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SUMMARY 

The atomic force microscope (AFM) provides a powerful instrument for 

investigating and manipulating biological samples down to the subnanometer scale. In 

contrast to other microscopy methods, AFM does not require labeling, staining, nor 

fixation of samples and allows the specimen to be fully hydrated in buffer solution 

during the experiments. Moreover, AFM clearly compares in resolution to other 

techniques.  

In general, the AFM can be operated in an imaging or a force spectroscopy 

mode. In the present work, advantage was taken of this versatility to investigate single 

biomolecules and biomolecular assemblies.  

A novel approach to investigate the visco-elastic behavior of biomolecules 

under force was established, using dextran as an example. While a molecule tethered 

between a solid support and the cantilever tip was stretched at a constant velocity, the 

thermally driven oscillation of the cantilever was recorded. Analysis of the cantilever 

Brownian noise provided information about the visco-elastic properties of dextran that 

corresponded well to parameters obtained by alternative methods. However, the 

approach presented here was easier to implement and less time-consuming than 

previously used methods.  

A computer controlled force-clamp system was set up, circumventing the need 

for custom built analogue electronics. A commercial PicoForce AFM was extended by 

two computers which hosted data acquisition hardware. While the first computer 

recorded data, the second computer drove the AFM bypassing the manufacturer's 

microscope control software. To do so, a software-based proportional-integral-

differential (PID) controller was implemented on the second computer. It allowed the 

force applied to a molecule to be held constant over time. After tuning of the PID 

controller, response times obtained using that force-clamp setup were comparable to 

those of the recently reported analogue systems. The performance of the setup was 

demonstrated by force-clamp unfolding of a pentameric Ig25 construct and the 

membrane protein NhaA. In the latter case, short-lived unfolding intermediates that 

were populated for less than 10 ms, could be revealed.  

Conventional single-molecule dynamic force spectroscopy was used to unfold 

the serine:threonine antiporter SteT from Bacillus  subtilis, an integral membrane 

protein. Unfolding force patterns revealed the unfolding barriers stabilizing structural 



 

 

segments of SteT. Ligand binding did not induce new unfolding barriers suggesting 

that weak interactions with multiple structural segments were involved. In contrast, 

ligand binding caused changes in the energy landscape of all structural segments, thus 

turning the protein from a brittle, rigid into a more stable, structurally flexible 

conformation. Functionally, rigidity in the ligand-free state was thought to facilitate 

specific ligand binding, while flexibility and increased stability were required for 

conformational changes associated with substrate translocation. These results support 

the working model for transmembrane transport proteins that provide alternate access 

of the binding site to either face of the membrane. 

Finally, high-resolution imaging was exploited to visualize the extracellular 

surface of Cx26 gap junction hemichannels (connexons). AFM topographs reveal pH-

dependent structural changes of the extracellular connexon surface in presence of 

HEPES, an aminosulfonate compound. At low pH (< 6.5), connexons showed a narrow 

and shallow channel entrance, which represented the closed pore. Increasing pH 

values resulted in a gradual opening of the pore, which was reflected by increasing 

channel entrance widths and depths. At pH > 7.6 the pore was fully opened and the 

pore diameter and depth did not increase further. Importantly, coinciding with pore 

gating a slight rotation of the subunits was observed. In the absence of aminosulfonate 

compounds, such as HEPES, acidification did not affect pore diameters and depths, 

retaining the open state. Thus, the intracellular concentration of taurine, a naturally 

abundant aminosulfonate compound, might be used to tune gap junction sensitivity at 

low pH.  
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 Chapter 

1 

INTEGRAL MEMBRANE PROTEINS 

1.1 CELLULAR MEMBRANES 

The cell is the building block of all organisms. In its simplest form, a cell can be 

described as a balloon filled with various macromolecules and chemicals that are 

essential for life, e.g. proteins, nucleic acids, carbohydrates, and small organic and 

inorganic molecules [1]. That balloon is called the outer or plasma membrane and is 

universal to all cells on earth. 

In the early prebiotic environment, various simple organic molecules formed, 

which then reacted to form more and more complex molecules. In the course of time, 

intricate catalytic and self-replicating polymeric systems developed1. While these 

systems coexisted, they also had to compete for available resources in the primordial 

pond. The development of the plasma membrane was the advent of the first cell-like 

structures and a milestone in evolution [1]. Improvements in the "cellular" machinery, 

which proved beneficial in the struggle for survival, did not have to be shared with 

competing, free-floating systems. Nutrients could be gathered from the environment 

and products of the cell's metabolic machinery could be retained within the cell. Thus, 

the plasma membrane promoted further growth and evolution of the cell. Even 

"simple" prokaryotes, containing only a simple plasma membrane, which is often 

surrounded by a cell wall, performs various metabolic tasks in different regions of the 

cytoplasm. In more complex eukaryotes, membranes define different organelles, such 

as endoplasmic reticulum, Golgi apparatus, mitochondria, chloroplasts, lysosomes, 

peroxisomes, or vacuoles [1]. In all cases compartmentalization preserves the 

(bio)chemical and physical characteristics of organelles. 

Most probably, spontaneous self-assembly of lipids present in the primordial 

pond lead to formation of the first plasma membrane [2]. However, it is intrinsic to 
                                                           
1 The first self-replicating systems are believed to be ribonucleic acids. Although they show 
limited catalytic activities compared to proteins, they can easily provide for exact 
(complementary) copies of themselves [2]. 
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these first and all later membranes that they are dynamic, thin, self-healing, and 

insulating boundaries. Generally, such boundaries are established by a lipid bilayer2. 

The exact lipid composition of membranes strongly depends on cell type, organelle, 

and organism [5]. Nature has developed a variety of different saturated and 

unsaturated lipids with different headgroups to tailor membranes with physical and 

chemical properties that match the needs of the cell.  

In most cellular membranes, phospholipids are the major constituents found. 

However, many membranes also contain large amounts of cholesterol3 and glycolipids 

[5,6]. Interestingly, the different types of lipids are not equally distributed within the 

two leaflets of a membrane, resulting in a vertical asymmetry [7]. The paradigm for this 

asymmetry is the plasma membrane of eukaryotic cells, where phosphatidylserine (PS) 

and phosphatidylethanoleamine (PE) are enriched in the cytoplasmic leaflet and 

phosphatidylcholine (PC) and sphingomyeline (SM) are primarily and glycolipids 

exclusively located on the exoplasmic leaflet [6,8]. This asymmetry is of functional 

importance, since some proteins specifically bind or recognize certain headgroups 

[9,10]. Moreover, PC, PE, and SM lipids exhibit zwitterionic headgroups that are 

neutral at physiological pH, while PS lipids are negatively charged. Hence, the 

enrichment of PS lipids in the cytosolic leaflet causes a marked charge difference 

between the two faces of the membrane. This difference might be helpful in 

determining the transmembrane topology of a membrane protein, as depicted by the 

"positive-inside" rule [11-14]. Lipids and their distribution within membranes are 

important for protein folding, assembly [15] and activity [16,17]. 

The exact structure of cellular membranes is still an exciting mystery. In 1972, 

Singer and Nicolson proposed, in their "fluid mosaic model", that membranes are an 

oriented, dynamic, two dimensional, and viscous solution of proteins and lipids [18]. 

Since then, it turned out that "membranes are more mosaic than fluid" [19]. Proteins 

were shown to undergo confined or directed motion within the membrane [20] and 

organize in functionally relevant supramolecular complexes, some of which are gap 

junctions [21], complexes I, III, and IV of the respiratory chain [22], and photosystems I 

                                                           
2 Some archaeal lipids are bipolar and capable of spanning both membrane leaflets [3]. The 
unusual lipid design allows the archaea to withstand the harsh environmental conditions of 
their habitats [4]. 
3 Cholesterol strengthens the impermeability of membranes. Its rigid steroid ring structure 
immobilizes in neighboring lipids the first few methylene groups close to the headgroups. Thus 
the membrane is more rigid and less deformable, resulting in decreased permeability of small 
water-soluble molecules [6]. 
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and II [23]. Moreover, cholesterol and sphingolipids may transiently associate to form 

microdomains, lipid rafts, that host certain membrane proteins [24]. 

All lipid bilayers, regardless of their composition, form an impermeable barrier 

for almost all water-soluble molecules. The structure of the fluid liquid-crystalline (Lα-) 

phase of a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer comprises 15 Å 

thick interface regions4 which on both sides flank a 30 Å thick hydrophobic 

hydrocarbon core region that sets the permeability barrier [25]. For unabated growth, 

however, cells need to gather raw material from the environment and secrete (toxic) 

waste. So, specific transport systems spanning the membrane are indispensable.  

1.2 MEMBRANE PROTEINS 

Numerous processes crucial for cell viability, such as specific solute transport, 

signal transduction, and energy conversion are performed or catalyzed by proteins 

embedded into cellular membranes5. The fact that 20-30 % of all open reading frames in 

the genome of cells encode integral membrane proteins [27] highlights the importance 

of this class of proteins and reflects the diversity of functions they fulfill. In contrast, 

the knowledge about membrane protein structures and functional mechanisms is poor. 

As structural studies of integral membrane proteins have progressed slowly in the past 

[28], membrane proteins are with less than 1 % of the total records significantly 

underrepresented in the Protein Data Bank (PDB) [29]6. Analysis of the known integral 

membrane protein structures revealed that the diversity of secondary structure 

elements capable of passing the membrane is low as only two motifs have been 

observed [31]: α-helical bundles and β-barrels composed of antiparallel β-strands 

(Figure 1.1). α-helical membrane proteins are widely distributed in cellular 

membranes, where they are involved in e.g. active solute transport, signaling, and 

intercellular communication. In contrast, β-barrel membrane proteins emerge from the 

outer membrane of Gram-positive bacteria, mitochondria, or chloroplasts, where they 

                                                           
4 The interface region is defined as the headgroups' water of hydration [25]. It is chemically 
highly heterogeneous, rich in possibilities for non-covalent contacts with peptides, and can 
easily accommodate folded or unfolded polypeptides [26]. 
5 Besides spanning the membrane, proteins can be associated to the membrane by partitioning 
an amphipathic helix to the cytosolic leaflet or by inserting a covalently bound anchor (fatty 
acid chains, glycosylphosphatidylinositol (GPI)) into the membrane [6]. 
6 As of January 13, 2009, the coordinates of 868 membrane protein / peptide structures from 224 
unique membrane proteins/peptides from 126 unique protein families [30] were in the PDB. At 
that time, the PDB contained 53289 protein structures (soluble and membrane proteins). 
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fulfill numerous functional tasks (Refs. [32-36] reviewed structure and folding of β-

barrel membrane proteins in detail). Moreover, some bacterial toxins also form β-barrel 

membrane pores [37,38].  

 

Figure 1.1 Major structural motifs found in transmembrane proteins. (A) LeuTAa from Aquifex aeolicus 

is a bacterial homologue of eukaryotic neurotransmitter sodium symporters  (NSS). LeuTAa contains 12 

transmembrane α‐helices connected by relatively short extramembrane  loops [39]. LeuTAa  is shown  in 

complex with  its substrate  leucine  (represented as sticks). Transmembrane α‐helix VI  is discontinuous 

(shown  in  blue)  and  amino  acids  located  in  the  elongated  peptide  segment  are  involved  in  leucine 

binding. PDB  ID: 2A65  [39].  (B) Porin  from Rhodobacter capsulatus  is a β‐barrel protein  formed by 16 

antiparallel β‐strands [40]. The central pore allows passage of molecules up to ~ 600 Da. PDB ID: 2POR 
[40]. Both proteins are presented in side‐view. 

Lipid bilayers establish a hydrophobic environment to be passed by 

transmembrane proteins. The only permissible structural motifs are α-helices and β-

barrels [26,41], because intra- and intersegment hydrogen bonding compensates for 

dehydration of the peptide bonds in the apolar milieu.  

Non-polar amino acid residues such as alanine, valine, leucine, and isoleucine 

are enriched in transmembrane α-helices [42] that are usually formed by ~ 20 amino 

acid (aa) long segments that pass the entire membrane [43,44]. In the hydrophobic core, 

unstructured loops and shorter helical segments7 are energetically unfavorable, due to 

uncompensated helix dipoles and a lack of backbone hydrogen bonding. However, α-

helical transmembrane segments are not always straight, rod-shaped structures. 

Distortions, π-interactions [44], and discontinuities [46] (Figure 1.1A) are frequently 

observed. Also helices protruding half way through the bilayer have been revealed 

                                                           
7 There is no absolute value for the length of transmembrane α-helices, rather the length of 
helices varies significantly from less than 14 to more than 40 aa residues [45]. It is necessary to 
consider helices in the context of the whole transmembrane protein and, thus, the interactions 
established to the lipid matrix and the protein. 
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[47,48]. These deviations from a perfect α-helical shape are important for protein 

folding and function.  

Polar and charged residues accumulate in extramembrane loops and domains. 

These segments can both provide additional stability, assist folding, and be important 

for correct helix packing and serve as environmental sensors involved in protein 

activity [44,49]. Some amino acids, namely tyrosine, tryptophan, histidine, arginine, 

and lysine, are preferentially located in the interface region, presumably because their 

side chains exhibit both hydrophilic and hydrophobic regions [42,50]. Further, arginine 

and lysine residues, which carry a positive charge, are more abundant at the 

cytoplasmic face of membrane proteins [11,42]. 

1.2.1 On the Importance of Membrane Protein Folding and Assembly 

Why is membrane protein folding such an interesting and important research 

area? The answer is quite simple. Membrane proteins are located at the boundaries of 

cells. As a consequence, they are involved in all processes that require signal 

transmission from outside the cell to the inside or vice  versa. Moreover, they are 

responsible for extrusion of toxic compounds, import of nutrients, energy conversion, 

and cell adhesion. Thus, membrane proteins are attractive targets for drugs and, 

indeed, about 70 % of all drug targets are membrane proteins [51,52]. Mutations in 

membrane proteins can result in misfolding, mistargeting, or misassembly of those, 

which in turn might cause severe diseases, such as cystic fibrosis, retinitis pigmentosa, 

non-syndromic deafness, and diabetes. To understand the molecular mechanisms 

behind these diseases and to develop of new drugs, it is of utmost importance to gain 

insight into the functional mechanisms of membrane proteins. Therefore, we have to 

extend our knowledge of the fundamental processes that lead to membrane protein 

structure, which determines function. Unquestionably, in vitro protein folding studies 

will be required to do so. 

The following sections will provide an overview of protein folding in general. 

They will focus on water-soluble proteins, the process of membrane protein folding in 

vivo, current models of membrane protein folding, and membrane protein associated 

maladies.  

1.2.1.1 Progress in Protein Folding 

Protein folding describes the process of converting linear information, the 

amino acid sequence, into three dimensional structure. Although research has already 
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been going on for decades, many fundamental questions still remain to be answered. 

However, protein folding research has made great progress within the last two 

decades. Advances in molecular biology in conjunction with various, highly developed 

techniques8 unveiled structural, dynamic, kinetic, and thermodynamic properties of 

the folding process and lead to an enormous increase in our knowledge about protein 

structure and its dynamics down to the (sub-)nanosecond time-scale [68,73,74]. In 

combination with theoretical progress [75] and atomic-resolution computational 

modeling [76], these data opened the way to a highly advanced understanding of 

forces that drive and determine folding and structure of water-soluble proteins [77,78].  

The first experiments showing reversible unfolding of a protein by Anfinsen 

[79-81] lead to the conclusion, that protein folding is a process guided by the 

information stored in the amino acid sequence of the protein, simply because folding of 

a protein by randomly exploring all possible conformations would take longer than the 

age of the universe9. Thus, proteins were thought to follow specific pathways 

circumventing random search [84]. In the 1990s, Ken A. Dill introduced an appealing 

theoretical framework describing protein folding and dynamics [85-89] – the concept of 

energy landscapes and folding funnels, which is often called the "new view" of protein 

folding. Each point on a multidimensional energy landscape relates the free energy of a 

conformation to its degrees of freedom, its entropy. Since the free energy is minimized 

during folding, the final structure should correspond to the deepest valley on the 

globally funnel-shaped energy landscape (Figure 1.2). While folding, the polypeptide 

chain follows the energy gradient to reach its folded state and, as a result, avoids 

unproductive conformations. One implication of the energy landscape model is, 

however, that no predefined pathways to the native state exist. The protein is free to 

explore different routes to the minimum. Experimentally observed folding 

intermediates correspond to meta-stable conformations trapped in local minima. To 

further proceed to the folded state, activation energy is required for the intermediate to 

overcome the energy barrier separating the local from the global minimum [86,90,91]. 

                                                           
8 Methods applied in protein folding studies are for example (real-time) NMR [53,54], X-ray 
crystallography, conventional optical spectroscopy [55-57], circular dichroism (CD) 
spectroscopy [58,59], Förster resonance energy transfer (FRET) [60,61], calorimetry [62], and 
Fourier-transform infrared (FTIR) spectroscopy [63,64] as well as triplet-triplet energy transfer 
techniques [65,66] and (ultra)fast perturbation methods, such as temperature (T)- [67,68] and 
pressure (p)-jump [69-72]. 
9 This notion became known as 'Levinthal's paradox' [82,83].  
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Figure  1.2  Energy  landscape  of  a  polypeptide 

chain. The unfolded polypeptide chain contains 

the  highest  energy  due  to  intensive  solvent 

contacts.  Energy  minimization  is  driving  the 

polypeptide  chain  to  its  final,  folded  (native) 

conformation. The protein can choose different 

routes to reach the energy minimum. Following 

some  routes,  the  polypeptide  is  transiently 

trapped  in  local  minima  corresponding  to 

folding intermediates (red and yellow routes). 

1.2.1.2 Membrane Protein Folding 

Translocon‐Assisted Membrane Protein Folding and Insertion 

In  vivo, folding and insertion of constitutive membrane proteins is facilitated 

and controlled by a proteinaceous machinery resident in the membrane, the so-called 

translocon10 [95]. The structure of an archaebacterial protein-translocating SecYEG 

channel [96] and exhaustive functional studies on both eukaryotic and bacterial 

homologues have resulted in significant progress in understanding the molecular 

mechanisms guiding membrane protein folding and insertion [95,97-99]. The 

translocon molds a hydrophilic cavity with a diameter of a few tens of Ångströms and 

displays a ribosome binding site towards the cytoplasm. A signal sequences in the N-

terminal portion of the nascent polypeptide chain of membrane proteins11 targets the 

peptide-ribosome complex to the translocon. Upon binding, the ribosome caps the 

translocon and the nascent peptide is directly expelled from the ribosomal exit tunnel 

into the translocon pore. The translocon can accommodate peptides of ~ 20 aa length, 

which is sufficient for a transmembrane α-helical segment to form. The peptide exits 

the translocon through a lateral gate that might open and close periodically [100] to 

allow the peptide segment to sense and partition into the lipid bilayer if sufficiently 

hydrophobic [101]. The size of the pore indicates that the transmembrane segments 

laterally exit the translocon one by one or pairwise [102,103]. Subsequent hydrophilic 

sequences pass through the aqueous pore or emerge between the translocon and the 

                                                           
10 Some nonconstitutive membrane proteins, such as melittin [92], colicins [93], and diphtheria 
toxin [94] bypass the translocon and insert spontaneously into the membrane from the aqueous 
phase. 
11 Except membrane proteins also soluble proteins, which have to be secreted, possess signal 
peptides. Soluble proteins are targeted to the translocon either co- or posttranslationally [95].  
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ribosome, while hydrophobic sequences are inserted into the membrane following the 

same mechanism12.  

The "Two‐Stage" Model 

The process of translocon-assisted membrane protein folding and insertion is at 

the spotlight of current research. However, other studies aiming to reveal the forces 

and interactions that govern protein folding and assembly [104-106] have used 

synthetic peptides [107] and a few model proteins. Based on the refolding experiments 

on bacteriorhodopsin (bR) performed by Khorana and co-workers [108,109], Popot and 

Engelman showed, that fully denatured bR could recover its functionality in absence of 

denaturants without the aid of a translocon. Moreover, they demonstrated that 

fragments of bR refolded separately and, after mixing, associate to form functional bR 

[110]. Based on these observations, Popot and Engelman introduced the first general 

model for membrane protein folding [111]. The model separates membrane protein 

folding into two distinct phases: (i), the folding and insertion of individually stable α-

helices into the lipid membrane and, (ii), the lateral association of helices to form the 

native, functional structure of the protein (Figure 1.3). In the first stage, α-helices are 

assumed to be autonomously folding stable units. In the second stage, interactions 

between individual domains are established leading to the final tertiary structure. 

Recently, oligomerization, formation of additional structured elements, and co-factor 

binding were introduced as a third stage [112]. 

Although the two-stage model is a simple approximation of the processes 

taking place, it successfully describes data from in  vitro and in  vivo folding 

                                                           
12 Interestingly, the topology of the first transmembrane segment determines the topology of all 
following transmembrane segments of a membrane protein. 

 

Figure 1.3 The two‐stage model.  It describes  insertion of helical domains and subsequent association 

[111].  The  model  was  lately  extended  into  a  three‐stage  model  accounting  for  co‐factor  binding, 

oligomerization, and extramembrane domain folding [112]. 
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experiments. In fact, individual transmembrane segments or pairs thereof leave the 

translocon, thus representing individual, stable domains embedded into the lipid 

bilayer. Only in a following step, these domains associate. Assembly of functional 

membrane proteins from independently refolded or synthesized fragments supports 

this notion and has been shown for bR, lactose permease (LacY), a voltage-gated 

chloride channel, and other proteins [44]. NMR studies on glycophorin A (GpA) 

fragments shed light on the molecular basis for helix-helix interactions that determine 

the assembly and oligomerization of transmembrane proteins [113]. In combination 

with dimerization assays [114], and statistical analysis of transmembrane helix 

sequences [115], these experiments revealed a short peptide sequence (GxxxG) that 

mediates dimerization through optimized packing. Thus, dimerization (or lateral 

association) is driven by van der Waals forces [113]. However, even at the early stage 

of translocon-mediated insertion [116], inter-helical hydrogen-bonding between 

polar/charged side chains seems to be involved in helix-helix packing [117-119]. 

Possibly important for in  vivo folding [120], the overall energetic gain by inter-helix 

hydrogen bonds is rather small [121].  

The "Four‐Step" Model 

Although the two-stage model nicely explains most results on membrane 

protein folding, it only deals with the compaction of transmembrane structures from 

pre-formed transmembrane segments. Yet, it neglects the important question, how, 

when, and why transmembrane segments are formed. At about the same time as the 

two-stage model has been proposed, Jacobs and White introduced a three-step model 

[122], which was lately developed into a more elaborate four-step thermodynamic 

cycle [26]. In contrast to the more phenomenological two-stage model, the four-step 

model is based on brilliant systematic biophysical measurements with synthetic 

peptides or small proteins, thus describing the thermodynamic context within which in 

vivo folding must proceed. The four-step model includes: (i), partitioning of the 

polypeptide chain in the membrane interface region, (ii), folding of α-helices, (iii), 

insertion into the bilayer, and, (iv), association of transmembrane segments (Figure 

1.4). Importantly, the folding and association of α-helices can proceed along an 

interfacial or a water pathway or a combination of both13. Because the process is 

spontaneous, each step is coupled to a decrease in free energy. The driving force 

                                                           
13 Recent all-atoms molecular dynamics simulations suggested that short peptides can insert 
into the lipid membrane prior to secondary structure formation [123].  
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behind all steps is the minimization of the free energy cost of burying polar groups 

(especially the backbone peptide bond) [26], which is also responsible for maintaining 

the secondary structure in the folded protein. The propensity of different amino acids 

to promote membrane protein folding was described by a hydrophobicity scale, which 

was obtained from measurements of the transfer energies of small peptides from water 

to non-polar environments like 1-octanol or 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) lipids [124,125]. According to the Wimley-White 

hydrophobicity scale, the gain in free energy for individual α-helices is 10-20 kcal/mol 

and corresponds well to the stabilization energy of small water-soluble proteins. 

Nevertheless, the presence of single or multiple charged or polar residues can render 

the hydrophobicity of an α-helix insufficient for membrane insertion. If the 

hydrophobicity of the following or preceding α-helix is high enough to compensate 

partitioning of charged and polar residues, the two α-helices insert together as a helical 

pair [121,126,127]. 

 

Figure 1.4 The four step model of membrane protein folding. The four‐step thermodynamic cycle for 

membrane protein folding describes partitioning, folding, insertion, and association of helical domains. 

It is based on biophysical experiments and modeling [26]. 

Using an astute approach, von Heijne and co-workers established a biological 

hydrophobicity scale that agrees well with the Wimley-White scale [101]. They inserted 

each of the 20 proteinogenic amino acids into test peptides and quantified the insertion 

efficiency in vivo. Thus, they could calculate an apparent biological ΔG for partitioning 

to the lipid bilayer for each amino acid. Recently, the same authors showed that the 

contribution of certain amino acids to the overall free energy change is highly 

dependent on their position within the test peptide [128]. Indeed, the position 

dependence remarkably mirrors the statistical distribution of amino acids in 

transmembrane α-helices deduced from known three-dimensional (3D) structures [42]. 
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1.2.1.3 Membrane Protein Misfolding 

The "new view" of protein folding permits a polypeptide to acquire several low 

energy conformations, although only one defines the correct, functional fold [86]. It is 

well known, that water-soluble proteins can adopt both functional native and non-

functional aberrant conformations, of which the latter can be induced in vitro by the 

environmental conditions [129-136]. These misfolded proteins often adopt a β-sheet 

structure that is prone to aggregation. These aggregates are known as amyloids14 and 

accumulate within cells or in the extracellular space [139]. However, misfolding is not 

an exclusive property of water-soluble proteins. Membrane proteins are also 

susceptible to misfolding, which is often caused by mutations and, thus, related to 

inherited diseases, some of which are cystic fibrosis [140-142], retinitis pigmentosa 

[143-145], diabetes [146,147], cystinuria [148,149], and non-syndromic deafness [150].  

One of the best-studied disease related membrane proteins is the cystic fibrosis 

transmembrane conductance regulator (CFTR), a chloride channel that causes cystic 

fibrosis if its function is lost. Curiously, in vivo folding of wild-type (wt) CFTR is highly 

ineffective, as only 30-40 % of the synthesized protein reach the plasma membrane 

[151]; the majority of the protein shows impaired folding, which is recognized by the 

quality control machinery of the endoplasmic reticulum [152]. Misfolded molecules are 

targeted to the proteasome for degradation [153]. However, the amount of functional 

CFTR is sufficient to exercise its proper function. Interestingly, the efficiency of folding 

of wt and mutants of a variety of membrane proteins can be altered by changes in the 

"environmental" conditions like temperature or composition of the solvent or the lipid 

membrane [15,140,154-159].  

In over 90 % of the individuals suffering from cystic fibrosis, a single amino 

acid deletion (ΔF508) has been identified [160]. This deletion causes biosynthetic arrest 

and the quality control system to prevent ΔF508-CFTR from entering the secretory 

pathway although ΔF508-CFTR exhibits reduced but significant functionality [159]. 

This way, ΔF508-CFTR is completely sequestered from the plasma membrane, which in 

turn causes the pathological phenotype [161]. In total, about 1600 different mutations 

affecting CFTR folding and targeting have been identified [162]. Among these 

mutations, many are non-conservative replacements (polar → apolar and vice versa) in 

transmembrane α-helices [160]. As discussed in section 1.2.1.2, hydrophobicity as well 
                                                           
14 Amyloids are observed in a variety of human diseases including Alzheimer's, Parkinson's, 
and Creutzfeldt-Jakob disease, type II diabetes, and Huntington's disease; this field of research 
has recently been reviewed by Chiti and Dobson [137,138]. 
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as hydrogen bonding between polar side chains can be critical for membrane protein 

folding. Consequently, non-conservative replacements disrupting native interactions 

may severely promote misfolding.  

The two membrane proteins that have been mainly investigated within the 

frame of this thesis, connexin 26 (Cx26) and the serine:threonine antiporter (SteT), are 

both directly and indirectly disease related. The first protein, Cx26, oligomerizes in vivo 

to form hexameric connexons, which dock end-to-end to connexons of adjacent cells to 

establish gap junctions (for details on gap junctions see section 1.3). Mutations in Cx26 

lead to either inefficient trafficking of Cx26 to the plasma membrane or impaired 

oligomerization, both resulting in a loss-of-function phenotype [163]. As Cx26 is the 

main connexin expressed in the cochlea of the inner ear, loss-of-function mutations 

result in deafness. The second protein, SteT, is a membrane protein from Bacillus 

subtilis. SteT is homologous to the light subunit of eukaryotic heteromeric amino acid 

transporters (HATs), which are involved in a variety of aminoacidurias and are 

overexpressed in some primary human tumors. Consequently, deciphering the 

mechanisms regulating and stabilizing these (and other) proteins is of major interest in 

understanding the molecular basis of diseases. 

1.2.2 Hurdles in Membrane Protein Studies 

Although membrane proteins are of scientific interest, as they are involved in a 

multitude of vital processes, our knowledge about their structure, function, and 

folding is fairly limited. What makes membrane proteins so difficult to study? 

Compared to soluble proteins, they show a similarly dense packing and 

hydrophobicity of their interior [164]. In contrast to soluble proteins, membrane 

proteins expose a hydrophobic surface, thus adjusting to the environmental 

constrictions set by the lipid bilayer. It is this surface hydrophobicity that makes it 

difficult to work with membrane proteins in aqueous solution [165]. Intuitively, the 

best suited environment for handling membrane proteins would be the native 

membrane. However, biophysical techniques used for studying membrane proteins 

often require purified and solubilized protein [166]. In general, several bottlenecks 

have to be overcome to reveal a membrane protein's secrets: production of sufficient 

amounts, purification, solubilization, and reconstitution or crystallization of the 

desired protein [167]. For soluble proteins reliable methods have been established for 

each of these steps. For membrane proteins, the repertoire is still limited.  
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Membrane proteins are usually present in the native membrane at very low 

concentration and accompanied by a plethora of other proteins15, which calls for 

overexpression approaches [166,171,172]. However, accumulation of overexpressed 

proteins in the membrane can induce stress response mechanisms or become toxic for 

the cell [172]. Heterologous expression of eukaryotic membrane proteins in bacteria 

might be further hampered by the need for specific glycosylation [172,173] or 

membrane lipid composition [17,167], both of which cannot be provided by bacteria. 

Moreover, differences in the translation rate and the translocation channel between 

prokaryotes and eukaryotes might lead to aggregation and misfolding [171]. Thus, 

especially for mammalian membrane proteins homologous expression systems are 

used to produce functional protein [171].  

Purification of functional membrane proteins is complicated by the complexity 

of the cellular membrane. The use of detergents is necessary for solubilization and will 

at best result in slight destabilization of the membrane protein [165,174]. Indeed, one of 

the most important decisions to make is the choice of the detergent and/or lipid system 

for solubilization as the (long-term) stability of membrane proteins depends on the 

nature of the solubilizing agents [166,175].  

Folding and unfolding studies of α-helical membrane proteins are hampered by 

their resistance to chemical unfolding by standard chaotrops, such as urea or 

guanidinium hydrochloride, at neutral pH [165,176]. Likewise, membrane proteins 

exhibit a high thermal stability. Calorimetric and spectroscopic observations unveiled 

that, even at high temperatures, a considerable fraction of secondary structure is 

retained. These results suggest that solvent-exposed extramembrane loops and 

domains unfold similar to water-soluble proteins but that the transmembrane α-helices 

maintain their secondary structure [176-178]. Moreover, even if membrane proteins can 

be (partially) denatured this way, they are prone to irreversible aggregation. Even 

strong polar detergents like SDS only induce a compact denatured state rendering 

proteins non-functional, although a significant amount of α-helical structure is retained 

[165]. 

1.2.3 Methodological Approaches in Membrane Protein Research 

As summarized in the previous section, membrane protein research is still a 

challenge, especially for structural biologists. The limited stability of solubilized 
                                                           
15 Some proteins like cytochrome c oxidase [168], bR [169], and aquaporin-1 [170] can be 
purified from natural sources, as they are available in large quantities from cellular membranes.  
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membrane proteins and the enormous number of crystallization conditions that have 

to be screened, make the growth of well-diffracting 3D crystals of membrane proteins 

still a matter of years. That resulted in under-representation of membrane protein 

structures in the PDB. Although new approaches like the lipid cubic phase [179], fusion 

with large hydrophilic domains [180], and the use of antibody fragments [181] have 

been introduced, the pace of structure determination is still low. The problem of 

crystallization can be overcome by approaching 3D structures using electron 

microscopy (EM) [182], which requires proteins to be arranged in two-dimensional 

(2D) arrays [183]. Freezing these samples (cryo-EM [184]) increases the resolution to 

near-atomic level [185] and lets electron crystallography compete with X-ray 

crystallography. Even if 2D crystals are not available, single-particle EM techniques 

yield medium resolution (8-30 Å), which allows functionally related conformational 

changes to be observed [186].  

Even with development of the TROSY (transverse relaxation optimized 

spectroscopy) technique [187], solution nuclear magnetic resonance (NMR) is still of 

limited use, especially for α-helical membrane proteins16. The huge size of the protein-

micelle complexes results in band broadening and signal loss [188]. However, different 

solid-state NMR methods (oriented sample NMR and magic angle spinning NMR) are 

becoming popular [189].  

In the absence of 3D structural information other methods are sought. Site-

directed spin labeling electron paramagnetic resonance (SDSL-EPR) provides 

information about the secondary structure [190], immersion depth of a residue [94,191], 

and distances between different labels [192-195]. Using different EPR methods, it is 

possible to measure distances of up to 50 Å [196]. Site-specific infrared dichroism 

(SSID) [197] is another method that can reveal secondary structure and, moreover, 

yields tilt and rotational orientation of α-helices within the lipid bilayer. Thus, using a 

series of different labeling sites, three-dimensional information can be obtained. 

Results from SDSL-EPR and SSID can be used as constraints for modeling or 

refinement of NMR structures.  

Besides these new technologies, "classical" methods such as circular dichroism 

(CD) [58,198], (time-resolved) Fourier transform infrared (FTIR) spectroscopy [199,200], 

different types of fluorescence spectroscopy [198,201], calorimetry [202,203], and 

                                                           
16 In contrast to the signals of β-barrel membrane proteins, the signals obtained from α-helical 
membrane proteins overlap and are significantly less dispersed.  
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electrophysiological techniques [204-206] are applied to study structure-function 

relationships of membrane proteins. Site-directed cross-linking studies [194] and 

functional assays [207-210] also provide valuable data. Noteworthy, advanced 

molecular biology is a prerequisite for most of the above mentioned methods because 

either site-specific labels have to be introduced or mutational analysis is required for 

meaningful interpretation of the results.  

Apart from in vivo and in vitro experiments, computational methods are gaining 

importance. One of today's simple tasks is prediction of transmembrane protein 

topology based on sequence analysis. The power of more demanding molecular 

dynamics simulations is illustrated through modeling of structure and function of 

GPCRs [211,212], ligand binding [213], proton exclusion from aquaporin1 [214], or 

unfolding of bR [215,216]. 

1.3 MEMBRANE PROTEINS FULLFIL SPECIFIC FUNCTIONS 

Located at the border between the interior and exterior of cells, membrane 

proteins provide specific functionalities vital for the cell. Two projects presented in this 

theses (chapters 5 and 6) deal with membrane proteins of different classes. In the 

following, these proteins will be briefly introduced.  

1.3.1 Gap Junctions 

Gap junction communication channels exist in all multicellular organisms17, 

play an important role in direct cell-to-cell communication and have recently been 

proposed to participate in cell adhesion [218]. Each gap junction is created by the non-

covalent end-to-end docking of two hemichannels resident in the plasma membrane of 

the neighboring cells (Figure 1.5A). Hemichannels, the so-called connexons, are 

hexameric, ring-shaped assemblies of connexin proteins (Figure 1.5A, Figure 1.6A). In 

vivo, gap junctions cluster in large two-dimensional, semi-crystalline arrays, and thus 

give rise to specialized areas in the plasma membrane. The channels form a small 

aqueous pore (Figure 1.6A) that connects the cytosol of the participating cells and 

allows exchange of nutrients, metabolites, ions, and small molecules of up to ≈ 1000 Da 

[219].  

                                                           
17 Gap junctions are found in all multicellular animals. Nevertheless, gap junctions composed of 
connexins are a feature exclusive to vertebrates. Gap junctions in invertebrates are made from 
the evolutionary older innexins that exhibit an analogous topology but belong to a different 
protein family. Innexin relatives found in mammals are termed pannexins [217]. 



Chapter 1: Integral Membrane Proteins 

16 

At present, 20 different connexin isoforms have been identified [220,221]. All 

share a common topology with four transmembrane domains, two extracellular loops 

(E1 and E2), one cytosolic loop, and the N- and C-terminal domains residing in the 

cytosol (Figure 1.5B) [222]. 

 

Figure 1.5 Schematic  illustration of connexins and gap  junctions.  (A) Connexin hexamers, connexons, 

dock to connexons of adjacent cells and thus form gap junction communication channels that bridge the 

intercellular space. Gap  junctions assemble  into  large two‐dimensional arrays. (B) Membrane topology 

common to connexin molecules. For details on the secondary structure of the extracellular loops E1 and 

E2 see Figure 1.6B, C. 

First cryo-EM studies showed that connexons are highly ordered and that the 

transmembrane domains adopt an α-helical structure [223,224]. Although the 

extracellular loops along with the transmembrane domains are highly conserved 

among connexin isoforms, the structure of the two extracellular loops stayed obscure 

until very recently the 3D structure of wt Cx2618 (Figure 1.6) was solved at 3.5 Å by X-

ray crystallography [225]. In this structure, the E1 contains a 310-helix in the beginning 

and a short α-helix in the C-terminal half. The short β-strand between the helical 

elements of E1 forms a small β-sheet in concert with the β-strands located in E2 (Figure 

1.6B, C). Three indispensable disulfide bonds connect E1 and E2 (Figure 1.6C). In 

docked connexons, interactions among the charged and polar residues in E1 and E2 

structures of adjacent connexins establish a sealed double-layered wall19. 

Differences among the connexin family primarily arise within the cytosolic loop 

and the C-terminal domain, which varies in size and sequence [217]. Thus, connexin 

isoforms are specified simply by their molecular weight: Cx26 and Cx37 are connexin 

isoforms with molecular weights of 26 and 37 kDa, respectively. 
                                                           
18 The gap junction is assumed to be in its open state, since no obstruction of the permeation 
pathway had been observed at the resolution achieved and blocking conditions had been 
avoided during crystallization [225]. 
19 The inner wall is formed by interactions between E1 structures, while interchannel contacts 
within E2 set up the outer wall.  
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Figure 1.6 Structure of wt Cx26. (A) Structure of a Cx26 connexon from a Cx26 gap junction represented 

in  bottom‐  (cytosolic  side,  top  row),  side‐  (along  the membrane  plane, middle  row),  and  top‐view 

(extracellular side, bottom row). The structure is shown as a cartoon (left column, blue: helices, orange: 

β‐strands, grey: coil) and as a space‐fill model (right column). Red, blue, and cyan colored surfaces in the 

space‐fill model  represent  acidic,  basic,  and  polar  residues,  respectively.  (B)  Single  Cx26 monomer 

represented  as  a  cartoon  in  side‐view.  Transmembrane  α‐helices  are marked with  I‐IV.  The  short N‐

terminal helix (N)  inserts  into the cytosolic pore entrance and forms the pore funnel. The extracellular 

loops E1 and E2 consist of both helical (marked as H310 and Hα) and β‐strand structures. The black bars 

indicate  the  borders  of  the  transmembrane  region.  (C)  Single  Cx26  monomer  viewed  from  the 

extracellular  surface,  showing  the  arrangement  of  the  conserved  and  essential  disulfide  bridges 

interconnecting loops E1 and E2. PDB ID: 2ZW3 [225]. 

Structural studies on gap junctions have been carried out using electron 

microscopy, X-ray diffraction [225-229], and NMR [230-234]. However, lacking a high-

resolution structure20, biochemical, mutagenic, and electrophysiological techniques 

have been exploited to gain information on gap junctions. It was disclosed that gap 

junctions are involved in development, maintenance of homeostasis, and signal 

transduction pathways. Consequently, the channels are tightly regulated and 

modulated by several small molecules and physiological conditions [235-238]. 

However, connexin isoforms respond differently to modulating stimuli [239,240]. 

                                                           
20 Although gap junctions, similar to bR, assemble in large two-dimensional arrays, efforts in 
structure determination have not been successful. In particular, large-scale expression and 
purification of these delicate structures have proved very challenging.  
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In combination with the ability of connexins to produce connexons composed of 

different isoforms, differential expression of isoforms might be a mechanism by which 

the functionality of gap junctions is shaped in a tissue-specific manner [240-242]. 

Consequently, single point mutations in different connexin genes can lead to tissue-

specific breakdown of gap junction function [243]. Mutations in Cx26 have been shown 

to cause non-syndromic deafness [150,244-247], skin lesions, and vascularising keratitis 

[248]. Not less than 130 different mutations in Cx32 are the basis of the X-linked 

Charcot-Marie-Tooth syndrome [249], which is a neurodegenerative disease of the 

peripheral nervous system. Although Cx32 is also expressed in the central nervous 

system, it is not affected by these mutations. Moreover, mutations in other connexins 

are associated with cataract (Cx46 and Cx50), several skin diseases (Cx30 and Cx31), 

and various heart diseases (e.g. Cx37, Cx40, Cx43, and Cx45) [250]. As outlined in 

section 1.2.1.3, these diseases are based on either impaired trafficking or altered 

function, i.e. pore gating in the case of connexins. 

1.3.2 Amino Acid Transporters 

1.3.2.1 How Cells Perform Transport Across Membranes 

Lipid membranes establish tight diffusion barriers for small polar, water-

soluble molecules. For this reason, cells had to establish specific systems, the transport 

proteins, to catalyze uptake, excretion, and exchange of ions and small organic 

molecules. In multicellular organisms, transporters are also involved in recycling of 

neurotransmitters at synaptic membranes. The importance of these tasks is 

underscored by the fact that 15-30 % of all membrane proteins are dedicated transport 

processes [6]. Specificity for a single or a small number of solutes is common to all 

transport proteins. 

Nature has established different mechanisms to perform and fuel transport. 

Passive transport occurs "downhill" along the electrochemical gradient and can be 

facilitated by channels (Figure 1.7A) or carriers (Figure 1.7B). Active transport, on the 

other hand, requires "uphill" transport against an electrochemical gradient. The 

required free energy is supplied by light absorption, ATP hydrolysis (Figure 1.7C), or 

coupling to "downhill" transport of a co-solute. The co-solute can be transported in the 

same (symport, Figure 1.7D) or the opposite direction (antiport, Figure 1.7E) of the 

main solute. Coupled transport is also referred to as secondary transport, because the 
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electrochemical gradient that provides the free energy has to be established in a 

preceding step, usually by an ATP-driven pump. 

1.3.2.2 L‐Amino Acid Transport 

Transport of L-amino acids is crucial for both prokaryotes and eukaryotes. 

Despite being the raw material for protein biosynthesis, amino acids play an important 

role in a multitude of processes. Prokaryotes use amino acids as a carbon and nitrogen 

source, for pH homeostasis [251-254], osmoprotection, generation of electrochemical 

ion gradients [255,256], and many more processes [257,258]. In eukaryotes, e.g. in man, 

amino acid transporters absorb amino acids from blood and, moreover, take part in 

signaling [259] and assimilation of essential amino acids21 in the intestine.  

Amino acid transport is facilitated by ATP binding cassette (ABC)-type 

transporters and secondary transporters. In ABC-type systems, transport is driven by 

ATP hydrolysis. In contrast, secondary transporters mainly exploit Na+ or H+ gradients 

across the membrane to energize transport, i.e. Na+ or H+ serve as co-solute. However, 

also antiport of two amino acids or of amino acids and other small organic compounds 

occurs [258].  

As amino acids serve a huge number of functions, amino acid transporters are 

in general specific for one or a small set of amino acids. Moreover, several differently 

regulated transport systems are available for each amino acid. Therefore, it is not 

astounding that amino acid transporters are found among different secondary 

                                                           
21 Certain amino acids, the essential amino acids, cannot be synthesized by humans. Thus, these 
amino acids have to be taken up with food [260]. 

Figure 1.7 Different transport mechanisms. (A) A channel provides an aqueous pore and allows selected 

solutes to pass by diffusion.  (B) The solute binds to a carrier that undergoes a conformational change 

and releases the solute on the opposite side before switching back to the initial conformation. (C) ATP‐

hydrolysis  is used to fuel solute transport against the electrochemical gradient.  (D),  (E) Solute and co‐

solute are transported in the same (D) or opposite (E) direction. Transport of the co‐solute provides the 

energy for the translocation of the solute. Active transporters, i.e. ATP‐driven (C) and solute‐coupled (D 

and E) transporters, alternate between different conformations during transport cycles. Solute and co‐

solute as well as the corresponding electrochemical gradients are depicted in blue and red, respectively. 
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transporter families [258]. Most transporter families contain members of prokaryotic 

and eukaryotic origin. One such family is the amino acid/polyamine/organocation 

(APC) superfamily, which occurs in all phyla and whose members catalyze 

solute:cation symport or solute:solute antiport [261].  

The L-amino acid transporter (LAT) family is a member of the APC 

superfamily. Members of the LAT family match the light subunits of HATs found in 

eukaryotes [262,263]. The heavy subunit of HATs is an N-glycosylated type II 

membrane protein that is covalently linked to the light subunit by a single disulfide 

bond and that is responsible for plasma membrane localization of the transporter 

system. The light subunit, on the other hand, is a multipass transmembrane protein 

that has transport activity. Genetic defects in either subunit cause a number of human 

diseases. Mutations in the light as well as the heavy subunit of system b0,+ cause 

cystinuria [148,149], whereas mutations in the light subunit y+LAT1 account for 

lysinuric protein intolerance [264,265]. Another light subunit, xCT, facilitates cysteine 

uptake and glutamate efflux [266,267] and is involved in cocaine relapse and 

maintenance of the plasma redox balance [268,269]. LAT1, the light subunit of system 

L, is overexpressed in certain primary human tumors. It is responsible for transport of 

essential neutral amino acids with long, branched, or aromatic side chains. These 

amino acids are required by tumor cells to support their unabated growth [270]. 

Therefore, amino acid transporters like LAT1 are attractive drug targets. 

The only prokaryotic representative of the LAT family known is the 

serine:threonine exchange transporter SteT [271]. Due to its high homology to the 

eukaryotic LAT members and the problems associated with studying these proteins, 

SteT is an appealing model system for studying structure and function of LAT family 

members.  
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 Chapter 

2 

ATOMIC FORCE MICROSCOPY 

2.1 HISTORY 

In 1986, Binnig, Quate, and Gerber introduced the atomic force microscope 

(AFM) as an innovative method to image both conducting and non-conducting22 

surfaces [273]. Unlike light and electron microscopes, the AFM exploits the interaction 

forces between a sharp tip and the surface (for details see section 2.2.2.2) to generate a 

topographic image. Consequently, the AFM belongs to the family of scanning probe 

microscopes (SPM), which all use a sharp tip to probe the surface. However, each SPM 

technique relies on a different measurable quantity like tunneling currents in the 

scanning tunneling microscope (STM) [272], potential offset between sample and tip in 

the Kelvin probe microscope [274], magnetic forces in the magnetic force microscope 

[275], or light in the scanning near field microscope (SNOM) [276] (Ref. [277] provides 

a technical review of several SPM techniques). AFM impresses by its high spatial 

resolution, although true atomic resolution is only possible under ultrahigh vacuum 

and with atomically flat surfaces [278].  

2.2 PRINCIPLE 

2.2.1 AFM Setup 

The AFM setup fascinates by its simplicity. Only a few components are needed 

to set up an AFM – a cantilever with a sharp stylus or tip, a piezoelectric actuator or 

transducer, a laser diode, a position sensitive photo detector (PSPD), and (computer) 

hardware for control and visualization (Figure 2.1). The sample is usually immobilized 

on a piece of mica or glass glued onto a steel disc, which can be mounted on top of the 

piezoelectric actuator. The actuator provides 3D sample positioning and movement 

                                                           
22 The previously developed scanning tunneling microscope [272], which allows atomic 
resolution imaging, is limited to conducting surfaces, since it relies on tunnel currents between 
the tip and the surface.  
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with sub-nanometer accuracy. The cantilever "feels" the interaction forces between its 

tip and the surface during imaging or force spectroscopy (for details see sections 2.3.1 

and 2.3.2, respectively). These forces result in deflection of the cantilever from its force-

free resting position. The cantilever itself is fixed in a quartz glass fluid cell (not shown 

in Figure 2.1), which in turn is placed inside the AFM head. The AFM head also houses 

the optical beam deflection detection system consisting of a red light (λ = 625 nm) 

emitting laser diode and a four quadrant PSPD23 [280]. The laser beam is focused onto 

the end of the cantilever, reflected onto a mirror (which is not shown in Figure 2.1), and 

finally onto the PSPD. Forces acting on the cantilever cause its bending and thus a 

change in the angle at which the laser is reflected onto the PSPD. As a consequence, the 

position of the laser spot on the PSPD is altered, resulting in a change of the deflection 

signal. In contact mode imaging (see section 2.3.1.1), the deflection signal is transferred 

to the controller and fed into a feedback loop, which moves the piezoelectric actuator 

to keep the deflection constant.  

 

Figure  2.1  Illustration  of  a  typical  AFM  setup.  The  sample  is mounted  on  top  of  the  piezoelectric 

actuator, which allows sub‐nanometer positioning. For AFM  imaging (for details see section 2.3.1), the 

sample is raster‐scanned below a sharp tip mounted at the end a soft cantilever. For force spectroscopy 

(see section 2.3.2.1 for details), the sample is repeatedly approached and retracted from the cantilever 

tip.  Vertical  cantilever  deflection  results  in  a  change  of  the  position  of  the  laser  spot  on  the  PSPD 

(quadrants A‐D)  that  is  quantified by  calculating  the  signal  difference  between  the upper  and  lower 

halves of the PSPD. 

By using an optical beam deflection detection system, the cantilever deflection 

is amplified and the PSPD finally provides a measurable voltage signal (UPSPD) that is 

proportional to cantilever bending. This signal is converted into an absolute deflection 

                                                           
23 Alternative detection systems rely on interferometry [279] or capacitance. Originally, a 
scanning tunneling microscope (STM) was used to measure the cantilever deflection [273]. 
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(measured in nanometers). Because the cantilever can be described as a Hookean 

spring, deflection is subsequently converted into force (measured in Newton). This 

force is acting between the cantilever tip and the surface.  

For the techniques and applications described and used within the frame of this 

thesis, only the vertical deflection of the cantilever is of importance. For that reason, 

from now on the terms deflection and deflection signal will be always used to mean 

vertical deflection of the cantilever and the corresponding signal on the PSPD. The 

latter is expressed as the signal difference between the upper and lower halves of the 

PSPD24. 

2.2.2 Cantilevers 

2.2.2.1 General Considerations 

Cantilevers are the most important part of an AFM – it is the cantilever tip that 

is in contact with the sample and that senses the forces in its vicinity. Today's 

cantilevers are usually micro-fabricated using various techniques, such as photo 

lithography, dry and wet etching, or thin film deposition. It is possible to create small 

and sharp tips at the end of a cantilever. Cantilevers are usually made from silicon or 

silicon nitride (Si3N4) and covered with thin layers of gold or aluminum to increase 

reflectivity of the backside25. Magnetic coatings are employed for applications, where 

the cantilever is oscillated within a magnetic field. For standard cantilevers, the tip is 

either made from silicon or silicon nitride, just as the entire cantilever. However, in 

order to tune the cantilevers' surface properties, tips can be coated with a thin layer of 

oxide and various precious metals (e.g. gold, silver, and platinum). Moreover, tips can 

be modified using carbon nanotubes, magnetic coatings, and various chemicals to 

introduce desired functional groups on the surface. Depending on the coating, tips can 

be conductive or non-conductive. The tip base is most often conical or pyramidal and 

terminates in a sharp apex of 2 to 50 nm radius. Typical tip heights range from 2 to 

several tens of micrometers. Cantilevers are either V-shaped (triangular) or rectangular 

and exhibit a thickness range of less than 200 nm up to 2 µm. Typical cantilevers vary 

in length between 100 and 200 µm, but commercially available small cantilevers as 

short as 38 µm are becoming more and more popular. Compared to regular cantilevers, 

                                                           
24 The deflection signal is UPSPD=(UA+UB)-(UC-UD), where UA,UB,UC, and UD correspond to the 
voltage measured from each of the four quadrants for the PSPD. 
25 The backside of a cantilever is the tip-less side of the cantilever, onto which the laser is 
focused and which is not contacting the sample surface. The tip is located on the frontside. 
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small cantilevers exhibit higher resonance frequencies and thus lower noise levels at 

the same measurement bandwidth [281]. The V-shaped geometry minimizes torsion 

resulting from lateral friction while scanning the sample, which makes them a good 

choice for purely topological imaging. The higher susceptibility to torsion of 

rectangular cantilevers does not influence the capability to be used in force 

spectroscopy experiments.  

Regardless of the shape, all cantilevers can be described as springs using 

Hooke's law26. The applied or experienced force, F, is proportional to the vertical 

displacement, Δxz, of the cantilever  

zcant xκ ΔF    2.1 

where κcant, the spring constant of the cantilever, is the scaling factor. Cantilever spring 

constants depend on their geometry and material. Determined by the application, 

cantilevers with different spring constants should be used. For contact mode imaging 

of biological samples, spring constants typically range from 60-100 pN/nm. Cantilevers 

used for force spectroscopy are slightly softer (5-100 pN/nm) while in tapping mode 

imaging harder cantilevers (0.3–40 nN/nm) are employed.  

2.2.2.2 Forces Acting on the Cantilever 

As mentioned above (section 2.1), AFM is based on interactions between the 

cantilever tip and the sample surface. The most common interactions between tip and 

surface are (i), steric forces, (ii), van der Waals forces, and, (iii), electrostatic forces (e.g. 

Coulomb, ionic, or double layer forces). 

Hard core steric forces are repulsive and extremely short-ranged (≤ 0.1 nm). The 

force is caused by overlapping electron clouds and a result of the Pauli exclusion 

principle. Empirically, the distance dependence of steric repulsion can be described by 

a 1/d12 power law, where d is the distance between the two surfaces [282]. 

Van der Waals forces result from fluctuations of electric dipole moments of 

molecules, which influence dipole moments of molecules close by. The resulting forces 

can be attractive or repulsive over a range of a few nanometers and depend on the 

shape of macroscopic bodies such as AFM cantilever tips [282].  

Biological macromolecules as well as most common AFM supports (e.g. mica, 

glass, silicon, and graphite) and cantilever surfaces (e.g. Si3N4, silicon, gold, oxide) 

                                                           
26 Modeling of cantilevers as Hookean springs is only valid for small deflection of several tens of 
nanometers. At higher deflections, cantilevers do not behave as linear springs.  
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exhibit a net surface charge and, thus, a surface potential (ψ0). Sign and magnitude of 

the surface charges depend on the pH of the buffer solution and the pK values of 

functional groups. Charges on surfaces immersed in aqueous solution are screened by 

counterions, thus giving rise to a diffuse electrical double-layer (EDL). According to 

Boltzmann's law, the counterion concentration decays exponentially with the distance 

from the surface, and so does the potential  

Dλd
d eψψ /

0
   2.2 

where ψd is the potential at a distance d from the surface. The characteristic length scale 

of the decay, also understood as the thickness of the EDL, is given by the Debye length, 

λD, 
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where e is the electronic charge, kB is the Boltzmann constant, T the absolute 

temperature, εe and ε0 are the permittivity of the solute and vacuum, respectively, and 

ce,i and zi are the concentration and valency of the ith electrolyte component. Obviously, 

λD strongly depends on the concentration and valency of the electrolyte ions [282].  

When a cantilever tip approaches a surface, the EDLs of both surfaces overlap 

and give rise to electrostatic double-layer forces, Fel, which can be significant up to the 

micrometer range [282]. When coming closer to the surface, van der Waals forces, FvdW, 

have to be considered. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory 

describes the interplay between the two forces. However, it does not account for steric 

forces, specific interactions, and hydration forces [282]. 

Both FvdW and Fel depend on the shape and area of the interacting surfaces. To 

calculate the DLVO forces (FDLVO), an estimate of the cantilever geometry is required. 

The global radius (Rg) of a cantilever tip has been estimated to be in the range of 40-

200 nm [283,284]. However, such a huge tip radius is not compatible with the sub-

nanometer resolution topographs recorded from two-dimensional protein crystals 

[285], suggesting small protrusions from the global tip that interact with the surface 

and contour the topography. The radius of such a local tip (Rl) has been estimated to 

be ≈ 2 nm [286]. For high-resolution imaging, consequently, interactions between the 

macroscopic tip (Rg) and the flat sample surface as well as interactions between the 

local tip (modeled as a half sphere) and a protein of the same radius (Rl) have to be 

considered, resulting in the overall FDLVO 
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  2.4 

where σs and σt are the surface charge densities of sample and tip, Ha is the Hamaker 

constant, and d is the distance between the two surfaces27. Based on Equation 2.4 and 

underscored by experimental evidence, Müller et  al. have shown that careful 

adjustment of pH and electrolyte concentrations are a prerequisite for high-resolution 

topographic images [283,288]. Calculations assuming a local tip with a radius of 2 nm 

and a global tip with a radius of 100 nm revealed that, at low electrolyte concentrations 

and imaging forces, the local protrusion would be separated about 9 nm from the 

surface of purple membrane due to electrostatic repulsion of the macroscopic tip. High 

imaging forces would be required to bring the small tip into contact with the surface. 

However, such high forces might destroy the sample. Lowering of the electrostatic 

repulsion by increasing the electrolyte concentration would allow the local tip to be 

about 1 nm from the surface. Van der Waals attraction compensates the remnant 

electrostatic repulsion. However, electrostatic repulsion is required for stable imaging. 

In absence of electrostatic repulsion van der Waals forces would pull the tip into the 

sample and lead to deformation of the soft biomolecules [288]. 

2.2.2.3 Force Sensitivity 

For force measurements high force sensitivity of the cantilever is desirable. 

However, noise from thermal excitation and/or components of the instrument may 

reduce sensitivity [280,289]. Modern instruments offer advanced mechanical, optical, 

and electronic components, so that the deflection of the cantilever is limited to the 

thermal motion. The equipartition theorem [290] provides the basis for an estimation of 

the minimal detectable force. The energy associated with each degree of freedom (e.g. 

with each elastic mode28) of the cantilever equals kBT/2. Thus, using the equipartition 

                                                           
27 Similarly, the FDLVO between sample and support can be calculated using 

3
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D   , where σp is the surface charge density on the sample 

[287]. This calculation can be used to adjust the pH and electrolyte concentration of adsorption 
buffers. 
28 In a first approximation, a cantilever can be regarded as a simple harmonic oscillator with one 
degree of freedom. The higher elastic modes of the cantilever exhibit much higher spring 
constants than the first mode and, therefore, do not significantly contribute to the deflection at 
the end of the cantilever [289]. 
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theorem, Hutter and Bechhoefer [289] correlated the fluctuations of the cantilever to 

the thermal energy by  

Tkκx Bcantz 2
12

2
1    2.5 

where 2
zx  is the time-averaged mean-square displacement of the cantilever. Thus, the 

root-mean-square (RMS) displacement, xz,RMS, can be estimated by 

cant

B

κ

Tk
x z,RMS   2.6 

Applying Hooke's law, the minimal detectable force can be approximated by 

the thermal RMS force, FRMS, as 

cantB κTk=FRMS   2.7 

According to Equation 2.7, spring constant and thermal energy determine the 

force sensitivity of the measurement, which can be improved by choosing a soft 

cantilever. However, as evident from Equation 2.6, the use of soft cantilevers results in 

large fluctuations in the position of the cantilever tip. Moreover, flexible tips tend to 

relax slowly [291].  

Viscous damping and measurement bandwidth are considered in a more 

sophisticated description of the minimal detectable force, Fmin [292] 

Qω

κTk cantB

0
min

B4F    2.8 

where ω0 is the angular resonance frequency of the cantilever, Q its quality factor29, and 

B the measurement bandwidth. In single-molecule force spectroscopy (SMFS) 

experiments, force traces are usually recorded with a fixed number of data points. An 

increase of the pulling velocity, vp, consequently results in an increased measurement 

bandwidth. According to Equation 2.8, higher pulling velocities thus cause increased 

noise levels.  

2.2.2.4 Cantilever Calibration 

Detector Calibration 

The deflection of a cantilever can be measured with a resolution as high as 

0.05 Å [289]. The optical deflection system used in most AFMs detects the position 

                                                           

29 Q is a measure for the energy dissipation of an oscillating system (e.g. a cantilever); 
γω

κ
Q

0

 , 

where γ is the damping coefficient. 
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change of a laser spot on a PSPD, which sends a position-dependent voltage to the 

AFM controller. Consequently, the detector has to be calibrated in order to convert the 

voltage signal into a value for the cantilever deflection.  

Calibration of the PSPD requires a well calibrated piezoelectric transducer, a 

clean cantilever tip, and a clean and hard surface. The cantilever is approached 

towards the surface until and beyond the point at which it comes into contact with the 

surface. As the surface is hard and the cantilever cannot indent it, the deflection signal 

(UPSPD) obtained beyond the contact point linearly depends on the distance (zp) traveled 

by the transducer: 

pz
χ

1UPSPD     2.9 

where χ is the optical lever deflection sensitivity. Butt and Jaschke [293], however, 

pointed out that UPSPD is strictly only proportional to the angular changes in the 

cantilever position and not to the displacement of the end of the cantilever, the first 

depending on the elastic modes of the cantilever. Using beam theory, these authors 

proposed a correction factor of ≈ 1.09 for rectangular cantilevers.  

To quantitatively apply forces to the cantilever it is crucial to know κcant 

(Equation 2.1). Manufacturers provide a nominal κcant. However, experience shows that 

actual values may differ more than 50 % from the nominal value. Accordingly, each 

cantilever has to be calibrated before performing experiments. In the following, some 

of the common methods used to measure κcant will be explained. 

Spring Constant Calibration – Added Mass 

The added mass method was introduced by Cleveland et al.  in 1993 [294]. The 

cantilever is approximated as a single harmonic oscillator, for which the resonance 

frequency, ν0, is given by 

m

κ

π
ν cant

2
1

0    2.10 

where m is the mass of the cantilever. Thus, the resonance frequency of the cantilever 

changes, when mass is added. Measurement of ν0 before and after adding a known 

mass M* is sufficient to calculate κcant according to 

2
0

2
1

2 *4  


νν

M
πκcant   2.11 

where ν1 is the resonance frequency after the mass was added. For precise 

measurements, it is crucial to place the additional mass M* as close as possible to the 
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end of the cantilever, because its effect on the resonance frequency will be diminished 

the closer it is to the cantilever base. However, measuring the distance of the added 

mass from the end of the cantilever allows correcting for this effect [295]. Probably the 

most critical variable is the method by which the mass is added and determined. 

Usually small tungsten spheres are used, whose mass is calculated from the specific 

density of tungsten and their diameter, which is measured with an optical microscope. 

However, the tungsten particles are in general not perfect spheres, which results in 

uncertainties in mass determination. 

Spring Constant Calibration – Sader Method 

The Sader method [296] bases on modeling the dynamic deflection of a 

cantilever immersed in a viscous fluid (e.g. air). The method relies on the 

determination of the unloaded resonance frequency of the cantilever,  ω0, a quantity, 

which is readily available. Moreover, it requires the length (Lcant), width (wcant), and Q 

of the cantilever to be measured. A priori knowledge of the cantilever thickness and 

density, two quantities whose estimation is difficult and associated with large errors, is 

not necessary. Moreover, the method accounts for the effects of the surrounding 

environment. Finally, Sader's considerations resulted in  

(Re)ΓLw1906.0= 0
2

icantcantfcant Qωρκ   2.12 

where ρf is the density of the fluid and Γi is the imaginary part of the complex 

hydrodynamic function. Γi depends on the Reynolds number, Re, which is given by 

[297] 

f

f

η

ωρ

4
w

Re
2
cant0   2.13 

where ηf is the viscosity of the fluid30. As the cantilever should not be highly damped, 

which means Q >> 1, measurements of Q and ω0 have to be performed in air. The 

method is limited to rectangular cantilevers, which must not narrow towards the end.  

Spring Constant Calibration – Thermal Fluctuation Analysis 

Calibration using the thermal fluctuation analysis is probably the most 

convenient and often used way to measure κcant. Hutter and Bechhoefer [289] modeled 

the cantilever as a single harmonic oscillator and correlated the thermal motion of the 

first elastic mode to its thermal energy (Equation 2.5). Solving forκcant results in  

                                                           
30 Sader placed a calculator on his web site for convenient calculation of κcant [298]. 
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cant

x

Tk
κ    2.14 

The power spectral density (PSD) of the thermal fluctuations of the cantilever 

has a peak at the cantilever's resonance frequency (Figure 2.2). The area below that 

peak equals 2
zx . For precise measurement of 2

zx , it is important to use a properly 

calibrated PSPD and to apply the corresponding correction factor to compensate for the 

error introduced by the optical detection system (see section 2.2.2.4 – Detector 

Calibration). 

However, the cantilever does not behave like a perfect spring and thus 

modeling it as a single harmonic oscillator results in an error that has to be corrected. 

Butt and Jaschke [293] derived a formula that takes the deviations into account 

2
1,

971.0
z

B
cant

x

Tk
κ    2.15 

where  2
1,zx  is the time-averaged mean-square displacement attributed to the first 

elastic mode of the cantilever, which equals the area under the peak in the PSD.  

 

Figure 2.2 Power spectral density of an 

Olympus  BioLever mini.  PSD  calculated 

from  the  thermal  oscillation  of  a 

cantilever far from the surface. The PSD 

shows  a  clear  peak  at  the  cantilever's 

resonance  frequency  at  ≈ 30  kHz.  The 

red  line  shows  a  fit  to  Equation  3.2, 

which  represents  the  theoretical  power 

spectral  density  that  was  derived  from 

modeling  the  cantilever  as  a  harmonic 

oscillator. 

2.3 OPERATION MODES 

The AFM is a versatile instrument. It can not only be used to produce 

topographic images but is also capable of measuring force-distance (F-D) relationships 

using the so-called force spectroscopy mode. In this section, two imaging techniques 

will be introduced, which are routinely used to investigate biomolecules and details on 

AFM-based force measurements will be given. 
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2.3.1 Surface Imaging 

In all SPM-based imaging applications, the piezo raster-scans the sample 

relative to the probe in the x,y-plane and simultaneously extends or retracts vertically 

(z direction) to keep the interaction between the sample and the tip constant. However, 

different imaging techniques differ in how the probe interacts with the sample, how 

the contrast is generated, and the information that can be extracted from the images. 

One of the most important advantages of AFM imaging is the fact that it can be 

performed with an outstanding signal-to-noise ratio. Neither sample staining nor 

dehydration or freezing are required for (sub-)nanometer resolution imaging. Thus, 

AFM can clearly compete with other techniques (Figure 2.3A) and provide 

complementary information.  

Since AFM images are generated by a cantilever tip contouring the surface, 

resolution depends on tip geometry (Figure 2.3B). Tips with a smaller radius can 

protrude deeper into surface depressions. Moreover, tip convolution, i.e. surface 

structures appearing broader than they are, is reduced using sharper tips.  

Figure 2.3 Resolution in AFM. (A) Comparison of the spatial resolution obtained by different techniques. 

(B) Resolution in AFM is limited by the cantilever tip geometry. Tips with smaller tip radii (green) allow 

higher  lateral  resolution,  indent  deeper  into  surface  depressions,  and  cause  less  tip  convolution 

(indicated by the dashed lines) than tips with larger radii (grey). 

2.3.1.1 Contact Mode 

During raster-scanning a surface, the tip is in contact with the surface and a 

user-defined low, non-destructive imaging force of ≤ 100 pN is applied31. A feedback 

loop is used to maintain the interaction force throughout the imaging process. If a 

topographic feature of the sample causes the cantilever to bend, the feedback loop 

adjusts the position of the piezoelectric actuator to reset the cantilever deflection to its 

pre-defined setpoint (Figure 2.4A). The x-,y-, and z-position of the piezo at each point 

                                                           
31 Higher contact forces can deform or disrupt soft samples. Moreover, due to increased tip-
sample contact area resolution decreases [288].  
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of the image is used to generate the topographic height image. The error signal32, which 

is calculated by the feedback loop, provides information about the edges of surface 

features. True high-resolution contact mode height imaging requires careful 

adjustment of the feedback parameters to minimize the error signal. 

In a special case, the so-called error signal mode, x,y-scanning is operated 

without any feedback and, thus, sample topography can be inferred from the cantilever 

deflection. However, high non-constant vertical and lateral forces are applied causing 

deformation or even disruption of the specimen.  

True contact mode height imaging is suited best for well immobilized samples 

like membrane proteins densely packed into proteoliposomes or arranged in 2D arrays 

[299-302]. In these particular cases, dense packing reduces the lateral mobility of single 

molecules.  

2.3.1.2 Tapping Mode 

Tapping mode imaging is an approach to circumvent sample disruption and 

displacement by the lateral forces exerted during contact mode imaging. In tapping 

mode, the cantilever is acoustically oscillated. The tip touches the surface only once 

during an oscillation cycle, which reduces lateral forces that are applied to the sample. 

Several oscillation parameters are sensitive to interaction with the surface: resonance 

frequency, oscillation amplitude, and the phase shift. Any of these can be used as a 

feedback parameter to contour the surface topography [303]. The most common 

tapping mode used in biology is amplitude-modulated tapping mode AFM. In this 

mode, the cantilever is excited close to its resonance frequency and the RMS amplitude 

of the oscillation is detected by the PSPD. The amplitude is damped, when the tip is 

close to or in contact with the surface. The feedback maintains a constant, pre-defined 

amplitude by adjusting the piezo position vertically (Figure 2.4B). The topographic 

image is generated from the piezo movement, just like in contact mode imaging. 

Frequently, a phase shift between the driving and the measured oscillation is 

observed, which originates from dissipative tip-sample interactions (Figure 2.4B, blue 

and green curves). From the phase shift, information about the mechanical properties 

of the sample surface can be deduced [303].  

                                                           
32 The error signal is the difference between the actual cantilever deflection and the pre-defined 
setpoint. 
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Compared to contact mode AFM, tapping mode imaging usually results in 

lower-resolution images. Often, the height information obtained by tapping mode 

AFM is not as accurate as that from contact mode AFM [304]. However, it can be used 

to image soft and fragile specimens such as cells or fibrillar macromolecular assemblies 

[305,306], where contact mode imaging fails due to sample deformation or destruction.  

2.3.2 Force Measurement 

Force plays a pivotal role in all fields of biology. This holds true for macroscopic 

bodies and systems (e.g. muscle contraction generates a force), but also and maybe 

especially on the microscopic level as force is involved in phenomena like cell adhesion 

[307], molecular recognition [308], DNA mechanics [309], motor protein movement 

[310], and protein folding and stabilization [311-316]. The forces experienced and 

generated by biological molecules are of manifold nature and can range from the sub-

piconewton range up to several nanonewton (Table 2.1) [317].  

Type of Force  Approximate Magnitude (pN) 

Elastic  1‐100 

Covalent  10 000 

Viscous  1‐1000 

Collisional  10
‐12 to 10‐9 for 1 collision/s 

Thermal  100‐1000 

Electrostatic / van der Waals  1‐1000 

Magnetic  << 10
‐6 

Table 2.1 Forces relevant on the molecular level and their approximate magnitude. 

Measuring these forces with high precision in both force and position provides 

information on structure, dynamics, intra- and intermolecular interactions, and 

mechanical properties of molecules and complexes and thus sheds light on the 

molecular basis of various biological phenomena [313,315,318-323]. Different 

 

Figure  2.4  AFM  imaging  modes.  (A)  The  cantilever  is  quasi‐static  and  the  surface  topography  is 

contoured by maintaining  the cantilever deflection at  the setpoint value  through  repositioning of  the 

piezo  in z‐direction.  (B)  In  tapping mode,  the cantilever  is oscillated close  to  its  resonance  frequency. 

Maintaining  the  oscillation  amplitude  constant  reveals  topographic  height  information.  Mechanical 

properties  of  the  surface  can  be  extracted  from  the  phase  shift  between  the  drive  signal  (blue  sine 

waves) and the detected cantilever oscillation (green sine waves). 
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techniques have been developed to approach this task, especially at the single molecule 

level. Each of these techniques may be used for different force ranges (Figure 2.5). 

However, the way force is measured is different among these methods. In AFM, 

deflection of the cantilever is detected (Figure 2.5A). Both the biomembrane force 

probe (BFP) [324] and the laser optical tweezers (LOT) [325,326] measure the 

displacement of a small bead that is either attached to a micropipette-aspirated 

membrane sac (Figure 2.5E) or trapped in a highly focused leaser beam (Figure 2.5C), 

respectively. The "spring" of BFP is the membrane sac, whose stiffness can be tuned by 

suction into the micropipette [324]. LOT use the restoring force generated by the 

photonic gradient of the laser that traps the bead. 

Another single molecule method is magnetic tweezers (MT) [328]. In contrast to 

AFM, LOT, and BFP, which measure force changes, MT by definition exert constant 

forces on the sample. The force is generated through magnetic beads trapped in a 

magnetic field (Figure 2.5D) and can be tuned by bead size and material. As a constant-

force technique, MT measure the time-dependence of length changes of the sample.  

The surface force apparatus (SFA) [282,329], measures the F-D relationship of a 

sample between two cylinders (Figure 2.5B), e.g. the two components of an adhesive 

system. However, the interacting surfaces are macroscopic (a few µm2) and thus, a 

large number of molecules and interactions are probed, making it well suited for 

determining surface or adhesion energies [330].  

 

Figure  2.5  Different  force  probes  used  to 

measure interaction forces. (A) AFM in which the 

tip  is attached to the force‐transducing cantilever 

(immersed  in  liquid).  (B)  SFA  with  two  crossed 

cylinders  and  a  force‐transducing  spring.  (C)  LOT 

with a bead trapped in the photonic gradient. (D) 

MT with a magnetic bead in the magnetic field of 

a  strong  magnet.  (E)  BFP  with  a  micropipette‐

aspirated membrane vesicle (left) that is used as a 

spring of adjustable stiffness. Figure adapted from 

[327].  
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2.3.2.1 AFM‐Based Single‐Molecule Force Spectroscopy 

Constant Velocity Force Spectroscopy 

In SMFS, the cantilever is used as a tool that can pick up single surface-

anchored molecules from the specimen by approaching the surface to the cantilever 

and allowing it to rest while in physical contact. Subsequently, the surface is retracted 

from the cantilever at a constant velocity and if a molecule adhered to the tip, it is 

mechanically stretched by a force that is transmitted from the cantilever through the 

molecule to the sample surface. This force deflects the cantilever vertically, causing a 

change in the deflection signal, which is acquired alongside with the distance traveled 

by the piezo (Figure 2.6). However, the distance moved by the piezo does not represent 

the extension of the molecule, which is the tip-sample separation (tss), because the 

cantilever bends towards the surface. Knowing the cantilever deflection and the piezo 

movement allows tss to be calculated by 

zp xztss Δ   2.16 

Plotting the force as a function of tss yields a F-D trace (Figure 2.6, inset). F-D 

traces contain information about structural transitions of the molecule when stretched 

(see also section 2.3.2.3). The constant velocity approach is widely used because it is 

simple and has a wide range of applications. 

 

Figure  2.6  SMFS  approach‐retract  cycle.  The  surface  is  approached  to  the  cantilever  until  a  certain 

contact force is reached (A‐C). During approach, close to the surface, attractive forces pull the cantilever 

towards the surface ("snap in", B). After allowing the tip to establish interactions with the sample (C) the 

surface is retracted from the cantilever. If tip‐sample interactions were formed, an increasing stretching 

force  is generated with retraction and the cantilever  is bent towards the surface. As soon as the force 

suffices  to  break  the  interaction  (D),  the  cantilever  relaxes  to  its  unbent  position  and  is  further 

separated  from  the surface  (E). The  inset shows an approach‐retract cycle, where  the  force  is plotted 

versus the extension of the molecule (tss, Equation 2.8), thus representing a F‐D trace. 
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Constant Force Force Spectroscopy 

In contrast to the constant velocity approach, where the cantilever deflection is 

a function of time, the constant force approach aims to keep the cantilever deflection 

and thus the strain on the bond or molecule constant over time [331-333]. As a result of 

the quick relaxation of the molecule and the cantilever upon unfolding of a protein or a 

domain thereof the piezo rapidly moves in a non-linear fashion to restore the strain on 

the molecule. Consequently, information is obtained from the time-dependent piezo 

position. Each step in the piezo movement versus time diagram reflects an unfolding 

event and is associated with a characteristic step size. This approach allows direct 

measurement of force-dependent life-times of proteins and their domains. As the 

applied force is virtually constant during the experiment, the molecule is not subjected 

to changes in the applied load. The advantage of the so-called force-clamp 

spectroscopy is counterbalanced by the fact that these machines are in general made up 

from custom-built analogue electronics [332,333], which hampered the spread of this 

technique. In chapter 4, this issue will be addressed by implementation of a computer-

controlled digital force-feedback, which is easy to set up. 

2.3.2.2 Polymer Extension Models 

Some of the most important components of a cell, namely proteins, DNA, and 

RNA, are of polymeric nature, consisting of hundreds to millions of monomers (amino 

acids or nucleotides). Similarly, polysaccharides, which are used as energy storage and 

structure-stabilizing components, are polymers composed of sugar molecules. All these 

polymers are involved in almost every facet of processes that define a living organism. 

As force is quasi omnipresent, it is tempting to describe polymers, with their large 

number of degrees of freedom by means of statistical physics to elucidate the restoring 

forces set up upon tensile stress.  

A free polymer in solution tends to acquire a non-structured random coil 

configuration, which maximizes conformational entropy. Application of force reduces 

the conformational entropy by aligning the molecule along the direction of force. In the 

simplest case, backbone bonds are unaffected and work is performed against pure 

entropic restoring forces. The molecule behaves like an ideal spring, whose spring 

constant solely depends on the length of a monomer, the Kuhn length (lK), and the 

contour length (Lc) of the polymer [334] 

mol

cK

B
mol x

Ll

Tk
x 3)(F    2.17 



Chapter 2: Atomic Force Microscopy 

37 

where xmol is the extension of the molecule. Lc describes the length of the linearly 

extended molecule without stretching the polymer backbone [323]. However, this 

Gaussian model is true for very small extensions xmol << Lc and low forces. Different 

models describe polymer extension at larger extensions and take backbone stretching 

into account.  

Freely Jointed Chain Model 

When subjected to a stretching force, the molecule loses its random coil 

conformation and aligns along the direction of the applied force. This decreases the 

conformational entropy of the molecule. In the freely jointed chain (FJC) model [335], a 

polymer is regarded as a chain composed of n independent rigid elements of length lK 

that are connected by perfectly flexible hinges (Figure 2.7A). For extensions xmol < Lc, 

Equation 2.18 describes the non-linear extension of a polymer [335] 
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At large extensions (xmol ≈ Lc) Equation 2.18 fails to describe the extension of the 

polymer. At increasing forces, bonds and bond angles become distorted and contribute 

to the overall elasticity. In the extended freely jointed chain (eFJC) model, the rigid 

segments of the FJC model are replaced by springs with identical spring constants, 

κsegment. Thus, Equation 2.18 is extended by an additional term to account for enthalpic 

restoring forces [336]: 
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The freely jointed chain model has been successfully applied to model the 

extension of polysaccharides and synthetic polymers [319,323,337,338]. 

Wormlike Chain Model 

In a more realistic approach, the polymer is modeled as a continuous, elastic 

curve, a wormlike chain (WLC) [339], without fine structure (Figure 2.7B). The WLC 

model includes entropic and enthalpic (bending) contributions in the description of the 

force-extension relationship. It is accurate up to several hundreds of pN and given by 

[315,320,340] 
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where lP is the persistence length of the polymer, which describes the rigidity of the 

polymer and the distance over which the chain orientation is lost [341]. Typically, 

values for lP and lK are specific for each polymer and must be experimentally 

determined [342]. These parameters also depend on the solvating medium [343]. For 

polypeptides, a persistence length of 4 Å has been successfully applied to describe the 

extension at forces larger than 50 pN [313,315]. Although the WLC model accounts for 

bending elasticity, polymers cannot be stretched beyond their contour length [343]. At 

elevated forces, chain stiffness has to be considered. In the extended WLC (eWLC), a 

linear elastic term is introduced [344] 
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where Φ is the specific stiffness of the polymer. The wormlike chain model has been 

used to describe the F-D relationship of polypeptides [315] and DNA (lP ≈ 50 nm) 

[320,340]. 

 

Figure 2.7 Polymer chain models.  (A) Freely  jointed chain and  (B) wormlike chain models of polymer 

mechanics. The FJC  is modeled as a chain of discrete rigid segments connected by flexible hinges. The 

WLC, in contrast, is described as a continuous elastic medium. 

2.3.2.3 Model Systems 

Both the FJC and the WLC model predict a monotonically rising force with 

increasing extension. Discontinuities or deviations from the models point towards 

rupture of non-covalent inter- and intramolecular bonds or conformational changes of 

the polymer. Several biological macromolecules, such as DNA, water-soluble and 

membrane proteins, and polysaccharides as well as synthetic polymers (e.g. 

polyethylene glycol), have been extensively studied by SMFS. In the following, model 

systems relevant for this thesis will be described, which are: dextran, the 27th 

immunoglobulin domain from titin (Ig27), and bR. 
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Dextran 

Dextran is produced by some bacteria and forms slimy capsules surrounding 

the cells. It commonly consists of α1→6 glycosidic linked α-D-glucopyranose rings 

resulting in polymers of largely varying lengths. In a first study, Rief et al. showed that 

dextran molecules exhibit a large enthalpic component in their elasticity, which is 

marked by a prolonged plateau in the F-D trace (Figure 2.8) [319]. At small extensions 

(here < 60 nm), almost all pyranose rings are in a 4C1 chair conformation, which exhibits 

intrinsic flexibility [345] (Figure 2.8, red eFJC fit with lK = 4.7 Å and κsegment = 13.7 N/m). 

As the force reaches ≈ 800 pN the pyranose rings start switching from a chair-like to a 

boat-like conformation [338]. This chair-boat transition leads to an about 19 % 

elongation of the dextran monomer and causes the characteristic plateau. After most 

pyranose rings achieved the boat-like conformation a steep increase in force is detected 

(Figure 2.8, blue eFJC fit with  lK = 5.6 Å and κsegment = 56.8 N/m) prior to detachment of 

the molecule. The obtained values for Kuhn length and segment elasticity correspond 

to previously published data [319,338]. The shapes of F-D traces from dextran but also 

from other polysaccharides exhibit unique fingerprints, which allow identification of 

different molecules just by their F-D trace [337].  

Since the first experiments, dextran has become an important model system 

[346-349], because dextran samples can be easily prepared on glass surfaces and F-D 

traces can be acquired routinely. 

 

Figure  2.8  Characteristic  F‐D  trace  of  the  polysaccharide  dextran.  Typical  F‐D  trace  recorded while 

stretching a single dextran molecule. The curve reveals the chair‐to‐boat transition of the pyranose ring 

that  results  in  the plateau between 60 and 70 nm extension. The curve  is well described by  the eFJC 

model  before  (red  line)  and  after  the  transition  (blue  line) with  Kuhn  lengths  of  4.7  and  5.7 Å  and 

segment elasticities of 13.7 and 56.8 N/m, respectively. The stretched dextran segment comprised 122 

monomers. The F‐D trace was recorded in PBS at 160 nm/s. 
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27th Immunoglobulin Domain from the Giant Muscle Protein Titin 

The giant muscle protein titin (~ 3-4 MDa) is composed of long repeats of 

immunoglobulin-like and fibronectin type III domains. Titin is found in the muscle 

sarcomere, provides muscle elasticity, and generates passive tension (for recent 

reviews on titin's physiological function see Refs. [350,351]). In 1997, Rief et  al. 

demonstrated in a pioneering experiment force-induced unfolding and subsequent 

refolding of titin [315]. Rief et  al. genetically engineered multidomain protein 

constructs, in which identical domains, Ig27, are repeated. The stretching of such a 

polypeptide chain at a constant velocity resulted in an increasing force. At a sufficient 

high force, the structural integrity of one domain breaks, because the hydrogen bond 

network between two force-bearing β-strands is distorted [352]. This transition from a 

folded protein domain to an unfolded peptide results in sudden chain elongation and 

relaxation of the cantilever. In such a multidomain construct, each unfolding event can 

be attributed to the unfolding of a single domain. F-D traces of multimeric Ig27 exhibit 

a characteristic saw-tooth pattern with evenly spaced peaks (Figure 2.9).  

Since the first experiments, Ig27 has been the protein domain, whose response 

to force has been the most extensively studied by SMFS [315,332,353-355] and 

molecular dynamics simulations [352]. Thus, it became the paradigm model for SMFS 

[356]. Recently, multi-domain proteins, composed of Ig27 or other well studied protein 

domains, were used to host several proteins for SMFS experiments [357-361]. 

 

Figure 2.9 Characteristic F‐D trace of a multi‐domain Ig27 construct. The F‐D trace shows unfolding of a 

pentameric Ig27 construct. Each peak was fitted using the WLC model with a persistence  length of 4 Å 

and an amino acid monomer length of 3.6 Å (red curves); contour lengths of the peaks are given above 

each fit and are in amino acids. Each peak, except the last one, denotes unfolding of an individual Ig27 

domain, which  is associated with a contour  length  increase of 78 aa (28 nm). The  last peak represents 

stretching of the completely unfolded polypeptide and final detachment of the polypeptide from the tip. 

Sample was adsorbed to freshly exposed template‐stripped gold in PBS. Data was recorded at 440 nm/s 

in PBS. Pentameric Ig27 was a kind gift from A. Smith, Leeds, UK. 
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Bacteriorhodopsin 

In 2000, bR was the first membrane protein studied by SMFS [313]. bR is a light-

driven proton pump from Halobacterium salinarium, an archaeal organism which lives 

in high salinity environments [362,363]. Due to a known atomic structure [179,364], an 

enormous amount of function-related biochemical data [365], and its high availability, 

bR was an ideal model for this new approach. In these SMFS experiments, single bR 

molecules withstood forces of up to 200 pN before structural segments unfolded 

cooperatively [366]. Mechanically induced unfolding occurred along a few highly 

reproducible, temperature-dependent pathways [366,367]. In combination with further 

studies of bR mutants [368,369], these SMFS experiments provided valuable 

information about the interactions that stabilize individual transmembrane segments 

and fragments thereof. Consequently, this approach has been applied to other integral 

membrane proteins [311,312,314,370-372].  

2.3.2.4 Kinetic Interpretation of SMFS Experiments 

SMFS experiments measure the force at which a bond or a protein breaks or 

unfolds. But what can be extracted from this rather abstract measure about kinetics of 

the underlying dissociation reaction? Conceptually, SMFS experiments are far from 

equilibrium, because rebinding or refolding are prevented by rapid separation of the 

system's constituents. Moreover, unbinding depends on the rate at which force is 

applied and the duration of loading [373]. Unfolding or unbinding can be considered a 

two state process, which involves a low energy conformation (e.g. the native state of a 

protein) and a high energy state (e.g. an unfolded protein) separated by a single energy 

barrier (Figure 2.10A, black line). The folding and unfolding of many water-soluble 

proteins can be well explained by such a two state model [374,375]. Unfolding, thus, 

can be described as a thermally driven over-damped first-order kinetic process in 

liquid [376,377], whose rate in the absence of force, k0, is given by 
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where τD is the diffuse relaxation time33 and ΔG‡0 is the activation free energy. 

Based on Bell's phenomenological model for the off-rate [379], Evans and 

Ritchie [291,373] showed that the transition rate over a potential barrier depends on the 
                                                           
33 The exact value of τD for protein folding is not known. However, values of 10-7-10-9 s-1 
obtained from experiments seem to provide a reasonable estimate [378]. For calculations in this 
thesis a value of 10-8 s-1 was used. 
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rate of force application. Proteins are, in general, stabilized by non-covalent 

intramolecular bonds. These bonds have finite life times and will fail under any force 

(including no force) if given sufficient time. Slow pulling velocities, vp, result in long 

life-times but low rupture forces, and high vp reveal high rupture forces but short life-

times [291,380]. Moreover, the location and shape of the transition state are insensitive 

to force [373], while the height of the energy barrier is lowered according to [379] 

βxGG FΔ)F(Δ ‡
0

‡    2.23 

where xβ is the characteristic length scale along the reaction coordinate, with 

xβ = xu cos(θ) (Figure 2.10A). xu is the distance between the native state and the 

transition state and θ is the deviation of the reaction coordinate from the direction of 

force. For small deviations, which are usually the case in AFM experiments, cos(θ) ≈ 1 

and xβ ≈ xu. Combining Equations 2.22 and 2.23 gives  
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where k(F) is the force-dependent dissociation rate which exponentially increases with 

force scaled by 
Tk

x

B

u . 

As mentioned before, the rupture force of a bond depends on the rate at which 

it is loaded with force. The force applied to a bond, in turn, tilts the corresponding 

energy landscape. Consequently, the force applied to the bond over time (t) has to be 

described. In the simplest case, a linearly rising force is assumed, where the slope is the 

loading rate, rf, which is given by 

dt

d
rf

F
   2.25 

Ultra-sensitive force probes allow such a force ramp to be applied to a sample. 

A force probe (e.g. a cantilever) with a spring constant lower than that of the handles 

connecting the molecule to tip and surface applies a load that increases at a constant 

rate and is equal to the product of κcant and vp. However, in most cases long flexible 

linkers, polymer spacers, or already unfolded polypeptide segments, are used as 

handles to connect molecules to the cantilever tip [315,381]. This results in a non-linear 

loading of the targeted bond. Still, the loading rate can be approximated from a linear 

fit to the F-D trace before the rupture event.  

Evans and Ritchie showed that the most probable unfolding force, F*, is a 

function of ln(rf) [291,373] 
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The insets in Figure 2.10 show theoretical dynamic force spectra. Experiments 

require the most probable rupture force at different loading rates, i.e. pulling velocities, 

to be measured. Such experiments are known as dynamic force spectroscopy (DFS). 

Fitting experimental data with Equation 2.26 yield xu and k0, parameters that 

characterize the energy landscape underlying the unfolding or unbonding reaction.  

 

Figure 2.10 Energy landscape projections under externally applied force. (A) Energy landscape of a two 

state protein (black line). The energy landscape is characterized by a sharp potential barrier separating 

native  (N)  and  unfolded  state  (U).  The  activation  energy  of  unfolding  is  given  by  ΔG‡
0,  while  xu 

represents distance between the native and the transition state (‡) along the reaction coordinate x and 

provides  information  about  the width  of  the  potential  barrier.  The  energy  barrier  is  spontaneously 

crossed at a rate k0. Application of an external force F adds a mechanical potential ‐F cos(θ) x (dashed 

red  line)  that  tilts  the  energy  landscape  (solid  red  line).  Therefore,  the  energy  barrier  is  lowered 

according to Equation 2.23. The inset sketches the theoretical dependence of the rupture force on the 

loading  rate,  the dynamic  force  spectrum, which  is  governed by  a  single  linear  regime, with  a  slope 

proportional to 1/xu. (B) Energy landscape for a three state protein, which passes an intermediate state 

(I) during unfolding. Two energy barriers at xu,in and xu,out have to be crossed on the way from the native 

to the unfolded protein. Again, an external potential (dashed red  line) tilts the energy  landscape (solid 

red  line). At sufficient high force, the outer barrier  is suppressed and the  inner barrier determines the 

transition kinetics. The  inset  shows  the  corresponding dynamic  force  spectrum, which has  two  linear 

regimes. At slow pulling velocities  (and thus  lower  forces), the outer barrier determines the unfolding 

kinetics, while at higher pulling velocities (and thus higher forces) the inner barrier becomes dominant. 

The smooth energy landscape sketched in Figure 2.10A is an oversimplification. 

Macromolecular complexes are stabilized by a vast number of individually weak 

interactions. As a consequence, the energy landscape is rough with energy barriers of 

different height and width [85,86,89,382]. Dynamic force spectra locate the most 

prominent energy barriers along the reaction coordinate [291,318]. Figure 2.10B shows 

the energy landscape of a three state process in which an intermediate state is 

populated. Along the reaction coordinate, two energy barriers separate the native from 
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the unfolded state. Similar to the two state process depicted in Figure 2.10A, an 

external potential tilts the more complex energy landscape. At high loading rates, the 

outer barrier is lower than the inner barrier, which then governs the unbinding rate. 

Such an energy landscape results in two regimes in the dynamic force spectrum 

(Figure 2.10B, inset). Due to the logarithmic dependences of unbinding force on 

loading rate, it is necessary to cover many orders of magnitude in loading rate, to get a 

description of the energy landscape. 

2.4 WHY  USE  ATOMIC  FORCE  MICROSCOPY  TO  STUDY  MEMBRANE 

PROTEINS? 

2.4.1 Imaging Membrane Protein Surfaces at High Resolution 

In contrast to other methods used to get structural information about 

membrane proteins, AFM does require neither 3D crystallization nor freezing or 

staining of the sample. Indeed, AFM allows the sample topology to be monitored 

down to sub-nanometer resolution in a physiological buffer environment at ambient 

temperature. High-resolution AFM has been extensively used to characterize the 

surface topology of a variety of membrane proteins, including aquaporins 

[299,383,384], rhodopsin [385], the bacteriophage φ29 head-tail connector [302], various 

archaeal rhodopsins [314,372,386], and photosynthetic complexes [387,388]. High-

resolution AFM has been employed to elucidate the stoichiometry of F1FO ATP 

synthase c-rings from various organisms [389-394] and the diffusion of membrane 

proteins within the lipid bilayer [395]. Moreover, gating events associated with 

conformational changes induced by various stimuli have been revealed for OmpZ [396] 

and gap junction hemichannels [397,398] (chapter 6). High-resolution AFM with its 

outstanding signal-to-noise ratio allows valuable information that cannot be as easily 

accessed by other experimental techniques. 

2.4.2 Force as an Alternative Denaturant 

Protein stability is classically studied using heat or denaturants, such as 

guanidinium hydrochloride or urea. Pressure and acidification are exploited to shift 

the equilibrium towards the unfolded state. Force as a "denaturant" is appropriate for 

"mechanical" proteins, polymers, and complexes, which are under load in  vivo. 

Moreover, as outlined in section 1.2.2, methods commonly used to denature water-

soluble proteins usually fail to completely unfold membrane proteins, as significant 
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amounts of secondary structure often remain. In contrast, SMFS drives membrane 

proteins from their folded into a well defined stretched conformation that lacks 

secondary structure. Moreover, as a single-molecule technique, SMFS allows unfolding 

trajectories of individual molecules and rare unfolding intermediates, which are 

averaged out in ensemble measurements, to be found. 

What can we learn from SMFS experiments? SMFS unveils the mechanical 

stability of (membrane) proteins and stable structural segments within the protein 

[313,354,360,399]. Moreover, different unfolding pathways and their relative likelihood 

were determined [311,313,314,367]. Comparative studies allowed interaction sites of 

ligands and inhibitors to be mapped on transporter proteins [311,400,401]. Similarly, 

stabilization due to heterodimer formation was detected [371,402]. DFS was used to 

elucidate the energy landscape of protein unfolding [403-405] or ligand-receptor 

unbinding [318] and trace changes therein for effects of ligand binding [406] (chapter 5) 

and point mutations [368,369]. In a further approach the roughness of the unfolding 

energy landscape of bR was estimated [407]. SMFS has also been applied to study re- 

and misfolding of water-soluble and membrane protein [312,315,316,355,399,404,408].  

A modified SMFS approach, the so-called force-clamp force spectroscopy, 

subjects a molecule or complex to a constant force. It is used to measure force-

dependent life-time distributions. The method has been employed to study unfolding 

and refolding of water-soluble proteins [331,409,410], the kinetics of disulfide reduction 

[411,412], and the visco-elastic properties of dextran [348]. Since expensive and 

complicated custom built electronics are commonly used to achieve fast force-feedback, 

an easy to build but comparable computer-based solution is desirable (chapter 4). 

SMFS measures the stability of single molecules by the resistance to force. But 

which factors contribute to the stability? Most biomolecular interactions exhibit elastic 

and viscous forces that sum up to the measured force. The approaches that have been 

used to decipher the contribution of conservative (elastic) and dissipative (viscous) 

effects in the unfolding of proteins and stretching of polymers [346-348,413-416] 

(chapter 3) revealed that (intramolecular) viscosity significantly contributes to 

molecular elasticity.  
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 Chapter 

3 

VISCO‐ELASTICITY OF SINGLE DEXTRAN MOLECULES 

UNRAVELED BY BROWNIAN NOISE ANALYSIS 

3.1 INTRODUCTION 

As outlined in chapter 2, the mechanical properties of biological 

macromolecules play an important role in many fundamental biological processes, 

including cell adhesion, muscle function, and gene transcription [317,417]. 

Consequently, optical and magnetic tweezers as well as AFM have been extensively 

used to address the mechanics of single biomolecules [330]. In conventional force-

extension experiments (see section 2.3.2.1), the molecule is tethered between tip and 

support, and the elastic response of the molecule upon continuous stretching is 

determined. Importantly, most biomolecular interactions exhibit conservative (elastic) 

and dissipative (viscous) forces that should be analyzed independently to allow a 

deeper understanding of their contribution to dynamic biological processes. Extended 

AFM force spectroscopy experiments have been developed to measure such visco-

elastic responses of a wide class of (bio)molecules, including nucleic acids [418], 

receptor-ligand complexes [419], proteins [415,420], polysaccharides [346,416], and 

synthetic polymers [421]. In these experiments, the AFM cantilever is sinusoidally 

oscillated while a single molecule is extended between the tip and the surface. Analysis 

of amplitude and phase response of the cantilever provides information about 

resulting elastic and viscous forces. In contrast to the stretching of unfolded proteins, 

nucleic acids, and poly(ethylene glycol), which is governed by purely elastic 

interactions [415,418,420,421], the unfolding of secondary structure elements within bR 

and Ig27 as well as the chair-to-boat transitions in the polysaccharide dextran indicated 

dissipative interactions [346,415,416,420].  

Recently, an alternative approach to determine the visco-elastic properties of 

single molecules was proposed by Kawakami and co-workers [348]. Instead of using a 

continuous extension protocol, single dextran molecules were subjected to pre-defined 
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forces using a feedback loop. Then, the thermal motion of the AFM cantilever during a 

few seconds was analyzed to obtain the molecules' visco-elasticity as a function of the 

applied tension. In this chapter, measurement of visco-elastic parameters from the 

thermal cantilever motion during conventional force-extension measurements will be 

presented. Dextran was chosen as a model system for this study because its visco-

elastic properties have been extensively studied [346-348,416].  

3.2 EXPERIMENTAL PROCEDURES 

3.2.1 Sample Preparation 

Dextran (average molecular weight 2 MDa) was purchased from Sigma. 200 l 

of a 5 % (w/w) dextran solution in nanopure water (≥ 18 MΩ, purelab ultra, ELGA 

LabWater) were allowed to dry in air at 37 °C on glass cover slips which were glued to 

12 mm diameter steel discs. Samples were then rinsed for 1 minute under a flow of 

nanopure water. Experiments were performed in 150 mM KCl, 10 mM Tris, pH 7.8 at 

160 nm/s pulling velocity. 

3.2.2 AFM Instrumentation 

A commercial AFM (Nanoscope IIIa equipped with PicoForce scanner and 

module, Veeco, Santa Barbara, CA, USA) was extended with a PC equipped with 16-bit 

data acquisition electronics (E-6052, National Instruments, Munich, Germany). The 

cantilever deflection signal was first low-pass filtered at 100 kHz by a passive 

hardware filter to avoid aliasing and then digitized at 300 kHz using IgorPro 

(Wavemetrics, Lake Oswego, OR, USA) (Figure 3.1). Spring constants of the 

cantilevers, κcant, were calibrated in buffer using thermal fluctuation analysis (section 

2.2.2.4). The cantilevers used were the short thin-legged NP-S and Microlever B from 

Veeco, the short OMCL-TR 400, the BioLever A (BL-RC150 VB), and the "BioLever 

mini" (BL-AC40TS) [422] from Olympus (Tokyo, Japan). Cantilever specifications are 

given in Table 3.1. 

cantilever  shape* 
length 
(µm) 

width 
(µm) 

thickness 
(µm) 

approx. κcant 
(N/m) 

approx. ν0 
(kHz)** 

NP‐S  v  115  17  0.6  0.31  13 

MCLT‐B  r  200  20  0.6  0.04  3.5 

OMCL‐TR 400  v  100  15  0.4  0.10  8 

BioLever A  r  60  30  0.18  0.05  10 

BioLever mini  r  38  16  0.2  0.12  30 

Table 3.1 Specifications of the cantilevers used for experiments. *Cantilevers were either V‐shaped (v) 
or rectangular (r). **The approx. resonance frequency of the cantilever in buffer solution is given. 
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3.2.3 Extracting Visco‐Elastic Properties 

Deflection curves were analyzed using custom macros and built-in features of 

IgorPro. The curves were first high-pass filtered at 400 Hz (also to reduce contributions 

of 1/ν noise) and then divided into windows of equal length. Each window was 

processed by calculating the power spectral densities (PSD) from segments of 512 

points applying a Hanning-type window function and allowing a 50 % overlap of the 

segments. Thus nine Fourier spectra were averaged for each 8.3 ms raw data window 

(Figure 3.2 and Figure 3.6) and the resulting PSD were fitted with Equation 3.2. 

Calculation and fitting of the PSD was independently double-checked using the 

thermal tune function of the AFM and Origin software (Northampton, MA, USA). To 

obtain the molecular visco-elastic response according to Equations 3.3-3.5, the visco-

elasticity curves recorded during surface approach were smoothed and subtracted 

from the corresponding visco-elasticity curves recorded during surface retract as has 

been recently described [415]. 

 

Figure 3.1 Scheme of  the extended AFM  setup.  (A) A commercial PicoForce AFM  (PFC) with a beam 

deflection detection system was extended with a PC and additional data acquisition hardware  (DAQ). 

The  signal  was  low‐pass  filtered  prior  to  acquisition.  The  PFC  was  used  to  drive  the  piezo  during 

conventional  force‐extension  experiments.  (B)  Molecule  and  cantilever  were  treated  as  two 

independent Voigt‐Kelvin elements (each composed of a spring and a dashpot) acting in parallel on the 

AFM tip, where the cantilever motion is monitored.  
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3.3 RESULTS AND DISCUSSION 

3.3.1 Extraction of Visco‐Elastic Parameters 

In contrast to the force-clamp technique recently introduced by Kawakami and 

co-workers [348], here the thermal cantilever motion was analyzed as a function of tip-

sample separation while a molecule was stretched between the tip of the cantilever and 

the sample surface. A schematic of the AFM setup used is shown in Figure 3.1A. The 

force curve shown in Figure 3.2A was recorded while stretching a dextran molecule 

and, thus, exhibited the characteristic force-extension pattern [319,338] discussed in 

section 2.3.2.3 - Dextran. Briefly, the plateau at forces around 0.8 nN is caused by a 

force-induced chair-boat transition of the glucopyranose rings, which leads to 

elongation of the whole molecule.  

As a first step in the analysis, the thermal cantilever motion was extracted from 

the force curve using offline high-pass filtering. Then the curve was divided into small 

windows (Figure 3.2B, boxes) and for each window the thermal noise PSD was 

calculated (Figure 3.2C, D). According to the simple harmonic oscillator model 

[297,423], the motion of a thermally excited AFM cantilever can be described by the 

following differential equation 

)(F txmxγEx thermalzzz     3.1 

in which Fthermal(t) is the stochastic thermal force, xz denotes the tip displacement, E is the 

elasticity,  the damping coefficient, and m the effective mass of the cantilever-molecule 

system. This simple model then allows E, ,  and  m to be obtained from the PSD 

according to [423,424] 

  2222

2

)2()2(
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πνγπνmE

γTk
νx B


   3.2 

where 2)(νx  is the frequency (ν) dependent PSD. Since the motion of the cantilever 

is detected at its tip, the cantilever and the molecule were considered as two 

independent Voigt-Kelvin elements acting in parallel (Figure 3.1B) [425]. Consequently, 

the visco-elastic properties of the system can be expressed by 

molcant EEE    3.3 

intγγγ cant    3.4 

molcant mmm    3.5 

where the index cant denotes the quantities associated with the untethered, free 

cantilever. The molecule contributes linearly (Emol) to the system’s elastic modulus E, 

and with its effective mass mmol to the total mass m. The damping coefficient is 
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decomposed into the initial contribution of the cantilever cant, and the contribution int 

arising from the interaction. Conceptually, int contains the dissipation by the molecule 

itself as well as damping induced by the altered boundary conditions at the tip 

(partially clamped end) [426].  It was shown that Ecant, cant, and mcant are readily 

extracted from the motion of a free cantilever and allow hydrodynamic and surface 

effects to be excluded [415,424]. Thus, by applying Equations 3.2-3.5, Emol, int, and mmol 

are obtained. In the following, the discussion will focus on the visco-elastic response of 

the molecule (elastic modulus and damping coefficient) since a change in effective 

mass is not detected in single-molecule manipulation experiments34 [347,348,425].  

 

Figure  3.2  Analysis  of  thermal  cantilever 

motion  in a force‐extension experiment.  (A) 

Typical  force  trace  of  a  single  dextran 

molecule  recorded  with  a  BioLever  mini, 

exhibiting the characteristic plateau at forces 

of ≈ 0.8 nN.  As  an  example,  the  analysis  of 

two  segments  (marked  I  and  II)  is  shown  in 

(B‐D). (B) Time‐series of the deflection signal 

of window  I after high pass  filtering.  (C),  (D) 

PSDs  calculated  from  the  deflection  in 

windows  I  (circles  in C) and  II  (squares  in D). 

The  PSDs  are well  described  by  fitting with 

Equation 3.2 (solid lines) and reveal the visco‐

elastic  properties  of  the  system  at  that 

specific  instance.  The  dashed  line  in  C 

represents a fit to a PSD calculated from the 

deflection of a  free cantilever 160 nm above 

the surface. 

3.3.2 Measurement Noise Depends on Window Size and Cantilever Type 

To evaluate the effect of the window size on the signal-to-noise (S/N)-ratio of 

the experiments, force-extension curves, where no molecule had attached to the AFM 

tip, were analyzed. For these curves, the peak noise in the elasticity and damping 

coefficient was measured along the tip-sample separation in a range between 0 and 

160 nm. One should note that there is a negligible dependence of the elasticity and 

damping coefficient on tip-sample separation in this range (Figure 3.3). As expected, 

this analysis showed that the peak noise in the elasticity and damping coefficient 

depended on the size of the window (Figure 3.4). Increasing the window size increases 

                                                           
34 The effective mass of an oscillating cantilever in liquid is > 10-12 kg. A single 2 MDa dextran 
molecule attached to a cantilever would cause a mass increase of about 3∙10-21 kg. 
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the time period available to calculate the frequency components of the motion of the 

cantilever, and thus results in reduced noise (Figure 3.4A, C) and, consequently, a 

better apparent S/N-ratio (Figure 3.4B, D). 

Interestingly, the S/N-ratio depended on the type of AFM cantilever used. In 

Figure 3.4, the results of five types of cantilevers are shown. These cantilevers differ in 

their dimensions, spring constants, and resonance frequencies (see Table 3.1). Choosing 

 

Figure 3.3 Distance dependence of visco‐elastic parameters. The elasticity  (A) and damping coefficient 

(B) of  five  cantilever  types are  shown as a  function of  tip‐sample  separation. Curves were  recorded at 

160 nm/s pulling  velocity on a dextran  surface and analyzed using a window  size of 50 ms. The  traces 

show no  significant distance dependence of  the elasticity  and damping  coefficient  in  the  range of  tip‐

sample separation studied here. 

Figure 3.4 Signal‐to‐noise ratio depends on window size and cantilever type. The noise in measurement 

of elasticity  (A) and damping  coefficient  (C)  is  shown  for  five different  cantilevers as a  function of  the 

window  size.  As  expected,  increasing  the  time  available  for  monitoring  the  cantilever  motion  and 

calculating the PSD reduces the noise. The apparent signal‐to‐noise ratios were calculated by comparing a 

peak elasticity and damping of Emol = 100 pN/nm and γint = 0.3 µNs/m with the noise values from (A) and 

(C). While  all  cantilevers  showed  a  similar  performance  in  elasticity measurements  (B)  the  damping 

information  (D) could only be extracted from the measurements using the small rectangular cantilevers 

(BioLever A and BioLever mini). 
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a novel small cantilever (BioLever mini) with high resonance frequency (≈ 30 kHz in 

solution) significantly improved the S/N- ratio of the dynamic measurements. While all 

cantilevers had similar performance in measuring the elasticity (Figure 3.4A, B), only 

the BioLever mini had a sufficiently good S/N-ratio to resolve damping coefficients 

(Figure 3.4C, D). One probable reason for the better S/N-ratio of the BioLever mini is its 

significantly higher resonance frequency. However, other size-dependent effects must 

be responsible for the drastic difference in S/N-ratios. To further investigate this 

phenomenon, the noise of five types of cantilevers that span a wide range of sizes and 

resonance frequencies (see Table 3.1), was determined at a fixed window size of 75 ms 

and plotted as a function of cantilever damping coefficients and resonance frequencies 

(Figure 3.5). These data highlight that the damping coefficients and thus the size of the 

cantilevers have a very strong influence on their dynamic S/N-ratio. For the 

polysaccharide dextran, a reasonable trade-off between S/N-ratio and time-resolution 

was achieved using the BioLever mini and a window size of 8.3 ms. At a pulling speed 

of 160 nm/s per second, this window size yields one dynamic measurement every 

1.3 nm. If the pulling speed is reduced tenfold (to 16 nm/s) as in a recent paper by 

Kawakami et al. [347], one could obtain one measurement per 1.3 nm with an improved 

S/N-ratio by a factor of ≈ five. 

 

Figure  3.5  Cantilever  sensitivity 

depends  on  resonance  frequency  (A) 

and  cantilever  damping  (B).  The  peak 

noise  in  elasticity  (open  squares)  and 

damping  (filled  circles)  measurements 

was  determined  for  different 

cantilevers,  which  are  described  in 

detail  in  section  3.2.2.  Curves  were 

recorded  at  160 nm/s  pulling  velocity 

and analyzed as described for Figure 3.4 

with a window size of 75 ms. Evidently, 

the  noise  of  the  cantilevers  increases 

with  size  and  damping  but  decreases 

with  increasing  resonance  frequency. 

The  damping  coefficients  of  the 

cantilevers  used  for  the  abscissa  in  (B) 

were  recorded  160 nm  from  the 

surface. 
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3.3.3 Visco‐Elasticity of Dextran 

Figure 3.6 shows the elasticity and damping coefficients associated with two 

dextran molecules.  For direct comparison with the results obtained using other 

approaches, Emol and mol were plotted as a function of the applied force (Figure 3.6A, 

C). The curves were normalized to show the monomeric elasticity (Emon) and damping 

coefficient (mon) (Figure 3.6B, D), as has been recently described [347]. This is necessary 

as the extended dextran fragments typically differ in lengths and Emol and mol 

reciprocally scale with dextran length. The molecular response revealed the typical 

visco-elastic behavior of single dextran molecules undergoing the chair-boat transition. 

At an applied force of  0.3 nN, an increase in Emon and mon due to the stretching of the 

polysaccharide chain was observed. Broad maxima in Emon and mon were reached at a 

force of  0.6 nN before a decrease during the chair-boat transition. As at the low-force 

regime, further stretching of the polysaccharide chain increased Emon and mon. Thus, 

spring constant and damping factor increase along with increasing force and molecular 

extension. Hydrodynamic friction between fluid and polymer could be one source for 

increasing damping factors. If that was true, the damping factor would rise by 

)F(Δ6int molf xπηγ    3.6 

 

Figure 3.6 Dynamic  response of  single dextran molecules. The molecular elasticity  (A)  and damping 

coefficient  (C) of  two single dextran molecules are shown as a  function of  the applied  force. The  two 

molecules stretched had lengths corresponding to 145 (filled circles) and 129 (open squares) monomers 

and show the typical visco‐elastic behavior of dextran. Broad maxima in the elasticity and damping are 

detected  at  a  force  of ≈ 0.6 nN  prior  to  a  decrease  in  elasticity  and  damping  due  to  the  chair‐boat‐

transition. In (B) and (D) the curves from (A) and (C) were multiplied with the number of monomers to 

yield the response of an individual pyranose subunit. 
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where Δxmol(F), the force-dependent molecule extension, represents the effective 

hydrodynamic radius of the polymer [348]. This dependence is clearly not observed. 

Moreover, at molecular extensions of ≤ 100 nm typical for the experiments presented 

here, the damping factor should be in the order of 10-9 Ns/m, which is two orders of 

magnitude lower than the damping factors observed. Consequently, friction is 

supposed to originate from internal conformational changes [348]. More precisely, the 

rough energy landscape of dextran, which is due to the multitude of possible 

conformations of the pyranose ring, seems to be responsible for high local friction 

[427]. As mentioned above the visco-elastic properties of single dextran molecules 

measured are in good agreement to those previously reported [347,348].  

Here, the (molecular) relaxation time, τ, which is given by the ratio of interaction-

induced damping and elasticity following 
molE

γ
τ int , has been calculated (Figure 3.7). 

Surprisingly, there is no clear dependence of the relaxation time on the applied force. 

In theory, the structural transition should be accompanied by a peak in the relaxation 

time [427], just as was observed for unfolding of bR [415]. In addition, the relaxation 

times found for dextran are much smaller than those of individual membrane proteins 

[415] although one would expect similar values. 

 

Figure  3.7  Molecular  relaxation  times  calculated  for  the  two  dextran  molecules  of  Figure  3.6. 

Unexpectedly, there is no clear dependency on the applied force and no maximum near 0.6 nN is visible. 

Importantly, it seems that the molecular damping coefficients correlate with the 

molecular elasticities (Figure 3.6 and Figure 3.7). As mentioned above, such coupling of 

elastic and viscous interactions could indicate direct crosstalk of the elastic component 

into the apparent damping behavior [426].  
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3.4 CONCLUSIONS 

The past decade has seen a dramatic increase in our understanding of the 

mechanical properties of biological macromolecules and their roles in biological 

processes [317,417]. In single-molecule force-extension experiments, researchers have 

studied the mechanical properties of biomolecules in response to external pulling 

forces [334,417,428]. In this chapter, it has been shown that the apparent  dynamic 

visco-elastic properties of single bio-molecules can be calculated from the thermal 

motion of the AFM cantilever during conventional force-extension experiments. The 

results presented are in good agreement with those recently reported [347,348] but 

have been acquired with a time resolution of less than ten milliseconds. This is at least 

one order of magnitude faster than other experimental approaches that are based on 

the analysis of the PSD of cantilever motion [347,348]. Since the proposed approach 

only requires choice of the proper type of cantilever it could be directly applied to 

study protein and RNA unfolding and the dynamic properties of complex 

biomolecular systems. 
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 Chapter 

4 

DIGITAL FORCE‐FEEDBACK FOR SINGLE‐MOLECULE 

FORCE‐CLAMP SPECTROSCOPY ON PROTEINS 

4.1 INTRODUCTION 

Protein folding is a challenging topic in biological research. For decades 

ensemble methods have been used to unravel the mechanisms and interactions 

underlying protein (un-)folding [429]. Albeit providing a plethora of information about 

the folding process, these methods represent an averaged view of the processes. 

Therefore, it is difficult to characterize rarely populated (un-)folding intermediates 

that, as a consequence of multidimensional folding funnels, are likely to occur in some 

of the multiple folding pathways (see section 1.2.1.1). New methodological approaches 

tackle this intriguing task.  

Single-molecule techniques provide information on protein (un-)folding and 

reveal reaction pathways that cannot be revealed by ensemble measurements [428]. 

SMFS, as one of these techniques, probes both single water-soluble and membrane 

proteins to gain insights into e.g. the relative population of various (un-)folding 

pathways, energy landscapes, and interactions stabilizing the native protein (see 

section 2.4.2). In conventional SMFS, a protein is stretched at a constant velocity and 

the unfolding of domains results in a saw-tooth F-D pattern. DFS experiments, where 

the loading rate is modulated by varying the pulling velocity, are used to characterize 

the energy landscape (see section 2.3.2.4) that governs the mechanical behavior of 

complexes [318] or (membrane-)proteins [403,405,406]. In these experiments the force 

applied changes with time because the molecular handles (e.g. already unfolded 

polypeptide segments) used to tether the molecule between tip and support act as a 

non-linear entropic spring. For this reason, the loading rate experienced by the 

molecule is not constant during the experiment and complicates data interpretation.  

Lately, Fernandez and co-workers introduced an alternative approach, the so-

called force-clamp technique. Therein, a constant force is applied to a bond, complex, 
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or protein using an AFM-based force-clamp apparatus [331-333,410,412,430]. The life 

time of a bond or protein decays exponentially with the applied force [333,410,412]. 

The advantage of this technique is that life times and, maybe more importantly, life 

time distributions can be directly measured at well-defined loads [430]. Furthermore, 

force-clamping enables new kinds of experiments such as monitoring folding 

trajectories of single proteins under force to be performed [331,410].  

In contrast to conventional SMFS, where the piezoelectric actuator is retracted 

from the tip with a constant velocity, force-clamp experiments require the surface to 

move in a cantilever force-dependent manner. Thereto, the cantilever deflection is 

monitored and compared to a user-defined set-point. The difference, the error signal, is 

fed into a feedback controller that adjusts the position of the piezoelectric actuator to 

reduce the difference. High-performance force-clamp instruments are typically custom-

made and use custom analogue electronics for feedback control [332,333,410,412]. At 

the same time as the developments presented in this chapter were initiated, a software-

based proportional-integral-differential (PID) controller was proposed [348]. Unlike 

analogue force-clamp machines, this instrument responded slowly to setpoint changes.  

In this chapter, a simple, fast, and all-digital feedback loop system for use in 

force-feedback single-molecule experiments is presented. The performance is 

demonstrated by unfolding a protein construct consisting of five Ig27 domains (Ig275) 

and the integral membrane protein Na+:H+-antiporter NhaA from Escherichia  coli. 

Importantly, it will be demonstrated that the system is capable of easily combining 

constant-velocity SMFS with the force-feedback mode and performing complex 

experimental cycles that include extending, relaxing, and holding single molecules. 

4.2 EXPERIMENTAL PROCEDURES 

4.2.1 Support Preparation  

Steel discs of 12 mm diameter were etched for 1 min in concentrated 

hydrochloric acid, rinsed with deionized water, and cleaned with ethanol. 

Subsequently, teflon coated polyethylene foil patches 13 mm in diameter were glued to 

the steel discs using Loctite 406 superglue. Mica discs of 6.4 mm diameter were 

manually punched from large mica sheets and glued to the steel-supported teflon foil 

using Araldit Rapid (Carl Roth, Karlsruhe), a two-component adhesive. Before the 

experiments, layers of mica were cleaved off using adhesive tape. Thus, a clean and 
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over several hundreds of square micrometers atomically flat surface was exposed that 

was suitable for sample adsorption.  

Template-stripped gold [431,432] was prepared by depositing a thin layer of 

gold onto freshly cleaved mica sheets using a SCD 050 sputtering device (Bal-Tec, 

Balzer, Principality of Liechtenstein). Gold layer deposition was performed at ambient 

temperature. Afterwards, the mica sheet was cut into small squares of ~ 12 - 15 mm 

size. Gold pieces were glued to HCl-etched steel discs with the gold surface facing the 

steel disc using Epo-Tek 377 (Polytec PT, Waldbronn) and cured at 150 °C for 1 h. Prior 

to experiments, the mica surface was mechanically removed, exposing a clean, flat gold 

surface. 

4.2.2 Sample Preparation 

Engineered Ig275 [433], was adsorbed to template-stripped gold for 25 min in 

PBS (138 mM NaCl, 2.7 mM KCl, 10 mM phosphate, pH 7.4) buffer. AFM experiments 

with Ig275 were performed in PBS. Native purple membrane from H. salinarium [434] 

was adsorbed to freshly cleaved mica in 300 mM KCl, 20 mM Tris-HCl, pH 7.8 [287]. 

This buffer solution was also used for the bR experiments [313]. Two-dimensional 

crystals of NhaA [435] were immobilized on freshly cleaved mica in 150 mM KCl, 10 % 

(v/v) glycerol, 25 mM K+-acetate, pH 4.0 for 20 min. Experiments on NhaA were 

performed in buffer solution containing 150 mM KCl, 50 mM NaCl, 20 mM Tris-HCl at 

pH 7.7. After AFM imaging of immobilized membrane protein patches an unperturbed 

area was selected to unfold individual proteins. The proteins used were kind gifts from 

D. A. Smith (Ig275), Leeds, D. Oesterhelt (bR), Munich, and C. Ziegler (NhaA), 

Frankfurt. 

4.2.3 Force Spectroscopy Measurements  

A commercial AFM (PicoForce, Nanoscope IV, Veeco, Santa Barbara, USA) was 

extended with two server-grade PCs equipped with 16 bit data acquisition electronics 

(E-6036 and M-6259, National Instruments, Munich, Germany) (Figure 4.1). For data 

capturing, the deflection and the z-piezo signal were digitized at 10 kHz using the M-

series card and IgorPro 5.0 (Wavemetrics, Lake Oswego, USA). For force-feedback 

control, the deflection signal was first low-pass filtered at 1 kHz using a low noise pre-

amplifier (SR560, Stanford Research, Sunnyvale, USA) before it was digitized and 

processed in the software-based PID controller (see below). To avoid two nested 
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feedback loops, the z-feedback loop of the commercial AFM was deactivated during 

the experiments. 

For all force spectroscopy experiments V-shaped 100 µm long SiN3 cantilevers 

with nominal spring constants of 90 pN/nm (OMCL-TR 400, Olympus, Tokyo, Japan) 

were used. The spring constant of each cantilever was measured in liquid using 

thermal fluctuation analysis [293,436] (see section 2.2.2.4) prior to experiments. Proteins 

were attached to the AFM tip by pushing it onto the surface with a contact force of 1 to 

2 nN for 1 to 2 s. Although the nature of the resulting attachment is unknown, it is 

sufficiently strong to withstand stretching forces of ~ 2 nN [312-315,366,370,437-439]. 

After attachment, the cantilever was retracted 10 to 25 nm from the surface with a 

speed of 500 nm/s to overcome non-specific tip-surface interactions. Beyond this 

distance a defined force was applied to the protein molecule using the force-clamp 

mode. After a force-clamp measurement, the cantilever was separated another 400 nm 

from the surface to ensure that molecules still bound to the AFM stylus were detached. 

To reduce noise and thermal drift of the system, a glass bell was used to isolate the 

AFM from acoustic noise and temperature variations. In addition, the microscope was 

allowed to equilibrate for at least 1 h.  

 

Figure 4.1 Schematic of the extended AFM setup for force‐feedback control. The setup  is based on a 

commercial PicoForce AFM. The signal from the photo detector was low‐pass filtered and digitized in PC 

1. The error between the deflection setpoint and the deflection signal was calculated and fed  into the 

PI‐controller. The resulting z‐position correction signal, zcorr, was used to drive the z‐piezo through the 

PicoForce  AFM  controller  (PFC).  PC  2  simultaneously  acquired  the  deflection  signal  from  the  photo 

detector and the z‐position signal from the capacitive sensor of the z‐piezo. 
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4.2.4 Data Analysis 

Data analysis was performed using IgorPro 5.0. For Ig275, life times of structural 

intermediates were determined by measuring the length of the plateaus between the 

initial loading (Figure 4.2A, beginning of stage 1) and rupture events. For membrane 

proteins, such as NhaA, the life time was measured differently. As membrane proteins 

are anchored within the lipid membrane, the force is exclusively applied to structural 

elements directly connected to the cantilever tip. Other structural elements are not 

loaded until preceding elements unfold. Hence, the life time of a structural segment is 

the time between two consecutive rupturing events.  

4.2.5 Software‐Based PI(D) Controller  

The PID controller was entirely software-based and programmed in IgorPro 5.0. 

The deflection signal from the microscope was low-pass filtered with a cut-off 

frequency of 1 kHz and acquired at 10 kHz in a voltage rang from -5 V to +5 V using 

the E-series card (Figure 4.1). The deflection signal of the free cantilever was 

determined before each experimental cycle and served as the zero-force reference. In 

the feedback mode, the deflection signal was continuously monitored by a do‐while 

loop. During each feedback cycle, the proportional error (P) between the set-point and 

the actual deflection was obtained by calculating the difference between the two 

values. The mean of the error (P) and the error calculated in the preceding cycle gave 

the integral error (I). The differential error (D) was the difference of the error (P) and 

the preceding error. The correction value for the z-piezo position, zcorr, is then given by 

DdgIigPpgzcorr    4.1 

where pg, ig, and dg denote the proportional, integral, and differential gains, 

respectively. The gains are weighting factors that were adjusted experimentally. Each 

do‐while loop took ~ 200 µs to be completed, thus allowing the controller to update the 

zcorr signal at ~ 5 kHz. 

In the experiments shown here, dg was set 0, which lead to a PI-controller that 

was easier to tune. To prevent overshooting while compensating for large errors, an 

anti-reset-windup function was introduced. It sets I = 0 if P was larger than a pre-

defined threshold. The threshold value was adjusted empirically.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 PI(D)‐Controller 

A force-clamp apparatus was built around a commercial AFM through 

extension with two server-grade PCs for data acquisition and feedback control (Figure 

4.1). The performance of any feedback controller depends on fine-tuning of the system, 

i.e. careful adjustment of the gains. Here, the differential gain, dg, was set to 0, 

simplifying the system as only proportional and integral gains had to be adjusted. 

Albeit differential control reduces overshooting, it hypersensitizes the system to 

oscillatory behavior, which makes it problematic to implement in AFM applications. 

Indeed, overshooting was observed in the first tests. This overshooting could be 

reduced by either lowering the gains and thus slowing down the response time of the 

system, or introducing an anti-reset-windup that activates the integral control only in 

the vicinity of the set-point. The latter almost completely eliminated overshooting 

while keeping the response time short (Figure 4.2A, inset). Proportional and integral 

gains were adjusted by evaluating the feedback performance in terms of response time 

and settling behavior. 

For fine-tuning, unfolding events of Ig27 and NhaA were analyzed. Figure 4.2A 

shows a representative time-course of force and molecular extension (red and blue 

traces) for Ig275. The unfolding of each Ig27 domain increased the molecule's length 

and shortly decreased the force applied to the molecule. The latter is caused by the 

finite response time of the feedback loop, i.e. the time needed to reach the force set-

point. Analysis of such unfolding events revealed that the typical response time is in 

the order of ~ 6 ms (Figure 4.2A, inset), which is comparable to the performance of the 

custom-built analogue systems [333,412]. Occasionally, faster response times (> 3 ms) 

could be observed. Because it takes only ~ 200 µs for the feedback loop to complete an 

iteration, i.e. the position of the piezoelectric actuator is updated at a frequency of 

~ 5 kHz, it seems feasible that the response time of the feedback loop can be improved. 

The digital feedback loop has several advantages. (i) Analogue feedback 

systems may introduce noise during signal processing which digital systems do not. 

Although analogue systems perform calculations faster, digital systems may be 

preferred, if sufficiently fast, because calculations performed by the digital feedback 

system are highly reproducible. (ii) Analogue systems are prone to drift, e.g. due to 

thermal fluctuations or aging of the components they are composed of. In contrast, the 

digital feedback loop is stable as no thermal drift or aging effects can occur. (iii) Digital 
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implementation of the feedback loop allows the system to be controlled through a 

software interface and the addition and removal of experimental features (such as 

filters or anti-reset-windup) without hardware changes. In summary, a digital setup 

makes AFM experiments very versatile and increases the flexibility of experiments by 

enabling different modules such as force-feedback and constant-velocity to be 

combined. For example, transmembrane α-helices G, F, E, D, C, and B of bR were 

unfolded and extracted prior to loading transmembrane α-helix A with a force of 

~ 80 pN (using a z-ramp with constant velocity; Figure 4.3A, red trace). With a delay of 

0.1 ms, the force-feedback was turned on and maintained the load on helix A until it 

was finally unfolded and extracted from the membrane (Figure 4.3, light blue and red 

segments). The modular design of digital feedback loops allows sophisticated 

mechanical single-molecule experiments in which single molecules are alternately 

stretched, relaxed, or clamped at defined forces or distances. 

Figure 4.2 Mechanical unfolding of single  Ig275 molecules.  (A) Time course of  the unfolding of single 

Ig27 domains under constant force  (blue trace: extension; red trace: force). Unfolding of each domain 

(encircled numbers) resulted in a step‐wise increase of the molecular extension (blue trace) and in short 

peaks in the force trace (red). The inset shows a magnified region of the time course of the force signal 

detected during unfolding of a single Ig27 domain. Events corresponding to unfolding of Ig27 at constant 

velocity  (black  trace)  are marked with dashed  lines.  The  red  and black  traces were  low‐pass  filtered 

using  a  cut‐off  frequency of 1 kHz.  (B)  Schematic  representation of multi‐domain  Ig27  (PDB‐ID: 1TIT) 

during mechanical unfolding. Here, a cartoon with broken lines is shown; in the real experiment the tip 

surface distance increases as in (A) (blue trace). Numbers shown correspond to those used in (A). 
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4.3.2 System Stability 

To apply a constant force on the molecule during a force-clamp experiment the 

stability of the digital feedback system is crucial. The digital feedback loop itself is very 

stable since it has no hardware components that may introduce uncertainties. 

Nevertheless, some parts of the system, especially the cantilever, are susceptible to 

drift. This is important in the context of force-clamp applications as cantilever drift 

leads to significant errors in the force measurement. If the system is not in thermal 

equilibrium, temperature gradients within the AFM head and the liquid surrounding 

the cantilever will occur, e.g. due to heat generation by the laser. Therefore, the 

cantilever drifts, i.e. it slowly bends. This is caused by differences in thermal expansion 

of the cantilever material (e.g. silicon or silicon nitride) and the reflective coating (e.g. 

chromium, aluminum, and/or gold). This drift can be significantly reduced by allowing 

the system to thermally equilibrate. A glass bell creates an acoustically and thermally 

isolated compartment and allows the AFM to equilibrate. Even in such a thermally 

equilibrated system a considerable variety of drifting behaviors within a set of 

cantilevers can be observed [410]. Consequently, cantilevers were screened for low 

drift before later used in force-clamp measurements [331,333]. The drift of these 

cantilevers was neglectable in the time range of single experiments, which was ≈ 7 s. 

For longer-lasting experiments, drift-less cantilevers such as the recently developed 

torsion-levers [440] would be beneficial. 

 

Figure  4.3 Combination of  constant‐velocity  and 

force‐feedback modules. (A) Force (red trace) and 

extension  (blue  trace)  time  course. 

Transmembrane  α‐helices  G  to  B  of  a  single  bR 

molecule  were  unfolded  at  a  constant  pulling 

velocity  of  500 nm/s  (red  trace,  stages  1‐3 

correspond to unfolding of α‐helices G and F (1), E 

and  D  (2),  and  C  and  B  (3)).  Then,  the  force‐

feedback was turned on (arrow) to probe the  life‐

time (stage 4,  light red and blue segments) of the 

lipid membrane‐embedded α‐helix A. After α‐helix 

A unfolded, the surface further retracted from the 

cantilever tip. (B) Schematic representation of the 

unfolding pathway of bR. 
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4.3.3 Force‐Clamp Unfolding of Ig275 

Multi-domain Ig27 mechanics has been extensively studied using SMFS, 

making it an ideal system for testing the feedback system. For later comparison with 

force-clamp data, Ig27 domains were first unfolded at a constant velocity of 1.3 µm/s 

and saw-tooth patterned force-distance curves were obtained (Figure 4.2A, black trace). 

The peak spacing (~ 25 nm) and the peak forces (between 200 and 300 pN) were in 

good agreement with data reported previously [315]. Then, Ig27 domains were 

unfolded using the force-clamp protocol. Like the force-distance curves from constant-

velocity SMFS, the extension curves obtained in the force-clamp mode showed a broad 

length distribution that is due to the attachment the AFM stylus at a various position 

along the polypeptide chain. Only curves having three or more steps of 23 nm were 

considered for further analysis. This step size is the extension observed during the 

unfolding of single Ig27 domains at 105 pN stretching force in conventional force 

spectra (Figure 4.2A, dashed lines; see also Ref. [332]).  

The elongation curves of force-clamp experiments contain several regions of 

varying duration (Figure 4.2A, blue trace). While all extension curves showed the 

typical 23 nm steps, their evolution over time never looked the same, demonstrating 

that the unfolding of Ig27 domains is a stochastic process (see also Ref. [333]). The life 

times of individual domains of the molecule shown here varied from 20 ms to 1.2 s 

(Figure 4.2, state 1 and 5). After the last Ig27 domain had unfolded, the polypeptide 

was still tethered between AFM tip and support (figure 2A, state 6). In a last step, the 

molecule detached from the tip or the support (Figure 4.2A, state 7). Figure 4.2B 

schematically illustrates the consecutive but random unfolding of individual Ig27 

domains. The extension curve from the force-clamp experiment nicely correlate with 

data obtained from constant-velocity SMFS experiments (Figure 4.2A, grey dashed 

lines). 

4.3.4 Force‐Clamp Unfolding of NhaA 

Initial force spectroscopy data on unfolding of bR validated this approach for 

the study of interactions that govern stability and folding of membrane proteins 

[313,366]. Peaks in force spectra of bR, as well as other membrane proteins, correlate to 

the sequential unfolding of individual structural domains. Hence, detailed insights into 

stabilizing interactions were achieved at the sub-molecular level. Further applications 

of SMFS, such as DFS, or force modulation spectroscopy were used to probe stability 

and the unfolding pathways of bR at varying mechanical loads [405,415]. These data 
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together with the recent modeling of the unfolding process in  silico [215,216] have 

contributed to the understanding of complex molecular interactions within membrane 

proteins and their assemblies. Another example of a membrane protein studied with 

SMFS is NhaA, a Na+:H+ antiporter from E. coli. Recent studies exploiting SMFS in the 

conventional constant-velocity mode allowed comprehensive analysis of molecular 

interactions within NhaA and revealed the on and off switching of the protein function 

[311,400]. Here, the first experiments probing the interactions of a membrane protein, 

i.e. NhaA, by force-clamp SFMS are presented. 

Mechanical unfolding of individual NhaA molecules in constant-velocity SMFS 

experiments results in force-extension traces of ≈ 100 nm length that contains a 

characteristic pattern of force peaks [312] (Figure 4.4, black trace). Transmembrane 

domains of NhaA have certain probabilities to unfold individually or together with 

domains directly connected by the peptide backbone. Using the three-dimensional 

crystal structure of NhaA [441], it was possible to precisely assign individual peaks in 

the force spectra to structural domains.  

 

Figure 4.4 Force‐induced unfolding pathways of NhaA. Top: A single NhaA molecule was attached  to 

the AFM stylus with its C‐terminus and subsequently unfolded applying a constant force (the blue trace 

shows  the  extension  of  the molecule)  or  stretching  at  a  constant  velocity  (black  trace  represents  a 

typical F‐D trace). Corresponding unfolding intermediates are numbered and marked with dashed lines. 

The  inset  shows  a  magnified  region  of  the  constant  force  extension  trace,  indicating  that  certain 

structural domains exhibited only a marginal  stability and  life  times  shorter  than 10 ms  (arrows). The 

reconstructed unfolding pathway of a single NhaA molecule is given at the bottom.  
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Similar to titin unfolding experiments, extension traces obtained in force-clamp 

SMFS on NhaA varied in length, because the AFM stylus bound to the protein at 

various locations in its termini or extramembrane loops. Only traces ~ 100 nm in length 

were further considered, as they resulted from the sequential unfolding of NhaA 

molecules into a fully stretched conformation [312]. These F-D curves originate from 

proteins stretched from their C-terminus, because previous studies showed that the N-

terminal end of NhaA is not accessible for the AFM tip at the conditions used [400]. A 

characteristic extension trace is shown in Figure 4.4 (blue trace). The trace contains 

several plateaus where the contour length of the polypeptide remains constant for 20-

300 ms. Elongations indicate unfolding steps. However, the stability of some 

intermediate states was so low (< 10 ms) that they were hard to resolved (Figure 4.4, 

inset, marked with arrows). 

By measuring the length of the polypeptide chain at every step, the unfolding 

pathways of NhaA under a constant force was reconstructed (Figure 4.4, bottom). 

Analysis of 12 extension traces shows that unfolding pathways followed by molecules 

under a constant load were similar to those observed in conventional SMFS 

experiments. This is not surprising. A mechanical load of the same order of magnitude 

and in the same direction (normal to the membrane plane) is applied to the protein. 

Thus, the same molecular interactions within the protein are probed. Comparing 

spectra of force-clamp and constant-velocity SMFS further validates this conclusion 

(Figure 4.4, dashed lines). Each stable intermediate detected in the force-clamp trace 

correlated with a peak in the force-extension spectrum of NhaA. As shown in the 

magnified region (Figure 4.4, inset, marked with arrows), when switching from state 2 

to 3, NhaA passed through two short-living intermediate states. At the same extension 

the constant-velocity trace has the triple peak that is characteristic for the unfolding of 

transmembrane domains IX and X [312]. These domains contain multiple kinks and 

short non-helical regions that result in a low mechanical stability [441]. 

The short α-helical pair VII and VIII of NhaA has the highest stability in 

conventional SFMS and force-clamp experiments. Stage 4 (Figure 4.4) reflects 

unfolding of helix VIII, which is linked to helix VII by a 3 aa long loop and withstood a 

force of 70 pN for ~ 500 ms before cooperative unfolding as a helical pair. In 10 of 12 

extension traces recorded on NhaA this domain had the longest life times at loading 

forces of 50-75 pN. However, careful analysis of the force-clamp data revealed an 

additional event prior to unfolding of this helical pair. A minor increase of 1.5 nm in 

the contour length was seen in the extension trace, but not in constant-velocity spectra. 
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Remarkably, this extension was not immediately followed by the unfolding of 

transmembrane α-helices indicating a stable conformation. The observed step probably 

reflects a conformational change of the transmembrane domains but further 

experiments should be designed to study the unfolding mechanism and kinetics in 

greater detail. Noteworthy are many small steps in the elongation trace of NhaA that 

made the curves appear noisy compared to Ig275 experiments.  

4.4 CONCLUSIONS 

Here, a software-based force-feedback loop was presented that upgrades a 

commercial AFM. This digital approach performs constant-force single-molecule 

experiments comparable to recently introduced hardware-based solutions. The digital 

feedback loop was successfully applied to unfold a multimeric Ig27 construct and the 

membrane protein NhaA. While the developed system works with a feedback 

frequency of ≈ 5 kHz, there is potential to increase the performance and reduce the 

response time well below the 5 ms, especially if more advanced electronics, such as 

freely programmable gate arrays, or faster piezo actuators with higher resonance 

frequencies are implemented. The advantage of this digital system is that it is modular. 

Particularly, combination of constant-velocity and force-feedback modules allow a 

variety of complex experiments in which single molecules are alternatively stretched, 

relaxed, or clamped.  
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 Chapter 

5 

LIGAND BINDING TRIGGERS ENERGY LANDSCAPE 

AND MECHANICAL PROPERTIES OF THE AMINO ACID 

ANTIPORTER STET  

5.1 INTRODUCTION 

The amino acid/polyamine/organocation (APC) superfamily comprises about 

250 members that are present in all phyla from prokaryotes to higher eukaryotes. These 

membrane proteins are solute:cation symporters or solute:solute antiporters [261]. One 

APC subfamily, the L-amino acid transporter (LAT) family, includes to the light 

subunits of eukaryotic heteromeric amino acid transporters (HATs) [262,263]. HATs 

are composed of a light subunit that provides transport activity and a disulfide-linked 

heavy subunit required for plasma membrane localization. As outlined in section 

1.3.2.2, HATs are involved in vital processes including amino acid homeostasis 

[266,267] and maintenance of the plasma redox balance [269]. Consequently, mutations 

in HATs lead to diseases [148,149,264,265] and overexpression of certain HATs 

supports unabated growth of some primary human tumors [270], making them an anti-

cancer drug target.  

So far, a high-resolution structure of a eukaryotic LAT family member is not 

available. However, studies on xCT revealed a 12 transmembrane α-helix topology 

with cytosolic N- and C-termini and a re-entrant loop structure between 

transmembrane α-helices II and III [442]. The first identified prokaryotic member of the 

LAT family, SteT from B.  subtilis, is a serine:threonine antiporter and has a high 

sequence identity (~ 30 %) to the light subunits of eukaryotic HATs. Moreover, SteT 

exhibits a similar putative membrane topology (Figure 5.1) and sequential mode of 

obligate exchange [271]. Thus, it is appropriate to use SteT as a model to study the 

structure-function relationship of LAT family members. 
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Figure  5.1  Secondary  structure model  of  SteT.  Based  on  comparison  to  xCT  [442]  and  secondary 

structure prediction algorithms  (e.g.  the Phobius algorithm  [443]),  the  topology of SteT was modeled 

showing  twelve  transmembrane  α‐helices and a  re‐entrant  loop between  transmembrane  α‐helices  II 

and III. Residues conserved in SteT from B. subtilis and mammalian HATs are shaded in green and were 

identified by ClustalW multiple sequence alignment of SteT and the 50 highest scoring results of a Blast 

search  among mammalian  protein  sequences  using  the  SteT  amino  acid  sequence  as  source. Amino 

acids are given in the one letter code. The red arrowhead in the C‐terminal segment indicates the end of 

the native protein and the beginning of the genetically added tag used for protein purification.  

According to current thinking, transport proteins undergo functionally related 

conformational changes. Transporters alternate between at least two conformations to 

expose their binding site(s) to the cytoplasmic and extracellular side of the plasma 

membrane [39,48,444-449]. Prior to conformational changes, substrates have to be 

recognized and bound. If substrates are amino acids, three main features can be used 

for specific selection and binding: (i) the negatively charged α-carboxyl group, (ii) the 

positively charged α-amino group, and (iii) the electrostatic, hydrophobic, or spatial 

properties of the side chain [39,450,451]. α-carboxyl and α-amino groups of L-amino 

acids, with the exception of proline, possess similar structural and chemical 

characteristics; however, their side chains are different in shape, size, and electrostatic 

properties. A combination of these features is assumed to specify which amino acid fits 

in the side chain binding pocket of an amino acid transporter. The two main substrates 

of SteT, L-serine and L-threonine are very similar, differing by only one side chain 

methylene group. SteT also transports aromatic L-amino acids (Trp, Tyr, and Phe) but 

with lower efficiencies [271]. 

In this study, SMFS has been applied to characterize molecular interactions that 

stabilize SteT in absence and in presence of its substrates, L-serine and L-threonine. 
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DFS has been exploited to characterize how substrate binding changes the energy 

landscape and the mechanical properties of the antiporter. It was observed that the 

overall stability of structural regions within SteT did not depend on substrate binding. 

However, substrate binding changed the energy landscape of these structures. In 

absence of substrate, all structural regions within SteT were stabilized by a narrow 

inner energy barrier and a second outer energy barrier. The unique properties of these 

energy barriers restricted the conformation of SteT, trapping the antiporter in a 

kinetically instable and mechanically rigid conformation. In contrast, substrate binding 

set SteT into a different energy minimum that significantly increased the kinetic 

stability and conformational flexibility of the antiporter. 

5.2 EXPERIMENTAL PROCEDURES 

5.2.1 Cloning,  Overexpression,  Purification,  and  Reconstitution  into 

Proteoliposomes of SteT 

SteT-containing proteoliposomes were kindly provided by F. Casagrande and 

D. Fotiadis (University of Berne). SteT was cloned and expressed by M. Palacin's 

laboratory at the University of Barcelona. Cloning, overexpression, and purification of 

SteT from B. subtilis with a C-terminally attached linker and His6-tag (Figure 5.1, red 

arrowhead) have been previously described [271]. Briefly, purified SteT was 

solubilized in n-decyl--D-maltopyranoside (DM; Anatrace, Maumee, OH, USA) and 

mixed with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC; Avanti Polar Lipids, 

Alabaster, AL, USA) solubilized in the same detergent (stock solution: 5 mg/ml DMPC, 

1 % (w/v) DM, 150 mM NaCl, 10 % (v/v) glycerol, 0.01 % (w/v) NaN3, 20 mM Tris-HCl, 

pH 8) to achieve a lipid-to-protein ratio (LPR) of 0.25 (w/w). The final SteT protein 

concentration was adjusted to 1.5 mg/ml. To reconstitute SteT into proteoliposomes the 

protein/lipid/detergent mixture was dialyzed against detergent-free buffer, i.e. 150 mM 

NaCl, 10 % glycerol (v/v), 250 mM betaine, 0.01 % (w/v) NaN3, 20 mM Tris-HCl, pH 8 

for about one week at room temperature. 

5.2.2 SMFS and DFS 

SMFS was performed using a Nanoscope IIIa AFM equipped with a PicoForce 

module and a PF scanner (Veeco Metrology, Santa Barbara, CA, USA). For a pulling 

velocity of 8720 nm/s, the AFM was extended with 16 bit data acquisition hardware (NI 

PCI-6221, National Instruments; Munich, Germany) that allowed data sampling 
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frequencies of up to 125 kHz using IgorPro 5 (WaveMetrics, Inc., Lake Oswego, OR, 

USA). Gold-coated 60 µm long silicon nitride (Si3N4) cantilevers (BioLever A, BL-

RC150 VB, Olympus Ltd, Tokyo, Japan) had a nominal spring constant of 30 pN/nm 

and resonance frequency of ~ 8 kHz in water. Prior to experiments, the spring constant 

of each cantilever was determined in buffer solution using the equipartition theorem 

[293,436] (see section 2.2.2.4). SteT-containing proteoliposomes were adsorbed for 60-

90 min at room temperature onto freshly cleaved mica (section 4.2.1) in 150 mM NaCl, 

20 mM Tris-HCl, pH 8.0. To characterize substrate binding, the same buffer was 

supplemented with 5 mM L-serine or 5 mM L-threonine. After adsorption, the sample 

was rinsed several times with adsorption buffer to remove weakly attached 

membranes. Buffer solutions were prepared using nano-pure water (≥ 18 MΩ cm; 

purelab ultra, ELGA LabWater) and p.a. grade chemicals from Sigma or Merck. After 

buffer exchange, the AFM was thermally equilibrated for at least 30 min under a glass 

bell. Prior to SMFS, membranes containing densely packed SteT were located by 

contact mode AFM imaging. If necessary, the AFM stylus was used as a nano scalpel to 

remove aggregates or the upper layer of vesicles [398,452]. An unperturbed area of a 

membrane patch was selected and the AFM stylus was pushed onto the membrane at a 

force of ~ 750 pN for 0.5–1.0 s to promote unspecific attachment of the SteT polypeptide 

to the AFM stylus. In the following step, the cantilever was retracted from the surface 

at a constant velocity. The polypeptide tethering stylus and membrane was stretched, 

an increasing mechanical stretching force was applied, and unfolding of SteT was 

induced. Unfolding of SteT was monitored by simultaneously recording the cantilever 

deflection and the distance traveled by the piezo. The interaction force at each 

separation was calculated from the deflection using Hook's law resulting in F-D curves. 

DFS experiments were performed at eight pulling velocities (145, 311, 654, 1090, 

2180, 2910, 4360, and 8720 nm/s) using substrate-free SteT and SteT in the presence of 

L-serine or L-threonine. To minimize errors that may occur due to uncertainties in the 

cantilever spring constant calibration, SteT was unfolded using at least three different 

cantilevers for each pulling velocity. Table 5.1 summarizes the number of F-D curves 

recorded for each condition. 

5.2.3 Data Selection and Analysis 

In the past, a robust approach to select F-D curves that represent the complete 

unfolding of a membrane protein by a mechanical stretching force applied at its 

termini was developed [312,314,366,371]. Mechanically pulling the terminal end of a 
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membrane protein induces the sequential unfolding of its secondary structure elements 

beginning at the mechanically stressed terminus. Each structure that establishes an 

unfolding barrier is detected as a force peak in the F-D curve. The last force peak of a 

F-D curve denotes the length of the unfolded and stretched polypeptide that is 

anchored by the last membrane embedded structure [312,453]. When overcoming the 

stability of this last structural element, the membrane protein is completely unfolded 

and the entire polypeptide is extracted from the membrane. In other membrane 

proteins this last structural segment is the last membrane embedded transmembrane α-

helix For SteT it is assumed that this was also true. Accordingly, based on secondary 

structure prediction and the similar length of soluble N- and C-terminal peptides, 

stretched polypeptides would have a contour length of 380-440 amino acids (aa). 

Therefore, only F-D curves showing overall protein extension of 110-130 nm were 

selected. These curves were manually aligned to each other using the three 

characteristic force peaks observed at contour lengths of 70, 79, and 147 aa. Every peak 

of each F-D curve was fitted using the WLC model [320] with a persistence length of 

0.4 nm and a monomer length per amino acid of 0.36 nm [315]. The WLC fit of each 

force peak gives the contour length as the number of unfolded and stretched amino 

acids. The obtained contour lengths and the corresponding rupture forces were 

statistically analyzed. Data analysis and calculations were performed using IgorPro 5 

using built-in and custom-written procedures. 

5.2.4 Compensation for Hydrodynamic Drag 

At high pulling velocities, hydrodynamic friction of the cantilever35 causes an 

underestimation of the unfolding force [454]. Hence, the measured unfolding forces, 

Fmeasured, were corrected to obtain the real unfolding force, Freal, using 

cantspacer

spacer

fricmeasuredreal
κκ

κ


 FFF   5.1 

with Ffric the friction force and κspacer the spring constant of the stretched polypeptide 

[455]. Ffric was half the difference between an approach and a retract F-D curve of a free 

cantilever [454]. The slope before peak rupturing was defined as κspacer and calculated 

from a WLC curve with the corresponding contour length. This correction was applied 

                                                           
35 The friction force experienced by a cantilever depends on the pulling velocity and its size and 
geometry. Therefore, small cantilevers, such as the BioLever A used in this study experience 
less friction compared to previously used long V-shaped cantilevers. 
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to force spectroscopy data acquired at pulling velocities of 1090, 2180, 2910, 4360, and 

8720 nm/s. 

5.2.5 Calculation of xu and k0 from DFS Data 

According to the Bell-Evans theory (for details refer to section 2.3.2.4) [380], the 

most probable unfolding force F* plotted versus ln(rf*) describes the most prominent 

energy barrier within the force-driven unfolding process [373]. The relation between F* 

and rf* can be described by 
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Tkk
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   5.2 

where  rf* is the most probable loading rate. The loading rate was calculated using 

rf = κspacer∙vp. Experimental loading rate and force histograms (Figure 5.2) were fitted 

with Gaussian distributions. The resulting F*s were plotted versus rf*. xu, and k0 were 

obtained by fitting Equation 5.2 using a non-linear least-squares algorithm. Only forces 

and loading rates corresponding to the main peaks were considered. 

 

Figure  5.2  Experimental  force histograms. Histograms  show  examples of  experimentally determined 

force  distributions.  Data  shown  was  recorded  at  654  nm/s  using  substrate‐free  SteT.  Black  lines 

represent Gaussian fits to the force histograms. The numbers given at the top right of each histogram 

indicate the position of the peak within the F‐D trace in aa. 

5.2.6 Calculation of Transition Barrier Heights and Rigidity 

The height of the free energy barrier, ΔG‡, separating the folded and unfolded 

state was assessed using an Arrhenius equation 

)ln(Δ 0
‡ kτTkG DB   5.3 

where τD denotes the diffusive relaxation time [359]. Typical values for τD found for 

proteins are between 10-7–10-9 s [378,456]. Assuming τD = 10-8 s seems to be reasonable 

for determining the free energy barrier heights. This value has also been used for 

molecular dynamics simulations of protein folding [457]. Thus, a value of τD = 10-8 s 

was used throughout all calculations. Varying τD within the above-mentioned range, 
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changes the free energy of activation by < 15 %. Moreover, even if τD was wrong by 

orders of magnitude, the influence of the error of τD would be the same for all 

conditions and values and, hence, would not affect the qualitative results. Errors in ΔG‡ 

were estimated by propagation of the errors of k0. 

In absence of any information on the energy potential shape, simple parabolic 

potential was assumed and the spring constant of the bond, κbond, can be calculated 

using ΔG‡ and xu [317,458] 

2

‡Δ2
u

bond
x

G
κ    5.4 

Errors in ΔG‡ and xu were propagated for error estimation. 

5.3 RESULTS 

5.3.1 Interactions of SteT In Presence and Absence of Substrates 

SMFS was applied to determine the interactions stabilizing the serine:threonine 

antiporter SteT. Briefly, SteT proteoliposomes were imaged using contact mode AFM 

(Figure 5.3) and selected for SMFS. The AFM stylus was brought into contact with the 

proteoliposome to facilitate formation of a molecular linkage between individual SteT 

molecules and the AFM stylus (Figure 5.4A) [313]. Upon retraction of the stylus, the 

deflection and separation of the cantilever were recorded. Less than 5 % of F-D curves 

exhibited a saw tooth-like pattern. Due to unspecific interactions, the AFM stylus 

attached at several positions of the SteT polypeptide. Hence, the resulting F-D curves 

varied significantly in length and peak pattern. About 5 % of these F-D curves 

displayed a well-defined force peak pattern that extended over a length of 110 to 

130 nm (Figure 5.4B). Each of these F-D curves was of a length that correlated with 

mechanical unfolding starting from one terminal end and showed a common pattern of 

seven major force peaks. 

 

Figure  5.3  AFM  topographs  of  SteT  containing  membranes.  (A),  (B)  Overview  of  SteT  containing 

membrane  patches  (2)  adsorbed  onto  a mica  surface  (1).  (C)  SteT  containing membranes  at  higher 

magnification.  SteT  is  densely  packed  within  the  lipid  membrane,  although  not  arranged  in  a  2D 

crystalline array. The full color scale corresponds to 50 nm (in (A) and (B)) and 4 nm (C). 
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First, F-D curves were recorded at vp = 654 nm/s for substrate-free SteT (n = 132) 

and SteT in presence of 5 mM L-serine (n = 128) or 5 mM L-threonine (n = 127, Table 

5.1). At first sight, the recorded F-D curves looked similar showing the common 

pattern of seven major force peaks (Figure 5.4B). However, individual F-D curves 

differed to some extent from each other. These differences were additional peaks and 

slightly different peak positions or amplitudes. To visualize common features, F-D 

curves were superimposed and converted to density plots (Figure 5.5A). All three 

superimpositions showed the common seven force peaks pattern. A characteristic 

double peak occurred at the contour lengths of ~ 70 and ~ 79 aa. This feature was 

followed by four peaks at contour lengths of ~ 147, ~ 192, ~ 237, and ~ 302 aa. The last 

force peak was detected at ~ 422 aa (Table 5.2). Force peaks at contour length 147, 192, 

237, and 302 aa showed comparable low forces. The peaks at 70 and 422 aa exhibited an 

intermediate force, while the segment located at 79 aa withstood the highest forces 

(Table 5.2, Figure 5.2). From the superimpositions, no substantial differences between 

the F-D spectra were revealed. 

 

Figure 5.4  SMFS of  SteT.  (A) Pressing 

the  AFM  stylus  onto  the  SteT‐

containing  proteoliposomes  facilitates 

adhesion  of  single  transporter 

molecules  to  the  AFM  stylus.  The 

resulting  molecular  bridge  allows 

application  of  mechanical  stress  that 

initiates  stepwise  unfolding  of  SteT. 

Throughout  experiments,  sample  and 

cantilever are fully immersed in buffer 

solution. (B) F‐D curves recorded while 

unfolding  single  substrate‐free  SteT 

molecules  at  654 nm/s  in  150 mM 

NaCl, 20 mM Tris‐HCl, pH 8.0. 
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  number of analyzed F‐D traces pulling velocity 

(nm/s) 
  substrate‐free    5 mM L‐serine    5 mM L‐threonine 

145    97    79    49 

311    51    73    65 

654    132    128    127 

1090    101    86    68 

2180    116    85    90 

2910    106    109    86 

4360    71    90    84 

8720    71    81    109 

Table 5.1 Number of SteT F‐D curves analyzed for each pulling velocity and substrate condition. 

 
Figure 5.5 Superimpositions of F‐D traces and analysis of peak appearance. (A) Superimpositions of F‐D 

curves recorded while unfolding SteT in buffer lacking any substrate (top) and supplemented with 5 mM 

L‐serine (middle) or 5 mM L‐threonine (bottom). Superimpositions are represented as density plots each 

calculated from 60 F‐D curves. Grey lines represent WLC curves with a persistence length of 0.4 nm and 

contour length (in amino acids) as indicated by the numbers next to the lines. The contour lengths were 

obtained  from  the Gaussian  fits  shown  in  (B).  F‐D  curves were  obtained  at  room  temperature  at  a 

pulling  velocity  of  654 nm/s  in  buffer  solution  (150 mM NaCl,  20 mM  Tris‐HCl,  pH  8.0,  substrate  as 

indicated).  (B) Frequency of  force peaks detected at different positions of  the  stretched polypeptide. 

Every force peak detected in individual F‐D curves (B) was fitted using the WLC model, with the contour 

length of  the  stretched polypeptide  as  the only  fitting parameter.  The  frequency  at which  the  force 

peaks appeared is plotted in the histogram; substrate‐free (n = 132), 5 mM L‐serine (n = 128), and 5 mM 

L‐threonine (n = 127). The bin size of the histograms is 3 aa and reflects the accuracy of fitting the WLC 

model  [320]  to  individual  force peaks. Error bars  representing  the standard error of  the mean  (SEM) 

were calculated using SEM = (p(1‐p)/n)1/2 with p the probability and n the total number of F‐D curves. 

The width of each force peak distribution is given by the experimental noise, conformational variability 

of  the  structural  segments and  fitting accuracy of  the  force peaks  [332,355,371,459,460]. The grey 

solid curve represents the sum of seven Gaussian fits to the seven main peaks from the histograms and 

superimpositions (A). Numbers next to peaks denote peak positions (measured in amino acids) obtained 

from Gaussian fits. 
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substrate‐free SteT    L‐serine    L‐threonine 

contour 
length ± SD 

(aa) 
 

most probable 
force ± SD (pN) 

 
contour 

length ± SD 
(aa) 

 
most probable 
force ± SD (pN) 

 
contour 

length ± SD 
(aa) 

 
most probable 
force ± SD (pN) 

70.2 ± 7.7    80 ± 18    69.4 ± 7.4    76 ± 18    70.2 ± 5.0    84 ± 18 

79.2 ± 1.1    92 ± 30    79.4 ± 1.2    107 ± 31    79.9 ± 1.1    112 ± 24 

146.8 ± 5.0    51 ± 15    147.3 ± 5.9    55 ± 15    146.8 ± 6.2    63 ± 16 

191.2 ± 3.1    50 ± 20    192.1 ± 5.4    51 ± 21    193.1 ± 7.5    62 ± 27 

237.0 ± 4.6    49 ± 13    237.6 ± 6.1    58 ± 17    235.4 ± 9.4    56 ± 24 

303.9 ± 6.0    55 ± 16    301.8 ± 5.1    60 ± 14    299.5 ± 7.9    66 ± 18 

424.9 ± 9.7    70 ± 18    422.5 ± 7.6    77 ± 12    418.7 ± 9.9    79 ± 14 

Table 5.2 Contour  lengths and  rupture  forces of  interactions stabilizing structural segments of SteT. 

Contour  lengths  represent most  probable  peak  positions  (measured  in  amino  acids)  obtained  from 

Gaussian  fits  to  the contour  length distributions  (Figure 5.5B). Forces  represent most probable  forces 

obtained  from  Gaussian  fits  to  the  experimental  force  distributions.  Data  were  recorded  at 

vp = 654 nm/s. 

5.3.2 Direction of Unfolding 

Using SMFS, membrane proteins may be mechanically unfolded by pulling at 

either N- or C-terminal ends. Depending from which end unfolding is induced, F-D 

spectra show different patterns [312,453,461]. In the measurements, all F-D curves that 

exhibited lengths between 110 and 130 nm showed one common force peak pattern. 

This indicated that antiporters had been exclusively unfolded from one terminal end. 

According to the secondary structure predicted by the Phobius algorithm [443] the 

length of the N-terminal end corresponds to 11 aa, whereas the C-terminal end 

corresponds to 20 aa (including spacer and His6-tag). The AFM stylus can pick up the 

terminal end of a membrane protein at random positions. Accordingly, the 

superimposition of the F-D curves should show starting points that are spread by the 

length of the terminal end pulled (Figure 5.5A). However, other secondary structure 

prediction algorithms like MEMSAT3 [462] showed different lengths of N- and C-

terminal ends. Thus, in absence of a solid structural model, it was impossible to make a 

straightforward assignment of the terminal end from which mechanical unfolding of 

the antiporter was induced. Fortunately, for the following study the identity of the end 

is not vital. 

5.3.3 Probability of Interactions 

Each peak of a F-D curve reflects an interaction established by SteT. To quantify 

the probability of SteT to establish interactions in the absence and presence of 

substrate, every force peak of individual F-D curves was fitted using the WLC model 
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[320]. The resulting contour lengths are converted into the amino acid lengths of the 

polypeptide that had been unfolded and stretched above the membrane surface. 

Thereafter, the probability of a force peak appearing was plotted versus the length of 

the stretched polypeptide (Figure 5.5B). All histograms showed eight peaks. The first 

peaks occurring at contour lengths between 0 and 50 aa were detected at a distance at 

which unspecific interactions between stylus and membrane surface dominate the F-D 

spectra (Figure 5.4B). Accordingly, the superimpositions did not show defined force 

peaks in the corresponding region (Figure 5.5A). In contrast, the other peaks in the 

histograms correlated nicely to the well-defined force peaks in the superimpositions. 

To determine the most probable location of the force peaks (Table 5.2), Gaussians were 

fitted to the major peaks in the histograms (Figure 5.5B, grey lines). Interestingly, the 

position of the force peaks did not change in the presence or absence of substrate. 

Additionally, no significant changes in the force peak pattern could be detected upon 

addition of either substrate. 

5.3.4 Substrate Binding Changes the Dynamic Energy Landscape of SteT 

To examine how substrate binding influences the energy landscape of SteT, 

substrate-free SteT and SteT in the presence of 5 mM L-serine or 5 mM L-threonine was 

unfolded at pulling velocities ranging from 145 to 8720 nm/s. In agreement with 

theoretical considerations [373,380] and previous studies on soluble [403,463] and 

membrane proteins [368,369,405,406], the unfolding forces increased with pulling 

velocities. Plotting the most probable unfolding force, F*, versus the logarithm of the 

most probable loading rate, rf*, (Figure 5.6) revealed insights into the energy profile 

underlying individual structural segments of SteT (Figure 2.10, Table 5.3). The dynamic 

force spectra of every structural segment of substrate-free SteT showed two linear 

regimes (Figure 5.6, left column). According to the Bell-Evans model [380] the existence 

of two linear regimes indicates that two barriers separate the folded from the unfolded 

state. At low loading rates, an outer barrier was probed, while at higher loading rates 

an inner barrier dominated the dynamic force spectrum. All structural segments 

exhibited inner barriers that showed ground-to-transition state distances, xu, from 0.21 

to 0.36 nm and unfolding rates, k0, from 2.2 to 27 s-1. In contrast, their outer barriers 

showed much larger distances to the transition states ranging from 0.74 to 5 nm and 

much lower unfolding rates that ranged from ~ 4∙10-42 to 0.1 s-1 (Table 5.3). 

On the contrary, the dynamic force spectra recorded in presence of L-serine 

(Figure 5.6, middle column) or L-threonine (Figure 5.6, right column) revealed a single 



Chapter 5: Ligand Binding Changes the Energy Landscape 

80 

linear regime for every structural segment of SteT. This suggests that a single energy 

barrier stabilized the folded state of these structural segments in the ligand-bound 

state. For SteT in the presence of L-serine, xu ranged from 0.38 to 1.34 nm and k0 from 

2.3∙10-8 to 1.6 s-1. In the presence of L-threonine xu ranged from 0.55 to 1.34 nm and k0 

from 1.5∙10-6 to 0.17 s-1 (Table 5.3). Except for the last structural segment, the energy 

barriers determined for SteT in presence of L-threonine showed slightly greater xu 

values than in presence of L-serine. Depending on the substrate, the unfolding rate, k0, 

of some structural segments changed by more than three orders of magnitude (Table 

5.3, highlighted in bold). Transition states and unfolding rates determined for SteT in 

presence of either substrate differed significantly from the values obtained for the inner 

barrier of substrate-free SteT. 

 

Figure 5.6 Pulling velocity dependent  response of  interactions  that stabilize  individual segments of 

SteT.  Fitting  the  rf*‐dependent  F*  (lines)  using  Equation  2  provides  the  parameters  of  the  energy 

barriers that stabilize structural segments within SteT. xu measures the distance from the energy well of 

the  native  state  to  the  transition  state,  and  k0  describes  the  kinetic  transition  rate  at  which  the 

structural  segment  unfolds  at  zero  force.  Error  bars  represent  the  SEM  of  force  and  loading  rate, 

respectively, and are, if not visible, smaller than the symbols used. Fits were weighted using the SEM of 

the most probable force. Experiments were performed in 150 mM NaCl, 20 mM Tris‐HCl, pH 8.0 in the 

absence  of  substrates  (left  column)  or  in  presence  of  5 mM  L‐serine  (middle  column)  or  5 mM  L‐

threonine (right column). Peak positions are given in amino acids. 

Figure on next page   
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Figure 5.6 
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    substrate‐freeouter  substrate‐freeinner  L‐serine  L‐threonine    substrate‐freeouter  substrate‐freeinner  L‐serine  L‐threonine 

peak pos. (aa)    xu ± SD (nm)    k0 ± SD (s
‐1) 

70    2.71 ± 2.85  0.23 ± 0.03  0.57 ± 0.05  1.10 ± 0.22    1.4 ± 78 × 10
‐19
  15.5 ± 9.  0.031 ± 0.030  1.5 ± 6.4 × 10

‐6
 

79    4.65 ± 14.5  0.29 ± 0.07  0.42 ± 0.04  0.57 ± 0.07    4.4 ± 1400 × 10
‐42
  2.2 ± 3.7  0.043∙± 0.040  1.6 ± 2.7 × 10

‐3
 

147    2.68 ± 1.82  0.36 ± 0.03  0.59 ± 0.05  0.67 ± 0.05    1.8 ± 39 × 10
‐11
  6.7 ± 2.4  0.14 ± 0.09  0.078 ± 0.049 

192    0.74 ± 0.10  0.21 ± 0.02  0.38 ± 0.02  0.55 ± 0.06    7.7 ± 7.4 × 10
‐2
  26.7 ± 8.0  1.6 ± 0.4  0.17 ± 0.14 

237    2.15 ± 0.98  0.27 ± 0.04  0.69 ± 0.07  1.34 ± 0.26    7.3 ± 82 × 10
‐9
  15.0 ± 6.5  0.040 ± 0.034  8.7 ± 31 × 10

‐6
 

302    2.58 ± 1.19  0.24 ± 0.03  0.69 ± 0.06  0.79 ± 0.09    1.0 ± 16 × 10
‐12
  12.2 ± 4.2  0.011 ± 0.010  3.7 ± 4.9 × 10

‐3
 

422    4.98 ± 4.58  0.30 ± 0.05  1.34 ± 0.21  0.83 ± 0.07    1.4 ± 110 × 10
‐34
  3.3 ± 2.3  2.3 ± 8.5 × 10

‐8
  1.4 ± 1.9 × 10

‐4
 

peak pos. (aa)    ΔG‡ (kBT)    κbond (N/m) 

70    62  16  22  32    0.07  2.41  0.55  0.22 

79    114  18  22  25    0.04  1.72  1.00  0.64 

147    43  17  21  21    0.05  1.06  0.49  0.39 

192    21  15  18  20    0.32  2.84  1.01  0.55 

237    37  16  22  30    0.07  1.84  0.38  0.14 

302    46  16  23  24    0.06  2.27  0.40  0.32 

422    97  17  36  27    0.03  1.64  0.17  0.33 

Table  5.3  Parameters  characterizing  the  energy  barriers  (xu,  k0,  and  ΔG
‡)  and  spring  constants  (κbond)  of  stable  structural  segments  of  SteT.  Parameters  for  the  outer 

(substrate‐freeouter)  and  inner  (substrate‐freeinner)  barriers  of  substrate‐free  SteT  and  SteT  in  presence  of  5 mM  L‐serine  or  5 mM  L‐threonine.  Errors  represent  standard 

deviations  (SD). Changes  in  transition  state,  xu, were  considered  significant when  the  values  for  xu ± 2SD did not overlap. Changes  in  transition  rate,  k0, were  considered 

significant when exceeding two orders of magnitude. Barrier heights, ΔG‡, and spring constants, κbond, were calculated as described in the section 5.2. 
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5.3.5 Correlation of xu, k0, and ΔG
‡ 

Taking all structural segments of SteT probed in absence and presence of 

substrate into account, we found a linear correlation (R = 0.71) between the position of 

the transition state xu and the free energy of activation, ΔG‡ (Figure 5.7A). Concomitant 

with an increase in ΔG‡ the transition state shifted away from the energy minimum 

(higher xu, Figure 5.7A, Table 5.3). For all structural segments xu increased along with 

ΔG‡ upon ligand binding, thus showing a Hammond-like behavior [368,407,464-467]. 

To further investigate the relationship between xu and ΔG‡, the ratio xu,substrate/xu,inner 

versus the ratio ΔG‡substrate/ΔG‡inner was plotted for every structural segment (Figure 

5.7B). Assuming a linear relationship between the ratios xu,substrate/xu,inner and 

ΔG‡substrate/ΔG‡inner [368], it becomes evident from the representative fits shown in Figure 

 

Figure 5.7 Correlation between xu and ΔG
‡. (A) Plotting xu versus ΔG

‡ reveals their linear correlation for 

all  structural  segments  of  substrate‐free  SteT  (inner  barrier,  black  symbols)  and  SteT  in  presence  of 

5 mM  L‐serine  (dark  grey  symbols)  or  5 mM  L‐threonine  (light  grey  symbols).  Error  bars  represent 

standard deviations (SD). (B) Changes in xu and ΔG
‡ for SteT in absence (inner barrier, black symbols) and 

presence of L‐serine (dark grey symbols) or L‐threonine (light grey symbols) with respect to the values 

for  the  inner barrier of  substrate‐free  SteT. All  structural  segments  revealed  an  apparent Hammond 

behavior, i.e. upon ligand binding xu increased with increasing ΔG
‡. Short‐dashed, long‐dashed, and dot‐

dashed lines represent linear fits to the values obtained for the structural segments at 79 (open circle), 

192  (open  triangle), and 422 aa  (filled diamond),  respectively. The different slopes of  these  fits  (2.31, 

4.85,  and  3.25  for  the  short‐dashed,  long‐dashed,  and  dot‐dashed  lines)  show  that  ligand  binding 

influenced each individual structural segment differently. Data taken from Table 5.3. 
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5.7B, that every structural segment showed a unique energetic sensitivity towards 

ligand binding as the slopes of the  fits for the individual structural segments were 

different. 

5.3.6 Mechanical Properties of SteT 

Rigidity refers to the resistance of a material to structurally deform in response 

to a mechanical force. The rigidity of a protein depends on the curvature of the 

potential well of the energy profile, the height of the energy barrier, ΔG‡, and the 

distance xu separating ground and transition state (Figure 2.10). The energy landscape 

describes the energy as a function of the conformational entropy of a protein structure 

[86,89,91]. Accordingly, decreasing (increasing) the width of an energy well that 

defines the conformational entropy of a protein structure allows the protein to adopt 

less (more) conformational sub-states. This decrease (increase) of conformational sub-

states is usually described as decreasing (increasing) the conformational flexibility 

[140,317,455,468]. In absence of further information, a parabolic potential in vicinity of 

the energy minimum and a sharp transition barrier for all structural segments of SteT 

were assumed [317,468]. To approximate the rigidity of individual structural segments, 

their spring constants, κbond, were calculated applying Equation 5.4. For substrate-free 

SteT, spring constants were calculated for each of the two energy barriers that 

stabilized a structural segment (Table 5.3). The outer barriers of these structural 

segments showed spring constants between 0.03 and 0.07 N/m, except for the segment 

correlated to the force peak at ~ 192 aa, which exhibited an increased spring constant of 

0.32 N/m. In contrast, the inner barriers of these structural segments showed much 

higher spring constants ranging from 1.06 to 2.84 N/m. In presence of substrate, the 

spring constants of the individual structural segments ranging from 0.17 to 1.01 N/m 

for L-serine laid slightly above the spring constants for L-threonine, ranging from 0.14 

to 0.64 N/m (Table 5.3, Figure 5.8). These spring constants indicated that the rigidity of 

the structural segments within SteT was generally lower in presence of substrate than 

that determined for the inner barriers and higher than that of the outer barriers of 

substrate-free SteT. 
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5.4 DISCUSSION 

5.4.1 Amino Acid Binding by SteT Lacks Detectable Localized Interactions 

Previously, SMFS has been applied to reveal the unfolding pathways of several 

membrane proteins, i.e. various rhodopsins [313,314,370-372] and different antiporters 

[311,312]. Here, SMFS was used to probe SteT, a member of the APC family. As with all 

membrane proteins investigated so far, the F-D spectra recorded upon mechanical 

unfolding of SteT showed a reproducible force peak pattern (Fig. 1C, D; Table 2). This 

characteristic F-D pattern can serve as a fingerprint of a membrane protein [437]. It was 

recently observed that the F-D spectra of the Na+:H+ antiporters NhaA from E. coli and 

MjNhaP1 from Methanococcus jannaschii showed an additional force peak upon ligand 

binding to the activated transporter which could be correlated to specific interactions 

established between Na+ and deprotonated aspartic acid residues [311,400] in the Na+ 

binding site [469]. In contrast, substrate binding to the antiporter SteT did not induce 

clear changes in the F-D pattern (Figure 5.5A, B). Thus, the binding of amino acids to 

an amino acid antiporter may be different than those of Na+ binding to a Na+:H+ 

antiporter. 

Unfortunately, a high-resolution structure of SteT or one of its homologues is 

not available. However, crystal structures of other amino acid transporters in complex 

with their amino acids have been determined [39,48]. These structures revealed various 

 

Figure 5.8 Rigidity of structural segments of SteT in absence and presence of substrate. For substrate‐

free SteT, rigidity of the outer and inner energy barriers is shown. Rigidity was estimated using Equation 

5.4 to calculate the spring constant κbond from xu and ΔG
‡ obtained from DFS experiments. Errors were 

propagated from the errors of xu and ΔG
‡. 
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ways for a transporter to bind an amino acid. For example in LeuTAa, a member of the 

neurotransmitter sodium symporter (NSS) family, amino acids of the partially 

unwound transmembrane α-helices I and VI coordinate the α-amino and α-carboxyl 

groups of leucine, while the leucine side chain resides in a hydrophobic pocket formed 

by transmembrane α-helices III, VI, and VIII [39]. Altogether, twelve amino acids from 

four transmembrane α-helices of LeuTAa were involved in leucine binding. Recent 

biochemical studies suggested that the cadaverine:L-lysine antiporter CadB from E. 

coli, an APC family member [261], forms a hydrophilic cavity using eight out of its 

twelve transmembrane α-helices [470]. Assuming that the substrate binding site is 

located within the translocation pathway, it seems feasible that multiple amino acid 

residues from several transmembrane α-helices contribute to ligand binding. This 

notion is supported by hydropathy profile alignment of membrane transport proteins, 

which showed that APC transporters exhibit core structures similar to those of 

members of the NSS family [471]. Therefore, it may be assumed that the interactions 

established between ligand and SteT are distributed, such as observed for LeuT and 

CadB, and not highly localized, as in the case of Na+:H+ antiporters. Because SMFS 

measurements did not reveal discrete changes in the F-D spectra that would have 

indicated localized interactions of the substrate with SteT, it can be conclude that 

binding of L-serine and L-threonine establishes individually rather weak interactions 

with multiple amino acid residues. 

5.4.2 SteT Unfolds Differently Compared to Other Membrane Proteins 

Recent DFS studies showed that structural segments of bacteriorhodopsin, bovine 

rhodopsin, and NhaA are stabilized by single energy barriers [405,406,468]. On 

average, the transition state that separated the structural segments of these membrane 

proteins from their folded state was ~ 0.4 nm (xu between 0.2 and 0.8 nm). Thus, it 

could be concluded that the structural segments had to be stretched by ~ 0.4 nm to 

induce their cooperative unfolding. This short distance leads to the assumption that 

rather short ranged inter- and intramolecular bonds had to be broken to induce 

unfolding and extraction of the structural segments of these membrane proteins. In 

contrast to this previous finding, the dynamic force spectra of substrate-free SteT were 

dominated by two linear regimes (Figure 5.6, left column), which indicated that every 

structural segment of SteT was stabilized by two energy barriers. The two energy 

barriers of substrate-free SteT exhibited quite different characteristics. The inner energy 

barrier was located close to the native basin (xu between 0.21 and 0.36 nm), exhibited 
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fast transition rates (k0 between 2.2 and 26.7 s-1), and caused a high structural rigidity as 

judged by the spring constants (κbond between 1.06 and 2.84 N/m, Figure 5.8, Table 5.3). 

This indicates that the substrate-free SteT formed stiff and brittle structural segments 

that have been stabilized by short-ranged localized and directional interactions. The 

fast transition rates, faster than those measured for other membrane proteins 

[370,405,406], indicate a low kinetic stability of the structural segments. In contrast, the 

outer barrier was located far from the native basin (xu between 0.74 and 4.98 nm), and 

exhibited slower transition rates (k0 between 0.077 and 4.4∙10-42 s-1, Figure 5.8, Table 5.3). 

Thus, the structural segments of SteT showed an altered mechanical behavior when 

crossing the outer barrier compared to traversing the inner barrier. 

Evans and Ludwig found two energy barriers at 0.7 and 1.2 nm when extracting 

biotinylated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) from 1-stearoyl-

2-oleoyl-sn-glycero-3-phosphocholine (SOPC) bilayers [472]. The authors concluded 

that the hydrophobic core of the membrane forms a barrier against the extraction of the 

hydrophobic lipid tail. If each leaflet of an SOPC membrane has a ~ 1.5 nm thick 

hydrophobic region [473-475], the transition state of outer energy barrier (~ 1.2 nm) 

correlates reasonably well with the thickness of the hydrophobic core [472]. The 

transition state position of the inner energy barrier (0.7 nm) was correlated with the 

position of the unsaturated bond in the oleoly chain [472]. Adapting this interpretation 

to membrane proteins, the relevant scale for hydrophobic interactions would 

approximate the thickness of the hydrophobic core of the lipid bilayer (~ 2.5 nm for 

DMPC [476]). Indeed, the distance of the transition states obtained for the outer 

barriers of structural segments at 70, 147, 237, and 302 aa were between 2 and 3 nm. In 

contrast, the structural segments located at 79 and 422 aa showed higher xu values, ~ 4.7 

and ~ 5.0 nm, that exceeded the thickness of the lipidic hydrophobic core. However, it 

should be considered that transmembrane α-helices of transporters, including APC 

superfamily members, can cross the membrane highly tilted [39,48,477]. Tilted helices 

bury longer polypeptide stretches within the membrane and, therefore, may cause 

larger xu values. Thus, the narrow inner and the wide outer energy barriers observed 

for substrate-free SteT may characterize different unfolding processes. If this 

conclusion is correct, crossing the inner energy barrier may describe an unfolding step 

that has been induced by breaking specific short-ranged interactions e.g. stabilizing the 

tertiary or quaternary structure of individual segments. Because the transition rate of 

the inner barrier is quite substantial it may be assumed that this barrier can be also 

crossed in absence of a pulling force. In such a case the outer unfolding barrier would 
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establish a system that protects complete unfolding of the structural segment and thus 

might allow re-association of intramolecular bonds that have been broken. This outer 

barrier is kinetically much more stable compared to the kinetically instable inner 

barrier. It may be further assumed that the outer barrier is stabilized by longer ranged 

interactions compared to the inner barrier. Applying a mechanical stress can force this 

structural segment to overcome its outer barrier to complete the unfolding process. 

5.4.3 Substrate Binding Changes the Energy Landscape of SteT 

To investigate how substrate binding changes the energy landscape of SteT, 

DFS in presence of L-serine and L-threonine was conducted. First of all, the position of 

the stable structural segments did not depend on the substrate binding, indicating that 

each structural segment unfolded independently and exhibited an intrinsic stability. 

However, comparison of the dynamic force spectra shows a dramatic change in the 

energy landscapes. The inner and outer energy barriers observed for substrate-free 

SteT changed to only one energy barrier in the presence of substrate. Substrate binding 

created energy barriers with transition states that were located between those 

determined for the inner and outer energy barriers of substrate-free SteT. 

Distances between ground state and transition state are a measure of the 

conformational flexibility that a folded structure can adopt within the constricting 

energy well [478,479]. Thus, the shift from narrow inner barriers of substrate-free SteT 

to wider energy barriers in presence of substrate indicates an increased conformational 

flexibility of the structural segments of SteT. Since, in presence of L-serine or L-

threonine, every structural segment of SteT changes its mechanical properties to favor 

functionally related structural changes of the antiporter (Figure 5.8, Table 5.3) this 

structural flexibility may be required to allow substrate transport. The alternate 

substrate access of an antiporter from one to the other membrane surface only occurs in 

the substrate-bound state [480]. Antiporters in the substrate-unbound state do not 

alternate access from one to the other membrane surface. Thus, the increased structural 

flexibility of SteT in the substrate-bound state results in an increased probability to 

alternate the substrate access from one to the other side of the membrane. In contrast, 

the substrate-free state of SteT is trapped in a more brittle and rigid conformation 

(Figure 5.9). It is suggested, that such restricted conformations favor the specific 

binding of substrates [481]. Substrate binding also lowers the unfolding rate of 

structural segments of SteT (compare k0 values in Table 5.3). It can be concluded that 

substrate binding sets the structural segments into a deeper energy minimum [482], 
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and thus, kinetically stabilizes SteT (Equation 5.3; compare k0 and ΔG‡ values in Table 

5.3). Studies on soluble proteins showed that ligand binding can increase the midpoint 

of thermal unfolding transitions by several °C corresponding to a stabilization of the 

protein [483]. 

Albeit L-serine and L-threonine are structurally similar and show similar side 

chain properties, the additional methylene group in L-threonine seems to have some 

effect on the energy landscape of SteT. In presence of L-threonine, the energy barriers 

of the first six segments of SteT showed increased distances to their transition state, 

lower unfolding rates, and lower spring constants (Table 5.3). The last structural 

segment, detected at a contour length of 422 aa, revealed a smaller xu and higher k0 and 

κbond values in presence of L-threonine compared with L-serine. While the differences in 

xu values were not significant, the unfolding rate for three structural segments 

(highlighted in bold in Table 5.3) changed significantly, demonstrating differing effects 

of the substrates on SteT. Functional studies on L-serine transport by SteT unveiled a 

slightly higher stimulating effect for L-threonine than for L-serine [271], indicating 

unalike SteT-substrate interactions for L-serine and L-threonine. 

5.4.4 Hammond‐Like Behavior Reflects Ground State Effects 

According to Hammond's postulate [464] two similar structures should exhibit 

similar energies. For protein folding, this leads to correlation between the free energy 

of activation and the position of the transition state on the reaction coordinate [465]. 

Recently, DFS studies detected that the unfolding intermediates of bacteriorhodopsin 

at different temperatures and of different bacteriorhodopsin mutants show Hammond 

behavior [368,407]. Here, unfolding intermediates formed by the structural segments of 

SteT showed a Hammond-like behavior, i.e. the distance from the ground state to the 

 

Figure 5.9 Energy  landscape and mechanical properties of SteT changing upon substrate binding.  In 

absence of substrate (SteTfree) the inner energy barrier of SteT shows a narrow energy well exhibiting a 

low  kinetic  stability  that determines a  rigid and brittle  structure. The  second outer energy barrier of 

SteTfree,  is  not  shown.  In  presence  of  substrate  (SteTbound)  the  two  energy  barriers  stabilizing  every 

structural  segment of  SteT  fuse  into one  single energy barrier  that provides  SteT with  very different 

mechanical and kinetic characteristics. The energy barrier of SteTbound is broad and shows an increased 

kinetic stability that shapes resilient and flexible structural segments of SteT. 
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transition state increases with the free energy of activation. In the context of dynamic 

energy landscapes [478,482], Hammond behavior can be explained as follows. The DFS 

data shows that the force peaks denoting the unfolding intermediates of SteT did not 

change their position upon substrate binding. Thus, it can be conclude that substrate 

binding did not establish new strong localized interactions within SteT and did not 

change the unfolding intermediates of SteT. Nevertheless, analysis of the DFS data 

shows that the distance between the energy minimum and the transition state changes 

along with the free energy of activation. At first sight, this Hammond behavior points 

towards stabilization of the folded state. As pointed out by Sánchez and Kiefhaber 

[466,467] true Hammond behavior would require (structural) changes in the transition 

state while the ground and unfolded states would remain structurally unaffected and 

retain their position on the energy landscape. Since DFS reveals the distance between 

transition state and ground state, a ground state shifting away from a stable transition 

state would show the same effect as true Hammond behavior. Indeed, it was shown for 

soluble proteins that the transition state structure can be insensitive to changes in 

protein stability such as introduced by point mutations [466]. Doubtless, the ground 

state for SteT in absence and presence of substrate will be different. Combined 

molecular dynamics/Monte Carlo simulations showed ligand binding to cause a shift 

in the most frequently populated protein conformations and, thus, to redistribute 

proteins to a deeper energy well that has been created in the energy landscape upon 

ligand binding [482]. Consequently, the observed correlation between xu and ΔG‡ for 

SteT can be attributed to changes in the ground state and does not reflect true 

Hammond behavior. This implies that small differences in the substrate, e.g. a slightly 

longer amino acid side chain, could significantly alter energetics and conformations of 

the antiporter. 

5.5 CONCLUSIONS 

Inter- and intramolecular interactions shape the energy landscape that describes 

the conformational flexibility and kinetic stability of proteins. SMFS was used to 

investigate how substrate binding modifies the energy landscape of the 

serine:threonine antiporter SteT. Upon addition of substrate, SMFS did not detect large 

changes in the interactions that stabilized the structural segments of SteT. Therefore, 

substrate binding of SteT was mediated by multiple weak interactions rather than by a 

few strongly localized interactions. Although individually weak, together these 

interactions change the energy landscape of all structural segments. However, to which 
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extend substrate binding changes the energy barriers of individual structural segments 

remains intrinsic to the structural regions (Table 5.3, Figure 5.7B). From a structural 

point of view, it is hardly possible that the substrate interacts with all structural 

segments of the antiporter simultaneously. Thus, it remains to be determined which of 

these changes are mediated by direct interactions with the substrate and which ones 

result from indirect interactions. 

In absence of substrate, the energy landscape showed that every structural 

segment of SteT was stabilized by two very different energy barriers. The co-existence 

of two energy barriers indicated that the structural segments were stabilized by two 

different mechanisms. The first energy barrier was dominated by short-range 

interactions that shaped a very narrow energy well and had a short lifetime. As a 

result, these structures have brittle mechanical properties that were kinetically less 

stable. This kinetic instability suggests a propensity of these structures to overcome the 

barrier stabilizing them in absence of any applied force. Such transitions would lead to 

the unfolding of the structural segment. However, each structural segment establishes 

a second energy barrier that shows an extended transition state and higher kinetic 

stability. In contrast to the inner barrier this outer barrier may be dominated by longer 

range interactions and permit reassociation of perturbed tertiary contacts. 

In presence of substrate, the structural segment energy landscapes were 

simpler, having single energy barriers. Thus, ligand binding shifted the structural 

segments into a new, deeper energy well. Comparing the inner barriers of substrate-

free SteT to the barriers of SteT in presence of substrate revealed that ligand binding 

kinetically stabilized SteT and changed its mechanical properties from a rigid and 

brittle structure to a more resilient and kinetically stable one (Figure 5.9). Whereas 

rigid structural segments constrain the conformational flexibility and, thus, favor the 

specificity required for specific amino acid binding, the enhanced conformational 

flexibility may be required for the antiporters to allow substrate binding at the other 

membrane surface and to facilitate substrate translocation. 
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 Chapter 

6 

PH‐INDUCED CONFORMATIONAL CHANGES IN CX26 

HEMICHANNELS MODULYTED BY AMINOSULFONATES 

6.1 INTRODUCTION 

Gap junction channels (GJC) are dynamic macromolecular complexes capable of 

opening and closing the channel pore in response to a number of stimuli such as 

divalent cations, signaling molecules, phosphorylation, pH, and modulators of specific 

isoforms [484]. These regulated conduits for the passage of small molecules greatly 

influence homeostasis, development, ionic transmission, and other cellular processes. 

While substantial cell biological, biochemical, and biophysical evidence for the effects 

of these modulators exists, our knowledge about GJC at the structural level is limited, 

especially regarding the conformational changes occurring during pore gating in 

response to the various stimuli. 

Each connexin channel is composed of two hexamers, the connexons, that dock 

at their opposed extracellular surfaces (see section 1.3). The cyclic arrangement of the 

subunits within the hexamers suggests that gating can occur by a rotation and 

translation of the transmembrane segments within all six monomers. It has been 

postulated that gating occurs as a "camera iris" shutter [485]. An alternate hypothesis 

has been proposed in which intra-connexin associations occur that either lead to a 

particle-receptor blockage at the cytoplasmic surface [225,486-488] or activate a 

physical gate near the extracellular surface ("loop gate") [489]. Recently, Sosinsky and 

co-workers unveiled a physically blocked cytoplasmic pore in a Cx26 mutant showing 

decreased permeability [488]. On the basis of the 3D crystal structure of wt Cx26, 

Maeda et  al. [225] lately suggested that the N-terminal helix might be involved in 

formation of a blocking particle. This helix forms a funnel at the cytoplasmic entrance 

of the pore. Whether the proposed mechanisms correlate to the closure of fast and/or 

slow gates that have been characterized by electrophysiological methods (for a recent 

review see Ref. [238]) remains to be determined. 
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Intracellular acidification is one of the stimuli by which connexin channels open 

and close. Experimentally determined decreases in intracellular pH are known to 

decrease junctional electrical coupling in cardiomyocytes and in Purkinje fibers 

[236,490-492] as well as in teleost and amphibian embryos [493]. Stergiopoulos et  al. 

showed that many, but not all connexins close in a pH sensitive manner when tested in 

the paired Xenopus oocyte system [494]. For example, Cx26 channels are highly pH 

sensitive in a physiological pH range but Cx32 are much less affected by pH changes. 

Homomeric hemichannels also displayed this pH regulation [495]. Differences in the 

pH regulation of gap junctions were attributed to the diversity of the primary 

sequence, particularly in certain regions such as the C-terminal tail, because the pH 

sensitivity of dodecameric channels could be modified only when they were composed 

of heterotypic combinations [495]. However, it is important to note that these 

experiments were done in whole cells and cannot distinguish between gating of the 

channel due to protonation of the connexin or protonation of modulators or ligands 

that bind to the connexin and then close the channel. 

Bevans and Harris used a permeability assay system, the so-called transport 

specific fractionation (TSF, [496]), to test for functional pore size. Heteromeric 

Cx32/Cx26 connexons reconstituted into liposomes showed pH-dependent channel 

activity when suspended in aminosulfonate buffers36. The pH sensitivity was directly 

attributed to binding of protonated aminosulfonates to Cx26 since homomeric Cx32 

channels did not show this pH sensitivity [496,499]. However, it should be noted that 

Cx46 hemichannels in excised patches show pH sensitivity in the absence of any added 

cytosolic material [500].  

Previously, Müller et  al. had shown using high-resolution contact mode AFM 

imaging that force dissected Cx26 gap junction hemichannels reversibly open and close 

in response to Ca2+ acting as ligand [397]. As the cytoplasmic GJC surface proved to be 

too flexible for high-resolution imaging, Ca2+ induced conformational changes could be 

only observed on the more rigid extracellular hemichannel surfaces. The flexibility of 

the cytoplasmic surface is well documented not only by AFM studies [397,501,502] but 

also by electron microscopy and by other structural and biochemical methods (for a 

complete review of flexibility in the cytoplasmic domains see Ref [217]). 

                                                           
36 The buffers used contained e.g. HEPES, TAPS, and MES as aminosulfonate compounds. One 
of the simplest of these aminosulfonate compounds is taurine, a naturally occurring ubiquitous 
cytoplasmic component [497,498]. 
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In contrast to previous work, the extracellular surface was image at higher 

spatial resolution that allowed insight into the tertiary conformations of polypeptide 

loops connecting the transmembrane α-helices lining the connexon pore. Taking 

advantage of the AFM's capability to operate in physiological buffer solutions allowed 

the response of hemichannels on pH changes to be directly observed and visualized at 

extracellular connexon surfaces. This simplistic in vitro system allows to correlate the 

addition of modulating agents with the observed conformational changes. The high-

resolution AFM topographs suggest that the extracellular connexin domains undergo 

an aminosulfonate-modulated conformational change that closes the connexon channel 

at the extracellular surface. This conformational change was fully reversible. From the 

high-resolution AFM topographs, a mechanism for closure of the extracellular "loop" 

gate was deduced, which is supposed to be different from the previously observed Ca2+ 

induced closure. 

6.2 EXPERIMENTAL PROCEDURES 

6.2.1 Cx26 Gap Junction Preparation 

Gap junction membranes were isolated from stably transfected HeLa cells 

overexpressing Cx26 [503]37. Gap junction membranes were prepared at the University 

of California, San Diego, USA, and kindly provided by G. Sosinsky and co-workers. 

6.2.2 AFM Imaging 

AFM topographs were recorded in buffer solution using contact mode. The 

AFM (Nanoscope E, Veeco, Santa Barbara, USA) was equipped with a fluid cell and 

100 µm long oxide sharpened Si3N4 cantilevers (OMCL-TR 400, Olympus, Tokyo, 

Japan), which had a nominal spring constant of ≈ 80 pN/m. Prior to imaging, gap 

junction membranes were adsorbed to freshly cleaved mica (section 4.2.1) in buffer 

solution (200 mM NaCl, 2 mM EGTA, 1 mM PMSF, and HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) at pH values as indicated in the text) [287,397]. High-

resolution topographs were recorded at minimal contact forces of ≤ 50 pN, which were 

manually adjusted to compensate thermal drift [288,397]. Proportional and integral 

gains were adjusted manually to minimize the error (deflection) signal and to 

maximize the height signal [504]. When approaching a lateral resolution of ≈ 1 nm the 

                                                           
37 The preparation procedure was slightly modified. HEPES buffer instead of Tris buffer was 
used, resulting in higher gap junction membrane yield and less contaminating material. 
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scanning speed of the AFM tip laid between 500 and 1.500 nm/s. Only topographs that 

showed identical structural features when comparing the simultaneously acquired 

trace and retrace direction scans were selected for further analysis. Topographs that 

showed asymmetric particles or indicated any kind of tip artifact were not analyzed. 

6.2.3 Image Processing and Averaging 

Topographs (512 × 512 pixels) were selected by the reproducibly imaged 

structural details of the protein and by comparing the simultaneously monitored 

height profiles acquired in trace and retrace direction. Correlation averaging was 

performed using the SEMPER image processing system [505]. A well-preserved unit 

cell was selected from the raw data and cross-correlated with the topograph [506]. Unit 

cells were extracted according to the peak coordinates of the cross-correlated 

topograph. Single particle averages were generated by translationally and rotationally 

aligning the unit cells to a reference connexon and then averaged. This correlation 

average was used as reference for refinement cycles [507]. Correlation averaged unit 

cells were six-fold symmetrized. To assess the standard deviation σk,l, individual unit 

cells were extracted according to the coordinates of their correlation peaks and were 

aligned rotationally as well as translationally before single particle averaging [508]. The 

standard deviation (SD) was then calculated from the averaged topograph µk,l for each 

pixel (k, l) for xi particles [286]: 
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  6.1 

These SD maps are displayed as an image in a one-to-one pixel correspondence 

with the correlation averaged topograph. The values range from 0.1 (black) to 0.35 nm 

(white) and the color table continuously ranges from black to white. 

6.3 RESULTS 

6.3.1 High‐Resolution Imaging of the Extracellular Connexon Surface 

Force dissection with AFM imaging provides high-resolution surface views of 

the extracellular surface. Figure 6.1A shows a gap junction plaque imaged by AFM in 

buffer solution. As reported previously by Müller et  al. [397], Cx26 gap junctions 

exhibited a thickness of 17.5 ± 0.8 nm (average ± SD, n = 20) while the surrounding lipid 

membranes were only 4.5 ± 0.6 nm high. These gap junction plaques exposed their 

cytoplasmic surfaces to the AFM tip while the extracellular surfaces were sandwiched 
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between the membranes embedding the connexons. To characterize the extracellular 

surface, the upper connexon layer of the plaque had to be mechanically removed by 

the scanning AFM tip (Figure 6.1B). At minimal forces of ≤ 50 pN applied to the 

scanning AFM cantilever, repetitive imaging is non-destructive and allows to 

reproducibly observe substructures of biological membranes in their native 

conformation [288]. However, at about 10 to 20-fold increased forces the scanning 

process caused mechanical removal of the upper layer of the gap junction plaque 

[397,452,509].  

After removal of the upper layer, the exposed extracellular surface could be 

observed at high-resolution (Figure 6.1C). The AFM topograph showed the six-fold 

 

Figure 6.1 Force dissection of gap junction plaque and high‐resolution AFM imaging. (A) Overview of a 
gap  junction plaque  (marked as GJ).  (B) Same gap  junction plaque but partially dissected, revealing a 
single‐layered  connexon membrane  (marked  as  Cx).  The  gap  junction membrane was  dissected  by 
enhancing  the  applied  force  from  50 pN  (imaging  force)  to  about  500‐1000 pN  during  repeatedly 
scanning  the  sample.  After  removal  the  gap  junction  plaque  was  re‐imaged.  (C)  High‐resolution 
topograph  showing  substructural details of  the extracellular  connexon  surface.  Individual  connexons 
showing six‐fold symmetry were separated by 7.7 ± 0.3 nm. Correlation averaged connexon surface (D) 
and standard deviation (SD) map (F). Six‐fold symmetrized correlation average (E) and SD map (G). AFM 
topographs were recorded in buffer solution (pH 6.0, 20 mM maleate, 70 mM NaCl, 2.5 mM KCl, 1 mM 
MgCl2). Full color range of topographs corresponds to a vertical range of 25 nm (A and B), 3 nm (C, D, 
and E) that of the SD maps to 0.35 nm (F and G). All topographs are displayed as relief tilted by 5°. 



Chapter 6: Conformational Changes in Cx26 Hemichannels 

98 

symmetry of each connexon with its characteristic central pore. Each subunit of the 

connexon is thought to be formed by one connexin that showed substructural details 

[217]. The correlation average of the connexon surface (Figure 6.1D, E) showed their 

common structural details while the standard deviation (SD) map (Figure 6.1F, G) 

marked regions exhibiting an enhanced structural flexibility. 

6.3.2 Observing pH‐Induced Conformational Changes 

pH-induced conformational changes on the extracellular connexon surface were 

first visualized at a constant electrolyte concentration (2mM EGTA, 1mM PMSF) and at 

a constant HEPES concentration of 10 mM (Figure 6.2). Prior to imaging, the 

membranes were absorbed onto the mica support using buffer containing 10mM 

HEPES, 2mM EGTA, 200mM NaCl, and 1mM PMSF. Connexons observed at pH 6.0 

appeared very different to those observed at pH 7.0 and higher. However, it could 

happen that single connexons showed individual deviations among each other. For 

example, a small number of connexons (< 5 %) showed different channel diameters 

than others. To allow statistical relevant conclusions about the average structural 

conformation of a single connexon at a certain buffer condition single particle averages 

were calculated (Figure 6.2G, I, K, and M). The unprocessed topographs of single 

connexons and their corresponding averages did not show any significant differences 

in connexon shape or substructure. The majority of single connexons imaged (> 85 %) 

exhibited the same structural conformation as reflected by their average. Thus, it could 

be ruled out that the connexons imaged may have represented mixed populations of 

several structural states, but rather a single predominant configuration. Connexon 

averages were computed from AFM topographs recorded at pH 6.0 (Figure 6.2G), 6.5 

(Figure 6.2I), 7.0 (Figure 6.2K), and 7.6 (Figure 6.2M). Averages calculated from 

connexons imaged at pH 8.0 and 8.5 did not show any significant deviation from that 

recorded at 7.6 and, therefore, are not shown. Regions of SD maps (Figure 6.2H, J, L, 

and N) exhibiting enhanced values indicated structural fluctuations of the connexon 

surface. All averages showed the 8 skew of the connexon lobes from the vertical axis 

characteristic of detergent treated samples [510]. While the overall appearance of the 

hexameric channel did not change, the diameter of the central channel significantly 

increased with increasing pH. 
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Besides measuring the channel diameters of averaged connexons, also those 

from single connexons were analyzed. The histograms suggest that the average 

channel diameter measured for a certain pH value reflects that of the majority (> 85 %) 

of the individual connexons (Figure 6.3). Under experimental conditions known to 

induce a closed channel [494,496], the channel entrance exhibited a maximum depth of 

0.4 ± 0.1 nm with a diameter of only 0.6 ± 0.3 nm measured at full width half maximum 

(FWHM) height. The SD map of the average (Figure 6.2H) showed no maxima at the 

channel entrance suggesting that this area exhibited no enhanced structural flexibility. 

The surface structure of the connexon did not significantly change after increasing the 

pH to 6.5. However, the SD map of the closed connexon changed. The region at the 

 

Figure 6.2 pH dependent conformational changes on the extracellular connexon surface. Connexons 

were  imaged at pH 6.0  (A), pH 6.5  (B), pH 7.0  (C), pH 7.6  (D), pH 8  (E), and pH 8.5  (F). Correlation 

averages (G, I, K, and M) and SD maps (H, J, L, and N) were calculated from AFM topographs recorded 

at pH 6.0 (G and H), 6.5 (I and J), 7.0 (K and L), and 7.6 (M and N). The buffer solution in all experiments 

was 2 mM EGTA, 1 mM PMSF, and 10 mM HEPES. For each pH investigated, the adsorption and starting 

imaging buffer were identical. Full gray scale of topographs corresponds to a vertical range of 3 nm that 

of the SD maps to 0.35 nm. 
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channel entrance showed a slightly enhanced value of 0.15 nm (Figure 6.2J) indicating 

that the corresponding structures now exhibited some structural flexibility. This may 

also explain the slightly increased maximum depth of the channel (0.6 ± 0.2 nm; n = 85). 

At this pH the width of the channel entrance increased slightly to 0.9 ± 0.3 nm (n = 91). 

Increasing the pH to 7.0 further increased the width of the channel entrance (Figure 

6.2K) to 1.3 ± 0.2 nm (n = 85). As a result of this opening, the AFM tip now could 

penetrate into the channel entrance detecting an average maximum depth of 

1.2 ± 0.35 nm (n = 40). Furthermore, the SD map of the connexon surface (Figure 6.2L) 

increased its central maxima now indicating that the channel entrance had further 

increased its flexibility. At the same time the outer regions of the connexins were 

observed to slightly enhance flexibility as indicated by their SD increasing to 0.2 nm 

(n = 40). Increasing the pH to 7.6 (Figure 6.2D) finally widened the channel entrance 

(Figure 6.2M) to a diameter of 1.7 ± 0.3 nm (n = 81). Concomitant with the opening of 

the channel entrance, the SD map (Figure 6.2N) showed that this structural region 

further increased its flexibility to a maximum SD of 0.35 nm (n = 40). Interestingly, 

individual connexins showed an increased SD of 0.25 nm at their outer rims as well. 

Further increasing the pH to 8 (Figure 6.2E) and 8.5 (Figure 6.2F) did not significantly 

change the correlation averages or connexon structures of the extracellular surface 

(data not shown). It should be noted that "partially closed channels" had a diameter 

lying between that observed of fully opened and fully closed channels. AFM 

topographs showed that more than 85 % of the single hemichannels had no significant 

deviation in their channel diameter (Figure 6.3). This suggests that the partially closed 

hemichannels adopted a functional state that reflects an intermediate channel size 

between fully open and closed conformations and not a mixture of solely open and 

closed states.  

To prove whether the observed conformational change was reversible the pH 

was decreased to 6.0 after the channels were fully opened at pH 9.0. The AFM recorded 

topographs showed that the previously opened pore now re-closed. That suggests a 

fully reversible conformational change. Cycles of pH changes were often repeated 

more than 4 times. Table 6.1 summarizes the data for the measurements of inner pore 

diameter and channel entrance depth for the different pH values. 
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pH 
Maximum channel entrance depth 

(nm) 
Channel entrance diameter 

(FWHM) (nm) 

5.5  not determined  0.6 ± 0.3 

6.0  0.4 ± 0.1  0.6 ± 0.3 

6.5  0.5 ± 0.3  0.9 ± 0.3 

7.0  1.0 ± 0.4  1.3 ± 0.2 

7.6  1.1 ± 0.3  1.7 ± 0.3 

8.0  0.9 ± 0.2  1.7 ± 0.3 

8.5  0.9 ± 0.2  1.6 ± 0.3 

Table 6.1 Summary of the data on the pH dependent channel entrance maximum depth and channel 

entrance diameter measured at the extracellular connexon surface. 

6.3.3 Conformational Changes Are Not Dependent on HEPES Concentration 

HEPES belongs to a class of aminosulfonate compounds that have been shown 

to act as modulators of the Cx26 channel [496]. Following the lead of Bevans and Harris 

[496], it was tested whether the observed conformational change is due solely to pH or 

to binding of aminosulfonates, which modulate a pH conformational change, to Cx26. 

Therefore, the HEPES concentration was increased to 50 mM and the extracellular 

connexon surface was imaged (Figure 6.4). Surprisingly, AFM topographs recorded at 

pH 8.0 (Figure 6.4A) and at pH 9 (Figure 6.4B) showed that the open state of the 

connexon channels was not influenced by the increase in protonated HEPES. For both 

pH conditions, the averages of the inner channel diameters measured from single 

connexons were 1.6 ± 0.3 nm (n = 83) such as observed for the open connexon 

conformation (Figure 6.2 and Figure 6.3). 

 

Figure 6.3 Histogram of pH‐induced changes of channel diameters 

taken from AFM topographs of Cx26 connexons. Topographs were 

taken  from  Cx26 membranes  in  10 mM HEPES  buffered  solutions 

such  as described  for  Figure 6.2. At minimum 80  connexins were 

measured for each histogram. The histogram distributions  indicate 

that  the  pH‐induced  increase  of  the  channel  diameter  is  best 

represented  by  a  process  in which  the  channels  gradually  switch 

from the closed to the fully open state. 
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Figure  6.4  Connexon  channels  do  not  change  conformation  upon  enhancing HEPES  concentration. 

Extracellular surface of connexon Cx26 imaged at pH 8.0 (A) and pH 9.0 (B) buffered with 50 mM HEPES. 

The  raw  data  showed  no  significant  deviation  from  connexons  imaged  at  pH  ≥ 7.6  in  10 mM HEPES 

(compare with Figure 6.2). Full gray scale of topographs corresponds to a vertical range of 3 nm. 

Additional experiments were performed in an effort to close open channels 

with higher HEPES concentrations at pH ≥ 7.6. The sample was absorbed to the mica 

surface at 50 mM HEPES, pH 7.6, and AFM imaging was performed with the same 

buffer. At this pH, the effective concentration of protonated HEPES would be maximal 

at ~ 25 mM. Under these conditions, the channels remained open. Open channels were 

also observed at HEPES concentrations up to 200 mM at pH 7.5 (data not shown). In 

each case, a positive control (10 mM HEPES, lowering the pH) was included to ensure 

the functionality of the sample. Alternatively, adsorption at pH 6.5 (50 mM HEPES) 

was performed to ensure HEPES binding and then increased the pH to 7.5 for AFM 

imaging. In this case, the topographs revealed open channels at pH 7.5 but partially 

closed channels at pH 6.5. Therefore, 10 mM may be the concentration at which 

binding is at saturation conditions in these experiments. 

6.3.4 No Conformational Change Occurs in the Absence of Aminosulfonates 

According to previous findings [496,499], the pH dependent gating of Cx26 

could be only observed in presence of aminosulfonate-containing compounds. To test 

this hypothesis and to prove that the conformational change observed can be indeed 

correlated to the gating mechanism, connexin preparations were imaged at different 

pH buffered in non-aminosulfonate buffers. AFM topographs of maleate buffered 

connexons showed that they did not change their conformation at pH values of 6.0, 6.5, 

or 7.0 (Figure 6.5A-C). Similarly, the extracellular connexon surface apparently did not 

show a pH dependent change in their channel diameter if the aqueous solution was 

buffered with potassium phosphate (KH2PO4) (Figure 6.5D-F). All topographs (Figure 
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6.5A-F) and correlation averages (Figure 6.5G-N) have in common that the channel 

entrance appeared widely opened throughout the pH ranges imaged (compare to 

Figure 6.2). 

 

Figure 6.5 Cx26 channel  remains open  in absence of aminosulfonate. Extracellular connexon surface 

imaged at pH 6.0 (A), 6.5 (B) and 7.0 (C) in aqueous solution buffered with 20 mM maleate revealed an 

open state. Imaged at different pH values of 6.0 (D), 6.5 (E) and 7.0 (F) buffered by 20 mM phosphate, 

the extracellular connexon surface showed an open pore. Correlation averages (G, I, K, and M) and SD 

maps (H, J, L, and N) were calculated from the AFM topographs recorded at pH 6.0 buffered with 20 mM 

maleate  (G  and  H),  pH  7.0  buffered  with  20 mM  maleate  (I  and  J),  pH  6.0  buffered  with  20 mM 

phosphate  (K  and  L),  and  pH  7.0  buffered  with  20 mM  phosphate  (M  and  N).  Full  gray  scale  of 

topographs corresponds to vertical range of 3 nm that of the SD maps to 0.35 nm. 

6.3.5 Quantitative Analysis of the Channel Closure 

The diameter of the average connexon decreased gradually with pH (Figure 

6.6A). While the depth of the channel decreased concomitant with an increase in the 

width of the connexon lobes, the overall diameter of the connexon itself did not change 

(Figure 6.6B). This is also reflected in the difference image between the fully closed (pH 
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6.0, Figure 6.7A) and fully open (pH 7.6, Figure 6.7B) averages shown in Figure 6.7C. In 

this difference image, positive differences are displayed as red and negative differences 

as black. The medium red level reflects no differences. It is also clear from this 

difference image that the extracellular region of the subunits rotate by ~ 6.5 between 

the open and closed states (Figure 6.7A,B), thereby changing the diameter of the pore. 

A previously published hemichannel structure shows a narrowing of the connexon 

pore at the extracellular end that may be part of a physical gate closing upon 

acidification [511]. 

 

Figure 6.6 Analysis of pH‐induced closure of Cx26 hemichannels. (A) Pore diameter versus pH for the 

three buffers tested here. Diameters were measured at FWHM depth of the channel. Each diameter  is 

represented  by  its mean ± standard  deviation  as measured  from  single  connexons  (see  Table  1)that 

were imaged at different pH in aqueous solution buffered with 10 mM HEPES (closed diamonds), 20 mM 

maleate (open triangles), or 20 mM phosphate (open circles). (B) Two‐dimensional profile of the channel 

pore at different the pH values. Note that while the channel entrance becomes shallower, the connexon 

diameter does not change significantly. 

 
Figure 6.7 Model of pH‐induced closure. This mechanism  involves  the conformational rotation of  the 

connexon lobes between closed (A) and open (B) as well as internal rearrangements within extracellular 

vestibule that acts like a physical gate. (C) Difference map calculated between fully closed and fully open 

states. The differences are highlighted using a 7‐step black to red scale where bright red shades reflect 

structures detected in the closed state but absent in the open one. Dark red reflects no differences and 

dark red to black shades indicate structures in the open state that were missing in the closed one. 

6.4 DISCUSSION 

In this study, the molecular mechanisms by which Cx26 hemichannels respond 

to H+ ions has been examined. An AFM equipped with a buffer chamber allowed Cx26 

membranes under physiological conditions to be observe at high-resolution. 
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Analogous to the TSF system of Harris and co-workers [512] or the excised patch 

experiments of Verselis and colleagues [240], this is a reductionist system. Limiting the 

number of variables in the imaging procedure makes the results complementary to 

other pH studies done in whole cells [237,494]. The data presented in this chapter show 

that Cx26 hemichannels close in response to acidification, but only in the presence of 

an aminosulfonate buffer suggesting that the aminosulfonate cation acts as a 

modulator or ligand to specific sites on the Cx26 protein. In addition, the data indicates 

that the aminosulfonate binding site is located on the cytoplasmic surface and that this 

signal is transduced to effect pore closure at the extracellular surface. It should be 

noted that the gating observed is not due to clustering of hemichannels in 2D crystals 

because Bevans and Harris first identified this effect in Cx26/Cx32 hemichannels 

inserted into liposomes at concentrations of ~ 1 hemichannel per liposome [496]. 

6.4.1 Aminosulfonates Are Required to Induce Closure During Acidification in 

Isolated Cx26 Gap Junction Hemichannels 

The results presented confirm previous findings of Harris and Bevans [496] that 

aminosulfonate (HEPES) binding to Cx26 modulates the acidification-induced closure 

of hemichannels. The "titration" curves obtained for pH-induced closure (Figure 6.6A) 

closely follow the sigmoidal, gradual plots obtained by either electrophysiology [494] 

or permeability measurements [496]. It is yet unknown whether the sigmoidal shape 

indicates a cooperative mechanism among the six connexin subunits [513]. However, 

another AFM study of the Ca2+ induced closure of Cx43 hemichannels reconstituted 

into lipid vesicles reported an all-or-none effect [514]. 

Topographs recorded in non-aminosulfonate buffers do not reveal any pH 

dependent conformational change. Binding of aminosulfonates has been shown to 

occur at the C-terminus [515]. Incomplete binding of HEPES to the cytoplasmic 

domains that face the mica surface may explain why in topographs recorded at low pH 

a minority species of channels show a wider diameter ("open" state) while the majority 

of channels have a smaller opening ("closed" state) at their extracellular surface. It is 

possible that some connexins may have bound HEPES while others did not due to 

steric hindrance of the aminosulfonate-binding site on the C-terminus. Since non-

aminosulfonate buffers could not induce pH dependent pore closure, binding of 

HEPES is required for pH-induced closure. If HEPES is sterically hindered from 

binding to the C-terminal tail or if the binding site has been altered by the interactions 
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of the cytoplasmic domains with the mica support, then increasing the HEPES 

concentration will have no effect. 

In this study, gap junctions that were absorbed to mica at 10 mM HEPES and 

subsequently exposed to 50 or 200 mM HEPES did not close the pores. This is in 

contrast to the results of Bevans and Harris [496] where raising the protonated HEPES 

concentration closed the channel. The most likely explanation is that at this 

concentration and with homomeric Cx26 channels, enough HEPES binding sites are 

saturated to effect a conformational change.  

6.4.2 pH Gating of Connexins 

Chemical gating has been extensively studied in cell-cell channels [516,517]. 

Typically, CO2 has been used as the acidification agent in whole cell experiments and 

the term is often used interchangeably with pH gating [238]. It has been proposed that 

calmodulin plays a role in modulating chemical gating [517] by acting as a "cork" to 

plug the channel entrance at the cytoplasmic surface. Here, the effects of direct 

acidification in presence of different buffers rather than with CO2 were observed using 

AFM imaging.  

Channel closure by H+ ions is a common gating mechanism among the 

connexin family. Some members such as Cx32 channels are more pH independent than 

Cx26 channels that are highly sensitive to pH changes within a physiological range. 

Other isoforms such as Cx43 or Cx45 show an intermediate sensitivity to acidification 

[494]. For cardiac connexins (Cx43, Cx40, and Cx45), Stergiopoulos et  al. [494] 

demonstrated that truncation of the C-terminus significantly decreased the response of 

intact channels to acidification. In a study comparing Cx46 channels expressed in 

oocytes and Cx46 hemichannels in excised patches, Verselis and co-workers [240,500] 

showed that Cx46 hemichannels act similarly to intact channels and close reversibly 

with acidification. The site of action for H+ is localized to the cytoplasmic domains. The 

measured gating kinetics are slow (tens of milliseconds). It was also noted that a "pH 

inactivation" occurred whereby the number of hemichannels re-opening with increased 

pH decreased every cycle. Here, such an effect could be observed as well. Whereas the 

opening and closure of most Cx hemichannels was fully reversible, some individual 

channels remained in their closed state and re-opened much later than the others. Such 

pH cycles repeatedly watching the closure and opening of hemichannels could be 

repeated many times (> 4). 
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Connexons have unique functions (reviewed in [518]) that are different from the 

ones served in docked channels. It has been proposed that two docked hemichannels 

act in series [240] so the results obtained for connexons may be extrapolated to 

intercellular channels. Hemichannel plaques have been imaged with AFM in isolated 

preparations [519] and using freeze fracture and thin section electron microscopy in 

Xenopus oocytes expressing exogenous Cx50 [520]. In  vivo, Cx26 hemichannels have 

been demonstrated to be expressed in transfected tissue culture cells [521] and in 

retinal horizontal cells [522,523]. In recent work by Harris and co-workers [515], HeLa 

cells were stably transfected with combinations of Cx26 and Cx32 with and without a 

C-terminal tag. Assayed by a parachute dye coupling assay, dye transfer through 

native heteromeric Cx26/Cx32 or Cx26/Cx32-tag intercellular channels was 

significantly reduced in the presence of 10 mM taurine in the media. HeLa cells possess 

a plasma membrane bound taurine transporter so that cytoplasmic taurine levels 

become elevated when taurine is added in excess to the cell culture medium. Tao et al. 

showed that tagged Cx26 heteromeric channels were unaffected by the increased 

taurine concentration. Presumably, the taurine binding site is located at the distal end 

of the C-terminus and the added tag sterically blocks binding [515]. Membrane-

impermeable HEPES blocked the taurine-induced inhibition because it obstructs the 

taurine transporter. Following up with simple scrape-dye loading assays [524] on the 

Cx26 over-expressing HeLa cells used prepare the membrane patches for this AFM 

study, Sosinsky and co-workers also saw a decrease in dye transfer with 10 mM taurine 

in the media (G. E. Sosinsky, personal communication). Therefore, the pH gating 

observed here for "undocked" Cx26 hemichannels is relevant and may be comparable 

to that seen in Cx26 gap junction channels. In summary, these results suggest that the 

binding site is most likely on the cytoplasmic side since the extracellular domains in 

intercellular channels are typically inaccessible to ligands, such as peptides or 

antibodies. 

6.4.3 Mechanism of Channel Closure at the Extracellular Surface Gate 

Mechanisms to explain the opening and closing of connexin channels have been 

proposed based on the hypothesis that there are two different physical gates: one at the 

cytoplasmic surface and one at the extracellular surface. High-resolution topographs of 

the cytoplasmic surface of Cx26 indicate a unique surface domain structure [397] 

containing both the N and C termini and cytoplasmic loop. It is not known if the short 

C-terminus interacts with the cytoplasmic loop although C-terminal tagging of Cx26 in 
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heteromeric Cx26/Cx32 hemichannels and gap junctions eliminates the 

aminosulfonate-modulated pH dependent closure. Cx32, a much more pH insensitive 

connexin, is not affected by aminosulfonates [496] and presumably, does not contain an 

aminosulfonate binding site. Since the transmembrane and extracellular domains are 

highly conserved among connexins, the ligand-binding site would most likely reside in 

the variable C-terminus of Cx26. This part of the sequence is not conserved in Cx32. 

Therefore, a two-step process is proposed where the aminosulfonate first has to bind to 

a C-terminal domain before a pH-induced conformational change can occur. 

Since the high-resolution topographs reveal only the topology of the 

extracellular surface [397], in the following what may be occurring at the extracellular 

gate is addressed. Two mechanisms have been postulated for gating of the extracellular 

gate of connexons. The first is that of Unwin and co-workers, whereby the pore closes 

by pivoting and tilting of the subunits from a stationary extracellular end [485,525]. 

This model postulates that there is very little change in the channel opening at the 

extracellular end but that rotation of individual subunits causes the channel diameter 

to become narrower. Concomitant, the channel length is slightly increased as well 

[229]. The second mechanism that includes two distinct gates, a fast and a slow 

reacting, respectively, was deduced from single channel conductance measurements of 

Cx46 hemichannels. It was proposed by Trexler et al. [489] that the fast gate was located 

closer to the cytoplasmic surface and the slow gate closer to the extracellular surface. 

The fast gate has been proposed to be the cytoplasmic gate that acts by a 

receptor/ligand mechanism [487]. The extracellular voltage gate was postulated to form 

a "loop gate" in isolated hemichannels and a cytoplasmic "cell-cell channel" gate for 

paired, docked connexons [489]. It was shown using an electrophysiological analysis, 

that these slow component currents seen in hemichannels were similar to those 

observed during early cell-cell channel docking events. The term "loop gate" was 

coined because Trexler et al. [489] proposed that the main structural elements involved 

in docking are the extracellular loops. 

Comparison of the correlation averaged structures reveals a 6.5 rotation of the 

subunits between pH 6.0 and 7.6 (Figure 6.7A and B). While Unwin and co-workers 

[485,525] predicted this rotation of the subunits, there was no observable change in the 

connexon outer diameter as would have been predicted by the Unwin model. Such a 

consistency of the connexon diameter would argue for the "loop gate model". Evidence 

from substituted cysteine accessibility method (SCAM) studies have shown that the 

loop gate is extracellular to amino acid L35 in Cx46 and that the gate is localized at the 
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extracellular end of the channel [526]. However, the electrophysiological data cannot 

discern if there is a rotation of the subunits in concert with this extracellular gate. More 

recent three dimensional reconstructions [224,511] contain a constriction of the pore 

approximately 3/4 from the cytoplasmic surface opening. In both these 3D structures, 

the pore does not appear to be closed and the physiological state of the channel is 

ambiguous. In the structure by Unger and co-workers [224], the channel has been 

speculated to be in a closed or partially closed state because the crystals were obtained 

in the presence of oleamide, a compound that was demonstrated to close Cx43 

channels in vivo [224]. The AFM topographs support the model of a physical gate close 

to the extracellular surface because additional to the pore diameter that decreases upon 

acidification also its depth is shallower as probed by the AFM tip (see Figure 6.6B and 

Table 6.1).  

6.4.4 Connexon  Extracellular  Surface  Is More  Rigid When  the  Extracellular 

Gate Is Closed 

As recently extensively reviewed [217], there are several lines of evidence that 

the extracellular domain is fairly rigid. Lately, the 3D structure of wt Cx26 revealed the 

structure of the extracellular domain [225] (also see section 1.3.1). In contrast to 

previous models, the extracellular loops E1 and E2 do not form two concentric β-

barrels, as has been previously proposed [527]. Still, the extracellular loops E1 and E2 

interdigitate with those from symmetry related partner connexins, a topology 

supported by the AFM images presented in this work. Our AFM topographs indicate 

that there is some flexibility dependent on the open state of the channel and that this 

flexibility is not homogenous. In the open state, this flexibility is highest at the channel 

entrance, minimal at the adjacent structures, and again higher at the outer rim of the 

structures. The fact that channel flexibility increases with diameter has been observed 

before with Ca2+ dependent closure [397]. 

6.4.5 The Relevance of pH Gating in Tissues and Organs 

Tissue cells use intracellular acidification as a mechanism to invoke regulatory 

processes. With respect to gap junction function, two systems are worth noting because 

of their relevance to disease. The first is pH-dependent gating of Cx43 in heart gap 

junctions and the second, relevant to the isoform used in this study, is the effect of pH 

in the inner ear with implications for hearing dysfunction or loss.  
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Cx43 channels close in response to acidification [513]. This has implications for 

the functioning of cardiac tissue where Cx43 is the most frequent connexin. During 

ischemic events, a drop in intracellular pH (pHi) occurs in heart [528] and brain tissue 

[529]. Cardiac ischemia leads to electrical uncoupling [530] as well as to 

dephosphorylation and internalization of Cx43 [531]. Gating of connexin channels by 

lowered pHi is likely to contribute to arrhythogenesis in acute myocardial infarction. 

Connexin channels close and thereby eliminate electrical coupling when the cytoplasm 

is acidified by the accumulation of lactic acid that is due to anaerobic metabolism [532]. 

However, this uncoupling of cells may serve a more important role of isolating normal 

from damaged heart tissue cells, thus limiting the spread of acute ischemic injury [533]. 

Cases of patients with hereditary non-syndromic deafness due to mutations in 

the Cx26 sequence have pointed towards the important role that these gap junction 

channels play in homeostasis and most likely in potassium ion recycling [534,535]. 

Cx26 and Cx30 are co-expressed in the epithelium and connective tissue of the cochlea. 

Cx26-based intercellular communication in the inner ear has been postulated to play a 

homeostatic role in hearing analogous to the function that Cx32 plays during action 

potential generation in nervous tissue [536,537]. It has been proposed that gap 

junctional communication restores the ionic balance after a nerve potential has been 

generated and that dysfunction of Cx26 channels results in exotoxicity leading to inner 

ear damage [538]. While the role of pH gating in the inner ear has not been well 

investigated, a study by Ikeda and Morizono suggested that CO2 levels influence the 

acid-base regulation of inner ear fluids through the cochlear round window and that 

changes in CO2 levels and pH can effect cochlear function [539]. In severe cases, this 

might lead to sensorineural hearing loss that has been demonstrated in cases of 

patients with secretory otitis media [540]. 

6.4.6 The  Importance  of  Taurine  in  Tissues  and  Organs  and  Co‐Expression 

with Cx26 

The HEPES buffer used in this series of experiments belongs to a class of 

compounds known as aminosulfonates. The simplest of the aminosulfonates is α-

aminoethanesulfonic acid, also known as taurine which is one of the most abundant 

low molecular weight organic compounds many animals [497]. In mammals, 

significant cytoplasmic taurine concentrations are ubiquitous. The highest 

concentrations are found in heart, brain, muscle, and particularly in retina. The 

concentration in these tissues is at millimolar levels; however, for HeLa cells the 
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expected concentration would be in the mid-micromolar range [497]. In many cell 

types, there are active taurine transporters in the plasma membrane [541]. It is 

interesting to note that heart and muscles do not contain Cx26, whereas astrocytes and 

leptomeningeal cells do contain this isoform [542]. This suggests that maybe an inverse 

relationship between tissues expressing Cx26 and those containing cytosolic millimolar 

amounts of taurine exists. Hence, tissues containing lower levels of taurine could 

modulate Cx26 channel function in much more regulated manner. It has been 

hypothesized that taurine functions to aid in osmoregulation, especially in excitable 

tissues rich in membranes [543] where high, transient ionic fluxes are accompanied by 

osmotic imbalances. Taurine modulates many Ca2+ dependent processes (for a review 

refer to Ref [497]) although this is thought to occur through indirect processes. Another 

function for taurine as an antioxidant has been proposed [544]. Harris and co-workers 

along with the experiments presented here have demonstrated a potential biological 

role for aminosulfonate binding to Cx26. A subject for further investigations is to 

explore whether other connexins highly expressed in excitable tissues show a taurine-

modulated acidification-induced closure in whole cells where taurine can exist in 

millimolar concentrations and whether these isoforms can bind this compound or if 

taurine binding is unique to Cx26. 

6.5 CONCLUSIONS 

Gap junctions are highly regulated macromolecular assemblies. High-resolution 

AFM imaging was exploited to investigate the pH-induced closure of Cx26 connexons. 

In presence of aminosulfonate compounds such as HEPES, acidification of the buffer 

solution resulted in channel closure that could be observed on the extracellular side of 

the channel. This suggests that the responsible gate is located at or close to the 

extracellular surface. Single-particle analyses of topographs recorded at different pH 

conditions revealed that Cx26 connexons close and open gradually in response to pH 

changes. In concert with the unaffected outer connexon diameter at different pH, the 

results presented here support the "loop gate model" model. A slight rotation along the 

six-fold symmetry axis was found to be associated with channel gating. 

In the absence of aminosulfonate compounds, however, acidification did not 

affect the channel diameter at all, underscoring the requirement of aminosulfonate 

compounds for pH gating of Cx26 connexons. Thus, the intracellular taurine 
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concentration could be exploited to tune the pH sensitivity of Cx26 gap junction 

channels in vivo in a tissue-specific manner.  
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OUTLOOK 

Invented in 1986 [273], AFM is a fast emerging technology that has been the 

source for development of a huge variety of applications that are used to investigate 

both biological and non-biological specimens. Just like any other technique, AFM is 

constantly improving through progress on the level of instrumentation but also 

through the assays developed to address specific questions. 

Surface imaging has been the original application of AFM. Since then and 

especially during the past few years AFM imaging has made great progress. Various 

imaging modes, such as non-contact [279] and multifrequency [545,546] imaging, and 

high-speed microscopes [547-553] have been developed. These microscopes are just 

about to reach the stage of being commercially available. Certainly, in the future, these 

methods will be of increasing importance, since they will allow to investigate more 

fragile specimens38 or to study dynamic processes (such as Cx26 hemichannel pore 

closure) at time scales not accessible to present AFMs39.  

From the beginning 1990s on, the AFM has been increasingly used to measure 

forces, e.g. of ligand-receptor pairs [308,554], cell adhesion [307], DNA [335] and 

polymer stretching [319,323], and (membrane)protein unfolding [313,315]. These 

experiments provided intriguing insight into underlying interactions and mechanisms 

and how these are related to function of the investigated system. Since then, SMFS has 

proven to be a valuable tool for studying the unfolding and the interactions stabilizing 

membrane proteins as well as the underlying energy landscape. Moreover, functionally 

related changes within membrane proteins could be revealed [406,437] (chapter 5). The 

                                                           
38 Multifrequency but especially non-contact AFM significantly reduce the force applied to the 
specimen during scanning, resulting in less sample deformation. Consequently, samples which 
would be disrupted by conventional AFM imaging techniques could be investigated using these 
novel approaches.  
39 Recording a high-resolutino AFM topograph using contact mode AFM typically takes ~90-
100 s, while high-speed AFM can reach imaging rates of > 10 images/s. Still, images recorded 
with a high speed AFM usually contain less pixles and still do not reach the resolution obtained 
by recent slow imaging modes. 
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following sections briefly describe possible future experiments that aim for a better 

understanding of transmembrane transport proteins and membrane protein folding.  

7.1 EFFECT OF LIGANDS AND INHIBITORS ON TRANSPORT PROTEINS 

Motivated by the studies of Kedrov et al. on the Na+:H+ antiporters NhaA and 

MjNhaP1 [311,400,401,406], the effect of ligand binding to the serine:threonine 

antiporter SteT has been investigated (chapter 5). Interestingly, the effects of ligand 

binding to SteT and NhaA or MjNhaP1 were different, which could be attributed to the 

marked differences in the nature of the ligands (amino acids and sodium ions). The 

disagreement of the effects that ligands have on transporters calls for further 

investigation. Thus, it would be desirable to test the impact of ligands but also 

inhibitors on the interactions stabilizing various transmembrane transport proteins and 

the underlying energy landscapes. To obtain a comprehensive impression of the 

consequences of ligands binding to transporters, several members of different 

transporter families should be investigated. However, testing a large number of 

different proteins, ligands, and inhibitors will require automating data collection and 

analysis. 

Continuing the collaboration with the group of D. Fotiadis in Berne, a bacterial 

di- and tripeptide transporter will be the next protein to be studied. It will be 

interesting to see, whether di- and tripeptide binding will show different effects and 

what will be the impact of inhibitors like monomeric amino acids and tetrapeptides.  

7.2 MEMBRANE PROTEIN FOLDING 

Over the last decade, SMFS has been established as an appealing approach to 

study membrane protein unfolding, circumventing issues arising from classical 

(un)folding studies due to the hydrophobic nature of membrane proteins (see section 

1.2.2). Conversely, SMFS has been rarely used to study folding of membrane proteins. 

Indeed, such folding studies are limited to bR and NhaA [312,399,408]. Moreover, 

although providing meaningful insight into in  vitro folding mechanisms of these 

proteins, refolding was initiated from partially unfolded proteins, i.e. the last structural 

segment of the protein remained inserted into the membrane. As a result, the unfolded 
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peptide was strongly linked to the membrane and the remnant secondary structure as 

well as the surrounding proteins40 could facilitate folding.  

For systematic studies on how transmembrane α-helices insert into lipid 

membranes, reductionist systems are required that allow the role of individual amino 

acids on the insertion process to be deciphered. Wimley and White established a 

biophysical hydrophobicity scale for amino acids measuring the partitioning of small 

peptides between an aqueous and a hydrophobic phase [125]. Similarly, von Heijne 

and co-workers tested the impact of different amino acids on the capability of peptide 

segments to adopt a transmembrane topology using an in vitro translation system. This 

biological hydrophobicity scale agrees remarkably well with the biophysical Wimley-

White scale [101,128] (see section 1.2.1.2 – The "Four-Step" Model). Still, a linking 

element is missing. While the biophysical approach probed small peptides, 

comparatively large peptide segments were probed to establish the biological scale. To 

date, no systematic study on the spontaneous insertion of oligopeptides into lipid 

membranes without an aiding translocon have been published.  

Taking advantage of the single-molecule sensitivity of force spectroscopy, it 

might be possible to probe insertion of single transmembrane segment-forming 

peptides. For such an experiment, the peptide should be covalently attached to the 

AFM tip. However, synthesis of such hydrophobic peptides might be difficult. 

Moreover, problems like aggregation and cantilever modification will have to be 

tackled.  

Conceptually, a modified AFM tip would be approached and held for a certain 

time close to the membrane surface to allow peptide binding to and insertion into the 

bilayer. Evaluating the probability of insertion of hydrophobic peptides with single 

amino acid replacements should give information of the energetic contribution of 

single amino acids to membrane insertion. It will be interesting to see how such a 

hydrophobicity scale relates to the Wimley-White and the biological scale. Moreover, 

recently, a theoretical framework estimating the association kinetics of single molecules 

tethered to AFM tips have been published [555]. Thus, such an experiment could at the 

same time shed light on the kinetics of peptide partitioning from the aqueous phase to 

the lipid bilayer. 

                                                           
40 For all studies, 2D crystalline arrays of bR or NhaA were used. These crystalline arrays are 
highly enriched in protein which could affect the mechanism and thermodynamics of insertion 
and folding.  
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GLOSSARY OF ABBREVIATIONS 

°C Degree Celsius 

µm Micrometer (10-6 m) 

2D Two-dimensional 

3D Three-dimensional 

Å Ångström (10-10 m) 

aa Amino acid 

ABC ATP binding cassette 

AFM Atomic force microscope 

APC Amino acid/polyamine/organocation 

ATP Adenosine triphosphate 

B. subtilis  Bacillus subtilis 

BFP Biomembrane force probe 

bR Bacteriorhodopsin 

CD Circular dichroism 

CFTR Cystic fibrosis transmembrane conductance regulator 

cm Centimeter (10-2 m) 

Da Dalton (1.66054∙10-27 kg) 

DFS Dynamic force spectroscopy 

DLVO Derjaguin-Landau-Verwey-Overbeek 

DMPC 1,2-Dimyristoyl-sn-glycero-3-phosphocholine 

DNA Deoxyribonucleic acid 

DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine 

DSPE 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine 

E. coli  Escherichia coli 

EDL Electrostatic double layer 

EDTA Ethylenediaminetetraacetic acid 
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eFJC Extended freely jointed chain 

EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid 

EM Electron microscopy 

eWLC Extended wormlike chain 

F-D Force-distance 

FJC Freely jointed-chain 

FRET Förster resonance energy transfer 

FTIR Fourier transform infra red 

FWHM Full width at half maximum 

GJC Gap junction channel 

GpA Glycophorin A 

GPCR Guanine nucleotide-binding protein coupled receptor 

h Hour 

HAT Heteromeric amino acid transporter 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

I27 27th immunoglobulin domain of the giant muscle protein titin 

IgG Immunoglobulin G 

J Joule 

kcal Kilocalories (103 cal; 1cal = 4.1868 J) 

kDa Kilodalton 

kHz Kilohertz (103 Hz) 

LacY Lactose permease from Escherichia coli 

LAT L-amino acid transporter 

LeuTAa Leucine transporter from Aquifex aeolicus 

LOT Laser optical tweezers 

M. jannaschii  Methanococcus jannaschii 

MDa Megadalton 

MES 2-(N-Morpholino)ethanesulfonic acid 

min Minute 

mm Millimeter (10-3 m) 

mM Millimolar (10-3 mol/l) 

MT Magnetic tweezers 

MΩ Megaohm (106 Ω) 

NhaA Sodium:proton (Na+:H+) antiporter from Escherichia coli 

nm Nanometer (10-9 m) 
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NMR Nuclear magnetic resonance 

PBS Phosphate buffered saline 

PC Phosphatidylcholine 

PDB Protein data bank 

PE Phosphatidylethanolamine 

PMSF α-Toluenesulfonyl fluoride 

pN Piconewton (10-12 N) 

POPC 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

PS Phosphatidylserine 

PSD Power spectral density 

PSPD Position sensitive photo detector 

RNA Ribonucleic acid 

s Second 

S/N Signal-to-noise 

SD Standard deviation 

SDS Sodium dodecyl sulphate 

SDSL-EPR Site-directed spin labeling electron paramagnetic resonance 

SEM Standard error of the mean 

SFA Surface force apparatus 

SM Sphingomyeline 

SMFS Single-molecule force spectroscopy 

SNOM Scanning nearfield optical microscope 

SOPC 1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine 

SPM Scanning probe microscope 

SSID Site-specific infrared dichroism 

SteT Serine:threonine exchange transporter from B. subtilis  

STM Scanning tunneling microscope 

TAPS N-[Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid 

Tris 2-Amino-2-(hydroxymethyl)-1,3-propanediol 

TROSY Transverse relaxation optimized spectroscopy 

TSF Transport-specific fractionation 

WLC Wormlike chain 

wt Wild-type 

Amino acids are abbreviated using the single letter code. 
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GLOSSARY OF SYMBOLS 

Dimensions of units are given according to the Système International d'Unites, 

prefactors found in the text are not considered in this compilation of units. 

x2 Time-averaged mean-square cantilever displacement [m2] 

B Measurement bandwidth [s-1] 

ce,i  Concentration of the ith ion species of an electrolyte [M] 

D  Differential error [V] 

d  Distance between two surfaces [m] 

dg  Differential gain 

e  Elementary charge [C] 

F  Force [N] 

F*  Most probable rupture/unfolding force [N] 

Ha  Hamaker constant [J] 

I  Integral error [V] 

ig  Integral gain 

k(F)  Force-dependent unfolding rate 

k0  Unfolding rate in absence of force [s-1] 

kB  Boltzmann constant (1.38∙10-23 J/K) 

Lc  Contour length [m] 

Lcant Length of a cantilever [m] 

lK  Kuhn length [m] 

lP  Persistence length [m] 

m  Mass [kg] 

M*  Mass added to a cantilever [kg] 

p  Pressure [Pa] 

P  Proportional error [V] 

pg  Proportional gain 

Q  Quality factor 

R Radius of a cantilever tip [m] 

Re Reynolds number 

rf  Loading rate [N/s] 

rf*  Most probable loading rate [N/s] 

T  Temperature [K] 
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t  Time [s] 

tss  Tip-sample separation [m] 

UA-D Voltage [V] of each of the four (A-D) segments of the position 

sensitive photo detector 

UPSPD Deflection output signal of the position sensitive photo detector [V] 

vp  Pulling velocity [m/s] 

wcant  Width of a cantilever [m] 

xmol  Molecule extension [m] 

xu  Distance between native and transition state corrected for 

deviations from the direction of force (xu =  xβ cosθ) [m] 

xβ  Distance between native and transition state along the reaction 

coordinate [m] 

zcorr  Correction value for z-piezo position [V] 

zi  Valency the ith ion species 

zp Piezo movement [m] 

γ  Damping coefficient [Ns/m] 

Γi  Imaginary part of the complex hydrodynamic function 

ΔG Free energy change [J] 

ΔG‡ Free energy of activation [J] 

ε0  Solute permittivity [C/(Vm)]] 

εe  Vacuum permittivity [C/(Vm)] 

ηf  Fluid viscosity [Ns/m2] 

κbond  Elasticity of a bond or structural segment [N/m] 

κcant Cantilever spring constant [N/m] 

κsegment  Segment elasticity [N/m] 

κspacer  Spring constant of the polymeric handle connecting cantilever tip 

and molecule (e.g. already unfolded polypeptide) [N/m] 

λD  Debye length [m] 

ρf  Fluid density [kg/m3] 

σ  Standard deviation (SD) 

σi  Surface charge density [C/m2] 

τ  Molecular relaxation time [s] 

τD  Diffuse relaxation time [s] 

υ0  Resonance frequency [s-1] 

Φ  Specific polymer stiffness [N] 
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χ  Optical lever deflection sensitivity [m/V] 

ψ  Surface potential [V] 

ω0  Angular resonance frequency [s-1]; ω0 = 2πυ0 
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