core 

nQ  power modes  

r
mnWD  weighting factor 

,Void r
mnC  Void mode feedback reactivity coefficients 

,Doppler r
mnC  Doppler mode feedback reactivity coefficients 

mnfact  artificial factor, introduced to increase the feedback gain 
coupling the first and fundamental mode 
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Fuel heat conduc-
tion model: 

 

pr  fuel pellet radius 

gr   clad inner radius 

cr  clad outer radius 

dr  point of discontinuity 0 d pr r< <  

cc  clad specific heat 

pc  fuel pellet specific heat 

ck  clad thermal conductivity 

pk  pellet thermal conductivity 

cp  BWR lattice cell pitch 

pθ  temperature, deviations from the steady state for the pellet 
temperatures 

cθ  temperature, deviations from the steady state for the clad 
temperatures 

cα  clad thermal diffusivity 

pα  pellet thermal diffusivity 

1( )T t  and 2 ( )T t  temperatures 

1,sll , 2,sll , and 3,sll  complicated constants, calculated by employing the sym-
bolic toolbox of MATLAB  
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Thermal hydraulic 
model: 

 

headP∆  pump head 

1( )a t  state variable: coefficient of the linear term in the enthalpy 
profile 

2 ( )a t  state variable: coefficient of the quatratic term in the en-
thalpy profile 

1( )s t  state variable: coefficient of the linear term in the quality 
profile 

2 ( )s t  state variable: coefficient of the quatratic term in the quality 
profile 

,vi inlet  channel inlet velocity of the i -th channel 

inleth  core inlet enthalpy 

h  enthalpy 

µ  boiling boundary 

l fρ ρ=  coolant density (liquid) 

gρ  coolant density (gas) 

mρ  mixture density 

"
1q Φ  wall heat flux (single phase region) 

"
2q Φ  wall heat flux (two phase region) 

,1h∞ Φ  single phase convective heat transfer coefficient 

,2h∞ Φ  single phase convective heat transfer coefficient 

A  cross section of the heated channel 

,1bulkT Φ  single phase bulk temperature 

,2bulkT Φ  two phase bulk temperature 

,1sT Φ  single phase clad surface temperature  
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,2sT Φ  two phase clad surface temperature 

*
fk  liquid thermal conductivity 

*
hD  hydraulic diameter of the heated channel 

Re  Reynolds-Number 

Pr  Prandl-Number 

P  pressure 

1f Φ  single phase friction factor 

2f Φ  two phase friction factor 

Fr  Froude number 

,1fN Φ  single phase friction number 

,2fN Φ  two phase friction number 

cov,1N Φ  conversion number of the single phase region  

cov,2N Φ  conversion number of the two phase region  

,1pchN Φ  Phase change number or Zuber number (single phase re-
gion) 

,2pchN Φ  Phase change number or Zuber number (two phase re-
gion) 

subN  subcooling number 

sath  liquid saturation enthalpy 

g  gravity constant 

α  volumetric void fraction 

*ω  characteristic reaction frequency 

*
gΓ  rate of mass formation of the vapor 

j  volumetric flux density 

fgh  fg g fh h h= −  difference of the saturation enthalpy of the 
vapour (gas) and the saturation enthalpy of the liquid 
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phase 

0C  Drift flux parameter characterising the radial void distribu-
tion 

vgj gV j= −  Drift flux parameter describing the local drift velocity 

vg  velocity of the vapor 

vl  velocity of the liquid 

0v  steady state inlet velocity 

vm  mixture velocity 

x  flow quality 

extern extP P∆ = ∆  steady state external pressure drop 

totm  total mass flow 

nm  mass flow of the n -th heated channel 

,n inletA  flow cross section of the n -th heated channel 

docA  flow cross section of the downcomer 

docD  hydraulic diameter of the downcomer 

olA  * */ol inlet docA A A=  

olD  * */ol h docD D D=  

scoolα  true void fraction, where subcooled boiling is included 

scoolx  true flow quality, where subcooled boiling is included 

eqx  equilibrium quality 

dx  equilibrium quality at void departure point 

*
dµ  void departure point 

*
plc  specific heat 

0T  saturation temperature 
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hξ  heated perimeter 

ρ∆  l g f gρ ρ ρ ρ ρ∆ = − = −  

*L  heated channel length 
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Appendix E:  Dimensionless variables 
 

 
"* * * *

, * * * * *
0v

l h
pch l

inlet fg g f

q LN
A h

ξ ρ
ρ ρ

Φ
Φ

∆
=

∆
 with 1,2l =  

* * *

* *
sat inlet

sub
fg g

h hN
h

ρ
ρ

− ∆
=

∆
 

* * * * *
,1 0

cov,1 * * * * *
0v

h

inlet fg g f

h T L
N

A h
ξ ρ

ρ ρ
∞ Φ

Φ

∆
=

∆
 

* 64 /(6.2 10 ) *4 * * *
0

cov,2 * * * * *
0

2.56
v

P
h

inlet fg g f

e T LN
A h

ξ ρ
ρ ρ

⋅

Φ

∆
=

∆
 

*

*
g

f

Nρ

ρ
ρ

=  
* *

, *2
l

f l
h

f LN
D
Φ

Φ = , with 1,2l =  

*

*
f

rN
ρ
ρ

=
∆

 
*2
0

* *

vFr
g L
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*

*ol
doc

DD
D

=  
*

*
inlet
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doc

AA
A

=  

*

* *2
0v

ext
ext

f

DPDP
ρ

=  
* *

0
*

vtt
L

=  

*

*
0

vv
v
inlet

inlet =  
*

*

zz
L

=  

*

*
i

i
fg
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=
∆

 
*

*
f
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ρ

=  

 

A detailed summary of all dimensionless numbers of the ROM is given in [6,8].  
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Appendix F:  ROM input parameters 
 

ROM input parameters for NPP Brunsbüttel (KKB), NPP Leibstadt (KKL) and NPP 
Ringhals (KKR) are summarized in the following. 

 

Table 1: Operational points 

Operational Points KKB KKL KKR 

Power 1079.50 MW  

(47.1%)  

1867.11 MW  

(59.5%)  

1648.02 MW  

(72.6%)  

Flow (total mass flow including bypass) 

 

 

 

Total mass flow without bypass mass flow 

2367.00 /kg s  

(26.14%)  

14.35%  (bypass 

mass flow) 

 

2027.33 /kg s  

4070.12 /kg s  

(36.5%)  

11.29%  (by-

pass mass flow) 

 

3610.656 /kg s  

3694.00 /kg s  

(31.98%)  

13.30%  (by-

pass mass flow) 

 

3202.7 /kg s  

Core inlet subcooling 118.5 /kJ kg  125 /kJ kg  131 /kJ kg  

System Pressure 69.85 bar  69.7 bar  70.1bar  

 

Table 2: Design and operational parameters  

 KKB KKL KKR 
*

0 0P P=  fundamental 
mode amplitude 

1  1  1  

*
0v  steady state 

mean coolant inlet 
velocity 

0.532 /m s  0.77 /m s  0.68 /m s  

*
inletT  steady state 

coolant inlet tem-
perature 

535.93 K°  534.46 K°  533.61 K°  

* *
0satT T=  saturation 

temperature 
558.83 K°  558.69 K°  559.08 K°  

*
inleth  steady state 

coolant inlet en-
1148.4 /kJ kg  1141.1 /kJ kg  1136.9 /kJ kg  
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thalpy 
* *
sat fh h=  saturation 

liquid enthalpy 
1266.9 /kJ kg  1266.1 /kJ kg  1268.2 /kJ kg  

*P  system pressure 6.985MPa  6.97 MPa  7.01MPa  
*
0 0α α=  steady state 

mean void fraction 
0.463  0.550667  0.472784  

*
,0avgT  steady state 

mean fuel tempera-
ture 

674.7492 K°  778.5833 K°  754.3652 K°  

*
extDP  external pres-

sure drop  

47.82217 10 Pa⋅  47.3875 10 Pa⋅  49.57 10 Pa⋅  

''' *
0 qq c=  steady state 

volumetric heat gen-
eration rate 

6 3100.451 10 /W m⋅  6 3143.3134311 10 /W m⋅  6 3121.2189 10 /W m⋅  

*A  heated channel 
flow cross section 

4 21.064 10 m−⋅  4 21.530 10 m−⋅  4 21.543 10 m−⋅  

*D  heated channel 
hydraulic diameter 

0.01072 m  0.0139 m  0.0118 m  

*
gh  saturation gas 

enthalpy 
2772.8 /kJ kg  2773.0 /kJ kg  2772.5 /kJ kg  

*
fρ  liquid density 3739.99 kgm−  3740.26 kgm−  3739.55 kgm−  
*
gρ  gas density 336.438 kgm−  336.350kgm−  336.583 kgm−  
*
fµ  liquid viscosity -6 291.304 10 Nm s−⋅  -6 291.360 10 Nm s−⋅  -6 291.212 10 Nm s−⋅  

*
fc  liquid specific 

heat 
5399.5 /( )J kgK  5396.5 /( )J kgK  5404.5 /( )J kgK  

*
fk  liquid thermal 

conductivity 
0.57212 /( )W mK  0.57235 /( )W mK  0.57172 /( )W mK  

*Λ  mean neutron 
life time 

53.0 10 s−⋅  53.0 10 s−⋅  53.32 10 s−⋅  

*R  core radius 2.32 m  2.32 m  2.32 m  
*L  core length 

(=downcomer 
length) 

3.76 m  3.81 m  3.68 m  

*
cc  clad specific heat 330.0 /( )J kgK  312.32 /( )J kgK  290.15 /( )J kgK  is used 

in the ROM 
287.0 /( )J kgK  techni-

cal documentation (Lefvert)



Appendix F: ROM input parameters  219 

*
pc  fuel pellet spe-

cific heat 
476.6 /( )J kgK  301.03 /( )J kgK  108.12 /( )J kgK  

*g  gravity constant 29.81 /m s  29.81 /m s  29.81 /m s  
*
ck  clad thermal 

conductivity 
16.0 /W mK  16.0 /( )W mK  16.0 /( )W mK  technical 

documentation (Lefvert) 
*
pk  pellet thermal 

conductivity 
4.9 /( )W mK  4.8525 /( )W mK  4.9762 /( )W mK  

*
cp  BWR lattice cell 

pitch 

316.2 10 m−⋅  316.2 10 m−⋅  316.2 10 m−⋅  

*
cr  clad outer radius 35.025 10 m−⋅  36.135 10 m−⋅  36.125 10 m−⋅  technical 

documentation (Lefvert) 
*
gr  clad inner radius 34.42 10 m−⋅  35.325 10 m−⋅  35.325 10 m−⋅  technical 

documentation (Lefvert) 
*
pr  fuel pellet radius 34.335 10 m−⋅  35.321 10 m−⋅  

(RAMONA-Output) BUT  
35.205 10 m−⋅  from technical 

documentation (Adreani report) 

and is used in the ROM  

 

35.325 10 m−⋅  

(RAMONA-Output) BUT  
35.220 10 m−⋅  from 

technical documentation 

(Lefvert) and is used in the 

ROM 

*
dr  point of disconti-

nuity 

*0.83 pr⋅  *0.83 pr⋅  *0.83 pr⋅  

*λ  delayed neutron 
precursors mean life 
time 

10.08 s−  10.08 s−  10.08 s−  

β  fraction of de-
layed neutrons 

0.0056 s  0.0056 s  0.0057 s  

*
cρ  clad density 3 36.5 10 kgm−⋅  3 36.5 10 kgm−⋅  3 36.5 10 kgm−⋅  

*
pρ  pellet density 3 310.422 10 kgm−⋅  3 310.422 10 kgm−⋅  3 310.5 10 kgm−⋅  techni-

cal documentation (Lefvert)

*
gh  gap heat trans-

fere 
 23754.28 /( )W m K  23487.26 /( )W m K  

*
hξ  heated perimeter 331.573 10 m−⋅  319.27 10 m−⋅  319.24 10 m−⋅  

Prl  liquid Prandl 
number 

0.8617  0.86140  0.86222  

Prg  liquid Prandl 
number 

1.613  1.6117  1.6151 
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lv  liquid kin. Viscos-
ity 

20.0012339 /cm s  20.0012342 /cm s  20.0012333 /cm s  

gv  vapor kin. Vis-
cosity 

20.0052016 /cm s  20.0052123 /cm s  20.0051839 /cm s  

0Re v / lL v= ⋅  liquid 
Reynolds number 

616.21 10⋅  626.54837 10⋅  623.27414 10⋅  

*
,1h∞ Φ  single phase 

heat transfer coeffi-
cient 

3 2677.67 10 /( )W m K⋅  3 2775.6878 10 /( )W m K⋅  3 2821.8175 10 /( )W m K⋅

 

( )2* * * 64 64fuel pV r Lπ= ⋅ ⋅ ⋅ ⋅

 Volume of the fuel 
elements of the 
whole core 

310.7465 m  

( )2* * * 91 532fuel pV r Lπ= ⋅ ⋅ ⋅ ⋅  

313.02815 m  

( )2* * * 6 6482fuel pV r Lπ= ⋅ ⋅ ⋅ ⋅  

313.59539 m  

 

Table 3: Void and Doppler mode feedback reactivity coefficients 

 KKB KKL KKR 

Channel 1    
,1

00
VoidC  -1-1.0992673 10 /pcm Void⋅  -2-6.9592224 10 /pcm Void⋅ -2-5.37730960 10 /pcm Void⋅  

,1
01
VoidC  -23.3292959 10 /pcm Void⋅  -2-5.6921974 10 /pcm Void⋅ -2-5.0783521 10 /pcm Void⋅  

,1
10
VoidC  -27.3885333 10 /pcm Void⋅  -2-5.5877601 10 /pcm Void⋅ -2-5.2646601 10 /pcm Void⋅  

,1
11
VoidC  -1-1.0870970 10 /pcm Void⋅  -2-6.5884191 10 /pcm Void⋅ -2-5.7744819 10 /pcm Void⋅  

,1
00
DopplerC  -5-1.0561384 10 /pcm K⋅  -5-1.0561384 10 /pcm K⋅  -5-1.08166290 10 /pcm K⋅  

,1
01
DopplerC  -6-8.6464111 10 /pcm K⋅  -6-8.6464111 10 /pcm K⋅  -6-9.9173564 10 /pcm K⋅  

,1
10
DopplerC  -6-8.2821048 10 /pcm K⋅  -6-8.2821048 10 /pcm K⋅  -5-1.006068 10 /pcm K⋅  

,1
11
DopplerC  -6-9.8178657 10 /pcm K⋅  -6-9.8178657 10 /pcm K⋅  -5-1.0856649 10 /pcm K⋅  

Channel 2    
,2

00
VoidC  -1-1.0992673 10 /pcm Void⋅  -2-6.9592224 10 /pcm Void⋅ -2-5.37730960 10 /pcm Void⋅  

,2
01
VoidC  -2-3.3292959 10 /pcm Void⋅  -25.6921974 10 /pcm Void⋅  -25.0783521 10 /pcm Void⋅  

,2
10
VoidC  -27.3885333 10 /pcm Void− ⋅  -25.5877601 10 /pcm Void⋅  -25.2646601 10 /pcm Void⋅  

,2
11
VoidC  -1-1.0870970 10 /pcm Void⋅  -2-6.5884191 10 /pcm Void⋅ -2-5.7744819 10 /pcm Void⋅  

,2
00
DopplerC  -5-1.0561384 10 /pcm K⋅  -5-1.0561384 10 /pcm K⋅  -5-1.08166290 10 /pcm K⋅  

,2
01
DopplerC  -6-8.6464111 10 /pcm K⋅  -68.6464111 10 /pcm K⋅  -69.9173564 10 /pcm K⋅  

,2
10
DopplerC  -6-8.2821048 10 /pcm K⋅  -68.2821048 10 /pcm K⋅  -51.006068 10 /pcm K⋅  
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,2
11
DopplerC  -6-9.8178657 10 /pcm K⋅  -6-9.8178657 10 /pcm K⋅  -5-1.0856649 10 /pcm K⋅  

 

Table 4: Pressure drops extracted from the steady state RAMONA5 output 

 KKB KKL KKR 
RAM

riserP∆  41.4570 10 Pa− ⋅  41.573 10 Pa− ⋅  42.1457 10 Pa− ⋅  

,
RAM

ch exitP∆  40.0773 10 Pa− ⋅  40.0811 10 Pa− ⋅  40.0975 10 Pa− ⋅  
RAM

chP∆  42.3080 10 Pa− ⋅  42.778 10 Pa− ⋅  42.474 10 Pa− ⋅  

,
RAM

ch inletP∆  41.1157 10 Pa− ⋅  41.5805 10 Pa− ⋅  41.2707 10 Pa− ⋅  

2
RAM

lpP∆  42.8632 10 Pa− ⋅  41.3759 10 Pa− ⋅  43.5812 10 Pa− ⋅  

1
RAM

lpP∆  40.0007 10 Pa− ⋅  23.42 10 Pa−− ⋅  40.0006 10 Pa− ⋅  

1
RAM

dcP∆  42.0195 10 Pa⋅  43.8005 10 Pa⋅  44.8015 10 Pa⋅  

2
RAM

dcP∆  45.8027 10 Pa⋅  43.5871 10 Pa⋅  44.7685 10 Pa⋅  
RAM

cP∆  43.5012 10 Pa− ⋅  44.439 10 Pa− ⋅  43.8425 10 Pa− ⋅  
RAM

extP∆  47.8222 10 Pa− ⋅  47.3875 10 Pa− ⋅  49.57 10 Pa− ⋅  

 

Table 5: ROM pressure drops 

 KKB KKL KKR 
*

,ch exitP∆  41.534 10 Pa− ⋅  41.654 10 Pa− ⋅  42.243 10 Pa− ⋅  
*

chP∆  42.308 10 Pa− ⋅  42.777 10 Pa− ⋅  42.474 10 Pa− ⋅  
*

,ch inletP∆  43.979 10 Pa− ⋅  42.956 10 Pa− ⋅  44.853 10 Pa− ⋅  

 

Tabelle 6: Drift flux paramters 

 KKB KKL KKR 

gjV  0.3  0.35  0.25  

0C  1.02  1.02  1.01 
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Appendix G: Summary of the KKB-Analysis 
 

NPP Brunsbüttel cycle 16 
Preliminary stability investigations with the system code RAMONA-3 were performed 
for cycle 16 of KKB. The input data are valid for a burn-up state of 3000 VLS (Voll-
Last-Stunden) [1,2]. As a result, a decay ratio of 0.8  was found for the case where 3 
pumps were in operation on the 104%  rod line. 

In order to improve the validation-data of RAMONA-3 for the NPP Brunsbüttel a sta-
bility measurement in the middle of cycle 16 was performed on November 29, 2001. 
To this end, at first, the reactor state was appointed on the 104%  rod line at 100%  
power (xenon-equilibrium). Next, the pump speed of all pumps was reduced to the 
minimum (corresponding to the minimum speed level “Linker Eckpunkt”). Thereby the 
power was reduced to 62.2% . After tripping 4 ZUP pumps, the power is reduced to 
47%  and the mass flow is reduced to 26% . In this new operational point, which is 
defined to be the reference OP for the present BWR stability analyses, a global 
power oscillation was crowing. Because of the fast increasing oscillation amplitudes, 
control rods were inserted into the reactor core to suppress the oscillation after the 
amplitudes exceeded 5%  [1,2]. 

The Brunsbüttel (KKB) stability data are acquired from the stability test conducted at 
the middle of cycle sixteen.  

Operational point: 

 

Power 1079.50 (47.10%) (100% Power 2291.93 )
Flow 2367.00 / (26.14%) (100% Flow 9055.09 / )

Subcooling 118.5 /
Pressure 69.85

MW MW
kg s kg s

kJ kg
bar

= =
= =
=
=

 (G1) 

This operational point was selected for the nonlinear stability analyses because the 
onset of un-damped global power oscillations was observed. Thereby 4 pumps are 
tripped and the pump derivate is taken from the pressure drop over the pumps.  

In the scope of the first RAMONA5 investigation for the NPP Brunsbüttel in the se-
lected operational point, at first the steady state 3D-parameter distributions, most 
significant for the BWR stability behavior, will be evaluated (steady state analysis), 
secondly the stability behavior will be analysed (transient analysis) and thirdly the 
ROM input parameters will be calculated. 

The first figure shows the core shape, the control rod positions and the correspond-
ing numbers of fuel elements in a quarter core. This configuration is composed sym-
metrically around ,7 7x y= = .  
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Figure 1: Control rod positions of a quarter core. 

The control rod configuration of the entire core is shown next.  

 
Figure 2: Control rod configuration for KKB cycle sixteen in cm . 363 cm  means 

the control rod is complete out (withdrawed) of the core.  
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1.1 Steady state analysis 
To summarize, the axial power and axial void profile, radially averaged, are plotted in 
Figure 3. Furthermore, radial power distribution, axially averaged is shown in Figure 4 
and Figure 5. 
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Figure 3: This figure shows the steady state axial power and void profile (radially 
averaged) calculated by RAMONA5. 

 

 
Figure 4: Three dimensional radial power distribution axially averaged for NPP 

Brunsbüttel (reference OP). The Z-Axis corresponds to the relative 
power ( 110−⋅ ). 
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Figure 5: Radial power distribution axially averaged for NPP Brunsbüttel (refer-
ence OP). 

 

Table 1: Results for the pressure drops extracted and calculated from the 
RAMONA5 output 

41.4570 10RAM
riserP Pa∆ = − ⋅  4

1 0.0007 10RAM
lpP Pa∆ = − ⋅  

4
, 0.0773 10RAM

ch exitP Pa∆ = − ⋅  4
1 2.0195 10RAM

dcP Pa∆ = ⋅  

42.3080 10RAM
chP Pa∆ = − ⋅  4

2 5.8027 10RAM
dcP Pa∆ = ⋅  

4
, 1.1157 10RAM

ch inletP Pa∆ = − ⋅  43.5012 10RAM
cP Pa∆ = − ⋅  

4
2 2.8632 10RAM

lpP Pa∆ = − ⋅  47.8222 10RAM
extP Pa∆ = − ⋅  
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1.2 Transient analysis 
The transient behavior is induced by imposing a system pressure perturbation and 
recorded by the LPRM detector system ('STABILITY' Option). The different LPRM 
detector locations are despicted in Figure 6.  

 
Figure 6: RAMONA 5.2-5 nomenclature for LPRM locations 

Next, the LPRM signals of the fourth axial level in units of % are displayed in Figure 
7. It can be seen that all signals are in phase. Accordingly, a global power oscillation 
is arising in the operational point considered. Furthermore, the oscillation is converg-
ing to a limit cycle (stable global power oscillation).  

In Figure 8 the time evolution of the relative power is shown. Because of the global 
power oscillation, the oscillation amplitudes have qualitatively the same time evolu-
tion as the LPRM signals. In a regional power oscillation case, the amplitudes of the 
relative power would be zero.  
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Figure 7: Signals (%) of selected LPRMs located in the fourth level are shown. 

All signals are in phase and converging to a stable limit cycle. 
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Figure 8: This figure presents the time evolution of the relative power. 
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Figure 9: This figure presents the time evolution of the total mass flow. 
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Figure 10: This figure shows the time evolution of the system pressure. The initial 

perturbation induced can be seen clearly. 

The time evolution of the system pressure is presented in Figure 10. As stated previ-
ously, the transient is initiated by imposing a system pressure perturbation. The cor-
responding perturbation amplitude is displayed in this figure. 
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Figure 11: This figure displays the time evolution of the mean core void (volumet-

ric) fraction. 
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1.3 Summary of the ROM analysis 
The new calculation procedure for the ROM input parameters was applied for the 
reference OP.  
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Figure 12: Comparison of the axial void profile calculated by RAMONA5 (radially 

averaged) with the axial void profile provided by the ROM.  

 

In Table 2 are shown the pressure drops of RAMONA5 and ROM. The results of the 
RAMONA5- and ROM-pressure drops are consistent.  

 

Table 2: Heated channel pressure drops provided by the RAMONA5 output and 
calculated by the ROM (reference-OP).  

Pressure drop RAMONA5 ROM 
*

,ch inletP∆  43.979 10 Pa− ⋅  43.979 10 Pa− ⋅  

*
chP∆  42.308 10 Pa− ⋅  42.305 10 Pa− ⋅  

*
,ch exitP∆  41.534 10 Pa− ⋅  41.538 10 Pa− ⋅  

*
extDP  47.8222 10 Pa− ⋅  47.8222 10 Pa− ⋅  
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Figure 13 summarizes the result of the numerical integration in the reference OP. As 
predicted by RAMONA5, a growing in-phase power oscillation is occurring in the ref-
erence OP.  
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Figure 13: Time evolutions of the fundamental 0 ( )n t  and first azimuthal mode 

1( )n t  and the channel inlet velocities 1,v ( )inlet t  and 2,v ( )inlet t . 
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Figure 14: Stability boundary and bifurcation characteristic for the reference OP. 
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Figure 14 shows the result of the semi-analytical bifurcation analysis. The reference 
OP is located in the linear unstable region. The results are only plotted in the region, 
which is reasonable from the physical point of view. In this region, only supercritical 
PAH bifurcations are occurring. Hence, stable periodical solutions are predicted in 
the linear unstable region.  

The stability boundary shown in Figure 14 was transformed into the power flow map. 
This result is presented in Figure 15 in which the 100% and 104% rodlines are in-
cluded.  
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Figure 15: Stability boundary transformed into the power flow map.  
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1.3.1 Effect of the uncertainty of the measured total power, total mass-
flow and core inlet subcooling on the axial void profiles calculated 
by RAMONA5 

From the available technical documentation of the NPP Leibstadt, Ringhals and 
Brunsbüttel can be seen that the measuring instruments are calibrated for nominal 
conditions. The uncertainty of the meassured total power, total core mass flow and 
core inlet temperature, corresponding to operational points located in the exclusion 
region, is relative large between 5%  and 10% .  

An uncertainty investigation with the system code RAMONA has shown that a power 
or core mass flow or core inlet temperature deviation of 5%  corresponds to a devia-
tion in the total volumetric void fraction of around 5% . A RAMONA assessment 
where the uncertainty of the power, mass flow as well as the core inlet temperature 
are considered, has shown that the deviation in the total volumetric void fraction is 
9.2% . In order to calculate the total uncertainty of the total volumetric void fraction 
the uncertainty of all measured data has to be taken into account. Consequently, the 
total uncertainty of the real total volumetric void fraction is larger as assessed in the 
above RAMONA analysis.  
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Figure 16: This figure shows axial profiles of the volumetric void fraction for differ-

ent reactor power and coolant mass flow calculated by RAMONA 5. 
Thereby the power and core mass flow was changed by 5%  respec-
tively.  
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Appendix H:  Summary of the KKR-Analysis 
 

NPP Ringhals1 cycle 14 
At the begining of cycle 14, a stability test was performed on the Ringhals-1 BWR. 
The intension was to determine the stability characteristics on the new minimum 
pump speed line, as well as to study the mode of power oscillation at different operat-
ing states. Thereby, the recordings were made in points arranged in a grid layout. 
These points are located in the high power low flow region of the power flow map 
where unstable behaviour is expected [1]. The measurement data of such instability 
events have been widely used in the past in order to tune and to validate various sys-
tem codes. From these data, the decay ratio, stabistical parameters and frequency 
were calculated.  

During the stability test, a limit cycle regional out-of-phase power oscillation was oc-
curring at 72% power and 32% coolant mass flow (cycle 14, record 9). 

Operational point (KKRc14_rec9-OP): 

 

Power 1648.02 (72.6%)
Flow 3694.00 / (31.98%)

Subcooling 131 /
Pressure 70.1

MW
kg s

kJ kg
bar

=
=
=
=

 (H1) 

Measuring data of this operational point and the corresponding RAMONA5 model of 
Ringhals-1 BWR are the basis for the nonlinear BWR stability analysis carried out 
with the ROM. The signal of LPRM 8 and its power spectral density is shown next.  
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Figure 1: Measured LPRM signal and its corresponding power spectral density 

(Ringhals-1, cycle 14, record 9). 1.0DR ≈  

Figure 2 shows the core shape, the control rod positions and the corresponding 
numbers of fuel elements in a quarter core. This configuration is composed symmet-
rically around ,8 8x y= = . Figure 3 shows the control rod configuration of the core. 

 
Figure 2: Control rod positions of a quarter core. 
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Figure 3: Control rod configuration for the selected OP in mm .  

1.1 Steady state summary (RAMONA5) 
To summarize, the axial power and axial void profile, radially averaged, are plotted 
next. Furthermore, radial power distribution, axially averaged is shown in Figure 5 
and Figure 6. 
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Figure 4: This figure shows the steady state axial power and void profile (radially 

averaged) calculated by RAMONA5. 

 
Figure 5: Three dimensional radial power distribution axially averaged for NPP 

Ringhals-1 (reference OP). The Z-Axis corresponds to the relative 
power ( 110−⋅ ). 
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Figure 6: Radial power distribution axially averaged for NPP Ringhals-1 (refer-
ence OP). 

 

Table 1: Results for the pressure drops extracted and calculated from the 
steady state RAMONA5 output (reference OP) 

42.1457 10RAM
riserP Pa∆ = − ⋅  4

1 0.0006 10RAM
lpP Pa∆ = − ⋅  

4
, 0.0975 10RAM

ch exitP Pa∆ = − ⋅  4
1 4.8015 10RAM

dcP Pa∆ = ⋅  

42.3080 10RAM
chP Pa∆ = − ⋅  4

2 4.7685 10RAM
dcP Pa∆ = ⋅  

4
, 1.2707 10RAM

ch inletP Pa∆ = − ⋅  43.8425 10RAM
cP Pa∆ = − ⋅  

4
2 3.5812 10RAM

lpP Pa∆ = − ⋅  49.57 10RAM
extP Pa∆ = − ⋅  
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1.2 Transient behaviour (RAMONA5) 
The transient behaviour is initiated by introducing a 2 node control rod movement. 
Thereby an in-phase mode was triggered. The signals of the LPRM 8 and 32 of the 
fourth level and located in different core half’s (RAMONA predicts a fixed symmetry 
line for the present case) are selected for the evaluation of the transient behaviour. 
The core shape, symmetry line and the locations of the LPRM detectors of the fourth 
level are summarized in Figure 7. 

 

 
Figure 7: LPRM locations and symmetry line of the out-of-phase power oscilla-

tion 

Figure 8 shows the time evolution of the LPRM signals 8 and 32. As can be seen, an 
out of phase power oscillation is occurring in the reference OP. The frequency of the 
oscillation is * 10.48NF s−= . All RAMONA5 investigations for the reference OP and its 
close neighbourhood have shown that the out of phase power oscillation is dis-
charged into a stable limit cycle.  
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Figure 8: RAMONA5 result for the reference OP. The relative amplitudes of sig-

nals are shown for LPRM 8 and LPRM 32. Both LPRM signals have a 
phase shift of π . 

The power spectral density of the LPRM 8 is shown in Figure 9.  

 
Figure 9: Power spectral density corresponding to LPRM 8 of the fourth level. 
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1.3 Summary of the ROM analysis 
All design parameters of the ROM have been calculated from the Ringhals-1 
RAMONA5 model for the reference OP (cycle 14 record 9). Thereby the new calcula-
tion procedure for the ROM input parameters was applied. As a result of the new cal-
culation procedure, the steady state axial void profiles of RAMONA5 and ROM are 
consistent (see Figure 10).  
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Figure 10: Comparison of the axial void profile calculated by RAMONA5 (radially 

averaged) with the axial void profile provided by the ROM.  

In Table 2 are shown the pressure drops of RAMONA5 and ROM. The results of the 
RAMONA5- and ROM-pressure drops are consistent.  

Table 2: Heated channel pressure drops provided by the RAMONA5 output and 
calculated by the ROM (KKRc14_rec9-OP).  

Pressure drop RAMONA5 ROM 
*

,ch inletP∆  44.853 10 Pa− ⋅  44.8556 10 Pa− ⋅  

*
chP∆  42.474 10 Pa− ⋅  42.4735 10 Pa− ⋅  

*
,ch exitP∆  42.243 10 Pa− ⋅  42.2409 10 Pa− ⋅  

*
extDP  49.57 10 Pa− ⋅  49.57 10 Pa− ⋅  

Figure 11 summarizes the result of the numerical integration in the reference OP. As 
predicted by the RAMONA5 analysis, the oscillation is converging to a stable limit 
cycle.  
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Figure 11: Time evolutions of the fundamental 0 ( )n t  and first azimuthal mode 

1( )n t  and the channel inlet velocities 1,v ( )inlet t  and 2,v ( )inlet t . 

In Figure 12 are shown the results of the bifurcation analysis. The stability boundary 
and the corresponding bifurcation characteristic are only plotted in the region which is 
reasonable from the physical point of view.  
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Figure 12: Stability boundary and bifurcation characteristic for the reference OP.  
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The reference OP is located in the linear unstable region close to the stability bound-
ary. This result is consistent with the one of RAMONA5. Notice, in the scope of the 
nonlinear BWR stability analysis for KKRc14_rec9 a comprehensive RAMONA5 pa-
rameter variation study was performed (these results are not presented here) where 
selected parameters which have a significant impact on the BWR stability behaviour, 
were varied.  

As shown in Figure 12 the bifurcation characteristic predicts unstable periodical solu-
tions in the linear stable region. Supercritical PAH bifurcations do not exist in the subN  
- extDP  parameter space. It should be stressed that stable limit cycle solution in the 
linear unstable region and unstable limit cycle solution in the linear stable region (but 
close to the SB) was found. Hence the occurrence of a saddle-note bifurcation of a 
cycle (similar to the KKLc7_rec4 case) can explain the stability behaviour of this 
analysis case.  

In Figure 13 is presented the SB projected into the power flow map. In this map, the 
operating domain of the low flow-high power region of cycle 14 is included [1].  
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Figure 13: SB “transformed” into the power flow map.  

Figure 14 presents the power flow map where the SB, the measurement points re-
corded during the stability test at the beginning of cycle 14, and their decay ratios [1] 
are included. It can be seen that the reduced order model predicts qualitively well the 
location of the reference OP respect to the SB and to the other measurement points. 
The comparison study between RAMONA5 and ROM (results are not presented 
here) have shown that the qualitative stability behaviour in the reference OP and its 
neighbourhood is simulated correctly by the ROM. Existing quantitative discrepancies 
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between measurement data, RAMONA5 and ROM are due mainly to the uncertain-
ties in evaluating the design and operating parameters as core averaged values.  
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Figure 14: SB “transformed” into the power flow map. The measuring points of 

the stability test and the operating domain in the low flow-high power 
region are included this power flow map.  
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Appendix I:  Comparative study TOBI-ROM 
Dokhane et al. carried out a detailed check of the thermal-hydraulic sub-model (TH-
model) of the ROM [12,13] (see Literature of Chapter 6). One aspect was, the valida-
tion of the TH-model against experimental data and the comparison to several other 
analytical models able to simulate the stability characteristics of density waves 
[12,58,77,80]. Furthermore they compared the use of drift flux and homogeneous 
equilibrium models and carried out bifurcation analyses and numerical integrations of 
the TH-model equations. A sensitivity analysis was carried out, where the effects of 
different parameters (such as inlet and exit pressure loss coefficients, friction num-
bers…) on the stability characteristics have been investigated.  

The objective of the current study is to replenish an additional check of the TH-
model. To this end, appropriate results of the TOBI model which was developed by 
Wehle et al. [78] will be reproduced by the TH-model. TOBI is a simplified one heated 
channel BWR model, where the neutron kinetics, fuel heat transfer and thermal-
hydraulics (boiling length, unheated length and riser) are taken into account. A detail 
description is given in [78]. In the scope of the comparative study TOBI-ROM, the 
results of the thermal-hydraulic sub-model of TOBI, without riser and unheated sec-
tion, are compared with results of the TH-model of the ROM for specific OP’s.  

In Table 1 are presented the operational and design parameters used to generate the 
input parameters of the TH-model. Table 2 summarizes the main TOBI results for 
different powers. The pressure loss coefficients ( inletK  and exitK ) and the friction num-
bers ( 1N Φ  and 2N Φ ) of the TH-model have been calculated separately for each 
power.  

Table 1: Operational and design parameters 

system Pressure: * 70P bar=  

channel inlet mass flow: * 5 /m kg s=  

core inlet subcooling: * 100 /subh kJ kg=  corresponds to 
* 19.2subT K=  

channel flow cross section: * 20.01A m=  

hydraulic diameter: * 0.011hd m=  

length of the heated channel: * 4.0L m=  

channel inlet pressure drop: * 0.049inletp bar∆ =  

axial power profile: uniform axial power profile 
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Table 2: TOBI-results for different powers *Q  

*Q  DR/Gr exitx  *
exitp∆  *

externp∆  

[kW]   [bar] [bar] 

2500 0.15 0.27 0.099 0.344 

2750 0.20 0.30 0.110 0.354 

3000 0.27 0.33 0.120 0.365 

3250 0.33 0.37 0.130 0.378 

3500 0.42 0.40 0.141 0.392 

3750 0.51 0.43 0.151 0.406 

4000 0.61 0.47 0.162 0.421 

4250 0.74 0.50 0.172 0.436 

4500 0.87 0.53 0.182 0.452 

4750 1.01 0.56 0.193 0.469 

5000 1.16 0.60 0.203 0.485 

5250 1.33 0.63 0.214 0.502 

 

Input data of the TH-model: 

In the following the input data for the TH-model are presented for the reference 
power * 4750refQ kW= .  

• 
* *

* * * 1.051941496
  

f f
r

f g

N
ρ ρ

ρ ρ ρ
= = =

− ∆
 

• 
*

*N 0.04937679122
 

g

f
ρ

ρ
ρ

= =  

• 
*2
0

* *

v 0.01164330537Fr
g L

= = , where *
0v  with *

0v 0.676 /m s=  is the reference 

channel inlet velocity. 
• 14.5inletK =  

• 8.1exitK =  

• 1 2.5N Φ =  

• 2 4.4N Φ =  

• 0 1.00C =  (In this case, a uniform radial void distribution is assumed.)  
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• 0.8gjV =  ( gjV  was selected in such a way that the TH-model provides a DR/GR 

close to TOBI for the reference OP.  

1.1 Results of the comparative study TOBI – ROM 
After calculation of all input parameters, numerical integration of the TH-model equa-
tions is carried out for all powers given in Table 2. The time evolutions of the state 
variables are evaluated and the corresponding DR/GR is calculated. As a result, the 
function DR/GR( *Q ) is determined. The so-called grow ratios (GR) are calculated as  

 1

1

1 ,
k

i

i i

AGR
k A

+

=

= ∑  (I1) 

where iA  is the i -th amplitude. The approximation (I1) is only valid for sufficient small 
oscillation amplitudes or with other words: in a close neighbourhood of the singular 
fixed point in the phase space. 

The results of the TOBI model and the TH-model are shown in Figure 1 and Figure 2.  
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Figure 1: In this figure are shown the decay ratios (DR) and the grow ratios (GR) 

depending on the power imposed on the thermal-hydraulic channel 
(DR/GR( *Q )).  

The comparison shows that the results of the TH-model (THM) are close to that one 
of TOBI. The best agreement between both functions */ ( )TOBIDR GR Q  and 

*/ ( )THMDR GR Q  is achieved for the reference power * 4750Q kW=  because the input 
data are based on *

refQ . The small deviation with increasing distance between *
refQ  
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and the actual power *Q  can be justified by, firstly, differences of model assumptions 
used in TOBI and TH-model and secondly, lack of knowledge about the single phase 
and two phase friction. Hence the dimensionless numbers 1N Φ  and 2N Φ  are un-
known. For this analysis, both friction numbers are only estimated in an approxi-
mated manner.  
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Figure 2: Comparison of the TOBI and TH-model results 
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1.2 Semi-analytical bifurcation analysis 
In the scope of the bifurcation analysis using BIFDD, the core inlet subcooling *

subh  
and the thermal power *Q  are selected to be the iteration and bifurcation parameter. 
This means, the bifurcation analysis is carried out in the *

subh - *Q  operating plane. 
While the core inlet mass flow is assumed to be constant, one point in this plane cor-
responds to a particular thermal-hydraulic state of the heated channel. The result of 
the bifurcation analysis is presented in Figure 3. Notice, the stability boundary and 
the bifurcation characteristic corresponds to the reference OP because all input data 
are based on it.  
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Figure 3: Stability boundary in the *

subh - *Q  parameter space and the correspond-
ing bifurcation characteristic in the *

subh - 2β  plane.  

The result of the bifurcation analysis shows that the reference OP is located in the 
linear unstable region close to the stability boundary. The Floquet parameter 2β  for 

* 328 /subh kJ kg<  is negative and for * 328 /subh kJ kg≥  positive. This means, stable pe-
riodical solutions are predicted in the linear unstable region for * 328 /subh kJ kg<  and 
unstable periodical solutions are predicted in the linear stable region for 

* 328 /subh kJ kg≥ . Hence, near the reference OP stable limit cycles are occurring. This 
result is consistent with the one of TOBI.  

It should be pointed out that the maximum of the core inlet subcooling occurring in a 
real BWR is about * 250 /subh kJ kg≈  which corresponds to * 50subT K≈ . Thus, only core 
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inlet subcoolings less than * 250 /subh kJ kg≈  are taken into account. Consequently, for 
the present parameter configuration only stable limit cycles exist.  

 

1.3 Numerical integration 
In this section are shown some results of the numerical integration which was carried 
out in section 1.1. In order to demonstrate the thermal-hydraulic stability behaviour in 
the close neighbourhood of the stability boundary, the results for * 4680Q kW= , 

* 4708Q kW= , * 4750Q kW=  are shown firstly.  
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Figure 4: This figure show the time evolutions of the relative mass flow at the 

channel inlet and exit for * 4680Q kW= . This operational point is lo-
cated in the stable region.  
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Figure 5: This figure show the time evolutions of the relative mass flow at the 

channel inlet and exit for * 4708Q kW= . This operational point is lo-
cated in the unstable region close to the stability boundary. 
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Figure 6: This figure show the time evolutions of the relative mass flow at the 

channel inlet and exit for * 4750Q kW= . In this operational point, a sta-
ble limit cycle is predicted by BIFDD and is confirmed by numerical 
integration.  

 

1.4 Summary 
In section 1.1, numerical integration of the TH-model equations is carried out for se-
lected thermal powers. The time evolutions of the state variables are evaluated and 
the corresponding DR/GR is calculated. As a result, the function DR/GR( *Q ) is de-
termined. The results of the TH-model are compared with the results of TOBI. The 
comparison shows that the results of the TH-model (THM) are close to that one of 
TOBI. 

In section 1.2, semi-analytical bifurcation analysis with BIFDD was carried out. 
Thereby the core inlet subcooling *

subh  and the thermal power *Q  are selected to be 
the iteration and bifurcation parameter. The result of the bifurcation analysis shows 
that the reference OP is located in the linear unstable region close to the stability 
boundary. The bifurcation characteristic predicts stable limit cycles near the reference 
OP. This result is consistent with the one of TOBI.  

The results of the numerical integration confirm the prediction of the bifurcation 
analysis.  
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