
TECHNISCHE UNIVERSITÄT DRESDEN
Fakultät Wirtschaftswissenschaften

Statistics of Multivariate Extremes

with Applications in Risk Management

Dissertation

zur Erlangung des akademischen Grades

Dr. rer. pol.

vorgelegt von

Dipl.-Wing. Rodrigo Herrera
Geboren am 6. April 1978

in Talca, Chile

Betreuer: Prof. Dr. Bernhard Schipp

Vorsitzender: Prof. Dr. Udo Broll

Gutachter: Prof. Dr. Hermann Locarek-Junge

Tag der Disputation: 06.06.2009



To Aleksandra,

the greatest gift

is to discover a beautiful heart.



Acknowledges

In the beginning of the present thesis I would like to express my deepest gratitude to Prof.

Bernhard Schipp for his excellent guidance and supervision during the entire phase of my

doctorate. He �lled me with enthusiasm when I more need it. His suggestions and comments

have been essential in this thesis. Special thanks to Prof. Dr. Hermann Locarek-Junge for

his kind acceptance to be my second referee. I also extend my thanks to my colleagues Enrico

Lovaz, Matthias Deutscher, Dr. Sabine Hegewald and Sabine Haller-Schulz for all their help,

support, interest and valuable hints.

This research project has been principally supported by a Doctoral Scholarschip President

of the Republic of Chile. Further, the Alpha Project grant (SistIng), which has permitted

me visiting the Department of Operations Research in the University of Saarland during the

year 2007. Especially I would like to thank Prof. Stefan Nickel for giving me the opportunity

to spend an extremely fruitful research there. But particularly, I learned that academic work

indeed may be lively and funny.

I wish to thank all my friends in Dresden, Chilean and non Chilean, that relationship to

this thesis was to stop me thinking and working all the time for it. Though I won't name

them all, a big thanks goes to every one of them.

I thank Aleksandra, Agnes, Tom, Anne and Dr. Sabine Hegewald for their e�orts and

time reviewing my writing many times at the �nal version of the thesis, correcting and o�ering

suggestions for improvement.

The last lines are for my family, for supporting, motivating and encouraging me during

all stages of my life. They are very proud of me, but I am much more of them.

Dresden, Rodrigo Herrera

14th April 2009.

II



Contents

Acknowledges II

List of Figures V

List of Tables IX

Nomenclature XI

Chapter 1. Introduction, motivation and new scienti�c contributions 1

1.1. Introduction 1

Outline of the thesis and new scienti�c contributions 7

Chapter 2. Univariate and multivariate extremes 11

2.1. Introduction 11

2.2. Extreme value theory in the univariate case 12

2.3. Multivariate extremes 22

2.4. Extreme measures of dependence 32

2.5. Relation among the extreme measures of dependence in the stationary case 34

2.6. Conclusions 39

2.A. Demonstrations 40

Chapter 3. The Multivariate extremal index and the visualization of measures of

extreme dependence 44

3.1. Introduction 44

3.2. The multivariate extremal index 45

3.3. Estimators of multivariate extremal index 49

3.4. The multivariate declustering procedure 53

3.5. The new measure of tail dependence 57

3.6. Clusters and extreme dependence in the Asian crises 68

3.7. Conclusions 72

3.A. Demonstrations 74

3.B. Tables and Figures 76

Chapter 4. Multivariate threshold methods with self-exciting functions 85

4.1. Introduction 85

4.2. The classical procedure 87

4.3. Self-exciting extreme value models 90

4.4. The multivariate extension 100

4.5. Empirical stress testing study in U.S. Future markets 108

III



IV

4.6. Conclusions 119

4.A. Tables and Figures 121

Chapter 5. On the estimation of M4 processes through mixture Dirichlet process models127

5.1. Introduction 127

5.2. Properties of M4 processes 129

5.3. Nonparametric Bayesian analyses of mixture distributions 137

5.4. Dirichlet process mixtures of in�nite Gaussian distributions for M4 processes 142

5.5. Estimation of Dirichlet processes mixtures 144

5.6. Practical implementation and simulation examples 150

5.7. Applications in Finance 154

5.8. Conclusions 165

5.A. Demonstrations 167

5.B. Tables and Figures 169

Chapter 6. Topics in multivariate regular variation in �nance 174

6.1. Introduction 174

6.2. Regular variation 175

6.3. Multivariate regular variation in cones 180

6.4. Implications of regular variation and hidden regular variation in risk management189

6.5. �Let the tail go with the hidden�: contagion, linkages between Brazil and Russia 206

6.6. Conclusions 215

6.A. Demonstrations 218

6.B. Tables and Figures 221

Bibliography 226



List of Figures

1.1.1 The stock market returns for the DAX index in the period January 1900 - March

2009. 3

1.1.2 Bivariate returns of the DAX and CAC 40 indices and simulations. 4

1.1.3 Estimated density function copula for the DAX and CAC 40 returns, under

di�erent copulas assumptions. 6

2.3.1 Perspective plots and heat maps contour of the three fundamental copulas. 26

2.3.2 Simulation of a trivariate sample of Frèchet marginals with Logistic dependence

measure for di�erent levels of intensity. 30

3.3.1 Bivariate extremal index and cluster size probabilities for the Example 3.3.1. 52

3.3.2 Trivariate extremal index of a M4 process in Example 3.3.2 53

3.3.3 Trivariate extremal index of the M4 process in Example 3.3.1 in polar

coordinates. 54

3.4.1 An example of a multivariate decluster procedure. 56

3.5.1 Simulated M4 process for the Example 3.5.6 in 3-dimensional and with

2-dimensional projections 63

3.5.2 Simulation of the trivariate functional tail dependence of the M4 process in

Example 3.5.6. 63

3.5.3 Emprical and theorical simulation of the measures ρ and ε for the pair (X1, X2)
in the Example 3.5.7. 66

3.5.4 Emprical and theorical simulation of the measures ρ and ε for the pair (X2, X3)
in the Example 3.5.7. 66

3.5.5 Simulation of the measure ρ for a trivariate random in the Example 3.5.7. 67

3.5.6 Simulation of the measure ε for a trivariate random in the Example 3.5.7. 67

3.6.1 Stock market indices of Thailand, Philippine, Malaysia, Indonesia and South

Korea. From January 1, 1990 to December 31, 2007. 69

3.B.1 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Thailand vs Philippine. 77

3.B.2 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Thailand vs Malaysia. 77

3.B.3 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Thailand vs Indonesia. 78

V



VI

3.B.4 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Thailand vs Korea. 78

3.B.5 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Philippine vs Malaysia. 79

3.B.6 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Philippine vs Indonesia. 79

3.B.7 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Philippine vs Korea. 80

3.B.8 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Indonesia vs Malaysia. 80

3.B.9 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Malaysia vs Korea. 81

3.B.10 Results of the bivariate extremal index, bivariate cluster size probability and

tail dependence for Indonesia vs Korea. 81

3.B.11 Results for Korea, U.S.A and Japan returns, the trivariate extremal index and

the trivariate tail dependence function. 82

3.B.12 Results for Thailand, U.S.A and Japan returns, the trivariate extremal index

and the trivariate tail dependence function. 82

3.B.13 Results for Indonesia, U.S.A and Japan returns, the trivariate extremal index

and the trivariate tail dependence function. 83

3.B.14 Results for Philippine, U.S.A and Japan returns, the trivariate extremal index

and the trivariate tail dependence function. 83

3.B.15 Results for Malaysia, U.S.A and Japan returns, the trivariate extremal index

and the trivariate tail dependence function. 84

4.4.1 Time-inhomogeneous estimation of the pointwise median dependence parameter

of the logistic exponent measure. 107

4.5.1 Bivariate scatter plots of the Dow Jones industrial average, NASDAQ and

S&P500 returns for the period of investigation. 108

4.5.2 qq-plots, autocorrelation function and autocorrelation function of residuals,

for the returns of the S&P 500 index, the Dow Jones inde, and the NASDAQ

indeces. 110

4.5.3 VaR and ES computations at level α = 0.01 and α = 0.001 for S&P, NASDAQ

and Dow Jones returns. 112

4.5.4 Estimated exponent measure dependence parameter α(t) for the pairs S&P 500

and Dow Jones, S&P 500 and NASDAQ, Dow Jones and NASDAQ. 113

4.5.5 Perspective densities and contour plots of failure sets for the pairs S&P 500 and

Dow Jones, S&P 500 and NASDAQ, Dow Jones and NASDAQ. 116

4.5.6 Monte Carlo simulation of 30.000 weighed portfolios for a short position in the

Dot-com crash on April 14, 2000. 117



VII

4.5.7 The Worst case scenario simulation for the VaR for the most important extreme

events during the sample period. 119

5.2.1 Simulation of 1.000 observations of M4 (1,K, 1) process proposed in Example

5.2.7. 133

5.2.2 Simulation of a M4 (1, 3, 2) process with 10.000 observations proposed in

Example 5.2.9. 135

5.2.3 Simulation of a M4 (1, 1, 2) process with a bivariate Gaussian noise N proposed

in Example 5.2.11. 136

5.3.1 The Chinese restaurant process mixture with l
′
equal to four tables and eight

customers. 137

5.3.2 Some examples of trivariate Dirichlet distributions. 139

5.6.1 Monte Carlo Markov chain iterations for the patameter α and the number of

represented mixtures. 151

5.6.2 Bivariate projections of a DPM. 155

5.6.3 Bivariate projections of a DPM (Cont.1) 156

5.6.4 Bivariate projections of a DPM (Cont.2) 157

5.7.1 Scatterplot of standardized DAX returns and the estimated M4 process in

Frèchet scale. 161

5.7.2 VaRs for portfolios of di�erent combinations of the seven major German stock

market returns. 162

5.7.3 Box-plots of the performance of the 20 scenarios choice for each portfolio

given by variance-covariance method, historical simulation and M4 processes

approach. 164

5.B.1 Returns, estimated standard deviations and the standarized residuals for the

stock markets under study. 172

5.B.2 Diagnostisc plots for the GPD Models. The plots compare the parametric

distribution, densities, and quantiles to their empirical counterparts. 173

6.3.1 Di�erent types of metrics in R2
+: Euclidean norm, Sum-Morm, Max-Norm. 181

6.3.2 Densities of the Spectral measure of Example 6.3.4. 184

6.4.1 Theoretical conditional correlation ρ (xi, w | w ∈ Ω) and unconditional

correlation ρ (xi, w) in function of a subset Ω = [t,∞]. 195

6.4.2 Maximum and minimum attainable correlation for di�erent values of σ in

example (6.4.10). 196

6.5.1 Scatter plots for the di�erent pairs of asset combinations between Russia and

Brazil for the �st period. 210

6.5.2 Scatter plots for the di�erent pairs of asset combinations between Russia and

Brazil for the second period. 211



VIII

6.5.3 Conditional correlation estimate for each pair of combinations in a linear factor

model in the �rst period of study. 213

6.5.4 Conditional correlation estimate for each pair of combinations in a linear factor

model in the second period of the study. 213

6.5.5 Conditional spillover probabilities for the empirical analysis in the �rst period

of the study. 216

6.5.6 Conditional spillover probabilities for the empirical analysis in the second period

of the study. 217

6.B.1 Estimations of the Starica plot, the distribution of Spectral measure and the

hidden spectral measure for the �rst period of study. 224

6.B.2 Estimations of the Starica plot, the distribution of Spectral measure and the

hidden spectral measure for the second period of study. 225



List of Tables

3.B.1 Summary statistics for the stock market returns. 76

3.B.2 Univariate extremal index estimation. 76

4.5.1 VaR and ES computations for S&P, NASDAQ , and Dow Jones. 111

4.A.1 Summary statistics for the stock index returns. 121

4.A.2 Results for the S&P 500 returns of the self-exciting marked point process. 122

4.A.3 Results for the Dow Jones returns of the self-exciting marked point process. 123

4.A.4 Results for the NASDAQ returns of the self-exciting marked point process. 124

4.A.5 Test hypothesis of estimating correctly the Risk measures. 125

4.A.6 Parameters estimates for the bivariate models, when the dependency parameter

is assumed to be constant over time. 125

4.A.7 Parameters estimates for the bivariate models, when the time-variation adopts

a parametric or semiparametric form. 126

5.6.1 Results for the �rst experiment, varying the number of true patterns yl, and

keeping d and K �xed at 3 and 2 respectively. 153

5.6.2 Results for the second experiment, varying the number of dimensions d, and

keeping L and K �xed at 5 and 2 respectively. 153

5.7.1 Market participation of some of the major current companies present in the

DAX index. 158

5.B.1 Summary statistics for the stock market returns. 169

5.B.2 GARCH(1,1) estimates with Normal distributed noise. All the coe�cients are

signi�cative at the 0.01%. 169

5.B.3 Parameter Estimates of GPD Models with a 0.9-th quantile threshold for all

resturns. 169

5.B.4 Extremal indices and cluster size probabilities π (k) of size k. 170

5.B.6 Coe�cients alkd of the �tted M4 process to the German stock markets 170

5.B.7 Extremal indices and cluster size probabilities π (·). 170

5.B.5 Means of the in�nite Gaussian mixtures for the German stock markets. 171

6.B.1 Estimations of the hidden tail index α0 for the bivariate normal distribution. 221

6.B.2 Estimations of the hidden tail index α0 for the bivariate logistic distribution. 221

IX



X

6.B.3 This table shows the summary statistics for the stock and bond index returns:

Stock Brazil is BOVESPA index, Stock Russia is RTSI index, Bond Brazil is

JPM EMBI and Bond Russia is JPM EMBI Russia. 222

6.B.4 GARCH(1,1) estimates with t-Studend distributed returns with υ degrees of

freedom. 222

6.B.5 Tail index estimates for daily stock and bond market returns over the �rst and

second period of study. 223



Nomenclature

PRM(µ) Poisson random measure with mean µ.

R−∞ Class of rapidly varying functions.

erfc Complementary error function.

c.s.m.s A complete and separable metric space

d−→ Convergence in distribution.

P−→ Convergence in probability.∨d
j=1 Denotes the maximum among j = 1, . . . , d.

max1≤j≤d Denotes the maximum among j = 1, . . . , d.∧d
j=1 Denotes the minimum among j = 1, . . . , d.

min1≤j≤d Denotes the minimum among j = 1, . . . , d.
Rd d-dimensional Euclidean space.

E Expected value.

EVT Extreme value theory.

MDA Maximum domain of attraction.

Φα(x) Frèchet distribution.

GARCH Generalized autoregressive conditional heteroskedasticity.

GEV Generalized Extreme Value.

GPD Generalized Pareto distribution.

Λ(x) Gumbel distribution.⋂d
i=1 Intersection.

D ((0,∞]) It is the space of real-valued, right continuos functions.

(A+B)+ max {(A+B) , 0}.
MEI Multivariate extremal index.

M4 Multivariate maxima of moving maxima

o (1) a (x) = o (b (x)) as x→ x0 means that limx→x0 a (x) /b (x) = 0.
POT Peaks over threshold method.

∝ Proportional to.

R−α Regular varying with index −α.
Mn Sample maximum.

2R Second order regular variation.

∼ Similar to.

Mp (C) Space of point measures C.
SV Stochastic volatility models.

Sd−1 The (d-1) unit Simplex Sd−1 =
{
z ∈ Rd : ‖z‖ = 1

}
.

Xk,n The k-th largest order statistic.

XI



XII

x ∨ y The maximum between x and y.

x ∧ y The minimum between x and y.

F← The quantile function of the distribution F.

xF The right endpoint of a distribution.

M+ (C) The space of Radon measures on a space C.
∃ There exist.⋃d
i=1 Union.

v→ Vague Convergence.

⇒ Weak convergence.

Ψα(x) Weibull distribution.



CHAPTER 1

Introduction, motivation and new scienti�c contributions

�Curiouser and curiouser.�

(Alice in Wonderland)

1.1. Introduction

The current subprime crisis, together with its consequences for international markets,

shows that a deeper understanding of extreme events in statistical data from economics,

insurance and �nance is of high priority. In a speech in Dublin, Charlie McCreevy, the

European Market Commissioner, denounced

�The irresponsible lending, blind investing, bad liquidity management, ex-

cessive stretching of rating agency brands and defective value at risk mod-

elling that prompted the turmoil of recent months� (red. subprime credit

crisis). Financial Times, Friday, October 26, 2007.

Comovements and extreme events between �nancial asset-returns have signi�cantly increased

during recent time periods in almost all international markets. Asset prices do not move

independently of one another, nor do markets function on a standalone basis.

This thesis presents new results in extreme value statistics with particular emphasis on

risk management. Extreme events refer, for example, to extraordinary claims to insurance

companies, crashes of equity markets or extreme losses in credit portfolios due to borrower

defaults. Hence, extreme events occur rarely, i.e., only few extreme observations are available.

Nevertheless, probabilities and dependence structures have to be assigned to extreme events

due to their economic impact.

In this dissertation we study a variety of crises and crashes from the perspective of an

investor in �nancial markets. The two key concerns that an investor has regarding crises

and crashes are their in�uence on his risk exposure and their e�ect on his asset allocation

decisions. This thesis analyzes these aspects in several ways.

A crash is de�ned as an extreme event in a single asset, a single sector or a single market.

We consider a crisis as a period with marked extreme dependence or comovements, which

a�ect many assets in an industry, a single market or several markets worldwide. While a

crash refers to a speci�c event in one asset, industry or market on its own, a crisis refers to a

period of turmoil in several assets, industries or markets at the same time.

In order to highlight the motivation of this thesis more precisely, we will restrict our

attention to the next example. Suppose that the stock market price Pi has been observed, for

example the DAX index. The series of the observed price is transformed into log-returns by

taking log-di�erences.

Xi = logPi − logPi−1.

1



Introduction 2

This transformation is commonly used in �nance (see for example Jorion (2003)). There are

several reasons for this choice of transformation. The most important one is the belief that

log-returns, in contrast to prices, can be understood as realization of a stationary process.

The �rst question that we would like to answer is

What can one say about the extremal behaviour of the distribution of the

future losses of this asset?

Of course, the answer is not easy. There are too few observations to perform a valid statistical

analysis. Suppose for the moment that the data are independent and identically distributed

(iid). Then, in a classical framework one could use the whole sample to �t a Gaussian or

Elliptical distribution and use the tails to determine the future losses. A standard measure of

this type is the Value at Risk (VaR): the worst expected loss under normal market conditions

over a speci�c time interval at a given con�dence level. For instance, for a given portfolio,

a 99% 10-day VaR of one million euro means that the probability of incurring a portfolio

loss of one million euro or more by the end of a two-week (10 trading days) period is 1%.

However, there exist other more complicated levels to estimate than the 99%. The Basel

Committee1 formulates international capital adequacy for �nancial institutions, as for example

the Economic Capital which is currently at a level of 99.97% per year! It is at this point

that extreme value theory (EVT) may enter, o�ering an alternative formulation based on

the asymptotic distribution of the maxima. Recent introductory books on this subject are

Embrechts et al. (1997); Coles (2001); Falk et al. (2004); Beirlant et al. (2004).

The normal distribution is the important limiting distribution for sample averages as

summarized in a central limit theorem. However, one cannot hope that the magnitude of an

extreme event like the crash of 1987 could be modelled by such class of distributions. In fact,

under the Gaussian hypothesis for any given stock, an observation more than �ve standard

deviations from the mean should be observed about once every 7,000 years!

Fortunately, the family of extreme value distributions is the one to study the limiting

distributions of sample extrema. The Fisher and Tippet theorem suggests that the asymptotic

distribution of the maxima of iid random variables under some norming constants an > 0,
and bn ∈ R , belongs to the type of one of the following three distribution functions:

Frechet : Φα(x) =

{
0, x ≤ 0

exp {−x−α} , x > 0
α > 0

Weibull Ψα(x) =

{
exp {−(−x)α} , x ≤ 0

1, x > 0
α > 0

Gumbel : Λ(x) = exp {−e−x} , x ∈ R
where α is the tail index of the distribution and characterizes the tail behaviour of the distri-

bution function. Alternatively, a more pragmatic approach is to observe that for su�ciently

high threshold u, the distribution function of the excess, Xi > u, may be approximated

by a generalized Pareto distribution (GPD). In fact, as the threshold gets large, the excess

1www.bis.org/bcbs/
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Figure 1.1.1. The stock market returns for the DAX index is shown on the
left, in the period January 1990 - March 2009. A simulation based on the
properties of the DAX returns under the assumption of Gaussian distribution
is displayed on the right.

distribution

Fu(x) = P (X − u ≤ x | X > u) , x ≥ 0,

converges to the GPD under the condition that the distribution of the returns belongs to

some of the tree types of extreme value distributions, i.e.,

F̄u(x) ≈ Ḡξ,β(x)

where Ḡξ,β = 1−Gξ,β with tail index ξ ∈ R2 and scale parameter β > 0. The GPD is de�ned

as

Ḡξ,β(x) =

{ (
1 + ξ xβ

)
ξ 6= 0,

exp(−x/β) ξ = 0.
The outcome of that is: To estimate high tail probabilities, we can concentrate more on

the limit distribution of the maxima than on the entire sample of a distribution. So far,

everything is �ne, but the result of more than half a century of empirical studies on �nancial

time series indicates that there exists a set of stylized statistical facts, which are common to

a wide set of �nancial assets.

For instance, the distribution of returns seems to display volatility clustering, which basi-

cally means the events tend to cluster in time. This phenomenon has led to the development

of the class of GARCH models, pioneered by Engle (1982b), who was awarded a Nobel prize.

Figure 1.1.1 on the left depicts this stylized fact for the DAX returns. Notice the enormous

di�erence of the real sequence in comparison to a simulation based on the normal distribution.

Thus, a direct application of extreme value theory is not possible.

Fortunately, Leadbetter et al. (1983) have shown that under appropriate mixing condi-

tions, there exists a nondegenerate limiting distribution H̃ for an associated iid sequence M̃n

of the maxima of the stationary sequenceMn. Then, the normalized maximum (Mn − bn) /an
of the dependent series also has a nondegenerate limit distribution H, and they are related

to each other by H = H̃θ, where θ is the extremal index. The extremal index quanti�es the

strength of dependence between threshold exceedances X > u, with θ = 1 corresponding to

2In fact it is equivalent to ξ = 1/α in the Fisher and Tippet theorem.
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Figure 1.1.2. On the left bivariate returns of the DAX and CAC 40 indices.
On the right a simulation of these indices under the assumption of that a
bivariate normal distribution holds.

asymptotic independence and θ ↓ 0 to an increasing propensity of large observations to occur

in clusters. Assuming that we can calculate this coe�cient, we could decluster the returns,

i.e., obtain a pseudo iid sample, and apply the classical approach. However, the estimation

of this parameter is not an easy task due to di�erent forms of extremal cluster behaviour and

the small number of extreme events in the sample (see for instance Laurini and Tawn (2003);

Ferro and Segers (2003)).

A common alternative is to utilize parametric models for volatility, as for example, the

generalized autoregressive conditional heteroskedasticity family (GARCH) of Engle (1982a) or

the stochastic volatility family of Clark (1973). In these models volatility is usually extracted

from daily squared returns, which are unbiased but noisy estimates of daily conditional volatil-

ity. However, Breidt and Davis (1998); Davis and Mikosch (2006b) demonstrate that there

exists no extremal clustering at the extremes for stochastic volatility in both the light and

heavy tailed cases. More precisely, the large sample behaviour of maxima is the same as that

of the maxima of the associated iid sequence. In the case of GARCH processes, Davis and

Mikosch (2006a) have shown that these always exhibit clustering at the extremes. So while

both stochastic volatility and GARCH processes exhibit volatility clustering, only GARCH

has clustering of extremes. See for instance the contribution of Thomas Mikosch in Finken-

städt and Rootzén (2004) for more detailed information about the behaviour of this class of

processes.

For these reasons, it is an advantage to have techniques that are focused purely on extreme

movements and are not in�uenced by the degree of volatility dependence in more routine

circumstances. In Chapter 3 we will introduce a model where the data will be �tted in a

single step and will not involve the pre�ltrate of the volatility to obtain pseudo iid data.

In a multivariate framework the things become even more complicated, because of the fact

that the comovements of assets become stronger when markets are under stress. Consider

now a bivariate example where the returns are from CAC 40 and DAX.

We are interested in the extreme behaviour in both indices, as for example, it might be

of interest to answer questions like:
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What is the probability of a joint crash in one of the stock markets condi-

tional on the collapse of the other?

This question is more complicated than the �rst one, because of the dependence between the

two assets. We do not know the type of dependence, so that we should try to infer this from

some mode. The workhorse of portfolio theory applications has been the multivariate Gaussian

distribution and its variance as the measure of risk. Indeed, standard portfolio selection is

usually based on this approach, the Markowitz mean-variance theory and the Sharpe-Lintner-

Mossin capital asset pricing model (CAPM). Further, the dependence structure of the asset

returns is solely described by the Pearson correlation of the returns. This su�ces in case the

asset return distributions are multivariate normal. However, if we leave the Gaussian or more

generally the elliptical world, a mere consideration of the correlation matrix often explains

the dependence structure in a quite unsatisfying way. Pitfalls like a non-existing correlation

or zero correlation for dependent random variables may occur. Especially the dependence

structure of extreme events is usually poorly or incorrectly described by this measure.

In Figure 1.1.2 we display a scatter plot for the returns of the CAC 40 and DAX indices;

on the left we have the true returns, while on the right we have a simulation of these returns

under the assumption of a bivariate Gaussian distribution. As we can observe extreme events

in the simulated data are scarce. In fact, the multivariate Gaussian distribution su�ers of

asymptotic independence, which means that the probability of a simultaneous extreme event

in two o more marginals is equal to zero. Hence, this is not appropriate to model extreme

dependence, for example, among stock markets.

A more appropriate framework is multivariate extreme value theory, which has been de-

veloped for studying the joint distribution of extremes in several series. The probabilistic limit

theory of multivariate extremes is reasonably well established, and has been reviewed in the

books of Galambos (1975); Resnick (1987); Coles and Tawn (1991); Falk et al. (2004), but the

statistical theory is still in rapid development. In contrast to the univariate case, the multi-

variate extreme value distributions cannot be represented by a parametric family because the

class of dependence structures is simply too large. Instead, the family of multivariate extreme

value distributions can be indexed by a class of �nite measures (exponent measures; Starica

(1999); He�ernan and Resnick (2005); Resnick (2006); Balkema and Embrechts (2007)) or

in another description by a class of dependence functions (Pickands dependence functions or

Copulas functions; Kotz and Nadarajah (2002); Klüppelberg and Mayer (2006) or Joe (1997);

Embrechts et al. (2003); Nelsen (2006), respectively). Although the applications in the real

world are endless in �nancial econometrics and risk management, these are hindered by the

lack of data and rigorous techniques for high dimensions.

The Copula methodology has recently come to the attention in various sciences as a way

to overcome the limitations of classical dependence measures as the linear correlation, see for

instance Embrechts et al. (2002) for a directory of pitfalls of the correlation as measure of

extreme dependence. Standard literature in copulas and their applications are the books of

Nelsen (2006); McNeil et al. (2005).

In brief, for multivariate distributions we can separate the marginals from the dependence

structure which is represented by the copula function. This leads to a two step modelling
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Figure 1.1.3. Estimated density function copula for the DAX and CAC 40
returns, under the assumption of the copulas: (left) Clayton, (middle) Frank
and (right) Gumbel. In the top panel are displayed perspective plots, while in
the bottom panel are shown the contour plots.

of multivariate distributions: specify the marginals F1, . . . , Fd and a copula function. The

problem is that there exists an in�nite class of copulas, within there are more or less natural

ones, just like in the case of general multivariate distributions and, like in our case, multivariate

extreme value distributions. For the returns of the DAX and CAC 40 indices, for example, we

can have the three copulas displayed in Figure 1.1.3, whose linear correlation is the same. This

situation and many others have led to some heated discussions between those in favour and

those against copula thinking. See for instance Mikosch (2006) followed by a lively discussion

and rejoinder in the same volume.

The dependence estimation is a problem but not the only one. Volatility clustering is

also present in the multivariate setting. The notion of the extremal index can be extended

to a multivariate case, but it is relatively more complicated, because this parameter is now a

function. A �rst de�nition of this concept was given by Nandagopalan (1994).

In order to apply multivariate extreme value theory some form of data �ltering it is neces-

sary to ensure independence of the observations in each marginal. A few declustering schemes

have been proposed for multivariate sequences as for example Coles and Tawn (1991) or

Nadarajah (2001). However, in each case we need to choose one or more arbitrary parameter,

which in�uence drastically the estimations.

Summarizing, extreme value theory o�ers a powerful and key theory for use in risk man-

agement. Indeed, just in few �elds of application we have statistical quantities hard-wired in

the law, like VaR�based capital requirements within the Basel II regulatory framework for

large international banks. However, the impact of all these developments on day to day risk
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management has been minimal so far. The case where the data are not iid, the complexity of

multivariate extensions and the visualization of extreme events has been highlighted in this

introduction. The next section summarizes the main contributions of this thesis to solve these

types of problems.

Outline of the thesis and new scienti�c contributions

The contributions of this thesis have mainly a dual purpose: introducing several multivari-

ate statistical methodologies where in the majority of the cases only stationary of the random

variables is assumed and also highlighting some of the applied problems in risk management

where extreme value theory may play a role. Mostly every chapter is self-contained, because

they have their own more detailed introduction and short conclusion. The following is a brief

scheme of the thesis.

Chapter 2: �Univariate and multivariate extremes�

This chapter provides the reader with a basic background on extreme value theory in the

iid and stationary case, in the univariate and multivariate framework. Further, it introduces

the main di�erences between the iid and stationary case. We explain some theoretical concepts

in extreme dependence, as for example the in�uence of clustering extremes on the limiting

behaviour of the maxima. In addition, we give a short application containing several new

results about the extreme dependence among di�erent marginals, when the data are not iid.

The main conclusion of this chapter is that the results obtained for di�erent measures of

extreme dependence can take very di�erent values, when we work only with the associated ii

random vector instead of the true stationary sequence.

Chapter 3: �The Multivariate extremal index and the visualization of measures

of extreme dependence�

This chapter concentrates principally on the estimation of the multivariate extremal index,

cluster size probabilities and visualization of extreme dependence in the non iid case. First, a

new approach is proposed in order to estimate the multivariate extremal index. This approach

does not require an arbitrary choice of declustering parameters based on a property of the

time of exceedances over a sequence of thresholds. Second, we discuss a new declustering

method based on a priori estimation of the multivariate extremal index, so that the associated

declustered time series, i.e., a pseudo iid of maxima, are supported by the limiting theory.

Third, a novel measure of tail dependence introduced by Hsing et al. (2004) is analyzed

and some asymptotic properties are derived. Finally, we use this framework to analyze the

�nancial crisis in South East Asia in late 1997. We �nd that, prior and posterior to the crisis,

there was not a marked extreme dependence among the Asian markets, Japan and U.S.A.

This chapter gives a �rst feeling how the cluster at the extremes behaves in each marginal

and shows the relation of this with the extreme dependence among the marginals. However,

the methodology states in this chapter tries to �nd the best associated iid sequence of the

stationary time series, which is not a desirable characteristic. In addition, the nonparametric

approach does not allow making inference about future extreme events.



Outline of the thesis and new scienti�c contributions 8

Chapter 4: �Multivariate threshold methods with self-exciting functions�

In Chapter 4 we address these limitations by introducing a generalization of the Peaks

over threshold model for the stationary case, where the data will be �tted in a single step and

the observations are not treated anymore as iid. The main aims of the models are based on

marked point processes combined with self-exciting processes, where the intensity of arrival

of extreme events can depend on past extreme events, allowing more realistic models. The

innovating feature of the present chapter is that, contrary to earlier works on multivariate

extreme models, the temporal dependence structure of each underlying marginal is not treated

with an ARCH, GARCH, Multifractal Random Walk etc., �lter, which certainly impacts on

the dependence properties among the marginals. The second contribution in this chapter is

the concept of dynamical dependence among marginals, which has been recently introduced in

risk management by Dias and Embrechts (2004), Patton (2006) and Giacomini et al. (2007)

for instance. In all these papers, the authors investigate the dynamical evolution of the

multivariate dependence through the existence of structural changes in the dependence. We

follow these authors, however, under the point of view of the Pickands dependence function and

not of copulas for the multivariate extreme dependence. We propose two parametric models

to take into account the multivariate extreme dependence and a semiparametric model in the

spirit of the model Dias and Embrechts (2004), but with other structure to determine the

time of change of the multivariate dependence, which has the characteristic of time-invariant.

The third important contribution of this chapter is the application of these models to the

three most important stock market indices from U.S future markets, the S&P 500, the Dow

Jones and the Nasdaq indices. Di�erent examples of stress testing scenarios were calculated

to the most important extreme events, as the mini crash of 1997, the Russian default of 1998,

the Dot.com crash of 2000, and the extreme movements by the attacks on September 11,

2001. The models proposed in this section are an important contribution to the multivariate

extreme value literature. Certainly, as in most works in the multivariate framework, statistical

estimations are limited to low dimensions, because of the fact that for d dimensions we need

to calculate 2d derivates of the maximum likelihood function to obtain all combinations of

dependence among the marginals.

Chapter 5 : �On the estimation of M4 processes through mixture Dirichlet

process models�

This chapter addresses the dimensionality issue based on a wider context of extreme value

theory; the in�nite dimensional generalization of extreme value theory, which leads to max-

stable processes, introduced by De Haan (1984). These processes have the potential to describe

clustering behaviour. One of the most important features of max-stable processes is that they

do not only model the dependence among the marginals, but also model the dependence across

time. In particular, we concentrate on a class of max-stable processes introduced by Smith

and Weissman (1996) to characterize the joint distribution of extremes in multivariate time

series. The Multivariate maxima of moving maxima process (M4 processes for short). The

M4 processes turn out to constitute a rich subclass of those of general multivariate stationary

processes, mainly because those processes have the same multivariate extremal indexes as the
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M4 processes, i.e., the behaviour of the cluster of extremes in the multivariate framework is

the same.

The major reason to investigate these processes in this thesis is that if we are able to

estimate a �nite version of the M4 processes, we will be capable to approximate max-stable

processes, i.e., multivariate extreme value processes, whose representation allows us to ap-

proximate multivariate time series with clusters at the extremes and heavy tail behaviour.

However, the estimation of these classes of processes is a challenging problem in itself, because

of the fact that they su�er from degeneracies, i.e., the joint density is typically singular with

respect to the Lebesgue measure and this causes problems for maximum likelihood techniques.

Smith (2003) showed that these singularities will hold in�nitely often if we can observe the

process for a long period of time. This process will create a multidimensional deterministic

pattern, which yields to the determination of the coe�cients of the M4 process. The problem

is then to know how many of these singularities exist.

The contribution of this chapter is a nonparametric Bayesian approximation to the esti-

mation ofM4 processes. The idea is to estimate these singularities in the multivariate density

by means of an in�nite mixture of Dirichlet processes of Gaussian distributions based on

Markov chain Monte Carlo methods. Until now, only approximations based on the experi-

ence or arbitrary choices have been used. In this chapter we allow to deduce this number of

singularities from the data. The results of the experiments show that the mixture of Dirichlet

processes of Gaussian distributions can give an accurate estimation of the signature patterns

in a M4 process. We observe further that the estimation of the exact number of singularities

in a M4 process depends more on the number of exceedances over a threshold u, while the

number of dimensions plays a second role.

A second contribution of this chapter is the application of M4 process in the context of

risk management, incorporating both clustering and heavy tails to the analysis of some se-

lected German stock markets. In a �rst approach we illustrate an application to portfolio

optimization under V aR constraints. We compare M4 processes with the two approaches

variance-covariance and historical simulations. The V aRs computed from the M4 approach

are higher in general. Moreover, the results indicate that the M4 approach mimics the cluster

behaviour at the extremes of the original sequence. In a second application, we establish

di�erent �perfect storm� scenarios to stress test di�erent portfolios obtained in the �rst appli-

cation. The scenarios given by the M4 approach are more realistic in case of the recent crisis.

The best hedging is also given by this approach.

Chapter 6: �Topics in multivariate regular variation in �nance�

Chapter 6 focuses on two di�erent problems. Recent research in risk management has

highlighted the importance of the conditional correlation as measure of contagion or interde-

pendence, and the estimation of spillover probabilities in some �nancial crisis. This chapter

will o�er some insight into these issues from the point of view of the theory of multivariate

extremes. A �rst contribution is to demonstrate how the conditional correlation conduces to

erroneous conclusions in extreme events. We show through a simple linear factor model, as it

is done in the literature of contagion (Baig and Goldfajn (1999); Forbes (2002); Arestis et al.

(2005)), that the assumption of a speci�c distribution function for the common risk factor
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a�ects the conditional correlation directly; hence this is not a reliable metric of dependence.

In particular, we concentrate on regular varying distributions with index α > 2, which is

equivalent to distributions whose maximum domain of attraction (MDA) of the maxima is

the Frèchet distribution Φα = exp {−x−α} and an extension for distributions whose MDA

for the maxima is in the domain of the Gumbel distribution Λ = exp {− exp {−x}}.
Furthermore, we provide theoretical arguments suggesting that the strong conclusion of

�contagion� or �interdependence�, obtained by the literature based on bivariate correlation

tests, follows from arbitrary assumptions, especially on the distribution of the random variable

for the common risk factor, which biases the results obtained.

Up to this part in the thesis we have concentrated on the use of asymptotically dependent

random variables, which have wide use in �nancial applications. However, if the series are

truly asymptotically independent, i.e., the conditional probability of one variable given that

the other is extreme is nearly zero, such an approach will result in the over estimation of

extreme value dependence, and consequently in the measure of extreme risk.

Therefore, a second contribution is a semi-parametric model estimation based on power

transformations of the marginals and a scaling property of exponent measures for the asymp-

totic dependence and independence case in multivariate extreme value theory for the iid case.

The concept of asymptotic independence used in this chapter is stronger than the asymptotic

independence used generally in extreme value theory, but weaker than independence. An-

other contribution of this chapter is to examine the possible contagion during the Russian

crisis until the more recent subprime crisis between Brazil and Russia.

Our empirical investigation reveals some degree of asymptotic independence among these

markets, which should implicate no signi�cant contagion e�ect between bond and stock ex-

change markets of Russia to Brazil. Nevertheless, there exist signi�cant spillover probabilities

during the Russian default, and the more recent crisis.

The software tools developed for the various analyses, based on R, Matlab and C, are

not presented in the thesis. Interested readers may obtain more details from the autor

(Rodrigo.Herrera@tu-dresden.de).



CHAPTER 2

Univariate and multivariate extremes

�Improving the characterization of the distribution

of extreme values is of paramount concern.�

(A. Greenspan, 1985)

2.1. Introduction

The �nancial industry, including banking and insurance, is undergoing major changes.

An increasing complexity of �nancial instruments calls for sophisticated risk management

tools. Extreme value theory plays an important methodological role within risk management

for insurance, reinsurance, and �nance. The question one try to answer is: �If things go

wrong, how wrong can they go?� The variance used as a risk measure is unable to answer

this question. Alternative measures regarding possible values out of the range of available

information need to be de�ned and calculated. Extreme value theory (EVT) provides the

tools to model the asymptotic distribution of the maximum of a sequence of random variables

Xi, and in this sense this theory can be very helpful in order to get a �rst impression about

how wrong things can go. A deeper insight into EVT allows knowing not only the order of

convergence of the maximum but also the limiting distribution of the largest observations of

the sequence. These observations are the main ingredients of more informative risk measures

that are normally utilized, like Value at Risk (VaR) or Expected Shortfall.

In this section we review the basic background for univariate and multivariate extreme

value theory for iid random variables, as well as the corresponding theory for stationary pro-

cesses. There is a rich literature on extreme value theory that goes back to the 1920s. Recent

introductory books for the univariate case on the subject are Coles (2001), which emphasizes

statistical modelling, and Embrechts et al. (1997), which is a comprehensive reference for

the theory and its applications to insurance and �nance. Leadbetter et al. (1983) is mostly

concerned with extremes of stationary processes.

The multivariate theory is naturally more recent. Useful representations in terms of max-

stable distributions, regular variation functions, or point processes, have been established. For

instance, Resnick (1987) is a key reference the point process theory applied to extreme value

analysis, while Resnick (2006) gives detailed information about the relation of multivariate

regular variation and multivariate extremes. Works on stationary multivariate extremes have

been mainly due to Hsing et al. (1988); Hsing (1993); Nandagopalan (1994), generalizing the

main results in stationary sequences by Leadbetter et al. (1983, Chapter 3, pp. 51.). For

readers who are not familiar with extreme value theory and its extensions, we provide in this

chapter a short outline of these concepts.

11
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2.2. Extreme value theory in the univariate case

2.2.1. Extreme value theory for iid sequences. Suppose X1, . . . , Xn be a sequence

of iid non degenerate random variables with distribution function F . The primary concern of

extreme value theory relates to extreme values or maximal values as for example, large asset

returns or large portfolio losses. Rewriting the sample in the non-increasing order we get

X1,n ≥ · · · ,≥ Xn,n (2.2.1)

De�ne Mn = X1,n as the sample maximum, where (2.2.1) are the sample order statistics and

Xk,n is the k- th largest order statistic. Then, Mn has the distribution function

P (Mn ≤ x) = Fn(x).

We can see that the maximum of a sample tends to the right-hand endpoint of the distri-

bution almost surely, no matter whether it is �nite or in�nite. Let xF be the right endpoint,

denoted by

xF = sup {x ∈ R : F (x) < 1} .

We immediately obtain, for all x < xF ,

P (Mn ≤ x) = Fn(x)→ 0, n→∞,

and, in the case xF <∞, we have for x ≥ xF that

P (Mn ≤ x) = Fn(x) = 1.

Thus, Mn
P−→xF as n → ∞, where xF ≤ ∞. Since the sequence Mn is non decreasing in n, it

converges asymptotically, and hence we conclude that

Mn
a.s.−→xF , n→∞.

However, this is not immediately helpful, since the distribution function F is unknown and

it does not guarantee the existence of a non degenerate distribution. An alternative approach

is to look for approximate families of models for Fn. This means, that we are interested in

limits of the form

lim
n→∞

Fn(anx+ bn) = lim
n→∞

P
(
a−1
n (Mn − bn) ≤ x

)
= H(x) (2.2.2)

for suitable normalizing constants an > 0, and bn. First of all it is essential to know under

what conditions of F there is a nontrivial limit of P (Mn ≤ x) as n → ∞ for appropriate

sequences of constants un.

Theorem 2.2.1. (Poisson approximation). Let τ ∈ [0,∞] and a sequence un = un(x) =
xa−1

n + bn of real numbers the following are equivalent.

nF (un)→ τ, (2.2.3)

P(Mn ≤ un)→ e−τ , (2.2.4)
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where F = 1− F is the tail of F .

We can see if we take logarithms in (2.2.4) we get

−n ln(1− F (un))→ τ,

since − ln(1 − x) ∼ x for x → 0, this implies that nF (un) = τ + o(1), giving (2.2.3). In the

second case

P(Mn ≤ un) = F (un)n =
(
1− F (un)

)n =
(

1− nF (un)
n

)n
,

which implies (2.2.4). Conversely, if (2.2.4) holds for some τ , then (2.2.3) holds. It is also

important to know whether there can be sequences of constants an, ãn > 0 and bn, b̃n ∈ R
such that a−1

n (Mn − bn) and ã−1
n (Mn − bn) converge in distribution to two di�erent random

variables with very di�erent distributions H and H̃. Fortunately, the following result states

that any two possible such distribution functions H and H̃ are closely linked.

Proposition 2.2.2. (Convergence to types Theorem). Let ξ, ξ̃, Yn, n ≥ 1, be random

variables such that neither ξnor ξ̃ are almost surely constant, and let an, ãn > 0 and bn, b̃n ∈ R
be constants.

(1) If

a−1
n (Yn − bn) d→ ξ and ã−1

n (Yn − b̃n) d→ ξ̃, (2.2.5)

then exist A > 0 and B ∈ R such that

ãn/an → A and (b̃n − bn)/an → B (2.2.6)

and such that

ξ̃
d= (ξ −B)/A. (2.2.7)

(2) If (2.2.6) holds, then either of the two relation in (2.2.5) implies the other and (2.2.7)

holds.

Proof. See Resnick (1987), Proposition 0.2, pp. 7. �

If (2.2.2) holds, we say F belongs to the maximum domain of attraction of H and we

written F ∈ MDA(H). The following result is the corn stone of classical extreme value

theory.

Theorem 2.2.3. (Fisher-Tippett Theorem, limit laws for maxima). Let X be a sequence

of iid random variables. If there exist norming constants an > 0, and bn ∈ R and some

non-degenerate distribution function H such that

a−1
n (Mn − bn) d−→H, (2.2.8)

then H belongs to the type of one of the following three distribution functions:
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Frechet : Φα(x) =

{
0, x ≤ 0

exp {−x−α} , x > 0
α > 0

Weibull Ψα(x) =

{
exp {−(−x)α} , x ≤ 0

1, x > 0
α > 0

Gumbel : Λ(x) = exp {−e−x} , x ∈ R.

Proof. see Resnick (1987), Proposition 0.3, pp. 9. �

The Frèchet, Weibull, and Gumbel distributions are also know as the Extreme Value

Distributions. This class of distributions provide us with techniques to trade o� the bias

of having insu�cient data in practice and meaningful extrapolations beyond the range of

given data. Frèchet distributions are primarily applied in �nance because of their unbounded

support on the positive hal�ine and their relationship to so called heavy-tailed distributions.

Note that the tail index α characterise the extreme value distribution Frèchet and Gumbel.

This index is also know as the index of regular variation.

Definition 2.2.4. A distribution tail F is regularly varying with index −α for some

α ≥ 0, we write F ∈ R−α, if

lim
x→∞

F (xt)
F (x)

= t−α, t > 0.

A complete de�nition of regularly varying functions and their properties most impor-

tant can be found in Bingham et al. (1987). A more precise de�nition together with some

application will be given in Chapter 6.

A possible characterization, which combine the three extreme value distributions into a

single distribution, is known as the Generalized Extreme Value (GEV) distribution and is

de�ned as

Hξ,ψ,µ(x) = exp

{
−
(

1 + ξ
x− µ
ψ

)ξ−1

+

}
, (2.2.9)

with parameters ξ ∈ R,ψ > 0,µ ∈ R, and where z+ = max(z, 0).
The parameter ψ and µ are scale parameters and location, respectively. The shape param-

eter ξ determines the tail behaviour of the GEV distribution. GEV distributions with ξ > 0
correspond to the Frèchet distribution with α = ξ−1, the limiting case ξ → 0 corresponds

to Gumbel distribution. The last case ξ < 0 corresponds to the Weibull distribution with

α = −ξ−1. An intuitive interpretation is that ξ > 0 corresponds to a long-tailed distribution;

the limit ξ → 0 to a distribution with exponential-type tail; and ξ < 0 to a short-tailed

distribution with �nite upper endpoint.

2.2.2. Domains of attraction. We say that a random variable X with distribution

function F belongs to the maximum domain of attraction of an extreme value distribution

H if relation (2.2.8) holds. In that case we write F ∈ MDA (H). We get the following

characterizations of the maximum domain of attraction of an extreme value distribution H.
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Theorem 2.2.5. (Characterization of MDA (Φα(x)))
The distribution function F belongs to the maximum domain of attraction of Φα(x) (α > 0)

if and only if F (x) ∈ R−α. In that case

a−1
n Mn

d→ Φα

with an = F← (1− 1/n), where F←is the quantile function.

Proof. See for instance Resnick (1987), Proposition 1.11, pp. 54. �

By Taylor expansion, we can see that 1−Φα(x) = 1− exp (−x−α) ∼ x−α, as x→∞, i.e.,

the tail of decreases like a power law. At this point is where the concept of regular variation

play an important role. Indeed, regular variation tells us how far we can move from exact

power law behaviour and still remain in MDA (Φα(x)).

Theorem 2.2.6. (Characterization of MDA (Ψα(x)))
The distribution function F belongs to the maximum domain of attraction of Ψα(x))

(α > 0) if and only if xF <∞ and F (xF − 1/x) ∈ R−α. In that case

a−1
n (Mn − xF ) d→ Ψα

with an = xF − F← (1− 1/n)

Proof. See for instance Resnick (1987), Proposition 1.13, pp. 59. �

Noting that Ψα

(
−x−1

)
= Φα (x) for x > 0, we are not surprised that MDA (Ψα(x)) and

MDA (Φα(x)) are closely related.

Theorem 2.2.7. Every max-stable distribution is of extreme value type, i.e. a non degen-

erate distribution H is max stable, if Hm(anx+ bn) = H(x) holds for some constants an > 0
and bn for each m ≥ 2 ; conversely, each distribution of extreme value type is max-stable.

Proof. See for instance Embrechts et al. (1997), Theorem 3.2.2, pp. 121. �

Theorem 2.2.8. (Characterization of MDA (Λ(x)))
The distribution function F with xF ≤ ∞ belongs to the maximum domain of attraction

of Λ(x) if and only if there exists some z < xF such that F has representation

F (x) = c (x) exp
{
−
ˆ x

z

g (t)
a (t)

dt

}
, z < x < xF ,

where c and g are measurable functions satisfying c (x) → c > 0, g (x) → 1 as x ↑ xF , and
a (x) is a positive, absolutely continuous function with respect to the Lebesgue measure) with

density a′ (x) having limx↑xF a
′ (x) = 0.

Other characterization possible is there exist some positive function k such that

lim
x↑xF

F (x+ tk (x))
F (x)

= exp (−t) , t ∈ R,

holds.

Proof. See for instance Resnick (1987), Proposition 1.4, pp. 43. �

Now we give some examples of MDA.
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Example 2.2.9. (Maxima of Cauchy random variables). Let X be a sequence of iid

standard Cauchy random variables, i.e. the density function is given by f (x) = 1
π(1+x2)

for

x ∈ R. Using l'Hospitals rule we obtain

lim
x→∞

F (x)
(πx)−1 = lim

x→∞

f (x)
π−1x−2

= lim
x→∞

πx2

π (1 + x2)
= 1.

Then, F (x) ∼ (πx)−1 as x→∞. Hence, for x > 0, F (nx/π) ∼ (nx)−1 as n→∞ and

P (Mn ≤ nx/π) =
(
1− F (nx/π)

)n
=

(
1− 1

n

(
1
x

+ o (1)
))n

→ exp
{
−x−1

}
= Φ1 (x) ,

for x > 0. Hence, F belongs to the maximum domain of attraction of the Frèchet distri-

bution. The normalizing constants can be chosen to be an = n and bn = 0

Example 2.2.10. (Maxima of exponential random variables). Let X be a sequence of

iid standard exponential random variables, i.e., the distribution function F of X is given by

F (x) = 1− e−x for x ≥ 0. Then,

P(Mn − lnn ≤ x) = F (x+ lnn)n

= (1− exp(−x− lnn))n

= (1− n−1e−x)n

→ exp(−ex) = Λ(x), x ∈ R.

Hence, F belongs to the maximum domain of attraction of the Gumbel distribution. The

normalizing constants can be chosen to be an = 1 and bn = lnn.

In practice, the estimation ξ ∈ R,ψ > 0,µ ∈ R in (2.2.9) requires one to decompose the

sample into blocks and take the blockwise maxima. A drawback with this approach is the loss

of data. A modern theory in extreme value models is to consider the asymptotic distribution

of exceedances over a high threshold u, the peaks over threshold (POT) method. In particular

this approach o�ers many advantages from a statistical point of view. The main aim is to �t a

generalized Pareto distribution (GPD) to excesses over a high threshold of a random variable,

under the condition that su�cient data are available above the chosen threshold.

Suppose X1, . . . , Xn are iid with distribution function F ∈ MDA(Hξ) for some ξ ∈ R,
where Hξ is a non-degenerate limiting distribution and limn→∞ F (cnx + dn) = − lnHξ(x)
holds for normalizing sequences cn and dn. The excess distribution function of X is given by

Fu(x) = P (X − u ≤ x | X > u) , x ≥ 0.

This relation can be rewrite as

F̄ (u+ x) = F̄ (u)F̄u(x).

This result conduces to next de�nition
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Theorem 2.2.11. (The Generalized Pareto Distribution (GPD))

Suppose X1, . . . , Xn are iid with distribution function F ∈ MDA(Hξ) for some ξ ∈ R. The

excess distribution function of X is given by

Fu(x) = P (X − u ≤ x | X > u) , x ≥ 0.

Now by de�nition a GPD Gξ,β with parameters ξ ∈ R and β > 0 has distribution tail

Ḡξ,β(x) =

{ (
1 + ξ xβ

)
if ξ 6= 0,

exp(−x/β) if ξ = 0,

and x ∈ D(ξ, β)

D(ξ, β) =

{
[0,∞) if ξ ≥ 0,
[0,−β/ξ] if ξ < 0.

As F ∈MDA(Hξ) then for an appropriate positive function β

lim
u↑xF

sup
0<x<xF−u

∣∣F̄ (u)− Ḡξ,β(x)
∣∣ = 0,

where xF is the right endpoint.

This limit is known as Pickands-Balkema-de Haan Theorem. Thus, for high threshold u

one expects that the excess distribution Fu can be well approximated by a GPD.

F̄u(x) ≈ Ḡξ,β(x).

The Peaks Over Threshold method can be represented as a semi-parametric model. The

excesses above a high threshold u are distributed according to a GPD, while the empirical

distribution function of F , or any other appropriate model, is used under the threshold u.

This is the semi-parametric extremal model, see for example Coles and Tawn (1991).

This method of analyzing the extreme values has the advantage of being straightforward

to implement, but there are a number of disadvantages when considering broader features of

the distributions, such as non stationary e�ects, trends and seasonality into the model. A

more substantial variant, introduced by Smith (1989), is via a point process representation of

the exceedances. The idea is to view all events exceeding a given level u as a bidimensional

point process. We will address this representation in Chapter 4.

2.2.3. Extreme value theory for the stationary sequences. One of the natural

generalizations is of an iid sequence to stationary process. We concentrate here on stationary

sequences where the dependence is restricted by di�erent distributional mixing conditions.

We give conditions on the stationary sequence X which ensure that is sample maxima Mn

and the corresponding maxima M̃n of an iid sequence X̃ (an iid sequence associated with X),

with common distribution function F (x) = P(X̃ ≤ x) exhibits a similar limit behaviour.

In the following section, we give a brief survey of de�nitions of mixing conditions and typ-

ical weak-dependence conditions concerning mainly with extremes in sequence of dependent

random variables.
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Condition 2.2.12. D(un) : For any integers p, q and n

1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n such that j1 − ip ≥ l we have∣∣∣∣P( max
i∈A1∪A2

Xi ≤ un
)
− P

(
max
i∈A1

Xi ≤ un
)
P
(

max
i∈A2

Xi ≤ un
)∣∣∣∣ ≤ α(l, un),

where A1 = {i1, . . . , ip},A2 = {j1, . . . , jp} and

lim
l→∞

lim sup
n→∞

supα(l, un) = 0,

for some sequence l = ln = o(n) and un is a sequence of thresholds.

Condition D(un) ensures that any two extreme events can become approximately inde-

pendent as n increases when the index sets A1 and A2 are separated by a relatively short

interval of length ln = o(n).
With the restriction D(un) Leadbetter et al. (1983, pp. 57.) showed that the extremal

types Theorem (2.2.3) holds for stationary sequence.

Theorem 2.2.13. Let X be a stationary sequence, let Mn, an > 0 and bn ∈ R be such

that P
(
a−1
n (Mn − bn) ≤ x

)
converges in distribution to a non degenerate distribution function

G(x). Suppose that Xn satis�es D(anx + bn) for all real x such that G(x) > 0. Then, G(x)
is a generalized extreme value distribution.

Theorem 2.2.13 shows that the possible limit distribution for block maxima from station-

ary processes are therefore the same as in the independent case, and can be used as models

in the same way.

The results given so far have been concerned with the possible forms of the limiting

extreme value distributions. We now turn to the existence of such a limit in that we formulate

conditions under which for a sequence of thresholds un, n(1 − F (un)) → τ as n → ∞ are

equivalent for stationary sequences.

In a dependence restricted to the condition D(un) there can be stated the following suf-

�cient result:

Theorem 2.2.14. Suppose un(τ) is de�ned for τ > 0, such that n(1 − F (un)) → τ

and D(un(τ)) holds for each such τ . If Pr (Mn ≤ un(τ∗)) converges for some τ∗ > 0 then

converges for all τ > 0 and

lim
n→∞

P (Mn ≤ un(τ∗))→ e−θτ .

where θ is the extremal index.

The extremal index gives a measure of the short range dependence exhibited by the

extremes of a process and, in particular, indicates the tendency of the extremes to occur in

clusters. This takes values between 0 and 1, where 1 indicates that there are not cluster on

the extremes, while a value nearly to zero indicates larger cluster size.

The extremal index has an impact on all aspects of extreme values of the stationary

sequence. Leadbetter et al. (1983) show how it in�uences the asymptotic distribution of

normalized partial maxima. In particular they show that θ−1 is the limiting mean size of

clusters. Hsing et al. (1988) show that the process of the normalized times of exceedances
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over a high threshold u converges to a compound Poisson process with the mean cluster size

being θ−1. Ferro and Segers (2003) show that the interarrivals, in terms of normalized times,

of consecutive exceedances of over a high threshold u converges to a random variable which

is 0 with probability θ, otherwise, it is exponential with mean θ−1.

Definition 2.2.15. We say that the process X has extremal index θ ∈ [0, 1] if, for each
τ > 0,

(1) There exists un(τ) such that n(1− F (un))→ τ ,

(2) P (Mn ≤ un(τ∗))→ e−θτ .

We conclude immediately that iid sequences whose maximum converges to a non degener-

ate limiting distribution have unit extremal index. Leadbetter et al. (1983) show that if (2.2.3)

holds then condition D(un) is also su�cient to guarantee that lim inf P (Mn ≤ un) ≥ e−τ but
a further assumption is needed to obtain the opposite inequality for upper limit. So, they

introduced another dependence condition, D′(un), de�ned in the following way.

Condition 2.2.16. D′(un) is an anticlustering condition and holds for a stationary se-

quence X if

lim
k→∞

lim sup
n→∞

n

[n/k]∑
j=2

P (X1 > un, Xj > un)→ 0, as k →∞,

then,

P (Mn ≤ un)− Pn (X > un)→ 0 n→∞. (2.2.10)

The natural interpretation D′(un) is that, joint exceedances of un by pairs (Xi, Xj) become

very unlikely for large n.

Recall M̃n can have a non degenerate limiting distribution only if

lim
x→xF

P (X ≥ x) /P (X > x) = 1. (2.2.11)

In the absence of this condition, the dependence structure is such that large value has a greater

chance of being followed by another one. If the time between two consecutive such values is

small relative to n, the passage to the limit will merge those two extremes onto the same

time. Thus, the limit process is then not a Poisson process but a compound Poisson process:

any occurrence can be multiple rather than single. The multiplicity is usually random and is

called the cluster size distribution π (·). We leave its formal de�nition for later.

Equation (2.2.10) shows that the distribution of Mn can be well approximated even if

(2.2.11) does not hold. A stricter condition than D(un) is the condition 4(un) by Hsing et al.
(1988).

Condition 2.2.17. (Condition 4(un)) Let t = (t1, . . . , tp), un(t) = {un(t1), . . . , un(tp)},
and let Fl,q(t) be the σ-�eld generated by the events {Xj > un(ti)} ,l ≤ j ≤ q,1 ≤ i ≤ p. We

de�ne

sup |Pr(AB)− P (A)P (B)| = αn,l(un(t)),

where the supremum is taken over A ∈ F1,p(t),B ∈ Fp+l,n(t), q ≥ 1such that Pr(A) > 0 and

α(l, un(t))→ 0 as n→∞ for some ln = o(n).



Extreme value theory in the univariate case 20

We can see that under the condition 4(un) the events required to become independent

are more numerous and at many levels simultaneously. Condition 4(un) holds if 4(un(t)) is
in force for every choice of o < t1 < . . . < tp < ∞, k ∈ N. If condition 4(un(t)) holds, then
there exist sequences ln and rn such that

1� ln � rn � n, nr−1
n α2/3

n → 0.

This condition is needed to ensure convergence for a stationary two dimensional point process.

2.2.4. Point processes in extreme value theory. The concept of exceedances over

thresholds can be embedded into the theory of point processes in a natural way. Point

processes techniques are by now an unavoidable tool in modern extreme value theory and its

results give a deep insight into the structure and occurrence of extreme. Indeed, this will play

an important role in Chapter 4. A detailed introduction to the theory of point processes would

be beyond the aim of this thesis. For a concise introduction we therefore refer to Embrechts

et al. (1997) and the references therein. For a more extensive survey we refer to Daley and

Vere-Jones (2003).

One can simply think of a point process N as a random distribution of points X in a state

space E, where E is equipped with the σ-algebra E . For a set A and a given con�guration

(Xi), the point process N counts the number of X ∈ A.

Definition 2.2.18. (Random measure and point process). Let Mp(E) be the space of all
point measures on E equipped with an appropriate σ-algebraMp(E). A point process on a

space E is a measurable mapping N : (Ω,A,P)→ (Mp(E),Mp(E)).

One of the most important processes in extreme value theory is the following point process.

Definition 2.2.19. (Point process of exceedances) Let un be a real number and let Xi

be a sequence of random variables. Then, the point process of exceedances

Nn(·) =
n∑
i=1

εn−1i(·)I {Xi > un} , n = 1, 2....

with state space E = (0, 1] counts the number of exceedances of a threshold un.

If the sequence X is supposed to be iid or strictly stationary satisfying the assumptions

D(un) and D′(un) we can show the weak convergence of the sequence Nn of such point

processes to a homogeneous Poisson process N on the state space E = (0, 1]. This same

process can be written in the perhaps more intuitively form as a bidimensional point process,

one dimension for the time of the exceedances and other for the size of the exceedances. This

approach will be address in Chapter 4.

The most important point processes are those for which N (A) is Poisson distributed.

Imagine that we have a point process which is binomially distributed: Bn =
∑n

i=1 I {Xi ∈ An}
for iid Xi counts number of successes among X1, . . . , Xn and pn = P (X1 ∈ An) is the sucess
probability. Then, Poisson's theorem tells us that Bn

d→ Poisson (λ) provided pn ∼ λ/n.

This result suggests the following de�nition of Poisson random measure.

Definition 2.2.20. (Poisson random measure PRM) A point process N is called PRM

with mean µ (we write PRM(µ)) if the following two conditions are satis�ed:
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(1) For A ∈ S,

P (N (A) = k) =

e−µ(A) (µ(A))k

k! if µ (A) <∞, k ≥ 0.

0 if µ (A) =∞,

(2) For anym ≥ 1, if A1, . . . , Am are mutually disjoint sets in E thenN (A1) , . . . , N (Am)
are independent random variables.

A basic tool for dealing with the asymptotic theory of extreme values is weak convergence

of point processes. Basically, the notion of weak convergence permits to a point process to

converge in ways that would otherwise be fundamentally impossible.

Theorem 2.2.21. (Weak convergence of a point processes of exceedances, iid case or weakly

dependent) Assume that X is a sequence of iid random variables with common distribution

function F , and let un be thresholds values such that D(un) and D′(un) hold. Then, we can

observe that

nF̄ (un) = E(Nn)→ τ

holds for some τ ∈ (0,∞). Then, the point processes of exceedances Nn converge weakly in

Mp(E) to a homogeneous Poisson process N on E = (0, 1] with intensity τ , i.e., N is a

Poisson random measure with mean measure τ .

Proof. See Leadbetter et al. (1983), Theorem 3.4.1, pp. 59. �

Dependence can cause clustering of extremes, and the Poisson approximation for Nn(u)
may no longer be valid under the conditionsD(un) andD′(un). In contrast to the last theorem
we want to show that the limiting distribution of Nn(u) under dependence is necessarily

compound Poisson under a mixing condition which is stronger than dependence condition

D(un). A common approach is to suppose that there exists the limit

lim
n→∞

P(Mn ≤ un) = e−τ . (2.2.12)

In the next Theorem we assume (2.2.12), the mixing condition 4(un) and the condition

D′(un). It is important to recall that 4(un) implies condition D(un), and condition D′(un)
follows from equation (2.2.12) if the sequence X is ϕ-mixing (see Rosenblatt (1971)).

Theorem 2.2.22. Let Nn be the exceedances point process corresponding to the level un in

the stationary sequence X. Suppose that 4(un) holds for X, assume (2.2.12) for some τ > 0,
and that Nn

d→ N , for some point process N . The, it is necessarily a compound Poisson point

process.

Nn(un) =
∞∑
i=1

ξiεψi(un) =
π(τ)∑
i=1

ξi

where {ψi} are the points of a homogeneous Poisson process on [0,∞) with intensity θτ and

{ξi} are the iid cluster sizes of N with distribution {πi} on N.

Proof. See Hsing et al. (1988). �

The random variable π (·) is called the limiting cluster sizes if (2.2.12) holds and

πn(j) = P {Nr(un) = j |Nr(un) > 0} ,
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for some integer j ≥ 1 and some sequence r = rn of natural numbers such that n � rn �
sn � 1. Simply speaking, πn is the rate of arrival of cluster, where a cluster is de�ned as the

set of exceedances of the threshold un that occur in an arbitrary block of length rn, given that

at least one exceedance occurs in the block. Hsing et al. (1988) showed that under certain

conditions the extremal index is the inverse of the mean cluster size. It follows that

θ−1 = lim
n→∞

∞∑
j=1

jπn(j, un, rn)

Summarizing the above results, univariate EVT provides probabilistic tools to model the

limiting distributions of normalized maxima and excesses over high thresholds. Regarding the

parameter estimation of extreme value distributions it su�ces to apply parametric estimation

methods instead of nonparametric estimation methods which are less robust for small sample

sizes.

2.3. Multivariate extremes

In this section, we study the limiting distributions of componentwise de�ned maxima of

iid d -variate random vectors. A �rst problem that arises, when d > 1, is the lack of a natural

de�nition of extreme values, since di�erent concepts of ordering are possible. The di�culty for

statistical applications of multivariate extreme value modes is due to the number of dimensions

d increase considerably these do not reduce to a �nite dimensional parametric family, so there

is potential explosion in the class of models to be considered. The probabilistic limit theory

of multivariate extremes is reasonably well established, and has been reviewed in the books

of Resnick (1987) and Galambos (1975), but statistical theory is still in rapid development.

Coles and Tawn (1991, 1994) have proposed methods based on multivariate extreme value

distributions, which therefore generalize the classical approach to univariate extremes based

on the limiting extreme value distributions, while Coles and Tawn (1999), proposed methods

extending the threshold-exceedances approaches developed in Smith (1989).

The following de�nition of multivariate extreme values seems to be useful for several

practical cases, as was explained by Resnick (1987). References for this section include Falk

et al. (2004); Kotz and Nadarajah (2002); Galambos (1978).

2.3.1. Multivariate extreme value theory for iid sequences. Let Xi = Xi,1, . . . , Xi,d

i = 1, 2, . . . , n be iid d−variate random vectors with join distribution function F and

Mn = (Mn,1, . . . ,Mn,d) =
(

max
1≤i≤n

Xi,1, . . . , max
1≤i≤n

Xi,d

)
is the vector of maxima of each component.

Before continuing we make some remarks about the notation: from now on relations and

operations are taken componentwise. Thus for a,b,x,y ∈ Rd we write x < y and ax + b
to denote the relations xj < yj for all j = 1, . . . , d and the vector (a1x1 + b1, . . . , adxd + bd)
respectively.

We are interested in the asymptotic behaviour of Mn. Reasoning analogously as in the

univariate case, we can say that we need to normalize Mn. Thus, the aim of multivariate

extreme value theory is to seek conditions on the distribution function F of Xi under which
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there are sequences an and bn such that

P {Mn ≤ anx + bn} = Fn(anx + bn)→ G(x), (2.3.1)

converges to a non-degenerate d−variate distribution function G as n→∞. If this holds for

suitable choices of an > 0 and bn, then we say G is a multivariate extreme value distribution

(MEVD) and F is in the domain of attraction of G, F ∈ MDA(G). In contrast with the

univariate case, there is no �nite-dimensional parametric family that covers the whole class.

In a multivariate context, a distribution function G is max-stable if for all j = 1, . . . , d
and n > 2 there are constants an > 0 and bn∈ Rd such that

Gn(x) = G(x1/n).

If the Gj are univariate max-stable distribution functions, then one can prove that

∏
j≤d

Gj(xj) ≤ G(x) ≤ min (G1 (x1) , . . . , Gd (xd))

for every max-stable distribution G with marginals Gj , where the right-hand side represents

the case of totally dependent random variables and the left-hand side the case of independent

random variables. Max-stable distributions form a subclass of max-in�nitely divisible (max-

id) distributions which is the class of all distribution functions G, such that for all t > 0, Gt

is again a distribution function. For some basic facts about max-stability and max-in�nite

divisibility see Resnick (1987); Falk et al. (2004).

Example 2.3.1. Consider a multivariate Gaussian distribution, with all univariate marginals

equal to N(0, 1), and with all its correlations less than 1. Such a distribution is in the domain

of attraction of the independence with univariate Gumbel marginals. Indeed, one has that

Fn(anx + bn)→ G(x) =
d∏
j=1

exp
{
−e−xj

}
.

The norming constants are respectively equal to an = (2 log n)−1/2 and bn = bn1, where
bn = (2 log n)1/2 − 1/2 (log log n+ log 4π) / (2 log n)−1/2, and 1 = (1, . . . , 1).

2.3.2. Characterization of multivariate extreme value distributions. In contrast

to the univariate case, the multivariate extreme value distributions cannot be represented by

a parametric family indexed by a �nite-dimensional parameter vector, the class of dependence

structures is simply too large. Instead the family of multivariate extreme value distributions

can be indexed by a class of �nite measures; exponent measures (Starica (1999); He�ernan and

Resnick (2005); Resnick (2006); Balkema and Embrechts (2007)) or in another description by

a class of dependence functions as the Pickands dependence functions (Kotz and Nadarajah

(2002); Klüppelberg and Mayer (2006)) or Copulas functions (Joe (1997); Embrechts et al.

(2003); Nelsen (2006)). However, all the representations are equivalent.

In order to give a characterization of max-stable distributions or equivalently of limit

distributions for appropriately multivariate extreme value models, it is an enormous help to

�rst standardize the problem so that G has speci�ed marginals Gj . In doing so we do not only

get simpler expressions but also, and this is even more important, we can separate dependence
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aspects from marginal distributions features. Marginals are handled using univariate Frèchet

random variables, whereas the dependence structure needs some closer consideration.

Before we give a complete de�nition of multivariate extreme value theory, let us concen-

trate on some of these dependence representations.

Theorem 2.3.2. (Characterization of multivariate extreme value distributions)

The following statements are equivalent:

• G is a multivariate extreme value distribution with Φ1 marginals.

• There exists a �nite measure S on Sd−1 =
{
z ∈ Rd : ‖z‖ = 1

}
, such that for each

x ∈ Rd one has that

G (x) = exp

−
ˆ

Sd−1

d∨
j=1

(
ai
xi

)
S (da)

 ,

with
´

Sd−1

∨d
j=1 ajS (da) = 1 for all j = 1, . . . , d.

• (Point process characterization)

There exists N (·) =
∑∞

k=1 I(tk,jk) (·), where N ∼ PRM (dt× dµ) on [0,∞)× C and

C = [0,∞]d \ {0} with

µ

(
y ∈ C : ‖y‖ > r;

y

‖y‖
∈ A

)
= r−1S (A)

and S a �nite measure such that for x ≥ 0

G (x) = P

∨
tk≤1

jk ≤ x

 = exp {−µ ([0,x]c)} .

Recently the idea of multivariate extreme value results in terms of copula has taken place

in the academic word. The idea behind the concept of copulas is to separate a multivariate

distribution function into two parts, one describing the dependence structure and the other

describing marginal behaviour, respectively.

Copulas are an extremely useful concept because this allows us to express dependence

on a quantile scale, which is important for describing the dependence of extreme events.

Moreover, they allow combining marginal models with di�erent possible dependence models

and therefore, to investigate the sensitivity of risk to the dependence speci�cation. We begin

with some de�nitions and theorems which will turn out to be useful to understand the ideas

behind copulas.

Definition 2.3.3. A d-dimensional copula is a distribution function on [0, 1]d with stan-

dard uniform marginal distributions. Equivalently a copula is any function C : [0, 1]d → [0, 1]
which has the following three properties:

(1) C (u1, . . . , ud) is increasing in each component.

(2) C (1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d} , ui ∈ [0, 1].
(3) For all (a1, . . . ad),(b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···id C (u1i1 , . . . , udid) ≥ 0, (2.3.2)
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where uj1 = aj and xj2 = bj for all j ∈ {1, . . . , d}.

These three properties characterize a copula. Since a copula is the distribution function

of a random vector with uniform marginals, it is a continuous function. The following elegant

theorem, due to Sklar, states that in the case of continuous marginals C is unique, then copulas

in conjunction with univariate distribution functions may be used to construct multivariate

distribution functions.

Theorem 2.3.4. . Let X = (X1, . . . , Xd) be a a random vector with joint distribution

function F and let F1, . . . , Fd be the marginal distributions. Then, there exists a copula C :
[0, 1]d → [0, 1] such that the joint distribution can be written as

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) (2.3.3)

If the marginals are continuous, then C is unique; otherwise C is uniquely determined on

RanF1×RanF2×· · ·×RanFd, where RanFi denotes the range of Fi. Conversely, for a given
copula C and marginals F1,...,Fd we have that (2.3.3) de�nes a distribution with marginals Fi.

Proof. See Nelsen (2006), pp. 18. �

This theorem motives the name of copula. In fact (2.3.3) means that C couples the

marginals Fi to the joint distribution function F . One useful property of the copula of a

distribution is its invariance under strictly increasing transformations of the marginals.

In the literature there are several types of copula as well as in the Pickad's dependence

function, but there are three of particular importance, the comonotonicity copula or Frèchet-

Hoe�ding upper bound copula, which correspond to perfect dependence, the independence

copula which is the copula of independent random variables and the countermonotonicity

copula or Frèchet-Hoe�ding lower bound copula, which implies perfect negative dependence.

Following we introduced these intuitively.

We know that for any multivariate distribution F function with marginals F1, . . . , Fd we

may be given the following bounds.

max

{
d∑
i=1

Fi (xi) + 1− d, 0

}
≤ F (x) ≤ min {F (x1) , . . . F (xd)} .

By similar reasoning and with the help of Theorem 2.3.4 we can rewrite that last equation

in terms of copulas. Thus, for every copula we have the bounds.

max

{
d∑
i=1

ui + 1− d, 0

}
≤ C (u) ≤ min {ui, . . . ud} ,

where the left side is the Frèchet -Hoe�ding lower bound, which is only a copula for d = 2,
and the right side function is Frèchet -Hoe�ding upper bound copula. Perfect negative de-

pendence extension to dimensions higher than two is not possible, because the Frèchet lower

bound is not a proper distribution function and does not satisfy (2.3.2), which is neces-

sarily to ensure that if a random vector (U1, . . . , Ud) has a distribution function C. Then,

P (a1 ≤ U1 ≤ b1, . . . , ad ≤ Ud ≤ bd) is non-negative, where ai and bi are de�ned as in De�nition
2.3.3. These three fundamental copulas are displayed in Figure 2.3.1.
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Figure 2.3.1. Perspective plots and heat maps contour of the three funda-
mental copulas, Independence copula, Upper Frèchet-Hoe�ding upper bound
copula, and the Frèchet-Hoe�ding lower bound copula for d = 2. Darker
colours correspond to stronger dependence.

In the case of multivariate extreme value theory the copulas are derived from the de-

pendence structure of multivariate extreme value distributions, which provide the limit dis-

tributions of the component-wise maxima of d-dimensional random vectors, after a suitable

normalization.

Let Xi = Xi,1, . . . , Xi,d , i = 1, 2, . . . , n be iid d−variate random vectors with join dis-

tribution function F and Mn = (Mn,1, . . . ,Mn,d) = (max1≤i≤n Xi,1, . . . ,max1≤i≤n Xi,d) their

component-wise maxima. We know from (2.3.1) that if a limiting distribution exists, then each

univariate marginal of this distribution is an univariate extreme value distribution. Therefore,

it can be written as follows

Ce (G (x1) , . . . , G (xd)) ,

where G is a extreme value distribution, and Ce is an d-extreme value copula. Joe (1990)

shown that in particular the copulas satisfying the condition

Ce
(
ut
)

= Ce (u)t

for all t > 0 is a extreme value copulas. The following theorem makes the connexion between

Pickand's dependence function and extreme value copulas.

Theorem 2.3.5. (Pickand's representation) The copula Ce is an Extreme value copula

for G if and only if

Ce (u) = exp

{(
d∑
i=1

lnui

)
A

(
lnu1∑d
i=1 lnui

, . . . ,
lnud∑d
i=1 lnui

)}
where A (v) is de�ned as Pickands dependence function.
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Thus, we can extract the dependence function from the extreme value copula and vice

versa by means of

A (v) = − lnC (exp (−w) , exp− (1− w)) (2.3.4)

in the bivariate case.

The function A(v) is commonly called the Pickands dependence function of the multi-

variate extreme value distribution. This characterizes the dependence structure for G. Note

that, however, we can express G in terms of Pickands dependence function without the help

of Copula function. Indeed, in Theorem 2.3.2 we have that G(x) = exp {−V (x)} where

V (x) = V (x1, . . . , xd) =
ˆ

Sd−1

d∨
j=1

(
ai
xi

)
S (da)

=
(

1
x1

+ · · ·+ 1
xd

)ˆ
Sd−1

d∨
j=1

(
a1

x−1
1∑d

j=1 x
−1
j

, . . . , ad
x−1
d∑d

j=1 x
−1
j

,

)
S(da)

=

 d∑
j=1

x−1
j

A

(
x−1

1∑d
j=1 x

−1
1

, . . . ,
x−1
d∑d

j=1 x
−1
j

)
,

with

A (v) =
ˆ

Sd−1

d∨
j=1

(vjaj)S (da) .

The V function is often called exponent measure and it is a homogeneous function of order

-1. Contrary to the univariate case, there is an in�nity of functions V for d > 1 as in the case

of the copula function. It can be veri�ed that for A has the following properties.

• A(0) = A(1) = 1;
• −1 ≤ A′(0) ≤ 0;
• 0 ≤ A′(1) ≤ 1; A′′(v) ≥ 0 and max (v1, . . . , vd) ≤ A(v) ≤ 1 for all v ∈ Sd−1

• A(v) = 1implies that the marginals are totally independent;

• A(v) = max (v1, . . . , vd) implies that the marginals are totally dependent;

• A is a convex function.

Some multivariate extreme value models in terms of their Pickands dependence function or

copulas are for instance, logistic (Galambos (1975)), negative Logistic (Joe (1990)), Hüsler-

Reis (Falk et al. (2004)), Dirichlet (Coles and Tawn (1994)), asymmetric mixed model (Tawn

(1988a)). For more detailed formulation and other results see Kotz and Nadarajah (2002).

Example 2.3.6. The easiest example of extreme value copula is the independent copula.

Let G be a extreme value distribution with dependence function A (v). We know that the

independence case for the Pickands representation of a multivariate extreme value distribution

correspond to A (v) = 1, then by
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C (u) = G (lnu1, . . . , lnud)

= exp

{(
d∑
i=1

lnui

)
A

(
lnu1∑d
i=1 lnui

, . . . ,
lnud∑d
i=1 lnui

)}

=

(
d∏
i=1

ui

)A( lnu1∑d
i=1

lnui
,...,

lnud∑d
i=1

lnui

)

and because A (v) = 1 the last equation yields the independence copula

C (u) =

(
d∏
i=1

ui

)
.

Exactly as for the maximum domain of attraction for the univariate case, we need to

de�ne this for the multivariate case. We now give this extension based in copulas.

Theorem 2.3.7. The copula C is said to belong to the domain of attraction of an extreme

value copula Ce, written C ∈ CDA (Ce), if and only if

C (F1 (x1) , . . . , Fd (xd)) ∈MDA (Ce (G1 (x1) , . . . Gd (xd)))

whenever Fj (xj) is continuous and belongs to MDA (Gj), for j ∈ {1, . . . , d}, and

lim
t→∞

Ct
(
u1/t

)
= Ce (u)

for u ∈ [0, 1]d.

From the last theorem we can see that the determination of marginals G1, . . . Gd depend

only on the marginals F1, . . . , Fd. Then, for the estimation of its dependence structure are

irrelevant. Hence that we need to de�ne other concepts to establish whether a given copula is

in the domain of attraction of some other give copula. The next de�nition is due to McNeil

et al. (2005), pp. 315.

Definition 2.3.8. Let C be a copula and Ce an extreme value copula, if C ∈ CDA (Ce)
then

lim
t→0

1− C (1− tx1, . . . , 1− txd)
t

= − lnCe (exp (−x1) , . . . , exp (−x1)) .

The following result is of central relevance in multivariate extreme value theory. It states

that the asymptotic behaviour of maxima of random vectors can be described by considering

marginals and copulas separately. In other words, we assert that the copula Ce of H is only

determined by the copula C of F , but it is in no way in�uenced by the marginals of F .

Theorem 2.3.9. Let F (x) = C (F (x1) , . . . , F (xd)) for continuous marginal distribution

functions F1, . . . , Fd and some copula C. Let H (x) = Ce (H1 (x1) , . . . ,Hd (xd)) be an multi-

variate extreme value distribution with extreme value copula Ce. Then, F ∈MDA (H) if and
only if Fj ∈MDA (Hj) for j = 1, . . . , d and

lim
t→∞

Ct
(
u

1/t
1 , . . . u

1/t
d

)
= Ce (u1, . . . , ud) ,
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for u ∈ [0, 1]d.

We brie�y summarize the main ideas of how works the dependence in multivariate extreme

value theory. For other types see Kotz and Nadarajah (2002); Falk et al. (2004) form the point

of view of Pickands dependence and Joe (1997); Capéraà et al. (1997); Nelsen (2006) in the

case of copulas.

Example 2.3.10. The logistic family of distributions have been among the most applied

multivariate extreme value distribution in the literature because of its simplicity. The distri-

bution function G of a bivariate logistic Model is de�ned by

G(x1, x2) = exp

[
−1− ψ1

x1
− 1− ψ2

x2
−
{(

ψ1

x1

)q
+
(
ψ2

x2

)q}1/q
]

where ψ1, ψ2 ∈ [0, 1] and q > 1. The density of the measure S in Theorem 2.3.2 can be derived

as follows

h(v) = {(ψ2v)q + (ψ1 (1− v))q}1/q−2 {v (1− v)}q−2 (ψ1ψ2)q (1− q) .

We can show that the Logistic distribution has mass both in the interior and at the end points

because S ({0}) = 1−ψ2 and S ({1}) = 1−ψ1. Independence is obtained when either q → 1+,

ψ1 = 0 or ψ2 = 0 and total dependence correspond to ψ1 = ψ2 = 1 and the limit q → ∞.

The Pickands' dependence function is de�ned as

A(v) = (1− ψ1) (1− v) + (1− ψ2) v +
{

(1− v)−q ψ−q1 + v−qψ−q2

}1/q
.

Then, we can create the extreme value copula by means of the equation (2.3.4), i.e., the copula

Cq,ψ1,ψ2 (u1, u2) = u1−ψ2
1 u1−ψ1

2 exp
{
−
(
(ψ2 lnu1)−q + (−ψ1 lnu2)−q

)1/q}
.

Special cases of this general formulation are the symmetric logistic distribution and the Gum-

bel distribution. The �rst case results from ψ1 = ψ2 = 1 having all its mass in the interior

G(x1, x2) = exp
{
−
(
x−q1 + x−q2

)}1/q
.

The second case if ψ1 = ψ2 = α we have the Gumbel distribution

G(x1, x2) = exp

[
−1− α

x1
− 1− α

x2
− α

{(
1
x1

)q
+
(

1
x2

)q}1/q
]
.

A direct generalization of this logistic families is possible for the multivariate case. Let C

be the a index variable over the set B, the class of all nonempty subsets of {1, . . . , d}, let
B1 = {C ∈ B : |C| = 1} and B(j) = {b ∈ B : j ∈ C}, where |C| denote the number of elements

in the set C. The multivariate Logistic model is given by

G (x1, . . . xd) = exp

∑
C∈B

∑
j∈C

(ψj,C/xj)
qc


1/qc
 , (2.3.5)

where the dependence parameters qc ≥ 1 for all C ∈ B \ B1, and the parameters ψj,C = 0 if

j /∈ C else 0 ≤ ψj,C ≤ 1 and
∑

C∈B ψj,C = 1 to ensure that the marginal distributions are

Generalized extreme value distributions for j = 1, . . . , d.
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For the density estimation we refer to Kotz and Nadarajah (2002), pp. 121. Setting

ψj,C = 1 and qC = q for all j = 1, . . . , d, into (2.3.5) we obtain the symmetric logistic

distribution

G (x1, . . . xd) = exp

 d∑
j=1

−
(
x−qj

)1/q

 .
Other special cases can be derived as limits of (2.3.5) as for example the Marshall and

Olkin, and the MacFadden distribution , when qC →∞ for all C ∈ B.
We simulate a trivariate sample of size 1000 with Frèchet marginals and a Gumbel de-

pendence measure with levels of dependence p = {0.1, 0.5, 0.9}, i.e., near independence, weak
dependence and strong dependence. The results are presented in Figure 2.3.2.
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Figure 2.3.2. Upper panel: Simulation of a trivariate sample of Frèchet
marginals with Logistic dependence measure, for p = 0.9 (left), p = 0.5 (mid-
dle), p = 0.1 (right). Lower panel: non-parametric estimation of dependence
measure A(v) for the simulations of the trivariate distributions in the Up-
per panel. The triangular border represents the constraint maxj={1,...,d} vj ≤
A (v) ≤ 1 for all vj ∈ [0, 1]. Darker colours correspond to smaller values of
A(v), and hence stronger dependence.

2.3.3. Multivariate extreme value theory for stationary sequence. De�ne X be

a d-dimensional stationary sequence with a common distribution function F (x), x ∈ Rd, in
the domain of attraction of a multivariate extreme value distribution H. This means that

there exist a vector of constants an and bn∈ Rd such that for a high threshold u(x)

Fn(anx + bn) = Fn(u(x))→ H(x), x ∈ Rd. (2.3.6)
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If M̃n =
{

M̃n1, . . . , M̃nd

}
denotes the vector of maxima corresponding to an iid sequence

X̃ having the same d- dimensional distribution function F , then (2.3.6) is equivalent to

P(M̃n ≤ un(x)) = P

 d⋂
j=1

(M̃nj ≤ anjxj + bnj)

→ H̃(x),

where H̃ is a distribution function with non-degenerate marginals.

For stationary sequence satisfying a general mixing assumption, it is known that the class

of limiting distributions of Mn is the same as for iid sequences. The following theorem uses a

multivariate version of the 4(un) condition, proposed by Nandagopalan (1994), in which the

only di�erence is that the random variables and the thresholds have dimension d.

Theorem 2.3.11. Let X̃ satisfy the long range dependence condition4(un) and suppose

that

P(Mn ≤ un(x)) w→ H(x),

where H is a distribution function with non-degenerate components, then the distribution

function H is also a multivariate extreme value distribution.

The relation between the multivariate extreme value distributions H and H̃ can be ex-

pressed by means of the multivariate extremal index function θ(τ), τ ∈ Rd+, introduced by

Nandagopalan (1994).

Theorem 2.3.12. (Multivariate extremal index). Let X satisfy the long range dependence

condition4(un). Suppose that P(Mn ≤ un(x)) w→ H(x), and P(M̃n ≤ un(x)) w→ H̃(x). if

for all τ ∈ R there exists u(τ)
n . Then, the multivariate extremal index of X is de�ned by the

relation H(x) = H̃θ(τ)(x), with θ(τ) ∈ [0, 1], for all τ ∈ R.

Just as in one dimension it is the key parameter relating the extreme value properties

of a stationary process to those of independent random vectors from the same d-dimensional

marginal distribution. However, unlike the one dimensional case, it is not a constant for the

whole process, but instead dependences on the vector τ . Some elementary properties include:

(1) 0 ≤ θ(τ) ≤ 1 for all τ .

(2) For each j = 1, . . . , d, Xij has extremal index θj = lim
τii 6=j→0+

θ(τ1, . . . , τd).

(3) θ(cτ) = θ(τ) for all c > 0. (Theorem 1.1 of Nandagopalan (1994))

A version of the distribution of cluster in d-dimensions can be de�ned as follow.

Definition 2.3.13. (Cluster size probability) Consider a sequence of integers kn and rn,

and a random matrix Mrn with dimensions rn × d, consisting of 1′s and 0′s accordingly to

Xij > u
(τj)
nj or not. That is, Mrn(i.j) = I

{
Xij > u

(τj)
nj

}
, i = 1, . . . , rn, j = 1, . . . , d. If X

satis�es the long range dependence condition4(un), then the probability distribution

π(τ)
n (kn) = P

{
rn∑
i=1

I
{
M(i)

rn 6= 0
}

= k

∣∣∣∣∣
rn∑
i=1

I
{
M(i)

rn 6= 0
}
> 0

}
, k ≥ 1,

satis�es

θ−1(τ) = lim
n→∞

∞∑
k≥1

kπ(τ)
n (k).
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Therefore, for weakly dependent sequences X, the existence of θ(τ) ∈ [0, 1] indicates the
presence of clusters of exceedances

{
Xi � u(τ)

n

}
, i = 1, . . . , rn. Moreover, for each dimension,

we can obtain information about θ(τ) on the presence of marginal cluster of exceedances{
Xj � u(τj)

nj

}
, i.e., Xij > unj for some j = 1, . . . , d, as a consequence of the de�nition of the

multivariate extremal index.

An alternative characterization of the multivariate extremal index is given by Smith and

Weissman (1996), but this will be introduced in the next chapter.

2.4. Extreme measures of dependence

In the above sections we showed how copulas and Pickands dependence functions give

a complete description of the whole dependence structure of a multivariate random vector.

However, in many situations the type of dependence is unknown, therefore it should be chosen

from a wide class of extreme dependence functions. These dependence functions should be as

�exible as possible in the range of asymptotic dependence behaviour which they can describe.

For this reason, several measure of extreme dependence has been introduced as a common

yardstick for the true type of asymptotic dependence behaviour.

In this section we only focus on extremes by introducing some scalar measures of depen-

dence. These measures relate to the (asymptotic) behaviour of the tails of a distribution.

Being scalar measures they will not be able to provide a complete picture of a dependence

structure but they will turn out to be useful for distinguishing between di�erent kinds of

possible dependence behaviours. These measures can be expressed in terms of copulas in

contrast to other dependence measures such as linear correlation, they are not in�uenced by

the marginal distributions of the random vector (see for instance Embrechts et al. (2002)).

These measures quantify in a particular sense the probability of one random variable being

extreme, given that the other one is extreme, i.e., they are asymptotic dependent. Thus, we do

not consider here the asymptotic independent case. For di�erent measures in the asymptotic

independent case we refer to Ledford and Tawn (1996); Coles and Tawn (1999); He�ernan

and Resnick (2005).

The �rst de�nition is the most common approach to tail dependence.

Definition 2.4.1. (Joe (1997)) Let (X1, X2) be a random pair with joint cumulative

distribution function F and marginals F1 and F2. The coe�cient

λu := lim
u→1−

P (F2 (X2) > u | F1 (X1) > u)

is called the upper tail dependence coe�cient (UTDC), provided the limit λu ∈ [0, 1] exists.
We say that the pair (X1, X2) is upper tail dependent if λu > 0 and upper tail independent

if λu = 0.
Analogously, for the lower tail dependence coe�cient (LTDC) we obtain

λl := lim
u→0+

P (F2 (X2) ≤ u | F1 (X1) ≤ u) .

Thus, the tail dependence coe�cients correspond to the probability that one marginal

exceeds a high or low threshold u under the condition that the other marginal exceeds a high
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or low threshold respectively. The next properties are given for the upper tail copula only

and we written only λ instead λu. This concept can also be de�ned via the notion of copula.

Definition 2.4.2. Let C be the copula of a d-variate distribution , then the tail depen-

dence coe�cient of this distribution can be de�ned by means of of its bivariate marginals,

i.e.

λi,j : = lim
u→1−

P (Fj (Xj) > u | Fi (Xi) > u) (2.4.1)

= lim
u→1−

Ci,j (1− u, 1− u)
1− u

= lim
u→0+

Ci,j (u, u)
u

for all i 6= j ∈ {1, . . . , d}, where Ci,j (1− ti, 1− tj) = 1 − ti − tj + Ci,j (ti, tj) denotes the

survival copula of C.

Thus for a d-variate distribution we hope to calculate d (d− 1) /2 upper or lower tail

dependence coe�cients. Since the tail dependence coe�cients (TDCs) are determined by the

copula of a distribution, then many copulas features are transferred to TDC, for example

TDC are invariant under strictly increasing transformations of marginals.

Other interesting relation between TDC, Pickands dependence function and extreme value

copula can be derived as follows. The �rst result is that if the copula C ∈ CDA (Ce), then
they have the same TDC. The second result is that the TDC is relationed with the Pickands

dependence function by λ = 2 (1−A (1/2)). We resume these results in the following theorem.

Theorem 2.4.3. (McNeil et al. (2005)) Let C be a bivariate copula with tail dependence

coe�cient λ ∈ [0, 1] and C ∈ CDA (Ce) for some extreme value copula Ce. Then, λ is also the

upper tail dependence coe�cient of Ce. As consequence λ is related to Pickands dependence

as λ = 2 (1−A (1/2)).

Other measure of extreme dependence is the extremal dependence coe�cient (EDC) in-

troduced by Frahm (2006).

Definition 2.4.4. The extremal dependence coe�cient of a d-dimensional random vector

X with joint cumulative distribution function F and marginal distribution functions F1, . . . , Fd

is de�ned for the upper tail as

ε := lim
t↗1

P (Fmin > t | Fmax > t) ,

where Fmax := max {F1 (x1) , . . . , Fd (xd)} and Fmin := min {F1 (x1) , . . . , Fd (xd)}.

Thus the EDC can be interpreted as the probability that the best case of X leads to the

worst case of X. Whenever the EDC is positive the elements of X will be called extremal

dependent.

Smith (1990) introduced a similar measure called the extremal coe�cient, which is de�ned

in term of some positive measure H on the d- dimensional simplex that satis�esˆ
xjdH (x1, . . . , xd) = 1 (2.4.2)
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for j = 1, . . . , d.

Definition 2.4.5. Let F be a multivariate extreme value distribution with unit Frèchet

marginals

F (w1, . . . , wd) = exp
(
−
ˆ

max
{
x1

w1
, . . . ,

xd
wd

}
dH (x1, . . . , xd)

)
with H satisfying (2.4.2). The extremal coe�cient is de�ned as the constant

ε =
ˆ

max
j∈D

xjdH (x1, . . . , xd) (2.4.3)

In terms of extreme value copula that is

C∗ (t, . . . , t) = tε (2.4.4)

Moreover, Joe (1993) noticed, that the tail dependence coe�cient can be expressed as

λ := 2− ε. In the same form, the EDC can be related with other measures likes the extremal

coe�cient in the bivariate case as εG = (2− ε) /ε.

2.5. Relation among the extreme measures of dependence in the stationary case

The main contribution of this section is to extend the extreme measures of dependence

for iid random vectors to random vectors of stationary sequences. Schlather and Tawn (2002)

showed that for a d-dimensional distribution exists 2d distinct extremal coe�cient of di�er-

ent orders, which cannot take any arbitrary values. Further, they constructed bounds that

higher order extremal coe�cients need to satisfy to be consistent with lower order extremal

coe�cients. In other way, Martins and Ferreira (2005) showed that the extremal coe�cient

does not measure correctly the dependence in the limiting distribution of maxima in presence

of cluster of extremes in a stationary process and proposed an alternative de�nition in order

to cover this drawback.

We extend these results to the other measures of extreme dependence and relate it with

other measures of extreme dependence. In particular, we will present some bounds for the

EDC for the three dimensional iid case. Then, the EDC will be extended to the stationary

case. We show that, the EDC for absolutely dependent stationary sequence is completely

determined by the extremal index of the marginals. Finally, we illustrate some results with

examples.

Note that the EDC is a copula property, then if the copula of X belongs to a copula

domain of attraction (CDA) of Ce, it is possible to express the de�nition of EDC in terms of

its extreme value copula Ce.

Theorem 2.5.1. Let X be a d-dimensional iid random vector with joint distribution func-

tion F = C (F1 (x1) , . . . , Fd (xd)) for continuous marginal distribution functions F1, . . . , Fd.

Further, let Mn := max {Xn1, . . . , Xnd} be denote as a d-dimensional vector of maxima. If

there exist an > 0, bn ∈ Rd when n → ∞, such that P (Mn ≤ un (x)) → G (x) , x ∈ Rd,
where un (x) = anxn + bn and G (x) = Ce (G1 (x1) , . . . , Gd (xd)) is a multivariate extreme

value distribution with non-degenerate marginals, then the EDC of F is also the EDC of G .
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2.5.1. Some sharp bounds for the EDC. In the de�nition of the EDC we shown that

the EDC for bivariate case can be formulated in terms of the εG. Now we generalized this

result to d-dimensions.

Proposition 2.5.2. Let X be a d-dimensional iid random vector following a multivariate

extreme value distribution with extremal coe�cient ε, where D = {1, . . . , d}. De�ne further

εGK as the extremal coe�cient of a subset K ⊆ D the marginals. Then, the EDC can be

de�ned as

εG =

∑
K⊆D (−1)|K|+1 εGK

εG
, (2.5.1)

where D := {1, . . . , d}, I{·} is the indicator function and εG = εGD for ease of notation..

Moreover, K is a complete subset of all distinct combinations of marginals, i.e., 2d .

Based on a result of Deheuvels (1983), Schlather and Tawn (2002) introduced a simple

class of extreme value distributions that allows for a 1-1 mapping to the complete sets of

extremal coe�cients. In particular, if the extremal coe�cients εK for the subset K ∈ 2D are

given and the set is self-consistent, which signi�es that ε∅ = 0 and∑
K∈2D\{∅},K⊇L

(−1)|K\L|+1 εK ≥ 0 ∀L ∈ 2D \ {D} . (2.5.2)

then ε is bounded by the sharp bounds

max
L∈2D\{D}

|M\L|mod2=1

∑
K∈2D\{∅,D}

K⊇L

(−1)|K\L| εK ≤ ε ≤ min
L∈2D\{D}

|M\L|mod2=0

∑
K∈2D\{∅,D}

K⊇L

(−1)|K\L|+1 εK .

(2.5.3)

This result allows the next sharp bounds for the EDC in the three dimensional case.

Proposition 2.5.3. Let X be a d-dimensional iid random vector following a MVED in

the MDA (G) with a complete set of extremal coe�cients, then,

for d=3

(1) max∗i,j=1,2,3

{
0, (εij + 1)

[
3
2 −

∑
k=1,2,3; k 6=j

1
1+εik

]}
≤ ε123 ≤

min∗i,j=1,2,3

(
2εij

1+εij

)
mini=1,2,3

(
−1+

∑
k=1,2,3; k 6=i

2
1+εij

)
where the sign �∗� and �

∑∗� are de�ned as the combination and summation of indices

whose members are pair-wise di�erent.

(2) Additionally if two EDCs are known then the third has the next bounds

max
{

0, 1−εij−εik−3εikεij
2(1+εik)(1+εij)

}
≤ ε

jk
≤ 1 + (1+εij)(1+εik)−2|εik−εij |

(1+εij)(1+εik)+2|εik−εij | .

(3) In terms of bivariate tail dependence parameters
max{0,λij+λki−1}
min{2,3−λij−λki} ≤ εjk ≤

1−|λki−λij |
1+|λki−λij | .

Other extensions to higher dimensions are possible following the inequality (2.5.3). However,

the results yield to a very di�cult optimization problem to solve.
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2.5.2. The extremal dependence coe�cient of stationary sequences. In this sec-

tion we suppose that the d-dimensional stationary sequence X with joint distribution func-

tion F ∈ MDA (H) satis�es the long-range dependence conditions 4 (un) of Nandagopalan
(1994) for un > 0 and X̂ is an associated iid sequence of X with joint distribution function

F̂ ∈MDA (G) as in Theorem 2.3.12. A particularly interesting result is the relation between

the multivariate extremal index θ (τ) and the extreme value copulas of H and G.

Proposition 2.5.4. Let X be a d-dimensional stationary sequence with θ (τ), τ ∈ Rd,
C∗G and C∗H the extreme value copulas of the multivariate extreme value distributions G and

H respectively, then

C∗H (t1, . . . , td) = C∗G

(
tθ11 , . . . , t

θd
d

)
(2.5.4)

Now, we are in condition to give the de�nition of the EDC for stationary sequence.

Definition 2.5.5. (EDC for stationary sequence) Let X be a d- dimensional stationary

sequence with joint distribution function F ∈ MDA (H) and multivariate extremal index

θ (τ), τ ∈ Rd.
Further, let Fmax := max {F1 (x1) , . . . , Fd (xd)} and Fmin := min {F1 (x1) , . . . , Fd (xd)}.

Then, the EDC of X is de�ned as

ε := lim
t↗1

P (Fmin > t | Fmax > t)

= lim
t↗1

P (F1 (x1) > t, . . . Fd (xd) > t)
1− P (F1 (x1) ≤ t, . . . Fd (xd) ≤ t)

,

provided the corresponding limits exist. In terms of copulas we have

εH := lim
t↗1

C∗H (1− t, . . . , 1− t)
1− C∗H (t, . . . , t)

where C· is the survival copula belonging to C de�ned as

u 7−→ C (u) :=
∑
I⊂D

(−1)|I|C
(

(1− u1)I{1∈I} , . . . , (1− ud)I{d∈I}
)
, (2.5.5)

where u ∈ [0, 1]d, D := {1, . . . , d} and I{·}is the indicator function.

The last result shows us that EDC is a�ected by the multivariate extremal index in the

stationary case. Martins and Ferreira (2005) observed this problem for the extremal coe�cient

and gave a new de�nition for the extremal coe�cient ε under cluster in the maxima.

Definition 2.5.6. (Martins and Ferreira (2005)) Let X be a d-dimensional stationary

sequence with joint distribution function F ∈ MDA (H) and multivariate extremal index θ.

The extremal coe�cient of H = Gθ is the constant εH such that

H (x) = Gθ(1) (x) = GεH1 (x) , x ∈ R,

where θ (1) = θ (1, . . . , 1).

Thus, the εH can be interpreted as the number of independent marginals involved in a d-

dimensional multivariate extreme value distribution under the presence of cluster of extremes
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in the maxima, and takes values in
[
maxj=1,...,d θj ,

∑d
j=1 θj

]
for completely dependent and

independent random variables respectively. See Proposition 2.1 in Martins and Ferreira (2005)

for other interesting properties of εH .

Notice that when θ(τ) = 1, for all τ ∈ Rd+, the De�nition 2.5.5 of the EDC is the originally

proposed for iid random variables by Frahm (2006).

2.5.3. General properties of the EDC of stationary sequences. First, we concen-

trate on the bivariate case to �nd relations between the EDC and other measures of extreme

dependence.

Proposition 2.5.7. Let εH be the extremal coe�cient of the limit distribution of the max-

ima of a d-dimensional stationary sequence X with joint distribution function F ∈MDA (H)
and εH the corresponding EDC. Then,

εH =
θ1 + θ2 − εH

εH
=

λH
θ1 + θ2 − λh

. (2.5.6)

Thus, we can see that in the bivariate case the EDC εH has close relation to other

extreme measures of dependence. Notice that the EDC for stationary sequence is always

smaller than EDC εG for iid random vectors. For this is enough to rewrite (2.5.6) as εH =
εG − 2θ(1,1)−(θ1+θ2)

εGθ(1,1) , which produces the next bounds for εH ∈ [0,min (θ1, θ2) /max(θ1, θ2)].
We resume some direct results for the bivariate case in the next corollary.

Corollary 2.5.8. Let X be a bivariate stationary sequence with joint distribution func-

tion F ∈MDA (H) and multivariate extremal index θ, where X̂ is the associated iid random

vector of X with joint distribution function F̂ ∈MDA (G) . Then,

(1) εH ∈ [0,min (θ1, θ2) /max(θ1, θ2)] and εH ≤ εG.
(2) If θ1 + θ2 ≥ 1 + λH then εH ≥ λH , else εH < λH .

(3) If εH = max {θ1, θ2}, then λH = min {θ1, θ2}.
A special care must be taken when the bivariate asymptotic distribution of the maximum is

completely dependent as the next example illustrates.

Example 2.5.9. Let ψi be a sequence of iid Frèchet marginals and de�ne the next �st-

order ARMAX processes Yi = max {βYi−1, ψi} and Xi = max {αXi−1, ψi} with α, β ∈ [0, 1)
and α > β. The bivariate Process P (Xi > un, Yi > un) has bivariate Frèchet marginals with

absolute dependent marginals and extremal indices θx = 1 − α, θy = 1 − β and θxy =

max {1− α, 1− β}. Whereas the associated bivariate iid random vector P
(
X̂i > un, Ŷi > un

)
has also completely dependent marginals with εG = 1, λG = 1 and εG = 1.

By Proposition 2.5.7 the EDC εH = 1− α/1− β. Thus, for example for α ↑ 1 and β ↓ 0
the λH = 1−α, εH ↘ 0. Then, the value of EDC εH has not an easy interpretation as grade

of asymptotic independence in a stationary sequence.

Now we want to know if we can extend this result to d-dimensional stationary sequences.

Proposition 2.5.10. Let X be a d- dimensional stationary sequence with joint distribution

function F ∈MDA (H) and multivariate extremal index θ. Then,

(1) If H has totally dependent marginals then εH = min1≤j≤d θj
max1≤j≤d θj

.
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(2) If H has totally dependent marginals and θ1 = · · · = θd then εH = 1.
(3) If H has independent marginals then εH =

∑d
j=1 θj and εH = 0.

(4) In the three dimensional case if εHij , εHik , θi, θj and θk are known, then εHjk has

the next sharp bounds.

max
{

0,
θi+θkεHik+θjεHij+εikεij(θj+θk−θi)∑
l={i,j,k} θl+θjεHik+θkεHij−θiεHij εHik

}
≤ εHjk ≤ min {ε̃jk, ε̃kj} where ε̃jk :=

θk+εHij
∑
l={i,j,k} θl+εHik (θjεij−θi)

θj+εHik
∑
l={i,j,k} θl+εHij (θkεik−θi) .

A direct result is the next Corollary.

Corollary 2.5.11. Let X be a d-dimensional stationary sequence with joint distribu-

tion function F ∈ MDA (H) and multivariate extremal index θ (τ) ∈ [0, 1]d with absolutely

dependent marginals. Subsequently, there are (d− 1)-dimensional iid random vectors in X,

and only 1-dimensional stationary sequence in X∗ with extremal index θ∗. Then, the EDC

εH = θ∗.

Frahm (2006) showed that if εX is the EDC of a d-dimensional vectorX andX is a (d− 1)-
dimensional subset vector of X then εX ≥ εX . Loosely speaking, this could be interpreted

as a sort of diversi�cation e�ect at the extremes whether one adds a random component to a

given random vector.

Unfortunately, it is not necessary true in the stationary case. To display this idea we

observe the next example.

Example 2.5.12. (EDC of Multivariate Maxima of Moving Maxima (M4))

Smith and Weissman (1996) introduced M4 processes as an approximation to a large

class of max-stable processes and hence to extremes of multivariate stationary processes. Let

alkj l ∈ N, k ∈ Z, j = {1, . . . , d} be a triple sequence of non negative constants satisfying∑
l

∑
k alkj = 1, for each j and let ψlt, l ∈ N, t ∈ Z be a double sequence of iid unit Frèchet

random variables. Then, M4 process is de�ned by

Xtj = max
l∈N

max
k∈Z

alkjψl,t−k,

for t∈Z, j = {1, . . . , d}. Let un = (un1, . . . , und) = (n/τ1, . . . , n/τd) be the vector of nor-

malized levels of X. Subsequently, the distribution function of the maxima of this process

is

P (Mn ≤ un) = P (Xtj ≤ utj , 1 ≤ t ≤ r, 1 ≤ j ≤ d)

= P
(
ψl,t−k ≤

utj
alkj

, l ∈ N, k ∈ Z, 1 ≤ t ≤ r, 1 ≤ j ≤ d
)

= P
(
ψl,m ≤ min

1−m≤k≤r−m
min

1≤j≤d

um+k,j

alkj
, l ∈ N, m ∈ Z

)
=

∏
l∈N

∏
m∈Z

P
(
ψl,m ≤ min

1−m≤k≤r−m
min

1≤j≤d

um+k,j

alkj

)

=
∏
l∈N

∏
m∈Z

C∗H

(
exp

(
min

1−m≤k≤r−m

alk1τ1

n

)
, . . . , exp

(
min

1−m≤k≤r−m

alkdτd
n

))
,

where C∗H (t) = min (t1, . . . , td).
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The extremal index for each marginal Maxima of Moving maxima is θj =
∑
l∈N

max
1−m≤k≤r−m

alkj ,

m ∈ Z. With the results obtained in Proposition 2.5.10 and the expression of the extremal

index for each marginal, it is possible to derive directly the value for the EDC as follows

εH =

min1≤j≤d
∑
l∈N

max
1−m≤k≤r−m

alkj

max1≤j≤d
∑
l∈N

max
1−m≤k≤r−m

alkj
.

Hence, it could be possible to take, or add, a random component and not experiment any

changes in the value of the EDC of this process, as long as one does it between the minimum

and the maximum of the extremal indices of the marginals. Note that one could even remove

the vector with the maximum extremal index to improve the value of the EDC εH , and one

obtains consequentlyεX < εX .

2.6. Conclusions

In this chapter we have presented the main concepts in extreme value theory for the iid and

non iid case. The way in which we have presented the theory relied on the assumption that the

random variables are independently distributed or that some mixing conditions hold in the

non iid case. The extremal index, as measure of cluster at the extreme, has been highlighted.

Apart from time dependence, the cross sectional dependence has also been introduced through

copulas and Pickands dependence functions.

In Section 2.5 we investigated di�erent measures of extreme dependence and established

their equivalences. New relations in the stationary case were also derived. By observing the

limit distribution of the maxima of the stationary sequence and the behaviour of the cluster

extremes one can conclude, that the dependence at the extremes for di�erent measures as the

EDC can take very di�erent values, when we work only with the associated iid random vector

instead of the true stationary sequence.
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2.A. Demonstrations

Proof. Theorem 2.4.3: from (2.4.1) we have

λ = lim
u→1−

C (1− u, 1− u)
1− u

= 2− lim
u→1−

C (u, u)
1− u

.

Now using the asymptotic identity lnx ∼ x− 1 as x→ 1 and De�nition 2.3.8 we obtained

lim
u→1−

1− Ce (u, u)
1− u

= lim
u→1−

lnCe (u, u)
lnu

= lim
u→1−

lim
t→0+

1− lnC
(
ut, ut

)
−t lnu

= lim
u→1−

lim
t→0+

1− lnC
(
ut, ut

)
− lnut

= lim
v→1−

1− C (v, v)
1− v

which demonstrates that C and Ce have the same coe�cient of tail dependence.

The second result comes from the fact that, if the bivariate distribution has unit Frèchet

marginals, by Theorem 2.3.2 there exist a �nite spectral measure H on Sd−1, such that

G (x1, x2) = exp
{
−
ˆ

Sd−1

max
(
w1

x1
,
w2

x2

)
dH (w1, w2)

}
, x1, x2 > 0,

with

ˆ
Sd−1

w1dH (w1, w2) =
ˆ

Sd−1

w2dH (w1, w2) = 1, which yields

λ = 2−
ˆ

Sd−1

max (w1, w2) dH (w1, w2)

= 2− 2
{ˆ

Sd−1

max (w1, w2) dH (w1, w2) /2
}

= 2− 2A (1/2) .

�

Proof. Theorem 2.5.1: we only need to prove the claim for bivariate EV copulas, since

the result applies to the bivariate marginals of any higher dimensional case. By Proposition

1 in Frahm (2006) and by Theorem 7.48 in McNeil et al. (2005).

ε = lim
t↗1

Ce (1− t, 1− t)
1− Ce (t, t)

= lim
t↗1

2− (1− Ce (t, t)) / (1− t)
2− (2− (1− Ce (t, t)) / (1− t))

= lim
t↗1

2− lnCe (t, t) / ln t
2− (2− lnCe (t, t) / ln t)

= lim
t↗1

lim
q↘0

2− (1− C (tq, tq)) /− ln (tq)
2− (2− (1− C (tq, tq)) /− ln (tq))

= lim
s↗1

2− (1− C (s, s)) / (1− s)
2− (2− (1− C (s, s)) / (1− s))

= lim
s↗1

C (1− s, 1− s)
1− C (s, s)

= εG

which shows that C and C∗ share the same EDC. �
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Proof. Proposition 2.5.2: by de�nition of εG

εG = lim
t↗1

C (1− t, . . . , 1− t)
1− C (t, . . . , t)

= lim
t↗1

∑
K⊂D (−1)|K|C

(
tI{K∈I} , . . . , tI{K∈I}

)
1− C (t, . . . , t)

,

by equation (2.4.4) and using the asymptotic identity lnx ∼ x− 1 we obtain

εG = lim
t↗1

∑
K⊂D (−1)|K| tεI{K∈I}

1− tεG
,

=

∑
K⊆D (−1)|K|+1 εGK

εG
.

�

Proof. Proposition 2.5.3: the �rst inequality follows of (2.5.3) for the three dimensional

case

max
{
ε12, ε13,ε23,

∑∗
i,j=1,2,3εij − 3

}
≤ ε123 ≤ min

i=1,2,3

{∑
k=1,2,3;k 6=iεik − 1

}
and the fact that

εij =
2

1 + εij
(2.A.1)

εijk =
3−

∑∗
i,j=1,2,3

2
1+εij

εijk − 1
(2.A.2)

by equation (2.5.1), assuming εi = 1 for all i ∈ K.

The second inequality follows by lemma 6 in Schlather and Tawn (2002), which said that

for an index set K = {i, j, k} and the satisfaction of the inequality (2.5.2) then, the next

inequality is valid

max {εij + εk, εik + εik + εj} −min {2, εij + εik − 1} ≤ εjk ≤ min {εj + εk, εij + εik − εi} .
(2.A.3)

Replacing equations (2.A.1) and (2.A.2) in (2.A.3) one obtains the wished result.

The third inequality is a direct result of the Theorem 3.4 in Joe (1997). Let Cij be

the copula of P (Ui > t, Uj > t) and Ci|j be the copula of P (Ui > t | Uj > t) for an ease of

notation, where U = (Ui, Uj .Uk) are uniform random variables. Then,

Cjk (1− t, 1− t)
1− Cjk (t, t)

=
Cj|k (t, t)

2− Cj|k (t, t)

=
Cji|k (t, t) + Cji|k (t, 1− t)

2−
(
Cji|k (t, t) + Cji|k (t, 1− t)

)
≤

min
{
Ck|i (t, t) , Cj|i (t, t)

}
+ 1− Ci|k (t, t)

2−
(
min

{
Ck|i (t, t) , Cj|i (t, t)

}
+ 1− Ci|k (t, t)

)
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By taking limits

εjk = lim
t↗1

Cjk (1− t, 1− t)
1− Cjk (t, t)

≤ lim
t↗1

min
{
Ck|i (t, t) , Cj|i (t, t)

}
+ 1− Ci|k (t, t)

2−
(
min

{
Ck|i (t, t) , Cj|i (t, t)

}
+ 1− Ci|k (t, t)

)
≤ min {λki, λji}+ 1− λik

1−min {λki, λji}+ λik
,

and interchanging the subscripts i and k and from combining these two results we obtain the

upper bound

ε
jk
≤ 1− |λki − λji|

1 + |λki − λji|
.

The lower bound follows similar arguments. �

Proof. Proposition 2.5.4: by de�nition of the extreme value copula

C∗H (t) = C∗H (H1 (x1) , . . . ,Hd (xd)) = C∗
Gθ(τ)

(
G1 (x1)θ1 , . . . , Gd (xd)

θd
)

= C
∗θ(τ)
G

(
G1 (x1)θ1/θ(τ) , . . . , Gd (xd)

θd/θ(τ)
)

= C∗G

(
tθ11 , . . . , t

θd
d

)
,

the equality follows. �

Proof. Proposition 2.5.7: by de�nition of εH and using the asymptotic identity lnx ∼
x− 1 we obtain

εH := lim
t↗1

C∗H (1− t, 1− t)
1− C∗H (t, t)

= lim
t↗1

C
∗θ(1,1)
G (1− t, 1− t)
1− C∗θ(1,1)

G (t, t)

= lim
t↗1

1− tθ1 − tθ2 + C
∗θ(1,1)
G (t, t)

1− C∗θ(1,1)
G (t, t)

= lim
t↗1

ln tθ1 + ln tθ2 + ln tεH

ln tεH

= lim
t↗1

θ1 + θ2 − εH
εH

= lim
t↗1

λH
θ1 + θ2 − λH

,

where λH = θ1+θ2−εH or λH = limt↗1C
∗θ(1,1)
G (1− t, 1− t) /1−t, with λH ∈ [0,min {θ1, θ2}].

�

Proof. Proposition 2.5.10: by (2.5.5) and de�nition of εH we obtain for (1).
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εH = lim
t↗1

C∗H (1− t, . . . , 1− t)
1− C∗H (t, . . . , t)

= lim
t↗1

C
∗θ(1,...,1)
G (1− t, . . . , 1− t)
1− C∗θ(1,...,1)

G (t, . . . , t)

= lim
t↗1

∑
I⊂D (−1)|I|C∗θ(1,...,1)

G

(
tI{1∈I} , . . . , tI{d∈I}

)
1− C∗θ(1,...,1)

G (t, . . . , t)
,

expand the terms for the copula C
∗θ(1,...,1)
G (t) = min

(
tθ11 , . . . , t

θd
d

)
and using the asymp-

totic identity lnx ∼ x− 1

εH = lim
t↗1

∑
I⊂D (−1)|I|minθ(1,...,1)

(
tI{1∈I} , . . . , tI{d∈I}

)
1−minθ(1,...,1) (t, . . . , t)

,

= lim
t↗1

∑
I⊂D (−1)|I|min

(
tθ1I{1∈I} , . . . , tθdI{d∈I}

)
1−min (tθ1 , . . . , tθd)

= lim
t↗1

∑
I⊂D (−1)|I|

(
1− ln tmaxj∈I θj

)
1− (1− ln tmax1≤j≤d θj )

=
∑

I⊂D (−1)|I|+1 maxj∈I θj
max1≤j≤d θj

=

∑d
j=1 θj −

(∑d
j=1 θj −min1≤j≤d θj

)
max1≤j≤d θj

.

Thus, the result for (1) follows.

The proof for (2) follows from statements (1), (3) has arguments analogous to the above

proof replacing the copula C
∗θ(1,...,1)
G (t) =

∏d
j=1

(
tθ11 , . . . , t

θd
d

)
and (4) follows from De�nition

2.5.2 and Proposition 2.5.7. �

Proof. Corollary 2.5.11: this Corollary follows immediately from Proposition 2.5.10 (1).

�



CHAPTER 3

The Multivariate extremal index and the visualization of

measures of extreme dependence

�Extreme positions are not succeeded by moderate ones,

but by contrary extreme positions.�

(Friedrich Nietzsche)

3.1. Introduction

One of the most important assumptions underlying the currently known methods for

�tting multivariate extreme value distributions is that the observations of di�erent events are

independent. However, in �nance extreme events often occur simultaneously.

Such clusters of extreme events are important features in understanding risk over a given

time interval. This measure can be represented by the extremal index, which can be inter-

preted as a measure for the frequency of extremes to cluster in the limit. In particular, a

stationary sequence of random variables X is said to have an extremal index θ ∈ [0, 1] if
for every τ > 0 there exists a sequence of thresholds un such that nP (X1 > un) → τ and

P (
∨n
i=1Xi ≤ un) → exp (−τθ) as n → ∞, with θ = 1 corresponding to asymptotic indepen-

dence and θ → 0 to an increasing cluster of extreme observations (Leadbetter et al., 1983). In

a 1-dimensional case there are numerous techniques to calculate the extremal index and for

declustering a series of observations to obtain independent extreme values. See for example

Embrechts et al. (1997) and Beirlant et al. (2004), for a resume of these.

The notion of multivariate extremal index is relatively more complicated because this

parameter is now a function. A �rst de�nition of this concept was made by Nandagopalan

(1994). In fact, one can start from a stationary process on a d-dimensional space and reduce

the strength of temporal dependence between random sequences exceeding a d-dimensional

threshold sequence to the multivariate extremal index function (MEI).

A �rst statistical method to estimate the MEI was proposed by Smith and Weissman

(1996). They proposed two methods to calculate the MEI. The �rst method is based on a

discrete approximation of a ratio of two multivariate extreme value dependence functions. In

the second method they showed that under fairly general conditions, extremal properties of a

wide class of multivariate time series may be calculated by approximating the processes by a

multivariate maxima of moving maxima process, and together with some mixing conditions,

both processes share the same multivariate extremal index. However, the MEI is not the only

functional measure of interest. For example the functional of the distribution of the excesses

and the functional of the distribution of the cluster size are of interest too.

44
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In order to apply multivariate extreme value theory some form of data �ltering it is

necessary to ensure independence of the marginals. A few declustering schemes have been

proposed for multivariate sequences. The approach of Coles and Tawn (1991) is a multivariate

version of blocks declustering by assuming that each independent event has a standard length

of separation with other extreme event, while the approach of Nadarajah (2001) is a more

sophisticated extension, which exploits the knowledge of the clusters size and the cluster

distribution functional. In each case we need to choose one or more arbitrary parameter,

which can in�uence drastically our estimations.

The present study makes twofold contribution. First, it puts forward a new approach to

estimate extreme cluster functionals. Speci�cally the MEI and the cluster size probabilities.

Second, we use this framework to analyse the �nancial crisis in South East Asia in late 1997.

We found that, before and after the crisis, there was not a marked extreme dependence

between the Asian markets, and among the Asian market, Japan and the U.S.A.

The layout of the chapter is as follows. Section 3.2 reviews the main concepts related to

the MEI and cluster functionals. A new method for the estimation of the MEI is introduced

and it does not require an arbitrary choice of declustering parameters based on a property of

the time of exceedances over a sequence of thresholds. Section 3.4 discusses a new declustering

method based on a prior estimation of the MEI, so that the associated declustered time series

are supported by the limiting theory. Section 3.5 reviews a novel measure of tail dependence

introduced by Hsing et al. (2004), which allows to visualise the extreme tail dependence

and it will be of help to realize a complete analysis in the empirical section. In section 3.6

the performance of these methods are assessed through an application to real �nancial time

series, speci�cally the Asian crisis. In particular, we examine price linkages among Asian

equity markets in the period of crisis in 1997. Section 3.7 summarizes the conclusions and

remarks of this work.

3.2. The multivariate extremal index

We need a formal de�nition of what we understand as multivariate extremal index. Let

X be a d- dimensional stationary sequence with joint cumulative distribution function F (x)
belongs to the maximum domain of attraction of a multivariate extreme value distribution

H (x) (F ∈ MDA (H)). Moreover, it satis�es the long-range dependence conditions 4 (un)
of Nandagopalan (1994) for un > 0 and X̃ is an associated iid sequence of X with joint

distribution function F̃ ∈MDA (G).
Similarly, let

lim
n→∞

P (Mn ≤ un) = lim
n→∞

P

 d⋂
j=1

Mnj ≤ unj

 = exp {−µ ([0,x]c)} = H (x) ,

where Mn denotes the vector of the maxima of the stationary sequence X and

lim
n→∞

P
(
M̃n ≤ un

)
= lim

n→∞
P

 d⋂
j=1

M̃nj ≤ unj

 = exp {−µ̃ ([0,x]c)} = G (x)
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the vector of maxima of the associated iid sequence X̃, where µ and µ̃ are exponent measures

(see Resnick (1987)). Then, the multivariate extremal index of Xn is de�ned by the relation

θ (τ) =
µ ([0,x]c)
µ̃ ([0,x]c)

=
lnH (x)
lnG (x)

, (3.2.1)

where τ = τ (xj) = − lnH (xj) for all j = 1, . . . , d.
A stationary sequence of random variables X is said to have a multivariate extremal

index θ ∈ [0, 1] if for every τ ∈ Rd there exists a sequence of thresholds un ∈ Rd such that

nP (X1j > unj)→ τj for all j = {1, . . . , d}. This result allows extending the MEV theory of iid

sequences to the stationary case. A natural interpretation of the multivariate extremal index

is that it describes the strength of temporal dependence in the asymptotic distribution of the

vectors of componentwise maxima where θ = 1 corresponding to asymptotic independence

and θ → 0 an increment in the frequency of large observations in cluster (Smith and Weissman

(1996),Nandagopalan (1994)).

Some basic properties of the multivariate extremal index show that:

(1) 0 ≤ θ(τ) ≤ 1 for all τ > 0.
(2) θ (τ) = θ (cτ) for each τ ∈ Rd and c > 0.
(3) θj = limτi↘0 θ (τ1, . . . , τd), ∀i 6= j,

(4) and the bounds for a distribution with MEI θ (τ) are

Γ (τ)
d∨
j=1

θjτj ≤ θ (τ) ≤ Γ (τ)
d∑
j=1

θjτj ,

where Γ (τ) = limn→∞ nP (X1 � un), and τ ∈ Rd.

In particular, if G (x) and H (x) have independent marginals, then

θ (τ) =
d∑
j=1

θjτj/
d∑
j=1

τj . (3.2.2)

On the other hand, if G (x) and H (x) have completely dependent marginals, then

θ (τ) =
d∨
j=1

θjτj/
d∨
j=1

τj . (3.2.3)

These two results enable us to have a �rst approximation to the dependence between random

variables of the stationary sequence H (x) and the associated iid sequence G (x).
The key point of the estimation of the MEI is to express this as a ratio of two multivariate

Pickands dependence functions. The next de�nition shows that the multivariate extremal

index of a stationary sequence for a �xed τ can be estimated by univariate methods. Thus,

under some conditions of accuracy approximation, we can have a discrete approximation of

the function θ(τ).

Definition 3.2.1. (Smith and Weissman (1996)). Let X be a d -dimensional stationary

sequence with unit Frèchet marginals, i.e., Fj(x) = e−1/x for x ∈ Rd, and multivariate

extremal index θ(τ). De�ne the univariate stationary sequence χi(τ) = maxi≥1τdXid. Then

θ(τ) is the extremal index of the sequence {χi(τ)}i=ni≥1 .
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This de�nition shows that for a �xed τ we can obtain the 1-dimensional extremal index

of the sequence {χi (τ)}, and therefore, it can be estimated by univariate methods as the

interval estimator proposed by Ferro and Segers (2003).

Before we give a formal de�nition of this idea, let us replace the threshold of exceedances

by measurable sets

Sn : =
{

x ∈ Rd : x � un
}

(3.2.4)

of extreme observations in at least a marginal, that is, Xi,j > xj for some j = 1, . . . , d and

TS,n := P (Xi /∈ Sn | X1 ∈ Sn) for 2 ≤ i ≤ n, the time between inter-exceedances. Moreover,

let pSn = P (X1 ∈ Sn).
Let us de�ne the subsets

Wn = (−∞, un]c , (3.2.5)

and the triangular arrays B1,n, . . . , Br,n. Then, Bi,n (τ) = {χi (τ) ∈Wn} is de�ned with each

row composited of block-stationary events, that is, P (
⋃m
i=1Bi+k,n (τ)) = P (

⋃m
i=1Bi,n (τ)) for

every m = 1, . . . , r − 1, k = 1, . . . , r −m and n ≥ 1. This condition is relatively weaker than

the assumption that the vectors of indicator variables Ii = I (Bi (τ)) are strictly stationary.

For notational convenience, all right superscripts are used as indexes (not powers) through-

out the rest of this section. Denote pτm,n = P (
⋃m
i=1Bi+k,n (τ)) the probability of non observe

an extreme event in a block of length m, qτm,n = 1− pτm,n, pτn = pτ1,n and the mixing condition

ατs,l,n = max

{∣∣∣∣∣P
(

v⋂
i=u+1

Bc
i (τ) ∩

s+w⋂
k=s+v+1

Bc
k (τ)

)
− qτv−uqτw−v

∣∣∣∣∣
: u ≥ 0, v − u ≥ l, w − v ≥ l, w + s ≤ r

}
,

representing the strength of the dependence between arrays.

Let TB,n (τ) = min {i = 1, . . . , rn : Ii+1,n = 1 | I1,n = 1} be a random variable represent-

ing the times between exceedances in χn (τ) for a �xed τ > 0 with distribution

P (TB,n (τ) ≥ t | B1 (τ)) = P

(
t−1⋂
i=1

Bτc
i+1 | B1

)
= θt,n (τ) , (3.2.6)

where Ii,n is the indicator of the event Bi,n (τ) for n ≥ 1. A simple interpretation of (3.2.6)

is as the probability of that the time between two extreme events will be at least t− 1. This
result allows extending the one dimensional interval estimator of Ferro and Segers (2003) to

the multidimensional case in the next theorem.

Theorem 3.2.2. Let X be a d-dimensional stationary sequence with unit Frèchet margins,

i.e., Fj(x) = e−1/x, for x ∈ Rd and multivariate extremal index θ(τ). De�ne the univariate

stationary sequence χi(τ) = maxi≥1τdXid, with
∑d

j=1 τj = 1 and τj ∈ [0, 1] for all j = 1, . . . , d.
Then θ(τ) is the extremal index of the sequence {χi(τ)}i=ni≥1 . Hence, the normalized inter-

arrival time between extreme events in X is approximately distributed as follows

P (pSnTS,n > x)→ P (pτnTB,n (τ) ≥ x) = θn (τ) exp (−xθn (τ)) + o (1) , (3.2.7)

for x > 0.
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The multivariate extremal index θ (τ) is one of many other measures of extreme de-

pendence, exploring other characteristics we can obtain other interesting properties of the

stationary sequence X, such as the cluster size, the peak of the excesses, or the sum of all

excesses.

Yun (2000) called this type of measures cluster functionals and he showed how to �nd

some limit distributions for the high order Markow chain case. A more general extension

to stationary sequences was described by Segers (2003). Now, we will study some statistics

based on such cluster functionals.

Definition 3.2.3. (Yun (2000)) A measurable map c : R ∪ R2 ∪ R3 ∪ · · · → R is called

a cluster functional if for all integers 1 ≤ u ≤ v ≤ r and for all (x1, . . . , xr) such that xi ≤ 0
whenever i = 1, . . . , u− 1 or i = k + 1, . . . , r we have c (x1, . . . , xr) = c (xu, . . . xv).

A natural de�nition of cluster functionals can be written in terms of the distribution of

the stationary sequence conditional on the event that the �rst variable belongs to a subset

like Wn. Roughly speaking, these are functionals which depend on all shortest vectors of

observations containing exceedances over a given high threshold. An asymptotic theory on

estimators of functionals of that type would be a signi�cant step forward towards a general

approach to analyze the extremal dependence structure of stationary time series.

Definition 3.2.4. (Segers (2003)) Let {χi (τ)} be stationary for a τ ∈ [0, 1]d. For integers
1 ≤ u ≤ v ≤ r as in De�nition 3.2.3 such that the next condition is accomplished

lim
m→∞

lim sup
n→∞

r∑
i=m+1

P (χi (τ) > un | χ1 (τ) > un) = 0

so that the expected cluster size is uniformly bounded. Then, for every sequence of cluster

functionals cn and measurable sets An ⊂ R we have

P (cn (χi (τ)− un)ri=1 ∈ An |
∨r
i=1 χi (τ) > un)

∼ θ (τ)−1 [P (cn (χi (τ)− un)ti=1 ∈ An | χ1 (τ) > un
)

−P
(
cn (χi (τ)− un)ti=2 ∈ An,

∨t
i=1 χi (τ) > un | χ1 (τ) > un

)] (3.2.8)

as n→∞, where θ (τ) is the multivariate extremal index for a �xed τ > 0.

The most of cluster functionals of our interest have the form

cn (x1, . . . , xr) =
r∑

i=−m+2

φn (xi, . . . , xi+m−1) , (3.2.9)

for all i = 1, . . . ,m where φn : Rm → [0,∞) is a measurable function such that φn (x1, . . . , xm = 0)
if
∨m
i=1 xi ≤ 0.
Cluster functionals based on this representation (3.2.9) are for example for m = 1 and

φn (χi (τ)) = I {Bi,n (τ)} the number of exceedances, for m = 1 and φn (χi (τ)) = max (x, 0)
we obtain the sum of all excesses.

A cluster functional that is not of this type is the duration of a cluster that corresponds

to the functional

cn (x1, . . . , xr) = max {j − i+ 1 : 1 ≤ i ≤ j ≤ r, xi > 0, xj > 0} .



Estimators of multivariate extremal index 49

Moreover, following Leadbetter et al. (1983) for the one dimensional case we de�ne the

functional of the cluster size distribution for the multivariate case in function of the associated

stationary sequence {χi (τ)} in the next de�nition.

Definition 3.2.5. Let X be a d -dimensional stationary sequence with unit Frèchet mar-

gins and MEI θ(τ), and χi(τ) = maxi≥1τdXid the associated stationary sequence for τ ∈ [0, 1]d

with multivariate extremal index θ(τ). Then the functional of cluster size distribution of X
can be written in terms of χi(τ) as follows

πn (τ, k) = P

[
rn∑
i=1

I {Bi,n (τ)} ≥ k |
rn∨
i=1

χi (τ) ∈Wn

]

= θ (τ)P

[
rn∑
i=1

I {Bi,n (τ)} = k − 1 | χ1 (τ) ∈Wn

]
+ o(1)

where Wn is the set of extreme events and rn = o (n).
Furthermore, Hsing et al. (1988) give extra assumptions for a �xed τ under which we

obtained the mean of the limiting cluster size distribution θ (τ)−1 = limn→∞
∑∞

k=1 kπn (τ, k).

3.3. Estimators of multivariate extremal index

Unlike the interval estimator proposed by Ferro and Segers (2003), here we exploit the fact

that two consecutive exceedances follow a point mass-exponential mixture distribution. If we

display pτnTB,n (τ) against standard exponential quantiles, we will obtain one segment com-

posed of zeros and a line with gradient θ (τ)−1, which intersect each other at (− log θ (τ) , 0).
To ensure that the contributions from the smallest inter-exceedance times are indeed zero we

use pτn (TB,n (τ)− 1) instead of pτnTB,n (τ).
We normalize the collection of inter-exceedance times by its means, and order them in

increasing order, which de�ne a new sequence{Zi}N−1
i=1 . Thus, we can compare this with a

collection of standard exponential quantiles de�ned as qi = − log (1− i/ (N − 1)).
If the sequence {Zi, qi} corresponds to the limiting distribution of pτn (TB,n (τ)− 1) we

can hope that the resultant model is of the form Z =
(
qi − log θ (τ)−1

)
/θ (τ). Applying a

weighted least square procedure to the next model

f
(
θ−1
)

=

{
N−1∑
i=1

pi
(
max

(
Zi −

(
qi − log θ−1

)
/θ, 0

))2}
, (3.3.1)

where pi =

 N−1∑
j=N−i

j−2

−1

are the weights choosing of such form, so that Zi is an ordered

sample. Thus, the weighted least square estimator for the inter-exceedance times is de�ned

as

θ̃wlsn = arg min
{
f
(
θ−1
)}−1

. (3.3.2)

Note that using the exponential structure of the inter-exceedances times and the fact that

a proportion of (1− θ) exceedances constitute other cluster, then, choosing from the original

sequence {Zi} the largest
⌊
θ̃wlsn (N − 1)

⌋
gap produces a new set of inter-exceedances times
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obtained from the �rst estimation. Thus, an iterative method using equations (3.3.1) and

(3.3.2) can be used until it reaches a limit, where there are no di�erences between the gaps.

Just as the limiting distribution of the inter-exceedance times has been used to derive

the interval estimator for the extremal index in Ferro and Segers (2003), so the limiting

distribution if {χi (τ)} is m-dependent can be used to derive an estimator for the cluster size

distribution.

πn (τ, k) = ek −
k−1∑
i=1

ek−iπn (τ, i) ,

for j ≥ 2 and πn (τ, 1) = e1, where an estimate for ek based on the time of exceedances is

ẽk =
2 (N − 1)

∑N−1−k
i=1 min (TB,i − 1, TB,i+k − 1)

(N − 1− k)
∑N−1

i=1 (TB,i − 1)
.

Consistency of the interval estimator for m-depended processes can be found in Ferro and

Segers (2003).

Example 3.3.1. Consider a Multivariate maxima of moving maxima process (M4), Xn =
Xn,j =

∨
l≥1

∨
∞<k<−∞ αlkjψl,n−l, for j = 1, . . . , 3, l = 1 and 1 ≤ k ≤ 3, where {α111, . . . , α131} =

1
3 , {α111, α121} = 1

2 and α113 = 1 are non negative constants satisfying
∑

l≥1

∑
∞<k<−∞ αlkj =

1 for j = 1, . . . 3 and ψln is a vector of iid unit Frèchet random variables. The M4 process was

introduced by Smith and Weissman (1996) and it has the particularity that we can derive

the multivariate extremal index easily. The extremal index of each marginal is clearly θ1 = 1,
θ2 = 1

2 and θ3 = 1
3 , hence the cluster size are 1, 2 or 3.

For ease of the illustration we calculate �rst the bivariate extremal index of Xn =
{Xn,1, Xn,2}. Following Smith and Weissman (1996) we calculate the bivariate extremal

index by means of Pickand's dependence function. Observe that doing 1
u = 1

x1
+ 1

x2
we get

F (x1, x2) = P (Xi,1 ≤ x1, Xi,2 ≤ x2)

= P (ψi ≤ 2x2 ∧ 3x1, ψi+1 ≤ 2x2 ∧ 3x1, ψi+2 ≤ 3x1)

= exp
{
−1
u

[
(2w + 1)

3
∨ (1− w)

]}
and for u→∞

lim
n→∞

P (M1,n ≤ u) = lim
n→∞

P

(
n∨
i=1

Xi,1 ≤ u,
n∨
i=1

Xi,2 ≤ u

)

= lim
n→∞

P

(
n∨
i=1

ψi ≤
2u
w
∧ 3u

(1− w)

)

P
(
ψn+1 ≤

2u
w
∧ 3u

(1− w)

)
P
(
ψn+2 ≤

3u
(1− w)

)
→ exp

{
−
[

2
w
∨ (1− w)

3

]}
the limit follows.
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From the de�nition of the extremal index we know that P (Mn ≤ u) ≈ F θ(w) (u), when
un →∞, so that

θ (w) ≈ logP (Mn ≤ u)
n logF (u)

=

1
3 0 < w ≤ 2

5

3w
2(2w+1) 0 < w ≤ 1.

Moreover, it is easy to prove, that the limiting cluster size probabilities for the sizes 2 and

3 satis�es

π (2, w) =

0 0 < w ≤ 2
5

5w−2
2w+1 0 < w ≤ 2

5

, and π (3, w) =

1 0 < w ≤ 2
5

3(1−w)
2w+1 0 < w ≤ 2

5 .

To show the quality of our estimator we simulate 10.000 realizations of this bivariate

process (Xn,1, Xn,2). The Figure 3.3.1 displays the results of the simulation. The bivariate

extremal index is calculated as in (3.3.2) for wi = i/40, i = 1, . . . , 40 and smoothed by

averaging this with a windows sample of size k = 3 , i.e.

θ̂n,k (wi) =
1

2k + 1

k∑
j=−k

θ̂n (wi−j) .

This result is displayed on the left-top of the �gure. The con�dence intervals are calculated

as in Ferro and Segers (2003). The grey line is the true extremal index, while the black line

is the estimated. The dashed lines display the con�dence interval.

The plot on the right-top depicts the root of the mean squared error (MSE)

MSE (wi) =
1
m

m∑
j=1

(
θ̂

(j)
n,k (wi)− θ (wi)

)2
,

where m = 200 is the number of estimations of θ̂n,k (wi) based on m di�erent simulations of

the bivariate process (Xn,2, Xn,3) of sample size 10.000.

The bottom-left plot displays the estimations of the cluster size probabilities of size two

and three, and the bottom-right plot is the estimated root of the MSE. As we can observe

the results are very encouraging.

Example 3.3.2. Let us now extend this example to the trivariate case Xn = {Xn,1, Xn,2, Xn,3}.
For 1

u =
∑3

j=1
1
xj

and wk = u
xixj

for k 6= {i, j} we have that

F (x1, x2, x3) = P (Xi,1 ≤ x1, Xi,2 ≤ x2, Xi,3 ≤ x3)

= P (ψi ≤ 1 ∧ 2x2 ∧ 3x1, ψi+1 ≤ 2x2 ∧ 3x1, ψi+2 ≤ 3x1)

= exp
{
−1
u

[w1

3
∨ w2

2
∨ w3 +

w1

3
∨ w2

2
+
w1

3

]}
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Figure 3.3.1. Results of the bivariate extremal index (top-left) and cluster
size probabilities (bottom-left) estimations for the Example 3.3.1.

and

lim
n→∞

P (M1,n ≤ u) = lim
n→∞

P

 3⋂
j=1

n∨
i=1

Xi,j ≤ u,


= lim

n→∞
P

(
n∨
i=1

ψi ≤
3u
w1
∨ 2u
w2
∨ u

w3

)

P
(
ψn+1 ≤

3u
w1
∨ 2u
w2

)
P
(
ψn+2 ≤

3u
w1

)
→ exp

{
−
[w1

3
∨ w2

2
∨ w3

]}
and of this form we get the estimation of the trivariate extremal index

θ (w) = θ (w1, w2, w3) =
w1
3 ∨

w2
2 ∨ w3

w1
3 ∨

w2
2 ∨ w3 + w1

3 ∨
w2
2 + w1

3

, (3.3.3)

where wj ∈ [0, 1] for j = 1, . . . , 3 and
∑3

j=1wj = 1.

Figure 3.3.2 displays a simulation for the last example with 10.000 realizations of this

trivariate process. The di�erences between the true and the estimated MEI are almost im-

perceptible. The maximum MSE estimated is the order of 0.001 for this example.

Remark 3.3.3. Until now we have estimated the multivariate extremal index in a set of

the form Sd =
{

w ≥ 0 :
∑d

j=1wj

}
. However, this form is not restrictive. Other alternative

is to estimate this in polar coordinates using the property θ (w) = θ (cw) for c > 0 . Setting
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θθ̂n((w1,,  w2,,  w3))

w1

w2

w3

θθ̂n((w1,,  w2,,  w3))

w1

w2

w3

θθ̂n((w1,,  w2,,  w3))

w1

w2

w3

θθ̂n((w1,,  w2,,  w3))

w1

w2

w3

Figure 3.3.2. Top panel: The true trivariate extremal index of aM4 process
in Example 3.3.2. Bottom panel: estimation of the trivariate extremal index.

c = w−1
1 as follows

θ (w) = θ (w1, . . . , wd) = θ (1,w2/w1 . . . ,wd/w1)

= θ (1, tanϕ1, . . . , tanϕd−1)

= θ (tanϕ1, . . . , tanϕd−1) , for ϕj ∈ [0, π/2]

with the convention 0/0 = 0 and ∞/0 =∞.

Example 3.3.4. We consider the M4 process in the Example 3.3.1. The trivariate ex-

tremal index for this process in polar coordinates is derived easily of (3.3.3) as follows

θ (ϕ) = θ (ϕ1, ϕ2) =
1
3 ∨

tanϕ1

2 ∨ tanϕ2

1
3 ∨

tanϕ1

2 ∨ tanϕ2 + 1
3 ∨

tanϕ1

2 + 1
3

, for ϕj ∈ [0, π/2] .

Figure 3.3.3 shows the simulation for this estimator. The use of the estimator with polar

coordinate will be more clear, when we introduce a tail dependence function in the section

3.5.

3.4. The multivariate declustering procedure

Multivariate declustering techniques play a very important role in extreme value theory for

stationary sequence. Methods for one dimensional case are well established (see Coles (2001);

Laurini and Tawn (2003) for more references). However, there are much less studies on the

multivariate case. Only two procedures are known for the author; Coles and Tawn (1991) and

Nadarajah (2001). The �rst approximation is a multivariate version of the blocks method;
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Figure 3.3.3. Trivariate extremal index of the M4 process in Example 3.3.1
in polar coordinates.

independent events are �ltered out by concatenating the maxima of the processes within each

block. The second approximation can be considered an extension of the run method. The

two methods however need the choice of one or more declustering parameters. The method

proposed below uses the information provided by the multivariate extremal index to perform

this task.

The di�culty in declustering a multivariate stationary sequence is due to the fact that

MEI is now a function which is in�uenced by the dependency among marginals, that is, the

extreme value copula. Following Ferro and Segers (2003) the limiting distribution (3.2.7) may

be used to identify clusters without making an arbitrary choice.

If θn (τ) is an estimate of the extremal index for �xed τ ∈ [0, 1]d, then the largest nc −
1 = b(N − 1)θn (τ)c of the interexceedance times Ti,B, 1 ≤ i ≤ N − 1, are approximately

intercluster times. This de�nes a partition of the remaining interexceedance times into sets

of intracluster times. By Theorem 2.2.22, the point process of exceedance times is compound

Poisson, the intercluster times are independent of one another, and the sets of intracluster

times are independent both from another and from the intracluster times.

Concretely, if Tnc is the nc-th largest interexceedance time and Tij ,B is the j-th in-

terexceedance time to exceed Tnc,B. Then,
{
Tij ,B

}nc−1

j=1
is a set of approximately indepen-

dent intercluster times. In the case of ties, decrease nc until Tnc−1,B > Tnc,B. Let also

Tj =
{
Tij−1+1, . . . , Tij−1

}
, where i0 = 0, inc = N and Tj = ∅ if ij = ij + 1. Then, {Tj}ncj=1

is a collection of approximately independent sets of intracluster times. If we estimate θ with

θintern , then this approach declusters the data into nc clusters without requiring an arbitrary

selection of auxiliary parameter and it is justi�ed by the limiting theory.
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The multivariate decluster procedure for a d-variate stationary sequence to obtain inde-

pendent extreme events is as follows.

Assume that we can estimate for each univariate marginal about a threshold un =
{un1, . . . , und} the extremal index and the independent extreme events X̃njj for j = 1, . . . , d
as in Ferro and Segers (2003). Furthermore, let Si be the time of at least one extreme event

in the multivariate sequence Xj for j = 1, . . . , d. Calculate the multivariate extremal index

for the sequence χn (τ) with τ = {1/d, . . . 1/d}. Applying the procedure of Ferro and Segers

(2003) to identify approximately independent clusters in the sequence χn (τ) we obtain the

number of clusters nχ, the functional of the cluster size, the excess over threshold and the

cluster maxima. Note, that we can estimate the associated iid sequence the extreme events

χ̃n (τ), however, the choice of the independent events χ̃n (τ) could not coincide with the in-

dependent extreme events in the marginals X̃njj of the stationary sequence, because of the

di�erences in the magnitude of the marginals.

Hence, the idea is to maximize the number of independent extreme events in each di-

mension and in the multivariate stationary sequence, and at the same time the dependence

between the marginals.

Now, with the help of the estimated multivariate extremal index θn (τ) and the number of

independent clusters nχ, we can decluster the sequence Si by identifying the cluster maxima

corresponding to the most extreme value of one of the marginals or of the variable of interest.

For illustration of this procedure we observe the stationary sequence in Figure 3.4.1.

The �rsts three graphics show the extreme events identi�ed in each margins by the interval

decluster method to produce independent events. Let us de�ne these independent events as

Yj,t, where j indicates the j- marginal and t the time of occurrence of the peaks. Thus, for

example Y1,4 corresponds to the �rst cluster maxima event in the �rst margin at the time 4.
The fourth graphic displays the extreme events identi�ed in the 1-dimensional process

χn (τ) with τ = {1/3, . . . 1/3}. In the bottom panel we show the processMn (un) =
∨3
j=1Xn,j .

Observe, that the clusters in di�erent marginals are strongly dependent in time for the �rst

three graphics, so that the cluster maxima Yj,t cannot be assumed independent between

marginals.

Through the Smith's Theorem 3.2.1 and Theorem 3.2.2 we can use the sequence χn (τ)
to approximate θn (τ) for a �xed τ = {1/3, . . . 1/3}. With the estimator of θn (τ) an one

dimensional decluster procedure follows immediately for χn (τ) to obtain Yχn,t and nc cluster
without requiring an auxiliary parameter.

With this method we form a series of d-variate pseudo sequence of independent extreme

events represented in the last graphic by y. However, it is possible that events, which are in-

dependent in one marginal are not taken into account, because of the di�erence of magnitudes

in the sequence χn (τ), as are the events {Y1,36, Y1,92}.
To include these events in the multivariate decluster procedure we observe if the times of

this cluster maxima are independent from the cluster maxima obtained in the fourth graphic.

This can be inferred if there are not other extreme events in the interval [t− r, t+ r] for the
cluster maxima t in the marginal k for all k 6= j : {1, . . . , d}. For this example r = 2. Thus,
these events can be included in the multivariate sequence of the pseudo iid random variables.



The multivariate declustering procedure 56

Figure 3.4.1. An example of a multivariate decluster procedure.

Notice, that the events Yx,t are a concatenation of a d-variate sequence, for example

for Y x,64 = {Y1,64, Y2,64,X3,64}. An important characteristic and consequence of the decluster

method is that for the marginal j = 3, the maximum of each cluster does not coincide with the

cluster maxima of the multivariate sequence and it cannot be also considered as independent.

Naturally this example shows an extreme case, but it is not impossible.

For this case we propose two solutions as it is made in Nadarajah (2001). The �rst is

replacing the sequence Xn,3 for a equivalent lagged-sequence X
′
n,3 = Xn−1,3. Thus, the cluster

maxima will coincide with cluster maxima of the multivariate sequence. The second solution

is to take simply the cluster maxima of the sequence Xn,3 and to conserve the cluster maxima

of the multivariate sequence for the other marginals. However, this procedure can include

events which are not actually realized, as in the block method (see Coles and Tawn (1991)).
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3.5. The new measure of tail dependence

Other important problems in multivariate extreme value theory are the dependence be-

tween d-variate sequences. An increasing notion for modelling dependences in multivariate

analysis is the concept of Copula.

Let X = {Xn1, . . . , Xnd} be an iid d-variate random vector with common distribution

function F (x) for x ∈ Rd with continuous margins. Suppose that there exist norming con-

stants anjand bnj ∈ R+ for j = 1, . . . , d, such that the sequence of distribution functions

P

 d⋂
j=1

Mnj ≤ xjbnj + anj

 ,

where Mij =
∨n
i=1Xij , converges to a limit distribution G (x) with non-degenerate margins,

i.e.

lim
n→∞

Fn (xjbnj + anj) = G (x) (3.5.1)

for all x ∈ Rd. In addition, all univariate marginal distribution functions are also extreme

value distributions

G (∞, . . . , xj , . . . ,∞) = exp
{
− (1 + γjxj)

−1/γj
}

for some γj ∈ R.
Note, that the limit distribution (3.5.1) can be written as

lim
n→∞

n (1− F (xjbnj + anj)) = − lnG (x) .

Since that P (·) is a monotone function, a continuous version of the limit remains the same.

lim
t→∞

t (1− F (xjbj (t) + aj (t))) = − lnG (x) . (3.5.2)

Einmahl et al. (2001) proposes for the bivariate case a polar coordinate representation

such as follows

G

(
xγ1

1 − 1
γ1

,
xγ2

2 − 1
γ2

)
= exp

{
−
ˆ π/2

0

(
1 ∧ tanϕ

x1
∨ 1 ∧ cotϕ

x2

)
Φ (dϕ)

}
where Φ is a �nite measure on [0, π/2], with the condition that

ˆ π/2

0
(1 ∧ tanϕ) Φ (dϕ) =

ˆ π/2

0
(1 ∧ cotϕ) Φ (dϕ) = 1.

The limit (3.5.2) becomes simpler if we adopt the representation of Einmahl et al. (2001),

which yields to

lim
t→∞

tP
(

1− F1 (X1,1) ≤ x1

t
or 1− F2 (X1,2) ≤ x2

t

)
= lim

t→∞
tP
(
tF1 (X1,1) ≤ x1 or tF2 (X1,2) ≤ x2

)
= lim

t→∞
tP
(
t
(
F1 (X1,1) , F2 (X1,2)

)
∈ ([x1,∞]× [x2,∞])c

)
=
ˆ π/2

0

(
x1

1 ∨ cotϕ
∧ x2

1 ∨ tanϕ

)
Φ (dϕ) , x1, x2 ≥ 0.
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Formally, we have for any Borel set A in [0,∞]2 \ {(∞,∞)}, a measure Λ on [0,∞]2 \
{(∞,∞)} de�ned by

lim
t→∞

tP
((

1− F1 (X1,1) , 1− F2 (X1,2) ∈ At−1
))

= Λ (A) (3.5.3)

with Λ (∂A) = 0 (where ∂A = A \Ac), which is equivalent to

Λ (([x1,∞]× [x2,∞])c) =
ˆ π/2

0

(
x1

1 ∨ cotϕ
∧ x2

1 ∨ tanϕ

)
Φ (dϕ) , x1, x2 ≥ 0.

The relation (3.5.3) shows us how we can estimate the measure Λ from F , hence an intuitive es-

timator for F can be calculated by their empirical counterparts Fnj(x) = 1
n

∑n
i=1 1(−∞,x] (Xi,j),

which yields to the following estimator of Λ.

Λ̃t/n,n (A) = tPn
(
t

n
(Fn1, Fn2) ∈ A

)
=
t

n

n∑
i=1

1A

{
t

n
(Fn1, Fn2)

}
,

where 1A is the indicator function for the events belong to A. Writing τ = t/n we get

Λ̃τ,n (A) = τ
n∑
i=1

1A (τ (Fn1, Fn2)) .

Moreover, the extension of this measure to higher dimensions is straightforward. Consider

that the limiting distribution of normalized componentwise maxima of X converges to the

maximum domain of attraction of a multivariate extreme distribution. Furthermore, de�ne

the Borel set [0,∞]d \ {∞}, then the measure Λ can be estimated directly by

Λ (A) = lim
t→∞

tP
(
t
(
F1 (X1,1) , . . . , Fd (X1,d)

)
∈ A

)
(3.5.4)

and

Λ (([x1,∞]× · · · × [xd,∞])c) =
ˆ

Sd−1

wjxjH(dw),

which has the property ˆ
Sd−1

wjH(dw) = 1, j = 1, . . . , d (3.5.5)

for any Borel set A ⊂ [0,∞]d \ {∞} with Λ (∂A) = 0 and

Sd−1 =

(w1, . . . , wd−1) :
d−1∑
j=1

wj ≤ 1, wj ≥ 0, j = 1, . . . , d− 1


is the (d− 1) dimensional unit simplex in Rd. Further, H induces a positive �nite measure

on Sd−1.

In practical terms, the empirical estimator is written as follows

Λ̃τ,n = τ
n∑
i=1

1A (τ (Fn1, . . . Fnd)) . (3.5.6)

This simple estimator was introduced by Hsing et al. (2004) to estimate tail dependence in

higher dimensions. We will use this estimator to derive other measures of dependence.

3.5.1. Characterization of the new measure of extreme dependence. We begin

with the equations (3.5.4) and (3.5.6). In order to make inference in the dependence of
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extremal events we need to de�ne the set A in a determining class of Λ. A set with such

characteristics is

Dϕ1,...,ϕd−1
:=
{

(x1, . . . , xd) ∈ [0,∞]d : x1 ∧ x2 tanϕ1 ∧ · · · ∧ xd tanϕd−1 ≤ 1
}
,

which has a clear geometric interpretation. This set was de�ned by Hsing et al. (2004) to

measure tail dependence in a multivariate framework. For ease of the notation set

Λ (x1, . . . , xd) := Λ (([x1,∞]× · · · × [xd,∞])c) ,

replacing Dϕ1,...,ϕd−1
in Λ we obtain

ψ (ϕ1, . . . , ϕd−1) := Λ
(
Dϕ1,...,ϕd−1

)
= Λ (1, cotϕ1, . . . cotd−1) . (3.5.7)

We will call ψ (ϕ1, . . . , ϕd−1) the tail measure.

The empirical counterpart of this measure of dependence is obtained by

ψ̃τ,n (ϕ1, . . . , ϕd−1) = τ
n∑
i=1

1A

Fn1 ≤ τ−1 or
d⋃
j=2

Fn2 ≤ τ−1 cotϕj−1

 , (3.5.8)

where Fn1 = 1
n

∑n
i=1 1(−∞,x] (Xi,j).

Following (3.5.8), one can deduce that the good results of the estimator are conditioned

by the election of τ . Some properties of this function, which can be of great help on the

context of estimation, are resumed in the next proposition.

Proposition 3.5.1. For all ϕj ∈ [0, π/2] we have

(1) The tail function ψ (ϕ1, . . . , ϕd−1) is convex and bounded by ψdep (ϕ1, . . . , ϕd−1) ≤
ψ (ϕ1, . . . , ϕd−1) ≤ ψind (ϕ1, . . . , ϕd−1) where

ψdep (ϕ1, . . . , ϕd−1) = 1 ∨ cotϕ1 ∨ · · · ∨ cotϕd−1

and

ψind (ϕ1, . . . , ϕd−1) = 1 + cotϕ1 + · · ·+ cotϕd−1

(2) αψ (ϕ1, . . . , ϕd−1) = ψ (αϕ1, . . . , αϕd−1) for all α > 0.
(3) for all aj > 0 with j = 1, . . . , d− 1 we have1 ∧
d−1∧
j=1

aj

ψ (ϕ1, . . . , ϕd−1) ≤ ψ (a1ϕ1, . . . , ad−1ϕd−1) ≤

1 ∨
d−1∨
j=1

aj

ψ (ϕ1, . . . , ϕd−1) .

From (3.5.8) we observe that the di�culty in choosing τ is equivalent to the choice of a high

threshold in classical extreme value theory. Since the homogeneity property 2 in Proposition

3.5.1, in the empirical section we pick τ so that ψτ,n mimics this property for a parameter

u > 0. So for a �xed τ , we graph{
ψ̃τ,n (uϕ1, . . . , uϕd−1)
uψ̃τ,n (ϕ1, . . . , ϕd−1)

, u > 0

}
. (3.5.9)

The idea is that the ratio should be roughly constant and close to 1 for any u > 0, when
τ is chosen adequately. The plots will look di�erent for various values of τ , we will choose

therefore τ for which the homogeneity property is more evident.
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Now we give some results for the case that the subexponential property is present. A distri-

bution function F on the non negative real line is called subexponential if limx→∞
F ∗n(x)

F (x)
= n

for all n ≥ 2, where F ∗n denotes the n-fold Stieltjes convolution of F with itself.

Definition 3.5.2. Let X := {X1, . . . Xd} be a d-variate vector of iid non-negative ran-

dom variables with distribution F in Rd, with F (x) < 1. The multivariate distribution is

subexponential
(
F ∈ S

(
Rd
))

if and only if

lim
t→∞

F ∗2 (tx)
F (tx)

= 2 for all x > 0 with
d∨
j=1

xj <∞

and the iid copies of Xj satisfy the next relations

P (Snj > xj) ∼ nP (Xj > x) ∼ P (Mnj > xj)

as xj →∞for n = 2, 3, . . . , and j = 1, . . . , d, where Snj =
∑n

i=1Xij and Mnj =
∨n
i=1Xij .

Note that multivariate subexponentiality implies multivariate regular variation. A text-

book treatment of subexponential distributions is given in Embrechts et al. (1997); Kluppel-

berg (1998). Results in multivariate subexponetiality can be found in Omey et al. (2006);

Omey (1994).

Some interesting properties of the tail function ψ on relation to this class of distributions

is resumed as follows.

Proposition 3.5.3. Suppose that X := {X1, . . . Xd} is a d-variate vector of iid non-

negative random variables with multivariate subexponential distribution F ∈ S
(
Rd
)
. Further,

denote the notation ψA,B the tail function between the components A and B. Then, as x1, x2 →
∞,

(1) for an iid non-negative random variable X1 = X11, . . . Xn1 with F1 ∈ S, such that
F (x2)

F (x1)
→ cotϕ1, we have

ψMjn,Xj,n+1 (ϕ1) ∼ (n− 1) + ψXj,1,Xj,n+1 (ϕ1) ,

(2) for two iid non-negative random variables X11, . . . Xn1 and X12, . . . Xn2 with F1, F2 ∈
S

ψSn1,Sn2 (ϕ1) ∼ nψXn1,Xn2 (ϕ1)

(3) Let Z and X1 ∈ X be two independent random variables, with subexponential

distributions G,F1 ∈ S, such that P (Xj > x) = o (P (X1 > x)) and P(Z>x2)
P(X11>x1) →

cotϕ1 for all j 6= k. Then

ψSn1,Z (ϕ1) ∼ ψX1Z (ϕ1) .

(4) De�ne an iid non-negative random variable X1 = X11, . . . Xn1 with distribution

F1 ∈ S and regular varying tail function F with index −α, and µ1, . . . µn and

υ1, . . . , υn non-negative constants. Further, Let χ =
∑n

i=1 µiXi1 and Υ = υiXi1

be two combinations of random variables with distributions Gχ, GΥ ∈ S. then the
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tail function is approximated by

ψχΥ (ϕ1) ∼

(
n∑
i=1

(
µ−1
i ∧ υ

−1
i cotϕ1

)−α)
.

(5) Let X11, . . . Xn1 and X12, . . . Xn2 be iid non-negative regular varying random vari-

ables with index α, µ1, . . . µn and υ1, . . . , υn non-negative constants. Furthermore,

de�ne χ1 =
∑n

i=1 µiXi1 and χ2 =
∑n

i=1 υiXi2 with distributions Gχ1 , Gχ2 ∈ S. Then

ψχ1χ2 (ϕ1) =
P (χ1 > x1 or χ2 > x2)

P (X1 > x1)
∼

n∑
i=1

µαi +
n∑
i=1

υαi cotϕ1.

Hsing et al. (2004) introduce a new dependence function which allows us to capture the

complete extreme dependence structure and to present a nonparametric estimation procedure.

The main advantage of this new dependence function is the possibility of visualization of

extreme tail dependence in di�erent directions.

Definition 3.5.4. (Hsing De�nition 4.2) Let X := {Xn1, . . . Xnd} be a d-variate vector
of iid non-negative random variables with distribution F ∈ Rd, and thresholds x1, . . . , xd →
∞ such that

F (xj)

F (x1)
→ cotϕj−1for all j = 2, . . . , d, The d−variate classical tail dependence

function λ is de�ned as follows

λd = lim
x→∞

P

 d⋂
j=1

Xj > x


P (X1 > x)

. (3.5.10)

We de�ne a new measure of tail dependence in terms of the dependence measure ψ. We call

this measure the functional tail dependence and it is de�ned as follows

ρ (ϕ1, . . . , ϕd−1) =

1 +
d−1∑
j=1

cotϕj − ψ (ϕ1, . . . , ϕd−1)

1 +
d−1∑
j=1

cotϕj −
d−1∨
j=1

cotϕj

, for ϕj ∈ [0, π/2] (3.5.11)

where 1 +
d−1∑
j=1

cotϕj and
d−1∨
j=1

cotϕj are the tail functions ψ in the complete independent and

dependent case. The limits of the new tail dependence function ρ are 0 or 1 corresponding to

weak and complete dependence, respectively. Note, that when the functional tail dependence

ρ is evaluated in π/4 it is equivalent to the classical measure λ.

The proof of this de�nition can be found in the Appendix of Hsing et al. (2004). Note

that ρ (ϕ) extends the de�nition of extreme tail dependence from a single direction, to all the

directions. Moreover, ρ (ϕ) is a copula property, hence it is invariant under monotone transfor-

mation of the marginal distributions. In the practical application we replace ψ (ϕ1, . . . , ϕd−1)
by its empirical counterpart ψ̃n (ϕ1, . . . , ϕd−1).
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Example 3.5.5. (The tail dependence function of M4 processes). Let X = Xn,j =∨
l∈Z+

∨
∞<k<−∞ αlkjY l,n−k be a stochastic process, for j = 1, . . . , d, αlkj non negative con-

stants satisfying
∑

l∈Z+

∑
∞<k<−∞ αlkj = 1 and Yln is a vector of iid unit Frèchet random

variables. Notice that

P
(
Xi,1 > x or

⋂d
j=2Xi,j > x tanϕj−1

)
= 1−

∏
l∈Z+

∏
∞<k<−∞

P
(
Yl,n−k ≤ x

(
α−1
l1k ∧ α

−1
l2k tanϕ1 ∧ · · · ∧ α−1

ldk tanϕd−1

))
= 1− exp

−1
x

∑
l∈Z+

∑
∞<k<−∞

αl1k ∨ αl2k cotϕ1 ∨ · · · ∨ αldk cotϕd−1

 .

Furthermore, note that the limit of P
(⋂d

j=1Xi,j > xj

)
/P (Xi,1 > x1)→ ψ (ϕ1, . . . , ϕd−1)

for xj →∞. Hence,

ψ (ϕ1, . . . , ϕd−1) = limx→∞

1− exp

− 1
x

∑
l∈Z+

∑
∞<k<−∞

αl1k ∨ αl2k cotϕ1 ∨ · · · ∨ αldk cotϕd−1


exp

{
− 1
x

}
and by L'hopital we obtain

ψ (ϕ1, . . . , ϕd−1) =
∑
l∈Z+

∑
∞<k<−∞

αl1k ∨ αl2k cotϕ1 ∨ · · · ∨ αldk cotϕd−1.

Replacing the last result in 3.5.10 we obtain the d-variate functional tail dependence for

a M4 process.

ρ (ϕ1, . . . , ϕd−1) =

1 +
d−1∑
j=1

cotϕj −
∑
l∈Z+

∑
∞<k<−∞

αl1k ∨ αl2k cotϕ1 ∨ · · · ∨ αldk cotϕd−1

1 +
d−1∑
j=1

cotϕj −
d−1∨
j=1

cotϕj

,

(3.5.12)

for ϕj ∈ [0, π/2].

In the Example 3.3.1 we calculate the multivariate extremal index for a three dimensional

case of a M4 process. We generalize this example to show the three dimensional functional

tail dependence of this process.

Example 3.5.6. Consider the three dimensional M4 process proposed in Example 3.3.1.

We simulate n = 10.000 realizations of Xn = {Xn,1, Xn,2, Xn,3}, which are displayed in Figure
3.5.1. Applying (3.5.12) to this example we obtain the tail dependence function

ρ (ϕ1, ϕ2) =
1 + cotϕ1 + cotϕ2 −

(
1
3 ∨

cotϕ1

2 ∨ cotϕ2 + 1
3 ∨

cotϕ1

2 + 1
3

)
1 + cotϕ1 + cotϕ2 − (1 ∨ cotϕ1 ∨ cotϕ2)

.

Figure 3.5.2 shows the results of the simulation. The top panel displays the true tail

dependence in three plots, a perspective plot, image plot and a contour plot. The bottom

panel shows the same three plots for the estimated tail dependence function. The results are
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Figure 3.5.1. Simulated M4 process for the Example 3.5.6 in 3-dimensional
and with 2-dimensional projections
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Figure 3.5.2. Simulation of the true trivariate functional tail dependence
(top-panel) and estimated trivariate functional tail dependence function (low-
panel) of the M4 process in Example 3.5.6. The dark colors represent
weak dependence (ρ̂n (ϕ1, ϕ2) → 0) and the light color strong dependence
(ρ̂n (ϕ1, ϕ2)→ 1).

quite indeed. For our sample we chose τ = 1/200 and a smoothed version of ρ̂n (ϕ1, ϕ2) by

averaging this as follows

ρ̂n (ϕi,1, ϕj,2) =
1

(2k + 1)s
k∑

u,v=−k
ρ̂n (ϕi−u,1, ϕj−v,2) ,

where ϕi,1, ϕj,2 ∈ {ϕw,· = wπ/400} for w = 1, . . . , 200.
Note that if we had only estimated the Joe tail dependence function in this example we

would obtain λ = ρ (π/4, π/4) = 7/12, which does not describe well enough the extreme

dependence structure of this process.

The tail dependence as well as the functional tail dependence has the drawback that they

are not a global measure of extreme dependence. Huang (1992) proposed a more general

measure of tail dependence, the conditional expected value of the probability of that k extreme

events occur in d-marginals. Let k be the number of extreme events that simultaneously
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occur in d-dimensions. In a �nite sample framework, we have the following expression for the

conditional expected value of the probability of that k extreme events occur, given that at

least one k ≥ 1 extreme event happened.

E {k = d | k ≥ 1} =
E {k}

P {k ≥ 1}
.

This linkage measure has the advantages that it can be easily extended beyond the bi-

variate setting. Moreover, one does not need to condition on a speci�c marginal, whereby one

would look only into one direction in the plane of extreme events.

For this reason, di�erent authors have used this measure of extreme dependence. For

instance, Straetmans (2000) used this measure to access extremal spillovers in equity markets.

Hartmann et al. (2004) used it to investigate asset market linkages in crisis periods. De Vries

(2005) to calculate the potential for systemic breakdowns in banks and �nally, Geluk et al.

(2007) proposed this measure as index of �nancial fragility.

However, we will demonstrate with an example that the maximum of this measure does

not necessarily occur in the same threshold when x1 = · · · = xd → ∞. To demonstrate this

we extend this measure to all the directions in terms of ψ (ϕ1, . . . , ϕd−1) as follows

εd (ϕ1, . . . , ϕd−1) =

1 +
d−1∑
j=1

cotϕj

ψ (ϕ1, . . . , ϕd−1)
. (3.5.13)

This measure has limits between 1 and d.

Example 3.5.7. De�ne the following three processes X1 = ξi, X2 = αξi ∨ (1− α) ξi+1

and X3 = αξi ∨ (1− α) ξi+2, where ξ is iid random vector with Frèchet distribution and

0 < α, β < 1. Clearly the three processes are in some degree extreme dependent and it arises

from the factors α and β. Moreover, note that X1, X2 and X3 have Frechét marginals.

First, we calculate the tail function ψ for the trivariate case. We chose thresholds x2, x3

which satisfy the equation 3.5.7. This can be done by replacing x2 = x1 tanϕ1 and x3 =
x1 tanϕ2 . Then,

P

(
3⋃
i=1

Xi > xi

)
= 1− P (X1 ≤ x1, X2 ≤ x1 tanϕ1, X2 ≤ x1 tanϕ2)

= 1− P
(
ζi ≤ x1 ∧ x1α

−1 tanϕ1 ∧ x1β
−1 tanϕ2,

ζi+1 ≤ x1 (1− α)−1 tanϕ1, ζi+1 ≤ x1 (1− β)−1 tanϕ2

)
= 1− exp

{
x−1

1 (1 ∨ α cotϕ1 ∨ β cotϕ2 (3.5.14)

+ (1− α) cotϕ1 + (1− β) cotϕ2)} .

Diving by P (X1 > x1) in (3.5.14) and evaluating in the limit when x1 →∞ we obtain

ψX1X2X3 (ϕ1, ϕ2) = 1 ∨ α cotϕ1 ∨ β cotϕ2 + (1− α) cotϕ1 + (1− β) cotϕ2,

for all ϕj ∈ [0, π/2] .
Furthermore, we can derive the bivariate dependence function ψ for all the pairs between

X1, X2 and X3 through the trivariate case. Note, that ψX1X2 (ϕ1) = ψX1X2X3 (ϕ1, π/2) and
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ψX1X3 (ϕ2) = ψX1X2X3 (π/2, ϕ2), which implies that

ψX1X2 (ϕ1) = 1 ∨ α cotϕ1 + (1− α) cotϕ1

ψX1X3 (ϕ2) = 1 ∨ β cotϕ2 + (1− β) cotϕ2.

For the case ψX2X3 we have to choose thresholds x1, x2, x3 and divide by P (X2 > x2) in

(3.5.14). From (3.5.7) is easy to show that ψX1X2X3 (ϕ1ϕ2) = ψX1X2X3 (1, ϕ1ϕ2), but doing
ψX1X2X3 (0, 1, ϕ2) = ψX2X3 (ϕ2), which means that we have to replace x1 = 0 and x3 =
x2 tanϕ2 to obtain the wished result.

ψX2X3 (ϕ2) = α ∨ β cotϕ2 + (1− α) + (1− β) cotϕ2.

Replacing these tail functions in (3.5.11) and (3.5.13) we can estimate the measure of the

dependence ρ and ε respectively.

For example, we are interested in the functional tail dependence functions between the

two pair of vectors (X1, X2) and (X2, X3) for α = β = 1/2. Applying (3.5.11) and (3.5.13)

we obtain that

ρX1,X2 (ϕ) =
1 ∧ 0.5 cotϕ

1 ∧ cotϕ
ρX2,X3 (ϕ2) =

1
2

εX1,X2 (ϕ) = (1 + tanϕ) ∧
(

1 +
1

2 tanϕ+ 1

)
εX2,X3 (ϕ) =

2 (cotϕ+ 1)
1 ∨ cotϕ+ 1 + cotϕ

for ϕ [0, π/2].
Note that for these two bivariate pairs the classical tail dependence coe�cient λ is equal

for the two pairs λ = ρX1,X2 (π/4) = ρX2,X3 (π/4). However, the functional tail dependences
are quite di�erent in other directions of the extremes! In fact, ρX2,X3 (ϕ) < ρX1,X2 (ϕ) for

ϕ ∈ [0, π/4) and ρX2,X3 (ϕ) = ρX1,X2 (ϕ) for ϕ ∈ [π/4, π/2] (see Figures 3.5.3 and 3.5.4).

On the other hand, ε cannot distinguish the magnitude of the extreme events between

the two pairs when ϕ = π/4. In particular εX2,X3 (ϕ) < εX1,X2 (ϕ) for ϕ ∈ [0, π/4), with the

expected maximum value of ϕmax := arctan (0.5) and εX1,X2 (ϕmax) = 1.5.
The tail dependence function ρ is the only one that takes its minimum value in ϕ = π/4,

contrary to the measure ε, which can take its most informative or maximum value in other

direction.

Thus, the classical tail dependence or the expected value measure, concentrate only on the

same high thresholds, are not enough to characterize the extreme dependence between two

or more random variables and therefore their implication in the works using these measures

should be interpreted carefully.

We simulate n = 10.000 realizations of this example, the estimations of the two measures

of extreme dependence for the three pairs (X1, X2, X3) are shown in the Figures 3.5.5 and

3.5.6. The bottom panel shows the same three plots for the estimated measures of dependence.

Observe that the results are nearly identical.

From a risk management point of view this should mean that the choice of investment

portfolios is based only on the classical model of these measures, i.e., its evaluation in the

diagonal of the �rst quadrant (in the bivariate case) might not be optimal from a diversi�cation
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Figure 3.5.3. Emprical and theorical simulation of the measure of extreme
dependences ρ(left column) and ε (right column) for the pair (X1, X2) in the

Example 3.5.7 and its respective estimations of error in terms of
√
M̂SE (ϕ)

(bottom).
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Figure 3.5.4. Emprical and theorical simulation of the measure of extreme
dependence ρ (left column), δ (midle column) and ε (right column) for the
pair (X2, X3) in the Example 3.5.7 and its respective estimations of error in

terms of
√
M̂SE (ϕ) (bottom).

perspective, while the measures proposed here in more general context should generate a better

risk pro�le of diversi�cation.
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Figure 3.5.5. Theorical (top) and Empirical (bottom) simulation of thefunc-
tional tail dependence measure ρ for the trivariate random vector (X1, X2, X3)
in the Example 3.5.7.
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Figure 3.5.6. Theorical (top) and Empirical (bottom) simulation of the con-
ditional expected crash probability measure ε for the trivariate random vector
(X1, X2, X3) of the Example 3.5.7.
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3.6. Clusters and extreme dependence in the Asian crises

The set of results established in the last sections may provide reliable and practical in-

ference for extremal events. To illustrate this possibility, this section is devoted to Asian

�nancial markets.

Main issue in risk management is whether �nancial markets become more dependent

during �nancial crisis or whether �nancial turbulence in emerging markets could endanger the

stability of the global �nancial system. During the last decade the Asian equity markets have

increasingly attracted non Asian investors, particularly from the U.S., with the aim to enjoy

the bene�t of diversi�cation. However, extreme events as the Asian crisis suggest that the

Asian capital markets have become increasingly integrated. The crisis �rst started in late 1997

in Thailand, then spread rapidly, causing turbulence in other East Asian �nancial markets,

such as, Philippine, Malaysia, Indonesia and South Korea, while other authors claimed that

turmoil was evident in equity markets earlier (see McKibbin and Martin (1998)).

Several studies have been concentrating on the possibility of contagion between these

countries, where contagion is de�ned as a signi�cant increase in cross-market linkages after a

shock to one other country or group of countries. Other works of research have focused on

establishing whether the Asian crisis had a contagious in�uence on the developed countries

and vice versa. As such, the testable hypothesis of this section is to study the degree of

cross-country stock market linkages before, during and after the crisis.

Whether or not the crisis period was characterized by contagion in Asian equity mar-

kets, it has attracted much attention. For example Arestis et al. (2005); Caporale et al.

(2003); Bekaert and Harvey (2005) show some evidence concerning to contagion between

Asian �nancial market. Much of the work on Asian �nancial market interrelationships has

been constructed using correlation techniques, only few recent works have taken advantage

of the sizeable advances in Copulas (see for example Caillault and Guegan (2005); Kole and

Rotterdam (2006) and Rodriguez (2007)).

The main question in this section attempts to answer concerns about the likely e�ects of

the bivariate extremal index, the cluster size probability and the tail dependence that may

have had a log-run relationship with the Asian stock markets during the �nancial crisis. We

focus on the equity markets of these countries since di�erent authors suggest that the impact

of contagion on return variation is more important for equity rather than currency markets

(see Yang and Lim (2004) and Dungey et al. (2006)).

The sample consists of daily observations of stock index returns in local currency from

Thailand, Philippine, Malaysia, Indonesia and South Korea. The hypothesis of di�erent

authors (Eichengreen et al. (1998); Dungey et al. (2006)) is that trade linkages, which are

often between geographically proximate nations, are important for spillover e�ects. However,

any of the �ve countries in discussion shares to other countries more than four percent of the

total exports, making trade linkages an improbable source of extreme dependence. However,

U.S.A and Japan are important clients of these exports, so that this argument could find

some support. For this reason, we include a stock market from USA (S&P 500) and other big

Asian market (Nikkei 225). All data are taken from Datastream.
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Figure 3.6.1. Stock market indices of Thailand, Philippine, Malaysia, In-
donesia and South Korea. From January 1, 1990 to December 31, 2007.

In order to avoid the possible in�uence of other international crises as in Mexico in 1994

and in Russia in 1998, the sample was divided in three periods; from January 1, 1990 to

May 31, 1995, from June 1, 1995 to May 31, 1998 and from June 1, 1996 to December 31,

2007. The full sample consists of 4695 daily return observations, which allow us to identify a

su�cient number of extreme return observations to estimate statistical models for these rare

events. The returns are calculated as the negative log-di�erence of each series, so that we

can work with the maxima of the sample and not the minima. In each period of analysis

we consider the 0.97- quantile of the return distribution as the threshold for the de�nition of

extremes events.

Di�erent angles allow us to capture a better measure of extreme events, re�ecting that, for

example, the probability of markets crashing together is higher in periods of �nancial turmoil

re�exes by means of the tail dependence function, while the MEI and the functional cluster

size of probabilities can describe the cluster behaviour of these crashes.

3.6.1. Extreme dependence between Asian countries. Table 3.B.1 presents a wide

range of descriptive statistics for each series under the three periods of investigation. The

mean return is close to zero for all series. However, they di�er considerably in terms of

standard deviation, skewness and kurtosis. The assumption of normally distributed returns

is strongly rejected by all series through the Jarque-Bera test. Other assumptions such as the

null hypothesis that the returns series are iid random variables as well that the returns have

a unit root are strongly rejected.



Clusters and extreme dependence in the Asian crises 70

The �rst step towards an analytical investigation into the performance of the di�erent

markets during the Asian crisis as for example; the univariate extremal index and the prob-

ability of cluster size are presented in Table 3.B.2. An interesting result during the extreme

events in the stock markets in the second period is that, the cluster size probability is higher

for small number of size cluster extremes in comparison to other cluster sizes in the period

before and after the crisis. Hence, the extremal index is larger with the exception of Malaysia.

In order to gain an insight into the nature of the relationship between the extreme events

in stock markets, bivariate analysis were carried out �rst between the Asian stock markets.

In relation to the widely reported experiences of linkages among Asian markets only two

countries, Thailand and Malaysia, may be considered as the likely origins.

For this reason, we concentrate �rstly on Thailand versus the other countries. The results

are displayed in the Figures 3.B.1, 3.B.2, 3.B.3 and 3.B.4.

Focusing on the bivariate extremal index we observe that it grows in the crisis period in

contrast to the pre and post crisis period for all countries. With the exception of Philippine

and Malaysia the bivariate extremal index is constant for di�erent values of w ∈ [0, 1], i .e., the
direction of the extremes. Furthermore, a more detailed analysis displayed in the low panel

in each of the �gures shows that the distribution of the cluster size probabilities for di�erent

sizes k are quite di�erent. For the most of the countries the cluster size probability πn(w, 1)
is the highest for all the periods, but especially during the crisis period. The exception is the

case Thailand vs Philippine in the pre period crisis, where the probability πn(w, k) is circa

of 0.6 and 0.2 for k = 1 and k = 2 when w → 0, which signi�es that the extreme events for

Thailand tend to happen three times more frequently that cluster of extreme events of size

two. For w → 1, the probability πn(w, k) for k = 1, 2 is about 0.4 for both stock markets.

On the other hand, during the period of crisis the bivariate extremal index behaves close to

a completely dependent bivariate extremal index for Thailand versus Philippine and Thailand

versus Malaysia. Even more interesting is to observe the changes in the cluster size probability

πn(w, k) for these countries. For limw→0 πn(w, k) we have that the probability of cluster of size
one augments about 20% and probability of cluster of size two decreases of 15% in comparison

to the pre-period of crisis. However, the cluster size probability augments also for cluster size

bigger than three.

In the post-crisis period one can observe that, the bivariate extremal index is more or less

constant for all w ∈ [0, 1]. In the same way the probability πn(w, k) does not show many

variations between the cluster sizes, with the exception of w ≈ 0.5 where πn(w, k) grows for
k = 2 and diminishes for k = 1. The tail dependence for all the countries increases during

time of crisis. When θ ∼ π/4 the di�erence between the tail dependence pre, post and crisis

period is maximal, about 0.5 for all pairs of countries. This means, that for each two extreme

events in the Thailand stock market index, we can expect an extreme event in some other

countries.

In the case Philippine versus the other countries the results are displayed in the Figures

3.B.5,3.B.6 and 3.B.7. Three important characteristics can be obtained from these pictures.

First, like the case Thailand vs Philippine, the bivariate extremal index changes in periods of

the crisis and it is relatively higher than the pre and post period crisis, with the exception of

Philippine vs Malaysia.
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Second, the probability of cluster size πn(w, 1) is always bigger for all the periods. How-
ever, the probability of cluster size πn(w, 2), πn(w, 3) and πn(w, 4) vary sharply when w

is approaching to 0.5 in the crisis period. Particularly,πn(w, 4) increases in crisis period for

Philippine versus Malaysia by about 10%. For Philippine versus Indonesia and Korea πn(w, 3)
augments in the same proportionality. Furthermore, for this three countries the probability

of cluster size πn(w, 2) diminishes during time of crisis. Unlike the analysis Thailand versus

the other countries, the probability of cluster size πn(w, 2) keeps the higher probability after

the probability πn(w, 1) for all countries during the post crisis period.

Finally, the functional tail dependence between these stocks market returns is higher

for the crisis, pre and post period in decreasing order. The functional tail dependence is

exceptionally marked for the case Philippine versus Indonesia during crisis period by about

0.25 higher.

The cases Malaysia versus Indonesia and Malaysia versus Korea are displayed in the

Figures 3.B.8 and 3.B.9 and one can observe that the bivariate extremal index varies through

the periods but without a de�ned pattern. Moreover, the bivariate extremal index for these

two countries is very similar for the crisis and post period. However, deeper analyses in the

cluster size probabilities reveal the most notorious di�erence. During the crisis period, the

probability πn(w, 1) is the highest for the two pairs of countries and they follow the same

path for di�erent values of w. Despite the fact that, the probabilities πn(w, 3), πn(w, 4) are
divergent for distinct values of w. For example, the case of Malaysia versus Indonesia the

probabilities πn(w, 3) and πn(w, 4) are relatively higher for values of w near of 0.5 during

the crisis, implying that the extreme events tend to be of size three and four with a higher

probability. Additionally, the tail dependence is more marked in time of crisis for the two pair

of countries. On the other hand, the di�erences between the tail dependence in the pre and

post crisis period are not distinguishable.

The last pair of countries in this analysis is Indonesia versus Korea. Figure 3.B.10 shows

the main results. Like in the previous analysis the bivariate extremal index increases in the

crisis periods. Paradoxically, the bivariate extremal index is the lowest for the post-crisis

period. A more detailed analysis in the cluster size probabilities in the pre and post crisis

periods reveals that the most important variation is in relation to the probability πn(w, 1) by
about 0.3 in the post crisis period. On the other hand during the crisis period, the probabilities

πn(w, 1) and πn(w, 2) increases and diminishes respectively, for values near w = 0.5, i.e., for
extreme values that are situated in the diagonal. The �nal result is related to the functional

tail dependence of the data. During pre and post crisis period the dependence is similar, while

in the crisis period the tail dependence is intensi�ed by about 0.2.

3.6.2. Extreme dependence between the Asian-5 countries, U.S.A and Japan

stock markets. We investigated extreme stock market dependence between U.S.A, Japan

and Asian markets. Japan did not su�er from a crisis, though stock prices in Japan are likely

to in�uence other Asian stock markets and hence are also considered. Using the multivariate

extremal index and the functional tail dependence, we �nd the following empirical results.

First, there exists signi�cant increase in extreme events during the period of crisis. This

contagion e�ects are found in the Japan and U.S.A market. Second, contagion e�ects de�ned
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as an increment in the functional tail dependence are stronger from the U.S.A market to Asian

markets than from Japan, indicating that U.S. market plays a major role in the transmissions

of information to foreign markets. Third, the intensity of contagion is signi�cantly greater

during the Asian �nancial crisis than after the crisis.

All of these results appear sensible in terms of the relative importance of these markets

in the Asian region. One of the most interesting �ndings concerns the change in the most

in�uential markets, as measured by the functional tail dependence, in the post-crisis period

compared to the pre-crisis period. Once again, this is largely consistent with the notion of

�contagion e�ects� following the onset of the Asian crises and the greater degree of market

interdependence in the post-crisis regional economy. Overall, these �ndings are comparable

to most other works in this area. The results obtained in this chapter complement this work

in quantifying the interdependencies among Asian equity markets.

3.7. Conclusions

In brief, we have contributed to the literature in two ways. First, we have introduced a

suitable framework to estimate the MEI and other cluster functionals. Speci�cally, we have

adopted the Pickands representation.

Second, we have provided some empirical evidence of the transmission of turbulent crisis

period across Asia and other two development countries, by applying the suggested method-

ology to daily data on stock returns, estimating bivariate models for the Asian countries and

trivariate models for each Asian country and the other development countries.

In particular, we have examined whether during the 1997 East Asian crisis there was

any contagion between Thailand, Indonesia, Philippine, Korea, Malaysia and the other two

developed countries (Japan, U.S.A). We have tested contagion as a positive shift in the degree

of comovement between asset returns, taking into account the multivariate extremal index,

the cluster size probabilities and the tail dependence function. The estimation results show

that the impact of the extreme dependence between the Asian countries was considerable.

There is evidence of changing dependence structures during periods of �nancial turmoil.

Possible reasons include long-standing trends in trade and investment interaction, the

more recent convergence in monetary policies and the almost universal process of microeco-

nomic reform �owing from the crises themselves. A general conclusion is that the functional

tail dependence is nearly symmetric for all countries investigated in this chapter. By contrast,

in the normal periods, i.e., pre and post crisis, we do not �nd evidence of a signi�cant tail

dependence across stock markets for any pairs of Asian countries. This suggests that at least

some markets have become more isolated following these macroeconomic shocks. The �ndings

obtained in this chapter have obvious implications, amongst other things, for the purported

bene�ts of international portfolio diversi�cation among the several Asian equity markets. As

a result, the strong linkages among the national markets would indicate that the returns from

such a strategy have diminished markedly. However, the results also suggest that opportu-

nities for diversi�cation may still exist, especially in some of the smaller markets. In the

pre-crisis period most Asian equity markets were relatively isolated from each other or were

subject to only a few direct extreme events. One of the most interesting �ndings concerns the

change in the most in�uential markets, as measured by the functional tail dependence, in the
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post-crisis period as compared to the pre-crisis period. This is at least one indication of an

increasingly interdependent Asian regional market. These results contribute to the ongoing

debate on the existence of contagion from the point of view of the experimented extreme

events.
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3.A. Demonstrations

Proof. Theorem 3.2.2. Let ln andmn be positive integers such that ln = o (mn),mnp
τ
n →

0, maxs=ln,...,rn
{
ατs,ln,n

}
= o (mnp

τ
n) for every 0 < x < lim infn→∞ rnpτn and sn ≤ rn −mn.

Theorem 5.7 and 5.9 in Seger (2002) implicate, that

max
{
s = mn + ln, . . . , rn −mn :

∣∣θs,n (τ)− θmnn,qτs ,n (τ)
∣∣}→ 0

and qτsn,n ≤ (1− θmn,n (τ) pτn)sn + o (1) = exp (−snθmn,n (τ) pτn) + o (1). Then, if sn = dx/pτne
we have θsn,n (τ) = θmn,n (τ) qτsn,n + o (1) and θsn,n (τ) = θmn,n (τ) exp (−xθmn,n (τ)) + o (1).

Furthermore, the characterization theorem in Seger (2002) shows that θmn,n (τ) = θn (τ)+
o (1). Now, following Proposition 2.1 in Smith and Weissman (1996), we need to �nd thresh-

olds un ∈ Rd+, which satis�es

nP (Xi > un)→ τ. (3.A.1)

Then, replacing un = n/τ in (3.2.4) and un = n in (3.2.5) we obtain

P (χ1 (τ) > n) = pτn = pS,n → v,

for v > 0 and

P (
∨n
i=1 χi (τ) ≤ n) = P (

∨n
i=1Xi,1 ≤ un1, . . . ,

∨n
i=1Xi,d ≤ und) = P (Mn ∈ Sn)→ exp (−vθn (τ)) .

Hence, these limits converge when n→∞, which yields to

P (pSnTS,n > n)→ P (pτnTB,n (τ) ≥ n) = θn (τ) exp (−nθn (τ)) + o (1) ,

completing the proof. �

Proof. Proposition 3.5.1 �

(1) For the demonstration of the Properties 1 see appendix in Hsing et al. (2004).

(2) Note that by de�nition

P

 d⋃
j=1

Xj > xj

 ∼ 1
n

Λ
(
nF (x1), . . . , nF (xd)

)
(3.A.2)

for n→∞. Then, remplacing t = n/α in (3.A.2) such that t→∞. We have

P

 d⋃
j=1

Xj > xj

 ∼ 1
tα

Λ
(
tαF (x1), . . . , tαF (xd)

)
= α−1F (x1) Λ

(
α, α

F (x2)
F (x1)

, . . . , α
F (xd)
F (x1)

)
. (3.A.3)

On the other hand we have

ψ (ϕ1, . . . , ϕd−1) :=
P
(⋃d

j=1Xj > xj

)
P (X1 > x1)

.

Now dividying by F (x1) in (3.A.3) we obtain the wished result.

(3) Let be a0, . . . , ad−1 a series of positive constants and for ease of the notation tanϕ0 =
1 for all ϕ0 ∈ [0, π/2]. Furthermore, let amin := 1 ∧

∧d−1
j=1 aj , then for (3.5.7) and



Demonstrations 75

the Propertie 2

ψ (a1ϕ1, . . . , ad−1ϕd−1) = lim
t→∞

tP

(
k=d−1⋃
k=0

tFk+1 (X1,k+1) ≤ ak tanϕk

)

= lim
t→∞

amintP

(
k=d−1⋃
k=0

tFk+1 (X1,k+1) ≤ ak
amin

tanϕk

)

= aminψ

(
a1

amin
ϕ1, . . . ,

ad−1

amin
ϕd−1

)
≥ aminψ (ϕ1, . . . , ϕd−1) .

The other bound can be demonstrated similarly.

Proof. Proposition 3.5.3 �

(1) Because of the properties of independence and the subexponential distribution of Xj

we have

P (Mjn > x1 orXj,n+1 > x2) ∼ F ∗n(x1) + F (x2)

∼ nF (x1) + F (x2)

diving by F (x1) yields to.

ψMjn,Xj,n+1 (ϕ1) ∼ (n− 1)F (x1) + F (x1) + F (x2)
F (x1)

= (n− 1) + ψXj,1,Xj,n+1 (ϕ1) .

(2) By the multivariate subexponential de�nition we have

ψSn1,Sn2 (ϕ1)F (x1) = P (Sn1 > x1 or Sn2 > x2)

∼ F ∗n(x1) + F ∗n(x2)− nP (X1 > x1 , X2 > x2)

= n
(
F (x1) + F (x2)− P (X1 > x1 ,X2 > x2)

)
which conduces to ψSn1,Sn2 (ϕ1) = nψ (ϕ1).

(3) By dominance of P (Xj > x) = o (P (X1 > x)) for all j = 2, . . . , d and independence

P (Sn1 > x1 or Z > x2) ∼ F ∗n(x1)+FZ(x2). We have that F ∗n(x1) ∼ F (x1). Hence,
ψSn1,Z (ϕ1) ∼ ψX1Z (ϕ1).

(4) By regular variation P (
∑n

i=1 µiXi1 > x1) ∼ P (X1 > x1)
∑n

i=1 µ
α
i , i.e, Fχ(x1) ∼∑n

i=1 µ
α
i F (x1) and FΥ(x2) ∼

∑n
i=1 υ

α
i F (x2). Now by absolute dependence between

χ and Υ we have that P (χ > x1 Υ >x2) =
∑n

i=1 µ
α
i F (x1) ∧

∑n
i=1 υ

α
i F (x2), diving

by F (x1) the result follows.
(5) This demonstration follows the same arguments as the last proof, with the di�erence

that χ1 and χ2 are now independent.
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3.B. Tables and Figures

Hong Kong Korea Thailand Indonesia Philippine Malaysia

Obs. 4695 4695 4695 4695 4695 4695
Min -14.735 -12.805 -16.063 -22.697 -9.744 -12.732
Max 17.247 10.024 11.350 17.248 16.178 13.128
Mean 0.049 0.016 -0.001 0.021 0.025 0.041
Std.Dev 1.538 1.835 1.705 1.349 1.527 1.475
Skewness -0.048 -0.069 0.089 -0.136 0.453 0.171
Kurtosis 10.259 4.209 6.697 40.850 8.783 10.483

Phillips-Perron
Unit Root Test

-4536* -4266* -4334* -4358* -3918* -3809*

Jarque-Bera
Test

20612* 3474* 8789* 326761* 15268* 21542*

Table 3.B.1. Summary statistics for the stock market returns. Asymptotic
p-value are shown in the brackets. *,**,*** denote statistical signi�cance at
the 1, 5 and 10 % level respectively.

extremal index cluster sizes

First period θ 1 2 3 ≤4
Thailand 0.502 (0.492, 0.511) 0.63 0.18 0.00 0.05
Philippine 0.439 (0.412, 0.441) 0.33 0.39 0.05 0.23
Malaysia 0.516 (0.486, 0.532) 0.59 0.23 0.09 0.09
Indonesia 0.676 (0.662, 0.692) 0.75 0.11 0.07 0.07
Korea 0.651 (0.627, 0.651) 0.64 0.21 0.11 0.04

Second Period θ 1 2 3 ≤4
Thailand 0.832 (0.821, 0.847) 0.85 0.10 0.05 0.00
Philippine 0.585 (0.567, 0.592) 0.50 0.36 0.07 0.07
Malaysia 0.381 (0.367, 0.413) 0.33 0.22 0.22 0.23
Indonesia 0.821 (0.820, 0.844) 0.65 0.28 0.06 0.01
Korea 0.845 (0.834, 0.855) 0.66 0.28 0.05 0.01

Third Period θ 1 2 3 ≤4
Thailand 0.508 (0.496, 0.517) 0.59 0.21 0.00 0.20
Philippine 0.610 (0.597, 0.612) 0.57 0.25 0.02 0.16
Malaysia 0.650 (0.646, 0.659) 0.65 0.19 0.13 0.03
Indonesia 0.263 (0.252, 0.279) 0.45 0.20 0.05 0.10
Korea 0.390 (0.365, 0.408) 0.36 0.14 0.18 0.32

Table 3.B.2. Univariate extremal index estimation.
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Figure 3.B.1. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Thailand vs Philippine

Figure 3.B.2. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Thailand vs Malaysia.
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Figure 3.B.3. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Thailand vs Indonesia.

Figure 3.B.4. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Thailand vs Korea.
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Figure 3.B.5. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Philippine vs Malaysia.

Figure 3.B.6. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Philippine vs Indonesia.
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Figure 3.B.7. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Philippine vs Korea.

Figure 3.B.8. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Indonesia vs Malaysia.
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Figure 3.B.9. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Malaysia vs Korea.

Figure 3.B.10. Results of the bivariate extremal index, bivariate cluster size prob-

ability and tail dependence for Indonesia vs Korea.
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Figure 3.B.11. Results for Korea, U.S.A and Japan returns (left), the trivariate ex-

tremal index (middle) and the trivariate tail dependence function (right), for the pre, the

post and the period crisis (top, middle and bottom panel respectively).
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Figure 3.B.12. Results for Thailand, U.S.A and Japan returns (left), the trivariate

extremal index (middle) and the trivariate tail dependence function (right), for the pre, the

post and the period crisis (top, middle and bottom panel respectively).



Tables and Figures 83

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

θ̂n(ϕ1, ϕ2)

ϕ1

ϕ 2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
2

0.
6

1.
0

1.
4

ρ̂n(ϕ1, ϕ2)

ϕ1

ϕ 2

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

θ̂n(ϕ1, ϕ2)

ϕ1

ϕ 2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
2

0.
6

1.
0

1.
4

ρ̂n(ϕ1, ϕ2)

ϕ1

ϕ 2

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

θ̂n(ϕ1, ϕ2)

ϕ1

ϕ 2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
2

0.
6

1.
0

1.
4

ρ̂n(ϕ1, ϕ2)

ϕ1
ϕ 2

Figure 3.B.13. Results for Indonesia, U.S.A and Japan returns (left), the trivariate

extremal index (middle) and the trivariate tail dependence function (right), for the pre, the

post and the period crisis (top, middle and bottom panel respectively).
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Figure 3.B.14. Results for Philippine, U.S.A and Japan returns (left), the trivariate

extremal index (middle) and the trivariate tail dependence function (right), for the pre, the

post and the period crisis (top, middle and bottom panel respectively).
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Figure 3.B.15. Results for Malaysia, U.S.A and Japan returns (left), the trivariate

extremal index (middle) and the trivariate tail dependence function ( right), for the pre, the

post and the period crisis (top, middle and bottom panel respectively).



CHAPTER 4

Multivariate threshold methods with self-exciting functions

�The �nancial markets generally are unpredictable.

So that one has to have di�erent scenarios.

The idea that you can actually predict what's going to happen

contradicts my way of looking at the marke.�

(George Soros)

4.1. Introduction

A key problem in �nancial econometrics is modelling, estimation and forecasting of the

dependence structure of �nancial assets returns. A great deal is known about the second

moments of �nancial asset returns, sometimes associated to the cause of cluster in the ex-

tremes. Popular parametric models for volatility include the ARCH-GARCH family (Engle

(1982b)) and the stochastic volatility (SV) family (Clark (1973)). In these models volatility is

usually extracted from daily squared returns, which are unbiased but noisy estimates of daily

conditional volatility.

More generally, the study of extreme dependence may reveal contrasts which are obscured

when we only concentrate on examining the conditional second moment. For instance, Jalal

and Rockinger (2004) investigated the consequences for value at risk and expected short fall

purposes of using a GARCH �lter on various misspeci�ed processes. They show that careful

investigation of the adequacy of the GARCH �lter is necessary since under misspeci�cations

a GARCH �lter appears to do more harm than good. Poon et al. (2003) using a range of

volatility �lters �nd that tail index and tail dependence can be partially captured by models

for heteroscedasticity. Moreover, they �nd that there is no clear reason to prefer one volatility

�lter over another. Also they note that tail index estimates are signi�cantly reduced when

returns are �ltered for heteroskedasticity and that the reduction is the most dramatic when

the SV model is used.

In addition to this Davis and Mikosch (2006b) showed that unlike the situation for GARCH

processes (Davis and Mikosch (2006a)), there is no extremal clustering for SV processes in

both the light- and heavy-tailed cases. That is, large values of the processes do not come

in clusters. More precisely, the large sample behaviour of maxima is the same as that of

the maxima of the associated iid sequence. So while both stochastic volatility and GARCH

processes exhibit volatility clustering, only the GARCH has clustering of extremes.

While these models imply some information about extreme events still little is known

about the extremes per se. For this reason, it is an advantage to have techniques that are

focused purely on extreme movements, and are not in�uenced by the degree of temporal

dependence in more routine circumstances. The resulting information about the degree to

85
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which extreme losses are more likely following earlier extreme losses is particularly valuable

in the measurement of risk over �xed time intervals.

Several authors such as Embrechts et al. (1997); Matthys and Beirlant (2001); McNeil

(1998); McNeil and Frey (2000); McNeil et al. (2005) and Novak (2004) have argued that

extreme value theory allows to take into account explicitly the rare events contained in the

tails. This presents three main advantages over classical methods such as conditional models

(GARCH or SV processes), historical simulations or normal distribution approach.

Extreme value methodology focuses on modelling the tail behaviour of a distribution

using only extreme values rather than the whole data set. Furthermore, as we do not assume a

particular model for returns, we allow the data to speak for itself in order to �t the distribution

tails.

The standard Peaks over threshold (POT) model in extreme value theory, which describes

the appearance of extremes in iid data, elegantly subsumes the models for maxima and the

Generalized Pareto distribution (GPD) models for excess losses. However, the characteristics

of �nancial return series such as clustered extremes and serial dependence typically violate

the assumptions of independence in the POT model. These problems are often addressed by

the application of a declustering method, and then the standard model is �tted to cluster

maxima only.

Another form to deal with the cluster on extremes is to use a marked self-exciting version

of POT model introduced preliminarily in McNeil et al. (2005); Chavez-Demoulin et al. (2005);

Herrera and Schipp (2009), where the cluster of extreme data will be modelled as self-exciting

point processes without involving a pre�ltration of data. The main characteristic of these

models is that the intensity of occurrence of extreme events can depend on past extreme

events and the size marks (predictable) allowing more realistic models.

Point Process of this kind has proved to be an e�cient tool to model earthquake oc-

currences. Models as of Hawkes the ETAS (Epidemic Type Aftershock Sequence) or Stress

Release models are considered to be standard branching model.

In the multivariate case the classical extreme value approaches for iid random variables

are based on the Pickands dependence function, the estimation of an exponent measure or a

Copula function.

In this chapter, we generalize the results on self-exciting point process approaches to the

multivariate in a similar form as in Smith et al. (1997). In particular, the likelihood for

this multivariate threshold likelihood model is based on properties of the exponent measure

of a multivariate extreme distribution and the marginal observations below their respective

threshold as censored at the threshold.

This chapter makes several contributions to the empirical literature on extreme depen-

dence. An innovating feature of the present chapter, is that, contrary to earlier works on

multivariate extreme models, the temporal dependence structure of each underlying marginal

is not treated with an ARCH, GARCH, Multifractal RandomWalk, etc., �lter, which certainly

impacts on the dependence properties among the marginals, i.e., the Copula function (or the

Pickand's dependence function or the exponent measure) by the fact that they concentrate

principally on the center of the distribution (see Malevergne and Sornette (2005) Section 5.3.4

for comments in this issue). Instead of forcing a single distribution for the entire sample, it is
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possible to investigate only the tails of the sample distribution using the models proposed, if

only the tails are important for practical purposes.

Taking into account only the extreme events in the model yields to an important im-

provement in the quality of the multivariate dependence estimation because it may in�uence

profoundly results on multivariate extreme events.

Furthermore, the second contribution in this chapter in the is the concept of dynamical

dependence among marginals, which has been recently introduced in risk management by

Dias and Embrechts (2004), Patton (2006) and Giacomini et al. (2007) for instance. In all

these papers, the authors investigate the dynamical evolution of the multivariate dependence

through the existence of structural changes in the dependence.

We follow these authors, however, under the point of view of the exponent measure and

not of copulas, for the multivariate extreme dependence. We propose two parametric models

to take into account the multivariate extreme dependence and a semiparametric model in the

spirit of the model Dias and Embrechts (2004), but with other structure to determine the

time of change of the multivariate dependence, which has the characteristic of time-invariant.

The third important contribution of this chapter is the application of these models to

the three most important stock market indices from U.S future markets. Di�erent examples

of stress testing scenarios were calculated to the most important extreme events during the

period of study, as the mini crash of 1997, the Russian default of 1998, the Dot.com crash of

2000, and the extreme movements by the attacks on September 11, 2001.

This chapter is organized as follows. In Section 4.2 we outline relevant aspects of the clas-

sical POT model, and then in Section 4.3 we describe the Self-exciting POT model theory that

are central to the chapter and discusses a conditional intensity based approach to inference

for point processes. In section 4.4 we develop di�erent approaches to the multivariate case,

allowing even the dependence to be time varying. Section 4.5 illustrates some applications to

the most important extreme events in the last years in U.S stock markets. Conclusions and

future works are resumed in Section 4.6.

4.2. The classical procedure

In this section we summarize the main results from POT method which underlie our

modelling. General literature on the subject of extreme value theory includes Embrechts

et al. (1997); McNeil et al. (2005); Falk et al. (2004).

Let Xn = {X1n, . . . , Xdn} be a sequence of iid multivariate random variables with distri-

bution function F (x), x ∈ Rd and let

Mn =

{
n∨
i=1

Xi1, . . .

n∨
i=1

Xid

}
be the vector of componentwise maxima of Xn with distribution function F

n (x). Assume that

there exist sequences of normalizing d- variate sequences an and bn ∈ Rd, and distribution

function G (x) with nondegenerate marginals such that

lim
n→∞

F (anx + bn) = G (x)⇐⇒ lim
n→∞

n {1− F (anx + bn)} = − logG (x) (4.2.1)

for all x such that G (x) > 0.
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From (4.2.1), all the marginal distributions of a Multivariate extreme value distribution

(MVE) are, if not degenerated, again MVED of lower dimensions and univariate marginals

are Generalized extreme value distributions (GEV). In particular, if Fi are each marginal of

F being in the Maximum domain of attraction of Gi, Fi ∈ MDA (Gi), where Gi are the

corresponding component of G then, by the Fisher-Tippett theorem, Gi belongs to the type

of the distribution

Hξ (x) =

{
exp

{
− (1− ξx)−1/ξ

}
, 1 + ξx > 0, ξ 6= 0

exp {−e−x} , −∞ < x <∞, ξ = 0.

Hξ is known as the Generalized extreme value distribution. For α > 0, Φα := Hα−1 (α (x− 1))
is the standard Frèchet distribution, ψα (x) := H−α−1 (α (x+ 1)) is the standard Weibull dis-

tribution, and Λ (x) := H0 (x) is the standard Gumbel distribution.

Now from the well known Pickands-Balkema-de Haan Theorem, the excess distribution

function Fu(x) = P (X − u ≤ x | X > u) , x ≥ 0 for a high threshold x ≥ u of all marginals

Fi ∈MDA(Hξ) can be well approximated by a Generalized Pareto distribution (GPD), that

is

lim
u↑x

sup
0<x<xF−u

|Fu(x)−Gξ,β(x)| = 0,

where xF is the right endpoint and Gξ,β , with parameters ξ ∈ R and β > 0, has distribution
tail

Ḡξ,β(x) =

{ (
1 + ξ xβ

)
if ξ 6= 0,

exp(−x/β) if ξ = 0,

and x ∈ D(ξ, β)

D(ξ, β) =
[0,∞) if ξ ≥ 0,
[0,−β/ξ] if ξ < 0.

From a di�erent point of view Smith (1989) introduces, via a point process representation

of the exceedances, an elegant approach to the Peaks over a threshold x ≥ u (POT) for the

univariate case.

Until now we have only considered the magnitude of excess losses over high thresholds

the point process approach consider exceedances of thresholds as events occurring in time and

use a point process approach to model these events. The idea is to view all events exceeding

a given level x as a bidimensional point process with state space χ = (0, 1] × (u,∞). The

intensity of this process is de�ned for all Borel sets if we can de�ne it on all rectangle of the

form A = (t1, t2)× (x,∞) where t1 and t2 are time coordinates and x ≥ u is a given threshold

level of the process. The point process is the de�ned by

N(A) =
n∑
i=1

I{(i/n,Xi)∈A}.

If the process is stationary and satis�es a condition that there are asymptotically no clusters

among at extremes, then its limiting form is a non-homogeneous Poisson process and the

intensity at a point (t, x) is given by

λ(t, x) =
1
σ

(
1 + ξ

x− µ
σ

)−1/ξ−1

+

, (4.2.2)
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where y+ = max(x, 0) and µ,σ,ξ represent respectively a location parameter, scale parameter

and shape parameter. Note that this does not depend on t hence the two-dimensional Poisson

process is non-homogeneous. Therefore, the intensity measure of the set A for any x ≥ u may

be expressed in the form of an one-dimensional homogeneous Poisson process λ (x) = λ (x, t)
with rate τ(x) = − lnHξ,µ,β as

Λ(A) =
ˆ t2

t1

ˆ ∞
x

λ(t, y)dydt = − (t2 − t1) lnHξ,µ,σ.

Now the tail of the excess over the threshold u, denoted F u(x), can be calculated as the

ratio of the rates of exceeding the levels u+ x and u as follows

F u(x) =
F (x+ u)
F (u)

=
τ(u+ x)
τ(u)

=
(

1 +
ξx

σ + ξ(u− µ)

)−1/ξ

= Gξ,β(x),

where β = σ + ξ(u− µ) is simply a scaling parameter.

A useful reparametrization of the equation (4.2.2) for the next section is rewritten this in

terms of the scale parameter β = σ + ξ(u − µ) and the rate of the one-dimensional Poisson

process of exceedances of the level u, τ(u) = τ = − lnHξ,µ,β(u)

λ(x) := λ(t, x) =
τ

β

(
1 + ξ

x− u
β

)−1/ξ−1

, (4.2.3)

where ξ ∈ R and τ, β > 0.
The aim of presenting the two dimensional Point process derivation of the POT method is

for introducing easily the new methods, which have as basis the point process representation.

Returning to the multivariate case there are several di�erent but equivalent character-

izations of multivariate extreme value distributions, see for examples the books of Resnick

(1987), Falk et al. (2004) and Galambos (1978). One feature of multivariate extreme value

distributions is that, the dependence structure is preserved under transformations of the mar-

ginal distributions, so there is no loss of generality in restricting attention to a particular

univariate extreme value family. For this reason we assumed unit Frèchet marginals. In this

chapter we consider the next de�nition of MEV distribution.

Definition 4.2.1. A multivariate distribution G(x) is a MEV distribution with unit

Frèchet marginals if, and only if, its joint distribution G : Rd → [0, 1] can be expressed as

G (x) = exp

−
ˆ

Sd−1

d∨
j=1

(
wj
xj

)
H(dw)


= exp {−µ ([0,x]c ; θ)}

subject to the condition ˆ
Sd−1

wjH(dw) = 1, j = 1, . . . , d

where Sd−1 =
{

(w1, . . . , wd−1) :
∑d−1

j=1 wj ≤ 1, wj ≥ 0, j = 1, . . . , d− 1
}
is the (d− 1) dimen-

sional unit simplex in Rd, H is a positive �nite measure on Sd−1 and µ ([0,x]c ; θ) is referred
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as the exponent measure function and θ is a collection of parameter that characterizes the

structure of the dependence of the exponent measure.

Contrary to the univariate case, there is no �nite parametrization for the exponent measure

function µ ([0,x]c ; θ). Thus, it is common to use speci�c parametric families for µ ([0,x]c ; θ)
such as the logistic (Galambos (1978)), the asymmetric logistic (Tawn (1988a)), the negative

logistic (Galambos (1975)) or the Polynomial models (Klüppelberg and Mayer (2006)).

4.3. Self-exciting extreme value models

The problem with the theory outlined in the previous section is that it assumes that

the underlying series is independent, which is unrealistic in most of applications. Serial

dependence and volatility cluster play an important role in the most applications on returns

of �nancial series, and so exceedances of a high threshold for daily �nancial return series

do not necessarily occur according to a homogeneous Poisson process. Therefore, the direct

application of the POT method is nonviable.

However, under weak conditions the POT representation may be applied to the maximum

value of each cluster. The problem here is the identi�cation of independent clusters of ex-

ceedances over a high threshold. This is because of the fact that the choice of declustering

scheme has often an important impact on estimates of cluster characteristics.

Possible algorithms are given by the run method, the block method or the interval method

(see Beirlant et al. (2004)). In particular the interval estimator introduced by Ferro et. al.

Ferro and Segers (2003) propose an automatic declustering scheme that is justi�ed by an

asymptotic result for the arrival times between threshold exceedances. The scheme relies

on the estimation of extremal index prior to declustering, which can be interpreted as the

reciprocal of the mean cluster size. However, this method consists of a two steps procedure

and the cluster behaviour of the extremes is lost.

By other way, the methodology introduced in this section takes advantage of the structure

of the model, thus allowing the existing (dependent) data to be used more e�ectively.

In the early 1970s, Hawkes (1971) introduced a family of what he called �self-exciting�

or �mutually exciting� models, which became both pioneering examples of the conditional

intensity methodology. The models have been greatly improved and extended by Ogata

(1988), whose ETAS model has been successfully used to elucidate the detailed structure of

aftershock sequences.

In these models a recent spate of threshold exceedances causes the instantaneous risk of a

threshold exceedances at a particular time to be higher. As McNeil et al. (2005) suggest, the

structure of these processes, which has traditionally been used in the modelling of earthquakes,

would also seem appropriate for modelling market shocks and the tremors that follow these.

In the next section, we bring together some of the most widely used concepts of point

process models. We extend the simple Poisson process in the same way that the cluster

processes did. Furthermore, we introduce the main concepts in marked point process. These

processes could be already covered formally by the general theory of point processes, as they

can be represented as a special type of point process on a product space. However, marked
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point processes are worth additional studying because of their wide range of applications and

their conceptual importance.

The results shown in the next section are based on �rst volume of Daley and Vere-Jones

(2003).

4.3.1. Preliminaries. Unless stated otherwise, all random elements occurring in this

paper are supposed to be de�ned within a complete, separable metric space (c.s.m.s) T , and
will generally interpret as R. A point process is de�ned as a random counting measure on T ,
meaning technically a measurable mapping from a probability space (Ω, E ,P) into the space(
N#
T ,B

(
N#
T

))
.1 Furthermore, let {Ht, t ≥ 0} be a non-decreasing family of right continuous

σ-algebras Hs ⊂ Ht ⊂ H for any 0 ≤ s ≤ t.

Definition 4.3.1. A simple point process is a sequence of random variables {ti}i∈{1,...,n}
satisfying.

(1) P (0 < t1 ≤ · · · ≤ tn) = 1,
(2) P (tn ≤ tn+1, tn <∞) = P (tn <∞) (n ≥ 1),
(3) P (limn→∞ tn =∞) = 1.

To describe a point process it is su�cient to specify its intensity function. Then, let N (t) :=∑
i≥1 I{ti≤t} be the right-continuous counting function. De�ne λ (t) as the intensity of N (t),

that is a positive Ht predictable process , i.e, λ (t) is adapted to Ht, and left-continuous with

right hand limits, with unique compensator

Λ (t) =
ˆ t

0
λ (u) du,

for N (t).

Assuming that it exists, the conditional intensity λ(t | Ht) is de�ned as the unique non

decreasing, H-predictable process

λ(t | Ht) = lim
δt→0

1
δt
E (N [0, t+ δt)−N [0, t) | Ht) .

Example 4.3.2. Suppose that t1, t2 − t1, t3 − t2, . . . are independent and distributed ac-

cording to an exponential distribution with parameter λ. Then N (t) :=
∑

i≥1 I{ti≤t} is called
a homogeneous Poisson process with intensity λ.

Given a univariate point process {tn}, one often has additional information on the points

tn. It is modelled by a random element Xi which is called the mark of tn. In our case the

marks will be referred to the exceedances over a threshold for a stationary sequence.

Definition 4.3.3. A marked point process (MPP), with locations in the c.s.m.s T and

the marks in the c.s.m.s X , is a point process {(ti, Xi)} on T ×X with the additional property

that the ground process Ng(t), the process of the locations {tn} where the events occur, is

itself a point process; i.e, for bounded A ∈ BT , Ng (A) = N(A,X ) <∞.

1N#
T is the metric space of all boundedly �nite counting measures on T and B

(
N#
T

)
is a family of Borel sets

that can be used to de�ne measures on N#
T .
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In general, a MPP N is de�ned as a set of pairs {(ti, xi)} on the product space T × X ,
with the the ground process Ng being the marginal process of locations, or as ordinary point

process in T , {ti} say, with an associated sequence the random variables (marks) {xi} taking
their values in X .

There exists a rich class of MPPs with a great variety of forms that can be taken by the

marks and the variety of dependence relations among marks and locations. Two important

classes are de�ned below

Definition 4.3.4. .

(1) The MPP N is simple if the ground process Ng is simple.

(2) The MPP N on T = R is stationary (homogeneous) if the probability structure of

the process is invariant under shifts in T .

The next de�nition characterizes two important types of independence relating to the

mark structure of MPPs.

Definition 4.3.5. De�ne a MPP N = {(ti, xi)} on T × X to have

(1) independent marks, if given the ground process Ng the marks {xi} are mutually

independent random variables such that the distribution of the xi, in our case the

exceedances, depends only on the corresponding location ti.

(2) unpredictable marks for T = R, if the distribution of the mark at ti is independent

of the locations and marks {(tj , xj)} for which tj < ti.

Of course the most common case of an MPP with independent marks occurs when the

marks are iid. Similarly, the most common case of a process with unpredictable marks occurs

when the marks are conditionally iid given the past of the process. The most interesting ex-

tensions appear when we drop the assumption of completely independent marks and consider

ways in which either the marks can in�uence the future development of the process or the

current state of the process can in�uence the distribution of marks, or both. Such class of

processes are the marked self-exciting processes.

Definition 4.3.6. A linear marked self -exciting process, is de�ned as the process which

intensity has the form

λ(t | Ht) = µ (t) + φ
∑
i:ti<t

g(t− ti, x) (4.3.1)

= µ (t) + φ

ˆ t

0
g(t− ds, x)Nx (ds× dz) (4.3.2)

here {µ (t)}t∈R is a given nonnegative stochastic process which is locally integrable, φ ≥ 0 and

g (·) denotes a non-negative measurable function, and

ˆ t

0
g(u)dN (u) is the stochastic Stieljes

integral of the process g with respect to the counting process Ng.

One of the most important characteristics of these processes is that they combine in the

model both a cluster process representation and a simple conditional intensity representation,

which is moreover linear. In equation (4.3.1) µ can be interpreted as an exogenous rate,
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whereas g can be interpreted as an endogenous rate and that explains why these processes

can be useful in many applications in �nance.

The particular feature of the self-exciting model is the representation of the conditional in-

tensity as a sum of contributions from all previous events. This process can also be interpreted

as a �branching process with immigration�, the immigration component being described by

the constant rate (in time) Poisson process of background events, and the �o�spring� from a

given �immigrant�. The events immigrants arrive according to a Poisson process at the con-

stant rate µ, while the o�spring arise as elements of a �nite Poisson process that is associated

with some point already constructed.

An important task is to �nd conditions that ensure the existence of stationary in this

process, i.e., of realizations of point sets {ti} on the whole space T = R having structure

above and with distribution invariant under translation. The next proposition states this

formally.

Proposition 4.3.7. Su�cient conditions for the existence of a stationary marked Hawkes

process are

(1) the intensity measure µ (·) is totally �nite,

(2) E [ψ (x)] =
´
X ψ (x)F (dx) < 1,where the factor ψ (x) determines the relative average

sizes of families with di�erent marks and F (dx) is the mark distribution.

In this study we use four types of self-exciting functions for the MPP. Before we introduce

these functions, we take a look how these will be used in the Peaks over threshold method.

4.3.2. Peaks over threshold model as a marked point process with self-exciting

function. Given a sequence of events t1, . . . , tn we de�ne a point process of exceedances

N(·) =
∑n

i=1 I{(ti,x̃i)∈·} with state space (0, n] × (u,∞) for k = 1, . . . , Nu, where tk are the

times of occurrence of the extreme vents, that is, the excedances over a high threshold u, x̃k

are the marks, in our case the magnitude of the excesses for xi > u, i.e., x̃i = (xi − u) ∨ 0,
and Nu are the number of exceedances.

Following the approach outlined in Section 4.2 we modify the equation (4.2.3) by incor-

porating a function to model the dependence of the frequencies and sizes of the events over a

high threshold u.

We begin replacing the rate of the one-dimensional Poisson process of exceedances of the

level u, τ and the scale parameter β in (4.2.3) by their self-excitement versions

τ(t) = τ + φw(t) (4.3.3)

and

β(t) = β + ηw(t), (4.3.4)

where w(t) =
∑

k:tk<t
g(t− tk; xk) is de�ned as in (4.3.1) and η, φ > 0.

Note that the only di�erence that we are adopting is τ and β depending on both marks

and time points of all preceding events at times up to but not including t according to a

common self-exciting function.
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It implicates that the exceedances over the threshold u occur according to a one dimen-

sional self-exciting marked point process with GPD density and conditional intensity described

by the equation

λ∗(t, x) =
(τ + φw(t))
β + ηw(t)

(
1 + ξ

x− u
β + ηw(t)

)−1/ξ−1

. (4.3.5)

Furthermore, the conditional rate of crossing the threshold u at time t is de�ned as follows

τ(t, x) =
ˆ ∞
x

λ∗(t, y)dy = (τ + φw(t))
(

1 + ξ
x− u

β + ηw(t)

)−1/ξ

.

Therefore, the implied distribution of the excess losses when an exceedance takes place is

generalized Pareto

P (Xk > u+ x | Tk = t,Ht) =
τ(t, x+ u | Ht)
τ(t, x | Ht)

= Ḡξ,β+ηw(t)(x).

In the next proposition we resume the main properties of this model.

Proposition 4.3.8. Let X be stationary sequence, whose exceedances over threshold u

occur according to an one dimensional self-exciting marked point process with GPD density

and conditional intensity as it is described by the equation (4.4.1) then,

(1) If φ = η = 0 we have the traditional POT model described in (4.2.3).

(2) If η = 0 we have a MPP with self-exciting function where the marks have GPD iid,

that is with unpredictable marks.

(3) If η > 0 we have a MPP with self-excitement function where the marks are condi-

tionally GPD, that is with predictable marks.

(4) If φ > 0 the estimated intensity of exceeding the threshold in the model is modelled

by a self-exciting function.

Now we de�ne the class of self-exciting functions that we wish to use.

Definition 4.3.9. Let N be a stationary MPP with Generalized Pareto densities for the

marks de�ned as the exceedances x ≥ u, where u is a high threshold. Then, the self-exciting

function g (·, ·) can take the following forms

(1) The generalized Hawkes of order K

g(t, x) =
K∑
k

φk(t− s)k−1 exp (−γt) (1 + δx) , for δ, γ > 0. (4.3.6)

(2) The simple Hawkes model

g(t, x) = exp (δx− γt) , for δ, γ > 0. (4.3.7)

(3) The Hawkes model with exponential decay

g(t, x) = γ (1 + δx) exp (−γt) , for δ, γ > 0. (4.3.8)
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(4) The ETAS model introduced by Kagan and Knopo� (1987)

g(t, x) = (1 + δx)
(

1 +
t

γ

)−(1+ρ)

, for δ, γ, ρ > 0. (4.3.9)

In the �rst model we consider a generalization of the simple Hawkes model (see Hawkes

(1971)), which is a generalized Poisson cluster process associating to cluster centers a branch-

ing process of descendants. Note that the third model is a Markovian model for δ = 1 (see

Daley and Vere-Jones (2003), pp. 243). The above speci�cation can be extended to other

classes of models as for example a marked stress release process.

4.3.3. Conditional intensities and likelihoods methods for marked point pro-

cesses. In general, there are no easy methods for evaluating point process likelihoods on

general spaces. However, the most important case for us T = R can fortunately be resolved

through conditional intensities.

An important de�nition for a �nite point process distribution is the concept of Janosy

measures.

Definition 4.3.10. De�ne the points to be located in a c.s.m.s X with distribution

{pn}, which determines the total number of points in the population with
∑∞

n=0 pn = 1.
Furthermore, for each integer n ≥ 1, a probability distribution Πn (·) is given on the Borel

sets of X determining the joint distribution of the positions of the points of the process, given

that their total number is n. Then, for any partition (A1, . . . , An) of X the Janossy measure

is de�ned as

Jn (A1 × · · · ×An) = pn
∑
perm

Πn (Ai1 , . . . , Ain)

where the summation
∑

perm is taken over all n! permutations (i1, . . . , in) of the integers

(1, . . . , n).

When the derivatives of the Janossy measure exist, then it takes a simple interpreta-

tion and it plays a fundamental role in the structural description and likelihood analy-

sis of �nite point process. For instance, if jn (x1, . . . , xn) denotes the density of Jn in a

c.s.m.s X = Rd with respect to Lebesgue measure on Rd with xi 6= xj for i 6= j. Then,

jn (x1, . . . , xn) dx1 · · · dxn is the probability that there are exactly n points in the process, one

in each of the n distinct in�nitesimal regions (xi, xi + dxi).
We give now the de�nition of likelihood for �nite point process in terms of the Janossy

density.

Definition 4.3.11. De�ne N to be a regular process, if for all integer k ≥ 1 the local

Janossy measures Jk (dt1 × · · · × dtk | A) are absolutely continuous on A(k) with respect to

Lebesgue measure X (k). Then, the likelihood of a realization t1, . . . , tn of a regular point

process N on bounded Borel set A ⊆ Rd is the local Janossy density

LA (t1, . . . , tn) = jn (t1, . . . , tn | A) .

In order to de�ne the conditional Intensities and likelihoods for MPPs, we de�ned �rst

the states space on [0,∞)×X . Furthermore, we need to �x on a measure in the mark space
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(X ,BX ) to serve as a reference measure `X (·) (Lebesgue measure on X ) in forming densities.

Now we are able to give an important de�nition concerning the regularity of a MPP.

Definition 4.3.12. A MPP on T = Rd × X is regular on A for a bounded Borel set

A ∈ BX if for all n ≥ 1 there exists a well de�ned Janossy measure Jn and therefore a Janossy

density jn (· | A×X ) as follows

jn (t1, . . . , tn, x1, . . . , xn | A×X ) dt1 · · · dtn`X (dx1) · · · `X (dxn)

with the interpretation; the probability there exist points around (t1, . . . , tn) with marks

around (x1, . . . , xn).

The following equivalences characterize completely a MPP and give the basis for the more

general concept the likelihood ratio.

Proposition 4.3.13. De�ne N (·) as an MPP on Rd × X , ` the Lebesgue measure on(
Rd,BRd

)
and `X the reference measure on (X ,BX ). Moreover, let A be a bounded set in BRd .

Then, the following conditions are equivalent.

(1) N (·) is regular on A.
(2) The ground process Ng (·) is regular on A, and for each n > 0 the conditional distri-

bution of the marks (x1, . . . , xn), with locations (t1, . . . , tn) within A, is absolutely

continuous with respect to `
(n)
X with density fA,n (x1, . . . , xn | t1, . . . , tn).

(3) If Π (·) is a probability measure equivalent to `X on (X ,BX ), then N (·) is abso-

lutely continuous with respect to the compound Poisson process N0 (·) for which the

ground process Ng
0 has positive intensity λ on A and the marks are iid with common

probability distribution Π.

The essence of the approach for the likelihood of a MPP is the use of a causal description

of the process through successive conditioning. For ease of writing, we use jn (t1, . . . , tn | w)
for the local Janossy density on the interval (0, w) and J0 (w) for J0 ((0, k)). Furthermore,

we de�ne the intervals τi = ti − ti−1 for i ≥ 1 and t0 = 0, and the conditional survivor

functions Sk (w | t1, . . . , tk−1) = P (τk | t1, . . . , tk−1) and observe that these can be represented
recursively in terms of the Janossy functions through the equations

J0 (T ) = S1 (T ) ,

j1 (t1, x1 | T ) = p1 (t1, x1) = p1 (t1) f1 (x1 | t1) (0 < t1 < T ) ,

j2 (t1, t2, x1, x2 | T ) = p1 (t1) f1 (x1 | t1) p2 (t2 | (t1, x1)) f2 (x2 | (t1, x1) , t2) (0 < t1 < t2 < T )

where the pi (·) are the densities, suitably conditioned, for the locations in the ground process,
and the fi (·) refer to the densities, again suitably conditioned, for the marks.

Proposition 4.3.14. For a regular point process on T = R+, there exists a uniquely de-

termined family of conditional probability density functions pn (t | t1, . . . , tn−1) and associated

survivor functions

Sn (t | t1, . . . , tn−1) = 1−
ˆ t

tn−1

pn (u | t1, . . . , tn−1) du (4.3.10)
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de�ned on 0 < t1 < · · · < tn−1 < t such that each pn (· | t1, . . . , tn−1) has support carried by

the half-line (tn−1,∞), and for all n ≥ 1 and all �nite intervals [0, T ] with T > 0. Then, the
following equations specify uniquely the distribution function of regular MPP on R+

J0 (T ) = S1 (T ) ,

jn (t1, . . . , tn, x1 | T ) ≡ jn (t1, . . . , tn, x1 | (0, T ))

= p1 (t1) f1 (x1 | t1) p2 (t2 | (t1, x1)) f2 (x2 | (t1, x1) , t2) · · ·

· · · pn (tn | t1, . . . , tn−1, x1 . . . , xn−1)

fn (xn | (t1, x1) , . . . (tn−1, xn−1) , tn)

×Sn+1 (T | t1, . . . , tn, x1 . . . , xn)

The main aim of the Proposition 4.3.14 was to make conditional the distribution of the

current marks as time progresses, on marks and time points of all preceding events, i.e., the

full set of the time points (0, T ), irrespective of the marks and their relative positions in time.

Another view to look at is through the hazard functions. Instead of specifying the condi-

tional densities pn (· | ·) as in (4.3.10) we express them in terms of their hazard functions

hn (t | t1, . . . , tn−1) =
pn (t | t1, . . . , tn−1)
Sn (t | t1, . . . , tn−1)

so that

pn (t | t1, . . . , tn−1) = hn (t | t1, . . . , tn−1) exp

(
−
ˆ t

tn−1

hn (u | t1, . . . , tn−1) du

)
.

Using the conditioning in the hazard functions may now include the values of the preceeding

marks as well as the length of the current and preceeding intervals. Thus, all the information

is summarized in the internal history H ≡{Ht : t ≥ 0} of the process and of this form the

amalgam of hazard function functions and mark densities can be represented as a single

composite function for the MPP as follows

λ∗ (t, x) =



h1 (t) f1 (x | t) (0 < t ≤ t1) ,
...

hn (t | (t1, x1) , . . . , (tn−1, xn−1))×

fn (x | (t1, x1) , . . . , (tn−1, xn−1) , t) (tn−1 < t ≤ tn, n ≥ 2) ,
...

where h1 (t) is the hazard function for the location of the initial point, h2 (t | (t1, x1)) the

hazard function for the location of the second point conditioned by the location of the �rst

point and the value of the �rst mark, and so on, while f1 (x | t) is the density for the �rst

mark given its location, and so on.

Hence a regular MPP N on R+×X can be represented piecewise by the function λ∗ (t, x)
named the conditional intensity function with respect to its internal history H.

Predictability, as it was de�ned in (4.3.5), is important in it that the hazard functions refer

to the risk at the end of a time interval, not at the beginning of the next interval. Similarly,
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the conditional mark density refers to the distribution to be anticipated at the end of a time

interval, not immediately after the next interval has begun.

Other form to write λ∗ (t, x) is through the H-intensity of the ground process and the

conditional density of a mark at t given Ht−

λ∗ (t, x) dtdx ≈ E [N (dt× dx) | Ht−] ≈ λ∗g (t) f∗ (x | t) dtdx.

In addition to this, there are some remarks to do when the MPP has independent marks

or unpredictable marks. These properties are resumed in the next proposition.

Proposition 4.3.15. De�ne N to be a regular MPP on R+ × X with H- intensity ex-

pressible as λ∗ (t, x) = λ∗g (t) f∗ (x | t), where λ∗g (t) is the H-intensity of the ground process.

Then N is

(1) a process with independent marks if λ∗g (t) equals the Hg-intensity for the ground

process and f∗ (x | t) = f (x | t) for deterministic functions λ (t) and f (x | t).
(2) a process with unpredictable marks if f∗ (x | t) = f (x | t) for deterministic functions

λ (t) and f (x | t).

Notice, that in a process with independent marks, the ground process and the marks

are completely independent, whereas for a process with unpredictable marks, the marks can

in�uence the subsequent evolution of the process, though the ground process does not in�uence

the distribution of the marks.

Now, we show how these results can be used to estimate the likelihood function of a

MPP in terms of its conditional intensity. Details and the proof can be found in Daley and

Vere-Jones (2003).

Proposition 4.3.16. Let N be a regular MPP on [0, T ] × X for some �nite positive T

and let (t1, x1) , . . . ,
(
tNg(T ), xNg(T )

)
be a realization of N over the interval [0, T ]. Then, the

likelihood L of such a realization can be written as

L =

Ng(T )∏
i=1

λ∗ (ti, xi)

 exp
(
−
ˆ T

0

ˆ
X
λ∗ (u, xi) du`X (dX )

)

=

Ng(T )∏
i=1

λ∗ (ti)

Ng(T )∏
i=1

f∗ (xi | ti)

 exp
(
−
ˆ T

0
λ∗g (u) du

)
, (4.3.11)

where `X is the reference measure on X .
Thus, the conditional intensity function with respect to the internal history H determines

the probability structure of N uniquely.

This perspective of the likelihood is very natural and productive if one is concerned with

developing new models. To elucidate the ideas proposed in this section we derived the max-

imum likelihood estimation for the generalized Hawkes-type cluster model and the ETAS

model.
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Example 4.3.17. Given a MPP with occurrence observations (t1, . . . , tn) for an interval

[0, T ], marks (x1, . . . , xn), self-exciting function

ˆ t

0

K∑
k

φk(t− s)k−1 exp (−γ (t− u)) (1 + δx) ds

and conditional intensity

λ (t, x) =
τ + φw (t, x)
β + αw (t, x)

(
1 + ξ

x− u
β + ηw(t)

)
for x ≥ u

the log-likelihood is given by equation (4.3.11)

l (; ti, xi) =

[
n∑
i=1

log λ∗ (ti)

]
+

[
n∑
i=1

log f∗ (xi | ti)

]
−
(ˆ T

0
λ∗g (s) ds

)
.

Now we calculate each sum separately in the discrete case. Denote w (t, x) =
∑

t<ti

∑K
k φk(ti−

t)k−1 exp (−γ (ti − t)) (1 + δxi). For the conditional intensity we have[
n∑
i=1

log λ∗ (ti)

]
=

n∑
i=1

log {τ + w (t, x)} ,

for the marks density[
n∑
i=1

log f∗ (xi | ti)

]
=

n∑
i=1

(
−ξ−1 − 1

)
log
(

1 + ξ
xi − u

β + αw (t, x)

)
− log (β + αw (t, x))

and for the conditional intensity of the ground process(ˆ T

0
λ∗g (s) ds

)
= τn+ (1 + δxi)

K∑
k=0

φk

{ˆ T

0
(T − s)k−1 exp (−γ (T − s)) ds

}
.

Note that
´ T

0 (T−s)k−1 exp (−γ (T − s)) ds is the gamma function. Using integration by parts

we get (ˆ T

0
λ∗g (s) ds

)
= τn+ (1 + δxi)

K∑
k=0

φk
exp (−γ (T − ti))

−γ{
k∑
l=1

Γ (k + 1)
kΓ (k − l + 1) γl−1

[
1− (T − ti)k−l

]}
.

In the same way we can derive the log-likelihood for the ETAS model.

Example 4.3.18. (Likelihood of the ETAS model)

Consider the ETASModel proposed in De�nition (4.3.9) with self-exciting function w (t, x) =ˆ t

0
(1 + δx)

(
1 + (t−s)

γ

)−(1+ρ)
ds and conditional intensity as in the last example, the log-

likelihood function for the MPP case is de�ned as

l (; ti, xi) =

[
n∑
i=1

log λ∗ (ti)

]
+

[
n∑
i=1

log f∗ (xi | ti)

]
−
(ˆ T

0
λ∗g (s) ds

)
.
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Like the last example we calculate each term by separate

l (; ti, xi) =
n∑
i=1

log {τ + w (t, x)}+

[
n∑
i=1

log f∗ (xi | ti)

]

−

[
τn+ φ

∑
ti<t

(1 + δxi)
γ

ρ

{
1−

(
1 +

(t− ti)
γ

)−ρ}]
.

Because the log-likelihood of these models is non-linear with respect to the parameters, the

maximization of the log-likelihood is performed by using non-linear optimization techniques

in R, R Development Core Team (2009).

4.4. The multivariate extension

Let now Xn = {X1n, . . . , Xdn} be a stationary sequence multivariate random variables

with distribution function F (x), x ∈ Rd. Assume that there exist sequences of normalizing

d- variate sequences an and bn ∈ Rd, and distribution function G (x) with nondegenerate

marginals such that the limit (4.2.1) exists.

Furthermore, we assume that for su�ciently large thresholds uj for j = 1, . . . , d, the mar-

ginal distribution of Xj > uj is GPD. Thus, it allows us to rewrite each marginal distribution

j in the form of a self-excitement MPP as in the last section

Fj (x) = 1− (τj + φjwj(t))
(

1 + ξj
x− uj

βj + ηjwj(t)

)−1/ξj

+

. (4.4.1)

In the classical approach the results are based on the assumption that the multivariate

distribution F (x) is in the domain of attraction of a MEVD G (x). The following proposition
is essentially part i) of Proposition 5.15 in Resnick (1987).

Proposition 4.4.1. Let F∗ be a multivariate distribution function with unit Frèchet

marginals. De�ne µ (x1, . . . , xd; θ) = µ ([0, (x1, . . . , xd)]
c ; θ), then F∗ ∈ MDA (G∗) if and

only if 1− F∗ is regularly varying, i.e.,

lim
t→∞

logF∗ (tx1, . . . , txd)
logF∗ (t, . . . , t)

=
1− F∗ (tx1, . . . , txd)

1− F∗ (t, . . . , t)
=

logG∗ (x1, . . . , xd)
logG∗ (1, . . . , 1)

=
µ (x1, . . . , xd; θ)
µ (1, . . . , 1; θ)

,

(4.4.2)

where G∗ is a MEVD with unit Frèchet marginals.

This Proposition suggests that for high thresholds the multivariate distribution function

F can be approximated by its limit distribution function G. Two possible models for the joint

tail F come from treating (4.4.2) as an identity for large t. We concentrate on the asymptotic

dependent case, which gives a straightforward derivation. Substituting sj = tvj in (4.4.2) and

exploiting the homogeneity of µ (x1, . . . , xd; θ) we have that for large sj

1− F∗ (s1, . . . , sd) = ψ (t)µ (s1, . . . , sd; θ) , (4.4.3)

where ψ (t) = t{1−F∗(t,...,t)}
µ(1,...,1;θ) . For convenience we choose F∗ to have reciprocal uniform marginals,

i.e., F∗,i (xi) = 1 − 1
xi
. In this case, since for vi = (∞, . . . ,∞, vi,∞, . . . ,∞) we have

F∗ (vi) = F∗,i (vi) and µ (vi; θ) = 1
vi

we get ψ (t) = 1. Then, it follows that for s large
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we have

F∗ (s1, . . . , sd) ≈ 1− µ (s1, . . . , sd; θ) .

Smith et al. (1997) used this approximation for multivariate thresholds exceedances. In

our model the application is as follows.

Let F (x) be a multivariate joint distribution, which marginals Fj for all j = 1, . . . , d can

be approximated as in (4.4.1). De�ne Sj = (1− Fj (xj))
−1. Thus, we get the next relation

F∗ (x1, . . . , xd) = F (S←1 (x1) , . . . , S←d (xd))

where S←j denote the inverse function of Sj .

Now suppose that xj > uj for some marginal j = 1, . . . , d. replacing Fj by its marginal

assumption in (4.4.1) we have;

Sj (x) = (τj + φjwj(t))
−1

(
1 + ξj

x− uj
βj + ηjwj(t)

)1/ξj

+

for xj > uj . (4.4.4)

Combining this with (4.4.3) we obtain the following approximation

F (x1, . . . xd) = 1− µ
(

(τ1+φ1w1(t))−1
(

1+ξ1
x−u1

β1+η1w1(t)

)1/ξ1

+
,...,(τd+φdwd(t))−1

(
1+ξd

x−u1
βd+ηdwd(t)

)1/ξd

+
;θ

)
(4.4.5)

on xj > uj for each j. Hence our approach is identical to that in the Smith et al. (1997)

above the thresholds. Note that we take the thresholds to be �xed, which is consistent with

existing practice.

4.4.1. Statistical inference. The multivariate extremes model is only valid when each

variable Yj exceeds some high threshold uj for all j = 1, . . . , d. Therefore, the only relevant

information for our model is if the observations occur above the threshold. Hence for the

likelihood estimation, we considered the marginal observations as censored at the thresholds.

Thus, the likelihood contribution for a typical observation (x1, . . . , xd) in which k components

j1, . . . , jk exceed their thresholds is given by

f (x1, . . . , xd) = ∂kF (x1,...,xd)
∂xj1 ...∂xjk

= ∂kµ(x1,...,xd)
∂xj1 ...∂xjk

×
jk∏
l=j1

sl (xl) (4.4.6)

where sj (xj) is the density function associated to the marginal distribution Fj for F de�ned

as in (4.4.5). In our case it is

sj (xj) =
∂Sj (xj)
∂xj

= − (τj + φjwj(t))
−ξj (βj + ηjwj(t))

−1 Sj (xj + uj)
1−ξj

Example 4.4.2. We derive only the explicit form of the corresponding likelihood for the

bivariate case without loss of the generality. The likelihood contribution corresponding to the

point x1, x2 is denoted by Lδ1δ2 , where δ1 and δ2 take the values 1 if the marginal contributes

to the likelihood, i.e., xj > uj or 0 if xj ≤ uj for j = 1, 2. In the d-variate case we have

by inclusion-exclusion 2d regions where we have to derive the likelihood contribution. In this
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example (4.4.6) gives

L00 (x1, x2) = 1− µ
(
τ1 (t)−1 , τ2 (t)−1 ; θ

)
L10 (x1, x2) = s1 (x1)

∂µ(S1(x1+u1),τ2(t)−1;θ)
∂x1

L01 (x1, x2) = s2 (x2)
∂µ(τ1(t)−1,S2(x2+u2);θ)

∂x1

L11 (x1, x2) = s2 (x2) s1 (x1) ∂
2µ(S1(x1+u1),S2(x2+u2);θ)

∂x1∂x2

where τj (t) and Sj (xj) are de�ned as in (4.3.3) and (4.4.4).

The maximum likelihood estimation is straightforward in terms of its asymptotic proper-

ties and it is regular at interior points of the parameter space.

4.4.2. Models for the exponent measure µ. In this section we present some models

to obtain a parametrization of the exponent measure µ together with some time-varying

versions that have been considered in this work.

There are many families of extreme value distributions. We consider here only the bivariate

case.

(1) The asymmetric logistic model (Galambos (1975),Tawn (1988a)) has the exponent

measure

µ (x1, x2;ψ1, ψ2, α) =
1− ψ1

x1
+

1− ψ2

x2
+

{(
ψ1

x1

)1/α

+
(
ψ2

x2

)1/α
}α

,

where ψ1, ψ2 ∈ [0, 1] and α ∈ (0, 1]. The density of the measure H can be derived as

follows

h(v) = {(ψ2v)α + (ψ1 (1− v))α}1/α−2 {v (1− v)}α−2 (ψ1ψ2)α (1− α) .

We can show that the Logistic distribution has mass both in the interior and at

the end points because H ({0}) = 1 − ψ2 and H ({1}) = 1 − ψ1. Independence is

obtained when either q → 1, ψ1 = 0 or ψ2 = 0 and total dependence correspond

to ψ1 = ψ2 = 1 and the limit q → 0. A �rst special case for ψ1 = ψ2 = 1 is the

symmetric logistic model having all its mass in the interior. The second case is if

ψ1 = ψ2 = α we have the Gumbel model

(2) The Negative Logistic model (Joe (1990)) takes the form

µ (x1, x2;ψ1, ψ2, α) =
1
x1

+
1
x2

+−

{(
ψ1

x1

)−1/α

+
(
ψ2

x2

)−1/α
}−α

where ψ1, ψ2 ∈ [0, 1] and α > 0. This family is similar in structure to the logistic

family with an symmetric version when ψ1 = ψ2 = 1. The limiting cases are α→∞
and α→ 0 for the totally independent and totally dependent case, respectively.

(3) The Polynomial model (Klüppelberg and Mayer (2006)) is de�ned by means of

Pickand's dependence functions A (·) as follows. De�ne an expansion polynomial
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in A (·)

A (w) = amw
m + am−1w

m−1 + · · · a2w
2 −

(
m∑
k=2

ak

)
w + 1

for w ∈ [0, 1] with a2 ≥ 0,
∑m

k=2 ak ≥ 0, 0 ≤
∑m

k=2 (k − 1) ak ≤ 1 and
∑m

k=2 k (k − 1) ak ≥
0. The corresponding exponent measure has m− 2 parameters.

µ (x1, x2; a1, . . . am−2) =
1
x1

+
1
x2
−

m∑
k=2

ak

m−k∑
l=0

(
m− k
l

)
xl+k−1

1 xm−k−l−1
2

(x1 + x2)m−1 .

If we set m = 5, a5 = ψ1/20, a4 = ψ2/12, a3 = − (ψ1 + ψ2) /6 and a2 = 1/2, we have
the asymmetric mixed modelled de�ned by Tawn (1988a) on terms of the exponent

measure as follows

µ (x1, x2;ψ, α) =
1
x1

+
1
x2

+
{

(α+ ψ)x1 + (α+ 2ψ)x2)
(x1 + x2)2

}
,

where α ≥ 0, α + 2ψ ≤ 1,α + 3ψ ≥ 0. These constraints imply that ψ ∈ [−0.5, 0.5]
and α ∈ [0, 1.5]. A symmetric mixed version is obtained when ψ = 0. In this model

complete dependence cannot be obtained, independence is obtained when ψ = α = 0.

The main assumption in these models is that the parameters associated to the structure of

the dependence on each exponent measure, are invariant. However, in practice, one key issue

is to state if we have a stationary exponent measure, on the whole sample. Few papers have

tried to deal with that from of the point of view of exponent measures, but from the point of

view of Copulas. See for example Patton (2006) who assumes that the functional form of the

copula remains �xed over the sample whereas the parameters vary according to some evolution

equation. Other alternative approachs may be considered to allow also for time variation in

the functional form using a regime switching copula model, as in Rodriguez (2007).

Another point of view to look at is van den Goorbergh et al. (2005) proposes to model

the time variation in the copula as a function of the conditional volatilities of the index

returns. The motivation for this speci�cation is the evidence on correlation breakdowns,

which suggests that increased dependence occurs in hectic periods. An important drawback

of these approaches is that they employ a �xed (parametric) structure for the pattern of

changes in the copula parameter.

In order to reduce these limitations other authors as Dias and Embrechts (2004), Giaco-

mini et al. (2007) have followed a semiparametric approach where the copula parameters are

adaptively estimated in a time interval. The choice is performed via an adaptive estimation

under the assumption of local homogeneity: for every time point there exists an interval of

time homogeneity in which the copula parameter can be well approximated by a constant.

This interval is recovered from the data using local change point analysis.

In this chapter we propose two types of models for the time-varying exponent measures

functions. The �rst idea is to model by allowing the dependence parameter of an exponent

measure function to envolve through time according to a combination of self-exciting functions.

The second type of model capture local changes in the dependency structure of the exponent

measure. The procedure adaptively estimates intervals of homogeneity, and for each interval

an exponent measure function parameter is estimated.
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4.4.2.1. Parametric time-varying exponent measure functions. In this models the dynamic

in the structure of the exponent measure function µ (x1, x2; θ) assumes that the dependence

parameters θ evolves according to a particular self-exciting function, which like the models

proposed for the marginals distributions can depend on the time and size of the exceedances

over a threshold u.

There are many ways of capturing possible time variation in the conditional copula. The

di�culty to speci�cy how the parameters evolve over time lies in de�ning a parametric evo-

lution equation. We propose the following evolution equations for the bivariate symmetric

logistic model.

Model 1. The �rst model is a natural extension inspired on a Taylor expansion of second

order of an unknown function f (y) which is related to the main dependence component of

an exponent measure and y is de�ned as the absolute di�erence between the self-exciting

functions of the marginal models y =| w1(t, x1)−w2(t, x2) |. Then, the evolution equation of

the parameter α(t) takes form

α(t) = α0 + α2∇f + α2∇2f.

Note the similarities of this model with the translogaritmic function, traditionally used in

stochastic frontier analysis to approach production functions.

Model 2. The second model considers that there exists a direct relation between the

correlation between the self-exciting functions of the marginal models

α(t, x1, x2) = α0 + α1corr (w1 (t, x1) , w1 (t, x2)) .

To motivate this speci�cation, we suppose that there is an increased dependence occurence

in periods of extreme movements between the pairs. Hence, the self-exciting functions should

exhibit some kind of correlation. If this is true, the theory predicts a negative value of α1, by

the fact that when the correlation augment α(t) should converge to zero.

4.4.2.2. Time inhomogeneous exponent measure. In this section we follow a semiparamet-

ric approach, since we will not speci�c a functional form for the parameter o the exponent

measure. The idea is to select the time varying exponent measure parameters locally under

the assumption of local homogeneity. This procedure was �rst proposed by Giacomini et al.

(2007) for copulas models. The method bases on �nding an interval of time homogeneity in

which the exponent measure parameter can be well approximated by a constant.

In order to choose this interval of homogeneity we employ a local parametric test as

introduced by Dias and Embrechts (2004).

Test of homogeneity. We suppose that we have d-variate multivariate extreme value dis-

tribution with n observations in the time interval T = [0, n] and exponent measure µ (x; θ),
where θ is a vector of parameters, that characterizes the dependence structure of the exponent

measure µ. We are interested in one single change point analysis for θ in one time interval

of size m ⊆ T . For instance, we test the null hypothesis H0 : θt0:m versus the alternative

H1 : θ′t0:δ∗ 6= θ′′δ∗+1:m. Here δ∗ is the location time of the single change point if we reject the

null hypothesis. The parameters θt0:m, θt0:δ∗ and θ
′
δ∗+1:m are supposed to be unknown under

both hypotheses.
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The main idea is to test if these two sub samples [t0 : δ∗] and [δ ∗+1 : m] come from the

same population under the assumption of that δ∗ = δ is known. The null hypothesis would

be rejected for small values of generalized likelihood ratio test

Λδ =
supθ

∏
t0≤i≤m f (xi1, . . . , xid | θ)

supθ,θ′
∏
t0≤i≤δ f (xi1, . . . , xid | θ′)

∏
δ<i≤m f (xi1, . . . , xid | θ′′)

, (4.4.7)

where f (xi1, . . . , xid | θ) is the density of F (xi1, . . . , xid | θ).
Now, if we take logarithms we get

Lδ
(
θ′
)

=
∑

t0≤i≤δ
log f

(
xi1, . . . , xid | θ′

)
and

Lδ
(
θ′′
)

=
∑

δ<i≤m
log f

(
xi1, . . . , xid | θ′′

)
,

then the likelihood ratio equation (4.4.7) can be written as

−2 log (Λδ) = 2
{
Lδ

(
θ̂′
)

+ Lδ

(
θ̂′
)
− Lm

(
θ̂
)}

.

While δ is unknown , H0 will be rejected for large values of

Zm = max
t0≤δ≤m

−2 log (Λδ) .

The asymptotic distribution of
√
Zm can be derived using extreme value theory, (see Em-

brechts et al. (1997)). In fact, if H0 and all the necessary regularity conditions hold, we

have

lim
m→∞

P
(
A (log (m))

√
Zm ≤ t−Dq (log (m))

)
= exp (−2 exp (−t)) (4.4.8)

for all t, where A (x) =
√

2 log (x) , Dq (x) = 2 log (x) + q
2 log (log (x)) − log

(
Γ
( q

2

))
, and

Γ (x) =
´∞

0 st−1 exp (−s) ds is the gamma function.

Note, that the right hand side of (4.4.8) is the square of a Gumbel distribution function.

It is known that the rate of convergence in results like (4.4.8) is very slow specially for small

and moderate sample sizes. For this reason Gombay and Horváth (1996) proposed and Dias

and Embrechts (2004) veri�ed a result on which the test can yield better properties for smaller

sample sizes.

Under H0 and supposing that all necessary regularity conditions hold for m→∞

P
(√

Zm ≥ x
)
≈ xp

2p/2Γ (p/2)

{
log u (h, l)− p

x2
log u (h, l) +

4
x2

+O
(
x−4

)}
, (4.4.9)

where u (h, l) = (1− h) (1− l) /hl, and h and l are functions depending on m for which

Gombay and Horváth (1996) proposed the approximation h (m) = l (m) = m−1 log 3
√
m2.

If we assume that there is exactly one change point in the exponent measure function,

then the maximum likelihood estimation for the time of change is given by

δ̂m = min {1 ≤ δ < m : Zm = −2 log (Λδ)} .

De�ne k as the minimal size of an interval for which all the necessary conditions of

regularity and e�ciency can be assumed.



The multivariate extension 106

In the case that there is no change, δ̂m will take a value near the limits of the sample. This

holds because under the null hypothesis δ̂m/m → ξ as m → ∞ under regularity conditions,

where P (ξ = 0) = P (ξ = 1) = 1/2 (see Csörgö and Horváth (1997)). The detection of several

change-points in d−dimensional processes with unknown parameters can be done using so

called binary segmentation procedure.

The method consists of the appliance of the likelihood ratio test for one change. If H0 is

rejected then we have the estimate of the time of the change δ̂m. Next, we divide the sample

into two subsamples
[
1, δ̂m

]
and

[
δ̂m + 1, n

]
and test H0 for each one of them and so on. We

continue this segmentation procedure until we do not reject the null hypothesis in any of the

subsamples. However, under this procedure it is possible to provide the error probability of

rejecting the hypothesis of homogeneity in more than one point.

Here, we follow an alternative method to avoid the estimation losses caused by the binary

segmentation procedure. The method consists of the estimation of p minimal number of

subsets for which the parameters of an exponent measure µ(x1, x2; θ) can be approximated

by a constant vector of parameters θ. The basic idea is to select a number of intervals Jj of
length mj for j = 1, . . . p in such a way that the time varying parameters θ (t) of an exponent

measure µ(x1, x2 | θ) can be approximated by constant vectors of parameters θj .

In order to �nd these intervals of local homogeneity we need to de�ne �rst our null

hypothesis to apply the test proposed in (4.4.9). The null hypothesis of homogeneity is that

for which all the observations in the interval Jj follow the model with dependence parameter

θj . The alternative hypothesisH1 claims that there exist two types of internal subsets Ij [t0, δj ]
and Lj [δj + 1,mj ] in Jj such that the parameters θj of the an exponent measure changes

spontaneously in some point δj .

One possible setting to choose the parameters δj and mj that have been successfully

employed in this work is presented below.

Selection of the intervals Jj. We de�ne Ij := Ijq [t, δj ] and Lj := Ljqτ [δj + 1,mj ] with
δj = t+qk, mj = t+(q+1)k+τ , and Ijq∪Ljqτ = Jj , where τ ,q ∈ Z+ are the largest integers

for which the homogeneity in Jj is accepted, and k is the minimal number of observations for

which all the necessary conditions of regularity and e�ciency are assumed.

The formal procedure is as follows.

Algorithm 4.4.3. Set j = q = 1 and t = τ = 0.

(1) Test the null Hypothesis of homogeneity for the �rst interval J1, that is, all the

observations in J1= I11 ∪ L110 follow the model with dependence parameter θ1. If

this is rejected, then J1 = I11, and go to the step 3. Otherwise, increment q until

homogeneity is rejected.

(2) If q is the integer for which homogeneity is rejected, set I0(q−1) and increment τ until

the largest possible in L1(q−1)τ , for which J1 cannot be reject. The maximal estimated

interval of homogeneity is J1 = I0(q−1) ∪ L1(q−1)τ .

(3) Finally, increment j = j + 1 and set t0 = k(q+ 1) + τ , q = 1 and τ = 0. Repeat this
procedure until t0 = n.

Note that the only critical parameter chosen is k. In our work k is the minimal number

of exceedances, in at least a marginal of a d−dimensional extreme value model, such that the
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Figure 4.4.1. Time-inhomogeneous estimation of the pointwise median de-
pendence parameter of the logistic exponent measure θ̄ (solid line) based on 100
simulations of the examples proposed, and their respective quantiles (dotted
line) .

maximum likelihood can be consistently calculated. Small k leads to large standard deviations

in the parameters θ, while an increase in k results in a more smoothed procedure.

Simulations. In this section we apply the test of homogeneity procedure on simulated

bivariate data with dependence structure given by the logistic exponent measure µ (x1, x2 | θ).
In the two examples we generate 100 samples of length 2500. In the �rst example with 5 sudden

jumps in the dependence parameter given by

θ(t) :=



0.1 1 ≤ t ≤ 500

0.3 500 < t ≤ 1000

0.6 1000 < t ≤ 1500

0.8 1500 < t ≤ 2000

0.1 2000 < t < 2500,

while in the second example the dependence parameter θ (t) has a smoother transition in the

dependence parameter given by

θ (t) :=



0.1 1 ≤ t ≤ 500

0.1 + (t−500)
1000 500 < t ≤ 1000

0.6 1000 < t ≤ 1500

0.6− (1500−t)
2000 1500 < t ≤ 2000

0.1 2000 < t < 2500.

Figure 4.4.1 shows the pointwise median and quantiles of the estimated parameter for

k = 100 based on 100 simulations. Note that the estimations are more than satisfactory.

The di�culty of the procedure is principally due to the scars number of exceedances over

the threshold u, in particular, when the data are asymptotically independent.
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Figure 4.5.1. Bivariate scatter plots of the Dow Jones industrial average,
NASDAQ and S&P500 returns for the period of investigation.

4.5. Empirical stress testing study in U.S. Future markets

There is documented evidence that the US market has the greatest in�uence on the other

stock markets around the world (see for instance Poon et al. (2001)). Hence, an extreme event

in the U.S. market is expected to have a major impact in the other markets around the world.

In this application we consider the three more importantly future contracts actually traded

in U.S. markets: Dow Jones industrial average (DJI), NASDAQ index returns, and S&P500

index returns. A sample consisting of pairs of daily returns on the three indexes from January

1, 1990 to June 30, 2007 was obtained from Datastream.

This period of time saw the falling of world �nancial markets on the mini crash October

27,1998, following the bursting of the high-tech bubble, and the stock market �uctuations in

September 11, 2001. Thus, this sample is perfectly suited to highlight the importance of the

extreme dependence approach.

The bivariate log returns are plotted in Figure 4.5.1. From the plots, we see clearly that

there are extreme observations in each sequence with a high dependence on the negative

quadrant.

Table 4.A.1 in Appendix 4.A contains statistics of the data summarizing information about

the unconditional distribution of the returns on the three indexes. The statistics show that

all series exhibit skewness to the losses as well as excess kurtosis. For all returns we reject the

null hypothesis of no serial correlation with p-values of zero for the three indexes. According

to the results on the Engle's test, we also reject the null hypothesis of no heteroscedasticity

for the three indexes. This anticipates the possible existence of volatility clusters in the three

indexes.

4.5.1. Univariate self-exciting extreme value models. In order to investigate the

multivariate extreme dependence among the returns we estimate �rst the self-exciting models

for the univariate cases. The thresholds must be set high enough so that the maximum

exceedances generalized Pareto. For this reason we choose to work with a 5% of the maxima

of the sample.
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The maximum likelihood estimates of the self-exciting extreme value models proposed in

Section 4.3 for the marginal index return processes may be found in Tables 4.A.2, 4.A.3 and

4.A.4 in Appendix 4.A.

With the help of a likelihood Ratio test, we compare the di�erent models and choose the

best model for all indexes. The best �tted model is an ETAS model with predictable marks

and in�uence of the same in the self-exciting function in three cases. In particular, the model

gives evidence for the predictable marks (η) and in�uence of the marks in the self-exciting

process. The assumption that the three index losses have heavy tails following a branching

structure is strengthened by these results.

We provide also the W-statistics to assess our success in modelling the temporal behaviour

of the exceedances of the threshold u. The W-statistics are de�ned to be

W = ξ−1 ln
(

1 + ξ
x− u

β + ηw (t)

)
.

This statistic states that if the GPD parameter model is correct, then the residuals are ap-

proximately independent unit exponential variables. The corresponding QQ-plots, displayed

in Figure 4.5.2, do not show a substantial deviation from an exponential distribution.

To check that there is no further time series structure the autocorrelation function (ACF)

for the residuals (left panel) and for their squares (right panel) are also included. Both

autocorrelations are negligible at nearly all lags.

4.5.2. Empirical results for 1-dimensional value at risk (VaR) and expected

shortfall (ES) estimations. We employ these estimated models to compute the risk mea-

sures VaR and ES. Not only in sample VaR and ES values are computed to examine the

estimated model's ability but also out of sample the risk measures values are computed to

evaluate the backtesting quality of the estimated model. The models are tested with a VaR

and ES level α from 1% to 0.01%, i.e, a from an event in 100 days to an event in 40 years. As

it is to be expected, if the measures were speci�ed perfectly, the failure rate would equal to

the prespeci�ed level α. In other words, the more the failure rate approaches the pre speci�ed

level α, the more the risk measures VaR and ES helps investors to forecast their possible

trading losses correctly.

The empirical results for the VaR and ES computations for S&P, NASDAQ , and Dow

Jones are presented in Table 4.5.1 for some of the most important extreme events during the

sample of study.

The �rst named the �mini-crash� was caused by an economic crisis in Asia. On Monday,

October 27, the Dow Jones Industrial Average declined by 554.26 points (7.18%) to close

at 7161.15. This represented the tenth largest percentage decline in the index since 1915.

October 27 was also the �rst time that the cross-market trading halt circuit breaker procedures

had been used since their adoption in 1988.

The second crash is attributed to the Russia defaults on the state short-term bonds, and

devaluation of the rubble. The strong correction started in mid-August and it was not only

speci�c to the U.S markets. Actually, it was much stronger in some other markets, such as

the German market.
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Figure 4.5.2. qq-plots of the residuals (left), autocorrelation function of the
residuals (middle), autocorrelation function of the square of residuals (right),
for the returns of the S&P 500 index (top panel), the Dow Jones index (middle
panel) and the NASDAQ index (bottom panel).

The third to be mentioned is the NASDAQ crash in March and April, 2000. This index

dropped precipitously between March 14, and April 14, about a cumulative loss of 50 %

counted from its all-time high of 5,133 points reached on March 10, 2000. The drop was

mostly driven by the so-called �New Economy� stocks which had risen nearly four-fold over

1998 and 1999 compared to a gain of only 50% for the S&P 500 index.

The fourth crash is associated to the attacks on the 11 September 2001. When the stock

markets reopened on September 17, 2001, after the longest closure since the Great Depression

in 1933, the three indexes together experienced more than 7 % day point decline. From the

results of VaR and ES computations in Table 4.5.1 and Figure 4.5.3 we can come to the

following conclusions. The dynamical estimation of the VaR measures for the three indexes

varies considerably in relation to the number of crashes that already occurred. This happens

because there are new information available to the self-exciting function which is responsible

for the magnitude of the point process intensity. For instance, the probability of the extreme

event in 1997 is lower than the probability of the Dot-com crash of 2001 since the information

set, on which we condition, contains only past observations until 1990, so that the failure

rates tend to be signi�cantly di�erent as the time go on.

Moreover, we test the null hypothesis of estimating correctly the Risk measures at time ti

against the alternative that the method systematically underestimates the returns rti+1 . Thus,
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Time S&P 500
V aR0.01 ES0.01 V aR0.001 ES0.001 V aR0.0001 ES0.0001

27.10.1997 7.113 2.507 3.207 4.140 5.055 6.276 7.474

31.08.1998 7.043 3.174 4.073 5.272 6.448 8.016 9.555

14.04.2000 6.004 3.4354 3.982 5.152 6.301 7.831 9.334

17.09.2001 5.046 3.8453 4.954 6.429 7.878 9.811 11.707

Dow Jones
V aR0.01 ES0.01 V aR0.001 ES0.001 V aR0.0001 ES0.0001

27.10.1997 7.455 2.762 3.622 4.772 5.967 7.564 9.225

31.08.1998 6.578 3.549 4.705 6.256 7.868 10.022 12.262

14.04.2000 5.822 2.764 3.625 4.776 5.972 7.572 9.233

17.09.2001 7.396 3.959 5.276 7.037 8.866 11.312 13.853

NASDAQ
V aR0.01 ES0.01 V aR0.01 ES0.01 V aR0.001 ES0.001

27.10.1997 7.426 2.107 2.691 3.462 4.141 5.038 5.826

31.08.1998 8.953 4.301 5.307 6.639 7.810 9.358 10.719

14.04.2000 10.168 8.429 10.517 13.280 15.708 18.919 21.7417

17.09.2001 7.077 6.115 7.600 9.565 11.292 13.576 15.584

Table 4.5.1. VaR and ES computations for S&P, NASDAQ , and Dow Jones
for some of the most important extreme events during the sample of study.

the indicator for a violation at time ti is Bernoulli It := 1{rti+1>{V aRα,ti}} ∼ Be(1− α). As
it is described by McNeil and Frey (2000), It and Is are independent for t, s ∈ T , then∑

ti∈T
∼ B(n, 1− α). (4.5.1)

Expression (4.5.1) is a two-tailed test that is asymptotically distributed as binomial. We

perform the null hypothesis that it is a method that correctly estimates the risk measures

against the alternative that the method has a systematic estimation error and gives too few

or too many violations.

In all cases the models estimate correctly the conditional VaR for all the quantiles, the

null hypothesis is rejected in Table 4.A.5 whenever the p-value of the binomial test is less

than 1 percent.

Out-of-sample VaR computations is adopted to compare these VaR and ES with estima-

tion sample we only know the �past� performance of these VaR models. However, to improve

out estimation we need �rst to model the multivariate extreme dependence among the returns

by means of exponent measures.

4.5.3. Multivariate estimation. Table 4.A.6 in Appendix 4.A reports parameter es-

timates for the bivariate asymmetric Logistic, the symmetric Logistic, the Negative Logistic

and the polynomial model (with m = 5), when the dependency parameter is assumed to be

constant over time. For all market pairs, the estimate of the dependency parameter is found

to be positive and strongly signi�cant. As expected, it is statistically and economically much

larger for the pair S&P 500 and Dow Jones.

We also performed a likelihood ratio test to investigate whether a given exponent measure

function is able to �t the dependence structure observed in the data. We found that the
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Figure 4.5.4. Estimated exponent measure dependence parameter α(t) for
the pairs S&P 500 and Dow Jones (left), S&P 500 andNASDAQ (middle) ,
Dow Jones and NASDAQ (right) , by the parametric models 1 (top panel), 2
(middle panel), and time-inhomogeneous method (bottom panel) for k = 150.

symmetric Logistic model �ts the data very well for the pairs S&P 500 and Dow Jones, S&P

500 and NASDAQ , and the asymmetric Logistic model for the pair Dow Jones and NASDAQ.

In the time-varying cases we turn our attention to the estimation of the parametric time-

varying versions of only the best �tted bivariate static models. Due to the large number of

possible models, we do not report the estimates for all combinations.

Table 4.A.7 in Appendix 4.A gives the results for the two parametric models proposed in

Section 4.4.2.1 and the Figure 4.5.4 displays the evolution of the time varying coe�cient αt

for the symmetric logistic case. A number of insights are possible from these results. Firsts,

the model with a second order Taylor approximation gives the best maximum likelihood for

the pairs S&P 500 and Dow Jones as well as S&P 500 and NASDAQ, while the pair Dow

Jones and NASDAQ is better approximated by the second model with rolling Kendall tau

correlation between the self-exciting functions of the univariate point processes. Thus, the

time varying models yield a signi�cantly better �t than the static case. However, not all of the

parameters in the time varying second order Taylor approximation exponent measure were

found to be signi�cant and it is not clear that the functional form adopted should be the best

approximation.
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For these reasons, we use the adaptive estimation procedure based on the assumption of

time inhomogeneous exponent measure estimated via Local Change Point procedure. Our goal

in this study is to adopt di�erent ways to deal with the dynamism of the extreme dependence.

For the choice of the parameter k we take the minimal number of observations for which the

maximum likelihood method can be used. In our application we adopted k = 150 for the three

pairs under investigation. The results are depicted in Figure 4.5.4 and Table 4.A.7. In Figure

4.5.4 we displays in gray colour the time when most important events are taken place. Notice,

that the local change point procedure predicts considerably well the times of these extreme

events. For the �rst pair S&P 500 and Dow Jones the approach experiences three changes of

the extreme dependence in relation to the crashes of the Asian crisis 1997, the Russian crisis

1998 and surprisingly the attacks of September 11, 2001. The �rst two of these crashes are

at the same time the most important extreme events in the sample of study of our work.

In the case S&P 500 and NASDAQ the procedures spontaneously experienced two changes

of dependence close to two of the most important extreme events between these two returns,

the �rst happened after the Asian crisis in 1997 and the second in the Dot-com crash of 2000.

In the last pair Dow Jones and NASDAQ only two of the crashes investigated here have a

direct relation with a change of extreme dependence estimated with change point procedure.

These extreme events are the Dot-com crash, 2000, and the attacks of the September 11, 2000.

The estimation illustrates the improvement of the likelihood that can be obtained when one

recognizes that there is a change-point in the dependence of the data and one is able to take

this change into account when modelling the data. Following, we give three applications with

the models estimated.

4.5.3.1. Stress testing. The extreme value theory is now familiar to practitioners. It al-

lows, for example, to apply stress scenarios to a portfolio. However, the extension to the

multivariate case is a di�cult issue.

To illustrate how this result can be used for risk management, we consider an example

which focuses on the extremes of the three bivariate pairs. Stress scenario in the bivariate

case could be viewed as a failure set of the form

A :=
{

(x1, x2) ∈ R2, P (X1 > x1, X2 > x2) = α
}
,

where α de�nes a contour failure area in the tail of the bivariate distribution. In our approach

the bivariate probability can be written in terms of the exponent measure and the self-exciting

point process approximation as follows

P (X1 > x1, X2 > x2) = 2−
2∑
j=1

(τj + φjwj(t))
(

1 + ξj
xj − uj

β1j + ηjwj(t)

)−1/ξj

−µ (x1, x2; θ) , for xj ≥ uj .

Note, that the probability α is associated with the waiting period for which the bivariate

extremes can occur. To illustrate the concept of failure set with two variables, we provide dif-

ferent examples for the losses of returns of the three indexes for di�erent probability scenarios

and with di�erent times where the extreme events happen.

For instance, we calculate the stress scenario for di�erent levels of probability failure for

the pair Dow Jones and NASDAQ for the Russian Crisis of 1998, the for the pair S&P 500
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and NASDAQ in relation to the Dot-com crash of 2000, and for the pair S&P 500 and Dow

Jones one week later to the attacks on September 11, 2001. The results are depicted in Figure

4.5.5. All the failure sets are calculated with the inhomogeneous exponent measure function

calculated for each pair as in Figure 4.5.4. Notice, that the contours of probability failure are

reduced when the pair of returns experience di�erent extreme events. In fact, for the �rst

case the Russian default of 1998, the probability of failure for this bivariate extreme event is

circa of 37 years of waiting time.

A di�erent result is given by the Dot-com crash of 2000. In this case this bivariate extreme

event has a waiting time of approximately 13,9 years. This surprising and at the same time

conservative result is �rst due to strong movements that others experienced during the week

before by the NASDAQ index made a cumulative losses of 21,8 and second, to the branching

structure of the self-exciting point process approach to deal with the cluster of the extremes.

Finally, for the extreme events related to the attacks on September 11, 2001, we found

that this events should happen each 5,5 years. Another point of view to look at these extreme

events was done by Straetmans et al. (2008) who derived non-parametric estimates for co-

crash and co-boom probabilities of sectoral indexes conditional on simultaneous meltdowns in

a market portfolio index. The main di�erence with our approach is the dynamical character

of the extreme dependence.

4.5.3.2. Stress testing in higher dimensions. Stress testing becomes intractable in higher

dimensions because the number of points of the failure sets increases very quickly. Moreover,

the probability failures are not more contour lines instead of this, they are surfaces in the

trivariate case for example. Thus, an alternative is to simulate di�erent short positions of

portfolios with di�erent weights.

To illustrate the Monte-Carlo applications, we will trivariate failure sets under the hy-

pothesis of a trivariate logistic dependence function (see Example 2.3.10). The failure set for

this example is de�ned as

A : =
{

(x1, x2, x3) ∈ R3, P (X1 > x1, X2 > x2, X3 > x3)

: X1w1 +X2w2 +X3w3 ≥ q} for all xj ≥ uj ,

where w1, w2 and w3 are weights of the returns associated to each market subject to that the

sum of weights is equal 1 and q is the accumulative loss for a choosing position.

We can compute the probability of having large losses lower than 12 on a Monte Carlo

simulation of 30.000 weighed portfolios for a short position in the Dot-com crash on April 14,

2000. The results of the simulation are displayed in Figure 4.5.6. We di�erentiated between

portfolios where a weight wi is larger than 0.5 for a marginal in comparison to the others

returns.

Some interesting results can be concluded from these �gures. First, portfolios where all

the weights are lower than 0.5 show a good degree of diversi�cation and they are relatively

homogeneous for di�erent combinations of weights. Furthermore, there exists a proportional

relation between the probability of failure α and the losses of the weighed portfolio.

Second, weights larger then 0.5 for the S&P 500 (w1 > 0.5) and Dow Jones index (w2 >

0.5) show the higher degree of diversi�cation. However, on contrary to the Dow Jones, the

S&P 500 index has not lower losses positions with a lower probability of failure.
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Figure 4.5.5. Perspective densities in logaritmic scale (left) and contour
plots of failure sets (right) for the pairs S&P 500 and Dow Jones (top panel),
S&P 500 and NASDAQ (middle panel), Dow Jones and NASDAQ (bottom
panel) for di�erent waiting times or failure probabilities.

Finally, the weighted portfolios where the weight of the NASDAQ return is larger than 0.5

(w3 > 0.5) show heterogeneous results in the short positions of the losses. In addition to this,

the most dangerous portfolios or the worth cases of the Monte Carlo simulation is where the

weigh of the NASDAQ return is larger than 0.5. For instance, it is possible to �nd portfolios

with losses of the order of 10 with a probability of 0.01 or equivalently an event in 100 days!

4.5.3.3. The worst case scenario for the VaR. Due to its simplicity, but also because

of regulatory reasons, Value at Risk remains one of the most popular risk measures. The

aim of this section is to give more insight into the problem of managing the VaR of a joint

position resulting from the combination of di�erent dependent risks. In particular the problem
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Figure 4.5.6. Monte Carlo simulation of 30.000 weighed portfolios for a short
position in the Dot-com crash on April 14, 2000. (Top-left) Portfolios where
all the weights are lower than 0.5 (wi < 0.5). (Top-right) Portfolios where
the weigth of the S&P 500 index is larger then 0.5 (w1 > 0.5). (Bottom-
left) Portfolios where the weigth of the Dow Jones index is larger then 0.5
(w2 > 0.5). (Bottom-rigth) Portfolios where the weigth of the NASDAQ index
is larger then 0.5 (w3 > 0.5).

of �nding the best possible lower bound or equivalent to �nd the worst possible Value-at-

Risk (VaR) for a corresponding aggregate position of a portfolio. This problem has received

a considerable interest in Finance, Risk management and Insurance mathematics; see an

introduction in Embrechts et al. (2003). Only partial results have been obtained for the 2-

dimensional case, when no information on the structure of dependence of the random vector

is available.

In this section, our goal is to address some of the issues outlined above in a numerically

tractable way. To this end we introduce the notion of worst-case VaR as the following failure
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set in the 3-dimensional case:

A : =
{

(x1, x2, x3) ∈ R3, P (X1 > x1, X2 > x2, X3 > x3) = α

: α = arg max V aRα (X1 +X2 +X3)} ,

This set can be interpreted as given a failure probability α, which is the worst case such

that the cumulative losses from X1 + X2 + X3 is maximized. Another way to look at is, it

is to try to minimize the waiting time (maximize the failure probability α) for which these

cumulative losses could happen.

In this approach we assume that the true distribution of returns is partially known and

can be modelled through the self-exciting models and the dependence among the marginals

is well modelled by means of a Logistic exponent measure.

We apply this scenario to each one of the most important extreme events in the sample

period. We simulate 30.000 portfolios for di�erent magnitudes of losses in each marginal. The

results are depicted in Figure 4.5.7. At di�erence to the stress scenario presented in the last

section, the weighs wi are the proportion of the losses in each marginal in relation to the sum

of all losses.

For the �rst extreme event, the mini crash produced by the Asian crisis, the VaR for

portfolios without proportions larger than 0.5, i.e., wi < 0.5 for all the marginals, the Worst

case for the 30.000 simulations is comparably higher than for other classes of portfolios where

the proportions is larger than 0.5 at least in a marginal. In fact, the lowest failure probabilities

are for portfolios where a component, the S&P 500 or the Dow Jones, is larger than 0.5.

The worst case for the Russian default corresponds to portfolios where the proportions

are lower than 0.5 for all marginals. In second place for portfolios where the main marginal

is the NASDAQ return. In third place for portfolios where the main component is the Dow

Jones index. The best cases among these worst cases are for portfolios composed mostly by

the S&P 500 index.

A di�erent result was found for the Dot-com market crash in year 2000. The Worst

cases are clearly those where NASDAQ return is the most import part of a portfolio, with

some portfolios where the waiting time (or failure probability) does not exceed the 100 days

(α = 0.01). For portfolios where the major component of losses is given by the S&P 500

or the Dow Jones returns the failure probability is indistinguishable until losses of order 10.

However, for losses bigger then 10, losses where the major component are the Dow Jones

returns, that have a higher failure probability than losses where the major component are

S&P 500 the returns.

Finally, during the attacks of September 11, 2001, the simulations of the worst case are

not too di�erent from the simulations of the Dot-com crash. The most important di�erence

is that in this case the worst cases are those where the NASDAQ is the main component or

where the proportions for each marginal are lower than 0.5. There is a small di�erence for

portfolios where the NASDAQ is the main component from portfolios where the losses are

bigger than 10. Continuing with the portfolios where S&P 500 or Dow Jones returns are the

main component, the worst cases are also distinguishable for losses bigger than 10 where the

Dow Jones returns have a higher failure probability.
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Figure 4.5.7. The Worst case scenario simulation for the VaR for the most
important extreme events during the sample period. (Top-left) The Asian
crisis. (Top-right) The Russian default. (Bottom-left) The Dot-com market
crash. (Bottom-right) the Attacks of September 11, 2001.

4.6. Conclusions

In this chapter we introduced models of self-exciting point process to model the extreme

events of stationary sequences no iid as it is the case of the most �nancial returns as a marked

point process. We observe that under this methodology the estimation of such models can

be forwardly derived through conditional intensities having the Jannosy measures as base of

them.

Di�erent models were proposed having in mind the simplicity of the structure of the self-

exciting functions. However, other more complicate structures could be adopted. Nonetheless,

the models used and their estimations in di�erent U.S stock markets were more than satisfac-

tory. In average, all the models �t the VaR and ES well, i.e., in terms of capital requirement;

the models keep necessary capital to guarantee the desired con�dence level.
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Furthermore, in the multivariate case we discussed extensions of existing results on mul-

tivariate extreme dependence for allowing time-varying models, and employed it to construct

�exible models. The results suggest that changes in the time dependence should be considered

to make an accurate estimation, where the semiparametric model gives the best �t.

We show how this methodology may also be used in several contexts, such as conditional

asset allocation or Value-at-Risk computation in a non-Gaussian framework. We apply dif-

ferent scenarios to each one of the most important extreme events in the sample period. We

simulate portfolios for di�erent magnitudes of losses in each marginal. The results are mixed

and they depend on the time and on the pair for which they were calculated. Another issue

to mention it is the dependence structure between the data is considered to be symmetric

and it is modelled with only one parameter. This assumption is very strong, as the depen-

dence between di�erent pairs of data might be di�erent. A much broader class of multivariate

extreme models should be tested.
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4.A. Tables and Figures

Indexes mean sd min max skewness

S&P 500 0.033 0.988 -7.112 5.574 -0.1154

Dow Jones 0.0359 0.975 -7.454 6.154 -0.239

NASDAQ 0.0394 1.491 -10.168 13.254 -0.022

Indexes kurtosis Box.test Jarque-Bera ADW Engle (10)

S&P 500 3.968 12.264** 2894.325 *** -16.134*** 502.746***

Dow Jones 4.776 12.099** 4219.09*** -16.452*** 465.507***

NASDAQ 6.027 16.430* 6652.893*** -14.605*** 851.999***

Table 4.A.1. Summary statistics for the stock index returns. Asymptotic
p-value are shown in the brackets. *,**,*** denote statistical signi�cance at
the 1, 5 and 10 % level respectively. The Ljung-Box test statistic for serial
correlation up to the 5-th order.
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Time V aR0.01 V aR0.001 V aR0.0001

S&P 500 42 (0.426) 7 (0.922) 1 (0.928)
Dow Jones 38 (0.209) 7 (0.922) 0 (0.645)
NASDAQ 38 (0.209) 7 (0.922) 1 (0.928)

Table 4.A.5. Test hypothesis of estimating correctly the Risk measures at
time tiagainst the alternative that the method systematically underestimates
the returns rti+1 . The indicator for a violation at time ti is Bernoulli It :=
1{rti+1>{V aRα,ti}} ∼ Be(1−α). As it is described by McNeil and Frey (2000),

It and Is are independent for t, s ∈ T , then
∑

ti∈T ∼ B(n, 1−α) is a two-tailed
test that is asymptotically distributed as binomial.

α ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 max.ll

Symmetric Logistic

S&P - Dow Jones 0.279 (0.009) -2155.519

S&P - NASDAQ 0.423 (0.012) -2709.278

Dow Jones - NASDAQ 0.536 (0.014) -2913.327

Asymmetric Logistic

S&P - Dow Jones 0.254 (0.008) 0.982 (0.010) 0.999 (0.001) -2156.921

S&P - NASDAQ 0.419 (0.013) 0.992 (0.010) 0.999 (0.002) -2708.89

Dow Jones - NASDAQ 0.509 (0.017) 0.819 (0.035) 0.999 (0.001) -2918.617

Polynomial

S&P - Dow Jones 0.999 (0.001) -2425.674

S&P - NASDAQ 0.994 (0.001) -2778.583

Dow Jones - NASDAQ 0.940 (0.041) -2919.271

Negative Logistic

S&P - Dow Jones 0.961 (0.075) 0.787 (0.035) 0.999 (0.001) -2736.025

S&P - NASDAQ 0.681 (0.026) 0.999 (0.001) 0.893 (0.037) -2994.183

Dow Jones - NASDAQ 1.766 (0.109) 0.270 (0.017) 0.992 (0.02) -3392.393

Table 4.A.6. Parameters estimates for the bivariate asymmetric Logistic, the
symmetric Logistic, the Negative Logistic and the Polynomial model, when the
dependency parameter is assumed to be constant over time.
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CHAPTER 5

On the estimation of M4 processes through mixture Dirichlet

process models

�The in�nite in mathematics is always unruly

unless it is properly treated.�

(Edward Kasner and James Newman)

5.1. Introduction

The di�culty for statistical applications of mutivariate extreme value modes is when the

number of dimensions d increase considerably, these do not reduce to a �nite dimensional

parametric family. Accordingly, there is potential explosion in the class of models to be con-

sidered. Nowadays, most approaches have focussed either on simple parametric subfamilies,

or on semiparametric approaches combining univariate extreme value theory for the marginal

distributions with non parametric estimation of dependence among marginals. Some example

papers representing both approaches are Coles and Tawn (1991, 1994); Smith et al. (1997);

de Haan and de Ronde (1998); Smith (2003). The problem resides in the multiple dependence

among marginals. Indeed, in a parametric model the order of estimations based only on the

dependence is 2d, where d is the number of dimensions.

Recently, it has even been suggested that multivariate extreme value theory may not be

a rich enough theory to encompass all the kinds of behaviour one would like to be able to

handle, and alternative measures of tail dependence have been developed. The main references

to this approach so far have been Ledford and Tawn (1996); Tawn (1988b); Poon et al. (2003);

Maulik and Resnick (2004); He�ernan and Resnick (2005). In a more recent approach, due

to the clear limitations of extreme value theory to higher dimensions, one theory based on

a geometric approach has been developed by Balkema and Embrechts (2007). At the same

time a semiprametric approach was proposed by Boldi and Davison (2007) which model the

dependence among marginals by means of a mixture of Dirichlet densities.

In this chapter we work in a more wide context of extreme value theory. The in�nite dimen-

sional generalization of extreme value theory, which leads to max-stable processes, introduced

by De Haan (1984). These processes have the potential to describe clustering behaviour. One

of the most important features of max-stable processes is that they do not only model the

dependence among the marginals, but also model the dependence across time.

127
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In particular we concentrate on a class of max-stable processes introduced by Smith and

Weissman (1996) to characterise the joint distribution of extremes in multivariate time series.

They de�ned a class of max-stable processes, which they named Multivariate maxima of

moving maxima process (M4 processes for short)

M4 ≡ Xij = max
l∈N

max
k∈Z

alkjZl,i−k, i ∈ Z, j = 1, . . . , d, (5.1.1)

where alkj is a 3-dimensional matrix of non negative constants satisfying
∑
l

∑
k

alkj = 1 for

each j, and Zli is a double sequence of iid unit Frèchet random variables. Note that there is

no loss of generality in assuming unit Frèchet marginal distributions. We denote the array l

as the patterns of the process and k as the cluster size coe�cient.

The main focus of the paper by Smith andWeissman (1996) was to demonstrate that under

fairly general conditions, extremal properties of a wide class of multivariate time series may be

calculated by approximating the processes by one of M4 form. Moreover, this approximation

deals directly with the case of multivariate time series and not just of independent multivariate

observations.

Another feature by which (5.1.1) is more directly useful for �nancial time series is that

it represents the process in terms of an independent series of extreme values, whose large

values among the Zli determines the patterns or cluster in the extremes among the serie Xij .

The M4 processes turn out to form a rich subclass of those of general multivariate stationary

processes, mainly because stationary processes have the same multivariate extremal indexes

as the M4 processes have, i.e., the behaviour of the cluster of extremes in the multivariate

framework is the same.

Unfortunately, there is an in�nite number of parameters in the de�nition ofM4 processes,

which poses challenges in statistical applications where workable models are preferred. Re-

cently Zhang (2008) established su�cient conditions under which an M4 process with in�nite

number of parameters may be approximated by an M4 process with �nite number of param-

eters. In this sense, the problem of modelling extremes of multivariate stationary processes

can be stylized to the study of extremes of M4 processes. However, the estimation of these

class of processes is a challenging problem in itself, because of the fact that they su�er from

degeneracies, i.e., the joint density of a set of random variables de�ned by (5.1.1) is typically

singular with respect to Lebesgue measure and this causes problems for maximum likelihood

techniques. Thus, other alternative of estimation has to be found.

The point is that, if we are capable to estimate a �nite M4 processes, we will be capable

to approximate max-stable processes, i.e., multivariate extreme value processes, whose repre-

sentation allows us to approximate multivariate time series with cluster at the extremes and

heavy tail behaviour.

At the moment there are three feasible estimations for M4 processes. Smith (2003) pro-

poses to de�ne candidate signature patterns on blocks of observations, and then uses a clus-

tering method as k-means to indentify patter signatures. Zhang (2002) proposed a series of

estimating procedures based on identifying signature patterns, on the bivariate distribution

and weighted least squares estimations. Moreover, he showed consistency and asymptotic

normality of the parameter estimators. Chamú (2005) proposes a state space representation
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of M4 processes, where the state is an unobserved M4 process, and the observed process is

a nonlinear transformation on the state with small additive Gaussian noise to make the pro-

cess nondegenerate. However, the complexity of the model makes it unsuitable for higher

dimensions.

In this chapter we propose a nonparametric Bayesian approximation to the estimation of

M4 processes. The idea is to estimate the singularities in the multivariate density through

an in�nite mixture of Dirichlet processes of Gaussian distributions. These singularities have

a cluster behaviour, which repeats in�nitely, hence can be observed. The problem is to

�nd out how many of these singularities exist. Until now, only approximations based on

experience or arbitrary choices have been used. In this chapter we allow to deduce this

number of singularities from the data. We assume that these singularities behave as an

in�nite multivariate Gaussian mixture, where a �nite number is inferred from the available

data observed.

This chapter is organized following. In Section 5.2 we outline relevant properties of theM4

processes. In Section 5.3 we describe the main concepts in Dirichlet processes and Bayesian

estimation apply to the estimation of M4 processes. Section 5.6 shows some practical imple-

mentations of the models to estimate M4 processes for di�erent structures of the processes.

Section 5.7 presents a application to the recent subprime crisis in the case of the German

stock market. Conclusions and discussions are resumed in Section 5.8.

5.2. Properties of M4 processes

The following introduction is necessary to understand the relation between M4 processes

and max-stable process. For more details in max-stable processes see Resnick (1987); De Haan

(1984).

Consider a d-dimensional stochastic process Yij for i = 1, . . . , n, j = 1, . . . d. We are

interested in the extremal properties of this process. Without loss of generality, we consider

the case where all marginal distributions have unit Frèchet distribution.

Definition 5.2.1. The process Yij is called max-stable if all �nite dimensional distribu-

tions are max-stable, i.e., for any n ≥ 1, r ≥ 1

P (Yij ≤ ruij : 1 ≤ i ≤ n, 1 ≤ j ≤ d)r = P (Yij ≤ uij : 1 ≤ i ≤ n, 1 ≤ j ≤ d) .

Furthermore, a process Xij for i = 1, . . . , n, j = 1, . . . d, is said to be in the domain of

attraction of a max-stable process Yij if there exist normalising constants anij > 0, bnij such
that for any �nite r

lim
n→∞

P
(
Xij − bnij

anij
≤ ruij : 1 ≤ i ≤ n, 1 ≤ j ≤ j

)r
= P (Yij ≤ uij : 1 ≤ i ≤ n, 1 ≤ j ≤ d) .

(5.2.1)

Since we assume a priori that the processXij also has unit Frèchet, then we may take anij = n,

bnij = 0.
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We can apply this de�nition to show that the M4 process de�ned in (5.1.1) is in fact a

max-stable process

M4(u, n) = P (Xij ≤ uij , 1 ≤ i ≤ n, 1 ≤ j ≤ d)

= P
(
Zl,i−k ≤

uij
alkj

, l ∈ N, k ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ d
)

= P
(
Zlm ≤ min

1−m≤k≤n−m
min

1≤j≤d

alkj
um+k,j

, l ∈ N, m ∈ Z
)

(5.2.2)

= exp

(
−
∑
l∈N

∑
m∈Z

max
1−m≤k≤n−m

max
1≤j≤d

alkj
um+k,j

, l ∈ N

)

=
∏
l∈N

∏
m∈Z

exp
(
− max

1−m≤k≤n−m
max

1≤j≤d

alkj
um+k,j

, l ∈ N
)

and from (5.2.2), it is easy to see that

Pr (Xij ≤ ruij , 1 ≤ i ≤ n, 1 ≤ j ≤ d) = P (Xij ≤ uij , 1 ≤ i ≤ n, 1 ≤ j ≤ d) ,

which tells that Xij are max-stable.

Smith and Weissman (1996) characterized the conditions under which the multivariate ex-

tremal index from a stationary time series could be calculated from a max-stable process with

the same limiting distributions for any �nite dimensional multivariate extremes. Furthermore,

they show that any max-stable process in d-dimensions could be approximated with arbitrary

accuracy by one of M4 form through a direct generalisation of the result of Deheuvels (1983)

for one dimensional case. To derive this result we need �rst some mixing condition.

Theorem 5.2.2. (Mixing condition) Let τ = {τ1, . . . , τd}, τj ∈ [0,∞], j = 1, . . . , d. For

a given sequence of thresholds un = {u1, . . . , ud}. Since Zlk is unit Frèchet we can take

unj = n/τj such that n (1− Fj(unj)) → τj. For 1 ≤ m ≤ k ≤ n, let Bk1(un) denote the σ-

�eld generated by the events {Xij ≤ uij , m ≤ i ≤ k}, and for each integer t let

αnt = sup
{
|P (A ∩B)− P(A)P(B)| : A ∈ Bk1(un), B ∈ Bnk+t(un)

}
,

where the supremum is taken over 1 ≤ k ≤ n − t and two respective σ- �elds. Following

Nandagopalan (1994), the condition 4(un) is said to hold if there exists a sequence {tn}n≥1

such that tn →∞, tn/n→ 0, αn,tn → 0 as n→∞. Assume 4(un) holds with respect to some

sequence {tn}n≥1, and de�ne a sequence {kn}n≥1 such as kn →∞, kntn/n→ 0, knαn,tn → 0
as n→∞.

Definition 5.2.3. We assume that, with rn = bn/knc,

0 = lim
r→∞

lim
n→∞

rn∑
i=r

d∑
j=1

P
(
Xij > unj | max

j

(
X1j

unj

)
> 1
)
. (5.2.3)

We now state the main Theorem of Smith and Weissman (1996).
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Theorem 5.2.4. (Theorem 2.3 in Smith and Weissman (1996)). Suppose the processes

X and Y are each stationary with unit Frèchet distribution and equation (5.2.1) holds. For

a given τ = {τ1, . . . , τd}, and unj = n/τj suppose 4(un) and (5.2.3) hold for both X and Y.

Then the two processes X and Y have the same multivariate extremal index θ(τ).

Proof. See Smith and Weissman (1996). �

The proof is based on the fact that all max-stable process can be rewritten in terms of

a M4 process and another process, which is maximum over periodic deterministic sequences,

and therefore a perfectly predictable process. For this reason, it seems reasonable keep only

theM4 process, with the fact that the deterministic process cannot occur in most applications.

Notice that we can rewrite model (5.2.2) for positive integer n and thresholds u =
{u1, . . . , ud}, as

M4(u, n) = exp

(
−
∑
l∈N

∑
k∈Z

max
i=1,...,n

max
j=1,...d

al,i−k,j
uj

)
= exp (−W4(u, n)) . (5.2.4)

Under this notation we can de�ne the following lemma, which will be of great use in the study

of the temporal dependence between extremes of a M4 process.

Lemma 5.2.5. Let u = {u1, . . . , ud}, the representation W4(u, n) in (5.2.4) satis�es

lim
n→∞

(W4(u, n)−W4(u, n− 1)) = lim
n→∞

W4(un, n) =
∑
l∈N

max
r∈Z

max
j=1,...d

alrj
uj

= W ′4(u).

It is easy to see that for u = {u1, . . . , ud} Lemma 5.2.5 provides a direct estimation of the

multivariate extremal index:

θ(u) = W ′4(u)
W4(u,1) =

∑
l∈N maxr∈Z maxj=1,...d alrj/uj∑
l∈N
∑

r∈Z maxj=1,...d alrj/uj
. (5.2.5)

The last result in equation (5.2.5) is due to Smith and Weissman (1996). Similarly we

can derive two interesting limits for the multivariate extremal index when the M4 processes

reach completely dependence and independence. By equation (5.2.2) we can observe that

M4 =
∏
l∈N

∏
m∈Z

exp
(
− max

1−m≤k≤r−m
max

1≤j≤d

alkj
um+k,j

)

=
∏
l∈N

∏
m∈Z

CM4

(
exp

(
− max

1−m≤k≤r−m

alk1

um+k,1

)
· · · exp

(
− max

1−m≤k≤r−m

alkd
um+k,d

))
where CM4 is the dependence function, which describes the dependence among the marginals.

In the standard case M4 the dependence function is CM4 (x1, . . . , xd) = min1≤j≤d (x1, . . . xd).
Thus, the standard model is always asymptotic dependent. The complete independence case
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arises when we take CM4 (x1, . . . , xd) =
∏d
j=1 (x1, . . . xd), which reduces to

M
(ind)
4 =

∏
l∈N

∏
m∈Z

∏
1≤j≤d

exp
(
− max

1−m≤k≤r−m

alkj
um+k,j

)
.

In this case the multivariate extremal index for a threshold u = {u1, . . . , ud} takes he form:

θ(u) =
∑

l∈N maxr∈Z maxj=1,...d alrj/uj∑
l∈N
∑

r∈Z
∑d

j=1 alrj/uj
,

which can be derived as in (5.2.5). Of course, other kinds of dependence function CM4 could be

used, however, the di�culty to estimate the processes would cause these classe of dependence

lack interest.

Tail dependece is an important property when working with extreme value models. For

instance, the M4 has always a postive tail dependence, which means that it is not a suitable

model when asymptotic independence could be present in the data.

Proposition 5.2.6. (Tail dependence of M4 processes). Consider a bivariate M4 process.

Then, the tail dependence is de�ned as

λ = 2−
∑
l∈N

∑
k∈Z

max
1≤j≤2

alkj .

Other probabilistic properties of M4 processes can be found in Zhang and Smith (2004).

An extension to the asymptotic independent case can be found in He�ernan et al. (2007).

Now, we given some idea of how we can estimate the M4 process with �nite number of

parameters based on the discontinuity of the multivariate density.

5.2.1. On the estimation of M4 processes. The statistical parameter estimation of

the in�nite dimensional parameter model (5.1.1) is almost impossible. Zhang (2008) estab-

lishes su�cient conditions under which an M4 process with in�nite number of parameters

may be approximated by an M4 process with �nite number of parameters. These conditions

provide us with the probabilistic basis required for application to real data. A �nite orderM4

process can be written in the following form:

M4 (L,K, d) ≡ Xij = max
l∈L

max
k∈K

alkjZl,i−k, i ∈ Z, j = 1, . . . , d. (5.2.6)

To motivate the method that we will provide to estimate a wide class of M4 process,

suppose for the moment that we have observed a 1-dimesional M4 (L,K, d) = M4 (1,K, 1)
process with L = 1, where k indicates a in�nite number (countable) of observations before

and after the observation i that we have observed, i.e., the cluster size is exactly K = 2k+ 1.
We will denote the set K = {−k, . . . , 0, . . . , k} as the cluster size. Let us de�ne the process

M4 (1,K, 1) ≡ Xi = max
k∈K

akZi+k, i ∈ Z, (5.2.7)

and that for some i∗ the value of Zi∗ is much larger than its neighbors Zi∗−k, . . . , Zi∗−1,Zi∗+1, Zi∗+k,

such that Xi∗+k = akZi∗. Note that a signature pattern for this process is determined by

Xi∗+k1

Xi∗+k2

=
ak1

ak2

, (5.2.8)
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Figure 5.2.1. Simulation of 1.000 observations of M4 (1,K, 1) process pro-
posed in Example 5.2.7. (Left) Plot of the process. (Middle) Plot of the
process partialy drawn from the whole simulated data showing two clusters.
(Right) Plot of the ratios Xi/Xi−1 +Xi +Xi+1 of 1.000 observations.

where k1,k2 ∈ K. Since that
∑
K ak = 1 and solving for some ak in (5.2.8) we obtain

ak =
Xi∗+k∑
KXi∗+k

. (5.2.9)

Example 5.2.7. De�ne aM4 (1,K, 1) process with ak = {a−1, a0, a1} = {0.25, 0.35, 0.40}.
Observe that the coe�cient ai can be obtained by the singularities of the ratios Xi/Xi−1 +
Xi + Xi+1,Xi−1/Xi−1 + Xi + Xi+1 , Xi+1/Xi−1 + Xi + Xi+1. This approach is displayed

numerically in Figure 5.2.1.

Smith (2003) showed that these signatures will hold in�nitely often for high values of Zi∗ , if

we can observe the process for a long period of time. This process will create a deterministic

pattern, which yields to the determination of the coe�cients ak and we will say that the

process is identi�able.

Following the same argument, we can extend this result to higher array of patterns L ≥ 1
and number of dimensions d. Let

M4 (L,K, d) ≡ Xij = max
l∈L

max
k∈K

al,k,jZl,i+k, i = 1, . . . , n, j = 1, . . . , d.

Smith (2003, equation 3.5) showed that for M4 processes the relative frequency of the l-th

signature pattern is proportional to aΣ
l =

∑
Kmaxd alkj for all l ∈ L. This is the key feature

that is used for identifying the parameters in a M4 process.

Notice that this sum re�ects the proportion of time, in which the process is driven by

the l-th pattern in the d-dimensional process. Without loss of generality we de�ne the a

multivariate local maximum as

Xi∗,j∗ ≥ max {u,Xi+k} , (5.2.10)

where Xi = {Xi1, . . . , Xid} and u is a high d-variate high threshold level. De�ne the set

D = {(k, j) : k ∈ K, j = 1, . . . , d}, then (5.2.10) implies al∗j∗ = al∗,0,j∗ = max(k,j)∈D al∗,k,j∗ .

Assume that there exist a Zl∗,i∗ much larger than its neighbors such that for (k, j) ∈ D

Xi∗+k,j = al∗,k,jZl∗,i∗ ,
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Thus, the l∗-th signature pattern is for example a (2k + 1)× d matrix represented by

Ψl∗,i∗+k,j =
Xi∗+k,j

Xi∗,j∗
=
al∗,k,j
al∗,j∗

∀k,j ∈ D. (5.2.11)

Let us de�ne

XΣ
i =

∑
K

max
j
Xi+k,j , and aΣ

l =
∑
K

max
j
αl,k,j . (5.2.12)

Observe that ∑
K

Ψl∗,i∗+k,j =
XΣ
i∗

Xi∗j∗
=

aΣ
l∗

al∗j∗
,

which implies that

al∗j∗ = aΣ
l∗
Xi∗j∗

XΣ
i∗
. (5.2.13)

Substituting (5.2.13) into (5.2.11) we get

yl∗,p =
al∗,k

aΣ
l∗

=
Xi∗+k

XΣ
i∗

∀i,j ∈ D, (5.2.14)

where yl∗,p is a 1× (d (2k + 1)) vector with

p = {1, . . . , P} = {(−k, 1) , (−k + 1, 1) , . . . , (0, 1) , . . . , (k − 1, 1) , (k, 1) , . . . , (k, d)} .

Equivalently,

al∗,k,j = aΣ
l∗yl∗,p = aΣ

l∗
Xi∗+k,j

XΣ
i∗

∀i,j ∈ D. (5.2.15)

The last two equations give us the key to estimate M4 processes. In a d- dimensional process

for a given threshold u, The idea is to calculate (5.2.14) whenever a multivariate local max-

imum is observed. If we can classify each signature pattern yl∗,p in L signature patterns, an

estimator of aΣ
l∗ can be obtained up to proportionatly by nl∗/nL, where nl∗ is the number of

signatures associated to the pattern l∗ present in the sample and nL is the total of signatures.

Notice that we transform the process Xij with matrix size n×d to one ylp with matrix size
Nu
K ×P , whereNu is the number of exceedances of at least one observation in the d-dimensional

process Xij over the threshold u, i.e., Xij � uj for j = 1, . . . , d, and P = d · K. Thus, the

problem is now a P -dimensional problem. We will call the process ylp as the standardized

process of signature patterns. We formalized the results in the following proposition.

Proposition 5.2.8. Let Xij = maxl∈LmaxK al,k,jZl,i+k, i ∈ Z, j = 1, . . . , d be a d-

dimensional M4 process with cluster size coe�cient K and array patterns L. Further, let

the Frèchet random variable Zl∗,i∗ be much larger than its neighbors, such that Xi∗+k,j =
al∗,i∗+k,jZl∗,i∗. Then, a

Σ
l∗ =

∑
Kmaxj al∗,k,j re�ects the proportion of clusters with the char-

acteristic of the l∗−th array pattern that should appear in the d-dimensional process, and the

coe�cients of the process are identi�able by al∗,k,j = aΣ
l∗
Xi∗+k,j
XΣ
i∗

∀i,j ∈ D.

Proof. The demonstration follows. �

Proposition 5.2.8 has two important implications:

• First, each of the L signature patterns will occur in�nitely often. This means that

the joint density of M4 processes contains singularities because of the presence of
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Figure 5.2.2. (Top panel) Simulation of a M4 (1, 3, 2) process with 10.000
observations proposed in Example 5.2.9. (Left bottom) Plot of the ratios(

Xi∗−1,1∑
KXi∗+k,1

,
Xi∗,1∑
KXi∗+k,1

,
Xi∗+1,1∑
KXi∗+k,1

,
Xi∗−1,2∑
KXi∗+k,1

,
Xi∗,2∑
KXi∗+k,1

,
Xi∗+1,2∑
KXi∗+k,1

)
forXi,j

over its 0.95-th quantile . (Middle-bottom) Histogram of the sigularity clusters
for Xi,1. (Rigth-bottom) Histogram of the sigularity clusters for Xi,2.

these deterministic patterns. Therefore, it is not possible to apply the method of

maximum likelihood to estimate the parameters of the model.

• Second, the estimation of the standardized signature pattern ylp for l ≥ 1 and j =
1, . . . , d is equivalent to estimate the number of patterns L in the multivariate process.

Smith (2003) proposes to de�ne candidate signature patterns on blocks of extreme observa-

tions over a high threshold uj for each marginal. He calculates the ratios
Xi∗+k∑
K Xi∗+k

, and then

uses a clustering algorithm to identify the number of observations nl∗ due to the pattern l
∗ to

approximate aΣ
l∗ . Posteriory, with equation (5.2.15) estimate the coe�cients al∗i∗+k given K.

Example 5.2.9. De�ne aM4 (1, 3, 2) process with ak,1 = {a−1,1, a0,1, a1,1} = {0.25, 0.35, 0.40}
and ak,2 = {a−1,2, a0,2, a1,2} = {0.45, 0.25, 0.30}. Observe that the coe�cient (ak,1,ak,2) can
be obtained by the singularities of the ratios(

Xi∗−1,1∑
KXi∗+k,1

,
Xi∗,1∑
KXi∗+k,1

,
Xi∗+1,1∑
KXi∗+k,1

,
Xi∗−1,2∑
KXi∗+k,1

,
Xi∗,2∑
KXi∗+k,1

,
Xi∗+1,2∑
KXi∗+k,1

)
for Xi,j over its 0.95-

th quantile. Note that the estimation produces a 6-dimensional vector. This approach is

displayed jointly in Figure 5.2.2.

In practice it is unrealistic to assume that we can observe the exact L patterns and the

cluster size coe�cient K, which are characteristic of M4 processes. Further, we would not

expect to observe an exact M4 process, but a M4 process with some kind of noise. While this

noise has lighter tails than a Frèchet random variable, the pure M4 process is still estimable.

For simplicity we show this result for a bivariate Gaussian noise.
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Figure 5.2.3. (Top panel) Simulation of aM4 (1, 1, 2) process with a bivariate
Gaussian noise N proposed in Example 5.2.11. The Sample size is 10000 .

(Left) Plot of the ratios
(

Xi+p,1
Xi−1,1+Xi,1+Xi+1,1

,
Xi+p,2

Xi−1,2+Xi,2+Xi+1,2

)
for Xi,j over

its 0.95-th quantile. (Middle) Histogram of the sigularity clusters for Xi,1.
(Rigth) Histogram of the sigularity clusters for Xi,2.

Proposition 5.2.10. Let us observe a bivariate M4 process plus a bivariate noise N =(
N1

√
1− ρ2 + ρN2, N2

)
, where N1and N2 are two Normal random variables with correlation

ρ.

M4 (L,K, 2) ≡ Xij = max
l∈L

max
k∈K

al,k,jZl,i+k + N , i ∈ Z, j = 1, 2.

For a �xed marginal j and a large clustered observations, we have al∗k = aΣ
l∗E

(
Xi∗+k∑
K Xi∗+k

)
In resume, we can estimate a M4, even if a light tailed noise in the process is present.

Notice that the result does not depend on the kind of noise, as long as the tails are lighter

than the tails of a M4 process.

Example 5.2.11. (Cont.) De�ne a M4 (1, 3, 2) process with ak,1 = {a−1,1, a0,1, a1,1} =
{0.25, 0.35, 0.40} and ak,2 = {a−1,2, a0,2, a1,2} = {0.45, 0.25, 0.30} as in Example 5.2.9 plus

a bivariate Gaussian noise N with mean zero and covariance matrix Σ =

(
20 15
15 20

)
. By

Proposition 5.2.10, observe that the coe�cient (ak,1,ak,2) can be obtained by the singularities

of the ratios
(

Xi∗−1,1∑
K Xi∗+k,1

,
Xi∗,1∑

K Xi∗+k,1
,

Xi∗+1,1∑
K Xi∗+k,1

,
Xi∗−1,2∑
K Xi∗+k,1

,
Xi∗,2∑

K Xi∗+k,1
,

Xi∗+1,2∑
K Xi∗+k,1

)
even un-

der the presence of a noise process N . Notice that this de�nes a 6 dimensional matrix. The

ratios are obtained for Xi,j over its 0.95-th quantile. This approach is displayed jointly in

Figure 5.2.3 for each pair of dimensions.

The results of Smith and Weissman (1996) allow us to characterize the extremal behaviour

of a multivariate stationary time series in terms of a limiting max-stable process. However,

there has been little work on the statistical modelling of max-stable processes.

An important issue that must be addressed in M4 processes is the question of how wide

the cluster size coe�cent K, (the serial dependence) and patterns L (the di�erent forms or

shapes of the clusters) are to use. Bayesian statistics and model based approaches can provide

elegant solutions to model selection questions of this kind. By now, we are still supposing that

the cluster size coe�cient K is known, and we leave its discussion for the empirical section.

However, there is not too much to do in relation to K, therefore it should not be larger than

the major cluster size observed for the sample Xij over a multivariate threshold u.
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Figure 5.3.1. The Chinese restaurant process mixture with l
′
equal to four

tables and eight customers. In this example, the 1st, 3rd, 4th, and 7th cus-
tomers all sat at an empty table, whereas the 2nd, 5th, 6th, and 8th sat at
accupied tables. The 9th customer will sit at table 1, 2, 3, or 4 with prob-
abilities 3

8+α ,
1

8+α ,
3

8+α , and
1

8+α respectively, or will sit at a new table with
probability α

8+α .

Within a Bayesian framework, all assumptions are presented in terms of priors and the

choice of a likelihood function. In this framework each signature yl = {y1, . . . , yp}, as it

was de�ned in (5.2.14), represents a P -multidimensional vector of measurements. Further,

the probability distribution for each variable yl is assumed to be a multivariate Gaussian

distribution. We describe an approach to the problem of automatically determine the number

patterns L based on the theory of in�nite Gaussian mixtures or Dirichlet process mixtures.

This theory is based on the observation that the mathematical limit of an in�nite number

of components in an ordinary �nite mixture model (i.e. the patterns L in the d-dimensional

model) corresponds to a Dirichlet process prior. In an in�nite Gaussian mixture model there

is no need to make arbitrary choices about how many patterns L there are in the process.

The major advantage is that, although in theory the in�nite mixture model has an in�nite

number of parameters, it is possible to do exact inference in these in�nite mixture models

e�ciently using Markov chain Monte Carlo (MCMC) methodology.

5.3. Nonparametric Bayesian analyses of mixture distributions

Dirichlet process (DPM) mixture models are the cornerstone of nonparametric Bayesian

statistics. The development of Monte Carlo Markov chain (MCMC) sampling methods for

DPMs has enabled the application of nonparametric Bayesian methods to a variety of practical

data analysis problems.

DPM models have attracted much attention recently, because they are applicable even if

the number of mixtures is not known, as in our application. The properties of the DP enable

the model to uncover clusters and determine the number of clusters. An intuitive approach to

how a DP works, is to consider a sampling scheme known as the Chinese Restaurant Process.

Imagine a restaurant with countable in�nitely many tables, labelled 1, 2, . . . ,L = ∞.

Customers walk in and sit down at one table. The tables are chosen according to the following

random process. The �rst customer always chooses the �rst table and orders a dish. The

second customer enters and decides either to sit at the �rst table with a probability 1/1 + α
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or a new table with probability α/1 + α. When sitting at a new table the customer orders a

new dish. This process continues for each new customer. Thus, the l-th customer chooses a

new unoccupied table with probability α/L − 1 + α, and an occupied table with probability

nl/L−1+α, where nl is the number of people sitting at the table l. In the above, α is a scalar

parameter of the process. One might acknowledge that the above does de�ne a probability

distribution. Let us denote by l
′
the number of di�erent tables occupied after L customers

have walked in. Then 1 ≤ l
′ ≤ L and it follows the above description that precisely l

′
tables

are occupied. Notice that popular tables become less and less likely to sit down at a new table.

In this representation the dishes correspond to probability density functions, and the process

of ordering a dish l corresponds to drawing the parameters φl to a probability density function,

as for example a Gaussian from a prior distribution G over those parameters. The process of

a customer l choosing a table cl corresponds to choosing a distribution φcl from which to draw

an observation yl. Since the structure of the process, is that customers tend to sit at tables

with many other customers producing the cluster behaviour, thought it has an in�nite number

of mixture components to choose from. Furthermore, the expected number of occupied tables

for L customers grows logarithmically. In particular E
[
l
′ | L

]
=
∑L

l=1
α

α+l−1 ∈ O (α logL) .
This slow growth of the number of clusters makes sense because of the rich-gets-richer

phenomenon: we expect there to be large clusters thus the number of clusters l
′
to be far

smaller than the number of observations L. Notice that α controls the number of clusters in

a direct manner, with larger implying a larger number of clusters a priori. This intuition will

help in the application of DPs to mixture models. The model allows a priori in�nite number

of patterns l
′
.

These patterns l′ will represent in our case the number of observed of di�erent signatures

l. At the beginning we will suppose that the true number of signatures is L → ∞ in a mode

that we will examplain later, which is the natural and more �exible de�nition ofM4 processes.

5.3.1. Dirichlet processes. The Dirichlet distribution forms our �rst step toward un-

derstanding the DP model. The vector {y1, . . . , yn} has a Dirichlet distribution with param-

eter {α1, . . . , αn}, if its density function is

f (y1, . . . , yn | α1, . . . , αn) =

Γ

(
n∑
i=1

αi

)
n∏
i=1

Γ (αi)

n∏
i=1

yαi−1
i for yi ≥ 0,

n∑
i=1

yi = 1,

where αi > 0 for i = 1, . . . , n. The class of Dirichlet distributions is known to Bayesians

as the conjugate prior for the parameters of a multinomial distribution. Some examples are

displayed in Figure 5.3.2 for di�erent values of α.

A class of prior probability distributions f (y) is said to be conjugated to a class of likeli-

hood functions f (y | α) if the resulting posterior distributions f (α | y) are in the same family

as f (y). The main properties of the class of Dirichlet distributions are

(1) If {y1, . . . , yn} has a Dirichlet distribution with parameters {α1, . . . , αn} and r1, . . . , rn

are integers such that 0 < r1 < · · · < rn = n, then
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Figure 5.3.2. Some examples of trivariate Dirichlet distributions.

{∑r1
i=1 yi,

∑r2
i=r1+1 yi, . . . ,

∑rn
i=rn−1+1 yi

}
has a Dirichlet distribution with parameter{∑r1

i=1 αi,
∑r2

i=r1+1 αi, . . . ,
∑rn

i=rn−1+1 αi

}
.

(2) If {y1, . . . , yn} has a Dirichlet distribution with parameters {α1, . . . , αn}, then

E [yi] = αi/α,

E
[
y2
i

]
= αi (αi + 1) / (α (α+ 1)) ,

E [yiyj ] = αiαj/ (α (α+ 1)) for i 6= j,

where α =
∑n

i=1 αi.

(3) If {y1, . . . , yn} has a Dirichlet distribution with parameters {α1, . . . , αn} and if

P (X = j | y1, . . . , yn) = yj for j = 1, . . . , n,

then the posteriori distribution of {y1, . . . , yn} given X = j is a Dirichlet distribution

with parameter (α∗1, . . . , α
∗
n) where

α∗i =

αi if i 6= j

αi + 1 if i = j.

Now we are able to introduce the DP. The DP is simply an extension of the Dirichlet dis-

tribution to continuous spaces, and therefore a measure on measures. Formally, the DP is a

stochastic process whose sample paths are probability measures with probability one. Stochas-

tic processes are distributions over function spaces, with sample paths being random functions

drawn from the distribution. In the case of the DP, it is a distribution over probability mea-

sures, which are functions with certain special properties which allow them to be interpreted
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as distributions over some probability space. Thus, draws from a DP can be interpreted as

random distributions. For a distribution over probability measures to be a DP, its marginal

distributions have to take on a speci�c form which we shall give below.

Definition 5.3.1. We say G is DP distributed with base distribution G0 and concentra-

tion parameter α, written G ∼ DP (α,G0), if

(G (A1) , . . . , G (Ar)) ∼ Dirichlet (αG0 (A1) , . . . , αG0 (Ar)) (5.3.1)

for every �nite measurable partition A1, . . . , Ar over some probability space Θ.

The parameters G0 and α play intuitive roles in the de�nition of the DP. The base distri-

bution is basically the mean of the DP for any measurable set A ⊂ Θ, that is,

E [G (A)] = G0 (A) .

On the other hand, the concentration parameter can be interpreted as an inverse variance

V [G (A)] =
G0 (A) (1−G0 (A))

α+ 1
.

The larger α is the smaller the variance and the DP will concentrate more of its mass around

the mean. Now we are interested in the posterior distribution of G given some observed

values. Let π1, . . . , πn be a sequence of independent draws from G. Note that the π′is take

values in Θ since G is a distribution over Θ. Let A1, . . . , Ar be a �nite measurable partition

of Θ, and let nk be the number of observed values in Ak. Then by the conjugancy between

the Dirichlet and the multinomial distributions, we have

(G (A1) , . . . , G (Ar)) | π1, . . . , πn ∼ Dir (αG0 (A1) + n1, . . . , αG0 (Ar) + nr) . (5.3.2)

Since the above is true for all �nite measurable partitions, the posterior distribution over G

must be a DP as well.

In fact, the posterior DP is

G | π1, . . . , πn ∼ DP

α+ n,

αG0 +
n∑
i=1

δπi

α+ n

 .

Notice that the DP has updated concentration parameter α+n and base distribution

αG0+

n∑
i=1

δπi

α+n ,

where δπi is a point mass located at πi and nk =
n∑
i=1

δπi (Ak). In other words, the DP provides

a conjugate family of priors over distributions that are closed under posterior updates given

observations.

Furthermore, notice that the posterior base distribution is weighted average between the

prior base G0 and the empirical distribution
∑n
i=1 δπi
n . Indeed, the weight associated with

the prior base distribution is proportional to α, while the empirical distribution has weight

proportional to the number of observations n.
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Following we show how the posterior base distribution given π1, π2, . . . πn is also the pre-

dictive distribution of πn+1. This is because of the conditional distribution of the DP we

would expect that the probability of π1 = π2 is equal to 1/ (α+ 1). In fact the following

results:

π1 ∼ G0,

π2 | π1 ∼ α

α+ 1
G0 +

1
α+ 1

δπ1 ,

...

πn+1 | π1, . . . , πn ∼ α

α+ n
G0 +

1
α+ n

n∑
i=1

δπi

and the joint distribution of π = {π1, . . . , πn} is

f (π) =
n∏
i=1

αG0 +
∑n

i=1 δπi
α+ i− 1

.

Following we formalize these results as the Polya urn scheme of the DP prior (see Blackwell

and MacQueen (1973)).

Definition 5.3.2. (Blackwell-MacQueen Urn Scheme) Let G ∼ DP (α,G0), and drawing

an iid sequence π1, π2, . . . πn. Consider the predictive distribution for πn+1 conditioned on

π1, π2, . . . πn and with G marginalized out. Since

πn+1 | G, π1, π2, . . . πn ∼ G,

for a mesurable set A ⊂ Θ we have

P (πn+1 ∈ A | π1, π2, . . . πn) =
1

α+ n

(
αG0 (A) +

n∑
i=1

δπi (A)

)
or with G marginalized out

πn+1 | π1, π2, . . . , πn ∼
1

α+ n

(
αG0 (A) +

n∑
i=1

δπi (A)

)
. (5.3.3)

The name of urn model stems from the equivalence between the Dirichlet distribution and

the Polya Urn scheme. Consider in particular an urn that at the outset contains a ball of a

single color. At each step we either draw a ball from the urn and replace it with two balls of the

same colour, or we are given a ball of a new colour which we place in the urn. The parameter

α de�nes the probabilities of these two cases. Viewing each (distinct) color as a sample from

G0 and each ball as a sample from G, Blackwell and MacQueen (1973) showed that this Polya

urn model yields samples whose distributions are those of the marginal probabilities under

the Dirichlet process. The urn scheme also directly suggests a sampling based computational

scheme for posterior inference.

In this chapter we are interested in modelling the density from which a given set of

observations, the signatures patterns, is drawn. However, note that distributions drawn from

a DP are discrete, thus do not have densities. Then a mixture of DP is the alternative.

There are several points worth noticing in DP mixture modeling via Pòlya urn schemes.
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• First, as in Bayesian models for mixtures, the Pòlya urn scheme assumes exchange-

ability of the variables πi.

• Second, scheme (5.3.3) shows that the DP exhibits a clustering property as a result

of the discreteness property of the random measure G. Successive draws πi from G

have positive probability of being equal to one of the previous draws, and there is a

positive reinforcement e�ect a�ecting future draws. Thus, scheme (5.3.3) reduces to

a �nite mixture model when the mass of G is concentrated on a few atoms.

• Third, scheme (5.3.3) emphasizes approximate predictive inference, and opens up the

way to e�cient MCMC sampling approaches for Bayesian density estimation based

on posterior predictive distributions. Following this approach, Escobar and West

(1995) were the �rst to propose e�cient MCMC simulation methods for DP mixture

models.

• Fourth, the DP mixture model produces predictive distributions qualitatively similar

to traditional kernel techniques, but taking into account di�ering degrees of smooth-

ing across the sample space.

• Finally, the Bayesian nonparametric approach supports a formal methodology for

the analysis of nonparametric density estimation problems.

5.4. Dirichlet process mixtures of in�nite Gaussian distributions for M4

processes

In this section we describe multivariate Dirichlet process mixtures of in�nite Gaussian

distributions and key features of their structure in the context of M4 processes estimation.

Let Xi = {Xi,j , . . . , Xi,d} be a d−dimensional M4 process with underterminated number of

signature patterns L, but known cluster size K. Furthermore, denote δu an indicator function

of exccedances in at least one of the d- variate marginales over a threshold u, i.e, X � u.

This indicator function takes the value 1 if an exceedance is observed or 0 otherwise. De�ne

Nu =
∑
δu . Each time that a multivariate local maximum Xi∗ with cluster size K is found

we reorder this process to have a standardized process of signature patterns as follows:



Xi∗−k,1 · · · Xi∗−k,d
...

...

Xi∗−1,1 · · · Xi∗−1,d

Xi∗,1 · · · Xi∗,d

Xi∗+1,1 · · · Xi∗+1,d

...
...

Xi∗+k,1 · · · Xi∗+k,d


K×d

⇒


...

...
Xi∗−k,1
XΣ
i∗

· · · Xi∗−k,d
XΣ
i∗

Xi∗−k+1,1

XΣ
i∗

· · · Xi∗+k,d
XΣ
i∗

...
...


L×P

,

where XΣ
i∗ is the multivariate local maximum, L = Nu/K and P = d · K.

For simplicity let us rewrite
Xi∗−k,1
XΣ
i∗

as an associated P -dimensional process

yl = (yl,1, . . . , yl,p) =
(
Xi∗−k,1

XΣ
i∗

, . . . ,
Xi∗+k,d

XΣ
i∗

)
(5.4.1)

for l = 1, . . . ,L and p = 1, . . . , P .
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Suppose that we observed yl drawn from an uncertain distribution to be estimated. Let

π′ls be independent and have multivariate normal distributions with a vector of means µ′s and

inverse covariance Ω′ls, where πl = (µl,Ωl). From a Bayesian perspective, density estimation

may be viewed as a problem of predicting a further draw yL+1; hence any model must provide

a mean of computing the predictive distribution
(
yL+1 | y

)
for the further draw conditionally

on y = {y1, . . . ,yL}.
Escobar and West (1995) follow Ferguson (1983) in using a Dirichlet process model to

de�ne a class of normal mixture models for univariate density estimation. Here we have a

multivariate generalisation of this previous work, in which we assume the following hierarchical

description:

yl | µl,Ωl ∼ NP (µl,Ωl) , l = 1, . . . ,L

πl = (µl,Ωl) | G ∼ G

πl = (µl,Ωsl) ∼ G

G | α,G0 ∼ DP (αG0) . (5.4.2)

In words, the discrete distribution G has a Dirichlet process prior with parameter αG0, given

G, the parameters πl are independently drawn from G; then, given πl, the signature patterns

yl follow a multivariate normal distribution with moments given by components of πl. An

additional level may be added to this hierarchy framework to specify hyperpriors on the

parameters α and G0. Indeed, this model can be extended to a richer class by putting a

hyperprior on α and in the hyperparameters of G0, see Escobar and West (1995) for such

extensions in univariate models.

We complete our model by stating distributions on the hyperparameters. Under G0, µl
and Ωl are independent; µl has a multivariate normal prior and Ωl a Wishart prior. Here

WP

(
· | v1, ψ

−1
)
denotes a P -dimensional Wishart distribution with v1 degrees of freedom and

the P × P positive de�nite scale matrix ψ. In resume

G0 = f
(
µl,Ω |m1,Σ/κ, v1, ψ

−1
)

(5.4.3)

= f (µl |m1,Σ/κ) f
(
Ω | v1, ψ

−1
)
,

f (µl |m1,Σ/κ) ∼ NP (µl |m1, κ/Σ)

µl ∼ NP (m1, κ/Σ) (5.4.4)

= (2πκ)P/2 |Σ|1/2 exp
{
−1

2
(µl −m1)T (Σ/κ) (µl −m1)

}
,

f
(
Ωl | v1, ψ

−1
)
∼ WP

(
v1, ψ

−1
)

Ωl ∼ WP

(
v1, ψ

−1
)

(5.4.5)

=
|ψ|v1/2

2v1P/2ΓP (v1/2)
|Ωl|(v1−P−1)/2 exp

{
−v1

2
trace (Ωlψ)

}
,

with v1 > P − 1 , l = 1, . . . , L, where m1,Σ, κ, v1 and ψ are the hyperparameters and the

Wishart prior is parametrized such that if Ψ ∼WP

(
· | v1, ψ

−1
)
thenE (Ψ) = ψ−1/ (v − P − 1).
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Moreover, ΓP (x) is the P -variate generalised Gamma function

ΓP (x) = πP (P−1)/4
P∏
j=1

Γ
(
x+

(j − P )
2

)
, x > (P − 1) /2.

Each Ωs,Σ, and ψ is a P × P positive-de�nite symmetric matrix. We assume the following

priors for hyperparameters m1,Σ and ψ assuming mutually independence;

m1 | m2,∆ ∼ N (m2,∆)

κ | τ1, τ2 ∼ Γ (τ1/2, τ2/2)

ψ | v2, ψ2 ∼ WP

(
v2, ψ

−1
2

)
,

where Γ (τ1, τ2) denotes a gamma distribution with shape τ1 and scale τ2. We also have the

hyperparameter α as the concentration parameter of the underlying Dirichlet process speci�ed

as

α | %0, %1 ∼ Γ (%0, %1) .

Under the described model, posterior computations via Markov chain simulation are fea-

sible. The univariate development in Escobar and West (1995) and Rasmussen (2000) can be

extended and modi�ed to produce various methods of estimation described below.

5.5. Estimation of Dirichlet processes mixtures

The use of DPM models has become computationally feasible with the development of

Markov chain methods for sampling from the posterior distribution of the parameters of the

component distributions and of the associations of mixture components with observations.

Methods based on Gibbs sampling can easily be implemented for models based on conjugate

prior distributions, but when nonconjugate priors are used, as is appropriate in many con-

texts, straightforward Gibbs sampling requires that an often di�cult numerical integration

be performed.

Neal (2000) presented several possible algorithms for sampling from the posterior distri-

bution of Dirichlet process mixtures. In this research, we use Gibbs sampling with auxiliary

parameters (Neal's algorithm 8). This approach is similar to the algorithm proposed by

MacEachern and Mueller (1998), with a di�erence that the auxiliary parameters exist only

temporarily.

We begin demonstrating that the model (5.3.3) can also be obtained by taking the limit

as l′ → L goes to i�nity of mixture of normal models with l′ components having the following

form

f (y) =
l′∑
c=1

pcf (y | φc) . (5.5.1)

Here, pc are the mixing proportions (which must be positive and sum to one), and f is a

simple class of distributions, in our case Gaussian as in (5.4.2) with φcl = πl = (µl,Ω).
Given the set y the classical approach to estimate the parameters (µl,Ωl), is to maximize

the likelihood by using the EM algorithm (Dempster et al. (1977)). The EM algorithm

guarantees convergence to a local maximum, with the quality of the maximum being heavily
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dependent on the random initialization of the algorithm. Alternatively, a Bayesian approach

can be used to combine the prior distribution for the parameters and the likelihood, resulting

in a joint posterior distribution:

f (µ,Ω, p | y) ∝ f (µ,Ω, p) f (y | µ,Ω, p) . (5.5.2)

However, the joint posterior takes a highly complicated form. Thus, it is generally not

feasible to perform analytical inference based on the above posterior distribution. The MCMC

approaches have typically been used to calculate the joint posterior and, of the approaches

that have been proposed in the literature, Gibbs sampling is suitable for mixture models.

We �rst assume that the number of mixing components, l′, is �nite, and later we will

use the model in the limit where l′ → L = ∞. As a prior for pl is a symmetric Dirichlet

distribution:

P (p1, . . . , pl′) =
Γ (α)

Γ (α/k)l
′

l′∏
c=1

p(α/l′)−1
c

where pc ≥ 0 and
∑
pc = 1. Parameters φc are assumed to be independent under the

prior with distribution G0, while the value α is assumed at the moment known. We can use

mixture identi�ers, cl, which are stochastic variables whose values encode the class to which

observation yl belongs. The actual values of the identi�ers are arbitrary, as long as they

faithfully represent which observations belong to the same classes, but can be thought of as

taking values from 1, . . . , l′, where l′ is the total number of classes observed. Neal (2000)

represents the above mixture model as follows

yl | c, φ ∼ F (φcl)

cl | p ∼ Discrete (p1, . . . , pl′)

φc ∼ G0

p1, . . . , pl′ ∼ Dirichlet
(
α/l′, . . . , α/l′

)
. (5.5.3)

Now we de�ne the occupation numbers nj =
∑L

l=1 δ (cl, j) as the number of observations

associated with the component j. This de�nition allow to de�ne the prior (multinomial) for

the occupation numbers given the mixing proportions

p (n1, . . . , nj | p1, . . . , pl′) =
L!∏l′

j=1 nj !

L∏
j=1

p
nj
j

p (c1, . . . , cL | p1, . . . , pl′) =
C∏
j=1

p
nj
j

By integrating over the Dirichlet prior, we can eliminate mixing proportions, pc. This is an

important step for the estimation of this kind of processes. First, notice that we can write
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the prior directly in terms of indicators:

f (c1, . . . , cL | α) =
ˆ
f (c1, . . . , cL | p1, . . . , pl′) f (p1, . . . , pl′) dp1 · · · dpL

=
Γ (α)

Γ (α/l′)l
′

ˆ l′∏
j=1

p
nj+α/l

′−1
j

=
Γ (α)

Γ (α+ L)

l′∏
j=1

Γ (nj + α/l′)
Γ (α/l′)

. (5.5.4)

Fixing all but a single indicator cl in (5.5.4) we obtain the following conditional distribution

for cl:

P (cl = c | c1, . . . , cl−1, α) =
n−lc + α/l′

i− 1 + α
. (5.5.5)

Here, n−lc represents the number of data points previously (i.e., before the l-th pattern)

assigned to component c, excluding yl. The probability of assigning each component to

the �rst data point is 1/l′. As we proceed, this probability becomes higher for components

with larger numbers of samples (i.e., larger n−l′c). When L goes to in�nity, the conditional

probabilities (5.5.5) reach the following limits:

P (cl = c | c1, . . . , cl−1) → n−lc
l − 1 + α

(5.5.6)

P (cl 6= cj ∀j < l | c1, . . . , cl−1) → α

l − 1 + α
. (5.5.7)

As a main result, the conditional probability for πl = φcl , becomes relation (5.3.3)

πi | π1, π2, . . . , πl−1 ∼
1

α+ l − 1

αG0 +
∑
j<l

δπj

 , (5.5.8)

which is equivalent to DP mixture model (5.4.2).

Note as the results in (5.5.6) and (5.5.7) show that the conditional class prior for classes

that are associated with observations other than yl, is proportional to the number of such

observations and that the combined prior for all other classes depends only on α and l′.

The main advantage of this representation is that it allows us to work with the �nite

number of indicators cl, rather than the in�nite number of mixing proportions, which is

crucial for the estimation of this class of processes.

5.5.1. Gibbs sampling using a DPM. The simplest case arises when a conjugate prior

is used. In the terminology of the DP, this means that the data sampling distribution G is

conjugate to the base density G0 of the DP. To perform inference with conjugate priors, we

need to be able to compute the marginal distribution of a single observation and need to be

able to draw samples from the posterior of the base distributions. For instance, the most

direct approach to sampling for model (5.5.3) is to repeatedly draw values for each πl from

its conditional distribution given both the data yl and the π−l = {π1, . . . , πl−1, πl+1, . . . , πL}.
This conditional distribution is obtained by combining the likelihood, i.e. f (yl | πl), and the
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prior conditional on π−l which is

πl | π−l ∼
1

L− 1 + α

∑
j 6=l

δπj +
α

L− 1 + α
G0,

since the observations are exchangeable. Combined with the likelihood (5.5.1), this yields the

following conditional distribution for use in Gibbs sampling:

πl | π−l,yl ∼
∑
j 6=l

qjδπj + rlGl,

where Gl is the posterior distribution for π based on the prior G0 and the observation yl,

with likelihood f (yl | π). The values of the qj and of rl are de�ned as

qj = b f (yl | πj)

rl = bα

ˆ
f (yl | π) dG0 (π)

where bl such that
∑

j 6=l qj + rl = 1 and

qj ∝ N
(
yl | µj ,Ωj

)
= |Ωj |1/2 exp

{
−Ωj (yl − µl)

2 /2
}
.

For this Gibbs sampling method to be feasible, computing the integral de�ning rl and

sampling from Gl must be feasible operations.

We can improve the estimation if the mixing proportions pc are integrated out in (5.5.3)

and combined with the likelihood given by f (yl | π), but �rst we need to update each com-

ponent of G0 conditional to the observations yl.

5.5.2. Conditional posterior distribution of the mixture parameters. Since the

conditional posterior are of standard form for µj and Ωj , these can easily be updated using

Gibbs sampling. We have to combine simply equations (5.4.2) and (5.4.3). As consequence of

this framework, the conditional posterior for the parameters are also Gaussian and Wishart,

respectively

f
(
µj | c,y,Ωj ,m1,Σ

)
∼ NP

(
njΩjȳj + Σm1

njΩj + Σ
,

1
njΩj + Σ

)
,

f (Ωj | c,y, v1, ψ) ∝ |Ωj |(v1−P−1)/2 exp
{
−v1

2
trace (Ωjψ)

}
∏
i:ci=j

|Ωj |1/2 exp
(
−1

2
(
yi − µj

)T Ωj

(
yi − µj

))

∼ WP

(
v1 + nj ,

1
v1ψ + njSj

(
y | µj

)) ,
where ȳj = n−1

j

∑
l:cl=j

yl is the mean and Sj
(
y | µj

)
= n−1

j

∑
l:cl=j

(
yl − µj

) (
yl − µj

)T
is

the sample covariance of the observations belonging to component j given the mean µj .

5.5.3. Conditional posterior distribution of the mixing weights. In the repre-

sentation (5.5.3) we observe that the main advantage is that this allows us to work with a

�nite number of indicators, rather than the in�nite number of mixing proportions. However,

when l
′ → L = ∞ we cannot explicitly represent the in�nite number of φc. We instead
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represent (and do Gibbs sampling for) only those φc that are currently associated with some

observation. Gibbs sampling for the cl is based on the following conditional probabilities

P (cl = c | c−l,yi, φ) = b
n−i,c

L− 1 + α
f (yi | φc) if c = cj (5.5.9)

for some j 6= i.

P (cl = c ∀j 6= i | c−i,yi, φ) = b
α

L− 1 + α

ˆ
f (yi | φ) dG0 (φ) , (5.5.10)

where φ is the set of φc currently associated with at least one observation and b is the

appropriate normalizing constant that makes the above probabilities sum to one. Furthermore

in our approach

f (yl | φc) ∝ NP

(
yl | µj ,Ωj

)
= |Ωj |1/2 exp

{
−Ωj (yl − µl)

2 /2
}

ˆ
f (yl | φ) dG0 (φ) ∝

ˆ
f (yl | φ) f

(
µj ,Ω |m1,Σ/κ, v1, ψ

−1
)
.

This is essentially the method used by Escobar and West (1995). The approach is feasible

when we can compute the integral
´
f (yl, φ) dG0 (φ) or use a conjugate prior.

5.5.4. In�nite Gaussian mixture model. The previous discussions have been re-

stricted to a �nite number of mixtures. From now on we adopt the perspective from the

DPM, assuming the number of mixtures tends to be ∞.

Notice the particular consequence of this idea on the estimation of M4 processes. We

mentioned in section (5.2) that we can approximate a M4 process by other �nite M4 process.

Even there we are not sure that we can observe all signature patterns from the real process,

but we hope to obtain enough information as soon as the simple size increases in�nitely.

Indeed, the DPMs assume the existence of in�nite patterns in our case, therefore, there

must be an in�nite number of mixtures with no patterns y associated with them. These

are termed �unrepresented� mixtures. Correspondingly, �represented mixtures� are those that

have training patterns y that are associated with them.

Let k− denote the number of represented mixtures. For represented mixtures, the previ-

ously derived conditional posteriors of (µl,Ωl) in (5.4.4) and (5.4.5) still hold. In contrast, in

the absence of training data, the parameters in unrepresented mixtures are solely determined

by their priors f (µl |m1,Σ/κ) and f
(
Ω | v1, ψ

−1
)
. Thus the inference of the indicators,

cl, must incorporate the e�ect of in�nite mixtures. This is done as in equations (5.5.6) and

(5.5.7) for the represented and not represented mixtures respectively.

The conditional posteriors of (µl,Ωl) are Gaussian and Wishart distributions respectively,

from which samples can be generated by using standard procedures. The sampling of the

indicators requires the evaluation of the integral in equation (5.5.7), which is only analytically

feasible if the conjugate prior is used. To approximate this integral we use the algorithm 8

by Neal (2000) which essentially samples just a few auxiliary variables in a way that does not

a�ect the detailed balance condition that guarantees that the outer Markov chain converges

to the correct stationary distribution.

The overall structure of the sampling algorithm remains identical in the case of non-

conjugate priors. However, the sampling for the indicator variables cl changes slightly when

cl is updated. In this case we will introduce m temporary auxiliary variables that represent
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possible values for the parameters of components that are not associated with any other

observations. We then update cl by Gibbs sampling with respect to the distribution that

includes these auxiliary parameters.

Because of the fact that the observations yl are exchangeable, and the component labels cl

are arbitrary, we can assume that we are updating cl for the last observation, and that the cj

for other observations have values in the set {1, . . . , k−}, We can now visualize the conditional

prior distribution for cl given the other cj in terms of these m auxiliary components and

their associated parameters. The probability of cl being equal to a c in {1, . . . , k−} will be
n−l,c/ (L − 1 + α), where n−l,c is the number of times c occurs among the cj for j 6= l. The

probability of cl having some other value will be α/ (L − 1 + α) which we will split equally

among the m auxiliary components we have introduced.

The �rst step in using this representation to update cl is to sample from the conditional

distribution of these auxiliary parameters given the current value of cl and the rest of the state.

In the case of the conditional probability (5.5.9) ( i.e., n−l,c > 0) the auxiliary parameters

have no connection with the rest of the state or the observations, and are simply drawn

independently from G0. In the case the conditional probability (5.5.10) ( i.e., n−l,c = 0),
observation yl is currently the only observation associated with the class j, which means it

must be associated with one of the m auxiliary parameters. We select the �rst auxiliary

parameter cl with the corresponding value φ being equal to the existing φcl . The values for

the other auxiliary components are drawn independently from G0 again. In our investigation

we set m = 1, therefore, this step will not be necessary.

Following, a Gibbs sampling update is performed for cl in this representation of the pos-

terior distribution. Since ci must be either one of the components associated with other

observations or one of the auxiliary components that were introduced, we can easily do Gibbs

sampling by evaluating the relative probabilities of these possibilities. Once a new value for

cl has been chosen, we discard all values that are not associated with an observation.

Notice that all classes, existing as well as auxiliary, have parameters associated with them.

Thus, we can evalute their likelihoods and the priors without problems, which takes the form
n−l,c
L−1+α for components with observations other than yl associated with them and α/m

L−1+α for

auxiliary classes. We summarize Algorithm 8:

Algorithm 5.5.1. (Algorithm 8 in Neal (2000)). Let the state of the Markov chain consist

of c1, . . . , cL and φ = {φc : c ∈ (c1, . . . , cL)}. Repeatedly sample as follows:

for ( i in 1 : n)

(1) Set

k− = the number of distinct cj for j 6= l,

h = k− +m,

n−l,c = the number of cj for j 6= l that are equal to c,

b is the appropriate normalizing constant.

(2) Label cj with values in {1, . . . , k−}
(a) If (cl = cj) for some j 6= l

(i) draw values independently from G0 for cj for which k
− < c ≤ h.

(b) If (cl 6= cj) for all j 6= l,
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(i) set cl the label k− + 1, and
(ii) draw values independently from G0 for those φc for which k

−+ 1 < c ≤ h.
(3) Draw a new value for cl from {1, . . . , h} using the following probabilities:

P (cl = c | c−l,yl, φ1, . . . , φL) =

b
n−il,c
L−1+αf (yl | φc) for 1 < c ≤ k−

b α/m
L−1+αf (yl | φc) for k− < c ≤ h

(a) Change the state to contain only those φc that are now associated with one or

more observations.

(4) For all c ∈ (c1, . . . , cL):
(a) Draw a new value from φc | yl subject to cl = c, or

(b) Perform some other update to φc that leaves this distribution invariant.

5.5.5. Prediction. The calculation of the predictive probability of new data will be

averaged over a number of MCMC samples, which are selected from those samples where the

algorithm tends to stabilize. Stabilization will be assessed heuristically based on the value of

the log-likelihood. Additionally to eliminate the auto-correlation, one sample will be selected

from each consecutive set of 10 iterations. For a particular MCMC sample, the predictive

probability is attained from two components: the represented and the unrepresented mixtures.

In a similar manner to that adopted in the sampling stage, the probability from unrepresented

mixtures will be approximated by a �nite mixture of Gaussians, whose parameters (µl,Ωl)
are drawn from the prior.

5.6. Practical implementation and simulation examples

In this section, we adress the practical implementation and the accuracy of the proposed

model. The case of unknown cluster size coe�cient K is addressed in Section 5.7 with some

practical applications.

In Section 5.2 we have introduced the concept of local maximum and signature patterns,

which allow estimating the models. Of course in real applications we do not expect the data

to follow exactly a M4 process, because the degenerate features of the repeated signature

patterns are not likely to be a real case. Nevertheless, we hope that with large enough L and

K, the model should provide a good approximation of a �nite dimensional max-stable process

and therefore, to a wide class of multivariate time series.

Consider the process proposed in (5.2.6). In Section 5.2 we have shown for M4 processes

that the relative frequency of the L-th signature pattern nl is proportional to
∑
|k|maxd alkd.

This is the key feature that is used for identifying the parameters in a M4 process by means

of the standardized signature pattern given by equation (5.4.1) and explained extensively in

section 5.4.

Before we give a series of experiments to investigate the quality of our approach it is helpful

to explain at least one example in more detail. Let us consider the simulation of aM4 process

in 5-dimensions with 7 signature patterns and K = 2. This means that the real dimension

of the data will be 10-dimensions. The coe�cients alkd were generated randomly from an

uniform distribution. The sample size is 50.000 and the sample over a threshold u equals

the 0.95-quantile. Convergence of the chain is determined by visual inspection of the trace
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Figure 5.6.1. Monte Carlo Markov chain iterations for the patameter α (top
panel) and the number of represented mixtures (bottom panel) together with
the empirical density estimated for the results.

plots. However, based on the outputs of the chains, it is possible to use for instance the coda

(Plummer et al. (2006)) R packages to perform convergence diagnostics. For instance a total

of 5.000 iterations are investigated of which the �rst 1.000 are discarded. The remaining 4.000

are grouped in batches of 10 each, with the batch means providing the posterior estimates for

the cluster variables.

In Figures 5.6.2, 5.6.3 and 5.6.4 the results are displayed graphically. The × in black

colours are the true signature patterns yp =
{
y1p, . . . yl′p

}
, while the points in grey colours

are the empirical estimations of them, which are in�uenced by the Multivariate Gaussian

noise by assumption. The axes represent the number of possible combinations between all P -

dimensions. In this caseK·d = 10, which gives a total of 45 bidimensional faces. The ellipsoids,

i.e. the linear transformations of the hyperspheres of the densities of the multivariate normal

distributions, displayed in the �gures are given by the eigenvectors of the covariance matrix Ω.
The squared relative lengths of the principal axes are given by the corresponding eigenvalues.

Thus, we can observe graphically how the Dirichlet mixture tries to �t the data.

The result of this �t is very encouraging since it shows that our model leads to a density

pro�le that matches quite closely those of observed clusters. There are some more clusters

than the real number of signature patterns, but it is natural in relation to the di�culty to

identify the signature patterns plus a noise process. Furthermore, these extra clusters only

have few observations, so that their in�uence in the determination of the coe�cients alkd is

minimal.
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The top panel in Figure 5.6.1 illustrates the Monte Carlo Markov chain (MCMC) iterations

of the parameter α of the DP mixture and the density of the estimates. The bottom panel

shows the number of represented mixtures in relation to the number of MCMC iterations.

The results of the simulation show that 7 mixtures were automatically inferred from the data.

The parameter α estimate was 1.227 with 95% con�dence bounds 1.720 and 0.378 given by

the empirical quantile of the MCMC iterations.

Other important factors which naturally in�uence the results are the sample size, the

number of observations over the threshold u and the distance among the signature clusters.

For this example the minimal, maximal and mean Euclidean distance among the centre of

the patterns are 0.548, 0.923 and 0.743 respectively. A more precise statistic to measure the

distance among Gaussian distributions in a multivariate framework is the c-separation. This

measure gives us more detailed information based not only on distance among the mean of

the mixtures, but on the structure of the distributions.

Two Gaussian distributions N1 (µ1,Ω1) and N2 (µ2,Ω2) in a P -dimensional space are c-

separated if

‖µ1 − µ2‖ ≥ c
√
nmax (λmax (Ω1) , λmax (Ω2)),

where λmax (Ω) is shorthand for the largest eigenvalue of Ω. A mixture of Gaussians is c-

separated if its component Gaussians are in pairwise c-separated. Values lower than 1 means

that the mixture of Gaussians overlaps signi�cantly, while higher values correpond to al-

most completely separated Gaussian distributions. Thus, this de�nition gives us a theoretical

framework to characterize the distance among cluster and therefore the di�culty to estimate

the signature patterns. In the example the c-separation among the mixture of Gaussian distri-

butions estimated is 0.018, which means that at least two multivariate Gaussian distributions

are very close. Indeed, Figures 5.6.2, 5.6.3 and 5.6.4 illustrate that there are two clusters

which are not easy to distinguish between them.

Now we realize some experiments of reduced sample size to investigate the in�uence of

the number of patterns L in the sample in comparison to the number of dimensions. In the

�rst experiment we simulated a sample of size 10.000 of a M4 process with �xed cluster size

K = 2, and dimension d = 3 plus a d-dimensional Gaussian noise with mean 0 and covariance

matrix

cov =


1 0.05 · · · 0.05

0.05
. . .

...
...

. . . 0.05
0.05 · · · 0.05 1


d×d

.

The number of signature pattern are L = 2, 3, 5, 10, 15.
In the second experiment we kept the size of the sample, the cluster size K = 2 but now

we �xed the number of signature patterns to L = 5. The coe�cients alkd are simulated from

a uniform distribution between 0 and 1 and they are standardized so that the sum of all

is 1 for each dimension. The most optimistic scenario for estimating l′ is one in which the

observed points fall into distinct clusters su�ciently well separated (larger c-separation) in

P - dimensions.
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Scenario for dimension d = 3
L Nu l' α MSE MIN MAX MEAN c-separation
3 176 5 0.374 0.0121 0.238 0.840 0.631 0.0338
5 287 6 1.995 0.0192 0.368 1.033 0.727 0.0111
7 303 7 1.413 0.0323 0.170 0.865 0.593 0.0318
10 237 6 1.306 - 0.357 1.007 0.669 0.0452
15 258 9 1.815 - 0.209 0.967 0.617 0.0434

Table 5.6.1. Results for the �rst experiment, varying the number of true
patterns yl, and keeping d and K �xed at 3 and 2 respectively. L is the true
number of signature patterns. Nu the number of exceedances. l' the esti-
mated or present number of signature patterns. MSE, MIN, MAX and MEAN
are distance statistics based on the true coe�cients alkd. The c-separation is
calculated from the estimated signature patterns.

Scenario for patterns L = 5
d l' α MSE MIN MAX MEAN c-separation
3 6 1.9956 0.0231 0.368 1.033 0.727 0.0111
5 5 0.7016 0.0245 0.498 0.952 0.757 0.0430
7 6 0.623 0.0301 0.555 1.032 0.858 0.0159
10 5 1.0657 0.0331 0.691 0.978 0.859 0.0058
15 5 0.9681 0.0392 1.015 1.319 1.189 0.0069

Table 5.6.2. Results for the second experiment, varying the number of di-
mensions d, and keeping L and K �xed at 5 and 2 respectively. L is the true
number of signature patterns. Nu the number of exceedances. l' the esti-
mated or present number of signature patterns. MSE, MIN, MAX and MEAN
are distance statistics based on the true coe�cients alkd. The c-separation is
calculated from the estimated signature patterns.

To get some insights of the results, we studied the accuracy of each scenario as a function

of the distance among the true standardized patterns yl and the estimated ones. We calculate

the minimal, maxima and mean distance among them in relation to the Euclidean distance.

In Tables 5.6.1 and 5.6.2 we show the results of the two experiments. In Table 5.6.1 we vary

the number of true patterns yl (keeping d = 3 and K �xed at 2) while in 5.6.2 we despicte

the results as we vary the number of dimensions d (keeping L �xed at 5). The error among

the estimation of the patterns yl and the true value are computed as the Mean squared error

(MSE). Further, we calculate the c-separation for the density of mixture estimated. In all

experiments we work with the 0.95-quantile as the threshold level u. In the implementation

we need to determine the clusters among the dimensions, so that the clusters do not get the

values 1 or 0, which will produce clusters on the axes, we take all maximum locals, where one

exceedance is observed in at least two marginals Xj .

In the �rst experiment the results are mixed. For a reduced number of signatures, the

approach gives an accuracy estimation, while when the number of signatures is in the order

of L ≥ 10, there are big di�erence in the estimations. The reason is that we cannot hope

to observe all signature patterns L in a reduced number of standardized data yl, which are
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not enough to get a good estimation of the M4 coe�cients. Although, as we illustrate in the

above example, we can get good estimates of the M4 parameters when the sample is larger.

Thus, the accuracy of the model depends considerably on the size of the sample.

In the second experiment the results are more homogeneous. We observe in general

that although the number of dimensions caused a di�culty to estimate the correct number

of signature patterns, this is not as critical as the number of patterns L. Notice the c-

separation is reduced as the number of dimensions increases, but the approach still giving a

good estimation.

From the results in the experimets we can conclude that DP mixtures are able to give an

accurate estimation of the signature patterns in a M4 process. We observe further, that the

estimation of the exact number of patterns L depends more on the number of exceedances

over a threshold u, while the number of dimensions plays a minor role.

An aspect that we do not study here, is the in�uence of the cluster size K. On the

one hand, in the proposed framework this factor in�uences only the number of dimensions

P . From the point of view of estimation, a model with cluster size 2 and 3-dimensional is

equivalent to a model with cluster size 3 and 2-dimensional. On the other hand, if the cluster

size K is larger, then the number of standarized signature patterns yl should be lower, by the

fact that the dimension of yl is
Nu
K × P .

5.7. Applications in Finance

The subprime mortgage �nancial crisis is an ongoing crisis which was caused by the sharp

rise in the US subprime mortgage market that began in the United States in fall 2006 and

became to a global �nancial crisis in July 2007.

In the case of Germany, the collapse of Lehman Brothers on September 15, 2008, marked

the climax of the �nancial crisis and the beginning of the economic recession, as it was

announced on November 13, 2008, by Germany's Federal Statistical O�ce. The name of the

crisis stems from a special segment of the U.S. mortgage market, the market for subprime

loans. Basically, mortgage companies and banks were lending too much money to people who

could not a�ord the houses they were purchasing. Germany's banks, already heavily exposed

to subprime securities, have been particularly a�ected by the acute, ongoing tension in the

money markets and the �nancial markets, which have been devastated by a massive �ight to

quality. Germany's highly export dependent economy is losing steam following a dramatic

slowdown in its overseas markets.

In the case of Germany, the stock market declines are largely attributable to steep losses in

the �nancial industry in the year 2008, as for example, the share price of Commerzbank with

losses of 52,9 percent, with Deutsche Bank declining by 26,65 percent, Deutsche Postbank

falling by 45,08 percent, In�neon by 25,87 percent and Siemens by 18,17 percent. But more

than anything, the skittishness on the stock market in Germany is being caused by the Lehman

bankruptcy.

The �rst important tremors in the German stock market during the subprime crisis in

2008 were on January 21, the Global stock markets, including London's FTSE 100 index,

su�ered their highest declines since 11 September 2001.
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Company Industry Group Symbol Index weighting (%)
E.ON multi-utilities EOA 10.00
Siemens diversi�ed industrials SIE 9.83
Allianz insurance ALV 7.34

Volkswagen Group automobile manufacturers VOW 7.28
Bayer speciality chemicals BAY 7.06
RWE multi-utilities RWE 5.73
BASF speciality chemicals BAS 5.62

Table 5.7.1. Market participation of some of the major current companies
present in the DAX index.

The DAX Index has tumbled 45 percent since the beginning of last year as credit losses

and writedowns topped $1 trillion in the worst �nancial crisis since the Great Depression and

together with countries like the U.S., Japan and Europe fell into simultaneous recessions.

Every market crisis brings signi�cant losses to the overall economy and its impact should

be minimized as much as possible. This section is motivated by the concrete question: can

we give, in an objective and non arbitrary manner, good approaches to extreme risk measures

in a multivariate frame work?

We provide an answer to this question through the application ofM4 processes on a sector

of the DAX index companies consisting of the 7 of the major German companies trading on

the Frankfurt Stock Exchange in terms of order book volume and market capitalization. These

are listed in Table 5.7.1.

The data set consists of daily returns de�ned by rt = −100 ln(pt/pt−1), where pt denotes
the value of the index at day t, from the stock market indices over a sample period from 1

January 1973 to 19 January 2008, one day before on January 20 the Global stock markets

su�ered their biggest falls since 11 September 2001.

A second sample is used for backtesting the estimation of the di�erent risk measures in

the DAX index from January 20, 2008 to February 26, 2009. In order to better understand

the empirical exercise, it is worth looking brie�y at the basic characteristics of the analyzed

�nancial series. in Table 6.B.3 in the Appendix, we �nd some descriptive statistics of the

daily returns on the above series. The mean return is close to zero for all of the seven series.

However, it di�ers considerably in terms of standard deviation, skewness and kurtosis of a

normally distributed random variable.

The assumption of normally distributed returns is strongly rejected by our series through

the Jarque-Bera test. The high value for excess kurtosis indicates that the distributions are

characterized by leptokurtosis. Moreover, we compute the augmented Dickey-Fuller test for

the null hypothesis that the returns have a unit root. This hypothesis is also rejected for the

whole series.

5.7.1. Approximation by M4 processes. In general, M4 process models cannot be

directly �tted to observed data since the data is not in unit Frèchet scales. Certain scale

transformation is needed. Our strategy to analyze returns is a three-stage approach.

First �t a volatility model to remove the mean and volatility e�ects. Second, �t an

extreme value model to the standardized residuals from the �rst stage and transform to unit
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Frèchet scale. Third, �t an M4 process model to the variables in the unit Frèchet scale. Our

model takes into account several empirical facts of �nancial time series, such as time-varying

volatility, heavy tails, and extreme dependence across assets.

First stage: �ltering volatility. In the �rst stage of modeling we �t GARCH(1,1) models

to each of the individual returns in order to remove trend and volatility e�ects. The GARCH

estimations are depicted in Table 6.B.4. Then we calculate standardized residuals. The

negative log returns, the estimated standard deviations and the standardized residuals are

drawn in Figure 5.B.1. From the plots, clearly we see that there are extreme observations,

jumps in returns, jumps in volatilities in each sequence.

One can observe that the devolatilized time series now looks stationary. However, jumps

in returns are still persistent.

Second stage: transformation to Frèchet scale. The next step is to �t a generalized Pareto

distribution (GPD) to exceedances over a speci�ed threshold value, in our case the 0.90 th-

quantile for all returns. Let us focus on a standardized residual Z. The distribution function

for the exceedances of a threshold u by the variable Z, conditional in Z > u for large enough

u, is given by

G (z) = 1− λ
(

1 + ξ
(z − u)
σ

)−1/ξ

+

(5.7.1)

where (λ, σ, ξ) are the proportion of observation over the threshold u (λ = P (Z > u)), the
scale and shape parameters respectively and h+ = max (h, 0).

We report the estimations in Table 5.B.3. Figure 5.B.2 gives detailed information of the

�t and model diagnostic tools to the real data. The plots compare the parametric distribu-

tion, densities, and quantiles to their empirical counterparts (see Coles (2001) for a detailled

description). The GPD �tting is applied to standardized positive returns (in our case the

negative returns). These plots indicate good �ts for all seven variables.

Using the �tted GPD distributions, the residuals data is transformed into unit Frèchet

scale as follows.

X = − (log (G (z)))−1 , (5.7.2)

for observations over the threshold u, while we use a simple ranking transformation (see Hef-

fernan and Resnick (2005)) for the observations under this threshold. We apply analogously

this transformation to each marginal. These �nal transformed data is the base of M4 process

modelling.

The purpose here is to model those values above the threshold value by M4 models,

therefore, a logic way is to chose the d−dimensional returns where at least a extreme event

has been observed, i.e., Xi � u or equivalently Xi,j > uj for some j = 1, . . . , d.
Thrid stage: The M4 process estimation. For M4 processes, we will analyse the temporal

dependence between exceedances (the cluster size coe�cient K) over threshold sequences by

means of the extremal index and the cluster size probabilities as was introduved in Ferro and

Segers (2003) and chapter 3.

We obtain estimations of the extremal index and cluster size probabilities by these meth-

ods. Table 5.B.4 shows that these estimations �uctuate around 0.52 and 0.63, so the mean
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cluster size of exceedances is in the interval (1.59, 1.88), which indicates that there is clus-

tering of extreme events that is not captured by the volatility model. The cluster probability

indicates that most of the extreme events happen in cluster size of only 1 or 2 components.

Based on this analysis, we propose to work with a cluster size K = 2.
We specify an M4 process model in seven dimensions and K = 2, this is k = 0, 1 and

we �t this model using the Dirichlet process mixture described in Algorithm 5.5.1. Table

5.B.5 shows the parameter estimation of the M4 process model �tted to the losses of the

German stock markets returns in the Frèchet scale. Remark that actually the estimations

are the mean of our in�nite Gaussian mixture together with the standard deviation obtained

from the covariance matrix Ω. We report only the standard deviation by the fact that the

related covariance are six matrices of 14 × 14. The concentration parameter α0 = 0.9746.
The standardized results for the coe�cients ajil are presented in Table 5.B.6. These were

calculated as was described in subection 5.2.1. The cluster size nl for each signature pattern

were 69, 36, 52, 63, 56, and 57 respectively.

We simulate a sample of size 20.000 to test if the �tted M4 process is a realistic represen-

tation of the Frèchet-transformed time series and if it can be utilized in common measures

in risk management. In a �rst look at the quality of the simulated data, we displayed a

scatterplot among the sample paths simulated from the �tted process and observed if this

sample looks similar to those from the original series. Figure 5.7.1 in background and with

grey colours is the simulated sample, while the original sample is in black colour. One point

to note here is that the data was generated so that the marginal distributions were exactly

unit Frèchet. In order to provide a fair comparison with the original estimation procedure,

the axes were rescaled so that a considerable number of points were present. The results are

optimistic, due to the fact that the cluster and direction of the extremes seems to give a good

approach to the real data.

The simulated M4 process is used to obtain estimations of the extremal indices of the

individual series. Notice that with equation (5.2.5) the multivariate extremal index could also

be calculated but it depends on the threshold chosen.

The estimations are depicted in Table 5.B.7. The results indicate that the simple approach

mimics the cluster behaviour at the extremes of the original serie. However, in a most deeper

analysis we observed that the cluster size probabilities are di�erent. In fact the estimated

process tends to favour the cluster of size two. This is not a surprise by the simple represen-

tation in the size cluster coe�cient k that we have chosen. In the next section we give an

application based on the model estimated.

5.7.2. Market risk and stress testing withM4 processes. The Basel I and II Accord

requires regulatory capital to cover market risk and stress tests in a coherent and objective

framework. In this section we focus on particular on the process of stress testing from identi-

fying vulnerabilities and predictability for the German stock market, to constructing scenarios

and backtesting the results.

We propose the M4 process in this context which can incorporate both clustering and

heavy tails. In a �rst approach we illustrate an application to portfolio optimization under

V aR constraints. In a second application we establish di�erent scenarios to stress test di�erent
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Figure 5.7.1. Scatterplot of standardized DAX returns (in black colour) and
the estimated M4 process (in grey colour) in Frèchet scale. The size sample
simulation is 20.000.

portfolios obtained in the �rst application. Traditional stress testing are based on historical

data or they are hypothetical and can involve large movements, hence the probability of an

extreme outcome is unknown and many extreme yet plausible possibilities are ignored. Many

stress tests also fail to incorporate the characteristics that markets are known to exhibit in

crisis periods, namely, increased probability of further large movements, increased comovement

between markets, greater implied volatility and reduced liquidity. We make use of the second

part of the sample from January 20, 2008 to February 26, 2009 to backtest the results.

The �rst problem presents in the estimation of extreme scenarios is that the V aR for

the worst case, in multidimensional case, has been recent studied in the literature and only



Applications in Finance 162

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●

3 4 5 6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

VaR

E
xp

ec
te

d 
R

et
ur

ns

● Allianz
BASF
Bayer
E.ON
RWE
Siemens
Volkswagen
Mix

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●

3 4 5 6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

VaR

E
xp

ec
te

d 
R

et
ur

ns

● Allianz
BASF
Bayer
E.ON
RWE
Siemens
Volkswagen
Mix

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●

3 4 5 6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

VaR

E
xp

ec
te

d 
R

et
ur

ns

● Allianz
BASF
Bayer
E.ON
RWE
Siemens
Volkswagen
Mix

Figure 5.7.2. VaRs for portfolios of di�erent combinations of the seven
major German stock market returns. All VaRs are calculated based on the
standardized data. The three approaches are (left) multivariate normal, (mid-
dle) historical simulation and (rigth ) M4 processes.

for the 2- dimensional case some bounds are known (see Embrechts et al. (2005)). For this

reason, we adopted the following framework proposed by Zhang (2002). Suppose w1, . . . , w7

are proportions of the German stock returns in a portfolio, V aRd is the V aR of the portfolio

return for a given level α as for example P
(∑d

j=1wjXj > V aRd
)
< α.

The worst case scenario for the V aRd for a level α is determined in the case ofM4 processes

simultaneously by the next optimization problem

arg max P

 d⋂
j=1

wjXj > V aRj


subject to P

 d∑
j=1

wjXj > V aRd

 < α

d∑
j=1

V aRj = V aRd

where V aRj is the individual value at risk of the factors. The objective is to have the highest

probability for all individual risk factors beyond certain values when the portfolio is at the

worst case of V aRd. The factors V aRj are determined inversely by equations (5.7.1) and

(5.7.2).

In the literature there are two typical methods to calculate V aR, variance-covariance

approach and historical simulation approach. The variance-covariance approach assumes the

return has a normal distribution for a single asset or the returns have jointly multivariate

normal distribution for a portfolio with multiple assets, while the historical simulation is

based on extreme events of the past (see for example Markowitz (1991) and Jorion (2003) for

more references).

We simulated 500 strategies for the German stock markets and calculate the mean-V aR

portfolio at the 1 − α = 0.99 level of con�dence for each strategy of the standardized data.

The market is assumed to be arbitrage free and without friction. The weights correspond to

wj for each stock market and the sum of them is equal to one. Figure 5.7.2 displayed the

results for the three simulations. Di�erent symbols and colours are utilized in connection with
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the stock markets to denote that more than half of the weights are designed to a speci�c class

of stock market. The Mix strategy refers to a portfolio composition, which contains less that

50% of the total shares of some class of stock markets in a portfolio.

In Figure 5.7.2 each of the three methods suggests that the risk can be reduced if a

diversi�cation of investment is applied, i.e, the Mix strategy. Portfolios where the most

in�uential stock markets are Allianz and Volkswagen give the highest V aR together with

highest expected return. In the variance-covariance approach stock Siemens has the lowest

expected return together with the highest V aR, while in the historical simulation and in

the M4 approach case Siemens gives the highest V aR. Comparing the three methods the

variance-covariance approach always gives lower estimated V aR. The V aRs computed from

the historical simulation and the M4 approach are similar but with some higher V aR estima-

tions for strategies where a component contains more than 50% of the total shares of some

class of stock markets in the portfolio.

Stress testing and back testing. The next step is to considerer di�erent scenarios based

on the three approaches in portfolio optimization to backtest one year of the sample, from

January 20 to February 26, 2009. Stress testing techniques fall into two general categories:

sensitivity tests and scenario tests. Sensitivity tests assess the impact of large movements

in �nancial variables on portfolio values without specifying the reasons for such movements.

A typical example might be a 10% decline in some stock market index as the Volkswagen.

These tests can be run relatively quickly and are commonly used as a �rst approximation of

the portfolio impact of a �nancial market move. However, the in�nite number of scenarios,

the analysis lacks historical and economic content can limit its usefulness for longer term

risk-management decisions.

On the other hand, the introduction of subjective scenarios with assigned probabilities

should allow us to create a more comprehensive picture of risk including all available infor-

mation. These stress tests are typically applied at a point in time or in conjunction with a

forecast over a speci�c horizon. For example, assuming only a limited behavioural response in

a large portfolio over a one to three month horizon, because it is often di�cult to restructure

a portfolio in less time without incurring losses from ��re-sale� prices. But once the time

horizon of a scenario extends beyond a year or more, the assumption of no feedback e�ects

implicit in many stress tests may be an oversimpli�cation.

In the present study the �perfect storm� happened. For 6 of the 7 stock markets considered

the losses were in the last year in the order of -38% Allianz, -29% BASF, -19.5% Bayer, -33.5%

E.ON, -24.5% RWE and -31.6% Siemens1. The only stock without losses was Volkswagen with

a 4.4% gain.

How to obtain good results in these extreme conditions? Regardless of the oversimpli�-

cation, we chose 20 of the 500 portfolios combinations for backtesting one year of the sample

for each method of portfolio optimization approach. We take the 20 more rentable portfolios

in terms of the expected return, whose V aR at the 0.99-th quantile is under the 25% of the

riskier portfolios estimated through the Montecarlo simulation realized. The results of this

backtest for a long position are depicted in Figure 5.7.3. On the left of the �gure we have

1These losses are calculated from the standarized data, i.e., after the GARCH �lter.
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Figure 5.7.3. (Left panel) Box-plots of the performance of the 20 scenarios
choice for each portfolio given by (right) variance-covariance method, (middle)
historical simulation and (right)M4 processes. (Right panel), Evolution of the
returns for the best porfolio perfomance for each approach, from top to bottom;
variance-covariance method, historical simulation and M4 processes.

a boxplot (also known as a box-and-whisker diagram or plot) of the performance of the 20

scenarios choice for each portfolio optimization method. It is a convenient way of graphi-

cally depicting of numerical performance of the portfolios. The spacings between the di�erent

parts of the box help indicate the degree of dispersion and skewness in the data, and identify

outliers. The left boxplot corresponds to the variance-covariance method, in the middle the

historical simulation and to the right theM4 approach. We observe that the best performance

is given by the M4 approach followed by the historical simulation. The variance-covariance

approach underestimates the losses completely. The most of the portfolios get losses under the

assumption of no feedback to re-estimate the models. Nevertheless, what the M4 approach is

doing, is making the best use of whatever data you have about extreme events and limiting

their in�uence in the performance of a portfolio. In the right side of the Figure 5.7.3 we

illustrate the evolution of the returns for the best porfolio perfomance for each approach. The

M4 approach war the only one without losses during the backtesting.

In resume, the results of the approaches provide a useful check of the validity of M4

processes as framework. The variance-covariance approach fails basically by the multivariate

Gaussian assumption for the distribution (light tailed distribution) of the stock market re-

turns and the implicit use of the covariance matrix as measure of dependence among other

things. Historical scenarios can be more intuitive because they were actually observed, but
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the scenarios given by theM4 approach are more realistic in case of the recent crisis, especially

if the �nancial structure has changed signi�cantly.

5.8. Conclusions

The rescent international �nancial turmoil has prompted the development of new frame-

works, risk tools, and techniques to assess the stability of �nancial systems. But what happens

if an actual shock hits the system - how will the system perform? Multivariate extreme value

theory can be used as an additional instrument in the �nancial sector to help answer such

questions.

In this chapter we concentrate on the estimation of a class of max-stable processes, M4

processes. The main advantage of this class of processes is that its representation allows us to

approximate multivariate time series with cluster at the extremes and heavy tail behaviour.

We proposed a nonparametric Bayesian approximation to the estimation of M4 processes.

The idea was to estimate the singularities in the multivariate density, characteristics of this

process, through a in�nite mixture of Dirichlet processes of Gaussian distributions. These

singularities have a cluster behaviour, which repeat in�nitely, hence it can be observed. We

solve the problem of estimated the number and behaviour of these singularities assuming that

these behave as an in�nite multivariate Gaussian mixture, where a �nite number is inferred

from the data observed available.

From the results in the experimets we can conclude that DP mixtures can give an accuracy

estimation of the signature patterns in aM4 process. We observe further, that the estimation

of the exact number of patterns L in aM4 process depend more in the number of exceedances

over a threshold u, while the number of dimensions play a second role.

We propose theM4 process in this context of risk management incorporating both cluster-

ing and heavy tails to the analysis of some selected German stock markets. In a �rst approach

we illustrate an application to portfolio optimization under V aR constraints. We compareM4

process with other two approach variance-covariance and historical simulations. The V aRs

computed from the M4 approach are higher in general. Moreover, the results indicate that

the M4 approach mimics the cluster behaviour at the extremes of the original serie.

In a second application, we establish di�erent scenarios to stress test di�erent portfolios

obtained in the �rst application. The scenarios given by the M4 approach are more realistic

in case as the recent crisis. The best hedging is also given by this approach.

In relation to the implementation, Monte carlo markov chains methods, especially Gibbs

sampling is straightforward and accurate. However, they can be prohibitively slow, especially

in the context multidimensional as our case. The most large M4 model in this chapter was of

15 dimensions with cluster size K = 2, which means in our framework 30 dimensions. This

take about 20 minute to be solved in a ThinkPad 60 Core2Duo and 2G RAM. One would like

to be able to consider alternative inference algorithms for the DP. In this sense in future works

we will concentrate on variational methods (Blei and Jordan (2006); Kurihara et al. (2007)),

which have provided fast deterministic alternatives to MCMC for approximating otherwise

intractable posteriors in simpler settings.
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Future works might concentrate on adapting the framework to variational methods. Other

idea could be explote a hierarchical DP structure (Teh et al. (2006)) in relation to the cluster

size K to reduce the number of dimensions.
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5.A. Demonstrations

Proof. Lemma 5.2.5: For l ∈ N and r ∈ Z, let ăl,r = maxj=1,...d alrj/uj . Then

W4(u, n)−W4(u, n− 1) =
∑
l∈N

∑
k∈Z

(
max
i=1,...,n

ăl,i−k − max
i=1,...,n−1

ăl,i−k

)

=
∑
l∈N

∑
k∈Z

(
ăl,n−k − max

i=1,...,n−1
ăl,i−k

)
+

=
∑
l∈N

∑
r∈Z

(
ăl,r − max

i=1,...,n−1
ăl,i+r−n

)
+

=
∑
l∈N

∑
r∈Z

(
ăl,r − max

i=1,...,n−1
ăl,r−i

)
+

where α+ = max(α, 0) for α ∈ R. By the dominated convergence theorem,

lim
n→∞

(W4(u, n)−W4(u, n− 1)) =
∑
l∈N

∑
r∈Z

(
ăl,r −max

s<r
ăl,s

)
+

=
∑
l∈N

max
r∈Z

ăl,r

= W ′4(u)

Moreover, since the Cesàro transformation of a converging sequences converges to the same

limit as the original sequence, also

lim
n→∞

W4(un, n) = lim
n→∞

1
n
W4(un, n)

= lim
n→∞

1
n

n∑
r=1

(W4(u, k)−W4(u, k − 1)

= W ′4(u)

This conludes the proof. �

Proof. Proposition 5.2.6: Let X be the bivariate process, then

λ = lim
u1,u2→∞

P (X1 > u1, X2 > u1) /P (X2 > u1)

= lim
u1,u2→∞

1−M4 (u1)−M4 (u2) +M4 (u1, u2)
1−M4 (u2)

= lim
u1,u2→∞

1− exp (−1/u1)− exp (−1/u2) + exp
(
−
∑

l≥1

∑
k∈Z max

1≤j≤2
{alkj/uj}

)
1− exp (−1/u2)

.

Using the asymptotic identity limu→∞ exp (−1/u) ∼ limx↑1 1− log (x), we get

λ = limx↑1

1− (1− log x)− (1− log x) +
(

1− log x
∑

l≥1

∑
k∈Z max

1≤j≤2
{alkj}

)
log x

= 2−
∑
l∈N

∑
k∈Z

max
1≤j≤2

{alkj}

�
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The same result can be obtained by using the L'Hopital rule.

Proof. Proposition 5.2.10: Observe that for example for the marginal 1

aΣ
l∗

Xi∗+k,l∑
KXi∗+k

=
al∗kZl∗,i∗ +N1(i∗+k)

√
1− ρ2 + ρN2(i∗+k)∑

K al∗kZl∗,i∗ +N1(i∗+k)

√
1− ρ2 + ρN2(i∗+k)

which is approximately equal to

aΣ
l∗

Xi∗+k,1∑
KXi∗+k

=
al∗k∑
K al∗k

+ N1(i∗+k)

√
1−ρ2+ρN2(i∗+k)∑

K al∗kZl∗,i∗

1 + N1(i∗+p)
√

1−ρ2+ρN2(i∗+p)∑
K al∗kZl∗,i∗

∼

(
al∗k∑
K al∗k

+
N1(i∗+k)

√
1− ρ2 + ρN2(i∗+k)∑
K al∗kZl∗,i∗

)
×(

1− 1 +
N1(i∗+k)

√
1− ρ2 + ρN2(i∗+k)∑
K al∗kZl∗,i∗

)

=
al∗k∑
K al∗k

+
N1(i∗+k)

√
1− ρ2 + ρN2(i∗+k)∑
K al∗kZl∗,i∗

− al∗k∑
K al∗k

×
N1(i∗+k)

√
1− ρ2 + ρN2(i∗+k)∑
K al∗kZl∗,i∗

−

(
N1(i∗+k)

√
1− ρ2 + ρN2(i∗+k)∑
K al∗kZl∗,i∗

)2

Since the tails of Zl∗,i∗ are larger in comparison to N1(i∗+pk)

√
1− ρ2 + ρN2(i∗+k) we get

aΣ
l∗E

(
Xi∗+k,1∑
KXi∗+k, 1

)
∼ al∗k∑

K al∗k
.

�
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5.B. Tables and Figures

Allianz BASF Bayer E.ON RWE Siemens Volkswagen

N° obs. 9433 9433 9433 9433 9433 9433 9433

Mean 0.022 0.019 0.020 0.024 0.023 0.019 0.036

Standard

deviation

1.864 1.492 1.604 1.531 1.476 1.671 2.293

Minimum -15.678 -12.924 -18.432 -13.977 -15.822 -16.364 -58.044

Maximum 19.273 12.691 32.310 15.886 14.255 16.602 80.528

Skewness 0.274 -0.228 0.486 -0.114 0.137 -0.170 5.145

Kurtosis 11.761 6.911 24.062 8.207 8.387 9.828 287.055

Ljung-Box

test

40.867* 16.265* 11.442* 67.043* 27.974* 44.889* 314.551*

Jarque-Bera

test

54517* 18865* 228035* 26508* 27692* 38028* 32442379*

Augmented

Dickey-Fuller

test

-19.905 -21.517 -20.609 -21.057 -22.162 -20.288 -19.475

Table 5.B.1. Summary statistics for the stock market returns. Asymptotic
p-value are shown in the brackets. *,**,*** denote statistical signi�cance at
the 1, 5 and 10 % level respectively. The Ljung-Box test statistic for serial
correlation up to the 5-th order.

Allianz BASF Bayer E.ON RWE Siemens Volkswagen

coe�. s.e coe�. s.e coe�. s.e coe�. s.e coe�. s.e coe�. s.e coe�. s.e

µ -0.046 0.013 -0.037 0.012 -0.037 0.013 -0.046 0.013 -0.037 0.011 -0.031 0.011 -0.048 0.016

ω 0.042 0.005 0.090 0.010 0.042 0.006 0.060 0.008 0.020 0.004 0.009 0.002 0.078 0.009

α 0.112 0.008 0.113 0.010 0.079 0.007 0.081 0.008 0.059 0.006 0.050 0.005 0.095 0.006

β 0.883 0.008 0.847 0.012 0.906 0.008 0.893 0.010 0.933 0.007 0.948 0.005 0.888 0.007

Log Lik. 17164.60 16030.15 16433.84 16218.33 15652.76 15971.99 18436.39

Table 5.B.2. GARCH(1,1) estimates with Normal distributed noise. All the
coe�cients are signi�cative at the 0.01%.

scale σ shape ξ

Estimate s.e Estimate s.e

Allianz 1.2119 0.06258 0.1998 0.04061

BASF 0.9651 0.04923 0.1760 0.03969

Bayer 1.0623 0.05279 0.1537 0.03788

E.ON 1.0693 0.05176 0.1355 0.03610

RWE 1.00805 0.04806 0.09949 0.03498

Siemens 1.1711 0.05872 0.1585 0.03848

Volkswagen 1.0491 0.05251 0.2797 0.03911

Table 5.B.3. Parameter Estimates of GPD Models with a 0.9-th quantile
threshold for all resturns.
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Stock markets extremal index π(1) π(2) π(3) π(≤ 4)

Allianz 0.531 0.615 0.253 0.080 0.052

BASF 0.596 0.643 0.242 0.073 0.043

Bayer 0.574 0.640 0.264 0.057 0.039

E.ON 0.626 0.668 0.234 0.076 0.022

RWE 0.578 0.608 0.269 0.088 0.035

Siemens 0.542 0.643 0.246 0.066 0.045

Volkswagen 0.530 0.604 0.272 0.088 0.036

Table 5.B.4. Extremal indices and cluster size probabilities π (k) of size k.

Allianz BASF Bayer E.ON RWE Siemens Volkswagen

l al,0,1 al,1,1 al,0,2 al,1,2 al,0,3 al,1,3 al,0,4 al,1,4 al,0,4 al,1,4 al,0,4 al,1,4 al,0,4 al,1,4

1 0.074 0.179 0.191 0.073 0.123 0.059 0.225 0.061 0.084 0.065 0.091 0.075 0.083 0.067

2 0.032 0.033 0.027 0.027 0.032 0.032 0.029 0.022 0.142 0.138 0.039 0.033 0.034 0.027

3 0.069 0.042 0.068 0.045 0.071 0.058 0.084 0.160 0.071 0.047 0.219 0.062 0.084 0.050

4 0.204 0.104 0.072 0.083 0.096 0.065 0.086 0.091 0.097 0.082 0.070 0.217 0.068 0.082

5 0.059 0.089 0.074 0.197 0.157 0.161 0.054 0.055 0.051 0.095 0.047 0.043 0.043 0.067

6 0.046 0.069 0.047 0.094 0.047 0.100 0.043 0.089 0.048 0.080 0.042 0.062 0.191 0.206

Table 5.B.6. Coe�cients alkd of the �tted M4 process to the German stock
markets. These were calculated by the procedure proposed in section 5.2.

Stock markets extremal index π(1) π(2) π(3) π(≤ 4)

Allianz 0.503 0.357 0.485 0.103 0.055

BASF 0.521 0.421 0.434 0.090 0.055

Bayer 0.468 0.276 0.572 0.076 0.077

E.ON 0.506 0.396 0.459 0.083 0.061

RWE 0.459 0.215 0.625 0.081 0.080

Siemens 0.529 0.435 0.421 0.090 0.055

Volkswagen 0.457 0.186 0.659 0.075 0.080

Table 5.B.7. Extremal indices and cluster size probabilities π (·).
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Figure 5.B.1. Returns (right), estimated standard deviations (middle) and
the standarized residuals (left) for the stock markets under study. From top
to bottom: Allianz, BASF, Bayer, E.ON, RWE, Siemens and Volkswagen
Group.
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Figure 5.B.2. Diagnostisc plots for the GPD Models. The plots compare
the parametric distribution, densities, and quantiles to their empirical coun-
terparts. From top to bottom: Allianz, BASF, Bayer, E.ON, RWE, Siemens
and Volkswagen Group.



CHAPTER 6

Topics in multivariate regular variation in �nance

6.1. Introduction

Recent research in risk management has highlighted the importance of the conditional

correlation as measure of contagion or interdependence, and the estimation of spillover prob-

abilities in some �nancial crisis. The present chapter will o�er some insight into these issues

from the point of view of the theory of multidimensional extremes.

On one hand the conditional correlation lies at the heart of the capital asset pricing model

(CAPM) and the arbitrage pricing theory (APT), where its use as a measure of dependence

between �nancial instruments is essentially founded on an assumption of multivariate normally

distributed returns. Increasingly, however, correlation is being used as a dependence measure

in general risk management, often in areas where the assumption of multivariate normal risks

is completely untenable.

On the other hand, in practical �nancial applications one sometimes encounters data

sets with a few extremely large observations and one is concerned about the eventuality of

future data points lying far out. Moreover, the in�uence of these few events is enormous for

analyzing, for example, the risk of a portfolio. For such time series, assuming some regularity

at in�nity, it might be appropriate to use regular varying distributions to model underlying

uncertainty. Clearly, an important di�erence between the multivariate and the univariate

case, when analyzing extremes, is the possibility to have dependence among the components.

Large values may for instance tend to occur simultaneously in di�erent asset markets.

The conventional multivariate extreme value theory has emphasized the asymptotically

dependent class resulting in its wide use in all the �nance applications. However, if the series

are truly asymptotically independent, such an approach will result in the over estimation of

extreme value dependence and consequently of the measure of extreme risk.

In particular, this degree of asymptotic independence is directly related to the over estima-

tion of di�erent measures of risk. Despite this potential drawback, the case of asymptotically

independent models has so far been missing from the �nance literature. One �rst way to

remedy it is by means of hidden regular variation (He�ernan and Resnick (2005); Maulik and

Resnick (2004); Resnick (2006)), which measures variables on a di�erent scale. Another is via

conditioning on one component being large and using a limiting distribution as the condition-

ing variable is being pushed to in�nity (He�ernan and Tawn (2004); He�erman and Resnick

(2007); Das and Resnick (2008)). In the �rst approximation we concentrate on overcoming

the limitations in the case of asymptotic independence.

The contribution of this chapter is divided principally in two parts. First, we demonstrate

how the conditional correlation can conduce to erroneous conclusions about extreme events.

We show by means of a simple linear factor model as is done in the literature of contagion (Baig

174
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and Goldfajn (1999); Forbes (2002); Arestis et al. (2005)), that the assumption of a speci�c

distribution function for the common risk factor directly a�ects the conditional correlation;

hence this is not a reliable metric of dependence. We make this point more clear, through of

several examples.

In particular, this chapter focuses on regular varying distributions with index α > 2, which
is equivalent to distributions whose maximum domain of attraction (MDA) of the maxima

is the Frèchet distribution Φα = exp {−x−α} and an extension for distributions whose MDA

for the maxima is in the domain of the Gumbel distribution Λ = exp {− exp {−x}}.
Furthermore, we provide theoretical arguments suggesting that the strong conclusion of

�contagion� or �interdependence�, obtained by the literature based on bivariate correlation

tests, follows from arbitrary assumptions, especially on the distribution of the random variable

for the common risk factor, which biases the results obtained.

Second, a semi-parametric model estimation is proposed for the asymptotic dependence

and independence case in multivariate extreme value theory. This model is based on power

transformations of the marginals and on a scaling property of exponent measures. The concept

of asymptotic independence used in this chapter is stronger than the asymptotic independence

used generally in extreme value theory, but weaker than independence.

Other contribution of this chapter is to examine the possible contagion during the Russian

crisis and the more recent crisis. We apply and test our methodology in two key markets,

namely stock and bond.

The empirical investigation reveals some degree of asymptotic independence among these

markets, which should implicate no signi�cant contagion e�ect between bond and stock ex-

change markets of Russia to Brazil. Nevertheless, there exist signi�cant spillover probabilities

during the Russian default, and the more recent crisis.

In particular, using daily returns on stock and bond markets from September, 1995 until

January, 2001, we �nd tail indices to be usually stronger. In addition, with the use of a t-

GARCH(1,1) �lter for heterokesdasticity, we �nd that the tail indices are reduced considerably.

We start the chapter by reviewing the theory of regular variation in section 6.2. Section

6.3 presents some extensions to multivariate regular variation and hidden regular variation.

In section 6.4 discusses the main contributions of this chapter. In particular, subsection 6.4.1

demonstrates the implications of assuming regular varying distributions in the risk factor in a

linear factor model, while subsection 6.4.2 develops estimators for spillover probabilities under

asymptotic independence and dependence. Data and empirical results on the Russian-Brazil

contagion are present in section 6.5. Finally, section 6.6 concludes.

6.2. Regular variation

In a �rst approximation one may describe a regular varying distribution at in�nity as

one whose tails are much heavier than those of the normal or exponential distributions. His-

torically, a precise de�nition as �heavy" or � light" tails very much depends on the area of

application and the structural properties of the time series one wants to model.

Experience has shown that the tails of �nancial data sets are typically much heavier than

in the Gaussian case. Since �nancial crises are triggered by exceptionally large losses, much

emphasis is placed nowadays on quantifying the probability of such exceptionally large losses.



Regular variation 176

Two classes of distributions have gained particular popularity for modelling extreme

events: regularly varying distributions and subexponential distributions. This chapter con-

centrates only on the �rst class, for which many real-life data sets in teletra�c, insurance and

�nance exist empirical evidence in favour.

Nowadays, there are several books on this theory (Bingham et al. (1987); Resnick (1987);

Embrechts et al. (1997); Resnick (2006)). The following is a standard de�nition of regular

variation.

Definition 6.2.1. (Regular variation) A measurable function F : R+ → R+ is regularly

varying at ∞ with index α ∈ R (we write F ∈ Rα) if

lim
t→∞

F (tx)
F (t)

= xα. (6.2.1)

If α = 0 we say that F is slowly varying ( at ∞). Slowly varying functions are generically

denoted by L. If F ∈ Rα, then F (x) /xα can always be represented as F (x) = L (x)xα.
Let us try to give the intuition behind the de�nition of regular variation in terms of

quanti�cation the risk for a simple asset with distribution function F (x). Equation (6.2.1)

allows to replace a high threshold tx, where t → ∞ and x > 0, containing few observations

by a threshold t containing many observations, and on which the distribution function has

the same tail index α > 0.
An important result is the fact that convergence in (6.2.1) is uniform1 on each compact

subset of (0,∞).
Notice that distributional tails of type (6.2.1) are a slight generalization of distributions

with pure power law tails.

Example 6.2.2. Typical examples of slowly varying functions are positive constants or

functions converging to a positive constant, logarithms and iterated logarithms. For instance,

for all real α the following distributions in terms of their densities are regularly varying at ∞
with index α.

t-Student with ν d.o.f f(x) =
Γ ((ν + 1) /2)

Γ (ν/2)

(
1 + x2/ν

)−(ν+1)/2

√
νπ

, x ∈ R

Cauchy f(x) =
1

π (1 + x2)
, x ∈ R

Pareto f(x) =
(α+ 1) kα+1

xα+1
, x ≥ k, k, α > 0.

Other important examples are stationary stochastic processes, such as the ARCH, GARCH,

EGARCH, SV, etc, which have been largely used as models for �nancial returns (see for

example Davis and Mikosch (1998, 2006a,b); Embrechts et al. (1997)).

1For functions in R, the phrase uniform convergence means that for real-valued functions {fn}n≥0

sup
x∈A
|f0 (x)− fn (x)| → 0

holds for any compact interval A ⊂ R as n→∞.
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The most important property of regularly varying functions is the fact that the limit

(6.2.1), which is assumed to exist only pointwise, holds in fact uniformly on compact sets in

R.
The next results examine the integral and di�erentiation properties of the regularly varying

functions. The main idea in the �rst theorem is that integrals of regularly varying functions

are again regularly varying, or more precisely, one can take the slowly varying function out of

the integral. We assume all functions are locally integrable on intervals including 0 as well.

Theorem 6.2.3. (Karamata's Theorem)

Suppose that F ∈ Rαand F is locally bounded on [x0,∞) for some x0 ≥ 0. Then,

(1) for α ≥ −1,
´ x
x0
F (t) dt ∈ Rα+1 and

lim
x→∞

´ x
x0
F (t) dt

xF (x)
= α+ 1

(2) for α < −1 (or if α = −1 and
´∞
x F (s) ds < ∞), then F ∈ Rα implies that´ x

x0
F (t) dt ∈ Rα+1 and

lim
x→∞

´ x
x0
F (t) dt

xF (x)
= − (α+ 1)

The following result is crucial for the di�erentiation of regularly varying functions.

Theorem 6.2.4. (Monotone density Theorem)

Let F (x) =
´ x

0 f (s) ds with f monotone on (z,∞)for some z > 0. If

F (x) ∼ cxαL (x) , x→∞, (6.2.2)

with c ≥ 0, α ∈ R and L is slowly varying, then

f (x) ∼ cαxα−1L (x) , x→∞. (6.2.3)

For c = 0 the above relations are interpreted as F (x) ∼= o (xαL (x)) and f (x) =
o
(
xα−1L (x)

)
.

The applicability of regular variation is further enhanced by the Karamata representa-

tion and it will be of very much help in subsection 6.4.1 for the derivation of conditional

correlations.

Corollary 6.2.5. (the Karamata's representation)

(1) The function L is slowly varying, if and only if (i�), L admits the representation

L (x) = c (x) exp
{ˆ x

1
t−1ε (t) dt

}
, x > 0, (6.2.4)

where c : R+ 7→ R+ , ε : R+ 7→ R+ , and

lim
x→∞

c (x) = c ∈ (0,∞) , (6.2.5)

lim
t→∞

c (t) = 0.
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(2) A function F : R+ 7→ R+ is regularly varying with index α i� F has representation

F (x) = c (x) exp
{ˆ x

1
t−1α (t) dt

}
, x > 0,

where c (·) satis�es ( 6.2.5 on the preceding page) and limt→∞ α (t) = α.

Other interesting form of regular variation is Rapid variation

Definition 6.2.6. (Rapid variation)

We say a Lebesgue measurable function h in (0,∞) is rapidly varying with index −∞,

i.e., h ∈ R−∞ if

lim
x→∞

h (tx)
h (x)

=

{
0 if t > 1,

∞ if 0 < t < 1.

An example of a function h ∈ R−∞ is h (x) = exp (−x).
The next proposition summarizes some of the results which are useful for tails of distri-

bution functions.

Proposition 6.2.7. (Regular variation for tails of distribution functions (Embrechts et al.

(1997)))

Suppose F is a distribution function with F (x) < 1 for all x ≥ 0.

(1) If the sequences {an} and {xn} satisfy an/an+1 → 1, xn → ∞, and if for some real

function g and all λ form a dense subset of (0,∞) ,

lim
n→∞

anF (λxn) = g (λ) ∈ (0,∞) ,

then g (λ) = λ−α for some α ≥ 0 and F (x) is regularly varying.

(2) Suppose F is absolutely continuous with density f such that for some a > 0,
limx→∞ xf (x) /F (x) = α. Then f ∈ R−(1+α) and consequently F ∈ R−α.

(3) Suppose f ∈ R−(1+α) for some α > 0. Then, limx→∞ xf (x) /F (x) = α.

(4) Suppose X is non-negative random variable with distribution tail F ∈ R−α for some

α > 0. Then, EXβ <∞ if β < α, and EXβ =∞ if β > α.

(5) Suppose F ∈ R−α for some α > 0, β ≥ α. Then

lim
x→∞

´ x
0 t

βdF (t)
xβF (x)

=
α

β − α
.

The converse also holds in the case that β > α. If β = α one can only conclude that

F (x) = o (x−αL (x)) for some L ∈ R0.

When one is working with convergence of probability measures in heavy tailed analysis a

modern theory of weak convergence of probability measures on metric spaces is necessary to

clearly understand asymptotic properties of some statistics. The vague topology is an example

of the weak topology which arises in the study of measures on locally compact Hausdor� spaces

(see Resnick (2006)).

Definition 6.2.8. (Vague Convergence) De�ne the space (C, E), which is locally compact

with countable base and M+ (C) is the space of all Radon measures2 on C. So µ ∈ M+ (C)

2Radon measure is de�ned in measure theory to be a measure on the c-algebra of some Borel set that is locally
�nite and inner regular.
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means that µ is a measure on E and µ (K) < ∞ for all compact sets K ∈ E . Denote

C+
K (C) := {f : f : C→ R+, f continuos with compact support}. Then, if µn, µ ∈ M+ (C),

µn
v→ µ if for every f ∈ C+

K (C),

µn (f) :=
ˆ

C
fdµn →

ˆ
C
fdµ =: µ (f) .

The following theorem resumes regular variation results of one dimensional distribution

function tails. For a proof, we refer to Resnick (2006). Note the use of the cone C = (0,∞]
in the next theorem, which is a one point uncompacti�cation of the compact set [0,∞] (see
Resnick (2006), pp. 170). The idea behind of this topology is to make neighborhoods of ∞
relatively compact. This is necessary because vague convergence only controls behavior of

measures on relatively compact sets and (0,∞] is a natural set when dealing with right tail

problems. Note that we are working in the positive orthant. However, one can get the same

results in other directions.

Theorem 6.2.9. (Regular Variation in one dimensional distribution function tails). Let

X be a random vector with distribution function F and tail F̄ (x) = 1 − F (x) = P (X > x)
and quantile function bn := b (n) =

(
F̄ (x)−1

)←
(n) = F←

(
1− n−1

)
. Then, the following

results are equivalent:

(1) F̄ ∈ R−α, α > 0.
(2) There exists bn →∞ such that nF̄ (bnx)→ x−α, x > 0.
(3) There exists bn → ∞ such that nP

(
b−1
n X ∈ ·

) v→ vα (·) , in M+ ((0,∞]) satis�es

vα (x,∞] = x−α, for x > 0.

Example 6.2.10. Consider a random vector X with distribution function F ∈ Rα on the

cone C. Then, by Theorem 6.2.9 we have nP
(
b−1
n X > x

) v→ vα ((x,∞]) for x → ∞, and the

sequential form of regular variation yields to vα (x,∞] = c+x
−α with α > 0 and c+ ≥ 0.

Similarly, observe that nP
(
b−1
n X ≤ −x

) v→ vα ([−∞,−x]), which implies vα ((x,∞]) =
c−x

−α for α > 0 and c− ≥ 0. Note that the only issue here are the constants c+ and c−, by

the fact that index of regular variation α is the same for both tails. For this it is enough to

observe that bn ∈ R1/α.

Further, the limit nP
(
b−1
n |X| > x

)
∈ R−α yields to

lim
t→∞

P (X > t)
P (|X| > t)

=
c+

c+ + c−
=: p, and lim

t→∞

P (X < −t)
P (|X| > t)

=
c−

c+ + c−
=: q (6.2.6)

and p+ q = 1.
The result in equation (6.2.6) is referred as tail balance condition.

Note that all components of X are regularly varying with the same tail index α, which

is guaranteed by the fact that bn ∈ R1/α . This is the standard case of multivariate regular

variation, though we do not rule out the possibility that one or more of the coe�cients c can

be zero. This occurs if the components of X are regularly varying with di�erent tail indices,

a natural scenario in practice. In this case the spectral measure will place mass only along

the axis or axes of lowest α, as is illustrated in the next example.

Example 6.2.11. Let X = {X1, X2} be a bivariate random vector with tail indices α

and α + ∆, where 4 > 0. In particular we know that F 1 (xn) ∼ x−αn L1 (xn) and F 2 (xn) ∼
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x
−(α+4)
n L2 (xn), where L1,L2 are slowly varying functions. Then

nF (xn, xn) = nP (‖X‖max > xn)

= n {1− P (X1 ∨X2 ≤ xn)}

= nx−αn L1 (xn)
{

1 +
x−∆
n L2 (xn)

L1 (xn) (L1 (xn)− 1)

}
∼ nx−αn L1 (xn) .

Thus, the spectral measure for di�erent tail indices is reduced to a single point mass along

the axis with the smallest tail index.

6.3. Multivariate regular variation in cones

In practice one is often confronted with multivariate problems on a variety of stock or

bond indices, or, perhaps the same assets in di�erent markets. A multivariate concept of

regular variation then will be needed. However, the extension of a mathematical notion from

the one dimensional to the higher dimensional case often leads to a great variety of di�erent

approximations. The great majority of the results to be presented is known and can be found

in Bingham et al. (1987); Resnick (1987); Embrechts et al. (1997); Davis and Mikosch (1998);

Maulik and Resnick (2004); He�ernan and Resnick (2005). The intention in this section

is to present a uni�cated approach to the multivariate regular variation of random vectors.

Moreover, in this section operations between vectors should be interpreted componentwise.

Definition 6.3.1. A subset C ⊂ Rd is a cone if whenever x ∈ C also tx ∈ C for any

t > 0. Furthermore, a function h : C → R+ is monotone if it is either non-decreasing in

each component or non-increasing in each component. For h non-decreasing is equivalent to

saying that whenever x,y ∈ C and x ≤ y we have h (x) ≤ h (y). The natural domain for a

multivariate regularly varying function is a cone.

A function h : C → R+ is regularly varying at ∞ with limit function λ (x) > 0, if for all
x ∈ C,

lim
t→∞

h (tx)
h (t1)

= λ (x) > 0, x ∈ C.

An inmediate implication is that the limit function λ (x) is homogeneous

λ (sx) = sρλ (x) , s > 0,x ∈ C, ρ ∈ R.

For this result it is enough to observe for a function U (t) = h (tx) for t > 0 we have that

U ∈ Rρ for some ρ ∈ R

lim
t→∞

U (ts)
U (t)

= lim
t→∞

h (tsx)
h (tx)

= lim
t→∞

h (tsx)h (t1)
h (t1)h (tx)

=
λ (sx)
λ (x)

= sρ.

6.3.1. Multivariate regular variation of tail probabilities. In a slightly di�erent

terminology, the following characterization of multivariate regular variation is done in the cone

C = [0,∞] \ {0}. This space is the one-point uncompacti�cation of [0,∞]. The exclusion of

{0} is necessary by the fact that we study regular variation at in�nity, i.e., compact subsets

bound away from 0.
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Figure 6.3.1. Di�erent types of metrics in R2
+: (left) Euclidean norm, (mid-

dle) Sum-Morm, (right) Max-Norm.

Definition 6.3.2. Let X be a nonnegative random vector with the regular varying distri-

bution function F ∈ Rα concentrate on (0,∞]. The following formulations of regular variation
are equivalent

(1) (Global and marginal condition) There exist b (t) → ∞ and a Radon measure v on

C such that in M+ (C), the space of positive Radon measures on C.

tP
(
b (t)−1 X ∈ ·

)
v→ vα (·) , t→∞. (6.3.1)

Then, bj (t) ∈ R1/αj the class of regularly varying functions with αj > 0, for all
j = 1, . . . , d. Furthermore, the marginal convergences satisfy

tP
(
b (t)−1Xj > x

)
→ vαj (x,∞] := x−αj . (6.3.2)

(2) (Spectral measure and polar transformation) Let ‖·‖ be a norm in Rd and denote

the unit sphere in this norm by Sd−1 :=
{
x ∈ Rd : ‖x‖ = 1

}
. Furthermore, let

Sd−1
+ = Sd−1 ∩ [0,∞]d. Then, there exists a probability measure S (·) on Sd−1

+ and a

sequence b(t)→∞ such that for (R,Θ) =
(
‖X‖ , X

‖X‖

)
we have

tP
((
b (t)−1R, Θ

)
∈ ·
)

v→ cvα (·)× S (6.3.3)

in M+

(
(0,∞]× Sd−1

+

)
.

(3) (The Poisson transform) There exists bn →∞ such that

n∑
i=1

εb−1
n X ⇒ PRM (v) (6.3.4)

and
n∑
i=1

ε(b−1
n R,Θ) ⇒ PRM (cvα × S) (6.3.5)

in Mp (C) and Mp

(
(0,∞]× Sd−1

+

)
respectively.
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(4) (Convergence of empirical measures) The above implies that for any sequence k →∞
such that n/k →∞ one obtains

1
k

n∑
i=1

εb(n/k)−1X ⇒ vα inM+ (C) (6.3.6)

and
1
k

n∑
i=1

ε(b−1
n R,Θ) ⇒ cvα × S inM+

(
(0,∞]× Sd−1

+

)
. (6.3.7)

Intuitively, regular variation means that asymptotically the distribution in polar coordi-

nates can be represented by a product measure, which is the product of the spectral measure

and a radial measure, which has power decay.

The characterization of multivariate regular variation in (6.3.1) is referred to as the sequen-

tial de�nition of regular variation (see Embrechts et al. (1997)) and it describes dependence

among the marginals, while (6.3.2) rules out tails that are not regular varying. It is inter-

esting to note that whereas univariate regular variation has been introduced as a function

property, all the characterizations of multivariate regular variation are in terms of measures.

Multivariate distribution functions are de facto more di�cult to deal with than univariate

distribution functions and therefore measures appear more natural.

The relation (6.3.3) in terms of coordinates polar allows to estimate the spectral mea-

sure S, which describes the way how extreme movements of univariate marginals are related

to each other. Knowledge of this measure facilities the estimation of joint and conditional

probabilities.

The relations (6.3.4) and (6.3.5) show as multivariate regular variation is equivalent to

induced empirical measures weakly converging to Poisson random measure limits (for a proof

of this statemen see Resnick (2006, page 180) or Embrechts et al. (1997, page 232)). The

advantage of this method is the dimensionless aspect. Thus, this method works just as well

in Rd as in R.
Relations (6.3.6) and (6.3.7) show consistent estimators of the measure vα ∈ M+ (C),

provided n→∞, k/n→∞, and as soon as a consistent estimator of b (k/n) is speci�ed.
Finally, we do not de�ned which norm ‖·‖ in Rd to use. This is because of the fact that

all norms in Rd are equivalent. An immediate consequence of De�nition 6.3.2 is then the

following result.

Corollary 6.3.3. Let ‖·‖A and ‖·‖B be two norms on Rd and let X be a d-variate random

vector. Then X is regularly varying with index α in respect to the norm ‖·‖A if and only if X
is regularly varying with index with respect to the norm‖·‖B .

However, it is clear that the spectral measures will not coincide for di�erent norms. The

next example for bivariate elliptical distributions illustrates this idea in respect to the max-

norm ‖·‖max and the Euclidean norm ‖·‖2. In practical applications the choice of norm should

be related to the questions we are trying to answer. As for example in the �nancial stock

markets the question can be: Given that at least one of the two stock markets have experienced

a crash, which is the probability of an extreme movement in the other stock market index?

In this case the max-norm should be used.
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Example 6.3.4. Let X be a regularly varying bivariate elliptical distribution with index

α and stochastic representation X d= RAU or matrix format(
X1

X2

)
d= R

( √
Σ11 0

√
Σ22ρ12

√
Σ22

(
1− ρ2

12

) )( cosϕ
sinϕ

)
,

where ϕ ∼ U
(
−π

2 ,
3π
2

)
. Let

f (x) =
√

Σ11 cos2 t+ Σ22 sin2 (arcsin ρ12 + ϕ),

g (t) =


−π/2 t = −π/2,

arctan
(√

Σ22
Σ11

(
ρ12 +

√
1− ρ2

12 tan t
))

t ∈ (−π/2, π/2) ,

g (t− π) + π t ∈ [π/2, 3π/2) .

Since R is regularly varying which implies that P (R > x) = x−αL (x), where L (x) is a

slowly varying function, we can obtain the spectral measure Sθ1θ2
{

(cos t, sin t)t : θ1 < t < θ2

}
with euclidean norm as

lim
z→∞

P (R ‖AU‖2 > zx, AU/ ‖AU‖2 ∈ S)
P (R ‖AU‖2 > z)

= lim
z→∞

´ g←(θ2)
g←(θ1) (zx)−α f (x)α L (zx/f (t)) dt´ 2π

0 z−αf (x)α L (z/f (t)) dt

= x−α lim
z→∞

´ g←(θ2)
g←(θ1) f (x)α L (zx/f (t)) dt´ 2π

0 f (x)α L (z/f (t)) dt

= x−α lim
z→∞

´ g←(θ2)
g←(θ1) f (x)α dt´ 2π

0 f (x)α dt
,

where the third equality follows from the fact that L (tx) /L (t) → 1. This yields to the

spectral measure

S ([θ1, θ2]) =

´ g←(θ2)
g←(θ1)

{
Σ11 cos2 t+ Σ22 sin (arcsin ρ12 + t)

}α/2
dt´ 2π

0 {Σ11 cos2 t+ Σ22 sin (arcsin ρ12 + t)}α/2 dt
.

Proceeding analogously for the spectral measure with respect to the max-norm ‖·‖max but

with function

f (x) := max
{√

Σ11 |cos t| ,
√

Σ22 |sin (arcsin ρ12 + t)|
}

we �nd that

S ([θ1, θ2]) =

´ g←(θ2)
g←(θ1) max

{√
Σ11 |cos t| ,

√
Σ22 |sin (arcsin ρ12 + t)|

}α
dt´ 2π

0 max
{√

Σ11 |cos t| ,
√

Σ22 |sin (arcsin ρ12 + t)|
}α
dt

.

Note that these two spectral measures are absolutely continuous and hence these have

density. The density for these two examples (two norms) are plotted in Figure 6.3.2 for

bivariate regularly varying elliptical distributions with (Σ11,Σ22) = (1, 1), ρ12 = 0.3, 0.5, 0.8
and with tail indices α = 1, 2, 4, 8, 16. Notice, that as the tail become lighter the spectral

measure becomes less concentrates on the diagonals of the �rst and third quadrant, i.e., the

angels π/4 and 5π/4. As consequence the probability of spillovers (for example two crashes

in stock markets) become very small compared to the probability that one component is
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Figure 6.3.2. Densities of the Spectral measure of Example 6.3.4 with
(Σ11,Σ22) = (1, 1), ρ12 = 0.3, 0.5, 0.8 and with tail indices α = 1, 2, 4, 8, 16, in
respect to the max-norm (top) and the Euclidean-norm (bottom). Larger tail
indices correspond to higher peaks.

extreme. In terms of tail dependence: the higher is the tail index, the smaller will become

the coe�cient of tail dependence.

Furthermore, the di�erence of the spectral measure in relation to di�erent norms is evident,

which motivated this example.

In practical applications it is clear that we cannot hope that all the marginals have the

same tail index αj > 0. Therefore, a proper normalization is essential for handling asymptotic

behaviour and concentrate on the main issues. With a change of variables regular variation

with unequal components can be standardized for which the marginal distribution of each

marginal is tail equivalent.

Definition 6.3.5. (Regular variation in standard form) Let X be a nonnegative random

vector with regular varying distribution function F ∈ Rα concentrating on (0,∞]. The

De�nition 6.3.2 is equivalent in standard form to

(1) There exist b (t)→∞ and a Radon measure µ on C such that in M+ (C)

tP
(
t−1b← (X) ∈ ·

) v→ µ (·) , t→∞. (6.3.8)

Then, bj (t) ∈ R1 the class of regularly varying functions with αj = 1, for all j =
1, . . . , d. Furthermore, the marginal convergences satisfy

tP
(
t−1b←j (Xj) > x

)
→ µ

(
x−α,∞

]
:= x−1, (6.3.9)
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where µ satis�es the homogeneity condition

µ (t·) = t−1µ (·)

on Borel subsets of C and the measures µ and v are related by

vα ([0,x]c) = µ ([0,xα]c) , x > 0.

(2) Let ‖·‖ be a norm in Rd and denote the unit sphere in this norm by Sd−1 :={
x ∈ Rd : ‖x‖ = 1

}
. Furthermore, let Sd−1

+ = Sd−1 ∩ [0,∞]d. Then there ex-

ists a probability measure S (·) on Sd−1
+ and a sequence b(t) → ∞ such that for

(R,Θ) =
(
‖X‖ , X

‖X‖

)
we have

tP
((
b (t)−1R, Θ

)
∈ ·
)

v→ cµ (·)× S

in M+

(
(0,∞]× Sd−1

+

)
.

As we said in the beginning of this section multivariate regular variation on the cone C
forms the base of the classical extreme value theory as the next example shows.

Example 6.3.6. Let X be a multivariate random vector with regular varying distribution

F on C. Further, de�ne a new vector X∗ = b← (X) in standard form with distribution function

F ∗, which means that b (t) = t and X∗ has a limit Radon measure

µ (·) = tP
(
X∗t−1 ∈ ·

)
(6.3.10)

in M+ ([0,∞] \ {0}).
Suppose a (·) > 0 and b (·) ∈ R are measure ables functions in R+ satisfying,

b (tx)− b (t)
a (t)

→ ψ (x) , x > 0, t→∞, (6.3.11)

which has the form

ψ (x) =

{
k
(
xρ−1
ρ

)
ρ ∈ R, ρ 6= R, x > 0

k log x ρ = 0, x > 0
for some k 6= 0 and where ψ 6= 0.

Suppose for convenience that k = 1, the inverse function of equation (6.3.11) yields

ψ← (y)→ b← (b (t)− ya (t))
t

= (1 + ρy)1/ρ , 1 + ρy > 0.

Let a (·) > 0 and b (·) ∈ Rd be a vector satisfying equation (6.3.11) for each component

in X∗, then

tP
(

b (X∗)− b (t)
a (t)

� x
)

= tP
(

X∗t−1 �
b← (b (t) + xa (t))

t

)
→ µ (y � ψ

← (x)) .

Setting X = bX and replacing t with n

nP (X � xan + bn) ∼ n (− logP (X ≤ xan + bn))
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because of the identity x ∼ − log (1− x) for x → 0. Exponentianting the last equation we

obtain

P (X ≤ xan + bn)n → exp {−µ (y � ψ
← (x))} .

Further, if X are iid random vectors we conclude as n→∞ that for Mn =
∨n
i=1

Xi−bi(t)
ai(t)

P (Mn ≤ x)→ exp {−µ (y � ψ
← (x))}

the limit form of the general max-stable distributions.

6.3.2. Multivariate hidden regular variation on the cone. In the classical setting

of bivariate extreme value theory, the procedures to estimate the probability of an extreme

event are not applicable if the componentwise maxima of the observations are asymptotically

independent. In this case, the spectral measure S will concentrate on the axes, or equiva-

lently, the normalization will not be able to distinguish between independence or asymptotic

independence as we will show in the next example.

Example 6.3.7. Suppose N1, N2 are iid N (0, 1) random variables and correlation |ρ| ≤ 1.
De�ne X = (X1, X2) =

(√
1− ρ2N1 + ρN2, N2

)
which is a bivariate normal vector F (·)

with means 0, variances 1 and correlation ρ. Then limt→∞ P (X1 > t, X2 > t) = 0, which is

equivalent to asymptotic independence or that the measure µ (C) = 0 in M+ (C).
Notice that

lim
t→∞

P (X1 > t, X2 > t) = lim
t→∞

P
(√

1− ρ2N1 + ρN2 > t, N2 > t
)

≤ lim
t→∞

P
(
N2 + ρN2 +

√
1− ρ2N1 > 2t

)
= lim

t→∞
P
(

(1 + ρ)N2 +
√

1− ρ2N1 > 2t
)

and because (1 + ρ)N2+
√

1− ρ2N1 is N (0, 2 (1 + ρ)) this probability is N
(

2t√
2(1+ρ)

)
. Since

the normal distribution belongs to the maximum domain of atraction of the Gumbel distri-

bution we have that for all A > 1, N (At) /N (t) → 0, then necessary the result follows if

A = 2√
2(1+ρ)

> 1, which is the same as 2 >
√

2 (1 + ρ) and it holds for all |ρ| ≤ 1.

Thus, the usual form to investigated multivariate dependence in extreme regions, as it

is discussed in the traditional context of extreme value theory, does not apply to the case

where there exist asymptotically independence between the vectors. In other words, where

the probability of more than one extreme value in two components is practically zero, hence

with uninformative probabilites. Furthermore, many estimators may behave badly under

asymptotic independence. Indeed, the estimators based on the assumption of asymptotic

dependence may be asymptotically normal with an asymptotic variance zero in this case.

Thus, a re�nement to the theory is necessary in the case of asymptotic independence.

This section introduces a new concept of asymptotic independence based on hidden regular

variation (Maulik and Resnick (2004); He�ernan and Resnick (2005)). Hidden regular varia-

tion is a semi-parametric subfamily of the full family of distributions possessing multivariate

regular variation and asymptotic independence.
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De�ne the cones C = [0,∞] \ {0} and C0 = {x ∈ C : ∃ 1 ≤ i ≤ j ≤ d, xi ∧ xj > 0}.
Therefore, the cone C0 consists of points of C that at most d− 2 coordinates are 0.

Let F be a regularly varying distribution on C, we say F possesses hidden regular variation

if it is also regularly varying on C0. Then, there exits Radon measures vα with tail index α,

and vα0 with index α0 on C and C0 respectively, such that for scaling functions b0 (t) → ∞
and b (t) /b0 (t)→∞ we obtain

tP
(
b (t)−1 X ∈ ·

)
v→ vα (·)

in M+ (C) and
tP
(
b0 (t)−1 X ∈ ·

)
v→ vα0 (·) (6.3.12)

in M+ (C0).
The idea of this framework is to capture the delicate structure that may be present in

the interior of the cone. For example, the multivariate normal distribution with correlation

coe�cient |ρ| < 1 of the Example 6.3.7 posses asymptotic independence, of the same form as

a multivariate pareto distribution function with absolutely independent marginals. However,

the structure of this asymptotic independence in both examples is very di�erent and it cannot

be describe by common measures of extreme dependence as the tail dependence function.

An equivalent form in polar coordinates for the hidden regular variation Condition 6.3.12

is

tP
(
Rb0 (t)−1,Θ ∈ ·

)
v→ c0vα0 (·)× S0, (6.3.13)

where c0 > 0, S0 is a Radon measure on Sd−1
0 := Sd−1∩C0 and convergence is inM+

(
(0,∞]× Sd−1

0

)
.

Equation (6.3.13) shows that multivariate regular variation on C and hidden regular vari-

ation have the feature of being independent of a coordinates system. Some important conse-

quences of this formulation are resumed in the next theorem.

Theorem 6.3.8. Let be b (·) ∈ R1/α, b0 (·) ∈ R1/α0
, b (t) /b0 (t) → ∞ and 0 < α ≤ α0.

Furthermore, assume

tP
(
Xj

b (t)
> x

)
→ x−α , j = 1, . . . , d.

Then X possesses hidden regular variation i�

• Regular variation on C implies P
(∨d

j=1 Zj > x
)
∈ R−α while regular variation on

C0 implies P
(∧d

j=1 Zj > x
)
∈ R−α0 .

• Hidden regular variation implies asymptotic independence for X > 0.
• Max-linear and min-linear combinations have regular varying tail probabilities with

indeces αj and α0 respectively, this is

tP

 d∨
j=1

kjXj

b (t)
> x

→ c (k)x−α

and

tP

 d∧
j=1

wjXj

b0 (t)
> x

→ d (w)x−α0
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for x > 0, t → ∞. Where k ∈ [0,∞) \ {0}, c (k) > 0, d (w) > 0 and w ∈
(0,∞] \

⋃d
j=1

{
te−1
j , t > 0

}
with e1

j = {∞, . . . ,∞, 1,∞, . . . ,∞}.

Having a �nite hidden angular measure on C0 means that regular variation on C0 can be

extended to regular variation of the same order on the full cone C and that marginals are

regularly varying.

Maulik and Resnick (2004) showed how tail behaviour of the distribution F on C possessing

hidden regular variation on C0 with �nite hidden angular measure can be characterized in

terms of tail equivalence. Conversely, they showed that if F is tail equivalent to a mixture

distribution with b (t) /b0 (t)→∞, then F is multivariate regularly varying distribution on C
and has hidden regular variation on C0 with �nite spectral measure S0.

The signi�cance of having a �nite angular measure on C0 implies that regular variation

on C0 can be extended to regular variation of the same order on the full cone C and that

marginals are regularly varying.

These ideas are resumed in the next Theorem.

Theorem 6.3.9. Let F be regularly varying on C0 with index α0, scaling b0 (t), limit

measure vα0 and spectral measure S0 on Sd−1
0 . The following statemens are equivalent:

(1) S0 is �nite on Sd−1
0 .

(2) There exist a random vector F∗ de�ned on C such that F∗ t.e C0

∼ F , where
t.e C0

∼
stays for tail equivalence on C0, and tP (F∗j > b0 (t)x) → cx−α0 for j = 1, . . . , d
as t → ∞, for some c > 0, so that each component F∗j has regularly varying tail

probabilities with index α0.

(3) There exists a random vector F∗ de�ned on C such that F∗ t.e C0

∼ F , such that

for any k ∈ [0,∞) \ {0}, and any w ∈ (0,∞] \
⋃d
j=1

{
te−1
j , t > 0

}
with e−1

j =

{∞, . . . ,∞, 1,∞, . . . ,∞} we have
∨d
j=1 kjF∗j and

∧d
j=1wjF∗j are tail equivalent

C0 and have regular varying tail probabilities of index α0.

Proof. See Maulik and Resnick (2004). �

We need to de�ne a standard form for hidden regular variation to be consistent with our

framework.

Definition 6.3.10. (Standard form of Hidden regular variation). Let X be a nonnegative

random vector with regular varying distribution function F ∈ Rα. We say that F has hidden

regular variation in standard form if in addition to De�nition 6.3.5 there exists b0 (t) ∈ R1/α0

with b0 (t)→∞, α0 ≥ 1, and
lim
t→∞

t/b0 (t) =∞

such that

(1) tP (b (t)← (X) /b0 (t) ∈ ·) v→ vα0 (·) on C0 and it is homogeneous of grade −α0, i.e.,

vα0 (t·) = t−α0vα0 (·).
(2) tP

(
b (b0 (t))−1 X ∈ ·

)
v→ µ (·) on C0, where the Radon measures are related by

vα0 ((x,∞]) = µ ((xα,∞]) for all xj > 0.
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In addition Maulik and Resnick (2004) has shown that vα0 can be either �nite or in�nite.3

The situation where the hidden angular measure is in�nite is very di�erent and it has to be

treated carefully. The idea is to take a compact subset of C0 and, hence, it will always have

�nite hidden measure. An useful subset for the in�nite case is

Sd−1
inv :=

x ∈ C0 :
d∧
j=1

xj ≥ 1

 ,

where we have to choose b0 (t) such that µ0
1

(
Sd−1
inv

)
= 1.

It allows a standard form as �nite as in�nite hidden angular measure.

Example 6.3.11. Let X1, X2 be two iid Frèchet random variables with bivariate normal

dependence with correlation |ρ| < 1 and that the standard marginal condition

tP (Xi > b (t)) ∼ 1 (6.3.14)

is satis�ed.

Ledford and Tawn (1996) have shown that if X1, X2 possesses hidden regular variation,

then they admit the following representation

P (X1 ∧X2 > t) ∼ L (t)P (X1 > t)α0

or equivalently by equation (6.3.14)

P (X1 ∧X2 > t) ∼ L′ (t) t−α0 ,

where L,L′ ∈ R0.

On the other hand, Reiss (1989, Chapter 7.) has shown that the joint survivor function

at the same time satis�es

P (X1 ∧X2 > t) ∼ (4π log t)−ρ/(1+ρ)

√
(1 + ρ)3

(1− ρ)
t−2/(1+ρ), (6.3.15)

as t → ∞ for ρ < 1. Hence it is necessary that the hidden regular varying tail index is

α0 = 2
(1+ρ) .

Until now we are only introducing the main concepts in multivariate regular variation.

Therefore, we still want to consider two topics: the relation among the correlation function,

the tail of regular varying distribution and von Mises type functions and the estimation of fair

away measure of probability in the case of asymptotic dependence and independence. The

next section is dealing with these topics.

6.4. Implications of regular variation and hidden regular variation in risk

management

The subject of this section is the implication of assuming conditional correlations with

some classes of distributions as measure of extreme dependence to test contagion or inter-

dependence. In particular, we use standard concepts in regular variation in the univariate

3See Maulik and Resnick (2004) for important results in this issue.
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case to demonstrate that the correlation function is a measure depending on the marginal

distribution, hence this is not suitable as measure of dependence for extreme events.

Second, we consider a framework to measure extreme spillover from the point of view of

multivariate regular variation for the asymptotic dependent and independent cases. Further-

more, we give necessary and su�cient conditions to distinguish between the two cases.

6.4.1. Conditional variances in a Regular varying framework and its in�uence

in factor models and models of contagion. The apparent increase in comovements of

asset prices across markets during periods of �nancial turmoil has lead analysts and market

observators to raise the hypothesis of �contagion� in the international transmission of currency

and �nancial crises. Contagion is de�ned as a shock to one country's asset market that causes

changes in asset prices in another country's �nancial market, whenever this increase is not

signi�cant, the phenomenon is seen as interdependence.

The major empirical papers4 are using this approach found that there was a statisti-

cally signi�cant increase in cross-market correlation coe�cients during the relevant crises and

therefore concluded that contagion occurred in the tested periods. The initial assumptions

of this model are that the rates of return of the stock markets in two countries are linearly

related. However, interpreting any increase in cross-country covariances and/or correlations

as evidence of contagion, may be misleading.

This point can be illustrated by means of a simple example drawing on Forbes (2002).

Suppose that the rates of return of the stock market in two countries are linearly related as

xi = λiw + ui

for i = 1, 2, where wt is a random vector that represents common shocks, market fundamentals

or non-diversi�able risk, which impact upon all asset returns with weights λi, while the random

vectors ui are idiosyncratic factors that are unique to a speci�c asset market. These returns

could be on bond markets, equity markets, etc.

These models have the advantage that they provide convenient expressions for the con-

ditional correlations between asset returns. Moreover, if the correlation between two time

series is constant or is changing over time, one could consider comparing sampling correla-

tions between the two series calculated from subsets of the data. Thus, if these conditional

correlations are found to be statistically di�erent from each other, one might be tempted to

conclude that the population correlation is not constant. Following, we show analytically that

this intuitively attractive approach to testing for correlation breakdowns can be very dubious.

Assume that we are interested in the correlation between xi and w, and between x1 and

x2, conditioned to the common factor w ∈ Ω where Ω is a convenient Borel set. Based on this

assumption and in independence between xiand w it is easy to derive

Cov (x1, x2 | w ∈ Ω) = λ1λ2Var (w | w ∈ Ω)

4Early works by Baig and Goldfajn (1999); Forbes (2002),Eichengreen et al. (1998); Calvo and Reinhart
(1996) concentrate on this issue, while Corsetti et al. (2005); Caporale et al. (2003) are associated with a
heteroskedasticity-adjusted correlation test that famously �nds little evidence of contagion during a number
of �nancial crises.
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and

Var (xi | w ∈ Ω) = λ2
iVar (w | w ∈ Ω) + Var (ui) . (6.4.1)

Therefore, the coditional correlations between xiand w conditioned in w ∈ Ω can be written

as

ρ(xi, w | w ∈ Ω) =
ρ√

ρ2 + (1− ρ2) Var(w)
Var(w|w∈Ω)

, (6.4.2)

where ρ = ρ (xi, w) = λiVar(w)√
λ2
iVar(w)2+Var(ui)

is the unconditional correlation and

ρ(x1, x2 | w ∈ Ω) =
λ1λ2√

λ2
1 + Var(u1)

Var(w|w∈Ω)

√
λ2

2 + Var(u2)
Var(w|w∈Ω)

(6.4.3)

is the correlation between x1 and x2 conditioned in the common factor w ∈ Ω. Thus, both

the variance (6.4.1) and the correlations (6.4.3) of xi are functions of the conditional variance

of w. Hence, if we assume a linear factor model for asset returns the diversi�cation fail when

Var (w | w ∈ Ω)→∞, exactly when we need it most.

Notice that ρ(xi, w | w ∈ Ω) has the same sign that ρ (xi, w) and also that ρ(xi, w | w ∈
Ω) ≷ ρ (xi, w) since Var (w | w ∈ Ω) ≷ Var (w).

Based on this result, Boyer et al. (1999); Forbes and Rigobón (2001); Forbes (2002)

between others, propose an adjust for this bias through a constant ratio (1 + ε) between the

conditional variance of asset returns in tranquil(ΩT ) and crisis (ΩC) periods

Var (w | w ∈ ΩC) = (1 + ε)Var (w | w ∈ ΩT ) . (6.4.4)

The justi�cation of the idea in (6.4.4) is natural. We should expect the variance to be

larger for those observations that fall into the tails of the distribution, simply because the

variances of the tail observations are wider than the observations concentrates on the tranquil

periods. Therefore, we would also expect the conditional correlation to be higher when w is

in the tail of its distribution, irrespective of kind of tail distribution. However, this linear

assumption for changes in correlations is not as straightforward as one might think.

6.4.1.1. Conditional variance for Von Mises type and regular varying distributions. Here

we distinguish between Regular varying and Von Mises type distributions, instead of only

light- and heavy tailed distributions, because of the fact that some heavy tailed distributions

are not regular varying distributions as the Lognormal distribution. We haven already given a

de�nition for regular varying distributions in De�nition 6.2.9, therefore we adopted the below

de�nition of Von Mises type distributions for distributions whose tails can be represented as

a Von Mises function in De�nition 6.4.1.

Definition 6.4.1. (Von Mises function, (Embrechts et al. (1997, De�nition 3.3.18, pp.

138.)) Let F be a distribution function with right endpoint xF ≤ ∞. Suposse there exists

some z < xF such that F has representation

F (x) = c exp
{
−
ˆ x

z

1
a (t)

dt

}
, z < x ≤ xF ,

where c is some positive constant, a (·) is a positive and absolutely continuos function with

density a′ and limx↑xF a
′ (x) = 0. Then F is called a von Mises distribution function.
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This class of functions belongs to the MDA of the Gumbel distribution. Furthermore,

with some slight modi�cations of this de�nition yields a complete characterisation of theMDA

of the Gumbel distribution (see Embrechts et al. (1997, pp. 142.)). Some further important

results are resumed in the next Corollary. The proof of these results are for instance to be

found in Embrechts et al. (1997, Chapter 3).

Corollary 6.4.2. Assume that x is random vector . Then,

• if x has in�nite right point xF = ∞, then F ∈ R−∞. In particular, E (X+)α < ∞
for all α > 0, where X+ = max (0, X) and limx→∞ xf (x) /F (x) =∞.

• if x has right point xF <∞, then F
(
xF − x−1

)
∈ R−∞ and

limx→xF (xF − x) f (x) /F (x) =∞.

• if x has right point xF ≤ ∞, then the auxiliar function is a (x) = F (x) /f (x) if and
only if limx↑xF F (x)F ′′ (x) /f (x)2 = −1.

Some examples of Von Mises type distributions with their respective auxiliary functions

a (x) are:

Normal f (x) = 1√
2π
e−x

2/2, x > 0, x ∈ R, a (x) ∼ x−1

Log normal f (x) = 1√
2πσx

e−
{ln x−µ}

2σ2

2

, x > 0, µ ∈ R, σ > 0, a (x) ∼ σ2x
lnx−µ , x→∞.

Exponential like F (x) ∼ Be−λx, B, λ > 0, a (x) ∼ λ−1

Weibul like F (x) ∼ e−cxτ , c, τ > 0, x ≥ 0, a (x) = x1−τ/cτ , x ≥ 0

The characterisation of tail distributions allow to provide the main result of this section.

Proposition 6.4.3. Let w be a random variable whose second moment exist and de�ne

the Borel set Ω = [t,∞] for a high threshold t� 0. Then,

(1) If the distribution function of w satis�es De�nition 6.4.1 with a (w) = F (w) /f (w),
then Var (w | w ∈ Ω) is a (w)2.

(2) If the distribution function of w satis�es De�nition 6.4.1 and the tail distribution can

be written as F (w) = a exp (−bw) for a, b > 0, then Var (w | w ∈ Ω) is b−2.

(3) if w has a distribution function F (w) ∈ Rα for α > 2. Then, Var (w | w ∈ Ω) is
t2α

(α−2)(α−1)2 .

Proposition 6.4.3 allows us to gain information about the behaviour of the conditional

variance for very di�erent types of distributions and to deduce some properties in the following

corollary.

Corollary 6.4.4. Let w be a random variable whose second moment there exist and

Ω1 = [t1,∞] and Ω2 = [t2,∞] are two Borel set with t2 > t1 > 1. Then

(1) If the distribution function of w is one von Mises type, then Var (w | w ∈ Ω) /Var (w)→
∞ if a (t)→∞, or Var (w | w ∈ Ω) /Var (w)→ 0 if a (t)→ 0, as t→∞.

(2) If the distribution function of w satis�es De�nition 6.4.1 and the tail distribution can

be written as F (w) = a exp (−bw) for a, b > 0, then Var (w | w ∈ Ω2) ∼ Var (w | w ∈ Ω1),
which means that w is independent of the conditional set Ω1 and Ω2.

(3) if w has a distribution function F (w) ∈ Rα for α > 2. Then, Var (w | w ∈ Ω2) ∼
Var (w | w ∈ Ω1) (t2/t1)2 as t1 →∞ .
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Notice in 2 that F (w) = a exp (−bw) belongs to the class of Von Mises type distributions.

However, this deserves special attention due to the behaviour of the truncated variance. This is

because these light-tailed distributions have truncated variance independent of the truncation

level, i.e. memoryless property. Hence, these distributions are not a suitable candidate to

model assets returns.

Following we calculate some examples for these three cases but directly and not through

an asymptotic estimation.

Example 6.4.5. Let wt be a random vector with exponential distribution where F (w) =
exp (−λw), for wt ≥ 0 and λ > 0 is a von Mises function with auxiliar function a (x) = 1/λ,
then the conditional variance of w in a Borel set Ω = [t,∞] is given by

Var (w | w ∈ Ω) =

´
Ωw

2f (w) dw
F (w)

−
(´

Ωwf (w) dw
F (w)

)2

=

´∞
t w2f (w) dw

F (w)
−
(´∞

t wf (w) dw
F (w)

)2

=
t2 exp (−λt) + λ−12t exp (−λt)− λ−22 exp (−λt)

exp (−λt)

−
(
t exp (−λt) + λ−1 exp (−λt)

exp (−λt)

)−2

= λ−2.

Example 6.4.6. Let wt be a random vector with normal distribution Φ (w) with von

Mises function a (x) ∼ x−1. Notice that taking derivate to the normal density function ϕ (w)
we have ϕ′ (w) = −wϕ (w) and ϕ′′ (w) = −ϕ (w) − wϕ′ (w). Hence

´
Ωwϕ (w) dw = −Φ (w)

and
´

Ωw
2ϕ (w) dw = −

´
Ωwϕ (w) dw = ϕ′ (w) + Φ (w).

Furthermore, Φ (w) can be expressed in terms of the complementary error function

erfc (w) =
2√
π

ˆ ∞
w

exp
(
−t−2

)
dt

as Φ (w) = 1− 1
2erfc

(
w√
2

)
, w ∈ R. Then the conditional variance of w in a Borel set Ω = [t,∞]

is given by

Var (wt | wt ∈ Ω) =

´
Ωw

2f (w) dw
F (w)

−
(´

Ωwf (w) dw
F (w)

)2

=

´∞
t w2ϕ (w) dw

Φ (t)
−
(´∞

t wϕ (w) dw
Φ (t)

)2

=
ϕ′ (w) |∞t +Φ (w)

Φ (t)
−
(
−ϕ (w) |∞t

Φ (t)

)2

=
t exp

(
−t−2/2

)
/
√

2π
1
2erfc

(
t√
2

) + 1−

exp
(
−t−2/2

)
/
√

2π
1
2erfc

(
t√
2

)
2

.
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An useful asymptotic expansion of the complementary error function for large values of t

erfc

(
t√
2

)
=

√
2 exp

(
t−2/2

)
√
πt

∞∑
n=0

(−1)n
(2n)!

2!
(√

2t
)2n ,

which yields to

Var (w | w ∈ Ω) ∼ t−2 +O
(
t−4
)
.

Example 6.4.7. Let w be a random vector with pareto distribution F ∈ R−α with

parameter α > 2 and density f ∈ R−(1+α). Then the conditional variance of wt in a Borel set

Ω is derived easily applying Karamatas representation (see Corollary (6.2.5)).

Var (wt | wt ∈ Ω) =

´
Ωw

2f (w) dw
F (w)

−
(´

Ωwf (w) dw
F (w)

)2

=
t2α

(2− α) (1− α)2 .

Example 6.4.8. Let w be a random vector with Student's t-distribution F , v > 2 degree

of freedom and density

f (w) = tv (w) =
Γ
(
v+1

2

)
Γ
(
v
2

)√
vπ

(
1 +

w2

v

)−( v+1
2 )

Let us de�ne 4v =
Γ( v+1

2 )
Γ( v2 )√vπ and F (w) = T v (w) = v

v−1
2
4v
wv + O

(
w−(v+2)

)
. Then the

conditional variance of w in a Borel set Ω = [t,∞] is given by

Var (w | w ∈ Ω) =

´
Ωw

2f (w) dw
F (w)

−
(´

Ωwf (w) dw
F (w)

)2

= v

(v − 1)T v−2

(√
v−2
v w

)
(v − 2)T v (w)

− 1

−

√

v−2
v tv

(√
v−2
v w

)
T v (w)


2

∼ v

(v − 2) (v − 1)2w
2 +O (1) .

Hereafter, we present the asymptotic expression of ρ(xi, w | w ∈ Ω) for the random

variable w in the linear factor model (6.4.2).

Corollary 6.4.9. Let us assume the linear factor model xi = λiw+ui with unconditional
correlation ρ (xi, w) = λiVar(w)√

λ2
iVar(w)2+Var(ui)

, then

(1) If the distribution function of w ∼ N (0, 1) , then ρ (xi, w | w ∈ Ω) ∼ ρ

t
√

(1−ρ2)
for

t→∞.

(2) If the distribution function of w ∼ LN (0, 1) , then ρ (xi, w | w ∈ Ω) ∼ ρ ln t

t
√

(1−ρ2)
for

t→∞.

(3) If the distribution function of w ∼ exp (λ) , then ρ (xi, w | w ∈ Ω) = ρ (xi, w) for all

t > 0.
(4) If the distribution function of w ∼Weibull (c, τ, λ) , then ρ (xi, w | w ∈ Ω) ∼ ρcτ

t(1−τ)
√

(1−ρ2)

for t→∞.
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Figure 6.4.1. Theoretical conditional correlation ρ (xi, w | w ∈ Ω) and un-
conditional correlation ρ (xi, w) in function of a subset Ω = [t,∞], i.e.,
for high threshold t, When F (w) ∈ R−α (left), w ∼ N (0, 1)(middle) and
w ∼ LN (0, 1) (right).

(5) If the distribution function of w is regular vaying with index α > 2, then ρ (xi, w | w ∈ Ω) ∼
ρt

(α−1)
√

(1−ρ2)
for t→∞.

Figure 6.4.1 illustrates the theoretical relationship between the conditional correlation,

the unconditional correlation and conditioning events for three types of distributions, regular

varying distributions for F (w) ∈ R−α, a normal distribution w ∼ N (0, 1) and a Log-Normal

distribution w ∼ LN (0, 1). In this example we assume that ui is Normal distributed with

zero mean and variance equal to the unity. As it is shown in the case of regular varying

functions, the conditional correlation converges very fast to the limit one for high values of

the threshold t and it does not depend strongly on the chosen unconditional correlation.

On the contrary, the results for the tail distributions of von Mises type are varied. For the

normal distribution the conditional correlation tends very slow to zero for high threshold of

the conditional set, while a stronger relationship with unconditional correlation is observed.

In the case of the Log-Normal distribution the conditional correlation very slowly tends to

one for high threshold of the conditional set, while when t ↓ 1 we �nd a breakdown produced

by the properties of the marginal distribution.

From the preceding discussion we note that knowledge of the tail distribution behaviour

lets us determine whether the conditional variance is less than or greater than the uncon-

ditional variance and therefore the correlation function. Further, the empirical illustrations

con�rm also that it would be improper to conclude that the correlation between two series

varies across observations based on sample-splitting exercises alone as was done for example

in (Caporale et al. (2003); Corsetti et al. (2005); Dungey et al. (2005)).

On the other hand and for completeness the next examples illustrates that even having

correlation ρ (xi, w) = 0 in a linear factor model the true dependence between xi and w can

be very di�erent.

Example 6.4.10. De�ne the following random variables w ∼ LN (0, 1) and xi ∼ LN (0, σ),
and joint distribution W (xi, w). We know that all bivariate distribution function have as
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Figure 6.4.2. Left :Maximum and minimum attainable correlation for di�er-
ent values of σ in example (6.4.10).
Middle: Conditional correlation for the maxima attainable correlation (ρmax)
for two conditional thresholds (t = 2 and t = 1000).
Rigth: Conditional correlation for the minimum attainable correlation (ρmin)
for two conditional threshold (t = 2 and t = 1000).

Frèchet bounds

max {W1 (xi) +W2 (w)− 1, 0} ≤ W (xi, w) ≤ min {W1 (xi) ,W2 (w)}

Clearly, when the marginals distribution W1 (xi) and W2 (w) are �xed, the correlation has to

be between the minima and maxima correlation of these Frèchet bounds ( see McNeil et al.

(2005, Chapter 5)). In fact, for our marginal distributions we have that

ρmin (xi, w) =
e−σ − 1√

(e− 1)
(
eσ2 − 1

) , ρmax (xi, w) =
eσ − 1√

(e− 1)
(
eσ2 − 1

) .
This shows as σ increases, one notes how the boundaries of the interval (ρmin, ρmax) tend

rapidly to zero and therefore, for any attainable conditional set Ω = [t,∞], the conditional

correlation ρ (xi, w | w ∈ Ω) → 0. Moreover, since W (xi, w) experiments the strongest form

of positive dependence when xi and w are comonotonic, i .e., min {W1 (xi) ,W2 (w)}, this
results illustrates as small correlations not necessarily imply weak dependence.

The message of the last example is that any interpretation of correlation is meaningless

without knowing the true dependence or copula of a joint model.

The central argument of this chapter is that computing correlations condition on real-

ization of one variable and observing that those correlations are di�erent for miscellaneous

conditioning events, gives you no basis to conclude that the true dependence of the data-

generating process is changing over time. Furthermore, this section showed as the correlation

between two variables conditioned on a high subset of exceedances may deviate signi�cantly

from the unconditional correlation.

One could hope for the existence of logical links between some of these measures, such as

a vanishing tail dependence parameter implies vanishing asymptotic conditional correlation

coe�cients. Indeed, this turns out to be wrong and one can construct simple examples for

which all possible combinations occur as in example 6.4.10.

The conditional correlation is sensitive to the marginals, i.e., it is a measure of extreme

dependence weighted by the speci�c shapes of the marginals, while the dependence measures
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introduced in Section 2.4 are a pure copula property independent of the marginals. When

conditioning on w, one changes the copula between xi and w, so that the extreme dependence

properties by the conditional correlations are not exactly those of the original copula. Indeed,

we can �nd situations in which we are in the presence of asymptotic independence, while the

conditional correlation could conclude the opposite.

These results demonstrate the di�culty and the controversy that can be the results of the

existence of contagion or interdependence in �nancial crisis, when we de�ne these in terms

of conditional correlations. Furthermore, even if the bias has been accounted for, as soon as

the property of regular variation is present in the data with tail index α > 2 for a sample

size n, the nature of the convergence of the empirical Pearson's correlation coe�cient of a

bivariate time series is of the order of n1−2/α for the error between the empirical and theoretical

correlation. Moreover, the tail index has a stable law with index α/2 (see Meerschaert and

Sche�er (2001)).

6.4.2. Estimations of exponent measures. In the above sections we have seen that

multivariate regular variation and hidden regular variation models are characterized princi-

pally by tail indices and exponent measures or alternatively a spectral measure. We attempt

to do both here by estimating spectral measures, exceedence probabilities and some other

features of the tails.

In practical application of these methods is normally suggested to use nonparametric

models for estimating the dependence structure because of in�nite number of possible param-

eterization.

In Subsection 6.4.2.1 we consider estimation of the exponent measure and the spectral

measure in the standard case of multivariate regular variation. Further, in Section 6.4.2.2

we shall discuss a simple method that allows for a more precise estimation of the hidden

spectral regular measure and its corresponding hidden exponent measure. Finally, we discuss

the relation between the second order regular variation and hidden regular variation.

6.4.2.1. Estimation in the standard case the cone C = [0,∞] \ {0}. Let X be a d-variate

random vector whose common distribution F is multivariate regular varying. Recall that from

De�nition 6.3.2, multivariate regular variation is equivalent to the existence of b (t)→∞ such

that the limit

tP
(
Xb (t)−1 ∈ ·

)
v→ vα (·) (6.4.5)

exists.

The estimation of this type the probabilities are ever-present in extreme value theory and

the solution is to move estimation from the boundary of the sample to more safer areas with

more observations. The idea is to �nd a sequence k → ∞ with k/n → ∞ such that limit

(6.4.5) still holds, when we substitute t with n/k.

(n/k)P
(
Xb (n/k)−1 ∈ ·

)
v→ vα (·) . (6.4.6)

Now the question is how to �nd an empirical measure to estimate such class of limit

probabilities. An answer to this question is provided by Resnick (2006, page 179) who shows

that multivariate regular variation of the probability distributions is equivalent to induced

empirical measures weakly converging to Poisson random measure limits (De�nition 6.3.2,
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point 6). Thus,

1
k

n∑
i=1

εXb(n/k)−1 ⇒ vα

is a limit measure for known b (k/n). However, this measure assumes that the tails are

equivalent. In practice, it is unusual to conclude that the tail index αj is the same for each

component. Thus, a standardized form is necessary.

The idea is that if X is a d-variate random vector whose tails are asymptotically Pareto,

that is, for each marginal j = 1, . . . , d, P (Xj > xj) ∼ x
−αj
j , then, it implies that P

(
Xα
j > xj

)
∼

x−1
j , for xj →∞. Hence,

1
k

n∑
i=1

ε{(Xj/bj(n/k))αj ; j=1,...,d} ⇒ µ ([0,xα]c)

is a standard limit measure, whose marginals are all Pareto with homogeneous degree −1,
that is,

µ (t·) = t−1µ (·) . (6.4.7)

The above results can also be expressed in terms of polar coordinates. In the next proposition

we summarize.

Proposition 6.4.11. Let X be a d-variate random vector whose common distribution F is

multivariate regular varying, with marginal indeces αj and sequence bj (n/k) for j = 1, . . . , d
and k →∞ with k/n→∞. Then,

1
k

n∑
i=1

ε{(Xij/bj(n/k))αj ; j=1,...,d} (6.4.8)

converges to the standard limit measure µ in M+ (C) or equivalently in polar coordinates

1
k

n∑
i=1

ε(Ri,Θi,k) ⇒ cµ× S inM+

(
(0,∞]× Sd−1

+

)
, (6.4.9)

where c > 0 and S is a probability measure on Borel subsets on Sd−1
+ .

Since we want to estimate the probability of a set beyond the sample in the tail, we will

use the homogeneous property (6.4.7) to estimate this probability. Instead of using equations

(6.4.8) or (6.4.9) diectly, we use a scaling parameter so that there are some sample points in

the set to estimate. The procedure is as follows.

Assume that we are interested in a probability of the type

P

 d⋂
j=1

{Xj > xj}

 (6.4.10)

with xj →∞ for all j and the Proposition 6.4.11 holds.

de Haan and de Ronde (1998) proposes the following approximation for the p-th quantile

of the threshold xj = x
(p)
j ∼ bj (n/k) (k/n (1− pj))1/αj . Making use of this approximation,
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the empirical estimator (6.4.8) and the scaling property in equation (6.4.10) we obtain

P

 d⋂
j=1

{Xj > xj}

 ∼ k

n

n

k
P

 d⋂
j=1

{
Xj > bj (n/k) (k/n (1− pj))1/αj

}
=

k

n
µ1 (((k/n (1− pj) ; j = 1, . . . , d) ,∞])

=
k

n
µ1 ((k/n (1− p) ,∞]) .

De�ne ‖·‖ as any arbitrary norm in Rd , then applying the scaling ‖k/n (1− p)‖−1

P

 d⋂
j=1

{Xj > xj}

 ∼ k

n ‖k/n (1− p)‖
vα

((
k/n (1− p)α

‖k/n (1− p)‖α
,∞
])

=
k

n ‖k/n (1− p)‖
µ

((
k/n (1− p)
k/n (1− p)

,∞
])

=
∥∥∥(1− p)−1

∥∥∥−1
µ

 (1− pj)−1∥∥∥(1− p)−1
∥∥∥ j = 1, . . . , d

 ,∞


replacing µ by the empirical measure as in De�nition 6.3.2 we obtain

P

 d⋂
j=1

{Xj > xj}

 ∼ 1∥∥∥(1− p)−1
∥∥∥

n∑
i=1

ε{
(Xij/bj(n/k))αj∈

((
(1−pj)−1

‖(1−p)−1‖ ; j=1,...,d

)
,∞
]}. (6.4.11)

Note that this spillover probability is estimated on an in�nite square whose lower left

corner always falls on the unit circle5, a statement that remains true irrespectively of how

large the quantiles p1, . . . , pd are chosen. We provide an example to elucidate some results.

Example 6.4.12. Consider X is a bivariate random vector whose common distribution

F is multivariate regular varying, with marginal indices α1, α2 and sequence bj (n/k) for

j = 1, 2. Furthermore, there exits k →∞ such that k/n→∞.

When we are interested and the conditional probability of the type P (X1 > x1 | X2 > x2)
for x1, x2 →∞, by the empirical measure of equation (6.4.11) we obtain:

lim
x1,x2→∞

P (X1 > x1 | X2 > x2) = lim
x1,x2→∞

P (X1 > x1, X2 > x2)
P (X2 > x2)

∼ (1− p2)−1∥∥∥(1− p)−1
∥∥∥

n∑
i=1

ε{((
Xi1

b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈
((

(1−p1)−1

‖(1−p)−1‖ ,∞
]
×
(

(1−p1)−1

‖(1−p)−1‖ ,∞
])}

de�ne (1− p1) = ϑ (1− p2) and using the three norms ‖·‖sum, ‖·‖max, ‖·‖2 we get for the

norm ‖·‖sum (
ϑ

1 + ϑ

) n∑
i=1

ε{(( Xi1
b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈(( 1

1+ϑ
,∞]×( ϑ

1+ϑ
,∞])

},
for the norm ‖·‖max,

5In the case of the Euclidean norm.
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1 ∧ (1− p1)
(1− p2)

n∑
i=1

ε{(( Xi1
b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈
((

(1−p1)∧(1−p2)
(1−p1)

,∞
]
×
(

(1−p1)∧(1−p2)
(1−p2)

,∞
])}

for the euclidean norm ‖·‖2(
ϑ√

1 + ϑ

) n∑
i=1

ε{(( Xi1
b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈
((

1√
1+ϑ

,∞
]
×
(

ϑ√
1+ϑ

,∞
])}

.

In the case of the angular measure S we seek to transform �rst to the standard case

with a standard limit measure µ and then to applythe polar coordinate transform T (x) =(
‖x‖ , x

‖x‖

)
= (x, θ) to get

T ((Xij/bj (n/k))α , i = 1, . . . , n) = ((Ri,k,Θi,k) ; i = 1, . . . , n)

and from (6.4.9) we get the estimator

Sn (·) =

∑n
i=1 ε{Rik,Θik} ((1,∞]× ·)∑n
i=1 ε{Rik,Θik} ((1,∞])

⇒ S (·) (6.4.12)

The interpretation of (6.4.17) is to chose Θik whose radius is greater than 1. The angular

measure is in this case de�ned on the interval [0, π/2]. For instance, if the most of the mass

density concentrates around π/4 then the dependence between extreme movements of the

marginals is stronger, while the most of the mass around 0 and π/2 shows a tendency toward

independence , or at least asymptotic independence.

Until now in this section, we have supposedly known the threshold or equivalently the

number of order statistics k, the tail indices of the marginals αj and the parameter b (n/k).
The next proposition answers these questions.

Proposition 6.4.13. Consider X a d-variate random vector whose common distribution

F is multivariate regular varying, with marginal indices αj. Then,

(1) b̂ (n/k) = Xk,n is a consistent estimator of b (n/k).

(2) The estimator k̂ = arg
{
tµ̂1(tSd−1)
µ̂1(Sd−1) = 1

}
, with t varying in the neighborhood of 1, is

a good estimator for k-th largest order statistic of the sample.

(3) The Hill estimator H
(j)

k̂,n
:= 1

k̂

∑k̂

i=1 log
(
Xn,n−i+1/Xn,n−k̂+1

)
→ α−1

j , where Xn,k is

the k-th largest order statistic of the sample Xn, is a consistent estimator for the tail

indeces αj.

6.4.2.2. The hidden regular measure. A �rst approximation to detect if existing hidden

regular variation is suggested by the Theorem 6.3.8. First, each marginal has to be standard-

ized to Pareto marginals with tail index αj = 1 by means of a power transformation. As it

was explained in Proposition 6.4.11.

By Theorem 6.3.8 there exists evidence for Hidden regular variation if the minimum of the

d-variate standardized marginals has tail index α0 > 1. Thus, a �rst approximation should be

to plot the Hill estimator for the minimum of the standardized data. Assuming that (6.3.8)

and (6.3.9) hold, then necessarily the probability P
(⋂d

j=1

{
Xjb (t)−1 > xj

})
has to be zero.
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In fact, if I denotes a subset of the set D of marginals we obtain that

tP

 d⋂
j=1

{Xj/b (t) > xj}

 =
∑
I⊂D
|−1||I| tP

(
d⋃
k∈I
{Xk/b (t) > xk}

)
(6.4.13)

≤
∑
I⊂D

|I|>2

tP

(
d⋂
k∈I
{Xk/b (t) > xk}

)

=
∑
I ⊂ D
|I| > 2

tP

(
d⋂
k∈I
{Xk/b0 (t) > b(t)xk/b0 (t)}

)

=
∑
I ⊂ D
|I| > 2

tP

(
d∧
k∈I

{(
x−1
k

)
Xk

}
/b0 (t) > b(t)/b0 (t)

)

→ 0.

Making use of De�nition 6.3.10 we have that

tP

 d⋂
j=1

{Xj/b0 (t) > xj}

→ x−α0vα0 ((1,∞])

and by (6.4.13) note that

tP

 d⋂
j=1

{Xj/b0 (t) > xj}

 = tP

 d∧
j=1

{(
x−1
j

)
Xj

}
/b0 (t) > 1

 (6.4.14)

for 0 < xj <∞ and j = 1, . . . , d.
Since that b0 (t) is unknown for statistical purposes equation (6.4.14) and the fact v0

(
S+
inv

)
=

1 give the next result, which allows to replaces b0 (t) by a statistic.

Proposition 6.4.14. Consider X is a d-variate random vector whose common distribution

F possesses both regular variation and hidden regular variation with marginal indeces αj and

α0. Then, if Wi =
∧d
j=1Xij is random vector composed by the minima of the random vector

X we obtain,

(1) b̂0 (n/k) := Wn,k is a consistent estimator of b0 (n/k), where Wn,k is the k-th largest

order statistic of the sample Wn.

(2) v̂α0 := 1
k

∑n
i=1 ε(Xij/b̂0(n/k), 1≤j≤d) ⇒ vα0 in M+ (C0).

He�ernan and Resnick (2005) have proven the last proposition using rank transformation.

However, we are interested in estimate extreme probabilities of tail regions, where the number

of events that have happened are even zero.

A more interesting approximation is the use of the idea proposed in the case of asymptotic

dependence, where we move the region of extreme events so that the number of observations

is larger. First, observe in De�nition 6.3.10 that hidden regular measure vα0 is related to the
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classical measure of regular variation µ by vα0 ((x,∞]) = µ ((xα,∞]). Second, if we use the
scaling property for the hidden measure to blow the sample we obtain

xα0vα0 ((1,∞]) = xα0µ ((1α,∞]) . (6.4.15)

Now, as in the above section, suppose that we are interested in a probability of the type

P

 d⋂
j=1

{Xj > xj}


with xj → ∞ for all j and in this case the De�nition 6.3.10 holds, that there exist hidden

regular variation.

Proceeding as in the classical case of regular variation using the empirical estimator (6.4.8)

and the scaling property in equation 6.4.15) we obtain

P

 d⋂
j=1

{Xj > xj}

 ∼ k

n

n

k
P

 d⋂
j=1

{
Xj > bj (n/k) (k/n (1− pj))1/αj

}
=

k

n
µ (((k/n (1− pj) ; j = 1, . . . , d) ,∞])

=
k

n
µ ((k/n (1− p) ,∞]) .

De�ne ‖·‖ as any norm in Rd, then applying the scaling ‖k/n (1− p)‖−1

P

 d⋂
j=1

{Xj > xj}

 ∼ k

n ‖k/n (1− p)‖α0
vα0

((
0,

k/n (1− p)
‖k/n (1− p)‖

]c)

=
k

n ‖k/n (1− p)‖α0
µ

((
0,
(
k/n (1− pj)
‖k/n (1− p)‖

; j = 1, . . . , d
)]c)

=
(
k

n

)1−α0 ∥∥∥(1− p)−1
∥∥∥−α0

µ

0,

 (1− pj)−1∥∥∥(1− p)−1
∥∥∥ j = 1, . . . , d

c
replacing µ by the empirical measure we obtain

P

 d⋂
j=1

{Xj > xj}

 ∼ (k
n

)1−α0 ∥∥∥(1− p)−1
∥∥∥−α0

n∑
i=1

ε{
(Xij/bj(n/k))αj∈

(
0,

(
(1−pj)−1

‖(1−p)−1‖ ; j=1,...,d

)]c}.
(6.4.16)

We give an example to elucidate some results.

Example 6.4.15. Consider X a bivariate random vector whose common distribution F is

multivariate regular varying, with marginal indeces α1 and α2 and standard regular varying

index α = 1 and hidden regular variation index α0, for k → ∞ with k/n → ∞. We are

interested and the conditional probability of the type P (X1 > x1 | X2 > x2) for x1, x2 →∞.

Applying the empirical measure of equation (6.4.16) we obtain
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lim
x1,x2→∞

P (X1 > x1 | X2 > x2) = limx1,x2→∞
P (X1 > x1, X2 > x2)

P (X2 > x2)

∼ (1− p2)∥∥∥(1− p)−1
∥∥∥α0

n∑
i=1

ε{((
Xi1

b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈
((

(1−p1)−1

‖(1−p)−1‖ ,∞
]
×
(

(1−p1)−1

‖(1−p)−1‖ ,∞
])}

de�ne (1− p1) = ϑ (1− p2) and using the three norms ‖·‖sum, ‖·‖max, ‖·‖2, we get for the

norm ‖·‖sum,(
k

n (1− p2)

)1−α0
(

ϑ

1 + ϑ

)α0 n∑
i=1

ε{(( Xi1
b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈(( 1

1+ϑ
,∞]×( ϑ

1+ϑ
,∞])

}
for the norm ‖·‖max

(
k

n

)1−α0
(

(1− p2)α0 ∧ (1− p1)α0

(1− p2)

) n∑
i=1

ε{(( Xi1
b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈
((

(1−p1)∧(1−p2)
(1−p1)

,∞
]
×
(

(1−p1)∧(1−p2)
(1−p2)

,∞
])}

and at the end for the euclidean norm ‖·‖2

(
k

n (1− p2)

)1−α0
(

ϑ√
1 + ϑ

)α0 n∑
i=1

ε{(( Xi1
b1(n/k)

)α1
,
(

Xi2
b2(n/k)

)α2
)
∈
((

1√
1+ϑ

,∞
]
×
(

ϑ√
1+ϑ

,∞
])}.

In the case of the angular measure S we seek to transform to the standard case with

a standard limit measure µ. Then, we apply the polar coordinate transformation T (x) =(
‖x‖ , x

‖x‖

)
= (x, θ) to get

T ((Xij/b0 (n/k))α , i = 1, . . . , n) = ((Ri,k,Θi,k) ; i = 1, . . . , n)

and from (6.4.9) we get the estimator

S0
n (·) =

∑n
i=1 ε{Rik,Θik} ((Wn,k,∞]× ·)∑n
i=1 ε{Rik,Θik} ((Wn,k,∞])

⇒ S0 (·) . (6.4.17)

The interpretation of (6.4.17) is to chose Θik whose radius is greater than Wn,k. The

hidden angular measure is in this case de�ned on the interval [0, π/2]. For instance if the

most of the mass density concentrates around π/4 then the dependency between extreme

movements of the marginals is stronger, while the most of the mass around 0 and π/2 shows

a tendency towards independence.

The number of order statistics k, the tail indeces of the marginals αj and the parameter

b (n/k) can be estimated as in Proposition 6.4.14. We discuss the some statistical aspects in

connection with the estimators, as asymptotic normality and other forms of regular variation.

6.4.3. Asymptotic normality of the estimators and its relation with second or-

der of regular variation. This subsection shows asymptotic normality of the tail empirical

measure and estimators based on second order regular variation, which plays an important

role in the classical framework as in hidden regular variation.

Definition 6.4.16. (Second Order Regular variation (2R)) A distribution function is

second order regularly varying, with parameters −α and ρ (1− F ∈ 2R−α,ρ) if there exists a
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function A (t)→ 0, t→∞ such that |A (t)| ∈ Rρ and

lim
t→∞

1−F (tx)
1−F (t) − x

−α

A (t)
=: H (x) (6.4.18)

holds, where H (x) := cx−α
´ x

1 u
ρ−1du for x > 0.

In a bivariate framework the equation (6.4.18) can be written similarly in terms of the

tail measure as

lim
t→∞

tP
(

X
b1(t) ,

Y
b2(t) ∈ ([0, x]× [0, y])c

)
− vα (([0, x]× [0, y])c)

A (b1 (t) , b2 (t))
=: H (x, y) , (6.4.19)

where vα is de�ned in the cone C.

This second order characterization of regular varying functions has shown to be very useful

in the analysis of asymptotic normality of extreme value statistics, see for instance (Haan and

Resnick (1998); De Haan and Ferreira (2006); Resnick (2006)).

The next proposition resumes the asymptotic behaviour of the tail empirical measure.

Proposition 6.4.17. (Asymptotic normality of the tail empirical measure) Let X be a

random variable with distribution F whose tail is regularly varying. Then, for k → ∞ and

k/n→ 0, we have

√
k

(
1
k

n∑
i=1

εb(n/k)−1Xi

(
x−α,∞

]
− n

k

(
1− F

(
b (n/k)x−1/α

)))
⇒W (x)

in D ((0,∞]), where W (x) is a standard Brownian motion and D ((0,∞]) is the space of

real-valued, right continuos functions with �nite limits existing on (0,∞).

Proof. There exist di�erent proofs for this standard result, see for example Resnick

(2006, page 292.) �

A similar result can be derived if we include the second order condition of regular variation.

Proposition 6.4.18. Let 1−F ∈ Rα, We say that 1−F ∈ 2R−α,ρ if for ψ = 2 |ρ| / (α+ 2 |ρ|)
there exists a function P ∈ Rψ such that P (t) → ∞ as t → ∞ and there exist a function

% (x) :=
1−F (tx)
1−F (t)

−x−α

A(t) such that for k = [P (t)] we have that for each x ≥ 0.

√
k

(
1
k

n∑
i=1

εb(n/k)−1Xi
(x,∞]− x−α

)
⇒W

(
x−α

)
+ % (x) .

Untill now, we discussed the relation between second order regular variation and hidden

regular variation. In the case of asymptotic independence we have that equation (6.4.19) is

reduced to tP
(

X
b1(t) ,

Y
b2(t) ∈ ([0, x]× [0, y])c

)
/A (b1 (t) , b2 (t)).

Supposing the limit exists and it is non-zero, we know that for a relatively compact

rectangle Λ ∈ C0 the limit

tP
(

X
b1(t) ,

Y
b2(t) ∈ Λ

)
− v0 (Λ)

A (b1 (t) , b2 (t))
:= H0 (x, y)

holds in M+ (C0).
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Furthermore, the function A (b1 (t) , b2 (t)) plays the most important role in the deter-

mination of the hidden tail index. Note that t/A (b1 (t) , b2 (t)) ∈ R1−ρ/α is asymptotically

equivalent to a strictly increasing function φ whose inverse function φ← ∈ Rα/α−ρ.
Let us de�ne b0 (t) := b ◦ φ← (t) ∈ R, since hidden regular variation can only hold if

b(t)/b0 (t)→∞. Comparing with our assumption

lim
t→∞

b (t)
b0 (t)

= lim
t→∞

b (t)
b ◦ φ← (t)

= lim
t→∞

t

φ← (t)

= lim
t→∞

φ (t)
t

= lim
t→∞

t/A (b (t))
t

= lim
t→∞

1
A (b (t))

→∞,

shows that our election for b0 (t) is correct.
Moreover, b0 (t) ∈ R1/α0

from De�nition 6.4.2.1 and in the standard case α = 1, therefore
the tail index of the hidden regular measure is α0 = 1− ρ.

In conclusion, we observe that under the classical de�nition of regular variation plus the

condition of asymptotic independence, i.e,. vα (C) = 0 inM+ (C) and the second order regular
variation are su�cient to obtain hidden regular variation.

On the contrary to the classical multivariate regular variation in C, where one natural

form on testing independence between marginals is through consistency and the asymptotic

normality of the empirical measure. In the case of asymptotic independence
√
k (µ (x1, x2)− (x1 + x2))→ 0,

see for instance Resnick (2006); De Haan and Ferreira (2006).

Thus, µ̂ (x, y) = 1
k

∑n
i=1 ε

{
X1

b1(n/k)
,

X2
b2(n/k)

} ([0, x−α1
1

]
×
[
0, x−α2

2

])c
cannot be used to con-

struct a test statistic. To avoid the asymptotic variance to vanish Hüsler and Li (2008)

propose to divide the sample into two sub-samples with equal sub-sample size. Then, they

use the second sub-sample to estimate the tail quantiles for each marginal, and de�ne a new

estimator of µ̂ (x, y) using the �rst sub-sample. Since the two sub-samples are independent.

the asymptotic variance does not vanish. We use this idea in our framework to derive a test

of asymptotic independence. This idea will be resumed in next theorem.

Theorem 6.4.19. let X = {X1, X2} = {(X1,1, X2,1) , . . . , (X1,n, X2,n) , . . . , (X1,m, X2,m)}
be a iid bivariate random vector with distribution function F and copula function C (x1, x2) .
Then, there exist 0 < ε < 1 and 0 < ε < 1 such that x1−C (x1, x2) ≥ εx1 and x2−C (x1, x2) ≥
εx2 for x1, x2 ∈ (0, ε]. Furthemore, let k = o

(
n2α/(1+2α)

)
for some α > 0 and θ = m/n.

Now, de�ne the new estimator of µ1by

µ̂n,m (x1, x2) =
m

k

1
n

n∑
i=1

ε{
X1

bm1 (n/k)
,

X2
bm2 (n/k)

} ([0, x−α1
1

]
×
[
0, x−α2

2

])c
.

Then , under asymptotic independence

sup
x1,x2

√
k
∣∣µ̂n,m (x1, x2)−

(
x−α1

1 + x−α2
2

)∣∣→ sup
x1,x2

|W1 ((1 + θ)x1) +W2 ((1 + θ)x2)|

as n→∞, where W1 and W2 are two independent Brownian motions.
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As we can see this theorem is similar to the Kolmorov-Smirnov test. This can be used

to construct a test of asymptotic independence for real data. In fact, we use the quantiles

of a simulate 200.000 Brownian motions for supx1,x2
|W1 ((1 + θ)x1) +W2 ((1 + θ)x2)| with

θ = 1. If our estimated measure µ̂n,m1 (x1, x2)−
(
x−α1

1 + x−α2
2

)
is smaller than the (1− α)-th

quantile of our simulations, then we have no reason to reject the hipothesis of asymptotic

independence with con�dence interval (1− α). Otherwise we may reject it.

6.4.4. Simulations. A summary of estimations of the hidden regular tail index α0 ob-

tained through the Hill's estimator from simulated data are resumed in Tables 6.B.1 and

6.B.2. We calculate the hidden regular tail index of a bivariate normal and a bivariate logistic

dependence for di�erent levels of dependence, threshold levels and several samples size.

For each distribution we generate 500 samples, in Tables 6.B.1 and 6.B.2, besides the

mean, the standard deviation and the root mean squared (RMSE) of the estimates. The true

values of the tail index are α0 = 2/(1 + ρ) for the bivariate normal distribution, where ρ is

the correlation, and for the logistic distribution α0 = 1 for all β < 1 (see Ledford and Tawn

(1996))

For the bivariate normal dependence structure, when the correlation function is ρ = 0.1 or

ρ = 0.9, and the threshold level and the sample sizes increase, the dependence is surprisingly

better estimated in terms of RMSE. Furthermore, when we increase the threshold and the

sample sizes the bias are reduced and the resulting tail index α0 is more consistent with the

true values.

In the case of the bivariate logistic distribution, we observe that while the exponent β ≤ 0.7
the results coincide with the empirical �ndings. However, for β = 0.9 the resulting values for

α0 are more consistent with asymptotic independence. Observe, that the best estimation for

this case is when the sample size is large and the threshold is low. This is an extreme case,

but it illustrates the di�culty when having weak asymptotic dependence.

6.5. �Let the tail go with the hidden�: contagion, linkages between Brazil and

Russia

Globalization process has facilitated the transmission channels of �nancial concerns be-

yond the physical borders. It is a central issue in asset allocation and risk management is

whether �nancial markets become more interdependent during �nancial crises. This issue

acquired dramatic importance during the last crises, as the Russian default in 1998, the

devaluation of the Brazilian real in 1999, or the most recent Subprime Crisis (2007- 2009).

Within the crises which generated the most contagion are the Russian and U.S. subprime

crises, which both began in credit markets and spread to stock markets. In the Russian crisis,

Russia owed almost $20 billion in foreign debt which had to be paid back in 1998. The East

Asian �nancial crisis in 1997 which a�ected the export revenues of Russia severely and the

subsequent fall of global oil prices increased a �nancial burden on budget and led to a reduction

in Russian foreign reserves. This fragile situation forced the Russian government in the middle

of 1998 to halt the repayment of its foreign debts. The e�ects of such a decision was a growing

trend in capital out�ows from the economy which by IMF prescription on increasing interest

rates meant an extra burden on the fragile banking system of Russia. In August 1998, the
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Russian government announced its inability to control the value of the Ruble. This currency

lost its value overnight by more than 100 per cent, from 7 Rubles per dollar to about 17 Rubles

per dollar. In the month after the 1998 devaluation of the Russian Ruble, the Brazilian stock

market fell by over 50 per cent. All these events happened during a time where there was not

a considerable trade and �nancial linkage between Russia and Brazil. The question is whether

such a reaction in Brazil can be interpreted as a contagion from Russia. Was Brazilian crisis

caused by the Russia default? Were the other Latin-American countries also a�ected by those

shocks in Russia and Brazil?.

On the other hand, the meltdown in the US subprime real-estate market has led until

now to a global loss of more 7.7 trillion dollars in stock market value since October 2007. The

crisis, which has spread beyond US shores to banks and other sectors worldwide, is one of

the most vicious in �nancial history. The losses are worse than any in the past few decades,

including Wall Street's Black Monday of 1987, the 1999 Brazilian real currency crisis and the

collapse of hedge fund Long Term Capital Management (LTCM) in 1998. The losses are also

greater than those su�ered after the September 11, 2001, terror attacks, the Asian �nancial

crisis starting in 1997, Argentina's default on its debt in 2001 and the 1994 Mexican peso

crisis. It will take months or even years before Wall Street gets a handle on true cost of the

US subprime meltdown and the attendant global credit crunch.

In the cases of Russia and Brazil in the recent crisis, their stocks were close to record peaks,

its foreign reserves were the envy of the world and some analysts were even describing it as a

heaven for investments. Today, largely due to the bursting of the commodity bubble that had

underpinned many emerging market economies around the world, the equity market in Russia

has fallen a dramatic 70 per cent since May 2008 amid the sharp sell-o� in commodity related

stocks, while for many of the Latin American countries, such as Brazil, the stock market has

dropped 56 per cent this year.

In this section, our e�ort is to investigate the common wisdom about the existence of

contagion by a new approach and expanding the common knowledge about this important

event. Of course, the identi�cation of shocks triggering a crisis is just one dimension to

understand �nancial crises. A second and arguably more important dimension, is to identify

the transmission mechanisms that propagate shocks from the source country across national

borders and across �nancial markets. However, we wish to consider only the �rst point.

In particular we employ the estimators de�ned above to two periods of crises in which

contagion e�ects link markets across national borders and asset classes could be found. The

crises considered are Russia Flu in the second half of 1998, Brazil in early 1999, and the most

recent crisis, as for example, those su�ered after the September 11, 2001, terror attacks and

U.S. subprime mortgage and credit crisis from 2007 until today.

We use daily stock and bond returns on these two emerging markets from 1995 to 2008

to seek for extreme spillovers. In other words, we want to calculate a linkage measure which

indicates whether markets move together in turbulent periods or not. Therefore we would

be well advised to turn to a measure which is not conditioned on a particular multivariate

distribution and which directly re�ects the probabilities and associated crisis levels.
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6.5.1. A �rst de�nition of contagion. One of the most interesting aspects of the ex-

isting literature on contagion is inconclusive agreement on the de�nition of contagion. Calvo

and Reinhart (1996) emphasized on the �true contagion� as �non-fundamental based� trans-

mission mechanisms of shocks, while on the basis of their approach, transmission of shocks

through economic fundamental links would be de�ned as �spillovers�. Fratzscher (2002) also

emphasizes that contagion is a transmission of crisis which is not caused by the a�ected coun-

try's fundamental. In contrast to these two ideas, Moser (2003) mentions that true contagion

is the only response to fundamental-based contagion. The other area of confusing is separation

of �contagion� and �interdependence�. Interdependence implies that both markets collapse be-

cause of a in�uence of a common factor (Forbes (2002),Corsetti et al. (2005)). Forbes (2002)

de�ne contagion as signi�cant increase of cross-market co-movement after shock. The lack of

�signi�cant� increase and only continued high level of market correlation distinguish contagion

and interdependence in their approach.

Contagion is de�ned as a signi�cant increase in cross-market linkages measured by tail

dependence after a shock to a speci�c market of a country. Furthermore, if the structure of

transmission mechanisms is found to be common across di�erent times of crises, this would

suggest that all crises are indeed alike regardless of the nature of the initial shock and the

economic and institutional environments of the a�ected country. Alternatively, if the propa-

gation mechanisms vary across crises, perhaps as a result of the development of new strains

of contagion, this would suggest that crises are indeed unique at least across their source and

their transmission mechanics.

6.5.2. Literature review of contagion between Russia and Brazil. One of the

main studies which explicitly examines the possible contagion from Russia to Brazil carried

out by Baig and Goldfajn (1999). They analyse the key players and timing of events of

this crisis. The main reason which they o�er for the Brazilian crisis is the foreign investors

panicky behaviour after Russian default. The reaction of these investors in addition to local

investors in Brazil destabilized the currency market of this country as well. Furthermore,

they calculate the heteroscedasticity-adjusted correlation coe�cients among rates of return

on Brady bonds and �nd a signi�cant increase in these rates after Russian crisis. In their

opinion, the o�-shore Brady market was the most possible channel of claimed contagion from

Russia to Brazil. However, by using monthly data on aggregated data (total �ows), they were

not able to support the existence of contagion from Russia to Brazil.

Krugman (1999) also refers to panic among the hedge funds after Russian crisis. He also

raises this question �What does Brazil have to do with Russia?�. In response to this question

he mentions that both countries had the same international investors. When these hedge funds

lost their money in Russia, other lenders became more sensitive to other emerging economies

and pulled out their money from Brazil. The main reason behind the contagion, Krugman

(1999) says, was psychological.

Sull (2006) has also examined the possible contagion from Russia to Brazil. He analyzed

the adjusted correlation between the Russian and Brazilian daily stock market indexes over the

period of 1997-1999. After adjusting for the increase in volatility, he shows that correlation for

Russia and Brazil stock market remained at a steady level and no signi�cant increase realized
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in August 1998. Therefore, his results cannot support the common wisdom of contagion from

Russia to Brazil.

Within a nonparametric framework for tail dependence in the constant conditional correla-

tion GARCH case, Herrera et al. (2008)has concentrated principally on the contagion between

Russia and Brazil in the late 1998, and the potential contagion from Brazil to other countries

of Latin America. They �nd a true contagion from Russia to Brazil through an empirical

measure of extreme dependence to understand the joint extremal behaviour of multivariate

time series.

6.5.3. Data and stylized facts. We will consider the same models proposed in Section

6.4.2 for the two countries under study. We model the equity and bond markets in Brazil and

Russia. The series for the Brazil equity returns is the Bovespa Index, while for the Russian

equity returns is the RTSI index. In the case of the bond markets we have used JP Morgan

EMBI Global Index. Our study employs daily data on the mentioned indices during the

period 1.09.1995 until 10.10.2008 in order to evaluate the probability of contagion between

Russia and Brazil. All return series were generated using the continuous compounding formula

Xt = ln(Pt/Pt−1), where Pt represents the price series at time t.

We begin our investigation by trying to establish the two sample periods to study. We

want to be able to de�ne the two crisis episode in order to compare results and analyze the

factors behind the movements. Given the numerous shocks that �nancial markets have faced

in the last teen years, isolating di�erent periods of crises is somewhat di�cult.

We choose arbitrary as the end of the �rst period sample 31.01.2001 to have nearly the

same number of observations in the two samples. Note that the �rst period also includes the

Asian crises of 1997 and the Dot.com crash of 2000, while the second period also includes the

terror attacks from September 11, 2001.

During this study we concentrate only on the negative cone for each pair of possible

combinations among the di�erent countries and assets. i.e., the results presented pertain in

all cases to the lower tails of the return distributions, these are the extreme losses. The scatter

plots for the negative cones are displayed in the Figures 6.5.1 and 6.5.2 for the �rst and second

period respectively.

In the �rst period one can observe that for the 0.995-th empirical quantile of each bivariate

combination the most extreme events occurred during the Russian Crises with some exceptions

during the Asian crises during 1997. They are displayed with black colors. Furthermore, we

�nd that these extremes tend to cluster, which is indicated with arrows between consecutive

days. However, it is not clear that the extreme events in the di�erent asset classes tend to

happen together.

In the second period the most extreme events took place during the actual Subprime

Crises with some exceptions during the terror attacks in September 11, 2001. Like in the �rst

period, the extremes events tend to cluster, while the dependence among these extreme events

seems to decrease between stock and bond markets of di�erent countries. A more detailled

analysis will be given later.
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Figure 6.5.1. Scatter plots for the di�erent pairs of asset combinations be-
tween Russia and Brazil for the �st period. The most extreme events (0.95-th
empirical quantile) are displayed in black colours with their correponding date.
The extreme events between consecutive days are indicated with arrows.

A summary of statistics for the data is given in Table 6.B.3. The Jarque-Bera test statistic

provides clear evidence to reject the null hypothesis of normality for the unconditional distri-

bution of the daily returns. The high value for excess kurtosis indicates that the distributions

are characterized by leptokurtosis. Moreover, we compute the augmented Dickey-Fuller test

for the null hypothesis that the returns have a unit root. This hypothesis is also rejected for

the whole series.

The di�erence to Herrera et al. (2008), where an empirical measure for the tail dependence

was applied directly to the marginal distributions based on asymptotic results of the tail

behaviour of stochastic recurrence equations, an univariate GARCH �lter is used for the

marginal distributions, due to the fact that these models are only appropriate for iid random

vectors.
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Figure 6.5.2. Scatter plots for the di�erent pairs of asset combinations be-
tween Russia and Brazil for the second period. The most extreme events (0.95-
th empirical quantile) are displayed in black colours with their correponding
date. The extreme events between consecutive days are indicated with arrows.

Table 6.B.4 in the Appendix presents descriptive statistics for returns that are �ltered

for heteroskedasticity together with detail speci�cations of the volatility �lters. We conclude

from these results that the t-GARCH(1,1) may fully capture the time-varying volatility in

the data, and therefore, our models are perfectly applicable to the data after the garch �lter.

The large values for the β′s parameters capture the high persistence in volatility. The values

of the parameters α are not too high, which means that ARCH e�ects are weak.

6.5.4. Extreme dependence structure in bond and equity markets during the

Russian crisis. In a �rst approximation and for the sake of completeness, we estimate the

conditional correlation for pairs of assets under study assuming, that these pair follow the

linear factor model in equation (6.4.2) for λi = 1, u ∼ N (0, 1) and conditioning quantile

set t ∈ Ω := [0.95, 0.99]. The Figures 6.5.3 and 6.5.4 despict these results together with
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two special cases, when the linear factor model follows a Gaussian and a t-Studend model

for the risk factor. For both �gures the colour line indicates the conditioned market, while

the dash lines give the same information when the conditioning is a Gaussian or a t-Studend

distributed risk factor for both markets.

For the �rst period, the most pairs of combinations show signi�cant correlation for lower

quantiles whatever the conditioning variable may be. In contrast, conditioned on large �uc-

tuations in higher quantiles, the correlation coe�cient sinks signi�cantly for the pairs Stock

Brazil vs. Bond Brazil and Stock Brazil vs. Bond Russia. On the other hand, the conditional

correlation remains stable for large negative returns in the bond markets.

Other interesting feature for the pairs Stock Russia vs. Bond Russia and Stock Russia vs.

Bond Brazil is that their conditional correlations can be well approximated by a t-Studend

risk factor. Furthermore, there is a strong and signi�cant symmetry between the conditional

correlations.

We have performed these estimations for the second period of the study as well. Contrary

to the �rst period the results are more diverse and therefore di�cult to interpret. The results

which are based on the sample correlation are erratic and in the interval 0 to 0.5 for the most

pairs, with some estimations even yielding to negative conditional correlation.

Thus, in the second period, the conditional correlations in the simple linear factor model

do not appear to be very useful tools for examining the possible changes in the dependence

structure between two assets.

We stress that it would be erroneous to conclude, from the estimations of the conditional

correlations during the �rst period, a genuine increase in the dependence only from the in-

terplay between the conditioning and the dependence structure of the factor model as we

have shown analytically in Subsection 6.4.1. For example, the conditional correlations can in-

crease conditioning on larger �uctuations without needing any variation of the unconditional

correlation coe�cient.

As consequence of the de�ciencies of linear factor models with a conditional correlation

framework to capture the extreme dependence, we omitted additional analysis in this method-

ology for characterizing possible changes in the dependence structure.

Following, we concentrate on the models proposed in Section 6.4.2 to the bond and stock

market of these two countries. The �rst important step is to distinguish between asymptot-

ically dependent and asymptotically independent variables to quantify the degree of depen-

dence for the appropriate estimation of regions going to the in�nity. In each of the following

subsections sets of estimations and test statistics will be presented in graphical form to facil-

itate the interpretation.

In the Figures 6.B.1 and 6.B.2 we document the estimation of standardized tail index α0

of hidden regular variation together with the starica plot for the choice of the number of order

statistics to estimate the tail indices, the distribution of spectral measure S (·) and the hidden

spectral measure S0 (·) for the �rst and second period of investigation respectively.

The estimation of the tail index before and after volatility �ltering in the univariate

case are resumed is the Table 6.B.5 together with the estimation of the tail indices for the

hidden measure among international stock and bond market returns. The estimations suggest
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Figure 6.5.3. Conditional correlation estimate for each pair of combinations
in a linear factor model in the �rst period of study. The two dashed lines
represent the borders within which these conditional correlation coe�cients
could be represented by a linear factor model with Gaussian or t-Studend
(with 3 degree of freedom) distributed risk factor.
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Figure 6.5.4. Conditional correlation estimate for each pair of combinations
in a linear factor model in the second period of the study. The two dashed lines
represent the borders within which these conditional correlation coe�cients
could be represented by a linear factor model with Gaussian or t-Studend
(with 3 degree of freedom) distributed risk factor.
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that the tail indices are signi�cantly reduced when stock and bond returns are �ltered for

heteroskedasticity.

Notice that in the most of the cases α0 is signi�cantly more than 1 for the heteroskedas-

ticity �ltered returns. However, the con�dence interval at the 95% is toowide to consider

any pair of returns asymptotic independent with the exception of the extreme dependence

between the two stock markets returns. A �rst interpretation of this result implies that there

is signi�cant dependence between large values of the paired series but that the largest values

do not occur concurrently. Since most of the pairs have some degree of asymptotically inde-

pendent, multivariate extreme value models that assume asymptotic dependence among the

di�erent market returns are likely to overestimate the joint risk.

In Figure 6.5.5 we assess how important the spillovers between the marginals of di�erent

markets and class of assets are, assuming some degree of asymptotic independence under the

max-norm for di�erent quantile levels.

Three main conclusions emerge from the results. First, we �nd extreme dependence

between equities and bonds for the same country, i.e., intra country dependence, but this

disappears rapidly to higher quantiles. That does not indicate contagion but perhaps �ight

to quality, because in the case of ��ight to quality�, dependence between stocks and bonds

strongly decrease in fragile stock markets since this constitutes a movement of the asset classes

in opposite directions. In the case of Brazil we observe that this extreme dependence is low.

Second, there appears to be a substantially larger extreme dependence between bonds than

what we saw in the stock market case cross country. For instance, the spillover probability of

experiencing a crash (at the 97.5-quantile) in the Brazilian bond market, given the same crash

in the Russian bond market (at the 97.5-quantile) was circa 0.40. This means that in the case

of experiencing two extreme movements in the bond market of Brazil, it would be reasonable

to expect a similar behaviour in the Russian bond market. However, this probability slowly

vanishes to higher quantiles as the rest of spillover probabilities. In the case of the stock

markets cross country the possibility of the appearance of joint extreme movement is the

lowest. In fact, they show the major degree of asymptotic independence.

Third, similar results can be observed by taking into account the probability of �nancial

crisis among assets of di�erent classes of di�erent countries. Thus, the strength of these

linkages are less important during the crises. As has indicated in literature (Forbes (2002)),

there are no direct trade links between Russia and Brazil and the two countries do not export

similar goods and have no strategic competition in their markets.

6.5.5. Extreme dependence structure in bond and equity markets after the

Russian crisis until the subprime crises. In Table 6.B.5 we observe that most of tail

indices of the hidden regular measure for the di�erent combinations of assets and countries

are much lower than the corresponding tail indices in the �rst period. While only two pairs

estimates are signi�cantly larger than in the �rst period of study, which means asymptotic

independence has augmented in these cases. For instance, the asymptotic independence be-

tween the pairs Stock Russia vs. Bond Brazil and Bond Russia vs. Bond Brazil had been

strength considerably.
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In the case of intra-dependence in each country, the spillovers probability remains similar

to the �rst period. In relation to the extreme dependence among assets of the same class

in di�erent countries, the probability of spillovers between the stock markets has increased

slightly, while the probability of spillovers between the stock markets decreased.

These empirical �ndings have a direct impact on practices in the �nance industry. For

example, the fact that Stock Russia vs. Bond Brazil markets are asymptotically independent,

while Stock Brazil vs. Bond Brazil are in the limit to be asymptotically dependent, means

tail diversi�cation and a reduction of portfolio extreme risk can better be achieved by hold-

ing Russian stocks and Brazilian bonds. However, the scope for tail diversi�cation may be

decreasing as our �ndings indicate that the asymptotic dependence cases, i.e., α0 close to 1,

have increased through the time.

These results reinforce the previous conjecture about the Pearson correlation as a poor

measure for tail dependence. In the second period of the study the empirical results show

that �nancial crises are not too di�erent for these countries, as all linkages are statistically

important across all crises. However, the strength of these linkages does vary across the two

crises.

6.6. Conclusions

In this chapter we investigated among other things the consequences of the use of con-

ditional correlation as measure of change of dependence. The results provide a quantitative

proof of how the tail distribution functions behaviour can succeed or fail during a market

decline as measure of extreme risk. The results given in the Subsection 6.4.1 are only simple

examples but they make it painfully clear how misleading conditional correlation can be. In

this respect, as recently stressed by Forbes (2002), many previous contagion studies which

are based on linear factor models may be unreliable. We therefore need other methods to

investigate whether for example more extreme movements in �nancial markets are indeed

more highly depended than overall movements.

In a second contribution, it seems that the spillovers probabilities that we investigated in

Subsection 6.4.2 could provide a useful measure of the extreme dependence among random

variables. We use two nonparametric measures for extreme value dependence to characterise

tail dependence or spillover probabilities in the asymptotic dependence and independence

case.

We concentrated on the possible contagion case between Brazil and Russian markets and

demonstrated how the tail risk measures may be assessed. These new tools have allowed us

to document the asymptotic dependence and independence among stock and bond market

returns of these countries. Notice, that the omission of asymptotic independence models

in studies of contagion could led to mixed results and especially over-estimation could be

possibly substantial in connection with measures of contagion. The empirical �ndings include

a con�rmation that extreme value dependence was much stronger in the �rst period of the

study.

Ongoing research in these kind of measures should provide more interesting tools for risk

management purposes since it gives directly the probability that an asset su�ers a large loss

assuming that a large loss occurred for another asset.
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Figure 6.5.5. Conditional spillover probabilities for the empirical analysis in the �rst

period of the study. Rigth column: Perpspective plot for the conditional spillover probabilities

among di�erent asset markets on di�erent quantiles. The axis indicates the conditioned market.

Middle column: Contour plot for the conditional spillover probabilities among di�erent asset markets

on di�erent quantiles. The axis indicates the conditioned market. Left column: Conditional plot

where in this case the threshold is �xed in 0.975th-quantile for the conditionating asset market, while

for the conditioned market the threshold is variable. The lines represent the results of the spillover

probability for the conditioned asset market. From top to bottom: Bond Russia vs. Stock Russia,

Bond Brazil vs. Stock Brazil, Stock Brazil vs. Stock Russia, Bond Brazil vs. Bond Russia, Bond

Russia vs. Stock Brazil, Bond Brazil vs. Stock Russia.
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Figure 6.5.6. Conditional spillover probabilities for the empirical analysis in the second period

of the study. Rigth column: Perpspective plot for the conditional spillover probabilities among

di�erent asset markets on di�erent quantiles. The axis indicates the conditioned market. Middle

column: Contour plot for the conditional spillover probabilities among di�erent asset markets on

di�erent quantiles. The axis indicates the conditioned market. Left column: Conditional plot where

in this case the threshold is �xed in 0.975th-quantile for the conditionating asset market, while for

the conditioned market the threshold is variable. The lines represent the results of the spillover

probability for the conditioned asset market. From top to bottom: Bond Russia vs. Stock Russia,

Bond Brazil vs. Stock Brazil, Stock Brazil vs. Stock Russia, Bond Brazil vs. Bond Russia, Bond

Russia vs. Stock Brazil, Bond Brazil vs. Stock Russia.
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6.A. Demonstrations

Proof. Proposition 6.4.3: (1) Notice �rst that a (x)−1 = d
dx

(
− lnF (x)

)
= f(x)

F (x)
for all

x < xF . De�ne the truncated k-th moment as mk (t) :=
´∞
t x2f(x)dx

F (x)
of the random vector x.

An important characteristic of the derivates of mk (t) is that these can be represented in

terms of a (x) as

m′k (t) =
mk (t)− tk

a (x)
.

Replacing these results in the conditional variance we get

Var (wt | wt ∈ Ω) := Υ = m2 (t)−m1 (t)2 . (6.A.1)

Taking the two �rst derivates of (6.A.1) we obtain the following two expansions:

Υ′ = m′2 (t)− 2m′1 (t)m1 (t)

=
m2 (t)− t2

a (x)
− 2m1 (t)

(m1 (t)− t)
a (x)

, (6.A.2)

Υ′′ = m′′2 (t)− 2
(
m1 (t)m′′2 (t) +m′2 (t)2

)
=

m2 (t)− t2

a′ (x)
+
m2 (t)− t2 − 2t

a (x)
− 2m1 (t)

(m1 (t)− t)
a′ (x)

−2m1 (t)
(m1 (t)− t− 1)

a (x)
− 2

(m1 (t)− t)2

a (x)2 . (6.A.3)

Now, by de�nition the function a (x) have to be greater than zero, therefore, we can derive

the next condition in (6.A.2)

m2 (t)− t2 = 2m1 (t) (m1 (t)− t) . (6.A.4)

Including this result in the second derivate we obtain the following result

(m1 (t)− t)2

a (x)
+ t+m1 (t) = 0. (6.A.5)

Solving simultaneously equations (6.A.1), (6.A.4) and (6.A.5) we �nd Υ = a (x)2.

(1)⇒(2).

(3) It follows immediately by Karamatas Theorem 6.2.3. �

Proof. Proposition 6.4.13: (1) Consistency of empirical measure given in the De�nition

(6.3.2) implies as k →∞ and k/n→∞, that Xn,k/b (n/k)→ 1. Notice that for a ε > 0, we
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have

P (|(Xn,k/b (n/k))− 1| > ε) = P (Xn,k > (1 + ε) b (n/k)) + P (Xn,k < (1− ε) b (n/k))

≤ P

(
k−1

n∑
i=1

ε{X/b(n/k)∈(1+ε,∞]} ≥ 1

)

+P

(
k−1

n∑
i=1

ε{X/b(n/k)∈(1−ε,∞]} < 1

)
and by De�nition 6.3.2 we know that

k−1
n∑
i=1

ε{X/b(n/k)∈(1+ε,∞]} → (1 + ε)−α < 1,

and

k−1
n∑
i=1

ε{X/b(n/k)∈(1−ε,∞]} → (1 + ε)α > 1

and therefore the �rst proposition follows.

(3) The problem of the threshold selection can be a�ronted by means of the scaling

property of the standardized empirical measure in equation (6.4.7). This idea was proposed

by Starica (1999). He proposes to �nd a k̂ such that µ̂ mimics the scaling property. In

practice, we graphic
tµ̂1(tSd−1)
µ̂1(Sd−1) for di�erent values of k̂ and choose one that seems to have the

plot most close to the horizontal line at high 1.

(3) The Hill estimator is a classical method to �nd the tail index of a distribution function.

Asymptotic normality and consistency were proven in Haan and Resnick (1998). �

Proof. Prposition 6.4.18: If 1−F ∈ 2R−α,ρ and equation (6.4.18) holds then, necessarily
A (t) ∈ Rρ, b (t) ∈ R1/α so that A (b (t)) ∈ Rρ/α. We de�ne the function

χ (x) =
√
x/A (b (x)) ∈ R(α+2|ρ|)/2α

which implies that χ← ∈ R2α/(α+2|ρ|). Setting P (t) = t/χ←
(√
t
)
∈ R2|ρ|/(2α+2|ρ|), we have

P (t) /t → 0 as t → ∞. Since we de�ned P (t) → ∞, it is only possible if |ρ| > 0 which is

obvious. In another case note P (t) → ∞ if and only if t2/χ← (t) → ∞, which is equivalent

to χ2 (t) /t→∞, and to 1/A2 (b (t))→∞.

Observe that
√
k (A (b (n/k))) =

√
[P (n)] (A (b (n/)))

=
√
n

(A (b (n/ [P (n)])))√
n/ [P (n)]

∼
√
n (χ (n/P (n)))−1

=
√
n
(
χ
(
χ←

(√
n
)))−1

and as n→∞ we have
√
n (χ (χ← (

√
n)))−1 → 1.
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Finally, we obtain the main result

√
k

(
1
k

n∑
i=1

εb(n/k)−1Xi
(x,∞]− x−α

)
=
√
k

(
1
k

n∑
i=1

εb(n/k)−1Xi
(x,∞]− n

k
(1− F (b (n/k)x))

)
+
√
k
(n
k

(1− F (b (n/k)x))− x−α
)

= W
(
x−α

)
+ o (1)

+
√
kA (b (n/k))

( n
k (1− F (b (n/k)x))− x−α

A (b (n/k))

)
= W

(
x−α

)
+ % (x)

�
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6.B. Tables and Figures

ρ = 0.1, α0 = 1.818 ρ = 0.4, α0 = 1.428 ρ = 0.7, α0 = 1.176 ρ = 0.9, α0 = 1.052

Size q Mean Sd RMSE H0Mean Sd RMSEH0 Mean Sd RMSE H0 Mean Sd RMSE H0

500 0.03 2.0000.491 0.526 0 1.601 0.406 0.441 0 1.322 0.277 0.312 0 1.2050.198 0.251 0

1000 0.03 1.9070.295 0.308 0 1.555 0.224 0.257 0 1.302 0.193 0.231 0 1.1510.124 0.157 0

5000 0.03 1.8610.142 0.148 0 1.506 0.113 0.137 0 1.256 0.081 0.114 0 1.1120.050 0.078 3

10000 0.03 1.8530.101 0.107 0 1.502 0.077 0.107 0 1.251 0.054 0.092 0 1.1070.036 0.065 34

500 0.05 1.9190.354 0.368 0 1.561 0.275 0.305 0 1.323 0.201 0.248 0 1.1700.125 0.171 0

1000 0.05 1.8890.238 0.248 0 1.540 0.196 0.225 0 1.277 0.130 0.165 0 1.1400.086 0.122 0

5000 0.05 1.8530.103 0.109 0 1.516 0.082 0.120 0 1.259 0.059 0.101 0 1.1140.039 0.073 26

10000 0.05 1.8570.076 0.085 0 1.506 0.058 0.097 0 1.254 0.038 0.087 0 1.1090.026 0.062 421

500 0.1 1.8780.231 0.238 0 1.561 0.189 0.230 0 1.306 0.136 0.187 0 1.1470.084 0.127 0

1000 0.1 1.8720.168 0.176 0 1.524 0.125 0.157 0 1.280 0.089 0.136 0 1.1360.055 0.100 0

5000 0.1 1.8590.076 0.086 0 1.519 0.057 0.107 0 1.266 0.039 0.097 34 1.1160.024 0.068 486

10000 0.1 1.8550.049 0.062 0 1.512 0.038 0.092 0 1.262 0.027 0.090 480 1.1130.018 0.063 500

Table 6.B.1. Estimations of the hidden tail index α0 for the bivariate normal

distribution. The �rst column indicates the sample size. The second column de-

scribes the upper quantile of sample used to calculate the hidden tail index. The

other columns represent the mean, the standard deviation and the root mean squared

(RMSE) of the estimates in relation to the true values.

β = 0.1, α0 = 1 β = 0.4, α0 = 1 β = 0.7, α0 = 1 β = 0.9, α0 = 1

Size q Mean Sd RMSE H0Mean Sd RMSEH0 Mean Sd RMSE H0 Mean Sd RMSE H0

500 0.03 1.0970.074 0.122 0 1.112 0.142 0.181 52 1.152 0.231 0.276 101 1.3700.353 0.511 201

1000 0.03 1.0640.045 0.078 0 1.068 0.091 0.114 134 1.112 0.147 0.184 243 1.3460.228 0.414 356

5000 0.03 1.0200.017 0.026 52 1.025 0.040 0.047 257 1.064 0.060 0.088 345 1.2940.102 0.311 500

10000 0.03 1.0110.012 0.016 4271.017 0.027 0.032 500 1.053 0.043 0.069 500 1.2860.074 0.295 500

500 0.05 1.0690.050 0.085 0 1.087 0.110 0.140 123 1.138 0.160 0.211 145 1.4470.304 0.541 234

1000 0.05 1.0450.031 0.055 0 1.053 0.066 0.085 278 1.113 0.115 0.161 295 1.3940.182 0.434 420

5000 0.05 1.0130.013 0.019 3081.023 0.028 0.036 379 1.081 0.047 0.094 453 1.3690.085 0.379 500

10000 0.05 1.0080.009 0.012 5001.019 0.021 0.028 500 1.081 0.034 0.088 500 1.3560.058 0.361 500

500 0.1 1.0450.032 0.055 2501.067 0.066 0.094 245 1.163 0.118 0.201 345 1.5010.189 0.535 420

1000 0.1 1.0280.020 0.034 3521.050 0.051 0.071 401 1.151 0.086 0.174 432 1.4840.137 0.503 451

5000 0.1 1.0090.009 0.013 5001.028 0.021 0.035 500 1.132 0.036 0.137 500 1.4710.060 0.475 500

10000 0.1 1.0060.006 0.008 5001.026 0.014 0.030 500 1.129 0.026 0.132 500 1.4660.043 0.468 500

Table 6.B.2. Estimations of the hidden tail index α0 for the bivariate logistic distri-

bution. The �rst column indicates the sample size. The second column describes the

upper quantile of sample used to calculate the hidden tail index. The other columns

represent the mean, the standard deviation and the root mean squared (RMSE) of

the estimates in relation to the true values.
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Asset markets mean sd min max skewness kurtosis Box.test J.B-test ADF Engle (10)

Stock Brazil 624×10−60.027 -0.212 0.202 -0.513 8.303 52.529* 9990* -12.297* 363*

Stock Russia 620×10−60.022 -0.172 0.288 0.302 14.056 7.681* 28245* -13.290* 290*

Bond Brazil 623×10−60.017 -0.308 0.224 -1.706 58.316 105.396***486862* -11.937* 815*

Bond Russia 526×10−60.011 -0.114 0.114 -1.199 20.862 81.763* 62920* -13.357* 696*

Table 6.B.3. This table shows the summary statistics for the stock and bond index

returns: Stock Brazil is BOVESPA index, Stock Russia is RTSI index, Bond Brazil is

JPM EMBI and Bond Russia is JPM EMBI Russia. Asymptotic p-value are shown

in the brackets. *,**,*** denote statistical signi�cance at the 1, 5 and 10 % level

respectively. The Ljung-Box test statistic for serial correlation up to the 5-th order.

Russian Stock Returns Brazilian Stock Returns

Estimate Std. Error P (> |t|) Estimate Std. Error P (> |t|)
µ -2.084e-02 2.707e-04 < 0.01*** -2.688e-02 2.810e-04 < 0.01***

ω 1.047e-05 3.055e-06 < 0.01*** 1.239e-05 3.381e-06 < 0.01***

α 1.555e-01 2.367e-02 < 0.01*** 9.862e-02 1.444e-02 < 0.01***

β 8.371e-01 1.858e-02 < 0.01*** 8.739e-01 1.917e-02 < 0.01***

υ 3.986e+00 3.093e-01 < 0.01*** 7.168e+00 8.337e-01 < 0.01***

Log Likelihood -8326.444 -8787.509

Russian Bond Returns Brazilian Bond Returns

Estimate Std. Error P (> |t|) Estimate Std. Error P (> |t|)
µ -3.539e-02 5.980e-05 < 0.01*** -4.828e-02 7.514e-05 < 0.01***

ω 6.165e-08 2.950e-08 0.0366 * 1.866e-07 7.835e-08 0.0172 *

α 9.824e-02 1.367e-02 < 0.01*** 1.326e-01 1.541e-02 < 0.01***

β 8.936e-01 1.013e-02 < 0.01*** 8.633e-01 1.148e-02 < 0.01***

υ 4.557e+00 3.711e-01 < 0.01*** 5.142e+00 4.587e-01 < 0.01***

Log Likelihood -12113.71 -12321.91

Table 6.B.4. GARCH(1,1) estimates with t-Studend distributed returns
with υ degrees of freedom.
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Figure 6.B.1. Estimations of the Starica plot (rigth), the distribution of Spectral

measure (middle) and the hidden spectral measure (left) for the optimal number of

exceedances (k) for the �rst period of study of the empirical analysis.

From top to bottom: Bond Russia vs Stock Russia, Bond Brazil vs Stock Brazil,

Stock Brazil vs Stock Russia, Bond Brazil vs Bond Russia, Bond Russia vs Stock

Brazil, Bond Brazil vs Stock Russia.
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Figure 6.B.2. Estimations of the Starica plot (rigth), the distribution of Spectral

measure (middle) and the hidden spectral measure (left) for the optimal number of

exceedances (k) for the second period of study of the empirical analysis.

From top to bottom: Bond Russia vs Stock Russia, , Bond Brazil vs Stock Brazil,

Stock Brazil vs Stock Russia, Bond Brazil vs Bond Russia, Bond Russia vs Stock

Brazil, Bond Brazil vs Stock Russia.
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