
XSiena: The Content-Based
Publish/Subscribe System

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingerichtet von

Dipl.-Ing. Zbigniew Jerzak

geboren am 31.08.1979 in Zabrze, Polen

Betreuender Hochschullehrer: Prof. Christof Fetzer, PhD
Referent: PD Dr.-Ing. Gero Mühl

Datum der Einreichung: 16. April 2009
Datum der Verteidigung: 28. September 2009

ii

Declaration
Herewith I declare that this submission is my own work and that, to the best
of my knowledge, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for
the award of any other degree or diploma of the university or other institute
of higher education, except where due acknowledgment has been made in the
text.

Dresden, September 29, 2009

Zbigniew Jerzak

iv

Preface

Just as packet switched networks constituted a major breakthrough in our
perception of the information exchange in computer networks so have the
decoupling properties of publish/subscribe systems revolutionized the way
we look at networking in the context of large scale distributed systems. The
decoupling of the components of publish/subscribe systems in time, space and
synchronization has created an appealing platform for the asynchronous infor-
mation exchange among anonymous information producers and consumers.
Moreover, the content-based nature of publish/subscribe systems provides a
great degree of flexibility and expressiveness as far as construction of data
flows is considered.
However, a number of challenges and not yet addressed issued still exists in the
area of the publish/subscribe systems. One active area of research is directed
toward the problem of the efficient content delivery in the content-based pub-
lish/subscribe networks. Routing of the information based on the information
itself, instead of the explicit source and destination addresses poses challenges
as far as efficiency and processing times are concerned. Simultaneously, due
to their decoupled nature, publish/subscribe systems introduce new challenges
with respect to issues related to dependability and fail-awareness.
This thesis seeks to advance the field of research in both directions. First it
shows the design and implementation of routing algorithms based on the end-to-
end systems design principle. Proposed routing algorithms obsolete the need to
perform content-based routing within the publish/subscribe network, pushing
this task to the edge of the system. Moreover, this thesis presents a fail-aware
approach towards construction of the content-based publish/subscribe system
along with its application to the creation of the soft state publish/subscribe
system. A soft state publish/subscribe system exposes the self stabilizing
behavior as far as transient timing, link and node failures are concerned. The
result of this thesis is a family of the XSiena content-based publish/subscribe
systems, implementing the proposed concepts and algorithms. The family
of the XSiena content-based publish/subscribe systems has been a subject to
rigorous evaluation, which confirms the claims made in this thesis.

v

vi

Acknowledgments

First of all, I would like to thank my supervisor, Prof. Christof Fetzer, for his
support and advice during the whole duration of my Ph.D. program at the
Dresden University of Technology. I would also like to thank Dr.-Ing. Gero
Mühl for accepting the role of the reviewer of this thesis.

I had the pleasure to be the member of the Systems Engineering group. I would
like to thank my colleagues: Ute, Andrey, Gert, Martin, Torvald, et al.; who
created a friendly and inspiring work environment. I really enjoyed my work
with Robert Fach with whom I have had the pleasure to author two papers and
a book chapter related to this thesis.

I would also like to thank Grzegorz Hryń for the proof reading of this thesis and
his constructive criticism. My work on this thesis has been partially supported
by the Polish Ministry of Science and Higher Education grant number N N516
375034.

Finally, I would like to thank my parents and my wife for their support and
encouragement. Thank you.

vii

viii

Publications

[Jer05] Zbigniew Jerzak. Highly Available Publish/Subscribe. HASE ’05:
Supplement Proceedings of the Ninth IEEE International Symposium on
High Assurance Systems Engineering, Heidelberg, Germany, October
2005, pp. 11–12. IEEE Computer Society.

[JF06] Zbigniew Jerzak and Christof Fetzer. Handling Overload in Pub-
lish/Subscribe Systems. ICDCSW ’06: Proceedings of the 26th IEEE
International Conference Workshops on Distributed Computing Systems,
Lisbon, Portugal, June 2006, pp. 32–37. IEEE Computer Society.

[JF07] Zbigniew Jerzak and Christof Fetzer. Prefix Forwarding for Pub-
lish/Subscribe. DEBS ’07: Proceedings of the 2007 Inaugural Interna-
tional Conference on Distributed Event-Based Systems, Toronto, Canada,
June 2007, pp. 238–249. ACM.

[JFF07] Zbigniew Jerzak, Robert Fach, and Christof Fetzer. Fail-Aware Pub-
lish/Subscribe. NCA ’07: Proceedings of the Sixth IEEE International
Symposium on Network Computing and Applications, Cambridge, MA,
USA, July 2007, pp. 113–125. IEEE Computer Society.

[JF08b] Zbigniew Jerzak and Christof Fetzer. Bloom Filter Based Routing
for Content-Based Publish/Subscribe. DEBS ’08: Proceedings of the
Second International Conference on Distributed Event-Based Systems,
Rome, Italy, July 2008, pp. 71–81. ACM.

[JF08a] Zbigniew Jerzak and Christof Fetzer. BFSiena: a Communication
Substrate for StreamMine. DEBS ’08: Proceedings of the Second Inter-
national Conference on Distributed Event-Based Systems, Rome, Italy,
July 2008, pp. 321–324. ACM.

[FBFJ] Christof Fetzer, Andrey Brito, Robert Fach, and Zbigniew Jerzak.
StreamMine. To appear in: Alex Buchmann and Annika Hinze, editors,
Handbook of Research on Advanced Distributed Event-Based Systems,
Publish/Subscribe and Message Filtering Technologies. IGI Global.

ix

x

Contents

1 Introduction 1
1.1 Decoupling . 2
1.2 Publish/Subscribe Paradigm 4
1.3 Contribution . 4
1.4 Outline . 5

2 Background 9
2.1 Components . 9

2.1.1 Applications . 9
2.1.2 Subscribers . 10
2.1.3 Publishers . 11
2.1.4 Brokers . 12

2.2 Messages . 12
2.2.1 Filters . 12
2.2.2 Events . 13
2.2.3 Advertisements . 13

2.3 Syntax and Semantics . 15
2.3.1 Topic-Based . 15
2.3.2 Predicate-Based . 16
2.3.3 XML-Based . 17
2.3.4 Other Approaches 18

2.4 Architectures . 19
2.4.1 Bus . 19
2.4.2 Hierarchical . 20
2.4.3 Acyclic . 20
2.4.4 Cyclic . 22

2.5 Routing . 22
2.5.1 Event Flooding . 23
2.5.2 Group-Based Routing 24
2.5.3 Simple Routing . 25
2.5.4 Identity-Based Routing 29
2.5.5 Coverage-Based Routing 33
2.5.6 Advertisement-Based Routing 40

xi

xii CONTENTS

2.5.7 Peer-to-Peer Routing 48

3 System Model 53
3.1 Processes . 53
3.2 Clocks . 54
3.3 System Architecture . 56

4 Prefix Forwarding 57
4.1 Outline . 58
4.2 Filter Routing . 59

4.2.1 Filter Construction 59
4.2.2 Routing Tree . 60

4.3 Event Forwarding . 65
4.3.1 Using Forwarding Tree 67
4.3.2 Forwarding Tree Size 68

4.4 Consistency Issues . 69
4.4.1 Tree Optimizer . 70
4.4.2 Routing Tree Management 71

4.5 Related Work . 74

5 Bloom Filter-Based Routing 77
5.1 Overview and Motivation . 77
5.2 Bloom Filters . 80

5.2.1 False Positives Probability 80
5.2.2 Counting Bloom filters 81
5.2.3 Bloom filter implementation 82

5.3 Filter Routing . 83
5.3.1 sbsposet . 84
5.3.2 sbstree . 85

5.4 Event Forwarding . 87
5.5 Improved Event Forwarding 88
5.6 Parallelization . 90

5.6.1 skiptree . 91
5.6.2 Filter routing and event forwarding 93
5.6.3 Discussion . 95

5.7 Related Work . 95

6 Fail-Awareness 97
6.1 Definition . 99
6.2 The Upper Bound on Transmission Delay 99
6.3 Fail-Aware Publish/Subscribe 103
6.4 Related Work . 105

CONTENTS xiii

7 Soft State 107
7.1 Motivation . 108
7.2 Routing State Validity . 109

7.2.1 Validity Time . 110
7.2.2 Validity Interval . 112
7.2.3 Extending Validity Interval 112
7.2.4 Utilization and Uncertainty 114

7.3 Liveness and Safety . 115
7.4 Practical Aspects and Implementation 116

7.4.1 API . 117
7.4.2 Unsubscriptions and Unadvertisements 118

7.5 Related Work . 119

8 Implementation 121
8.1 Programming Applications 121
8.2 Developer View . 124

9 Evaluation 127
9.1 Prefix Forwarding . 129

9.1.1 Simulation Results 132
9.1.2 Using Real-Life Data 133

9.2 Bloom Filter-Based Routing 140
9.2.1 Counting sbstree 143
9.2.2 System benchmarks 144

9.3 Fail-Awareness . 148
9.3.1 Clock Drift . 149
9.3.2 The Upper Bound on Transmission Delay 150
9.3.3 Upper Bound versus NTP 153

9.4 Soft State . 156

10 Conclusions 165
10.1 Summary . 165
10.2 Outlook . 166

Symbols 169

xiv CONTENTS

List of Figures

1.1 Comparison of communication paradigms 3

2.1 Components of the publish/subscribe system 10
2.2 Nondeterministic finite state automaton [DF03] 19
2.3 Brokers connected into a bus architecture 20
2.4 Brokers connected into a hierarchical architecture 21
2.5 Brokers connected into an acyclic architecture 21
2.6 Brokers connected into a general cyclic architecture 22
2.7 Event flooding in a broker overlay 23
2.8 Group-based routing in a broker overlay 24
2.9 Event flooding and simple routing strategies 25
2.10 Simple routing in a broker overlay 27
2.11 Identity-based routing strategy 29
2.12 Identity-based routing in a broker overlay 31
2.13 Unsubscription using identity based routing strategy 32
2.14 Partially ordered set (poset) [CRW01] 36
2.15 Poset-derived forest [TK06] 37
2.16 Forwarding table [CW03] . 38
2.17 Perfect and imperfect filter merging 38
2.18 Filter routing using filter merging 39
2.19 Advertisement-based routing strategy 40
2.20 Advertisement-based routing in a broker overlay 43
2.21 Information dissemination in Scribe [Que08] 50
2.22 Directed event routing in CAN [RHKS01] 51

3.1 UDP-based ping message processing time 54
3.2 UDP-based ping message latencies (RTT) 55
3.3 Drift rate of the time stamp counter (rdtsc) for three Planet-

Lab hosts . 55

4.1 Overview of prefix event forwarding 58
4.2 Routing Tree . 61
4.3 Filter splitting along the x axis 62
4.4 Event forwarding using the routing tree 65

xv

xvi LIST OF FIGURES

4.5 Updating routing tree between epochs 72
4.6 Broker and tree optimizer interaction 74

5.1 Routing of filters . 78
5.2 Forwarding of events . 79
5.3 False positive probability p as a function of number of ele-

ments n and the size m of the Bloom filter 81
5.4 The sbsposet storing filters from Table 5.1 84
5.5 The sbstree storing subscriptions from Table 5.1 86
5.6 The counting algorithm variant of the sbstree from Fig-

ure 5.5 storing filters from Table 5.1 89
5.7 Speedup of Bloom filter operations using different CUDA devices 91
5.8 The skiptree containing filters from Table 5.1 92

6.1 Calculating an upper bound on the transmission delay td(m) =

d − c. 101
6.2 Using faster helper message to improve upper bound calculation102
6.3 An improved upper bound (it is assumed that ρ = 0) 102
6.4 The components of the propagation delay for a three host network104

7.1 Subscription propagation issues due to timing relations with
advertisements . 109

7.2 Propagation of a subscription using the validity time approach 110
7.3 Propagation of a filter using the validity interval approach . . . 111
7.4 Extending validity interval with the upper bound on the propa-

gation delay . 113
7.5 The overview of the soft state XSiena architecture 117

8.1 XSiena broker-related interfaces 122
8.2 Packages in the XSiena system 124
8.3 The developer view of the CDispatcher 126

9.1 Routing tree size (number of nodes) 129
9.2 Routing tree height . 130
9.3 Forwarding tree size (number of nodes) 131
9.4 Forwarding tree height . 131
9.5 False positives count for different tree optimizer thresholds . . 132
9.6 Tree optimizer updates of the routing tree – 30% threshold . . 133
9.7 Tree optimizer updates of the routing tree – 80% threshold . . 134
9.8 Routing tree layout – set A 136
9.9 Routing tree layout – set B 136
9.10 Forwarding tree sizes – set A and set B 137
9.11 Event forwarding speed . 138
9.12 Poset versus routing tree creation time 139
9.13 Content-based matching using routing tree 139

LIST OF FIGURES xvii

9.14 Filter insertion (routing) time 140
9.15 Event matching (forwarding) time 141
9.16 False positives probability 142
9.17 Number of predicates matching a single event 144
9.18 Event forwarding with increasing number of bits set per event 145
9.19 Event forwarding with constant number of bits set per event . 145
9.20 Benchmarks setup . 146
9.21 Latency for varying number of brokers 147
9.22 Throughput for varying number of brokers 147
9.23 Local throughput for varying distributions 148
9.24 Drift rates of three PlanetLab hosts 150
9.25 Drift rate of a single PlanetLab host 151
9.26 Optimized boot up of the upper bond – local setup 152
9.27 Unoptimized boot up of the upper bond – local setup 152
9.28 Upper bound on transmission delay and processing time . . . 153
9.29 Upper bound on transmission delay error – local setup 154
9.30 Upper bound versus NTP – local setup 154
9.31 Upper bound on transmission delay error – global setup 155
9.32 Upper bound versus NTP – global setup 155
9.33 Different network setups for the soft state XSiena experiments 156
9.34 Filter statistics for the ipeurope setup 158
9.35 Uncertainty-based validity interval extension 159
9.36 Comparison of uncertainty-based and upper bound-based uti-

lization . 160
9.37 Upper bound-based and real-time-based uncertainty calculation 161
9.38 Advertisements expiration over time 162
9.39 Total time without advertisement 163

xviii LIST OF FIGURES

List of Tables

2.1 Filters and events in predicate-based semantics 17
2.2 Coverage relation between filters in predicate-based semantics 34
2.3 Intersection relation between filters in advertisement-based

semantics . 41

4.1 Evaluation of filter predicates 60
4.2 Filter splitting examples . 62

5.1 The set of subscriptions used in following examples 83

9.1 Parameters of the filter and event generation library 128
9.2 Example filters using the AOL data 135

xix

xx LIST OF TABLES

Listings

2.1 An abstract subscriber API 11
2.2 An abstract publisher API . 11
2.3 An extended publish/subscribe API 14
2.4 Example XQuery-based filter [DRF04] 17
2.5 Example XML event . 18
2.6 Example routing table API [JF08a] 45
4.1 Insertion of a new filter into the routing tree 63
4.2 Event forwarding – creation of the forwarding tree 67
4.3 Event forwarding – using the forwarding tree 68
5.1 Bloom filter extraction during event matching 87
7.1 The soft state XSiena broker interface. 118
7.2 The extended soft state pub/sub broker interface. 118
8.1 Latency measuring application 123
8.2 Latency measuring system 124
9.1 An extract from the AOL log data 134

xxi

xxii LISTINGS

Chapter 1

Introduction

Packet switched networks were a major breakthrough in our perception of
the information exchange. Prior to their introduction, scientists were con-
sidering the adoption of the standard telephone systems to the needs of data
transmission. One of the major issues which they were faced with was the
need to amortize the connection setup cost, which could easily be as high as
50% for an intercontinental data exchange. Moreover, a set up connection was
failure-prone as the fixed wiring between the sender and the receiver implied
that the probability of failure was exponentially proportional to the number
of components involved in the forwarding of the data. The above problems
seemed to be the major obstacles which were almost impossible to circum-
vent using the telephone system design approach. It was only until the Paul
Baran at Rand Corporation and Donald Davis at National Physical Laboratory
introduced the new concepts of transitivity [Bar64] and packet that the above
problems could be finally solved.
The idea of the packet assumed that in order to provide fairness and prevent
link monopolization by one of the sources, the data should be split up into
packets. Packets, being small pieces of information, can naturally commute on
the links solving the problem of link sharing. The transitivity concept assumed
that every node which receives a packet, and is not a destination node, tries to
forward this packet using its routing configuration. In order for the transitivity
approach to work another fundamental change had to be made. Instead of
implicit source and destination addresses used by the telephone systems, Paul
Baran suggested using explicit addresses embedded into the meta-data of every
packet. This approach allowed to avoid the connection setup costs, as no
explicit connections needed to be created prior to data transmission. This
approach also created a fault-tolerant network as the reliability of the data
transfer increased with the number of components, providing there was on
average more than one outgoing edge per system node.
The ideas of Paul Baran and Donald Davies were implemented in 1969
with the support of the Advanced Research Projects Agency (ARPA) direc-
tor James Licklider. In 1974 they were further refined by Vinton Cerf and

1

2 CHAPTER 1. INTRODUCTION

Robert Kahn [CK74] (for a recent edition see [CK05]) to form the modern
TCP/IP [CDS74] protocol. However, the widespread of the Internet and its
massive growth in recent years has caused the TCP/IP networking to become a
„success disaste” [Jac06]. At the time when TCP/IP was developed the amount
of information being transmitted was low. There existed a few machines and
the IP address space was relatively stable. Moreover, the TCP/IP protocol has
been designed so as to naturally support the point-to-point conversation model,
making broadcast a not feasible approach.
Contemporary communication networks are different from those of over thirty
years ago. The focus is not put on conversation of two entities anymore. Nowa-
days, an N-to-M (or many-to-many) data dissemination model has become
the prevalent type of communication in the Internet. In the N-to-M model,
multiple clients are interested in the same data items. Simultaneously, a single
client collects data from multiple sources. The TCP/IP communication model
has proved not to be well suited for such scenarios. An example might be 2006
Winter Olympics when an NBC router became severely congested by holding
6000 copies of the same video data requested by different clients [Jac06]. This
implies 6000 users making a TCP/IP connection and downloading the same
file. The contemporary networking infrastructures try to overcome such prob-
lems on the global scale [DPW04, Lei07] however, even such solutions are
vulnerable [SK08] due to the their underlying design principles inherited from
the TCP/IP.

1.1 Decoupling
The popularity of the TCP/IP model has changed the domain in which it was
designed to operate. The solutions provided by the TCP/IP are still valid,
however its success introduced new challenges which need to be addressed.
The new challenges include a large amount of users with multiple machines,
each storing large amount of data which needs to be synchronized. Recent
studies have shown that the amount of data we are able to collect and store has
been increasing exponentially [TB00] for the past 20 years. On the other hand,
the prices for the long distance network bandwidth have remained relatively
stable [Gra03, Jac07]. The increasing gap between the amount of information
we are able to store and process and the amount of information we are able
to transmit is leading to the shift towards the Content-Centric Networking
(CCN) [CPB+05, Jac06, Jac07].
The CCN paradigm states that users are no longer interested in the data sources,
instead, the data itself has become the focal point. The CCN paradigm changes
the semantics of the data exchange over computer networks. The explicit
addresses put on transmitted data are obsoleted and the data itself is exposed so
as to become the address. Removing explicit source and destination addresses,
Content-Centric Networking effectively decouples the producer and consumer

1.1. DECOUPLING 3

Figure 1.1: Comparison of communication paradigms

of data.
Decoupling of content producers and consumers is the basic approach towards
construction of asynchronous, distributed systems. Decoupling removes the
dependencies between the communication components reducing the amount of
synchronization needed. The process of decoupling has started with the intro-
duction of the Remote Procedure Calls (RPC) [BN84, TA90, CHY+98] which
allowed to partially hide the complexity of explicit network communication
and introduced the notion of synchronization decoupling [YSTH87, Car93].
Synchronization decoupling assumes that data consumers are not blocked
when awaiting for the data to arrive. Moreover, content producers do not block
when waiting for the consumers to receive the content they have created.
The idea of synchronization decoupling has been strengthened by the formal-
ization of the observer design pattern [GHJV95], which allows data consumers
to register their interest directly with producers and become notified about
objects of interest whenever those are created or changed. Simultaneously to
the introduction of synchronization decoupling the concepts of shared virtual
memory [LH89] and tuple spaces [CG89] have been introduced. These new
concepts allowed to decouple participants of the distributed system in terms of
time and space.
Space decoupling allows the content producers and consumers to remain
anonymous to each other. Space decoupling implies that neither content
producers know the identity of the consumers, nor content consumers are
aware of the source of the data.
Time decoupling frees the content producers and consumers from the need
to be active at the same time in order to exchange data. Specifically, content
producers can create data whilst there are no consumers for it. Simultaneously,
consumers can consume data for which producers have already left the system.

4 CHAPTER 1. INTRODUCTION

Both space and time decoupling and the concepts behind the tuple spaces
have been subsequently employed in message queuing systems [BHL95] and
Message Oriented Middleware (MOM) [BCSS99]. Figure 1.1 outlines the
decoupling properties and their adoption in different systems.

1.2 Publish/Subscribe Paradigm
Decoupling in space, time and synchronization has been unified for the first
time in the publish/subscribe paradigm [EFGK03] – see Figure 1.1. Pub-
lish/subscribe paradigm allows for strictly decoupled communication between
publishers (content producers) and subscribers (content consumers).
The first system to adopt the publish/subscribe paradigm was the Informa-
tion Bus [OPSS93]. The Information Bus system, similar in concept to the
generative communication model of tuple spaces, implemented a topic-based
publish/subscribe paradigm. The Information Bus and other topic-based pub-
lish/subscribe systems [SB89, AEM99, SM02, BEG04, BBQ+07] provide
self-describing objects combined with anonymous communication. Shortly
after the introduction of the topic-based publish/subscribe systems the increas-
ing need for heterogeneity and expressiveness has lead to the introduction of
the content-based [RW97] and type-based [Eug07] publish/subscribe systems.
The publish/subscribe interaction paradigm naturally implements the con-
cepts behind the Content Centric Networking. The decoupling properties
unified within the publish/subscribe paradigm provide a loosely coupled form
of interaction required in large scale dynamic distributed systems [Que07].
Consequently, the publish/subscribe paradigm has experienced a widespread
adoption in the distributed systems community, becoming an active field of
research. The decoupled communication and resulting reconfigurability and
scalability have given rise to multiple implementations of the publish/sub-
scribe paradigm, which are used by many applications [Jac03, ZSB04, PC05b,
MSSB07, Tar08b] and standards [SM02, Gro04].

1.3 Contribution
In this thesis it is argued that design of the content-based publish/subscribe
systems should follow the principles of the end-to-end argument [SRC84]
in that the content-based matching functionality should be moved from the
content-based network into the publish/subscribe application layer.
The case for the above argument is made by describing the design, implementa-
tion and evaluation of the family of content-based systems called XSiena. The
XSiena publish/subscribe system is the first system to provide a unified solution
to the content-based routing at the edge of the content-based network. The
approach proposed in this thesis substantially differs from the previous work

1.4. OUTLINE 5

in that domain by allowing for semantically unrestricted content-based routing
with the support for decoupling of the content-based network components in
the domains of time, space and synchronization.
The main contributions of this thesis with respect to the development of the
XSiena content-based systems family include:

Prefix-based Forwarding The development and implementation of algorithms
allowing to abstract the result of the content-based matching at the ap-
plication level. The result can be subsequently encoded within prefixes
attached to messages. The prefix is the only part of the message which
needs to be evaluated by a content-based system for the routing purposes.
It is also shown how to achieve consistency between routing structures
in a distributed system.

Bloom filter-based Routing It is shown how to use Bloom filters [Blo70]
to develop a fixed size digest of a content-based event matching re-
sult. Bloom filter-based routing, similarly to prefix-based forwarding
performs the content-based matching only once per message, in the
application layer. The proposed matching algorithm is linear with the
number of filters matching a given event, regardless of the total number
of filters in the system.

Moreover, within this thesis it also shown how to solve practical problems
in the domain of large scale distributed systems using content-based XSiena
system as their communication backbone. These problems are especially
challenging, due to the decoupled nature of the content-based systems:

Fail-Awareness The fail-aware XSiena system presents, based on the Timed
Asynchronous Distributed System Model [CF99], a practical approach to
detection of timely message delivery in content-based publish/subscribe
systems. The detection of timely message delivery is performed without
the need to introduce expensive clock synchronization mechanisms. To
the best of our knowledge, the fail-aware XSiena system is the first
system to offer a lightweight and fully decoupled content-based routing
substrate which can be used in soft real-time applications.

Soft State It is shown how the fail-aware XSiena system can be success-
fully used to cope with the timing and causality issues often found in
large scale distributed systems. Specifically, soft state XSiena system
demonstrates how to remove hard state from the content-based network,
allowing it to easily recover from transient links and node failures.

1.4 Outline
The remainder of this thesis is organized as follows: Chapter 2 combines
the presentation of the related work in the area of the content-based systems

6 CHAPTER 1. INTRODUCTION

with the introduction of the basic terminology used in this thesis. The discus-
sion focuses on the types of architectures and associated routing strategies
used in content-based publish/subscribe systems along with the semantics and
representation of the information being exchanged.
Chapter 3 (based on [JFF07, JFF08]) presents the system model for the XSiena
family of content-based systems. The system model describes the assumptions
being made about the properties of processes, communication channels and
possible failures. Chapter 3 presents also the semantics of the XSiena family of
content-based systems to form a foundation upon which the following chapters
are built.
Chapter 4 (based on [JFF07]) presents the algorithms which encode the re-
sults of the application-level content-based matching within the prefix trees.
Chapter 4 discusses the benefits of the prefix trees when compared to tra-
ditional content-based publish/subscribe systems and their influence on the
content-based information forwarding. Moreover, the discussion focuses on
the challenges related to the prefix trees, especially regarding the consistency
of the distributed prefix trees in the context of the asynchronous updates.
Chapter 5 (based on [JF08b, JF08a, FBFJ]) presents algorithms allowing to
construct fixed-size digests of the results of the content-based matching. Specif-
ically, chapter 5 addresses the problem of the usage of Bloom-filters as a
compact representation of the results of the content-based matching. Chapter 5
presents also routing algorithms taking advantage of the Bloom filter-based
content representation allowing for significant improvement in the routing
speed.
Chapter 6 (based on [JFF07]) presents the design and implementation of
the fail-aware content-based system. The fail-awareness property allows the
system to calculate an upper bound on the propagation delay of messages.
The upper bound can be used to determine whether a message received at the
destination node is late or not. Chapter 6 argues that the fail-aware extension
to the XSiena content-based system allows to use content-based networks in
lightweight, soft real-time applications.
Chapter 7 applies the results presented in Chapter 6 to construct a soft state
XSiena system. It is shown how the construction of the soft state content-based
network allows to eliminate the need to store hard state in the nodes which
have not created it. Specifically, it is shown how the soft state design allows
the system to cope with the timing issues and transient node and link failures.
Chapter 9 presents the evaluation of the algorithms and architectures presented
in Chapters 4, 5, 6 and 7. Chapter 9 specifically focuses (Chapters 4 and
5) on the micro-benchmarks for the performance of the routing algorithms.
Moreover, results obtained in the PlanetLab [Ros05] environment (Wide Area
Networks), which highlight the specific issues discussed in Chapters 6 and 7
are presented.
Chapter 10 concludes this thesis and provides the outlook for the XSiena family

1.4. OUTLINE 7

of content-based publish/subscribe systems.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter presents an overview of recent research activities related to the
publish/subscribe systems. It describes the basic components and concepts
related to the publish/subscribe systems, along with the types and seman-
tics of messages, followed by the description of common publish/subscribe
architectures and corresponding data routing models.
This chapter introduces the basic concepts and terms related to the publish/sub-
scribe systems and content-centric networking so as to provide the necessary
background for the remainder of this thesis. The discussion within this chapter
is not limited to content-based publish/subscribe systems, however it primarily
focuses on the architectures which are relevant to the XSiena system.

2.1 Components
This section discusses the basic publish/subscribe components and their inter-
actions. The component model is to a large extent independent of the specific
variant of the publish/subscribe system.

2.1.1 Applications
The goal of publish/subscribe systems is to allow for a decoupled communi-
cation between the users of the system. In a typical scenario [Pie04, MFP06,
FBFJ], the publish/subscribe system itself is a layer used by other applica-
tions to exchange data – see Figure 2.1. Applications use publish/subscribe
system to both consume and produce (publish) content. Applications consum-
ing content are called subscribers, while applications producing content are
called publishers. Application are not limited to either one or another role
– it is common that a single application plays the role of both publisher and
subscriber.
The content production and consumption is asynchronous in that an applica-
tion can immediately continue the execution after dispatching the data to the

9

10 CHAPTER 2. BACKGROUND

Figure 2.1: Components of the publish/subscribe system

publish/subscribe system. Similarly, for the content consumption, application
is informed about new data via asynchronous upcall from the publish/sub-
scribe layer. The asynchronous content production and consumption allows
the applications to remain decoupled with respect to time – applications can
produce content for which there are no consumers yet. Similarly, applications
consuming data can receive content for which the producing applications have
already left the system or have crashed.
Applications, unless explicitly instrumented, remain anonymous to each other.
This implies that content consumers are not aware about the origin of the con-
tent they receive via the asynchronous upcall. Similarly, the content producers
are not aware of the potential consumers of the content they publish. The
underlying publish/subscribe system transparently connects content producers
and consumers without revealing their identities. The decoupled properties
of the publish/subscribe system imply that most applications are message-
based [EFGK03, Pie04].
The above principles allow publish/subscribe systems to host multiple dis-
tributed application types, including financial services [OPSS93], mobile
computing [Tar08b], real-time systems [Bar07, DXGE07], industrial automa-
tion [Jac03], scientific computation [SL07], content distribution [CLS03] and
many more [ZSB04, PC05b, MSSB07].

2.1.2 Subscribers

Applications willing to receive content play the role of subscribers. A sub-
scribing application usually plays the role of the observer (observer design
pattern [GHJV95]) by implementing an upcall provided by the publish/sub-
scribe layer. The main task of the upcall is to asynchronously deliver messages
matching the interest of the subscriber. Upcalls are usually provided in form

2.1. COMPONENTS 11

1 //subscriber interface
2 interface Subscriber extends Deliverable {
3 void subscribe(Interest i);
4 void unsubscribe(Interest i);
5 void notify(Message m);
6 }

8 //upcall interface
9 interface Deliverable {

10 void deliver(Message m);
11 }

Listing 2.1: An abstract subscriber API

1 //publisher interface
2 interface Publisher {
3 void publish(Message m);
4 }

Listing 2.2: An abstract publisher API

of interfaces or abstract classes – Listing 2.1 shows the Deliverable upcall
interface.
In order to be able to receive data every subscribing application must be able to
express its interest. Application express their interest using a method provided
by the publish/subscribe layer. Listing 2.1 presents the subscribe method
which can be used by the application to specify the content of interest. It is
common for the subscribemethod to take the Deliverable upcall interface
as parameter [CRW01, EFGK03, PEKS07].
Subscribers are stateful in that they need to manage the interest they use to
describe the content of interest. Therefore, subscribers not interested in a given
content anymore can use the unsubscribe method to express the removal
of their interest – the parameter to the unsubscribe method. Subscribers
leaving the publish/subscribe system should unsubscribe to all previously
issued interest.

2.1.3 Publishers

Content producers in publish/subscribe systems take the role of publish-
ers. Similarly to subscribes the content is produced in form of messages,
which are published into the publish/subscribe layer. Publishers are typically
lightweight, stateless entities as they usually do not receive any messages
from the publish/subscribe layer. Listing 2.2 shows a typical publisher inter-
face [CRW01, M0̈2, PEKS07]. Content, in form of messages, is published
using the publish method call. Stateless publishers, in contrast to stateful

12 CHAPTER 2. BACKGROUND

subscribers, imply cheap departures and arrivals as no additional actions need
to be taken upon occurrence of such event.

2.1.4 Brokers
Brokers form the backbone of the publish/subscribe system. Depending on
the system type and architecture their number and interconnections can vary.
Applications are decoupled from the actual brokers and their structure by the
publisher and subscriber interfaces. The number of brokers can range from
a single one in case of centralized systems [SA97] to multiple in case of dis-
tributed infrastructures [CRW01, Pie04]. Multiple brokers can be arranged
into different architectures, most common being: bus [OPSS93], hierarchi-
cal [CRW01, CDNF01], acyclic [M0̈2, FJLM05, Tar08b], cyclic [LMJ08] and
peer-to-peer [CDKR02, Pie04, VRKvS06].

2.2 Messages
This section discusses how subscribers express their interest and how publishers
disseminate the content in the publish/subscribe networks. Specifically, in
the remainder of this thesis it is assumed that all communication between the
components of the publish/subscribe system is carried out using messages.

2.2.1 Filters
In order to receive content applications have to express their interest. In
publish/subscribe systems interest is described using filters. A filter f is a
function which evaluated for its argument (content) returns the value of either
true (one) or false (zero):

f : C→ {0, 1} (2.1)

where C is the domain of the filter function f representing all content for
which f can be evaluated. A filter returning true implies that the content for
which it was evaluated matches the interest of the filter issuer. Zero is returned
otherwise. The exact definition of the matching process depends on the type of
filters and content used in the publish/subscribe system. The specific discussion
regarding the matching process is deferred to the later part of this thesis – see
Section 2.3.
The selectiveness of filter functions is bounded by two extremities: a filter f∅
which never selects any published content and filter f∞ which always selects
all published content. It is worth noting that some publish/subscribe systems,
e.g. [CRW01], do not provide the possibility to express f∞. Subscriber issuing
multiple filters f1, f2, . . . , fn creates a union between the interests described by
the filters: f1 ∪ f2 ∪ . . . ∪ fn.

2.2. MESSAGES 13

In publish/subscribe systems filters describing the subscriber’s interest are
propagated in form of subscription messages. Subscription messages are
issued by the subscribers using the subscribemethod. Subscription messages
encapsulate filters and contain additional implementation specific meta-data.
A subscriber wishing to revoke his interest issues an unsubscription message
using the unsubscribe method (see Section 2.1.2) which contains a filter
describing his disinterest.

2.2.2 Events
Content in publish/subscribe systems is published in form of events. Despite
recent efforts [CABB04, WJLS04, WJL04, FCMB06], in most of the pub-
lish/subscribe systems [CRW01, Pie04, Tar07] filters must match events as
far as syntax and semantics is concerned for the data exchange to take place.
Using Equation 2.1 it can be said that events must form the domain C of the
corresponding filter function f .
The goal of the publish/subscribe backbone is to deliver content to the interested
applications. This implies that subscribers must be notified about events
matching their filters. Event e is delivered (deliver(e,S) = true) to subscriber
S if and only if any of the filters FS = { f1, . . . , fn} issued by the subscriber S
matches event e:

deliver(e,S) = true ⇔ ∃ f∈FS : f (e) = 1 (2.2)

In publish/subscribe systems events are propagated in form of publication
messages. Publication messages are issued using the publish method – see
Section 2.1.3.

2.2.3 Advertisements
Advertisements are filters which can be optionally [PEKS07] used by publish-
ers to summarize events they are going to produce in the future. Advertisements
play the role of additional constraints which need to be satisfied in order to
deliver events to the applications. An advertisement a is a function which
evaluated for its argument returns the value of either true (one) or false (zero):

a : C→ {0, 1} (2.3)

where C is the domain of the advertisement a representing all content for which
a can be evaluated. Similarly to filters, the selectiveness of the advertisement
function is bounded by two extremities: an advertisement a∅ which never
matches any published events and advertisement a∞ which always matches
all published events. Publisher issuing multiple advertisements a1, a2, . . . , an

creates a union between the events described by the advertisements: a1 ∪ a2 ∪

. . . ∪ an.

14 CHAPTER 2. BACKGROUND

1 //extended publisher interface
2 interface Publisher {
3 void publish(Event e);
4 void advertise(Advertisement a);
5 void unadvertise(Advertisement a);
6 }

8 //subscriber interface
9 interface Subscriber extends Deliverable {

10 void subscribe(Filter f);
11 void unsubscribe(Filter f);
12 void notify(Event e);
13 }

15 //upcall interface
16 interface Deliverable {
17 void deliver(Event e);
18 }

Listing 2.3: An extended publish/subscribe API

In publish/subscribe system which uses advertisements an event e can be issued
(publish(e,P) = true) by the publisher P if and only if any of the advertisements
AP = {a1, . . . , an} issued prior to the publication of the event e by the publisher
P matches event e:

publish(e,P) = true ⇔ ∃a∈AP : a(e) = 1 (2.4)

Based on Equation 2.4 the Equation 2.2 can be rewritten as:

deliver(e,S) = true ⇔
(
∃a∈AP : a(e) = 1

)
∧

(
∃ f∈FS : f (e) = 1

)
(2.5)

which can be read as: an event e, published by the publisher P, is delivered to
the subscriber S if and only if there exists an advertisement a issued by the
publisher P and a filter f issued by the subscriber S, such that both match e.
Listing 2.3 shows the extended publisher API (with respect to Listing 2.2),
which utilizes advertisements. Publisher can summarize the content it is going
to publish using the advertise method. Advertisements are propagated in
form of advertisement messages. Analogously as in the case of unsubscribe
method, publisher not willing to publish given content anymore can use the
unadvertise method to announce the change in the content it is going to
produce. The change will be propagated in form of unadvertisement messages.
The introduction of advertisement messages changes the publishers into state-
ful components – cf. Section 2.1.3. Stateful publishers must manage the
advertisement messages for events they have published and unlike stateless
publishers cannot leave the network without issuing corresponding unadver-
tisement messages.

2.3. SYNTAX AND SEMANTICS 15

2.3 Syntax and Semantics

The actual semantics of events, filters, and advertisements depends on the
specific implementation of the publish/subscribe system. One of the aspects
with the strongest influence on the syntax and semantics of events and fil-
ters in publish/subscribe systems is the type of the publish/subscribe system
itself – whether it is topic-based [OPSS93], content-based [CRW01] or type-
based [Eug07]. Moreover, the type of the broker architecture and the domain
in which the publish/subscribe system should operate determine the semantics
and syntax of messages. This section outlines the most common variants of
the semantics of the publish/subscribe systems.

2.3.1 Topic-Based

Topic-based semantics (also known as subject-based) has its origins in the
group communication systems [Pow96]. It structures the event space by divid-
ing it into flat [OPSS93, CDKR02, BBQ+07, MZV07] or hierarchical [BEG04]
topics.
A flat topic structure implies that subscriptions must specify an identifier
describing a given topic [CDKR02]. In most cases such identifier would be
a string literal identifying, e.g., the name of the software package to which
updates user wants to subscribe [MZV07].
Hierarchical topics, on the other hand, naturally represent the tree-like arrange-
ments of nested objects, terms or concepts. An example hierarchical topic
might have the following structure: /Hardware/Memory Structures/Design
Styles/Cache Memories – which would indicate the B.3.2 Cache Mem-
ories term in the ACM Computing Classification System1. In a topic based
publish/subscribe system, every publication dealing with Cache Memories
would be published under this topic. Publishing under the given topic usu-
ally implies attachment of the topic or its identifier to every publication – for
examples see [CDKR02] or [Que07].
Topic-based semantics, has obvious limitations, especially with respect to the
selectiveness of the topics. A publication matching multiple topics needs to be
published multiple times, which for a broad spectrum of publications might
cause severe link congestions, as multiple copies of the same message need to
be sent over the same link – see also Section 1.
The limitations of the topic-based representation has led to the development of
the content-based filters and events. The following sections present the two
most common content-based semantics: predicate-based and XML-based.

1See: http://www.acm.org/about/class/1998/

http://www.acm.org/about/class/1998/

16 CHAPTER 2. BACKGROUND

2.3.2 Predicate-Based
Predicate-based semantic is one of the most popular among the content-based
publish/subscribe systems [CRW01, M0̈2, Pie04, ZSB04, FJLM05, TK06,
CH06, TB07]. The predicate-based semantics states that a filter f is a conjunc-
tion of n predicates:

f = {p1 ∧ . . . ∧ pn} (2.6)

where predicate pi is a function which evaluates to either true (one) or false
(zero) for a given argument.
In predicate-based semantics, an event e is defined as a set (disjunction) of n
values:

e = {v1 ∨ . . . ∨ vn} (2.7)

where a value v is an argument to the predicate function p.
Using predicate-based semantics filter f matches event e if and only if:

f (e) = 1 ⇔ ∀pi∈ f∃vi∈e : pi(vi) = 1 (2.8)

In most predicate-based semantics filters (with notable exception of [CRW01])
are identical to advertisements. Following this convention advertisement a can
be defined as a conjunction of n predicates:

a = {p1 ∧ . . . ∧ pn} (2.9)

An advertisement a matches event e if and only if:

a(e) = 1 ⇔ ∀pi∈a∃vi∈e : pi(vi) = 1 (2.10)

A predicate p is usually defined [CRW01, MFP06] as being composed of
attribute name an and attribute constraint ac. Attribute constraint ac itself is
composed of operator op and attribute value av:

p =

an, (op, av)︸ ︷︷ ︸
ac

 (2.11)

An example predicate p might have the following syntax p = (temp, >, 25).
In general, different content-based publish/subscribe systems use different
possible attribute names and attribute constraints when using predicate-based
message semantics. Those systems vary therefore in terms of expressiveness
and complexity of the content-based filters and events they use.
Similarly to predicates, event values v are defined as attribute name an and
attribute value av pairs:

v = (an, av) (2.12)

An example attribute value v matching the above example predicate p =

(temp, >, 25) would have the following syntax v = (temp, 30). It is important to

2.3. SYNTAX AND SEMANTICS 17

Filter f Event e f (e) = 1

{y < 8} {y = 8} false

{x = ∗} {x = 7} true

{x > 5} {x = 7} true

{x > 5} {x = 7; y = 10} true

{x > 5; y < 8} {x = 7} false

{x > 5; y < 8} {x = 7; y = 5} true

Table 2.1: Filters and events in predicate-based semantics

note that attribute names and attribute values used in events must semantically
match the attribute names and attribute constraints used in filters.
Table 2.1 shows example filters and events in a predicate-based semantics.
The notation used in Table 2.1 and throughout the remainder of this thesis
shorthands the predicate notation for the sake of brevity. Moreover, the con-
junction between the predicates is implicit and denoted via the semicolon sign.
Predicate x = ∗ matches every attribute name and attribute value pair where
attribute name equals x.
In case of the events, the predicate syntax is omitted and implicit disjunction
denoted by the semicolon sign is used instead. Table 2.1 illustrates also the
result of the content-based match between the filter f and event e. The result
of the content-based match f (e) remains unchanged if advertisements identical
to filters in Table 2.1 are used instead. The reader is referred to [MFP06] for a
more thorough overview of most commonly used attribute names and attribute
constraints types.

2.3.3 XML-Based

Another popular content-based semantics is based on the eXtended Markup
Language (XML) [BPSMY06]. Content-based systems using XML-based
semantics [SCG01, CF04, DRF04] construct events as XML documents. Such
systems usually rely on the subset of XPath [DeR99] or XQuery [BFS07]
query processor syntax in order to specify filters.

1 msg/nitf
2 [head/pubdata
3 [@edition.area = "SF"]]

Listing 2.4: Example XQuery-based filter [DRF04]

Listing 2.4 shows an example of the XQuery filter which selects documents
having a root element nitf with a child element head, which itself contains

18 CHAPTER 2. BACKGROUND

child element pubdata whose attribute @edition.area has the value SF.
Listing 2.5 shows an example XML document matching the above query.

1 <?xml version="1.0"?>
2 <!DOCTYPE nitf SYSTEM "nitf-3-2.dtd">
3 <nitf>
4 <head>
5 <pubdata type="web" edition.area="SF" />
6 </head>
7 <body>
8 <body.content>
9 <p>Content!</p>

10 </body.content>
11 </body>
12 </nitf>

Listing 2.5: Example XML event

Due to potentially large size of documents and very high complexity of the
query expressions the XML-based matching of events and filters is resource
intensive and there exists substantial body of work which aims at optimizing
this process, including, but not limited to: XFilter [AF00], XTrie [CFGR02]
and YFilter [DF03] XML query processors.

2.3.4 Other Approaches

Previous sections have presented publish/subscribe message semantics which
were implicitly stateless. A stateless semantics implies that filters are evaluated
for each event separately and there exists no dependency between subsequent
events. Such approach, however, is not always sufficient especially if more
complex filtering expressions are required.
One of the first approaches to use complex expressions in content-based pub-
lish/subscribe systems were patterns introduced in the Siena system [CRW01].
A pattern in the Siena system is a sequence of filters which are applied to the
ordered sequence of events.
A significantly more complex form of filtering expressions was proposed
in the Cayuga system [DGH+06, DGP+07], where filters (similarly to the
YFilter [DF03] approach) are based on nondeterministic finite state automata
with additional possibility of parametrization and aggregation.
A sample Cayuga filter might read: For any stock (stk) there is a monotonic
decrease in price for at least 10 minutes (dur = 10), which starts at the volume
vol > 10000. The following quote on stk should have a price 5% higher than
the last seen one (prc > 1.05·minPrc). Figure 2.2 shows the automaton which
implements the above filter.

2.4. ARCHITECTURES 19

Figure 2.2: Nondeterministic finite state automaton [DF03]

2.4 Architectures
Previous sections have considered only single components of content-based sys-
tems. Applications (Section 2.1.1) play the roles of publishers (Section 2.1.3)
and subscribers (Section 2.1.2) in order to publish content in form of publica-
tion messages (Section 2.2.2) and subscribe to content using subscription mes-
sages (Section 2.2.1). The fabric which connects the publishers and subscribers
are the brokers (Section 2.1.4), which themselves can be interconnected cre-
ating various architectural patterns. In this section the most popular broker
patterns and their influence on the way the information is being exchanged
in publish/subscribe systems are described. Architectures described in the
following sections are usually constructed as an overlay on top of the physical
connections.

2.4.1 Bus

The bus architecture (see Figure 2.3) was one of the first ones to be proposed in
context of the publish/subscribe systems [OPSS93]. Bus architecture assumes
that all brokers share the same communication medium, implying that all
messages are seen by all brokers. Bus architecture effectively implements
a broadcast system for filters, events, and advertisements. Bus architecture
assumes that brokers are connected so that there exist no cycles in the network.
Bus architecture, although very simple, is simultaneously the most infrequent
used one, as the broadcasting of messages to all brokers implies a very high
overhead on the system and is usually not practical in its straightforward

20 CHAPTER 2. BACKGROUND

Figure 2.3: Brokers connected into a bus architecture

implementation.

2.4.2 Hierarchical

A hierarchical approach proposed in Siena [CRW01] and JEDI [CDNF01]
publish/subscribe systems assumes the existence of broker network connected
so as to form a k-ary tree – see Figure 2.4. The broker being root of the tree is
responsible for forwarding all traffic from the left-hand side of the tree to the
right-hand side of the tree. Every broker (except for the root) in hierarchical
architecture is connected to k child brokers and one parent broker.
One of the main drawbacks of the hierarchical architecture is the fact that the
higher the given broker is placed in the hierarchy the more load it has to cope
with. This implies that the root node is prone to become overloaded, which is
especially crucial if one considers that it is a single point of failure which can
partition the whole system in two halves.

2.4.3 Acyclic

Acyclic architecture is one of the most commonly used abstraction for build-
ing of publish/subscribe systems [OAA+00, CRW01, M0̈2, CF04, CMPC04,
FJLM05, Jer05, CP06, BH06, TK06, Eug07, JF08a]. Acyclic architecture
differs from the hierarchical architecture (see Section 2.4.2) in that there is
no explicit hierarchy maintained by the brokers. Specifically, every broker
maintains a list of k peers without a distinct parent node – see Figure 2.5. This,
in turn, implies that there is no root broker which has to handle most of the
traffic. Acyclic architecture is therefore preferred to the hierarchical one, as
the message flow is generally better (more fair) distributed across the nodes.
Acyclic architecture, similarly to the hierarchical architecture, partitions if any
single broker or link fails.

2.4. ARCHITECTURES 21

Figure 2.4: Brokers connected into a hierarchical architecture

Figure 2.5: Brokers connected into an acyclic architecture

22 CHAPTER 2. BACKGROUND

Figure 2.6: Brokers connected into a general cyclic architecture

2.4.4 Cyclic

The cyclic architecture (also known as mesh) is the most general interconnec-
tion type for brokers in content-based systems. Cyclic architecture is conceptu-
ally most similar to the abstraction provided by the TCP/IP networking where
most of the nodes can talk directly to most of the other nodes in the system –
see Figure 2.6. Cyclic networks introduce link redundancy, which implies that
link or node failures do not necessarily result in the partitioning of the network,
as alternative routes can be used to reach the same destination. However, the
cyclic architecture also poses challenges as far avoidance of infinite message
loops is concerned. This is especially difficult in publish/subscribe systems,
since brokers are usually aware only of the immediate neighbor nodes – see
Section 1.1.
In general, systems which implicitly or explicitly work at the level of cyclic
architectures [PCM03, LMJ08] dynamically construct a spanning tree, e.g.,
using the reverse path forwarding method [DM78], which prevents the occur-
rence of cycles [PCM03] by reducing the cyclic case to the acyclic one.

2.5 Routing

The goal of the routing is to deliver publication messages produced at the
publishers to the interested subscribers via a network of brokers. This section
discusses the most popular routing strategies used in publish/subscribe systems
and their variants depending on the types and semantics of messages used.
The discussion will focus on the acyclic broker architecture – it is assumed
that in the case of a cyclic architecture an acyclic overlay is constructed
(see Section 2.4.4) – an assumption frequently made in the context of the
publish/subscribe systems [CRW01, MFP06, TK06]. For the discussion of
algorithms dealing with the hierarchical architectures the reader is referred

2.5. ROUTING 23

Figure 2.7: Event flooding in a broker overlay

to [CRW01] and [CDNF01].

2.5.1 Event Flooding

The event flooding strategy [M0̈2] (also known as broadcast) implies that every
event message produced by every publisher is delivered to every subscriber,
and thus effectively to every application. It is then up to the applications to
filter out the events which are of no relevance to them. The event flooding
approach is the simplest routing strategy (it is stateless in that it uses neither
advertisements nor filters) among all routing strategies and can be trivially
implemented in all architectures except the acyclic one.
When event flooding routing strategy is used broker B receiving an event e
forwards it on all its outgoing interfaces with the exception of the interface on
which the event has arrived – see Figures 2.7 and 2.9(a). It can be formally
said that the set of interfaces Ie→ on which event e needs to be forwarded is
given as:

Ie→ = IB \ {I←e} (2.13)

where IB is the set of all interfaces of the broker B and I←e is the interface on
which event e arrived.
Event flooding algorithm, although very simple, is not practical as in large
deployments the cost of delivery of every message to every node, event not
interested in the specific kind of information is prohibitive.

24 CHAPTER 2. BACKGROUND

Figure 2.8: Group-based routing in a broker overlay

2.5.2 Group-Based Routing
Group-based routing [RHKS01, BEG04, Gro04] is an approach which can
be used to limit the flooding of events used in the event flooding routing
scheme. Group-based routing collects all subscribers sharing the same interest
into groups for which multicast techniques are used to disseminate events.
Figure 2.8 shows the group routing strategy in a network of brokers. It can be
observed that publisher P publishes events directly to the broker B4 which is
the head of the group which distributes the event to both interested subscribers
S1 and S2
One of the multicast approaches often considered in context of the group-
based routing is the IP multicast [DC90]. The group based approach has
the advantage (in comparison to the event flooding strategy) of reducing the
number of false positives in the publish/subscribe system. A false positive
occurs when subscriber receives event which is of no interest to him. By
grouping subscribers and delivering related events only to the interested groups
the false positives ratio is reduced to zero.
The group-based approach is however difficult to implement and maintain,
especially in the environments with large number of subscribers. Having a
set of S subscribers group-based approach implies the need to construct 2|S|

groups (the worst case) to satisfy the interests of all subscribers. Moreover,
an algorithm which would try to limit the number of groups by maximizing
they overlap and reducing the number of messages needed is known to be
NP-complete [AGK+01].
Therefore several approaches have appeared which try to overcome the above

2.5. ROUTING 25

(a) event flooding (b) simple routing

Figure 2.9: Event flooding and simple routing strategies

issue by using either probabilistic methods [EG02] or heuristics for the con-
struction of groups [OAA+00, RLW+02]. However, most of the recent al-
gorithms substitute the notion of groups with dynamic filtering in overlay
topologies.

2.5.3 Simple Routing
In simple routing (see, e.g., [BCM+99]) the propagation of events is restricted
by the propagation of filters. Subscribers issue subscription messages contain-
ing filters which are broadcast into the network of brokers. Upon reception
of a filter f every broker: (1) forwards it on all outgoing interfaces, with the
exception of the interface on which the filter f arrived and (2) stores the filter f
in its routing state. Figure 2.9(b) shows the propagation of the filter f , arriving
at the interface number 1 of the broker B. The simple routing algorithm results
in creation of the filter spanning trees rooted at the subscriber issuing the given
filter.

Filter Routing

In simple routing strategy every broker maintains the routing state associated
with the filters. The routing state in the brokers is usually called the routing
table and contains all filters issued by subscribers which were not unsubscribed.
Figure 2.9(b) illustrates the routing table of the broker B which contains one
entry, stating that the filter f has arrived on the interface number 1 and was
forwarded on the interfaces number 2, 3 and 4. By analogy to the Equation 2.13
one can say that the set of interfaces I f→ on which filter f needs to be forwarded
is given as:

I f→ = IB \
{
I← f

}
(2.14)

where I← f is the interface on which filter f arrived.

26 CHAPTER 2. BACKGROUND

Event Forwarding

The routing tables stored in the brokers are used for the forwarding of events.
An event e arriving at the broker B and matching filter f (the exact definition
of the match depends on the semantics used – see, e.g., the Equation 2.8) is
forwarded on the reverse path of the filter f . Figure 2.9(b) shows event e being
forwarded on the interface 1 on which previously a matching filter f arrived.
Formally speaking, it can said that the set of interfaces Ie→ on which event e
has to be forwarded by a given broker B is given as a sum of all interfaces on
which filters matching event e arrived minus the source interface I←e of the
event e:

Ie→ =
{
I← f | f ∈ FB ∧ f (e) = 1 ∧ I← f . I←e

}
(2.15)

where FB represents all unsubscribed filters seen by the broker B. FB can be
also seen as a set of all filters stored in the routing table of the broker B.
Intuitively, the Equation 2.15 implies that events are forwarded along the
branches of the filter spanning tree until they reach the subscriber at its root.
The propagation of filters to every broker in the publish/subscribe networks
ensures that there exists at least one broker in the whole publish/subscribe
network which can correlate the interest of subscribers with the events of
the publisher, regardless of the publisher’s location in the publish/subscribe
network.
Figure 2.10 shows the routing of subscription messages and events in the simple
routing scheme. It can be observed that both filters issued by the subscribers
S1 and S2 and disseminated into the whole network – Figure 2.10(a). A
subsequently issued event, matching both filters, is delivered on the reverse
paths of the subscription messages to both subscribers – Figure 2.10(b).

Unsubscribing

Subscribers which are not interested in a given content anymore issue un-
subscription messages to inform the publish/subscribe system about that fact.
The process of the unsubscription of the filter f by the broker B in case of
simple routing consists of two phases: (1) the forwarding of the unsubscription
message containing the filter f and (2) the removal of the filter f from the
routing table of the broker B.
The process of forwarding of the unsubscription message containing the filter
f is identical to that of subscription messages:

Iunsub
f→ = IB \

{
I← f

}
(2.16)

The removal of the filter f from the routing table of the broker B, requires
broker B to be able to determine which filter in its routing table is identical
with the filter f .

2.5. ROUTING 27

(a) routing of filters

(b) forwarding of events

Figure 2.10: Simple routing in a broker overlay

28 CHAPTER 2. BACKGROUND

The checking if two filters are identical is specific to the assumed filter seman-
tics. A general definition says that two filters f and g are identical if they select
the same sets of events [M0̈2]:

f ≡ g ⇔ E f ≡ Eg (2.17)

where E f and Eg are the sets of events selected by filters f and g, respectively.
In the context of the predicate-based semantics it is said that two filters f and
g are identical f ≡ g if and only if:

f ≡ g ⇔ ∀p f ∈ f∃pg∈g : p f ≡ pg ∧ ∀pg∈g∃p f ∈ f : p f ≡ pg (2.18)

where p f and pg are predicates belonging to filters f and g, respectively. Two
predicates p f and pg are identical p f ≡ pg if and only if:

p f ≡ pg ⇔ an f ≡ ang ∧ op f ≡ opg ∧ av f ≡ avg (2.19)

where an f , op f and av f are attribute name, operator and attribute value of the
filter f – see Section 2.3.2.
The filter g which needs to be removed (using the remove(g) operation) from
the routing table of the broker B upon the reception of the unsubscription
message containing filter f is therefore given as:

remove(g) ⇔ g ∈ FB ∧ g ≡ f ∧ I←g ≡ I← f (2.20)

where the term I←g ≡ I← f guarantees that in case of multiple filters equal to
filter f stored at the broker B only the one which arrived on the same interface
as the unsubscription message containing filter f (I← f) is erased.

Dynamic Overlay Management

So far only cases when the set of the interfaces IB of the broker B was stable
have been considered. However in publish/subscribe systems brokers or sub-
scribers often depart and new brokers and subscribers often join the overlay
network. A departure of a broker implies that the interface on which it was
connected to its neighbors is removed. The arrival of a new broker results in a
new interface being added to the set of interfaces I on all of its new neighbors.
When one of the interfaces Ii is removed from the set of interfaces of the
broker B, the routing table of the broker B needs to be updated accordingly.
The update process requires that every filter f , stored in the routing table of
the broker B, which arrived on the removed interface Ii is usubscribed (and
therefore removed – see Equations 2.16 and 2.20) from the routing table of the
broker B.
The addition of a new interface Ii requires the broker B to propagate all filters
in its routing table on the new interface:

∀ f∈FB : I f→ ← Ii (2.21)

2.5. ROUTING 29

(a) advertisement and subscription
routing

(b) event forwarding

Figure 2.11: Identity-based routing strategy

2.5.4 Identity-Based Routing
Using Equation 2.18 the routing of filters can be optimized in that identical
filters are not propagated on the same interface. Such routing strategy is called
identity-based routing [M0̈2, MFP06]. The basic idea of the identity-based
routing relies on the fact that identical filters forwarded on the same interface
are idempotent with respect to the routing tables of the downstream brokers.
Figure 2.11(a) shows the process of the routing of two filters f 1 and f 2. Filter
f 1 was the first one to arrive at the broker B and since it was the first filter to
be seen by B it was forwarded on all outgoing interfaces. Subsequent arrival
of the filter f 2 identical to f 1 (f 1 ≡ f 2) results in filter f 2 being propagated
only on the interface 1 as this is the only interface on which the identical filter
f 1 was not forwarded yet. It can be observed that identity-based routing has
prevented the propagation of the filter f 2 on two interfaces: 3 and 4. It is also
worth noting that the third filter f 3 identical to f 1 and f 2 (f 1 ≡ f 2 ≡ f 3)
arriving at interface 4 or 3 will not be propagated further by the broker B at all,
as there is no interface on broker B which would not have either the filter f 1
or f 2 already propagated on it. Such filter would only be stored in the routing
table of the broker B.

Filter Routing

It can be formally said that in identity-based routing filter f arriving at broker
B is propagated on all interfaces with the exception of its source interface I← f

and interfaces on which filters identical to f were already propagated:

I f→ =
(
IB \

{
I← f

})
\
{
Ig→ | g ∈ FB ∧ g ≡ f

}
(2.22)

where Ig→ is a set of all interfaces on which filter g was forwarded.
A filter f received by the broker B is dropped (using the drop(f) operation) if
and only if a filter g identical to f was previously delivered to the broker B on

30 CHAPTER 2. BACKGROUND

the same interface on which filter f arrived:

drop(f) ⇔ ∃g∈FB : g ≡ f ∧ I←g ≡ I← f (2.23)

A filter f being dropped is neither forwarded nor stored in the routing table of
the broker B.

Event Forwarding

Figure 2.11(b) illustrates the process of event forwarding when identity-based
routing is used. It can be observed that event e which matches filter f 1 (and
thus filter f 2 as well, since f 1 ≡ f 2) is forwarded on the reverse path of
both matching filters. Therefore, one can conclude that the event forwarding
process when the identity-based routing strategy is used is identical with the
one presented in Equation 2.15.
Figure 2.12 shows the process of identity-based routing in a broker overlay.
It can be observed that subscribers S1 and S2 subscribe using two identical
filters – Figure 2.12(a). Therefore, the propagation of the filter issued by the
subscriber S1 (first filter) reaches all brokers in the publish/subscribe network.
The subsequent filter issued by the S2 is propagated only on the directed paths
not traversed by the identical filter previously issued by the subscriber S1.
The propagation of events (Figure 2.12(b)) is analogous to that of the simple
routing – see Figure 2.10(b).

Unsubscribing

The process of unsubscribing a filter is more complex than in the case of simple
routing. One needs to consider that the propagation of the filter f 2 on interfaces
3 and 4 (see Figure 2.11(a)) was prevented by the previous propagation of the
filter f 1 on those interfaces. However, upon the unsubscription of the filter f 1,
filter f 2 should be propagated on the interfaces 3 and 4.
Therefore, the process of the unsubscription of a given filter f performed by
the broker B consists of three phases: (1) propagation of the unsubscription
message containing the filter f , (2) propagation of the subscription messages
containing filters identical to f which were not propagated due to the presence
of f and (3) removal of f from the routing table of the broker B.
The propagation of the unsubscription message containing the filter f is per-
formed for a set of interfaces containing all interfaces on which identical filters
arriving from the same source interface were forwarded:

Iunsub
f→ =

{
Ig→ | g ∈ FB ∧ g ≡ f ∧ I←g ≡ I← f

}
(2.24)

The propagation of the subscription messages containing filters identical to f
which were not propagated due to the presence of f requires the broker B to
remove all filters equal to the unsubscribed filter f from its routing table:

remove(g) ⇔ g ∈ FB ∧ g ≡ f ∧ I←g . I← f (2.25)

2.5. ROUTING 31

(a) routing of filters

(b) forwarding of events

Figure 2.12: Identity-based routing in a broker overlay

32 CHAPTER 2. BACKGROUND

Figure 2.13: Unsubscription using identity based routing strategy

and resubscribe the removed filters again. Filters need to be removed from the
routing table of the broker B in order not to get dropped at the resubscription
attempt – see Equation 2.23.
As an example let us consider the Figure 2.13, which shows broker B after
four subscription messages with identical filters f 1, f 2, f 3 and f 4 (f 1 ≡ f 2 ≡
f 3 ≡ f 4) have been received. Through inspection of the routing table it can be
concluded that the filter f 1 was subscribed to as the first one, subsequently filter
f 2 was subscribed with filters f 3 and f 4 subscribed to as the last ones. The
second routing table shows the state of the broker B after the unsubscription
message for the filter f 1 arrived at the interface 1. It can be observed that filter
f 1 was removed from the broker’s B routing table. Subsequently, filters f 2,
f 3 and f 4 were resubscribed to by the broker B. The filter f 2 was the first one
to be resubscribed to, followed by the filters f 3 and f 4. It is worth noting that
the order of the filter resubscription is irrelevant.

Dynamic Overlay Management

When one of the interfaces Ii is removed from the set of interfaces of the broker
B, the routing table of the broker B needs to be updated accordingly – every
filter f stored in the routing table of the broker B which arrived on the removed
interface Ii needs to be usubscribed (see Equations 2.24 and 2.25) from the
routing table of the broker B.
The addition of a new interface Ii requires the broker B to propagate all filters
in its routing table on the new interface, under the assumption that no filter
identical to the one to be propagated on the interface Ii has already been
propagated on the added interface Ii:

∀ f∈FB

(
forward(f) = Ii ⇔ @g∈FB : g ≡ f ∧ Ii ∈ Ig→

)
(2.26)

2.5. ROUTING 33

2.5.5 Coverage-Based Routing
Many existing publish/subscribe systems [M0̈2, BCV03, CRW04, LHJ05,
TK06, BFG07, BBQV07, JF08a, LMJ08] use the notion of coverage to op-
timize the routing of subscription messages. Coverage (first introduced in
context of publish/subscribe systems in [CRW01]) is a binary relation between
filters. Intuitively, it can be said that filter f covers filter g (f � g) if filter f
matches the superset of events matched by the filter g:

f � g ⇔ E f ⊇ Eg (2.27)

According to the above definition if filter f is identical to filter g, than filter f
covers filter g and vice versa:

f ≡ g ⇒ f � g ∧ f ≺ g (2.28)

The coverage relation is:

• reflexive: g ≺ f always holds

• antisymmetric: f � g ∧ f ≺ g ⇒ f ≡ g

• transitive: h � g ∧ g � f ⇒ h � f

However, the coverage relation is not total (∃ f ,g : f ⊀ g ∧ f � g), which
implies that coverage relation creates a partial order for all filters.
Coverage relation is often used in the predicate-based semantics – however, ge-
ometrical applications are also common [RLW+02, WQV+04, BFG07]. Using
predicate-based semantics one can say that filter f covers filter g if and only if:

f � g ⇔ ∀p f ∈ f∃pg∈g : p f � pg (2.29)

which can be read as: for every predicate p f in covering filter f there exists a
predicate pg in covered filter g such that predicate p f covers pg. Predicate p f

covers predicate pg if and only if:

p f � pg ⇔ an f ≡ ang ∧ ac f � acg (2.30)

The exact semantics of the attribute constraint coverage (ac f � acg) depend
on the operators and values used for the specific implementation. The reader
is referred to [MFP06] for an overview of simple attribute constraints and
their coverage relations. Intuitively, an attribute constraint ac f covers attribute
constraint acg if attribute constraint ac f selects a superset of attribute values
selected by attribute constraint acg.
Table 2.2 illustrates example coverage relations in predicate-based semantics
(cf. Table 2.1) between two filters f and g.

34 CHAPTER 2. BACKGROUND

Filter f Filter g f � g f ≺ g

{y < 8} {y < 8} true true

{x > 5} {y > 5} false false

{x > 5} {x > 8} true false

{x > 5} {x > 8; y > 5} true false

{x > 5; y > 5} {x > 8} false false

{x , 5} {x > 8} true false

{x , 5} {x = 5} false false

{x > 5} {x < 8} false false

{x ≥ 5} {x > 5} true false

Table 2.2: Coverage relation between filters in predicate-based semantics

Filter Routing

Following the intuition behind the coverage relation of two filters, it can be
stated (similarly as in the case of filter identity) that the propagation of a filter g
on the interface I is not necessary if there exists filter f previously propagated
on the interface I, which covers g. Filter f selects a superset of events selected
by filter g (see Equation 2.27) and therefore the propagation of filter g will not
influence the behavior of the downstream brokers in any way.
The usage of coverage to limit the propagation of filters allows to reduce the
load on both the network and the brokers in the publish/subscribe system. It
can be formally said that in coverage-based routing a filter f arriving at the
broker B on interface I← f is propagated on all interfaces with the exception
of its source interface and interfaces on which filters covering filter f were
already propagated:

forward(f) =
(
IB \

{
I← f

})
\
{
Ig→ | g ∈ FB ∧ g � f

}
(2.31)

A filter f received by the broker B is dropped (neither forwarded nor stored in
the routing table of the broker B) if and only if a filter g covering filter f was
previously delivered to the broker B on the same interface on which filter f
arrived:

drop(f) ⇔ ∃g∈FB : g � f ∧ I←g ≡ I← f (2.32)

Event Forwarding

Event forwarding in coverage-based routing is similar to that of the identity-
based routing – see Section 2.5.4. Formally speaking, the set of interfaces on
which event e has to be forwarded by a given broker B is given as a sum of all

2.5. ROUTING 35

interfaces on which filters matching event e arrived minus the source interface
I←e of the event e:

Ie→ =
{
I← f | f ∈ FB ∧ f (e) = 1 ∧ I← f , I←e

}
(2.33)

The process of the coverage-based routing in a broker overlay is identical with
the one demonstrated in the Figure 2.12. The only difference is that instead
of strict filter identity between the filters issued by the subscriber S1 and S2 a
coverage relation will now suffice.

Unsubscribing

Similarly as in the case of the identity-based routing the process of the un-
subscription of a given filter f performed by the broker B consists of three
phases: (1) propagation of the unsubscription message containing the filter f ,
(2) propagation of the subscription messages containing filters covered by the
filter f which were not propagated due to the presence of f and (3) removal of
f from the routing table of the broker B.
The propagation of the unsubscription message containing filter f is performed
for a set of interfaces on which identical filters arriving from the same source
interface were forwarded:

Iunsub
f→ =

{
Ig→ | g ∈ FB ∧ g ≡ f ∧ I←g ≡ I← f

}
(2.34)

The propagation of the subscription messages containing filters covered by
f which were not propagated due to the presence of f requires the broker B
to remove all filters covered by the unsubscribed filter f from the broker B’s
routing table:

remove(g) ⇔ g ∈ FB ∧ g ≺ f ∧ I←g . I← f (2.35)

and resubscribe the removed filters again. Filters need to be removed from the
routing table of the broker B in order not to get dropped at the resubscription
attempt – see Equation 2.32.

Dynamic Overlay Management

The removal of the interface Ii from the routing table of the broker B results in
every filter f stored in the routing table of the broker B which arrived on the
removed interface Ii being usubscribed – see Equations 2.34 and 2.35.
The addition of a new interface Ii results in the propagation of all filters in the
routing table of the broker B on the new interface. The filters are propagated
stepwise, under the assumption that no filter covering the one to be currently
propagated on the interface Ii has already been propagated there:

∀ f∈FB

(
forward(f) = Ii ⇔ @g∈FB : g � f ∧ Ii ∈ Ig→

)
(2.36)

36 CHAPTER 2. BACKGROUND

Figure 2.14: Partially ordered set (poset) [CRW01]

Routing Table Implementations

Coverage-based routing algorithms imply that the implementation of the rout-
ing tables can exploit the coverage relation in order to increase the speed of
event forwarding, especially in comparison to naive approaches. The first
such design of the routing table was proposed in the context of the Siena
system [CRW01].
The Siena routing table is called poset – a name derived from the partial order
property of the coverage relation. Poset contains all filters which arrive at the
broker and are not dropped – cf. Equation 2.32. In poset filters are arranged
according to their coverage relation – the most general filters, i.e., not covered
by any other filter, are placed as the root of the structure. Figure 2.14 shows a
poset structure holding eleven filters (f 1, . . . , f 11). Each filter is denoted its
name and the interface number on which it arrived. It can be observed that
the most general filter with attribute name x ({x = ∗}) which arrived on the
interface 1 (f 1/1) covers a more specific filter {x < 8} which arrived on the
interface 2 (f 2/2). Entries in the poset structure which have no parent are
called root filters.
The matching of events is excelled in that every event needs only to be checked
against the set of the root filters in order to determine whether any of the filters
stored in the poset matches a given event. In case of a match the matching
procedure uses breadth first search to traverse the children of the root filter in
order to find all, more specific filters matching the given event.
The insertion of a new filter f is performed by computing a set of predecessors
and a set of successors of the filter f . The set of predecessors contains all
filters in the poset which cover the filter f , while the set of successors contains
all filters in the poset which are covered by the filter f . In the last step of
the insertion process filter f is inserted into poset as a parent of all filters in
the successor set and a child of all filters in the predecessor set. The removal
process is analogous.
Authors in [TK06] proposed an optimized version of the poset, called poset-

2.5. ROUTING 37

Figure 2.15: Poset-derived forest [TK06]

derived forest. The development of the poset derived forest was motivated by
a set of observations regarding the properties of the poset structure:

1. for any filter f in the poset P there exists no such filter g, such that g is
covered by f and filter g arrived on the same interface as f :

∀ f∈P@g∈P : f � g ∧ I← f ≡ I←g (2.37)

2. every poset has the maximum depth of |IB|, where |IB| is the amount of
interfaces on the poset managing broker B

3. only root elements and their direct successors (children) have a non-
empty set of interfaces on which they were forwarded I f→ , ∅

The above properties allow to reduce the computational cost of the maintenance
of the routing table structure as well as increase the speed of event matching.
The resulting data structure, containing all filters from the poset in Figure 2.14,
is illustrated in Figure 2.15. It can be observed that the poset-derived forest
maintains the tree property in that every filter has at most one covering filter.
This implies that the poset-derived forest layout is influenced by the temporal
order of the filter arrival. Moreover, the implementation may contain a virtual
root node which connects all root filters – a convenience element. The poset-
derived forest data structure was further refined in [Tar07], in that links between
different poset-derived forests were proposed to accelerate the process of the
calculation of a set of covered and covering filters.
Another data structure, based on the counting algorithm [YGM94, PFLS00,
FJL+01] was proposed in [CW03]. Authors concentrated on improving the
speed of event forwarding as the cost of the filter routing speed. The pro-
posed algorithm partitions filters into separate predicates and subsequently into
attribute names and attribute constraints.
Figure 2.16 illustrates the data structure based on the counting algorithm,
which contains filters identical to those stored in the poset (Figure 2.14) and

38 CHAPTER 2. BACKGROUND

Figure 2.16: Forwarding table [CW03]

Figure 2.17: Perfect and imperfect filter merging

poset-derived forest (Figure 2.15) data structures. Predicates are arranged
as inputs to the logical AND gates which control the triggering of the filters.
Filters, in turn, are inputs to the logical OR gates which control the triggering
of the interfaces. An incoming event e is decomposed into attribute name and
attribute value pairs which are subsequently used to trigger the predicates. A
predicate is triggered if it matches the attribute name and attribute value pair.
Triggered predicates propagate to filters and filters propagate to interfaces on
which a given event should be forwarded.
The above counting (the number of inputs to trigger the AND gate) algorithm
outperforms both poset and poset-derived forest data structures. However, the
insertion of new filters as well as removal of the old ones from the forwarding
table data structure is more expensive than in case of the former data structures.
Another drawback of the counting algorithm is the fact that it is stateful with
respect to subsequent event matches – the counters used for the logical AND
gates need to be reset prior to the matching of a new event.

2.5. ROUTING 39

(a) first filter (b) second filter merging with the
first one

Figure 2.18: Filter routing using filter merging

Authors in [MFB02, CBGM03, TK05, Tar08a] propose the notion of filter
merging to reduce the number of filters transmitted and stored in the routing
tables of the brokers. The idea of filter merging is based on the fact that two
or more different filters can be combined so as to be represented by only one
filter. Figure 2.17 shows examples of filter merging: filters f 1 and f 2 form a
perfect merger f 5, whilst filters f 3 and f 4 form an imperfect merger f 6.

Imperfect merging is an alternative to perfect merging, especially in situations
where perfect merging is either too complex or difficult to compute [MFP06]
– optimal merging of filters has been shown to be NP-hard [CBGM03]. The
main drawback of the imperfect filter merging is the increased possibility of
false positives. A false positive can be defined in this context as an event
which has been delivered to the subscriber S or the broker B, for which there
exists no active subscription in that subscriber or broker. Occurrence of false
positives is especially troublesome as filter merging is often used to reduce the
number of the root filters in the routing tables of the brokers. The reader is
referred to [MFP06, Tar08a] for an overview of algorithms for filter merging
and routing using filter merging.

Figure 2.18 shows the routing of filters if filter merging is enabled at the routing
broker B. The arrival of the first filter f 1 (Figure 2.18(a)) and its propagation
is identical as in case of identity-based routing (Section 2.5.4), or coverage-
based routing (Section 2.5.5). However, the arrival of the second filter f 2
which can be merged with the filter f 1 results in the propagation of the merger
f 1 ∪ f 2 of both filters f 1 and f 2. The merger of both filters will remove
the previously propagated filter f 1 from the routing tables of the downstream
brokers (interfaces 2, 3 and 4) – see Equation 2.37.

40 CHAPTER 2. BACKGROUND

(a) advertisement and subscription
routing

(b) event forwarding

Figure 2.19: Advertisement-based routing strategy

2.5.6 Advertisement-Based Routing
Section 2.2.3 discusses the role of the advertisements from the perspective of
the content publishers. Authors in [CRW01] propose to use advertisements to
optimize the routing of subscriptions. The intuition behind the advertisement-
based approach is that advertisements can influence the propagation of filters
so that they are routed by the brokers of the publish/subscribe system only in
the direction of the publishers which will produce content matching the filters.
Figure 2.19 shows the basic principles behind the advertisement-based rout-
ing. Broker B receives an advertisement filter a (contained in advertisement
message) on the interface 3 – see Figure 2.19(a). After forwarding of the
advertisement a and storing it in the advertisement routing table, a filter f
arrives on the interface 1. Upon the arrival of the filter f broker B determines
whether events matching advertisement a will also match filter f . If broker B
determines that such events might exist, it forwards the filter f on the reverse
path of the advertisement a and stores the filter f in the filter routing table.
Otherwise, the filter f is dropped.
Subsequent events (see Figure 2.19(a)) matching filter f and advertisement
a are (analogously to the coverage-based routing) forwarded on the reverse
path of the matching filter f . In order to determine whether events matching
advertisement a will also match filter f broker B calculates a binary intersection
(overlap [MFP06]) relation between advertisement a and filter f .
Intuitively, advertisement a intersects filter f if there exists at least one event
which is selected by both advertisement a and filter f :

f Z a ⇔ E f ∩ Ea , ∅ (2.38)

where Ea is a set of events selected by advertisement a.
Formally it can be said that filter f intersects advertisement a if and only if:

∃p f ∈ f∃pa∈a : p f Z pa (2.39)

2.5. ROUTING 41

Filter f Advertisement a f Z a

{y < 8} {y < 8} true

{x > 5} {y > 5} false

{x > 5} {x < 8} true

{x > 5} {x < 8; y > 5} true

{x , 5} {x < 8} true

{x , 5} {x = 5} false

{x ≥ 5} {x > 5} true

Table 2.3: Intersection relation between filters in advertisement-based seman-
tics

which can be read as: there exists a predicate p f in filter f such that there
exists a predicate pa in advertisement a such that predicate p f intersects pa.
Predicate p f intersects predicate pa if and only if:

p f Z pa ⇔ an f ≡ ana ∧ ac f Z aca (2.40)

The exact semantics of the attribute constraint intersection (ac f Z aca) depend
on the operators and values used for the specific implementation. The reader
is referred to [MFP06, JF07] for an overview of simple attribute constraints
in context of the intersection relation. Intuitively, an attribute constraint ac f

intersects attribute constraint aca if attribute constraint ac f selects at least one
attribute value selected by attribute constraint aca. Table 2.3 gives an overview
of filter and advertisement intersection relation.

Advertisement Routing

The advertisement routing in advertisement-based semantics is identical to
the routing of filters in coverage-based semantics. The intuition behind this
reasoning is the fact that advertisements and filters are semantically identical.
Advertisements, similarly to filters use coverage relation to limit their propaga-
tion. An advertisement a arriving at the broker B on interface I←a is propagated
on all interfaces with the exception of its source interface and interfaces on
which advertisements covering advertisement a were already propagated:

Ia→ = (IB \ {I←a}) \ {Ib→ | b ∈ FB ∧ b � a} (2.41)

An advertisement a received by the broker B is dropped (neither forwarded
nor stored in the advertisement routing table of the broker B) if and only if
an advertisement b covering advertisement a was previously delivered to the
broker B on the same interface on which advertisement a arrived:

drop(a) ⇔ ∃b∈FB : b � a ∧ I←b ≡ I←a (2.42)

42 CHAPTER 2. BACKGROUND

The arrival of the new advertisement a at the broker B results in the forwarding
of filters which intersect the advertisement a on the source interface I←a of the
advertisement a. The filters are forwarded stepwise, under the assumption that
no filter covering the one to be currently propagated on the interface I←a has
already been propagated on the interface I←a:

∀ f∈FB

(
forward(f) = I←a ⇔

((
@g∈FB : g � f ∧ I←a ∈ Ib→

)
∧ a Z f

))
(2.43)

Filter Routing

Filter routing in advertisement-based routing is influenced by both advertise-
ments and covering filters. A filter f arriving at the broker B on interface I← f

is propagated only on interfaces on which an intersecting advertisement has
arrived (with the exception of the source interface of filter f) minus interfaces
on which filters covering filter f were already propagated:

I f→ =
(
{I←a | a Z f } \

{
I← f

})
\
{
Ig→ | g ∈ FB ∧ g � f

}
(2.44)

A filter f received by the broker B is dropped if and only if a filter g covering
filter f was previously delivered to the broker B on the same interface on which
filter f arrived or there exists no advertisement matching filter f which arrived
on interface other than the source interface of the filter f :

drop(f) ⇔
(
∃g∈FB : g � f ∧ I←g ≡ I← f

)
∨

(
@a∈AB : a Z f ∧ I←a . I← f

)
(2.45)

where AB is a set of valid advertisements received by the broker B.

Event Forwarding

Event forwarding in advertisement-based routing is similar to that of the
identity-based routing – see Equation 2.33. The only difference being that
brokers might enforce the advertisements with respect to the published event
– an event e can be dropped by a broker B if there exists no advertisement
matching event e and received by the broker on the same interface as event e
(regardless of the filters stored in the broker B):

@a∈AB : a(e) = 1 ∧ I←a ≡ I←e ⇒ drop(e) (2.46)

Figure 2.20 shows the process of advertisement-based routing in a broker over-
lay. First, an advertisement is issued by the publisher P and propagated into the
network of brokers. Subsequently, subscriber S1 issues a matching filter which
is propagated on the reverse path of the advertisement towards the publisher
P. Specifically, unlike in case of the simple-, identity-, and coverage-based
routing (cf. Sections: 2.5.3, 2.5.4 and 2.5.5), filter is not broadcast into the net-
work. The subscription message issued by the subscriber S2 does not contain a

2.5. ROUTING 43

(a) routing of advertisements and filters

(b) forwarding of events

Figure 2.20: Advertisement-based routing in a broker overlay

44 CHAPTER 2. BACKGROUND

filter matching the previously issued advertisement and is therefore dropped by
the first broker (B8) it encounters – see Figure 2.20(a). Publication message
issued by the publisher P is forwarded towards the interested subscriber S1 on
the reverse path of the matching filter.

Unadvertising

Publishers willing to stop publishing content must cancel the advertisement
message containing the filter which describes the content for which the publi-
cation process is being stopped. The process of unadvertising an advertisement
a by the broker B consists of five steps: (1) propagation of the unadvertisement
message containing the advertisement a, (2) propagation of the advertisement
messages containing advertisements covered by the advertisement a which
were not propagated due to the presence of a, (3) removal of the advertisement
a from the routing table of the broker B, (4) removal of the I←a interface from
the set of interfaces I f→ for filters for which no intersecting advertisement
(after removal of a) on interface I←a exists and (5) unsubscription of filters for
which no intersecting advertisement exists in the advertisement routing table
of the broker B.
The propagation of the unadvertisement message containing advertisement a
is performed for a set of interfaces containing all interfaces on which identical
advertisements arriving from the same source interface were forwarded:

forwardunadv(a) = {Ib→ | b ∈ AB ∧ b ≡ a ∧ I←b ≡ I←a} (2.47)

The propagation of the advertisement messages containing filters covered by a
which were not propagated due to the presence of a requires the broker B to
remove all advertisements covered by the unadvertised advertisement a from
its routing table:

remove(b) ⇔ b ∈ AB ∧ b ≺ a ∧ I←b . I←a (2.48)

and readvertise the removed advertisements again. Advertisements need to be
removed from the routing table of the broker B in order not to get dropped at
the readvertisement attempt – see Equation 2.42.
The removal of the advertisement a source interface I←a from the set of inter-
faces I f→ for filters for which no intersecting advertisement (after removal of
a) on interface I←a exists allows broker B to avoid propagation of events for
which the matching filter has been removed in a downstream broker (due to
step 5):

∀ f∈FB

((
@b∈Ab : f Z b ∧ I←b ≡ I←a

)
⇒ I f→ \ {I←a}

)
(2.49)

Unsubscription of filters for which no intersecting advertisement, after the
removal of the advertisement a, exists in the advertisement routing table of

2.5. ROUTING 45

1 public class RoutingTable {
2 //data containers
3 private FilterContainer filters;
4 private FilterContainer advertisements;

6 //public API
7 void publish(Event e, SocketAddress src);
8 void subscribe(Filter f, SocketAddress src);
9 void unsubscribe(Filter f, SocketAddress src);

10 void advertise(Filter f, SocketAddress src);
11 void unadvertise(Filter f, SocketAddress src);
12 }

Listing 2.6: Example routing table API [JF08a]

the broker B can be directly derived from Equation 2.45. It is important to
note that the intersecting advertisement needs to originate from the different
interface than the filter in question:

∀ f∈FB

(
@b∈AB : b Z f ∧ I←b . I← f ⇒ unsub(f)

)
(2.50)

Unsubscribing

The process of the unsubscription of the filter f by the broker B is identical
as in the case of the coverage-based routing and consists of three phases:
(1) propagation of the unsubscription message containing the filter f – see
Equation 2.34, (2) propagation of the subscription messages containing filters
covered by the filter f which were not propagated due to the presence of f –
see Equation 2.35 and (3) removal of f from the routing table of the broker B –
see Equation 2.32.

Routing Table Implementations

The implementation of the advertisement routing tables is usually identical to
that of the filter routing tables, due to the fact that both filters and advertise-
ments share the same semantics – with the exception of the model introduced
in [CRW01]. The functionality of the advertisement routing tables needs
however to be extended in order to support the routing of filters based on the
intersection relation. Typically, implementations [JF08a, Tar08b] decouple
the intersection and coverage relation calculation from the routing process
providing separate binary methods which can be easily integrated into the
routing table implementation.
Listing 2.6 shows a generic routing table API. It can be observed that both
filters and advertisements share the same data model represented by the class
Filter. Similarly, the actual containers storing the filters and advertisements
share the same interface. The routing table presented in the Listing 2.6 is

46 CHAPTER 2. BACKGROUND

coupled with the network layer of the publish/subscribe system implementation.
The methods presented in Listing 2.6 directly invoke the network layer methods
to route advertisements and filters and to forward events.

Dynamic Overlay Management

The removal of the interface Ii from the routing table of the broker B results in
every advertisement a stored in the routing table of the broker B which arrived
on the removed interface Ii being unadvertised – see Equations 2.47 and 2.48
and discussion regarding the following unsubscription of filters.
The addition of a new interface Ii results in the propagation of all advertise-
ments in the routing table of the broker B on the new interface. The advertise-
ments are propagated stepwise, under the assumption that no advertisement
covering the one to be currently propagated on the interface Ii has already been
propagated on the interface Ii:

∀a∈AB

(
forward(a) = Ii ⇔ @b∈AB : b � a ∧ Ii ∈ Ib→

)
(2.51)

No filters are propagated on the newly added Ii interface, as there are no new
advertisements which arrived on that interface yet.

Subscription-Based versus Advertisement-Based Routing

Advertisement-based routing and subscription-based routing are both correct
and efficient routing strategies for publish/subscribe systems. It is up to the
developer of the publish/subscribe system to choose which routing strategy
to use. The choice of the routing strategy is determined by two basic factors:
the amount of different filters issued by the subscribers of the system and the
scope of publishers’ publications. The amount of different filters issued by the
subscribers translates directly to the amount of different subscription messages
propagated into the system. This in turn is driven by the: (1) scope of the
interest of the subscribers, (2) the frequency with which subscribers change
their scope of interest and (optionally, depending on the routing strategy used)
(3) coverage, identity or merging possibilities for different filters issued by the
subscribers.
The number of subscription messages can be reduced when advertisement
messages are propagated into the system and thus drive the routing of sub-
scription messages. However, the number of the advertisement messages
depends, similarly as in the case of the subscription messages, on: (1) the
scope of the events published by every publisher, (2) the frequency with which
every publishers changes the scope of published events (unadvertisement of
the old scope and advertisement of the new one) and (3) the possibility to
limit the propagation of advertisements using identity, coverage or merging
routing strategies. Moreover, the propagation of subscription messages in

2.5. ROUTING 47

advertisement-based semantics depends on the extent of intersection between
the published advertisements and filters.
Using a very simple model based on the simple routing with advertisements,
and assuming that the interest of subscribers and content published by pub-
lishers remain static over time, allows us to make a basic comparison between
the number of subscription messages in the simple routing model and simple
routing model with advertisements.
Using only subscriptions one can calculate the total number of subscription
messages sent in the system composed of N brokers and |S| subscribers as:N

i=|S|∑
i=1

|FSi |

 − 1 (2.52)

where the term
∑i=|S|

i=1 |FSi | denotes the total number of filters issued by all
subscribers in the system. It is assumed that subscribers and publishers are
physically collocated with the brokers and that the brokers form a spanning
tree – acyclic architecture.
The worst case number of subscription messages issued when simple routing
strategy with advertisement is used is given by:

diam(N)
i=|S|∑
i=1

∣∣∣∣∣∣∣
 f ∈ FSi | ∃

a∈
i=|P|⋃
i=1

APi

: a Z f

∣∣∣∣∣∣∣ (2.53)

where diam(N) is the diameter of the graph formed by the acyclic overlay of
the brokers, |P| is the total number of publishers in the system and

⋃i=|P|
i=1 APi

is the set of all advertisements in the system. For a fair comparison with
the subscription-based simple routing strategy the above value must be incre-
mented with the total number of advertisement messages sent in the system:N

i=|P|∑
i=1

|APi |

 − 1 (2.54)

From the above, very simple case, it can be concluded that the comparison
of the routing strategies is very difficult as there exist many factors which
have a great influence on the message overhead and which can be only eval-
uated during the run time of the system. This is one of the motivations for
systems like [SMRP08] to propose hybrid routing algorithms which can be
adapted during runtime to dynamically optimize the cost of the routing in the
publish/subscribe systems.
Another issue which needs to be considered is the delay [BBPV05] introduced
by the advertisement messages. In subscription-based routing as soon as a
subscription message driven path from the subscriber to the publisher is estab-
lished the subscriber can receive publication messages. In advertisement-based

48 CHAPTER 2. BACKGROUND

routing an additional delay has to be considered, as first advertisement mes-
sages need to be propagated into the network (similarly to the subscription
messages in the subscription-based routing) and only subsequently the prop-
agation of subscription messages which establish the publisher–subscriber
path can commence. Depending on the advertisements and filters present in
the network this delay can range from one hop delay (intersecting filters are
already present at the broker connecting the publisher) to the diam(N) hops
delay if the subscription messages could not be propagated into the network
at all due to the lack of advertisements intersecting the filters carried by the
subscription messages.

2.5.7 Peer-to-Peer Routing

All subscription-based routing strategies are based on the assumption that
dissemination of subscription messages to all nodes in the publish/subscribe
network ensures that a publication message encounters a node which con-
tains branches of all filter trees of interested subscribers. In other words – the
meeting of a publication and subscription message is guaranteed by propa-
gating subscription messages to all nodes in the system. Similarly, in case of
advertisement-based routing schemes advertisements take the role of subscrip-
tions which are disseminated to all nodes of the network.
The peer-to-peer routing strategy takes a different approach towards the publi-
cation and subscription messages meeting problem. In peer-to-peer routing the
address of the meeting node is calculated before sending of publication and
subscription messages. The calculation of addresses ensures that events and
filters which match given events arrive at the same meeting node, also called
rendez-vous node – the concept first introduced in [BFC93]. The rendez-vous
node stores all filters matching a given set of events. Upon the arrival of
the event from the matching set the rendez-vous node disseminates it to all
interested subscribers.
Peer-to-peer systems can be built using either structured [RD01, RHKS01,
SMK+01, ZHS+04], or unstructured [CRB+03, GSGM03, LRS02] overlays.
Unstructured overlays use flooding or probabilistic algorithms to locate data
held by the overlay nodes. One of the major drawbacks of the unstructured
overlays is the low probability of finding rare data items – as this requires
visiting the large portion of nodes in the system [CCR04].
Structured overlays, on the other hand, introduce determinism in that they
constrain the overlay structure and the placement of data. Data objects are
assigned keys and the queries are routed based on the key of the object the
query is interested in. The strict overlay management and data placement
allows to provide efficient data discovery – usually in the range of O(log(N))
steps, where N is the number of nodes in the overlay [QB06].

2.5. ROUTING 49

Structured Peer-to-Peer Systems

One of the first peer-to-peer publish/subscribe systems to be based on the struc-
tured overlay is Scribe [CDKR02, CDKR03]. Scribe is based on a structured
peer-to-peer location and routing substrate Pastry [RD01]. Pastry, in turn, is
an implementation of a Distributed Hash Table (DHT).
Distributed Hash Tables [RD01, RHKS01, SMK+01], first introduced in 2001,
similarly to normal hash tables provide a lookup service where every object
is associated with a key. In DHTs key-value pairs are stored in a distributed
fashion on a set of nodes which are responsible for maintaining the mappings
between the keys and the values. Nodes cooperate with each other and provide
the ability to store and retrieve objects based on the object’s key. Specifically, in
Pastry, each node is assigned a globally unique 128-bit identifier. It is assumed
that node identifiers are uniformly distributed in the

[
0, . . . , 2128 − 1

]
identifier

space. Node identifiers can be obtained by, e.g., calculating a cryptographic
hash function [Riv92, DEEJ01] of the IP address of the node. In Pastry values
are assigned keys from the same space as the node identifiers. An object is
placed on the rendez-vous node which identifier is numerically closest to the
object’s key. In a N-node network, under normal operation, Pastry can locate
an object in a less than dlog2b Ne steps, where b is a configuration parameter
with a typical value of 4.
It is important to note that the actual number of steps performed (nodes tra-
versed) at the IP level might be significantly different. The difference between
the amount of node traversals in the overlay and physical infrastructure is
called stretch [CDHR03]. Stretch can be also defined [SMK+01] as a lookup
stretch: a ratio between the overlay and optimal routing latencies. The average
stretch takes different values, depending on the data access pattern and the
specific routing strategy used for the given system. It can be, however, assumed
that the lookup stretch values are in the range between two to eight [PFH07].
Pastry provides a following routing primitive:

route(value, key) (2.55)

where value is the message which is routed to a node whose identifier is
numerically closest to the key. In each routing step a Pastry node forwarding a
key-value pair sends it to a node whose identifier shares at least one more digit
with the value’s key than the current node identifier does. If no such node can
be found than the key-value pair is forwarded to a node which is numerically
closer to the key than the current one. This way the routing converges.
Scribe uses the Pastry mechanisms to implement a topic-based publish/sub-
scribe system based on the rendez-vous approach. The rendez-vous node,
in a topic-based publish/subscribe system, is responsible for managing the
subscribers of the given topic T . The rendez-vous node is usually selected by
obtaining its identifier via hashing of the textual topic representation:

identifier = SHA1(T) (2.56)

50 CHAPTER 2. BACKGROUND

Figure 2.21: Information dissemination in Scribe [Que08]

The rendez-vous node for the topic T is a root of the multicast tree which
contains all subscribers to T . The multicast tree is constructed using a scheme
based on the reverse path forwarding [DM78]. Specifically, the multicast tree
might contain nodes which are not explicitly interested in T . Figure 2.21 shows
how an event belonging to the topic T is routed in Scribe. The shaded area
indicates the multicast tree for the topic T – treeT . The publisher pubT first
acquires the IP address of the rendez-vous node RVT for the topic T – grey
lines. Subsequently, it caches the obtained IP address of the rendez-vous node
IP(RVT), and sends events directly to it – green lines. Rendez-vous node, in
turn, disseminates events along the branches of the multicast tree for the topic
T .

A similar approach to that of Pastry was proposed in CAN [RHKS01] – a con-
tent addressable network. CAN, instead of ordering nodes on a ring structure,
divides a d-dimensional Cartesian coordinate space into adjacent subspaces as-
signed to each of the CAN nodes. The routing process in CAN is characterized
by a low per-node state: O(d), and short routing path length: O(dN

1
d), where

N is the number of nodes in the system. The size of the CAN routing table
(unlike that of Pastry) is independent of the number of nodes in the system.
For each topic CAN builds and maintains a dedicated overlay – with the topic
being deterministically mapped (hashed) onto a point in the d-dimensional
CAN space. Node, owing the given point serves as the bootstrap node for
the construction of the topic multicast group – in case of overload possibility
multiple hash functions and thus multiple nodes can be used. The event routing
in CAN is performed via directed flooding within the multicast group to which
a given event belongs – see Figure 2.22.

2.5. ROUTING 51

Figure 2.22: Directed event routing in CAN [RHKS01]

Another approach, taking advantage of the content-based routing has been
presented in form of the Hermes peer-to-peer middleware [PB03b, Pie04].
Hermes is a publish/subscribe middleware based on Pastry peer-to-peer routing
substrate. Hermes provides a content-based publish/subscribe routing in that
routing of advertisements and filters is performed using the rendez-vous nodes
and routing of events is based solely on the filter routing tables. Specifically,
advertisements are routed towards the rendez-vous node which is obtained
by calculation of a deterministic function over the type of advertised events.
Similarly, subscription messages are routed towards the rendez-vous node,
however filters in subscription messages are also content-matched against the
advertisements and routed on their reverse paths. The routing of events follows
only the filter routing tables, specifically, events are not routed towards the
rendez-vous node for their event type.

Moreover, Hermes uses congestion control algorithms [PB03a] to detect con-
gestion in the overlay and tries to fix the cause for it. Similarly to [DGP+07]
Hermes provides the ability to detect composite events patterns using an ex-
tended version of the finite state automata [PSB03].

SPICE [CQL08] is an implementation of the Implicit Group Messaging (IGM)
where publishers deliver the content to the anonymous subscribers forming
groups of interest. SPICE can be based on any structured peer-to-peer routing
substrate, e.g., Tapestry [ZHS+04].

52 CHAPTER 2. BACKGROUND

Unstructured Peer-to-Peer Systems

Data-Aware Multicast [BEG04] is a topic-based publish/subscribe system
based on a peer-to-peer substrate. Using probabilistic algorithms topic are
organized into hierarchy, which in turn maps to a dynamic hierarchy of groups
of processes. However, due to the lack of the general overlay, every publisher
must itself become the member of the topic dissemination group for which
it wishes to publish events. This, in turn, results in every publisher receiving
events it did not subscribe to.
Authors of Sub-2-Sub system [VRKvS06] propose a peer-to-peer-based event
notification mechanism which clusters subscribers according to their interest
similarity. Sub-2-Sub is a content based system, where similar filters are
clustered into topics. Participants are not organized into a structured overlay,
rather custom clustering based on topics of interest is used. Every topic
forms a separate ring structure, which results in the degree of the overlay
growing linearly with the number of topics created from filters. An event
matching a given topic is first routed towards the correct ring and subsequently
efficiently disseminated within the ring itself. Information about subscriptions
is periodically exchanged between the nodes using the CYCLONE [SVvS05]
protocol.
TERA [BBQ+07, Que07] is a topic-based publish/subscribe system based on
a peer-to-peer architecture. Nodes in TERA (in contrast to [BEG04]) are
organized into two layer infrastructure – the global overlay network which
connects all nodes and topic layer overlays which connect all nodes interested
in the same topic. TERA utilizes random walks and access point lookup tables
to deliver events to topic layers containing all nodes with matching filters.
Event e is first delivered to the access point node for the given topic, which
subsequently disseminates the event within the topic specific overlay. The
peer-to-peer overlay (similarly as in the case of [VRKvS06]) is managed based
on gossiping and the view exchange technique [SVvS05].

Chapter 3

System Model

This chapter summarizes the system model which is used for the implemen-
tation of the XSiena publish/subscribe system. The system model describes
the assumptions about the processes, communication links and failures (Sec-
tion 3.1), as well as clocks (Section 3.2) in the context of the XSiena system.
Section 3.3 defines the architecture, syntax, semantics and routing strategies
used in the XSiena system and throughout the remainder of this thesis.
The underlying system model is based on the Timed Asynchronous Distributed
System Model [CF99]. It has been shown [JFF07, JFF08] that the Timed
Asynchronous Distributed System Model is suitably weak to be used for build-
ing loosely coupled, distributed systems and simultaneously it is sufficiently
strong to allow for building of adaptive systems which react to violation of the
real-time properties caused by the lower level services.

3.1 Processes
It is assumed that all processes in the XSiena system are timed, i.e., there
exists a time interval σmax within which every process is supposed to respond
to a request sent to it. However, there are no guarantees that a request is
indeed processed and answered within σmax. Figure 3.1 shows a cumulative
distribution function for one million processing times of a UDP ping request.
The distribution functions are plotted for two hosts – Lab PC is a host in
our laboratory and PlanetLab node is the planet1.inf.tu-dresden.de
node of PlanetLab consortium. It can be observed that for both hosts the
response times are characterized by a significant long tail and that it is not
possible to set a reasonable upper bound for the processing time σmax.
Processes composing the XSiena system may suffer performance failures.
Specifically, a process might not respond within σmax seconds because it is ei-
ther slow or it has crashed. It is assumed that processes do not suffer Byzantine
failures. Such assumption can be fulfilled by converting Byzantine failures
into crash failures using different software [WF07] or hardware [BBV+05]

53

54 CHAPTER 3. SYSTEM MODEL

 0.25

 0.5

 0.75

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

request processing time [µs]

Lab PC
PlanetLab node

Figure 3.1: UDP-based ping message processing time

techniques.
Processes communicate using unreliable transport protocol with omission/per-
formance (non-Byzantine) failure semantics. Messages sent between processes
may be arbitrarily delayed or might get dropped. Specifically, no a priori
assumptions regarding upper bound δmax nor lower bound δmin on the message
transmission delay are made. It can be illustrated (see Figure 3.2) that indepen-
dently of the network environment it is not possible to determine a practical
upper bound for message transmission delays.
Figure 3.2 shows the long-tail cumulative distribution functions of the round
trip times for one million UDP ping messages between two hosts in different
network environments. The experiment has been conducted using three net-
work setups: (1) the Local Area Network (LAN) – between two computers in our
laboratory, (2) the Metropolitan Area Network (MAN) – between two computers
at the Dresden University of Technology campus and (3) the Wide Area Net-
work (WAN) – between two computers at the Dresden and Berlin Universities of
Technology. Based on the above and other related work [MPHD06, WSH08] it
is assumed that there exists no upper bound on the frequency of communication
and process failures.

3.2 Clocks

Every process in the XSiena content-based publish/subscribe system has access
to a local hardware clock. The term H(t) denotes the value of the hardware
clock at the real-time t. It is assumed that every hardware clock Hi(t) has a drift
rate which is bounded by ρi. Specifically, it is assumed that all hardware clocks

3.2. CLOCKS 55

 0.25

 0.5

 0.75

 1

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

rtt [ms]

LAN: inf.tu-dresden.de
MAN: tu-dresden.de

WAN: tu-dresden->tu-berlin

Figure 3.2: UDP-based ping message latencies (RTT)

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40

d
ri

ft
 r

at
e

[p
p
m

]

hours

planetlab-1a.ics.uci.edu
planetlab-2.cse.ohio-state.edu

planetlab2.exp-math.uni-essen.de
error

Figure 3.3: Drift rate of the time stamp counter (rdtsc) for three PlanetLab
hosts

56 CHAPTER 3. SYSTEM MODEL

have a drift rate bounded by the a priori known constant ρmax. It has been
shown in [JFF07] and [JFF08] that for commercial, off-the-shelf components
the value of ρmax usually stays within

[
0ppm, 100ppm

]
.

Figure 3.3 shows the drift rate of the time stamp counter for three different
PlanetLab hosts. Time stamp counter is a typical COTS component embedded
in most of CPUs. The drift rate has been measured using a modified SNTP
client. The SNTP client code has been instrumented so as to substitute the calls
to the gettimeofday with the invocations of the rdtsc assembly command
returning the current value of the time stamp counter. It can be observed that
the drift for all hosts is stable and that it is feasible to determine an upper bound
ρmax for all clocks.
A hardware clock is said to be correct if:

H(t) − H(s) 6 (t − s)(1 + ρmax) (3.1)
and

H(t) − H(s) > (t − s)(1 − ρmax) (3.2)

holds.
Specifically, it is assumed that hardware clocks have crash-stop failure seman-
tics. Authors in [FC99a] show how to achieve this property despite possible
arbitrary value failures.

3.3 System Architecture
XSiena family of publish/subscribe systems is composed of brokers, publishers
and subscribers. Publishers and subscribers are used by the publish/subscribe
applications to publish and receive content, respectively.
The communication in the XSiena system is performed using advertisement,
publication and subscription messages. Advertisement and subscription mes-
sages contain filters. Advertisement and subscription filters share the same
syntax and semantics. Advertisement messages describe the content published
by publishers and subscription messages describe the interest of subscribers.
Publications messages contain events which encapsulate the content. The
entire family of the XSiena publish/subscribe systems is content-based with all
messages using the predicate-based semantics.
Brokers in the XSiena publish/subscribe system are connected forming an
acyclic graph overlay. The routing of advertisement and subscription messages,
unless explicitly stated, exploits the coverage and intersection relations between
the respective filters. The communication between all components of the
XSiena system is asynchronous and neither subscribers nor publishers nor
brokers know about the identity of the components other than their immediate
neighbors in the acyclic overlay.

Chapter 4

Prefix Forwarding

It has been shown in [STA05] that content-based matching problem can be
reduced to the range-searching problem, for which no worst case computation-
ally efficient solution exists. This implies that content-based matching also
does not have a worst case efficient solution. In [KHCS05] it has been for-
mally proved that the hardness of content matching is equivalent to the Partial
Match [JKKR04] problem. Currently in most content-based publish/subscribe
systems content-based matching has to be performed at every node. Therefore,
it is desired to limit the number of necessary content-based matches to the min-
imum in order to excel the operations of the content-based publish/subscribe
system.
This chapter describes the prefix forwarding algorithm which limits the num-
ber of content-based matches in the XSiena publish/subscribe system. The
intuition behind the prefix forwarding idea stems from the end-to-end argu-
ment [SRC84]. The content-based matching functionality is shifted from the
brokers residing inside of the content-based publish/subscribe system into the
edge of the network.
The shift towards the edge of the network allows to limit the number of content-
based matches for event forwarding to only one per delivered event. In a
traditional content-based publish/subscribe systems events are matched with
filters stored at every broker they pass on their way from the publisher to the
interested subscriber. The amount of content-based matches grows with the
number of nodes in the network, as well as the number of subscribers and
filters issued.
Moreover, one can easily think of systems in which the size of events is in the
range of multiple megabytes and potential evaluation of possibly comparably
large filters is very expensive already at the level of a single event. Despite
the recent efforts to provide hardware solution for efficient content-based
matching [MLC08] it still remains a challenge to provide a flexible solution to
that problem, which would not be restricted to a specific domain. Therefore,
it is desirable to limit the number of content-based matches performed in the
network, thus allowing for fast and flexible event forwarding.

57

58 CHAPTER 4. PREFIX FORWARDING

Figure 4.1: Overview of prefix event forwarding

Simultaneously, it is desirable that the proposed solution does not sacrifice
the decoupling properties [EFGK03] (see also Section 1.1) of the publish/sub-
scribe system in order to limit the number of content-based matches. With the
upholding of the decoupling properties one has to exclude the trivial solutions
based on the centralized servers.
The remainder of this chapter is structured as follows: Section 4.1 presents
the basic ideas behind the prefix forwarding of events in publish/subscribe
systems. Section 4.2 describes the construction and routing of filters, followed
by the detailed description of the event forwarding in Section 4.3. Section 4.4
describes the consistency issues which arise due to the application of the prefix-
based event forwarding. This chapter is conclude with the brief overview of
the related work in Section 4.5.

4.1 Outline
Figure 4.1 presents the outline of the event forwarding in the prefix-based
routing. Publisher P publishes event e which is processed at the publisher
connecting broker B6. The processing of the event e consists of two phases:
(1) the content-based phase and (2) the prefix forwarding phase.
During the content-based phase event e is matched with the filters stored
in the broker B6 using the content-based matching algorithm. Specifically,
the content of the event e is compared with the content of filters using the
Equation 2.8. The result of the content-based match is however, not a set
of interfaces on which the event e should be forwarded (as in the case of

4.2. FILTER ROUTING 59

the traditional routing – see Section 2.5), rather a prefix p which is attached
onto the event e. The prefix p encodes in a compact form the result of the
content-based match performed by the broker B6.
The prefix forwarding phase performed by the broker B6 relies only on the
prefix p attached to the event e. Specifically, neither the content of the event e
nor the content of the filters stored in the routing table of the B6 is examined
by the broker. The prefix p encodes the set of interfaces on which the event e
needs to be forwarded by the broker B6. The encoding of the prefix p allows
broker B6 to effectively calculate the set of interfaces Ie→ for the event e. The
evaluation in Section 9.1 shows that the calculation of the forwarding set Ie→
for event e is orders of magnitude faster than the same operation performed
using traditional [CRW01] content-based algorithms.

4.2 Filter Routing
The prerequisite for the prefix-based forwarding of events is the presence of
filters. In this aspect the prefix forwarding version of the XSiena system is
similar to other publish/subscribe systems. Subscription messages containing
filters are propagated throughout the whole broker network.
The main difference between the prefix forwarding version of XSiena and
other content-based systems, is the construction and the representation of the
routing tables. The routing table in the prefix forwarding version of XSiena is
called routing tree and is a hierarchical data structure storing filter predicates.

4.2.1 Filter Construction
In the generic predicate based semantics it is possible to construct filters which
are logically inconsistent. An example of a logically inconsistent filter is:
{x > 3; x < 2}. It is also possible to construct filters which are unnecessarily
complicated, e.g., {x > 3; x > 4; x < 6; x > 5}. Authors of [MFP06] propose
to restrict the filters in that within one filter f no two predicates pi and p j can
exist such that their attribute names are identical:

∀pi∈ f@p j∈ f : ani ≡ an j (4.1)

Authors in [MFP06, Tar08a] propose to use ranges, e.g., {x ∈ [5, 8]} vs. {x > 5; x < 8},
as attribute constraints to satisfy this property. In prefix forwarding version
of the XSiena system, a different approach it taken. The prefix forwarding
version of the XSiena system allows for multiple predicates with identical
attribute names within the same filter, however upon the creation of the filter
the predicate expressions within filters are evaluated and thus compact and
logically coherent filters are obtained.
The evaluation of the predicates is performed at the application layer of the
publish/subscribe network, so that no such operation is performed with the

60 CHAPTER 4. PREFIX FORWARDING

Filter Input predicates Output filter

f 1 x < 5; x > 2; y > 3 {x < 5; x > 2; y > 3}

f 2 z = 9; z < 10; z > 2 {z = 9}

f 3 x = ∗; x < 4 {x < 4}

f 4 x > 5; x < 3 ∅ (invalid filter)

Table 4.1: Evaluation of filter predicates

network itself. As filters are constructed on a per predicate basis, i.e., one
predicate is added to the filter after another, the XSiena system relies for the
predicate evaluation on the fact that adding a new predicate to the filter can
only narrow its selectiveness. Table 4.1 presents a series of input predicates
and the resulting filters. It can be observed that, e.g., in the case of the filter f 2
the first predicate inserted into the filter z = 9 was the most selective one and
prevented the insertion of other less selective predicates for the same attribute
name. On the other hand, the selectiveness of the filter f 3 was initially very
broad, due to the presence of the predicate x = ∗. The selectiveness of the filter
f 3 was subsequently narrowed by the addition of the second more selective
predicate x < 4. The attempt to create a logically inconsistent filter f 4 fails
with an exception being generated by the system.

4.2.2 Routing Tree

The routing tree holds complete routing information which is used to calculate
the event prefixes and to route filters. Routing tree is maintained by every
broker in the publish/subscribe network. This might seem contrary to the
intuition behind the edge concept, as one might expect that only brokers which
are at the edge of the publish/subscribe network should maintain the routing
tree. However, one has to recall that in the XSiena system every broker B
might become an edge broker, when a publisher P dynamically connects to the
XSiena system via the broker B.
Therefore the core task of every broker in the system (apart from the forwarding
of the events) is the maintenance of the routing tree. The maintenance task is
limited to the updates to the routing tree due to the arrival of new subscription
and unsubscription messages.
The routing tree stores filters in a disjoint form – see Figure 4.2. Each node of
the routing tree represents a single predicate. Upon arrival of a new filter it is
inserted into the routing tree on a per predicate basis. Within a filter, predicates
are deterministically sorted in alphabetical order by the attribute names. In
case of two identical attribute names, sorting considers the operators in those
predicates. In case of two equal attribute names and operators predicates are

4.2. FILTER ROUTING 61

Figure 4.2: Routing Tree

sorted according to the attribute values.
The intuition behind the filter storage in the routing tree is to partition the filter
space into disjoint interest regions on every level of the routing tree. This in
turn allows for a faster matching of events as a single event attribute name and
value pair always selects a single path in the routing tree.

Filter Splitting

In order to be able to partition the filter space on every level into disjoint
subspaces a split operation on the filters which are inserted into the routing
tree must be performed. The intuition behind the split operation is that having
two intersecting filters f1 and f2 (see Equation 2.38) an event e might match
both of them. However, splitting one of the filters along the intersection axis
one can make sure that the event e matches either one or the other filter – with
respect to the split predicate.
The split operation relies on the fact that predicates in the filters are logically
consistent, thanks to their evaluation upon the creation of the filters – see
Table 4.1. The split operation takes as an input a d-dimensional filter f and
according to the split axis it splits the given filter into two filters: fleft and
fright. The split axis itself is a one dimensional predicate. The resulting split
filters fleft and fright are guaranteed to be disjoint – the property required by the
routing tree.

62 CHAPTER 4. PREFIX FORWARDING

(a) filters before split (b) filters after split

Figure 4.3: Filter splitting along the x axis

Output filters

Filter f Split axis fleft fright

{x < 9; y > 2} x > 5 {x 6 5; y > 2} {x > 5; x < 9; y > 2}

{x < 9; y > 2} x = 5 {x < 5; y > 2} {x > 5; x < 9; y > 2}

{x > 1; z < 7} x 6 6 {x > 6; z < 7} {x 6 6; x > 1; z < 7}

Table 4.2: Filter splitting examples

Figure 4.3 visualizes an example split operation. One can observe two filters
{x > 1; y > 1} and {x < 5; y < 3}. Filter {x < 5; y < 3} is being split along the
x axis. The split axis is the x > 1 predicate of the first filter. The resulting
filter fleft takes the form of {x 6 1; y < 3}, whilst the fright takes the form:
{x < 5; x > 1; y < 3}. Table 4.2 illustrates other splitting examples.

Filter Insertion

Figure 4.2 illustrates a routing tree which will be used to demonstrate the
process of the filter insertion. The presented routing tree contains three filters
f1, f2 and f3 which arrived at the routing tree hosting broker on the interfaces
1, 2 and 3, respectively. Filter f 1 arrived as the first one and was inserted on
a per predicate basis creating two new tree nodes x > 5 and y < 3. First the
node x > 5 was inserted directly as a child of the root node. In a following step
algorithm used the inserted node as the current node and inserted the y < 3
predicate as the child node of the x > 5 node. The node y < 3 as the last filter
predicate is marked with the source interface of the filter f1.
The arrival of the second filter f2 triggers the splitting process. So far the
root node of the routing tree had only one child node – the x > 5. The
insertion of the filter f2 ≡ {x < 9; y > 2; z > 1} starts at the first predicate

4.2. FILTER ROUTING 63

x < 9. It can be observed that both predicates intersect. However, it can
be recalled that the routing tree maintains disjoint filter regions at each level.
Therefore, the insertion algorithm will use the predicate already present in
the tree (x > 5) to split the arriving predicate x < 9 (an effectively the whole
arriving filter f2) into two disjoint predicates: x > 5 and x 6 5. The insertion
algorithm will fork at this place and continue with the insertion of two new
filters: fleft ≡ {x < 9; x > 5; y > 2; z > 1} and fright ≡ {x 6 5; y > 2; z > 1}.
The fleft shares the predicate x > 5 with the routing tree node, therefore as
covered it will be inserted as a child of the x > 5 routing tree node. On the other
hand x 6 5 predicate from the fright filter is disjoint with respect to the x > 5
routing tree node, therefore it will be inserted as its sibling, directly under the
root node. It can be observed that both filters fleft and fright share the same
source interface attached to the last node of the respective filter representation
in the routing tree. The insertion process from now on is similar to that of the
first filter. The insertion of the last filter f3 is also straightforward, as there are
no intersecting nodes.

1 void insert(Filter f, Node n){
2 if(f.first==null) break; //end of recursion

4 Node cr=null; // covered by f.first
5 Node cs=null; // covers f.first
6 Node in=null; // intersects f.first
7 Node eq=null; // equals f.first
8 for(child c : n.children){
9 if(intersects(f.first, c)) {in = c; break;}

10 if(f.first == c) {eq = c; break;}
11 if(covers(c, f.first)) {cs = c; break;}
12 if(covers(f.first, c)) {cr = c;}
13 }

15 if(in){ //split and reinsert
16 Filter (fleft, fright) = f.split(in);
17 insert(fleft, n);
18 insert(fright, n);
19 }
20 else if(eq){ //step down
21 f.removeFirst();
22 insert(f, eq);
23 }
24 else if(cr){ //store as parent
25 n.removeChild(cr);
26 Node st = n.store(f.first);
27 st.addChild(cr);
28 f.removeFirst();
29 insert(f, st);
30 }
31 else if(cs){ //step down
32 insert(f, cs);
33 }

64 CHAPTER 4. PREFIX FORWARDING

34 else { //store as child of n
35 Node st = n.store(f.first);
36 f.removeFirst();
37 insert(f, st);
38 }
39 }

Listing 4.1: Insertion of a new filter into the routing tree

The filter insertion process is described in detail by the recursive algorithm
presented in Listing 4.1. The first predicate of the currently inserted filter is
stored in the Filter.first. It is tested against the current node of the routing
for: (a) intersection (line 9), (b) equality (line 10), and (c) coverage – whether
the predicate to be inserted is covered (line 11) or covers (line 12) the current
routing tree node. This reflects all possible relations two predicates (p1 and p2)
can be in: (1) p1 can cover p2, (2) p1 can be covered by p2, (3) p1 can be equal
to p2 and (4) p1 can intersect p2. The equality relation between two predicates
is already contained within the coverage relation (see Equation 2.28), however,
the algorithm needs to distinguish this special case.
After the determination of the relation between the currently inserted predicate
and the set of children nodes of the current node appropriate part of the recur-
sive algorithm is executed. In case of the intersection (intersects(f . f irst, c))
algorithm performs a split of the inserted filter – Listing 4.1, lines 19–23. The
split() method (line 16) returns the two new filters fleft and fright and forks
the insertion algorithm. Intuitively, split operation allows to make a determinis-
tic decision as to which branch of the RT to follow when inserting new filter or
matching a new event by not allowing for overlapping predicates to be placed
at the same level of the routing tree.
In case of predicate equality, the given predicate is removed from the filter to
be inserted and the insert procedure replaces the current node with the node
equal to the removed predicate (lines 21–22). If the current predicate to be
inserted covers the current node in the routing tree it is installed as a new node
which is the parent of the covered node and the insertion process continues
with the newly inserted node as the current node (lines 25–29). If the predicate
to be inserted is covered by the child node the algorithm replaces the current
node with the covering one and continues the insertion process (line 32). This
steps walks down the routing tree until the last covering node for the predicate
to be inserted is found. If the predicate to be inserted is disjoint with all the
nodes at the current tree level it is inserted as a sibling node (lines 35–37).
When inserting the last predicate into the routing tree it is tagged with the
source interface of the whole filter and the set of interfaces on which the given
filter is forwarded – see Figure 4.2. This allows to distinguish the last attribute
constraint of the filter and is used in the forwarding process to obtain the reverse
path which should be followed by the events. Please note that whenever there
are two identical subscriptions arriving at the given node from two different

4.3. EVENT FORWARDING 65

Figure 4.4: Event forwarding using the routing tree

sources the last predicate for both of them will be represented by the same
node in the routing tree. Such node will hold a list of two source interfaces for
both filters. These lists can grow arbitrarily large with the number of unique
connections.
The operation of the routing tree is limited to the forwarding of events. As far
as routing of filters is concerned a structure matching the desired filter routing
strategy, e.g., a poset [CRW01] or a forest [TK06] can be applied. It is however,
worth noting that for simple routing and identity-based forwarding the routing
tree itself is a sufficient structure. As far as event forwarding is concerned the
routing tree supports most of the routing strategies, including simple routing
(Section 2.5.3), identity-based routing (Section 2.5.4) and coverage-based
routing (Section 2.5.5).

4.3 Event Forwarding
When a new event e is issued by the publisher, the first broker B, which connects
the publisher to the publish/subscribe network matches the event e against
its routing tree. The result of this match is a forwarding tree prefix which
is subsequently assigned to the event. The event e piggybacks the attached
forwarding tree prefix on its way towards the interested subscribers. After
creation of the forwarding tree prefix, broker B and all subsequent brokers on
the event’s path towards interested subscribers perform the event forwarding
based only on the contents of the prefix tree.
Figure 4.4 shows the process of the derivation of the forwarding tree from the
routing tree for the event e. It can be observed that similarly to the process of

66 CHAPTER 4. PREFIX FORWARDING

the filter insertion, the event matching is performed on a per attribute name
and attribute value pair basis. In case of Figure 4.4 the first attribute name and
value pair of the event e is matched with the direct descendants of the root
node. One can observe that the node x > 5 matches the x = 6 attribute name
and value pair, which allows the algorithm to follow the path along that node.
The following node x > 9 also matches the first attribute name value pair, and
similarly it is followed on the way towards the leaves of the tree. The next
node y > 2 does not match the first attribute name and value pair, however,
upon advancing to the second attribute name and value pair in the event, the
match will be obtained. Again the path is followed and the last node z > 1 in
the routing tree is reached. The last node matches the last event attribute name
and value pair. It stores an indicator which marks the end of the filter which
was received by the broker on the second interface.
This implies that the event e matches the filter which arrived on the given
interface. At this point the forwarding tree extraction algorithm created a
path from the node z > 1 till the root of the routing tree and added it to the
forwarding tree. The path 0→ 0→ 0→ 0 indicates the branch in the routing
tree which matches the event e. The process of the forwarding tree extraction
continues with the second attribute name and value pair y = 5 of event e
being matched starting from the root of the routing tree. This pair results in
the addition of the second branch to the forwarding tree. The so constructed
forwarding tree describes all predicates and thus filters which match the event
e.
The above algorithm is based on the observation that predicate (node) place-
ment in the routing tree reflects logical conjunctions and disjunctions between
filter predicates and filters themselves. Traversing the routing tree from the root
towards its leaves along any of the paths equals to creating a filter consisting of
the conjunction of all encountered predicates (nodes). Traversal of two paths
in parallel results in a logical disjunction between the filters created by the
conjunction of the predicates along both paths.
Listing 4.2 shows the forwarding tree extraction algorithm in more detail.
Attribute name and attribute value pairs in events are deterministically sorted
by their names and values. This, similarly as in the case of the filters, is
performed at the publisher side by the publish/subscribe layer. Upon arrival of
the new event e broker matches it with the routing tree, starting with the first
(root) routing tree node n. The result of the matching – the forwarding tree is
initialized with an empty root node and passed as parameter FPT Node. The
matching starts by iterating over the child nodes (n.children) of the current
routing tree node and comparing them against every attribute name and value
pair (e.getPredicate() – line 8) in the event. If the event attribute name and
value pair matches the filter predicate (covers() – line 8) this path is added to the
forwarding tree (f tN.add()) and the matching continues using the matching
child node of the routing tree and the new node of the forwarding tree as

4.3. EVENT FORWARDING 67

1 match(Event e, Node n, FTNode ftN, int idx){
2 int i=0;
3 //for every child node of the current routing tree node
4 for(Node c : n.children) {
5 int myidx = idx;
6 //for every attr name and value pair in the event
7 while(myidx < e.size()) {
8 if(covers(c, e.getPredicate(myidx))) {
9 //step down the FPT and RT

10 FTNode newFTN = ftN.add(i);
11 match(e, c, newFTN, myidx);
12 }
13 //move to next attr name and value pair in the event
14 ++myidx;
15 }
16 //move to the next child node of the current node
17 ++i;
18 }
19 }

Listing 4.2: Event forwarding – creation of the forwarding tree

parameters – line 11.
An important observation with regard to the forwarding tree is that it preserves
the coverage relation between the predicates of filters matching an event. Let
us assume that event e1 has been assigned a forwarding tree 0→ 0→ 1→ 0
and event e2 has been assigned a forwarding tree 0 → 0 → 1. From the
above it can be reasoned that every subscriber interested in the event e1 is also
interested in the event e2. Moreover, in order to draw this conclusion one needs
only to look at the forwarding trees of both events and do not need to consider
the events’ content.

4.3.1 Using Forwarding Tree

Once the event e has been matched by the broker B against the routing tree and
assigned the forwarding tree, the same broker executes the forward operation.
During the forward operation forwarding tree is used to traverse the routing
tree. The traversal starts at the root of the forwarding tree and simply follows
the branches indicated by the nodes of the forwarding tree. Whenever during
the traversal of the routing tree a node containing a list of source interfaces is
encountered (Listing 4.3, lines 4–9), those interfaces are added to the set of the
interfaces Ie→ the event e should be forwarded to. When the set of the forward
interfaces equals all known interfaces of the broker B or the last nodes of the
forwarding tree have been reached the forwarding process stops. Subsequently
the event e is on all interfaces in the Ie→ set.
Listing 4.3 shows the algorithm for the forwarding of the events based on

68 CHAPTER 4. PREFIX FORWARDING

1 forward(FTNode ftN, Node n, Set forwardI, Set allI) {
2 //for each child node of the current forwarding tree node
3 for(CFPTNode currFTN: ftN.children()) {
4 //get corresponding routing tree node
5 Node currN = n.getChild(currFTN.value());
6 if(currN.hasInterfaces()) {
7 //add the source interfaces to the forwardI set
8 forwardI.addAll(currN.getInterfaces());
9 if(forwardI.equals(allI)) {

10 //broadcast the event
11 break;
12 }
13 }
14 forward(currFTN, currN, forwardI, allI);
15 }
16 }

Listing 4.3: Event forwarding – using the forwarding tree

the forwarding tree. The recursive algorithm takes as parameters the root
node of the forwarding tree (ftN), the root node of the routing tree (n), the
initially empty set of interfaces on which a given event should be forwarded
(forwardI) and the set of all interfaces (allI) of the broker running the
algorithm. The algorithm starts by searching for branches in the routing tree
which would correspond to the nodes of the forwarding tree – line 5. If such
node is found and it marks an end of a filter (line 6), the source interface of
the filter is added to the forwardI set of the event (line 8) and it is checked
whether the forwardI set contains already all interfaces known to the broker
running the algorithm – line 9. If this is the case, the algorithm stops, otherwise
it descends down both routing and forwarding trees.

4.3.2 Forwarding Tree Size
Using forwarding trees for event dissemination allows to perform only one
content-based match per event. It can bee seen however, that with the increas-
ing number of different subscriptions stored in the routing tree the average
forwarding tree size will also increase. In order to limit the overhead one can
exploit the property mentioned in the Section 4.3.1. Instead of matching the
event until the whole routing tree has been completely explored one can limit
this process to a given level (height) of the routing tree.
This idea is based on the fact that the forwarding tree is constructed exploiting
the coverage relation of predicates. Specifically, for every predicate (node) p
in the routing tree it can be said that all predicates which are its descendants
represent filters being a specialization of a filter constructed by traversing the
path from the root of the routing tree to the predicate (node) p.
As an example let us again consider Figure 4.4. Instead of creating the complete

4.4. CONSISTENCY ISSUES 69

forwarding tree for the event e one can abort the matching algorithm at the
level 1. This will result in the forwarding tree of the event e having just two
entries (apart from the root) – the 0 and the 2. The forwarding algorithm (a
variant of the algorithm in Listing 4.3) using such constructed forwarding tree
can be outlined as follows:

1. perform the normal forwarding (Listing 4.3) algorithm until the last
nodes of the forwarding tree have been reached

2. if the corresponding routing tree node has any subtrees (is not the leaf
node) extract all filter source interfaces from these subtrees and add them
to the Ie→

3. forward the event e on all interfaces in the Ie→ set

The presented approach allows to trade off the size of the forwarding tree for
the number of false positives. Intuitively, it is possible that some of the subtrees
of the routing tree node corresponding to the last forwarding tree node do not
contain filters that match the event. This can be demonstrated for the event
e ≡ {x = 6; y = 5; z = 2} depicted in Figure 4.4. Limiting the depth of the
forwarding tree to one, the matching of the forwarding tree of the event e will
stop at the node x > 5 and y > 4 of the routing tree. According to the above
algorithms all filter interfaces from the subtrees of those nodes will be added
to the Ie→ set. Which will result in the Ie→ set containing interfaces 1, 2 and 3.
This, in turn, implies that event e will be additionally routed on the interface 1
towards the subscriber of the {x > 5; y < 3} filter, although event e obviously
does not match this filter. The forwarding of event e on interface 1 will result
in a false positive. However, limiting the height of the forwarding tree will
never result in a false negative.

4.4 Consistency Issues
Correct forwarding of an event with attached forwarding tree is only possible
if the paths in the routing tree selected by the forwarding tree preserve the
predicate conjunctions from the first broker which created the forwarding tree
and attached it to the event. Hence, all brokers on the event’s path from the
publisher to the subscriber must forward the event using its forwarding tree
and identical routing trees. In what follows, the set of conditions that must be
met by the routing trees in order to achieve identical distribution of predicates
is formulated: (1) all routing trees must be composed of the same set of filters,
(2) filters must be inserted into all routing trees in the same order and (3) filter
insertion must be deterministic, i.e., inserting two identical filters f1 and f2

into two identical routing trees RT1 and RT2 must result in two new routing
trees RT ′1 and RT ′2 which are also identical.

70 CHAPTER 4. PREFIX FORWARDING

The last condition is already satisfied by the insertion algorithm presented in
Listing 4.1. The second condition ensures that split operations in Listing 4.1
are executed in the same order. If filter f1 is split with respect to f2 the resulting
routing tree might be different from the one created when the filter f2 is split
with respect to the filter f1. This problem might be circumvented by performing
splits with respect to some predefined value.
Let us assume that 0 would be such a predefined value. If the routing tree
already contains the x < 6 predicate and a split should be performed due
to arrival of the {x > 3} filter, then instead of splitting predicate x > 3 with
respect to the predicate x < 6 a split of the predicate x < 6 with respect to the
predicate x > 3 should be performed, as the attribute constraint > 3 is closer
the predefined 0 value than the attribute constraint < 6. This method might be
however impractical as it involves a potentially large overhead resulting from
the reordering of the routing caused by the child nodes of the x < 6 node.
The first condition (all routing trees must be composed of the same set of
filters) is almost never satisfied in a dynamic loosely coupled publish/subscribe
system. Let us consider two brokers B1 and B2 with two routing trees RT1

and RT2. If an event e has entered the publish/subscribe network via the B1
broker, the B1 broker will assign a forwarding tree FT to the event e. The
assigned forwarding tree FT has been created by matching the event e against
the routing tree RT1. When event e is subsequently forwarded to the broker B2,
it uses the forwarding tree FT to traverse its Routing Tree RT2. If routing trees
RT1 and RT2 are different than branch identifiers encoded in the forwarding tree
FT when used with the routing tree RT2 might map to different conjunctions of
predicates than in case of the routing tree RT1. Specifically, some of the branch
identifiers might not be matched at all – resulting in false negatives. Above
problems might occur whenever two brokers have a different set of filters due
to coverage between filters, packet drops or message processing delays.

4.4.1 Tree Optimizer

Therefore, in order to solve the above issues, the concept of the tree optimizer
is introduced. The tree optimizer is a node in the publish/subscribe system
which handles the task of the construction of the routing tree. Tree optimizer
takes over the routers’ responsibility to create and manage the routing trees and
thus delivers the necessary determinism for the routing tree construction. It is
important to note that the tree optimizer itself obeys and uses the semantics of
the content-based publish/subscribe system. The idea of the tree optimizer is
parallel to the idea of the lock service [Bur06], where a central instance in a
distributed system is responsible for the consensus among all other participants
of the system.
The tree optimizer creates the routing trees by first subscribing to all subscrip-
tions of the subscribers. This way it collects the data using the decoupled and

4.4. CONSISTENCY ISSUES 71

asynchronous semantics of the publish/subscribe system. Another important
fact is that the tree optimizer can be distributed in that each distributed tree
optimizer subscribes to a part of the routing tree for which it will be respon-
sible – effectively partitioning the filter and event space, so that every broker
maintains a number of the routing trees. However, for the purpose of this thesis
a single tree optimizer instance is assumed.
The tree optimizer is, by definition, the only entity in the whole publish/sub-
scribe network which is allowed to add or remove nodes to/from the routing
tree. This simple fact ensures the necessary determinism for the operations
regarding the routing tree. This in turn requires the introduction of the fol-
lowing changes to the routing tree management (cf. Section 4.2): (1) brokers,
upon reception of a new filter always forward it to the tree optimizer (2) filters
are still inserted into the routing tree at every broker, however the insertion is
performed using new insertR() function and (3) brokers receive routing tree
updates from the tree optimizer and map their own view of the network on the
received RT.

4.4.2 Routing Tree Management

In a typical scenario with the management of the routing tree delegated to the
tree optimizer one might expect routers to send new filters to the tree optimizer
and wait for the routing tree updates from the tree optimizer containing new
filters incorporated into the new routing tree. The main problem with such
approach is the fact that events which might be matched by the new filters will
not be forwarded to subscribers until the new routing tree is disseminated by
the tree optimizer. One can however cope with that problem by making use of
the routing tree properties described in the Section 4.3.2.
Instead of waiting for the updates to arrive, brokers insert new filters imme-
diately into the routing tree using the modified insert() algorithm from the
Listing 4.1. The new insertR() algorithm is analogous to the old insert()
algorithm with only difference being that the insertR() algorithm does not
create new routing tree nodes.
Figure 4.5 shows the intuition behind the insertR() algorithm. Let us assume
a broker B holding a routing tree from Figure 4.2. A set of three filters:
f1 ≡ {x > 5; y < 7}, f2 ≡ {x < 7; y > 4} and f3 ≡ {y > 8; z < 6} is delivered in
the indicated order to the broker B. According to the outline of the insertR()
algorithm broker B inserts the filters into the routing tree, however whenever it
should create a new node, either due to the coverage relation or due to the split
operation it stops the insertion process and adds the filter source interface to
the current routing tree node. It can be observed that in the case of the filter
f1 the first predicate x > 5 is equal to the one already present in the routing
tree. However the second predicate of the filter f1 covers the y < 3 node which
according to the original insert() algorithm (Listing 4.1) would result in

72 CHAPTER 4. PREFIX FORWARDING

Figure 4.5: Updating routing tree between epochs

the creation of the new node which would than be assigned the existing x > 5
node as a child node. Therefore, according to the new algorithm insertR()
the process stops and inserts the filter source interface at the x > 5 node.
The so inserted source interface allows to match a superset of events matched
by the inserted filter without the modifications to the predicate (node) structure
of the routing tree. Moreover, it is possible to route all events independently of
the frequency of updates from the tree optimizer, the only trade-off being false
positives. Whenever a routing tree update from the tree optimizer arrives, the
number of false positives is automatically reduced as the routing tree becomes
more precise again.
In order to maintain the space decoupling in the publish/subscribe system the
tree optimizer is responsible for handling only of the contents of the filters in
the routing tree. Specifically, the tree optimizer does not consider the source
interfaces of filters it receives. This leads to an observation that the routing tree
management is decoupled between the tree optimizer and publish/subscribe
brokers. The tree optimizer manages the filters and the predicates in the routing
tree, while brokers manage the filter source interfaces.
The tree optimizer creates the routing tree without inclusion of the filter source
interfaces, inserting only predicates. When the difference between the current
routing tree maintained in the tree optimizer and the last routing tree sent by
the tree optimizer to the brokers exceeds certain threshold, the tree optimizer
sends an updated routing tree version to all brokers.

4.4. CONSISTENCY ISSUES 73

In order to calculate the difference between the current and last disseminated
routing tree the tree optimizer uses a weighted function wdiff(). The weighted
function wdiff() calculates the difference between two routing trees RT1 and
RT2 as:

wdiff(RT1,RT2) =
diff(RT1,RT2)

wsize(RT1) + wsize(RT2)
(4.2)

where diff(RT1,RT2) is given by:

diff(RT1,RT2) =
∑

n:(n∈RT1∧n<RT2)

1
height(n)

+
∑

m:(m∈RT2∧m<RT1)

1
height(m)

(4.3)

and wsize(RT1) is given by:

wsize(RT) =
∑
n∈RT

1
height(n)

(4.4)

where height(n) is the distance of the node n from the root of the routing
tree. The weighted algorithm emphasizes changes closer to the root as those
will have more significant impact on the potential number of false positives.
Brokers upon reception of the new routing tree updates insert outstanding filters
(since last update) using the insertR() algorithm. This way they create a
local mapping of the filter return addresses onto the routing tree preserving the
decoupling principles.
Another issue arises when one considers that it is possible for some events
to be still underway in the publish/subscribe network when a routing tree
update is processed by the brokers. This might result in a situation when the
forwarding tree of an event e was created with the routing tree RT1, however
the subsequent forwarding process based on the forwarding tree of the event e
would have to be performed with a different routing tree RT ′1, due to the arrival
of the routing tree update RT1 −→ RT2 from the tree optimizer.
This problem is solved by implementing a monotonically increasing virtual
clock in the tree optimizer. This virtual clock is incremented with every
publication of the routing tree update. Upon the update publication, the tree
optimizer attaches the clock’s value to all new nodes of the tree. This results
in a construction of a routing tree whose nodes are tagged with the virtual
creation time. When event is being matched based on its content (in order to
extract the forwarding tree for the event) with the routing tree of a broker it is
assigned a time stamp equal to the virtual clock time stamp of the youngest
(highest virtual clock time stamp) routing tree node that event’s forwarding
tree stores a reference to. Subsequent event forward operations consider only
the routing tree nodes which are tagged with virtual clock time stamps being
less or equal to the time stamp assigned to the event’s forwarding tree.
Figure 4.6 shows the interaction between the tree optimizer and the brokers
in the publish/subscribe system. The tree optimizer TO first subscribes to

74 CHAPTER 4. PREFIX FORWARDING

Figure 4.6: Broker and tree optimizer interaction

all filters (subscribe(all filters)) issued by the subscribers. All filters
subscribed to by the subscribers are inserted by the brokers B into their routing
tables using the insertR algorithm – see Section 4.4.2. Simultaneously, due
to the tree optimizer subscription, filters carried by the subscription messages
are published (publish(f)) by the brokers towards the tree optimizer. Tree
optimizer updates its version of the routing tree with the new filters. Whenever
the new routing tree managed by the tree optimizer exceeds the difference
threshold to the last sent version (see Equation 4.2) the tree optimizer publishes
(publish(RT update)) the routing tree update. Brokers upon the reception
of the routing tree updates populate the new routing trees with the interfaces
of the subscription messages, reinserting the corresponding filters using the
insertR algorithm.

4.5 Related Work
The first work to explicitly suggest following of the end-to-end principle in the
design of the content dissemination systems was proposed in [CS05]. Authors
propose to combine content-based addressing with a multicast-based approach.
Presented solution requires that (1) every broker in the network receives all
subscriptions and (2) every broker is aware of all other brokers in the network
and (3) every broker maintains an all broker pairs latency matrix. Events
in [CS05] are matched against all filters and a list of all matching brokers
is extracted. Subsequently, the dynamic multicast protocol, exploiting the
brokers distance in terms of latency is used to forward events to the interested
brokers. The prefix forwarding approach differs in that no global knowledge
regarding the publish/subscribe nodes is required. Moreover, the result of the

4.5. RELATED WORK 75

event matching reflects only the filters matching the event, thus preserving the
decoupling between the components of the publish/subscribe system.
Another approach to excel the content-based matching in publish/subscribe
systems has been proposed in [ST06]. Authors combine the content-based
addressing with hash-based matching so that downstream brokers can reuse the
matching results from the upstream brokers. The proposed solution assumes
that broker matching an event attaches hashes of n (out of N) filters matched by
the event to the event and forwards the event towards the downstream broker.
The downstream broker uses the hashes attached to the event to find interfaces
on which to forward the event and performs a content-based matching for
interfaces not excluded by the forwarded hash values. The prefix forwarding
approach is similar in that the matching performed in the application level is
reused, however, the prefix forwarding performs matching on the predicate
level and does not rely on the calculation of the hash values for filters – instead
deterministic forwarding tree is used. Moreover, the prefix routing algorithm
offers significantly higher gains regarding the decrease of event matching times.
The prefix forwarding offers over two orders of magnitude speed increase as
opposed to 60% offered by the approach presented in [ST06].
Authors in [WQA+02] propose to use Event Distribution Networks (EDN)
– a self configuring overlay network of servers which optimizes the event
and filter routing performance. An EDN is composed of a set of nodes, part
of which, called edge servers are an interface to geographically distributed
publishers and subscribers. The remaining nodes reside within the network
and are used for event and filter routing. This results in decoupling of the
subscribers and publishers from the event distribution network, which in turn
allows to freely manage filters within the EDN itself. Authors propose to
use event space partitioning, to partition the event space between the EDN
servers so that a single event needs only to be distributed to the brokers storing
filters matching the event. The prefix routing approach differs from the one
presented in [WQA+02] in that it does not rely on the partitioning of the event
space. Partitioning of the event space is a difficult problem for the content
based publish/subscribe systems, especially if one considers that a filter is a
k-dimensional subspace of the d-dimensional filter and event domain, where
1 6 k 6 d and 1 6 d 6 ∞ is not fixed during the runtime of the system.

76 CHAPTER 4. PREFIX FORWARDING

Chapter 5

Bloom Filter-Based Routing

The prefix forwarding architecture proposed in the previous chapter allows
to forward events based on their content performing only one content-based
match per the delivered event. The prefix forwarding approach preserves
the decoupling properties of the underlying publish/subscribe system while
simultaneously significantly increasing the speed of event forwarding.
However, the proposed prefix forwarding approach exposes several issues
which are the main motivation for the further development of the prefix for-
warding approach into the Bloom filter-based routing approach. Bloom filter-
based routing approach contrasts the prefix forwarding approach in that it
offers a unified solution to the problem of event forwarding and filter routing in
the content-based systems. Moreover, the Bloom filter-based routing approach
offers the room for further improvements, especially regarding the possible
parallelization.
The remainder of this chapter is structured as follows: Section 5.1 discusses
the motivation behind the development of the Bloom filter-based routing and
presents the overview of the proposed approach. Section 5.2 introduces back-
ground information regarding the Bloom filters and their implementation in
context of the Bloom filter-based routing XSiena system. Two subsequent sec-
tions detail the algorithms for the routing of filters (Section 5.3) and forwarding
of events (Section 5.4). Subsequently, Section 5.6 discusses the potential for
parallelization of the event forwarding process. This chapter is concluded with
a brief overview of the related work in Section 5.7.

5.1 Overview and Motivation
The first issue which motivated the development of the Bloom filter-based
alternative to the prefix forwarding (cf. Chapter 4) was the size of the for-
warding tree. Based on the evaluation of the prefix-based routing strategy
(see Chapter 9) it can be said that the forwarding tree size remains relatively
stable, in the function of the number of elements in the routing tree. However,

77

78 CHAPTER 5. BLOOM FILTER-BASED ROUTING

Figure 5.1: Routing of filters

increasing the number of attribute name and value pairs in the events results
in the higher number of filters being matched and simultaneously, the higher
number of entries in the forwarding tree. The extreme case being the forward-
ing tree containing all branches of the routing tree, i.e., a case when event
matches all filters in the publish/subscribe system. Bloom filter-based routing
copes with this issue by replacing the routing tree and the forwarding tree with
data structures which allows to construct routing prefixes with an upper bound
on their size. This implies that independently of the number of filters being
matched by an event the size of the prefix attached to the event will not grow
larger than some predefined value.
Second issue addressed with the development of the Bloom filter-based rout-
ing are the consistency guarantees provided by the tree optimizer. The tree
optimizer remains a valid and decoupled approach for solving of the con-
currency issues arising during the creation of the routing tree. However, an
approach which does not rely on such constructs offers the potential for a better
scalability, especially in the case of large scale distributed systems.
Therefore, the concept of the Bloom filter-based routing has been developed.
Bloom filter-based routing upholds the principles presented in the Chapter 4.
Specifically, Bloom filter-based routing follows the end-to-end argument in
that it shifts the task of the content-based forwarding of events from the pub-
lish/subscribe network layer into the edge of the network. Moreover, thanks to
the Bloom filter-based approach a unified framework for both event forwarding
and subscription routing can be proposed.

5.1. OVERVIEW AND MOTIVATION 79

Figure 5.2: Forwarding of events

The basic forwarding and routing algorithm of the Bloom filter-based rout-
ing approach is similar to that of the prefix forwarding approach. Figure 5.1
presents the filter routing process using the Bloom filter-based routing ap-
proach. A subscriber (S1) issuing a filter f constructs a Bloom filter b f which
summarizes the filter’s content and attaches it to the filter prior to the filter
dispatching. Every broker upon the reception of the subscription message
containing the filter f with attached Bloom filter b f inserts the filter f into the
sbsposet routing structure and the Bloom filter b f into the sbstree routing
structure. The subscription message is subsequently routed further into the
publish/subscribe network using the identity-based routing algorithm – see
Section 2.5.4.
Figure 5.2 presents the forwarding of the events. Publisher P publishes event e
which is subsequently delivered to the publisher connecting broker B6. Broker
B6 upon the reception of the event e matches the event with the sbsposet
routing structure and extracts a Bloom filter b f containing a digest of the
subscribers’ interest matched by the event. The process of matching of the event
e with the sbsposet is performed only once in the first broker encountered by
the event e.
Subsequently, broker B6 uses the Bloom filter b f in conjunction with the
sbstree routing structure to calculate the set of interfaces Ie→ on which event
e should be forwarded. The process of calculation of the set of interfaces Ie→
relies only on the contents of the Bloom filter b and does not inspect the content
of the event e. All subsequent brokers forwarding event e towards subscriber
S1 use on the bloom filter b f attached to the event e.

80 CHAPTER 5. BLOOM FILTER-BASED ROUTING

5.2 Bloom Filters
This chapter relies heavily on the Bloom filters. Bloom filters [Blo70] are
probabilistic data structures which represent a set of n elements using a vector
of m bits. Bloom filters never exceed their predefined size of m bits and are
able to represent the whole universe of elements within the m bits of their
size. The trade-off for the compact data representation is a probability of false
positives. A false positive occurs when a Bloom filter queried for the presence
of the element e returns true, event though element e was never inserted into
the Bloom filter. Bloom filters, however, never return false negatives, i.e., an
element which was inserted into a Bloom filter is never reported as missing.
A Bloom filter of width m uses k independent hash functions which taking
as argument an element to store in the Bloom filter produce a hash value of
exactly m bits width. Storing an element in a Bloom filter equals to setting k
bits in the Bloom filter, which correspond to the return values of the k hash
functions. Specifically, if all m bits are set in the Bloom filter than it represents
the whole universe of elements.

5.2.1 False Positives Probability
A false positive probability for a Bloom filter is calculated as a probability
of two different elements having k identical hashes. Intuitively, the false
positives probability is proportional to the number of elements n stored in the
Bloom filter and inversely proportional to the size m of the Bloom filter. The
probability p of a false positive is given by [FCAB00]:

p =

1 − (
1 −

1
m

)knk

(5.1)

The value of k which minimizes the false positives probability p is given by:

k =
m
n

ln 2 (5.2)

Using k from Equation 5.2 in Equation 5.1, one can obtain the probability as
a function of only two parameters: m and n. This in turn allows us to easily
calculate the desired size of the Bloom filter as a function of the false positives
probability p and expected number of elements n. Figure 5.3 shows the relation
between p, m and n for the value of k given in Equation 5.2.
One of the issues when using Bloom filters is the need to provide k different
hash functions. In order to reduce the need for computation of possibly large
number of different hash functions, additional hash functions are simulated
with the help of the double hashing technique [DM04]:

gi(x) = h1(x) + ih2(x) (5.3)

5.2. BLOOM FILTERS 81

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

p

n

log2m=8
log2m=12

log2m=16
log2m=20

log2m=24
log2m=28

log2m=32
log2m=36

Figure 5.3: False positive probability p as a function of number of elements n
and the size m of the Bloom filter

The authors of [KM06] have shown that only two hash functions h1(x) and
h2(x) are necessary to effectively implement k hash functions for use with a
Bloom filter without any loss in the asymptotic false positive probability.

5.2.2 Counting Bloom filters

Removal of elements from a Bloom filter in its above form is not possible.
The intuition behind that reasoning is that removal of one of the elements
which share one of the bits set by the k hash functions would result in a false
negative for the second element. False negatives are not allowed in Bloom
filters. In order to circumvent this problem counting Bloom filters can be
used [FCAB00]. A counting Bloom filter stores not only the indices of the set
bits, it also stores the number of times a given bit was set. The addition of the
same element twice results in increasing the counter of the corresponding bits
to 2.

The removal of the element does not result in the removal of the given bit
from the Bloom filter unless the decremented counter associated with the given
bit equals zero. In order to remove an element inserted twice it needs to be
removed twice as well, as the first removal would keep all the corresponding
bits with the counter decremented to one.

82 CHAPTER 5. BLOOM FILTER-BASED ROUTING

5.2.3 Bloom filter implementation
Typical Bloom filter implementations assume that m bits of the Bloom filter
are represented as an array of m

sizeof(word) words – a bit set. Using 64 bit integer
values a Bloom filter could be represented as:

0 . . . 63︸ ︷︷ ︸
0

, 0 . . . 63︸ ︷︷ ︸
1

, · · · , 0 . . . 63︸ ︷︷ ︸
m
64

(5.4)

Setting a bit number b in a bit set based Bloom filter corresponds to setting
a bit number b AND 63 in the integer number b � 64, where AND is a
bitwise AND operation and � is a bitwise shift right operation. The above
implementation outline is however relatively inefficient if sparse Bloom filters
are considered. A sparse Bloom filter is a Bloom filter storing only a small
number of elements, which corresponds to a small number of bits being set
in the Bloom filter. From the above one can observe that setting of one bit
number m − 1 requires initialization of m

sizeof(word) − 1 words with the value 0
and the last word with the value 1 � (sizeof(word) − 1).
Therefore, an alternative implementation, of Bloom filters using a sparse bit set
is proposed. A sparse bit set represents a Bloom filter using a dynamic array
of integers representing the indices of bits which are set. Setting of the bit
number m − 1 requires only the addition of the m − 1 value into the sparse bit
set. Intuitively, there is a trade-off in space efficiency when the traditional and
the sparse bit set implementations of Bloom filters are concerned. A sparse
representation is more efficient if a Bloom filter is holding less than

m
log2(m)

elements, where m is the size of the Bloom filter. For a sparse bit set using
log2(m) = 32 bit integer values this corresponds to a fill ratio of 3% – i.e., the
number of bits set in the Bloom filter divided by the total numbers of bits m.
One of the major advantages of the sparse Bloom filter implementation over the
traditional implementation is the cheap over provisioning of the Bloom filter
size. Figure 5.3 can be used to calculate the size of the Bloom filter needed to
stay below a certain false positives rate for a given number of elements which
are to be inserted into the Bloom filter. Achieving low false positives rates
translates to creating large Bloom filters, which in their traditional implementa-
tion require allocation of large arrays. The advantage of the sparse Bloom filter
is that empty Bloom filter, regardless of its size m always contains the same
size of bytes – zero. Setting the bit m−1 in the sparse Bloom filter increases its
size by the sizeof(word) bytes. Setting the bit m − 1 in the traditional Bloom
filter increases its size by m

sizeof(word) bytes. The size of the traditional Bloom
filter remains subsequently fixed at this value. Such behavior is problematic,
specifically for very large values of m, or when such Bloom filter is to be
transmitted over the network. From the above it can be concluded that there is
very little penalty which needs to be paid if very large Bloom filters are created
using the sparse representation, as opposed to very large penalties when the

5.3. FILTER ROUTING 83

Filter Bloom Source Id
filter address

{x > 5} {6066, 8581} f1@dot.com f1

{x >= 0.7} {2787, 12518} f2@dot.com f2

{x > 15} {6441, 10582} f3@dot.com f3

{y < 5} {5037, 8516} f4@dot.com f4

{y = 0} {5001, 8507} f5@dot.com f5

{x > 15; y > 0} {6441, 10582} {5102, 8636} f6@dot.com f6

Table 5.1: The set of subscriptions used in following examples

traditional representation is used. Therefore, it can be said that sparse Bloom
filters allow for cheap over provisioning of the Bloom filter size.

5.3 Filter Routing
The routing of filters is performed using identity-based routing strategy. Fil-
ters are issued by the subscribers and are delivered to the routers in form of
subscription messages. Every filter generated by the subscriber carries a set of
Bloom filters representing the content of the filter predicates. The calculation
of the Bloom filter b fi for the predicate pi of the filter f is performed using k
hash functions:

∀pi∈ f : b fi =

j=k−1⋃
j=0

h j(pi) (5.5)

where h j(pi) is the jth hash function of the predicate pi belonging to the filter
f . The calculation of the hash function over the predicate p is straightforward
and can be, e.g., executed as calculation of the standard hash function [Riv92,
DEEJ01] over the string literal representing the predicate p. It is important to
note that the only requirement on the result of hash function calculation for the
predicate p is that for two different predicates p1 and p2 the calculated hash
functions are also different with probability proportional to the hash function
width m.
Table 5.1 shows example filters with their source interfaces and corresponding
Bloom filters. It can be observed that the number of hash functions k used in
case of the filters in Table 5.1 is equal to 2. The size of the Bloom filter m is
set to 214 = 16384. It can be observed that Bloom filters are calculated on a per
predicate basis – the last filter {x > 15; y > 0} has two Bloom filters: one for
predicate x > 15 (equal to {6441, 10582}) and one for predicate y > 0 (equal to
{5102, 8636}). Bloom filters are represented by the indices of the bits which

84 CHAPTER 5. BLOOM FILTER-BASED ROUTING

Figure 5.4: The sbsposet storing filters from Table 5.1

are set to one, enclosed in curly braces.
Subscription messages carrying filter f and the calculated Bloom filter b f
arriving at every broker are stored in two data structures: the sbsposet and
the sbstree. The sbsposet stores the predicates of filters along with the
accompanying Bloom filters. The sbsposet is responsible for the content-
based matching of incoming events. The sbstree stores a disjunction of
conjunctions of Bloom filters representing filters’ predicates and is responsible
for fast forwarding of events without falling back to the events’ content.

5.3.1 sbsposet

The sbsposet (see Figure 5.4) stores the predicates of filters by abstracting
away the conjunctive form of subscriptions. The sbsposet routing structure
stores predicates grouped by their attribute name. Figure 5.4 illustrates two
attribute names: x and y. Every attribute name points to a partially ordered
set of attribute constraints. Each partially ordered set of attribute constraints
begins with a virtual root node (null) and stores attribute constraints sharing
the same attribute name. The structure of the attribute constraints reflects the
partial order resulting from the covering relation. Every attribute constraint has
a Bloom filter associated with it. Bloom filter represents the whole predicate
which contains the given attribute constraint and is calculated by the subscriber
– hence attribute constraint > 5 in the x branch of the sbsposet has the Bloom
filter of the x > 5 predicate.
Figure 5.4 shows the sbsposet storing predicates of filters shown in Table 5.1.
It can be observed that filter {x > 15; y > 0} is stored without the preservation
of the conjunctive form between its predicates. Simultaneously, one can ob-
serve that the sbsposet maintains the coverage relation between the attribute
constraints which is reflected in their Bloom filters.
The attribute constraint > 5 which is covered by the attribute constraint >

5.3. FILTER ROUTING 85

0.7 reflects this fact within the sbsposet by including (using a logical OR
operation) the Bloom filter of the covering attribute constraint {2787, 12518} in
its own. The Bloom filter of the > 5 attribute constraint encodes this way the
fact that matching the > 5 attribute constraint implies matching of the covering
> 0.7 attribute constraint. The sbsposet, similarly to the routing tree (cf.
Section 4.3.1) by breaking the conjunctive form of the filters allows to represent
filters in a more compact form – an example being filters: {x > 15; y > 0} and
{x > 15} which in the sbsposet are represented using only two predicates:
x > 15 and y > 0, instead of three as it would be the case if the poset [CRW01]
or forest [TK06] data structures were used.
The removal of filters from the sbsposet is performed, similarly to insertion,
on a per predicate basis. For the removal operation to work correctly (simi-
larly as in the case of the counting Bloom filters) a counter associated with
every predicate is implemented. The predicate counter, initially set to one, is
incremented on every insertion of the identical predicate into the sbsposet.
The predicate counter is decremented upon the predicate removal. A predicate
is removed from the sbsposet if and only if upon its removal the counter is
decremented to zero. Counting Bloom filters are also used in the sbsposet in
order to cope with bit collisions during the removal of elements.

5.3.2 sbstree

The sbsposet stores the content of filters without regarding the conjunctions
between the predicates of a single filter. The loss of this information could
lead to a potentially large number of false positives, i.e., events delivered to
subscribers which did not subscribe to them. Hence, there is a need for a data
structure which would represent the conjunction between the predicates of
filters. This section introduces such data structure – the sbstree. The main
task of the sbstree is to represent the disjunction of conjunctions of predicate
values. Therefore, in contrast to the sbsposet, the sbstree stores filters in
their conjunctive form. Specifically, the sbstree does not store any predicates,
instead, it works exclusively with the Bloom filters representing filters.
The disjunction of the predicates of a single filter can be expressed with a
single Bloom filter using an OR operation between the Bloom filters of single
predicates. However, this simple approach cannot be used to represent a
conjunction of filter predicates. Therefore, the sbstree structure is used to
cope with that issue – see Figure 5.5. The path from the root to the leaf of
the sbstree forms a conjunction of the predicates of the given filter, or more
precisely, the conjunction between the bits set in the Bloom filter of the given
filter.
A Bloom filter of a filter is a logical OR between the Bloom filters of all filter
predicates. For a given filter the bits set in its Bloom filter form a path rooted
at the virtual sbstree root node – null. The leaf of the path represents an

86 CHAPTER 5. BLOOM FILTER-BASED ROUTING

Figure 5.5: The sbstree storing subscriptions from Table 5.1

interface on which the given filter arrived – cf. Table 5.1. Hence, a path leading
from the root node to the source interface forms a conjunction of all predicates
of a given filter. As an example let us consider the longest path in the sbstree.
It is formed by the bits forming the Bloom filters of the f6 ≡ {x > 15; y > 0}
filter which arrived on the interface f6@dot.com. In order to arrive at the
source interface of the filter f6 one needs to match all bits of all predicates
forming the filter f6.

The filters are inserted into the sbstree according to their arrival order. Specif-
ically, only the Bloom filters representing a logical OR between the Bloom
filters of all predicates of the filter to be inserted plus the source interface are
stored in the sbstree. In case of a bit collision, e.g., identical first bit in two
different Bloom filters the sbstree branches.

The removal of filters from the sbstree is straightforward, and does not
require the usage of additional counters. It is worth noting that identical filters
arriving from same interfaces are never permitted into the sbstree as such
filters are dropped (on the second occurrence) due to the application of the
identity-based routing. Filters are therefore first inserted into the sbstree and
upon success are stored in the sbsposet as well.

One can observe that unlike the routing tree presented in Section 4.2.2 both
structures sbstree and sbsposet are deterministic with respect to the order
of the filter arrival and insertion. This ensures that every broker in the system
(assuming all filters issued by subscribers are delivered to all brokers – accord-
ing to the identity-based routing scheme) has eventually the same layout of
both structures.

5.4. EVENT FORWARDING 87

1 //calculate Bloom filter for event
2 public BloomFilter match(Event event) {
3 BloomFilter bf = new BloomFilter();
4 for((attrName , attrValue) : event) {
5 SBSPosetNode root = sbsposet.get(attrName);
6 if(root != null) {
7 root.match(attrValue , bf);
8 }
9 }

10 return bf;
11 }

13 //recursive attribute value matching with sbsposet
14 public match(AttrValue av, BloomFilter bf) {
15 boolean match = false;
16 for(SBSPosetNode child : this.children) {
17 if(Covering.apply(child.attrConstraint , av)) {
18 child.match(av, bf);
19 } else if(this.parent != null){
20 match = true;
21 }
22 }
23 if(match || this.children.isEmpty()) {
24 bf.OR(this.bloomFilter);
25 }
26 }

Listing 5.1: Bloom filter extraction during event matching

5.4 Event Forwarding

The process of event forwarding starts with the publisher publishing event e.
Publication message carrying event e is subsequently received by the publisher
connecting broker B6 – see Figure 5.2. Broker B6 performs two operations: (1)
it matches the event e, based on the content of the event e with the sbsposet
and extracts the Bloom filter b f , which it attached to the event e and (2) it
calculates the set of interfaces on which to forward the event e based on the
Bloom filter b f attached to the event. Subsequent brokers forwarding event e
with attached Bloom filter b f perform only the second routing step.
The result of the process of matching of the event e with the sbsposet is a
Bloom filter b f – see Listing 5.1. The Bloom filter b f encodes, in a compact
form, a set of all predicates which match the event e. Event matching starts by
selecting all branches in the sbsposet which have the attribute names equal to
the attribute names of the attribute name and value pairs within the event – line
5. Subsequently, starting with the virtual root node (line 7) the corresponding
attribute value of the event is matched with the attribute constraints forming
the poset for the given filter attribute name.

88 CHAPTER 5. BLOOM FILTER-BASED ROUTING

The match operation finds the attribute constraint in the sbsposet which is
the farthest one from the root attribute constraint and matches the attribute
value of the event – lines 17 and 18. An attribute name and value pair x = 7
would therefore match the attribute constraint x > 5 in the Figure 5.4. The
last step in the matching process is the assignment of the bloom filter of the
attribute constraint to the Bloom filter of the event – line 24.
The Bloom filter b f returned as a result of the content-based matching between
the event e and the sbsposet is subsequently used in the process of matching
with the sbstree. The result of the matching process with the sbstree is the
set of interfaces on which the event e should be forwarded.
The matching process of the Bloom filter b f starts at the virtual root node of the
sbstree – see Figure 5.5. For every integer representing a bit set in the Bloom
filter b f of the event e, a comparison with the children nodes of the root node is
performed. In case of a match, a path starting at the matching node is followed
until either: (1) the end of the path (indicated by the source interface) is reached
or (2) a given node in the path does not have a corresponding matching bit in
the event’s e Bloom filter b f . In the first case the set of interfaces on which
to forwarded event e is extended with the given source interface. In the latter
case no action is taken.
As an example one can follow the process of matching of the event e ≡ {x =

7; y = −2}. The event is first matched based on its content with the sbsposet
– see Figure 5.4. It selects the predicates x > 5 and y < 5 and the Bloom filter
b f of the event e is assigned the Bloom filters of both matching predicates:

b f ≡ {2787, 5037, 6066, 8516, 8581, 12518} (5.6)

The Bloom filter of the event e, due to the properties of the sbsposet contains
also the Bloom filter of the predicate x > 0.7. The Bloom filter b f of the event
e is subsequently matched with the sbstree. The matching starts with the
first bit set in the Bloom filter: 2787. This bit selects the (rightmost) branch of
the sbstree – see Figure 5.5. Subsequently, it is checked whether there is a
bit in the bloom filter b f which satisfies the second node of the branch: 12518.
Since such bit is found in the Bloom filter b f the source interface f2@dot.com
is added to the list of interfaces on which the event e should be forwarded. The
process continues with the remaining bits of the Bloom filter b f .

5.5 Improved Event Forwarding
The sbstree matching algorithm suffers however from the fact that for every
bit set in the event’s Bloom filter a path in the sbstree needs to be selected and
possibly followed. From the sbstree traversal algorithm one can conclude
that following a given path does not guarantee the reaching of the source
interface at the end of it. Additionally, the complexity of the sbstree traversal

5.5. IMPROVED EVENT FORWARDING 89

Figure 5.6: The counting algorithm variant of the sbstree from Figure 5.5
storing filters from Table 5.1

grows with the number of bits set in the event Bloom filters – as more and
more paths need to be followed. The worst case being event Bloom filters with
all bits present in the sbstree set, with the exception of the bits holding the
filter source interfaces in the sbstree.
Therefore, in this section an improved version of the sbstree, based on a
counting algorithm [YGM94, PFLS00, FJL+01] is proposed. The new version
of the algorithm stores bits set in Bloom filters in a linear fashion – leftmost
column on Figure 5.6. All bits from a Bloom filter forming a filter are assigned
a counter. The value of the counter is equal to the number of bits set in the
filter’s Bloom filter. For the filter which arrived on interface f6@dot.com this
value equals 4, as it has two predicates, each composed of a Bloom filter having
2 bits set. The counter itself represents a set of bits which need to be present in
the event in order to trigger the counter. The triggered counter activates the
filter it is connected to and thus the interface on which the filter arrived.
Upon arrival of an event e its Bloom filter b f is parsed for the values of the
set bits. Every bit set in the event’s Bloom filter b f triggers the corresponding
bit in the counting sbstree. Triggering a bit corresponds to the decreasing
of the counter which is connected to it. Whenever a counter reaches 0 the
corresponding filter matches the given event. A filter matching an event e
implies that the event should be forwarded on the filter’s source interface –
rightmost row in Figure 5.6.
The above algorithm, in contrast to the original sbstree variant, is linear with
the number of bits set in the event. Section 9.2 presents the evaluation of this

90 CHAPTER 5. BLOOM FILTER-BASED ROUTING

approach and contrasts it with the original sbstree. The major difference
between the counting algorithms proposed in, e.g., [CW03] and the algorithm
proposed in this section lies in that the counting variant of the sbstree does
not require any content-based matching to be performed and therefore offers a
very good potential for event forwarding speed-up.

5.6 Parallelization
In recent years we have been witnessing the exponential growth in the ca-
pabilities and processing speeds of the modern Graphics Processing Units
(GPU). In 2004 a high-end 3GHz Pentium4 chip could peak 6 GFLOPS; a
high-end NVIDIA GeForceFX 5900 graphic card could perform operations at
20 GFLOPS [Fer04]. In 2004 the ten year growth in the CPU speed reached
6.000%, while the ten year growth in the processing speed of the GPUs ex-
ceed 100.000%. The difference in the speed-up between the CPUs and the
GPUs can be explained by the fact that GPUs are specialized designs focusing
on the arithmetic operations. Therefore, the additional transistors in GPUs
are used for computation instead of cache memory, like in the case of the
CPUs [LHK+04]. These trends suggest the feasibility of off-loading the com-
putationally intensive operations performed during the event forwarding in
publish/subscribe systems to the Graphics Processing Units.
This section investigates the opportunities to excel the speed of event for-
warding by combining the Bloom filter-based abstraction of the message con-
tent with the General-Purpose computation on Graphics Processing Units
(GPGPU) [LHG+06]. The GPGPU takes advantage of hundreds of pro-
grammable vertex and fragment processors available on modern graphics
cards in order to perform the arithmetically intensive non-rendering algorithms.
The GPGPU introduces two main concepts which are the building blocks
for all GPGPU applications: (1) streams and (2) kernels. Streams are the
collections of records which require the same computation to be performed on
them. Streams, due to their mapping on the underlying GPU architecture are
represented as grids (matrices). Kernels are the functions which are applied to
each element of the stream (grid).
The stream- and kernel-based architecture imposes a set of rules, which need
to be fulfilled by the non-rendering algorithms which are to be mapped onto
the GPU. The strict adherence to these rules is not necessary for the mapping
itself. However, not following them will likely result in performance decrease,
instead of increase in comparison to the sequential execution on the CPU. It
is therefore desirable that the problem which is to be mapped onto the GPU
exposes the following characteristics:

• high arithmetic intensity

• lack of dependencies between the stream elements

5.6. PARALLELIZATION 91

 0

 10

 20

 30

 40

 50

 60

 70

 16 18 20 22 24 26 28 30

sp
ee

d
u
p
 [

x
]

size of the Bloom filter: 2n [bits]

NVS 290 vs 32bit xmm
NVS 290 vs 64bit xmm
9800 GT vs 32bit xmm

9800 GT vs 64bit xmm
GTX 285 vs 32bit xmm
GTX 285 vs 64bit xmm

Figure 5.7: Speedup of Bloom filter operations using different CUDA devices

The high arithmetic intensity implies that algorithms which are mapped onto
the GPU perform a large number of operations per transferred data word. In
traditional rendering algorithms a single 8 bit word of data triggers at least 300
operations in the programmable fragment processors [FSH04, Han05]. The
lack of dependencies between the stream elements implies that the kernels can
exploit the parallelism of many cores working on the same data, without the
need of blocking.
Figure 5.7 illustrates the speedup of the OR operation between two Bloom
filters as a function of their size in bits. The speedup is calculated as the ratio of
the Bloom filter OR operation speed using the 32 and 64 bit CPUs and different
GPU devices. The 32bit xmm and 64bit xmm data series were obtained
using the Intel(R) Celeron(R) 2.66GHz, 32 bit and the Intel(R) Core(TM)2
Quad Q9450 2.66GHz, 64bit CPUs, respectively. The OR operation in case
of the both CPUs was performed in the XMM SIMD registers. The NVS
290, 9800 GT and GTX 285 data series represent different GPU devices with
16@0.9GHz, 112@1.5GHz and 240@1.47GHz cores, respectively.

5.6.1 skiptree

In order to use the GPGPU in content-based event forwarding the event forward-
ing algorithms must expose the characteristics presented in the previous section.
The first step in that direction has already been performed: the content-based
matching problem (with the help of the Bloom filters) has been transformed
into a numerical algorithm – see Section 5.4. It is important to note that none
of the contemporary GPGPU programming languages, like CUDA [NBGS08]
or Brook [BFH+04], allows for an easy and straightforward mapping of prob-

92 CHAPTER 5. BLOOM FILTER-BASED ROUTING

Figure 5.8: The skiptree containing filters from Table 5.1

lems like string comparison or recursion onto the GPGPU. Therefore, it is
of crucial significance that the Bloom filter-based routing algorithms allow
to transform the problem of content-based matching into a numerical, high
arithmetic intensity algorithm, which can be executed in all but first broker on
the path of the event.
However, even though the algorithms presented in Section 5.4 are not explicitly
working with the content of events and subscriptions, they still expose a signif-
icant amount of data dependencies. Specifically, the presence of counters in
the counting variant of the sbstree (see Figure 5.6) with the state dependent
on the progress of the matching of the current event introduces additional
overhead for the management of the routing structure. Moreover, it is not
possible to start the matching of the new event until the previous one has been
completely matched and the counters in the counting sbstree have been reset
to their original state.
Therefore, this section proposes a new data structure – the skiptree. The
skiptree is conceptually based on the design of a skip list [Pug90]. It follows
two design considerations: it tries to achieve maximum event forwarding speed
and it reduces to minimum the dependency and dynamism in the data structure.
The skiptree, unlike skip list, can profit from the fact that the size of the data
structure is bounded by the size of the underlying Bloom filter.

5.6. PARALLELIZATION 93

Figure 5.8 shows the skiptree after the insertion of the filters from the
Table 5.1. It can be observed that the operations, similarly to the sbstree and
counting sbstree are performed only on the bits of the Bloom filters. The
skiptree maintains two data layers – the rightmost layer is an ordered linked
list containing the bits of Bloom filters with the filter identifiers attached to
every bit. Every bit stores the identifier of the filter (or filters, as in the case of
bits 6441 and 10582) to which it belongs. For example bit 2787 belongs to the
filter f 2.
The left layer is a finger data structure which starting from the root node
maintains fingers to the ranges of the bits. One can observe that starting from
the root the fingers are getting more specific. The skiptree illustrated in
Figure 5.8 was initialized with the minimum finger span of 128 and the finger
span step of 4. This means that one finger at the lowest level spans exactly 128
bits and every higher level spans the previous level times four number of bits.
Every finger contains the list of filters which are assigned to the Bloom filter
bits within the range of the finger.
Since the size of the Bloom filter used in filters is known m = 214, the finger
structure can be statically initialized during the skiptree construction. Sub-
sequent additions of new Bloom filters into the skiptree result only in the
updates to the rightmost linked list and the sets of filters stored by the fingers.

5.6.2 Filter routing and event forwarding
Filter routing using only the skiptree structure is possible only if the simple
routing strategy is used. New filters are added to the skiptree on a per bit
basis. New bit b to be inserted is compared with fingers starting from the
level directly under the root node and upon match the comparison process is
continued with the children of matching node, until the rightmost finger is
found. The rightmost finger points to the first element of the linked list into
which the new bit b is inserted. The filter identifier to which b belongs is
attached to b and to the filter lists of all taken fingers. The above process is
repeated for all remaining bits of the filter.
The forwarding of events is performed only based on the Bloom filter b f
attached to the event. The goal of the matching process using the skiptree
structure is the exclusion of filters which a given event does not match. This
implies that at the start of the forwarding process it is assumed event e matches
all filters and should be forwarded on all interfaces the broker B performing
the matching:

Ie→ = IB (5.7)

The matching process starts with the first bit b1 of the event. The goal of the
matching is to extract all bits (and their attached filters) which are between the
bit number 0 and the first bit of the event b1. In other words algorithm searches
for all bits which are not satisfied by the event’s Bloom filter. All unsatisfied

94 CHAPTER 5. BLOOM FILTER-BASED ROUTING

bits imply filters which do not match an event. The search process is excelled
by the use of fingers – algorithm tries to find a finger which is closest to the
root and its range is enclosed by the exclusive range (0, b1). Upon successful
location of such finger its filter list is subtracted from the list of filters matching
the event e.

Algorithm subsequently steps down the finger tree to fill up the whole exclusive
range (0, b1) using fingers. If the exclusive interval (0, b1) is not completely
covered by fingers and algorithm already searched the fingers at the lowest
level than a binary search in the linked list is performed in order to find all bits
(and filters) which are needed to fill the range. When the search is finished
algorithm selects next bit b2 from the event’s Bloom filter. Starting at the last
position b1 it tries to fill the exclusive range (b1, b2) with the fingers and bits
from the skiptree.

As an example the process of forwarding of the event e ≡ {x = 3} can be
considered. Event e after matching with the sbsposet presented in Figure 5.4
carries a Bloom filter b f = {2787, 12518}. The matching process of the
event e with the skiptree starts with the exclusive range (0, 2787). The
algorithm starts at the root of the finger tree and tries to find the largest finger
which is enclosed within the exclusive range (0, 2787). The algorithm takes
the top branch of the finger tree and descends it until it arrives at the lowest
level finger – [2688, 2815]. However, since even this finger is not contained
within the exclusive range (0, 2787) algorithm needs to search the linked
list pointed to by the finger in order to find all bits in the exclusive range
(0, 2787) present in the ordered linked list. Since none such bits are found
(bit 2787 is outside of the range) algorithm proceeds by selecting the next
bit 12518 from the event’s Bloom filter and forming the new exclusive range:
(2787, 12518). The algorithm now walks up the tree to find the largest finger
encompassed by the new exclusive range (2787, 12518). The largest finger
it finds is [4096, 6143]. It subtracts all filters from that finger from the set of
filters (initially containing all filters – see Equation 5.7) matching event e. The
set of filters matched by the event e contains now only two filters: f 2 and f 3.
The algorithm continues in its search for other fingers encompassed by the
exclusive range (2787, 12518). It finds the fingers [6143, 8191] (and removes
filters f 3 and f 6 from the event matching set of filters) as well as [6143, 8191],
[8192, 10239] and [10240, 12287]. The algorithm steps down along the last
finger [12288, 14335] until it reaches the linked list again. The result of the
matching is the set of filters matching the event e containing only the filter f 2 –
as the only filter not removed. The event e is subsequently forwarded on the
reverse address of the filter f 2.

5.7. RELATED WORK 95

5.6.3 Discussion

The algorithms presented in this section are still under development. While on
one hand side the combination of the Bloom filter-based routing and skiptree
algorithm allows to reduce the problem of the content-based matching to the
problem of numerical algorithm, there are still issues which prevent the straight-
forward implementation in the CUDA or Brook environments. One of the main
issues is the need for dynamic data structures in the skiptree – the list of
skip filters associated with the single bits and the list of skip filters associated
with the fingers. Such dynamic data structures are expensive to maintain in the
highly parallel programming environments and their optimization is the focus
of the further research in this area.

5.7 Related Work

The related work for the fast event forwarding in content-based systems has
been already partially covered in the Section 4.5. Therefore, this section
focuses on the specific issue of fast event forwarding and filter routing using
content summaries. In order to structure the comparison the related work has
been divided into two groups: first group tries to tackle the problem of fast
event forwarding and filter routing by altering the routing process and routing
structures, while the second group aims at implementing a routing overlay
which reorganizes the broker overlay, so as to exploit the filter similarities.
One related set of publications belonging to the first group is characterized by
the following works: [TE02, TE04, AT05, AT07]. The authors propose to use
Bloom filters to represent per broker, numeric filter summaries compacting
filter information. The per broker filter summaries are subsequently exchanged
by the brokers so that incoming events are matched against the summaries
instead of the full content-based matching. The algorithm proposed by the
authors assumes that it is possible to numerically encode events so that the nu-
meric event representation can be matched with a numeric filter representation.
This in turn requires that the number of predicates in the system is predefined,
as well as the specification of these predicates (attribute name and attribute
constraint), and that the set of supported predicates is ordered and known
for each broker. The Bloom filter-based XSiena system does not make such
assumptions, instead filter predicates are treated as black box entities, with
external interface allowing for the computation of the coverage relation and
the computation of the matching between the predicates and events.
A similar approach (based on [TE02]) to efficient content-based addressing in
the environment of the mobile ad-hoc networks has been presented in [YB04].
The authors combine Bloom filter-based filter summaries and an on-demand,
multicast routing protocol. However, due to the assumptions shared with
the [TE02], resulting limitations concerning the expressiveness of the system

96 CHAPTER 5. BLOOM FILTER-BASED ROUTING

are also similar.
The second group of publications concerned with the alteration of the broker
network is best characterized by [CF05]. Authors propose a publish/subscribe
system based on the peer-to-peer substrate with minimal overhead routing
algorithm in which every peer subscribes to events it produces. Moreover, every
peer forwards events to its neighbors only if the events match its own interest.
Thus messages are effectively flooded within the community of interest. In
order to minimize the false positives and false negatives authors organize
peers based on their interest. Authors propose two methods: coverage-based
organization of peers and similarity-based organization of peers. However, both
approaches result in a relatively high overlay management overhead, with the
second approach resulting in possible false negatives a condition not possible
in the Bloom filter-based XSiena system. The first approach exposes also high
number of false positives, especially for smaller networks (N 6 20000 nodes)
– a condition easily avoided in the Bloom filter-based XSiena system using
sparse Bloom filter implementation – cf. Section 5.2.3. A similar approach
has been proposed in [BBQV07] where authors propose algorithms which
re-organize the broker spanning tree overlay according to the similarity of the
brokers’ interests.
Another class of publish/subscribe systems in the second group are those
based on the structured overlays [TZWK07, Pie04]. Although DHT-based
approaches usually expose a superior matching times they require typed filters
and events (thus limiting the flexibility of the content-based publish/subscribe).
Moreover, DHT-based systems require globally unique node ids ands additional
mechanisms to account for the locality of the events. It is also important to
recall (see Section 2.5.7) that peer-to-peer-based solutions always expose an
additional overhead associated with the stretch of the underlying DHT.

Chapter 6

Fail-Awareness

For many critical applications, e.g., Critical Infrastructure Protection [Che05]
(CIP) it is essential to be aware whether:

• one has received all information one was supposed to get

• the information that was received is timely, i.e., it is not older than some
application-specific or context-specific threshold

The critical applications include, among others, transportation [EAP99], elec-
tric grid related systems [TBVB05] or embedded systems [KM99]. For exam-
ple, one can recall the events of August 14, 2003 blackout in US and Canada.
It has been stated [U.S04] that one of the major causes for the blackout was
the fact that none of the system operators noticed failed components which
in turn resulted in missed alarms and lack of adequate action. This clearly
demonstrates that without being able to determine whether all information has
been received, it is not possible to undertake appropriate actions. This in turn
can result in a failure propagation and transformation [Wal05].
Moreover, it has been stated that second major cause for the August 2003
blackout was the lack of appropriate, timely actions due to the slow information
exchange between operators. This becomes clear if one considers the fact
that when telemetry or electronic communications fail, some essential data
values have to be manually entered into SCADA [wide area electric grid
control] systems, state estimators, energy scheduling and accounting software,
and contingency analysis systems [U.S04]. This proves that management of
complex wide area systems requires timely communication which in turn
is only possible if a notion of timeliness is provided. Intuitively, timeliness
implies the ability to make deterministic judgments about the information
propagation time.
This chapter presents a fail-aware XSiena system which permits to compute
upper bound on the age of received information and allows to determine the
completeness of the received data. Specifically, the ability to calculate the upper
bound on the age of publication, advertisement and subscription messages in

97

98 CHAPTER 6. FAIL-AWARENESS

the XSiena system is introduced. The age (propagation delay) of the message
is defined as the time between the message creation at the source host and the
time message is delivered to the application at the destination host.
The fail-aware XSiena system introduced in this chapter does not require any
prior information regarding the diameter of the content-based network nor any
a priori known bounds on the message transmission delays. Fail-aware XSiena
is fully decoupled with respect to space and synchronization. Moreover, the
fail-aware XSiena system does not require any kind of clock synchronization
(neither internal nor external) among the nodes of the content-based network.
There are several factors which speak for the application of the content-based
systems in the context of the CIP. One of them is the fact that CIP applica-
tions and systems are typically geographically distributed. Therefore, they
require a Wide Area Network (WAN) to collect and manage information from
different administrative domains. This implies the need to support wide area,
distributed control. Even in areas where its use has been so far very limited
(e.g. electric grid control), the demand for the introduction of content-based
solutions is clearly increasing [GDB+03]. Therefore, providing timeliness and
fail-awareness for WANs is certainly within the scope of the content-based
systems.
Simultaneously, Wide Area Networks pose a challenging environment. Due
to their size (both in terms of geographical distribution and the number of
nodes), WANs often suffer from failures, including, among others, delays and
information loss. One reason for this are partitions and routing anomalies –
instances where live nodes are not able to route packets to each other. For
example, measurements have shown that an average wide area distributed
system (PlanetLab [Ros05]) consisting of 280 nodes partitions at least once a
day [MPHD06]. Moreover, within a ten day period, at least one node in a 192
node system suffers from a routing anomaly [MPHD06].
The choice to use the content-based XSiena system has been made because
a traditional, point to point schemes with explicit information source and
information sink suffer from a lack of flexibility in the presence of failures
and restrict the reconfigurability of the system. Therefore, it will be demon-
strated that a content-based network poses a promising alternative as it is well
adapted to the loosely coupled nature of distributed interaction in wide area
systems [EFGK03].
A simple approach to implement such a system would be to use external
clock synchronization. Having all clocks synchronized with respect to some
external time source allows to measure the message transmission time by
calculating the difference between the reception time stamp at the receiver
and sending time stamp at the sender. A de facto standard to provide such
an external clock synchronization is NTP [Mil92, Mil06]. However, in this
chapter it will be demonstrated that NTP does not provide any guarantees as
to the results it delivers. The transmission time measured using NTP and the

6.1. DEFINITION 99

real-time results always differ. Specifically, it is not possible to guarantee that
the received message is not late because the transmission time computed using
NTP might be lower than the actual transmission time. In this chapter it will
be demonstrated that the proposed approach does not suffer from this problem.
Moreover, the usage of the NTP is not always feasible due, to, e.g., security
restrictions of the given system or the lack of the Internet access.
The remainder of this chapter is structured as follows: Section 6.1 defines the
fail-awareness in context of the distributed systems. Section 6.2 presents the
theory behind the calculation of the upper bound on the message transmission
delays. Section 6.3 presents the application of the upper bound on the trans-
mission delay in the context of the content-based publish/subscribe systems.
The chapter is concluded with an overview of the related work in Section 6.4.

6.1 Definition
Fail-awareness provides an indicator allowing to implement services in dis-
tributed systems with uncertain communication and access to local hardware
clocks only. The fail-aware indicator tells whether some safety property cur-
rently holds or if it might be violated [FC99b]. The fail-aware XSiena sys-
tem is based on the by the Timed Asynchronous Distributed System Model
(TADSM) [CF99], i.e., the communications channels expose the omission/per-
formance failure semantics, while processes have crash performance failure
semantics – see Chapter 3.
Intuitively, a fail-aware system is a system which is able to detect when it is
not possible to depend upon properties provided by lower level services, e.g, to
depend upon the provided information because its transmission time violates
the predefined ∆max threshold [FC03]. The TADSM model is suitably weak
to represent the contemporary distributed systems – assumptions it makes on
the type and frequency of failures, communication infrastructure and time flow
allow it to be implemented in a wide range of existing systems without the
need to introduce any extra hardware and without the need to alter the existing
system’s interconnections. This chapter demonstrates that it is also sufficiently
strong to solve the problem of failure detection in a content-based system.

6.2 The Upper Bound on Transmission Delay
The goal of the fail awareness in the content-based XSiena system is to provide
an indicator, whether is it not possible to rely on the safety property of the
system. The safety property of the fail-aware XSiena system is defined as
the ability to estimate whether messages received by the components of the
system are late or timely. A message m is late if its transmission delay is
greater than a predefined value ∆max. It is timely otherwise. It is only possible

100 CHAPTER 6. FAIL-AWARENESS

to detect a message that is late if it is possible to calculate the transmission
delay of that message. However, it is not possible to calculate the transmission
delay by subtracting send and receive time stamps in a distributed system with
unsynchronized clocks.
Therefore, in order to provide fail-awareness in the content-based XSiena
system, it is proposed to calculate an upper bound ub(m) on the transmission
delay td(m) of the message m between the source of the message m and the
destination of the message m. The upper bound on the message m transmission
delay states that the calculated upper bound value is always higher than the
actual transmission delay experienced by the message m. Specifically, it is
possible that the actual transmission delay is lower than the calculated upper
bound:

td(m) 6 ub(m) (6.1)

Therefore, the upper bound can be seen as a conservative estimation of the
transmission delay of a given message. Following the above reasoning it can
be said that message m is late if the upper bound on its transmission delay is
greater than a predefined value ∆max and that it is timely otherwise:

ub(m) 6 ∆max ⇒ m is timely (6.2)
ub(m) > ∆max ⇒ m is late (6.3)

In content-based publish/subscribe system there might exist multiple receivers
for a message m and they might experience different transmission delays for m.
To simplify the description, it is assumed that the transmission delay and the
upper bound is always specific to some implicitly or explicitly given receiver.
Computing an upper bound on the message transmission delay for a fail-aware
content-based XSiena system must not require external clock synchronization.
A method to provide such an upper bound has been presented in [FC99b] and
subsequently improved in [CMRV01]. In what follows a brief outline of the
proposed approach will be given. It will be also further extended so that it can
be used in the context of the XSiena content-based system.
To compute an upper bound ub(m) on a transmission delay of the message
m between two connected processes p and q (see Figure 6.1) each of them
requires a monotonic local clock with a bounded drift rate ρ with respect to
real time – see Chapter 3.1. A drift rate of process q is bounded by ρq and the
drift rate of process p is bounded by ρp.
The intuition behind the upper bound method is that process q sends a helper
message n to process p at time A – measured with its local hardware clock.
Subsequently, p sends a message m to q which receives it at time D indicated
by q’s local clock. The transmission delay td(m) of message m is bounded by
the real-time period between D and A. The error due to q’s clock drift equals
(D − A)ρq. Hence:

td(m) 6 (D − A)(1 + ρq) (6.4)

6.2. THE UPPER BOUND ON TRANSMISSION DELAY 101

Figure 6.1: Calculating an upper bound on the transmission delay td(m) = d−c.

The upper bound calculation can be improved by subtracting the processing
time at process p. This time can be calculated by p as (C − B). The error due
to p’s clock drift equals (C − B)ρp. Hence:

td(m) 6 (D − A)(1 + ρq) − (C − B)(1 − ρp) (6.5)

In order to guarantee that the message transmission delay is indeed not higher
than ub(m), a lower bound on the message processing time at node p is calcu-
lated using the factor (1 − ρp).
A further improvement can be achieved if one is able to calculate a lower bound
lb(n) on the transmission delay of the helper message n, i.e., lb(m) ≤ td(m).
Knowing the bandwidth of the network (bndwdth) connecting processes p
and q and the size (size(n)) of the helper message n, a lower bound on the

transmission delay of the helper message n can be set to δmin(n) =
size(n)

bndwdth
.

Hence, the upper bound ub(m) of a message m can be defined as:

ub(m) = (D − A)(1 + ρq) − (C − B)(1 − ρp) − δmin(n) (6.6)

An error eub(m) on the upper bound ub(m) of the transmission delay td(m) of
the message m is defined as the difference between the calculated upper bound
and the real time transmission delay, i.e.: eub = ub(m) − td(m) – see Figure 6.1.
It can be seen from Equation 6.6 that with the increase of the transmission delay
td(n) (more precisely, with the increase of the uncertainty td(n) − δmin(n)) the
upper bound ub(m) and the error value eub(m) will increase, as well. To cope
with this problem, a helper message n with a smaller uncertainty td(n)− δmin(n)
is needed. This principle is illustrated on Figure 6.2. Instead of using more
recent helper n, one can optimize ub(m) by using an older helper message n′

with smaller uncertainty. Specifically, process p upon reception of each helper
message determines whether the current one is characterized by a smaller

102 CHAPTER 6. FAIL-AWARENESS

Figure 6.2: Using faster helper message to improve upper bound calculation

Figure 6.3: An improved upper bound (it is assumed that ρ = 0)

uncertainty than the old helper messages it already has received. The criterion
for choosing n′ in favor of n can be expressed as choosing a helper message
which provides a better (lower) upper bound:

[(F −C′)(1 + ρq) − (E − D′)(1 − ρp) − δmin(n′)]
< [(F −C)(1 + ρq) − (E − D)(1 − ρp) − δmin(n)] (6.7)

Which results in:

(C −C′)(1 + ρq) − δmin(n′) < (D − D′)(1 − ρp) − δmin(n) (6.8)

So far a simple definition of δmin(n) has been used, assuming it to be the lower
bound for the helper message n. In [CMRV01] it is proposed to calculate a
lower bound which can be greater than δmin(n). In following it will be shown
how to use this improved lower bound to improve the upper bound.

6.3. FAIL-AWARE PUBLISH/SUBSCRIBE 103

Figure 6.3 illustrates a pair of messages n′′ and n. The intuition behind the
improved lower bound method is that when the lower bound lb(n) of helper
message n is greater than δmin(n), the improved upper bound ubimp(m) is smaller
than the original ub(m).
The lower bound on the transmission delay of message n represented as lb(n)
can be calculated as:

lb(n) = (B − B′)(1 − ρp) − (A − A′)(1 + ρq) − ub(n′′) (6.9)

It is possible that the calculated lower bound lb(n) is smaller than the δmin(n).
Specifically, it can be less than zero. Therefore, an improved lower bound
lbimp(n) can be defined as:

lbimp(n) =

{
δmin(n) if δmin(n) > lb(n)
lb(n) if δmin(n) < lb(n) (6.10)

Process p can subsequently attach the calculated value lbimp(n) on to the
message m it sends to the process q – see Figure 6.3. Process q knowing the
value of lbimp(n) which it has received with the message m, can calculate an
improved upper bound ubimp(m):

procT = (D − A)(1 + ρq) − (C − B)(1 − ρp)
ubimp(m) = procT − lbimp(n) (6.11)

The ability to calculate the lower bound on a helper message influences the
choice of the faster helper message presented in Equation 6.8. Using the
improved lower bound lbimp(n) the criterion in Equation 6.8 can be rewritten
as:

(C −C′)(1 + ρq) − lbimp(n′) < (D − D′)(1 − ρp) − lbimp(n) (6.12)

where lbimp(n′) and lbimp(n) are the improved lower bounds on helper messages
n′ and n – see Figure 6.2.
It is important to note that the upper bound computation requires only local
clocks with a bounded drift rate. Specifically, this means that it is possible to
use a common time stamp counter (available on most modern CPUs) which
typically has a bounded drift rate. For example, a High Precision Event Timer
is supported on many systems and this timer has a specified maximum drift
rate of 500ppm for intervals over 1 millisecond [Cor04].

6.3 Fail-Aware Publish/Subscribe
In order to achieve fail-awareness in a content-based publish/subscribe system,
it is necessary to be able to detect and signal when it is not possible to depend

104 CHAPTER 6. FAIL-AWARENESS

Figure 6.4: The components of the propagation delay for a three host network

upon real-time properties of lower level services due to unmasked failures. A
fail-aware content-based system uses the upper bound on the transmission delay
ub(m) to detect failures with respect to the timeliness of message transmission
delay. It has been shown in Chapter 6.2 that such detection is possible when
two processes communicate with each other. However, when recalling the
architecture of a content-based XSiena system presented in Section 3.3, it
becomes clear that the upper bound on the transmission delay alone is not
sufficient for the timeliness detection.

Timeliness properties need to be preserved between the sender of the message
and its receiver. This in turn implies that an upper bound on the transmission
delay needs to be computed for messages which pass multiple hosts on their
way from sender to receiver in the XSiena system. Moreover, neither sender
nor the receiver know the path taken by the message for which the timeliness
property should be evaluated.

The calculation of the timeliness of the message transmission delay between
multiple hosts requires the definition of the propagation delay pd(m) of the
message m. Propagation delay of the message m can be defined as a sum of the
transmission delay td(m) and the processing time pt(m) of the message m. The
transmission delay is the actual time spent by the message in transit between
two nodes. Processing time is the time spent by the message at the given node
from its reception until its dispatching. Specifically, if the current node is the
nth node encountered by the message m, then the propagation delay pdn(m) of

6.4. RELATED WORK 105

the message m calculated by that node equals:

pdn(m) =

i=n∑
i=1

tdi(m) +

i=n∑
i=0

pti(m) (6.13)

where pt0(m) is the time between the scheduled creation of the message m and
its dispatching at the producing node, ptn(m) is the time between the reception
of the message m at the destination node and the placement of the message m
in the routing table of the destination node and pti(m) for i ∈ {1, . . . , n − 1} is
the time between the reception of the message m and its dispatch at the node i.
The transmission delay tdi(m) is the transmission delay between nodes i − 1
and i – see Figure 6.4.
Applying the techniques presented in Chapter 6.2 to the Equation 6.13 one can
calculate the upper bound on the propagation delay of the message m. The
upper bound on the propagation delay ub(pd(m)) determines the upper bound
on the total age of the message m since its creation. In order to calculate the
upper bound on the propagation delay of the message m the tdi(m) is replaced
with the corresponding upper bound ubi(m) on the transmission delay – see
Equation 6.6. The upper bound on the local processing time ub(pti(m)) of
the message m, can be calculated by every node using its own local hardware
clock. The calculation is performed by including the compensation for the
hardware clock drift rate (1 + ρi):

ub(pti(m)) = (1 + ρi)pti(m) (6.14)

Combining Equations 6.6, 6.13 and 6.14 one can calculate the upper bound on
the propagation delay of the message m as:

ub(pdn(m)) =

i=n∑
i=1

ubi (m) +

i=n∑
i=0

ub
(
pti (m)

)
(6.15)

6.4 Related Work
Despite the broad range of publish/subscribe systems only a few provide
guarantees related to the delivery of messages or their timeliness in a Wide
Area Network environment. The approach presented in [ZSB04] allows for an
in order, gapless delivery of information. The presented approach relies on
the algorithm which explicits the set of filters a message should be matched
against and a set of filters which is used by the broker to perform the matching.
In case a broker contains only a subset of filters which are required to match
the message, the message is flooded without the filtering taking place. The
algorithm trades-off the flooding approach for the consistency maintenance
with respect to the routing tables of the brokers – cf. Section 4.4. The fail-
aware approach differs significantly from the above work in that the fail-aware

106 CHAPTER 6. FAIL-AWARENESS

XSiena system is agnostic to the underlying routing mechanism and that it aims
at providing the timeliness information regarding the events in the system.
Author in [Fet98] presents a topic-based publish/subscribe system with the
ability to detect if all messages that are at least some ∆max seconds old where
received. Fail-aware XSiena system extends the approach proposed in [Fet98]
to work with a content-based publish/subscribe system and alleviates the re-
quirements for each process having to calculate an upper bound ε(T) on the
current deviation of its clock from real-time. Specifically, the fail-aware XSiena
system relies solely on the local clocks of the processes without any reference
to the real-time.
There exist other publish/subscribe systems providing real-time properties,
e.g., [PC05a], however, they require dedicated hardware and use closed source
software, so it is neither possible to evaluate their functioning nor feasible to use
them with the existing infrastructure, e.g., the Internet). Similarly, [GDB+03]
requires the use of dedicated infrastructure and externally synchronized clocks.

Chapter 7

Soft State

The specific environment of distributed systems, with the high probability of
communication and node failures [MPHD06, WSH08], implies the need for
an approach which could be used to build survivable content-based systems. A
survivable content-based system continues to provide service despite transient
components and links failures [KSS03, ALRL04].
This chapter presents a soft state [Cla88, RM99], content-based XSiena system
based on the fail-aware approach presented in Chapter 6. Following [Cla88]
soft state can be defined as a system state which can be lost in a crash without
permanent disruption of system features. Specifically, soft state implies the
survivability of the system in the face of failures. The proposed soft state-based
design allows the XSiena content-based system to recover from node, link and
timing failures so that a correct system state is never permanently lost. The
soft state approach is used for the creation and maintenance of the routing state
stored in the routing tables of the XSiena system. The soft state XSiena system
is deployed in the Wide Area Network environment of the PlanetLab.
In the soft state approach both publishers and subscribers determine the va-
lidity (lease time) of periodically published advertisement and subscription
messages. Advertisements and filters need to be refreshed by the publishers
and subscribers before their lease time expires, otherwise they are removed
by the brokers from their routing tables. The lease-based approach does not
restrict the expressiveness of advertisements and subscriptions, including the
coverage-based routing optimizations.
In order to adaptively calculate the validity of subscription and advertisement
messages the fail-aware XSiena system is used. Specifically, no prior informa-
tion regarding the diameter of the publish/subscribe network, nor any a priori
known bounds on the message transmission delays are required. The proposed
soft state approach is fully decoupled with respect to space and synchronization
and lightweight in that it does not require any kind of clock synchronization
(global clock) among the nodes of the publish/subscribe network. In the soft
state XSiena system both periodic re-advertisement and re-subscription mes-
sages are idempotent with respect to the correct system state, thus ensuring the

107

108 CHAPTER 7. SOFT STATE

soft-state properties of the content-based system.
An interesting property of the soft state XSiena system is that it automatically
handles the effects of subscribers’ and publishers’ failures and unannounced
departures [M0̈2]. In traditional, hard state content-based systems such failures
would result in the pollution of the brokers’ routing tables. In hard state
systems filters and advertisements are stored by the brokers in their routing
tables until a matching unsubscription or unadvertisement is received. If a
subscriber or a publisher which issued a subscription or an advertisement
crashes, neither a matching unsubscription nor a matching unadvertisement
is issued. This results in a broker routing table indefinitely holding entries
for inactive subscribing and publishing nodes. Soft state approach allows for
the automatic expiration of such entries, thus alleviating the need for explicit
unsubscriptions and unadvertisements. This in turn results in a more flexible
system, as the departures of subscribers and publishers are lightweight in that
no messages need to be exchanged upon such event.
The remainder of this chapter is structured as follows: Section 7.1 outlines the
issues related to message propagation delays and link failures in the hard-state
publish/subscribe systems. Section 7.2 presents the soft state approach towards
solving of the problems presented in previous section along with the detailed
analysis of implications of the soft state publish/subscribe system. Section 7.3
discusses the implications of the Timed Asynchronous Distributed System
Model onto the safety and liveness properties of the soft state XSiena system.
Section 7.4 presents the practical aspects related to the implementation of
the soft state XSiena system including the choice of the API, implementation
of the clocks and the routing of unsubscriptions and unadvertisements. This
chapter is concluded with the overview of the related work in Section 7.5.

7.1 Motivation
The goal of the proposed soft state XSiena system is the creation and the
maintenance of the soft logical routing state. The logical routing state is
created using advertisements and filters and it is stored in the routing tables
of publish/subscribe brokers. Routing tables, in turn, form advertisement and
subscription trees which are the foundation upon which the actual information
exchange takes place – see Sections 2.5.3 and 2.5.6. The lack of or incomplete
advertisement and filter trees imply that nodes are not able to forward events
and thus it is not possible for the publishers and subscribers to communicate.
It is therefore of vital importance for the survivability of the publish/subscribe
system to ensure the eventually proper establishment of filter and advertisement
routing tables.
Figure 7.1 illustrates the possible issues when a simple publish/subscribe
network is considered. Publishers P1 and P2 issue advertisements a1 and a2 at
12:00, real-time. Since the propagation delays between the publishers P1 and

7.2. ROUTING STATE VALIDITY 109

Figure 7.1: Subscription propagation issues due to timing relations with adver-
tisements

P2 and their connecting brokers B1 and B2 equal 0:01 both advertisements
arrive at respective brokers at 12:01, real-time. Simultaneously, at 12:01,
subscriber S issues a subscription message containing the filter f 1 matching
both advertisements a1 and a2. Filter f arrives at the broker B1 at 12:02, real-
time – see the upper part of the Figure 7.1. Simultaneously, the advertisement
a1 from publisher P1 has been already delivered to the broker B1. However,
due to a larger propagation delay between brokers B1 and B2 (equal to 0:02)
the advertisement a2 from the publisher P2 did not reach the broker B1 yet.
As a result filter f will only be visible for the publisher P1. Specifically, the
subscription message containing the filter f will not be forwarded to broker B2
as the matching advertisement a2 has not been yet delivered to the broker B1.
Moreover, due to the decoupling properties of publish/subscribe systems, the
subscriber S will never be able to tell that it is missing publications matching
its filter f and issued by the publisher P2 – see the lower part of Figure 7.1.
Even if the broker B1 forwards the filter f on the reverse path of the adver-
tisement a2 a subsequent transient failure on the link between the brokers B1
and B2 can lead to the loss of the subscription message containing the filter f .
This in turn, again, results in the publication messages from the publisher P2
never being delivered to the subscriber S.

7.2 Routing State Validity

The main issue in designing a soft state content-based system is the determina-
tion of the validity T an the re-issue period τ of subscription and advertisement

110 CHAPTER 7. SOFT STATE

Figure 7.2: Propagation of a subscription using the validity time approach

messages. The validity T determines how long should a filter or advertisement
be leased to the node of the soft state XSiena system. The re-issue period τ
specifies how often the owing application tries to refresh the leased filter or
advertisement. The validity T of a filter or advertisement can be expressed
either as a validity time TT or validity interval TI .

7.2.1 Validity Time
A validity time TT describes a point in time when a given filter should expire.
In order to be meaningful to all nodes in the content-based system the validity
time must be expressed with respect to a synchronized clock. A synchronized
clock is shared by all nodes in the system and ensures that every node has the
same view of the time – called global time.
An exemplary TT value could read 12:05, meaning that the message associ-
ated with it should expire on every node at 12:05, global time. Assuming
all processes in the system have their clocks synchronized within a given
imprecision Φmax

1, such message would indeed expire on all nodes within
[12:05 − Φmax, 12:05 + Φmax]. However, the use of the validity time is diffi-
cult due to two issues: (1) it is difficult to provide a low imprecision, internal
clock synchronization in large distributed systems and (2) message propagation
delays significantly influence the validity time.
To better illustrate the latter case one can consider the scenario illustrated in
Figure 7.2. For the clarity of presentation it is assumed that the imprecision
Φmax of the clock synchronization equals zero, i.e., all clocks are perfectly
synchronized with respect to the real-time. The subscriber S subscribes at 12:00
(global time) with a filter which has the validity time TT set to 12:05 (global
time). The subscription message propagation delay between subscriber S and
the next broker B1 equals 0:02, which implies that the subscription message

1the imprecision Φmax is defined as the maximum difference between the synchronized
clocks of all processes

7.2. ROUTING STATE VALIDITY 111

Figure 7.3: Propagation of a filter using the validity interval approach

sent by S will arrive on broker B1 at 12:02, global time. Analogously, the next
broker B2 will receive the subscription message at the 12:04, global time. The
last broker B3 cannot accept the subscription message as upon its reception
at the 12:06, global time, the filter carried by the subscription message will
be already expired – as 12:05 < 12:06. As a result events published by the
publisher P will never reach subscriber S.

From the above one can observe that the straightforward validity time approach
is not applicable to large networks (with many brokers connecting publishers
and subscribers) or to networks with varying transmission delays – see Fig-
ure 3.2. The validity time approach implicitly requires the knowledge of the
network diameter in terms of latency, which is clearly not practical for decou-
pled publish/subscribe systems. Moreover, due to the N-to-M communication
type of the content-based publish/subscribe systems a single advertisement
message is delivered to multiple brokers with varying latency distances from
the issuing publisher. This in turn can easily result in part of the brokers being
overwhelmed with refresh messages arriving well before the expiration of the
validity time and another part of the brokers not receiving the refresh messages
on time, due to their large latency distance from the publisher.

112 CHAPTER 7. SOFT STATE

7.2.2 Validity Interval
Based on the observations in previous section, the validity interval approach
will be taken under further consideration. The validity interval TI does not rely
on the synchronized clocks. Instead, every process in the publish/subscribe
network calculates the validity interval attached to a filter or an advertisement
independently. The validity interval specifies the amount of time each broker
should keep a filter or an advertisement until it expires and is removed from its
routing tables. However, this approach is also susceptible to issues caused by
the propagation delays. Figure 7.3 shows the influence of the filter propagation
delay on the routing tables. One can observe that subscription message issued
by the subscriber S at real-time 12:00 has the validity interval TI set to 0:04.
At real time instance 12:02 it reaches the broker B1 which installs it in its
routing table and starts decrementing the validity interval of the filter on its
local clock. Subsequently, it forwards the filter to the broker B2, which repeats
the procedure. At real-time instance 12:06 filter issued by the subscriber S
reaches the broker B3. However, at that time broker B1 removes the filter from
its routing table since the the filter validity interval (equal to 0:04) has been
decremented (since 12:02) to 0. This in turn results in publisher’s P events
never being delivered to the subscriber S.
It is therefore required to set the re-issue period τ to a value which is lower
than the specified validity interval TI. Otherwise, the subscription message
propagation will result in messages not being refreshed before the expiry of
the validity interval. However, even the setting of the re-issue period to low
values does not guarantee that the refresh messages arrive before the expiry
of the validity interval. Varying link latencies and link overload may lead to
significant delays of the refresh messages which in turn leads to the expiry of
the advertisements and filters.

7.2.3 Extending Validity Interval
In order to cope with the above issues the message propagation delays (see
Equation 6.15) are correlated with the validity interval approach for both
filters and advertisements. Specifically, the advertisement and subscription
propagation delays are calculated for every link traversed by those messages.
The estimated delays are added to the validity interval TI of each filter and
advertisement and are stored along the filters and advertisements in the routing
tables of the processing brokers. As a result the validity interval of filters
and advertisements is extended by the amount equal to the expected link and
processing delays. This in turn ensures that filters and advertisements do not
expire before the arrival of the re-subscription and re-advertisement messages.
Moreover, such approach is transparent to both subscribers and publishers.
As an example we shall consider the scenario presented in Figure 7.4. For
the simplicity of the presentation it is assumed that all processing times (see

7.2. ROUTING STATE VALIDITY 113

Figure 7.4: Extending validity interval with the upper bound on the propagation
delay

Equation 6.14) are equal to zero. The upper part of the Figure 7.4 shows the
process of the propagation of the advertisement a issued by the publisher P.
The advertisement a has been assigned a validity interval TI equal to 0:05.
Upon reception of the advertisement a by the broker B2 it calculates the upper
bound on the propagation delay of the advertisement a.
The upper bound on the propagation delay ub(pdB2(a)) is the sum of the upper
bound on the processing time of the advertisement a (equal to zero) and the
upper bound on the transmission delay between the publisher P and the broker
B2 equal to 0:03. The calculated upper bound on the propagation delay 0 : 03a

of the advertisement a is subsequently added to the validity interval TI = 0 : 05
of the advertisement a. The extended validity interval is stored alongside
advertisement a in the routing table of the broker B2. Broker B2 will remove
the advertisement a from its routing table only after the expiry of the extended
validity interval 0:05 + 0:03a.
The advertisement a is subsequently propagated by the broker B2 towards the
broker B1. Broker B1 performs the analogous operations to those of the broker
B2, the only difference being the value of the upper bound on the transmission
delay of the advertisement a including now both upper bounds on transmission
delay between the publisher P and the broker B2 (0:03) and between the broker
B2 and the broker B1 (0:02) plus the upper bound on the processing delays at
the three nodes P, B2 and B1. The calculation of the validity interval TI for
filters is done in the analogous way – see lower part of the Figure 7.4.
The above algorithm allows filters and advertisements to remain valid at every
node despite the varying latencies on the communication links and despite
the varying processing latencies. Presented algorithm intuitively extends the
validity interval by the upper bound on the possible delay experienced by
messages on its way from the publisher (or subscriber) until the current broker.

114 CHAPTER 7. SOFT STATE

The algorithm does not guarantee that a filter or advertisement will never
expire before the arrival of the refresh message. However, such guarantee is
impossible to satisfy with unbounded link and processing delays inherent to
the TADSM model. Nonetheless, subsequent refresh messages will adapt to
the changed link and processing characteristics so that the correct operation of
the content-based pub/sub network will be eventually restored, providing the
processing times and transmission delays do not grow infinitely.

7.2.4 Utilization and Uncertainty

The algorithm presented in the previous section makes a pessimistic assumption
regarding the propagation of refresh messages. The assumption being made
is that a refresh message propagation time might span the range from zero to
the calculated upper bound on the propagation delay. Such assumption while
providing large margin of safety is certainly an overestimation. Therefore, in
this section an alternative algorithm for the calculation of the validity interval
extension and a new metric for evaluation of the application of the validity
interval extension technique are proposed.
The new metric proposed in this section is called the validity interval utilization.
The validity interval utilization is defined as the amount of the extended validity
interval TI(m) of the message m which has elapsed before the arrival of the
refresh message:

UTI =
TI(m) − wait(m)

TI(m)
(7.1)

where the wait(m) is the amount of time message m has spent in the routing
table before the arrival of the refresh message. The validity interval utiliza-
tion UTI is expressed in percent. Intuitively, the higher the validity interval
utilization, the less bandwidth is wasted for the unnecessary (too early) re-
fresh messages. On the other hand, high validity utilization implies that the
given filter or advertisement was more likely to expire before the arrival of the
refresh message – as the delay of the refresh message might not have been
compensated by the small remaining validity utilization.
The validity interval extension algorithm presented in the Section 7.2.3 lowers
the values of the validity interval utilization for filters and advertisements by
extending the validity interval with the upper bound on the respective message
propagation delay. Moreover, the further the given message travels from the
source (in terms of latency) the lower will the validity interval utilization be.
The above observation is the motivation for the introduction of the new algo-
rithm for the extension of the validity interval. The new algorithm is based
on the upper bound on the propagation delay, however its main goal is the
estimation of the uncertainty of the upper bond for the given message. The
uncertainty ub∆ of the upper bound on the propagation delay for a given mes-
sage m is defined as the difference between the minimum and maximum upper

7.3. LIVENESS AND SAFETY 115

bound on the propagation delay values over time:

ub∆(m) =
ubmax(pd(m)) − ubmin(pd(m))

∆t
(7.2)

where ∆t is the period of time (window) over which the uncertainty is calculated.
Intuitively, the uncertainty serves as an estimation of the dispersion of the
latency for the given path limited to a certain time window. Unlike the extension
calculation algorithm presented in Section 7.2.3 for stable paths the value of
the uncertainty-based extension will be low as the difference between the
minimum and maximum upper bound on the propagation delay will remain
small. This in turn will increase the values of the utilization for the given path.
The window ∆t for which the uncertainty ub∆ is calculated can be expressed
either in terms of time units or in terms of messages. The choice of the right
window size and calculation method is left to the application programmer, with
the time-based and message-based windows already included in the system
and selectable via the configuration parameters.

7.3 Liveness and Safety
The correctness of distributed systems is often specified in terms of liveness
and safety [Lam79]. In what follows the liveness and safety definitions for
the correct publish/subscribe systems (following [Jae07, M0̈2]) are given. The
definitions are formalized using temporal logic [Pnu81].
The safety property is composed of the conjunction of the following definitions:
(1) an event e is delivered to the subscriber S at most once:

� [deliver(e,S)⇒ ©�¬deliver(e,S)] (7.3)

(2) the subscriber S only receives events which have been previously published:

�
[
deliver(e,S)⇒ ∃P : publish(e,P)

]
(7.4)

(3) the subscriber S only receives events for which it has subscribed (cf. Equa-
tion 2.2):

�
[
deliver(e,S)⇒ ∃ f∈FS : f (e) = 1

]
(7.5)

The liveness property states that: subscriber S which subscribed with filter
f and did not issue an unsubscription message for that filter, will eventually
receive every event e which is published and matches f :

�
[
� (f ∈ FS)⇒ ^�

(
publish(e,P) ∧ f (e) = 1⇒ ^deliver(e,S)

)]
(7.6)

The soft state XSiena system satisfies the liveness property. Moreover, follow-
ing [Jae07] it can be said that the soft state XSiena system satisfies a modified
version of the safety property – the eventual safety property, defined as: starting

116 CHAPTER 7. SOFT STATE

from an arbitrary state the system eventually satisfies the safety properties as
defined in Equations 7.3, 7.4 and 7.5.
However, the soft state XSiena system, unlike systems proposed in [MJH+05,
Jae07], does not (and cannot) guarantee an upper bound on the time for which
system remains in the incorrect state. This is a direct implication of the
unbounded network delays in the Timed Asynchronous Distributed Systems
Model – the underlying model for the soft state XSiena system – see Chapter 3.
Instead, it can be said that the soft state XSiena system achieves the eventual
safety property assuming that: (1) network delays do not expose an infinite
growth and (2) the size of the network does not expose an infinite growth
either.
The first assumption on the finite growth of the network latencies implies
that the validity extension technique eventually calculates an extension large
enough so that subsequent refresh messages can reach the filter to be refreshed
within its specified validity interval TI plus the calculated extension. The
second assumption is parallel to the first one and implies that the growth in the
network size allows the filters to finally propagate to all brokers in the network.

7.4 Practical Aspects and Implementation
The implementation of the soft state XSiena system is based on the fail-aware
approach presented in Chapter 6. Figure 7.5 outlines the most important parts
of the soft state XSiena architecture. The soft state-related code is well isolated
and has been placed in the soft state I/O filter within the Apache
MINA2 [Lec09] network stack. The soft state I/O filter is placed
directly before the serialization filter and is responsible for: (1) calculation
of the upper bound on the message transmission delay, (2) calculation of
the upper bound on the message processing time and (3) scheduling of the
unsubscritptions and unadvertisements of the expired messages.
The use of the soft state I/O filter allows to calculate the upper bound on the
message transmission delays on a per link basis. Brokers in the soft state
XSiena system manage the upper bound on transmission delay for every incom-
ing link. The upper bound on transmission delay for the given link is updated
upon reception of every message on this link. Specifically, the upper bound
calculations are not limited to the advertisement or subscription messages,
instead, every message exchanged on the given link is used to calculate the
upper bound. A link-oriented approach allows to scale the implementation of
the transmission delay calculation independently of the number of different
advertisements and filters in the system. This is especially valid if one consid-
ers potentially large number of helper messages which need to be stored – see
Chapter 6.2.

2See: http://mina.apache.org

http://mina.apache.org

7.4. PRACTICAL ASPECTS AND IMPLEMENTATION 117

Figure 7.5: The overview of the soft state XSiena architecture

The soft state XSiena system allows the user to select between two hard-
ware clocks. First hardware clock is based on the Java System.nanoTime()
method. The second hardware clock uses a C-based wrapper for the rdtsc
assembler instruction. The C-based wrapper is accessible from within the Java
application via the JNI interface.
It is up to the developer of the soft state XSiena application to implement the
periodic re-subscriptions and re-advertisements. Such implementation can be
easily performed using, e.g, Java’s ScheduledThreadPoolExecutor. Such
approach follows the lines of the soft state system philosophy, in that the crash
of the application should result in the lack of the refresh messages.

7.4.1 API
The nature of the soft state publish/subscribe system determines the exposed
API. The API presented in the Listing 7.1 is a direct result of the properties of
the soft state XSiena system. Since the system uses both advertisement and
subscription messages the API follows that presented in Listing 2.3, including
calls to advertise new content and to subscribe to events. The subscribe
operation includes as parameters: (1) a new filter CFilter and (2) a callback

118 CHAPTER 7. SOFT STATE

1 public interface XSiena {
2 void publish(Event e);
3 void subscribe(Filter f, Deliverable d);
4 void advertise(Filter f);
5 }

Listing 7.1: The soft state XSiena broker interface.

1 public interface ExtendedXSiena {
2 void unsubscribe(Filter f, Deliverable d);
3 void unadvertise(Filter f);
4 }

Listing 7.2: The extended soft state pub/sub broker interface.

interface Deliverable. The Deliverable interface is implemented by the
application programmer in order to receive events matching the issued filters.
Unlike the API proposed in [PEKS07] the validity of the filters and adver-
tisements is not explicitly included in the corresponding advertise and
subscribe API calls. In soft-state XSiena system the validity interval TI

is part of the subscription and advertisement messages and can be manipulated
via the Filter API. Specifically, the validity interval TI is not a subject to
the content-based matching. It is the opinion of the author that such design is
more natural for the soft state publish/subscribe systems, as the validity of the
filter or advertisement is an integral part of the given message and must travel
with it across multiple nodes in the publish/subscribe network.

7.4.2 Unsubscriptions and Unadvertisements

An important aspect of the soft state publish/subscribe system is the lack of
unadvertisement and unsubscription methods in the API. Such methods are
strictly speaking not necessary, as every advertisement and filter will expire
within its validity interval TI plus the broker dependent extension. However, it
is possible to provide an extended API to the brokers (see Listing 7.2) which
allows to unadvertise or unsubscribe messages prior to the expiration of their
validity intervals. It is important to stress that soft state publish/subscribe
brokers do not rely on those calls, which are only a means to speed up removal
of filters and advertisements with large validity intervals.
Another, related, design decision is made with respect to the removal of fil-
ters and advertisements for which the validity interval expires. Such cases
are handled by the brokers via the broker internal, private unsubscribe and
unadvertise methods. An important aspect of those methods is that their effects
are never propagated outside of the brokers. If, for example, a filter f1 covering
filter f2 expires than fact of the deletion of the filter f1 and uncovering of the

7.5. RELATED WORK 119

filter f2 is never propagated to other downstream brokers. Even though the
propagation of this information would be a correct action from the perspec-
tive of the soft state publish/subscribe system (see Section 2.5.5) and could
increase the responsiveness of the publish/subscribe system it is chosen not
to implement this behavior in the soft state XSiena system. It is important
to note that the correct routing information will be eventually set up with the
propagation of the refresh messages for the filter f2. The motivation for the
removal of the visibility of the unsubscription and unadvertisement external ac-
tions it is the fact that it is desirable to try to avoid the storm of unsubscription
and unadvertisement messages propagated throughout the publish/subscribe
network whenever a filter or advertisement expires due to the high variance
in the propagation delays of the refresh messages. In other words soft state
XSiena system deliberately trades-off the responsiveness of the system for its
scalability.

7.5 Related Work
Timed filters and events have been first addressed in [FJL+01]. Authors assume
that filters and events are associated with time intervals, which limit their
validity. However authors do not consider the renewal of filters which leads
to the issues presented on Figure 7.1 in Section 7.1. Another approach for
the creation of the soft state publish/subscribe system has been presented
in [BSB+02] where authors assumed a fixed filter structure for each of the
publish/subscribe system nodes and focused on the exactly once delivery of
events. Specifically, authors did not consider dynamic content-based routing
using the coverage relation and coupled the publishers with the subscribers by
the requirement for the latter to confirm reception or lack of events.
In [ST04] authors design a self-stabilizing publish/subscribe system. The
proposed system assumes however, that all subscription messages issued by
subscribers are always broadcast into the network. Such algorithm is not
efficient, as similar or identical filters need not to be resent on links where
a filter covering the given one has already been sent – cf. Section 2.5.5.
Moreover, authors propose to exchange whole routing tables in order to detect
potential inconsistencies, which can be expensive in publish/subscribe systems
with large number of subscribers and large number of distant brokers.
Author in [M0̈2] proposes a subscription leasing scheme to achieve eventual
stability. Author assumes the existence of a global clock (internal or external
clock synchronization providing a notion of global time accessible to all partici-
pants of the publish/subscribe network) and assumes that message transmission
time is always bounded and stays within [δmin, δmax]. It has been shown that
such system model is impossible to satisfy [FC03], which implies the need for
a weaker set of assumptions regarding the system model.
In [ZSB04] authors show how to provide a reliable (in-order, gapless) delivery

120 CHAPTER 7. SOFT STATE

in a content-based publish/subscribe system. In contrast to the solutions
presented in [ZSB04] the soft state XSiena system does not assume a redundant
overlay network and proposes an active countermeasure for the problem of
filter propagation failures.
In [XFZ04] authors propose a soft state approach in context of a publish/sub-
scribe system based on the Pastry DHT overlay. Authors assume that both
subscriptions and advertisements are assigned timeouts which are evaluated
with respect to the node’s local clock. However, the presented approach does
not account for the influence of the propagation delays on the timeout values
which makes it impractical in a typical distributed system.
In [Pie04] authors propose a soft state design in that publish/subscribe brokers
periodically exchange heartbeat messages in order to keep the state of the
routing tables intact. The presented approach does not allow to cope with the
issues presented in Figure 7.1 as the heartbeat messages and not data carrying
messages (filters and advertisements) are used to refresh the state of the routing
tables.
In a more recent approach presented in [MJH+05, Jae07] authors simulate a
publish/subscribe system achieving eventual stability using advertisements
and filter leases. Authors, similarly to [M0̈2], assume that every entry has
globally uniform filter timeout value π. Every clock in the system can take
values between 0 and π − 1. Every entry in the routing table has a one bit
counter, initially set to one. When the clock overruns the counters of all
entries are decremented. Entries which counters overflow are removed from
the routing tables of the respective brokers. Similarly to [M0̈2] authors assume
that there exist global upper and lower bounds on the propagation delay of
messages. Whenever those bounds are violated authors assume that the system
has suffered a failure. The soft state XSiena system does not make such
assumptions. Instead, a per filter and per advertisement timeout values are
proposed which allow to adaptively account for varying communication delays.
Authors in [MJH+05, Jae07] have also assumed a known network diameter,
which allows them to calculate an upper bound on the stabilization time of the
soft-state publish/subscribe system. The soft state XSiena does not allow for
estimation of such value as due to the decoupled nature of publish/subscribe
systems a fixed network diameter value is impossible to obtain.

Chapter 8

Implementation

This chapter presents the most important aspects of the implementation of the
family of the XSiena systems. The XSiena system has been implemented in
Java, however this chapter focuses on the language independent aspects of the
implementation. The implementation of events and filters along with the cover-
age relation stems from the Java version of the Siena publish/subscribe system.
All other parts of the XSiena system, including the communication framework,
routing framework and message handling code have been contributed by the
author of this thesis.
This chapter is divided into two parts. First part (Section 8.1) discusses the
implementation of the XSiena system from the perspective of the application
developer wishing to use the XSiena system as a communication backbone in
his project. The second part (Section 8.2) discusses the internals of the XSiena
project which are of relevance for developers willing to modify the behavior
of the XSiena publish/subscribe system.

8.1 Programming Applications
Every application created in the XSiena system uses either the publisher or
the subscriber API. In practice, every XSiena application is connected directly
to the XSiena broker – the CDispatcher. The XSiena broker implements
the complete publish/subscribe API (cf. Listing 2.3, Section 2.2.3) with
applications implementing the necessary methods.
Figure 8.1 presents the basic interfaces used by the CDispatcher class. The
complete publish/subscribe API is contained within the IXSiena interface.
Applications can use the publish() method to disseminate events CEvent
into the publish/subscribe network. When advertisement-based routing is
used (cf. Section 2.5.6) applications summarize the content they are going
to produce using the advertise() and unadvertise() methods taking the
CFilter describing the content as parameter. In order to receive data an
application subscribes using the subscribe() method, passing the CFilter

121

122 CHAPTER 8. IMPLEMENTATION

Figure 8.1: XSiena broker-related interfaces

describing its interest and a return address (INotifiable) for the delivery of
matching CEvents as parameters. Applications willing to stop receiving the
data, can revoke their interest using the unsubscribe()method. Unsubscribe
method uses the INotifiable parameter to identify the application revoking
its interest.
Every application in the XSiena system must implement the INotifiable
interface. The INotifiable interface requires applications to provide the
code for handling of two cases: (1) the delivery of an event matching the
interest of the application (notify()) and (2) the cancellation of the issued
filter due to the lack of a matching advertisement (cancel()). Additionally,
every application, as well as every CDispatcher must return its own address –
the CXSienaSocketAddress.
The address of the XSiena application or broker has the following form:

xsiena︸ ︷︷ ︸
protocol

specification

: // application︸ ︷︷ ︸
application

name

@ host.ip − or − name.com︸ ︷︷ ︸
host

address

: port︸︷︷︸
host
port

(8.1)

where the currently supported protocol specifications include xsiena for the
TCP-based communication and xsienau for the UDP-based communication.
The application name is used to differentiate between multiple applications
attached to the same CDispatcher. It is ignored in case of the CDispatcher
address. The host address can take either the form of the DNS name or the IP
address. Optionally, a port can be specified, although both standard protocols
supported by the XSiena have their default ports: 3420 for the xsienau and
3421 for the xsiena.
Listing 8.1 shows an example publish/subscribe application which measures

8.1. PROGRAMMING APPLICATIONS 123

1 class CLatencyApp implements INotifiable {
2 CXSienaSocketAddress myAddress = null; int c;

4 CLatencyApp(CXSienaSocketAddress sa) {
5 myAddress = sa; c = 0;
6 }

8 public CXSienaSocketAddress address() { return myAddress; }

10 public void cancel(CFilter f) { /*ignore*/ }

12 public void notify(CEvent e) {
13 long RT = System.nanoTime();
14 long ST = e.getAttribute("ST").longValue();
15 System.out.println((++c) + "\t" + (RT-ST));
16 }
17 }

Listing 8.1: Latency measuring application

latency of the received events. The presented application (CLatencyApp)
implements the address() method in order to return the address under which
it can be notified for events matching its interest. The presented applications
ignores the case when there is no advertisement matching its interest. Whenever
it receives a new event (notify) it saves the event receive time and based on
the send time contained in the event it calculates the total time between the
sending and the reception of event.
Listing 8.2 presents the corresponding main part of the publish/subscribe
application. It can be observed that in the first part of the program a network
composed of three brokers B1, B2 and B3 communicating over the TCP/IP is
created. All brokers are placed on the local host, so as to make the comparison
of the time stamps (cf. Listing 8.1) feasible. Brokers are connected so as
to form a chain starting with broker B1 and ending with broker B3. After
the creation of the network the latency application presented in Listing 8.1 is
instantiated. Subsequently, the publisher of events advertises the content it
is going to produce (B1.advertise(filter)) and the latency application
located on the broker B3 subscribes to the published events which have the
send time stamps greater than 0 – B3.subscribe(filter, LA). In the last
part of the program an endless publishing loop is started with every event being
attached the send time stamp.
The above example shows the ease of the creation of publish/subscribe net-
work using the XSiena publish/subscribe system. Changing the, e.g., transport
protocol in the above example from TCP to UDP requires only the change of
the protocol specification (xsiena to xsienau) for the three broker addresses
in the Listing 8.2. Specifically, the publish/subscribe application is completely
decoupled from the underlying implementation of the publish/subscribe net-

124 CHAPTER 8. IMPLEMENTATION

1 public static void main(String[] args){
2 CXSienaSocketAddress B1A, B2A, B3A;
3 B1A = CXSienaURI.parse("xsiena://localhost:4050");
4 B2A = CXSienaURI.parse("xsiena://localhost:4060");
5 B3A = CXSienaURI.parse("xsiena://localhost:4070");

7 CDisptacher B1 = new CDisptacher(B1A, null);
8 CDisptacher B2 = new CDisptacher(B2A, B1A);
9 CDisptacher B3 = new CDisptacher(B3A, B2A);

10 CLatencyApp LA = new CLatencyApp(B3A.setID("latencyApp"));

12 CFilter filter = new CFilter("ST", COp.GT, 0);
13 B1.advertise(filter);
14 B3.subscribe(filter, LA);
15 while(1) {
16 Thread.sleep(100);
17 CEvent event = new CEvent("ST", System.nanoTime());
18 B1.publish(event);
19 }
20 }

Listing 8.2: Latency measuring system

work.

8.2 Developer View

Figure 8.2 presents the overview of the main packages which constitute the
XSiena system. The main part, including the CDispatcher class is contained
in the xsiena package. The communication layer classes are placed in the
xsiena::comm package. The upper bound calculation and related methods
have been placed in the xsiena::comm::ub package reflecting the tight cou-

Figure 8.2: Packages in the XSiena system

8.2. DEVELOPER VIEW 125

pling between the calculation of the upper bound and the communication layer
– cf. Section 7.4.
Events, filters and their relation reflecting classes are contained within the
mesg sub-package of the xsiena package. This package contains also the
network packet class CSENPPacket which reflects the unsterilized wire format
of the XSiena messages. Package parse (contained with the xsiena::mesg
package) contains the grammar specification of the event and filter textual
representation. The grammar specification is used by the JavaCC (https:
//javacc.dev.java.net/) parser generator in order to generate parsers for
reading of events and filters from, e.g., configuration files.
The xsiena::route package contains the routing code of the XSiena system.
Specifically, it contains implementations of the different routing structures
used by the versions of the XSiena system, including: the poset-derived forest
data structure (cf. Section 2.5.5) the sbsposet and sbstree (cf. Section 5.3)
and the counting variant of the sbstree – cf. Section 5.5. However, unlike
in the case of the system presented in [M0̈2], the different routing structures
constitute different versions of the XSiena system and are not unified within
one routing framework.
The xsiena::sched and xsiena::tsc packages are specific to the soft
state version of the XSiena system. The xsiena::sched package contains
the scheduler which is responsible for the removal of the expired filters and
advertisements and for extending the validity of the existing ones upon the
arrival of the refresh messages. The xsiena::tsc package contains the
implementation of the different local hardware clocks. The current version
provides support for the CPU time stamp counter (rdtsc) and the built-in Java
nanosecond timer – System.nanoTime().
Figure 8.3 illustrates the main components of the CDispatcher class. Ev-
ery XSiena dispatcher maintains a reference to the packet sender and the
packet receiver. Which decouple the specific protocol being used from the
XSiena broker. The packet receiver uses the IDeliverable interface of the
CDispatcher in order to deliver all CSENPPackets arriving via the network
to the broker. The broker itself holds a reference to all of its neighbor bro-
kers, using their addresses. Moreover, it holds the reference to the CRouting
class which decouples the different routing algorithms from the broker. The
CRouting class also implements the IXSiena interface, however it uses the
CDispatcher methods to send the CSENPPackets to the neighboring brokers.

https://javacc.dev.java.net/
https://javacc.dev.java.net/

126 CHAPTER 8. IMPLEMENTATION

Figure 8.3: The developer view of the CDispatcher

Chapter 9

Evaluation

This chapter presents the evaluation of the algorithms and overall system per-
formance for the XSiena family of the content-based systems. The evaluation
section follows the layout of the thesis: Section 9.1 presents the evaluation of
the prefix forwarding (based on Chapter 4) followed by Section 9.2 presenting
the evaluation of the Bloom filter-based routing (based on Chapter 5). In the
second part of the evaluation (Section 9.3) the performance of the fail-aware
XSiena system is investigated (based on Chapter 6) followed by the evaluation
(Section 9.4) of the application of the fail-aware principles to the construction
of the soft-state XSiena system (based on Chapter 7).
The evaluation focuses on the properties of the proposed algorithms and
whenever possible it tries to compare algorithms presented in this thesis
with previous, existing solutions. The evaluation of the XSiena family of
publish/subscribe systems is performed using both simulation and existing
system prototypes. The existing prototypes are available for download at the
http://wwwse.inf.tu-dresden.de/xsiena/ address.
For the evaluation purposes a generic library for the generation of random
predicate-based filters and events has been created. The library generates
filters and events according to the parameters presented in the Table 9.1. Since,
the family of the XSiena publish/subscribe systems is derived from the Siena
publish/subscribe system, the set of generated filters and events follows the
predicate-based semantics of the Siena system. The only difference being that
the generated filters are in the form presented in Section 4.2.1, i.e., no logically
inconsistent filters are created and no range operators, nor inequality operators
are used. The minimum and maximum values for the given parameter, e.g.,
attribute value, can be set to the same value resulting in the selected value
being always returned. The set of available distributions includes uniform,
normal and Pareto distributions. The normal distribution function is given by
the probability density function:

p(x) =
1
√

2π
e
−(x−µ)2

2σ2 for −∞ < x < ∞ (9.1)

127

http://wwwse.inf.tu-dresden.de/xsiena/

128 CHAPTER 9. EVALUATION

Filter Generator Event Generator

minimum number of filters minimum number of events

maximum number of filters maximum number of events

distribution of the number distribution of the number
of filters of events

minimum predicate minimum attribute name and
count (per filter) value pair count (per event)

maximum predicate maximum attribute name and
count (per filter) value pair count (per event)

distribution of the distribution of the number of
number of predicates attribute name and value pairs

unique attribute names unique attribute names
count count

distribution of the distribution of the
attribute names attribute names

minimum attribute value minimum attribute value

maximum attribute value maximum attribute value

distribution of the distribution of the
attribute values attribute values

range of operators ∅ (not used)

distribution of the operators ∅ (not used)

Table 9.1: Parameters of the filter and event generation library

where, unless explicitly stated, the standard deviation σ is set to 0.3 and mean
µ is set to 0. Pareto distribution is given by the probability density function:

p(x) =
αβα

xα+1 for x > β (9.2)

where, unless explicitly stated, the parameter α is set to 3 and the parameter
β is set to 1. The distribution functions are calculated using the Stochastic
Simulation in Java library [LMV02, LB05] by Pierre L’Ecuyer.
The predicate count and the attribute name and value count distributions are,
unless explicitly stated chosen as uniform. Attribute names for both events
and filters are selected from the Automatically Generated Inflection Database
(AGID)1, based on the aspell word list, containing 112505 English words

1http://wordlist.sourceforge.net

http://wordlist.sourceforge.net

9.1. PREFIX FORWARDING 129

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

9e+05

2e+04 4e+04 6e+04 8e+04 1e+05

R

T
 n

od
es

filters

uniform
normal
pareto

Figure 9.1: Routing tree size (number of nodes)

and acronyms. The distribution of the attribute names can also be chosen from
the uniform, normal and Pareto set. The attribute values are generated from
the [minimum, maximum] range using the integer values. The distribution of
the attribute values is also subject to the three possibilities: uniform, normal
and Pareto. The range of the operators, unless explicitly stated, contains:
{>, >, <, 6, =}, and the distribution of the operators is set to uniform.

9.1 Prefix Forwarding
The evaluation of the prefix forwarding XSiena system has been performed in
a dedicated, discreet event simulator, conceptually and architecturally based on
the OMNeT++ [Var99] simulator by András Varga. The simulation included
the networking layer and message based communication between the compo-
nents of the publish/subscribe system. Specifically, a fully functional routing
tree and forwarding tree structures have been implemented. Both structures
operate on the standard predicate-based messages.
The first experiments which were performed included testing for the feasibility
of the forwarding trees for the event forwarding. Specifically, it has been
evaluated whether the size of the forwarding tree will allow it to be piggybacked
on the events. For that purpose, routing trees with increasingly large number
of filters stored in them have been created. Subsequently, randomly generated
events have been matched against the routing trees in order to obtain the
forwarding trees. The size and the height of the routing trees are illustrated in
Figures 9.2 and 9.1. The results are plotted for all three distributions available
in the filter generation library for attribute names and attribute values, i.e., both

130 CHAPTER 9. EVALUATION

 16

 18

 20

 22

 24

 26

 28

 30

 32

2e+04 4e+04 6e+04 8e+04 1e+05

R
T

 h
ei

gh
t

filters

uniform
normal
pareto

Figure 9.2: Routing tree height

parameters shared the same distribution. The amount of predicates in the filters
has varied from 2 to 8. The attribute values were selected from a continuous
interval [−50, +50]. All tests assume a pessimistic scenario, in which every
filter originates in a different subscriber.
One can observe that the size of the routing tree is proportional to the distri-
bution used, with the Pareto distribution having the least number of nodes.
The explanation for this fact is the higher probability of creating identical
predicates, and thus limiting the size of the routing tree. On the other hand,
the count of the predicates in the routing tree is higher than it would seem
from the number of filters (2–8 predicates per filter) due to the fact that the
split operation duplicates parts of filters and thus increases the total number
of nodes in the routing tree. Similarly, the more dense distributions (Pareto,
normal) tend to produce higher routing trees, than the uniform distribution.
The following experiment generated a set of events and matched them against
the routing trees presented in Figures 9.2 and 9.1. The amount of attribute name
and value pairs in events varied from 2 to 12. Attribute values were selected
from a continuous interval [−50, +50]. The events were also generated in three
sets (uniform, normal and Pareto) which were matched with the corresponding
routing trees. The parameters of event generation, apart from those already
mentioned, were identical with those of the filter generation.
Figures 9.3 and 9.4 illustrate the size and height of the resulting forwarding
trees. One can observe on both figures that although the amount of nodes in the
routing tree approaches one million, the number of nodes (size) of the largest
forwarding tree barely exceeds 150 nodes. One can contribute this behavior to

9.1. PREFIX FORWARDING 131

 0

 50

 100

 150

 200

2e+04 4e+04 6e+04 8e+04 1e+05

FT
 #

 n
od

es

filters

uniform
normal
pareto

Figure 9.3: Forwarding tree size (number of nodes)

 7

 8

 9

 10

 11

 12

 13

 14

 15

2e+04 4e+04 6e+04 8e+04 1e+05

FT
 h

ei
gh

t

filters

uniform
normal
pareto

Figure 9.4: Forwarding tree height

132 CHAPTER 9. EVALUATION

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m

es
sa

ge
s

time [s]

t=0.3 (events received)
t=0.3 (false positives)

t=0.8 (events received)
t=0.8 (false positives)

Figure 9.5: False positives count for different tree optimizer thresholds

the fact that the size of the forwarding tree is mostly determined by the number
of the attribute name and value pairs in the events. This is confirmed by the
relatively stable forwarding tree size despite increasing size of the routing tree.
This, in turn, allows us to conclude that the size of the forwarding tree exhibits
a small payload and allows it to be piggy-backed on the events.

9.1.1 Simulation Results
The next experiment simulated the operations of a content-based publish/sub-
scribe system. For the purpose of the experiment a network with 9 subscribers,
9 publishers, 27 routers and one tree optimizer has been created. Each of the
subscribers subscribed every 3 seconds with a filter generated using the Pareto
distribution. Every 3 seconds each of the publishers issued an event generated
using the Pareto distribution. Figure 9.5 shows the averaged rate of the false
positives as perceived by the subscribers. The experiment has been performed
with two different tree optimizer update thresholds (see Equation 4.2): 30%
and 80%. One can observe that the rate of false positives is higher with the
higher update threshold of the tree optimizer – this is expected behavior of the
system, as the higher update thresholds imply longer time spans when brokers
use the inertR method on the old routing tree.
It can be also observed that with the growth of the routing trees the rate of false
positives falls achieving less than 1% after 15000 events publications. The
obtained results are similar, despite the varying threshold values of the tree
optimizer. This behavior can be contributed to the fact that the routing trees
are getting more stable with the time. Specifically, the changes in the routing
tree are more likely to be performed at the deeper three levels, thus reducing

9.1. PREFIX FORWARDING 133

 0

 5000

 10000

 15000

 20000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
no

yes

rt
 s

iz
e

R
T

 u
pd

at
e

time [s]

routing tree size
routing tree updates

Figure 9.6: Tree optimizer updates of the routing tree – 30% threshold

the number of false positives.
During the simulation the number and frequency of routing tree updates per-
formed by the tree optimizer has been counted as well. Figures 9.6 and 9.7
show the number of updates and the size of the routing tree when two different
update thresholds are used. Using the lower update threshold (Figure 9.6) of
30% the tree optimizer initiated 84 updates. When using the higher update
threshold (Figure 9.7) of 80% the tree optimizer initiated only 19 updates. In
both cases it can be clearly observed that with the growth of the routing tree,
the number of necessary updates decreases. This behavior can be explained
by the fact that the larger the routing tree grows the more new filters it takes
to reach the update threshold. More importantly, as already mentioned large
routing trees are more unlikely to have new filters added close to the root,
which in combination with the weighted threshold calculation algorithm (see
Equation 4.2) decreases the update rate. One way to avoid too infrequent
updates for large routing trees is to add a second, time-based threshold.

9.1.2 Using Real-Life Data

Testing publish/subscribe systems has always been a challenging task, mainly
due to the lack of real-life data. There exist many examples of publish/subscribe
systems being implemented in a real-life environment (e.g., Gryphon [ZSB04]
has been used in US Tennis Open, Ryder Cup, and Australian Open 2, see also
Section 2.1.1), however, the data gathered by those systems has not been made
publicly available. Therefore, the testing of the publish/subscribe systems has

2http://www.research.ibm.com/distributedmessaging/

http://www.research.ibm.com/distributedmessaging/

134 CHAPTER 9. EVALUATION

 0

 5000

 10000

 15000

 20000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
no

yes

rt
 s

iz
e

R
T

 u
pd

at
e

time [s]

routing tree size
routing tree updates

Figure 9.7: Tree optimizer updates of the routing tree – 80% threshold

1 24967317 anderson real estate 2006-05-31 13:03:42
2 24967317 www.xtremeteam.cus 2006-05-31 13:06:47
3 24967317 www.etremeteam.us 2006-05-31 13:07:18
4 24967317 celia murphy 2006-05-31 22:05:12
5 24967641 donut pillow 2006-05-31 14:08:53
6 24967641 dicontinued dishes 2006-05-31 14:29:38
7 24969374 orioles tickets 2006-05-31 12:31:57
8 24969374 baltimore marinas 2006-05-31 12:43:40

Listing 9.1: An extract from the AOL log data

in many cases relied on the statistical generators of event and filter patterns.
However, such generators usually cannot represent the relations between filters
and events as found in the systems running in the real-life environments.
In order to cope with this issue, a real-life data for the creation of filters and
events is used. The source of the real-life data is the log data from an Internet
search engine. The idea to use the search engine data stems from the fact, that
queries issued by users of a search engine bear a certain similarity to filters.
A query contains data which summarizes the interest of a given user, which
allows it to be regarded as a filter. Such user issued filters are matched by
the search engine against its database of all known publications (web pages).
Subsequently, results (links to the content of interest) are delivered to a user
on the results web page.
Therefore, being given a log containing user queries issued to a search engine
one can easily build a set of subscriptions. In the following experiments the
data released on the 4th of August 2006 by the AOL search engine is used.
The released data contains 20,000,000 search keywords for over 650,000 users

9.1. PREFIX FORWARDING 135

Attribute Operator Attribute
Name Value

query substring anderson real estate

query substring www.xtremeteam.cus

query substring celia murphy

query substring donut pillow

query substring dicontinued dishes

Table 9.2: Example filters using the AOL data

spanning a 3-month period between March 1, 2006 and May 31, 2006 [PCT06].
From the above data set two sets of experiment data have been extracted: (1)
set A: 43238 queries from 28 users with more than 4000 queries issued per
user and (2) SET B: 77301 queries from 11276 users with exactly 10 queries
issued per user. Listing 9.1 shows an exempt from the data log made available
by the AOL.
For the filter creation only one predicate with attribute name set to query
and operator set to substring has been used. The attribute value was set to
the content of the query a given user issued to the search engine. Table 9.2
illustrates example filters created from the AOL data set. The format of
queries presented in table 9.2 allows for an easy integration of queries into the
predicate-based semantics of the XSiena system.
The main open issue remaining after the generation of filters is the generation
of events. Being given a set of filters, there is no direct way to derive neither a
publication pattern, nor the content of publications. The problem of the event
generation originates in the lack of the feasible event domain. Being given
a set of the user queries to a search engine, one is simultaneously given the
filter domain. However, the straightforward use of the database of the search
engine (the natural domain for the set of events) is not a practical choice for
the testing of publish/subscribe system.
Therefore, a different approach towards the creation of the events has been
assumed. Given the set of user queries issued to the AOL search engine every
query in this set is reissued to the Google3 search engine. Subsequently, for
each query issued the number of hits returned by the Google search engine is
recorded. Assuming that the size of the Google index equals approximately
210 entries, one can divide the number of hits returned for the given query by
the total number of available entries. The resulting number is a probability that
a randomly issued publication from the set of all content indexed by the search
engine will match the given query.
This in turn allows to devise a simple algorithm for the creation of events:

3http://www.google.com

http://www.google.com

136 CHAPTER 9. EVALUATION

Figure 9.8: Routing tree layout – set A

Figure 9.9: Routing tree layout – set B

9.1. PREFIX FORWARDING 137

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6

no
de

s
#

level

FPT for SET B (246 nodes)
FPT for SET A (175 nodes)

Figure 9.10: Forwarding tree sizes – set A and set B

1. for every filter contained in the set of filters

(a) get the probability (0.0–1.0) of an event matching a given filter
(calculated using the Google search engine query)

(b) generate a random number (0.0–1.0) using a uniform distribution

(c) if the random number is smaller than the calculated probability add
the content of the filter to the event

such generated events consists of strings containing filter queries, which would
match filters (using the substring operator) with a probability proportional to
the number of matches a given filter returns when issued into a search engine.
The so generated sets of events and filters have been used in the subsequent
tests.
For thee first test the routing trees using the filters from set A and B have been
created. Figure 9.8 shows the routing tree after insertion of unique filters from
the set A, while figure 9.9 shows the routing tree after the insertion of the
unique filters from the set B. The lighter the color of the edge, the closer it
is placed to root of the routing tree. It can be observed that large number of
different users (set B) tends to have more contention in their queries, compared
to more differentiated queries (set A) coming from the smaller user base.
Figure 9.10 shows the average sizes of the forwarding trees obtained by match-
ing events with routing trees obtained for the set A and set B. The sizes of the
forwarding trees constitute approximately 1%� of the number of filters stored
in the routing tree. It can be observed that the smaller user base with larger
amount of queries per user (set A) results in a smaller average forwarding tree.
This can be contributed to the fact that the smaller user population has a more

138 CHAPTER 9. EVALUATION

10-1

100

101

102

103

 0 5000 10000 15000 20000 25000

tim
e

[m
s]

filter count

prefix tree
siena poset

Figure 9.11: Event forwarding speed

widespread interest than the large user group which uses the search engine
only occasionally.

The following three tests compare the event forwarding speed, the filter inser-
tion speed and the forwarding tree extraction speed. Figure 9.11 shows the
time needed to forward single event using the forwarding tree piggybacked by
the event compared to the standard content-based forwarding using the Siena
poset – see Section 2.5.5. It can be observed that with increasing number of
filters stored in the routing structure the Siena-based poset is outperformed
by the order of two magnitudes by the forwarding tree. The filter insertion
time illustrated in Figure 9.12 shows that the need to maintain links between
multiple filters in poset gives the routing tree a noticeable speed advantage.
Moreover, per predicate insertion is more efficient in comparison to poset
structure where large filters have to be compared multiple times with each
other. The last Figure 9.13 compares the speed of the content based matching
when routing trees and Siena-based poset is used. One can observe, that the
content-based matching using the routing tree is only marginally faster from the
poset-based matching, probably due to the fact that identical predicates are not
stored in the routing tree. On the other one has to recall that the content-based
matching using the routing tree implies the construction of the forwarding tree
for the event being matched, which in turn is not necessary in the case of the
poset-based approach.

9.1. PREFIX FORWARDING 139

10-1

100

101

102

103

 0 5000 10000 15000 20000 25000

tim
e

[m
s]

filter count

prefix tree
siena poset

Figure 9.12: Poset versus routing tree creation time

100

101

102

103

 0 5000 10000 15000 20000 25000

tim
e

[m
s]

filter count

prefix tree
siena poset

Figure 9.13: Content-based matching using routing tree

140 CHAPTER 9. EVALUATION

 10

 100

 1000

 10000

 100000

 1e+06

 0 5000 10000 15000 20000 25000 30000

ti
m

e
[m

s]

filters

poset
forest

sbsposet
sbstree

Figure 9.14: Filter insertion (routing) time

9.2 Bloom Filter-Based Routing

The evaluation of the Bloom filter-based routing is based on the XSiena system
implementation which takes advantage of the sbsposet and sbstree data
structures. The XSiena-based implementation of the Bloom filter-based routing
is a part of the StreamMine [JF08a, FBFJ] project. StreamMine project4 is
developed within the Scalable Automatic Streaming Middleware for Real-
Time Processing of Massive Data Flows5 (STREAM) framework developed
within the Seventh Framework Programme for Research and Technological
Development (FP7) of the European Commission.
The evaluation of the sbsposet and sbstree data structures had been con-
trasted with two standard implementations of content-based routing publish/sub-
scribe systems. The first one being the traditional Siena routing algorithm
based on the poset structure [CRW01]. The second one being a recently pub-
lished improvement implementation based on the forest data structure [TK06].
All three routing strategies (Bloom filter-based, poset-based and forest-based)
were implemented in the XSiena system so as to create a uniform test environ-
ment operating within the same communications framework and with identical
message semantics. All experiments have been executed on the same hardware
and software: Java HotSpot(TM) Server VM (build 1.6.0_03-b05, mixed mode)
running on a DELL Optiplex 745 with Core 2 Duo E6400 processor and 2GB
of RAM. All workloads used in this section assume the approach outlined in
Section 9, with a distinct difference that every subscription message carrying a
filter originates from a different subscriber/interface.

4http://streammine.inf.tu-dresden.de/
5http://www.streamproject.eu/

http://streammine.inf.tu-dresden.de/
http://www.streamproject.eu/

9.2. BLOOM FILTER-BASED ROUTING 141

 10

 100

 1000

 10000

 100000

 0 5000 10000 15000 20000 25000 30000

ti
m

e
[m

s]

filters

poset
forest

sbsposet
sbstree

Figure 9.15: Event matching (forwarding) time

The first test was aimed at verifying the filter routing speed using the sbsposet
and sbstree data structures. Figure 9.14 shows the time needed to insert a
given number of filters into different routing structures. The poset data
series represents the original Siena poset [CRW01]. The forest data series
represents the improved implementation presented in [TK06]. The sbsposet
and sbstree data series represent the Bloom filter-based routing structures.
In Section 5.3, it has been shown that only after insertion into both sbsposet
and sbstree structures a filter can be used for matching against incoming
events. It can be observed that although the original Siena data structure has
the worst performance, the difference between the more optimal forest and
sbstree combined with sbsposet is still of an oder of magnitude. The poor
performance of the Siena poset is further stressed by the fact that its routing
structure allows only for hierarchical networks of brokers, while both forest
and Bloom filter-based structures are designed to work with arbitrary acyclic
graph topologies.
The test was performed using the Pareto distribution for the attribute names
and attribute values. The attribute names were selected from the set of 20.000
attribute names using the aspell word list. The number of filter predicates
varies between 2 and 5 – using the uniform distribution. Attribute values are
selected using normal distribution from the range [0, 200000]. All tests assume
a pessimistic scenario, i.e., that every subscription message arriving at the
broker originates in a different subscriber/interface.
The second test, allows us to verify the applicability of the Bloom filter-based
routing approach towards the fast forwarding of events. Figure 9.15 shows
the event matching speed, e.g., time needed to match 1000 events with data
structure storing indicated number of filters. In case of traditional content-

142 CHAPTER 9. EVALUATION

10
0

10
1

10
2

10
3

10
4

 1000 1500 2000 2500 3000 3500 4000 4500 5000

100K 200K 300K 400K 500K 600K 700K

#
 f

al
se

 p
o

si
ti

v
es

subscriptions

delivered events

false pos, log2m=12, k=4
false pos, log2m=13, k=4
false pos, log2m=13, k=5
false pos, log2m=13, k=6

Figure 9.16: False positives probability

based routing, the matching time is defined as the time needed to calculate the
forwards set for an event. In case of the sbsposet it is a time needed by the
broker to assign a Bloom filter to an event and in case of the sbstree it is a
time needed to calculate the forwards set for an event given its Bloom filter.
Figure 9.15 shows results for the same set of filters as Figure 9.14. The number
of event attribute name and value pairs varies between 2 and 5 – using the
uniform distribution. Event attribute names are selected from a set of 20.000
attribute names using Pareto distribution. Event attribute values are selected
using normal distribution from the range [0, 200000].
In all cases, the matching time using Bloom filter based structure (sbsposet)
is significantly faster than the matching time for traditional Siena poset and
forest. The difference in the performance improvement can be attributed
to the way the sbsposet is built: attribute names are stored in a hash set
and serve as pointers to the lists of respective attribute constraints posets.
Clearly, with increasing number of different attribute names the advantage of
the sbsposet is more substantial as with a single lookup in a hash set it can
filter out more irrelevant predicates. One can also observe that the matching
speed using the sbstree follows with the same performance.
The main advantage of using Bloom filters to represent the sets of predicates
matching an event is the fact that they are size-bounded and can represent the
whole universe of predicates by having all bits set. However, this feature does
not come without a price. In case of the Bloom filters, this is the possibility of
false positives. As illustrated in Figure 5.3 the false positives probabilities for
small filters are relatively high, even for a low number of elements.

9.2. BLOOM FILTER-BASED ROUTING 143

The false positives in a Bloom filter result in false positives in the publish/sub-
scribe system using Bloom filters for routing. In this case a false positive
is defined as delivery of an event which was not subscribed to. In order to
verify that issue, 10,000 events were routed through a broker which stored an
increasing number of filters. After the delivery of events, it has been checked
whether they have been really subscribed for. This experiment, assumed a
pessimistic case where every subscription message is issued by a different
subscriber. In order to maximize the number of matches, subscriptions had
only one predicate selected using a Pareto distribution from 2,000 English
words. Events were constructed in a similar way: every event contained from 1
to 10 attribute name and value pairs (uniform distribution), and attribute names
were chosen from 2,000 English words using the Pareto distribution. In all
experiments, according to the expectations, the number of false negatives was
equal to zero.
Figure 9.16 shows the number of false positives in the function of the number
of subscriptions in the broker. At first one can observe that the number of false
positives is lower than it would be assumed when looking at the Figure 5.3.
For example the number of false positives events for 5,000 subscriptions,
log2 m = 12 and k = 4 is equal to 4695, which is less than 50% of the
sent events. Looking at the Figure 5.3 one might expect to receive almost
exclusively false positives. This contradiction might be explained by three facts:
(1) probability of false positives is lower if one considers multiple predicates
forming a subscription, as their conjunction results in a multiplication of false
positives probabilities; (2) the high number of matches in the experiment
results in false positives being covered by non-false positives, thus reducing
their number; (3) filters generated with Pareto distribution will tend to have
more identical predicates, reducing the number of different elements.
Figure 9.17 allows us to estimate the average overhead for the transmission of
an event when Bloom filter-based routing. It can be observed that for the test
scenario depicted on the Figures 9.14 and 9.15 an average event will have up
to 200 bits set in its Bloom filter. Using sparse Bloom filter representation (see
Section 5.2.3) with 16 bit integer values used as bit indices would result in the
average overhead of 400 bytes per event. It is the believed by the author that
the increase in the event size is justified and offset by the improvement in the
forwarding speed.

9.2.1 Counting sbstree

Figure 9.18 illustrates the test which highlights the importance of the counting
sbstree optimization. In the illustrated test the average number of bits set per
event has been varied, whilst maintaining a constant number of filters in the
original sbstree and counting sbstree. The average number of bits set per
event e corresponds to the average number of predicates matching the event e

144 CHAPTER 9. EVALUATION

-200

-100

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000

#
 m

at
ch

in
g

 p
re

d
ic

at
es

filters

stddev
predicates/event

Figure 9.17: Number of predicates matching a single event

times the number of bits per predicate k.
It can be observed that the matching time in case of the original sbstree
(indicated as sbstree in the Figure 9.18) increases exponentially with the
number of bits set in the event. The optimized variant (indicated as counting
in the Figure 9.18), using a counting algorithm is linear with the number of
bits set implying the correctness of the proposed matching algorithm.
Figure 9.19 illustrates the matching time with stable number of bits set per
event. It can be observed that the matching time of the counting variant of the
sbstree is practically linear with respect to the number of filters stored in the
counting sbstree. This confirms the observation that the matching time is
proportional to the number of bits set in the event. The original variant of the
sbstree is, on the other hand, linear with the number of filters stored in the
sbstree, despite the stable number of bits set in the event.

9.2.2 System benchmarks
In order to evaluate the performance of the XSiena system as a fully functional,
content-base publish/subscribe communication middleware a series of tests
involving a distributed network of physical brokers running the Bloom filter-
based XSiena system has been performed.
Figure 9.20 illustrates the experiment setup in three different scenarios. First,
a varying number of brokers (B1, B2, B3) has been connected to form the
acyclic network presented in Figure 9.20. Subsequently, the subscriber S1
issued a single subscription which was propagated through the whole network.
Finally publisher P1 was issuing events (the flow of events is depicted by
arrows in the Figure 9.20) which were always received by the subscriber S 1,

9.2. BLOOM FILTER-BASED ROUTING 145

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
at

ch
 t

im
e

[m
s]

avg bits / event

match speed (counting)
match speed (sbstree)

Figure 9.18: Event forwarding with increasing number of bits set per event

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16 18 20
 400

 410

 420

 430

 440

 450

m
at

ch
 t

im
e

[m
s]

av
g
 b

it
s

/
ev

en
t

number of filters (1000s)

match speed (counting)
match speed (sbstree)

avg bits / event (counting)
avg bits / event (sbstree)

Figure 9.19: Event forwarding with constant number of bits set per event

146 CHAPTER 9. EVALUATION

P1 S1B1
P1 S1B1
P1 S1B1

B2
B2 B3

127.0.0.1:3030 127.0.0.1:4050 127.0.0.1:3040
127.0.0.1:3030 127.0.0.1:4050 127.0.0.1:3040
127.0.0.1:3030 127.0.0.1:4050 127.0.0.1:3040

127.0.0.1:4060
127.0.0.1:4060 127.0.0.1:4070

141.*.*.216:3030 141.*.*.106:4050 141.*.*.216:3040
141.*.*.216:3030 141.*.*.106:4050 141.*.*.216:3040
141.*.*.216:3030 141.*.*.106:3030 141.*.*.216:3040

141.*.*.204:4050
141.*.*.204:4050 141.*.*.217:4050

local scenariodistributed scenario
1 broker

2 brokers
3 brokers

Figure 9.20: Benchmarks setup

i.e., events issued by P1 always matched the filter issued by the S 1. An event
consisted of ten different attribute name and value pairs, with the total wire
size of approximately 740 bytes (including the Bloom filter).
Figure 9.21 compares the latencies of the TCP-based communication for
different number of brokers. For the latency measurement, publisher attached a
send time stamp (using the Java System.nanoTime() method) to every event
it has published. The subscriber, upon reception of the event calculated the
reception time stamp and logged the difference between the two. The source
code for the latency experiment is presented in Section 8.1. Obviously, for
the above scenario to work, both publisher and subscriber had to be placed on
the same physical machine (141.*.*.216). It can be observed that for the
local scenario, even with three brokers placed between the publisher and the
subscriber, the majority of the latencies stays in the sub-millisecond range. The
exposed latencies are a good starting point towards meeting of the requirements
of the modern real-time event processing systems [ScZ05].
The second important parameter which had to be considered was the ability to
provide high throughput for the events. Figure 9.22 presents the throughput
tests for two scenarios: (1) communication via sockets with all brokers running
on the same physical host (local) and communication via sockets with all
brokers running on different physical hosts (distributed). It can be observed
that the throughput of the distributed runs approaches the network saturation
values (100BASE-T full duplex Ethernet). For the local setup, the overhead
of running the multiple brokers on the same host results in the observable
throughput decrease.
A series of throughput tests for the communication via direct upcall has been
also performed – see Figure 9.23. The direct upcall test simulated two hundred

9.2. BLOOM FILTER-BASED ROUTING 147

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000

n
u

m
b

er
 o

f
ev

en
ts

latency [µs]

1 broker (local)
2 brokers (local)
3 brokers (local)

1 broker (distributed)
2 brokers (distributed)
3 brokers (distributed)

Figure 9.21: Latency for varying number of brokers

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10
 0

 2

 4

 6

 8

 10

 12

K
 e

v
e
n

ts
 /

 s
e
c
o

n
d

M
B

/s

K events sent

local (1 broker)
local (2 brokers)
local (3 brokers)

distributed (1 broker)
distributed (2 brokers)
distributed (3 brokers)

Figure 9.22: Throughput for varying number of brokers

148 CHAPTER 9. EVALUATION

 0K

100K

200K

300K

400K

500K

 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

e
v

e
n

ts
/s

e
c
o

n
d

events

unfrm distr norm distr Pareto distr

 1K

 10K

100K

d
e
li

e
v

e
re

d
 e

v
e
n

ts

Figure 9.23: Local throughput for varying distributions

different subscribers registering their filters with the XSiena broker. Three
tests with varying number of events matching the registered filters have been
performed. Each of the tests was performed with one of the following distribu-
tions: (1) uniform (least overlap), (2) normal (medium overlap) and (3) Pareto
(highest overlap). The type of the distribution chosen strongly influences the
total number of the delivered events – see the upper part of the Figure 9.23.
The 300000 delivered events in case of the Pareto distribution indicates that on
average a single event was delivered to three components. It can be observed
that the achieved throughput in all cases should satisfy even very demanding
applications.

9.3 Fail-Awareness
The evaluation of the fail-aware XSiena system is divided into three parts –
first the issues related to the clock drift rate are investigated. Specifically, the
behavior of the time stamp counter, accessible via assembler command rdtsc
was evaluated. The time stamp counter is used throughout the remainder of the
experiments as the local hardware clock. The second part of the experiments
focuses on the use of the upper bound and the influence of the optimizations
discussed in Section 6.2 on the precision of the upper bound. In the last
part of the evaluation the focus is put on the comparison of the upper bound
method and the external clock synchronization using the NTP [Mil92] protocol.
Specifically, the maximum error values of both methods are compared.
The upper bound measurements and their comparison to the results obtained

9.3. FAIL-AWARENESS 149

via the NTP protocol has been performed in the PlanetLab environment [Ros05,
PBFM06]. Distributed applications deployed in the PlanetLab environment i
are usually subject to a much harsher conditions (with respect to experienced
transmission delays and omission failures) than the same application deployed
on legacy hosts. The reason for this fact is that in PlanetLab environment
physical hosts are shared by many users which often leads to unexpected
spikes in the transmission or precessing delays. This is, however, ideal for
our purpose because fail-aware XSiena system is specifically targeted towards
such “harsh” environments.
All communication between the nodes of the fail-aware XSiena system de-
ployed over the PlanetLab is carried out using the UDP protocol. For the
following experiments, two sets of hosts have been used. First set is named lo-
cal, the second is named global. Hosts belonging to the local set were selected
from within German PlanetLab nodes placed in: Bremen, Dresden, Berlin
and Passau. Hosts belonging to the global set were placed in: Delhi (India),
Helsinki (Finland), Krakow (Poland) and Saarbrücken (Germany).
On each host a single fail-aware XSiena broker process has been started.
Additionally, on each underlined host a single subscriber and a single publisher
process was started as well. Each underlined host acted as a starting and
ending point for any event which was also routed via remaining hosts forming
a closed ring. In this way, when measuring an upper bound on the transmission
delay, one could compare it against the real-time transmission delay. The
real-time transmission delay was calculated using the time stamp counter of
the underlined host.

9.3.1 Clock Drift

Since the evaluation of the fail-aware XSiena system is carried out in the
PlanetLab environment, one must first investigate whether PlanetLab nodes
used for experiments have time stamp counters which expose drift rates stable
enough to allow for their use as the local hardware clocks.
In order to measure the drift rate of the time stamp counters the code of the
SNTP [Mil06] client has been modified. The modifications included using
the time stamp counter as the time source for the client application so that
one could compare it against real time stratum 1 servers6. The measurements
were performed every hour – the minimum frequency NTP stratum 1 servers
allowed for.
Figure 9.24 shows the drift rate of the three PlanetLab hosts over the period
of ten days at the end of March 2009. It can be observed that two hosts
(ssvl.kth.se and iit-tech.net) expose relatively stable drift rates, while

6The NTP stratum levels define the distance from the reference clock and the associated
accuracy. Stratum 1 servers are computers attached directly (e.g. via RS-232) to stratum 0
devices, such as atomic clocks or GPS clocks.

150 CHAPTER 9. EVALUATION

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

Mar
18

Mar
19

Mar
20

Mar
21

Mar
22

Mar
23

Mar
24

Mar
25

Mar
26

Mar
27

d
ri

ft
 r

at
e

[p
p
m

]

date

uba.ar
ssvl.kth.se
iit-tech.net

Figure 9.24: Drift rates of three PlanetLab hosts

the host uba.ar exposes has large fluctuations of the drift rate.
Figure 9.25 shows the drift rate of a single (cs.princeton.edu) PlanetLab
host. The drift rate of the host’s time stamp counter has been measured
simultaneously against three NTP stratum one servers: t1.timegps.net,
nist1.symmetricom.com and swisstime.ethz.ch. It can be observed
that the drift rates stay within a few parts per million of each other which
allows to assume that the drift estimation method can be relied upon. A
reliable drift estimation technique confirms that time stamp counters are a valid
source of local time for the nodes of the fail-aware XSiena system.
Some architectures using ACPI compliant power management, e.g., AMD
K8 multi-core, might expose drift issues related to performance state (P-state)
and power state (C-state) changes. Suggested solution to this issue might be
switching from time stamp counter to other counters, unaffected by the power
management, such as HPET [Cor04] or PMTimer [Nag06]. Another problem
affecting multi-core systems is context switching when subsequent rdtsc calls
are executed on two different cores with unsynchronized time stamp counters.
A solution to that problem might be the new rdtscp instruction [Bru04] or
the time stamp counter synchronization present in current operating systems.

9.3.2 The Upper Bound on Transmission Delay

Our tests of the upper bound on the transmission delay focus on the comparison
of the calculated upper bound and the real time transmission delay in the
PlanetLab system. Specifically, it is important to investigate whether the upper
bound properties hold – see Equation 6.1. The experiment has been performed
the experiments in two different scenarios, varying especially in the terms of

9.3. FAIL-AWARENESS 151

-3

-2

-1

 0

 1

 2

Mar
18

Mar
19

Mar
20

Mar
21

Mar
22

Mar
23

Mar
24

Mar
25

Mar
26

Mar
27

d
ri

ft
 r

at
e

[p
p
m

]

date

t1.timegps.net
nist1.symmetricom.com

swisstime.ethz.ch

Figure 9.25: Drift rate of a single PlanetLab host

the experienced network delays.

Figure 9.26 shows the comparison of the calculated upper bound and the
real-time transmission delays for the local hosts. It can be observed that the
calculated upper bound on transmission delay holds, i.e., it is never lower than
the real transmission delay. Moreover, it can be observed that fail-aware XSiena
system maintains low error values (defined as difference between transmission
delay td(m) and the upper bound ub(m)) regardless of the transmission delay
variations. Moreover, the helper optimization mechanism (see Section 6.2)
helps to quickly lower the initial, high error values. For comparison, the same
measurement performed with an unoptimized (no helper message optimization,
no lower bound on helper message computation) fail-aware XSiena system
version has been included – see Figure 9.27. It is clearly visible that in
case of an unoptimized protocol error values depend directly on the message
transmission time and are much higher than in the optimized version.

Figure 9.28 illustrates the relation between the upper bound on the transmission
delay ub(m) and the upper bound on the processing time ub(pt(m)) of the
events forwarded in the local setup. It can be observed that although the upper
bound on transmission delay is generally higher than the upper bound on the
processing time, it is not uncommon for the nodes to experience sudden spikes
(three orders of magnitude) in the processing time of events. Such spikes can
be contributed to the scheduling algorithms and interference from other slices
on the PlanetLab nodes on which the experiment was executed.

152 CHAPTER 9. EVALUATION

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

1.4e+05

1.6e+05

1.8e+05

2.0e+05

 10 20 30 40 50 60 70 80 90 100
no
yes

tim
e

[u
s]

om
is

si
on

 e
rr

or

received publication #

F-A P/S upper bound
realtime

error
omission error

Figure 9.26: Optimized boot up of the upper bond – local setup

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

 10 20 30 40 50 60 70 80 90 100
no
yes

tim
e

[u
s]

om
is

si
on

 e
rr

or

received publication #

F-A P/S upper bound
realtime

error
omission error

Figure 9.27: Unoptimized boot up of the upper bond – local setup

9.3. FAIL-AWARENESS 153

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

ti
m

e
[s

]

message

ub(m)
ub(pt(m))

Figure 9.28: Upper bound on transmission delay and processing time

9.3.3 Upper Bound versus NTP
The following set of experiments evaluates the real-time error of the upper
bound on the transmission delay and compares it to the error provided by the
NTP service. The intuition behind the error value is that it represents how pre-
cisely it is possible to read a remote clock. In other words, measuring message
transmission time can be either performed using the upper bound technique
with the given upper bound error, or it can by performed by subtracting receive
and send time stamps of the processes synchronizing their clocks with NTP
with the given NTP error.
The error of the upper bound is calculated as the difference between the upper
bound on the message transmission delay and the real-time transmission delay.
The error provided by the NTP is defined as: the root dispersion plus one-half
the root delay [. . .] increased by a small amount (time_tolerance) each second
to reflect the clock frequency tolerance [Mil94]. The root dispersion is defined
as: maximum error relative to the primary reference source at the root of the
synchronization subnet [Mil94]. The NTP error values are obtained via the
ntp_gettime() system call. It is important to note that the error provided by
the NTP, is not the upper bound error value, i.e., it is possible that the actual
error is higher than the one provided by the NTP.
Figures 9.29 and 9.30 show the error of the fail-aware XSiena publish/subscribe
system and its comparison to the NTP error, respectively. Both experiments
have been performed in the local setup. It can be observed that the majority of
the error values in case of the fail-aware XSiena system is placed around 50
milliseconds mark. The comparison with the NTP error clearly illustrates that
the upper bound provides a much tighter (over 1 second) estimation.
Figures 9.31 and 9.32 demonstrate the same experiment for the global scenario.

154 CHAPTER 9. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085

n
u
m

b
er

 o
f

m
es

sa
g
es

error [s]

ub(m) - td(m)

Figure 9.29: Upper bound on transmission delay error – local setup

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

n
u
m

b
er

 o
f

m
es

sa
g
es

error [s]

ub(m) - NTP MAX ERR

Figure 9.30: Upper bound versus NTP – local setup

9.3. FAIL-AWARENESS 155

 0

 20

 40

 60

 80

 100

 120

 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72

n
u
m

b
er

 o
f

m
es

sa
g
es

error [s]

ub(m) - td(m)

Figure 9.31: Upper bound on transmission delay error – global setup

 0

 10

 20

 30

 40

 50

 60

 70

 80

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

n
u
m

b
er

 o
f

m
es

sa
g
es

error [s]

ub(m) - NTP MAX ERR

Figure 9.32: Upper bound versus NTP – global setup

156 CHAPTER 9. EVALUATION

(a) local setup – all nodes on the same physical host

(b) ipeurope setup – European PlanetLab hosts

(c) ipworld setup – planetary PlanetLab hosts

Figure 9.33: Different network setups for the soft state XSiena experiments

It can be observed that due to the increased transmission delays (an order of
magnitude) the tightness of the upper bound has also worsened. Nonetheless,
even though both approaches provide similar precision it must be remembered
that the fail-aware XSiena system provides guarantees as to the upper bound
values which are not given by the NTP.

9.4 Soft State
The evaluation of the soft state XSiena publish/subscribe system has been
performed in three basic setups – see Figure 9.33. In the local setup (Fig-
ure 9.33(a)) all XSiena nodes have been started on the same physical machine
and connected via TCP/IP network. This scenario was motivated by the fact
that sharing the same physical machine implies sharing the same hardware
clock, which allows to measure the message transmission times by subtracting
the send and receive times. Such measurement based on the local clock allows
for the verification of the upper bound values for every node. In the local setup
one subscriber S and one publisher P were connected by three brokers: B1, B2
and B3.
The ipeurope setup (Figure 9.33(b)) involves 10 PlanetLab hosts placed in

9.4. SOFT STATE 157

Europe, connected via TCP/IP. One host (unineuchatel.ch) is used to
start both publisher and subscriber processes, so that one can compare the
send and receive times of the messages using the local hardware clock. This
scenario can be seen as an example distribution path in a large scale, content-
based publish/subscribe system. Similarly, the ipworld setup (Figure 9.33(c))
includes hosts distributed across multiple continents.
The first experiment used the conservative calculation of the validity interval
extension (see Section 7.2.3) and aimed at visualization of the validity ex-
tension and resulting validity utilization in different brokers of the soft-state
XSiena system – see Figure 9.34(b). For this experiment the filter validity
interval TI was set to 1 second and the refresh period τ to 0.8 seconds. In a
system with zero transmission and processing delays such settings would result
in all brokers sharing the same validity interval utilization of 80%.
However, due to the non-zero delays, one can observe that the utilization of
the subscription at the first broker encountered by the filter (di.unito.it) is
close to the 80% as the upper bound on the filter propagation delay is much
lower than the actual validity interval TI. The utilization of the same filter
at one of the last brokers on its path (upatras.gr) is around 60%. This can
be explained by the fact that upper bound on the processing delay which is
added to the filter’s validity interval is much larger (due to the larger number
of brokers traversed by the filter) and therefore the upper bound overestimation
also grows. The growing overestimation for the brokers further from the
message source compensates for a higher probability of a sudden increase
in the message propagation delay, which is related to the number of hops a
message has to traverse.
Figure 9.34(a) shows how for the same experiment (as in Figure 9.34(b))
different brokers extend the validity interval of a single filter. It can be observed
that the first broker (di.unito.it) encountered by the filter barely extends
its validity, while one of the last ones (upatras.gr) extends it by almost 40%.
Remembering that the validity interval of the filter was set to 1 second, one
can conclude that the average upper bound on the propagation delay of that
filter when it arrived at upatras.gr node was equal to 0.4 seconds.
On Figure 9.34(a) one can also observe that the refresh message number
75 was significantly slowed down (upward spike) between the upatras.gr
and rd.tp.pl nodes. This translates to the utilization of the filter refreshed
by that message growing proportionally to the refresh message delay – see
Figure 9.34(b). Subsequent refresh message arrived timely and therefore the
utilization calculated for it significantly dropped – see downward spike in
Figure 9.34(b). Since the utilization for message 75 remained under 100% no
unsubscription due to the timeout of the validity interval has taken place.
The second experiment conducted using the soft state XSiena system aimed
at verifying the uncertainty-based validity interval extension algorithm – cf
Section 7.2.4. The experiment has been performed in the ipeurope setup, using

158 CHAPTER 9. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

fi
lt

er
 v

al
id

it
y
 e

x
te

n
si

o
n
 %

refresh message number

di.unito.it
rd.tp.pl

upatras.gr

(a) validity interval extension

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

u
ti

li
za

ti
o
n
 %

refresh message number

di.unito.it
rd.tp.pl

upatras.gr

(b) validity interval utilization

Figure 9.34: Filter statistics for the ipeurope setup

9.4. SOFT STATE 159

 10

 100

 1000

 300 320 340 360 380 400

ti
m

e
[m

s]

refresh message number

last 200 msgs (di.unito.it)
last 20s (di.unito.it)
u-b pd (di.unito.it)

(a) first filter receiving broker

 10

 100

 1000

 300 320 340 360 380 400

ti
m

e
[m

s]

refresh message number

last 200 msgs (cs.uit.no)
last 20s (cs.uit.no)
u-b pd (cs.uit.no)

(b) last filter receiving broker

Figure 9.35: Uncertainty-based validity interval extension

160 CHAPTER 9. EVALUATION

 20

 30

 40

 50

 60

 70

 80

 90

 300 320 340 360 380 400

 0.4

 0.5

 0.6

 0.7

 0.8

u
ti

li
za

ti
o
n
 [

%
]

u
p
p
er

 b
o
u
n
d
 [

s]

refresh message number

improved utilization
old utilization

old run u-b
improved run u-b

Figure 9.36: Comparison of uncertainty-based and upper bound-based utiliza-
tion

the same filter validity and reissue setting as in the case of Figure 9.34 – filters
were re-issued every 0.8 seconds and their validity interval was set to one
second.
Figure 9.35 compares the validity interval extension calculated by the first
broker encountered by the subscription message (Figure 9.35(a)) and by the
last broker encountered by the subscription message (fig:eval:ss:uncert02).
Comparing both cases one can observe that although the calculated upper
bound on the propagation delay values are significantly different, the validity
interval extension based on the uncertainty algorithm remains similar in case
of the both brokers. Specifically, in the case of the Figure 9.35(b) it does not
exceed the calculated upper bound on the subscription message propagation
delay.
The validity interval extension has been plotted for two time windows: (1)
using the last 20 seconds time window (last 20s) and (2) using the last 200
messages (last 200 msgs) time window. Since filter reissue period equaled
0.8 seconds the 20 seconds time window was more responsive than the 200
messages time window. It can be clearly see in case of Figure 9.35(a) where
the increase in the interval extension quickly returns to normal in case of the
time-based window, as opposed to the message count-based one.
Figure 9.36 compares the utilization of the two approaches: the validity interval
extension based on the upper bound (old) and the validity interval extension
based on the upper bound uncertainty (new). The data for the experiment were
gather for the filters and their refresh messages on the cd.uit.no broker in
the ipeurope setup. In order to gather the data two consecutive runs have been
performed: one using the uncertainty-based extension and one using the upper

9.4. SOFT STATE 161

 0.01

 0.1

 1

 160 180 200 220 240
 0.2

 0.6

 1

 1.5

in
te

rv
al

 e
x

te
n
si

o
n
 (

la
st

 2
0
s)

 [
s]

u
p

p
er

 b
o

u
n

d
 /

re
al

-t
im

e
[s

]

refresh message number

u-b based extension
r-t based extension

u-b pd
r-t pd

Figure 9.37: Upper bound-based and real-time-based uncertainty calculation

bound-based extension. In both cases the validity interval TI of the filter was
set to 1 second and the re-issue period τ was set to 0.8 seconds.
The relatively high upper bound values (0.4 seconds) in combination with the
upper bound-based approach have contributed to the drop of the utilization
from the application programmer specified 80% to about 60%. On the other
hand, the uncertainty-based extension method retains the application designer
specified utilization, despite upper bound values reaching 40% of the originally
specified validity.
Figure 9.37 compares the uncertainty-based interval extension calculated using
the upper bound on the propagation delay (u-b based extension) and the
uncertainty-based interval extension calculated using the real-time propagation
delay (r-t based extension). It is only possible to plot the above data
for the host on which both publisher and subscriber are running. In the case
of the ipeurope setup this is the unineuchatel.ch node. It contains both
the source and the sink of the subscription messages, thus allowing to use its
local hardware clock to calculate the real-time propagation delay of filters by
subtracting the send time from the receive time.
It can observed that both calculated values are virtually identical, which con-
firms the upper bound as the right technique for use in the soft state XSiena

162 CHAPTER 9. EVALUATION

no

yes

no

yes

no

yes

no

yes

 26 28 30 32 34

ad
v
er

ti
se

m
en

t
p
re

se
n
t

time [s]

uoit.ca - ext
uoit.ca - noext

hiit.fi - ext
hiit.fi - noext

Figure 9.38: Advertisements expiration over time

system. Figure 9.37 shows also the actual values of the upper bound on (u-b
pd) and the real-time (r-t pd) filter propagation delays. Both left and right y
axes have logarithmic scale. The very well performance of the upper bound
technique can be explained by the use of optimization techniques (see Sec-
tion 6.2) and the resulting fact that the error of the upper bound is very stable
especially is sudden increase in the message propagation delay is experienced
– see Figure 9.26.
The last experiment compares the efficiency of the validity extension technique
to the simple approach where no extension is used. For that experiment
the ipworld setup has been used. During the experiment all brokers were
connected using the TCP protocol. The measurement has been performed for
the advertisement messages. Advertisement messages have been assigned the
validity interval TI of 20 milliseconds and the refresh period τ has been set to
16 milliseconds, which results in the 80% utilization.
Figure 9.38 shows the presence of advertisements in the two brokers of the
ipworld setup. It can be observed that when no validity interval extension
(noext) is used the advertisement presence in the brokers is very brief, with
the validity interval expiration quickly causing an unadvertisement. In contrast,
the validity interval extension technique (ext) assures that the expiration is
postponed until the refresh message is able to arrive. Figure 9.38 illustrates
also the fact that the further away from the source of the advertisement a given
broker is, the lower the amount of time an advertisement is present at that
broker when no validity interval extension is used.
Figure 9.39 plots the data from Figure 9.38 across a longer period of time
as a percentage of time a given broker has spent without an advertisement.
Time without advertisement implies the amount of time when broker is not

9.4. SOFT STATE 163

 0

 20

 40

 60

 80

 100

 1 10 100

to
ta

l
ti

m
e
 w

it
h
o
u
t

a
d
v
e
rt

is
e
m

e
n
t

[%
]

time [s]

uoit.ca - ext
uoit.ca - noext

hiit.fi - ext
hiit.fi - noext

Figure 9.39: Total time without advertisement

able to forward filters towards matching publishers and thus it is not able to
deliver events to the interested subscribers. It can be observed that without the
extension technique the total broker time without valid advertisement remains
very high, while the validity interval extension technique quickly helps to
extend the advertisement intervals so as to accommodate for the large latency
experienced by the refresh messages.

164 CHAPTER 9. EVALUATION

Chapter 10

Conclusions

This chapter summarizes the main contributions of this thesis and provides
a brief outline of the possible future work with respect to the content-based
matching and routing of information as well as the privacy and security issues.

10.1 Summary
During the last fifteen years, since the introduction of the publish/subscribe sys-
tems, the recognition for their importance for the distributed systems research
agenda has been constantly increasing. The publish/subscribe concept was
first introduced in [OPSS93] and was driven by the four design principles: (1)
minimal semantics of the core communication protocols, (2) self-describing
objects, (3) dynamically defined types and (4) anonymous communication.
Shortly thereafter a content-based naming model for an Internet-scale event
observation and notification facility [RW97] was introduced extending the
expressiveness of the publish subscribe systems.
Subsequently, a number of advanced routing concepts including the filter cov-
erage relation and the concept of advertisements summarizing the content to
be produced by the event publishers [CRW01] has been introduced. Simulta-
neously, a range of new underlying architectures for publish/subscribe systems
including structured [RHKS01, CDKR02] and unstructured overlays [BEG04]
has been proposed.
The practical evolution of the publish/subscribe systems has been closely
followed by the theoretical publications including the formal specification of
the publish/subscribe systems with the concepts of safety and liveness [M0̈2],
allowing to precisely define the specification of the correct publish/subscribe
system. A formalization of the decoupling properties of the publish/subscribe
systems, including the specification of the time, space and synchronization
decoupling properties has been proposed in [EFGK03].
The above developments have led to the widespread adoption of the pub-
lish/subscribe systems as a communication middleware for the loosely coupled

165

166 CHAPTER 10. CONCLUSIONS

distributed systems. Publish/subscribe paradigm is used by multiple applica-
tions [Bar07, SL07, MSSB07, DXGE07] wishing to decouple their compo-
nents and take the advantage of the event-based communication style exposed
by the publish/subscribe paradigm.
This thesis made two basic contributions to the field of the content-based
publish/subscribe systems. Firstly it proposed a set of event forwarding and
filter routing algorithms which are based on the end-to-end principle. The
proposed algorithms (cf. Chapters 4 and 5) migrate the expensive content-based
event matching from the network layer into the application layer, reducing
the overall cost for the filter routing and for the event forwarding. Secondly,
a fail-aware, content-based publish/subscribe system has been proposed –
cf. Chapter 6. Fail-aware publish/subscribe system is based on the Timed
Asynchronous Distributed System Model [CF99] and allows to detect the end-
to-end timeliness of advertisements, filters and events. It has been also shown
how to use the fail-aware publish/subscribe system to remove the hard state
from the publish/subscribe network – cf. Chapter 7.
The result of this thesis is the XSiena family of the content-based publish/sub-
scribe systems. The XSiena family of content-based publish/subscribe systems
has been used as a proof-of-concept implementation of the two main contribu-
tions of this thesis: the Bloom filter-based routing framework and the soft state
publish/subscribe system. This thesis presented an extensive evaluation of the
implemented prototypes including evaluation in the Local Area Network and
the Wide Area Network environment of the PlanetLab. The results obtained via
the evaluation have confirmed that the algorithms presented in this thesis allow
to excel the content-based forwarding of events and provide an applicable
model for the soft state in the content-based publish/subscribe systems.

10.2 Outlook

Content-based publish/subscribe systems are becoming an increasingly mature
technology which is used in an increasing number of applications. However,
the widespread use of the publish/subscribe systems is still hindered by the lack
of the production grade implementations with well established target group.
Publish/subscribe systems are not an end-user interface or a middleware which
would be exposed and thus appreciated as such by a broad spectrum of users.
The role of the publish/subscribe systems is to remain a tool for the develop-
ers of the distributed systems. A tool, which provides fast, decoupled, and
content-based communication between the components of a distributed sys-
tem. Therefore, publish/subscribe systems should and will find their way as a
communication abstraction into more and more loosely coupled systems. One
of the examples being the role XSiena plays in the StreamMine project – cf.
Section 9.2.

10.2. OUTLOOK 167

There exist two basic paths which are certainly still posing a number of chal-
lenges in the context of the content-based publish/subscribe systems. The first
one focuses on further improvements in the speed of event and filter routing
along with the optimization of bandwidth usage. New technologies, like: many-
core processors [WES08], GPUs [FH08], transactional memory [RFF07] and
resulting parallelization possibilities [Bri08] are becoming widely available
in the commercial off-the-shelf segment and offer a variety of new tools and
approaches in search for more efficient algorithms.
The second path is implied by the possibilities offered through the use of the
end-to-end approach towards the content-based routing. The ability to abstract
the content of the messages can be seen as a foundation allowing for the new
approach towards the development of secure content-based publish/subscribe
services. Current attempts at providing security and privacy in content-based
systems [CW01, Hom02, BEP05] are still in preliminary stadium. Moreover,
aforementioned approaches are still based on the point-to-point paradigms
taken directly from the TCP-based communication. The publish/subscribe
paradigm, based on the N-to-M communication, as opposed to the 1-to-1
model of the TCP, requires a new approach towards the provision of privacy
and security in large scale, content-based networks.

168 CHAPTER 10. CONCLUSIONS

Symbols

Term Definition Description
(Section)

e 2.2.2 event

f 2.2.1 subscription filter

a 2.2.3 advertisement filter

v 2.3.2 value: a part of event in predicate-based
semantics

p 2.3.2 predicate: a part of a filter in predicate-based
semantics

P 2.1.3 publisher

S 2.1.2 subscriber

P 2.5.6 set of all publishers in the system

S 2.5.2 set of all subscribers in the system

B 2.1.4 broker

E f 2.5.3 set of events selected by filter f

Ea 2.5.6 set of events selected by advertisement a

FS 2.2.1 set of active filters issued by the subscriber S

AP 2.2.3 set of active advertisements issued by the
continued on next page

169

170 SYMBOLS

Term Definition Description
contd. contd. contd.

publisher P

FB 2.5.4 set of active filters stored in the routing table
of the broker B

AB 2.5.4 set of active advertisements stored in the
routing table of the broker B

IB 2.5.1 set of all interfaces of the broker B

I←e 2.5.1 source interface of the event e

I← f 2.5.4 source interface of the filter f

I f→ 2.5.4 set of interfaces on which filter f
was forwarded

Iunsub
f→ 2.5.3 set of interfaces on which unsubscription

message containing filter f was forwarded

I←a 2.5.6 source interface of the advertisement a

Ia→ 2.5.6 set of interfaces on which advertisement a
was forwarded

E f 2.5.4 set of events selected by filter f

σmax 3.1 maximum (upper bound) processing time
of a correct process

δmax 3.1 maximum (upper bound) message
transmission delay

δmin 3.1 minimum (lower bound) message
transmission delay

∆max 6.1 message classification threshold

H(t) 3.2 value of the hardware clock
at the real-time t

ρmax 3.2 upper bound on the drift rate
continued on next page

171

Term Definition Description
contd. contd. contd.

of all hardware clocks

td(m) 6.2 transmission delay of the message m

ub(m) 6.2 upper bound on the transmission
delay of the message m

ub∆(m) 7.2.4 uncertainty of the upper bound on the
transmission delay of the message m

lb(n) 6.2 lower bound on the transmission
delay of the message m

pd(m) 6.3 propagation delay of the message m

pt(m) 6.3 processing time of the message m

TT 7.2 validity time

TI 7.2 validity interval

Φmax 7.2 maximum deviation between correct,
synchronized clocks, precision

UTI 7.2.4 validity interval utilization

172 SYMBOLS

Index

acyclic
architecture, 16

acyclic architecture, 40
advertise function, 11
advertisement, 10
advertisement message, 11, 48
advertisement-based routing, 33

Bloom filter, 68
broadcast, see flooding
broker, 9
bus

architecture, 16

CAN, 42
CCN, see Content-Centric Network-

ing
CIP, see Critical Infrastructure Protec-

tion
Content-Centric Networking, 2
counting algorithm, 31, 76
counting Bloom filter, 73
coverage relation, 28, 48
coverage-based routing, 27
Critical Infrastructure Protection, 83
cyclic

architecture, 18

decoupling, 2
space, 2
synchronization, 2
time, 2

DHT, see distributed hash table
Distributed Hash Table, 41, 82
drift rate, 47, 85, 133

event, 10

event flooding, 19

fail-awareness, 4, 83
false negative, 68, 81
false positive, 20, 33, 59, 68, 81
filter, 10, 48
flooding

of events, 19

general-purpose computation on GPU,
77

GPGPU, see general-purpose compu-
tation on GPU

GPU, see graphics processing unit
graphics processing unit, 77
group-based routing, 20

hash function, 41, 71
Hermes, 43
hierarchical

architecture, 16

identity of filters, 22
identity-based routing, 24
Information Bus, 3
intersection relation, 34, 48

JavaCC, 105

liveness, 98, 149
lower bound on message transmission

delay, 45, 87

many-to-many, 94
merging of filters, 33
Message Oriented Middleware, 3
message queuing, 3
MOM, see Message Oriented Middle-

ware

173

174 INDEX

multicast, 20

N-to-M, see many-to-many
Network Time Protocol, 84
NTP, see Network Time Protocol

observer design pattern, 8

packet, 1
partial order, 28, 30, 72
Pastry, 41
pattern, 14
PlanetLab, 5, 84, 91, 133
poset, 30, 124
poset-derived forest, 31, 124
predicate, 22, 48, 71
predicate-based

semantics, 12, 22
processing time, 89
propagation delay, 83, 89, 96
publication message, 10, 48
publish function, 9
publisher, 3, 9

rdtsc, 47, 106, 132
reliability, 1
rendez-vous, 42
rendez-vous node, 41
routing table, 21

safety, 98, 149
Scribe, 41
SIENA, 30
Simple Network Time Protocol, 133
simple routing, 21
SNTP, see Simple Network Time Pro-

tocol
soft state, 4, 91
sparse Bloom filter, 70
SPICE, 43
StreamMine, 124
stretch, 41
Sub-2-Sub, 44
subject-based, see topic-based
subscribe function, 9

subscriber, 3, 8
subscription message, 10, 48
system model, 45

TADSM, see Timed Asynchronous Dis-
tributed System Model

TCP/IP, 1
TERA, 44
time stamp counter, 47, 132, 133
Timed Asynchronous Distributed Sys-

tem Model, 45, 84, 92, 98
topic-based

semantics, 12, 42, 44
transitivity, 1
transmission delay, 89
TSC, see time stamp counter

unadvertise function, 11, 101
unadvertisement message, 11
unsubscribe function, 9, 101
unsubscription message, 10
upper bound on message transmission

delay, 45, 85

WAN, see Wide Area Network
Wide Area Network, 5, 84, 90, 91

XML, 14
XML-based

semantics, 14

Bibliography

[AEM99] M. Altherr, M. Erzberg, and S. Maffeis. ibus - a software bus middleware for
the java platform. In Proceedings of the International Workshop on Reliable
Middleware Systems, pages 49–65, 1999.

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of xml documents for
selective dissemination of information. In Amr El Abbadi, Michael L. Brodie,
Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and
Kyu-Young Whang, editors, VLDB ’00: Proceedings of 26th International
Conference on Very Large Data Bases, pages 53–64, Cairo, Egypt, September
2000. Morgan Kaufmann.

[AGK+01] Micah Adler, Zihui Ge, James F. Kurose, Donald F. Towsley, and Steve
Zabele. Channelization problem in large scale data dissemination. In ICNP ’01:
Proceedings of the 9th International Conference on Network Protocols, pages
100–109, Riverside, CA, USA, November 2001. IEEE Computer Society.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing, 1(1):11–33, Jan.–Mar.
2004.

[AT05] Ioannis Aekaterinidis and Peter Triantafillou. Internet scale string attribute
publish/subscribe data networks. In CIKM ’05: Proceedings of the 14th ACM
international conference on Information and knowledge management, pages
44–51, New York, NY, USA, 2005. ACM.

[AT07] Ioannis Aekaterinidis and Peter Triantafillou. Publish-subscribe information
delivery with substring predicates. IEEE Internet Computing, 11(4):16–23,
August 2007.

[Bar64] Paul Baran. On distributed communications networks. IEEE Transactions on
Communications Systems, 12(1):1–9, March 1964.

[Bar07] David Barnett. Publish-subscribe model connects tokyo highways. Industrial
Embedded Systems, March 2007.

[BBPV05] Roberto Baldoni, Roberto Beraldi, Sara Tucci Piergiovanni, and Antonino
Virgillito. On the modelling of publish/subscribe communication systems:
Research articles. Concurrency and Computation: Practice and Experience,
17(12):1471–1495, April 2005.

175

176 BIBLIOGRAPHY

[BBQ+07] Roberto Baldoni, Roberto Beraldi, Vivien Quéma, Leonardo Querzoni, and
Sara Tucci Piergiovanni. Tera: topic-based event routing for peer-to-peer archi-
tectures. In Hans-Arno Jacobsen, Gero Mühl, and Michael A. Jaeger, editors,
DEBS ’08: Proceedings of the 2007 Inaugural International Conference on
Distributed Event-Based Systems, volume 233 of ACM International Conference
Proceeding Series, pages 2–13. ACM, 2007.

[BBQV07] Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, and Antonino Virgillito.
Efficient publish/subscribe through a self-organizing broker overlay and its
application to siena. The Computer Journal, 50(4):444–459, 2007.

[BBV+05] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine,
Jim Klecka, and Jim Smullen. Nonstop advanced architecture. In DSN ’05:
International Conference on Dependable Systems and Networks, pages 12–21,
Yokohama, Japan, June 2005. IEEE Computer Society.

[BCM+99] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. In ICDCS ’99: Proceedings of the
19th IEEE International Conference on Distributed Computing Systems, page
262, Washington, DC, USA, 1999. IEEE Computer Society.

[BCSS99] Guruduth Banavar, Tushar Deepak Chandra, Robert E. Strom, and Daniel C.
Sturman. A case for message oriented middleware. In Prasad Jayanti, editor,
DISC ’99: 13th International Symposium on Distributed Computing, volume
1693 of Lecture Notes in Computer Science, pages 1–18, Bratislava, Slovak
Republic, September 1999. Springer.

[BCV03] Roberto Baldoni, Mariangela Contenti, and Antonino Virgillito. The evolution
of publish/subscribe communication systems. In André Schiper, Alexander A.
Shvartsman, Hakim Weatherspoon, and Ben Y. Zhao, editors, Future Directions
in Distributed Computing, volume 2584 of Lecture Notes in Computer Science,
pages 137–141. Springer, 2003.

[BEG04] Sébastien Baehni, Patrick Th. Eugster, and Rachid Guerraoui. Data-aware
multicast. In DSN 2004: International Conference on Dependable Systems and
Networks, pages 233–242. IEEE Computer Society, 2004.

[BEP05] Jean Bacon, David Eyers, and Ken Moodyand Lauri Pesonen. Securing pub-
lish/subscribe for multi-domain systems. In Gustavo Alonso, editor, Middleware,
volume 3790 of Lecture Notes in Computer Science, pages 1–20, Grenoble,
France, November–December 2005. Springer.

[BFC93] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core based trees (cbt). In
SIGCOMM, pages 85–95, 1993.

[BFG07] Silvia Bianchi, Pascal Felber, and Maria Gradinariu. Content-based publish/sub-
scribe using distributed r-trees. In Anne-Marie Kermarrec, Luc Bougé, and
Thierry Priol, editors, Euro-Par ’07: Proceeding of the 13th International Euro-
Par Conference, volume 4641 of Lecture Notes in Computer Science, pages
537–548. Springer, August 2007.

[BFH+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: stream computing on graphics

BIBLIOGRAPHY 177

hardware. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 777–786,
New York, NY, USA, 2004. ACM.

[BFS07] Scott Boag, Don Chamberlinand Mary F. Fernandez, and Daniela Florescuand
Jonathan Robieand Jerome Simeon. Xquery 1.0: An xml query languag. Online,
January 2007. http://www.w3.org/TR/xquery/.

[BH06] Sven Bittner and Annika Hinze. Pruning subscriptions in distributed pub-
lish/subscribe systems. In Vladimir Estivill-Castro and Gillian Dobbie, editors,
ACSC ’06: Proceedings of the 29th Australasian Computer Science Conference,
volume 48 of CRPIT, pages 197–206, Hobart, Tasmania, Australia, January
2006. Australian Computer Society.

[BHL95] Burnie Blakeley, Harry Harris, and Rhys Lewis. Messaging and Queuing Using
the MQI: Concepts and Analysis, Design and Development. Mcgraw-Hill Series
on Computer Communications. The McGraw-Hill Companies, June 1995.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[BN84] Andrew Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39–59, 1984.

[BPSMY06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Malerand Fran-
cois Yergeau. Extensible markup language (xml) 1.0. Online, August 2006.
http://www.w3.org/TR/2006/REC-xml-20060816/.

[Bri08] Andrey Brito. Optimistic parallelization support for event stream processing
systems. In Sam Michiels, editor, The Proceedings of the Doctoral Symposium
of the ACM/IFIP/USENIX 9th International Middleware Conference, pages 7–12,
Leuven, Belgium, December 2008. ACM.

[Bru04] Rich Brunner. AMD64 status report for kernel summit. USENIX - 2004 Linux
Kernel Developers Summit, July 2004.

[BSB+02] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi, Yuanyuan Zhao, and Joshua S.
Auerbach. Exactly-once delivery in a content-based publish-subscribe system.
In DSN 2002: International Conference on Dependable Systems and Networks,
pages 7–16, Bethesda, MD, USA, June 2002. IEEE Computer Society.

[Bur06] Mike Burrows. The chubby lock service for loosely-coupled distributed systems.
In Seventh Symposium on Operating System Design and Implementation, pages
335–350, Seattle, WA, USA, November 2006. USENIX Association.

[CABB04] M. Cilia, M. Antollini, C. Bornhövd, and A. Buchmann. Dealing with heteroge-
neous data in pub/sub systems: The concept-based approach. In A. Carzaniga
and P. Fenkam, editors, DEBS ’04: Proceedings of the 3rd International Work-
shop on Distributed Event-Based Systems. IEE, 2004.

[Car93] Denis Caromel. Towards a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90–102, 1993.

[CBGM03] Arturo Crespo, Orkut Buyukkokten, and Hector Garcia-Molina. Query merging:
Improving query subscription processing in a multicast environment. IEEE
Transactions on Knowledge and Data Engineering, 15(1):174–191, Jan.–Feb.
2003.

178 BIBLIOGRAPHY

[CCR04] Miguel Castro, Manuel Costa, and Antony Rowstron. Peer-to-peer overlays:
structured, unstructured, or both? Technical Report MSR-TR-2004-73, Mi-
crosoft Research, Cambridge, UK, July 2004.

[CDHR03] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony I. T. Rowstron.
Topology-aware routing in structured peer-to-peer overlay networks. In André
Schiper, Alexander A. Shvartsman, Hakim Weatherspoon, and Ben Y. Zhao,
editors, Future Directions in Distributed Computing, volume 2584 of Lecture
Notes in Computer Science, pages 103–107. Springer, 2003.

[CDKR02] M. Castro, P. Druschel, A.M. Kermarrec, and AIT Rowstron. Scribe: a large-
scale and decentralized application-level multicast infrastructure. Selected Areas
in Communications, IEEE Journal on, 20(8):1489–1499, October 2002.

[CDKR03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony I. T. Row-
stron. Scalable application-level anycast for highly dynamic groups. In
Burkhard Stiller, Georg Carle, Martin Karsten, and Peter Reichl, editors, Net-
worked Group Communication, volume 2816 of Lecture Notes in Computer
Science, pages 47–57. Springer, 2003.

[CDNF01] G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based infrastructure
and its application to the development of the opss wfms. IEEE Transactions on
Software Engineering, 27(9):827–850, 2001.

[CDS74] Vinton Cerf, Yogen Dalal, and Carl Sunshine. Specification of internet trans-
mission control program. RFC 675, dec 1974.

[CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657,
June 1999.

[CF04] Raphaël Chand and Pascal Felber. XNET: a reliable content-based publish/sub-
scribe system. In SRDS ’04: Proceedings of the 23rd IEEE International Sym-
posium on Reliable Distributed Systems, pages 264–273, Florianpolis, Brazil,
October 2004. IEEE Computer Society.

[CF05] Raphaël Chand and Pascal Felber. Semantic peer-to-peer overlays for pub-
lish/subscribe networks. In Jose C. Cunha and Pedro D. Medeiros, editors,
Euro-Par ’05: Proceedings of the 11th International Euro-Par Conference, vol-
ume 3648 of Lecture Notes in Computer Science, pages 1194–1204, Lisbon,
Portugal, August–September 2005. Springer.

[CFGR02] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis, and Rajeev Rastogi.
Efficient filtering of xml documents with xpath expressions. In Proceedings of
the 18th International Conference on Data Engineering, pages 235–244, San
Jose, CA, USA, 2002. IEEE Computer Society.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Communications of
the ACM, 32(4):444–458, 1989.

[CH06] Antonio Carzaniga and Cyrus P. Hall. Content-based communication: a
research agenda. In Eric Wohlstadter, editor, SEM ’06: Proceedings of the 6th
International Workshop on Software Engineering and Middleware, pages 2–8.
ACM, November 2006.

BIBLIOGRAPHY 179

[Che05] Michael Chertoff. The national plan for research and development in support
of critical infrastructure protection. Department of Homeland Security, Online,
April 2005.

[CHY+98] P. Emerald Chung, Yennun Huang, Shalini Yajnik, Deron Liang, Joanne C. Shih,
Chung-Yih Wang, and Yi-Min Wang. Dcom and corba side by side, step by
step, and layer by layer. C++ Report, 10(1):18–29, January 1998.

[CK74] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network inter-
communication. IEEE Transactions on Communications, 22(5):637–648, May
1974.

[CK05] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network intercom-
munication. Computer Communication Review, 35(2):71–82, 2005.

[Cla88] D. Clark. The design philosophy of the DARPA internet protocols. In SIG-
COMM ’88: Symposium proceedings on Communications architectures and
protocols, pages 106–114, New York, NY, USA, 1988. ACM.

[CLS03] Mao Chen, Andrea S. LaPaugh, and Jaswinder Pal Singh. Content distribution
for publish/subscribe services. In Markus Endler and Douglas C. Schmidt,
editors, Middleware ’03: Proceedings of the ACM/IFIP/USENIX International
Middleware Conference, volume 2672 of Lecture Notes in Computer Science,
pages 83–102, Rio de Janeiro, Brazil, June 2003. Springer.

[CMPC04] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola.
Epidemic algorithms for reliable content-based publish-subscribe: An evalu-
ation. In ICDCS ’04: Proceedings of the 24th International Conference on
Distributed Computing Systems, pages 552–561, Hachioji, Tokyo, Japan, March
2004. IEEE Computer Society.

[CMRV01] Antonio Casimiro, Pedro Martins, Luís Rodrigues, and Paulo Veríssimo. Mea-
suring distributed durations with stable errors. In RTSS ’01: Proceedings of the
22nd IEEE Real-Time Systems Symposium, pages 310–319, London, UK, 2001.
IEEE Computer Society.

[Cor04] Intel Corporation. IA-PC HPET (High Precision Event Timers) Specification.
Online, October 2004. http://www.intel.com/hardwaredesign/hpetspec_1.pdf.

[CP06] Gianpaolo Cugola and Gian Pietro Picco. Reds: a reconfigurable dispatching
system. In Eric Wohlstadter, editor, SEM ’06: Proceedings of the 6th interna-
tional workshop on Software engineering and middleware, pages 9–16, Portland,
Oregon, USA, November 2006. ACM.

[CPB+05] David D. Clark, Craig Partridge, Robert T. Braden, Bruce Davie, Sally Floyd,
Van Jacobson, Dina Katabi, Greg Minshall, K. K. Ramakrishnan, Timothy
Roscoe, Ion Stoica, John Wroclawski, and Lixia Zhang. Making the world
(of communications) a different place. SIGCOMM Comput. Commun. Rev.,
35(3):91–96, 2005.

[CQL08] Daniel Cutting, Aaron Quigley, and Björn Landfeldt. Spice: Scalable p2p
implicit group messaging. Computer Communications, 31(3):437–451, 2008.

180 BIBLIOGRAPHY

[CRB+03] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott
Shenker. Making gnutella-like p2p systems scalable. In Anja Feldmann, Mar-
tina Zitterbart, Jon Crowcroft, and David Wetherall, editors, SIGCOMM ’03:
Proceedings of the ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication,, pages 407–418, Karlsruhe,
Germany, August 2003. ACM.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and
evaluation of a wide-area event notification service. ACM Trans. Comput. Syst.,
19(3):332–383, 2001.

[CRW04] Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf. A routing
scheme for content-based networking. In Proceedings of IEEE INFOCOM
2004, pages 7–11, Hong Kong, China, March 2004.

[CS05] Fengyun Cao and Jaswinder Pal Singh. Medym: Match-early with dynamic
multicast for content-based publish-subscribe networks. In Middleware, volume
3790 of Lecture Notes in Computer Science, pages 292–313, Grenoble, France,
November 2005. Springer.

[CW01] Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A new
communication infrastructure. In Birgitta König-Ries, Kia Makki, S. A. M.
Makki, Niki Pissinou, and Peter Scheuermann, editors, IMWS 2001: NSF
Workshop on Developing an Infrastructure for Mobile and Wireless Systems,
volume 2538 of Lecture Notes in Computer Science, pages 59–68, Scottsdale,
AZ, USA, October 2001. Springer.

[CW03] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a content-based net-
work. In Anja Feldmann, Martina Zitterbart, Jon Crowcroft, and David Wether-
all, editors, Proceedings of ACM SIGCOMM 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pages
163–174, Karlsruhe, Germany, August 2003. ACM.

[DC90] Stephen E. Deering and David R. Cheriton. Multicast routing in datagram
internetworks and extended lans. ACM Transactions on Computer Systems,
8(2):85–110, May 1990.

[DEEJ01] 3rd Donald E. Eastlake and Paul E. Jones. US Secure Hash Algorithm 1 (SHA1).
RFC 3174 (Informational), September 2001. Updated by RFC 4634.

[DeR99] James Clark Steve DeRose. Xml path language (xpath). Online, November
1999. http://www.w3.org/TR/xpath.

[DF03] Yanlei Diao and Michael J. Franklin. Query processing for high-volume xml
message brokering. In Proceedings of the 29th International Conference on
Very Large Data Bases, pages 261–272, 2003.

[DGH+06] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and
Walker M. White. Towards expressive publish/subscribe systems. In Yannis E.
Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes, Michael Hat-
zopoulos, Klemens Böhm, Alfons Kemper, Torsten Grust, and Christian Böhm,
editors, EDBT ’06: 10th International Conference on Extending Database Tech-
nology, volume 3896 of Lecture Notes in Computer Science, pages 627–644,
Munich, Germany, March 2006. Springer.

BIBLIOGRAPHY 181

[DGP+07] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker M. White. Cayuga: A general purpose event monitoring
system. In CIDR ’07: Third Biennial Conference on Innovative Data Systems
Research, pages 412–422, Asilomar, CA, USA, 2007.

[DM78] Yogen K. Dalal and Robert Metcalfe. Reverse path forwarding of broadcast
packets. Communications of the ACM, 21(12):1040–1048, 1978.

[DM04] Peter C. Dillinger and Panagiotis Manolios. Bloom filters in probabilistic verifi-
cation. In Alan J. Hu and Andrew K. Martin, editors, FMCAD ’04: Proceedings
of the 5th International Conference on Formal Methods in Computer-Aided De-
sign, volume 3312 of Lecture Notes in Computer Science, pages 367–381,
Austin, Texas, USA, November 2004. Springer.

[DPW04] A. Davis, J. Parikh, and W. E. Weihl. Edgecomputing: extending enterprise
applications to the edge of the internet. In Stuart I. Feldman, Mike Uretsky,
Marc Najork, and Craig E. Wills, editors, WWW Alt. ’04: Proceedings of the
13th international conference on World Wide Web. Alternate track papers &

posters, pages 180–187, New York, NY, USA, May 2004. ACM.

[DRF04] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an internet-scale
xml dissemination service. In Mario A. Nascimento, M. Tamer Özsu, Donald
Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors,
Proceedings of the Thirtieth International Conference on Very Large Data Bases,
pages 612–623, Toronto, Canada, August 2004. Morgan Kaufmann.

[DXGE07] Gan Deng, Ming Xiong, Aniruddha S. Gokhale, and George Edwards. Evaluat-
ing real-time publish/subscribe service integration approaches in qos-enabled
component middleware. In Tenth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 222–227, Santorini Island,
Greece, May 2007. IEEE Computer Society.

[EAP99] D. Essame, J. Arlat, and D. Powell. Padre: a protocol for asymmetric duplex
redundancy. Dependable Computing for Critical Applications, 7:229–248,
1999.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,
35(2):114–131, 2003.

[EG02] Patrick Th. Eugster and Rachid Guerraoui. Probabilistic multicast. In DSN
’02: Proceddings of the International Conference on Dependable Systems and
Networks, pages 313–324, Bethesda, MD, USA, June 2002. IEEE Computer
Society.

[Eug07] Patrick Eugster. Type-based publish/subscribe: Concepts and experiences. ACM
Transactions on Programming Languages and Systems, 29(1):1–50, January
2007.

[FBFJ] Christof Fetzer, Andrey Brito, Robert Fach, and Zbigniew Jerzak. To appear
in: Handbook of Research on Advanced Distributed Event-Based Systems, Pub-
lish/Subscribe and Message Filtering Technologies, chapter StreamMine. IGI
Global.

182 BIBLIOGRAPHY

[FC99a] Christof Fetzer and Flaviu Cristian. Building fault-tolerant hardware clocks
from cots components. In Proceedings of the Seventh IFIP International
Working Conference on Dependable Computing for Critical Applications, pages
67–86, San Jose, CA, USA, Nov 1999.

[FC99b] Christof Fetzer and Flaviu Cristian. A fail-aware datagram service. In Iain Bate
and Alan Burns, editors, IEE Proceedings - Software Engineering, volume 146,
pages 58–74. IEE, April 1999.

[FC03] Christof Fetzer and Flaviu Cristian. Fail-awareness: An approach to construct
fail-safe systems. Journal of Real-Time Systems, 24(2):203–238, March 2003.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, June 2000.

[FCMB06] Ludger Fiege, Mariano Cilia, Gero Mühl, and Alejandro P. Buchmann. Publish-
subscribe grows up: Support for management, visibility control, and heterogene-
ity. IEEE Internet Computing, 10(1):48–55, 2006.

[Fer04] Randima Fernando, editor. GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics. Addison-Wesley Professional, 2004.

[Fet98] Christof Fetzer. Fail-aware publish/subscribe in erlang. In Proceedings of the
Fourth International Erlang User Conference, Stockholm, Sweden, September
1998.

[FH08] Kayvon Fatahalian and Mike Houston. A closer look at gpus. Communications
of the ACM, 51(10):50–57, 2008.

[FJL+01] Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth A.
Ross, and Dennis Shasha. Filtering algorithms and implementation for very
fast publish/subscribe systems. In SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, pages 115–126,
New York, NY, USA, 2001. ACM Press.

[FJLM05] Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski. The padres
distributed publish/subscribe system. In Feature Interactions in Telecommuni-
cations and Software Systems, pages 12–30, Leicester, UK, July 2005.

[FSH04] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency
of gpu algorithms for matrix-matrix multiplication. In Dieter W. Fellner
and Stephen N. Spencer, editors, HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 133–137,
Grenoble, France, August 2004. Eurographics Association.

[GDB+03] K. Harald Gjermundrød, Ioanna Dionysiou, David Bakken, Carl Hauser, and
Anjan Bose. Flexible and robust status dissemination middleware for the electric
power grid. Technical Report EECS-GS-003, School of Electrical Engineering
and Computer Science Washington State University, Pullman, Washington
99164-2752 USA, September 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Elements of Reusable Object-Orineted Software. Addison-Wesley
Professional, 1995.

BIBLIOGRAPHY 183

[Gra03] Jim Gray. Distributed computing economics. Technical Report
MSR-TR-2003-24, Microsoft Research, Redmond, WA, USA, March 2003.
http://research.microsoft.com/pubs/70001/tr-2003-24.pdf.

[Gro04] Object Management Group. Corba event service specification. Online, October
2004. http://www.omg.org/docs/formal/04-10-02.pdf.

[GSGM03] Prasanna Ganesan, Qixiang Sun, and Hector Garcia-Molina. Yappers: A peer-
to-peer lookup service over arbitrary topology. In INFOCOM ’03: Proceedings
of the Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 2, pages 1250–1260, March-April 2003.

[Han05] Pat Hanrahan. Why is graphics hardware so fast? In Keshav Pingali, Kather-
ine A. Yelick, and Andrew S. Grimshaw, editors, PPoPP ’05: Proceedings
of the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 1–1, Chicago, IL, USA, 2005. ACM.

[Hom02] Alexis B. Hombrecher. Reconciling Event Taxonomies Across Administra-
tive Domains. PhD thesis, University of Cambridge Computer Laboratory,
Cambridge, United Kingdom, June 2002.

[Jac03] Hans-Arno Jacobsen. Tutorial: Omg data distribution service. In Proceed-
ings of the 23rd International Conference on Distributed Computing Systems
Workshops, pages 198–199, May 2003.

[Jac06] Van Jacobson. A new way to look at networking. Google Tech Talk, August
2006.

[Jac07] Van Jacobson. Content-centric networking at ntt. Online, 2007.
http://www.parc.com/research/projects/networking/contentcentric/.

[Jae07] Michael A. Jaeger. Self-Managing Publish/Subscribe Systems. PhD thesis,
Technische Universität Berlin, 2007.

[Jer05] Zbigniew Jerzak. Highly available publish/subscribe. In HASE ’05: Supplement
Proceedings of the Ninth IEEE International Symposium on High Assurance
Systems Engineering, pages 11–12, Heidelberg, Germany, October 2005. IEEE
Computer Society Press.

[JF06] Zbigniew Jerzak and Christof Fetzer. Handling overload in publish/subscribe
systems. In ICDCSW ’06: Proceedings of the 26th IEEE International Con-
ference Workshops on Distributed Computing Systems, pages 32–37, Lisbon,
Portugal, June 2006. IEEE Computer Society.

[JF07] Zbigniew Jerzak and Christof Fetzer. Prefix forwarding for publish/subscribe.
In Hans-Arno Jacobsen, Gero Mühl, and Michael A. Jaeger, editors, DEBS ’07:
Proceedings of the 2007 Inaugural International Conference on Distributed
Event-Based Systems, volume 233 of ACM International Conference Proceeding
Series, pages 238–249, Toronto, Ontario, Canada, June 2007. ACM.

[JF08a] Zbigniew Jerzak and Christof Fetzer. BFSiena: a communication substrate for
StreamMine. In Roberto Baldoni, editor, DEBS ’08: Proceedings of the second
international conference on Distributed event-based systems, volume 332 of
ACM International Conference Proceeding Series, pages 321–324, Rome, Italy,
July 2008. ACM.

184 BIBLIOGRAPHY

[JF08b] Zbigniew Jerzak and Christof Fetzer. Bloom filter based routing for content-
based publish/subscribe. In Roberto Baldoni, editor, DEBS ’08: Proceedings of
the second international conference on Distributed event-based systems, volume
332 of ACM International Conference Proceeding Series, pages 71–81, Rome,
Italy, July 2008. ACM.

[JFF07] Zbigniew Jerzak, Robert Fach, and Christof Fetzer. Fail-aware publish/subscribe.
In NCA ’07: Sixth IEEE International Symposium on Network Computing
and Applications, pages 113–125, Cambridge, MA, USA, July 2007. IEEE
Computer Society.

[JFF08] Zbigniew Jerzak, Robert Fach, and Christof Fetzer. Adaptive internal clock
synchronization. In SRDS 2008: 27th International Symposium on Reliable Dis-
tributed Systems, pages 217–226, Naples, Italy, October 2008. IEEE Computer
Society.

[JKKR04] T. S. Jayram, Subhash Khot, Ravi Kumar, and Yuval Rabani. Cell-probe lower
bounds for the partial match problem. Journal of Computer and System Sciences,
69(3):435–447, November 2004.

[KHCS05] Satyen Kale, Elad Hazan, Fengyun Cao, and Jaswinder Pal Singh. Analysis and
algorithms for content-based event matching. In ICDCS ’05 Workshops: 25th
International Conference on Distributed Computing Systems Workshops, pages
363–369, Columbus, OH, USA, June 2005. IEEE Computer Society.

[KM99] J. Kaiser and M. Mock. Implementing the real-time publisher/subscriber model
on the controller area network (can). In ISORC ’99: Proceedings of the 2nd
International Symposium on Object-Oriented Real-Time Distributed Computing,
pages 172–181, Los Alamitos, CA, USA, 1999. IEEE Computer Society.

[KM06] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance:
Building a better bloom filter. In Yossi Azar and Thomas Erlebach, editors,
ESA ’06: Proceedings of the 14th Annual European Symposium on Algorithms,
volume 4168 of Lecture Notes in Computer Science, pages 456–467, Zurich,
Switzerland, September 2006. Springer.

[KSS03] John C. Knight, Elisabeth A. Strunk, and Kevin J. Sullivan. Towards a rigorous
definition of information system survivability. In DISCEX 2003: 3rd DARPA
Information Survivability Conference and Exposition, pages 78–89, Washington,
DC, USA, April 2003. IEEE Computer Society.

[Lam79] Leslie Lamport. A new approach to proving the correctness of multiprocess
programs. ACM Transactions on Programming Languages and Systems, 1(1):84–
97, 1979.

[LB05] Pierre L’Ecuyer and Eric Buist. Simulation in java with ssj. In Proceedings
of the 37th Winter Simulation Conference, pages 611–620, Orlando, FL, USA,
December 2005. ACM.

[Lec09] Emmanuel Lecharny. Using mina 2.0 in real life. ApacheCon Europe, March
2009. http://mina.apache.org/documentation.html.

BIBLIOGRAPHY 185

[Lei07] Tom Leighton. The akamai approach to achieving performance and reliability
on the internet. In Indranil Gupta and Roger Wattenhofer, editors, PODC

’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing, pages 2–2, Portland, Oregon, USA, August 2007. ACM.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321–359, November 1989.

[LHG+06] David Luebke, Mark Harris, Naga Govindaraju, Aaron Lefohn, Mike Houston,
John Owens, Mark Segal, Matthew Papakipos, and Ian Buck. Gpgpu: general-
purpose computation on graphics hardware. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 208, Tampa, FL, USA, 2006.
ACM Press.

[LHJ05] Guoli Li, Shuang Hou, and Hans-Arno Jacobsen. A unified approach to routing,
covering and merging in publish/subscribe systems based on modified binary
decision diagrams. In ICDCS ’05: Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems, pages 447–457, Washington,
DC, USA, 2005. IEEE Computer Society.

[LHK+04] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govindaraju, Ian
Buck, Cliff Woolley, and Aaron Lefohn. Gpgpu: general purpose computation
on graphics hardware. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Course
Notes, page 33, New York, NY, USA, 2004. ACM.

[LMJ08] Guoli Li, Vinod Muthusamy, , and Hans-Arno Jacobsen. Adaptive content-
based routing in general overlay topologies. In Valérie Issarny and Richard E.
Schantz, editors, Middleware ’08: Proceedings of the ACM/IFIP/USENIX 9th In-
ternational Middleware Conference, volume 5346 of Lecture Notes in Computer
Science, pages 1–21, Leuven, Belgium, December 2008. Springer.

[LMV02] Pierre L’Ecuyer, Lakhdar Meliani, and Jean G. Vaucher. Ssj: a framework
for stochastic simulation in java. In Jane L. Snowdon and John M. Charnes,
editors, Proceedings of the 34th Winter Simulation Conference: Exploring New
Frontiers, pages 234–242, San Diego, California, USA, December 2002. ACM.

[LRS02] Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can heterogeneity make gnutella
scalable? In Peter Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron,
editors, IPTPS ’02: First International Workshop on Peer-to-Peer Systems,
volume 2429 of Lecture Notes in Computer Science, pages 94–103, Cambridge,
MA, USA, March 2002. Springer.

[M0̈2] Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Technisches Universität Darmstadt, 2002.

[MFB02] Gero Mühl, Ludger Fiege, and Alejandro P. Buchmann. Filter similarities in
content-based publish/subscribe systems. In Hartmut Schmeck, Theo Ungerer,
and Lars C. Wolf, editors, ARCS ’02: Proceedings of the International Confer-
ence on Architecture of Computing Systems, Trends in Network and Pervasive
Computing, volume 2299 of Lecture Notes in Computer Science, pages 224–240,
Karlsruhe, Germany, April 2002. Springer.

[MFP06] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based Systems.
Springer-Verlag, 2006.

186 BIBLIOGRAPHY

[Mil92] David L. Mills. Network time protocol (version 3) specification, implementation
and analysis. RFC 1305, March 1992.

[Mil94] David L. Mills. A kernel model for precision timekeeping. RFC 1589, March
1994. http://www.ietf.org/rfc/rfc1589.txt.

[Mil06] David L. Mills. Simple network time protocol (sntp) version 4 for ipv4, ipv6
and osi. RFC 4330, January 2006.

[MJH+05] Gero Mühl, Michael A. Jaeger, Klaus Herrmann, Torben Weis, Andreas Ulbrich,
and Ludger Fiege. Self-stabilizing publish/subscribe systems: Algorithms and
evaluation. In Euro-Par 2005 Parallel Processing, volume 3648/2005, pages
664–674. Springer Berlin / Heidelberg, 2005.

[MLC08] James Moscola, John W. Lockwood, and Young H. Cho. Reconfigurable
content-based router using hardware-accelerated language parser. ACM Trans-
actions on Design Automation of Electronic Systems, 13(2):1–25, April 2008.
Article 28.

[MPHD06] Alan Mislove, Ansley Post, Andreas Haeberlen, and Peter Druschely. Experi-
ences in building and operating a reliable peer-to-peer application. In Yolande
Berbers and Willy Zwaenepoel, editors, EuroSys, pages 147–159, Leuven, Bel-
gium, April 2006. ACM.

[MSSB07] J. Darby Mitchell, Marc L. Siegel, M. Curran N. Schiefelbein, and Armen P.
Babikyan. Applying publish-subscribe to communications-on-the-move node
control. Lincoln Laboratory Journal, 16(2):413–430, 2007.

[MZV07] Tova Milo, Tal Zur, and Elad Verbin. Boosting topic-based publish-subscribe
systems with dynamic clustering. In Chee Yong Chan, Beng Chin Ooi, and
Aoying Zhou, editors, SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 749–760, Beijing,
China, June 2007. ACM.

[Nag06] Bhavana Nagendra. AMD TSC Drift Solutions in Red Hat Enterprise Linux.
Online, December 2006.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, 2008.

[OAA+00] Lukasz Opyrchal, Mark Astley, Joshua S. Auerbach, Guruduth Banavar,
Robert E. Strom, and Daniel C. Sturman. Exploiting ip multicast in content-
based publish-subscribe systems. In Joseph S. Sventek and Geoff Coulson,
editors, Middleware ’00: Proceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms, volume 1795 of Lecture Notes in
Computer Science, pages 185–207, New York, NY, USA, April 2000. Springer.

[OPSS93] Brian M. Oki, Manfred Pflügl, Alex Siegel, and Dale Skeen. The information
bus – an architecture for extensible distributed systems. In B. Liskov, editor,
Proceedings of the 14th Symposium on the Operating Systems Principles, pages
58–68. ACM Press, December 1993.

BIBLIOGRAPHY 187

[PB03a] Peter Pietzuch and Sumeer Bhola. Congestion control in a reliable scalable
message-oriented middleware. In Markus Endler and Douglas C. Schmidt,
editors, Middleware ’03: Proceedings of the ACM/IFIP/USENIX International
Middleware Conference, volume 2672 of Lecture Notes in Computer Science,
pages 202–221, Rio de Janeiro, Brazil, June 2003. Springer.

[PB03b] Peter R. Pietzuch and Jean Bacon. Peer-to-peer overlay broker networks
in an event-based middleware. In Hans-Arno Jacobsen, editor, DEBS ’03:
Proceedings of the 2nd International Workshop on Distributed Event-Based
Systems, pages 1–8. ACM, 2003.

[PBFM06] Larry L. Peterson, Andy C. Bavier, Marc E. Fiuczynski, and Steve Muir.
Experiences building planetlab. In OSDI ’06: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, pages 351–366, Seattle, WA,
USA, November 2006. USENIX Association.

[PC05a] G. Pardo-Castellote. DDS Spec Outfits Publish/Subscribe Technology for the
GIG. COTS Journal, 4, April 2005.

[PC05b] Gerardo Pardo-Castellote. Omg data distribution service: Real-time publish/sub-
scribe becomes a standard. RTC Magazine, 14, January 2005.

[PCM03] Gian Pietro Picco, Gianpaolo Cugola, and Amy L. Murphy. Efficient content-
based event dispatching in the presence of topological reconfiguration. In
ICDCS ’03: Proceedings of the 23rd International Conference on Distributed
Computing Systems, pages 234–243, Providence, RI, USA, May 2003. IEEE
Computer Society.

[PCT06] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search.
In Xiaohua Jia, editor, Infoscale ’06: Proceedings of the 1st International
Conference on Scalable Information Systems, volume 152 of ACM International
Conference Proceeding Series, pages 1–7, Hong Kong, May–June 2006. ACM.
Article No. 1.

[PEKS07] Peter Pietzuch, David Eyers, Samuel Kounev, and Brian Shand. Towards a
common api for publish/subscribe. In Hans-Arno Jacobsen, Gero Mühl, and
Michael A. Jaeger, editors, DEBS ’07: Proceedings of the 2007 inaugural
international conference on Distributed event-based systems, volume 233 of
ACM International Conference Proceeding Series, pages 152–157, Ontario,
Canada, June 2007. ACM.

[PFH07] Gert Pfeifer, Christof Fetzer, and Thomas Hohnstein. Exploiting host name
locality for reduced stretch p2p routing. In NCA ’07: Sixth IEEE Interna-
tional Symposium on Network Computing and Applications, pages 134–144,
Cambridge, MA, USA, July 2007. IEEE Computer Society.

[PFLS00] João Pereira, Françoise Fabret, François Llirbat, and Dennis Shasha. Efficient
matching for web-based publish/subscribe systems. In Opher Etzion and
Peter Scheuermann, editors, CooplS ’02: Proceedings of the 7th International
Conference on Cooperative Information Systems, volume 1901 of Lecture Notes
in Computer Science, pages 162–173, Eilat, Israel, September 2000. Springer-
Verlag.

188 BIBLIOGRAPHY

[Pie04] Peter R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD thesis,
Computer Laboratory, Queens’ College, University of Cambridge, February
2004.

[Pnu81] Amir Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45–60, 1981.

[Pow96] David Powell. Group communication. Communications of the ACM, 39(4):50–
53, 1996.

[PSB03] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A framework for event
composition in distributed systems. In Markus Endler and Douglas C. Schmidt,
editors, Middleware ’03: Proceedings of the ACM/IFIP/USENIX International
Middleware Conference, volume 2672 of Lecture Notes in Computer Science,
pages 62–82, Rio de Janeiro, Brazil, June 2003. Springer.

[Pug90] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commu-
nications of the ACM, 33(6):668–676, June 1990.

[QB06] Yi Qiao and Fabián E. Bustamante. Structured and unstructured overlays
under the microscope: a measurement-based view of two p2p systems that
people use. In ATEC ’06: Proceedings of the annual conference on USENIX

’06 Annual Technical Conference, pages 31–31, Berkeley, CA, USA, 2006.
USENIX Association.

[Que07] Leonardo Querzoni. Techniques for Efficient Event Routing. PhD thesis,
Universita di Roma "La Sapienza", 2007.

[Que08] Leonardo Querzoni. Interest clustering techniques for efficient event routing
in large-scale settings. In Roberto Baldoni, editor, DEBS 2008: Proceedings
of the Second International Conference on Distributed Event-Based Systems,
volume 332 of ACM International Conference Proceeding Series, pages 13–22,
Rome, Italy, July 2008. ACM.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Rachid
Guerraoui, editor, Middleware, volume 2218 of Lecture Notes in Computer
Science, pages 329–350. Springer, 2001.

[RFF07] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional
memory with scalable time bases. In Phillip B. Gibbons and Christian Schei-
deler, editors, SPAA ’07: Proceedings of the 19th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 221–228, San Diego, California,
USA, June 2007. ACM.

[RHKS01] Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and Scott Shenker.
Application-level multicast using content-addressable networks. In Jon
Crowcroft and Markus Hofmann, editors, Networked Group Communication,
Third International COST264 Workshop, volume 2233 of Lecture Notes in Com-
puter Science, pages 14–29, London, UK, 2001. Springer Berlin / Heidelberg.

[Riv92] Ronald L. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informa-
tional), April 1992.

BIBLIOGRAPHY 189

[RLW+02] Anton Riabov, Zhen Liu, Joel L. Wolf, Philip S. Yu, and Li Zhang. Clustering
algorithms for content-based publication-subscription systems. In ICDCS ’02:
Proceedings of the 22 nd International Conference on Distributed Computing
Systems (ICDCS’02), pages 133–142, Washington, DC, USA, July 2002. IEEE
Computer Society.

[RM99] Suchitra Raman and Steven McCanne. A model, analysis, and protocol frame-
work for soft state-based communication. In SIGCOMM ’99: Proceedings of
the conference on Applications, technologies, architectures, and protocols for
computer communication, pages 15–25, New York, NY, USA, 1999. ACM.

[Ros05] Timothy Roscoe. The planetlab platform. In Ralf Steinmetz and Klaus Wehrle,
editors, Peer-to-Peer Systems and Applications, volume 3485 of Lecture Notes
in Computer Science, pages 567–581. Springer, 2005.

[RW97] David S. Rosenblum and Alexander L. Wolf. A design framework for internet-
scale event observation and notification. In Mehdi Jazayeri and Helmut Schauer,
editors, 6th European Software Engineering Conference Held Jointly with the 5th
ACM SIGSOFT Symposium on Foundations of Software Engineering, volume
1301 of Lecture Notes in Computer Science, pages 344–360, Zurich, Switzerland,
September 1997. ACM.

[SA97] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe
notification service with quenching. In AUUG ’97: Proceedings of the 1997
Australian UNIX User Group, pages 243–255, September 1997.

[SB89] Marion D. Skeen and Mark Bowles. Apparatus and method for providing decou-
pling of data exchange details for providing high performance communication
between software processes. U.S. Patent No. 5,557,798, July 1989.

[SCG01] Alex C. Snoeren, Kenneth Conley, and David K. Gifford. Mesh based content
routing using xml. In SOSP ’01: Proceedings of the 18th ACM Symposium on
Operating Systems Principles, pages 160–173, Banff, Alberta, Canada, October
2001. ACM.

[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stanley B. Zdonik. The 8 re-
quirements of real-time stream processing. SIGMOD Record, 34(4):42–47,
2005.

[SK08] Ao-Jan Su and Aleksandar Kuzmanovic. Thinning akamai. In Konstantina
Papagiannaki and Zhi-Li Zhang, editors, IMC ’08: Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, pages 29–42, Vouliagmeni,
Greece, October 2008. ACM.

[SL07] Heejin Son and Xiaolin Li. Parmi: A publish/subscribe based asynchronous
rmi framework for cluster computing. In Ronald H. Perrott, Barbara M.
Chapman, Jaspal Subhlok, Rodrigo Fernandes de Mello, and Laurence Tianruo
Yang, editors, HPCC ’07: Third International Conference on High Performance
Computing and Communications, volume 4782 of Lecture Notes in Computer
Science, pages 19–29, Houston, USA, September 2007. Springer.

[SM02] Inc. Sun Microsystems. Download java message service specification - version
1.1. Online, April 2002. http://java.sun.com/products/jms/.

190 BIBLIOGRAPHY

[SMK+01] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications, pages
149–160, San Diego, California, United States, 2001. ACM.

[SMRP08] Arnd Schröter, Gero Mühl, Jan Richling, and Helge Parzyjegla. Adaptive routing
in publish/subscribe systems using hybrid routing algorithms. In François Taïani
and Renato Cerqueira, editors, ARM ’07: Proceedings of the 7th Workshop on
Adaptive and Reflective Middleware, pages 51–52, Leuven, Belgium, December
2008. ACM.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4):277–288, 1984.

[ST04] Zhenhui Shen and S. Tirthapura. Self-stabilizing routing in publish-subscribe
systems. In International Workshop on Distributed Event-Based Systems, 2004.

[ST06] Zhenhui Shen and Srikanta Tirthapura. Faster event forwarding in a content-
based publish-subscribe system through lookup reuseevent. In NCA ’06: Fifth
IEEE International Symposium on Network Computing and Applications, pages
77–84, Cambridge, Massachusetts, USA, July 2006. IEEE Computer Society.

[STA05] Zhenhui Shen, Srikanta Tirthapura, and Srinivas Aluru. Indexing for subscrip-
tion covering in publish-subscribe systems. In Michael J. Oudshoorn and
Sanguthevar Rajasekaran, editors, ISCA PDCS ’05: Proceedings of the ISCA
18th International Conference on Parallel and Distributed Computing Systems,
pages 328–333, Las Vegas, NV, USA, September 2005. ISCA.

[SVvS05] Daniela Gavidia Spyros Voulgaris and Maarten van Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Journal of Network
and Systems Management, 13(2):197–217, June 2005.

[TA90] B. H. Tay and Akkihebbal L. Ananda. A survey of remote procedure calls.
ACM SIGOPS Operating Systems Review, 24(3):68–79, July 1990.

[Tar07] Sasu Tarkoma. Chained forests for fast subsumption matching. In Hans-Arno
Jacobsen, Gero Mühl, and Michael A. Jaeger, editors, DEBS ’07: Proceedings of
the 2007 inaugural international conference on Distributed event-based systems,
volume 233 of ACM International Conference Proceeding Series, pages 97–102,
Toronto, Ontario, Canada, June 2007. ACM.

[Tar08a] Sasu Tarkoma. Dynamic filter merging and mergeability detection for pub-
lish/subscribe. Pervasive and Mobile Computing, 4(5):681–696, 2008.

[Tar08b] Sasu Tarkoma. Fuego toolkit: a modular framework for content-based routing.
In Roberto Baldoni, editor, DEBS ’08: Proceedings of the second international
conference on Distributed event-based systems, volume 332 of ACM Interna-
tional Conference Proceeding Series, pages 325–328, Rome, Italy, July 2008.
ACM.

[TB00] David A. Thompson and John S. Best. The future of magnetic data storage
technology. IBM Journal of Research and Development, 44(3):311–322, 2000.

BIBLIOGRAPHY 191

[TB07] Salman Taherian and Jean Bacon. State-filters for enhanced filtering in sensor-
based publish/subscribe systems. In Christian Becker, Christian S. Jensen, Jian-
wen Su, and Daniela Nicklas, editors, MDM ’07: Proceedings of the 8th Inter-
national Conference on Mobile Data Management, pages 346–350, Mannheim,
Germany, May 2007.

[TBVB05] K. Tomsovic, D. Bakken, V. Venkatasubramanian, and A. Bose. Designing
the next generation of real-time control, communication and computations for
large power systems. Proceedings of the IEEE – Special Issue on Energy
Infrastructure Systems, 93(5):965–979, May 2005.

[TE02] P. Triantafillou and A. Economides. Subscription summaries for scalability and
efficiency in publish/subscribe systems. In Proceedings of Workshops of 22nd
International Conference on Distributed Computing Systems, pages 619–624,
Vienna, Austria, July 2002. IEEE Computer Society.

[TE04] Peter Triantafillou and Andreas A. Economides. Subscription summarization: a
new paradigm for efficient publish/subscribe systems. In Proceedings of 24th
International Conference on Distributed Computing Systems, pages 562–571,
Hachioji, Tokyo, Japan, March 2004. IEEE Computer Society.

[TK05] Sasu Tarkoma and Jaakko Kangasharju. Filter merging for efficient information
dissemination. In Robert Meersman, Zahir Tari, Mohand-Said Hacid, John
Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno Jacobsen, Joseph P.
Loyall, Michael Kifer, and Stefano Spaccapietra, editors, On the Move to Mean-
ingful Internet Systems ’05: Proceedings of the OTM Confederated International
Conferences CoopIS, DOA, and ODBASE, volume 3760 of Lecture Notes in
Computer Science, pages 274–291, Agia Napa, Cyprus, October 2005. Springer.

[TK06] Sasu Tarkoma and Jaakko Kangasharju. Optimizing content-based routers:
posets and forests. Distributed Computing, 19(1):62–77, September 2006.

[TZWK07] Christos Tryfonopoulos, Christian Zimmer, Gerhard Weikum, and Manolis
Koubarakis. Architectural alternatives for information filtering in structured
overlays. IEEE Internet Computing, 11(4):24–34, 2007.

[U.S04] U.S.-Canada Power System Outage Task Force. Final report on the august 14th
blackout in the united states and canada. Online, April 2004.

[Var99] Andras Varga. Using the omnet++ discrete event simulation system in education.
IEEE Transactions on Education, 42(4):372, 1999.

[VRKvS06] Spyros Voulgaris, Etienne Riviére, Anne-Marie Kermarrec, and Maarten van
Steen. Sub-2-sub: Self-organizing content-based publish subscribe for dynamic
large scale collaborative networks. In Proceedings of the 5th International
Workshop on Peer-to-Peer Systems (IPTPS’06), 2006.

[Wal05] Malcolm Wallace. Modular architectural representation and analysis of fault
propagation and transformation. Electronic Notes in Theoretical Computer
Science, 141(3):53–71, December 2005.

[WES08] Ian Watson and Hisham El-Shishiny, editors. Proceedings of the 1st inter-
national forum on Next-generation multicore/manycore technologies, IFMT
2008, Cairo, Egypt, November 24-25, 2008, ACM International Conference
Proceeding Series. ACM, 2008.

192 BIBLIOGRAPHY

[WF07] Ute Wappler and Christof Fetzer. Software encoded processing: Building
dependable systems with commodity hardware. In Francesca Saglietti and
Norbert Oster, editors, SAFECOMP ’07: 26th International Conference on
Computer Safety, Reliability, and Security, volume 4680 of Lecture Notes in
Computer Science, pages 356–369, Nuremberg, Germany, September 2007.
Springer.

[WJL04] Jinling Wang, Beihong Jin, and Jing Li. An ontology-based publish/subscribe
system. In Hans-Arno Jacobsen, editor, Middleware ’04: Proceedings of
the ACM/IFIP/USENIX International Middleware Conference, volume 3231 of
Lecture Notes in Computer Science, pages 232–253, Toronto, Canada, October
2004. Springer.

[WJLS04] Jinling Wang, Beihong Jin, Jing Li, and Danhua Shao. A semantic-aware
publish/subscribe system with rdf patterns. In COMPSAC ’04: Proceedings of
the 28th International Computer Software and Applications Conference, Design
and Assessment of Trustworthy Software-Based Systems, pages 141–146, Hong
Kong, China, September 2004. IEEE Computer Society.

[WQA+02] Yi-Min Wang, Lili Qiu, Dimitris Achlioptas, Gautam Das, Paul Larson, and He-
len J. Wang. Subscription partitioning and routing in content-based publish/sub-
scribe systems. In 16th International Symposium on DIStributed Computing
(DISC’02), 2002.

[WQV+04] Yi-Min Wang, Lili Qiu, Chad Verbowski, Dimitris Achlioptas, Gautam Das,
and Paul Larson. Summary-based routing for content-based event distribution
networks. SIGCOMM Comput. Commun. Rev., 34(5):59–74, 2004.

[WSH08] Timo Warns, Christian Storm, and Wilhelm Hasselbring. Availability of globally
distributed nodes: An empirical evaluation. In SRDS ’08: IEEE Symposium on
Reliable Distributed Systems, pages 279–284, Naples, Italy, October 2008.

[XFZ04] Tao Xue, Boqin Feng, and Zhigang Zhang. P2pens: Content-based publish-
subscribe over peer-to-peer network. In Hai Jin, Yi Pan, Nong Xiao, and
Jianhua Sun, editors, GCC 2004: Third International Conference on Grid and
Cooperative Computing, volume 3251 of Lecture Notes in Computer Science,
pages 583–590, Wuhan, China, October 2004. Springer.

[YB04] Eiko Yoneki and Jean Bacon. An adaptive approach to content-based sub-
scription in mobile ad hoc networks. In PERCOMW ’04: Proceedings of the
Second IEEE Annual Conference on Pervasive Computing and Communica-
tions Workshops, pages 92–97, Washington, DC, USA, 2004. IEEE Computer
Society.

[YGM94] Tak W. Yan and Hector Garcia-Molina. Index structures for selective dissemina-
tion of information under the boolean model. ACM Transactions on Database
Systems, 19(2):332–364, June 1994.

[YSTH87] Akinori Yonezawa, Etsuya Shibayama, Toshihiro Takada, and Yasuaki Honda.
Object-oriented concurrent programming, chapter Modelling and programming
in an object-oriented concurrent language ABCL/1, pages 55–89. MIT Press,
Cambridge, MA, USA, 1987.

BIBLIOGRAPHY 193

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,
and John Kubiatowicz. Tapestry: a resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–53,
2004.

[ZSB04] Yuanyuan Zhao, Daniel C. Sturman, and Sumeer Bhola. Subscription propaga-
tion in highly-available publish/subscribe middleware. In Hans-Arno Jacobsen,
editor, Middleware ’04: Proceedings of the ACM/IFIP/USENIX International
Middleware Conference, volume 3231 of Lecture Notes in Computer Science,
pages 274–293, Toronto, Canada, October 2004. Springer.

	Preface
	Acknowledgments
	Publications
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Decoupling
	1.2 Publish/Subscribe Paradigm
	1.3 Contribution
	1.4 Outline

	2 Background
	2.1 Components
	2.1.1 Applications
	2.1.2 Subscribers
	2.1.3 Publishers
	2.1.4 Brokers

	2.2 Messages
	2.2.1 Filters
	2.2.2 Events
	2.2.3 Advertisements

	2.3 Syntax and Semantics
	2.3.1 Topic-Based
	2.3.2 Predicate-Based
	2.3.3 XML-Based
	2.3.4 Other Approaches

	2.4 Architectures
	2.4.1 Bus
	2.4.2 Hierarchical
	2.4.3 Acyclic
	2.4.4 Cyclic

	2.5 Routing
	2.5.1 Event Flooding
	2.5.2 Group-Based Routing
	2.5.3 Simple Routing
	2.5.4 Identity-Based Routing
	2.5.5 Coverage-Based Routing
	2.5.6 Advertisement-Based Routing
	2.5.7 Peer-to-Peer Routing

	3 System Model
	3.1 Processes
	3.2 Clocks
	3.3 System Architecture

	4 Prefix Forwarding
	4.1 Outline
	4.2 Filter Routing
	4.2.1 Filter Construction
	4.2.2 Routing Tree

	4.3 Event Forwarding
	4.3.1 Using Forwarding Tree
	4.3.2 Forwarding Tree Size

	4.4 Consistency Issues
	4.4.1 Tree Optimizer
	4.4.2 Routing Tree Management

	4.5 Related Work

	5 Bloom Filter-Based Routing
	5.1 Overview and Motivation
	5.2 Bloom Filters
	5.2.1 False Positives Probability
	5.2.2 Counting Bloom filters
	5.2.3 Bloom filter implementation

	5.3 Filter Routing
	5.3.1 sbsposet
	5.3.2 sbstree

	5.4 Event Forwarding
	5.5 Improved Event Forwarding
	5.6 Parallelization
	5.6.1 skiptree
	5.6.2 Filter routing and event forwarding
	5.6.3 Discussion

	5.7 Related Work

	6 Fail-Awareness
	6.1 Definition
	6.2 The Upper Bound on Transmission Delay
	6.3 Fail-Aware Publish/Subscribe
	6.4 Related Work

	7 Soft State
	7.1 Motivation
	7.2 Routing State Validity
	7.2.1 Validity Time
	7.2.2 Validity Interval
	7.2.3 Extending Validity Interval
	7.2.4 Utilization and Uncertainty

	7.3 Liveness and Safety
	7.4 Practical Aspects and Implementation
	7.4.1 API
	7.4.2 Unsubscriptions and Unadvertisements

	7.5 Related Work

	8 Implementation
	8.1 Programming Applications
	8.2 Developer View

	9 Evaluation
	9.1 Prefix Forwarding
	9.1.1 Simulation Results
	9.1.2 Using Real-Life Data

	9.2 Bloom Filter-Based Routing
	9.2.1 Counting sbstree
	9.2.2 System benchmarks

	9.3 Fail-Awareness
	9.3.1 Clock Drift
	9.3.2 The Upper Bound on Transmission Delay
	9.3.3 Upper Bound versus NTP

	9.4 Soft State

	10 Conclusions
	10.1 Summary
	10.2 Outlook

	Symbols
	Index
	Bibliography

