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1 Introduction

The goal of solid state physics and chemistry is to gain a deeper understanding of the basic
principles of condensed matter. This ongoing process is achieved by the combination of experi-
mental methods and theoretical models. In particular, many-body phenomena like magnetism,
superconductivity or ferroelectricity are investigated, not only from a conceptual point of view
in describing collective phenomena but also because of their high relevance concerning techno-
logical applications. Furthermore, a prerequisite for the development of new applications is the
understanding of the underlying microscopic principles for such effects. Large progress has been
made in the last decades as a result of a strong interplay of experimental and theoretical stud-
ies. This has been enabled by a continuous improvement of experimental techniques as well as
a sophisticated development of the first-principles methods, additionally boosted by the rapidly
increasing computational power. Consequently, electronic structure calculations have developed
into a standard tool to study even very complex systems.

Most first-principles calculations are based on the concept of density functional theory (DFT).
Since a solid typically contains around 1023 atoms, it is described by a many-particle wave func-
tion. The corresponding Schrödinger equation can be solved neither analytically nor numerically,
due to the huge number of degrees of freedom. In the 1960s, Hohenberg, Kohn and Sham derived
two theorems, which made the approximate numerical treatment of solids possible. These theo-
rems and their implementation in the DFT based band structure codes WIEN [1] and FPLO [2],
as well as remaining open questions (e.g., that of correlations), will be explained in the second
chapter.

In order to test the reliability of a band structure calculation, its results have to be compared
with experiments. Since the electron density, the main constituent of DFT codes, cannot be
directly determined experimentally with sufficient accuracy (e.g., by X-ray diffraction), other
experimentally available properties are needed for the comparison with the calculation.
A quantity that can be measured with high accuracy and that can provide indirect information
about the electron density is the electric field gradient (EFG). The EFG reflects local structural
symmetry properties of the charge distribution surrounding a nucleus: the EFG is nonzero if the
density deviates from cubic symmetry and therefore generates an inhomogeneous electric field
at the nucleus. Since the EFG is highly sensitive to structural parameters and to disorder, it is
a valuable tool to extract structural information. Furthermore, the evaluation of the EFG can
provide valuable insight into the chemical bonding.
Since the EFG is responsible for the quadrupole interaction, it can be measured via the quadrupole
frequency by nuclear resonance methods, for instance, such as nuclear quadrupole resonance
(NQR) or nuclear magnetic resonance (NMR). As the quadrupole interaction is well described by
the quadrupole Hamiltonian, no additional model has to be applied to interpret the experimental
data. From band structure codes, all components of the EFG tensor can be calculated. It is
therefore straightforward to compare experiment and theory. In the third chapter, the definition
and the properties of the EFG tensor and its experimental and theoretical determination will be
described in detail.

Whereas the experimental determination of the quadrupole frequency, and therefore in principle
the EFG, has been possible since 1939 [3], reliable values for calculated EFGs could not be
obtained before 1985 [4], when an EFG module was implemented in the full-potential, linearised
augmented plane wave code WIEN. One goal of this work was to implement an EFG module in the
full-potential local-orbital minimum-basis scheme FPLO. FPLO provides an accuracy similar to
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1 Introduction

that of WIEN but is numerically more efficient due to its use of a minimal basis set. Furthermore,
the local-orbital scheme allows an easy analysis of the different contributions to the EFG. The
implementation of the EFG module in the FPLO code will be presented in the fourth chapter.

In the fifth chapter, we discuss the application of the newly implemented EFG module on different
systems: starting from simple metals, then approaching more complex systems and finally tackling
strongly correlated oxides. Parallel to the calculations, the EFGs for the studied compounds were
also determined experimentally by NMR spectroscopists. This close collaboration enables the
comparison of the calculated EFGs with the experimental observations, which provides a deeper
understanding of e.g., distortion, the chemical bonding or the relevance of electron correlation.

First, we calculate the EFG for binary metals with simple crystal structures: the digallides MGa2

with M = Ca, Sr and Ba and the tetragallides MGa4 with M = Na, Ca, Sr and Ba. Here, the
comparison of experiment and theory reveals an until now overlooked deviation of the AlB2-type
structure for SrGa2 and BaGa2. Furthermore, by means of the EFG, the flexibility of the Ga
atoms with respect to the chemical bonding is investigated.

Then, we apply the EFG module to a more complex metal: the hexagonal aluminium diboride.
AlB2 has been examined intensely in the last few years by different experimental methods, all of
them indicating deficiencies on the Al sites. In order to understand the experimental findings,
we investigate in a first-principles study the vacancies in the Al sublattice.

We subsequently employ the EFG module to study electronically weakly correlated oxides: the
perovskites SrTiO3 and BaTiO3. A counter-intuitive dependence of the EFG on the lattice
parameter is observed, which can not be explained by the standard model Hamiltonian for
perovskites. The analysis provides an improved description of the perovskites by an extended
model Hamiltonian that captures the observed behaviour.

Finally, we use the EFG module for strongly correlated oxides: a few selected members of the
cuprates. DFT calculations based on the linear density approximation (LDA) strongly underes-
timate the correlation in these systems. Better results are obtained by applying the LSDA+U
method, where the correlations are treated in a mean field-like approach. The parameter U is
usually determined from the comparison of measured and calculated properties like for instance
the exchange integral J or the gap size. We will study the influence of the Coulomb parameter
U on the EFG and how this influence can be used to determine U .

In the course of this work (2008), a second class of high-temperature superconductors was dis-
covered: the iron oxypnictides REFeAsO and the iron arsenides AFe2As2, respectively. As these
systems are in the focus of present scientific interest, and the mechanism of the superconductivity
is still unknown, they will be presented in this manuscript as well. One of the key features for
the understanding of the superconductivity in these systems is the Fe-As interaction, which is
reflected by the Fe-As distance. Furthermore, doping leads to the onset of superconductivity in
these systems. This makes the EFG an ideal tool to study the Fe-As interplay.

After the application of the EFG, a methodological development beyond the EFG is presented.
In the sixth chapter, corrections to the multipole interactions due to electron penetration into
the nucleus will be discussed. The correction to the monopole interaction is well-known and
experimentally observed since 1960 [5]: the penetration of s electrons in the nucleus results in
the isomer shift and is measurable with Mössbauer spectroscopy. From the corrections to higher
multipole interactions, we focus on the correction to the quadrupole interaction (the “quadrupole
shift”) and discuss how it modifies the experimental spectra, as well as possible ways in which it
could be exploited to improve the accuracy of experimentally determined quadrupole moments.

The thesis closes with a summary and an outlook. Several appendices contain explicit derivations
of the shown results and additional details of the calculations presented in this work.
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2 Density functional theory

The challenge of computational solid state physics is to describe the observable, macroscopic
properties of a solid based on its crystal structure. The solid is described by a many-particle
wave function, which could be obtained by solving the Schrödinger equation for this many-
particle problem. However, this problem can neither be solved analytically nor can it be treated
numerically, due to the huge number of degrees of freedom. In the 1960s, Hohenberg, Kohn and
Sham came up with a powerful tool for the calculation of the quantum states of many-electron
systems: density functional theory (DFT). They showed that the electron density is sufficient to
describe the macroscopic properties of the solid in its ground state or in thermal equilibrium [6].
Furthermore, they reduced the many-particle problem to a set of coupled single-particle equations.
Two theorems made the numerical treatment of solids (and molecules) possible. These theorems
and their implementation in DFT band structure codes (focusing on FPLO and WIEN2k) will
be explained in this chapter.

2.1 The quantum mechanical description of a solid

In quantum mechanics, a solid with Ne electrons and Nn nuclei is described by a many-particle
wave function |ψ〉. In the Schrödinger representation the wave function is given by
〈~r1, ..., ~rNe , ~R1, .., ~RNn |ψ〉 = ψ(~r1, ..., ~rNe , ~R1, .., ~RNn) and the Hamilton operator by

H = He + Hn + Hen. (2.1)

Both the electronic and the nuclear part are described by a kinetic energy and a Coulomb inter-
action term

He = −h̄2
Ne∑

i=1

∇2
~ri

2me
+

1

2

e2

4πǫ0

Ne∑

i6=j

1

|~ri − ~rj |

Hn = −h̄2
Nn∑

i=1

∇2
~Ri

2Mi
+

1

2

e2

4πǫ0

Nn∑

i6=j

ZiZj

|~Ri − ~Rj |
.

The Coulomb interaction between the electrons and the positively charged nuclei is described by

Hen = − e2

4πǫ0

Ne,Nn∑

i,j

Zj

|~ri − ~Rj |
.

It is impossible to solve the time independent (stationary) Schrödinger equation, H|ψ〉 = E|ψ〉,
exactly with the wave function and the Hamilton operator given above. This is due to the
large number of degrees of freedoms, which is in the order of the Avogadro constant NA. Thus,
approximations are needed. Since the proton mass is three orders of magnitude larger than the
electron mass, me

mp
≃ 1

2000 , the nuclei have a much larger inertia. Therefore, the electrons will
move much faster and can be considered in an instantaneous equilibrium with respect to the
motion of the nuclei. This is the so called adiabatic (or Born-Oppenheimer) approximation [7],
which reduces the nuclei to a given arrangement of positive point charges (which the electrons
feel as external potential)1. Therefore, the first term in the nuclear operator Hn disappears and

1The adiabatic approximation becomes invalid for strong electron-phonon coupling and high phonon energies
(especially for light nuclei).
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2 Density functional theory

the second term reduces to a (charge neutralising) constant C and the Hamiltonian becomes

Ĥ = T̂ + V̂ + V̂ext, (2.2)

with

T̂ = −h̄2
Ne∑

i=1

∇2
~ri

2me
, V̂ =

1

2

1

4πǫ0

Ne∑

i6=j

e2

|~ri − ~rj |
,

V̂ext =
Ne∑

i

vext(~ri) + C = − 1

4πǫ0

Ne,Nn∑

i,j

e2Zj

|~ri − ~Rj |
+ C.

Also the wave function |ψ〉 is reduced to describe the many-electron system only, 〈~r1, ..., ~rNe |ψ〉 =
ψ(~r1, ..., ~rNe). Even though this approximation eliminates many degrees of freedom, the remaining
degrees of freedom are still too large to allow an exact solution.

2.2 Density functional theory

One way out of the many particle problem is density functional theory2. DFT was formally
established in 1964 by two theorems of Hohenberg and Kohn. In order to apply these theo-
rems [8], we define |ψG〉 as the ground state wave function, yielding the ground state energy
EG = 〈ψG|Ĥ|ψG〉 and the ground state density nG = 〈ψG|ψ⋆ψ|ψG〉. The first theorem proves
that for a non-degenerate3 ground state, the external potential vext is (apart from an additive
constant) a unique functional of the ground state density nG. Since vext enters the Hamiltonian
Ĥ in Eq. (2.2), the full (non-degenerate) many-particle ground state |ψG〉 is a unique functional of
nG [8]. This means that the dependence of a functional on vext is transferred into a dependence of
a functional on nG → vext[nG]. For the second theorem, Hohenberg and Kohn define the universal
(valid for any number of particles and any external potential) functional FHK [n] ≡ 〈ψ|T̂ + Û |ψ〉,
and for a given external potential the energy functional E[vext] ≡ FHK [n] +

∫
vext(~r)n(~r)d~r.

Now, the second theorem states that the ground state energy for a given potential vext is found
by minimising the functional of the density under the constraint of a fixed particle number Ne

(Hohenberg-Kohn variational principle)

EG[vext] = min
n

{
FHK [n] +

∫
vext(~r)n(~r)d~r

∣∣∣∣
∫

n(~r)d~r = Ne

}
.

However, the Hohenberg-Kohn functional FHK [n] is not known but can be rewritten as FHK [n] =
T0[n] + VH [n] + Exc[n] and yields for the ground state energy

EG[vext] = min
n

{
T0[n] + VH [n] + Exc[n] + Vext[n]

∣∣∣∣
∫

n(~r)d~r = Ne

}
. (2.3)

Here, T0 describes the kinetic energy of a non-interacting electron gas, VH describes the mean-
field electron-electron interaction (including self-interaction) and Exc describes the effects beyond
mean field: the kinematic exchange (kinetic energy) and the dynamic correlation of the electron-
electron interaction.

In 1965, Kohn and Sham [10] used the fact that the ground state density n(~r) of an Ne electron
system can be written by single-particle wave functions φi(~r): n(~r) =

∑Ne
i φ⋆

i (~r) · φi(~r) with

2At least for the ground state energy and the electron density.
3In the work of Hohenberg and Kohn in 1964, the theorem was proven for a non-degenerate ground state. However,

the theorem can also be proven for a degenerated ground state [9].
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〈φi|φj〉 = δij . This simplifies Eq. (2.3), T0, VH and Vext can now be expressed as

T0[n] = min
φi,φ⋆

i

{
−h̄2

Ne∑

i

∫
φ⋆

i (~r)∇2φi(~r)d~r

}

VH [n] = min
φi,φ⋆

i
,φj ,φ⋆

j





1

2

e2

4πǫ0

∑

i,j

∫ ∫ |φi(~r)|2|φj(~r)|2
|~r − ~r′| d~rd~r′





Vext[n] = min
φi,φ⋆

i

{∑

i

∫
vext(~r)|φi(~r)|2d~r

}
.

The functional derivative using the Lagrange multipliers εi to ensure normalised wave functions
φi

δ

δφ⋆
j

[
T0[n] + VH [n] + Exc[n] + Vext[n]

]
!
=

∑

i

εi
δ(

∫
|φi(~r)|2d~r − 1)

δφ⋆
j

leads finally to the Kohn-Sham equation

[∇2
i + veff ] φi(~r) = εi φi(~r), (2.4)

with

veff =
e2

4πǫ0

∫
n(~r′)
|~r − ~r′|d~r +

δExc[n(~r)]

δn(~r)
+ vext(~r).

Note that the single-particle wave functions φi describe mathematical quantities without direct
physical meaning. Yet, the overall density n =

∑
i φ

⋆
i φi has physical meaning and is the electron

density. The Lagrange multipliers εi are the so-called Kohn-Sham energies.

The Kohn-Sham equation (2.4) poses a self-consistency problem: the solutions φi determine the
original equation (the Hartree and the exchange-correlation potential in veff ). The equation can
be solved iterativly, with a guessed starting density until convergence is reached.

2.2.1 The exchange-correlation functionals LDA and GGA

Within the Born-Oppenheimer approximation, the Kohn-Sham equation is exact. But since
the exchange-correlation functional is not known, it has to be modelled. For weakly correlated
systems, there are two widely used approximation for the exchange-correlation functional – the
local density approximation (LDA) and the generalised gradient approximation (GGA). At this
point, we point out that due to these approximations, all results obtained with codes based on
DFT are model results. Since some of the models (e.g., LDA) do not need adjustable parameters,
they are often called ab initio. A better term, however, is first-principles method4.

LDA is based on the theory of the homogeneous electron gas, which is one of the most important
model systems. Here, the electrons are exposed to a constant external potential, i.e., the nuclei are
replaced by a homogeneous positive charge density. The ground state density of the electrons is
constant. For this model, the exchange and correlation energy εhomo

xc can be obtained with Monte
Carlo calculations with very high precision [11, 12]. Note that there are different parametrisations
to obtain εhomo

xc , e.g., by Barth and Hedin [13], by Perdew and Zunger [14] and by Perdew and

4It is a convention that ab initio stands for parameter free methods, like the Hartree-Fock method. Since LDA and
GGA are not parameter free (although the parameters are element independent, see below), DFT calculations
are better described by the word first-principles.
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2 Density functional theory

Wang [15]5. The last one contains the most precise fit [9] and is used in most calculations reported
in Chapter 5.
Kohn and Sham [10] used the exchange and correlation energy εhomo

xc (n(~r)) of the homogeneous
electron gas to describe the exchange and correlation energy Exc for an inhomogeneous system

Exc[n(~r)] =

∫
n(~r)εhomo

xc (n(~r))d~r. (2.5)

Since εhomo
xc describes the exchange and correlation energy per particle and n the particles per

unit volume, the integral over these two quantities yields an energy. Eq. (2.5) is the so-called
local density approximation. It works surprisingly well also for strongly inhomogeneous systems
(e.g., atoms, molecules and solids)6.
In GGA, also the densities of the surrounding infinitesimal volumes are considered, which means
the gradient of the density plays a role. Since the straightforward gradient would violate relation-
ships of the true (and the LDA) exchange-correlation functional, a proper function of the density
gradient (hence, the name “generalised” gradient) has to be chosen [16]. Unlike LDA, there is
no unique way to express εxc in GGA and several GGA functionals exist7. Furthermore, many
GGA functionals are fitted to a set of experimental parameters, what deprives these functionals of
their first-principles status. Like LDA, GGA fails in correctly describing the strongly-correlated
system, see e.g., Ref. [9] or Section 5.4.

If the spin degree of freedom σ of the electrons is taken into account and the density is replaced
by a spin density matrix nσσ′ with n =

∑
σσ′ nσσ′ = n↑ + n↓ and the states (εi, φi) are replaced

by the corresponding spinors (εi,σ, φi,σ) the theory still holds [13]. In case of LDA, this is often
called local spin density approximation (LSDA).

2.2.2 The exchange-correlation functional LSDA+U

For strongly correlated systems, e.g., transition metal oxides (like cuprates with localised 3d
electrons) or rare earth compounds (localised f electrons), both LDA and GGA fail. These
systems exhibit phenomena like metal-insulator transitions, heavy fermion behaviour [17] and
high-temperature superconductivity (see Section 5.4). However, these compounds can be treated
with a certain success with the LSDA+U approach. Here, LDA (or GGA) type calculations
are coupled with an additional orbital-dependent interaction. This interaction is described by a
functional, which adds a Coulomb repulsion energy U , whenever two electrons with opposite spin
occupy a correlated orbital, and subtracts the “double counting correction“ term (the correlation
already included in LDA). The effect of the added U is to first split the “correlated” orbitals and
then to shift the occupied orbitals in direction of lower and the unoccupied orbitals in direction of
higher energy. The obtained distance in energy (which is the total shift) has roughly the value of
U . This mean field-like treatment of correlations influences, e.g., the hybridisation or localisation
and tries to correct the errors known to be large in the usual LDA (GGA) calculations. In
LSDA+U , the dynamical character of the correlation is treated imperfectly. This is improved in
dynamical mean field theory (DMFT) [18, 19]. U is an additional, free parameter, which is not
known per se and needs to be evaluated. This can be done by a comparison of calculated properties
with experimental measurements (see Section 5.4) or by constrained LDA calculations [20]. The
other quantity, which is involved in a LSDA+U calculation is the on-site exchange integral Jt

8,

5These parametrisations are the reason why LDA calculations are described as first-principles and not ab initio
method.

6This can be understood (isotropy of the Coulomb interaction ∝ 1/|~r−~r′|) and is presented in detail in Chapter 7.2
of Ref. [9].

7Though there is a unique Exc in LDA, there are also several LDA functionals due to the different parametrisations,
see text before.

8Be aware not to confuse this “intra-atomic” Jt with the “inter-site” exchange integral J , will comes into play in
the LSDA+U calculations in Section 5.4.
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2.3 Band structure codes

which describes the exchange interaction within the correlated orbital. U and Jt are obtained
from the Slater integrals: U = F0 and Jt = (F2 + F4)/14 for d orbitals, Jt = (286F2 + 195F4 +
250F6)/6435 for f orbitals.

There are two frequently used versions of double-counting correction schemes in LDA+U : the
around-mean-field (AMF) and atomic limit (AL). The AMF functional was introduced by Czyżyk
and Sawatzky in 1994 [21]. This functional assumes that LDA works well for the case without or-
bital polarisation of the correlated shell, i.e., if the shell is fully occupied and fully spin polarised.
It may be understood as an orbital polarisation functional, since it corrects the correlated shell,
if it is orbital polarised. It gives nearly nothing for a half filled shell. Clearly, the AMF func-
tional depends on the shell occupation. Also the AL functional was introduced by Czyżyk and
Sawatzky [21]. Contrary to the AMF functional, this one is independent of the shell occupation.
If the correlated shell is isolated, it moves all occupied states by (U − J)/2 downward in energy
and all unoccupied states by (U − J)/2 upward in energy [9].

Details on the implementation of LSDA+U method into the FPLO code (see Section 2.3.2) can
be found in Ref. [22].

2.3 Band structure codes

In order to solve the Kohn-Sham equation (2.4), we expand the singe-particle orbitals |φi〉 in a
given basis set |φB

n 〉

|φi〉 =
N∑

n

ci
n|φB

n 〉. (2.6)

The remaining task is to find the coefficients ci
n. This is done by inserting the basis expansion

Eq. (2.6) in the Kohn-Sham equation ĤKS |φi〉 − εi|φi〉 = 0 (with ĤKS = ∇2
i + veff ) and then

multiplying this equation from the left with 〈φm|, yielding for m = 1, . . . , N

∑

n

(
〈φB

m|ĤKS |φB
n 〉 − εi〈φB

m|φB
n 〉

)
ci
n = 0. (2.7)

Diagonalising the matrix

[
〈φB

m|ĤKS |φB
n 〉 − εi〈φB

m|φB
n 〉

]
finally gives the coefficients ci

n.

The larger the basis set (N) the better the single-particle wave function is described. But it
comes with a price: the larger the basis, the larger the matrix and the larger the computational
effort: since diagonalising a matrix scales with N3 (the cube of the size of the matrix), it is more
time consuming to choose a large basis set. Therefore, a compromise of efficiency and accuracy
must be found.

There are four categories to characterise band structure codes.

• The basis set: in general there are two possibilities for the basis set, local orbitals (as used
by the FPLO code, see Section 2.3.2) or (linearised augmented) plane waves (as used in
combination with local orbitals by the WIEN2k code, see Section 2.3.1).

• The potential representation: also here, there are two possibilities, depending on if there
are approximations done to the potential, or not. “Non full-potential” codes are muffin-
tin (MT) or atomic sphere approximation (ASA) codes. In MT codes, there is a constant
potential between the non-overlapping spheres (MT). In ASA codes, there is no interstitial
region because the atomic spheres are allowed to overlap. In both cases, the interstitial
region is treated only approximately, contrary to WIEN2k, see below. On the other side,
in “full-potential” codes, no shape approximation for the potential is made, like in FPLO
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2 Density functional theory

and WIEN2k. (There are also mixtures of these two representations, where different parts
of the potential (Hartree, exchange) are treated partially “full-” or non-“full-potential”.)

• The treatment of core electrons: there are again two possibilities. Either the core electrons
are taken properly into account, which is the case for an “all-electron” code, or not, which
is the case for a “pseudo-potential” code. In the latter case, the strong Coulomb potential
of the nucleus and the effects of the tightly bound core electrons are replaced by an effective
ionic potential acting on the valence electrons only. This allows pseudo-potential codes
to calculate systems with a larger number of atoms than all-electron codes. Examples for
pseudo-potential codes are ABINIT, SIESTA and VASP. Examples for all-electron codes,
which are by way of comparison slower but therefore more accurate, are FPLO and WIEN2k.

• The numerical treatment: also here, there are in principle two possibilities. The first method
is the one discussed above, the (full) diagonalization, which scales with N3 (true for FPLO
and WIEN2k). The second possibility is the so-called “order N” method, which scales
linearly with the size of the system. This method is based on a different algorithm, due to
different approaches to describe the solid. Order N methods are still under development
and there are still problems in actual practice. Since this is not topic of this thesis, it will
not be discussed further. For more information see Ref. [23].

2.3.1 The linearised augmented plane wave code WIEN2k

The WIEN2k code is a full-potential, all-electron and full diagonalization code, with basis func-
tions that are nonzero over the entire unit cell. In the linearised augmented plane wave (LAPW)
method, the crystal is divided into two regions: non-overlapping atomic spheres (centred at the
atomic sites) (called muffin tin spheres) and an interstitial region. In the interstitial region, the
wave functions are rather flat and can therefore be described by plane waves

φ~kn
=

1√
ω

ei~kn·~r. (2.8)

With ~kn = ~k + ~Kn, where ~Kn are the reciprocal lattice vectors and ~k the wave vectors inside the
first Brillouin zone.
In the atomic sphere, the wave function oscillates and is better described by a set of atomic-like
orbitals. These orbitals are a linear combination of radial functions and spherical harmonics

φ~kn
=

∑

lm

[
A

lm,~kn
ul(r, El) + B

lm,~kn
u̇l(r, El)

]
Ylm(r̂). (2.9)

Here, ul(r, El) is the solution of the radial Schrödinger equation for the energy El and u̇l(r, El) is
the energy derivative of ul(r, El) at El. Taking into account the energy derivative of ul(r, El) (the
linear term in a Taylor expansion) improves9 this method from the augmented plane wave (APW)
to the linearised augmented plane wave (LAPW) method. The coefficients A

lm,~kn
and B

lm,~kn
are

obtained from the boundary conditions that the plane waves and the atomic-like orbitals match
in value and slope at the sphere border. A plane wave, Eq. (2.8), and atomic-like functions,
Eq. (2.9), then form a single LAPW basis function.

We choose the LAPW’s as given above as basis for the solution of the Kohn-Sham equation, see
Eq. (2.6)

ψ~k
=

∑

n

cnφ~kn
. (2.10)

9In principle, APW is much more accurate than LAPW. But it is hopelessly slow, because its basis functions are
energy-dependent. By linearising this energy dependence a bit of accuracy is lost, but a huge amount of speed
is gained.
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Here, the coefficients cn are determined by the Rayleigh-Ritz variational principle. The cutoff
parameter RmtKmax (usually between 6 and 9) controls the convergence of the basis set: Rmt

is the smallest atomic sphere radius in the unit cell and Kmax the magnitude of the largest ~K
vector in Eq. (2.10).

This method distinguishes between three different types of electronic states. Core states are
confined inside the corresponding atomic sphere and are very deep in energy (more than 90 eV
below the Fermi energy). Semi-core states are not entirely confined inside the sphere – a few
percent of the charge are outside of the corresponding sphere – and their energy well below the
Fermi energy, but much higher compared to the core states (between 13.6 and 90 eV below the
Fermi energy). The valence states have a significant amount of charge outside the sphere and are
the highest (occupied) states.

In order to treat the semi-core states more accurately, additional basis functions, so-called “local
orbitals” (LO) can be added

φLO
lm =

∑

lm

[Almul(r, E1,l) + Blmu̇l(r, E1,l) + Clmul(r, E2,l)] Ylm(r̂). (2.11)

Since this orbital is only nonzero inside the atomic sphere under consideration, it is called local
orbital. This way, semi-core and valence states with same l value, but different n value (e.g., 3p
and 4p states) can be treated more adequately. Here, ul(r, E1,l) and u̇l(r, E1,l) are taken from
the LAPW basis for the high lying states (e.g., the 4p states) and a single radial function at
the low lying energy E2,l is sufficient to describe ul(r, E2,l) for the low lying states (e.g., the 3p

states). Since the local orbitals are not connected to the interstitial plane waves, no ~k dependence
is needed. The coefficients Alm, Blm and Clm are determined from the conditions that the local
orbital is normalised and has zero value and slope at the sphere boundary.

Nowadays, WIEN2k can be used with an APW+lo or with a LAPW basis set as well, where
the APW+lo basis functions follow the same general idea as LAPW but in a somewhat different
mathematical formulation. They turn out to provide a more efficient (i.e. smaller) basis [24].

See the WIEN2k user guide [1] or the WIEN2k based LAPW documentation [25] for more details.

2.3.2 The full-potential local-orbital code FPLO

Since most calculations were performed with the FPLO code and also the implementation of the
electric field gradient in the FPLO code will be shown (Section 4), this code is presented in more
detail. The following sections are based on the FPLO version 5, since this version was mainly
used in this work. Differences to the new versions are given at the end of this section.

The FPLO code is a full-potential band structure scheme and based on linear combinations of
overlapping non-orthogonal atom-centred orbitals. The core relaxation is properly taken into
account (so called all-electron method). The crystal potential and density are represented as a
lattice sum of local overlapping non-spherical contributions. FPLO is numerically very efficient,
because it uses a self-adjusting minimal basis set. The eigenvalue problem is reduced to the
dimension of a minimum valence orbital basis only. The valence basis is completed by a few
semicore states and polarisation states. The total energy calculated by FPLO agrees with the total
energy obtained by the WIEN code within the chemical accuracy (order of mHa per atom) [26].
In addition, the DOS, the band structure and differences in energy, which are more relevant,
agree very well between these two codes [27, 28, 29].
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Minimal basis

The eigen functions of the Kohn-Sham Hamiltonian ĤKS are given by Bloch states ψ~k,n
(due to

the periodicity of the crystal)

ψ~k,n
(~r) =

∑

~R,~s,L

c
~k,n
~sL ϕ~s,L(~r − ~R − ~s)ei~k(~R+~s). (2.12)

Here, the index L describes a complete set of atomic quantum numbers L = {n, l, m}. The basis
states ϕ~s,L (which are |φB

n 〉 in the simple notation of Eq. (2.6)) are local orbitals centred at the

site ~s in the elementary cell defined by the lattice vector ~R. They are expanded in terms of
localised atomic-like orbitals consisting of radial functions φl

~s (solutions of the radial Schrödinger
or Dirac equation) and spherical harmonics

ϕ~s,L(~r − ~R − ~s) ≡ φl
~s

(∣∣∣~r − ~R − ~s
∣∣∣
)

YL

(
~r − ~R − ~s

)
. (2.13)

The basis states are divided into core and valence states. Core states (denoted by L = c) are
defined as strongly localised states (no overlap between states of different sites). This (very good)
approximation leaves them orthogonal

〈ϕ~R′+~s′,c′ |ϕ~R+~s,c〉 = δc′,cδ~R′+~s′, ~R+~s .

The valence orbitals (denoted by L = v) are non-orthogonal and overlap with valence and also with
core orbitals from neighbouring sites. All valence orbitals are compressed by a confining potential
vconf = (r/r0)

4, where r0 is given by the nearest neighbour distance rNN and a parameter10 x0

with r0 = (x0rNN/2)3/2. These compressed valence orbitals have higher energy levels and are
more suitable for the construction of extended wave functions compared to their uncompressed
counterparts.
Due to the separation of core and valence states, the overlap matrix in the secular equation
(2.7) contains four blocks (core-core, 2×core-valence and valence-valence). The core-core block
is already diagonal due to the orthogonality of the core states. The remaining blocks can be
rewritten, yielding a reduced problem, which only contains the eigenvalue problem of the valence
states. This saves calculational effort, since the diagonalization of a matrix scales with the cube
of its size N3. For more details see Section 2 A in Ref. [2].

Electron density and potential

The total electron density is obtained by summing over all occupied (occ) states

n(~r) =
occ∑

~k,n

ψ~k,n
(~r)ψ∗

~k,n
(~r)

=
occ∑

~k,n

∑

~R+~s,L

∑

~R′+~s′,L′

c
~k,n
~sL c∗

~k,n
~s′L′

ϕ~s,L(~r − ~R − ~s)ϕ~s′,L′
(~r − ~R′ − ~s′)ei~k(~R+~s− ~R′−~s′). (2.14)

This sum can be split into on-site ~R− ~s = ~R′ − ~s′ and off-site ~R− ~s 6= ~R′ − ~s′ contributions. For
the core-core density, only the on-site (there is no off-site contribution) and for the core-valence
and valence-valence density both contributions are calculated separately. Details are given in
Section 2 B in Ref. [2].

10The parameter x0 is optimised with respect to the total energy in each iteration step, i.e., FPLO version 5 is
not a fixed basis scheme.
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2.3 Band structure codes

In the end, for each lattice site ~s the radial component of the density n~s,L is given in spherical
representation

n(~r) =
∑

~R+~s,L

n~s,L(|~r − ~R − ~s|)YL(~r − ~R − ~s). (2.15)

The potential11 is also expanded in spherical harmonics

v(~r) =
∑

~R+~s,L

v~s,L(|~r − ~R − ~s|)YL(~r − ~R − ~s). (2.16)

The radial component of the potential Eq. (2.16) is calculated from the radial solution of the
Poisson equation ∆v(~r) = −4πn(~r)12

v~s,L(r) =
4π

2l + 1

[ 1

rl+1

∫ r

0
dxxl+2n~s,L(x) + rl

∫ ∞

r
dxx−l+1n~s,L(x)

]
. (2.17)

Here, the radial component of the density Eq. (2.15) is inserted. The angular momentum compo-
nents of the local charge density give rise to multipole moments, which determine the Coulomb
potential for large distances

v~s,L(r) =
4π

2l + 1

Q~s,L

rl+1
with Q~s,L =

∫ ∞

0
dxxl+2n~s,L(x).

Taking into account the nuclear (point) charge (which will partially compensate the l = 0 part),
the excess multipole moments at each lattice site are given by

A~s,L = Q~s,L − Z√
4π

δL,0.

In order to handle the long-range tails of the Coulomb potential, FPLO uses the so-called Ewald
method: Gaussians are chosen to screen the excess moments

gl = Nlr
ler2p2

, with

∫ ∞

0
r2+lgl(r)dr ≡ 1.

Inserting a modified density13 ñ~s,L(r)

ñ~s,L(r) = n~s,L(r) − nEw
~s,L (r), with nEw

~s,L (r) = A~s,Lgl, (2.18)

in Eq. (2.17) results in the local Hartree potential, where the asymptotic behaviour is vH
~s,L(r) =

+
√

4πZδL,0/r. This is exactly cancelled by the nuclear potential. Thus, in the Coulomb po-
tential (which adds the nuclear potential to the Hartree potential) the long-range tails are well
compensated.

In order to obtain the correct potential, the Ewald potential (nEw
~s,L (r) in Eq. (2.17)) has to be

added to the Coulomb potential. Since this contribution contains the troublesome long-range
tails, this is done in Fourier space. The Fourier transformation of the Ewald density yields (see
Ref. [30] for a detailed derivation)

nEw
~G

=
(4π)

3
2

Vuc

∑

~s,L

A~s,L(−i)le−i ~G~sYlm(~G)
NlG

l

(2p)3(2p2)l
e
− G2

4p2 . (2.19)

11The potential will be important in Section 4.1 and is therefore discussed more in detail.
12In SI units, the Poisson equation is ∆v(~r) = −n(~r)/ǫ = −n(~r)4πa0Ha/e2. In order to be consistent with

Refs. [2, 30], we will use the definition as given above.
13The definitions deviate in prefactors and signs between Refs. [2] and [30], however, the results are of course

identical. In this thesis (this chapter and Section 4.1) the definitions of Ref. [30] are used.
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2 Density functional theory

The Ewald potential is obtained by applying the Poisson equation to a Fourier sum

∆
∑

~G

ei ~G~rv ~G = −
∑

~G

G2ei ~G~rv ~G = −4π
∑

~G

ei ~G~rnEw
~G

⇒ v ~G =
4π

G2
nEw

~G
. (2.20)

The correct potential is obtained, when the Ewald potential

vEw(~r) =
∑

~G

ei ~G~rv ~G (2.21)

(with Eq. (2.19) and Eq. (2.20)) is added to the local Coulomb potential, given above.

The exchange and correlation potential depends in a non-linear way on the density and hence
requires a special treatment. To achieve local decomposition, the shape function technique is
applied. The shape function [30] is defined as

∑

~R+~s

f~s(~r − ~R − ~s) ≡ 1.

This provides a locally finite lattice sum. The same method (also known as “partitioning of
unity”) is applied for the Ewald potential. See Section 2 D in Ref. [2] for more details.

Super cells, VCA and CPA

There are four different possibilities to describe disorder (vacancies, interstitial atoms, substitu-
tion) within the FPLO code. The easiest way to simulate disorder is the rigid-band approxima-
tion. Here, the Fermi level in the DOS and band structure is shifted according to the number of
electrons added to or taken out of the system. This approximation is of course very crude, since
neither the Hamiltonian, nor the wave function is modified. It was used about 40 years ago, when
less computational power was available. Today, the rigid-band approximation is mainly used to
simplify discussions.
An improvement to the rigid-band approximation is to describe disorder with the virtual crystal
approximation (VCA). In this approximation, the atom under consideration is replaced by a
“virtual” atom, where the number of valence electrons is adjusted to the average number of
valence electrons of that site, which is in general a non-integer number. The nuclear charge is
modified by the same amount of protons to guarantee neutrality.
The coherent potential approximation (CPA) is a more accurate approximation to describe dis-
order, but it is more expensive. It needs more calculational effort and is not available in the
newer FPLO versions (6-8). In CPA, the structure is described by an ensemble of configurations
of atoms. But instead of introducing an ensemble of effective single-particle Hamiltonians, cor-
responding to these configurations, and summing over the squares of the Kohn-Sham orbitals,
single-particle Green’s functions are used. Then the one-electron Green’s functions are expanded
in the basis of modified atomic orbitals, yielding the spectral function A(k, ω) for the energy ω.
Another possibility to describe vacancies or substitution is to construct super cells. In this
method, no approximation is made in calculating the properties and a perfectly ordered super-
structure is obtained. Further advantages are that often different patterns can be compared and
local distortion can be observed. However, the approximation here is the large (and often infi-
nite) number of possible configurations is presented by a finite (and often very small) number of
configurations. Another disadvantage is that super cells are demanding in computational time.
The smaller the impurity concentration, the larger the super cells have to be. For instance, for
AlB2, where the Al site is not fully occupied, a 4-fold super cell is needed to describe a vacancy
concentration of 25 %, an 8-fold super cell is needed for vacancy concentration of 12.5 % and so
on.
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2.3 Band structure codes

A promising approach to obtain all relevant information about a disordered compound is a com-
bination of CPA and super cells. Since CPA includes the scattering of the impurity (potential),
which is not the case for super cells and super cells describe local distortion, which is not the case
for CPA, all aspects (random and local) are accounted for.

Except for CPA, the other three methods are also available in the WIEN2k code.

An example where all four methods are applied and their dis- and advantages can be seen is given
in Section 5.2 for Al1−xB2.

Differences in the FPLO versions

The main difference between version 5 and version 6 is the construction of the basis. First of
all, in version 6 the basis is not optimised in each iteration step anymore but fixed. The second
difference is that the basis set can not be changed by the user (unless (s)he modifies the code).
This is not necessary, because the basis is per default completed by polarisation states and a
second/third set of valence orbitals. Containing 4(3) radial functions per nl shell this basis is
larger and more complete than the default basis in FPLO 5 [31]. The same accuracy in FPLO 5
can be obtained by including polarisation states, which is especially important for the EFG
calculation, see Section 4.2. The next difference is the construction of the potential. In version 5,
the potential is stored site-centred. This makes CPA possible, because the total potential for
each site must be known. In version 6, only the Hartree potential is stored site-centred. The
Ewald and exchange-correlation potential is calculated on a fixed real space grid. Therefore, the
total potential is stored point-wise on a partitioned 3D grid (Becke) [31]. This is beneficial for
calculating open structures, but impedes the implementation of CPA. The main advantage of
version 6 is that calculations are more accurate and much faster.
From version 6 to version 8, there were no changes in the conceptional method and the FPLO code
was improved by implementing features like for instance a GGA functional, Wannier functions,
VCA and a finite nucleus, which is very important for the correction to the quadrupole interaction,
see Section 6.3. Furthermore, a molecule module has been implemented.
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3 The electric field gradient: EFG

In this chapter, the electric field gradient (EFG) is introduced. In combination with spectroscopic
methods, like for example nuclear magnetic resonance (NMR), the EFG is a valuable tool for
extracting structural information (for instance about disorder) or for probing (indirectly) the
chemical bond.

Here, we will present the definition and the properties of the EFG tensor and explain how it can
be determined experimentally and theoretically.

3.1 Why is it interesting to study the EFG?

The chemical bonding in intermetallic compounds is far from being fully understood and presently
under intense investigation. For a better understanding of the chemical bonding, a precise knowl-
edge of the electron density is a precondition. A direct reconstruction of the electron density from
X-ray data is limited in resolution up to now. Spectroscopic methods, like NMR measurements
of the EFG, allow a much higher resolution, but provide only indirect information about the
electron density. Electronic structure calculations can provide a straightforward relation between
spectroscopic data and the electron density.

A concrete aspect is the fact, that many phases have a non-stoichiometric composition which
has a significant impact on the properties in the solid state. This was investigated for CuAl2
by the combined application of NMR spectroscopy and super cell calculations for various models
describing the structural realisation of the deviation from the stoichiometric composition (e.g.,
substitutions at the atoms or vacancies) and provided more insight in the local ordering of the
atoms [32].

Other motives to study the EFG are for example impurities in semiconductors [33] or on sur-
faces [34]. This is possible due to the high sensitivity of the EFG to the local structure: each
defect modifies the the local electrostatic potential at the position of the probe atom and creates
its own characteristic EFG.

Furthermore, one can study the valency in e.g., rare earth (RE) structures: REX3, where X
is an element from group IIIa or IVa. The EFG is different for trivalent RE3+ and for divalent
RE2+ [35]. In a simple picture this can be explained by the fact that a different valency results
in a different distribution of the valence electrons, and hence a different degree of (an)isotropy of
the electron charge density. As a consequence, the EFG will be larger or smaller.

3.2 What is the EFG?

First of all, the EFG reflects the local structural symmetry of the crystalline solid. The EFG
is nonzero if the charge density surrounding the nucleus violates cubic symmetry and therefore
generates an inhomogeneous electric field at the nucleus.

The EFG is a traceless symmetric tensor of rank 2, defined as the second partial derivative (with
respect to the spatial coordinates) of the electrostatic potential v(~r) evaluated at the position of
the nucleus (~r = 0) [36]

Vij =

(
∂2v(~r)

∂i ∂j
− 1

3
δij∆v(~r)

) ∣∣∣∣∣
~r=0

i, j = {x, y, z}. (3.1)
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3.2 What is the EFG?

Figure 3.1: Schematic picture of different elec-
tron charge distributions causing dif-
ferent EFGs: left: cubic electron
charge density ⇒ Vzz = 0, cen-
tre: prolate electron charge density
⇒ Vzz < 0 and right: oblate elec-
tron charge density ⇒ Vzz > 0.

Vzz = 0 Vzz < 0 Vzz > 0

Only five independent quantities have to be provided in order to determine the tensor unam-
biguously: due to the commutation of partial derivatives, the tensor is symmetric and by defini-
tion, the tensor is traceless1. Hence, it is possible to transform the EFG tensor in its principal
axis system (PAS) with only three non-vanishing diagonal components, which are defined as
|Vzz| ≥ |Vyy| ≥ |Vxx|.
It is a convention, to characterise the EFG tensor by its main component Vzz (often referred to
as EFG) and the anisotropy parameter η defined as η = (Vxx − Vyy)/Vzz with 0 ≤ η ≤ 12. The
three remaining degrees of freedom are the three Euler angles from the transformation to the
PAS of the EFG tensor. Depending on the symmetry of the crystal, the EFG tensor may already
be diagonal and the PAS of the EFG tensor coincides with the coordinate system of the crystal
structure. This is the case, for instance, for tetragonal symmetry, where Vzz points along the
c axis and Vxx = Vyy point along the a and b axis of the crystal structure. In general, these two
coordinate systems can be different and Vzz must not be parallel to any of the axes of the crystal
structure.

In the physical interpretation, the main component Vzz is a measure for the amount of deviation
from cubic symmetry of the electron charge density in the proximity of the nucleus3. The sign
of the EFG reveals additional information about the charge distribution, see Figure 3.1. If the
electronic charge density is elongated along the z direction and assumes the shape of a cigar (so-
called prolate distribution), Vzz is negative. If the electronic charge density is compressed along
the z direction and takes the form of a pancake (so-called oblate distribution), Vzz is positive.
The anisotropy parameter η contains information about the symmetry: η is zero if the site under
consideration has a (at least) three-fold rotation axis.

Since the EFG tensor is traceless,
∑

i Vii = 0, the EFG is zero for a charge density of cubic
symmetry, where all three components are identical Vxx = Vyy = Vzz. In a crystal, such symmetry
conditions appear if the point group of the site under consideration has cubic symmetry. For
crystals, there are five such point groups: three tetrahedral ones (23, 43m and m3) and two
octahedral ones (432 and m3m). Or in Schönfliess notation: T , Td, Th, O and Oh [41].

The EFG can be expressed in spherical notation as well, which will be particularly useful for the
implementation of the EFG in band structure codes. Therefore, it is necessary to transform the
Cartesian expression Eq. (3.1) into a spherical expression, which yields a symmetric and traceless

1The trace of the first term in Eq. (3.1) is Σivii = ∆v(0) ∝ n(0). The electronic density at the nucleus n(0) is
nonzero, since s electrons and in relativistic treatment also p 1

2

electrons have a nonzero radial part at r = 0.

Therefore, the trace has to be subtracted to guarantee five degrees of freedom. This condition appears naturally
in the transformation from the Cartesian to the spherical notation, see Eq. (B.7) in Appendix B.

2This definition of η and |Vzz| ≥ |Vyy| ≥ |Vxx| is most commonly used in the literature, e.g., in Refs. [37, 38]. In
the chemical community, also the convention |Vzz| ≥ |Vxx| ≥ |Vyy| with η = (Vyy − Vxx)/Vzz (which also yields
0 ≤ η ≤ 1) is used [39].

3That the EFG dependents predominantly on the electronic density only and not on the nuclear charge contri-
bution has been shown in by previous investigations, e.g., Ref. [40] and in our work, see Chapter 5. It will be
explained in more detail in Section 4.1.2.
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3 The electric field gradient: EFG

3×3-matrix with five independent angular momentum components vlm (l = 2, m = 0,±1,±2)
(see Appendix B):

Vij =

√
15

4π
lim
r→0

1

r2
·




v22(r) − 1√
3
v20(r) v2,−2(r) v21(r)

v2,−2(r) −v22(r) − 1√
3
v20(r) v2,−1(r)

v21(r) v2,−1(r)
2√
3
v20(r)


 . (3.2)

3.3 Where does the EFG play a role in physics?

The EFG is the electronic part of the quadrupole interaction (QI), which in the classical picture
is defined as

EQ =
1

6

∑

i,j

VijQij . (3.3)

Here, Vij is the symmetric and traceless EFG tensor as defined in Eq. (3.1). The nuclear part
of the QI is the symmetric and traceless electric quadrupole moment tensor, which is defined as
Qij =

∫ (
3xixj − δijr

2
)
ρ(~r)d~r, with ρ being the nuclear charge density, see Appendix A. Like

the EFG tensor, which is represented by its main component Vzz, also the nuclear quadrupole
moment tensor is represented by its zz component, the electric quadrupole moment Q ≡ Qzz.
Values for Q can be found in the literature, e.g., in Refs. [42, 43].

In the quantum mechanical picture, the QI is described by the quadrupole Hamiltonian (see
Appendix C)

ĤQ =
eQVzz

4(2I − 1)Ih̄2

[(
3Î2

z − Î2
)

+ η
(
Î2
x − Î2

y

)]
. (3.4)

Here, Î is the nuclear spin operator, with Î2|I, mI〉 = h̄2I(I + 1)|I, mI〉. From its components
Î = (Îx, Îy, Îz), an eigenvalue equation is given only for the z component Îz|I, mI〉 = h̄mI |I, mI〉.
The QI is nonzero if two conditions are fulfilled: (i) non-cubic (electronic) charge density (hence
nonzero EFG) and (ii) a non-cubic nuclear charge distribution, which causes a nonzero nuclear
quadrupole moment Q. The latter condition is fulfilled for nuclei with nuclear spin I ≥ 1. Nuclei
with I ≤ 1

2 do not fulfil the condition 2I ≥ L for multipole moments (2L pole).

The quadrupole interaction is the dominating part in the second order contribution of the inter-
action energy of a nuclear charge density ρ in the electrostatic potential v(~r). This is explicitly
shown in Chapter 6.

3.4 How can the EFG be measured?

The quadrupole interaction energy of a given nuclear state |I, mI〉 is the expectation value of
the quadrupole Hamiltonian Eq. (3.4) in that state. For illustration, we will consider an axially
symmetric case (η = 0), where the energy eigenvalues are

EQ =
eQVzz

4(2I − 1)Ih̄2 < I, mI |
(
3Î2

z − Î2
)
|I, mI >

=
eQVzz

4(2I − 1)I

(
3m2

I − I(I + 1)
)

(3.5)

⇒ ∆EmI ,m′

I
=

eQVzz

4I(2I − 1)
3|m2

I − m′2
I |.
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I = 3
2

mI = ±3
2

mI = ±1
2

ν
3/2
Q

I = 5
2

mI = ±5
2

mI = ±3
2

mI = ±1
2

2ν
5/2
Q

ν
5/2
Q

Figure 3.2: Nuclear energy levels due to the quadrupole interaction for a nuclear spin of I =

3/2 (left) and I = 5/2 (right). The frequencies ν
3/2
Q and ν

5/2
Q , respectively, can be

measured with nuclear quadrupole resonance (NQR).

If the two conditions for the QI are fulfilled, the mI degeneracy from the monopole interaction
is partially lifted. Since mI enters Eq. (3.5) quadratically, the sign of mI is still degenerate. For
nuclei with spins I = 3/2 or I = 5/2, the energy level will split like shown in Figure 3.2. The
definition of the quadrupole frequency4 [37]

νQ =
3eQVzz

2I(2I − 1)h
(3.6)

yields therefore

I =
3

2
: ν

3/2
Q =

1

2

eQVzz

h
and I =

5

2
: ν

5/2
Q =

3

20

eQVzz

h
.

The quadrupole frequency νQ Eq. (3.6) can directly be obtained from nuclear quadrupole reso-
nance (NQR).

Another frequent method to measure νQ is nuclear magnetic resonance (NMR), where the sample
is exposed to a magnetic field. The external magnetic field complicates the situation, because
now we do not only have to consider the PAS of the EFG tensor (Σ), but also the the quantisation
axis system (Σ′) of the static magnetic field ~B0, parallel to the z′ axis, see Figure 3.3. We choose
without loss of generality the y′ axis to be parallel to y (rotation symmetry around a magnetic
field) and obtain an angle θ between z′ and z. If the quadrupole coupling is weak compared to
the magnetic interaction5, the nuclear spin I will be quantised along the z′ axis and the energy

Figure 3.3: The two coordinate systems Σ and Σ′ needed to under-
stand nuclear magnetic resonance: Σ describes the prin-
cipal axis system of the EFG tensor and Σ′ the quantisa-
tion axis system of the external magnetic field, parallel
to the z′ axis . The angle θ is needed for evaluating the
spectrum, see also Eq. (3.7). Σ

Σ′

x

x′

zz′

θ

4Note, that there is also a definition without I, the nuclear quadrupole coupling constant (NQCC) is defined as
CQ = eQVzz/h.

5This is the case, if the energy EZee from the Zeeman effect due to the magnetic interaction is at least one order
of magnitude larger than the energy EQ due to the quadrupole interaction [44].
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I = 3
2

mI = −3
2

mI = −1
2

mI = +1
2

mI = +3
2

ν0 + 2∆
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ν0

ν0 − 2∆
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+∆

+∆
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Figure 3.4: Nuclear energy levels due to to the Zeeman effect (equidistant energy levels) and the
quadrupole interaction (shifts in the energy levels) for a nucleus with I = 3/2 for fixed
θ and η = 0. The three frequencies ν0, ν0 + 2∆ and ν0 − 2∆ can be measured with
nuclear magnetic resonance (NMR).

eigenvalues become angular dependent (see Ref. [38]) (still for the case η = 0)

EQ =
eQVzz

4(2I − 1)I

3 cos2 θ − 1

2

(
3m2

I − I(I + 1)
)

. (3.7)

Furthermore, the Zeeman effect has to be taken into account and perturbation theory has to be
applied: the QI is treated as a perturbation to the Zeeman effect. If the quadrupole interaction
is at least two orders of magnitude smaller then than the magnetic Zeeman interaction, i.e.,
EQ ≪ EZee, it is sufficient to consider only the first order in perturbation theory. For a nuclear
spin of I = 3/2 the energy levels split and shift like shown in Figure 3.4.

The energy level is split by the Zeeman effect into four equidistant energy levels (mI degeneracy
lifted) with only one transition frequency ν0. The QI splits this single Zeeman transition frequency
ν0 into three frequencies by shifting the energy levels with same |mI | by the same amount.
Therefore, three spectral lines will be obtained: a main transition ν0 and two satellite transitions
ν0 ± 2∆. The transition rule ∆mI = ±1 applies here.
If the quadrupole interaction is only one order of magnitude smaller than the magnetic Zeeman
interaction, i.e., EQ < EZee, also the second order perturbation theory must be taken into
account [44]. This modifies the central transition, as it can be seen clearly in the NMR spectrum
in Figure 3.5: the central transition for the nucleus corresponding to the red line (marked by
a red circle) has a complex line shape instead of a sharp peak, as it is the case for the nucleus
corresponding to the blue line.
The quadrupole frequency can be determined from the distance of the satellites νQ = 4∆ with
∆ = [eQVzz/(8h)](3 cos2 θ − 1) or from the central transition. If η 6= 0, both methods are
possible [44]. Often, the NMR experiment is carried out on a powder sample - and not on a single
crystal - smearing the sharp peaks into broader signals. The peaks for the satellite shoulders
(highest intensity) are obtained for θ = 90◦.
In the left panel of Figure 3.5, an example of an NQR spectrum for the two isotopes 63Cu and
65Cu in Cu2(PO3)2CH2, see Section 5.4, is shown. There is one spectral line for the 63Cu and
one for the 65Cu isotope. Different isotopes have different quadrupole frequencies since they have
different quadrupole moments Q, compare Eq. (3.6). The quadrupole frequency can directly be
read off from the spectrum. The right panel shows an example of an NMR spectrum for 71Ga
in SrGa4, see Section 5.1. In this spectrum, only one isotope is shown. But SrGa4 contains two
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3.5 How can the EFG be calculated?

Figure 3.5: Left: NQR spectrum (taken from Ref. [108]) for 63Cu and 65Cu in Cu2(PO3)2CH2.
Two frequencies due to two different isotopes. Right: NMR spectrum for 71Ga in
SrGa4. Two sets of frequencies (main and satellite transitions) due to two crystallo-
graphic non-equivalent Ga atoms. The red circle marks the second order perturbation
to the central transition, see text.

crystallographic (and therefore chemical) non-equivalent Ga atoms, located at different Wyckoff
positions, see Figure 5.2. Crystallographic non-equivalent atoms have different EFGs due to
different local environments and hence different quadrupole frequencies. Therefore, there are
three spectral lines for 71Ga at the Wyckoff positions (4d) and three for 71Ga at (4e). Here, the
quadrupole frequency is obtained from the distance of the satellites6.

¾
½

»
¼

In general one can write the electric hyperfine splitting as

∆EQ = C(I)eQVzz.

With C(I) (constant for a given nuclear spin), the electronic charge e and the quadrupole moment
Q known, it is possible from such experiments to obtain a value for Vzz. Be aware that from NMR
and NQR experiments, only the absolute value of Vzz can be determined and its sign can not
be provided. This can be understood from the spectra shown above, since only differences in
the frequency are obtained. Perturbed angular correlation (PAC) and Mössbauer spectroscopy,
which use radioactive isotopes, are other methods to measure the quadrupole interaction. While
NMR and NQR require only weak conditions for the ground state of the isotope (I ≥ 1, Q
sufficiently large), these “radioactive” methods work only when the excited nuclear states, as well
as transitions between them, fulfil several conditions. This severely limits the number of isotopes
for which these methods can be applied. The main advantage of the “radioactive” methods is
their higher sensitivity: because the probe isotopes emit radiation themselves, much fewer of
them are needed compared to NMR/NQR: O(1011) vs. O(1017). Another advantage of the latter
methods is that the sign of the quadrupole frequency can be obtained.

3.5 How can the EFG be calculated?

In former times, only the point charge model (PCM) was available to calculate a value for Vzz.
The PCM is an attempt to describe the EFG in solids in the language of classical electrostatics.

6Here, the NQCC CQ = eVzzQ/h = νQ/2 (for I = 3/2) is used
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3 The electric field gradient: EFG

It has a long tradition in the analysis of EFG experiments.

Vzz = (1 − γ∞)V ext
zz + (1 − R)V loc

zz . (3.8)

The first term in Eq. (3.8) describes the contribution to the EFG by point charges, which represent
the ions surrounding the nucleus of interest. The factor γ∞ is the so-called Sternheimer anti-
shielding factor, which represents the deformation from spherical symmetry of the local electron
distribution, a deformation induced by an aspherical arrangement of the surrounding ionic point
charges. This leads usually to an amplification of the EFG (γ∞ ≫ 1), hence the name ‘anti-
shielding factor’. The second term in Eq. (3.8) describes the part of the EFG that is intrinsic to
the local electron distribution, i.e., it is not induced by an external cause. A partially filled 4f
shell is an example of this.

Since 1985 it is also possible to calculate EFGs more accurately from first principle DFT codes.
The full-potential linearised-augmented-plane-wave code WIEN [1] was the first DFT code in
which the formalism to calculate the EFG was implemented [4]. There have been many good
agreements between WIEN EFG calculations and νQ measurements since then, as can be found
in, e.g., Refs. [4, 33, 34, 35, 40, 45, 46].

As already said in the introduction, one task of this PhD work was to implement an EFG mod-
ule in the full-potential local-orbital code FPLO [2]. This was done successfully in 2007. The
implementation is explained in Section 4.1 and results are shown in Section 4.2 and Chapter 5.
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4 Implementation of the EFG

After having explained the basics of the band structure code FPLO (Section 2.3.2) and after
having introduced the electric field gradient (EFG) (Chapter 3), we will now discuss the imple-
mentation of the EFG in FPLO. Furthermore, expressions for the orbital contributions to the
EFG are shown, for the FPLO and WIEN2k (Section 2.3.1) band structure code. Finally, re-
sults of the newly implemented EFG module are presented: EFGs obtained with FPLO will be
compared with EFGs obtained from experiments and from other band structure codes.

4.1 Implementation in FPLO

We start with restating the connection between the Cartesian and spherical notation of the EFG
tensor. With the definition

V2m ≡
√

15

4π
lim
r→0

1

r2
v2m(r), (4.1)

the Cartesian EFG tensor can be expressed in (real) spherical components (l = 2, m = ±2,±1, 0)
(compare Eq. (3.2))

Vij =




V22 − 1√
3
V20 V2,−2 V21

V2,−2 −V22 − 1√
3
V20 V2,−1

V21 V2,−1
2√
3
V20


 . (4.2)

This connection between Vij and V2m will be important later. We start with the Cartesian
notation. In FPLO, the EFG on a nucleus at a given lattice site ~s0 may be represented as the
sum of two contributions, an on-site EFG due to von and an off-site EFG due to voff

Vij ≡
(

∂2

∂i∂j
− 1

3
δij∆

) [
von(~r) + voff (~r)

]
(4.3)

von(~r) =
∑

L

∫
d3~r ′n ~s0,L (|~r ′|)YL (~r ′)

|~r − ~s0 − ~r ′| , (4.4)

voff (~r) =
∑

~R+~s 6=~s0,L

∫
d3~r ′n~s,L (|~r ′|) YL (~r ′)∣∣∣~r − ~R − ~s − ~r ′

∣∣∣
−

∑

~R+~s 6=~s0

Z~s∣∣∣~r − ~R − ~s
∣∣∣
, (4.5)

where YL are the (real) spherical harmonics, ~R is a lattice vector, and ~s is an atom position in
the unit cell. In case of the density n, the index L = lm also absorbs the spin and the principal
quantum number. The first term in Eq. (4.3), the on-site contribution von, comes from the
contribution of the electron density of the site ~s0, and the second term, the off-site contribution
voff , comes from the potential due to all other atoms.
Since the angular momentum components of the local charge density give rise to multipole mo-
ments, which determine the Coulomb potential for large distances, FPLO uses the Ewald method
to handle the long-range behaviour (see Section 2.3.2, page 10). The density is modified with
a Gaussian auxiliary density ñl(r) = nl(r) − nEw

l (r). Inserting this modified density in the
potentials Eq. (4.4) and Eq. (4.5) yields

v(~r) = ṽon(~r) + vEw,on(~r) + ṽoff (~r) + vEw,off (~r) = ṽon(~r) + ṽoff (~r) + vEw(~r). (4.6)
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4 Implementation of the EFG

The EFG is obtained by calculating the radial 2m components (according to Eq. (4.1) and
Eq. (4.2)) of these three contributions.
We start with calculating the radial 2m component of the first contribution in Eq. (4.6): ṽon(~r).
This is obtained by inserting the modified density ñ ~s0,L(r) in Eq. (4.4) and then applying the
Poisson equation. This yields (compare Eq. (2.17), with Rmax being the last point on the radial
mesh)

ṽ ~s0,L(r) =
4π

2l + 1

[ 1

rl+1

∫ r

0
dxxl+2ñ ~s0,L(x) + rl

∫ Rmax

r
dxx−l+1ñ ~s0,L(x)

]
.

Taking the limit r → 0 and using l’Hôpital’s rule, we obtain for the 2m component divided by r2

lim
r→0

ṽ ~s0,2m(r)

r2
=

4π

5

[
n ~s0,2m(0)

5
+

∫ Rmax

0
dxx−1ñ ~s0,2m(x)

]
. (4.7)

The first term in Eq. (4.8) is the 2m component of the electronic density at the nucleus n ~s0,2m(0) ≡
ñ ~s0,2m(0). The n2m component of a spherical harmonic expansion of an analytic function around
a given point behaves as n2m = O(r2). The only non-analyticities of the electron density are
caused by the singularities of the spherical nuclear potential. Therefore, n2m(0) = 0. This can be
shown explicitly both in a non-relativistic and full relativistic theory [47]. Therefore, we obtain
for the Ṽ on

2m component (from which Ṽ on
ij is obtained via Eq. (4.2))

Ṽ on
2m = 2

√
3π

5

∫ Rmax

0
dxx−1ñ ~s0,2m(x). (4.8)

Now, we focus on the radial 2m component of the second contribution in Eq. (4.6): ṽoff (~r). This
potential is given by inserting the modified density ñ~s,L(r ′) in Eq. (4.5). Since the density ñ~s,2m

is not given at the site ~s0, where the atom under consideration is sitting, this equation has to be
expanded around ~s0. This expansion and the resulting (lengthy) expression for Ṽ off

2m (from which

Ṽ off
ij is obtained via Eq. (4.2)) is explicitly presented in Appendix F.

The third and last contribution we have to calculate is vEw(~r) in Eq. (4.6). Here, no 2m compo-
nent has to be calculated since V Ew

ij can be obtained directly. This is due to the Fourier expansion

of the Ewald potential Eq. (2.21). V Ew
ij is obtained by differentiating vEw(~r) =

∑
~G ei ~G~rvEw

~G
:

V Ew
ij = −

∑

~G

(
GiGj −

1

3
~G2δij

)
ℜ(ei ~G~svEw

~G
). (4.9)

The total EFG tensor Vij is given by the sum of these three contributions

Vij = Ṽ on
ij + Ṽ off

ij + V Ew
ij . (4.10)

In order to analyse the on-site and off-site contributions, we define the on-site EFG as being the
first term in Eq. (4.3), but calculated from the unmodified density, which is Eq. (4.8) without the
tilde

V on
2m = 2

√
3π

5

∫ Rmax

0
dxx−1n ~s0,2m(x). (4.11)

The off-site EFG is then given by

V off
2m = V2m − V on

2m. (4.12)
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4.1 Implementation in FPLO

4.1.1 Orbital contributions to the EFG

In FPLO, the electron density is separated into a net density and an overlap density (see Eq. (2.14)
in Section 2.3.2). The dominating net density is calculated from two orbitals at the same site
~R + ~s = ~R ′ + ~s ′ ≡ ~s0

nnet
~s0

(~r) =
occ∑

~k,n,L1,L2

c
~k,n
~s0L1

ϕ ~s0,L1
(~r − ~s0) · c⋆~k,n

~s0L2
ϕ ~s0,L2

(~r − ~s0), (4.13)

where the basis functions ϕ ~s0,L are localised on the atomic site ~s0, cf. Eq. (2.13)

ϕ ~s0,L(~r − ~s0) ≡ φl
~s0
(|~r − ~s0|)YL (~r − ~s0) .

The 2m component of the radial net density, which is needed for the net EFG1, can be decomposed
into a sum of a product of radial wave functions (inserting Eq. (4.13) in the definition of the 2m
component)

nnet
~s0,2m(r) =

∫
nnet

~s0
(~r)Y2m (~r − ~s0) dΩ

=
∑

L1,L2

cL1L2 φl1
~s0
(|~r − ~s0|)φl2

~s0
(|~r − ~s0|)Gm1,m2,m

l1,l2,2 , (4.14)

where Gm1,m2,m
l1,l2,2 are the (real) Gaunt coefficients and cL1L2 =

∑occ
~k,n

c
~k,n
~s0L1

c⋆~k,n
~s0L2

. Due to the prop-

erties of the Gaunt coefficients2, nnet
~s0,2m can consist only of pp, dd, and sd (and if present pf and

ff) contributions. These contributions to the on-site net EFG, V on,net
zz , are obtained by inserting

Eq. (4.14) into Eq. (4.11). For instance, the pp contribution V on,net
2m,pp is calculated from

V on,net
2m,pp = 2

√
3π

5

∫ Rmax

0
dxx−1nnet,pp

~s0,2m (x) (4.15)

with nnet,pp
~s0,2m (x) = [φ1

~s0
(x)]2

∑

m1,m2

cm1,m2
1,1 Gm1,m2,m

1,1,2 .

The main component V on,net
zz,pp = 2√

3
V on,net

20,pp is calculated from

nnet,pp
~s0,20 (x) =

√
1

5π
[φ1

~s0
(x)]2

occ∑

~k,n

(
c
~k,n
~s0,1,0c

⋆~k,n
~s0,1,0 −

1

2

(
c
~k,n
~s0,1,−1c

⋆~k,n
~s0,1,−1 + c

~k,n
~s0,1,1c

⋆~k,n
~s0,1,1

) )
. (4.16)

We see that this density is proportional to the difference of occupation in pz (m = 0) and px,y

(m = ±1) states. If the contribution of the overlap density and the contribution of the off-site
atoms to the EFG are small (Vzz,pp ≈ V on,net

zz,pp ) and if the pp contribution dominates (Vzz ≈ Vzz,pp),
we can relate Vzz to the anisotropy function ∆p

∆p =
1

2
(nx + ny) − nz, (4.17)

where ni, with i = {x, y, z}, is the number of electrons occupying the orbital pi. This value can
be obtained by integrating the orbital resolved partial DOS up to the Fermi energy.

1The total EFG is calculated from the total density, which consists of the net and the overlap density. Hence, the
net EFG is calculated from the (dominating) net density only.

2l1 + l2 + l3 = 2n with n ∈ lN, |l1 − l2| ≤ l3 ≤ |l1 + l2| and m1 + m2 + m3 = 0.
For l3 = 2 ⇒ 1.) l1 = l2 ≥ 1 (pp, dd, and ff) and 2.) |l1 − l2| = 2 (sd and pf).
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4 Implementation of the EFG

Note, that the orbital contributions to the EFG are calculated only for the on-site net EFG, i.e.,
without the off-site contribution of the EFG and overlap contributions of the density . In order
to have a descriptive picture, this can (in a first approximation) be compared to calculating the
EFG only inside an atomic sphere, as used in the WIEN2k code, where the contributions of the
other atoms are neglected3. In many cases, the off-site contribution to the EFG can be neglected,
and in most cases, the overlap density contributes well below 10 % to the total EFG. Therefore,
this approximation is valid for many compounds. However, it should always be checked carefully
before drawing too hasty conclusions, see e.g., Section 5.3, where in the perovskites SrTiO3 and
BaTiO3 the off-site EFG is unusually large.

In WIEN2k, the EFG consists of two contributions, the so-called “valence” EFG, which is the
EFG inside the atomic sphere only, and the “lattice” EFG, which is due to the interstitial region
and all other atoms, that do not reach inside the atomic sphere under consideration. The latter
is calculated from the difference of the total and the valence EFG. In WIEN2k, the orbital
contributions to the EFG are calculated for the valence EFG, i.e., inside the atomic sphere of
the atom under consideration. This means, a similar approximation for the orbital contributions
is made like in FPLO. Inside the sphere, the electronic charge density n(~r) is expressed as a
spherical expansion [41]

nLM (r) =
∑

E<EF

∑

l1m1

∑

l2m2

Rl1m1(r)Rl2m2(r)G
Mm1m3
Ll1l2

. (4.18)

The Rlm are radial functions with angular momentum l1 or l2, and the GMm1m3
Ll1l2

are the Gaunt
coefficients. For L = 2 we obtain the same conclusions as before. Hence, the EFG consists of pp,
dd, sd, pf and ff contributions. If the lattice EFG is negligible, the total EFG may be expressed
by the valence EFG, Vzz ≈ V val

zz . In many cases, the pp and dd contribution dominate, hence,
Vzz ≈ V pp

zz + V dd
zz .

Finally, we want to make a remark about the sign of the EFG. In the early days of the WIEN
code (1985), the naive definition for the EFG was used, e.g., in Ref. [4]. In this definition the
sign is given as presented in this chapter. Shortly afterwards, the “experimental” convention was
chosen [48], where the EFG has per definition the opposite sign4. The same convention (with
the minus sign) is used in FPLO. This sign convention is the reason for the different signs in
Eq. (4.16) and Eq. (4.17).

4.1.2 Remark about the potential

In the older literature from 10 to 20 years ago, the EFG is correctly defined as the second derivative
of the total electrostatic potential, which is determined from the Poisson equation of the total
(the nuclear and electronic) charge density, e.g., in Refs. [36, 40, 49]. To be more precise: the total
density is the density of all electrons and all nuclei, except for the nucleus under consideration,
located at r = 0. Because the classical electrostatic interaction energy describes the interaction
of that nucleus in the potential caused by the other nuclei and the electrons and the EFG is the
second derivative of that potential.
In the newer literature, however, the EFG is sometimes introduced as the second derivative of
the electronic potential only, e.g., in Ref. [35, 45].
As we have seen in this chapter, the on-site EFG (or valence EFG), is indeed calculated from
the electronic charge density only. Since it is calculated from an integral over the n2m charge

3In the WIEN2k code, the contributions of the other atoms to that atomic sphere are of course not neglected:
density from the neighbouring atoms that reaches into the present muffin tin sphere, is re-expanded in s, p ,d,
f ,.. contributions inside that sphere. Neglecting these contributions of the neighbouring atoms is comparable
with neglecting the overlap density in FPLO.

4In the WIEN code, an “artificial” minus sign is introduced in the module lapw0.F of the WIEN2k source code:
efgb(jatom)%V20 = −V(nuc,LM1,jatom).
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4.2 Implementation tests

Table 4.1: Vzz in 1021V/m2 for the hcp metals obtained by different band structure codes. The
first column contains Vzz calculated 20 years ago with the WIEN code [40]. The values
in the second column are obtained 20 years later with the same (but over the years
modified) code6. The third column shows the EFG obtained with the Korringa-Kohn-
Rostoker (KKR) method from 2005 [50]. The forth column contains the EFG obtained
from the FPLO code (version 5.00-19)5. The last columns gives the experimental
values, which were obtained in the 1980s, as given in [50]. Only for six elements the
sign has been determined and is explicitly mentioned (no sign means undetermined).

Element WIEN[40] WIEN2k6 KKR[50] FPLO 55 Exp.[50]

Be −0.04 −0.06 −0.05 −0.05 0.04

Mg +0.05 +0.04 +0.03 +0.05 0.05

Sc +0.96 +0.96 +1.14 +0.86 0.38

Ti +2.07 +1.75 +2.05 +1.68 1.61

Co −0.19 −0.29 −0.14 −0.36 −2.90

Zn +3.75 +4.29 +3.90 +4.13 +3.48

Zr +4.29 +4.14 +4.15 +3.86 4.40

Tc −1.47 −1.74 −1.53 −2.07 1.83

Ru −1.23 −1.62 −1.37 −2.00 0.97

Cd +7.62 +8.13 +8.53 +8.40 +6.50

La – +0.91 +1.28 +1.12 1.62

Hf – +8.12 +9.11 +7.42 +7.33

Re – −6.49 −3.37 −7.15 −5.12

Os – −7.02 −4.84 −7.42 −4.16

density inside the atomic sphere, in which only the nucleus at r = 0 is located. The potential
caused by the other nuclei comes into play, however, when the off-site EFG (or lattice EFG) is
calculated. In both WIEN2k and FPLO, this is done as a multipole summation in Fourier space
see e.g., Ref. [40] and Eq. (2.19), respectively. The Fourier sum is also the reason why no orbital
contribution for the lattice (or off-site) EFG can be calculated.

As it was shown in previous investigations and will be shown in Chapter 5, the off-site contribu-
tion is negligible in many cases. Therefore, the EFG is a measure for the amount of deviation
from cubic symmetry of the electron charge density in the proximity of the nucleus – as it was
introduced in Section 3.2.

4.2 Implementation tests

In order to check the correctness of the EFG module, we calculated5 the EFGs for the hcp metals
and compared them with experimental EFGs and EFGs obtained from other band structure
codes6, see Table 4.1.

5FPLO 5: The calculations (using LDA) were performed in space group 194 (P63/MMC), with the atom at the
Wyckoff position 2d (1/3,2/3,3/4). To ensure a converged k mesh, 819 k points were used in the irreducible
part of the Brillouin zone. The experimental lattice parameters a and c as given in [50] were employed. Since
the scalar relativistic treatment yields slightly too large EFGs for heavy elements (see also second remark at
the end of this section), the full relativistic treatment was applied for the elements Tc to Os.

6WIEN2k: Same parameters as for the FPLO calculation with default values for all WIEN-specific parameters.
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Figure 4.1: Vzz for the hcp metals obtained by different methods, WIEN [40], WIEN2k6,
KKR [50], FPLO 55 and experiment [50], cf. Table 4.1. For better visual com-
parison, all values are potted in 1021 V/m2. A star ∗ at the element symbol means
this EFG value has to be divided by 10 (∗∗ by 100), see text.

The results of Table 4.1 are plotted in Figure 4.1. For better visual comparison, all values are
potted with the first pre-decimal position in the unit 1021 V/m2. The hcp metals with smaller
EFGs are marked by stars ∗, which means this EFG value has to be divided by 10(∗) or 100(∗∗).
In Table 4.1, we see that all codes agree in the sign of the EFG for any hcp element. Besides,
also the absolute values of the EFGs obtained with the different band structure codes agree quite
well. There are elements where the quantitative agreement is better (e.g., Ti, Zn, Zr and Tc) and
others, where the deviation is larger (e.g., Re and Os). Focusing on FPLO and WIEN2k, also for
the heavy elements Re and Os a good agreement is obtained.

FPLO gives also good results compared to the experimental values. We obtain the same sign
(if determined) and in most cases also good agreement with the absolute value. Since such a
comparison relies on the accuracies of the quadrupole moment Q, this could be one reason for
the deviation for the heavy elements Re and Os, where FPLO and WIEN2k agree well.

In Chapter 5, there will be more comparisons of EFGs that have been calculated with FPLO and
EFGs from WIEN2k and experiments. Since also there, good agreement is obtained, we conclude
that the implementation of the EFG module in the FPLO code was successful.

But there are two points to consider. First, the EFG is very dependent on the basis. In FPLO 5,
the standard basis is often not good enough and one must therefore carefully improve the basis
(by adding polarisation states and checking grouping) to obtain a converged EFG, see Figure 4.2.
Although many properties (e.g., the bulk modulus) do not crucially depend on the basis, the same
basis set dependence has been observed for the electron localisation function (ELF) [51]. In the
new FPLO versions (6 to 8), the basis set has been improved and the default basis is sufficient.

The second point to consider is the scalar relativistic treatment, which also works quite well for
most purposes. But as it will be explained in more detail in Section 6.3.2, there is an inherent
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 Cu ::(3s3p3d)/(4s4p4d)+5s5p

Figure 4.2: Basis dependence of the EFG (red, full line) and the energy (blue, dashed line) in
FPLO 5 for the compound La2CuO4 as an example. For four examples the basis
sets are given explicitly: modifications are done in the semicore/valence+polarisation
states and in the grouping indicated by brackets () (i.e., all states within the brackets
have the same x0 value, cf. page 10).

problem with any formulation of the scalar relativistic approximation for the l = 2, m density,
which is used to calculate the EFG. Two divergent p1/2 functions cause to some extend wrong
nonzero n2m(r) density components for r → 0, which cause too large EFGs. This is less crucial
in FPLO 5 and more crucial in FPLO 6 to FPLO 8. To avoid this problem for heavy elements,
the full relativistic treatment should be and was chosen.
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5 Application of the EFG: studied compounds

5.1 The di- and tetragallides MGa2 and MGa4

5.1.1 Introduction

Contrary to the ionic and covalent bond, which are rather well understood in their idealised
form, the interplay of different bonding types is often complex. This is in particular the case
for many intermetallic compounds. Since these often have a non-stoichiometric composition, a
local probe method will be a valuable tool to examine the local geometry of the atoms. Nuclear
magnetic resonance spectroscopy (NMR) is an example of such a method. In order to interpret the
experimental data correctly, the observable quantity that is used to probe the local geometry needs
to be well understood. In our case, we use the electric field gradient (EFG) as observable quantity.
The EFG can be measured through the quadrupole interaction. This interaction between a non-
cubic charge distribution and non-spherical nuclear charge distribution, can be measured by, e.g.,
NMR, yielding the quadrupole coupling constant. The EFG can also be obtained from density
functional theory (DFT) band structure calculations, which provides a straightforward relation
between the spectroscopic data and the electron density. Hence, the evaluation of the EFG
provides us with (indirect) information about the chemical bond. To investigate the reliability of
EFG calculations for intermetallic compounds, two series of intermetallic compounds were chosen
as model compounds: the digallides MGa2 with M = Ca, Sr and Ba and the tetragallides MGa4

with M = Na, Ca, Sr and Ba. These compounds fulfil the structural requirement of the Zintl
concept, as the Ga atoms form poly-anionic components and the M atoms are isolated cations, but
they do not fulfil the “8−N counting rule”, except for the digallides in a first approximation [52].

Ga shows a high flexibility with respect to the chemical bonding: the hexagonal MGa2 with
M = Sr, Ba crystallises in the AlB2-type structure (space group P6/mmm) [53], whereas CaGa2

crystallises in the CaIn2-type structure (space group P63/mmc) [54], see Figure 5.1. MGa2 with
M = Sr, Ba consists of a planar network of 3-bonded Ga atoms. In CaGa2, the Ga layer is
puckered and from the inter-atomic distances it can be concluded that the Ga atoms are 3+1-
bonded, rendering a transition from a 2D net to a 3D framework [52, 54].
The tetragonal MGa4 with M= Na, Sr and Ba crystallises in the BaAl4-type structure (space
group I4/mmm) [52, 55], see left panel of Figure 5.2. CaGa4 crystallises in its own structure

a
b

c

Figure 5.1: Crystal structure of MGa2 (M = Sr, Ba) (left) and CaGa2 (right), M is represented
by the red and Ga by the blue spheres. The unit cells are shown by the black lines.

28



5.1 The di- and tetragallides MGa2 and MGa4 (M = Na, Ca, Sr, Ba)

c

b
a

c

b
a

Figure 5.2: Crystal structure of MGa4 (M = Na, Sr, Ba) (left) and CaGa4 (right). M is repre-
sented by the red, the 4-bonded Ga(4b) by the green and the 5-bonded Ga(5b) by
the blue sphere. The unit cell is shown by the black lines.

type, which is a monoclinic distorted version of the BaAl4-type (space group C2/m) [54], see
right panel of Figure 5.2. In all four compounds, the Ga atoms form a 3D framework by four-
and five-bonded Ga atoms, abbreviated with Ga(4b) and Ga(5b), respectively. In case of MGa4,
Ga(4b) is located at the Wyckoff position 4d and Ga(5b) at 4e while in case of CaGa4, Ga(4b) is
located at the Wyckoff position 4h and Ga(5b) at 4i.

We present a study of the electric field gradient for the different Ga environments in these com-
pounds. For the di- and tetragallides, the quadrupole coupling constants were measured by NMR,
and the EFG was calculated using two DFT band structure codes: FPLO and WIEN2k.

Furthermore, these compounds were used to test the newly implemented EFG module in the
FPLO code by comparing the results to EFGs calculated with the well-established WIEN2k
code, see Section 3.5.

5.1.2 Methods

As already mentioned in the introduction, the band structure codes FPLO and WIEN2k were
used to calculated the EFG. The structural parameters were optimised with the FPLO code
(version 5.00-19) [2], within the local density approximation. In the scalar relativistic calculations,
the exchange and correlation functional of Perdew and Wang [15] was employed. As basis sets
Ga(3s3p/4s4p3d+5s5p), Na(2s2p/3s3p3d+4s4p), Ca(3s3p/4s4p3d+5s5), Sr(3p3d4s4p/5s5p4d+
6s6p) and Ba(4s4p4d5s5p/6s6p5d+7s7p) were chosen for semicore/valence +polarisation states.
The polarisation states were only applied in the EFG calculation. The lower lying states were
treated fully relativistic as core states. 504, 432 and 455 k points were used in the irreducible part
of the Brillouin zone (IBZ) for MGa2 with M = Ba, Sr and Ca, respectively. 349, 476, 405 and
405 k points were used in the IBZ for MGa4 with M = Na, Ca, Sr and Ba, respectively. The EFG
and the Fermi surfaces were calculated with FPLO using the optimised structural parameters.

The EFG and the density of states (DOS) were also calculated with the full-potential augmented
plane wave plus local orbitals (APW+lo) code WIEN2k [1], using the optimised structural pa-
rameters. To be consistent, the exchange and correlation potential of Perdew and Wang and the
same number of irreducible k points as for the optimisation of the lattice parameters were used.
The chosen atomic sphere radii (RMT ) are RMT = 2.5 a.u. for M , and for Ga in the digallides:
RMT = 2.46 a.u. in CaGa2, RMT = 2.33 a.u. in SrGa2 and RMT = 2.38 a.u. in BaGa2 and for
Ga in the tetragallides: RMT = 2.29 a.u. in NaGa2, RMT = 2.27 a.u. in CaGa2, RMT = 2.31 a.u.
in SrGa2 and RMT = 2.39 a.u. in BaGa2. In all compounds, the number of basis functions was
determined by a value of RMT Kmax of 8.5. The separation energy was set to −6.0 Ry, treating
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5 Application of the EFG: studied compounds

Table 5.1: Experimental [52] and optimised (with the FPLO code [2]) lattice parameters for the
MGa2 structures.

Compound a(exp) [Å] a(opt) [Å] Dev. [%] c(exp) [Å] c(opt) [Å] Dev. [%]

CaGa2 4.4731(1) 4.3982 -1.7 7.3838(5) 7.1206 -3.6

SrGa2 4.3484(2) 4.2911 -1.3 4.7360(5) 4.5470 -4.0

BaGa2 4.4322(1) 4.3933 -0.9 5.0824(6) 4.8972 -3.6

Ga(3d4s4p), Na(2s2p3s), Ca(3s3p4s), Sr(4s4p5s) and Ba(5s5p6s) as semicore and valence states.
The maximum l value for partial waves inside the atomic spheres was set to 10.

5.1.3 Results

We start with focusing on the digallides. The obtained optimised lattice parameters for the
digallides are given in Table 5.1. The deviation between the optimised and experimental lattice
parameters [52] are well within the typical range of the LDA over-binding problem, predicting
too small lattice parameters. The Ga z coordinate in CaGa2 was relaxed from the experimentally
observed zexp = 0.0421(2) [56] to zopt = 0.0447.

The total density of states (DOS) for these three compounds is shown in the left panel of Fig-
ure 5.3. While the total DOS is quite similar on the whole, it differs somewhat when looking at
the details – especially at the Fermi energy. Whereas for CaGa2, the Fermi level is located in a
pseudo gap, this is different for the compounds with AlB2-type structure: for SrGa2, the Fermi
level is on the high energy shoulder and for BaGa2 on top of a flat maximum of the DOS. This
challenges the structural stability. We will come back to this point later. In the right panel of
Figure 5.3, the partial (m resolved) DOS of the Ga 4p states is shown. We observe the same
behaviour at the Fermi level. Furthermore, for all three compounds, the Ga px states, which
are due to the hexagonal symmetry identical to the py states, are more occupied than the pz

states: nx = ny > nz. This corresponds to an oblate electron density at the Ga atoms: since
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Figure 5.3: Left: total electronic density of states (DOS) for MGa2, with M = Ca (blue), Sr (red)
and Ba (green). Right: partial (m resolved) DOS for Ga in the three compounds,
px = py and pz (full red and blue line, respectively) and the integrated partial DOS,
nx = ny and nz (dashed red and blue line, respectively).
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5.1 The di- and tetragallides MGa2 and MGa4 (M = Na, Ca, Sr, Ba)

EFG CaGa2 SrGa2 BaGa2

V exp
zz 4.44(8) 5.22(9) 4.48(8)

V F
zz 3.74 4.31 4.41

V W
zz 3.77 4.13 4.38

V lat
zz −0.10 −0.14 −0.10

V val
zz 3.87 4.27 4.48

V pp
zz 4.29 4.48 4.51

V sd
zz 0.02 0.02 0.02

V dd
zz −0.47 −0.29 −0.09

3.5

4

4.5
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5.5

V
zz

 [1
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21
V

/m
2 ]

CaGa2 SrGa2 BaGa2

15%
16%

17%
21%

1.6%
2.2%

Ga FPLO
Ga WIEN

Figure 5.4: Left: experimental [52] and calculated EFGs for Ga using FPLO (indicated by F ) and
WIEN2k (indicated by W ) in 1021 V/m2. For V W

zz also the different contributions,
according to Section 4.1.1, are given. Right: Vzz obtained from the experiment
(V exp

zz , green bar), from FPLO (V F
zz , orange square) and from WIEN2k, (V W

zz , red
circle). Deviations of V F

zz and V W
zz from the experimental EFGs are given in percent.

the orbitals of the core states are fully and the orbitals of the semicore states1 are almost fully
occupied, only the valence states can cause a significant deviation from spherical symmetry. Since
s orbitals are spherical, the 4p states are the only relevant valence states for the EFG. That the
valence electrons are responsible for the EFG can also be checked with the EFG module within
the WIEN2k code: the EFG can be calculated for different energy intervals. The upper energy
limit is the Fermi energy, since there are no occupied states at higher energies. If one calculates
the EFG by decreasing the lower energy limit from the Fermi energy to lower energies, the EFG
increases from zero until it saturates at roughly 9 eV below the Fermi energy – the edge of the
valence states, see Figure 5.3. Taking into account even deeper lying states changes the EFG
only insignificantly, i.e., the polarisation from core and semicore states is small. Hence, the EFG
is sensitive to the electrons responsible for the chemical bonding.

Next, we compare the EFG for Ga measured with NMR [52] and calculated with WIEN2k and
FPLO, using the optimised structural parameters. The results are shown in Figure 5.4. The
obtained values for FPLO and WIEN2k agree well with each other. For BaGa2, the calculated
and measured EFGs are in perfect agreement. For CaGa2, the calculated EFGs are on the edge
of the usually considered range of deviation from the experiment, which is ±15 %2. For SrGa2,
the deviation is even larger.

Before discussing this deviation, we will first analyse the EFG, according to the definitions given
in Section 4.1.1 on page 24. As it can be seen from the table in Figure 5.4, the lattice contribution
V lat

zz to the EFG is negligible for all three compounds. The total EFG is almost identical to the
valence EFG V val

zz , which can be decomposed into further contributions. For all three compounds,
the pp contribution dominates clearly - the EFG of Ga is mainly caused by anisotropic 4p electrons.
The same results are also obtained for FPLO: the off-site EFG is negligible and the pp contribution
to the on-site EFG is predominant. The positive sign of the EFG is in line with the obtained
oblate 4p electron density, see above.

1This includes the Ga 3d states, their anisotropy is negligible compared to the anisotropy of the 4p states.
2Although there are no error bars given for the calculated EFGs in table in Figure 5.4, be aware that also for

these EFGs a “numerical” error bar exists: the k mesh, the basis set, the (accuracy of the) convergence criteria
and the exchange functional influences the EFG to a greater or lesser extent. Furthermore, the calculated EFG
is very sensitive to structural parameters.
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Figure 5.5: Energy per Ga atom (top) and Vzz (bottom) for SrGa2 (left) and BaGa2 (right)
in dependence of the displacement of Ga along [001] in the CaIn2-type structure.
The thermal energy at ambient temperature is marked by a red line (top) and the
experimental EFG by a green error bar (bottom).

The unusual large deviation between the measured and calculated EFG of Ga in SrGa2 (Fig-
ure 5.4) is resolved in the following. Single-crystal X-ray diffraction experiments at ambient
temperature showed a strong anisotropic displacement of the Ga atoms in SrGa2 [52]. However,
using the CaIn2- (P63/mmc), the EuGe2-type structure (P3m1) or the space group P3m1 in
the refinement of the crystallographic X-ray data, an ordered deviation of the Ga atoms from
the position in the AlB2-type structure was excluded. Yet, a split-site model for the Ga position
within the AlB2-type structure with a displacement of ±0.086 Å does not only model the statistic
puckering of the Ga layers but results also in a similar quality in the structure refinement [52].

In order to approximate this split-site model theoretically, we calculated SrGa2 in the CaIn2-type
structure. In the according space group (P63/mmc), the position of the Ga atom can be relaxed
with respect to the total energy along [001]. For the calculation we used the corresponding
optimised lattice parameters from SrGa2 in the AlB2-type structure (Table 5.1). Total energy
calculations for different z positions yield a minimum in energy for a displacement of ±0.125 Å, see
top graph in the left panel of Figure 5.5. We cross-checked this calculation in the CaIn2-type model
also for the experimental lattice parameters (Table 5.1) and using the GGA PBE xc-functional [16]
– neither the position of the energy minimum, nor the energy difference changed significantly. The
energy gain for the Ga atom being at the minimum position with d = ±0.125 Å is about 0.01 eV.
This is well below the thermal energy at ambient temperature (300 K =̂ 0.026 eV), see top graph
in the left panel of Figure 5.5. At ambient temperature, dynamical disorder of the Ga atoms is
expected for such a flat potential curve and therefore no ordering of the Ga atoms is expected
which is in line with the experimental observation. In order to determine whether the anisotropic
displacement parameters are due to a thermal motion or a static statistic displacement of the
Ga atoms, temperature dependent experiments have to be performed, for instance, single-crystal
X-ray diffraction. If the thermal motion is the cause of the anisotropic displacement parameters,
they should go to zero for T → 0 measurements. Another possibility to distinguish experimentally
between static and thermal displacement is to measure the quadrupole coupling as a function of
temperature on the cation, i.e., on Ba3. The thermal movement of the Ga atoms should result

3This NMR experiment should be done on Ba and not Sr for two reasons: (i) whereas 135Ba and 137Ba have a
nuclear spin of I = 3/2, 87Sr has I = 9/2 and hence more complicated spectra, and (ii) the absolute value
of the EFG (and therefore the quadrupole frequency) is larger for Ba, Vzz = −4.01 · 1021 V/m2, than for Sr,
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Figure 5.6: The quadrupole frequency
CQ = eQVzz/h [52, 57] in
dependence of the electric
field gradient Vzz for 71Ga in
MGa2 (M = Ca, Sr, Ba) and
MGa4 (M = Na, Sr, Ba). Vzz

was calculated with FPLO,
Figure 5.4 (except for SrGa2:
Vzz = 4.86 · 1021 V/m2, see
text) and Table 5.4. The
slope of the fit results in
the quadrupole moment
Q = 112 mb for 71Ga.

in a reduced quadrupole frequency at the cation. At temperatures below the thermally activated
process, the quadrupole coupling parameter should increase [44].

This displacement of the Ga atoms along [001] determined from the analysis of the total energy,
is not only in line with single-crystal X-ray diffraction experiments (split-site model), but also
with the agreement of the EFG of the NMR experiment. In the bottom graph in the left panel
of Figure 5.5, we see that Vzz increases with increasing Ga displacement. For the displacement
of ±0.125 Å, the calculated EFG agrees with 7 % deviation well with the experimental EFG.
Comparing the calculated EFGs for all di- and tetragallides with the experimental ones (see
Figures 5.4 and 5.10), we observe a systematic deviation in direction of smaller values for the
calculated EFGs. This indicates a slightly too small quadrupole moment, as Q enters the equation
to convert the quadrupole frequency to the EFG: CQ = eQVzz/h. Indeed, if we plot the measured
quadrupole coupling frequencies for 71Ga [52, 57] as a function of the EFGs calculated by FPLO
(Figure 5.6), we obtain a quadrupole moment of Q = 112 mb, which is slightly larger than the
one reported in literature of Q = 107 mb [58] for 71Ga.

We also performed calculations in the EuGe2-type structure. The main difference between these
two structure types is the stacking of the Ga layers. In the EuGe2-type model, the Ga atoms
are displaced in the same direction and every layer is the same. In the CaIn−2-type structure,
the Ga atoms are displaced towards each other and every other layer is the same. Relaxing the
position of the Ga atoms along [001] in the EuGe2 type structure yields the same trend for the
total energy and the EFG in SrGa2. However, compared to the relaxation in the CaIn2-type
structure, the energy gain in the EuGe2-type structure is roughly 0.01 eV smaller. Furthermore,
the discrepancy in the measured and calculated EFG for Ga in SrGa2 still remains as the EFG
increases less drastically. Therefore, an atomic model, where the Ga atoms are displaced in the
same direction as it is modelled with the EuGe2-type structure can be excluded.

Applying the CaIn2-type structure to BaGa2 results in a very similar behaviour for the total
energy. Also here, a minimum in energy is obtained for a displacement of Ga along [001] by
±0.125 Å, see top graph in the right panel of Figure 5.5. This is in line with the displacement of
the Ga atoms obtained from X-ray diffraction of ±0.071 Å [52].

Since the EFG does not change significantly for a displacement of −0.125 Å < d < 0.125 Å, see
bottom graph in the right panel of Figure 5.5, no deviation between the experimentally and theo-
retically obtained EFG was observed for the calculation using the AlB2-type structure. Although
the dependence of the total energy on the Ga z position is very similar for SrGa2 and BaGa2, the

Vzz = 0.62 · 1021 V/m2, in MGa2 (FPLO calculation).
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5 Application of the EFG: studied compounds

Table 5.2: Plasma frequencies obtained from the Fermi velocity tensor in-plane (ωx
P = ωy

P = ω
‖
P )

and out-of-plane ωz
P = ω⊥

P for the relaxed digallides, all in the CaIn2-type structure,
cf. Figure 5.5.

Compound ω
‖
P [eV] ω⊥

P [eV] ω
‖
P /ω⊥

P

CaGa2 2.48 1.53 1.62

SrGa2 3.51 2.22 1.58

BaGa2 3.04 1.55 1.96

Figure 5.7: Fermi surfaces for different bands for CaGa2 (CaIn2-type structure, top row), SrGa2

(AlB2-type structure, middle row) and BaGa2 (AlB2-type structure, bottom row).
The Fermi velocity is indicated by the colouring, from high (red) to low (blue) velocity.
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dependence of Vzz on the Ga z position shows a very different behaviour. This demonstrates again
the complexity of the electric field gradient and is not yet fully understood. The difference in the
absolute value of the EFGs on Ga in the isotypic structures SrGa2 and BaGa2, and SrGa4 and (an
artificial tetragonal) CaGa4 may result from different Ga-Ga and cation-Ga distances or alkaline
earth metal-Ga interactions. These questions are currently investigated in the collaboration of
Frank Haarmann and Peter Jeglič.
Furthermore, an analysis of the DOS for BaGa2 in the CaIn2-type structure with Ga at the
energetically optimised z position shows that the maximum at the Fermi level, cf. Figure 5.3, is
shifted to lower energies. Thus, the distortion is driven by the large DOS at the Fermi energy.

Finally, we analyse the Fermi surfaces and velocities and the plasma frequencies obtained from
the Fermi velocity tensor for these three compounds, see Figure 5.7 and Table 5.2. For the Ca
digallide, the Fermi surfaces are different compared to the other two digallides. The unit cell
in the CaIn2-type structure contains two formula units and compared to the unit cell in the
AlB2-type structure it is twice as large along [001] in real space. Therefore, the Fermi surfaces
are compressed along [001]⋆ for CaGa2. The Fermi surfaces for SrGa2 and BaGa2 are shown for
the AlB2-type structure. Taking into account the distortion (cf. Figure 5.5), i.e., calculating the
Fermi surfaces in the CaIn2-type structure, yields five instead of three Fermi surfaces: the three
Fermi surfaces shown in Figure 5.7 remain basically the same and two additional cylinder shaped
Fermi surfaces appear. The underlying physics, however, remains the same. Therefore, we will
show and discus the fewer Fermi surfaces from the AlB2-type structure. The Fermi velocity is
perpendicular to the Fermi surface. On the average, the Fermi velocity is largest in the (001)
plane, which is the same in k space and in real space due to the hexagonal space group. The
same conclusion is obtained from the plasma frequencies ωP , see Table 5.2, where the distortion
for SrGa2 and BaGa2 is taken into account (ωP is calculated in the CaIn2-type structure for all

three digallides). The plasma frequency ω
‖
P in the (001) plane is almost twice as large as ω⊥

P

perpendicular to that plane. Hence, the Lorentz force ~F = q(~v × ~B), which occurs if the sample
is put into a magnetic field ~B, is minimal if ~v is parallel to ~B. This is what is observed in the
NMR experiment: the (001) planes of the crystallites are oriented parallel the magnetic field
~B, which is parallel to [001]. Analysing the orbital characters of the bands, we conclude that
the high Fermi velocities in the (001) plane are due to the px and py electrons, which hybridise
with each other and the s states. Therefore, the electron transport in MGa2, with M = Ca, Sr
and Ba is predominantly conducted via the px- and py-like electrons, taking place parallel to the
honeycomb-like Ga layers, which are formed by strong Ga bonds.

Now, we turn to the tetragallides. The obtained optimised lattice parameters are given in Ta-
ble 5.3. The deviations between the optimised and experimental lattice parameters [57] are well
within the typical range of the LDA over-binding problem, similar to the digallides. Furthermore,
for MGa4 with M = Na, Sr and Ba, the optimised z coordinates of Ga(5b) at the Wyckoff posi-
tion 4e and for CaGa4, the optimised x and z coordinates of Ga(5b) at the Wyckoff position 4i,
and the optimised y coordinate of Ga(4b) at the Wyckoff position 4h are given.

The total density of states for the four tetragallides is shown in the left panel of Figure 5.8. We
observe that the total DOS is quite similar for these four compounds. The DOS of the tetragallides
containing the lighter cations, NaGa4 and CaGa4, and the DOS containing the heavier cations,
SrGa4 and BaGa4 share even more similarities: the DOS has almost the same shape, but the
peaks are shifted with respect to each other. Contrary to the undistorted digallides, the Fermi
level is located in a pseudo gap for all four tetragallides. This is in line with the obtained good
agreements for the EFG, see below.

In the right panel of Figure 5.8, the partial (m resolved) DOS for the 4p states of Ga(5b) and
Ga(4b) for SrGa4 are shown. Also here, we checked with the WIEN code that the valence electrons
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5 Application of the EFG: studied compounds

Table 5.3: Experimental [57] and optimised (with the FPLO code [2]) lattice parameters for
MGa4, with M = Na, Ca, Sr and Ba. The monoclinic angle in CaGa4 was deter-
mined by X-ray powder diffraction to be β = 118.922◦ [44], in perfect agreement
with β = 118.94(2)◦ from Ref. [55]. The experimental [59, 55, 60, 61] and optimised
z coordinates of Ga(5b) are given for M = Ba, Ca, Na and Sr, respectively. For
M = Ca, also the internal x and y coordinates were relaxed from x(exp)=0.4050(3) [55]
to x(opt)=0.4042 for Ga(5b) and y(exp)=0.2328(3) [55] to y(opt)=0.2345 for Ga(4b).

NaGa4 CaGa4 SrGa4 BaGa4

a(exp) [Å] 4.2257(8) [57] 6.1823(1) [57] 4.4466(2) [57] 4.5660(1) [57]

a(opt) [Å] 4.1654 6.0393 4.3597 4.4838

Dev. [%] -1.4 -2.3 -2.0 -1.8

b(exp) [Å] 6.1350(3) [57]

b(opt) [Å] 6.0140

Dev. [%] -2.0

c(exp) [Å] 11.197(2) [57] 6.1190(2) [57] 10.7451(7) [57] 10.7753(5) [57]

c(opt) [Å] 11.0722 6.0282 10.6063 10.7012

Dev. [%] -1.1 -1.5 -1.3 -0.7

z(exp) Ga(5b) 0.3888(6) [60] 0.7692(3) [55] 0.38299(9) [61] 0.3799(1) [59]

z(opt) Ga(5b) 0.3898 0.7713 0.3840 0.3810
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Figure 5.8: Left: total density of states (DOS) for MGa4, with M = Na (orange), Ca (blue), Sr
(red) and Ba (green). Right: m resolved partial DOS for the 5-bonded Ga(5b) (left)
and the 4-bonded Ga(4b) (right) in SrGa4, cf. Figure 5.2, px = py and pz (full red
and blue line, respectively) and the integrated partial DOS, nx = ny and nz (dashed
red and blue line, respectively).

36



5.1 The di- and tetragallides MGa2 and MGa4 (M = Na, Ca, Sr, Ba)

Table 5.4: Vzz in 1021 V/m2 for Ga obtained from the experiment [57] and band structure codes
FPLO (indicated by F ) and WIEN2k (indicated by W ). For V W

zz , also the different
contributions, according to Section 4.1.1, are given. For MGa4, with M =Na, Sr and
Ba, η is zero, for CaGa4, ηexp=0.28(10) for Ga(5b) and ηexp=0.34(10) for Ga(4b).
The calculated η is identical for FPLO and WIEN2k: ηF/W =0.23 for Ga(5b) and
ηF/W =0.26 for Ga(4b).

Compound Atom |V exp
zz | V F

zz V W
zz V lat

zz V val
zz V val

zz (pp) V val
zz (dd)

NaGa4 Ga(5b) 6.49(10) −6.23 −6.18 0.12 −6.30 −6.54 0.29

NaGa4 Ga(4b) 4.64(8) −4.60 −4.44 −0.03 −4.41 −4.59 0.17

CaGa4 Ga(5b) 2.89(10) −2.94 −2.80 0.10 −2.90 −3.18 0.33

CaGa4 Ga(4b) 4.87(16) −4.90 −4.73 −0.03 −4.70 −4.86 0.16

SrGa4 Ga(5b) 2.51(6) −2.41 −2.24 0.08 −2.32 −2.56 0.28

SrGa4 Ga(4b) 5.95(9) −5.74 −5.64 −0.03 −5.61 −5.80 0.18

BaGa4 Ga(5b) 1.20(3) −1.26 −1.01 0.06 −1.07 −1.22 0.18

BaGa4 Ga(4b) 5.99(9) −5.99 −5.96 −0.03 −5.94 −6.12 0.17

are responsible for the EFG: applying the same procedure as for the digallides, the EFG saturates
at roughly 10 eV below the Fermi energy, the edge of the valence states (Figure 5.8), i.e., the
polarisation from core and semicore states is small. For both, Ga(5b) and Ga(4b), the px states,
which are due to the tetragonal symmetry identical to the py states, are less occupied than the
pz states: nx = ny < nz. This corresponds to a prolate electron density at both Ga atoms. The
situation is very similar for the other three tetragallides – note that CaGa4 has no tetragonal
symmetry and hence nx 6= ny. Nevertheless, the anisotropy function ∆p = 1

2(nx + ny) − nz

(cf. Eq. (4.17)) is negative for all four tetragallides (prolate electron density), contrary to the
digallides, where the electronic density at the Ga atom was compressed along z (oblate).

Next, we compare the EFGs for Ga(5b) and Ga(4b) measured with NMR [57] and calculated with
WIEN2k and FPLO. The results are sown in Table 5.4 and in the left graph in Figure 5.10. The
values obtained by FPLO and WIEN2k agree well with each other. Compared to the experimen-
tally obtained EFGs, we obtain good agreement for both codes. In many cases, the calculated
EFGs are even within the experimental error bars, see Figure 5.10. Also for the asymmetry
parameter η, which is nonzero for CaGa4, a good agreement between the calculations and the
experiment is obtained.

Analysis of the EFG shows that also in the tetragallides, the lattice contribution V lat
zz to the EFG

is negligible for all four compounds, see Table 5.4. Decomposing the valence EFG into further
contributions yields that the pp contribution dominates clearly for all four compounds – the EFG
of Ga(5b) and Ga(4b) is mainly caused by anisotropic 4p electrons. The same results are also
obtained from FPLO: the off-site EFG is negligible and the pp contribution to the on-site EFG
is predominant. The negative sign of the EFG is in line with the obtained prolate 4p electron
density, see above.

Here, we note that in the experiment the (001) planes of the crystallites of the tetragallides with
M = Sr and Ba are oriented parallel the magnetic field ~Bz – as it was also observed for the
digallides. In NaGa4, however, the situation is different. Here, the [001] axis of the crystallites is
oriented parallel to the magnetic field along the z-direction [44]. Qualitatively, the Fermi surfaces
are different for the three tetragonal tetragallides: whereas the Fermi surfaces for SrGa4 and

37



5 Application of the EFG: studied compounds

Table 5.5: Plasma frequencies obtained from the Fermi velocity tensor in-plane (ωx
P = ωy

P = ω
‖
P )

and out-of-plane ωz
P = ω⊥

P for the tetragonal tetragallides.

Compound ω
‖
P [eV] ω⊥

P [eV] ω
‖
P /ω⊥

P

NaGa4 6.00 2.86 2.10

SrGa4 4.20 2.67 1.57

BaGa4 3.88 2.57 1.51

Figure 5.9: Fermi surfaces for different bands for NaGa4 (top row) SrGa4 (middle row) and BaGa4

(bottom row). The Fermi velocity is indicated by the colouring, from high (red) to
low (blue) velocity.
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5.1 The di- and tetragallides MGa2 and MGa4 (M = Na, Ca, Sr, Ba)
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Figure 5.10: Left: Vzz calculated with WIEN2k (circle) and FPLO (square) for Ga(5b) (green)
and Ga(4b) (blue). Deviations to the experimental EFGs (green error bar) are given
in percent. Right: the ratio Rp Eq. (5.1) of the occupation of pz and px and py

states as a function of Vzz for all di- and tetragallides, calculated with WIEN2k.

BaGa4, and especially the red shaded areas (which represent the fast electrons) are very similar,
the Fermi surfaces (and the red shaded areas) for NaGa4 are very different, see Figure 5.9.
Contrary to the digallides, analysing the Fermi surfaces for the tetragallides is more complex.
Yet, a quantitative analysis can be obtained from the plasma frequencies, see Table 5.5. Also
for these compounds, the plasma frequency is largest in the (001) plane with the same ratio of
in- and out-of-plane frequencies of roughly two. Hence, the experimental observation can not be
understood from the Fermi velocities, NaGa4 is not different from the other di- and tetragallides.
Further investigations are necessary to find the underlying reason for this.

Finally, we will give an analysis of the axes of the EFG tensor. For the tetragonal MGa4,
with M = Na, Sr and Ba, Vzz is parallel to [001] and the asymmetry parameter η is zero due to
symmetry. In CaGa4, the situation is different due to the monoclinic symmetry. In the monoclinic
crystal axis system (CAS), the angle4 between the a and c axis is β = 118.922◦ (Table 5.3). The
orientation of the principal axis system (PAS) of the EFG tensor with respect to the CAS is given
by the eigen vectors of the EFG tensor. According to the site symmetry of both Ga positions, one
principal axis of the PAS has to be parallel to the [010]. This is Vxx for both Ga(4b) and Ga(5b).
Vyy and Vzz are therefore in the (010) plane of the unit cell. The angles of Vzz with respect to
[001] are 21.2◦ for Ga(4b) and 19.9◦ for Ga(5b)5. This corresponds to a tilt of Vzz by about 8◦

with respect to the pseudo tetragonal c axis. The orientation of Vzz and the nonzero asymmetry
parameter η reflect the influence of the monoclinic distortion on the charge distribution in the
vicinity of the Ga atom. Since the quadrupole frequency was determined using a powder sample,
NMR on a single-crystal should be done to verify this prediction on the orientation of the EFG
tensor.

The ratio of the occupation of the px and pz states for all investigated gallides, the anisotropy
ratio

Rp ≡ nz
1
2(nx + ny)

, (5.1)

4FPLO and WIEN2k use different conventions for the unit cell: in FPLO β 6= 90◦, in WIEN2k γ 6= 90◦. The text
describes the results of the FPLO calculation.

5In WIEN2k, the obtained angles are 20.6◦ and 20.4◦, respectively
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5 Application of the EFG: studied compounds

does not weight the absolute occupation numbers like the anisotropy function ∆p = (nx+ny)/2−
nz does and is better suited to compare the anisotropy of one element in different compounds, as
it is needed for our purpose. This ratio as a function of Vzz for all di- and tetragallides is shown
in the right graph in Figure 5.10. The obtained values can be fitted very nicely with a linear
fit, which goes trough zero: Vzz = 0 at a ratio of Rp = 1. This is expected, since a spherical p
electron density, which has cubic symmetry and hence no EFG corresponds to Rp = 1. Therefore,
this fit confirms again that the EFG is predominately due to the anisotropic p electron density.
Repeating this procedure for the corresponding values obtained with the FPLO code, we also
obtain a linear fit. However, the slope is slightly different and the values scatter more from the
obtained fit. This is due to the m resolved DOS, from which the ratio Rp is obtained. Partial
properties can be different in different band structure codes due to different implementations of
e.g., the basis. Only total quantities, like the EFG, can be compared and as we have seen, this
quantity agrees very well between these two codes.

As already said in the introduction, Ga shows a high flexibility with respect to the chemical
bonding. In these intermetallic compounds, there are three-, three+one-, four- and five-bonded
Ga atoms. The combined analysis of the integrated m resolved DOS and the electric field gradients
(Figure 5.10) clearly shows the ability of Ga to be incorporated into compounds with significantly
varying charge distributions. This leads to the suggestion that the p valence electrons are the key
for the flexibility of the Ga atoms with respect to the chemical bonding.

5.1.4 Summary and conclusion

The here developed and implemented EFG module in FPLO gives results comparable with
WIEN2k.

The combination of NMR spectroscopy with DFT based EFG calculations provides new insight
in the chemical bonding and structural information in intermetallic compounds.

The hexagonal digallides SrGa2 and BaGa2 were believed to crystallise in the AlB2-type struc-
ture. However, a large discrepancy between the measured and calculated EFG of Ga in SrGa2

revealed a deviation from this structure motif. Total energy calculations show that puckered Ga
layers (like in CaGa2) are energetically more favourable for SrGa2 and BaGa2. This result is in
agreement with the crystallographic data obtained from single-crystal X-ray diffraction measure-
ments, which showed a strong anisotropic displacement of the Ga atoms in SrGa2 and BaGa2 [52].
The experimental diffraction data could be described by a split-site model for the Ga position.
Additional support is obtained from NMR experiments: the agreement between the calculated
and the measured EFG for Ga is improved when the CaIn2-type structure model is used in the
calculation. Furthermore, for BaGa2, the structural distortion is attended by a reduction of the
DOS at the Fermi level, which is in line with the expectation of a stable structure.

For the digallides MGa2 with M = Ca, Sr and Ba, the Fermi velocities are largest in the hexagonal
plane, thus resulting in an anisotropic electronic transport, which occurs predominantly parallel
to the honeycomb-like Ga planes. This is confirmed experimentally by an orientation of the
hexagonal axis of the powder particles parallel to the magnetic field used in the NMR experiment.

For the tetragallides MGa4 with M = Na, Ca, Sr and Ba, no peculiarities are observed. The
Fermi level is situated in a pseudo gap for all four compounds and the EFGs at the Ga atoms
calculated with the band structure codes WIEN2k and FPLO agree well with each other and the
EFGs obtained experimentally.

For all investigated di- and tetragallides, the lattice (or off-site) contribution to the EFG of Ga
is negligible and the valence (or on-site) EFG is mainly due to an anisotropic charge distribution
caused by the Ga 4p electrons. The sign of the EFG for Ga is in line with the anisotropic
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5.1 The di- and tetragallides MGa2 and MGa4 (M = Na, Ca, Sr, Ba)

charge distribution of the Ga 4p electrons, which is oblate (compressed along [001]) for the
digallides and prolate (elongated along [001]) for the tetragallides. The linear dependence of the
EFG on the anisotropy ratio, i.e., the ratio of occupied in- and out-of-plane Ga 4p states, also
demonstrates the predominance of the Ga 4p electrons contributing to the EFG. This strongly
varying charge distribution of the Ga 4p electrons in similar intermetallic compounds leads to the
conclusion that the Ga 4p electrons are the key for the flexibility of the Ga atoms with respect
to the chemical bonding. In order to support this surmise, subsequent investigations on other
intermetallic compounds should be carried out, e.g., a widespread study on aluminides of different
alkaline earth metals.
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5 Application of the EFG: studied compounds

5.2 Aluminium diboride Al1−xB2

5.2.1 Introduction

The AlB2 structure type is the prototype structure (aristotype) not only for diborides but also for
many other compounds. It consists of graphite-like nets of boron atoms separated by aluminium
in hexagonal prismatic voids, see Figure 5.11. Important representatives of this structure type
are transition metal diborides due to their particular hardness and refractory properties. The
most famous representative, however, is magnesium diboride, where superconductivity with a
transition temperature Tc of 39 K was discovered only a few years ago [62].
Lattice vacancies are one of the most common point defects in crystals. Non-stoichiometry of
metal diborides is a quite new field of research [63], since the progress in studies of metal diborides
increased rapidly only after the discovery of superconductivity in MgB2.

Aluminium diboride has been known for a long time. In the

a
b

c

Figure 5.11: The hexagonal
structure of AlB2

with Al (red) and B
(blue).

early twentieth century, it was believed to be stoichiomet-
ric [64]. Several years later, density measurements indicated
defects in the structure [65, 66]. Motivated by the varying
data in the literature and the only scarcely described chemi-
cal analysis which yielded Al1.0B2 [64] and Al0.9B2 [66], alu-
minium diboride was re-examined and further characterised.
In 2002, Loa et al. determined a composition of Al0.89B2

from a high pressure synchrotron X-ray powder diffraction
study [67]. The same year, Nakamura et al. reported a com-
position of Al0.93B2, determined from X-ray emission and ab-
sorption spectroscopy data [68]. One of the main questions
that arose was: are the vacancies intrinsic or due to the pro-
cessing? Therefore, two years later, Burkhardt et al. pro-
cessed aluminium diboride with Al excess and showed that the

synthesis of stoichiometric Al1.0B2 is not possible since under normal conditions single-crystals
of aluminium diboride with defects on the Al-site grow in an aluminium flux [69]. From mass
density measurements, the composition Al0.85B2 and from single-crystal X-ray structure refine-
ment the composition of Al0.9B2 was found. In order to understand the experimental findings,
we investigate the vacancies in the Al sublattice in a first-principles study.

The calculation of phase diagrams was initiated by Van Laar a century ago [70, 71], but until
the last decade of the twentieth century, these calculated phase diagrams were determined by
thorough and costly experimentation (since experimental data was used in the calculations). The
tremendous progress in computer power and methodical development in the last two decades made
the first-principles calculation of phase diagrams come within reach [72]. However, there are only
a few codes capable of calculating first-principles phase diagrams. The CPA module makes the
FPLO code one of them. Nevertheless, complicated structures with many atoms require large
computational effort, which makes the hexagonal system Al1−xB2 the perfect candidate for a
first-principles study.

5.2.2 Methods

The band structure calculations were performed using the full-potential local-orbital minimum
basis code FPLO (version 5.00-19) [2] within the local density approximation (LDA). For the
calculation of the electric field gradient (EFG), also version 8.00-31 was used, because this version
has an improved basis, which is very important for the EFG calculation, see Section 4.2. In the
scalar relativistic calculations the exchange and correlation functional of Perdew and Wang [15]
was employed. In order to check the dependence of the results on the exchange functional, also
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5.2 Aluminium diboride Al1−xB2

Table 5.6: Structural data (including Wyckoff positions (WP)) for the calculation of the 4− and
8−fold super cells for Al0.75B2 and Al0.875B2, respectively. E stands for empty site.
The lattice parameters a0 and c0 are given in Table 5.7.

4−fold super cell 8−fold super cell

composition Al0.75B2 Al0.875B2

space group Pmmm Pmmm

(a, b, c) (2a0, 2 cos(30)a0, c0) (2a0, 2 cos(30)a0, 2c0)

WP for Al1 2i (x=1/4) 2j (x=1/4)

WP for Al2 1e 1g

WP for Al3 - 2i (x=1/4)

WP for Al4 - 1e

WP for Al5 - 1f

WP for E 1f 1h

WP for B1 2p (y=1/6) 4v (y=1/6, z=1/4)

WP for B2 4z (x=1/4, y=1/3) 8α (x=1/4, y=1/3, z=1/4)

WP for B3 2n (y=1/6) 4u (y=1/6)

GGA [16] (PBE) was applied. As basis set Al (2s2p/3s3p3d) B (/2s2p3d) E (/1s2p) were chosen
for semicore/valence states. The lower lying states were treated fully relativistically as core states.
The symbol E stands for empty site and was only used in the CPA calculations. A well converged
k mesh of at least 484 k points was used in the irreducible part of the Brillouin zone. In order
to investigate the influence of the vacancies, CPA [73] and VCA were applied, see page 12. Since
LDA can not directly be compared with CPA (due to the different numerical methods there
are differences in the energy), the unsubstituted structures (AlB2 and Al) were calculated (and
optimised) with the Blackman-Esterling-Berk (BEB) module [74]. The BEB method extends the
use of CPA to random off-diagonal matrix elements of the Hamiltonian (off-diagonal disorder) [74]
and results in a difference in energy of roughly 20 meV for AlB2 compared to LDA. The BEB
calculation serves also for adjusting the DOS and band structure relevant parameters in the CPA

c

b
a

Figure 5.12: The super cells for Al0.75B2 (left) and Al0.875B2 (right). The different Wyckoff po-
sitions for B are shown by different colours (B1 orange, B2 yellow, B3 green, cf.
Table 5.6). Al is red for all Wyckoff positions and the empty site is black.
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5 Application of the EFG: studied compounds

Table 5.7: Experimental and optimised lattice parameters for aluminium diboride and aluminium.

AlB2 a0 [Å] c0 [Å] Al a [Å]

exp [75] 3.009(1) 3.262(1) exp [76] 4.1161(8)

opt 3.000 3.231 opt 4.009

menu: imag(e)=5 · 10−3 and epoints=5000 for the DOS and imag(e)=10−4 and epoints=1000 for
the band structure. For the scf (self-consistent field) calculation with CPA, the default parameters
were used, except for the confining potential exponent n, which was set to 5.
Furthermore a 4−fold and 8−fold super cell were calculated. In both super cells one Al is replaced
by a vacancy, see Figure 5.12. This corresponds to a composition of Al0.75B2 and Al0.875B2,
respectively. The structural data for the super cells is given in Table 5.6.

5.2.3 Results

First, we investigate in the equilibrium

Al1−xB2 + x · Al ⇔ AlB2.

Therefore, we calculate the energy for Al1−xB2 for different values of x with CPA and the energy
of AlB2 and Al with BEB, see methods. The energy

E = E(Al1−xB2 + x · Al) − E(AlB2)

is plotted in Figure 5.13. The first approximation is to calculate Al1−xB2 for a constant volume
for all values of x, i.e., no structural relaxation is taken into account. For Al the optimised lattice
parameter, shown in Table 5.7, is used. For this approximation an aluminium concentration of
88 % (x = 0.12) is energetically most favourable (green circles in Figure 5.13). To improve the
calculation of the phase diagram, we will take lattice relaxation taken into account. I.e., for
each value of x, the volume and the c/a ratio is optimised with respect to the total energy of
Al1−xB2 (orange squares in Figure 5.13). We see, that the lattice relaxation has an impact on
energy, the obtained curve is much lower in energy than the previous one and an aluminium
concentration of 85 % (x = 0.15) is energetically most favourable. Another improvement is
to use the experimental lattice parameter at the melting point at 933 K for Al (Table 5.7)
since in the experiment of Burkhardt et al. [69], aluminium diboride grows in an Al flux. This
results in a curve (blue diamonds in Figure 5.13) that is slightly shifted in direction of higher
energy compared to the previous one. As a last improvement, we add the heat of fusion energy,
∆Q = 10.79 kJ/mol [77]6, to model liquid Al (Al flux in the experiment). This curve (red triangles
in Figure 5.13) lies between the others and an aluminium concentration of 87 % (x = 0.13) is
energetically most favourable. These results of x ∈ [0.12, 0.15] agree well with the experimental
results of Burkhardt et al. with x = 0.10 and x = 0.15 [69] and Loa et al. with x = 0.11 [67] but
less good with x = 0.07 [68] obtained from Nakamura et al., see introduction.
We checked the first approximation (no structural relaxation and optimised Al lattice parame-
ter) also for GGA to make sure that the exchange-correlation functional will not influence the
result. In the inset of Figure 5.13 we see that it does not matter, if LDA or GGA is applied
as exchange-correlation functional, since both curves are almost identical up to the minimum in

6This can be converted in ∆Q = 112 meV per atom via the Avogadro constant NA = 6.022 · 1023 mol−1.
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Figure 5.13: The equilibrium Al1−xB2 + x·Al ⇔ AlB2. No structural relaxation for Al1−xB2 and
optimised Al lattice parameter (green circles), structural relaxation and optimised
Al lattice parameter (orange squares), structural relaxation and experimental Al
lattice parameter (blue diamonds) and structural relaxation, experimental Al lattice
parameter and added heat of fusion (red triangles). Inset: comparison of LDA
(green circles) and GGA (magenta triangles) for optimised Al lattice parameter
without structural relaxation.
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Figure 5.14: Optimised lattice parameters a (red) and c (blue) for Al1 − xB2 for different levels
of doping calculated with CPA (circle) and VCA (square). The straight lines show
the experimental lattice parameters [75].
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energy. Differences for the concentration x at the minimum in energy are obtained only in the
third decimal: fits for the calculated data points yield for the minimum x = 0.116 for LDA and
x = 0.123 for GGA. Regarding the approximations that were made (e.g., no dynamics), these
results are essentially identical. Hence, no “physical” difference is caused by using GGA instead
of LDA.

Next, we compare the lattice parameters a and c optimised with CPA and VCA [78] for different
levels of doping. The results are shown in Figure 5.14. Since a depends mainly on the σ bonds of
the boron atoms it should not change much. Indeed, the CPA results agree with the expected be-
haviour, a is almost constant and decreases only very little with increasing vacancy concentration.
The lattice parameter c, on the other hand, depends on the metallic bonding between the Al and
the B atoms. This can be approximated as a free electron gas, where the volume should shrink if
electrons are taken out. Indeed, c decreases quite strongly with increasing vacancy concentration.
For VCA we observe the opposite trend, both lattice parameters increase with increasing vacancy
concentration. This is no surprise, because VCA modifies only the valence electrons. The core
is still there. If electrons are taken away, the bonding states are depleted. Therefore the lattice
parameters should increase, as it can be seen in Figure 5.14. If we compare the lattice parameters
optimised with VCA with the experimental ones for the vacancy concentration of x = 0.15, we
see that c is as large and a even larger than the experimental counterpart. This is in contra-
diction to the well-known over-binding problem of LDA: lattice parameters optimised with LDA
are always shorter than experimental lattice parameters. This is clearly observed for the CPA
optimised lattice parameters. Here, for x = 0.15 a is roughly 1 % and c roughly 3 % smaller
than the experimental correspondent. Hence, we see that VCA, which is good to describe doping
of elements next to each other in the periodic table (e.g., K doped with Ca), is not suitable to
obtain the observed behaviour for vacancy disorder. CPA can handle this kind of disorder much
better. However, the combination of CPA and VCA yields information about the influence of the
valence electrons (i.e., bonding) via VCA and the core electrons on the structure (i.e., volume)
via CPA, as it was discussed in this paragraph.

Since CPA describes the defect structure in a good approximation, we take a look at the density
of states (DOS). In Figure 5.15, the DOS of the fully occupied (x = 0, blue) and the defect
(x = 0.15, red) structure are shown. If we take into account that there are electrons missing in
the latter structure, we can plot the two curves on top of each other, with a shifted Fermi level, as
indicated by the red line in Figure 5.15. This way, we observe that the DOS has the same shape
in both cases. Hence, the disordered structure can be described in reasonable approximation by
the rigid-band approximation. Moreover, the Fermi level is at the minimum in both cases, which
is consistent with the Al vacancies. The different smoothness of the curves is partially due to
different numerical methods used in CPA and LDA.

To get more information about the difference between the full occupied and the defect structure,
we analyse the band structure for the above vacancy concentrations of x = 0 (blue) and x = 0.15
(red), see Figure 5.16. Due to different numerical methods, the energy bands have different
properties. LDA diagonalises a matrix in order to get the eigenvalues and therefore yields sharp
energy bands. CPA uses the method of Green functions and yields a spectral function A(k, ω) (see
Section 2.3.2) which in general is not a Dirac δ-distribution. Plotting the maximum of the spectral
function yields something that can be compared to smeared energy bands. Like the DOS, the
band structure can be described in reasonable approximation with the rigid-band approximation:
the curves have the same structure and are shifted with respect to each other due to the different
number of electrons in the full- and non-stoichiometric compound. However, contrary to the
DOS, which is obtained by an integration over the whole k space, the band structure displays
the effect of the vacancy on individual bands. Figure 5.16 clearly shows that different bands are
shifted and broadened differently. To understand that, we analyse the characters of the bands,
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Figure 5.15: Density of states for Al1−xB2 for LDA with x = 0 (blue) and CPA with x = 0.15
(red). The CPA curve is shifted due to fewer electrons, as indicated by the red Fermi
energy EF , which is lower in energy compared to EF of the LDA curve.
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Figure 5.16: Band structure for Al1−xB2 for LDA with x = 0 (blue) and CPA with x = 0.15 (red).
Contrary to the plot of the density of states, Figure 5.15, here the Fermi energy is
set to zero for both cases (x = 0 and x = 0.15).
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Figure 5.17: Band characters for Al1−xB2 for LDA with x = 0 (blue band structure in Fig-
ure 5.16): Al s states (top), B π states (middle) and B σ states (bottom).
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see Figure 5.17. The CPA bands of the boron px = py states, called σ states, see bottom panel
in Figure 5.17, are the least shifted and quite sharp. This can be seen best in the band between
Γ and A in the region from −2 to −1 eV for LDA (blue) and in the region from −2 to 0 eV
for CPA (red). This is in agreement with the expectations: an Al vacancy will not have a large
effect on this band, since it is due to electrons forming a σ bond between the boron atoms in the
boron plane. This is different for the CPA bands for the Al s states, see top panel in Figure 5.17.
These bands have a small admixture from boron pz states, called π states, see middle panel in
Figure 5.17. Here, the shift of the corresponding bands of the non-stoichiometric structure is
larger and the bands are much more broadened (which is why they are hard to see). This is best
seen in the band around the Γ point in the region from −0.5 to 2 eV for LDA (blue) and 1.5 to
2 eV for CPA (red). Also this is in agreement with the expectations: these electrons are more
strongly exposed to the aluminium vacancy, which is located between the boron layers. Hence,
for these bands the spectral function yields larger shifts and more broadened bands.

In order to capture local (distortion) effects, which is not possible with CPA, we will investigate
the influence of the vacancies on the boron atoms using super cells, where one Al is replaced by
a vacancy. In case of the 4−fold super cell, which yields a composition of Al0.75B2, there are
vacancies above and below each boron layer. Due to this symmetry, the boron atoms surrounding
this vacancy (yellow and orange spheres in Figure 5.12) will only relax within the (002) plane.
Since the green B atoms are not directly exposed to the vacancy and they can be fixed in space
in good approximation. Calculating the energy for different positions along the straight line
between the yellow B atoms and the centre of the hexagonal boron net (and for the orange B
atom, respectively) yields the red curve in Figure 5.18. The energy is lower (by 3.3 meV) if the
yellow and orange B atoms are relaxed by 0.005 Å towards the centre of the boron hexagon. In
case of the 8−fold super cell, which yields a composition of Al0.875B2 – which is very close to
the experimental composition – there is a vacancy only above every second boron layer, i.e., the
symmetry in z direction is lifted. We will therefore relax the yellow B atom along the straight
line between this B atoms and the vacancy. The orange B atom is relaxed in the same manner
and the green B atoms are still fixed in good approximation. Here, the displacement gives also
an energetically lower state, if the (yellow and orange) B atoms are relaxed towards the vacancy.
But here the energy gain is almost one order of magnitude smaller compared to the 4−fold super
cell: a displacement of 0.004 Å is 0.7 meV lower in energy compared to the original positions, see
blue curve in Figure 5.18. There are two reasons, why this displacement has not been observed
experimentally. First, this displacement of 0.004 Å changes the atomic coordinates of the (yellow
and orange) boron atoms only in the fourth digit, which is on the verge of the experimental
accuracy [79] and can therefore not easily be observed. Secondly, the isotropic displacement
due to thermal vibrations of the B atoms is 0.06 Å [69]. This is one order of magnitude larger,
than the calculated displacement of 0.004 Å. Hence, low temperature measurements would be
desirable. However, one should keep in mind that the results obtained from the 8−fold super
cell corresponds to an ordered super structure. Thus, the displacement of 0.004 Å should be
considered as indicative only.

From this investigation we see that the influence of the vacancy on the boron network is quite
small. The smaller the vacancy concentration (the larger the super cell), the smaller the influence
gets. This is in agreement with our previous results: replacing Al by vacancies has a mostly local
effect on the boron network. This can also be seen in pictures of the charge density, Figure 5.19.
The boron layer is unchanged for both the 4−fold and 8−fold super cell.

An experiment, that is sensitive to local details in the structure is NMR. Therefore, we calculate
the EFG for the B atom and compare it with the experimental result for 11B of V exp

zz = (1.10 ±
0.04) 1021 V/m2 [69]. Here, the measured frequency of νQ = (540±20) kHz, reported for x = 0.10,
and the quadrupole moment Q = (40.59± 0.10) mb [58] were inserted in νQ = eQVzz/(2h), since
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Figure 5.18: Displacement of B towards the vacancy in the 4−fold (red) and 8−fold (blue) super
cell, see text. The energy scale is chosen in a manner, that both curves cross at zero
displacement. The minimum in energy is marked by an arrow (red for the 4−fold
and blue fur the 8−fold super cell).
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Figure 5.19: Charge density at the boron layer: z = 0.5 for the 4−fold super cell (top) and
z = 0.25 (identical to z = 0.75) for the 8−fold super cell (bottom). The legend
(right) shows the number of electrons in Bohr radii cubed. The legend shows two
different scales so that the hexagonal boron layer (red and orange circles) and the
effect of the Al vacancies (blue circles) from the layer above/below can be seen.
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Figure 5.20: Vzz for B in Al1−xB2 in dependence of the vacancy concentration x, calculated with
CPA (red circles), VCA (orange diamonds) and super cells (green squares). Vzz

obtained from NMR is shown by the blue error bar.

B has a nuclear spin of I = 3/2 and the asymmetry parameter η is zero. Since the EFG is very
sensitive to the structural parameters, the correctly established lattice parameters, reported for
Al0.9B2 [69], were used for these calculations. First, we calculate the EFG using CPA, which is
only available in FPLO 5, see Section 2.3.2. Therefore, we have to ensure first that the basis
(as given on page 42, i.e., without polarisation states) is sufficient (cf. Section 4.2). Comparison
with FPLO 8, which yields Vzz = 0.86 · 1021 V/m2, shows that FPLO 5 results in an only slightly
smaller EFG: Vzz = 0.83 · 1021 V/m2. Hence, the CPA module can also be used to calculate the
EFG in dependence of the vacancy concentration. In Figure 5.20 we see that Vzz increases from
0.83·1021 V/m2 for the stoichiometric composition to 1.55·1021 V/m2 for a vacancy concentration
of 26 %. For a vacancy concentration of 10 %, as reported in Ref. [69], the EFG calculated with
CPA, V CPA

zz = 1.15 · 1021 V/m2, agrees with the experimental one.

On the other hand, if the EFG is calculated with VCA, we obtain less good agreement with the
experiment. Although the EFG increases with increasing vacancy concentration its slope is too
small. Even for a vacancy concentration of 26 % the experimental EFG is not reached yet. The
reason, why also here CPA is a better method than VCA might be explained by the same fact
as before: taking away only valence electrons, but not the whole core, as CPA does, leaves the
structure more isotropic and hence a smaller EFG is obtained compared to CPA.

The opposite behaviour is obtained when the disordered compound is calculated with super cells:
as VCA underestimates the anisotropy, super cells overestimate the anisotropy. Due to the three
different Wyckoff positions for the B atoms, see Table 5.6, there are now three different EFGs,
labelled B1, B2 and B3 in Figure 5.20. The EFG increases linearly with increasing vacancy
concentration: for the 4−fold super cell, the vacancy concentration is higher (x = 0.25) and the
EFGs are larger, then for the 8−fold super cell (x = 0.125). This is in agreement with the VCA
and CPA result and the expectation: in the 4−fold super cell, there are vacancies in each Al layer,

51



5 Application of the EFG: studied compounds

whereas in the 8−fold super cell, the vacancies are only in every second Al layer. Therefore, the
electronic density of the B atoms are less distorted, resulting in a smaller EFG in the 8–fold super
cell. The boron atoms, that have the largest distance to the vacancy, B3, the green spheres in
Figure 5.12, have the smallest EFGs, they lie very close to the CPA curve. The boron atoms B1
and B2 have the same distance to the vacancy, but B2 (yellow spheres), have a larger distance to
the vacancies from the neighbouring cells and have therefore smaller EFGs than the boron atoms
labelled B1 (orange spheres).

5.2.4 Summary and conclusion

AlB2 is one of the basic structural archetypes of intermetallic compounds. Only in the last
decade, numerous experiments revealed a non-stoichiometric composition of aluminium diboride
with vacancies on the Al site.

In order to investigate if the origin of the vacancies is intrinsic or due to the processing, we
performed CPA calculations and obtained excellent accordance with the experimental results.
The calculated equilibrium yields a composition of Al0.87B2 which is in perfect agreement with
the experimental findings (composition of about Al0.9B2 [67, 69]).

Comparing the electronic density of states of the fully occupied and the defect structure shows no
new features: the DOS of the defect structure is primarily shifted and can be described with the
rigid-band approximation. The same is observed in the band structure. Due to the Al vacancies,
the bands of the defect structure are primarily shifted. However, the band structure displays the
effect of the vacancies on the individual bands. We observe that the in- and out-of-plane bands
are shifted differently.

Since CPA does not describe local distortion, we performed super cell calculations for an 8–fold
super cell, which is in the range of the experimentally reported compositions, to investigate if local
distortion effects are relevant. Total energy calculations for this super cell show only a negligible
deformation of the boron network due to the Al vacancies. Hence, local distortion effects can be
excluded.

The EFG calculated with CPA for a vacancy concentration of 10 %, Vzz = 1.15 ·1021 V/m2, is on
the verge of the error bar of the experimental EFG, V exp

zz = (1.10± 0.04)1021 V/m2, reported for
Al0.9B2 [69]. This agreement is an additional argument in favour of the presence of Al vacancies.

Band structure calculations show that the defects in the Al sublattice in Al0.9B2 in equilibrium
conditions are intrinsic and can be understood from the interplay of the occupation of the bonding
boron σ states and the Al states.
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5.3 The perovskites SrTiO3 and BaTiO3

5.3.1 Introduction

Perovskites are described as ionic7 crystals with cubic symmetry (space group Pm3m). They
named after the mineral CaTiO3. The general formula for perovskites containing oxygen is
ABO3. The A ions are arranged at the corners of the cube, the B ion is at the centre of the
cube and the O2− ions are at the centres of the cube faces, see Figure 5.21. Hence, the B ion
is 6-fold coordinated and located in the centre of an octahedral void of oxygen ions. In order
to form a perovskites, there is not only a condition on the charge of the cations (their sum
must compensate the negative charge of the oxygen) but also on their radii (empirical rule):
RA + RO =

√
2(RB + RO). However, the latter requirement is not very strict, both the A and

B ion may vary slightly in their size resulting in a tolerance factor on the right hand side of the
equation [82]. Therefore, many compounds crystallise in the ABO3 structure type. There are
also many perovskites, ABX3, where oxygen is replaced by another anion X, which may also be
a complex ion [82].

The perovskite-like compounds ABO3 attract much attention because of their importance for
both fundamental science and technological applications [83]. Although the high-temperature
cubic phase has a very simple crystal structure, this does not prevent these compounds from
exhibiting a large variety of physical properties rendering the perovskites to model compounds
for studies of a large variety of different physical phenomena. Within the perovskite family, we
find superconductivity, e.g., in KxBa1−xBiO3 [84], giant magnetoresistance, e.g., in LaMnO3 [85],
orbital ordering, e.g., in YTiO3 [86] and ferroelectricity, e.g., in BaTiO3 [83, 87]. The latter
phenomenon is of large interest because of technological applications.

In this section, we will focus on the compounds SrTiO3 and BaTiO3, which are usually believed
to be isovalent. The valence and conduction bands of the two perovskites are formed by oxygen
p states and titanium d states. In the high-temperature cubic phase (space group Pm3m), the
Ti and O sub-lattices have identical geometry for SrTiO3 and BaTiO3, the lattice parameters are
a=3.900 Å [88] and a=4.009 Å [83], respectively. As the temperature lowers, BaTiO3 exhibits a
succession of phase transitions, from the high-temperature cubic phase to ferroelectric structures
with tetragonal, orthorhombic and rhombohedral symmetry [83]. SrTiO3 remains paraelectric
down to the lowest temperatures. It undergoes a phase transition at 105 K to a tetragonal phase,
but this transition has little influence on the dielectric properties [89].

a

b

c

Figure 5.21: The perovskite structure of SrTiO3 (BaTiO3). The Sr2+ (Ba2+) ions (blue) are at
the cube corners, the O2− ions (red) are at the centres of the cube faces and the
Ti4+ ion (yellow) is at the centre of the cube.

7We will show in this section that the ionic description, as is it used in standard solid state physics textbooks,
e.g., Refs. [80, 81], is not ideal. But for now (and also in Figure 5.21) we keep the ionic terminology.
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Table 5.8: Experimental and calculated values of the EFG (in 1021 V/m2) on the oxygen site in
the cubic phase of the two perovskites. The last 4 rows are calculated with FPLO,
the definitions for the different EFGs are given in the last column (referring to the
equations as given in Section 4.1.1).

EFG SrTiO3 BaTiO3 Reference

|V exp
zz | +1.62 +2.46 Ref. [90]

V cal
zz −1.00 −2.35 Ref. [90]

V cal
zz +1.00 +2.44 Eq. (4.10)

V on
zz −0.21 +1.39 Eq. (4.11)

V off
zz +1.21 +1.05 Eq. (4.12)

V on,net
zz,pp 96% 107% Eq. (4.16)

5.3.2 Motivation

Though, the perovskite structure ABO3 is cubic, there can be an electric field gradient (EFG)
at the oxygen site due to its tetragonal site symmetry. The first determination of the oxygen
EFG in SrTiO3 and BaTiO3 was reported recently together with first-principles calculations
(where a linearised augmented plane wave (LAPW) method was used) [90]. The most striking
feature is the large difference of the EFGs between the two compounds, obtained from both the
experimental and theoretical data. From their calculational investigation, Blinc et al. conclude
that the magnitude of the EFG of oxygen in BaTiO3 is larger than in SrTiO3 due to two effects:
(i) larger lattice parameters in BaTiO3 compared to SrTiO3 and (ii) a larger ionic radius of Ba
compared to Sr. While the experimental determination (they used nuclear magnetic resonance
(NMR)) can not provide the sign of the EFG, the LAPW calculation yields a negative sign for the
EFG. A negative EFG corresponds to a prolate electron density, which implies the importance
of covalence effects. In order to elucidate the origin of the sign of and the different contributions
to the EFG, we have performed first-principle calculations using the on density functional theory
(DFT) based code FPLO. Since the representation of the potential and the density in FPLO
allows easy decomposition, FPLO is especially suited to address these questions.

5.3.3 Methods

The electronic band structure calculations were performed with the full-potential local-orbital
minimum-basis code FPLO (version 5.00-19) [2] within the local density approximation. In the
scalar relativistic calculations the exchange and correlation functional of Perdew and Wang [15]
was employed. As basis sets Ba (4d5s5p/6s6p5d+4f7s7p), Sr (4s4p/5s5p4d+6s6p), Ti (3s3p3d/
4s4p4d+5s5p) and O (2s2p3d+3s3p) were chosen for semicore/valence+polarisation states. The
high lying states improve the basis which is especially important for the EFG calculation. The
lower lying states were treated fully relativistically and as core states. A well-converged k mesh
of 455 k points was used in the irreducible part of the Brillouin zone.

5.3.4 Results

In FPLO, the EFG at a given lattice site may be represented as the sum of two contributions:
the on-site contribution V on

zz Eq. (4.11), which comes from the on-site contribution of the electron
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Figure 5.22: Left: calculated Vzz in dependence of the lattice parameter a. Vzz for the experimen-
tal lattice parameter is marked by shaded squares. The “cation” and “lattice effect”,
which are responsible for the difference in Vzz for these two compounds are indicated
by the green and red arrow, respectively. Right: the on-site V on

zz , off-site V off
zz and

total EFG as a function of the lattice parameter a. The grey shaded squares mark
the experimental lattice parameter for Vzz.

density of the given lattice site and the off-site contribution V off
zz Eq. (4.12), which results from

the potential of all other atoms (see Section 4.1). The on-site contribution can be analysed
further, it can be split up in pp, sd and dd contributions (see Section 4.1.1).

The on- and off-site contributions, as well as their sum and the dominating pp contribution (see
Eq. (4.16)) are shown in Table 5.8. Whereas the total EFG for oxygen in BaTiO3 agrees well with
the experiment (1 % deviation), the total EFG for oxygen in SrTiO3 is in discrepancy8 with the
experiment (38 % deviation), see Table 5.8. Compared to the EFGs calculated with the LAPW
code in Ref. [90], we obtain almost the same absolute value for Vzz but the opposite sign, see
Table 5.8. Our calculated EFGs as a function of the lattice parameter a for both compounds
reveal the same tendency as observed in Ref. [90]: the absolute value of the EFG increases under
the lattice expansion (see left graph in Figure 5.22). From that graph, we also conclude that
the EFG of BaTiO3 is not only larger than the EFG of SrTiO3 due to larger lattice parameters
(“lattice effect”), but also due to an “cation effect”, which is the shift between the two EFG curves
in the left graph in Figure 5.22 marked by the green arrow. The lattice effect is demonstrated by
the red arrow between the two EFG curves.

The increase of the (absolute value of) the EFG upon lattice expansion is rather counter-intuitive.
In the traditional approach, where the perovskite is described by an ionic crystal, the spherically
symmetric electronic shell of an ion is perturbed by the potential of the other external (point)
charges of the solid. This external potential causes the total EFG at the nucleus of that ion. It is
clear that this approach predicts the opposite tendency: the strength of the external potential is
inversely proportional to the lattice parameters and thus the (absolute value of the) EFG should
diminish under the lattice expansion. The failure of this approach to describe the observed
behaviour of the EFG indicates that a fully ionic description of the perovskites is inappropriate.

In an alternative approach, the electronic shell of an atom is disturbed by the hybridisation of
its wave functions with the states of the neighbouring atoms. The hybridisation results in the

8We also calculated the EFG for the low symmetry phases of BaTiO3 and SrTiO3. Whereas the calculational
results for BaTiO3 agree well with the experiment, the discrepancy for SrTiO3 remains unchanged and of unclear
reason.
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asymmetry of the electronic cloud of the atom and the EFG on its nucleus. Apparently, this
second approach predicts the same tendency as the first one: as a rule of thumb, hybridisation
diminishes with the increase of the bond length.

Therefore, in both approaches we may say: when expanding the lattice, we diminish its influence
on the atom and the electronic shell should become closer to that of a free atom. Hence, we come to
the conclusion: the (absolute value of the) EFG should diminish under the lattice expansion, which
is opposite to the experimental observation and the results of both first-principles calculations.
We will tackle this problem in Section 5.3.5.

First, we will resolve the problem of the different sign of the EFGs obtained from the two different
band structure codes, cf. Table 5.8. If the sign of the EFG is taken into account, the slope in our
graph (left graph in Figure 5.22) is opposite to the slope in the graph obtained with the LAPW
code (Figure 5 in Ref. [90]). Since the NMR experiment is not sensitive to the sign of the EFG,
we will investigate the influence of the lattice expansion on the different contributions to the EFG
to get more insight in this issue.

Our calculations show that both the on-site and the off-site contribution to the EFG have com-
parable values for the perovskite lattice, see Table 5.8 and the right graph in Figure 5.22. The
unusual large off-site EFG is due to the ionic character of the perovskites. This is different in
metals, where due to screening, the off-site contribution to the EFG is usually very small, cf.
Section 5.1. In that graph, the two contributions V on

zz (dashed line) and V off
zz (dash point line)

and the total EFG (full line) are shown. Whereas the off-site EFG decreases only slightly upon
lattice expansion, the on-site EFG increases strongly with increasing lattice parameters, result-
ing in the significant increase of the total EFG. We also observe that the off-site EFG is almost
identical for these two structures, which is in line with the observed very weak dependence of
V off

zz on the lattice parameters. The on-site EFG is mainly caused by electrons with p character,
see Table 5.8. Therefore, we will investigate the anisotropy function ∆p = (nx + ny)/2 − nz

(cf. Eq. (4.17) in Section 4.1.1). In the perovskite structure ABO3, the oxygen site has axial
symmetry. The z axis is directed along the B-O bond, see Figure 5.21. Thus, the anisotropy
function is the difference between the populations of the oxygen 2p σ (corresponding to pz) and
π (corresponding to px,y) orbitals: ∆p = nx − ny (nx = ny due to the axial symmetry). In
the left graph in Figure 5.23, we see that the anisotropy function ∆p increases with the lattice
expansion. This is in agreement with the increasing on-site EFG. If we focus on BaTiO3, where
the experimental and calculated (for the experimental lattice parameter a = 4.009 Å) values for
the EFG agree very well, we see that this positive Vzz corresponds to a positive ∆p. That means
the p electron density (responsible for the EFG) has an oblate shape, since more electrons are
occupying the px,y orbitals than the pz orbital, which is in agreement with the positive sign of
the EFG. In addition, cross-checking the oxygen EFG for BaTiO3 with the LAPW code WIEN2k
(using the same parameters as in FPLO), yields a positive sign for Vzz as well. The sign in the
other LAPW code might be opposite due to a different definition of Vzz, cf. page 24.

After concluding that the sign of Vzz for O for both SrTiO3 and BaTiO3 should be positive, we
come back to the counter intuitive behaviour of the increasing EFG upon lattice expansion. As
stated before, the increase of the total EFG upon lattice expansion is due to the on-site EFG, as
the off-site EFG decreases upon lattice expansion, as predicted by the intuitive approaches. The
left graph in Figure 5.23 shows that the increase of the on-site EFG under lattice expansion is
due to the increase of the anisotropy function ∆p. The right graph in Figure 5.23 reveals that
the increase of ∆p under lattice expansion is due to an increasing occupation of π (corresponds to
px,y) and an decreasing population of σ (corresponds to pz) orbitals. Analysis of the occupation
of the oxygen orbitals under the lattice expansion shows an electron transfer from the pσ to the
s orbitals. Since the latter is spherically symmetric it gives no contribution to the EFG.
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Figure 5.23: Left: the anisotropy function ∆p in dependence of the lattice parameter a. Right:
the occupation of px and pz states (=nx and nz, respectively) in dependence of the
lattice parameter a.

5.3.5 Discussion

In order to understand this anomalous behaviour of the σ orbital, we will analyse the main
features of the electronic structure of perovskites. Detailed band structure studies of perovskite
compounds were performed by Mattheiss [91, 92, 93], who also proposed a first tight-binding fit
for the band dispersions. Wolfram et al. [94, 95, 96] (cf. also Ref. [97]) developed a very simple
model (Wolfram and Ellialtioglu, WE) for the valence and conduction bands, which reflects their
basic properties. The WE model includes the d orbitals of the B ion and the p orbitals of the
oxygen. Wolfram et al. pointed out a quasi-two-dimensional character of the bands, which is
due to the symmetry of the orbitals. If one retains only nearest neighbour hoppings, the total
14 × 14 Hamiltonian matrix (5 d orbitals and 9 p orbitals) acquires block-diagonal form at each
value of ~k. The three 3 × 3 matrices describe the πij bands (ij = xy, yz, xz). Every dij orbital
of the t2g symmetry couples with its own combination of oxygen 2p π orbitals, which lie in the
same plane perpendicular to the bond direction. They form a pair of bonding and anti-bonding
states. The remaining combination of the 2p π orbitals in the same plane form the non-bonding
bands. Wolfram et al. call this group of bands π bands. The states described by the 5 × 5 block
matrix are called σ bands, since they are formed by oxygen 2p σ orbitals, which are coupled with
the eg (dx2−y2 and dz2) orbitals of the B ion. This matrix decouples into one non-bonding band
and two pairs of bonding and anti-bonding bands.

Figure 5.24 shows the calculated band structure for SrTiO3 for two different lattice parameters
a. The features mentioned above are clearly seen (cf. Figure 2 of Ref. [95]). The anti-bonding πij

bands (red coloured) are situated between 2 and 4 eV, where the πyz band is almost dispersionless
in the direction Γ → X. This manifests the quasi-two-dimensional character of the bands. The
bands originating from the deg orbitals (green coloured) are in the range from 4 to 8 eV, where
the band expressing dz2 character is dispersionless along the Γ → X direction. The valence band
has a more complex character due to additional mixing from the direct p-p hopping. This is
neglected in the simple version of the WE model. Nevertheless, we see that the non-bonding
bands (orange coloured) lie on top of the valence band and have a much smaller dispersion than
the bonding bands, which lie below −1 eV (πij , cyan coloured) and below −3 eV (σ bands, blue
coloured). The latter have a larger dispersion due to much larger d-p hoppings.

Although the Kohn-Sham theory is not good for excitation spectra, or obtaining the correct energy
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Figure 5.24: SrTiO3: band structure for two different lattice parameters a = 3.8996 Å (full lines)

and a = 4.009 Å (dashed lines). The different band characters are given by different
colours: blue (bonding, σ), cyan (bonding, π), orange (non-bonding), red (anti-
bonding, πij) and green (anti-bonding, deg), see text. Since it is not easy to interpret
the valence band, the colours in the valence band are only approximate.

gap, it yields reliable occupation numbers, on-site energies and transfer integrals, especially in the
absence of strong correlations. Therefore, we can use our LDA band structure to obtain reliable
parameters as input for further treatment using model Hamiltonians.
In the following, we explore within the WE model how the occupation numbers and the resulting
anisotropy count for the p orbitals depend on the lattice parameters. In dielectric compounds like
SrTiO3 and BaTiO3, the bonding and non-bonding states are fully occupied. Contrary to the
non-bonding bands, which have almost pure p character, the bonding and anti-bonding bands are
mixed p-d bands. The population of the p orbitals is given by the sum of the occupation numbers
of the non-bonding and the bonding bands, whereof the latter are lattice parameter dependent.
Every pair of bonding and anti-bonding states is described by an effective two-level model [96]

Ĥm = ∆m

(∣∣∣d,~k
〉 〈

d,~k
∣∣∣ −

∣∣∣p,~k
〉 〈

p,~k
∣∣∣
)

+ Vmf
m~k

(∣∣∣d,~k
〉 〈

p,~k
∣∣∣ +

∣∣∣p,~k
〉 〈

d,~k
∣∣∣
)

. (5.2)

Here, m describes the character of the band m = π, σ and f
m~k

is a dimensionless function, which

depends on the dimensionless variable ~ka (note that ~k is measured in units of π/a, so neither
~ka nor f

m~k
depends on a). The state mixing is defined by the interplay of the on-site energy

difference ∆m and the transfer integral Vm, which determines the bandwidth of the corresponding
band. The eigenstates of the Hamiltonian Eq. (5.2) have the form

∣∣∣~k, ν
〉

= c
d~kν

∣∣∣d,~k
〉

+ c
p~kν

∣∣∣p,~k
〉

, (5.3)

and the following energies and occupation numbers are obtained

E~kmν
= ν

√
∆2

m + V 2
m

(
f

m~k

)2
, ν = ±1 (5.4)

n
p~kmν

≡ 2
∣∣∣cp~kν

∣∣∣
2

= 1 − ∆m

E~kν

. (5.5)
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n
d~kmν

≡ 2
∣∣∣cd~kν

∣∣∣
2

= 2

(
1 −

∣∣∣cp~kν

∣∣∣
2
)

= 1 +
∆m

E~kν

. (5.6)

Here, ν = +1 describes the anti-bonding and ν = −1 describes the bonding band. In this
two-level system, two asymptotic behaviours are possible. First, ∆m/Vm → ∞, which yields for
the occupation numbers of the bonding bands n

p~km,−1
→ 2 and n

d~km,−1
→ 0. In this case, both

electrons are in the p state of the ligand ion and the d states are empty, called ionic limit. Second,
∆m/Vm → 0, which yields for the occupation numbers n

p~km,−1
→ 1 and n

d~km,−1
→ 1. In this

case, the electrons are equally shared by the p and d states, called covalent limit. From the trends
in Figure 5.23, we observe that while the population of the pπ orbitals increases, the population
of the pσ orbitals decreases. This means the Ti-O π bond gets more ionic under lattice expansion
(as expected) whereas the Ti-O σ bond gets more covalent, which we will try to explain with this
model.
The parameters of this model may be extracted from the band energies at symmetry points of
the Brillouin zone in Figure 5.24 (see the Appendix G for more details).
For example, the on-site energies ∆m can be obtained from the Γ point, since due to symmetry,
the d-p mixing vanishes at this point and the band states acquire a pure d or p character. For
a = 3.8896 Å we have for SrTiO3 Edt2g

≈ 1.7 eV, Edeg
≈ 4.3 eV and Ep ≈ −1.2 eV. This yields

(using Eq. (G.11) and Eq. (G.10)) 2∆π = Edt2g
− Ep ≈ 2.9 eV and 2∆σ = Edeg

− Ep ≈ 5.5 eV.
From these values and the fmk as given in Refs. [95, 96], we obtain the Slater-Koster hopping
parameters Vσ ≈ 2.1 eV (Eq. (G.13)), Vπ = Vpdπ ≈ 1.6 eV (Eq. (G.12)) and Vpdσ ≈ 2.7 eV
(Eq. (G.15))9.
As already said, we are interested in the occupation numbers. Since the occupation numbers
of the non-bonding bands do not depend on the lattice parameter and the anti-bonding bands
(ν = +1) are not occupied, we consider the bonding bands (ν = −1) only. The contributions
from the bonding bands to the population of the pm orbitals are obtained by summing up npkm,−1

over the whole Brillouin zone,

npm = N−1
∑

~k

n
p~km,−1

+ const., (5.7)

where N is the number of sites in the crystal. In order to analyse the occupation in dependence
of the lattice expansion, we need the derivative of the occupation number with respect to the
lattice parameter a. From Eq. (5.5) we obtain for the derivative (denoted by ′)

n′
p~km,−1

=
V 2

m

(
f

m~k

)2
∆m

(√
∆2

m + V 2
m

(
f

m~k

)2
)3

(
∆′

m

∆m
− V ′

m

Vm

)
. (5.8)

The derivative of npm is proportional to

n′
pm

∝
(

∆′
m

∆m
− V ′

m

Vm

)
. (5.9)

The left graph of Figure 5.23 shows that n′
pm

has a different behaviour for m = σ (n′
pσ

is negative)
and m = π (n′

pπ
is positive). Thus, within the WE model, the observed increase of the EFG,

which is due to the decreasing occupation of the pσ orbitals would yield

−V ′
σ

Vσ
< −∆′

σ

∆σ
. (5.10)

9The parameters Vπ and Vσ are from the WE (p-d) model and Vpdπ = Vπ and Vpdσ are from the Harrison (s-p-d)
model, see Appendix G.
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Both ∆σ and Vσ decrease with the lattice expansion: Figure 5.24 shows that the energies at the Γ
point Edeg

and Edt2g
and the bandwidths are smaller for the larger lattice parameter a = 4.009 Å,

than for the smaller lattice parameter a = 3.8996 Å. Now, we will estimate an approximation for
both side of the inequality Eq. (5.10). We start with the left hand side. A commonly accepted
estimate [98] for the dependence of hopping integrals on a is Vσ ∝ a−α with α ∈ [3.5, 4] (from the
LDA band structure, we obtain α = 3.5 ± 0.5). This gives

−a
V ′

σ

Vσ
= α ≥ 3. (5.11)

On the right hand side, we have ∆σ, which is the difference in energy of the atomic levels corrected
by the crystal field (CF)10 ∆σ = εd − εp + δCF,σ.
The crystal field consists of two contributions [99]: a (dominating) electrostatic contribution,
which is the difference of the Madelung potentials of Ti and O, hence δCF,el ∝ a−1, and a
hybridisation contribution, which, in our case (octahedral coordination), contains a large and
strongly a-dependent contribution for m = σ from the semi-core s states of the ligand. Indeed,
the change due to the increasing lattice parameter a is much larger for ∆σ than for ∆π, cf.
Figure 5.24. The main electrostatic contribution, which implies δCF,el ∝ a−1, leads to

−a
∆′

σ

∆σ
=

δCF,el

∆σ
.

Since εd − εp + δCF,el > δCF,el, is δCF,el/∆σ < 1 and therefore

−a
∆′

σ

∆σ
< 1. (5.12)

Combining these estimations, Eq. (5.11) and Eq. (5.12), we get

−a
∆′

σ

∆σ
< 1 < 3 ≤ −a

V ′
σ

Vσ
. (5.13)

This is in contradiction to the inequality (5.10), leading to the conclusion that the WE model,
though consistent with the intuitive expectations is unable to predict the observed behaviour of
the σ orbital occupation in Figure 5.23.
A possible reason for the failure of the WE model is that according to Ref. [92], a large contribution
to the CF comes from the oxygen 2s orbitals, which lie almost 18 eV below the Ti 3d level,
∆sd = 17.9 eV, but have a large matrix element Vsdσ = 3.0 eV with the eg orbitals. This suggests
to extend the WE model by taking into account the oxygen 2s states in order to explain the
increasing EFG upon lattice expansion. This is Harrison’s model, where Vsdσ is obtained from
Eq. (G.14)

Γ12 =
εs + εd

2
±

√
(
εs − εd

2
)2 + 6V 2

sdσ,

with εs = −16.2 eV, εd = 1.7 eV and Γ12 = 4.3 taken from the band structure.
Taking the s orbitals into account, we have on the left hand side of the inequality Eq. (5.10) Vsdσ.
Harrison [98] argues that the a dependence of Vsdσ is similar to the one of Vpdσ. This suggestion
is confirmed by our LDA calculations. Thus, we obtain

V ′
sdσ

Vsdσ
= −α

a
. (5.14)

10ε denotes the energy of the atomic level and E, as used before, denotes the energy level corrected by the crystal
field: ∆σ = Ed −Ep = εd − εp + δCF,σ, cf. Eq. (G.11). Note that δCF,m is different for m = π and m = σ, since
εd is the atomic energy level, and thus does not depend on m. This is the main reason that δCF,σ > δCF,π.
Furthermore, δCF,σ depends strongly on a.
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On the right hand site, we have the on-site energy difference, which is given by ∆σ ≈ ∆π +
3V 2

sdσ/∆sd, cf. Eq. (G.18). The derivative of this expression is

∆′
σ ≈ 6

∆sd
VsdσV ′

sdσ. (5.15)

Note that here we assumed ∆′
π = ∆′

sd = 0, which is only an assumption, cf. Figure G.1 in
Appendix G.
Dividing Eq. (5.15) by ∆σ and inserting V ′

sdσ from Eq. (5.14) gives

−∆′
σ

∆σ
=

α

a

6V 2
sdσ

∆sd∆π + 3V 2
sdσ

. (5.16)

Inserting Eq. (5.14) and Eq. (5.16) in the inequality Eq. (5.10), we obtain within the Harrison
model the observed increase of the EFG, due to the decreasing occupation of the pσ orbitals, if
the following inequality is fulfilled:

α

a
= −V ′

σ

Vσ

!
< −∆′

σ

∆σ
=

α

a

6V 2
sdσ

∆sd∆π + 3V 2
sdσ

1

3
∆sd∆π

!
< ⇔ V 2

sdσ. (5.17)

Using the values obtained from the LDA band structure (Vsdσ = 3.0 eV, ∆sd = 17.9 eV and
∆π = 1.4), we see that Eq. (5.17) is fulfilled.
The considered systems, SrTiO3 and BaTiO3, are not strongly correlated, since the Ti 3d shell
is formally empty11. For magnetic ions with partially filled d shells, the influence of the O
2s orbitals will be diminished because the charge transfer energy ∆sd will include the on-site
Coulomb repulsion within the d shell.
After revealing the origin of the counter-intuitive behaviour of the on-site EFG, we will discuss
the unusually large value of the off-site EFG of the considered compounds. The dependence of
this contribution with respect to the lattice parameter can be estimated in the following way:
from the multipole expansion of a potential of a given ion, the sum of the monopole contributions
to voff (~r) Eq. (4.5) has the slowest convergence. This contribution may be calculated within a
point charge model (PCM). Therefore, we note that the value of Vzz created at the origin by an
unit charge situated at the point ~R equals the value of the z component of the electric field Ez,
created at the origin by the unit dipole directed along z axis and situated at the same point ~R:
Vzz = (3Z2 −R2)/R5. That means, for the calculation of the EFG within the PCM, we need the
electric field S(~r) of dipoles located at the sites ~R, which are polarised along the z direction and
whose polarisation is unity, at various points ~r through the cubic lattice: S(~r) =

∑
~R Ez(~R − ~r).

Here, ~r = a(x, y, z) and ~R = a(l, m, n) with a being the lattice parameter and l, m, n = 0,±1,±2.
Using Eq. (16) of Ref. [100], we obtain for the EFG in the PCM at the oxygen site

V PCM
zz = − e

a3

[
nT iS

(
0, 0,

1

2

)
+ nAS

(
1

2
,
1

2
, 0

)

+2nOS

(
0,

1

2
,
1

2

)]

= − e

a3
[30.080nT i − 8.668 (nA − nO)] . (5.18)

Here, nTi is the monopole moment of the ionicity of Ti. If we insert the charges of the Ti ion
nTi, the O ion nO, and the A ion nA = −(nTi +3nO) (with A = Sr, Ba) obtained from the FPLO

11The Ti d shell is occupied by roughly 1 electron. Analysis of the m resolved density shows that each Ti d orbital
is occupied by less than one electron per orbital and therefore yields an uncorrelated system.
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calculations, we obtain e.g., for SrTiO3 V PCM
zz = 1.30 · 1021 V/m2. This value is very close to

V off
zz = 1.19 · 1021 V/m2, see Table 5.8. So, we obtain a good agreement for the EFGs obtained

from the simple PCM model and the more complex calculation. This means, the FPLO code
yields realistic relations of the charge distributions.
The prefactor e/a3 in Eq. (5.18) is responsible for the observed decrease of the off-site contribution
in case of lattice expansion, see right graph in Figure 5.22. Also the charge redistribution may
change the value of V off

zz , but as we see in the right graph in Figure 5.22, it has a minor effect:
the off-site EFG for BaTiO3 is smaller than for SrTiO3, but the distance between the two curves
is smaller than the lattice parameter dependence of the two curves.

5.3.6 Summary and Conclusion

First-principles calculations of the electric field gradient on the oxygen site for the cubic SrTiO3

and BaTiO3 for different lattice parameters a were performed. For the experimental lattice
parameters, the absolute values of the calculated EFGs agree fairly with the measured ones [90].
Apart from the sign, which is likely due to a different definition of the EFG, there is also good
agreement with the calculated (LAPW) EFGs from Ref. [90].

For both compounds, a counter-intuitive dependence of the EFG on the lattice parameter a is
obtained: the EFG increases upon lattice expansion. An analysis of the EFG shows that this
behaviour is due to the on-site EFG. The off-site EFG, which is unusually large due to the
ionic character of the perovskites, remains basically constant. The on-site EFG, which originates
from the oxygen 2p shell, increases under lattice expansion due a decreasing occupation of the
pσ orbital. Simple ionic and covalent approaches, as well as the effective two-level Hamiltonian
proposed by Wolfram and Ellialtioglu, which describes the relevant states of the valence region
(oxygen p and titanium d states) fail to describe the observed behaviour. Extending this standard
p-d model Hamiltonian for perovskites by additionally taking into account the relevant oxygen
2s states finally results in a consistent picture: lattice expansion causes a charge transfer from
the pσ to the s orbital of oxygen, whereas the population of the oxygen π orbital increases with
a. This charge redistribution leads to the increase of the EFG, which is the main reason for the
surprisingly large difference of the EFGs between BaTiO3 and SrTiO3.

This leads to the conclusion that the ionic description, as is it used in standard solid state physics
textbooks e.g., in Refs. [80, 81], is not ideal.

The observed feature, the increase of the anisotropy of the p shell with the bond length, is expected
to be common to all d metal-oxygen bonds and should be taken into account accordingly in the
interpretation of the relevant experiments.

As a side effect, this investigation sounds a note of caution: when performing a mapping of a
complex DFT band structure calculation onto a microscopically based minimal model in order
to gain deeper physical understanding, care has to be taken that all relevant interactions are
included.
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5.4 Strongly correlated low-dimensional cuprates

5.4.1 Introduction

The discovery of high-temperature superconductivity (HTSC) in cuprates 20 years ago [101]
highly stimulated the development of better methods to describe the strongly correlated undoped
parents of these systems. One of these methods is the LSDA+U approach, where the strong
Coulomb repulsion U is treated in a mean field-like approximation. A considerable improvement
in the realistic description of the electron density for transition metal oxides, like the cuprates,
is achieved. Unfortunately, the parameter U is not known and needs to be evaluated, i.e., in
comparison of calculated properties and experimental measurements.
Here, we present calculations for the electric field gradient Vzz on the Cu2+ sites in strongly
correlated low dimensional cuprates. Since Vzz calculated with LDA is far too small, LDA+U
has to be applied to take into account the orbital polarisation caused by the correlations. By
comparing the calculated Vzz(U) with the Vzz from NMR experiments for these compounds, we
can evaluate UVzz . To avoid numerical ambiguity, we used two different full–potential DFT band
structure schemes: FPLO and WIEN2k. The results are consistent with respect to each other.
However, the resulting values of UVzz compared to UJ , which are obtained from the (nearest
neighbour) exchange integral J , show a considerable deviation in direction of smaller U values.
A possible cause for this deviation will be discussed.

5.4.2 The relation of J and U

It is well-known that L(S)DA fails in describing strong electron correlations. An effective and
popular way to improve L(S)DA is the LSDA+U method, see Section 2.2.2.
The Coulomb energy U is an additional parameter, which is not known per se and needs to be
evaluated. This can be done by comparing calculated properties with experimental results. One
popular property for this comparison are the exchange integrals Jij . The parameters Jij describe
the nearest (next nearest, next next nearest and so on) neighbour exchange in the Heisenberg
model

H =
∑

〈i,j〉
Jij

~Si
~Sj

(if only spin degrees of freedom are considered). Here, ~Si and ~Sj are the spin operators of the
CuO4 units at site i and j. Negative Jij favour electrons with parallel spins (FM exchange) and
positive Jij electrons with anti-parallel spins (AFM exchange). For cuprates with corner-shared
geometry, it is often sufficient to take into account the nearest neighbour exchange only Jij → J .
The exchange integral J can be obtained by calculating ferro- and antiferromagnetic super cells
for different values of U . Since the obtained energies can be mapped onto the Heisenberg model,
it is possible to determine J in dependence of U by solving a system of linear equations [102].
Comparing these curves with measured values for J yields finally a value for U . Experimentally,
J can be obtained for example from susceptibility, specific heat, neutron scattering, Raman or
saturation field measurements. However, whatever method is chosen, J can not be measured
directly – the experimental data has to be fitted with a model. Since different methods measure
different physical properties, the obtained J can vary significantly, see below. Furthermore, in
the case of susceptibility measurements different models (i.e., different combinations of two or
more Jij parameters) can yield very similar susceptibilities, that can not be distinguished within
the error bar. Results of such comparisons are shown in Figure 5.25 (taken from Ref. [103]).
In this graph, some of the experimentally best investigated cuprates are shown. For these we
observe a trend: corner-shared systems with 180◦ degree Cu-O-Cu bond (red curves) have larger
J ’s and smaller U ’s, than two dimensional cuprates (black curves), which have smaller J ’s, which
corresponds to larger U ’s.
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Figure 5.25: (Figure taken from Ref. [103].) Calculated nearest neighbour curves exchange inte-
grals J(U) (FPLO code, version 5) compared with experimental determined exchange
integrals J ’s (blue and black circles). Obtained values for the parameter U are in
the red shaded area for quasi 1D cuprates (red curves) and in the black shaded area
for 2D cuprates (black curves).

However, in Figure 5.25 we see that different experimental methods yield quite different results.
Therefore, it would be nice to have an additional property, where the experiments are more precise
and the underlying theory is better understood. This is the case for NMR (NQR) experiments
and the quadrupole interaction. This method yields the EFG as property to compare theory
with experiment. No model has to be applied to evaluate the EFG from the experiment, like it
is the case for J . The question of this section is: will U obtained from Vzz(U) show the same
trend for one and two dimensional cuprates as U obtained from J(U)? From now on we will use
the definitions UVzz , when U is obtained from the former, and UJ , when U is obtained from the
latter method. We will study the following compounds: La2CuO4, CuGeO3, Sr2CuO3, SrCuO2

and Cu2(PO3)2CH2.

5.4.3 Methods

The electronic band structure calculations were performed with the full-potential local-orbital
minimum-basis code FPLO (version 7) [2] within the local density approximation. In the scalar
relativistic calculations the exchange and correlation functional of Perdew and Wang [15] was
employed. To treat the Cu 3d state adequately, LDA+U around mean field was deployed with
various values of U (between 2 and 9 eV). For the Slater integrals, F2=8.6 eV and F4=5.4 eV
have been chosen, yielding Jt = 1 eV, see Section 2.2.2.

In order to obtain FM and AFM ordered Cu spins (except for Cu2(PO3)2CH2), super cells (or a
lowered symmetry by using a lower space group) were applied, see Table 5.9. In this table, also
the number of k points in the irreducible part of the Brillouin zone (IBZ) and the references for
the lattice parameters are given.

For comparison, La2CuO4 was also calculated with the augmented plane wave plus local orbitals
(APW+lo) code WIEN2k, with an alternative full-potential scheme [1]12.
12RMT (Cu) = 1.88 a.u., RMT (La) = 2.35 a.u., RMT (O) = 1.67 a.u., RMT Kmax = 7.0 and separation energy =
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Table 5.9: Super cells, space groups, k points in the irreducible part of the Brillouin zone and
references for the lattice parameters of the calculated cuprates in this section.

Compound Super cell Space group k points Reference

La2CuO4

√
2 ·

√
2(a, b plane) Cmmm 301 [104]

CuGeO3 double (along b) P2/m 518 [105]

Sr2CuO3 double (along b) Pmm2 294 [106]

SrCuO2 unit cell Amm2 546 [107]

Cu2(PO3)2CH2 unit cell Pnma 40 [108]

5.4.4 La2CuO4

We start the investigation with the two dimensional [109] La2CuO4. This structure consists of
corner-shared CuO4 plaquettes, as it can be seen in the left panel of Figure 5.26. The EFG for
Cu obtained from NMR experiments is |V exp

zz | = (12.0 ± 0.8) · 1021 V/m2 [110]. Since NMR and
NQR experiments can not provide the sign of the EFG, we will consider only the magnitude of
the EFG obtained from the calculations. The EFG calculated with LDA is too small: |V LDA

zz | =
5.7 · 1021 V/m2. This was expected, since LDA underestimates the polarisation of the correlated
orbitals. The LDA occupation of the d orbitals is too isotropic and the calculation results in a too
small EFG. If U is applied, the polarisation becomes stronger and the EFG increases, as it can be
seen in the right panel of Figure 5.26. La2CuO4 is an AFM ordered insulator. Nevertheless, we
plot the EFG also for the FM ordered state in order to find out, how the different magnetic orders
influence the EFG. In Figure 5.26, we see that the EFG curve is similar, i.e., has the same slope,
for FM and AFM ordered Cu spins, if U is larger than 5.25 eV. The FM curve changes its slope
below that U value, because the system changes from an insulator to a metal. The AFM ordered
structure remains insulating for all U values and there is no kink in the EFG curve. Hence, we
conclude that for the EFG the description of the correct insulating behaviour is more important
than the description of the correct magnetic order. Comparing the experimental EFG with the
AFM calculated EFG curve yields UVzz = (4.4±0.4) eV. This UVzz is about 2 eV smaller than UJ

obtained by comparing the measured and calculated exchange integral J (with J = 128 meV [111]
and J = 140 meV [112]), which yields UJ = (6.7±0.2) eV. To rule out that this difference between
UVzz and UJ is code dependent, we repeated the calculations with the WIEN2k code. The results
are shown in Figure 5.27. For both codes we obtain a difference between UVzz and UJ , depending
on if it was obtained from comparing the calculation with the experiment for Vzz or for J . For
FPLO this difference is ∆U = UJ −UVzz = 2.3 eV and for WIEN2k it is ∆U = 2.7 eV. However,
the absolute values for the Coulomb repulsion parameter UJ and UVzz differ, since U is basis
dependent and different codes will therefore need different values of U to obtain the same result:
UJ = (8.1 ± 0.2) eV, obtained with the WIEN2k code, is 1.4 eV larger than UJ obtained by the
FPLO code. Also the WIEN2k EFG curve Vzz(U) is shifted in direction of larger U compared
to the FPLO EFG curve. By shifting the WIEN2k EFG curve by 1.4 eV to the left, as shown in
the right panel of Figure 5.27, we see that both codes indeed yield the same result: the Vzz(U)
curves for the AFM order are consistent with respect to the different band structure codes13.

−6.0 Ry. Same settings like for FPLO otherwise: LDA xc-functional, 343 k points in the IBZ. LSDA+U (around
mean field) with Jt = 1 eV and U between 5 and 10 eV.

13La2CuO4 has been investigated with WIEN2k before [113]. Blaha et al. applied different xc–functionals (LDA
and GGA) as well as different LSDA+U functionals (around mean field (AMF), fully localised limit and a
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Figure 5.26: Left: corner-shared CuO4 plaquettes in La2CuO4: red=Cu and blue=O. Right:
Vzz in dependence of U for FM (blue) and AFM (red) ordered Cu spins. The ex-
perimental Vzz [110] for Cu is shown by the green error bar. UJ obtained from the
nearest neighbour exchange integral J is shown by the red shaded bar. The black
arrow points to a change in the FM curve: the compound is metallic below and
insulating above U = 5.25 eV.
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Figure 5.27: Left: Vzz and UJ for La2CuO4 obtained from J for FPLO (red) and WIEN2k
(orange). The experimental Vzz [110] is shown by the green error bar. Right: the
WIEN2k Vzz curve is shifted by the difference in UJ from the two codes.

66



5.4 Strongly correlated low-dimensional cuprates

2 3 4 5 6 7 8
U [eV]

10

11

12

13

14

15

16

17

|V
zz

| [
10

21
V

/m
2 ]

Vzz(U ) FPLO AFM
Vzz(U ) FPLO FM

Figure 5.28: Left: edge-shared CuO4 plaquettes in CuGeO3: red=Cu and blue=O. Right: Vzz in
dependence of U for FM (blue) and AFM (red) ordered Cu spins. The experimental
Vzz [115] is shown by the green error bar. UJ obtained from the exchange integral J
is shown by the red shaded bar.

5.4.5 CuGeO3

Now we take a look at the quasi14-one dimensional [114] CuGeO3. This structure consists of edge-
shared chains, as shown in the left panel of Figure 5.28. We observe the same as before. LDA
gives an EFG, |V LDA

zz | = 6.8 ·1021 V/m2, that deviates by about 50 % from the experimental EFG,
|V exp

zz | = (12.7 ± 0.9) · 1021 V/m2 [115]. Applying LSDA+U increases the EFG with increasing
value of U , see right panel of Figure 5.28. We observe again, that the magnetic order (FM or
AFM) has only little influence on the EFG: the two different EFG curves have the same slope
and are only slightly shifted with respect to each other. There is no kink in neither of the curves
since the bandwidth in CuGeO3 is smaller than in LaCuO4 [116] and therefore a smaller U is
sufficient to obtain an insulting state for CuGeO3. For the AFM EFG curve, a similar U as before,
UVzz = (4.3 ± 0.7) eV, yields an EFG that agrees with the experimental EFG. There are several
similarities to La2CuO4. First, the EFG is similar, which is consistent with the planar, and not
distorted, CuO4 plaquettes (contrary to Cu2(PO3)2CH2, see below). Second, there is a difference
in the obtained U ’s: UJ = (6.0 ± 0.8) eV, where J = 11 meV [117] and J = 22 meV [118] were
applied, is also about 2 eV larger than UVzz . And third, the spin pattern (i.e., FM or AFM
ordered Cu spin) has only a small influence on the Vzz curve. Hence, we conclude that U is
mostly a local quantity.

5.4.6 Sr2CuO3

The one dimensional [120] compound Sr2CuO3 consists of single chains of corner-shared CuO4

plaquettes, as it can be seen in the left panel of Figure 5.29. For this structure, UVzz = (3.8 ±
0.1) eV describes the experimental EFG, |V exp

zz | = (1.4 ± 0.1) · 1021 V/m2 [119], correctly. This

mixture of these two). Their results using LDA and AMF agree with the results obtained in this work.
14Quasi-one dimensional means that there is a nonzero (but small compared to the in-chain) inter-chain coupling.

In CuGeO3, the inter-chain couplings are stronger than in the other 1D systems presented in this section:
Sr2CuO3 and SrCuO2.
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Figure 5.29: Left: corner-shared CuO4 plaquettes in Sr2CuO3: red=Cu and blue=O. Right:
Vzz in dependence of U for AFM ordered Cu spins, the kink is due to a change in
Vzz, see inset and text. The experimental Vzz [119] is shown by the green error bar.
Inset: the three components of the EFG tensor: the (negative) component parallel
to the crystallographic a axis (blue), the (sign changing) component parallel to the
b axis (magenta) and the (positive) component parallel to the c axis (green). Vzz is
indicated by the large orange circle.
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Figure 5.30: Left: corner-shared CuO4 plaquettes in SrCuO2: red=Cu and blue=O. Right: Vzz

in dependence of U for AFM ordered Cu spins. The orange line and the blue dashed
line are fits from all points for U < 5 (orange) and for the last two points (blue),
respectively. The experimental Vzz [119] is shown by the green error bar.
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value of UVzz is slightly smaller than the one for La2CuO4. Increasing U increases the EFG, see
right panel of Figure 5.29. For this compound, a kink is obtained at U = 5 eV. Here, the kink is
not due to a change from metallic to insulating behaviour but due to a change in Vzz according
to its definition: |Vzz| ≥ |Vyy| ≥ |Vxx|. The directions of these three components depend on
the symmetry. For instance, for tetragonal symmetry, Vzz is parallel to the crystallographic c
axis and Vxx = Vyy are parallel to the crystallographic a and b axis, respectively. Also in this
case, each component is parallel to one crystallographic axis, but in a more complicated way.
They all change smoothly with U , as it can be seen in the inset in Figure 5.29. But while the
component with the smallest magnitude, Vxx, is parallel to the b axis for all U (magenta symbols
in Figure 5.29), this is not the case for the other two components. For U > 5 eV, the component
with the largest magnitude, Vzz, is negative and parallel to the crystallographic a axis (blue
symbols in Figure 5.29). For U < 5 eV, the component with the largest magnitude, Vzz, is
positive and parallel to the crystallographic c axis (green symbols in Figure 5.29). Since Vzz is
by definition the component with the largest magnitude it can change its direction by varying a
parameter, as it is the case for this compound.

5.4.7 SrCuO2

The quasi-one dimensional [121] compound SrCuO2 consists of double chains of corner-shared
CuO4 plaquettes, see left panel of Figure 5.30. As before, the EFG calculated with LDA is too
small compared with the experimental EFG: |V LDA

zz | = 2.3 · 1021 V/m2 < |V exp
zz | = (3.2 ± 0.2) ·

1021 V/m2 [119]. Applying LSDA+U yields a similar EFG curve as for Sr2CuO3. Also here,
there is a kink in the EFG curve at U = 5 eV, which is due to the same change in the EFG as
discussed for Sr2CuO3. Since the calculations for U < 3.5 eV did not converge correctly, the EFG
curve had to be extrapolated from the empirical experience of the other cuprates. This way we
to obtain UVzz = (2.3 ± 0.3) eV (orange fit from all points for U < 5) and UVzz = (2.7 ± 0.2) eV
(blue dashed fit for the last two points). These values are even smaller than the one for Sr2CuO3

but more uncertain.
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Figure 5.31: Left: strongly distorted CuO4 plaquettes (tetrahedrons) in Cu2(PO3)2CH2: red=Cu
and blue=O. Right: Vzz in dependence of U for FM ordered Cu spins. The experi-
mental Vzz [108] is shown by the green error bar.
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Figure 5.32: UVzz obtained by comparing the calculated Vzz(U) (FPLO, version 7) with the ex-
perimentally determined Vzz [110, 108, 115, 119, 119] for La2CuO4, Cu2(PO3)2CH2,
CuGeO3, Sr2CuO3, and SrCuO2, respectively.

5.4.8 Cu2(PO3)2CH2

As an example for a strongly distorted cuprate, due to strongly twisted CuO4 plaquettes, we
study Cu2(PO3)2CH2 [108]. The structure is shown in the left panel of Figure 5.31. Also here,
the EFG calculated with LDA, |V LDA

zz | = 10.3 · 1021 V/m2, is about 50 % too small compared
to the experimental EFG of |V exp

zz | = (19.0 ± 1.3) · 1021 V/m2 [108]. Applying LSDA+U with
UVzz = (4.4 ± 0.9) eV yields an EFG, that agrees with the experimental EFG. This UVzz is very
similar to the one of La2CuO4, whereas the EFG is almost twice as large as the one of La2CuO4.
The large EFG, due to a less isotropic Cu electron density, is consistent with the large distortion
of the CuO4 units.

Figure 5.32 gives an overview of the obtained UVzz for the studied cuprates. From that figure, we
conclude that for two dimensional systems, (if we include the quasi 1D CuGeO3 due to the large
inter-chain coupling to the 2D systems) a larger Coulomb parameter UVzz is needed than for the
one dimensional systems with corner-shared CuO4 units and 180◦ degree Cu-O-Cu bond. As a
matter of fact, UVzz is almost identical for three systems LaCuO4, Cu2(PO3)2CH2 and CuGeO3,
except for the different size of the error bars, which is due to the different size of the absolute
value of Vzz. On the other hand, for the one dimensional corner-shared systems, UVzz decreases
quite drastically from the single to the double chained system.

5.4.9 Summary and conclusion

Calculations of the EFG for strongly correlated systems within LDA yields values that are usually
too small, as LDA results in a too isotropic orbital occupation due to an underestimation of the
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strong Coulomb repulsion. The LSDA+U approach can improve the description of the correlated
orbital. Its occupation becomes more polarised and the value of the EFG increases.

The unknown Coulomb parameter U is usually obtained from comparing physical quantities that
are determined experimentally and theoretically. The obtained value for U is not unique but
depends on the physical property. To investigate this dependence on different properties, we
chose the exchange integral J and the electric field gradient Vzz for this comparison for the low
dimensional cuprates La2CuO4, CuGeO3, Sr2CuO3, SrCuO2 and Cu2(PO3)2CH2.

As a result, we find a deviation between the Coulomb repulsion UJ , obtained by comparing the
J(U) with the experimental J , and UVzz , obtained by comparing Vzz(U) with the experimental
Vzz. This basically constant shift of 2 eV is code (i.e., basis set) independent: FPLO and WIEN2k
show quite similar behaviour, as it was shown for La2CuO4. One possible explanation for this
discrepancy are the different time scales of the underlying mechanism of the two properties: the
exchange process is determined by the hopping integral15, of the order of 10−13 s. On the other
hand, quadrupole interaction frequencies, measured by NMR or NQR are in the MHz range
(10−6 s). This means that processes like shielding, which are more efficient on larger time scales,
can play a role here.

Focusing on the EFG, we conclude that for two dimensional systems, a larger Coulomb parameter
UVzz is needed than for the one dimensional systems. This trend is in agreement with previous
evaluations [103]: the larger the anisotropy (dimensionality), the larger the needed Coulomb
parameter U . Furthermore, the same trend was obtained from constrained LDA calculations [122].

Since the shift of U obtained from the exchange integral and the EFG, respectively, is constant,
the EFG provides an experimentally easy and unambiguously accessible property to obtain values
for the Coulomb parameter U that also allows for a reliable calculation of the related exchange
J .

In order to get a more complete and reliable picture, this systematic study of comparing measured
and calculated properties in dependence of U should be continued.

15Typical hopping integral energies of 0.05 eV to 0.5 eV correspond to a frequency ν = E/h ≈ 1013 Hz to 1014 Hz
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5.5 The recently emerged high Tc superconductors

5.5.1 Introduction

In February 2008, Kamihara et al. published their findings on high-temperature superconductivity
(HTSC) for doped LaFeAsO. Doping the oxygen site with fluorine renders LaFeAsO0.89F0.11

superconducting with a transition temperature Tc of 26 K [123]. This discovery raised a new
‘gold rush’ in HTSC since until then HTSC was limited to layered copper oxides, where it was
discovered in 1986 [101]. Replacing La by rare earth elements with smaller ionic radii, like Ce,
Pr, Nd or Sm, expanded this class of iron oxypnictides, REFeAsO, to another HTSC family. For
these systems, F doping results in even higher transition temperatures of 41 K [124], 52 K [125],
52 K [126], and 55 K [127], respectively. Applying pressure increases the transition temperature
of LaFeAsO0.89F0.11 to 43 K at 4 GPa [128].

Only a few weeks later, Rotter et al. reported HTSC for hole doped BaFe2As2: a partial sub-
stitution of Ba with K, yielded a Tc of 38 K [129]. Shortly afterwards, many other compounds
from this family of iron arsenides, AFe2As2, were reported to become superconducting upon hole
doping, e.g., (Sr,K)Fe2As2 with Tc = 37 K [130], (Eu,K)Fe2As2 with Tc = 32 K or (Ca,Na)Fe2As2
with Tc = 20 K [131]. Thus, a new family of Fe-based layered compounds with relative high Tc has
been discovered. For some of these compounds, also doping the Fe site with e.g., Ru, Rh, Ir, Ni or
Co yields superconductivity, for instance Sr(Fe,Co)2As2 with Tc = 20 K [132]. Applying pressure
increases Tc also for these compounds [133]. For CaFe2As2, applying pressure (2.3 kbar) yields a
Tc of 12 K even for the undoped compound [134]. However, the absence of superconductivity for
CaFe2As2 under hydrostatic pressure was reported later [135].

Meanwhile, also other parent compounds were reported, where doping or pressure induces super-
conductivity, e.g., LiFeAs [136] or FeSe [137]. Since these systems are not subject of this thesis,
they will not be discussed further.

The new iron arsenide superconductors, especially the AFe2As2 family, have one advantage for
application. Compared to the cuprates, the AFe2As2 contain no oxygen and can therefore be
processed like ductile intermetallic compounds. Also the upper critical field (Bc2 > 60T [138]) is
large enough to make this new class of superconductors attractive for technological utilisation.

5.5.2 Structural similarities of AFe2As2 and REFeAsO

The REFeAsO compounds crystallise in the ZrCuAsSi-type structure. In a naive approach, the
structure can be split in alternating (Fe2As2)

2− and (RE2O2)
2+ layers. The former layer is build

by a square Fe lattice with As in the centre of the squares, but alternately shifted above and below
that plane, see left picture in Figure 5.33. If the (RE2O2)

2+ layer is replaced by a layer with single,
divalent atoms A, the AFe2As2 compounds are obtained, see right picture in Figure 5.33. These
compounds crystallise in the ThCr2Si2-type structure. However, to describe the iron oxypnictides
REFeAsO and iron arsenides AFe2As2 as layered systems should be done with care. While for the
REFeAsO systems such an approach is alright, the AFe2As2 systems are not anisotropic enough
for such a description. Amongst others, this can be concluded from the ratio of the in- and out-
of-plane plasma frequencies ωa

P and ωc
P , respectively [139]: whereas this ratio is rather small in

the AFe2As2 systems and decreasing from ωa
P /ωc

P = 3.3 to 1.4 with decreasing cation (Ba → Sr
→ Ca), it is much larger for the REFeAsO systems, e.g., ωa

P /ωc
P = 8.9 in LaFeAsO. Hence, the

AFe2As2 compounds are more isotropic (more 3D-like) than the REFeAsO compounds, which
are more anisotropic (more 2D-like).

That both structures are similar on the large scale, can be seen by comparing the density of
states (DOS), see Figure 5.34. Here, LaFeAsO is chosen as representative for the REFeAsO
compounds and SrFe2As2 as representative for the AFe2As2 compounds. The total DOS is very
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a
b

c

Figure 5.33: Crystal structure of AFe2As2 (left) and REFeAsO (right) with A red, RE red, O
orange, As blue and Fe yellow.

similar, especially in the relevant low energy region around the Fermi energy, which is dominated
by the Fe 3d states, as it can be seen from the inset of Figure 5.34. The As 4p states are slightly
shifted to lower energies for the AFe2As2 systems, and the main differences are obtained below
−4 eV and above 2 eV, due to the occupied O 2p and the unoccupied La 4f states, respectively,
which are absent in the AFe2As2 systems.

5.5.3 The electric field gradient as a tool to study the Fe-As interaction

The Fe-As interaction, determined by the As z position, is most likely one of the key features
for the understanding of the superconductivity in the iron pnictides. Present day DFT-based
calculations using LDA [139, 140], as well as GGA [140, 141] are not able to reproduce all the
experimental findings consistently, especially the As z position (experimental vs. optimised)
influences the theoretical findings drastically. For example, the connection between the SDW
magnetic pattern and the orthorhombic distortion is confirmed for the fully optimised (including
the As z position) AFe2As2 compounds, whereas the c/a collapse under pressure in CaFe2As2
is only obtained for the experimental As z position. Also the magnetism shows an unexpected
sensitivity to the As z position: the magnetic moment of Fe decreases drastically when As is
relaxed from the experimental to the optimised z position (see also Figure 5.35). Yet, there is
a better agreement between theory and experiment regarding the magnetic moment of Fe in the
AFe2As2 systems compared to the REFeAsO systems [139]. The deviation is usually explained
to be a result of large spin fluctuations [142], which are stronger in lower dimensional systems.
This is in line with the observed increasing discrepancy from the AFe2As2 systems (3D-like) to
the REFeAsO systems (2D-like).
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) are local probe
methods that are extremely sensitive to small details of the structure. As the As z position is a key
determinant of many of the electronic properties of the FeAs systems, the quadrupole frequency
νQ from NMR or NQR measurements can provide a direct measure to the Fe-As interaction.
For nuclei with I = 3/2 (e.g., 75As), the connection between the quadrupole frequency νQ, the
asymmetry parameter η = (Vxx − Vyy)/Vzz and the electric field gradient (EFG) Vzz is given by

νQ =
eQVzz

2h

√

1 +
η2

3
⇔ Vzz =

2hνQ

eQ
√

1 + η2

3

. (5.19)

Since νQ and η can be obtained from, e.g., NMR experiments, it it possible to determine Vzz for
As from Eq. (5.19) using the 75As quadrupole moment Q = (3.14± 0.06) b [58]. Note, that from

73



5 Application of the EFG: studied compounds

-6 -4 -2 0 2 4
Energy [eV]

0

10

20

30

40

50

D
O

S
 [s

ta
te

s/
ce

ll/
eV

]

-6 -4 -2 0 2
0

10

20
0

5

10

As 4p

Fe 3d

Figure 5.34: Total electronic density of states (DOS) for LaFeAsO (red) and SrFe2As2 (blue).
Inset: partial DOS for As 4p and Fe 3d for LaFeAsO (red) and SrFe2As2 (blue).

NMR and NQR experiments, only the absolute value of νQ (and therefore Vzz) can be obtained.
Comparing experimentally and theoretically obtained EFGs will provide further insight for these
systems. Therefore, we focus on the EFG of As in this section. We will discuss the REFeAsO
and AFe2As2 systems separately, starting with the latter one.

5.5.4 The iron arsenides AFe2As2

At ambient temperature, all AFe2As2 compounds crystallise in the tetragonal ThCr2Si2-type
structure. Undoped AFe2As2 compounds exhibit a structural transition to an orthorhombic
lattice at T0 ≈ 171 K for A = Ca [143], T0 ≈205 K for A = Sr [144] and T0 ≈ 140 K for
A = Ba [145]. The structural transition is coupled with an antiferromagnetic ordering of the Fe
moments. This ordering is described by the wave vector ~Q = (1, 0, 1) and is widely called spin-
density-wave pattern (SDW). A certain range of doping on the A (or the Fe) site can suppress
the magnetic ordering and the compounds become superconducting, e.g., Ca0.5Na0.5Fe2As2 with
Tc = 20 K [131], Sr0.5K0.5Fe2As2 with Tc = 37 K [130] and Ba0.6K0.4Fe2As2 with Tc = 38 K [129].

Compared to the REFeAsO family, the compounds of this family are easier to handle experi-
mentally: the sample composition, the sample quality and the single-crystal growth are better
controllable.

For the parent compounds with A = (Ca, Sr, Ba), we investigated the influence of the As z
position, the structural phase transition, the magnetism and the pressure on the EFG. We also
studied the effects of doping on the EFG.

Methods

We have performed density functional band structure calculations using the full-potential all-
electron local-orbital code FPLO [2] (version 5.00-19) within the local density approximation

74



5.5 The recently emerged high Tc superconductors

2.28 2.3 2.32 2.34 2.36 2.38 2.4
0

0.05

0.1

0.15

0.2

E
ne

rg
y 

[e
V

]

SDW

2.28 2.3 2.32 2.34 2.36 2.38 2.4
0.6

0.9

1.2

1.5

1.8

F
e 

m
om

en
t [

µ Β
]

2.28 2.3 2.32 2.34 2.36 2.38 2.4
Fe - As distance [Å]

0

0.1

0.2

0.3

E
ne

rg
y 

[e
V

]

NN - FM 
NN - AFM

2.28 2.3 2.32 2.34 2.36 2.38 2.4
0

0.4

0.8

1.2

1.6

F
e 

m
om

en
t [

µ Β
]

SrFe2As2

E
xp

t

Filled symbols : Energy
Open symbols : Fe moment

Figure 5.35: (Figure from Ref. [139].) Energy (full symbols) and Fe magnetic moment (empty
symbols) as a function of the Fe-As distance using different spin patterns for SrFe2As2
at the experimental volume around 90 K [148]. Optimisation using FM and NN-AFM
pattern leads to a nonmagnetic solution, while the SDW pattern stabilises with a Fe
moment of 1.13 µB. The energy curves have been shifted by setting the minimum
energy value to zero. The dashed vertical line refers to the experimental Fe-As
distance obtained from Ref. [148]. The arrows indicate the position of the energy
minima.

(LDA). As basis set: Ca (3s3p/4s4p3d+5s5p), Sr (3d4s4p/5s5p4d+6s6p), Ba (4d5s5p/6s6p5d
+4f7s7p), Fe (3s3p/4s4p3d+5s5p) and As (3s3p3d/4s4p4d+5s5p) were chosen for semicore/
valence+polarisation states. The high lying states improve the basis which is especially important
for the calculation of the EFG. For the exchange-correlation functional the Perdew-Wang [15]
parametrisation was employed. A well converged k mesh of 1063 k points in the irreducible
part of the Brillouin zone (IBZ) was used in the calculations. In accordance with the widespread
agreement that in the new Fe-based superconducting compounds the Fe 3d electrons have a rather
itinerant character, and thereby are much less correlated in comparison to the Cu 3d electrons in
the high-Tc cuprates, we did not apply the LSDA+U approximation to the Fe 3d states. Effects
of doping on the cation site were studied using the virtual crystal approximation (VCA). The
results obtained via VCA were cross-checked using super cells for certain doping concentrations.
The experimental lattice parameters (for the tetragonal and orthorhombic symmetry), including
the As z position, are taken from Ref. [146] for CaFe2As2, Ref. [147] and Ref. [144] for SrFe2As2
and Ref. [145] for BaFe2As2.

Results

z position of As
First, we focus on the As z dependence. The Fe-As distance, determined by the As z position,
has a quite large influence on the magnetic moment of Fe: in Figure 5.35 (taken from Ref. [139]),
we see the energy and the magnetic moment of Fe for SrFe2As2 for the three, in the literature
discussed, possible orders of the Fe spin in dependence of the Fe-As distance. These spin patterns
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Figure 5.36: Dependence of the EFG of As on the As z position. ∆z = z−zexp. Different symbols
show different calculations: cross = nonmagnetic (NM) with tetragonal symmetry,
full circle = NM with orthorhombic symmetry (almost identical to tetragonal sym-
metry for SrFe2As2 and therefore not shown) and empty circle = magnetic (SDW
pattern) with orthorhombic symmetry. The total energy minimum is marked by
an arrow for each NM curve. The error bars show the experimental results for the
tetragonal phase (at 250 K for CaFe2As2 and at 200 K for BaFe2As2 (the two error
bars show both possible signs of the EFG (experimentally unknown)).

are the ferromagnetic (FM), the chequerboard (nearest neighbour) antiferromagnetic (NN-AFM)
and the columnar/stripe-type antiferromagnetic order (SDW) of the Fe spin, whereof the SDW
pattern is the lowest-total-energy spin pattern. For all three spin patterns, the optimised As z
position yields a shorter Fe-As distance than obtained experimentally. For the FM and NN-AFM
pattern, the magnetic moment decreases for decreasing Fe-As distance and vanishes before the
energetically most favourable distance is reached, see lower panel of Figure 5.35. For the SDW
pattern, the magnetic moment of Fe decreases as well, but less strongly and is still 1.13 µB at
the energetically most favourable distance, see upper panel of Figure 5.35. Similar results are
obtained for the other AFe2As2 systems [139].

Also the EFG is found to display a strong As z dependence, see Figure 5.36. The As z displacement
is described by ∆z = z− zexp. The Fe-As distance is smaller compared to the experimental one if
∆z is negative. The EFG for the nonmagnetic tetragonal phase (crosses in Figure 5.36) increases
strongly for all three compounds, as the Fe-As distance decreases, i.e. as ∆z decreases. In case
of CaFe2As2, there is a minimum in the EFG for a displacement of roughly ∆z = −0.1 Å from
the experimental position, while for larger Fe-As distances the EFG increases again. The same
trend is observed for the other two compounds, middle and lower panels in Figure 5.36. They
exhibit the minimum in the EFG at about ∆z = +0.05 Å. For CaFe2As2 we observe a good
agreement between the calculated EFG at the experimental As z position (for 250 K) and the
measured EFG at 250 K [149] (the light green error bar in the upper panel of Figure 5.36). In
a preliminary measurement for SrFe2As2 the quadrupole frequency νQ was determined to be less
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Table 5.10: Vzz in 1021 V/m2 of As for the nonmagnetic (NM) and different magnetic orders, all
in orthorhombic phase.

Compound NM FM NN–AFM SDW

CaFe2As2 +2.6 +2.4 +2.7 +3.1

SrFe2As2 +0.2 +0.3 +0.2 −1.3

BaFe2As2 −1.1 −1.0 −1.3 +1.3

than 2 MHz [151], corresponding to a Vzz of less than 0.5·1021 V/m2. This is also consistent
with the calculated EFG of 0.09 ·1021 V/m2 at the experimental As z position. In case of
BaFe2As2, the magnitude of the measured EFG at 200 K is roughly 0.7 · 1021 V/m2 [150]. Since
the sign cannot be extracted from the NQR measurements, in Figure 5.36 the experimental EFG
values with both signs are shown. The calculated Vzz for the experimental As z position is
−1.1 × 1021 V/m2. If the experimental EFG would be negative, reasonable agreement between
experiment and calculation is obtained. Our results for three representative members of the
AFe2As2 family as shown above follow a trend: the calculated EFGs for the NM tetragonal
phase agree better with the measured EFG using the experimental As z positions, than using the
(energetically) optimised As z positions, which are marked by arrows in Figure 5.36.

Structural phase transition
Although the structural and magnetic phase transitions occur simultaneously, the calculation
allows to investigate their influence on the EFG separately. First we study the influence of the
orthorhombic distortion. Therefore we perform non-magnetic calculations both in tetragonal and
orthorhombic symmetry. We observe, that the orthorhombic splitting of the axes in the (a, b)
plane has a rather small influence on the EFG. In case of SrFe2As2, the effect of the orthorhombic
splitting is so small, that the orthorhombic EFG curve (full circles in Figure 5.36) would overlap
with the tetragonal one, and is therefore not shown (see middle panel of Figure 5.36). For
CaFe2As2 and BaFe2As2, we observe a similar behaviour: the EFG is larger for the orthorhombic
symmetry for small Fe-As distances, the tetragonal and orthorhombic EFG curves cross close to
the EFG minimum and the EFG is larger for the tetragonal symmetry for larger Fe-As distances.
For all three compounds, we find that Vzz is parallel to the crystallographic c axis for the non-
magnetic calculations in both the tetragonal and orthorhombic symmetry.

Magnetism

Investigation of the influence of the magnetism on the EFG in the orthorhombic symmetry shows
that neither the FM nor the NN-AFM ordering of the Fe spins changes the EFG much, however,
the SDW order has a huge influence on the EFG, cf. Table 5.10. For all the three systems, as
the Fe-As distance is decreased, the magnetic moment is reduced and finally tends to zero. At
this displacement value, the SDW EFG curves (empty circles in Figure 5.36) smoothly join the
non-magnetic orthorhombic EFG curves (full circles) as one would expect. In Figure 5.36, the
component of the EFG calculated for the SDW, that is parallel to the c axis of the crystal is shown
(empty circles). As mentioned before, Vzz is found to be parallel to the crystallographic c axis
in all non-magnetic calculations. For the magnetic SDW phase, the same behaviour is observed
for CaFe2As2, but not for SrFe2As2 and BaFe2As2. For the latter two compounds, Vzz changes
the axis, i.e., the axis, along which the EFG tensor has the largest component according to the
amount (which is the definition of Vzz), changes as the Fe-As distance is varied (cf. Section 5.4.6).
The three diagonal components of the EFG tensor Vii, which are parallel to the a, b and c axis of
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Figure 5.37: Left: the three components of the EFG tensor for SrFe2As2 in the orthorhombic
SDW phase as a function of the As z position, ∆z = z− zexp. The component of the
EFG parallel to [100] is shown by upright triangles, the component parallel to [010]
by squares and the one parallel to [001] by solid circles. Vzz, the largest one of these
three, |Vxx| ≤ |Vyy| ≤ |Vzz|, is marked by a large shaded circle for each As z position.
Right: the three components of the EFG tensor for BaFe2As2 in the orthorhombic
SDW phase as a function of the As z position. The rest of the notation is the same
as for the left panel.

the crystal, vary continuously as a function of the As z position, as can be seen in Figure 5.37.
In case of SrFe2As2, Vzz is parallel to the a axis for a displacement of As between +0.05 Å
and −0.075 Å (which includes the experimental As z position) and parallel to the c axis for a
displacement between −0.1 Å and −0.15 Å. For BaFe2As2, Vzz fluctuates between all the three
different axes. In particular, Vzz is parallel to the b axis at the experimental As z position. We
also observe that the component parallel to the a axis is very similar for both the Sr and Ba
AFe2As2 compounds. The components parallel to the b and c axis show the same variation with
the As z position, but the curves for the two compounds are shifted by a small almost constant
amount. For BaFe2As2, a change of the direction of Vzz, when going from the high-temperature
NM tetragonal phase to the low temperature SDW phase, was also observed experimentally [150].
Unfortunately, for CaFe2As2 only the quadrupole frequency parallel, and not perpendicular to
the crystallographic c axis is provided in Ref. [149]. Hence, no conclusion about a change of the
direction of Vzz can be drawn.
Figure 3 in Ref. [149] shows the temperature dependence of the quadrupole frequency νQ for
CaFe2As2, see Figure 5.38: νQ increases drastically as the temperature decreases from 300 K to
170 K. At 170 K, there is a large jump in the frequency due to the orthorhombic SDW phase
transition. Between 170 K and 20 K, νQ is rather constant. The EFGs for the tetragonal NM
and orthorhombic SDW phase were calculated using lattice parameters determined at 250 K
and 50 K, respectively (marked by red arrows in Figure 5.38). For these two temperatures, the
quadrupole frequency (parallel to the crystallographic c axis) is almost identical and roughly
νQ ≃ 12.3 MHz (marked by red boxes in Figure 5.38), which corresponds to Vzz ≃ 3.2·1021 V/m2.
This is in agreement with our result for the experimental As z position as seen in the upper panel
of Figure 5.36: Vzz is 3.1·1021 V/m2 for both the tetragonal NM and the orthorhombic SDW
phase.
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Figure 5.38: (Figure from Ref. [149].) Temper-
ature dependence of the quadrupole
frequency νQ in MHz for CaFe2As2
(full blue squares) and BaFe2As2
(empty black squares). The red
squares mark νQ at the temperature
of 50 K and 250 K (red arrows), from
which temperatures the lattice pa-
rameters for the calculated EFGs for
CaFe2As2 are taken, see text.

Pressure

We also investigated the influence of pressure on the EFG. Vzz was calculated for CaFe2As2 and
SrFe2As2 using the experimental structural parameters as a function of pressure, as reported in
Ref. [146] and Ref. [133], respectively. Our result is shown in the inset of Figure 5.39. In case
of CaFe2As2, the EFG increases slightly when the applied pressure is increased from 0 GPa to
0.24 GPa. For these pressure points, the structure is in the (orthorhombic) SDW phase. The
next experimental pressure point is larger than the critical pressure of 0.3 GPa, where the c/a
collapse takes place [146]. The structure changes into the nonmagnetic tetragonal phase and the
calculated EFG increases drastically from roughly 3 to 10·1021 V/m2. Experimentally, the applied
pressure for SrFe2As2 was much higher (up to 4 GPa) than for CaFe2As2, but no indications of
a collapsed phase was found until now [133]. Contrary to the jump in the calculated EFG at
0.3 GPa for CaFe2As2, the EFG for SrFe2As2 increases monotonously without any kinks up to
4 GPa. It is worthwhile to measure the EFG for these systems to get a more clear picture.

Doping
Finally, the EFG for As of the (on the A site) doped compounds was calculated with VCA. The
validity of the VCA was checked by super cell calculations for SrFe2As2 and BaFe2As2. Due to
the super cell construction, there are three different Wyckoff positions for As and hence three
different EFGs, which lie reasonably close to the VCA EFG curve. In the VCA calculation, we
keep the structural parameters fixed for the different levels of doping. In Figure 5.39, EFGs
calculated in this manner are shown for CaFe2As2, SrFe2As2 and BaFe2As2. In case of CaFe2As2,
the EFG increases when electrons are taken out and decreases when electrons are added to the
system. This implies that the As electron density gets more isotropic, when the system is electron
doped. For BaFe2As2, the trend is the same as in CaFe2As2 whereas for SrFe2As2 the situation
is slightly different: hole doping does not change the EFG much, while electron doping increases
the EFG. Note however, that the calculated EFG for SrFe2As2 are quite small.

5.5.5 The iron oxypnictides REFeAsO

At ambient temperature, all REFeAsO compounds crystallise in the tetragonal ZrCuSiAs-type
structure. Undoped REFeAsO compounds exhibit a structural transition to an orthorhombic
lattice at T0 ≈ 155 K for R = La [152] and at T0 ≈ 160 K for R = Nd [153]. Contrary to
AFe2As2, where the structural and magnetic transitions are found to be coupled, the magnetic
transition temperature for the REFeAsO systems is about 10 K to 20 K lower than the structural
one. For R = La, the antiferromagnetic ordering of the Fe moments, described by the same SDW
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Figure 5.39: EFGs calculated for doped CaFe2As2 (green circles), SrFe2As2 (red squares) and
BaFe2As2 (blue diamonds) using VCA. The symbol D represents the dopant. De-
pending on the element D, both electron doping (x > 0) and hole doping (x < 0)
is possible. Results obtained from a four-fold super cell for x = −0.25 for SrFe2As2
(shaded orange squares) and BaFe2As2 (shaded blue diamonds) in the nonmagnetic
tetragonal phase are also shown. Inset: dependence of the EFG on pressure for
CaFe2As2 (left) and SrFe2As2 (right). The latter is in the (nonmagnetic) tetragonal
phase.

pattern with ~Q = (1, 0, 1), occurs at TN ≈ 137 K [152] and for R = Nd, the SDW forms at
TN ≈ 140 K [153]. A certain range of electron doping on the oxygen site suppresses the magnetic
ordering and the compounds become superconducting, e.g., LaFeAsO0.9F0.1 at Tc = 26 K [154]
and NdFeAsO0.85F0.15 at Tc = 43 K [153].

For the REFeAsO compounds, we studied the EFG for LaFeAsO and NdFeAsO. For these com-
pounds, we focused on the nonmagnetic16 tetragonal phase. We also investigated the influence of
doping.

Methods

The band structure calculations were performed using the full-potential local-orbital minimum-
basis code FPLO (version 5.00-19) [2] within the local density approximation (LDA). In the
scalar relativistic calculations the exchange and correlation functional of Perdew and Wang [15]
was employed. As basis set La (5s5p/6s6p5d+4f7s7p), Nd (4p4d4f5s5p/6s6p5d+7s7p), Fe (3s3p
/4s4p3d+4d5s5p), As (4s4p3d+4d5s5p)17 and O (2s2p3d+3s3p) were chosen for semicore/valence

16Due to the 4f electrons in NdFeAsO, it is not possible to obtain a nonmagnetic solution (for the Nd atoms),
since LDA+U has to be applied, see text below. Our choice of ordering the Nd spins antiferromagnetic renders
a zero net moment on the Fe site.

17For NdFeAsO, 4d was not added to the polarisation states for Fe and As, since they changed the EFG only by
0.1 · 1021 V/m2.
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+polarisation states. The high lying states improve the basis which is especially important for
the calculation of the EFG. The lower lying states were treated fully relativistic as core states. To
treat the Nd 4f states adequately, LSDA+U in the atomic limit was employed with U = [7, 9] eV
and J = 0.7 eV for NdFeAsO. In accordance with the widespread agreement that in the new
Fe-based superconducting compounds the Fe 3d electrons have a rather itinerant character, and
thereby are much less correlated in comparison to the Cu 3d electrons in the high-Tc cuprates,
we did not apply the LSDA+U approximation to the Fe 3d states. A well converged k mesh
of 275 (252)k points was used in the IBZ for LaFeAsO (NdFeAsO). In order to investigate the
influence of F substitution on the O site, the virtual crystal approximation (VCA) was applied
and cross-checked with the calculation of super cells18.

Results

z position of As
Also for these compounds, we investigate the EFG dependence on the As z position first. In
Section 5.5.4, it was shown that the AFe2As2 systems are highly sensitive to the Fe-As distance,
which is determined by the As z position. The displacement of As along the z-axis showed a
strong impact on the magnetic moment of the Fe and the EFG of As. The same is true for the
REFeAsO systems: the Fe-As distance effects the magnetic moment of Fe [140] and from our
calculations for LaFeAsO and NdFeAsO, we observe a strong dependence of the EFG on the
As z position, see Figure 5.40. The As z displacement is described by ∆z = z − zexp. The
Fe-As distance is smaller compared to the experimental one if ∆z is negative. We observe a very
similar behaviour for the EFG curve like for the AFe2As2 systems: the EFG increases strongly
for both compounds, as the Fe-As distance decreases (note the negative sign of the EFG), there
is a minimum in the EFG for a displacement of roughly ∆z = 0.10 (R = La) and ∆z = 0.15 (R =
Nd), respectively, and for larger Fe-As distances the EFG increases again.

Experiment vs. calculation
Inserting the measured NQR frequency, obtained by Grafe et al. [155], (and η = 0) in Eq. (5.19)
yields for the experimental EFG of As in LaFeAsO |V exp

zz | = (2.50 ± 0.05) · 1021 V/m2 (red
error bar in Figure 5.40). Using the 175 K lattice parameters and atomic positions as given
in Ref. [152], we obtain a fair agreement for the calculated EFG19: V calc

zz = −3.14 · 1021 V/m2.
However, the calculated EFG is much closer to the experimentally obtained one if the Fe-As
distance is decreased and As is shifted in negative z-direction to z = 0.6438, where the energy
has a minimum (in Figure 5.40 marked by an arrow) and the structure has a shorter Fe-As
distance of 2.3748 Å. This yields V calc,opt

zz = −2.67 · 1021 V/m2. Inserting the measured NMR
frequency and η, obtained by Jeglič et al. [153], in Eq. (5.19) yields for the experimental EFG
of As in NdFeAsO |V exp

zz | = (3.11 ± 0.09) · 1021 V/m2 (blue error bar in Figure 5.40). Using the
experimental structural parameters at ambient temperature and U = 8 eV (for the Nd 4f states),
we obtain a good agreement for the calculated EFG: V calc

zz = −3.39 · 1021 V/m2. Varying U by
±1 eV (within the physically reasonable range) changes the EFG only by ∓0.01 · 1021 V/m2,
which is well below the experimental error bars. Also here, the agreement between the calculated
and the experimental EFG is a little bit better for the energetically optimised As z position,
z = 0.6515, with a shorter Fe-As distance of 2.3729 Å, yielding V calc,opt

zz = −2.92 · 1021 V/m2.

18In order to come close to the experimental F concentration of 10 %, a 4−fold super cell (doubled along a and
b), with 8 formula units was calculated. Therefore the space group Pmm2 was chosen. Replacing one O by F
yields a composition of LaFeAsO0.875F0.125.

19The experimental lattice parameters for La REFeAsO at ambient temperature were published [156] only after
our calculations for this compound were performed. Our calculated properties are for the lattice constants at
175 K, but will be compared with experimental properties at ambient temperature. This will partly limit the
agreement that can be expected. However, using the structural parameters at ambient temperature changes
the EFG in only slightly: V calc

zz = −3.21 · 1021 V/m2, compare Table 5.11.
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Figure 5.40: Dependence of Vzz of As on the As z position, ∆z = z − zexp, for LaFeAsO (red)
and NdFeAsO (blue). The energetically optimised As z positions are marked by
arrows. The experimental Vzz is represented by the shaded bar. Inset: energy
in dependence of the As z position for LaFeAsO (red) and NdFeAsO (blue). The
minima are marked by arrows.

Our results for two representative members of the REFeAsO family as shown above follow a
different trend than the members of the AFe2As2 family: the calculated EFGs agree better with
the measured EFG values for the (energetically) optimised As z position, than for the experimental
As z position.

LaFeAsO vs. NdFeAsO
Analogous to the experiments, where the quadrupole frequency for 75As is larger for the Nd
than for the La compound, the magnitude of the calculated EFG is larger for the Nd compound
Vzz = −3.39 ·1021 V/m2 than for the La compound Vzz = −3.21 ·1021 V/m2 – but less drastically.
In order to understand this difference, we need to understand how the main component Vzz is
calculated. Since the main component Vzz is obtained from the density component n20, which
again can be decomposed in radial functions Rl with angular momentum l and a Gaunt coefficient
G, it can be shown, that Vzz contains only of sd, pp and dd contributions, see Section 4.1.1.
For both the La parent and the Nd parent, the pp contribution to the EFG dominates clearly:
Vzz ≃ V pp

zz . This contribution to the EFG is proportional to the anisotropy function ∆p (see
Section 4.1.1)

V pp
zz ∝ ∆p with ∆p =

1

2
(nx + ny) − nz.

The anisotropy function ∆p for the As 4p electrons is negative for both compounds. This cor-
responds to a prolate p electron distribution and is in agreement with the negative Vzz for both
compounds. For the La compound, ∆p is less negative than for the Nd compound: ∆pLa = −0.018
and ∆pNd = −0.062, respectively. Thus, the 4p orbitals are less isotropic for the Nd compound
and hence the absolute value of the EFG is enhanced. The observed difference between the La
and Nd compounds could arise from either the additional 4f electrons due to screening effects
or from the smaller lattice parameters in the Nd compound. To separate the influence of the
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Table 5.11: Calculated Vzz of As for REFeAsO for two sets of lattice parameters: set 1

(LaFeAsO [156]): a=4.03007(9) Å , c=8.7368(2) Å , As: z = 0.6507(4) and La:
z = 0.1418(3); set 2 (NdFeAsO [153]): a = 3.96629(1) Å and c = 8.59886(6) Å ,
As: z = 0.65735(9) and Nd: z = 0.13887(6). LaFeAsO with set 1 and NdFeAsO with
set 2 are the experimental data, the other combinations are models.

Compound Vzz for set 1 Vzz for set 2

LaFeAsO −3.21 · 1021 V/m2 −3.60 · 1021 V/m2

NdFeAsO −2.92 · 1021 V/m2 −3.39 · 1021 V/m2

change in the lattice geometry from the change in the electronic configuration, we compare the
real EFGs with fictitious EFGs, which are obtained by exchanging the lattice parameters for both
compounds, see Table 5.11.

The absolute value of the EFG, |Vzz|, increases with lattice compression both for the LaFeAsO
and NdFeAsO electronic configurations (Table 5.11 from the left to the right). Next, we checked
the role of the RE 4f electrons. In this case we find the opposite trend, i.e., for given lattice
parameters, |Vzz| is smaller for the Nd than for the La compound (Table 5.11 from top to bot-
tom). One can therefore conclude that |Vzz| increases with lattice contraction and decreases with
increasing number of RE 4f electrons. For these two compounds, the influence of the 4f electrons
is less dominant and therefore NdFeAsO, which has smaller lattice parameters due to the usual
lanthanide contraction has a slightly larger EFG than LaFeAsO.

Doping
Now, we discus the influence of doping on the EFG. We start with LaFeAsO. The EFGs of the
doped compounds were calculated with the virtual crystal approximation (VCA). The validity of
the VCA was confirmed by super cell calculations.

First, we consider solely the effect of electron doping. Therefore, we keep the structural param-
eters fixed for different levels of doping. Figure 5.41 shows two such VCA curves. When the
experimentally determined As z position is used (empty squares in Figure 5.41), the calculated
EFG agrees quite well with the measured EFG value for 10 % doping (red error bar in Fig-
ure 5.41). Also Lebègue et al. found good agreement for the 10 % doped compound [157] using
the WIEN2k code. If the optimised As z position is used, the obtained VCA curve is shifted
in the direction of smaller |Vzz| (full diamonds in Figure 5.41). This curve was cross-checked
with a super cell calculation. Due to the super cell construction, there are two different Wyckoff
positions for As and hence two different EFGs, whereof one is lying on top of this VCA curve
and the other one very close to it (black triangles in Figure 5.41).

Now, we investigate the structural change on top of the doping by calculating the EFG within
VCA for the structural parameters of LaFeAsO0.92F0.08, obtained at 175 K, as given in Ref. [152].
The structural change has only a minor effect on the EFG. The obtained EFG (empty circle
in Figure 5.41) lies very close to the VCA curve, which was obtained by using the structural
parameters of LaFeAsO at 175 K (empty squares). Our calculations result in a decrease in |Vzz|
upon electron doping for LaFeAsO0.9F0.1, although in the experiments an increase is observed.
This is not pointed out by Lebègue et. [157], although they obtain the same discrepancy for the
trend in the V zz calculation.

Next, we repeat the same procedure for the Nd compound. Here, the EFGs of the doped com-
pounds were calculated with the VCA only. Since the EFG is calculated on the As site, whereas
the doping takes place on the oxygen site, a very similar behaviour is expected for the Nd com-
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Figure 5.41: LaFeAsO. Calculated Vzz of As obtained from the virtual crystal approximation
(VCA) using the experimental structural parameters at 175 K for LaFeAsO [152]:
empty squares (red) for As at zexp = 0.6507 and filled diamonds (red) for As at
zopt = 0.6438. VCA for structural parameters of LaFeAsO0.92F0.08 at 175 K [152]:
empty circle (black). The filled triangles (black) show the EFGs from the super cell
calculation using the experimental lattice parameters at 175 K for LaFeAsO [152]
and the optimised As z position, zopt = 0.6438. The measured EFGs for the pure
and the 10 % F-doped compound [155] are shown by red error bars.

pound and there is no need for repeating the super cell calculation.

First, we consider solely the effect of electron doping. Therefore, we keep the structural param-
eters fixed for different levels of doping. In Figure 5.42 two such VCA curves are shown. When
the experimentally determined As z position (NdFeAsO at ambient temperature) is used, the
calculated EFG (empty squares in Figure 5.42) agrees very well with the measured EFG for 15 %
doping (blue error bar in Figure 5.42). This agreement is even better compared to the La com-
pound. The VCA curve with the optimised As z position deviates from the experimental curve
as it systematically predicts a smaller |Vzz|. Also here, a behaviour similar to the La compound
is obtained.

Next, we investigate the structural change on top of the doping by calculating the EFG within
VCA for the ambient temperature structural parameters of NdFeAsO0.85F0.15. We notice that
the use of these parameters slightly reduces |Vzz| to Vzz = −3.17 · 1021 V/m2 (black circle in
Figure 5.42). Also here, the influence of the structural change on the EFG is quite small, but it
changes the EFG in the opposite direction compared to the doped La compound.

Our calculations predict a small decrease in |Vzz| upon electron doping for NdFeAsO0.85F0.15,
although experimentally a slight increase is observed: as it is the case for the La compound where
the difference between the slopes of the calculated and the experimental EFGs upon doping is
even more pronounced.

Comparing the VCA curves for the AFe2As2 systems and the REFeAsO systems, we observe
that the absolute value of the EFG decreases when the system is electron doped for all systems
(expect for SrFe2As2, whose EFG is very small).
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Figure 5.42: NdFeAsO. Calculated Vzz of As obtained from the virtual crystal approximation
(VCA) using the experimental structural parameters at ambient temperature for
NdFeAsO [153]: empty squares (blue) for As at zexp = 0.6574 and filled diamonds
(blue) for As at zopt = 0.6515. VCA for structural parameters of NdFeAsO0.85F0.15

at ambient temperature [152]: empty circle (black). The measured EFGs for the
pure and the 15 % F-doped compound [153] are shown by error bars.

5.5.6 Summary and conclusion

The mechanism of superconductivity in the recently discovered iron arsenide systems AFe2As2
and REFeAsO is still under heavy discussion. A prerequisite for its understanding is the correct
description of the underlying electronic structure. However, describing accurately the Fe-As
interaction in the context of the present stage of DFT is difficult.

As the Fe-As interaction is reflected by the Fe-As distance and doping leads to the onset of
superconductivity in these systems, the EFG and its dependence on doping is an ideal tool to
investigate the Fe-As interplay.

There is reasonable agreement between the calculated and the experimentally obtained EFGs
for three investigated iron arsenides AFe2As2, with A = Ca, Sr and Ba, for the nonmagnetic
tetragonal phase, using the experimental structural parameters. The calculations show that
neither the orthorhombic splitting, nor the fictitious FM or NN-AFM ordering of the Fe spins
influence the EFG much. Also doping has a quite small effect on the EFG. In contrast, the
As z position and pressure have a large influence on the EFG. Also the SDW order changes
the calculated EFG noticeable, consistent with the experimental observations for CaFe2As2 and
BaFe2As2.

Reasonable agreement between the calculated and the experimentally obtained EFGs was ob-
tained for the investigated iron oxypnictides REFeAsO, with RE = La and Nd, using the exper-
imental structural parameters. However, the agreement improves, if the optimised As z position
is used in the calculation – in contrast to the AFe2As2 systems.

The effect of electron doping on the EFG is much smaller than the influence of the As z position.
We observe the same behaviour upon electron doping as for the AFe2As2 systems: the absolute
value of the EFG decreases. Yet, for the REFeAsO systems, the measured quadrupole frequencies
show the opposite trend, they increase with electron doping. An experimental check if this
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discrepancy also holds for the AFe2As2 systems would be desirable.

As demonstrated, similar to the magnetism, also the EFG is highly sensitive to the As z position.
But whereas the calculated EFGs for the undoped systems agree with the experimental data, the
trends obtained from the calculation for the doped systems is opposite to the the experimental
data. These findings emphasise again the crucial importance of a reliable, correct description
of the Fe-As interaction as this is connected with the density around As and hence with the As
EFG. Further calculational and experimental effort on the “EFG doping” problem may lead to
hints why the DFT calculations fail for some physical properties of the iron pnictides.
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6 Beyond the EFG: electron penetration in the nucleus – its effect on

the quadrupole interaction

A Taylor expansion of the interaction between a nucleus and its surrounding electron distribution
provides terms that are well-known in the study of hyperfine interactions: the familiar quadrupole
interaction and the less familiar hexadecapole interaction. If the penetration of electrons into the
nucleus is taken into account, various corrections to these multipole interactions appear. The best
known one is a scalar correction related to the isomer shift, which can be detected by Mössbauer
spectroscopy. In this chapter, we will discuss a related tensor correction, which modifies the
quadrupole interaction if electrons penetrate the nucleus. This effect has been implemented in
the FPLO code.
We discuss how it shows up in experiments, and how it could possibly be exploited to improve
the accuracy of experimentally determined quadrupole moments.

6.1 Formalism

6.1.1 Classical interaction energy without charge-charge overlap

The classical electrostatic interaction energy between a positive nuclear charge distribution ρ(~r)
and a potential v(~r) due to a surrounding (electron1) charge distribution n(~r ′) is formally given
by

E =

∫
ρ(~r)v(~r)d~r =

1

4πǫ0

∫ ∫
ρ(~r)n(~r ′)
|~r − ~r ′| d~rd~r ′, (6.1)

and can be expressed by the standard multipole expansion in spherical harmonics [37]:

1

|~r − ~r ′| =
∑

l,m

4π

2l + 1

rl
<

rl+1
>

Y ∗
l,m(Ω)Yl,m(Ω′), (6.2)

with r< = min(r, r ′) and r> = max(r, r ′). This leads to an infinite sum of double integrals, each
with the dimension of energy:

E =
∞∑

l=0

E2l = E0 + E2 + E4 + . . . (6.3)

Odd terms will vanish in the cases of interest here, see Section 6.1.2. It is the second term E2

that will be of interest in the present work:

E2 = hνQ =
1

4πǫ0

4π

5

+2∑

m=−2

∫ ∫
ρ(~r)n(~r ′)

r2
<

r3
>

Y ∗
2,m(Ω)Y2,m(Ω ′)d~rd~r ′. (6.4)

The frequency νQ is experimentally accessible, and is called the nuclear quadrupole coupling
constant (NQCC). Due to the varying assignment of r< and r> to ‘nuclear’ (r) or ‘electron’ (r ′)
coordinates, quantities as E2 are an intricate mixture of properties of both charge distributions

1For free atoms, this surrounding charge distribution consists of electrons only, for molecules and solids, it contains
all electrons and all nuclei, except for the nucleus under consideration. As we will see later, it is the charge
density of the electrons that gives rise to the corrections.
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

ρ(~r) and n(~r). Only in the special case where both charge distributions do not overlap (r< ≡ r
and r> ≡ r ′), Eq. (6.1) can be written in terms of properties that depend entirely on only one of
the charge distributions2

E =
∑

l,m

Q∗
lmVlm , (6.5)

where Qlm and Vlm are the components of the nuclear multipole moment and electric multipole
field tensors of rank l, respectively:

Qlm =

√
4π

2l + 1

∫
rlρ(~r)Ylm(Ω)d~r (6.6)

Vlm =
1

4πǫ0

√
4π

2l + 1

∫
1

r ′l+1
n(~r ′)Ylm(Ω ′)d~r ′. (6.7)

When this formalism is applied to describe nuclei and electrons, the simplification by Eq. (6.5)
can never be made: s electrons and in full relativistic treatment also p 1

2
electrons have a nonzero

probability to appear at r=0, and therefore, the nuclear and electron charge distributions always
overlap. Nevertheless, motivated by the very small size of the region where this overlap happens
compared to the volume of the rest of the atom, one can in a first approximation neglect this
concern and apply Eq. (6.5) to atoms, molecules and solids. This is where the concept of an
electric field gradient tensor (V2m) originates that interacts with a nuclear quadrupole moment
tensor (Q2m) to produce an experimentally observable interaction energy (E2). Although E2 itself
is a well-defined observable property, its description by a quadrupole interaction energy only

E2 = hνQ ≈ hνQI =
+2∑

m=−2

Q∗
2mV2m (6.8)

rather than by Eq. (6.4) is an approximation.

6.1.2 Overlap corrections

We will now derive explicit expressions for the corrections that need to be added to Eq. (6.8) to
obtain Eq. (6.4) (and similarly for other values of l). Rather than using the multipole expansion in
spherical harmonics from Eq. (6.2), we start from a Taylor expansion of the electrostatic potential
v(~r) = 1/(4πǫ0)

∫
n(~r ′)/|~r − ~r ′| d~r ′ in the interaction energy of Eq. (6.1):

E =

∫
ρ(~r)v(~r)d~r = v(0)

∫
ρ(~r)d~r +

∑

i

vi(0)

∫
xiρ(~r)d~r

+
1

2!

∑

i,j

vij(0)

∫
xixjρ(~r)d~r +

1

3!

∑

i,j,k

vijk(0)

∫
xixjxkρ(~r)d~r

+
1

4!

∑

i,j,k,l

vijkl(0)

∫
xixjxkxlρ(~r)d~r + O(6). (6.9)

In order to recognise in this expression the multipole moments and multipole fields from Eq. (6.6)
and Eq. (6.7), one has to make substitutions like shown in Eq. (6.10) for the quadrupole moment:

∫
xixjρ(~r)d~r =

1

3

∫
(3xixj − r2δij)ρ(~r)d~r

︸ ︷︷ ︸
Qij

+
1

3

∫
r2ρ(~r)d~r δij .

(6.10)

2Note, that contrary to Chapter 3 and 4, here we use due to Eq. (6.2) the complex notation for the multipole
moment and field tensors, i.e., complex spherical harmonics. However, the (real) physical quantity E is of
course identical for both the real and the complex representation.
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6.1 Formalism

Here, Qij are the components of the quadrupole tensor Q2m (Eq. (6.6)), but now in Cartesian
form. These substitutions in Eq. (6.9) yield the nuclear monopole, quadrupole and hexadecapole
moments in Cartesian form:

M =

∫
ρ(~r)v(~r)d~r = eZ (6.11)

Qij =

∫
(3xixi − r2δij)ρ(~r)d~r (6.12)

Hijkl =

∫
3 · 5

(
7xixjxkxl − fH(xi, xj , xk, xl)

)
ρ(~r)d~r (6.13)

with fH(xi, xj , xk, xl) = r2
[
xixjδkl + xixkδjl + xixlδkj + xjxkδil + xjxlδik + xkxlδij

]
− r4

5

[
δijδkl +

δikδjl + δilδjk

]
. The corresponding electric multipole fields in Cartesian form are:

V = v(0) (6.14)

Vij = (∂i∂jv(0) − 1

3
∆δij)∆v(0) (6.15)

Vijkl = ∂i∂j∂k∂lv(0) − fV
ijkl∆v(0) (6.16)

with fV
ijkl =

[
∂i∂jδkl + ∂i∂kδjl + ∂i∂lδkj + ∂j∂kδil + ∂j∂lδik + ∂k∂lδij

]
− ∆

5

[
δijδkl + δikδjl + δilδjk

]
.

The expressions in Eqs. (6.11) to (6.13) and Eqs. (6.14) to (6.16) are identical to the ones in
Eqs. (6.6) and (6.7), respectively. They have the same number of degrees of freedom: 1, 5 and 9
for the zeroth, second and fourth order moment/field.
After having inserted into Eq. (6.9) all substitutions as in Eq. (6.10), the interaction energy can
be written as

E = M · V︸ ︷︷ ︸
MI

+
1

3!
{r2}∆v(0)

︸ ︷︷ ︸
MS(1)

+
1

5!
{r4}∆2v(0)

︸ ︷︷ ︸
MS(2)

+
1

2!

1

3

∑

ij

QijVij

︸ ︷︷ ︸
QI

+
1

28

∑

ij

{(xixj −
r2

3
δij)r

2}(∂i∂j −
∆

3
δij)∆v(0)

︸ ︷︷ ︸
QS(1)

+
1

4!

1

105

∑

ijkl

HijklVijkl

︸ ︷︷ ︸
HDI

+O(6), (6.17)

where all integrations over the nuclear charge density ρ(~r) are noted in short-hand by {curled
brackets}. Eq. (6.17) contains no odd order terms (dipole, octupole,. . .), since nuclei have no odd
order electric moments due to parity and time reversal symmetry3 [158]. We see that Eq. (6.17)
contains dot products4 between multipole moments and fields as in Eq. (6.5): the monopole
(MI), quadrupole (QI), hexadecapole (HDI),. . . interactions. These are the only contributions
in the case without charge-charge overlap. Additionally, an infinite set of even order correction
terms appears now as well: the first and second order monopole shift (MS) and the first order
quadrupole shift (QS). Due to parity, there are no odd order corrections. In Table 6.1, a general
naming system and a corresponding set of symbols are presented: the nth order quasi multipole
moment multiplied (dot product) with the nth order quasi multipole field leads to the nth order

3However the search for violations of these symmetries by looking for these moments goes on.
4A dot product of two tensors of rank n is defined as

∑
1,..,n

A1,..,n · B1,..,n, as given in Eq. (6.17). It yields a
scalar, not a tensor of rank n.
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

Table 6.1: Systematic overview of nuclear multipole and quasi multipole moments and electric
multipole and quasi multipole fields that appear in the multipole expansion of two
interacting (and overlapping) classical charge distributions. The first column gives the
regular multipole expansion for point nuclei: the monopole, quadrupole and hexade-
capole interactions. The next columns give the quasi multipole moments/fields for
every multipole interaction, denoted by a tilde: these are corrections to the multipole
interactions due to electron penetration into an extended nucleus. Coloured text is by
generalisation only, and is not systematically derived in this work. The objects in each
line are spherical tensors of a given rank (rank 0 for line 1, rank 2 for line 2, rank 4
for line 3, . . .).

Order Multipole First order Second order . . .
moment quasi moment quasi moment
/ field / quasi field / quasi field

O(0)
MI:

M ∝ r0Y00

V ∝ v(0)

MS(1):

M̃ (1) ∝ {r2Y00}
Ṽ (1) ∝ ∆v(0)

MS(2):

M̃ (2) ∝ {r4Y00}
Ṽ (2) ∝ ∆2v(0)

. . .

O(2)
QI:

Q ∝ r2Y20

Vij ∝ ∂ijv(0)

QS(1):

Q̃(1) ∝ {r4Y20}
Ṽ

(1)
ij ∝ ∂ij∆v(0)

QS(2):

Q̃(2) ∝ {r6Y20}
Ṽ

(2)
ij ∝ ∂ij∆

2v(0)

. . .

O(4)
HDI:

H ∝ r4Y40

Vijkl ∝ ∂ijklv(0)

HDS(1):

H̃(1) ∝ {r6Y40}
Ṽ

(1)
ijkl ∝ ∂ijkl∆v(0)

HDS(2):

H̃(2) ∝ {r8Y40}
Ṽ

(2)
ijkl ∝ ∂ijkl∆

2v(0)

. . .

. . . . . . . . . . . . . . .

multipole shift. From the general trends in this table, one can infer the structure of the higher
order corrections that were not explicitly derived in Eq. (6.17) – they are shown in the table in
blue.

There is a qualitative difference between the multipole fields in the first column of Table 6.1 and
the quasi multipole fields in all other columns. The multipole fields depend on the potential v(0)
at the nucleus, which depends via integration on the charge distribution everywhere else in the
system, cf. Eq. (2.17). Multipole fields are therefore integrated quantities, determined by the
entire density. The quasi multipole fields depend on the Laplacian of the potential at the nucleus
∆v(0), which is by the Poisson equation (∆v(0) = −n(0)/ǫ0) proportional to the electron charge
density at the nucleus n(0) . Quasi multipole fields are therefore point quantities, determined by
the electron density at a single point only.

The core of the present work deals with the first order quadrupole shift QS(1), which is the first
order correction to the quadrupole interaction. In the next section, the results of Eq. (6.17)
and Table 6.1 for a system of two classical charge distributions will be translated to a quantum
formulation. This will make it applicable to atoms, molecules and solids.
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6.1 Formalism

6.1.3 Quantum formulation

In order to translate Eq. (6.17) to quantum mechanics, Hamiltonian operators corresponding to
all its terms are required. The structure of Eq. (6.17) suggests a perturbation theory treatment,
with the monopole interaction term as the unperturbed Hamiltonian, and the other terms as small
perturbations. The monopole term depends via r0 on the (small) nuclear coordinate (r ∝ 10−15 m)
and via 1/r ′ on the electronic coordinate (r ′ ∝ 10−10 m). Among all small corrections in Table 6.1,
the two largest ones are the quadrupole interaction QI and the first order monopole shift MS(1) –
both have a r2 in their nuclear parts and a second derivative of the electrostatic potential (leading
to 1/r ′3) in their electronic parts. These two leading corrections will be considered as the small
perturbation.
The Hamiltonians that correspond to the entries in Table 6.1 operate on the direct product space
of wave functions for the nuclear and the electron subspaces. The ground state of the monopole
Hamiltonian is a direct product between the nuclear ground state and the electronic ground state
wave function. With M̂ = eZ1̂l (Eq. (6.11), 1̂l is the identity operator on the nuclear space) and
V̂ = v̂(0) (Eq. (6.14), v̂(0) is an operator on the electronic space that returns the potential at
~r=~0 due to a given wave function ψ), the unperturbed monopole interaction Hamiltonian is

ĤMI = eZ 1̂l ⊗ v̂(0). (6.18)

Evaluating this for the ground state wave function |I ⊗ ψ0〉 of the combined nuclear+electronic
system (|I〉 is the ground state of the nucleus, and |ψ0〉 the ground state of the electron system
with a point nucleus) leads to:

Epn
0 = 〈ψ0 ⊗ I| ĤMI |I ⊗ |ψ0〉

= 〈I| eZ 1̂l |I〉 · 〈ψ0| v̂(0) |ψ0〉
= eZv(0) , (6.19)

which is the leading term in Eqs. (6.5) or (6.17). The label pn (‘point nucleus’) emphasises the
difference with E0 from Eq. (6.3). The quantity v(0) – the electrostatic potential at the nuclear
site for a point nucleus – is accessible by first-principles codes.
The perturbation is (see Table 6.1 for the notation):

ĤP = ĤQI + ĤMS(1) . (6.20)

In first order perturbation theory, the energy corrections due to this perturbation are found
by evaluating the perturbing Hamiltonian in the ground state of the unperturbed Hamiltonian.
Assuming a non-degenerate ground state in the electron subspace, it is advantageous to write
the Hamiltonians immediately in a more familiar form where the electronic matrix elements are
already evaluated and are treated as known (=computable) quantities. After similar algebra as
for the monopole Hamiltonian, this leads to this form for the monopole shift Hamiltonian. It
contains the mean square radius 〈r2〉 of the nucleus and the electron density n(0) at the position
of the nucleus

ĤMS(1) = − eZ

6ǫ0
n(0) 〈r2〉1̂l. (6.21)

The quadrupole Hamiltonian ĤQI has already been introduced in Section 3.3 and is explicitly
derived in Appendix C. It contains the (spectroscopic) quadrupole moment of the nucleus Q and
the quadrupole field of the electrons Vzz (principle component of the electric field gradient tensor)

ĤQI =
eQVzz

4(2I − 1)Ih̄2

[(
3Î2

z − Î2
)

+
1

2
η

(
Î2
+ + Î2

−
)]

. (6.22)
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

Diagonalising these two Hamiltonians in the nuclear states leads to the desired energy corrections
in first order perturbation. Formally, this can be written as

E[1] = Epn
0 + 〈I|ĤMS(1) + ĤQI |I〉

= Epn
0 + 〈I|ĤMS(1) |I〉 + 〈I|ĤQI |I〉

= Epn
0 + E

[1]

MS(1) + E
[1]
QI . (6.23)

Here, E
[1]

MS(1) is a correction to the monopole energy Epn
0 for a point nucleus due to (s or p 1

2
)

electron penetration into the volume of a spherical nucleus. The quadrupole interaction energy

E
[1]
QI is a correction due to the deviation from spherical symmetry of this nucleus. It is this term,

which played an important role in Sections 3.3 and 3.4.
There is a second group of entries with even much smaller corrections in Table 6.1: the HDI,
QS(1) and MS(2) terms all have r4 in their nuclear parts and 4 derivatives of the electrostatic
potential (→ 1/r ′5 in their electronic parts). The corresponding Hamiltonians are:

ĤHDI =
eHVzzzz

128I(I − 1)(2I − 1)(2I − 3)h̄4

·
[
35Î4

z − 30Î2
z Î2 + 3Î4 + 25h̄2I2

z − 6h̄2I2
]

(6.24)

ĤQS(1) = − 1

14ǫ0

eQ̃nzz

4(2I − 1)Ih̄2

[(
3Î2

z − Î2
)

+
1

2
ηQS

(
Î2
+ + Î2

−
)]

(6.25)

ĤMS(2) = − eZ

5!ǫ0
∆n(0) 〈r4〉1̂l. (6.26)

The (diagonal part of the) hexadecapole Hamiltonian, Eq. (6.24), is taken from the literature [159],
the quadrupole shift Hamiltonian, Eq. (6.25), is derived explicitly in Appendix E and similar
algebra as for the first order monopole shift Hamiltonian leads to the second order monopole
shift Hamiltonian, Eq. (6.26). As they are much smaller than the QI and MS(1) terms, it makes
little sense to add these corrections to the Hamiltonian of Eq. (6.20) right away. Rather one should
consider a first order perturbation to the Hamiltonian of Eq. (6.20), which itself was already a
perturbation to the monopole Hamiltonian of Eq. (6.18). This means: find the perturbed eigen
states of Eq. (6.20) in first order, and evaluate the new perturbations as given by the Hamiltonians
in Eqs. (6.24)–(6.26) in these eigen states. In the present work, we are interested in first place in
ĤQS(1) , as it has the symmetry of a quadrupole interaction: this Hamiltonian, evaluated in the
(approximate) eigenstates for a system with a finite and quadrupolarly deformed nucleus, gives
an additional contribution to the regular quadrupole interaction. It can be interpreted as the
influence of electron penetration into the nuclear volume on the quadrupole interaction.
There is an alternative way to express this same effect: consider the Hamiltonian of Eq. (6.20)
up to second order perturbation. Among others, the second order energy expression will contain
a cross term between QI and MS(1), which has the same symmetry as the quadrupole interaction
(this can easily be seen because the monopole shift is a scalar quantity that does not change the
symmetry). Compared to the previous strategy this method has the advantage that the same
Hamiltonian is kept, but the disadvantage that second order matrix elements in excited states
have to be evaluated. It is technically easier to evaluate a new perturbation in the ground state
of the previous perturbation. The underlying physics, however, is the same.
The second order perturbation description has been applied in 1970 by Pyykkö for approximate
and non-relativistic calculations in a few test molecules (see also Figure 6.3) [160]. The first
order + first order perturbation description has been used in 2003 by Thyssen et al. [161] for the
case of LiI, albeit in an implicit way that did not clearly showed the twofold application of first
order perturbation theory. It will be the method used in the present work as well, not at least
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because it leads to a concise analytical formula (Eq. (6.33)). Our derivation was made completely
independent from the one by Thyssen, and the observation that both final expressions agree is a
strong test of mutual correctness.

6.1.4 Zooming in on E2

The regular quadrupole interaction and first order quadrupole shift together provide our approx-
imation to E2:

E2 = hνQ ≈ EQI + EQS(1) = hνQI + hνQS(1) . (6.27)

Both terms consist of a product between a nuclear quantity and an electron quantity. Since this
shows to which nuclear and/or electronic properties one gets access by measuring E2, we discuss
them now. The two relevant nuclear quantities are (see Eqs. (6.22) and (6.25)):

ĤQI → eQ =

∫
ρ(~r)(3z2 − r2)d~r ∝ 〈r2Y20〉 (6.28)

ĤQS(1) → eQ̃ =

∫
ρ(~r)(3z2 − r2)r2d~r ∝ 〈r4Y20〉. (6.29)

The quasi quadrupole moment Q̃ has an additional r2 in the integral compared to the quadrupole
moment Q. It is therefore a quantity that bears similarity with the quadrupole moment 〈r2Y20〉
(through the Y20-dependence) as well as with the hexadecapole moment 〈r4Y40〉 (through the
r4-dependence).
The corresponding electronic quantities are:

ĤQI → Vzz =

(
∂zz −

∆

3

)
v(0) (6.30)

ĤQS(1) → nzz = − 1

ǫ0

(
∂zz −

∆

3

)
∆v(0). (6.31)

The integrated quantity (cf. Section 6.1.2) Vzz is the principal component of the electric field
gradient tensor. The point quantity nzz is the main component of the tensor nij = (∂i∂j −
∆
3 δij)n(0), which has via the Laplacian two derivatives more than the main component of the
EFG tensor. It can be shown that nzz is proportional to 〈Y2m/r5〉 and therefore bears similarities
with the electric quadrupole field 〈Y2m/r3〉 as well as with the electric hexadecapole field 〈Y4m/r5〉,
cf. Eq. (6.7).

6.2 Observable consequences

All entries in the (classical) Table 6.1 correspond to an experimentally observable correction to the
total energy. The first row lists energy corrections which are a (dot) product of scalar quantities.
The leading term after the monopole contribution MI (or Epn

0 ) is the first order monopole shift
MS(1), which experimentally manifests its presence in the well-known isomer and isotope shifts
and is known since 1960 [5]. The second order monopole shift MS(2) is only very rarely taken
into account. One example where it matters is the case of muonic atoms [162, 163] (atoms where
a muon rather than an electron orbits the nucleus). Because a muon is much heavier than an
electron, its orbit is much smaller and the overlap with the nuclear charge distribution becomes
much larger. This makes the second order monopole shift for muons much larger than it is for
electrons5.

5To exploit the quadrupole shift (see Section 6.6) for muonic atoms, however, is not possible since no such
experiments have been published for a couple of decades and the apparatus has been demounted [43].
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Quadrupole
 Interaction Shift

Quadrupole+

}

I = 5
2

mI = ±5
2

mI = ±3
2

mI = ±1
2

νQI

2νQI

νQI + νQS

2(νQI + νQS)

Figure 6.1: Energy levels for a nuclear spin of I = 5/2. This picture is not on scale: the shift of
the levels as indicated by the arrow is in the most favourable cases (=heavy nuclei)
only 0.1 % of νQI . Note that νQS has a negative sign, Eq. (6.33).

All entries in the second row of Table 6.1 are dot products between spherical tensors of rank 2.
The first one is the quadrupole interaction term QI, which splits according to Eq. (6.22) energy
levels that were degenerate under the monopole term. An example for the axially symmetric
case (η = 0) and nuclear spin I = 5/2 is given in Figure 6.1. The second term in the second
row is the first order quadrupole shift QS(1), which shifts the energy levels that were split by the
quadrupole Hamiltonian, but preserves its overall symmetry (Figure 6.1, example for η = ηQS =
06). The frequencies that set the scale for the quadrupole and quadrupole shift splitting are (still
considering η = ηQS = 0):

νQI =
eQVzz

h
(6.32)

νQS = −eQ̃nzz

14ǫ0h
. (6.33)

For the sake of shorter notation, we will use from here on νQS rather than νQS(1) : we will
not consider second order quadrupole shifts and therefore no confusion will be possible. The
quadrupole shift does not change the overall symmetry, which in the example of Figure 6.1 means
that the 1:2 ratio between the two energy differences is preserved. An experiment that measures
such energy differences is not able to distinguish between the contribution by νQI and the one
by νQS : it measures their sum only. A discussion of the trends in the order of magnitude of
the quadrupole shift will be given in Section 6.4.3, and several experimental and computational
strategies to exploit the quadrupole shift will be suggested in Sections 6.5 and 6.6.
Finally, the third row in Table 6.1 lists dot products between tensors of rank 4. The leading term
here is the hexadecapole interaction for point nuclei. This term can in principle be distinguished
experimentally from a quadrupole interaction because its symmetry is different (for instance, in
Figure 6.1 the 1:2 ratio would be slightly violated). The HDI appears only for nuclei with l ≥ 2,
since only they have hexadecapole moments (2I ≥ l rule for 2l multipole moments). Whereas the
QI is well-known and experimentally accessible since 1939 [3], e.g., by NMR or Molecular Beam

6For all spherical tensors of rank two with a three, four or six fold rotation axis it can be shown, that only the
m = 0 component is nonzero (which is equivalent to η = 0) [164]. This means, if η = 0 then also ηQS = 0 and
vice versa.
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6.3 Computational aspects

Spectroscopy (see Section 6.5.1), the situation for the HDI is different. Since it was reported
for the first time in 1955 [165], it has gone through cycles of confirmatory measurements and
refutations. An overview is given in Ref. [161].

6.3 Computational aspects

6.3.1 Formulation in spherical notation

The electronic part nzz of the quadrupole shift will be calculated with a first-principles code and
must therefore be translated in spherical form as is common in such codes:

nzz =
2√
3

√
15

4π
lim
r→0

1

r2
n20(r). (6.34)

The spherical component of the density, n20(r), which enters this expression, is the radial part of
the (l=2, m=0) component of expansion of the density n(~r) in spherical harmonics:

n(~r) =
∑

lm

nlm(r)Ylm(Ω). (6.35)

The l=2 components are closely related to Cartesian second derivatives, cf. Appendix B, which
is the reason why they appear in the electric field gradient and related quantities.

6.3.2 Relativity and the role of a finite nucleus

In order to obtain nzz, the limit of n20(r)/r2 for r → 0 must be calculated, cf. Eq. (6.34). It
matters whether this is done within a non-relativistic (NREL), a scalar-relativistic (SREL) or a
fully relativistic (FREL) framework. In the NREL or FREL formulations (no matter if a point or
a finite nucleus is used in the calculation), n2m(0) is exactly zero as it should be due to angular
selection rules (see left graph in Figure 6.2). In the SREL approximation, the (l=2, m) density,
created from two divergent p1/2 functions, is to some extent wrongly nonzero at r = 0. This
makes SREL-based methods (with or without a point nucleus) essentially useless for calculating
properties that depend on n20(r→0), and we will therefore not consider SREL any further.

For a point nucleus, the ratio of n20(r) and r2 converges for the limit r→0 in a NREL formulation,
but not in a FREL formulation (see right graph in Figure 6.2). Since this ratio at r = 0 is an
observable quantity (see Eqs. (6.34) and (6.33)), the divergence for the better method (FREL
vs. NREL) cannot be physical. And indeed, the divergence disappears if the approximation of a
point nucleus is dropped and a finite nucleus is used in the calculation (right graph in Figure 6.2).
Numerical values for this ratio turn out to be much larger for FREL compared to NREL, especially
for heavy elements. A finite nucleus was recently implemented in FPLO [2] (version 8.00-31), by
which Figure 6.2 was obtained.

The divergence of nzz in a fully relativistic point nucleus calculation might appear to be worrying
at first sight. Would that not mean that the quadrupole shift in Eq. (6.33) is infinite? The answer
is: no, because the operator corresponding to nzz (Eq. (6.31)) does not have to be evaluated in
the ground state for the point nucleus (which is the case that diverges at r = 0), but in the
ground state after having added the two perturbations of Eq. (6.20) that describe the effect of a
quadrupolarly deformed finite nucleus (where the divergence is absent). The latter ground state
can be constructed from the ground and excited states of the point nucleus case, applying the
common expression for the eigenfunctions in first order perturbation. This would, however, lead to
rather lengthy expressions and to the inconvenience of having to use excited states. A pragmatic
workaround is to use instead the ground state as calculated in a first-principles code that takes a
finite nucleus into account. This is hardly an approximation, as it was exactly the purpose of the
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Figure 6.2: The density component n2m(r) (left graph, including inset, which zooms in the region

around r = 0 ) and n2m(r)/r2 (right graph) for a point nucleus (pn, dashed lines)
and a finite nucleus (fn, full lines) plotted in dependence of r. The different methods
are indicated by different colours: non-relativistic (NREL, yellow), scalar relativistic
(SREL, red) and full relativistic (FREL, green). This calculation for the hcp metal
Re was done by FPLO [2], version 8. All quantities are given in atomic units.

perturbations in Eq. (6.20): to express the presence of a finite nucleus. Therefore, we conclude
that the quadrupole shift can be obtained by evaluating the operator for nzz in Eq. (6.31) for
the ground state of the atom, molecule or solid calculated fully relativistically and with a finite
nucleus taken into account. This quadrupole shift has to be added to the contribution obtained
by evaluating the operator for Vzz in Eq. (6.30) in the ground state of the point nucleus case (and
not in the ground state of the finite nucleus case, as the regular QI is really a perturbation to the
point nucleus).

6.3.3 Comparison with the PCNQM method

In the previous sections, we have described a procedure to obtain the influence of electron pen-
etration in a finite nucleus on the quadrupole interaction by two subsequent applications of first
order perturbation theory combined with finite nucleus calculations (Eq. (6.33) and Figure 6.2).
An alternative to this procedure is the point charge nuclear quadrupole moment method (PC-
NQM) [166, 167, 168], where the electric field gradient is not obtained as the expectation value
of an operator, but is determined from the way how the total energy of the system changes upon
inserting an artificial array of point charges around the nucleus. In this method, only total en-
ergies are required to obtain the electric field gradient, which makes it particularly useful when
the proper operator for the EFG is not explicitly known. The latter is for instance the case as
soon as a finite nucleus is used (Eq. (6.22) is valid for a point nucleus only), or for fully relativis-
tic calculations at the 2-component level (a complicated and not yet performed ‘picture change’
transformation would be needed to find the 2-component version of the EFG operator [168].)
The difference in EFGs between a ‘finite nucleus + PCNQM’ calculation and a point nucleus
calculation (either with the regular EFG operator or with PCNQM) gives the effect of electron
penetration in the nucleus. One case where this difference is explicitly calculated is for 127I in LiI
(Ref. ([169]) and Figure 6.3). However, with the PCNQM method the quadrupole shift can be
obtained only numerically: there is no analytical expression as Eq. (6.33).
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Table 6.2: The nuclear radius a, quadrupole moment Q, deformation parameter β2 and quasi

quadrupole moment Q̃ of a few isotopes.

Isotope a [fm] Q [fm2] β2 Q̃ [fm4]

9Be 2.84 5.3 0.22 43
47Ti 4.61 30.2 0.09 644

111Cd 5.95 83.0 0.07 2 934
138La 6.34 45.0 0.03 1 808
179Hf 6.84 379.3 0.15 17 760
187Re 6.93 207.0 0.07 9 945
189Os 6.95 85.6 0.03 4 138

6.4 Numbers and trends

In the present section, we will perform actual calculations with the formalism described in Sec-
tions 6.1 and 6.3, and examine trends in the relevant quantities: the nuclear quasi quadrupole
moment Q̃, the electronic point property nzz, and their product: the quadrupole shift νQS .

6.4.1 Trends in Q̃

In order to gain more insight in Q̃, we will consider a phenomenological model7 for a nucleus: a
deformed sphere, with a radius R(θ) given by [170]:

R(θ) = a (1 + β2Y20(θ) + β4Y40(θ) + . . .) , (6.36)

where a is called the monopole radius and the βi are deformation parameters. The monopole
radius depends in the first place on the atomic mass number A of the nucleus, and the main trend
through a lot of experimental values can be summarised by [171]8

a(A) = 1.489 A0.294 fm. (6.37)

Values for β2 fall rarely outside the range [−0.3, +0.3] (Ref. [172] in combination with Eq. (6.38)).
As β4 is even smaller and enters only quadratically in the expressions we will need (cf. Ap-
pendix H.2.2), it can be neglected for our purposes. Keeping only the contributions linear in β2,
we can now express the quadrupole moment and the quasi quadrupole moment in terms of a and
β2:

eQ ≃ 3

√
4π

5

eZ

2π
β2a

2 (6.38)

eQ̃ ≃ a2 · eQ. (6.39)

The term quadratic in β2 as well as the quadratic β4 term give corrections to Eqs. (6.38) and (6.39)
at the level of a few percent only, while they make the expressions considerably more involved –
see Eqs. (H.14) and (H.15) in Appendix H.2.2.

7In Appendix H.2.1 a special case of this model is also investigated: an axially symmetric ellipsoid. This simple
model gives the same trends as the more realistic nuclear model presented here.

8Note, that in Ref. [171], the root-mean-square (RMS) of the nuclear radius is given, while here we use the
monopole radius. See Eq. (H.20) in Appendix H.2.3 for details.
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

Table 6.3: For a few atoms/nuclei that experimentally condense in the hcp crystal structure (ex-

cept for Pa, bct), this table lists the nuclear properties Q and Q̃ (determined as in
Table 6.2), the electronic properties Vzz and nzz/ǫ0 (calculated by FPLO, see text),
the quadrupole νQI and quadrupole shift νQS frequencies they give rise to (Eqs. (6.32)
and (6.33)) (mind the different MHz and kHz units), and the ratio of the latter.

Isotope I Q Q̃ Vzz nzz/ǫ0 νQI νQS |νQS/νQI |
[fm2] [fm4] [1021V/m2] [1042V/m4] [MHz] [kHz]

9Be 3/2 5 42 −0.08 −6.07·10−2 −0.1 10−8 5·10−9

47Ti 5/2 30 644 1.61 3.27·10+3 11.8 −0.04 3·10−6

49Ti 5/2 25 539 1.61 3.27·10+3 9.6 −0.04 3·10−6

111Cd 5/2 83 2 934 7.48 2.94·10+5 150.0 −14.9 1·10−4

177Hf 7/2 337 15 652 7.89 1.26·10+6 642.3 −341.4 5·10−4

179Hf 9/2 379 17 760 7.89 1.26·10+6 723.9 −387.4 5·10−4

185Re 5/2 218 10 386 −5.51 −1.81·10+6 −290.3 324.9 1·10−3

187Re 5/2 207 9 945 −5.51 −1.81·10+6 −275.6 311.1 1·10−3

189Os 3/2 86 4 138 −6.65 −2.91·10+6 −137.6 208.1 2·10−3

231Pa 3/2 −172 -9 357 15.14 8.11·10+6 −629.8 1309.7 2·10−3

By Eqs. (6.38)-(6.39), one can get a reasonable estimate for Q̃ by inserting the monopole radius
from Eq. (6.37) and the experimental quadrupole moment Q (e.g., from Refs. [58, 172, 173]).
This way, we obtain values for Q̃ in the order of 104 − 105 fm4 for heavy elements (Table 6.2).

The Eqs. (6.38)-(6.39) show that in order to get a large quasi quadrupole moment Q̃, the nu-
cleus should be large (a is large) and strongly deformed (Q or β2 are large). The former implies
heavy elements, while the latter is most easily fulfilled for heavy elements as well, see also Ap-
pendix H.2.3.

6.4.2 Trends in nzz

In order to get a feeling for the order of the magnitude of the electronic parts of the O(2)
interactions in Table 6.1, we have calculated both Vzz (the electronic part of the QI) and nzz (the
electronic part of the first order QS) for some hexagonal close-packed (hcp) metals throughout
the periodic table. The results are shown in Table 6.3. Both quantities increase with the mass of
the element. Compared to Vzz, which increases over two orders of magnitude, nzz is much more
sensitive to the mass of the element and increases over eight orders of magnitude.

In order to verify to which extent this conclusion obtained from Table 6.3 is valid for other
crystal structures than hcp, we investigated two series of purpose-built body-centred tetragonal
(bct) crystals with different c/a ratios (0.8 and 1.2), and this for several elements throughout the
periodic table. The results are reported in Appendix H.1 and show the same trend as Table 6.3.
We conclude that the mass of the element has a larger influence on the magnitude of nzz than
the lattice parameters or the crystal structure.

6.4.3 Trends in the quadrupole shift

The frequencies νQI (for the QI – Eq. (6.32)) and νQS (for the QS – Eq. (6.33)) for a set of
hcp and bct metals are reported in Table 6.3, together with their ratio |νQS/νQI |. For the
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Figure 6.3: The logarithm of the ratio of νQS and νQI as a function of the mass number A. Blue
diamonds: artificial crystal structures (see text and Appendix H.1), fitted by the
red line (Eq. (6.40)). Orange triangles (down): experimental crystal structures (see
Table 6.3). The yellow triangle (up) [161], green square [169] and red circles [160]
are values from the literature, see text. Inset: the same data but now as a function
of Z, fit by Eq. (6.41). The nuclear (green) and electronic (orange) contributions of
Eq. (6.42) are shown as well, shifted to match in the endpoint.

calculation, experimental lattice parameters were used [50, 174], and nzz and Vzz were determined
fully relativistically with a finite nucleus for nzz and a point nucleus for Vzz (FPLO [2] code,
version 8.00-31 using LDA as xc-functional). Q was taken from the literature [58] and Q̃ was
determined as explained in Section 6.4.1. The trends of nzz and Q̃ to be larger for heavy elements,
cooperate to produce a νQS of which the relative importance with respect to νQI is rather smoothly
increasing with the atomic number A.
This can be seen more clearly in Figure 6.3 , which summarises results for a larger set of 28
elements in different crystal structures (blue diamonds): hcp with c/a=1.633 and 0.8 and bct
with c/a=1.2 and 0.8, always with the experimental volume per atom, cf. Appendix H.1. These
data can be fit with the simple functions

|νQS | = 5.46 · 10−12 A
11
3 |νQI |, (6.40)

|νQS | = 3.26 · 10−11 Z4 |νQI |, (6.41)

which are shown in Figure 6.3 (red lines). The orange triangles (down) in Figure 6.3 correspond
to the experimental crystal structures from Table 6.3 – they accurately follow the same trend.
By taking the ratio of Eqs. (6.33) and (6.32) and by filling out the lowest order expressions for Q
and Q̃ (Eq. (6.38)), the following simple analytic analogue for Eqs. (6.40) or (6.41) is obtained:

νQS =

(
− 1

14
a2 nzz

ǫ0

1

Vzz

)
νQI . (6.42)

Since a = 1.26 Z1/3 fm (obtained from the data of Ref. [171] plotted as a function of Z), the nuclear
part a2 scales with Z2/3. In order to fulfil the observed Z4 dependence in Eq. (6.41), the electronic
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

part should scale with Z10/3: nzz/(ǫ0Vzz) = 2.87 · 10−10 Z10/3 fm−2. These two contributions are
shown as the green (nuclear) and orange (electronic) lines in the inset of Figure 6.3. From this
picture, it is clear that the electronic term contributes most to the increase of the quadrupole
shift with A or Z. From Table 6.3, we see that this is due to the strong increase of nzz.
Eq. (6.41) provides a quick way to estimate the order of magnitude of the quadrupole shift, for
any element in any crystal structure, and without the need for a finite nucleus calculation. The
only quantity that is required is νQI , which can be provided by several first-principles codes. As
the scatter of the data points for heavier elements shows, such an estimate can be one order
of magnitude above or below the actual value. For isotopes with A > 175 (i.e., Z > 60), the
quadrupole shift can reach 0.1-1.0% of the regular quadrupole interaction.
There are a few cases reported in the literature from which QS information can be deduced.
These are shown in Figure 6.3 as well. The yellow triangle (up) was calculated by J. Thyssen et
al. with a method very similar to ours for the single case of the LiI molecule. They found the
ratio |νQS/νQI | for 127I to be 5 · 10−5. The green square corresponds to 127I in the same LiI
molecule, obtained by the PCNQM method by Van Stralen and Visscher [169]. A few estimates
for the quadrupole shift obtained by second order perturbation theory were published in 1970
by Pyykkö [160]. Those estimates were given relative to a pseudo quadrupole interaction only
(Refs. [175, 176]). After converting these numbers, it turns out that for the LiBr molecule the
ratio of νQS and νQI is about 10−10 for 6Li and 10−6 for 81Br (red circles in Figure 6.3). These
numbers follow the same trend as the quadrupole shift in first order perturbation, but are 1-
2 orders of magnitude smaller – this might be due to the fact that these were non-relativistic
calculations.

6.5 Experimental and computational accuracies

In the previous sections, we have discussed how electron penetration into the nucleus is responsible
for an extra contribution to the quadrupole interaction – the quadrupole shift. As shown in
Table 6.3 and Figure 6.3, the order of magnitude of the quadrupole shift can reach 0.1 % (and
maybe more) of the regular quadrupole interaction. In this section, we will discuss the level
of accuracy achievable in condensed matter and molecular quadrupole interaction experiments
and calculations and whether this accuracy will be sufficient to be sensitive to the quadrupole
shift. This information will be used in Section 6.6 to examine whether it is feasible to use the
quadrupole shift to extract additional information from an experimental quadrupole interaction
frequency.

6.5.1 Accuracy of quadrupole interaction experiments

Condensed matter experiments

The most common (non-radioactive) methods to determine quadrupole interactions in condensed
matter are nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) spec-
troscopy, see also Section 3.4. The accuracies of NMR and NQR are comparable: the lowest
achievable experimental error bars on νQ are about 5 kHz for single-crystals with an axially sym-
metric EFG (η = 0) and about 100 kHz for powder samples with a non-axially symmetric EFG
(η 6= 0) [177]. The accuracy is mainly limited by the magnetic dipole-dipole interaction between
the nuclei, which broadens the spectrum [44].
There is also a whole family of radioactive methods which can perform the same task. Mössbauer
spectroscopy and to a lesser extent perturbed angular correlation (PAC) spectroscopy are the
most wide-spread methods of these. In order to get a feeling for the typical accuracy that can
be achieved with radioactive methods, we look at the quadrupole interaction at a Cd-site in hcp-
Cd. The I = 5/2 level in 111Cd is very suitable for PAC spectroscopy, which explains why the
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quadrupole interaction for Cd in hcp-Cd has been measured many times [178, 179], often with high
statistics and down to very low temperatures [180, 181, 182]. The best available low-temperature
value for the quadrupole interaction is 136.0(4) MHz. The 400 kHz error bar on this quantity is
considerably larger than the best available NMR/NQR error bars. This is because radioactive
methods suffer not only from the same limitations as NMR/NQR, but on top of that have an
extra intrinsic inaccuracy due to the line width of the excited nuclear level that is involved.

Molecular experiments

Much better experimental accuracies for quadrupole interactions can be achieved by molecu-
lar spectroscopies as molecular beam spectroscopy (MBS) [183, 184, 185, 186]. In molecular
spectroscopy, a sparse molecular beam with a known energy distribution is exposed to a known
amount of energy at a given frequency, produced for instance by a radio frequency (rf)-field. If
the frequency matches with a hyperfine transition in the molecule, the beam absorbs energy. The
amount of energy that is present in the beam after passing through the rf-field is recorded. By
varying the frequency of the rf-field, a list with all frequencies at which transitions appear is
obtained. These can be fit to an appropriate Hamiltonian to determine e.g., the effective nuclear
quadrupole coupling constant (NQCC).
As an illustration for the accuracy that can be achieved in this way, we refer to νQ of 85Rb in the
diatomic molecule RbF, which was determined as -70.7391849(37) MHz [187]: an experimental
error bar of 4 Hz on a quantity of 70 MHz, i.e., a relative accuracy of 5 · 10−8. Further examples
of similarly accurate measurements of nuclear quadrupole coupling constants can be found e.g.,
in the works by Cederberg et al. [158, 183, 188, 189, 190].

Sensitivity to the quadrupole shift

In Table 6.3, we see that for heavy nuclei the quadrupole shift contributes typically 0.3 MHz
to the total (experimentally accessible) quadrupole interaction, whereof the pure QI is typically
400 MHz. From that table and Figure 6.3 we concluded that due to the Z4 dependence, the
heavier the isotope, the more important the quadrupole shift becomes.
Commonly used NMR/NQR isotopes are e.g., 63,65Cu or 75As due to the high interest in super-
conductivity, cf. Sections 5.4 and 5.5. Also the other elements investigated in Chapter 5: 11B,
17O and 69,71Ga) are rather light, and from Figure 6.3 one expects a quadrupole shift of about
10−5 to 10−4 for the heavier of them. This is outside the best achievable experimental error
bars. As the error bars for radioactive methods are larger, the quadrupole shift in those cases
will usually drown inside the experimental error bars.
The situation is much better in molecular spectroscopy. As an example, we discuss the results
of experimental and theoretical investigations of 127I in the LiI molecule. The total quadrupole
frequency (including the QS) was determined by Cederberg et al. [158] to be

νexp
Q = −194.351212(17) MHz.

As discussed earlier, Thyssen et al. [161] calculated the quadrupole shift for the single case of the
LiI molecule. For I they obtained

νcal
QI = −169 MHz νcal

QS = 10.0 kHz. (6.43)

Using the FPLO code with the molecule option, we obtain for I (also using the experimental
bond length of 2.391924 Å [191] but contrary to Thyssen et al. a full relativistic version in the
calculation)

νcal
QI = −166 MHz νcal

QS = 24.9 kHz. (6.44)
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

In both cases, Vzz was transformed to νQI using Q = −0.69 b [192] and νcal
QS was calculated with

Q̃ = a2Q using a = 5 fm to be consistent with Thyssen [161]. Indeed, we obtain good agreement
between the calculated results. For this molecule, the quadrupole shift in the range of 10 kHz is
100 times larger than the experimental error bar in the range of 10 Hz. However, this does not
mean that the quadrupole shift itself can be measured in such an experiment: the existence of
the quadrupole shift affects the value of the measured quadrupole interaction, but as one cannot
‘switch off’ the quadrupole shift, there is no straightforward way to determine experimentally
how much of the total interaction frequency is due to the the regular quadrupole interaction and
how much due to the quadrupole shift, see also Eq. (6.27).

In Section 6.6, we will ponder on the perspectives for making use of the quadrupole shift to
extract more information from a quadrupole interaction experiment. This will crucially depend
on the absolute accuracy of first-principles calculations for electric field gradients. Therefore, we
will examine first what is the best accuracy which can currently be achieved in EFG calculations.

6.5.2 Accuracy of EFG calculations

Condensed matter calculations

First-principles calculations in solids are commonly done at the level of density functional theory
(DFT), or with DFT as a starting point. The level of agreement between a DFT prediction and
an experiment depends on the approximation made for the exchange-correlation functional, cf.
Section 2.2.1. Common exchange-correlation functionals in solid state physics are the local density
approximation (LDA) and generalised gradient approximations (GGA’s, in particular the PBE
formulation [16]). Strongly correlated systems are adequately treated by LDA+U functionals, cf.
Section 2.2.2 and more recently also hybrid functionals [16, 193, 194, 195, 196, 197]. DFT has
been used with considerable success to calculate electric field gradients in solids, see for instance,
Section 3.5, Chapter 5, and e.g., Refs. [4, 33, 34, 35, 40, 45, 46, 50, 52, 139, 153, 198, 199]. As
a rule of thumb, the DFT prediction is within 10% of the experimental value – insofar reliable
experimental values for both the quadrupole frequency and the quadrupole moment are known,
see Eq. (6.32).

However, even for the same xc-functional and the same numerical and structural input data, the
agreement between EFGs obtained from different band structure codes is nowhere near enough
to extract useful information for the determination of the quadrupole shift, see for instance,
Figure 4.1 in Section 4.2 and Figures 5.4 and 5.10 in Section 5.1.

Furthermore, the entire discussion so far implicitly assumed static molecules or crystals at 0 K
without zero-point vibrations. At nonzero temperatures, vibrational states will be populated,
and in molecules rotational states as well. These will influence the electric field gradient and
therefore the quadrupole interaction. A WIEN2k study of zero-point vibrations for the EFG in
hcp-Cd revealed a contribution of 1.6% to the EFG due these vibrations [200].

Molecular calculations

For first-principles calculations on molecules, the choice of available methods is broader. For
large molecules, DFT is still the only option, but for sufficiently small molecules much more
accurate quantum chemical methods can be afforded. A prominent example is coupled cluster
(CC) theory, which is a post-Hartree-Fock method that allows to treat electron correlation. In
contrast to DFT, the accuracy of a CC calculation can be systematically improved, as long as
computer time allows it. If only ‘single excitations’ are taken into account, one speaks about CCS.
Including also ‘double excitations’ leads to the much more accurate and much more expensive
CCSD. Adding ‘triple excitations’ in a perturbative way yields the highly accurate CCSD(T)
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method, which is presently considered to be the most accurate routinely applicable quantum
chemistry method for small to medium sized molecules, see also Ref. [201].
The recent literature [202, 203, 204, 205, 206, 207] shows that CCSD(T) with sufficiently large
basis sets and – where needed – with a (semi-)relativistic Hamiltonian, provides highly accurate
EFGs for small molecules. It has been claimed [208] that in this way an absolute accuracy with
four significant digits can be reached. This is considerably better than the accuracy which DFT
can provide for the EFG in solids.
The EFG in small molecules as predicted by DFT using common exchange-correlation functionals
has been shown to be rather unreliable [209]. However, a hybrid exchange-correlation functional
has been recently proposed – CAMB3LYP – which provides superior consistency for a set of 18
test molecules [209]. This method can be an alternative for molecules containing heavy elements,
where fully relativistic CCSD(T) calculations can not yet be performed with full precision.
In molecules, the effect of vibrational and rotational states due to nonzero temperature, can be
described with high accuracy using a Dunham treatment [189, 210, 211], and experiments are
routinely analysed according to this formalism.

6.5.3 Other small perturbations to the quadrupole interaction

When dealing with a quadrupole-like interaction that is as small as the quadrupole shift, it be-
comes relevant to take into account similarly small quadrupole-like interactions and perturbations
of the quadrupole interaction that have a different origin.
These are the pseudo quadrupole interaction and the isotopologue anomaly. The former one was
discussed by Van Vleck, Rabi, Foley and Ramsey [212, 213, 214] half a century ago a and has a
magnetic origin. Like the QS, also this interaction consists of a dot product between a nuclear
spherical tensor of rank 2 and an electronic spherical tensor of rank 2. The latter one was found
by high-precision molecular beam experiments by Cederberg et al. and its origin is not yet
understood [189, 183].
Given the enormous advances in the possibilities of first-principles calculations since that time,
it is worthwhile to discuss these effects shortly, to put them into a general picture and to refer to
the original literature. This is done in the appendix of Ref. [175].

6.6 Experimental implications of the quadrupole shift

6.6.1 Determination of Q and Q̃

The main purpose of measuring quadrupole interactions, is that they serve as a fingerprint for
molecules and (defects in) solids. One step further is to use the quadrupole interaction frequency
to get access to one of the two objects that determine it: the electric field gradient if the nuclear
quadrupole moment is known independently or the nuclear quadrupole moment Q if the electric
field gradient is known independently. This has become the preferred procedure to determine
nuclear quadrupole moments: a set of measured quadrupole interaction frequencies is plot against
a set of calculated electric field gradients. According to

νQI = Q
eVzz

h
, (6.45)

such a plot should show a linear correlation, provided the errors in experiment as well as in
the calculations are sufficiently small. The nuclear quadrupole moment can be obtained from
the slope of this linear correlation. Several nuclear quadrupole moments have been determined
this way, using solid state as well as molecular experiments and calculations, e.g., [43, 58, 199,
209, 215, 216, 217, 218]. See also Figure 5.6 in Section 5.1. It has been emphasised recently by
Thierfelder et al. [209] that apart from the correlation coefficient of the linear fit also the fitted
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intercept is a strong quality indicator: if it is not really close to zero – which rather often happens
to be the case – this indicates a systematic error in the first-principles calculations.

However, the linear fit as described by Eq. (6.45) neglects the contribution by the quadrupole
shift. As it was shown in Section 6.1.4, Eq. (6.27), a more accurate9 description is given by

νQ = νQI + νQS = Q
eVzz

h
− Q̃

enzz

14ǫ0h
. (6.46)

With the experimental accuracies listed in the previous section, it is clear that experimental
nuclear quadrupole coupling constants νQ for NMR on single-crystals and for MBS on molecules
are affected by the quadrupole shift. This means that the experimentally determined value for
νQ would have a different value (outside the error bar) if the quadrupole shift could be “switched
off”. It does not mean, however, that by such an experiment the quadrupole shift itself can be
determined: the QS manifests itself as an addition to the regular quadrupole interaction, and is
indistinguishable from it. If Vzz could be calculated with an arbitrary high precision, the precision
of the resulting Q is limited by neglecting νQS . One could choose not to neglect νQS , and apply
Eq. (6.46) to at least two νQ measurements in order to determine simultaneously a more precise
value of Q and Q̃ (or Q and a2). This would be meaningful only in cases where the absolute
deviations on the computed Vzz and nzz values are small enough to make the uncertainty in νQI

smaller than the value of νQS . The only hope to realise this is in the case of sufficiently heavy
elements, for which, however, it might not yet be feasible to achieve the requested computational
accuracy.

6.6.2 Quadrupole moment ratios: the quadrupole anomaly

When it is not possible to know experimentally the value of a quadrupole moment with sufficient
accuracy, the next best thing to know are ratios of quadrupole moments for two different isotopes,
or for two different isomeric states of the same isotope. As soon as a later experiment succeeds
to determine one of the quadrupole moments in the ratio, the other one is known as well.

The ratio Q1/Q2 of two quadrupole moments is commonly measured as the ratio νQ,1/νQ,2 of two
nuclear quadrupole coupling constants. Indeed, in the absence of a quadrupole shift, both ratios
are identical if the two isotopes or isomers are in the same environment and therefore experience
the same Vzz (Eq. (6.46)). The presence of the quadrupole shift, however, spoils the equality of
both ratios. It is straightforward to show that the ratio of quadrupole coupling constants is equal
to

νQ,1

νQ,2
=

Q1

Q2
(1 + δ) with δ =

nzz

14ǫ0Vzz

(
a2

2 − a2
1

)
+ O

(
a4

i

)
. (6.47)

This formulation is strongly reminiscent to the Bohr-Weisskopf effect [219] for magnetic hyperfine
interactions, where the ratio between two magnetic hyperfine interaction frequencies for two
isotopes/isomers at identical sites is given by

ν1

ν2
=

µ1

µ2
(1 + ∆) . (6.48)

Here µ1 and µ2 are the nuclear magnetic moments of the two isotopes/isomers, and ∆ is the
hyperfine anomaly. The ratio µ1/µ2 can be determined from hyperfine experiments on the two
free isotopes/isomers in a known externally applied magnetic field. Comparison with the ratio
as determined from experiments with the isotopes/isomers incorporated in solids or molecules
provides the value for ∆, which can be as large as 2 % for heavy elements like 185.187Re [220].

9Note that in contrast to Eq. (6.27), we neglect (even smaller) contribution from higher order here.
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6.6 Experimental implications of the quadrupole shift
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Figure 6.4: The logarithm of the quadrupole anomaly δ as a function of the mass number A, as
given by Eq. (6.49). The value of n indicates the mass number difference between the
heaviest (A) and lightest (A − n) isotope. The curves for n = 2 (full red line), n = 5
(blue dashed line) and n = 10 (yellow dot-dashed line) are shown. For 47Ti, 179Hf and
187Re (all n = 2) log |δ| can be calculated explicitly from Table 6.3 (orange triangles).

∆ is nonzero because electrons that penetrate the nucleus do not interact with a point nucleus
magnetic moment but with the spatial distribution of the magnetic moment over the nuclear
volume. This slightly affects the effective hyperfine field. Therefore, the hyperfine anomaly is
sensitive to the details of nuclear structure, and can be used to test theoretical nuclear models.
In the same way the δ from Eq. (6.47) – which can be called in analogy the quadrupole anomaly
– probes details of the nuclear charge distribution by electrons that penetrate into the nuclear
volume. From Eq. (6.47), it can be seen that δ is sensitive to the electronic quantities, nzz and
Vzz, and the difference between the squared monopole radii of the two isotopes/isomers that are
involved.
In order to find a general trend and order of magnitude estimate for δ, we combine the analytical
function of Eq. (6.42) with the fitted function of Eq. (6.40) and the square of Eq. (6.37) to obtain a
numerical approximation for the electronic part nzz/(14ǫ0Vzz) in Eq. (6.47). By inserting this and
the square of Eq. (6.37) for two different isotopes in the definition of δ, the following dependence
of |δ| on the isotope mass number emerges:

|δ(A)| = 5.46 · 10−12 A3.079 (A0.588 − (A − n)0.588). (6.49)

This expression estimates the order of magnitude of δ for two isotopes with mass numbers A
and A − n. Curves for log |δ(A)| for n = 2, 5 and 10 are shown in Figure 6.4. We observe
that the quadrupole anomaly strongly increases with A (or A), due to the increase of nzz. Mass
number differences of 10 yield a value for δ that is an order of magnitude larger than mass number
differences of 2. For the 3 elements in Table 6.3 for which information for 2 isotopes is provided,
Eq. (6.49) can be compared by values obtained by filling out the quantities of Table 6.3 directly
into Eq. (6.47). The values are shown by the orange triangles in Figure 6.4 and correspond to the
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

red fit (n = 2). This comparison shows that Eq. (6.49) is within one order of magnitude indeed
a good estimate for δ. The experimentally achievable accuracy of quadrupole moment ratios is
of the order of 10−6 (see Table 6.4). This means that for many isotopes the presence of δ affects
the experimental values.
Unfortunately, whereas in Bohr-Weisskopf experiments the unperturbed ratio µ1/µ2 can be de-
termined from experiments on free nuclei in an externally applied magnetic field, this is not pos-
sible for quadrupole interaction measurements: electric field gradients that can be generated by
man-made devices are too small to allow meaningful quadrupole interaction measurements [221].
Therefore, a slightly different method has to be used. One could perform 4 quadrupole interac-
tion experiments on two isotopes (‘m’ and ‘n’) of the same element, each of them being part of
two different molecules (‘a’ and ‘b’). For instance, mX in mXA and mXB molecules, and nX in
nXA and nXB molecules. This yields four experimental frequencies νma, νna, νmb and νnb. By
applying Eq. (6.47) twice, it can be seen that the NQCC ratios are not necessarily identical to
each other for the two different molecules, with the difference being determined by nzz/Vzz:

νma

νna
=

Qm

Qn

(
1 +

na
zz

14ǫ0V a
zz

(
a2

n − a2
m

))
(6.50)

νmb

νnb
=

Qm

Qn

(
1 +

nb
zz

14ǫ0V b
zz

(
a2

n − a2
m

))
. (6.51)

As long as the quadrupole shift (∝ nzz) does not play a significant role, the two experimental
frequency ratios at the left-hand side are within their error bars identical to each other. If,
however, the quadrupole shift would be large enough, these two experimental frequency ratios
would differ from each other. This is a completely experimental procedure to detect the presence of
the quadrupole shift effect. Table 6.4 lists a collection of experimental NQCC-ratios in diatomic
molecules determined for three such sets of 4 experiments, which gives an impression of the
experimental accuracy that can be achieved. The estimated order of magnitude for |δ| (Eq. (6.49))
is given too. For none of these cases, δ is expected to be large enough to affect the experimental
ratios. Table 6.4 combined with Figure 6.4 suggests that if the best experimental accuracies of
10−6 can be achieved for isotopes with A≥150, then the influence of δ could be observed. The
heavier the element and the larger the size-differences between the two isotopes, the more likely
large δ-values are. Interestingly enough, the quadrupole coupling constant ratios for the two K
isotopes in the KF and KI molecules differ from each other in the 4th digit, and this difference
is an order of magnitude larger than the experimental error bars. Given the estimate for δ, the
quadrupole shift is expected to give an effect in the 7th digit at best. It is therefore unlikely
that this set of K-experiments represents an experimental observation of the quadrupole shift
(it could be due to one of the other effects discussed in the appendix of Ref. [175], or due to
an experimental problem). Nevertheless, it would be interesting to perform similar experiments
with the same accuracy for heavier elements, where δ is expected to be larger.
One step further is to solve the system of the two equations (6.50) and (6.51) for the unknown
quantities Qm/Qn and

(
a2

n − a2
m

)
:

Qm

Qn
=

νmb

νnb

na
zz

14ǫ0V a
zz

− νma

νna

nb
zz

14ǫ0V b
zz

na
zz

14ǫ0V a
zz

− nb
zz

14ǫ0V b
zz

(6.52)

a2
n − a2

m =
νma

νna
− νmb

νnb

νmb

νnb

na
zz

14ǫ0V a
zz

− νma

νna

nb
zz

14ǫ0V b
zz

. (6.53)

All quantities at the right-hand side of these equations can either be measured or calculated, such
that the quantities at the left-hand side are effectively determined by a combination of experiment
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6.7 Summary and conclusions

Table 6.4: Ratios of experimental quadrupole coupling constants for two different isotopes in
two different diatomic molecules, collected from the literature. Only cases where the
error bar on this ratio has been determined directly from the fit to the experimental
data are reported (this error bar can be slightly different from what one would obtain
using the error bars on the individual frequencies, see the discussion in Ref. [187]). The
experimental value of the EFG (in 1021V/m2) and the estimated value of δ (Eq. (6.49))
are given as well.

Molecules Isotopes νna/νma V exp
zz |δ| Ref.

6Li19F, 7Li19F 6Li/7Li 0.020161 ± 0.000013 -0.44 5.9 · 10−10 [190]
6Li127I, 7Li127I 6Li/7Li 0.02028 ± 0.00014 -0.18 [189]

41K19F, 39K19F 41K/39K 1.217699 ± 0.000055 -5.6 1.3 · 10−7 [222]
41K127I, 39K127I 41K/39K 1.2174935 ± 0.0000099 -3.0 [183]

87Rb19F, 85Rb19F 87Rb/85Rb 0.4838301 ± 0.0000018 -10.7 9.6 · 10−7 [187]
87Rb35Cl, 85Rb35Cl 87Rb/85Rb 0.483837 ± 0.000022 -8.2 [188]

and theory. Clearly, this is a game with very small numbers. The difference between the two
frequency ratios in the numerator of Eq. (6.53) is of the same order of magnitude as the δ in
Eq. (6.47): 10−5 for heavy elements. The same considerations as in Section 6.6.1 apply here: an
extreme accuracy in experiments as well as in calculations is needed in order to get to a reliable
conclusion. Furthermore, the procedure as described here can be disturbed by the presence of a
few other small quadrupole-like effects that are discussed in Section 6.5.3 and Ref. [175].

6.7 Summary and conclusions

In this chapter, we described how electron penetration in the nuclear volume leads to the
quadrupole shift: a small perturbation of the regular quadrupole interaction. The quadrupole
shift is described by the quadrupole shift Hamiltonian, which has the same symmetry as the reg-
ular quadrupole Hamiltonian. It contains likewise a nuclear and an electronic quantity, denoted
by the quasi quadrupole moment Q̃ and the quasi quadrupole field nzz, respectively. These two
quantities have the same symmetry as the nuclear quadrupole moment Q and the electric field
gradient (quadrupole field) Vzz from the quadrupole interaction but the same dimension as the
nuclear hexadecapole moment H and the electric hexadecapole field Vzzzz from the hexadecapole
interaction. Hence, the quadrupole shift contains information on other aspects of the nuclear
shape than given by the nuclear quadrupole moment or the hexadecapole moment.

An explicit expression for the quadrupole shift that can be implemented in a band structure
code was derived, and DFT calculations were performed for a set of crystalline materials. It was
shown that meaningful numerical values for the quadrupole shift can be obtained only for fully
relativistic calculations that take a finite nucleus into account. Therefore, the quadrupole shift
is one of the few cases where the commonly used scalar-relativistic approximation is definitely
insufficient.

The quadrupole shift is a small effect. However, its relevance increases with increasing mass of
the element under consideration. Its order of magnitude appears to be related in the first place
to the atomic number Z of the element under consideration, and to a lesser extent to the crystal
structure. This is predominantly due to the way how nzz depends on Z. The quadrupole shift
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6 Beyond the EFG: electron penetration in the nucleus – its effect on the quadrupole interaction

is orders of magnitude smaller than the regular quadrupole interaction for most elements. For
heavy 5d transition metals like Re or Os, the quadrupole shift interactions can reach 0.1 % of the
quadrupole interaction.

We have pointed out how the quadrupole shift can play a role in a more accurate determination of
quadrupole moments and quadrupole moment ratios. The comparison of two accurately measured
quadrupole coupling constant ratios provides a purely experimental way to observe the presence
of the quadrupole shift. For suitable cases, the required experimental accuracy can be reached
by e.g., molecular beam spectroscopy. With further advances in the absolute accuracy of first-
principles calculations for nzz and Vzz, awareness of the existence of the quadrupole shift will
help to extract more precise nuclear information from quadrupole coupling experiments.

Suggestions for further work are at the conceptual, computational as well as on the experimental
level. Conceptual: it remains to be understood which features of the electron density are respon-
sible for the observed Z-dependence of nzz and for the dependence of nzz for a given element on
the crystal structure. Understanding those mechanisms would help to single out situations where
the quadrupole shift is maximised. Computational: in the present work, only DFT calculations
for solids were performed, whereas the most accurate experiments are available for molecules.
DFT for molecules is not likely to provide very accurate results, but quantum chemical calcu-
lations can do much better in this respect. It would be interesting to examine for instance the
value of the quadrupole shift for heavy elements in a set of molecules. Experimental: sets of 4
quadrupole coupling experiments as in Table 6.4, done for heavy elements and with high accuracy,
provide a way to observe the presence of the quadrupole shift experimentally. It would be most
efficient to make a computational study first of those molecules that are experimentally most
easily accessible, to identify the ones in which a large quadrupole shift is most likely.
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7 Summary and outlook

In this work, we focused on the electric field gradient as a valuable tool for studying current
questions in solid state physics and chemistry. The EFG reflects local structural symmetry
properties of the charge distribution surrounding a nucleus and is highly sensitive to structural
parameters and to disorder. Hence, the evaluation of the EFG can provide valuable insight
into chemical bonding and structural details. The EFG can be obtained from experiments via
the quadrupole interaction and from first-principles band structure calculations. In order to
calculate the corresponding EFG from a measured quadrupole frequency, accurate knowledge of
the nuclear quadrupole moment is a prerequisite. Precise values for quadrupole moments are,
however, not always known.

One goal of this work was the implementation of an EFG module within the full-potential local-
orbital minimum-basis scheme FPLO. The FPLO code is numerically very efficient and its local-
orbital scheme allows an easy analysis of the different contributions to the EFG. We showed that
EFGs calculated with the newly implemented EFG module are in good agreement not only with
EFGs from other band structure codes, but also with EFGs determined experimentally.

The newly implemented EFG module was applied to different classes of compounds in order
to exploit and investigate different aspects of the EFG. Simultaneously, the EFGs for several
calculated compounds were determined experimentally by NMR spectroscopists. This close col-
laboration enabled the comparison of the calculated EFGs with the experimental observations,
which made it possible to extract more physical and chemical information regarding structural
relaxation, distortion, the chemical bond or the relevance of electron correlation.

The first combined study focused on binary gallides. A large discrepancy between the measured
and calculated EFG for Ga lead to a reassignment of the crystal structure type for SrGa2. Ac-
cording to the calculations, puckered instead of planar Ga layers are energetically favourable in
agreement with the single-crystal X-ray diffraction data. In order to get insight into the chemical
bond, the EFGs of several di- and tetragallides were analysed: the EFG of Ga is mainly due to
an anisotropic electron charge distribution caused by the Ga 4p electrons, suggesting that these
electrons are the key for the flexibility of the Ga atoms with respect to the chemical bonding.

Next, we investigated aluminium diboride, where recent experiments resulted in a non-stoichio-
metric composition with vacancies on the Al site under ambient conditions. This lead to the
question whether the origin of the vacancies is intrinsic or due to sample processing. Our electronic
structure calculations yield a composition of about Al0.9B2, which is in good agreement with
the experimental findings. The EFG calculated for the defect structure agrees well with the
experimental value and is another evidence for the reliability of the calculations. Our calculations
provide strong evidence that the Al defects in Al0.9B2 are intrinsic and can be understood from
the the interplay of the occupation of the bonding boron σ states and the Al states.

Due to screening, the off-site contribution to the EFG is usually very small in metals. In order to
study the influence of the off-site EFG, we calculated the EFGs of oxygen in the weakly correlated
oxides BaTiO3 and SrTiO3, which are often described as ionic perovskites. The calculated large
off-site EFG is almost constant under lattice expansion. Surprisingly, the on-site EFG, caused by
an anisotropic oxygen p density, increases strongly with lattice expansion. This behaviour can
not be understood within ionic models but with an extended p-d model Hamiltonian. Hence, a
pure ionic description for these materials is not sufficient. The increasing anisotropy of the p shell
is expected to be common to all d metal-oxygen bonds and should be taken into account in the
interpretation of the relevant experiments.
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7 Summary and outlook

In order to describe the orbital polarisation for the calculation of the EFG in strongly correlated
systems in a reasonable agreement with the experiment, the explicit inclusion of the Coulomb
repulsion U beyond the LDA is necessary. The parameter U is not known and usually determined
from comparing measured and calculated physical properties. We demonstrated that there is a
basically constant shift in the absolute values for U , whether U was determined from the EFG or
the exchange integral J . This code independent shift is assigned to the very different time scales
of the underlying mechanism of these two properties. Since the shift in U is constant, the EFG
provides an experimentally easy and unambiguously accessible property to obtain values for the
Coulomb parameter U that also allow for a reliable calculation of the related exchange J .

Finally, we applied our approach to the recently discovered iron arsenide systems AFe2As2 and
REFeAsO, where the mechanism of superconductivity is still under heavy discussion. The de-
scription of the Fe-As interaction in the context of the present stage of DFT is difficult. We find
that the EFG is highly sensitive to the As z position and pressure, whereas the effect of electron
doping is much smaller. While the calculated and measured EFGs of the undoped compounds
agree, there is a discrepancy in the trend for the calculated and measured EFGs of the doped
systems. Our findings emphasise the crucial importance of a correct description of the Fe-As
interaction for the physical properties of the iron pnictides.

In the last part of this work, contributions to the quadrupole interaction that go beyond the
EFG were discussed. Such corrections arise for any multipole order of the hyperfine interactions,
and are due to electron penetration into the nucleus. The best known of these corrections is
the monopole correction which leads to the isomer shift. A similar correction to the quadrupole
interaction, coined here the “quadrupole shift” was examined in detail. The quadrupole shift
has the same symmetry as the regular quadrupole interaction. A formalism to calculate the
quadrupole shift was developed and it was shown that the quadrupole shift is much smaller
than the pure quadrupole interaction. Its effect is too small to be observable by the present
experimental methods that are used to determine quadrupole interactions in solids. However, its
relevance increases with the fourth power of the nuclear charge Z and is within reach in molecular
spectroscopy for heavy elements. In combination with the high accuracy that quantum chemical
calculations can achieve for quadrupole and quadrupole shift interactions in small molecules, these
measurements could lead to more accurate determinations of nuclear quadrupole moments and
their ratios.

The chemical shift and the Knight shift are other effects that contain valuable information about
certain aspects of the solid. Both shifts arise from a magnetic coupling of the electrons to the
nucleus due to a magnetic field. Whereas the implementation of the EFG is well established
and available in several full-potential band structure codes, the situation is very different for
these two shifts. While the chemical shift can be calculated within the pseudo potential code
Castep [223, 224], the implementation of the Knight shift for metallic systems is still in its early
stages [225]. Future work should focus on the implementation of these two relevant shifts, since the
combination of NMR experiments with quantum mechanical calculations will eventually provide
further deep insight into the fundamental properties of solids.
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A Nuclear multipole moments

This appendix shows the derivation of the (electric) nuclear multipole moments in Cartesian
notation. Furthermore, the definition in spherical notation is presented. The connection between
Cartesian and spherical form is given explicitly for the quadrupole moment.

The Cartesian nuclear multipole moments are obtained from the Taylor expansion of
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Inserting Eq. (A.1) in the potential of the nuclear charge density ρ(~r)

φ(~r) =

∫
ρ(~r′)
|~r − ~r′|d

3r′ (A.3)

yields the potential as multipole expansion, see e.g., [226] (only up to second order)
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The Cartesian multipole moments are

monopole : Q =

∫
ρ(~r)d3r (A.5)

dipole : Qi =

∫
xiρ(~r)d3r (A.6)

quadrupole : Qij =

∫
(3xixi − r2δij)ρ(~r)d3r (A.7)

octupole : Qijk =

∫
3

(
5xixjxk − r2(xiδjk + xjδik + xkδij)

)
ρ(~r)d3r (A.8)

hexadecapole : Qijkl =

∫
3 · 5 (7xixjxkxl − f(xi, xj , xk, xl)) ρ(~r)d3r. (A.9)

They contain one, three, five, seven and nine degrees of freedom. For instance, the quadrupole
moment is reduced from nine to five degrees of freedom due to symmetry Qij = Qji and traceless-
ness

∑
i Qii = 0. Similar conditions are fulfilled for the octupole and hexadecapole moment.
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A Nuclear multipole moments

Alternatively, one can also chose the spherical notation for the multipole expansion. The spherical
expansion has the advantage that the higher order multipole moments are less unwieldy

monopole : Q0 =
√

4π

∫
ρ(~r)Y00d

3r (A.10)

dipole : Q1m =

√
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3
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Or in a general form
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Translating the Cartesian quadrupole moment Eq. (A.7) into spherical notation Eq. (A.12) using
real spherical harmonics (see below) gives
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Real spherical harmonics for l = 0, 1 and 2:
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B Spherical notation of the EFG tensor

The goal of this appendix is to find the relation between the Cartesian EFG tensor Eq. (3.1) and
the spherical EFG tensor, which is already given by Eq. (3.2). Here, we want to show how this
equation is obtained, and why the Cartesian EFG tensor is defined with δ functions as shown in

the definition Eq. (3.1) and not simply as Vij = ∂2v(0)
∂i∂j

.

The band structure codes use a spherical notation, where a function, like the electronic potential
v(~r), is given by an expansion of radial functions and spherical harmonics (around the origin):

v(~r) =
∑

lm

vlm(r)Ylm(r̂), with vlm(r) =

∫
v(~r)Ylm(r̂)dΩ.

In order to calculate the Cartesian components Vij of the EFG tensor Eq. (3.1) from the radial
function vlm(r), we need to know their connection. Therefore we compare a Taylor expansion
and a spherical expansion of a 3D function f(~r) around the origin:
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Now we substitute the Cartesian variables xi from the Taylor series Eq. (B.1) with real spherical
harmonics (see page 112)
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Y11fx + Y1,−1fy + Y10fz

]
· r +

√
4π

2 · 3 Y00

[
fxx + fyy + fzz

]
· r2

+
1

2

√
4π

15

[(
Y22 −

1√
3
Y20

)
fxx −

(
Y22 +

1√
3
Y20

)
fyy +

2√
3
Y20fzz

]
r2

+
1

2

√
4π

15

[
2Y2,−2fxy + 2Y2,−1fyz + 2Y2,1fzx

]
r2 + O(r3). (B.3)

In this notation e.g., fxy means that f is derived with respect to x and y (second partial derivatives
commute) and then ~r is set to zero. Furthermore, all Ylm depend on r̂, which is omitted in the
notation for convenience. By comparing the different orders of r from the spherical expansion
Eq. (B.2) and the modified Taylor expansion Eq. (B.3), we obtain the coefficients alm, blm and
clm.

Zeroth order:

∑

lm

almYlm
!
=

√
4πfY00 ⇒ a00=

√
4πf(0).

With f00 = a00 + rb00 + ... = a00, the connection between spherical and Cartesian notation is

f(0) =
1√
4π

f00(0). (B.4)
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B Spherical notation of the EFG tensor

First order:

∑

lm

blmYlm
!
=

√
4π

3

[
Y11fx + Y1,−1fy + Y10fz

]
⇒ (b1,−1, b10, b1,1) =

√
4π

3
(fy, fz, fx).

Using f1m = a1m + rb1m we obtain

(b1,−1, b10, b1,1) =
1

r
(f1,−1, f10, f1,1) =

√
4π

3
(fy, fz, fx).

Here the connection between spherical and Cartesian notation is




fx(0)
fy(0)
fz(0)


 =

√
3

4π
lim
r→0

1

r




f11(r)
f1−1(r)
f10(r)


 . (B.5)

Second order:

∑

lm

clmYlm
!
=

√
4π

3
Y00

[
fxx + fyy + fzz

]
+

√
4π

15

[
2Y2,−2fxy + 2Y2,−1fyz + 2Y2,1fzx

]

+

√
4π

15

[(
Y22 −

1√
3
Y20

)
fxx −

(
Y22 +

1√
3
Y20

)
fyy +

2√
3
Y20fzz

]

⇒ c00 =

√
4π

3

[
fxx + fyy + fzz

]

c20 =

√
4π

15

[
− 1√

3
fxx − 1√

3
fyy +

2√
3
fzz

]

c21 =

√
16π

15
fzx c2,−1 =

√
16π

15
fyz

c22 =

√
4π

15

[
fxx − fyy

]
c2,−2 =

√
16π

15
fxy.

We rearrange these terms, since we are interested in the fij :

fxx =

√
15

16π
(c22 −

1√
3
c20) +

c00√
4π

fyy =

√
15

16π
(−c22 −

1√
3
c20) +

c00√
4π

fzz =

√
15

16π

2√
3
c20 +

c00√
4π

fxy =

√
15

16π
c2,−2

fyz =

√
15

16π
c2,−1

fzx =

√
15

16π
c21.

Now, we use equation Eq. (B.2) to substitute clm with flm: clm = 2(flm(r)−alm − blmr)/r2. It is
sufficient to consider only the terms up to second order in r since we are interested in very small
r (the EFG is evaluated in the limit ~r → ~0).

For the 00 component, we obtain c00 = 2(f00(r) − a00)/r2 since there is no b00 in the linear

expression. However, we will use the expression c00 =
√

4π
3 [fxx + fyy + fzz] =

√
4π
3 ∆f(0), because

this has later the physical meaning of ∆v(0) ∝ n(0).

For the 2m components we get c2m = 2f2m(r)/r2 since neither a2m nor b2m contributes to the
zeroth resp. linear order.
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B Spherical notation of the EFG tensor

Inserting these clm yields the connection between spherical and Cartesian notation

∂2f(~r)

∂xi∂xj

∣∣∣∣∣
~r=0

=




fxx(0) fxy(0) fxz(0)
fyx(0) fyy(0) fyz(0)
fzx(0) fzy(0) fzz(0)




∂2f(0)

∂xi∂xj
=

√
15

4π
lim
r→0

1

r2




f22(r) − 1√
3
f20(r) f2,−2(r) f21(r)

f2,−2(r) −f22(r) − 1√
3
f20(r) f2,−1(r)

f21(r) f2,−1(r)
2√
3
f20(r)


 +

1

3
∆f(0).

(B.6)

Now, we see that when translating the Cartesian EFG tensor into the spherical EFG tensor (if
the potential v is inserted for the arbitrary function f) there appears one extra scalar term:
1
3∆v(0) ∝ n(0), which is proportional to the electronic charge density at the nucleus.
This scalar term, which is the trace of the Cartesian EFG tensor, would be zero, if the two charge
distributions (nucleus and electron cloud) were non-overlapping. However, in non-relativistic
treatment there is a non-vanishing probability to find s electrons at the nucleus. In relativistic
treatment (needed for heavy atoms) also p 1

2
electrons have a small but finite probability to be at

the nucleus.
However, this scalar term appears artificially in this second order. It gives a correction to the
zeroth order of this expansion: it results in the isomer shift which is measurable with Mössbauer
spectroscopy. If one uses the spherical notation from the beginning, this term appears in the
zeroth order, where it belongs to. A simple spherical derivation for the zeroth order was done by
Mössbauer [227].

Using Vij as symbol for the traceless Cartesian EFG tensor (vij being the second derivative of
the potential) one can also look at Eq. (B.6) like this:

Vij ≡ vij −
1

3
∆v · δij =




vxx − 1
3∆v vxy vxz

vyx vyy − 1
3∆v vyz

vzx vzy vzz − 1
3∆v


 (B.7)

=

√
15

4π
lim
r→0

1

r2
·




v22(r) − 1√
3
v20(r) v2,−2(r) v21(r)

v2,−2(r) −v22(r) − 1√
3
v20(r) v2,−1(r)

v21(r) v2,−1(r)
2√
3
v20(r)


 . (B.8)

This has the exact same form as the nuclear quadrupole moment tensor Eq. (A.16). Like the
quadrupole moment tensor Qij the EFG tensor Vij is reduced from nine to five degrees of freedom
due to symmetry Vij = Vji and traceless-ness

∑
i Vii = 0.
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C Derivation of the quadrupole Hamiltonian

In this appendix, the derivation of the quadrupole Hamiltonian (based on Ref. [164]) is presented.

We start with the classical quadrupole interaction Eq. (3.3)

EQ =
1

6

3∑

i,j=1

VijQij .

Where the tensors are given by Eq. (B.7) and Eq. (A.7). In spherical notation (no double counting
and Qij =̂ 3Q2m) this is

EQ =
2∑

m=−2

√
15

4π
lim
r→0

1

r2
V2m(r) · Q2m.

The quadrupole Hamiltonian is obtained by replacing the classical functions by its quantum
mechanical operators:

Ĥ2m =

√
15

4π
lim
r̂→0

1

r̂2
V̂2m(r̂) · Q̂2m

=

√
15

4π
lim
r̂→0

1

r̂2
V̂2m(r̂) ·

√
4π

15
eZr̂2Ŷ2m, (C.1)

with Z being the number of protons in the nucleus. The Taylor expansion guarantees that the
second order contribution will be small. Therefore, we can use perturbation theory to evaluate
the eigenvalues of Eq. (C.1)

E2m =

√
15

4π
lim
r→0

〈ψ(0)
e | 1

r̂2
V̂2m(r̂)|ψ(0)

e 〉 · eZ
√

4π

15
〈I|r̂2Ŷ2m|I〉. (C.2)

The nucleus is described by a many body wave function |I〉 and the electron cloud is described
by a many body wave function |ψe〉. Both being the eigenstates of the unperturbed system. The
electronic part of Eq. (C.2) is solved to a good extent from first principals theory - the operator
is known and the eigenfunction 1 can be calculated numerically by DFT codes, see Section 2.3.
So we will not bother with that term. The remaining task is to transform the nuclear operator
in another form, which allows us to find its eigenvalues.

Therefore, we will use the Wigner-Eckart theorem, which states that the matrix elements of all
spherical tensors of rank n are proportional:

〈I ′m′
I |Tnm|ImI〉 = (−1)I′−m′

I

(
I ′ n I

−m′
I m mI

)
〈I ′|Tn|I〉. (C.3)

For another spherical tensor of the same rank An the Wigner-Eckart theorem yields

〈I ′m′
I |Anm|ImI〉 = (−1)I′−m′

I

(
I ′ n I

−m′
I m mI

)
〈I ′|An|I〉.

1Actually not |ψe〉 itself, but the corresponding charge density - which is all we need.
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C Derivation of the quadrupole Hamiltonian

Dividing these two equations gives a constant CII′n, which is independent of mI , m
′
I and m:

〈I ′m′
I |Tnm|ImI〉

〈I ′m′
I |Anm|ImI〉

=
〈I ′|Tn|I〉
〈I ′|An|I〉

= CII′n.

Now, it is possible to connect the spherical operator r̂2Ŷ2 to the spherical operator Î2Ŷ2

〈I ′|r̂2Ŷ2|I〉 = CII′2〈I ′|Î2Ŷ2|I〉. (C.4)

The m = 0 components are

r̂2Ŷ20(r̂) =
1

2

√
5

4π
(3ẑ2 − r̂2) and Î2Y20(Î) =

1

2

√
5

4π
(3Î2

z − Î2). (C.5)

We define the observable quadrupole moment Q (which is actually Qzz) according to the definition
Eq. (A.7) as

Q ≡ Z〈I, mI = I|3ẑ2 − r̂2|I, mI = I〉 = 2

√
4π

5
Z〈I, I|r̂2Ŷ20|I, I〉. (C.6)

Now, it is possible to determine the constant CII′2. First, we apply the Wigner-Eckart-theorem
on Eq. (C.6)

〈I|r̂2Ŷ2|I〉 =
Q

2
√

4π
5 Z

(
I 2 I
−I 0 I

) ,

then we apply the Wigner-Eckart-theorem on

〈I, I|Î2Ŷ20|I, I〉 =

(
I 2 I
−I 0 I

)
〈I|Î2Ŷ2|I〉.

Now, we evaluate 〈I, I|Î2Ŷ20|I, I〉 using the eigenvalues of Î2 and Îz:

〈I, I|Î2Ŷ20|I, I〉 Eq. (C.5)
=

1

2

√
5

4π
〈I, I|(3Î2

z − Î2)|I, I〉

=
1

2

√
5

4π
h̄2(3I2 − I(I + 1))

=
1

2

√
5

4π
h̄2(2I − 1)I

⇒ 〈I|Î2Ŷ2|I〉 =

1
2

√
5
4π h̄2(2I − 1)I

(
I 2 I
−I 0 I

) .

Now, we insert these results in Eq. (C.4) and obtain for CII′2

CII′2 =
〈I|r̂2Ŷ2|I〉
〈I|Î2Ŷ2|I〉

=
Q

Z(2I − 1)Ih̄2 .

The constant CII′2 does not depend on mI and m′
I . So this is also true for the other four

components:

Î2Ŷ22 =
1

2

√
15

4π
(Î2

x − Î2
y ) (C.7)
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C Derivation of the quadrupole Hamiltonian

Î2Ŷ21 =

√
15

4π
ÎxÎz (C.8)

Î2Ŷ2−1 =

√
15

4π
Îy Îz (C.9)

Î2Ŷ2−2 =

√
15

4π
ÎxÎy. (C.10)

Now, we have the desired connection between r̂2Ŷ2m and Î2Ŷ2m, which makes it possible to
evaluate the matrix elements of the nuclear part of Eq. (C.2):

r̂2Ŷ2m(r̂) =
Q

Z(2I − 1)Ih̄2 Î2Ŷ2m(Î), (C.11)

where Î2Ŷ2m(Î) is given by Eq. (C.5) and Eq. (C.7) to Eq. (C.10).

To obtain the quadrupole Hamiltonian ĤQ we need to sum up all m components of Ĥ2m Eq. (C.1)
with the relation Eq. (C.11). To make life more simple we go in the PAS of the EFG tensor,
because then only the m = 2 and m = 0 components survive




Vxx 0 0
0 Vyy 0
0 0 Vzz


 =

√
15

4π
lim
r→0

1

r2
·




V22(r) − 1√
3
V20(r) 0 0

0 −V22(r) − 1√
3
V20(r) 0

0 0 2√
3
V20(r)


 .

The two contributions are

′20′ =

√
15

4π
lim
r→0

1

r2
V20(r) =

√
3

2
Vzz

′22′ =

√
15

4π
lim
r→0

1

r2
V22(r) =

1

2
ηVzz.

In order to get the full Hamiltonian we need to add up the single terms

ĤQ =
2∑

m=−2

H2m = H20 + H22

=
Q

Z(2I − 1)Ih̄2

(√
15

4π
lim
r→0

1

r2
V20(r) ·

√
4π

15
eZÎ2Ŷ20 +

√
15

4π
lim
r→0

1

r2
V22(r) ·

√
4π

15
eZÎ2Ŷ22

)

=
eQ

(2I − 1)Ih̄2

(√
3

2
Vzz ·

1

2
√

3
(3Î2

z − I2) +
1

2
ηVzz ·

1

2
(Î2

x − Î2
y )

)
.

Finally, we have the quadrupole Hamiltonian:

ĤQ =
eQVzz

4(2I − 1)Ih̄2

[(
3Î2

z − Î2
)

+ η
(
Î2
x − Î2

y

)]
. (C.12)

Alternatively, one can also use the operators J± = Jx ± iJy, which yields

ĤQ =
eQVzz

4(2I − 1)Ih̄2

[(
3Î2

z − Î2
)

+
1

2
η

(
Î2
+ + Î2

−
)]

. (C.13)
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D Contributions to the interaction energy from the 4th order Taylor
expansion

In this appendix, we derive the classical expressions for the contributions from the fourth order of
the electrostatic interaction energy, which are due to electron penetration into the nucleus. The
arising contributing from the 4th order to the 2nd order will lead to the “quadrupole shift” and
is dealt with quantum mechanically in Appendix E.

We start with the Taylor expansion of the classical interaction energy Eq. (6.9). Here we focus
on the forth order of this expansion. Using Eq. (A.9) we force the nuclear hexadecapole moment
and electric hexadecapole field tensor to appear

E(4) =
1

4!

3∑

i,j,k,l=1

(
∂4v(~r)

∂xi∂xj∂xk∂xl

∣∣∣∣∣
~r=0

) ∫
xixjxkxlρ(~r)d3r

=
1

4!

3∑

i,j,k,l=1

(
Vijkl + fV

ijkl

) 1

105

(
Qijkl + fQ

ijkl

)
. (D.1)

The function fQ
ijkl is given by Eq. (A.2) and

Vijkl = ∂i∂j∂k∂lv(0) − fV
ijkl∆v(0) (D.2)

fV
ijkl =

[
∂i∂jδkl + ∂i∂kδjl + ∂i∂lδkj + ∂j∂kδil + ∂j∂lδik + ∂k∂lδij

]

−∆

5

[
δijδkl + δikδjl + δilδjk

]
(D.3)

The Cartesian hexadecapole moment tensor Qijkl contains 3 · 3 · 3 · 3 = 81 elements. Due to
symmetry (Qijkl is invariant against permutation of its indices i, j, k and l) 66 and due to
traceless-ness conditions (

∑
i Qiijk = 0 for all j, k combinations) six of these 81 elements are

identical leaving this tensor, like the spherical Q4m with only nine degrees of freedom.

One can try to imagine the Cartesian hexadecapole tensor as a 3×3 matrix, where each element is
a traceless 3× 3 matrix. Using the abbreviation {xixjxkxl} =

∫
ρ(~r)xixjxkxl d3r the xx element

(the matrix Qijxx) looks like this

3·5·




{7xxxx − 6x2r2 + 3
5r4} {xyxx − 3xyr2} {7xzxx − 3xzr2}

{7yxxx − 3xyr2} {7yyxx − (x2 + y2)r2 + 1
5r4} {7yzxx − yzr2}

{7zxxx − 3xzr2} {7zyxx − yzr2} {7zzxx − (x2 + z2)r2 + 1
5r4}




with zero trace:
∑

i Qiixx = Qxxxx + Qyyxx + Qzzxx = 0. Also the tensor fQ
ijkl can be seen as a

3 × 3 matrix, where each element is a traceless 3 × 3 matrix. Here the xx elements is

f ijxx
Q = 3·5·




{6x2r2 − 3
5r4} 3{xyr2} 3{xz}

3{xyr2} {(x2 + y2)r2 − 1
5r4} {yzr2}

3{xzr2} {yzr2} {(x2 + z2)r2 − 1
5r4}


 . (D.4)
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D Contributions to the interaction energy from the 4th order Taylor expansion

The same symmetry and traceless-ness conditions are true for the electric hexadecapole field
(EHF) tensor Vijkl

1 and the xx element (the matrix Vijxx) looks like this




vxxxx − 6
7∆vxx + 3

35∆2v vxyxx − 3
7∆vxy vxzxx − 3

7∆vxz

vyxxx − 3
7∆vxy vyyxx − 1

7∆(vxx + vyy) + ∆2

35 v vyzxx − 1
7∆vyz

vzxxx − 3
7∆vxz vzyxx − 1

7∆vyz vzzxx − 1
7∆(vxx + vzz) + ∆2

35 v


 .

The corresponding xx element from the modification is

fV
ijxx =

∆

7




6∂2
x − 3

5∆ 3∂x∂y 3∂x∂z

3∂x∂y (∂2
x + ∂2

y) − ∆
5 ∂y∂z

3∂x∂z ∂y∂z (∂2
x + ∂2

z ) − ∆
5


 v. (D.5)

The elements yy, zz, xy = yx, xz = zx and yz = zy look similar and can easily be obtained from
Eq. (D.4) and Eq. (D.5). Now, we evaluate Eq. (D.1). First, we have to check whether the dot
product of the hexadecapole tensors Vijkl and Qijkl respectively with its modification fQ

ijkl and

fV
ijkl respectively is zero. There are no mixed terms if (from now on the Einstein sum convention

is used):

Vijxx fQ
ijxx + Vijyy fQ

ijyy + Vijzz fQ
ijzz + 2(Vijxy fQ

ijxy + Vijyz fQ
ijyz + Vijxz fQ

ijxz)
!
= 0. (D.6)

We obtain for the two sums

1

15

(
Vijxx fQ

ijxx + Vijyy fQ
ijyy + Vijzz fQ

ijzz

)
= −4[{xyr2}Vxyzz + {xzr2}Vxzyy + {yzr2}Vyzxx]

−2

5
{r4}[Vxxxx + Vyyyy + Vzzzz]

+4[{x2r2}Vxxxx + {y2r2}Vyyyy + {z2r2}Vzzzz]

2

15

(
Vijxy fQ

ijxy + Vijyz fQ
ijyz + Vijxz fQ

ijxz

)
= 4[{xyr2}Vxyzz + {xzr2}Vxzyy + {yzr2}Vyzxx]

−2
2

5
{r4}[Vxxyy + Vxxzz + Vyyzz]

−4[{x2r2}Vxxxx + {y2r2}Vyyyy + {z2r2}Vzzzz].

Using
∑

j Viijj = 0 these expressions indeed cancel and Eq. (D.6) is true. The same is true for

Qijkl with fV
ijkl. Like in the second order also here only two contributions survive:

E(4) =
1

4!

3∑

i,j,k,l=1

(
Vijkl + fV

ijkl

) 1

105

(
Qijkl + fQ

ijkl

)

=
1

4!

1

105

3∑

i,j,k,l=1

(
VijklQijkl + fV

ijklf
Q
ijkl

)
. (D.7)

The first term is the hexadecapole interaction and the second term are corrections to lower orders,
which we will calculate now. We need to evaluate:

fV
ijxxfQ

ijxx + fV
ijyyf

Q
ijyy + fV

ijzzf
Q
ijzz + 2(fV

ijxyf
Q
ijxy + fV

ijyzf
Q
ijyz + fV

ijxzf
Q
ijxz).

1If one extents the calculation from Appendix B to the forth order, one finds similar to the EFG tensor (f2m and
c00 “dirt” from the zeroth order) not only components f4m but also e00 and e2m “dirt” from lower orders - in
this case from the zeroth and second order. The traceless-ness conditions cancel this contributions leaving the
the Cartesian EHF tensor with only nine degrees of freedom: f4m.

120



D Contributions to the interaction energy from the 4th order Taylor expansion

We obtain

1

15

(
fV

ijxxfQ
ijxx + fV

ijyyf
Q
ijyy + fV

ijzzf
Q
ijzz

)
=

38

7
[{x2r2}∂2

x + {y2r2}∂2
y + {z2r2}∂2

z ]∆v(0)

+
38

7
[{xyr2}∂x∂y + {yzr2}∂y∂z + {xzr2}∂x∂z]∆v(0)

− 137

7 · 25
{r4}∆∆v(0)

1

15

(
fV

ijxyf
Q
ijxy + fV

ijyzf
Q
ijyz + fV

ijxzf
Q
ijxz

)
=

2

7
[{x2r2}∂2

x + {y2r2}∂2
y + {z2r2}∂2

z ]∆v(0)

+
23

7
[{xyr2}∂x∂y + {yzr2}∂y∂z + {xzr2}∂x∂z]∆v(0)

+
16

7 · 25
{r4}∆∆v(0).

Taking in account the factor two we obtain for the correction:

∆E =
1

4!

15

105

(
42

7
[{x2r2}∂2

x + {y2r2}∂2
y + {z2r2}∂2

z ]

+
84

7
[{xyr2}∂x∂y + {yzr2}∂y∂z + {xzr2}∂x∂z] −

105

7 · 25
{r4}∆

)
∆v(0)

=
1

28

∑

ij

{xixjr
2}∂i∂j∆v(0) − 1

280
{r4}∆2v(0). (D.8)

We modify Eq. (D.8) by forcing the tensors to be traceless

{xixjr
2}∂i∂j∆v(0) = {(xixj −

1

3
δijr

2)r2}(∂i∂j −
1

3
δij∆)∆v(0) +

1

9
{r4}∆2v(0)δij .

There are no mixed terms here, since the dot product of a traceless matrix with a unit matrix is
zero. Inserting this in Eq. (D.8) we obtain for the correction energy

∆E =
1

28

∑

ij

{(xixj −
1

3
δijr

2)r2}(∂i∂j −
1

3
δij∆)∆v(0) +

1

120
{r4}∆2v(0). (D.9)

With {xixjr
2} =

∫
ρ(~r)xixjr

2d3r ≡ eZ〈xixjr
2〉, the nuclear part can be translated in spherical

notation by translating the xixj in real spherical harmonics (see page 112):



〈xxr2 − 1
3r4〉 〈xyr2〉 〈xzr2〉

〈yxr2〉 〈yyr2 − 1
3r4〉 〈yzr2〉

〈zxr2〉 〈zyr2〉 〈zzr2 − 1
3r4〉




=

√
4π

15




〈r4(Y22 − 1√
3
Y20)〉 〈r4Y2,−2〉 〈r4Y21〉

〈r4Y2,−2〉 〈−r4(Y22 + 1√
3
Y20)〉 〈r4Y2,−1〉

〈r4Y21〉 〈r4Y2,−1〉 〈r4 2√
3
Y20〉


 . (D.10)

Using the Poisson equation ∆v(0) = −c0n(0) (with c0 = 1
ǫ0

in SI units and c0 = 4πa0Ha
e2 in

atomic units), we obtain for the so called kinetic energy tensor (second partial derivatives of the
electronic charge density) in spherical notation (see Appendix B)



nxx − 1
3∆n nxy nxz

nyx nyy − 1
3∆n nyz

nzx nzy nzz − 1
3∆n


 =
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D Contributions to the interaction energy from the 4th order Taylor expansion

=

√
15

4π
lim
r→0

1

r2




n22(r) − 1√
3
n20(r) n2,−2(r) n21(r)

n2,−2(r) −n22(r) − 1√
3
n20(r) n2,−1(r)

n21(r) n2,−1(r)
2√
3
n20(r)


 . (D.11)

Inserting Eq. (D.11) and Eq. (D.10) back in Eq. (D.9) gives finally the corrections

∆E = −c0
eZ

14

2∑

m=−2

[
lim
r→0

1

r2
n2m · 〈r4Y2m〉

]
− c0

eZ

120
〈r4〉n(0).

This can be written as another correction to the zeroth order and a correction to the second
order. In spherical notation these are

∆E(0) = −c0
eZ

120
〈r4〉∆n(0) (D.12)

∆E(2)
m = −c0

eZ

14

[
lim
r→0

1

r2
n2m · 〈r4Y2m〉

]
. (D.13)
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E Derivation of the quadrupole shift Hamiltonian

In this appendix, the derivation of the quadrupole shift Hamiltonian is presented. This derivation
is very similar to the derivation of the quadrupole Hamiltonian, demonstrated in Appendix C.

We start with the the correction to the energy to the second order in spherical notation Eq. (D.13):

∆E(2)
m =

1

14

[
−c0

√
15

4π
lim
r→0

1

r2
n2m(r)

]
·
[√

4π

15
eZ〈r4Y2m〉

]
.

Replacing the classical functions by its quantum mechanical operators provides the Hamiltonian

for this correction energy ∆E
(2)
m

Ĥ(2)
m =

1

14

[
−c0

√
15

4π
lim
r̂→0

1

r̂2
n̂2m(r̂)

]

︸ ︷︷ ︸
Ê2m

·
[√

4π

15
eZ〈r̂4Ŷ2m〉

]
.

︸ ︷︷ ︸
N̂2m

The operator containing the electronic part we call Ê2m and the operator containing the nuclear
part N̂2m. Just like in Appendix C, the eigenvalues are obtained from the matrix elements

E(2)
m =

1

14
〈ψ(0)

e |Ê2m|ψ(0)
e 〉 · 〈I|N̂2m|I〉. (E.1)

Also here, the electron part can be obtained from DFT codes and we are left with transforming
the nuclear operator N̂2m into eigenfunctions of |I〉. We need an expression for r̂4Ŷ2m in terms
of Î. We start with multiplying Eq. (C.5) with r̂2:

r̂4Ŷ20(r̂) =
1

2

√
5

4π
(3ẑ2 − r̂2)r̂2 and Î4Y20(Î) =

1

2

√
5

4π
(3Î2

z − Î2)Î2. (E.2)

Since Îz and Î2 commute, [Î2, Îz] = 0, the order does not matter. In order to get a connection
between r̂4Ŷ20 and Î4Ŷ20, we have to apply the Wigner-Eckart-theorem Eq. (C.3), which states
that all tensors of rank l are proportional. r̂4Ŷ20 is also a tensor of rank 2 because r̂4 is just a
scalar. We continue the procedure of Appendix C and calculate the constant C, connecting the
two tensors given in Eq. (E.2):

〈I ′, m′
I |r4Y20|I, mI〉

〈I ′, m′
I |Î4Y20|I, mI〉

Eq. (C.3)
=

〈I ′|r4Y20|I〉
〈I ′|Î4Y20|I〉

= C. (E.3)

Analog to Q we define Q̃ (which is Q̃zz):

Q̃ ≡ Z〈I, mI = I|(3ẑ2 − r̂2)r̂2|I, mI = I〉 = 2

√
4π

5
Z〈I, I|r̂4Ŷ20|I, I〉. (E.4)

First we apply the Wigner-Eckart-theorem on Eq. (E.4)

〈I|r̂4Ŷ20|I〉 =
Q̃

2
√

4π
5 Z

(
I 2 I
−I 0 I

) ,
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E Derivation of the quadrupole shift Hamiltonian

then we apply the Wigner-Eckart-theorem on

〈I, I|Î4Ŷ20|I, I〉 =

(
I 2 I
−I 0 I

)
〈I|Î4Ŷ20|I〉.

Now, we evaluate 〈I, I|Î4Ŷ20|I, I〉 using the eigenvalues of Î2 and Îz:

〈I, I|Î4Ŷ20|I, I〉 =
1

2

√
5

4π
〈I, I|(3Î2

z − Î2)Î2|I, I〉

=
1

2

√
5

4π
h̄4(3I2 − I(I + 1))(I(I + 1))

=
1

2

√
5

4π
h̄4(2I2 + I − 1)I2

⇒ 〈I|Î4Ŷ20|I〉 =

1
2

√
5
4π h̄4(2I2 + I − 1)I2

(
I 2 I
−I 0 I

) .

Now, we insert these results in Eq. (E.3) and obtain for C

C =
〈I|r̂4Ŷ20|I〉
〈I|Î4Ŷ20|I〉

=
Q̃

Z(2I2 + I − 1)I2h̄4 .

The constant C does not depend on mI , m
′
I and m. So this is also true for the other four

components

Î4Ŷ22 =
1

2

√
15

4π
(Î2

x − Î2
y )Î2 (E.5)

Î4Ŷ21 =

√
15

4π
ÎxÎz Î

2 (E.6)

Î4Ŷ2−1 =

√
15

4π
Îy Îz Î

2 (E.7)

Î4Ŷ2−2 =

√
15

4π
ÎxÎy Î

2. (E.8)

We know from quantum mechanics that [Î2, Îx] = [Î2, Îy] = [Î2, Îz] = 0. And since [Î2, Îz Îx] =
Îz[Î

2, Îx] + [Î2, Îz]Îx = 0 + 0 = 0 (analog the others) the order does not matter.

Now, we have the desired connection between r̂4Ŷ 2
m and Î4Ŷ 2

m:

r̂4Ŷ 2
m(r̂) =

Q̃

Z(2I2 + I − 1)I2h̄4 Î4Ŷ 2
m(Î), (E.9)

where Î4Ŷ 2
m(Î) is given by Eq. (E.2) and Eq. (E.5) to Eq. (E.8).

To obtain the quadrupole shift Hamiltonian ĤQS we need to sum up all m components of Ĥm.
To make life more simple we choose also here the PAS1 of the kinetic energy tensor




nxx 0 0
0 nyy 0
0 0 nzz


 =

√
15

4π
lim
r→0

1

r2
·




n22(r) − 1√
3
n20(r) 0 0

0 −n22(r) − 1√
3
n20(r) 0

0 0 2√
3
n20(r)


 .

1Since the V2m components are calculated from the n2m components, this PAS coincides with the PAS of the EFG
tensor, if n2m = 0 with m = −2,−1, 1, i.e. both tensors are already in diagonal form, but may be different
otherwise.
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E Derivation of the quadrupole shift Hamiltonian

(These nii are the “traceless” elements,
∑

i nii = 0.)
In the PAS only 2 components contribute

Ê20 = −c0

√
15

4π
lim
r→0

1

r2
n20(r) = −c0

√
3

2
nzz (E.10)

Ê22 = −c0

√
15

4π
lim
r→0

1

r2
n22(r) = −c0

1

2
ηQSnzz (E.11)

with ηQS = (nxx − nyy)/nzz, in general different2 from the EFG η (unless η = 0 ⇒ ηQS = 0).

In order to get the full Hamiltonian we need to add up the single terms

ĤQS =
2∑

m=−2

Hm =
1

14

(
Ê20N̂20 + Ê22N̂22

)
.

Inserting N̂2m =
√

4π
15 eZ r4Y2m with Eq. (E.9) and Eq. (E.10) and Eq. (E.11) we obtain the

Hamiltonian

Ĥ = − c0

14

eQ̃nzz

4(2I − 1)I(I + 1)Ih̄4

[(
3Î2

z − Î2
)

+ ηQS

(
Î2
x − Î2

y

)]
Î2. (E.12)

Compared to the quadrupole Hamiltonian, we see an additional Î2 operator here. Furthermore
contains the denominator in the prefactor I(I + 1)h̄2 – the eigenvalue of Î2, which results (when
applying the Hamiltonian on the nuclear state |I〉) in a multiplication by 1 (=nothing happened).
Therefore, we will write the quadrupole shift Hamiltonian as

ĤQS = − c0

14

eQ̃nzz

4(2I − 1)Ih̄2

[(
3Î2

z − Î2
)

+ ηQS

(
Î2
x − Î2

y

)]
. (E.13)

Note, in SI notation, co = 1/ǫ0.

2For axial symmetry, both η are identical (zero), but in general, they must not be the same, since the relation of
different n2m must not coincide with the integral over their counterparts, divided by x, as V2m is obtained.
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F EFG implementation

In this appendix, we will derive an analytical expression for the off-site contribution Ṽ off
ij , the

second term in Eq. (4.6) from Section 3.5.

We are dealing with the contributions from the other atoms to the EFG of the atom under
consideration. We take two atoms: the off-site atom is B and the potential is given by v(~ρ − ~R)
and the atom under consideration is A and we are interested in expressing the potential of B in
~ρ, meaning how it is experienced by A, see left picture in Figure F.1 for a schematic illustration.
Any (analytical) function v(~ρ) can be expanded in radial functions and spherical harmonics:

v(~ρ) =
∑

lm

vlm(ρ)Ylm(ρ̂) with vlm(ρ) =

∫
v(~ρ)Y ⋆

lm(ρ̂) dρ̂

⇒ v(~ρ) =
∑

lm

[ ∫
v(~ρ)Y ⋆

lm(ρ̂) dρ̂
]

Ylm(ρ̂).

Since we are dealing with real spherical harmonics, the ⋆ will be omitted from now on. Now, we
use a “trick” and write v(~ρ) in the integral as v(~ρ − ~R) and expand this again:

v(~ρ − ~R) =
∑

LM

vLM (|~ρ − ~R|)YLM (ρ̂−R)

⇒ v(~ρ) =
∑

lm

[ ∫ ∑

LM

vLM (|~ρ − ~R|)YLM (ρ̂−R)Ylm(ρ̂) dρ̂
]

Ylm(ρ̂).

In order to calculate the integral we use another trick: we rotate the coordinate system with the
operator D̂ and the matrix M (with MMT = 1l), respectively. Now, in Σ′ the vector ~R points
along the z′-axis: D̂ ~R = ~RM = (0, 0, R) = (MT R)T . (~R = RT is a row vector and R is a column
vector.) See centre picture in Figure F.1.

Spherical functions are rotated with the Wigner D functions Dl
nm:

D̂Ylm(r̂) =
∑

n

Yln(r̂)Dl
nm = Ylm(D̂−1r̂) = Ylm(r̂M).

For l = 1 there are three linear independent Ylm functions and for l = 2 the sum runs over five.

~ρ

~R ~ρ − ~R

A

B

~R

z
z′

x

x′

~R

−qz

ρz

~q

~ρ
θ

Figure F.1: On-site atom A (white) and off-site atom B (grey), separated by the vector ~R. Illus-
trative pictures for the derivation of the off-site contributions, see text.
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F EFG implementation

First, we consider only the part with YLM (ρ̂−R)Ylm(ρ̂) and insert 1l:

∫
YLM (ρ̂−R)Ylm(ρ̂) dρ̂ =

∫
YLM ( ̂(ρ−R)MMT )Ylm(ρ̂MMT ) dρ̂

=

∫
YLM ( ̂(ρM−RM)MT )Ylm((ρ̂M)MT ) dρ̂

=

∫
YLM ( ̂(ρ−RM)MT )Ylm(ρ̂MT ) dρ̂

=
∑

nN

∫
YLN ( ̂ρ−RM)DL

MNYln(ρ̂)Dl
mn dρ̂

=
∑

nN

∫
YLN ( ̂ρ−RM)Yln(ρ̂) dρ̂ DL

MNDl
mn.

From the second to the third line we used that instead of integrating over ρ̂ we can also integrate
over ρ̂M . This makes no difference since the integral runs over the whole space. Then we can
substitute all ρ̂M with ρ̂ for simplicity. From the third to forth line the Wigner D functions were
used:

Ylm(ρ̂M) =
∑

n

Yln(ρ̂)Dl
nm ⇒ Ylm(ρ̂MT ) =

∑

n

Yln(r̂)DT l
nm =

∑

n

Yln(r̂)Dl
mn.

~R in vLM (|~ρ − ~R|) has be rotated as well which yields finally:

v(~ρ) =
[ ∑

nN

∑

lm

∑

LM

∫
vLM (|~ρ − (0, 0, R)|)YLN ( ̂ρ−RM)Yln(ρ̂) dρ̂ DL

MNDl
mn

]
Ylm(ρ̂).

In order to solve the integral we have to check the different dependencies. Therefore, we chose
the following notation, see right picture in Figure F.1:
z = cos(θ), y = sin(θ) =

√
1 − z2, ~ρ = ρ(y cos ϕ, y sinϕ, z), ~q = ~ρ − ~R

⇒ q(ρ, z) =
√

ρ2 + R2 − 2ρRz and ~q = (ρy cos ϕ, ρy sinϕ, ρz − R).
The x and y component of ~ρ and ~q are identical and the (negative) qz component is obtained by:
qz = ρz − R with ρz = ρz.

To be consistent we write ~q = q
(
(ρy/q) cos ϕ, (ρy/q) sin ϕ, (ρz−R)/q

)
and define zq = (ρz−R)/q.

This yields:

vLM (|~ρ − (0, 0, R)|) = vLM (q) = vLM (ρ, z),

YLN ( ̂ρ−RM) = YLN (q̂) = YLN (ϕ, zq),

Yln (ρ̂) = Yln(ϕ, y) = Yln(ϕ, z),

and the integral becomes:

∫
vLM (ρ, z)YLN (ϕ, zq)Yln(ϕ, z)dϕdz.

The spherical functions are defined as:

Ylm(ϕ, z) = c
|m|
l P

|m|
l (z)





cos(|m|ϕ), m > 0
1, m = 0
sin(|m|ϕ), m < 0

c
|m|
l =

√
2l + 1

2π(1 + δm0)

(l − |m|)!
(l + |m|)! .

P
|m|
l (z) = (1 − z2)

m
2

d|m|

dz|m|Pl(z) Pl(z) =
1

2ll!

dl

dzl
(z2 − 1)l,
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and inserting these in the integral yields:

c
|N |
L c

|n|
l

∫ 1

−1
vLM (ρ, z)P

|N |
L (zq)P

|n|
l (z)dz

∫ 2π

0
φ|N |φ|n|dϕ.

The ϕ integration can be done immediately:

φ|m| =

{
cos(|m|ϕ), m ≥ 0
sin(|m|ϕ), m < 0

⇒
∫ 2π

0
φ|N |φ|n|dϕ = π(1 + δn0)dnN .

We arrive at

v(~ρ) =
∑

n

∑

lm

∑

LM

π(1 + δn0)c
|n|
L c

|n|
l

∫ 1

−1
vLM (ρ, z)P

|n|
L (zq)P

|n|
l (z)dz DL

MnDl
mnYlm(ρ̂).

In order to solve the remaining z integral we have to find expressions for the first two functions

vLM (ρ, z) and P
|n|
L (zq). We start with expanding the Legendre polynomial P

|n|
L (zq) into a Taylor

series around ρ = 0 up to second order. Therefore, we write (keeping in mind that n has to be
positive and omitting |n|):

Pn
L (zq(ρ)) = y(ρ)n · Hn

L(zq(ρ)) with y(ρ) =
√

1 − z2
q =

√
1 − (ρz − R)2/q2

Pn
L (ρ) =

∞∑

j=0

ρj

j!

dj

dρj

[
y(ρ)n · Hn

L(zq(ρ))

]

ρ=0

.

First, we will consider necessary ρ = 0 terms:

• q(ρ = 0) = R, q′(ρ = 0) = −z, q′′(ρ = 0) =
1 − z2

R
,

• zq(0) = −1, z′q(ρ = 0) = 0, z′′q (ρ = 0) =
1 − z2

R2
,

• y(ρ = 0) = 0, y′(ρ = 0) =

√
1 − z2

R
, y′′(ρ = 0) =

2z
√

1 − z2

R2
.

Hn
l (zq(ρ)) and derivatives of Hn

l (zq(ρ)) at ρ = 0 are harmless polynomials and therefore not
divergent.
The zeroth order yields only one term:

Pn
L (0) = y(0)n · Hn

L(−1).

Since y(0) = 0 there is just one contribution for n = 0: H0
L(−1).

The first order yields two terms:

P ′n
L(0) = ny(0)n−1y′(0) · Hn

L(−1) + y(0)n · H ′n
L(−1).

Since H ′0
L(−1) = 0 there is only one contribution for n = 1: y′(0) · H1

L(−1). (In all cases ′ is the
derivative with respect to ρ and after deriving ρ is set to zero.)
The second order yields four terms:

P ′′n
L(0) = n(n − 1)y(0)n−2y′(0)2 · Hn

L(−1) + ny(0)n−1y′′(0) · Hn
L(−1)

+2ny(0)n−1y′(0)2 · H ′n
L(−1) + y(0)n · H ′′n

L(−1).

Since H ′1
L(−1) = 0 there is one contribution for n = 0: H ′′0

L(−1), one for n = 1: y′′(0) · H1
L(−1)

and one for n = 2: 2y′(0)2 · H2
L(−1).
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H ′′0
L(−1) (derivative with respect to ρ) can be written as (dH0

L/dρ) ·z′′q (0) = H1
L(−1) ·(1−z2)/R2

(chain rule). So we end up with:

Pn
L (ρ, z) ≃ {H0

L(−1) +
1 − z2

R2
· H1

L(−1) · ρ2

2
; (n = 0)

√
1 − z2

R
· H1

L(−1) · ρ +
2z

R2

√
1 − z2 · H1

L(−1) · ρ2

2
; (n = 1)

2
1 − z2

R2
· H2

L(−1) · ρ2

2
(n = 2)

}.

It is sufficient to consider only contributions up to second order since the EFG is evaluated at
the limes for ρ → 0. The Hn

L(−1) functions are given by:

H0
L(−1) = (−1)L

H1
L(−1) = (−1)L+1 L(L + 1)

2

H2
L(−1) = (−1)L (L + 2)(L + 1)L(L − 1)

8
.

Now, we expand the potential vlm(ρ) in a Taylor series around ρ = 0 (q = R) up to second order
in ρ:

vLM (ρ, z) ≃ vLM (R) − z
d

dq
vLM (q)

∣∣∣∣∣
q=R

· ρ +

[
z2 d2

dq2
+

1 − z2

R

d

dq

]
vLM (q)

∣∣∣∣∣
q=R

· ρ2

2

Same argument as before, we can stop after the second order because we are only interested in
very small ρ.
For the EFG tensor we only have to consider l = 2. So for the Legendre function Pn

l (z) there are
only three contributions:

P 0
2 (z) =

1

2
(3z2 − 1)

P 1
2 (z) = 3z

√
1 − z2

P 2
2 (z) = 3(1 − z2).

Now, we have explicit expressions for all three functions and the z integration can be carried out:

v2m(ρ) = 2π
∑

LM

{
(F.1)

c0
Lc0

2

1

105

ρ2

R3

[
− 14RH1

LvLM − (14R2H0
L + 8ρ2H1

L)v′LM + (14R3H0
L + ρ2RH1

L)v′′LM

]
DL

M0D
2
m0

+c1
Lc1

2

2

35

ρ2

R3
H1

L

[
14RvLM + (4ρ2 − 14R2)v′LM + 3ρ2Rv′′LM

](
DL

M,−1D
2
m,−1 + DL

M1D
2
m1

)

+c2
Lc2

2

8

35

ρ2

R3
H2

L

[
14RvLM + 6ρ2v′LM + ρ2Rv′′LM

](
DL

M,−2D
2
m,−2 + DL

M2D
2
m2

)}
.

Here, ′ in v′LM and v′′LM denotes the derivative with respect to q at q = R. This can be evaluated
further with the solution of the Poisson equation:

vLM (q) =
2π

2L + 1

(
1

qL+1

∫ q

0
dxxL+2nLM (x) + qL

∫ ∞

q
dxx−L+1nLM (x)

)
.
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F EFG implementation

With the following notation I1 =
∫ R
0 dxxL+2nLM (x) and I2 =

∫ ∞
R dxx−L+1nLM (x) we obtain:

vLM (R) =
2π

2L + 1

(
1

RL+1
· I1 + RL · I2

)

v′LM (R) =
2π

2L + 1

(
− L + 1

RL+2
· I1 + LRL−1 · I2

)

v′′LM (R) =
2π

2L + 1

(
(L + 1)(L + 2)

RL+3
· I1 + L(L − 1)RL−2 · I2 − (2L + 1)nLM (R)

)
.

For the coefficients we have

c0
Lc0

2 =
1

2π

√
3

5

√
2L + 1

L + 1

c1
Lc1

2 =
1

4πL

√
3

5

√
2L + 1

L + 1

c2
Lc2

2 =
1

8πL

√
3

5

√
2L + 1

(L − 1)(L + 1)(L + 2)
.

In the EFG tensor, the Cartesian components are obtained by Eq. (3.2). Every compound is
divided by ρ2 and the limes for ρ → 0 is taken. Therefore, only the terms which are proportional
to ρ2 (or less , but that is not the case) in Eq. (F.1) survive. Higher orders of ρ vanish since the
other contributions are constants. The remaining spherical components for the EFG are:

√
15

4π
lim
ρ→0

(
1

ρ2
· v2m(ρ)

)
=

∑

LM

√
π(−1)L

√
2L + 1

{

[
1√

L + 1

(
(L + 1)(L + 2)

RL+3
I1 + L(L − 1)RL−2I2 −

2

3
(2L + 1)nLM (R)

)]
DL

M0D
2
m0

[√
L + 1

2

(
− L + 2

RL+3
I1 + (L − 1)RL−2I2

)](
DL

M,−1D
2
m,−1 + DL

M1D
2
m1

)

[√
(L + 2)(L + 1)(L − 1)

2

(
1

RL+3
I1 + RL−2I2

)](
DL

M,−2D
2
m,−2 + DL

M2D
2
m2

)}
.
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This appendix contains additional information about the p-d model Hamiltonian physics for
perovskites, as applied for SrTiO3 and BaTiO3 in Section 5.3.

In order to extract the parameters from the band structure as used in Section 5.3, we need the
total Hamiltonian

Ĥ =
∑

m

[
Ĥm + em

(∣∣∣d,~k
〉 〈

d,~k
∣∣∣ +

∣∣∣p,~k
〉 〈

p,~k
∣∣∣
)]

. (G.1)

Here, Ĥm is the Hamiltonian given in Eq. (5.2) and em is the mean energy of a pair of bands.
The energies are therefore obtained from

E~kmν
+ em = em + ν

√
∆2

m + V 2
m

(
f

m~k

)2
. (G.2)

For the three pairs of the πij bands, f
m~k

is given by

f2
πij

~k
= 2 (2 − Ci − Cj) , (G.3)

with Ci ≡ cos(kia). The two σ bands are distinguished by the index λ = ±1 and f
m~k

is

f2
σλ

~k
=

[
3 − Cx − Cy − Cz + λ

(
C2

x + C2
y + C2

z − CxCy − CxCz − CyCz

)1/2
]
. (G.4)

Inserting these in Eq. (G.2) for the Γ point (~ka = 0), and the X point, (kxa = π, ky = kz = 0)
we obtain

Γ25 = eπ − ∆π = eσ − ∆σ, and Γ25 ≡ Ep ≈ εp (G.5)

Γ′
25 = eπ + ∆π, and Γ′

25 ≡ Edt2g
≈ εd (G.6)

Γ12 = eσ + ∆σ, and Γ12 ≡ Edeg
(G.7)

X5 = eπ +
√

∆2
π + 4V 2

π , (G.8)

X1 = eσ +
√

∆2
σ + 4V 2

σ . (G.9)

Here, ε denotes the energy of the atomic level, and E denotes the energy level corrected by a
‘crystal field’ δCF , see below.
Now it is trivial to find the parameters ∆m, Vm

2∆π = Γ′
25 − Γ25 ≡ Edt2g

− Ep, (G.10)

2∆σ = Γ12 − Γ25 ≡ Edeg
− Ep = εd − εp + δCF , (G.11)

4V 2
π =

(
X5 − Γ′

25

)
(X5 − Γ25) , (G.12)

4V 2
σ = (X1 − Γ12) (X1 − Γ25) . (G.13)

The energy values at the different Γ and X points for SrTiO3 are given Table G.1.
So far, we have used the WE model, i.e. we have taken into account only the oxygen p and the
titanium d states. Since this model is not sufficient to explain the observed behaviour of the
oxygen pσ states, we have to expand the model. Harrison’s model [98] includes also the oxygen s
states. The s states change the dispersion in the σ bands, so that we have two parameters Vpdσ,
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G Model Hamiltonian results for perovskites

Table G.1: The energies (given in eV) at the Γ and X points for SrTiO3 for two different lattice
parameters a obtained from FPLO. Here, Γ1 ≈ εs, Γ25 ≈ εp, Γ′

25 = Edt2g
≈ εd and

Γ12 = Edeg

a [Å] Γ12 Γ1 Γ15 Γ25 Γ15 Γ′
25 Γ12 X5 X1

3.8996 -17.199 -16.177 -2.891 -1.166 -0.372 1.709 4.319 3.705 6.551
4.009 -16.923 -15.968 -2.828 -1.046 -0.408 1.579 3.800 3.332 5.798

Vsdσ instead of just one Vσ. Thus, the expressions become more complex, even in the symmetry
points. In this model, the Eqs. (G.5), (G.6) and (G.8) remain the same and the parameters εp,
εd and Vπ are unchanged. For Γ12 Eq. (G.7) and X1 Eq. (G.9), Harrison obtains

Γ12 =
εd + εs

2
+

√(
εd − εs

2

)2

+ 6V 2
sdσ, (G.14)

X1 ≈ εdσ + εp

2
+

√(
εdσ − εp

2

)2

+ 4V 2
pdσ, (G.15)

where εdσ = εd+2V 2
sdσ/∆sd. From these equations, the parameters Vpdσ and Vsdσ can be obtained.

Besides, there is also an additional equation for Γ1

Γ1 = εs. (G.16)

Substituting ∆sd ≡ εd − εs ≫ Vsdσ in Eq. (G.14), we obtain

Γ12 =
εd + εs

2
+

(
∆sd

2

) √
1 +

24V 2
sdσ

∆2
sd

≈ εd + εs

2
+

(
∆sd

2

) [
1 +

12V 2
sdσ

∆2
sd

]

= εd + 6
V 2

sdσ

∆sd
.

Hence,

Edeg
≡ Γ12 ≈ εd +

6V 2
sdσ

∆sd
. (G.17)

For the main text, we need an expression for ∆σ:

∆σ = (Γ12 − Γ25) /2

= (Γ12 − εp) /2

≈ 1

2

(
εd +

6V 2
sdσ

∆sd
− εp

)

= ∆π + 3V 2
sdσ/∆sd. (G.18)

Finally the hopping parameters of both models are given in the Table G.2
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Table G.2: Transfer integrals Vm for SrTiO3 for two different lattice parameters a obtained from
FPLO.

a Vsdσ Vpdσ Vσ Vpdπ = Vπ

3.9 2.9855 2.7237 2.0754 1.5590
4.0 2.7054 2.4064 1.8486 1.3854

3.8 3.9 4 4.1 4.2
Lattice parameter a [Å]
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Figure G.1: Energies at the Γ point, Γ12, Γ25 and Γ′
25 for SrTiO3 in dependence of the lattice

parameter a, obtained from FPLO.

Remark I:

In the derivative Eq. (5.15), we have assumed that ∆′
π = 0 and ∆′

sd = 0 . Since ∆π = (Γ′
25−Γ25)/2

and ∆sd = Γ′
25−Γ1 this would only be correct, if Γ1, Γ25 and Γ′

25 would be constant under lattice
expansion. However, in Figure G.1 we see, that for Γ25 and Γ′

25 this is not the case. Nevertheless,
for ∆σ = (Γ12 − Γ25)/2, where the derivative is calculated for, Eq. (5.15), the dependence of Γ12

on a is much more pronounced.

Remark II:

In the WE model, we use Em as model parameter, hence Γ ≈ ε, and in the Harrison model,
we use εm as model parameter, hence Γ = ε. However. there is some contribution of the CF
acting on the e.g., p states at the Γ point: the interactions with Sr states, with core states, with
Madelung potentials etc. Therefore, εp is rather a model parameter than the true atomic energy,
Ep, of a 2p state. If we speak about the model only, we may drop Ep and Et2g, and retain only
εp, εd and Eeg.
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H Data sets and elaborated results for the quadrupole shift

This appendix reports tabulated and more elaborated results for the trends in the electronic
part (nzz) and the nuclear part (Q̃) of the quadrupole shift, of which the underlying physics was
discussed in Chapter 6.

H.1 Trends in nzz

In order to get a feeling for the size of the quadrupole shift, we have reported the ratio of
the quadrupole shift and the regular quadrupole interaction for a set of elements in simple
crystal structures (Figure 6.3). Those elements are identified here in the periodic table, Fig-
ure H.1. The quadrupole shift information in Figure 6.3 was obtained by a calculation of

nzz =
√

5
π limr→0 n20(r)/r2. We will give nzz/ǫ0 in SI units, meaning the obtained values from the

band structure calculation, given in atomic units (e/a5
0), will be multiplied with c0 = 4πa0Ha/e2.

Figure H.1: The periodic table of the elements. The studied elements are shaded in grey.

We investigate three series: hcp with ideal c/a ratio (1.633), bct with a ratio of c/a = 1.2
and bct with a ratio of c/a = 0.8. In order to keep the computational effort limited, we use
experimental lattice parameters as they can be found on www.webelements.com. For At, we used
the experimental lattice parameters of Po since there are none for At available. The elements,
which are naturally not in hcp are transformed in hcp structure with the same volume per
element as in the elemental solids. From these volumes also the bct with the two different ratios
was calculated. This means for all three series the volume was kept constant.

In the Tables H.1 and H.2 the elements are ordered in the following groups, which will allow us
to distinguish some periodic trends: (1) second main group (alkaline earth), s elements (2) n = 3,
3p elements (3) n = 5, 4d elements (4a) n = 6, 5d elements (4b) n = 6, 6p elements (5) forth
main group (carbon group), p elements (6) sixth main group (halogen elements), p elements

Vzz is given in 1021V/m2 and nzz/ǫ0 is given in 1042V/m4. When talking about trends of nzz/ǫ0
or the EFG, only the magnitude is compared – not the absolute value.
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Figure H.2: The quantity nzz/ǫ0 (left graph) and log(|nzz/ǫ0|) (right graph) as a function of the
nuclear charge Z for hcp with c/a = 1.6 (red), bct with c/a = 1.2 (blue) and bct
with c/a = 0.8 (green).

hcp elements

We start comparing Vzz and nzz/ǫ0 for the hcp structure. We compare these quantities for the
two convergent cases: non-relativistic (NREL) with a point nucleus and full relativistic (FREL)
with finite nucleus, see Tab H.1.

For the influence of the FREL with finite nucleus we observe, that in most cases Vzz does not
change much when going from the NREL to the FREL version. But for some of the heavy
elements (Re, Bi, Po, At, Br, I) it makes quite a difference if the NREL or the more realistic
FREL version is used in the calculation. nzz/ǫ0, on the other hand, is always larger for finite
nucleus in the FREL versions than for the point nucleus with NREL version (except for I). For
the lighter elements ((1), (2), (3), (5) except Pb and (6)) the combination of relativity and a finite
nucleus increase nzz/ǫ0 by a factor 2 to 9. For the heavier elements (4a) and (4b) the factor is
larger. In (4a) the factor increases from 15 (Hf) to 70 (Au) except for Os with a factor of 7. In
(4b) the factor is around 40, except for Po and At - here the factor is only 2 and 6, respectively.

For the tendency of nzz/ǫ0 we observe, that it increases in both cases when going down a group
(see (1), (5), (6) and (2) vs. (4b)). In both cases nzz/ǫ0 increases for p elements when going from
left to right (see (2), (4b) and (5) vs (6)) and decreases for d elements (see (3) and (4a)). (Except
for the noble gas Ar - which has a full shell and should therefore decrease.) In both cases nzz/ǫ0
is larger for p elements, than for d elements preceding them (see (4a) and (4b)).

The comparison of nzz/ǫ0 and Vzz shows, that the former quantity is much more sensitive to the
main quantum number. nzz/ǫ0 varies between eight (six) orders of magnitude in FREL (NREL)
treatment, whereas Vzz varies only between three orders of magnitude.

bct elements

In order to exclude that the observations in the previous section are too closely related to the hcp
structure, we repeat the discussion for two bct structures with the ratios c/a = 1.2 and c/a = 0.8.
Both cases are calculated for the FREL version with a finite nucleus. We observe for the tendency
of nzz/ǫ0 that like in the hcp case, in both ratio cases nzz/ǫ0 increases when going down a group
(see (1), (5), (6) and (2) vs. (4b)) Also here, for both ratio cases nzz/ǫ0 increases for p elements
when going from left to right (see (2), (4b) and (5) vs (6)). (Again, except for Ar.) For the d
elements it is different here: nzz/ǫ0 increases from Hf to Re (1.2)/Os(0.8) and then decreases up
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to Au. Also (3) is different here, decreasing for 1.2 and increasing for 0.8 - but two values maybe
too little to get this trend. Unlike the hcp case, nzz/ǫ0 is of similar magnitude for p elements
and d elements preceding them (see (4a) and (4b)), in both ratio cases. But p elements have the
largest value for nzz/ǫ0 (At in 1.2 and Po in 0.8).

Table H.1: nzz/ǫ0 in 1042 V/m4 and Vzz in 1021 V/m2 for the hcp comparison, see text. The first
two columns are calculated non-relativistic with a point nucleus and the second two
columns full relativistic with a finite nucleus.

Element nzz/ǫ0 Vzz nzz/ǫ0 Vzz

Be (1) 6.57 ·10−1 0.004 2.14 ·10±0 0.004
Ca -2.48 ·10+2 -0.401 -1.23 ·10+3 -0.401
Ba -5.74 ·10+3 -0.703 -5.10 ·10+4 -0.821

Al (2) -1.02 ·10+1 -0.054 -3.54 ·10+1 -0.052
Si -7.84 ·10+1 -0.263 -2.69 ·10+2 -0.267
P 1.70 ·10+1 0.062 7.38 ·10+1 0.054
S 6.29 ·10+2 1.575 2.30 ·10+3 1.579
Cl -6.81 ·10+2 -1.488 -2.46 ·10+3 -1.388
Ar 7.10 ·10−1 0.001 2.80 ·10±0 0.001

Mo (3) -6.65 ·10+3 -1.198 -4.77 ·10+4 -1.778
Tc -5.57 ·10+3 -0.531 -3.39 ·10+4 -0.824

Hf (4a) 5.26 ·10+4 5.193 8.02 ·10+5 5.156
Ta 2.96 ·10+4 1.073 7.47 ·10+5 1.247
Re -4.14 ·10+4 -1.531 -1.20 ·10+6 -3.568
Os -3.57 ·10+4 -0.736 -2.37 ·10+5 -0.554
Ir -2.16 ·10+2 1.220 7.34 ·10+5 1.633
Au -3.36 ·10+3 -0.070 -2.37 ·10+5 -0.161
Tl (4b) -6.22 ·10+3 -0.371 -2.54 ·10+5 -0.416
Pb -6.17 ·10+2 -2.150 -1.16 ·10+6 -2.445
Bi 1.19 ·10+4 1.212 6.05 ·10+5 0.385
Po 7.87 ·10+4 5.533 1.12 ·10+5 2.586
At -8.99 ·10+4 -6.330 3.41 ·10+6 1.141

C (5) -7.89 ·10±0 -0.182 -1.66 ·10+1 -0.181
Si -7.80 ·10+1 -0.263 -2.69 ·10+2 -0.267
Ge -1.11 ·10+2 -0.068 3.01 ·10+2 0.016
Pb -3.39 ·10+4 -2.150 -1.16 ·10+6 -2.445

F (6) -8.30 ·10+1 -0.782 -2.05 ·10+2 -0.735
Cl -6.81 ·10+2 -1.488 -2.46 ·10+3 -1.388
Br -6.38 ·10+3 -2.887 -1.38 ·10+3 -1.090
I -2.16 ·10+4 -4.047 -6.21 ·10+4 -0.342
At -8.99 ·10+4 -6.330 3.41 ·10+5 1.141

For the influence of the c/a change we observe: for 15 of the 27 elements Vzz is larger for c/a = 0.8
than for 1.2. For Hf, Re, Os Bi and Po the EFG is between 10 and 31. For 17 of the 27 elements
nzz/ǫ0 is larger for c/a = 0.8 than for 1.2 all s and d elements ((1),(3)(4) and some p elements
(not (6)). The largest nzz/ǫ0 (order of 10+5) is obtained for At for c/a = 1.2 and for Po, Os, Re,
Bi and Ir for c/a = 0.8.
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The graphs in Figure H.2 show nzz/ǫ0 and log(nzz/ǫ0) as a function of the nuclear charge Z. We
see, that there is a difference between these structures, but the trend is very similar. A large
value for nzz/ǫ0 will be obtained from very heavy elements.

H.2 Models for the nuclear charge density, Q and Q̃

In this section, we will make explicit calculations of Q and Q̃ for two phenomenological nuclear
models. From this, we will get insight how the nuclear quantities Q and Q̃ are affected by which
features of the nuclear shape, and for which kind of nuclei we can expect them to be large. We
start by restating the expressions for Q Eq. (6.28) and Q̃ Eq. (6.29)

eQ =

∫
ρ(~r)(3z2 − r2)d3r (H.1)

eQ̃ =

∫
ρ(~r)(3z2 − r2)r2d3r. (H.2)

H.2.1 Axially symmetric ellipsoid

First, we consider a quite simple example for the charge density of the nucleus, where the nucleus

has the form of an axially symmetric1 ellipsoid: x2

a2 + y2

a2 + z2

c2
= 1. Inside this ellipsoid with the

parameters a and c, the density is assumed to be constant ρ(~r) = ρ0 and outside the ellipsoid the
density is zero.

Therefore, we can write the charge density as:

ρ(~r) = ρ0 [θ(x + a) − θ(x − a)] [θ(y + b̃) − θ(y − b̃)] [θ(z + c̃) − θ(z − c̃)] (H.3)

with b̃ =
√

a2 − x2 and c̃ =
√

a2 − x2 − y2 a
c .

For the total charge we obtain

eZ =

∫
ρ(~r)d3r = ρ0 · Vellipsoid = ρ0

4π

3
a2c ⇔ ρ0 =

3eZ

4πa2c
.

The quadrupole moment is calculated by inserting the density Eq. (H.3) in Eq. (H.1) and taking
the constant density out of the integral and restricting the integration limits to the ellipsoid
borders

eQ = ρ0

∫

ellipsoid
(3z2 − r2)d3r

= ρ0

∫ a

−a
dx

∫ √
a2−x2

−
√

a2−x2
dy

∫ √
a2−x2−y2 a

c

−
√

a2−x2−y2 a
c

dz
(
2z2 −

(
x2 + y2

))

= ρ0
8π

5
a4c

[(
c

a

)2

− 1

]
.

Inserting the charge density yields

Q =
2

5
Za2

[(
c

a

)2

− 1

]
. (H.4)

In case of a sphere (a = c), the quadrupole moment vanishes Q = 0, for a rugby ball (c > a)
the quadrupole moment is positive Q > 0 and for a pancake (c < a) the quadrupole moment is
negative Q < 0.

1A general ellipsoid: x2

a2 + y2

b2
+ z2

c2
= 1 with a 6= b 6= c has no axially symmetry.
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The same calculation for Q̃ yields

eQ̃ =

∫

ellipsoid
ρ(~r)(3z2 − r2)r2d3r

= ρ0
8π

105
a6c

[
3

(
c

a

)4

+

(
c

a

)2

− 4

]
.

Inserting the charge density yields:

Q̃ =
2

35
Za4

[
3

(
c

a

)4

+

(
c

a

)2

− 4

]
. (H.5)

We obtain the same behaviour as above: in case of a sphere (a = c) Q̃ vanishes. For a rugby
ball (c > a) Q̃ is positive and for a pancake (c < a) Q̃ is negative. Q̃ follows the sign of Q. This
quantity has the unit of b2 = 10−56m4.

Since there is no new variable in Q̃, the measurement of Q and Q̃ can determine both a and c.
Since each quantity itself has two parameters, knowing only Q or only Q̃ one can not determine
the ellipsoid: there are many possibilities to vary a and c to obtain the measured quantity. But
measuring both, Q and Q̃, one can get shape ( c

a) and size (a) of the ellipsoid, which is describing
the nucleus in this model.

It is possible to rewrite Q̃ as a function of a, c and Q:

Q̃ =
a2

7
(4 + 3(

c

a

)
2
)
· Q. (H.6)

We are interested in a large value for Q̃, since these will give large correction energies. This
is the case for a large a and a large value for c

a (which means a large Q). This means a large

nucleus, which deviates much from a sphere, will give a large Q̃. Be aware that c
a in the first

place influences Q and only as a secondary effect influences Q̃ itself. The term with only a2 is
dominating in Eq. (H.6).
Evaluating a ratio of ( c

a)2 = 0.9 and ( c
a)2 = 1.1 respectively yields nearly the same value for

absolute value of Q, but the magnitude of Q̃ will be larger for the rugby ball ( c
a)2 = 1.1 than for

the pancake ( c
a)2 = 0.9. Hence a positive Q will give a larger Q̃ than a negative Q for this model.

H.2.2 Nuclear model

Now, we will consider a more realistic model, where the nucleus is phenomenological described
by a deformed sphere, where the radius R(θ) is given by:

R(θ) = a(1 + β2Y20(θ) + β4Y40(θ) + . . .). (H.7)

a is the monopole radius and βi are the deformation parameters. To get a feeling for this model,
we plot

x = R(θ) cos(ϕ) sin(θ)

y = R(θ) sin(ϕ) sin(θ)

y = R(θ) cos(θ)

with a = 2 fm for different values of β2 and β4: in Figure H.3, β4 is zero and only β2 deviates
from zero. The nucleus looks very similar to an axially symmetric ellipsoid, but it is none (in

general), because the condition x2

a2 + y2

a2 + z2

c2
= 1 does not hold. For β2 = 0 the nucleus is a
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Figure H.3: Schematic pictures of a nucleus, using the nuclear model Eq. (H.7) for the radius
of the nucleus. Left: β2 = 0.1, β4 = 0.0, middle: β2 = 0.3, β4 = 0.0, right:
β2 = −0.2, β4 = 0.0.
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Figure H.4: Schematic pictures of a nucleus, using the nuclear model Eq. (H.7) for the radius
of the nucleus. Left: β2 = 0.1, β4 = 0.1, middle: β2 = 0.3, β4 = 0.1, right:
β2 = 0.2, β4 = −0.1.

sphere. For β2 > 0 the nucleus takes the form of a rugby ball, deviating more and more from the
sphere the larger β2 gets. For β2 < 0 the nucleus takes the form of a pancake, getting more flat
for increasing β2.

In Figure H.4, β4 in nonzero. It is responsible for deviation from the apparently axially symmetric
looking ellipsoid: for β4 > 0 the nucleus gets pointier at the equator and the poles (taking really
the form of a rugby ball) and for β4 < 0 the nucleus takes the form of the yellow plastic part of
the “Kinder Surprise” egg2. The larger β4, the larger the deviation.

Case β4 = 0

We consider a nucleus with β4 = 0 and β2 = β. The volume of this nucleus is:

V =

∫ 2π

0
dϕ

∫ R(θ)

0
dr

∫ π

0
dθ r2 sin(θ) with R(θ) = a (1 + βY20(θ))

=
4π

3
a3

[
1 +

12

5
α2 +

16

35
α3

]
with α =

1

2

√
5

4π
β.

2http://en.wikipedia.org/wiki/Kinder Surprise
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It can easily be seen, that this deformed nucleus is a sphere for α = β = 0 and an axially
symmetric ellipsoid, if this volume is identical to the volume of the ellipsoid (4π

3 a2c), which gives
the condition:

[
1 +

12

5
α2 +

16

35
α3

]
!
=

c

a
.

Therefore, the axially symmetric ellipsoid is just a special case of this more general deformation.

For the quadrupole moment Q20 we obtain:

Q20 =

√
4π

15
ρ0

∫ 2π

0
dϕ

∫ R(θ)

0
dr

∫ π

0
dθ r2 sin(θ)r2Y20(θ)

=

√
4π

15
βρ0 a5

[
1 +

1144

1001
α +

3432

1001
α2 +

2080

1001
α3 +

848

1001
α4

]
.

For Q̃20 we obtain:

Q̃20 =

√
4π

15
ρ0

∫ 2π

0
dϕ

∫ R(θ)

0
dr

∫ π

0
dθ r4 sin(θ)r2Y20(θ)

=

√
4π

15

5

7
βρ0 a7 1

12155
[17017 + 29172α + 145860α2 + 176800α3

+216240α4 + 114240α5 + 30400α6].

β is a very small number, e.g., β = 0.2. This means α will be even smaller α = 0.063 and the
higher powers of α will be even smaller, e.g., α2 = 0.004. Hence each term in the brackets in Q20

is one order of magnitude smaller then the preceding one. The same is true for the Q̃20. The
main contributions are linear in α ∝ β (with the volume of a sphere)

eQ = Qzz = 3
2√
3
Q20 = 2

√
4π

5
βρ0 a5 = 3

√
4π

5

eZ

2π
βa2 (H.8)

eQ̃ = Q̃zz = 3
2√
3
Q̃20 = 2

√
4π

5
βρ0 a7 = a2 · eQ. (H.9)

Taking into account also the α2 contribution we get (now the volume is more complicated)

eQ = Qzz = 3
2√
3
Q20 = 2

√
4π

5
βρ0 a5

(
1 +

4

7

√
5

4π
β

)
= 3

√
4π

5

eZ

2π
βa2

(
1 + 8

7α
)

(
1 + 12

5 α2
) (H.10)

eQ̃ = Q̃zz = 3
2√
3
Q̃20 = 2

√
4π

5
βρ0 a7

(
1 +

6

7

√
5

4π
β

)
= a2 · eQ +

4

7
β2ρ0 a7. (H.11)

Here, we have to make a case study for the centre of the equations Eq. (H.10) and Eq. (H.11):
for positive β (meaning positive Q) the term quadratic in β has the same sign and increases
Q and Q̃. But if β (and therefore Q) is negative, the term quadratic in β is still positive and
therefore decreases Q and Q̃. In both cases this effect is not large, since the term quadratic in β
is about one magnitude smaller than the term linear in β. But it means, that like in the case of
the ellipsoid, a positive quadrupole moment will give a larger correction Q̃.

And like in the other three examples: Q̃ is large when the quadrupole moment Q (the deformation
β) is large and the nucleus is large.
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Case β4 6= 0

Now, we use two β parameters:

R(θ) = a(1 + β2Y20(θ) + β4Y40(θ))

= a(1 + α2(3 cos2(θ) − 1) + α4(35 cos4(θ) − 30 cos2(θ) + 3))

with α2 = 1
2

√
5
4πβ2 and α4 = 1

8

√
9
4πβ4.

The volume of this nucleus is

V =

∫ 2π

0
dϕ

∫ R(θ)

0
dr

∫ π

0
dθ r2 sin(θ)

=
4π

3
a3

[
1 +

20

7
α2

2 +
64

3
α2

4 +
2560

231
α2α

2
4 +

192

35
α2

2α4 +
9216

1001
α3

4

]
.

Again, the nucleus has the volume of a sphere plus correction terms in higher orders (quadratic
or cubic) of the deformation parameters β2 and β4.
The quadrupole moment of this nucleus is:

Q20 =

√
4π

15
ρ0

∫ 2π

0
dϕ

∫ R(θ)

0
dr

∫ π

0
dθ r2 sin(θ)r2Y20(θ)

=

√
4π

15
β2ρ0 a5

(
1 +

8

7
α2

)
+

√
4π

15

√
9

5
β4ρ0 a5

(
16

7
α2 +

1600

693
α4

)
+ O(α3

i ). (H.12)

The first part of this Q20 (order α2 and α2
2) is identical to Eq. (H.10) as it should be, since here

α4 is not involved yet. The lowest orders of α4 are given in the second part of Eq. (H.12): α4α2

and α2
4. Unfortunately there is no term linear in α4, which means we have to consider these

expressions up to the quadratic order to get information about β4.
For Q̃20 we obtain for both β parameters:

Q̃20 =

√
4π

15
ρ0

∫ 2π

0
dϕ

∫ R(θ)

0
dr

∫ π

0
dθ r4 sin(θ)r2Y20(θ)

=

√
4π

15
β2ρ0 a7

(
1 +

12

7
α2

)
+

√
4π

15

√
9

5
β4ρ0 a7

(
24

7
α2 +

1056

693
α4

)
+ O(α3

i ). (H.13)

Also here, the first part of this Q̃20 (order α2 and α2
2) is identical to Eq. (H.11) as it should be,

since here α4 is not involved yet. The lowest orders of α4 are α4α2 and α2
4.

We can rewrite eQ̃ = Q̃zz = 2√
3
Q̃20 as a function of eQ = Qzz = 3 2√

3
Q20 (neglecting cubic and

higher orders of αi):

eQ = 2

√
4π

5
β2ρ0 a5

(
1 +

8

7
α2

)
+ 2

√
4π

5

√
9

5
β4ρ0 a5

(
16

7
α2 +

1600

693
α4

)
(H.14)

eQ̃ = a2 · eQ + 2

√
4π

5
β2ρ0 a7 4

7
α2 + 2

√
4π

5

√
9

5
β4ρ0 a7

(
8

7
α2 −

544

693
α4

)

= a2 · eQ + 2a7ρ0




2

7︸︷︷︸
0.29

β2
2 +

√
9

5

4

7︸ ︷︷ ︸
0.77

β2β4 −
68

338︸︷︷︸
0.20

β2
4


 . (H.15)

We have to distinguish between three different cases:

-β2, β4 > 0: Q is positive because each term in Eq. (H.14) is positive. Since both βi fulfil
0 < βi < 1, Q̃ Eq. (H.15) is also positive, the term with the minus is never dominating. Hence Q̃
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Figure H.5: Left: the absolute value of the quadrupole moment Q in dependence of the mass
number A. The values are taken from the literature: Pyykkö [58] (green circles) and
Harris et al. [42] (red squares). Right: nuclear radius a in dependence of A obtained
by different measurements, see text.

is large, when Q is large and a is large. Q̃ larger for β2 > β4 than for β2 = β4 or β2 < β4 because
of the minus sign in Eq. (H.15).

-β2, β4 < 0: Q is negative because the dominating term in Eq. (H.14) is the one linear in β2. All
the other terms will give positive contributions! From this model it can be seen, that a nucleus
with both βi < 0 will give a smaller magnitude of the quadrupole moment than a nucleus with
both βi > 0. In Eq. (H.15) the first two terms of the [ ] expression will be positive and the last
one negative. But the main contribution to Q̃ is a2Q, so Q̃ is also negative. The magnitude of Q̃
is smaller for both βi < 0 than both βi > 0.

-Both βi have a different sign: the sign of β2 determines the sign of Q and therefore the sign of
Q̃. It depends on their ratio, how the higher order terms increase or decrease Q resp. Q̃.

We conclude, that the largest values for Q and therefore also Q̃ are obtained for both βi being
positive (preferably β2 > β4 to increase Q̃). Furthermore a large nucleus a and a large deformation
increases Q as well as Q̃.

H.2.3 Trends for Q and R

Evaluating both the axially symmetric ellipsoid Appendix H.2.1 and the nuclear model Ap-
pendix H.2.2 showed us, that there are two conditions to get a large Q̃: first, we need a nu-
cleus with a large deformation factor ( c

a or βi, respectively), which is proportional to a large
quadrupole moment Q, where a positive quadrupole moment will be preferred. Second, we need
a large nucleus (large a).

Now, we will inspect these two quantities Q and a for real nuclei. We start with the quadrupole
moment Q in dependence of the mass number A. In the literature there are (among others) two
papers listing values for Q for various elements and isotopes, one was compiled by Pyykkö in 2001
[58] and the other one by Harris et al. in 2002 [42]. The quadrupole moments in dependence of
the mass number A are shown in the left graph in Figure H.5. We see that for the heavy nuclei
(A > 150) the quadrupole moments are much larger than for the light and medium nuclei.

Next, we will enquire the size of the nucleus. In the textbook of Haken and Wolf from 2003
[221], the nuclear radius is defined as the distance, where the repulsive coulomb force and the
attractive nuclear force are of similar strength. Empirically studies yield for the nuclear radius a
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in dependence of the mass number A

a(A) = (1.3 ± 0.1) A
1
3 fm. (H.16)

We will compare this with other data found in the literature. In 1947, a table with several nuclear
radii was published by Amaldi et al. [228]. These can be fitted to

a(A) = (1.94 · A0.3) fm or a(A) = (1.63 · A 1
3 ) fm. (H.17)

In 1985, Johnson et al. [229] obtained a function for the nuclear radius in dependence of A

a(A) = (1.079 A
1
3 + 0.736) fm. (H.18)

In 2004, Angeli [171] found

a(A) = 1.489 A0.294 fm. (H.19)

Contrary to Johnson, Angeli’s data set is consistent: values from different measurement methods
are brought into agreement with each other as much as possible (e.g., by taking into account
that one method is known to systematically overestimate the radii). Furthermore, Angeli applied
correlation checks to verify that there weren’t spurious wrong data points in the set. Hence, his
data set is much cleaner, which improves the value of even a simple fit function.
A plot of all four functions for the radius is shown in the right graph in Figure H.5.
We see, that the radii obtained by these four estimations agree reasonable with each other,
especially the radii obtained from the newest measurements: there is almost no change between
1985 and 2004.

We conclude from these dependencies, that heavy elements will have larger quadrupole moments
Q and larger nuclear radii R and will therefore yield larger values for the correction Q̃.

This is in cooperation with the electronic investigation, where heavier elements will also have a
larger nzz.

Remark: In the paper of Johnson et al. [229] and Angeli [171], the root-mean-square of the nuclear
radius (RMS)

√
〈r2〉 is given. The connection between the RMS and the radius of a sphere as,

in which the nuclear charge is uniformly distributed is given by Ref. [230]

a =

√
5

3

√
〈r2〉. (H.20)
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Table H.2: nzz/ǫ0 in 1042 V/m4 and Vzz in 1021 V/m2 for the bct comparison, see text. All
quantities are calculated full relativistic with a finite nucleus. The first two columns
are calculated for a ratio of c/a = 1.2, and the second two columns for a ratio of
c/a = 0.8.

Element nzz/ǫ0 Vzz nzz/ǫ0 Vzz

Be (1) 7.79 ·10−1 0.042 -9.81 ·10±0 -0.371
Ca -4.50 ·10+2 -0.185 2.81 ·10+3 0.974
Ba 3.74 ·10+4 0.356 1.98 ·10+5 2.883

Al (2) -4.05 ·10+2 -0.474 -6.65 ·10+2 -0.816
Si -8.47 ·10+2 -0.836 1.17 ·10+2 0.119
P -5.84 ·10+2 -0.483 2.18 ·10+3 1.744
S 1.62 ·10+3 1.110 6.89 ·10+3 4.391
Cl 9.29 ·10+3 5.119 8.30 ·10+3 4.673
Ar -1.34 ·10+2 -0.063 -2.32 ·10+2 -0.109

Mo (3) 1.34 ·10+5 4.156 -2.01 ·10+5 -8.302
Tc 5.57 ·10+4 3.524 -2.46 ·10+5 -11.838

Hf (4a) 6.18 ·10+5 1.134 1.88 ·10+6 12.889
Ta 2.46 ·10+6 8.503 -3.08 ·10+6 -6.911
Re 1.79 ·10+5 5.737 -7.17 ·10+6 -30.978
Os -2.30 ·10+6 -1.649 -7.74 ·10+6 -22.387
Ir -2.85 ·10+6 -8.891 -6.36 ·10+6 -3.775
Au -6.24 ·10+5 -0.795 -1.50 ·10+6 -6.483
Tl (4b) 1.11 ·10+5 -0.180 -3.39 ·10+6 -7.581
Pb -1.42 ·10+6 -3.069 -8.82 ·10+5 -1.897
Bi -1.86 ·10+6 -5.012 6.72 ·10+6 10.886
Po 3.77 ·10+6 9.195 1.33 ·10+7 17.566
At 8.65 ·10+6 13.732 -1.36 ·10+6 5.561

C (5) -3.48 ·10+1 -0.374 -6.94 ·10±0 -0.096
Si -8.47 ·10+2 -0.836 1.17 ·10+2 0.119
Ge -1.48 ·10+4 -1.207 -2.10 ·10+4 -1.718
Pb -1.42 ·10+6 -3.069 -8.82 ·10+5 -1.897

F (6) 9.02 ·10+2 3.166 8.15 ·10+2 2.939
Cl 9.29 ·10+3 5.119 8.30 ·10+3 4.673
Br 1.52 ·10+5 9.170 1.14 ·10+5 7.830
I 8.31 ·10+5 11.361 2.88 ·10+5 7.233
At 8.65 · 10+6 13.732 -1.36 ·10+6 5.561
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035002 (2009).

[156] T. Nomura, S. W. Kim, Y. Kamihara, P. V. Hirano, M. Sushko, K. Kato, M. Takata, A. L.
Shluger, and H. Hosono. Supercond. Sci. Technol. 21, 125028 (2008).
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