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Abstract

Microarray technologies enable scientists to identify co-expressed genes at large scale. How-
ever, the gene expression analysis does not show functional relationships between co-expressed
genes. There is a demand for effective approaches to analyse gene expression data to enable bi-
ological discoveries that can lead to identification of markers or therapeutic targets of many dis-
eases. In cancer research, a number of gene expression screens have been carried out to identify
genes differentially expressed in cancerous tissue such as Pancreatic Ductal Adenocarcinoma
(PDAC). PDAC carries very poor prognosis, it eludes early detection and is characterised by
its aggressiveness and resistance to currently available therapies. To identify molecular mark-
ers and suitable targets, there exist a research effort that maps differentially expressed genes
to protein interactions to gain an understanding at systems level. Such interaction networks
have a complex interconnected structure, whose the understanding of which is not a trivial task.
Several formal approaches use simulation to support the investigation of such networks. These
approaches suffer from the missing knowledge concerning biological systems. Reasoning in the
other hand has the advantage of dealing with incomplete and partial information of the network
knowledge.

The initial approach adopted was to provide an algorithm that utilises a network-centric
approach to pancreatic cancer, by re-constructing networks from known interactions and pre-
dicting novel protein interactions from structural templates. This method was applied to a data
set of co-expressed PDAC genes. To this end, structural domains for the gene products are
identified by using threading which is a 3D structure prediction technique. Next, the Protein
Structure Interaction Database (SCOPPI), a database that classifies and annotates domain in-
teractions derived from all known protein structures, is used to find templates of structurally
interacting domains. Moreover, a network of related biological pathways for the PDAC data
was constructed.

In order to reason over molecular networks that are affected by dysregulation of gene ex-
pression, BioRevise was implemented. It is a belief revision system where the inhibition be-
haviour of reactions is modelled using extended logic programming. The system computes a
minimal set of enzymes whose malfunction explains the abnormal expression levels of observed
metabolites or enzymes.

As a result of this research, two complementary approaches for the analysis of pancreatic
cancer gene expression data are presented. Using the first approach, the pathways found to
be largely affected in pancreatic cancer are signal transduction, actin cytoskeleton regulation,
cell growth and cell communication. The analysis indicates that the alteration of the calcium
pathway plays an important role in pancreas specific tumorigenesis. Furthermore, the structural
prediction method reveals∼ 700 potential protein-protein interactions from the PDAC microar-
ray data, among them, 81 novel interactions such as: serine/threonine kinase CDC2L1 inter-
acting with cyclin-dependent kinase inhibitor CDKN3 and the tissue factor pathway inhibitor
2 (TFPI2) interacting with the transmembrane protease serine 4 (TMPRSS4). These resulting
genes were further investigated and some were found to be potential therapeutic markers for
PDAC. Since TMPRSS4 is involved in metastasis formation, it is hypothesised that the upregu-
lation of TMPRSS4 and the downregulation of its predicted inhibitor TFPI2 plays an important
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role in this process. The predicted protein-protein network inspired the analysis of the data from
two other perspectives. The resulting protein-protein interaction network highlighted the im-
portance of the co-expression of KLK6 and KLK10 as prognostic factors for survival in PDAC
as well as the construction of a PDAC specific apoptosis pathway to study different effects of
multiple gene silencing in order to reactivate apoptosis in PDAC.

Using the second approach, the behaviour of biological interaction networks using computa-
tional logic formalism was modelled, reasoning over the networks is enabled and the abnormal
behaviour of its components is explained. The usability of the BioRevise system is demon-
strated through two examples, a metabolic disorder disease and a deficiency in a pancreatic
cancer associated pathway. The system successfully identified the inhibition of the enzyme
glucose-6-phosphatase as responsible for the Glycogen storage disease type I, which accord-
ing to literature is known to be the main reason for this disease. Furthermore, BioRevise was
used to model reaction inhibition in the Glycolysis pathway which is known to be affected by
Pancreatic cancer.
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Schroeder.
In Kay Diederichs, Robert Glen, and Oliver Kohlbacher, editors, Proceedings of the 1st
International Symposium on Computational Life Science. Springer LNBI, 2005

3. Co-expression of KLK6 and KLK10 as prognostic factor for survival in pancreatic ductal
adenocarcinoma.
Felix Rückert, Mario Hennig, Constantina D. Petraki, Diana Wehrum, Marius Distler,
Axel Denz, Michael Schroeder, Gihan Dawelbait, Holger Kalthoff, Hans-Detlev Saeger,
Eleftherios P. Diamandis, Christian Pilarsky, and Robert Grützmann.
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Chapter 1

Introduction

The true impact of the genomics revolution is the transformation from an exclusively labora-
tory science into an information-rich science. The knowledge of full genomes made it possible
to study patterns of gene expression under various conditions, by using tools like microarrays.
The advent of microarray technology has created the possibility of monitoring the expression
levels of thousands of genes in parallel. A common challenge faced by researchers is making
sense out of such lists of differentially regulated genes for a better understanding of the un-
derlying biological phenomena. An initial step towards this goal is the translation of the list
of differentially expressed genes into a functional profile able to offer insight into the cellular
mechanisms relevant in the given condition. However, such gene expression analysis does not
show functional relationships between the elements of the co-expressed genes.

There is a demand for effective approaches to analyse gene expression data to enable bi-
ological discoveries that can lead to identification of markers or therapeutic targets of many
lethal diseases. A variety of statistical and data mining techniques have been applied for the
analyses of gene expression data. It is now understood that the combination of microarray data
with other genomic or proteomic data is often able to provide a more comprehensive view of
a biological system and facilitates an effective exploration of the data [Zhang, 2006]. Most
crucial molecular bases of cellular operation such as metabolism, signalling, and regulation are
largely sustained by different types of protein-protein interactions.

Another challenge in analysing large-scale expression data has been to extract biologically
meaningful inferences from processes often represented as networks [Djebbari and Quack-
enbush, 2008]. There is a need to develop tools to understand not only the structure of the
networks that exist, but also the rules that govern their behaviour and the interactions between
the elements [Quackenbush, 2007].

In [Hanahan and Weinberg, 2000], the authors presented a cell map with the hallmark of
cancer that covers the main knowledge of the current cancer interactome integrated into the
network of biological pathways that are relevant to cancer diseases see Figure 1.1.

The aim of this work is to complement such efforts, by narrowing down the gap between
the actual protein interactome and the incompleteness of the current sparse information about
protein interactions due to the complexity and time consuming experimental techniques on that
end. Mapping disease gene expression data into interaction and pathway networks for the in-
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CHAPTER 1. INTRODUCTION

Figure 1.1: The Hallmarks of cancer from Hanahan and Weinberg [2000].

terpretation of such data can help us to reach functional understanding of ongoing processes of
complex diseases from such networks. Furthermore, we need to consider the genes as switches
whose dysregulation doesn’t only affect their direct interacting partners but also the whole net-
work of pathways they are involved in. Figure 1.2 illustrates the idea of this approach.

Modelling the behaviour of such interaction networks is a challenging yet a very important
task. The use of logic programing to reason over such networks is a promising approach. Log-
ical models are highly abstract, only a small amount of data is required for the modelling, they
have a high analysis speed and the ability to perform inference in comparison to other standard
modelling techniques such as continuous models [Karlebach and Shamir, 2008]. Belief revi-
sion has been widely used to model networks such as electric circuits [Damásio et al., 1997].
In the same manner, rules that governs biological interaction networks can be modelled so we
can reason over them. The goal we hope to achieve from this large scale analysis is to provide
a method that results in the development of new testable hypotheses of potential candidates
as therapeutic and marker genes, that can be verified experimentally. In this chapter the open
questions will be defined along with a brief summary of how they will be addressed.
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Figure 1.2: Approach: Complementing gene expression data with protein-protein interactions,
biological pathways and literature extracted data for the construction of protein interactions
networks to provide a more comprehensive view of a biological system and facilitates effective
exploration of the data. Reasoning over these networks using rules that govern their behaviour
and the interactions between the elements leads to the discovery of potential candidates as
therapeutic and marker genes that should be verified experimentally.



CHAPTER 1. INTRODUCTION

1.1 Open research questions

1.1.1 Open problem 1: Can the use of protein-protein interaction data enhance
knowledge discovery from gene expression data analysis to reveal potential
markers and therapeutic targets for Pancreatic cancer?

Analysing high-throughput data produced by microarrays techniques is a challenging task.
Gene expression profiling leads only to sets of potential candidate genes for further investi-
gations, but it does not show functional relationships between co-expressed genes. One of the
emerging principles in biology is that in most cases it is not the individual genes, but rather
biological networks and pathways that derive the organism’s response to a wide range of stim-
uli [Quackenbush, 2007].

Although closely related, gene expression and protein interaction data convey different bio-
logical meanings, and a coincident of interacting proteins and co-expressed genes is biologically
significant [Zhang, 2006].

For constructing comprehensive interaction networks that reflects the hallmarks of complex
diseases, it is necessary to integrate a variety of relevant annotation resources such as gene
expression data, protein interaction, biological pathways and functional annotation of genes.
It is argued that such networks can assist us to find potential markers, therapeutic targets and
signature genes for cancer. There are several challenges that need to be tackled before the above
mentioned question can be fully addressed:

Constructing interaction networks using structural interaction templates: Most proteins per-
form their functions after forming specific 3D structures. Thus, the structural identification
of proteins is a crucial step towards determining their functions. Due to the difficult, time
consuming and expensive standard experiments (X-ray crystallography and Nuclear Magnetic
Resonance (NMR) spectroscopy) used for structure recognition, it is still substantially lagging
way behind the output of protein sequence data. In most high-throughput experiments there is
usually little known about the genes produced. Therefore, there is a need for high-throughput
prediction of protein structures. Among all the currently used computational methods, thread-
ing shows the most promise in the identification of structures. This is due to the fact that they are
more sensitive than sequence alignment and can assign folds correctly even with low sequence
similarity.

The interactions between proteins are important for many biological functions. Experimen-
tally, interactions between pairs of proteins are inferred from yeast two-hybrid systems, affinity
purification/mass spectrometry assays, or from protein microarrays. Current efforts are to de-
velop computational methods for the prediction of protein interactions. Such methods have
been developed to test whether interactions between homologous proteins can be modelled on
the basis of an interaction of known structures.

Complementary annotation of the interaction network to assist knowledge discovery: One
approach to extract meaning from lists of genes is to use annotation in a sophisticated way. To
produce a more complete understanding to the biology behind the gene expression data we need
to combine the interaction networks elements of the gene expression data to diverse sources of
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available information such as biological pathways, Gene Ontology annotations, and literature
confirmed interactions.

Idea: As part of the current research project, we propose a method that uses inference from
known structures, where structurally interacting domains act as templates for the predicted do-
mains of the genes provided by gene expression data. The novelty of this method is that the
conservation of the interface residues is considered as a quality control of our interactions. Fur-
thermore, we will use the localisation of the proteins in the cell as a filter for interactions that
are not likely to happen if found to be at different location in the cell. Connecting the genes
through the construction of interaction networks facilitates the formulation of a more compre-
hensive picture of how the interacting genes influence each other. The aim is to show that the
poor prognosis of lethal diseases such as pancreatic cancer can be improved by pointing out
markers and signature genes, through the use of this type of interaction network approach.

1.1.2 Open problem 2: Does reasoning over molecular networks facilitate the
analysis of gene expression data?

Due to the huge number of genes produced by microarrays screens, the molecular networks
where these genes are involved can get very complicated. The main challenge posed by the
construction of such networks is automating the reasoning step. Ideally, expert knowledge and
logical reasoning should be used in answering questions such as “What if a change in a gene
expression in the network is observed? How would that affect respective metabolic networks?
How is this observation explained logically?”.

In order to answer such questions, the structure of molecular networks as well as the rules
that govern their behaviour were investigated. Modelling these highly complex networks en-
ables researchers to easily draw conclusions to explain expression profiles and their effect in
metabolic pathways. Identification of metabolic pathways associated with cancer may have
advantages for cancer control. There are considerable efforts directed at modelling biological
networks, such as protein interaction and metabolic pathways. This modelling utilises tech-
niques such as differential equations, rule based models with algebraic syntax, Hybrid Petri
Nets and Hybrid Concurrent Constraint.

Idea: In the current approach we are aiming to use rules and reasoning to model a high level
representation of inhibition of enzyme-catalysed reactions, which reasons over the KEGG net-
work to explain abnormal behaviour of genes and metabolites expression level.

1.2 Outline

The major contribution of this thesis lies in the use of protein-protein interactions data and
reasoning over molecular networks for the analysis of gene expression data to address the above
mentioned open research problems. The rest of the thesis is organised as follows:
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In the next chapter, an overview of the relevant literature and state of the art of standard
approaches, for analysing gene expression data, with the emphasis on protein interaction net-
works, is presented.

The development of the research conducted in this thesis has progressed through several
stages. Initially, I developed an algorithm based on domain-domain interactions as structural
templates for predicting potential interactions within dysregulated genes from cancerous tissues.
The different steps of the algorithm and the validation methods for filtering out false positives
interaction from the resulting network is presented in Chapter 3.

Chapter 4 demonstrates four case studies where our protein-protein interaction predictions
approach was applied to analyse pancreatic cancer gene expression data. In case study I, a novel
pancreatic cancer network of known and predicted protein-protein interactions was constructed.
The result of this study inspired the conduction of the other three case studies where the data sets
were analysed from different perspectives. In case study II and III, potential therapeutic targets
to fight chemoresistence and prognostic markers for enhancing survival in pancreatic cancer
patients were studied. In case study IV, genes that were influencing the apoptotic pathway of
the cancer cell were investigated.

Constructing predicted protein-protein interactions from high throughput data such as gene
expression, is the first step towards assisting researchers to have a better picture over their data
which initially was a list of co-expressed genes. The second step is to find causal functional
relations between the elements of these data sets. For this purpose we make use of rules and
reasoning to analyse molecular networks that are related to the Pancreatic cancer dysregulated
genes. The method and two examples are presented in Chapter five.

Summary and discussion are presented in Chapter six.
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Chapter 2

Background

2.1 A systems approach to pancreatic cancer

Understanding complex diseases such as cancer has been always an active research field. Sev-
eral approaches that has the goal of providing the scientists with a catalogue of all human
protein-protein interactions to study protein deregulation has been applied by many groups.
For identifying disease genes and networks, [Goh et al., 2007] constructed a human disease
network (Diseasome) where two disease genes are connected if they are associated with the
same disorder. In [Freudenberg and Propping, 2002], Freudenberg and Propping, presented
a method for prediction of disease relevant human genes from the phenotypic appearance of a
query disease. Similarly [Aerts et al., 2006] prioritise candidate genes underlying biological
processes or diseases, based on their similarity to known genes involved in these phenomena.
For a convenient integration of functional annotation and statistical analysis of cancer related
genes, the authors of [Dönnes et al., 2004] developed the cancer associated protein database
(CAP) which demonstrated the success of integrative analysis approaches of cancer data.

In [Pospisil et al., 2006], the authors presented a combined approach to data mining of tex-
tual and structured data to identify cancer-related targets. Pospisil’s approach is particularly
interesting because the authors took a first step towards a systems biology approach by incor-
porating into their analysis functional annotations from the Gene Ontology [Harris et al., 2004]
and relevant protein interactions from Ingenuity’s Pathways Analysis. Recent databases such as
pSTIING [Ng et al., 2006], and Cyclonet [Kolpakov et al., 2007] focus on integrating and link-
ing cancer gene expression data to pathways and interaction databases. [Rhodes et al., 2005]
initiated this line of thinking by building a probabilistic network model, which is based among
others on co-expression, and by identifying relevant interactions for pancreatic cancer. Other
groups have hypothesised that a more effective means of marker identification may be to com-
bine gene expression measurements over groups of genes that fall within common pathways
and human phenome as discussed in [Chuang et al., 2007, Marc A van Driel et al., 2006].

Over the past years, such a network-based approach has become possible. Fuelled by high-
throughput interaction experiments [Uetz et al., 2000, Ito et al., 2001, Rain et al., 2001, Gavin
et al., 2002, Ho et al., 2002, Giot et al., 2003, Li et al., 2004, Rual et al., 2005, Gavin et al.,
2006], large databases with thousands of interactions have emerged such as IntAct [Hermjakob
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et al., 2004], STRING [von Mering et al., 2007], DIP [Xenarios et al., 2000], HPRD [Peri
et al., 2003], BIND [Bader and Hogue, 2000], KEGG [Ogata et al., 1999], and Reactome
[Tope et al., 2005]. They have been complemented by databases for structural interactions such
as PIBASE [Davis and Sali, 2005], PSIBASE [Gong et al., 2005], 3did [Stein et al., 2005],
and SCOPPI [Winter et al., 2006b]. Finally, there are many efforts to extract interactions from
literature, among them iHOP [Hoffmann and Valencia, 2004] and ALI BABA [Plake et al.,
2006].

Here, we follow Rhodes et al. and Pospisil et al. taking a network centric approach to the
reconstruction of signalling cascades and the identification of promising targets. We go beyond
this work by including into our networks predicted interactions based on structural templates,
which help elucidating the mode of interaction of deregulated proteins. Ultimately, the aim is
to identify drug targets that explain the mechanism of action of existing and novel drugs.

This chapter is intended to provide definitions of the basic components of our integrative
approach. The chapter also provides a review of the state of the art of relevant efforts in the
fields of pancreatic cancer, gene expression analysis, protein-protein interactions, biological
pathways and reasoning over networks.

2.2 Definitions

2.2.1 Pancreas cancer

Figure 2.1: A sketch showing the pancreas location in the human body and a pancreatic cancer
tissue with the cancerous cells in dark pink

Initially, I will start by defining the pancreas organ, the location from which pancreatic can-
cer originates. The pancreas is a small organ located in the upper abdomen in close proximity
to the duodenum. It serves two major functions: The pancreatic exocrine cells (takes up the
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vast majority of the tissue mass of pancreas) produce digestion enzymes also known as the di-
gestive juices that are secreted in response to food intake. The endocrine cells of the pancreas
are scattered throughout the organ in groups called the islets of Langerhans. These cells secrete
Insulin, Glucagon and Somatostatin. The two main diseases of the pancreas are pancreatitis and
pancreatic cancer. Pancreatic tumours are classified as either exocrine or endocrine depending
on which type of tissue they arise from within the gland. Pancreatic cancer is the fourth lead-
ing cause of death due to cancer in virtually all industrialised countries, and causes more than
34,000 deaths per year in the United States1. It is most common in blacks, in men, and in
patients with either diabetes or heredity chronic pancreatitis. Pancreatic cancer is difficult to
detect, hard to diagnose, early to metastasise, and resistant to treatment. These four character-
istics of pancreatic cancer and their synergistic interactions contribute to the high mortality and
short life expectancy making it one of the deadliest of all cancers. Pancreatic ductal adenocar-
cinome (PDAC) is the most common pancreatic neoplasms and accounts for between 80% and
90% cases of pancreatic tumour [Hezel et al., 2006a], it has an extremely poor prognosis. To
improve the prognosis, novel molecular markers and targets for earlier diagnosis and adjuvant
and neoadjuvant treatment need to be identified. Despite the progress made in recent years in
the treatment of various types of cancer, the dismal prognosis of PDAC remains unchanged.
Apart from surgery there is no curative therapy, and even resected patients usually die within
1 year of the operation. In this situation there is an urgent need to understand more about the
causes and the pathogenesis of PDAC [Dawelbait et al., 2005].

2.2.2 Microarray and gene expression data

A fundamental step in analysing any complex diseases is to identify the genes associated with
this disease. This can be performed by determining a list of co-expressed genes and their
differentially expressed levels from a diseased tissue.

The expression of many genes can be determined by measuring mRNA levels with multiple
techniques including microarrays, where single strands of complementary DNA for the genes of
interest are placed on spots arranged in a grid, typically a glass slide. From a sample of interest,
e.g. a tumour biopsy, the mRNA is extracted, labelled and hybridised to the array. Measuring
the quantity of label on each spot then yields an intensity value that should be correlated to the
abundance of the corresponding RNA transcript in the sample, see Figure 2.2. The result of
such experiments are usually in the form of a matrix of gene expression levels. This matrix
describes three possible states, red for overexpressed, green for underexpressed and black for
no change in expression as shown in Figure 2.3 (b). These methods are applied by several
groups to identify general and specific PDAC genes from gene expression profiles obtained
from pancreatic cancers to determine those genes most differentially expressed and thus with
the most promise for translation into clinically useful targets. Gene expression profiling using
high-throughput microarray experiments result in huge amounts of data, which still need to be
interpreted. Due to the biological complexity of gene expression, it is very hard to reproduce the
same experimental results. This is due to several factors such as histology, number of samples,
microdisection, and the use of different array technology [Grutzmann et al., 2004b]. Therefore,

1http://www.pancreas.org
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Figure 2.2: Microarray schema

biologists conducting such experiments should stick to standard experimental design and to
the ”Minimum Information About a Microarray Experiment” (MIAME) checklist [Brazma
et al., 2001]. The lack of standardisation in arrays presents an interoperability problem in
bioinformatics, which hinders the exchange of array data. The quality of the data produced is
of critical importance if statistically and biologically valid conclusions are to be drawn from the
data. The analysis of DNA microarrays poses a large number of statistical problems, including
the normalisation of the data.

The standard approaches used to analyse such high-throughput data are to cluster its el-
ements into functional categories using different types of gene annotation, for example gene
annotation or pathway information from biological pathway databases (i.e KEGG see Figure
2.3 (a)).
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Figure 2.3: (a) Distribution of the annotated genes into KEGG functional categories. (b) Indi-
vidual expression levels of the genes from [Grutzmann et al., 2005]. Red: genes overexpressed
in PDAC; green: genes underexpressed in PDAC.

2.2.3 Prediction of Protein-Protein interactions

The clustering techniques applied on the huge sets of gene expression data could only provide
correlation between these genes. But, in order to find mechanism of action of these genes
when interacting together, we need to find causal relationships that link these genes to cause
such complex diseases. This could only be provided by the completion of the interactome.
At the moment, the current knowledge of interacting proteins is sparse and only methods of
prediction of such interactions can help us to construct a more detailed networks that illustrates
the hallmarks of complex diseases.
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Figure 2.4: A sketch showing the (A) Yeast two-hybrid system and (B) Affinity purification
schema

Protein-protein interactions are essential in almost all biological processes, extending from
the formation of cellular macromolecular structures and enzymatic complexes to the regulation
of signal transduction pathways. Interacting proteins are more likely to be involved in similar
biological functions and processes and thus they are more likely to be co-expressed. Thus, one
central task in the study of a protein is to determine its interaction partners. The most widely
used experimental methods to determine protein-protein interactions are

Experimental Methods :

Yeast two-hybrid: The yeast two-hybrid [Fields and Song, 1989] system is based on the fact
that eukaryotic transcriptional factors consist of two individual domains the DNA-binding
domain(DBD) and its activation domain (AD). Each of these two parts is fused to the
proteins of interest (X and Y), only if proteins X and Y interact with one another are the
DBD and AD brought together to activate the expression of the reporter gene as shown
in Figure 2.4 (A).

Affinity purifications: In Affinity purification [Puig et al., 2001] the protein of interest, known
as the bait,is displayed as dark purple in Figure reffig:exp (B). The tagged protein is then
purified with its interacting partners(W-Z), usually identified by mass spectrometry.

X-ray crystallography and NMR: provide an atomic description of the binding sites of inter-
acting proteins. X-ray crystallography provides atomic resolution models for protein and
complexes. NMR on the other hand defines interaction interfaces between proteins for
which 3D structures are known [Aloy and Russell, 2006].
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Computational Methods:
In the post genomic era, the importance of protein-protein interaction is becoming even more
apparent. The existing drafts of organism interactomes from high throughput protein interaction
approaches are still far from complete and need therefore to be complemented by computational
predictions. For this purpose a variety of computational approaches has been developed [Va-
lencia and Pazos, 2002].

They can be grouped into sequence based and structure based methods. The former include
phylogenetic profiling [Pellegrini et al., 1999, Sun et al., 2005], genomic context analysis
[Galperin and Koonin, 2000], gene fusion [Marcotte et al., 1999], sequence signatures [Sprin-
zak and Margalit, 2001], linear motifs [Puntervoll et al., 2003, Neduva and Russell, 2006].
Several studies made use of homologous interactions in other species to predict protein inter-
actions [Ben-Hur and Noble, 2005, Espadaler et al., 2005, Kim et al., 2004, Han et al., 2004].
Table 2.1 provides brief definitions of the mentioned computational protein-protein interac-
tion predictions methods. Machine learning approaches fall into both categories, depending
on whether the describing features are derived from known structures or sequences. Structure
based methods are briefly described below.

Structure based Machine Learning techniques: Given interacting and non-interacting sur-
face patch data, a mapping into feature space is defined. The described features include
surface conservation, curvedness, hydrophobicity, shape complementarity and physico-
chemical surface properties. Support vector machines are frequently applied [Bradford
and Westhead, 2005, Bordner and Abagyan, 2005, Koike and Takagi, 2004].

Inference from known structures: is based on the assumption that similar sequences have
similar folds and that domains with a similar fold interact through the same surface [Aloy
and Russell, 2006]. The principle is illustrated in Figure 2.5.

Structural templates: A database of structural interface templates of interacting proteins has
been compiled by [Ogmen et al., 2005]. Query proteins can then be compared against
these templates Aytuna et al. [2005]. Two query templates are inferred to be interacting,
if they can be respectively aligned to a pair of interface templates.

Although sequence based method were successfully used to predict protein interactions,
most of them require the knowledge of whole genomes. In the other hand, when studying or
modelling biological systems, a full understanding of how molecules interact comes only from
three-dimensional (3D) structures, as they provide crucial atomic details about binding [Aloy
and Russell, 2006]. In our approach we utilise a structural based interaction prediction method,
that goes beyond inference from known structures by considering conservation of interacting
interfaces.

2.2.4 Biological pathways

to understand biological processes we equally require the knowledge of direct and indirect
relationships, that can include interaction partners, shared pathway, same cellular localisation
or similar tissue specific expression levels.
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Prediction Method Reference Definition Consider
full
genomes

Consider
struc-
ture

Interface
conser-
vation

Homology
mod-
elling

Phylogenetic
profiling

Pellegrini et al. [1999],
Sun et al. [2005]

Identify the presence or ab-
sence of patterns of do-
mains in species

X × × ×

Genomic context
analysis

Galperin and Koonin
[2000]

Deals with frequently reoc-
curring neighbourhood re-
lations of pairs of proteins
on chromosomes in differ-
ent species

X × × ×

Sequence
based

Sequence signa-
tures

Sprinzak and Margalit
[2001]

Predict interactions using
inference from domain-
pairs that contain sequence
signatures that are known
to be interaction-mediating
in other proteins

X × × ×

Gene fusion Marcotte et al. [1999] It exists between genes that
often interacted together
and thus were conveniently
combined to a single gene
with multiple domains

X × × ×

Linear motifs Puntervoll et al. [2003],
Neduva and Russell
[2006]

Are interfaces of short
stretches of loop regions
that are sequentially con-
secutive and able to arrange
its structure

X × × ×

Machine Learning
techniques

Bradford and Westhead
[2005], Bordner and
Abagyan [2005], Koike
and Takagi [2004]

Extracte Features from pro-
tein surface patches. A
positive data sample for a
protein-protein interaction
is a patch or segment that is
involved in the interaction

× X × X

Structure
based

Inference from
known structures

Aloy and Russell
[2006]

Is based on the assumption
that domains with similar
folds interact through the
same surface

× X × X

Structural tem-
plates

Aytuna et al. [2005] Two query templates are
inferred to be interacting,
if they can be respectively
aligned to a pair of interface
templates

× X × X

Table 2.1: Sequence and structure based protein protein prediction methods
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Figure 2.5: Interaction inference from known structures: a structure for the interaction of a
protease (domain A, shown in yellow) and a Kunitz-type inhibitor (domain B, shown in blue)
exists (PDB: 1brc). Other protease — Kunitz-type-inhibitor sequence pairs (A′−B′, A′′−B′′,
A′′′ −B′′′) can be assumed to interact as well.

Biological pathways represent networks of complex reactions within a cell catalysed by en-
zymes, resulting in either the formation of a metabolic product to be used or stored by the cell,
or the initiation of another metabolic pathway (then called a flux generating step). Common
properties of metabolic pathways includes reversibility of reactions, regulation of pathways us-
ing cycles or feedback inhibition in living cells. Biological pathways also model how biological
molecules interact to accomplish a biological function and to respond to environmental stim-
uli [Saraiya et al., 2005]. Pathways capture the current knowledge of biological processes
and are derived through scientific experimentation and data analysis. They are usually used to
summarise the results of thousands of experiments in order to describe the flow of signals and
metabolites in the cell. Several databases of metabolic and signalling pathways were produced
during the past decade, such as BioCyc [Karp et al., 2005], BioCarta2, Reactome [Joshi-Tope
et al., 2005], BRENDA3 which focuses on enzymatic catalysis, MetaCyc [Caspi et al., 2006]
on metabolic pathways, aMAZE4, a relational database for pathways and cellular process, The
Enzyme and Metabolic pathways database EMP5 focuses as well on enzymes and metabolic
pathways, PathDB [Blanchard et al., 2000] has a wider span of interest which includes en-
zymes, pathways, kinetic, thermodynamic properties of pathway components, and finally Ky-
oto Encyclopedia of Genes and Genomes (KEGG) [Kanehisa et al., 2002] which contains data
about genes, enzyme, metabolic/signaling/regulatory reactions and visual maps with coordi-
nates. In general, these resources represent the relationships between molecules in a cell either

2http://www.biocarta.com
3http://www.brenda.uni-koeln.de
4http://www.amaze.ulb.ac.be
5www.biobase.com/EMP
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Pathway database Reference Features
MetaCyc Caspi et al. [2006] Metabolic pathways and enzymes (curated

from literature).

BioCyc Karp et al. [2005] Uses MetaCyc to predict metabolic networks
of 350 organisms. It includes metabolic
pathways, enzymes, metabolites and reac-
tions.

BioCarta http://www.biocarta.com Biological pathways.

Reactome Joshi-Tope et al. [2005] Biological pathways.

BRENDA http://www.brenda.uni-koeln.de Enzymatic catalysis.
aMAZE http://www.amaze.ulb.ac.be Pathways and cellular process.

EMP www.biobase.com/EMP Enzymes and metabolic pathways.

PathDB Blanchard et al. [2000] Enzymes, pathways, kinetic, thermody-
namic properties of pathway components.

KEGG Kanehisa et al. [2002] Genes, enzyme, metabolic/signaling/regula-
tory reactions and visual maps with coordi-
nates.

Table 2.2: Databases of metabolic and signalling pathways

as reactions or as activation or inhibition events [Aloy and Russell, 2006]. By understanding the
dynamics of such pathways computational models that predict the mechanisms of diseases that
occur when the cellular processes are dysregulated, can be developed. This will have significant
impacts on biotech applications and drug discovery as this prediction can replace tedious and
costly lab experiments [Karlebach and Shamir, 2008].

Various computational methods have been developed for the modelling and analysis of path-
ways. The most frequently used standard models can be divided into two classes:

Logical models: were introduced in the 70’s by Kauffman and Thomas [Glass and Kauffman,
1973, Thomas, 1973]. It is a modelling method that is discrete and logic-based. Logical
models provide a basic understanding of the different functionalities of a given network
under varying conditions. They are highly abstract and hence require the least amount
of data for modelling. Their qualitative nature makes them flexible and easy to fit to
biological phenomenon. These models can be analysed using a number of well estab-
lished mathematical methods such as Boolean networks [Kauffman, 1969] and Petri nets
[Petri, 1962]. Logical models requires discretisation of the real valued data, at the cost of
reducing the accuracy of the data.

Continuous models: incorporate real-valued parameters produced by biological experiments
(e.g reaction rates, cell mass and gene expression intensities ) over a continuous timescale.
They allow a straightforward comparison of the global state and experimental data. How-
ever, these parameters of the continuous models are based on estimations since the quanti-
tative measurements cover only a fraction of the system entities. Some continuous models
make use of Ordinary Differential Equations (ODE) which was suggested by [Goodwin,
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1963]. It provides detailed information about the network dynamics, but requires high
quality data on kinetics parameters which makes it applicable only to a small number of
systems.

2.2.5 Belief revision for rule based networks modelling

The task of incorporating a new fact into an existing knowledge base of a certain domain is
called belief revision.

In particular, a belief revision occurs when a new piece of information that is inconsistent
with the present belief system (or database) is added to that system in such a way that the result
is a new consistent belief system. In a generic belief revision system the database is not viewed
merely as a collection of logically independent facts, but rather as a collection of axioms from
which other facts can be derived. It is the interaction between the updated facts and the derived
facts that is the source of the problem.

2.3 Review of the state of the art

2.3.1 Recent advances in analysis of gene expression data

Gene expression profiling by means of DNA microarrays is a powerful technique to simultane-
ously screen thousands of genes in a cell population and is used to identify the mechanisms of
deregulated molecular functions in pancreatic carcinoma cells. Many researchers have carried
out gene expression experiments coupled to computational analyses to identify relevant markers
and targets for pancreatic cancer. Iacobuzio-Donahue et al. [2002] used the Gene Logic Inc6

BioExpress platform - a genomic database of gene expression data - for discovering novel tu-
mour markers of pancreatic cancer. In a similar manner, Iacobuzio-Donahue et al. [2003b] per-
formed a comprehensive evaluation and comparison of PDAC gene expression data where the
authors used dimension reduction with Principal Components Analysis (PCA). Among the most
differentially expressed genes identified by PCA were Mesothelin, Muc4, Muc5A/C, Kallikrein
10, Transglutaminase 2, Fascin, TMPRSS3 and stratifin. Likewise, Hustinx et al. [2004] used
Serial Analysis of Gene Expression (SAGE) to identify PDAC genes. The differential expres-
sion of seven genes, involved in multiple cellular processes such as signal transduction (MIC-1),
differentiation (DMBT1 and Neugrin), immune response (CD74), inflammation (CXCL2), cell
cycle (CEB1) and enzymatic activity (Kallikrein 6), were experimentally validated.

Aguirre et al. [2004] used array comparative genomic hybridisation (CGH) on a cDNA
microarray platform to define the copy number alterations (CNAs) in a panel of pancreatic ade-
nocarcinoma cell lines and primary tumour specimens. A number of research groups are now
developing methods that integrate interaction data with gene expression profiles and subcellular
localisations and literature mining [Jansen et al., 2003, Mering et al., 2005].

6www.genelogic.com/

17



CHAPTER 2. BACKGROUND

2.3.1.1 Analysis using the Gene ontology

Analysis of microarray data most often produces lists of genes with similar expression pat-
terns, which are then subdivided into functional categories for biological interpretation. This is
done by grouping co-expressed genes using their annotations. Such functional categorisation
is most commonly accomplished using Gene Ontology (GO) categories. Ontologies can help
in identifying and clustering sequence data that share common characteristics. GO [Ashburner
et al., 2000] is widely used in biology to annotate sequence and structure data. It follows a hu-
man annotation process that is performed by the field experts by consulting relevant literature. It
contains∼ 30000 terms on biological process (BP), molecular functions(MF) and cellular com-
ponent (CC). As a result of the GO initiative lots of annotation databases such as GOA [Camon
et al., 2004] were established. Even though, GO has become the de facto standard and is used
for the annotation of many biological databases, it has been criticised for numerous reasons. In
[Smith et al., 2003, Kumar and Smith, 2004, Smith, 2004, Smith et al., 2004, Schulz et al., 2005,
Kumar and Smith, 2003, Rosa and Smith, 2004, Kumar et al., 2004]. The authors discussed the
problems of the existing design of GO emphasising on the point that GO does not have a formal
architecture for its parts ”is-a” and ”part-of” relations, as well as how the terms of the three GO
separate ontologies CC, BP, MF relate to each other. On the the other hand, [Bada et al., 2004]
described GO as a success story, and presented an application which used GO to find relations
between sequence similarity and semantic similarity [Lord et al., 2002, Hennig et al., 2003a,b].
Functional annotation of differentially expressed genes is a necessary and a critical step in the
analysis of microarray data. Considerable effort was exerted to develop a large variety of tools
for interpreting large lists of genes produced by high-throughput experiments (Micrroarrays and
RNAi). A collection of tools that maps predominant functional themes of a given gene set on the
GO hierarchy are listed on the GO website. A selection of these tools which is geared towards
interpreting gene expression data is presented in the subsequent section. The Biological Net-
works Gene Ontology tool (BiNGO) [Maere et al., 2005]. NetAffx [Cheng et al., 2004] is a web
based interactive tool that permits the traversal of the GO graph in the context of microarrays.
It accepts as an input a list of Affymetrics sets and outputs a GO interactive graph in the form of
a colour-map/heat-map, coloured according to the significance of the measurements. ChipInfo
[Zhong1 et al., 2003] is designed for retrieving annotations from online databases (NetAffx and
GO) and organising the information into an easily interpretable output format. GOAL, the GO
Automated Lexicon [Volinia et al., 2004] is a web based application for the identification of
functions and processes regulated in microarray and SAGE experiments. GO-Mapper [Smid
and Dorssers, 2004] is a tool that quantitatively link gene expression levels to GO for multiple
experiments in an automated way. Karma [Cheung et al., 2004] is a web server application
for comparing and annotating heterogeneous microarray platforms. GOtcha [Martin et al.,
2004] is a new method for the prediction of protein functions assessed by the annotation of
seven genomes. GOTree Machine [Zhang et al., 2004] (GOTM) is a web-based platform for
interpreting sets of interesting genes using GO hierarchies. GOSTAT [Beissbarth and Speed,
2004] is a tool that finds statistically overrepresented GO within a group of genes. GeneInfoViz
[Zhou and Cu, 2004] is a tool for constructing and visualising gene relation networks. GoMiner
[Zeeberg et al., 2003] is a resource for biological interpretation of genomic and proteomic data.
GoMiner classifies the genes into biologically coherent categories and assesses these categories.
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Go Tool Reference Features
BiNGO Maere et al. [2005] Determine which GO categories are statisti-

cally over-represented in a set of genes.

NetAffx Cheng et al. [2004] GO interactive graph in the form of a colour-
map/heat-map.

ChipInfo [Zhong1 et al., 2003] Retrieve and organise annotations from
(NetAffx and GO) into an easily inter-
pretable output format.

GOAL Volinia et al. [2004] Identify of functions and processes regulated
in microarray and SAGE experiments.

GO-Mapper Smid and Dorssers [2004] Analyse gene expression data using the ex-
pression level as a score to evaluate Gene
Ontology terms.

Karma Cheung et al. [2004] Compare and annotate heterogeneous mi-
croarray platforms.

GOtcha Martin et al. [2004] Predict protein functions assessed by the an-
notation of seven genomes.

GOTree Machine Zhang et al. [2004] Interpret sets of genes using GO hierarchy.

GOSTAT Beissbarth and Speed [2004] Determine Identify statistically significant
over- or under-represented GO categories
within lists of genes.

GeneInfoViz Zhou and Cu [2004] Construct and visualise gene relation net-
works.

GoMiner Zeeberg et al. [2003] Organise lists of genes from a microarray ex-
periment for biological interpretation in the
context of the Gene Ontology.

Table 2.3: GeneOntolgy Tools for analysing gene expression data

A study that proposes that transitive expression similarity among genes can be used as an im-
portant attribute to link genes of the same biological pathway [Fages et al., 2005]. A complete
list of tools that uses GO for analysis of data sets including gene expression and microarray data
is listed in http://www.geneontology.org/GO.tools.microarray.shtml

2.3.1.2 Analysis using data mining

To be able to sort and analyse huge amounts of data, sophisticated data mining algorithms that
identify trends within data, that go beyond simple analysis are needed. Data mining, databases
and bioinformatics are frequently used to identify cancer-related targets. In [Pospisil et al.,
2006] a new, rapid, data mining strategy that is based on a combination of curated knowledge
bases such as (NCBI Genomic Biology, Ensembl and UCSC Genome Browser) with protein
databases (UniProt - the universal protein resource) [Bairoch et al., 2004] and the RCSB Pro-
tein Data Bank (PDB , the database of protein structures) [Berman et al., 2000] and derived
databases such as EMBL-EBI InterPro [Hunter et al., 2008] (database of protein families,
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domains and functional sites), has revealed the unique characteristics of several programs, in-
cluding the entity retrieval capability and the Gene Ontology term-filtering specification of LS-
Graph7 and the full-text-based knowledge of Ingenuity Pathway Analysis8. The study revealed
four interesting results, which are Alkaline phosphatase (various cancers), prostatic acid phos-
phatase, prostate-specific antigen (prostate cancer), and extracellular sulfatase 1 (pancreatic
cancer). Cao et al. [Cao et al., 2004] applied another bioinformatics analyses to characterise
ESTs that were found to be highly overexpressed in a series of pancreatic adenocarcinomas. The
authors used basic local alignment search tools BLAST [Altschul et al., 1990], BLASTN9, and
BLASTX10, for identifying protein coding genes corresponding to the ESTs. Subsequently,
in order to pick the most relevant candidate genes for a more detailed analysis, the authors
looked for domains/motifs in the open reading frames using SMART [Letunic et al., 2006]
and Pfam [Finn et al., 2007]. The differential expression of a subset of genes was experimen-
tally confirmed at the protein level by immunohistochemical labelling of tissue microarrays (in-
hibin beta A [INHBA] and CD29) and/or at the transcript level by RT-PCR (INHBA, AKAP12,
ELK3, FOXQ1, EIF5A2, and EFNA5).

2.3.2 Literature confirmed cancer genes

Here, a number of previously reported differentially expressed cancer genes [Higgins et al.,
2007] are listed, among them are the K-ras oncogene whose mutation has been identified in 90%
of pancreatic cancers, the insulin-like growth factor (IGFBP4/5) and STAT1 a signal transducers
and activators of transcription family.

SMADS are proteins of the TGFβ signalling pathway. Downregulation or loss of SMAD4
was shown to be important for pancreatic carcinogenesis. Sato et al. identified that epigenetic
inactivation of Tissue factor pathway inhibitor 2 TFPI2 is a common mechanism that con-
tributes to the aggressive phenotype of pancreatic ductal adenocarcinoma. Sova et al. identified
TFPI2 as a biomarker that is repressed in cervical cancer. TMPRSS4 has been also identified
as a biomarker for thyroid cancer [Kebebew et al., 2005]. Furthermore, [Mertz et al., 2007],
identified recurrent gene fusions of TMPRSS2, a paralog of TMPRSS4, that mediate the overex-
pression of ETS transcription factor family members, most commonly ERG in prostate cancer.
SERPINI2 a protease inhibitor is located at the chromosomal position 3q26.1-q26.2, a region
that has been linked to a genetic risk for breast cancer. [Ozaki et al., 1998] has also shown
that down-regulation of SERPINI2 may play a significant role in development or progression
of pancreatic cancer. The increase of expression of CD44, a transmembrane protein involved in
cell-to-matrix interactions, promotes metastatic potential of pancreatic carcinoma cells [Cop-
pola, 2000]. The FOXM1 gene is upregulated in pancreatic cancer and basal cell carcinoma
due to the transcriptional regulation by Sonic Hedgehog (SHH) pathway [Katoh and Katoh,
2004]. BRCA1, whose mutation appears to confer increased susceptibility for PDAC [Hezel
et al., 2006b], as well as STK11, which is a tumour suppressor gene, was found to be involved
in regulation of diverse processes such as cell polarity and metabolism.

7http://lsgraph.it-omics.com/
8http://www.pir.uniprot.org/
9http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn

10http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Translations&PROGRAM=blastx
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Some of the above identified genes were investigated as therapeutic targets. Fleming et al.
provided support that silencing mutant K-ras through RNA interference results in alteration of
tumour cell behaviour in vitro and suggests that targeting mutant K-ras specifically might be
effective against pancreatic cancer in vivo. [Lebedeva et al., 2006] as well targeted K-ras by
using an adenovirus expressing a novel cancer-specific apoptosis-inducing cytokine gene.

Taniuchi et al. identified KIF20A as a candidate for development of drugs to treat PDACs.
Knockdown of endogenous KIF20A expression in PDAC cell lines by small interfering RNA
drastically attenuated growth of those cells, suggesting an essential role for the gene product in
maintaining viability of PDAC cells.

Gene Sym-
bol

Gene name Reference Function Cancer type

K-ras v-Ki-ras2 Kirsten rat
sarcoma 2 viral onco-
gene homolog

[Fleming et al., 2005] Ras proteins bind GDP/GTP
and possess intrinsic GTPase
activity

Pancreatic, colorectal,
lung, thyroid, acute
myelogenous leukaemia

IGFBP4 Insulin-like growth
factor binding protein
4

[Culouscou and Shoyab,
1991]

Insulin-like growth factor bind-
ing

Colon cancer

STAT1 Signal transducer and
activator of transcrip-
tion 1, 91kDa

[Sahin et al., 2003] Mediates signaling by interfer-
ons(IFNs)

Leukaemia

SMAD4 SMAD, mothers
against DPP homolog
4

[Vogelstein and Kinzler,
2004, Futreal et al., 2004]

Common mediator of signal
transduction by TGF-beta
(transforming growth factor)
superfamily, acts as a tumour
suppressor

Colorectal cancer

TFPI2 Tissue factor pathway
inhibitor 2

[Sato et al., 2005, Sova
et al., 2006]

May play a role in the reg-
ulation of plasmin-mediated
matrix remodeling. Inhibits
trypsin, plasmin, factor VI-
Ia/tissue factor and weakly fac-
tor Xa

Non-small-cell lung can-
cer, pancreatic cancer

TMPRSS4 Transmembrane pro-
tease, serine 4

[Kebebew et al., 2005] Probable protease. Seems to be
capable of activating ENaC

Thyroid cancer

TMPRSS2 Transmembrane pro-
tease, serine 2

[Mertz et al., 2007] Serine-type endopeptidase ac-
tivity

Prostate cancer

SERPINI2 serpin peptidase
inhibitor, clade I
(pancpin), member 2

[Ozaki et al., 1998] Protease inhibitor Breast cancer,pancreatic
cancer

CD44 CD44 antigen [Coppola, 2000] Involved in cell proliferation,
differentiation, migration, and
angiogenesis, presentation of
cytokines, chemokines, and
growth factors to the corre-
sponding receptors

Breast cancer, prostate
cancer

FOXM1 Forkhead box M1 [Katoh and Katoh, 2004] Transcriptional activatory fac-
tor

Pancreatic cancer and
basal cell carcinoma

BRCA1 Familial breast/ovar-
ian cancer gene 1

[Hezel et al., 2006b] Facilitating cellular response to
DNA repair

Breast/ovarian cancer
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Gene Sym-
bol

Gene name Reference Function Cancer type

STK11 Seine/threonine
kinase 11

[Sahin et al., 2003] A tumour suppressor gene Non small cell lung can-
cer, lost in Pancreatic can-
cer

KIF20A Kinesin family mem-
ber 20A

[Taniuchi et al., 2005] A motor required for the ret-
rograde RAB6 regulated trans-
port of Golgi membranes and
associated vesicles along mi-
crotubules

Pancreatic cancer

ALP Alkaline phosphate [Pospisil et al., 2006] Responsible for removing
phosphate groups from many
types of molecules, including
nucleotides, proteins, and
alkaloids

Various cancers

PAP Prostatic acid phos-
phatase

Functions as a neutral protein
tyrosine phosphatase (PTP) in
prostate cancer cells

Prostatic cancer

INHBA Inhibin, beta A [Cao et al., 2004] Inhibins inhibit the secretion
of follitropin by the pituitary
gland

Ovarian cancer

AKAP12 A-KINASE AN-
CHOR PROTEIN
12

Anchoring protein that medi-
ates the subcellular compart-
mentation of protein kinase a
(pka) and protein kinase c (pkc)

Pancreatic, prostate, breast
and gastric cancer

ELK3 ELK3, ETS-domain
protein

Negative regulation of tran-
scription and activate transcrip-
tion when co-expressed with
ras, src or mos

Pancreatic cancer

FOXQ1 Forkhead box Q1 Transcription factor activity Pancreatic cancer

EIF5A2 eukaryotic translation
initiation factor 5A2

Pancreatic, ovarian and col-
orectal cancer

EFNA5 Ephrin-A5 Induces compartmentalised
signaling within a caveolae-
like membrane microdomain
when bound to the extracel-
lular domain of its cognate
receptor

Pancreatic cancer

KLK6 Kallikrein 6 Hustinx et al. [2004] Serine-type endopeptidase ac-
tivity

Pancreatic cancer

CD74 CD74 antigen MHC class II protein binding Pancreatic cancer

KLK10 Kallikrein 6 Has a tumour-suppressor role
for NES1 in breast and prostate
cancer

Pancreatic, breast and
prostate cancer

TMPRSS3 Transmembrane pro-
tease, serine 4

Serine-type endopeptidase ac-
tivity

Pancreatic cancer

Muc4 Mucin 4, cell surface
associated

ErbB-2 class receptor binding Pancreatic cancer
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Gene Sym-
bol

Gene name Reference Function Cancer type

DMBT1 Deleted in malignant
brain tumours 1

May be considered as a can-
didate tumour suppressor gene
for a number of cancers

Pancreatic, brain, lung,
esophageal, gastric, and
colorectal cancers

CXCL2 Chemokine (C-X-C
motif) ligand 2

Produced by activated mono-
cytes and neutrophils and ex-
pressed at sites of inflammation

Pancreatic cancer

CEB1 Cyclin-E-binding pro-
tein 1

acid-amino acid ligase activity Pancreatic cancer

Table 2.4: A list of a number of known cancer genes. The list has been annotated with
information concerning references, gene function and cancer types in which mutations are
found.

2.3.3 Modelling and reasoning over molecular networks

Analysing complex interaction networks is harder than producing them. These networks tend
to be very complicated, with thousands of nodes and edges to be considered. For example, the
Boehringer Mannheim chart that consists of a complex, interconnecting metabolic processes
network, has over 2200 reactions and 820 enzymes see Figure 2.6. Biomedical reaction net-
works are the subject of extensive modelling studies, they are often modeled by means Differ-
ential Equations. Nathalie Chabrier-Rivier proposed a kinetic model of biological pathways us-
ing Ordinary Differential Equations (ODEs). Similarly, in [Hurlebaus et al., 2002] the authors
used ODEs in modelling the kinetics of the pathways where all real metabolites concentration
are considered. Some other recent studies also used ODEs to evaluate their models [Li et al.,
2008, Chen et al., 2004]. Despite their expressive power, they are difficult to reason about and
make decisions because of the effects that the uncertainty on data may cause. In [Cruz and
Barahona, 2005], the authors proposed a constraint reasoning framework to enable safe deci-
sion support despite data uncertainty and illustrate the approach in the tuning of drug design.
Rule based models are also used for the same purpose. Pathwaylogic, which uses algebraic
syntax, is a work presented by Eker et al. [2002]. In [Kim and Park, 2005] the authors present
a formalism to represent and analyse protein-protein interaction networks, and a computation
tree Logic (CTL) is used as a language to query their system. In [Hvidsten et al., 2003] the au-
thors present a supervised learning approach to predict biological process from gene expression
data and biological knowledge, using GO, and then generate hypothesis for unknown genes.
BIOCHAM the biomedical abstract machine [Fages et al., 2005] offers automated reasoning
tools for querying the temporal properties of a network system, based on a formal semantics to
bimolecular interaction maps. The machine learning system of BIOCHAM allows researchers
to discover interaction rules from a partial model with constraints on the system behaviour
expressed in temporal logic [Calzone et al., 2005]. Some other approachs include BioNet-
Gen [Blinov et al., 2004], Bio-ambients [Regev et al., 2004], Hybrid Petri Nets [Hofestadt and
Thelen, 1998], and Hybrid Concurrent Constraint languages [Bockmayr and Courtois, 2002].
In [Tamaddoni-Nezhad et al., 2004], the authors used a logic-based representation and a com-
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Modelling method Reference Features consider
kinetics

rule-
based

High level rep-
resentation

Ordinary Differential
Equations (ODEs)

Li et al. [2008], Chen
et al. [2004]

Model kinetic of biological pathways. X × ×

Pathwaylogic Eker et al. [2002] Rule-based approach that uses alge-
braic syntax.

X X X

GOEx Hvidsten et al. [2003] Supervised learning approach to predict
biological process using GO

X × ×

BIOCHAM Fages et al. [2005] Automated reasoning tool for querying
the temporal properties of bimolecular
interaction maps.

X X ×

BioNet-Gen Blinov et al. [2004] Rule-based modeling of signal trans-
duction based on the interactions of
molecular domains.

X X ×

Bio-ambients Regev et al. [2004] A calculus used for simulations that
provides frame works for molecular and
cellular compartmentalisation.

× X X

Hybrid Petri Nets Hofestadt and Thelen
[1998]

Simulates quantitative modeling of bio-
chemical networks.

× × X

Hybrid Concurrent
Constraint languages

Bockmayr and Cour-
tois [2002]

Declarative compositional program-
ming language with a well-defined
semantics to model and simulate the
dynamics of hybrid systems, which
exhibit both discrete and continuous
change.

X X ×

Abduction and Induc-
tion

Tamaddoni-Nezhad
et al. [2004]

Logic-based representation and a com-
bination of Abduction and Induction to
model inhibition in metabolic networks.

× X X

Table 2.5: Modelling biological networks methods
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The Boehringer Map

What if 
myo-INOSITOL OXYGENASE 

is inhibited?

Figure 2.6: The Boehringer Mannheim chart is an example of a condensed metabolic network
where manual investigation becomes almost impossible. Automated reasoning over such net-
works can answer question such as ”What if an enzyme got inhibited in one part of the map ?”
What effects does this have on the rest of the map and how can we explain this inhibition?

bination of Abduction and Induction to model inhibition in metabolic networks. The work in
[Tamaddoni-Nezhad et al., 2004] serves as a base for the approach that is discussed in this the-
sis. DRUM [Nejdl and Giefer, 1994] is a belief revision system, it used systems descriptions
and observations as model consistency checks. It extend the IMMORTAL [Chou and Winslett,
1991] system by more sophisticated instantiation and inconsistency checking strategies. DRUM
uses a combination of static and dynamic inconsistency detection methods and it is able to solve
larger and more complicated examples than IMMORTAL. Both DRUM and IMMORTAL were
not used in biological networks modelling before.
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Chapter 3

From gene expression to interaction
networks

In this chapter, the work flow of constructing predicted protein-protein interaction networks
starting from a gene expression data set is discussed. The use of structural information to
construct such interaction networks which in turn facilitate gene expression data analysis is
then motivated. A summary of all the databases utilised in this work is also introduced.

Innovations in experimental methods such as microarray, have enabled large scale analysis
of gene expression data, hence provided a foundation for cancer research. The huge amount
of data produced by such techniques, stands on the way of a significant analysis of the data
in order to use it for diagnostic, prognostic or therapeutic purposes. Protein interactions pro-
vide an important context for understanding proteins functions. In ∼ 60% of protein-protein
interactions the two interacting proteins share functional similarity, therefore identifying pro-
tein interactions is an important component of functional annotation. Further investigations
of such data is hampered by the fact that except for the sequence rather little is known about
those genes. Therefore, to interpret the data, there is a need for finding the relation between
its elements. Large-scale protein interaction maps provide a new global perspective with which
to analyse protein function. The main idea of this approach is the prediction of protein inter-
actions using structural data is shown in Figure 3.1. Starting from a set of gene expression
data we consider all pairs of sequences for the list. Since structure recognition is still lagging
way behind the out put of protein sequence data. To overcome the gap between the known
genes sequences and structures, we use GTD [McGuffin and Jones, 2003a], a database that
applies threading to predict the structure of all proteins with unknown structures. Our interac-
tion prediction approach is based on SCOPPI, the Structural Classification of Protein-Protein
interaction [Winter et al., 2006b], that contains ∼ 100.000 interactions of all the structurally
observed interactions between protein domains. It computes domain-domain interactions for all
multi-domain and multi-chain proteins in the Protein Data Bank (PDB) [Berman et al., 2000].
The method then queries SCOPPI for a an interaction template between two domains, then two
proteins are considered to be interacting if they contain two domains and SCOPPI contains an
interaction between these two domains Another major challenge that faces gene expression data
analysis is that most of the information is hidden in a huge amount of publications.
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Sequences

For all
sequence 

pairs
Sequence of 
protein A 

Sequence of 
protein B

Assignment of 
domains

by Threading

Known 
domain

interaction

Assignment of 
domains

by Threading

Domain of
protein B

Protein A

Domain of
protein A

Hypothesis

Protein Binteract

Figure 3.1: From sequences to protein interactions: For all pairs of sequences of unknown
structure we use threading for the assignment of domains. Two proteins are considered to be
interacting if they contain two domains and SCOPPI contains an interaction between these two
domains



3.1. DATA SOURCES

3.1 Data sources

In this section the work flow linking gene expression data, biological pathways and interaction
data is described. The underlying data sources used are briefly summarised.

3.1.1 3D structures - PDB

The Protein Data Bank (PDB) [Berman et al., 2000] is a repository of information for 3D struc-
tures of large biological molecules, including proteins and nucleic acids. As of July 2008, it
contains some 51860 protein structures of which 44,000 have been obtained by X-ray crystal-
lography, 180 by electron microscopy and 7300 by NMR. Around half of the PDB structures
are multi-domain structures.

3.1.2 Classification of Proteins - SCOP

The structural classification of proteins (SCOP), is a hierarchical classification of protein struc-
tures at domain level. The hierarchy contains four levels (class, fold, superfamily, family). At
the family level domains share a high sequence similarity and hence are structurally very simi-
lar. At superfamily level there is still good structural agreement concerning the overall topology
despite possibly low sequence similarity. Domains grouped at family and superfamily level can
be considered homologous. Superfamilies and families are defined as having a common fold if
their proteins have same major secondary structures in same arrangement with the same topo-
logical connections. Most of the folds are assigned to one of the five structural classes on the
basis of the secondary structures of which they composed: (1) all alpha (for proteins whose
structure is essentially formed by alpha-helices), (2) all beta (for those whose structure is es-
sentially formed by beta-sheets), (3) alpha and beta (for proteins with alpha-helices and beta-
strands that are largely inter-spersed), (4) alpha plus beta (for those in which alpha helices and
beta strands are largely segregated) and (5) multi-domain (for those with domains of different
fold and for which no homologues are known at present) [Murzin et al., 1995].

3.1.3 Domain domain interactions - SCOPPI

The Structural Classification of Protein-Protein Interfaces (SCOPPI) is a database containing
all domain-domain interactions in the PDB. SCOPPI applies SCOP domain definitions and a
distance criterion to determine inter-domain interfaces. Using a novel method based on multi-
ple sequence and structural alignments of SCOP families, SCOPPI presents a comprehensive
geometrical classification of domain interfaces. Various interface characteristics such as num-
ber, type and position of interacting amino acids, conservation, interface size, and permanent or
transient nature of the interaction are further provided. Two domains are considered as interact-
ing if there are at least 5 residue pairs within 5Å [Winter et al., 2006b].

3.1.4 Threading - GTD

Threading is a computational method for protein structure prediction from amino acid sequence
regardless of any sequence similarity, since dissimilar sequences can still adopt similar folds.
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The basic idea is that the target sequence (the protein sequence for which the structure is be-
ing predicted) is threaded or fitted through the backbone structures of a library of template of
known protein structure to find out which one is most compatible as measured by a “goodness
of fit” score calculated for each sequence-structure alignment. Threading is more sensitive than
sequence alignment and can still assign folds correctly despite low similarity. I utilise the Ge-
nomic Threading Database (GTD) [McGuffin and Jones, 2003b] which contains structural folds
assignments to proteins with unknown structure. Annotations are based on GenTHREADER
[McGuffin and Jones, 2003a], a reliable fold recognition method. In the GTD 84% of the se-
quences are assigned at a p-value < 1 (certain- medium ) confidence.

3.1.5 Gene ontology annotations - GO

The Gene Ontology [Ashburner et al., 2000] is a controlled vocabulary to describe gene and
gene product attributes in any organism. These attribute covers three categories: molecular
function, biological process and cellular component of gene products. The biological process
refers to a biological objective to which the gene or gene product contributes. A process is
accomplished via one or more ordered assemblies of molecular functions. Processes often
involve a chemical or physical transformation. Molecular function is defined as the biochemical
activity (including specific binding to ligands or structures) of a gene product. This definition
also applies to the capability that a gene product (or gene product complex) carries as a potential.
It describes only what is done without specifying where or when the event actually occurs.
Cellular component refers to the location in the cell where a gene product is active.

3.1.6 Confirmed interactions - NetPro, HPRD, BIND

NetPro. NetPro1 is the proprietary protein interaction database covering more than 200,000
expert curated and annotated of Protein-Protein, Protein-Small molecules DNA and RNA inter-
actions. All the interactions are extracted from peer reviewed published scientific literature by
semiautomated method and then have gone through significant quality checks in terms of expert
cross-checking.

The Human Protein Reference Database - HPRD HPRD2 contains annotations for more
than 2750 human proteins. Apart from interaction annotations, it additionally includes annota-
tions for post-translational modifications, enzyme-substrate relationships and disease associa-
tions. The database was derived through manual curation by expert biologists interpreting more
than 300.000 published articles. Interactions are classified in in vivo, in vitro, and two-hybrid.

The Biomolecular interaction database - BIND BIND [Bader and Hogue, 2000] includes
high-throughput experimental data as well as complexes from PDB. BIND include different
types of interactions such as interactions between any two molecules composed of proteins, nu-
cleic acids and small molecules. It also describes chemical reactions, photochemical activation
and conformational changes.

1https://www.molecularconnections.com/protein interactions.html
2www.hprd.org/
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3.1.7 Biological Pathways - KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a resource that provides a ref-
erence knowledge base for linking genomes to biological systems and wiring diagrams of in-
teraction networks and reaction networks known as the KEGG Pathways database [Kanehisa
et al., 2002]. The KEGG Pathway database is a collection of manually drawn pathway maps
for metabolism, genetic information processing, environmental information processing such as
signal transduction, various other cellular processes and human diseases.

3.2 Interaction network construction

3.2.1 Algorithm and implementation

A summary of the work flow is presented by the pseudo-code in Table 3.1

3.2.1.1 Structure-based prediction of protein interactions.

We implemented a methodology that utilises structural data from SCOPPI to predict potential
interaction within a gene expression data set. The resulting potential interactions are further
investigated by considering amino acid sequence conservation of ≥ 50% at the interaction
interface when compared to the structural template. In the following we describe the working
steps of the method as shown in Figure 3.2

3.2.1.2 Gene expression data of disease relevant genes

Initially, a list of genes obtained from a disease microarray data set is used. The genes are
usually clustered into lists that identify the genes as “up” or “down” regulated. The genes
are supplied as lists of Affymetrix3 ids which we then map to their corresponding proteins
Ensemble4 ids.

3.2.1.3 From genes to structure assignment and family classification.

Only when proteins fold into one, or more, specific spatial conformations are they able to per-
form their biological function. Most of the genes from gene expression data sets are of unknown
structure. First, the Genomic Threading Database (GTD) as fold recognition method to assign
SCOP structural families to the proteins in our data sets is used. Only assignments with certain
and high confidence by GTD are considered.

3.2.1.4 From structural folds to domain interactions.

For the assigned SCOP domains, SCOPPI is used to identify interacting domain pairs. In this
step, two proteins are considered as interacting if each contains a domain where there is struc-
tural evidence for such a domain–domain interaction according to SCOPPI. The evidence in-

3http://www.affymetrix.com/index.affx
4http://www.ensembl.org/index.html
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Figure 3.2: The work flow illustrating the interactions prediction method different steps: Starting with experi-

mental data such as microarray, is provided as a list of genes grouped into up/down regulated clusters. Structural

interaction prediction: to obtain the threaded PDB structures and SCOP family assignments of the genes we use

the GTD database, the genes are annotated using the Gene Ontology (GO), the SCOPPI database is then queried

for obtaining the domain interactions among the genes. Filtering: the filtering criterion used are: Only folds with

certain and high confidence assignments, domain interactions between domains from different polypeptide chains

(intra interactions), interface conservation ≥50% and interactions between proteins located at the same cellular lo-

cation are considered to screen out the highly confident interactions. Output:a protein-protein interaction network

where known interactions are then identified by checking against the experimentally confirmed interaction databases

(NetPro, HPRD and BIND)



3.2. INTERACTION NETWORK CONSTRUCTION

differentiallyExpressedGenes = MicroArray(PancreasTissue)
populate PPI-network with known interactions
for gene in differentiallyExpressedGenes:
assign structural fold from GTD to gene -> gene.structuralFold
assign GO annotation to gene -> gene.GO

for gene1 in differentiallyExpressedGenes:
for gene2 in differentiallyExpressedGenes:

if gene1.structuralFold and gene2.structuralFold and
have structural Template in SCOPPI:
foldConfidence = confidence(gene1.structuralFold) and
confidence(gene2.structuralFold) (1)

templates = SCOPPI(gene1.structuralFold, gene2.structuralFold)

interInteraction = False
acceptableInterfaceModel = False

for template in templates: (2)
if template is interaction-Type inter:

interInteraction = True

alignment1 = align(template.sequence1, gene1.sequence) (3)
alignment2 = align(template.sequence2, gene2.sequence)

if sequenceSimilarity(alignment1) >= 50% and
sequenceSimilarity(alignment2) >= 50% and
interfaceConservation(alignment1) >= 50% and
interfaceConservation(alignment2) >= 50% :
acceptableInterfaceModel = True

sameLocation = (intersection(gene1.GO.location, (4)
gene2.GO.location) is non-empty)

if foldConfidence and
interInteraction and
acceptableInterfaceModel and
sameLocation:
add (gene1, gene2) to PPI-network

Table 3.1: Algorithm pseudo-code. The numbering to the left refers to numbering in of the
different steps in Figure 3.2

teraction then serves as a structural template to model the predicted interaction. Figure 3.1
sketches the structure assignment and interaction prediction steps of the method. This initial
predicted interaction network is then further refined.
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3.2.1.5 Refinement of predicted Protein-protein interactions

Interface conservation evaluation It has been shown that protein interface residues are usu-
ally more conserved than the rest of the exposed surface [Elcock and McCammon, 2001, Val-
dar and Thornton, 2001]). In order to compute the interface conservation, the information about
residues in the interface is taken from the SCOPPI database, an interface consists of all atoms
and residues of a domain that are within 5 Å of another domain. We align the original protein
sequence against the SCOPPI template sequence and calculate the sequence identity percent-
age of the interface residues. The evaluation criterion is explained as follows: If one protein
has a conservation of more than 50 % of residues at interface against counterpart of the known
template structure, we assume that they share the same interaction partner. For interesting
examples, we perform structural alignment on their predicted interacting pairs with their corre-
sponding SCOPPI templates. We finally consider pairs that are aligned with an RMSD < 2Å.
For examples of interest, we perform further investigation of the interface, where we check for
the presence of key residues and conservation of the active and binding sites. Information about
key residues is mainly extrated manually from literature and to query for active and binding
sites we use swissprot - a manually curated protein sequence database which provides a high
level of annotation that includes functions of the proteins, post-translational modifications, do-
mains and binding and active sites, secondary structure, diseases associated with deficiencies in
proteins5.

False positive reduction in the protein-protein interaction prediction using GO cellular
location All proteins are annotated with their corresponding GO terms. To reduce false pos-
itives from the predicted interaction network, we screen out interactions at this stage with one
partner annotated as exclusively intra- and the other as exclusively extra-cellular.

Inter and Intra interactions The scoppi interactions are classified into four groups: (i)
homo-intra, (ii) homo-inter, (iii) hetero-intra, and (iv) hetero-inter. Homo- or hetero- is as-
signed depending on whether the interacting domains are from the same family or from different
families, respectively [Kim et al., 2006]. Intra-interactions are assigned to domain pairs from
the same chain, where one chain forms two domains which then interact. Inter-interactions take
place between domain pairs from different chains depeicted mainly in complex structures. Since
we are mianly interested in interactions between diffrent proteins, we only consider hetero-inter
interactions.

3.2.1.6 Literature confirmed intercations

In order to validate the method, the refined network of predicted protein-protein interactions is
compared to those confirmed by experimental interaction databases. For this purpose, NetPro,
BIND [Bader and Hogue, 2000], and HPRD [Peri et al., 2003] are used.

5http://www.expasy.ch/sprot/
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3.2.1.7 From gene expression data to Pathways

In the pathway analysis approach. The aim is to construct a PDAC related pathway network
that resembles the regulatory circuits which are disrupted in the cell. To this end, the KEGG
Pathways database is queried, genes are then grouped according to the pathways they are in-
volved in. We define two pathways to be related if they share at least four genes. Finally, we
obtain an overview of the related pathways which are mainly modulated in PDAC. It can help
in understanding the processes the pancreas cell undertakes to become malignant.

35



CHAPTER 3. FROM GENE EXPRESSION TO INTERACTION NETWORKS

36



Chapter 4

Four case studies using structural
templates to predict novel protein
interactions and targets from pancreas
tumour gene expression data

4.1 Case study I: A novel pancreatic cancer network of known and
predicted protein-protein interactions

4.1.1 Introduction

A number of gene expression screens have been carried out to identify genes differentially
expressed in cancerous tissue. To identify molecular markers and suitable targets, these genes
have been mapped to protein interactions to gain an understanding at systems level. In this
chapter, a detailed description of four pancreatic cancer case studies are presented. We analysed
the data using protein interactions prediction methods to the four data sets of pancreatic cancer
gene expression data. I will guide the reader through the single steps towards constructing the
protein interaction network. The evaluation steps are discussed and then examples are discussed
in details demonstrating the success of our method in highlighting genes to be considered for
laboratory experimental as potential drugs or diagnostic markers.
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Figure 4.1: Approach of this study. We start with the PDAC gene expression data (1). Using KEGG a pathways database(2), Interactions
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4.1. CASE STUDY I: A NOVEL PANCREATIC CANCER NETWORK OF KNOWN AND
PREDICTED PROTEIN-PROTEIN INTERACTIONS

4.1.2 Approach

In this study, we applied the computational approach described in chapter 3 to automatically
reconstruct interaction networks from genes involved in pancreatic cancer, we also obtain a
map of pathway alterations and key interactions. We compare this map to the “Hallmarks of
cancer” diagram published by [Hanahan and Weinberg, 2000]. The overview of the approach
is illustrated in Figure 4.1.

4.1.2.1 Data set: Gene expression data

Our collaborators from the University Hospital, Technical University of Dresden, obtained nine-
teen tissue samples from surgical specimens from patients who were treated at the Department
of Visceral-, Thoracic- and Vascular Surgery, University Hospital Carl Gustav Carus, Technical
University of Dresden and the Department of General Surgery and Thoracic Surgery, University
of Kiel between 1996 and 2003. Normal pancreatic tissue was obtained from 13 patients who
underwent pancreatic resection for other pancreatic diseases. PDAC cells and normal ductal
cells were microdissected manually. Microdissection is used in their study, because it has the
advantage that the isolated RNA of tumour cells is not less contaminated by RNA from other
cell-types.

Our data set (Figure 4.1 (1)) used in this case study originates from four microarray stud-
ies performed in the above samples. The data was obtained by integrating various analyses
of the gene expression profiles of PDAC from Affymetrix GeneChip experiments such as mi-
crodissection, systematic isolation of genes [Grützmann et al., 2003, Grutzmann et al., 2003,
2004a], and the meta-analysis of PDAC gene expression profiles from publicly available data
[Grutzmann et al., 2005]. These studies compare expression profiles of pancreatic ductal ade-
nocarcinoma cells to healthy exocrine pancreas cells and only genes which have a fold change
of> 2 compared to healthy pancreas tissue are considered. The data set pooled from these stud-
ies contains 1612 genes differentially expressed in pancreatic ductal adenocarcinoma (PDAC).
Around 1,500 of the genes in our data set are validated by checking them against previously
reported differentially expressed cancer genes from [Higgins et al., 2007].

4.1.2.2 From expression to pathways

Our first approach is the construction of a PDAC related pathway network that resembles the
regulatory circuits which are disrupted in the cell (3). To this end, we check in which KEGG
pathways (2) our dataset genes participate. We query the KEGG Pathways database, genes
are then grouped according to the pathways they are involved in. We define two pathways to
be related if they share at least four genes. The resulting model is shown in Figure 4.2. We
obtain an overview of the related pathways which are mainly modulated in PDAC. It can help
in understanding the processes the pancreas cell undertakes to become malignant.

4.1.2.3 Known interactome by localisation

We obtain all experimentally known interactions within our data set from the literature (4) by
help of the NetPro database. Within the proteins of the data set 1121 interactions were found in
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Figure 4.2: Overview of related pathways that are mainly affected and modulated in pancreatic
ductal adenocarcinoma (PDAC). Pathways are grouped according to their similar functions,
and each group is coloured differently (pink for signal transduction, yellow for immune system,
orange for cell growth and death, light green for signalling molecules and interaction, blue for
cell motility, and grey for cell communication). Solid arrows indicate that two pathway have at
least four genes in common. Dashed arrows indicate that one pathway is downstream of another
according to KEGG (see text for details).

NetPro. We then retrieve localisation information from the Gene Ontology cellular component
annotation (5) for every protein. From this, we construct an integrative map of known pancreatic
cancer relevant protein interactions (6).

4.1.2.4 Structure-based interaction predictions

Protein interactions provide an important context for understanding protein function. We use
structural information to predict novel interactions among the PDAC proteins which can func-
tionally annotate uncharacterised cancer related genes. Our interaction prediction approach
is based on SCOPPI, the Structural Classification of Protein–Protein Interfaces [Winter et al.,
2006b]. The idea of predicting new interactions from these known ones is sketched in Figure 4.1
on the right (see Chapter 2 for details). The resulting set of initial interaction predictions (Fig-
ure 4.1 (8)) yields ∼ 700 potential interactions among the PDAC microarray data set. Filtering
out predictions with less than 50% interface identity and medium or low GTD confidence re-
sults in a set of 84 confident, novel interactions. Table 4.1 contains all the predicted interactions
in addition to two literature confirmed interactions.

4.1.2.5 A pancreatic cancer map

By linking the pathway approach, known interactions and structure-based interaction predic-
tions, we produce a detailed PDAC cell map (10). The map illustrates the gene products of the
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Figure 4.3: A comprehensive map of pancreatic cancer relevant interactions and pathways.
The underlying picture was taken from [Hanahan and Weinberg, 2000] and updated with our
findings. It depicts an integrated circuit of the cell progress annotated with the PDAC genes
that are involved in the novel predicted interactions. Proteins are shown according to their
cellular localisation and their associated pathways. Genes coloured green are downregulated
while genes coloured red are upregulated. Lines linking genes represent interactions among the
genes. Interactions confirmed by literature are indicated by red lines, and predicted interactions
are indicated by blue lines.

PDAC data that are involved in all novel predicted interactions, see Figure 4.3. For a better
visualisation of the interaction map, we use an edge reduction representation, where the edge
connecting two circles indicates that all the elements of one circle interact with all the elements
of the other.

4.1.3 Results and Discussion

An interesting example is the role of the downregulated tissue factor pathway inhibitor 2 (TFPI2)
as a potential inhibitor of the upregulated transmembrane protease, serine 4 (TMPRSS4). This
example is elaborated and discussed in the following section.
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(a) Structural template and predicted
interaction (b) Sequence alignment of TMPRSS4 and templates

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

TMPRSS4/1-437

1BRC:E/1-223

1ELV:A/1-264

1 48M LQD PD SDQ P L N S LD V KP L RKP R I PME T F RKV G I P I I I A L L S L A S I I I

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

49

1

96

12

V V V L I KV I LD KY Y F L CGQ P LH F I P RKQ LCD GE LD CP LGED E EH CV K S F

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - CGV P RE P F E E KQ - - - - - - - - - - - - - - - - - - - - -

97 144P E GP AV AV R L SKD R ST LQ V LD SAT GNWF SAC FD N F T E A L AE T ACRQMG

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

145 192Y S SKP T F RAV E I GPDQD LD V V E I T E N SQ E L RMRN S SGP C L SG S L V S LH

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

193

1

13

240

35

46

C L ACGK S L KT P RV V GGE E A SVD SWPWQ V S I Q YD KQH V CGG S I LD PHWV

- - - - - - - - - - - - I V GGY T CQ E N SV P YQ V S L N - SGYH F CGG S L I NDQWV

- - - - - - - - - - - R I I GG SD AD I KN F PWQ V F FD - - - N PWAGGA L I NE YWV

241

36

47

281

75

89

L T AAH C FRKH TD V - - - - F NWKV RA - - - G SD K LG S F P S L AV AK I I I I E F

V SAAH CY K SR I Q V R LGEH N I NV L E - - - GNEQ F - - - - - V NAAK I I KH P N

L T AAH V V E GNRE P TMY V G ST SVQ T SR L AK SKM - - - - - L T P EH V F I H P G

282

76

90

320

111

137

NP - - - - - - - MY P KD ND I A LMK LQ F P L T F SGT V RP I C L P F F - - D E E L T P

FD - - - - - - - RK T L NND I M L I K L S SP V K L NARV AT V A L P - - - - - S SCAP

WK L L AV P E GRT N FD ND I A L V R L KD P V KMGP T V SP I C L P GT S SD Y N LMD

321

112

138

360

150

182

A - T P LW I I GWG F T KQ NGGKM SD I L LQ A SVQ V I D ST RCN - - - - - - - ADD

AGTQ C L I SGWGNT L S SGV NE PD L LQ C LD AP L L PQ AD CE - - - - - - - A - -

G- D L G L I SGWGRT E KR - - D RAV R L KAAR L P V AP L RKCKE V KV E KP T AD

361

151

183

404

191

229

AYQGE V T E KMMCAG I P E GGVD T CQGD SGGP LMYQ S- - - - DQWH V V G I V

SY P GK I T D NMV CV G F L E GGKG SCQGD SGGP V V CNG- - - - E - - - LQ G I V

AE AY V F T P NM I CAG- GE KGMD SCKGD SGGA FAVQD P ND KT K F Y AAG L V

405

192

230

437

223

264

SWGY GCGGP ST P GV Y T KV SAY L NW I Y NVWKAE L - - - - -

SWGY GCA L PD NPD V Y T KV CNY VDW I QD T I AAN - - - - - -

SWGPQ CG- - - T Y G L Y T RV KNY VDW I MKTMQ E N ST P RED

(c) Sequence alignment
of TPFI2 and templates

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

1

1

1

32

33

2

2

64

33

33

AE I C L L P LD Y GP CRA L L L RY Y YD RY TQ SCRQ F

RE V C SEQ AE T GP CRAM I SRWY FD V T E GKCAP F

PD F C L E P P Y T GP CKAR I I R Y F Y NAKAG LCQ T F

65

34

34

96

36

36

L Y GGCE GNANN F Y TWE ACDD ACWR I E KV P KV C

F Y G- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

V Y G- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

161

37

37

192

39

39

P KD E G LC SANV T RY Y F NP RY RT CD A F T Y T GCG

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - GCG

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - GCR

193

40

40

224

56

57

GND NN F V SRED CKRACAKA LKKKKKMP K LR F A

GNRNN FD T E E Y CMAV CG- - - - - - - - - - - - - - -

AKRNN FK SAED CMRT CGG- - - - - - - - - - - - - -

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

TFPI2/1-235

1BRC:I/1-56

1BPI/1-57

1

1

1

32

33

2

2

64

33

33

AE I C L L P LD Y GP CRA L L L RY Y YD RY TQ SCRQ F

RE V C SEQ AE T GP CRAM I SRWY FD V T E GKCAP F

PD F C L E P P Y T GP CKAR I I R Y F Y NAKAG LCQ T F

65

34

34

96

36

36

L Y GGCE GNANN F Y TWE ACDD ACWR I E KV P KV C

F Y G- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

V Y G- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

161

37

37

192

39

39

P KD E G LC SANV T RY Y F NP RY RT CD A F T Y T GCG

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - GCG

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - GCR

193

40

40

224

56

57

GND NN F V SRED CKRACAKA LKKKKKMP K LR F A

GNRNN FD T E E Y CMAV CG- - - - - - - - - - - - - - -

AKRNN FK SAED CMRT CGG- - - - - - - - - - - - - -

(d) (e) (f) Conservation of surface
residues

Figure 4.4: Example for a predicted interaction between transmembrane protease, serine 4 (TM-
PRSS4) and tissue factor pathway inhibitor 2 (TFPI2) (a) The known complex of trypsin (light
blue) and amyloid beta-protein precursor inhibitor (dark blue) serves as a template to predict
and model the interaction between TMPRSS4 (yellow) and TFPI2 (red). (b) Alignment of the
sequence to model the TMPRSS4 structure and the sequence of the template. Interface residues
are shown in orange, the catalytic triad is shown in blue. Sequence similarity is shown in shades
of colour. (c) Alignment of the sequence to model the TFPI2 structure and the sequence of the
template. Interface residues in red. (d) Close-up view of the predicted interaction of TMPRSS4
and TFPI2. The interface region of TMPRSS is shown in orange, with catalytic triad of the
active site shown in blue. (e) After energy minimisation, the pocket slightly opens and initial
minor clashes can be resolved. (f) Amino acid conservation colouring of the predicted TM-
PRSS4 structure shows a well-conserved pocket.



4.1. CASE STUDY I: A NOVEL PANCREATIC CANCER NETWORK OF KNOWN AND
PREDICTED PROTEIN-PROTEIN INTERACTIONS

4.1.3.1 Pathways in pancreatic cancer

Comparison of predicted with known cancer pathways.

A number of pathways are known to be affected by PDAC. The Wnt and Hedgehog signalling
pathways are essential during embryonic pancreatic development. The misregulation of these
pathways has been implicated in several forms of cancer and may also be an important mediator
in human pancreatic carcinoma. Thayer et al. and Kayed et al. suggested that these pathways
may have an early and critical role in the genesis of this cancer, and that maintenance of the
Hedgehog signalling is important for aberrant proliferation and tumorigenesis.

The Notch signalling pathway has been shown to contribute to human cancers when abnor-
mally regulated [Hezel et al., 2006b]. Xu and Attisano presented in [Xu and Attisano, 2000] a
study that revealed a mechanism for tumorigenesis whereby genetic defects in SMADs induce
their degradation through the ubiquitin-mediated pathway.

The pathways that are affected by the deregulation of genes in pancreatic cancer are shown
in Figure 4.2. The analysis of such a network can help to explain how the deregulated pathways
affect each other and how this might result in tumorigenesis. Cancerous cells typically affect
a variety of cellular pathways that are related to cell growth, cell division, evasion of apopto-
sis, and signalling [Hanahan and Weinberg, 2000]. Comparing our pathway analysis to these
general cancer mechanisms, our results indicate that in pancreatic cancer the calcium signalling
pathway is affected. The key function of the exocrine pancreas is to synthesise, package and
secrete a variety of digestive enzymes. This process is regulated by neurotransmitters and hor-
mones, both of which utilise calcium as a principal signalling molecule [Yano et al., 2003].
Calcium can mediate signalling transduction by activation of a number of calcium-activated
protein kinases and protein phosphatases such as calcineurin [Williams, 2001]. It also plays
an important role in primary signalling mechanism control secretion. In addition, we observe
that the MAPKinase pathway has the highest connectivity which supports the hypothesis that it
plays a crucial role in tumorigenesis. Hedgehog, Wnt and Jak-STAT signalling pathways trans-
duce the signals from the extracellular environment. All together they perturb cell adhesion, cell
cycle, and the apoptosis pathway which ultimately leads to the abnormal phenotype of PDAC.
Finally, they pave way for invasion and metastasis, enabling cancer cells to escape the primary
tumour mass and colonise new terrain in the body.

4.1.3.2 Hallmark interactions of pancreatic cancer

Combining pathways, known interactions and predicted interactions, we obtain the hallmarks
of pancreatic cancer map (Figure 4.3). For a better visualisation of the interaction map, we use
an edge reduction representation, where the edge connecting two circles indicates that all the
elements of one circle interact with all the elements of the other. Our data confirms several of
the classical cancer alterations. In addition, we complement these by known and predicted inter-
actions. Most notably, we find many extracellular proteins to be deregulated. Table 4.1 lists all
structure-based interaction predictions after filtering. These interactions have a high confidence
with respect to the threading structure prediction method. Furthermore, they have a sufficient
conservation of the putative interacting residues when compared to the known structural tem-
plate that was used to model this interaction. One interesting example of two extracellular
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proteins that might play a major role in tissue infiltration and metastasis of pancreatic cancer is
discussed below.

4.1.3.3 TFPI2 is a potential inhibitor of TMPRSS4

The interaction between the upregulated transmembrane protease, serine 4 (TMPRSS4) and the
downregulated tissue factor pathway inhibitor 2 (TFPI2) marks an interesting example.

Cancer invasion and metastasis is a complex mechanism that includes a variety of cellular
processes, among which the proteolytic degradation of extracellular matrix has been considered
one of the most critical events. The matrix degradation can be promoted by the imbalance
between proteolytic enzymes (proteases) and their inhibitors In pancreatic cancer cells [Sato
et al., 2005]. TMPRSS4 is involved in the process of metastasis formation and tumour invasion,
and its expression is correlated with the metastatic potential [Wallrapp et al., 2000]. TFPI2
is an extracellular protein that belongs to the small Kunitz inhibitor family. It is known to be
downregulated in PDAC.

Figure 4.4 shows how our structure-based method predicts and models an interaction be-
tween TMPRSS4 and TFPI2. The structures are predicted according to the domains found
by Threader. Searching the SCOPPI database for interactions of related domains, we find the
complex of trypsin (light blue) and amyloid beta-protein precursor inhibitor (dark blue). The
modelled structures (red and yellow in Figure 4.4a) are superimposed with the template of
known interaction (blue) to model the putative interaction between them. This interaction is
shown again from a different angle in Figure 4.4d. TMPRSS4 residues that are part of the in-
terface are coloured orange, and the catalytic triad of serine, aspartate and histidine is coloured
blue. After energy minimisation of the complex, the pocket around the active site slightly opens
(Figure 4.4e) and minor clashes that were present before disappear. The sequence alignments
of TMPRSS4 and TFPI2 with the sequences of their GTD-assigned structures as well as the
SCOPPI structural template are shown in Figure 4.4b and c. Sequence similarity is reflected by
shades of colour. We find the interface regions (orange/red) to be well conserved.

This interaction could explain the mechanism of metastasis that makes PDAC a very ag-
gressive type of cancer. TFPI2 is an extracellular matrix associated serine protease inhibitor
[Rao et al., 1996] that plays a major role in extracellular matrix degradation during tumour cell
invasion and metastasis, wound healing, and angiogenesis. It plays a major role in negative
regulation of the coagulation cascades (upper right in Figure 4.2) and its downregulation is
associated with malignant pancreas tumours. On the other hand, TMPRSS4 is known to be up-
regulated in pancreatic cancer, which may be of importance for processes involved in metastasis
formation and tumour invasion [Wallrapp et al., 2000].

We can thus hypothesise that TFPI2 acts as a natural inhibitor of TMPRSS4. Since TFPI2
is downregulated, the upregulated TMPRSS4 is no longer inhibited and might facilitate tissue
invasion. As a result of applying the structural prediction technique, we predicted 81 novel
interactions. Most of the interactions are of extracellular genes which again bring to light the
important role of the extracellular interaction network that promote metastasis and influence
to fast spreading of the PDAC. We compiled the following table that contains the potential
interactions among the genes of our data set. We used the same cutoffs criterion as before
(50%) sequence similarity between original and predicted structure.
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Protein 1 Description
up/
down

Interface
con-
served

Complex
PDB
ID

Protein 2 Description
up/
down

Interface
con-
served

Confirmed
by
litera-
ture

1 CDC2L1 Cell division control
protein 2 homolog

up 57 1bi7 NFKBIZ Molecule possessing
ankyrin repeats induced
by lipopolysaccharid

down 57

2 UHRF1 ubiquitin-like, contain-
ing PHD and RING
finger domains, 1

up 54 1nbf USP9Y Probable ubiquitin
carboxyl-terminal hy-
drolase FAF-Y

down 51

3 RASAL2 RAS protein activator-
like 2

up 70 1wq1 RAB27A Ras-related protein Rab-
27A

up 62

4 RHOA Transforming protein
RhoA (H12)

up 72

5 RAB2 Ras-related protein Rab-
2A

up 51

6 RAB22A Ras-related protein Rab-
22A

up 58

7 RRAS Ras-related protein R-Ras up 89
8 RAN ras-related nuclear protein up 68
9 KRAS2 Transforming protein p21

(K-Ras 2)
up 100

10 GEM GTP-binding protein up 51
11 RASD1 Dexamethasone-induced

Ras-related protein 1
down 62

12 RERG RAS-like, estrogen-
regulated, growth in-
hibitor

down 68

13 CTSG Cathepsin G precursor up 62 1taw TFPI2 Tissue factor pathway
inhibitor 2

down 76

14 78 1ezx SERPINI2 serine protease inhibito down 58
15 CDKN3 Cyclin-dependent

kinase inhibitor 3
up 100 1fq1 CDC2L1 Cell division control

protein 2 homolog
up 75

16 DYRK2 Dual-specificity tyrosine-
phosphorylation regulated
kinase 2

up 58

17 CDK7 Cell division protein
kinase 7

up 70 ×

18 CDC2 Cell division control
protein 2

up 83 X

19 MYL9 Myosin regulatory light
chain 2

up 100 1dfk MYH9 Myosin heavy chain up 85

20 MLRM Myosin regulatory light
chain 2

up 100 1dfk MYH9 Myosin heavy chain up 85

21 KLK10 Kallikrein 10 precursor up 62 1taw TFPI2 Tissue factor pathway
inhibitor 2

down 76

22 71 1ezx SERPINI2 Serine protease inhibitor down 58
23 BIN1 Myc box dependent

interacting protein 1
up 100 1gri GRB14 Growth factor receptor-

bound protein 14
down 100

24 TMPRSS4 Transmembrane pro-
tease, serine 4

up 81 1co7 TFPI2 Tissxue factor pathway
inhibitor 2

down 78

25 78 1ezx SERPINI2 Serine protease inhibitor down 58
26 66 1sgf NTF5 Neurotrophin-5 precursor down 80
27 CSTA Cystatin A up 70 1nb3 CTSC Cathepsin C up 100
28 68 1nb3 CTSL Cathepsin L up 100
29 73 1stf CTSK Cathepsin K up 73
30 ARHGDIA Rho GDP-dissociation

inhibitor 1 alpha
up 100 1cc0 RHOA Transforming protein

RhoA
up 100 X

31 KRAS2 GTPase KRaT up 52
32 CHN1 N-chimaerin up 57 1ow3 RHOA Transforming protein

RhoA (H12)
up 100
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Protein 1 Description
up/
down

Interface
con-
served

Complex
PDB
ID

Protein 2 Description
up/
down

Interface
con-
served

Confirmed
by
litera-
ture

33 53 1tx4 ARL4A ADP-ribosylation factor-
like protein 4A

up 56

34 53 1tx4 RAB22A Ras-related protein Rab-
22A

up 52

35 59 1grn KRAS2 Transforming protein p21
(K-Ras 2)

up 60

36 PRSS3 Trypsin III precursor down 85 1co7 TFPI2 Tissue factor pathway
inhibitor 2 precursor

down 78

37 92 1ezx SERPINI2 Serpin I2 precursor down 58
38 CTRC Caldecrin down 75 1taw TFPI2 Tissue factor pathway

inhibitor 2
down 76

39 85 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

40 ARHGAP6 Rho-GTPase-activating
protein 6

down 63 1ow3 RHOA Transforming protein
RhoA

up 100

41 62 1tx4 ARL4A ADP-ribosylation factor-
like protein 4A

up 56

42 62 1tx4 RAB22A Ras-related protein Rab-
22A

up 52

43 62 1grn KRAS2 Transforming protein p21 up 60
44 CETN2 Centrin 2 up 100 1dfl MYH9 Myosin heavy chain,

nonmuscle type A
up 87

45 80 1m63 PPIG Peptidyl-prolyl cis-trans
isomerase G

up 80

46 92 1m63 PPP3CA Serine/threonine protein
phosphatase 2B

up 53

47 80 1m63 PPIF Peptidyl-prolyl cis-trans
isomerase, mitochondrial
precursor

down 100

48 80 1m63 PPID 40 kDa peptidyl-prolyl
cis-trans isomerase

down 80

49 CSTB Cystatin B up 66 1stf CTSC Dipeptidyl-peptidase I up 94
50 63 1stf CTSL Cathepsin L precursor up 94
51 73 1stf CTSK Cathepsin K precursor up 94
52 C2 Complement C2 up 55 1tfx TFPI2 Tissue factor pathway

inhibitor 2
down 53

53 78 1ezx SERPINI2 Serpin I2 precursor serine
protease inhibitor)

down 58

54 58 1sgf NTF5 Neurotrophin-5 precursor down 80
55 KLK1 Kallikrein 1 down 71 1taw TFPI2 Tissue factor pathway

inhibitor 2
down 76

56 71 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

57 66 1sgf NTF5 Neurotrophin-5 precursor down 80
58 62 1tx4 KRAS2 Transforming protein

p21 (K-Ras 2) (Ki-Ras)
(c-K-ras)

up 56

59 CDC2 Cell division control
protein 2

up 57 1bi7 NFKBIZ Molecule possessing
ankyrin repeats induced
by lipopolysaccharide

down 51

60 PPIF Peptidyl-prolyl cis-
trans isomerase

down 100 1mf8 PPP3CA Serine/threonine protein
phosphatase 2B catalytic
subunit, alpha isoform

up 77

61 HPCAL1 Hippocalcin-like pro-
tein 1

down 60 1m63 PPIG Peptidyl-prolyl cis-trans
isomerase G

up 80

62 100 1mf8 PPP3CA Serine/threonine protein
phosphatase 2B catalytic
subunit, alpha isoform

up 55
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Protein 1 Description
up/
down

Interface
con-
served

Complex
PDB
ID

Protein 2 Description
up/
down

Interface
con-
served

Confirmed
by
litera-
ture

63 60 1m63 PPIF Peptidyl-prolyl cis-trans
isomerase, mitochondrial
precursor

down 100

64 60 1m63 PPID 40 kDa peptidyl-prolyl
cis-trans isomerase

down 80

65 F11 Coagulation factor XI down 75 1taw TFPI2 Tissue factor pathway
inhibitor 2

down 76

66 71 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

67 F12 Coagulation factor XII down 87 1taw TFPI2 Tissue factor pathway
inhibitor 2

down 76

68 71 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

69 65 1sgf NTF5 Neurotrophin-5 precursor down 66
70 KLKB1 Plasma kallikrein down 75 1taw TFPI2 Tissue factor pathway

inhibitor 2
down 76

71 64 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

72 CTRL Proteasome subunit
beta type 10

down 75 1taw TFPI2 Tissue factor pathway
inhibitor 2

down 76

73 85 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

74 EL2B Elastase 2A down 78 1taw TFPI2 Tissue factor pathway
inhibitor 2

down 76

75 92 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

76 HABP2 hyaluronan binding
protein 2

down 75 1taw TFPI2 Tissue factor pathway
inhibitor 2

down 76

77 78 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

78 65 1sgf NTF5 Neurotrophin-5 precursor down 66
79 ELA3B Elastase IIIB down 65 1taw TFPI2 Tissue factor pathway

inhibitor 2
down 76

80 64 1ezx SERPINI2 Serpin I2 serine protease
inhibitor

down 58

81 DLC1 Rho-GTPase-activating
protein 7

down 54 1ow3 RHOA Transforming protein
RhoA

up 100

82 62 1tx4 ARL4A ADP-ribosylation factor-
like protein 4A

up 56

83 62 1tx4 RAB22A Ras-related protein Rab-
22A

up 52

84 69 1am4 RAN ras-related nuclear protein up 57

Table 4.1: 84 predicted interactions where both partners are deregulated in the PDAC mi-
croarray experiment. Protein 1 is the interaction partner of Protein 2. The complex col-
umn shows the PDB ID of the known complex template assigned by GTD. The interface
conservation percentages of protein and their complex template are shown. Some of the
predictions could be verified by checking the literature and are marked with X. The× sign
represents a negative literature confirmation [Lolli et al., 2004].
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4.1.3.4 Prediction of kinase-inhibitor interactions in upregulated pancreas tumour genes
expression data

Kinases catalyse the transfer of a phosphate group from a donor, such as ADP or ATP to an
acceptor. Cyclins combine with cyclin dependent kinases (CDKs) to form activated kinases
that phosphorylate targets leading to cell cycle regulation. A breakdown in the regulation of this
cycle can lead to out of control growth and contribute to tumour formation [Deshpande et al.,
2005]. Defects in many of the molecules that regulate the cell cycle have been implicated in
cancer. Moreover, protein kinases are elementary switches in signal transduction cascades and
are overly important in the development of cancer as known from the activation of HER2/NEU
in breast carcinoma [Menard et al., 2004]. Protein kinases are well investigated and a crucial
target for anti-neoplastic therapy [Sawyer, 2004, Ishizawar and Parsons, 2004, Tibes et al.,
2005]. Therefore the potential regulation of these kinases in pancreatic cancer is important to
further understand this disease. For this example, we used the data set described in case study I
where we only consider the genes which are over expressed.

Figure 4.5: For the overexpressed genes in the pancreas data set there are eight distinct clusters
of interactions. The clusters can be broadly classified as kinase/inhibitor, G proteins, DNA
replication/proteasome subunits, ubiquitin, cystatin, serine proteases, ribonucleoproteins and
antibody domains.

Figure 4.5 shows the resulting eight different interaction subnetworks. Within the set of
upregulated genes, each of the eight subnetworks identifies a group of genes from different
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Protein SID e-value Interface SeqId Thr160 conserved
CDC2 d2phka0 e-108 75.4%

√

CDK7 d2phka0 5e-69 52.6%
√

CDC2L1 d2phka0 6e-70 57.9%
√

1 MENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDT. PDB_1fq1
1 MEDYTKIEKIGEGTYGVVYKGRHKTTGQVVAMKKIRLES. CDC2
9 AKRYEKLDFLGEGQFATVYKARDKNTNQIVAIKKIKLGHR CDK7
15 VEEFQCLNRIEEGTYGVVYRAKDKKTDEIVALKRLKMEK. CDC2L1

** *******!!****!!****! !* !!*!** ** consensus

40 ..ETEGVPSTAIREISLLKELNHPNIVKLLDVIHTE..NK PDB_1fq1
40 ..EEEGVPSTAIREISLLKELRHPNIVSLQDVLMQD..SR CDC2
49 SEAKDGINRTALREIKLLQELSHPNIIGLLDAFGHK..SN CDK7
54 ..EKEGFPITSLREINTILKAQHPNIVTVREIVVGSNMDK CDC2L1

***!***!* !!!****** !!!!* **** ** consensus

141 IKLADFGLARAFGVPVRTYXHEVVTLWYRAPEILLGCKYY PDB_1fq1
142 IKLADFGLARAFGIPIRVYTHEVVTLWYRSPEVLLGSARY CDC2
151 LKLADFGLAKSFGSPNRAYTHQVVTRWYRAPELLFGARMY CDK7
156 LKVGDFGLAREYGSPLKAYTPVVVTLWYRAPELLLGAKEY CDC2L1

!**!!!!!***!*! **!***!!!*!!!*!!*!*!** ! consensus

181 STAVDIWSLGCIFAEMVTRRALFPGDSEIDQLFRIFRTLG PDB_1fq1
182 STPVDIWSIGTIFAELATKKPLFHGDSEIDQLFRIFRALG CDC2
191 GVGVDMWAVGCILAELLLRVPFLPGDSDLDQLTRIFETLG CDK7
196 STAVDMWSVGCIFGELLTQKPLFPGKSEIDQINKVFKDLG CDC2L1

***!! !**!*!**!*********!*!**!!****!**!! consensus

221 TPDEVVWPGVTSMPDYKP.SFPKWARQDFSKVVPPLDED PDB_1fq1
222 TPNNEVWPEVESLQDYKN.TFPKWKPGSLASHVKNLDEN CDC2
231 TPTEEQWPDMCSLPDYV..TFKSFPGIPLHHIFSAAGDD CDK7
236 TPSEKIWPGYSELPAVKKMTFSEHPYNNLRKRFGALLSD CDC2L1

!! ***!!** ****** *!**** * * ***** consensus

functional categories. Out of the eight subnetworks, the kinase cluster is considered in more
detail.

The genes interaction with CDKN3 are listed in Table 4.1 and are identified as kinases, and
since there is an interaction of a kinase with the kinase inhibitor CDKN3, all of these kinases
potentially interact with this inhibitor. As for all the genes in Table 4.1 the CDKN3 interaction
with the four kinases have high confidence GTD assignments and the assigned structures align
structurally well with the kinase with PDB structure 1fq1, chain b (all RMSDs are below 2 Å).

One of these interactions is verified in literature [Hannon et al., 1994], namely CDC2
and CDKN3 and in the interaction databases DIP [Xenarios et al., 2000] and BIND [Bader
and Hogue, 2000]. CDKN3 has been shown to interact with, and dephosphorylate the cyclin-
dependent kinase CDK2 preventing its activation [Poon RY, 1995]. This gene was reported to
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Figure 4.6: Left: Cyclin-dependent kinase 2 CDK2 (blue) interacting with the cyclin-dependent
kinase inhibitor CDKN3 (yellow/orange). The interfaces are displayed in light blue and yellow,
respectively. The phosphorylated threonine of CDK2, which protrudes into a pocket of the
inhibitor, is shown in red balls-and-sticks mode. PDB ID 1fq1. Right: A closeup showing the
phosphorylated threonine of CDK2, which protrudes into a pocket of the inhibitor
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Figure 4.7: Structural alignment of the kinases CDK2 (PDB ID 1fq1, chain b) and PDB ID
2phk with alignment RMSD of 1.54929. The inhibitor (PDB ID 1fq1, chain a) is aligned to
PDB ID 1fpz, chain a with alignment RMSD of 0.84583. 2phk and 1fpz are the structures
assigned by GTD to CDK2 and CDKN3 and 1fq1 is the structure that shows the interaction of
the two domains.

be deleted, mutated, or overexpressed in several kinds of cancers. To validate the interactions
we considered the sequence alignments of CDC2’s structure (PDB ID 1fq1) with the other
kinases. We found only for CDK7 and CDC2L1 (> 50%) sequence identity with the threaded
structure and only in these kinases the aligned interface residues are well conserved (> 50%).
In particular, the key residue threonine 160 (see also Fig. 4.6) is conserved.

An example of a false positive interaction In [Lolli et al., 2004], the authors experimen-
tally confirmed that CDK7 is not a substrate for CDKN3, even though CDK7 was found to be
interacting with CDKN3 according to our method.

CDK7 is known to be important regulator of cell cycle progression. This protein is thought
to serve as a direct link between the regulation of transcription and the cell cycle. The activation
segment is phosphorylated at Thr170 and is in a defined conformation that differs from that in
phospho-CDK2 and phospho-CDK2/cyclin A [Lolli et al., 2004]. Its expression and activity
are constant throughout the cell cycle.

Grasping the molecular basis of specificity which is defined by the mechanism of how pro-
teins discriminate their natural binding partners from many other possible ligands with similar
sequences and structures is a major challenge for prediction of protein-protein interactions.
This example sheds light on the challenges of protein-protein interaction specificity, specially
of interactions between kinases and cyclins.
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4.1.4 Validation of candidates.

4.1.4.1 Docking

For the last two decades docking has been successfully used in drug discovery where for ex-
ample cases like how drug and enzyme or receptor of protein, fit together or how the action
of a harmful protein in human body may be prohibited by finding an inhibitor, which binds to
that particular protein. Molecular docking process involves the prediction of the correct rela-
tive orientation of two or more molecular structures when bound to each other to form a stable
complex. The main goals of docking studies are finding an accurate structural models and the
correct prediction of biological activity. Most classic docking techniques aim to find the best
docked complex by using scoring functions that are evaluated on the basis of calculations of
approximate shape and electrostatic complementarity. Docking usually requires knowledge of
where the binding sites are. This knowledge is used to point out preferred orientation which in
turn can be used to predict the strength of binding affinity between two molecules [Aloy and
Russell, 2006]. We used BDOCK [Huang and Schroeder, 2005] for docking the TMPRSS4–
TFPI2 complex.

4.1.4.2 Homology modelling

Homology modelling is a a class of methods of protein-structure prediction that identify or
more known protein structures likely to resemble a known structure as a modelling template for
a homologue that has been identified on the basis of sequence similarity [Aloy and Russell,
2006]. We used MODELLER version 8v0 [Mart-Renom et al., 2000] to confirm that the GTD
fold prediction is similar to the interaction template.

4.1.4.3 Molecular Dynamic

For the Molecular Dynamics experiments conjugate gradient energy minimisation using NAMD
[Phillips et al., 2005] with the CHARMM22 force field were applied. For the simulation on the
TMPRSS4–TFPI2 complex, we observed a stabilisation of the complex after 10,000 steps.

Molecular Dynamics simulations confirmed that the predicted TMPRSS4–TFPI2 interac-
tion remains stable. The Molecular Dynamics experiments were performed by Anne Tuukka-
nen, Biotec Dresden.

4.1.5 Summary and Conclusions

In this study, we use the integrative approach described in chapter 3 to identify key interactions
and pathways from a set of genes. We apply this approach to a data set of genes deregulated in
pancreatic cancer. As a first step, we construct a pathway network from the deregulated cancer
genes. The analysis of such a network gives an overview to explain how the pathways affect
each other, resulting in tumorigenesis. In the case of PDAC, we find most pathways previously
reported to be involved in cancer. These include signal transduction, immune system, cell
growth and death, signalling molecules and interaction, cell motility, and cell communication.
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In addition, we observe the alteration of the calcium pathway. We conclude that it plays an
important role in pancreas specific tumorigenesis.

The method builds on a number of structural data sources such as PDB, SCOP, GTD, and
SCOPPI. We apply the method to our data set of deregulated pancreatic cancer genes. As a
result, we predict 81 novel interactions that are specific for the underlying disease. We map
these interactions onto a well-known picture of cancer hallmarks and draw a network of all
predicted interactions as well as literature confirmed interactions. We observe that most of the
literature confirmed interactions are located inside the cell, whereas the predicted interactions
are mainly taking place between transmembrane and extracellular proteins. One reason for this
bias could be that transmembrane proteins are more difficult to study experimentally than cy-
tosolic proteins. The interactions found may prove valuable to improve our understanding of
the regulatory mechanisms underlying the development of pancreatic cancer. Finally, we exam-
ine two examples in detail. The first example is the predicted interaction between TMPRSS4
and TFPI2. We believe that TFPI2 naturally inhibits the TMPRSS4 protease. Since we find
TFPI2 to be downregulated in pancreatic cancer, TMPRSS4 might be able to facilitate tissue
invasion and metastasis. Another indication for the importance of the role of this interaction as
potential drug target, is the patent [Park et al., 2007] of an anticancer drug comprising inhibitor
of TMPRSS4. The authors claim that it can be used effectively for the treatment of cancer by
inhibiting TMPRSS4 expression in cancer cells and thereby inhibiting cancer cell invasion and
cancer cell growth.

The second example is another interesting predicted interaction between the kinase inhibitor
CDKN3 and CDC2L1. For this analysis we only considered the over expressed genes from the
dataset. We identify eight interaction networks, and we considered a kinase-inhibitor cluster
in detail. This analysis reveals an interaction between CDC2 and the inhibitor CDKN3, which
is documented in the literature and a novel interaction CDC2L1, which we believe to be valid
as over 50% of the interaction interface is conserved and a key residue is also conserved. The
interactions may prove valuable to improve our understanding of the regulatory mechanisms
underlying the development of pancreatic cancer.
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4.2 Case study II: Potential therapeutic targets for the treatment
of PDAC using a novel drug (BVDU)

4.2.1 Introduction

Treatment of pancreatic cancer
New treatment strategies for resectable and unresectable pancreatic cancer are under active
investigation. One of the standard and most widely used drug for treatment of pancreatic can-
cer is Gemcitabine-based chemotherapy. Recently, these standard chemotherapies were found
to give better results when combined with specific substances sensitising the tumour towards
chemotherapy. These treatments include, combinations of Gemcitabine with other adjuvant
therapies [Khosravi and Daz, 2005]. Standard chemotherapy drugs are usually a DNA damag-
ing substance that replaces cytidine which is one of the building blocks of nucleic acids, during
DNA replication. The process arrests tumour growth, as new nucleotides cannot be attached to
the ”faulty” nucleoside, resulting in apoptosis. After prolonged therapy with Gemcitabine the
cancer cells acquire resistance to the drug which critically limits the outcome of the treatment
[Gennatas et al., 2006].

4.2.2 Chemoresistance

Frequent chemotherapeutic treatment induces chemoresistance of remaining cancer cells by
altering gene expression and inducing genomic instability because of mutations, recombination,
and gene amplification events. The molecular mechanisms that contribute to the resistance of
PDAC to various anticancer therapies are not well understood. Chemoresistence mainly involve
two major pathways, programmed cell death (apoptosis) and survival pathways. Factors like
RNA interference targeting focal adhesion kinase can also enhance pancreatic adenocarcinoma
Gemcitabine chemosensitivity [Duxbury et al., 2003]. The loss of BNIP3 expression is a late
event in pancreatic cancer contributing to chemoresistance and worsened prognosis [Erkan
et al., 2005]. Intrinsic and acquired resistance to chemotherapy critically limits the outcome
of cancer treatments. For many years, it was assumed that the interaction of a drug with its
molecular target would yield a lethal lesion, and that determinants of intrinsic drug resistance
should therefore be sought either at the target level (quantitative changes or/and mutations)
or upstream of this interaction, in drug metabolism or drug transport mechanisms. It is now
apparent that independent of the factors above, cellular responses to a molecular lesion can
determine the outcome of therapy [Pommier et al., 2004].

During the implementation of a long term screening program for inhibitors of chemore-
sistance, [(E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU) was the only identified substance of
clinical relevance [Fahrig et al., 2003]. The effect of BVDU, which supports apoptosis and
prevents the acquisition of chemoresistance, was demonstrated in vitro and in patients with
pancreatic cancer [Fahrig et al., 2006]. BVDU co-treatment significantly enhanced survival
and time to progression [Fahrig et al., 2006]. These results encouraged the authors of [Fahrig
et al., 2006] to investigate the effect of BVDU on pancreatic cancer patients. The resulting data
set from this investigation was the starting point to apply our network approach to analyse the
data to provide a comprehensive over view of how the genes involved act together to achieve
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such behaviour.

Material and methods

4.2.2.1 Dataset

670

32

7

1627

PDAC genes Treated genes

Genes that changed
expression after treatment

124

Selected genes
for Docking

Figure 4.8: The dataset consists of the gene expression levels of 670 genes. We compare this
data set to the PDAC tumour microarray data set used in case study I which consists of 1627
genes. The overlap between the two data sets results in a new list of 124 genes. We further
investigated the 32 which changed their expression to the opposite after treatment with the
combination of Gemcitabine/BVDU

The dataset consists of genes obtained from pancreas carcinoma cell lines and pancreatic
cancer patients. The expression of those genes was monitored before and after being treated
by the combination of Gemcitabine/BVDU versus BVDU, Gemcitabine/BVDU versus Gem-
citabine, Gemcitabine/BVDU versus control, BVDU versus control and Gemcitabine versus
control. The dataset consists of the gene expression levels of 670 genes out of which 537 genes
were treated with the combination of Gemcitabine/BVDU. We compare this data set to the the
PDAC tumour microarray data set used in case study I which consists of 1627 genes. The
dataset is obtained by integrating various analyses of the gene expression profile of PDAC from
Affymetrix GeneChip experiments and the meta-analysis of PDAC gene expression profiles
from public available data of other projects [Grutzmann et al., 2005].

4.2.2.2 Expression altering after treatment

The overlap between the two data sets results in a new list of 124 genes. We further investi-
gated the 32 genes described in Table 4.3 which changed their expression to the opposite after
treatment with the combination of Gemcitabine/BVDU (i.e. the expression of KLKB1 changed
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Figure 4.9: A network of the highly involved pathways in the dataset. Pathways are connected
by a solid line if they share at least 4 genes. Pathways are coloured differently (orange for
signalling pathways and green of metabolic pathways). Pathways that are not sharing genes
but are down or upstream of each other (according to KEGG) are represented by a doted line.
We observe an overerepresentation of signalling and cell communication pathways which can
explain the mechanism of the cancer recruiting the focal adhesion, cytokine-cytokine receptor
interaction to pass the signals to the ECM to activate the metastasis process that define the
PDAC.

from upregulated in the PDAC data set to downregulated after treatment). This set of cancer
genes are of greater interest to us because they respond to the BVDU drug by altering their
expression after treatment.

4.2.3 Data analysis approach

The biological roles of most proteins, are characterised by which other macromolecules they
interact with. We applied our structural template method to predict potential interactions among
the genes of the data set. The same evaluation criterion was applied. An interaction network
consisting of predicted and known interaction in constructed. Protein interaction databases that
uses data mining technique were queried to identify known interactions. We use the Gene
ontology to annotate the network. The genes of our data set are assigned to KEGG pathways,
then a network with pathways that are connected (if sharing 4 or more genes) is constructed.
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4.2.4 Detailed study

We further investigated seven genes out of the 32. The choice of these seven genes was based
on an intensive literature search to select those known to be oncogenes or related to pancreatic
cancer or novel genes with no information about them. Six of these genes are of known struc-
tures, the structure of Interferon induced protein 44 like (IFI44L) was obtained using threading
see Table 4.4.

Docking In order to gain insight of pathways mechanisms and their interference with drugs,
in particular BVDU, which is known to have an effect on the seven selected oncogenes. We
perform docking experiments of the BVDU molecule with these seven genes to evaluate out
hypothesis. We used PatchDock, a molecular Docking Algorithm Based on Shape Comple-
mentarity Principles [Schneidman-Duhovny et al., 2005] for docking all seven genes with the
BVDU molecule. The PatchDock algorithm works as follows, it first computes a molecular
shape representation of surface the molecules, then geometric patches (concave, convex and
flat surface pieces) are identifies, these patches are then filtered and only patches which are
identified as hot spots are retained. Concave patches are matched with convex and flat patches
with any type of patches. For filtering and scoring they discard all complexes with unacceptable
penetrations of the atoms of the receptor to the atoms of the ligand. Finally, the remaining candi-
dates are ranked according to a geometric shape complementarity score. The docking solutions
of the Nicotinamide N-methyltransferase (NNMT), kinesin family member 20A (KIF20A) and
Transmembrane serine protease 4 (TMPRSS4) protein structures with the BVDU molecule are
shown in Figure 4.10, 4.11 and 4.12 respectively.

4.2.5 Results and Discussion

We performed the pathways analysis method on all the dataset genes. The result of the analysis
is a network of the highly involved pathways in the dataset. Figure 4.9 shows the pathway
network. Pathways are connected by a solid line if they share at least 4 genes. Pathways
are coloured differently (orange for signalling pathways and green of metabolic pathways).
Pathways that are not sharing genes but are down or upstream of each other (according to
KEGG) are represented by a doted line. We observe an over-representation of signalling and cell
communication pathways which can explain the mechanism of the cancer recruiting the focal
adhesion, cytokine-cytokine receptor interaction to pass the signals to the ECM to activate the
metastasis process that define the PDAC. BVDU is known to enhance survival time in patients
with pancreatic cancer.

4.2.5.1 A proposed mechanism of action for BVDU.

We further performed docking experiments which indicate that BVDU is able to bind to the ac-
tive site of TMPRSS4, KIF20A and NNMT. The docking results indicate that the three proteins
are potential targets of BVDU.
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Figure 4.10: Docking of the protein Nicotinamide N-methyltransferase (NNMT) (light blue)
with BVDU (brown). Its function is to catalyse the N-methylation of nicotinamide and other
pyridines to form pyridinium ions. This activity is important for biotransformation of many
drugs and xenobiotic compounds protein.

Figure 4.11: The docking of protein structure Kinesin family member 20 A (KIF20A) (blue)
with BVDU (orange) which is responsible for the transport of Golgi membrane. The KIF20A
protein has two ADP binding sites the interface of one of them is shown in green. BVDU
docked to the same pocket as the ADP (red) probably mimicking its function.
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Figure 4.12: Docking of BVDU instead of its natural inhibitor suggests a potential interaction
and role of BVDU as a TMPRSS4 inhibitor.

TMPRSS4: The relationship between metastasis and chemoresistance might indicate that ac-
quired resistance to apoptosis as a result of chemotherapy could favour the metastatic process
[Mehlen and Puisieux, 2006]. Since TMPRSS4 is known to play a role in tissue invasion and
metastasis, we used PatchDock [Schneidman-Duhovny et al., 2003] to dock BVDU to TM-
PRSS4. The result is shown in Figure 4.12. BVDU clearly blocks the pocket with the active
site. We can only speculate about the affinity of BVDU towards TMPRSS4 and that it could act
as a competitive inhibitor for the natural substrate of TMPRSS4.

KIF20A: Taniuchi et al. reported that the down-regulation of KIF20A, a kinesin involved
with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic can-
cer cell. This can explain another action mechanism for BVDU since docking results in Figure
4.11 suggests that the BVDU downregulates the KIF20A protein causing the slow down of the
growth and metastasis of the cancer as confirmed by [Taniuchi et al., 2005].

NNMT: NNMT function is to catalyses the N-methylation of nicotinamide and other pyridines
to form pyridinium ions. This activity is important for biotransformation of many drugs and
xenobiotic compounds. The docking result of BVDU with the NNMT structure suggests that
the BVDU binds to the binding sites of NNMT see Figure 4.10. The binding site data is obtained
from the swissprot database.

Limitations of small molecule docking PatchDock is a geometric docking method that ap-
ply fast geometric scoring and search and avoids exhaustive orientaion search. In comparison
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to other docking methods it is fast and easy to use for non docking experts who are mainly
interested in fast general results. We are aware of the fact that using small molecules such as
BVDU for docking experiments can produce lots of false positive results. Ongoing experiments
by Farbig et. al suggests that the biologically relevant binding partner of BVDU is not among
the three above mentioned examples (results not published). Docking in this case could work
as initial filter to remove candidates that are not likely to bind at all to the molecule in hand.

4.3 Case study III: Protein-protein interaction highlights the im-
portance of the co-expression of KLK6 and KLK10 as prog-
nostic factor for survival in pancreatic ductal adenocarcinoma

4.3.1 Introduction

For case study III and IV, all the wet lab experiments were conducted by Rückert and colleagues
from the University Hospital Carl Gustav Carus, Dresden.

The second case study was conducted to find and analyse prognostic factors for the sur-
vival of PDAC patients. Pancreatic carcinoma shows an unsatisfactory response to oncological
treatment. This demonstrates the need for new therapeutic approaches and also for biomarkers,
which make early diagnosis possible. Recently, Grützmann et al., Iacobuzio-Donahue et al. and
Yousef et al. have shown that human kallikrein 10 and human kallikrein 6 are among the most
highly and specifically overexpressed genes in pancreatic cancer compared to normal and be-
nign pancreas tissues. KLK10 and KLK6 are members of the kallikrein family of 15 known pro-
teases in humans, which play an emerging role in tumour micro-environment, invasion and an-
giogenesis [Borgono and Diamandis, 2004]. Kallikreins exert this function as secreted trypsin
and chymotrypsin-like proteases by degradation of the extracellular matrix, which is an impor-
tant reservoir for cytokines and growth factors [Borgono and Diamandis, 2004]. This highlights
the importance of kallikreins as candidate genes for diagnosis and therapy in pancreatic cancer.
Therefore, the aim of this study was to evaluate the role of these kallikreins and their value as
biomarkers in PDAC using protein-protein interactions and experimental methods The function
of the KLK10 protein is poorly documented, neither the activators nor the substrates for KLK10
are actually known [Zhang et al., 2006]. KLK6, is highly expressed in several malignancies
like ovarian, breast, colon or gastric cancer [Nagahara et al., 2005, Yousef et al., 2004]. It is
correlated with lymphatic invasion and poor prognosis in gastric cancer. KLK6 might exert this
effect by degradation of matrix proteins and thereby augmentation of cancer cell motility and
proliferation [Ghosh et al., 2004]. In this study, Rückert et al. could show experimentally that
kallikrein 10 and 6 demonstrate a strong protein expression in pancreatic carcinoma and are
associated with poor patient prognosis and thereby might contribute to the aggressive character
of this malignancy. The results indicate that this effect is most likely mediated by interaction
of KLK6 with factors of the extracellular matrix and enhancement of cancer cell motility by
KLK10.
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4.3.2 Data set

We use the data set described in case study I where we only consider KLK10 and KLK6 and
their known and potential interacting partners.

4.3.3 Material and methods

To find possible novel interactions we applied our protein-protein interaction prediction meth-
ods as previously described in Chapter 3 for KLK6 and KLK10 which we hypothesise that it
can explain poor survival of PDAC patients. We also queried databases with known protein-
protein interactions such as NetPro, BIND and HPRD. A number of experimental techniques
were used to test the relation between the co-expression of KLK10 and KLK6 and their function
as prognostic factors for survival in PDAC.

4.3.3.1 Brief summary of the experimental methods

Immunohistochemistry study and evaluation Immunohistochemistry is the process of lo-
calising antigens or proteins in tissue sections exploiting the principle of antibodies binding
specifically to antigens in biological tissues by the use of labelled antibodies as specific reagents
through antigen-antibody interactions that are visualised by a marker. For the experimental de-
tails see [Rückert et al., 2008].

Construction of a virtual subarray and bioinformatics analysis For the construction of
the virtual subarray, the experimental group used data obtained from an Affymetrix GeneChip
using extracted RNA from microdissected tissue as described earlier by Pilarsky and colleagues.
Genes were scored as differentially expressed if they displayed a fold change > 2. To identify
signature genes the method described in [Grutzmann et al., 2004b] was used.

4.3.4 Results and Discussion

KLK10 and KLK6 are among the most highly and specifically overexpressed genes in pan-
creatic cancer compared with normal and benign pancreas tissues [Grützmann et al., 2003,
Iacobuzio-Donahue et al., 2003a, Yousef et al., 2004]. This study confirmed a marked overex-
pression of KLK10 in PDAC by means of a virtual subarray. Immunohistochemistry in native
tumour tissue could prove not only an intense expression for KLK10 in 64.4% of the malig-
nant cells, but also for KLK6 in 91.5%. Both proteins were located in the cytoplasm, from
where they are likely to be secreted [Borgono and Diamandis, 2004]. Co-expression of dif-
ferent kallikreins, similar to the situation found in our study, was already reported in skin and
different glands. In these tissues the kallikreins can act independently, but also together as part
of proteolytic cascades [Petraki et al., 2002 Jun-Jul, Borgono and Diamandis, 2004]. The lat-
ter seems to be an important mechanism in pancreatic cancer, because expression of KLK10
itself could not be associated with poor survival in PDAC, whereas the co-expression of both
kallikreins was significantly associated with poor survival.
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It is most interesting, in which ways kallikreins affect cellular signalling and thereby con-
tribute to cancer progression. It was already reported that KLK6 is known to influence commu-
nication between malignant cells and their environment by degradation of extracellular matrix
and thereby facilitate tumour invasion and metastasis [Borgono and Diamandis, 2004] In con-
trast, functional data on KLK10 are very limited. Although Zhang et al [Zhang et al., 2006]
suggested, that KLK10 was not even an active protease, it was stated in the same report that
neither the protein relevant for conversion of KLK10 into its active form nor the physiological
substrates for KLK10 are known. So, the importance of KLK10 in tumour progression remains
unclear.

It therefore seems crucial to further pinpoint some of the components, which might be
responsible for the pathophysiological effect of KLK10. To find possible interaction partners
for both kallikreins we used the our method of protein interaction prediction.

These potential interaction partners of KLK10 are Tissue factor pathway inhibitor 2 (TFPI2)
and Protease inhibitor (SERPINI2). These interactions implies that it might have a role in
the pathophysiology of PDAC see Table 4.5. The protein-protein interaction databases Net-
Pro, HPRD and BIND provided information about the known interaction partners of KLK6
which included alpha1 antiproteinase (SERPINF2), which an inhibitor for KLK6 action, the
interaction with Antithrombin-III precursor AT III (SERPINC1) shows a branching between
kallikreins and blood coagulation cascade, as already previously reported. Another interaction
partner we found is synuclein, which integrates presynaptic signalling and membrane traffick-
ing in neurons. The high expression of KLK6 might thereby play an important role in various
pathologic processes of pancreatic cancer.

In conclusion, this study shows that KLK10 and KLK6 co-expression has an unfavourable
influence on the survival in patients with PDAC. This effect might be mediated by direct
or indirect interaction of the two kallikreins. The pathophysiological mechanisms are most
likely degradation of the extracellular matrix and interaction with angiogenic factors by KLK6,
whereas KLK10 augments cell motility. However, our findings suggest a high complexity of
interactions between the kallikreins, which leaves it difficult to generally make statements about
properties of single kallikreins.

The potential interaction of the upregulated KLK10 with the two downregulated inhibitors
TFPI2 and SERPINI2 is a hypothesis that should be validated in vivo. Consequently, it might
be possible to use inhibitors of kallikreins to disrupt interactions between the tumour and its
environment and thereby reduce disease progression in patients with pancreatic cancer.

4.4 Case study IV: Pancreatic cancer related apoptosis pathway

4.4.1 Introduction

Resection of PDAC tumour is the only treatment with curative intent. It is only possible in
about 10% of the patients because of the late clinical manifestation and the unfavourable lo-
cation of the malignancy. Although more than 30 anti-cancer drugs have been described, the
result of treatment with these alone or in combination with radiation are unsatisfactory. Given
this dismal prognosis of PDAC, virtually every therapeutic class of anticancerous agents has
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been or is being investigated in advanced stages of this disease, but only with unsatisfying re-
sults [Ducreux et al., 2004]. Apoptosis resistance of pancreatic cancer cells seem to play an
important part in this treatment failure, because most current cancer therapies for solid tumours
like chemotherapy, ionising radiation and immunotherapy exert their anti-tumour effect on cells
by inducing cell death in terms of apoptosis [Brown and Attardi, 2005, Schulze-Bergkamen
and Krammer, 2004]. Recent publications highlighted the importance of different defects in the
apoptosis pathway for the resistant behaviour of pancreatic cancer [Jones et al., 2008, Hamacher
et al., 2008, Trauzold et al., 2003, Gukovskaya and Pandol, 2004, Westphal and Kalthoff, 2003].

Considering that there seem to be multiple defects in the apoptotic pathway, Rückert et.
al. hypothesised that rather than seeking to target individual genes, agents that broadly target
key nodal points may be preferable to overcome apoptosis resistance in pancreatic cancer. The
aim of this study was therefore to identify key nodal points and to introduce a new method
for simultaneous silencing of different target genes in PDAC. As a first step, we visualised the
complex interactions of the cell death pathway by construction of a comprehensive map of the
apoptosis signal transduction, which we validated computationally. The map contained 100
genes that represent the common cell death-signalling pathway which were manually picked by
experts of the fields using literature search. The map was evaluated and validated by computa-
tional analysis techniques using interaction databases and protein-protein interaction prediction
using inference from known interacting structural templates. The method which is described in
chapter 3 rendered novel protein-protein interactions, three of which are discussed in detail in
this chapter. By literature search and DNA-microarray analysis we could identify several can-
didate target genes. Especially defects at the level of the mitochondrial pathway might have a
clinical relevance because the mitochondrion amplifies signals mediated by cell death receptors
and additionally initiates the effects of radio- and chemotherapies [Fulda and Debatin, 2006].
Therefore, upregulated members of the intrinsic pathway, namely Bcl-2, XIAP and Survivin
were chosen for simultaneous gene silencing.

Based on our results we conclude that XIAP, Survivin and Bcl-2 may play a role in inhibit-
ing the intrinsic pathway in pancreatic cancer cells. Further, simultaneous gene silencing seems
a beneficial method to increase the effect of gene silencing in contrast to single gene silencing.

The aim of this study is to construct a comprehensive dynamic mapping of the apoptosis
pathway by integrating gene expression data of apoptosis-associated genes, whose topology is
based on known and novel (predicted) molecular interactions. This map will be a useful source
for studying changes and effects of different experiments on the apoptosis pathway such as gene
silencing and cancer drugs mechanism and their side effects.

4.4.2 Material and Methods

4.4.2.1 Analysis of the literature

The apoptosis pathway related genes were assembled from electronic databases, such as the
KEGG database, Gene Data Base of the National Center for Biotechnology Information1 and
GeneMAPP2. These data were manually supplemented and completed with genes identified in

1www.ncbi.nlm.nih.gov
2www.genmapp.org
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publications. The literature search comprised publications until April 2008.

4.4.2.2 Computational validation of the apoptosis pathway

To validate the interactions depicted as arrows in the constructed apoptosis maps pathway (see
Figure. 4.13), we queried databases with known protein-protein interactions such as NetPro3,
SCOPPI4 and HPRD5 and compared them to our data. Furthermore, to find novel interactions
we applied the structure-based prediction of protein-protein interactions using inference from
known structures which is discussed in chapter 3.

A sequence-based prediction of protein interactions method was then used. the method
uses NetPro that stores sequences of the responsible protein domains. The sequences from
those known protein interactions in other species or similar proteins can serve as templates
to predict an interaction of our proteins in question. Using this orthologous information and
BLAST we searched for homologous interactions (>80% sequence identity) for a given protein
pair [Winter et al., 2006a]. We only provided new interactions which were not confirmed before
with NetPro or/and HPRD. These interactions are shown in Figure 4.13

The apoptosis map in Figure 4.14 provides only the literature confirmed interactions and
three novel predicted interactions depicted by blue dotted edges which were not confirmed
before with NetPro or HPRD and are found to be dysregulated in the gene expression analysis.
For the three candidate genes (Bcl-2, XIAP and Survivin), we determined all known interactions
then we queried the KEGG data bank to identify the involvement of these interaction partners
in other pathways shown in Table 4.7.

4.4.2.3 Experimental evaluation

• Patients and Tissues: same as in section 4.1.2.1

• Virtual sub array and Immunohistochemistry: The same procedure as in case study
III is used for more details see [Rückert et al., 2008].

4.4.3 Results and Discussions

4.4.3.1 Literature search

Altogether 103 genes of different parts of the cell death pathway were identified. To put the
data into context, a map of the apoptotic pathway Figure 4.14 is constructed. For 54 of the
103 genes we found published data for pancreatic cancer. 82% of the total of 63 publications
studied less than 5 genes or proteins at a time.

4.4.3.2 Computational evaluation of the apoptosis pathway

Figure 4.13 displays the complex nature of interactions within the apoptosis pathway. However,
there exist also interconnections with other pathways. We investigated possible involvements

3www.molecularconnections.com
4www.scoppi.org
5www.hprd.org
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of our candidate genes in other pathways to determine the effect of our new approach on cell
physiology. We therefore determined all possible interaction partners of our three candidate
genes by data bank search. We found 51 interaction partners for Bcl-2, 22 interactions for
XIAP and 13 for Survivin. The KEGG data bank search demonstrated that through these in-
teractions partners the three candidate genes were linked to the apoptosis and pancreatic cancer
pathway. Furthermore, the genes were associated to pathways with other physiological func-
tions like the MAPK signalling pathway, which was strongly linked to all three genes Table 4.7.
We then used the protein-protein prediction method to identify potential interactions among the
103 apoptosis-associated genes. The structural folds and family assignment step (using GTD)
resulted in 53 remaining assigned genes. Applying the interface conservation evaluation to
possible interactions between the products of those 53 genes resulted in three novel interac-
tions: ARTS - Apollon, p16INK -ERK and p16INK-JNK which are depicted by the blue dotted
edges in Figure 4.14. A second screening with a lower evidence level was conducted for the
differentially expressed genes. Furthermore, we considered interactions with more than 80%
sequence identity to known interactions as homologous. The suggested new interactions of our
differential expressed genes are displayed in Figure 4.13 and are depicted by red edges.

Effect of simultaneous gene silencing on apoptosis in pancreatic cancer cells For deter-
mining the effect of the silencing of the three candidate genes on apoptosis in pancreatic cancer
cells is performed by measuring caspases 3 and 7 activities. The activation of caspase 3 and 7
was 5.84 times higher after the simultaneous silencing of the three genes than in controls.

Pathway analysis for the candidate genes Figure 4.14 displays interactions within the apop-
tosis pathway. However, there exist also interconnections with other pathways. We investigated
possible involvements of our three candidate genes in other pathways to determine the effect
of our new approach on cell physiology. We therefore determined all possible interaction part-
ners of our three candidate genes by querying databases of known protein-protein interactions.
The predicted interactions shows that the apoptotic pathway of cancer can choose alternative
ways to stop cell death. for example the interaction between Apollon and ARTS can indicate
that ARTS- an apoptosis inducer- may inhibit the activity of Apollon which is known to be an
apoptosis inhibitor.
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Figure 4.13: The nodes in this graph represent receptors, ligands, effectors, kinases and tran-
scription factors while each edge describes a relation between the graph elements. The red edges
indicates novel predicted interactions with sequence identity greater than 80% to known inter-
actions from databases (HPRD, INTACT, SCOPPI) among all 103 apoptosis-associated genes.
Direct apoptosis induction is shown in the upper part of the map, modulation through gene ex-
pression in the lower part. Results confirmed by our gene expression analysis are labelled by
yellow corners.
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Figure 4.14: The blue edges show predicted interactions that have sequence and interaction
interface identity of ≥ 30%. The structural alignment between template and interacting protein
structures is below 2 Å. The structure of the three templates used in analysis for the novel
interactions in Table. 4.6. The structures were used for predicting the interactions and the
structural alignment of the predicted domains that belongs to the two interacting proteins. The
template used for Apollon (brown) and ARTS (green) is pdb id 1qbk (grey) (1). The template
used for p16INK (green) and JNK (brown) is pdb id 1blx (grey) (2). The template used for
p16INK (red) and ERK (blue) is pdb id 1bi7 (grey) (3).
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COUNTS GENES PATHWAY

13
PPP3R1, RAF1, MAPK1, TP53, PRKCA, MAPK3,
MAPK8, CASP3, MAPK14, MAP3K7, TRAF6,
CDC42, RASA1

MAPK signaling pathway

11 BCL2, XIAP, PPP3R1, BAX, TP53, BCL2L1, BID,
CASP3, BAD, CASP7, CASP9 Apoptosis

11 BCL2, XIAP, RAF1, SRC, MAPK1, PPP1CA,
PRKCA, MAPK3, MAPK8, BAD, CDC42 Focal adhesion

11 BCL2, Survivin, RAF1, BAX, MAPK1, TP53,
MAPK3, MAPK8, CASP3, BAD, CASP9 Colorectal cancer

11 E2F1, RAF1, MAPK1, TP53, BCL2L1, MAPK3,
MAPK8, BAD, CASP9, CDK4, CDC42 Pancreatic cancer

10 PPP3R1, RAF1, SRC, MAPK1, PRKCA, MAPK3,
MAPK14, BAD, CASP9, CDC42 VEGF signaling pathway

9 BAX, TP53, BBC3, CDC2, BID, CDK2, CASP3,
CASP9, CDK4 p53 signaling pathway

9 BCL2, E2F1, RAF1, MAPK1, TP53, MAPK3,
CDK2, BAD, CASP9 Prostate cancer

9 BCL2, XIAP, E2F1, TP53, BCL2L1, CDK2, CASP9,
TRAF6, CDK4 Small cell lung cancer

9 E2F1, RAF1, MAPK1, TP53, PRKCA, MAPK3,
BAD, CASP9, CDK4 Non-small cell lung cancer

8 IRS1, RAF1, IRS2, MAPK1, PPP1CA, MAPK3,
MAPK8, BAD Insulin signaling pathway

8 RAF1, SRC, MAPK1, PRKCA, MAPK3, MAPK8,
MAPK14, CDC42 GnRH signaling pathway

8 E2F1, RAF1, MAPK1, TP53, BCL2L1, MAPK3,
BAD, CDK4 Chronic myeloid leukemia

7 BCL2, BAX, PSEN1, BCL2L1, CASP3, BAD,
CASP7 Neurodegenerative Diseases

7 RAF1, SRC, MAPK1, PRKCA, MAPK3, MAPK8,
BAD ErbB signaling pathway

7 PPP3R1, TP53, PPP2CA, PSEN1, PRKCA, MAPK8,
MAP3K7 Wnt signaling pathway

7 PPP3R1, RAF1, MAPK1, PRKCA, MAPK3, BID,
CASP3

Natural killer cell mediated cyto-
toxicity

7 E2F1, RAF1, MAPK1, TP53, PRKCA, MAPK3,
CDK4 Glioma

7 E2F1, RAF1, MAPK1, TP53, MAPK3, BAD, CDK4 Melanoma
6 RAF1, SRC, MAPK1, CDC2, PRKCA, MAPK3 Gap junction

6 MAPK1, MAPK3, MAPK8, MAPK14, MAP3K7,
TRAF6

Toll-like receptor signaling path-
way

6 RAF1, MAPK1, PRKCA, MAPK3, MAPK8,
MAPK14 Fc epsilon RI signaling pathway

6 PPP3R1, RAF1, MAPK1, PPP1CA, PRKCA,
MAPK3 Long-term potentiation

6 RAF1, MAPK1, TP53, MAPK3, BAD, CASP9 Endometrial cancer
6 E2F1, RAF1, MAPK1, TP53, MAPK3, CDK4 Bladder cancer
5 E2F1, TP53, CDC2, CDK2, CDK4 Cell cycle
5 PPP3R1, MAPK1, MAPK3, CDC42, RASA1 Axon guidance
5 SRC, MAPK1, MAPK3, MAP3K7, CDC42 Adherens junction
5 SRC, PPP2CA, PRKCA, CDK4, CDC42 Tight junction
5 RAF1, MAPK1, PPP2CA, PRKCA, MAPK3 Long-term depression
5 RAF1, MAPK1, PPP1CA, MAPK3, CDC42 Regulation of actin cytoskeleton
5 IRS1, IRS2, MAPK1, MAPK3, MAPK8 Type II diabetes mellitus

5 BCL2, BAX, TP53, BCL2L1, BAD Amyotrophic lateral sclerosis
(ALS)

5 SRC, MAPK8, CASP3, MAPK14, CDC42 Epithelial cell signaling in Heli-
cobacter pylori infection

4 PPP3R1, SLC25A4, PRKCA, ATP2A2 Calcium signaling pathway
4 RAF1, MAPK1, MAPK3, NOTCH1 Dorso-ventral axis formation
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4 RAF1, MAPK1, PRKCA, MAPK3 Melanogenesis
4 BAX, TP53, CASP3, RASA1 Huntington’s disease
4 RAF1, MAPK1, MAPK3, CDC42 Renal cell carcinoma
4 RAF1, MAPK1, MAPK3, BAD Acute myeloid leukemia
3 XIAP, UBE2D1, TRAF6 Ubiquitin mediated proteolysis
3 MAPK1, PPP2CA, MAPK3 TGF-beta signaling pathway
3 PPP3R1, CDK4, CDC42 T cell receptor signaling pathway

3 PRKCA, MAPK14, CDC42 Leukocyte transendothelial migra-
tion

3 IRS1, IRS2, MAPK8 Adipocytokine signaling pathway
3 PSEN1, CASP3, CASP7 Alzheimer’s disease
3 MAPK1, TP53, MAPK3 Thyroid cancer
2 MAPK1, MAPK3 mTOR signaling pathway
2 PSEN1, NOTCH1 Notch signaling pathway

2 CASP3, CASP7 Dentatorubropallidoluysian atro-
phy (DRPLA)

2 PRKCA, CDC42 Pathogenic Escherichia coli infec-
tion - EHEC

2 PRKCA, CDC42 Pathogenic Escherichia coli infec-
tion - EPEC

1 HCCS Porphyrin and chlorophyll
metabolism

1 PRKCA Phosphatidylinositol signaling sys-
tem

1 BNIP1 SNARE interactions in vesicular
transport

1 BCL2L1 Jak-STAT signaling pathway
1 PPP3R1 B cell receptor signaling pathway
1 BCL2 Prion disease
1 PRKCA Cholera - Infection
1 TP53 Basal cell carcinoma

Table 4.7: Pathway analysis of the apoptosis genes and their interacting partners

4.4.4 Discussion

Previous studies in pancreatic cancer described multiple defects of apoptosis signaling at dif-
ferent levels of the pathway which were relevant for treatment resistance in this malignancy
[Hamacher et al., 2008, Trauzold et al., 2003]. This lead to the hypothesis, that there might be
a benefit in hitting multiple target genes rather than individual genes. To identify and localise
appropriate candidate genes for such an approach we first constructed an apoptosis pathway
map using literature search and protein-protein interaction prediction. Although the apoptosis
pathway today is the best investigated pathway, the exact number of apoptosis associated genes
and the exact number of interactions is still unknown. However, to our knowledge, we can for
the first time present a comprehensive map of the apoptosis pathway where all interactions were
validated manually and computationally with a high evidence level. Because research in apop-
tosis is still in progress, we have to admit that there might be more functions for the visualised
proteins than depicted and that new members will possibly be discovered which we can not
consider in the actual map. This hypothesis was encouraged by our protein interaction predic-
tion, which showed three previously unknown interactions. The new interactions are an indirect
sign for the complexity and the extent of this important cellular pathway. In a second step

69



CHAPTER 4. USING STRUCTURAL TEMPLATES TO PREDICT NOVEL PROTEIN
INTERACTIONS

we identified and localised different clusters of defects in the cell death pathway in PDAC by
literature search. It is widely agreed that pancreatic cancer cells display a conserved functional-
ity of intracellular signal transduction mediated by executive proteins [Hamacher et al., 2008].
Upon stimulation of cell death receptors or the mitochondrial pathway an activation of caspases
was detected, although not sufficient for triggering apoptosis [Vogler et al., Glazyrin et al.,
2001]. This signal transduction is tightly controlled by different membrane-bound and intracel-
lular proteins. Eukaryotic cells have developed those physiological control points to prohibit
the detrimental effects on cell survival in case of inappropriate activation of programmed cell
death [Westphal and Kalthoff, 2003, Fulda and Debatin, 2006]. Pancreatic cancer cells seem to
abuse several of these cells own control mechanisms to stop apoptosis signaling [Vogler et al.,
Glazyrin et al., 2001, Satoh et al., 2001].

Downstream of the mitochondria the upregulated ”inhibitor of apoptosis proteins” (IAPs)
are potent inhibitors of apoptosis by blocking both the apoptosome and the caspases [Degterev
et al., 2003]. Of the eight known members of the IAP family in humans, three are upregulated
in PDAC, namely Survivin, XIAP and cIAP-2 [Vogler et al., Lopes et al., 2007].

Numerous publications reported an upregulation of Bcl-2, XIAP and Survivin in pancre-
atic carcinoma cell lines. The pathway map makes the choice of the selection of these genes
apparent since the three genes act synergistic and sequential in the flow of signal transduc-
tion. Simultaneous gene silencing showed a significant increase of apoptotic cells, of caspase
activation and a significant reduction in live cells.

4.5 Limitations

The reliability of structural based interaction predictions using domains information depends
on the pair of domain families involved. According to a similar study by [Aloy and Russell,
2002] that is based on the accuracy of predicted protein interactions networks using structural
information, an average of 70% of interface residues are conserved in homologues complexes
(cytokine/receptor 92%, signalling 89%, peptidase/inhibitor 59%, other 66%). In general es-
timating sensitivity and specificity for the validation of protein interaction is very difficult be-
cause there is still no comprehensive gold standard of positive (known interactions) and nega-
tive (proteins known not to interact) interaction datasets. A study by [Deane et al., 2002] using
paralogs verification method (PVM) identified 40% true interactions at a 1% error rate.

For the interactions predicted from known complex structures (Table 4.1), the accuracy of
structure predictions by means of Threading is crucial. Despite the fact that we filter out medium
and low confidence predictions (according to confidence scores provided by the Threading
method), the actual structure might still differ from the predicted one. For this reason, we
compare the putative interface residues of both predicted interaction partners with the inter-
face residues of the known complex structure used as template. We argue that a high sequence
identity in the interface region favours a similar interface structure. We do not claim that these
interactions are necessarily true, but we are rather confident that they provide reasonable candi-
dates for experimental testing.
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4.6 Protein structures.

The following structures were used from the Protein Data Bank: Complex of trypsin interacting
with amyloid beta-protein precursor inhibitor domain (PDB ID 1brc) as template for modelling
the TMPRSS4–TFPI2 interaction. Crystal Structure of the Catalytic Domain of Human Com-
plement C1S Protease (PDB ID 1elv) to model the structure of TMPRSS4. Bovine Pancreatic
Trypsin Inhibitor (PDB ID 1bpi) was used to model the structure of TFPI2. The (PDB ID 1fq1)
as template modelling for the kinase inhibitor example. Crystal structure of the Phosphorylase
kinase peptide substrate complex (PDB ID 2phk) to model the structure of Cyclin-dependent
kinase 2 (CDK2). Crystal structure of of associated Phosphatase (Kap) with a substitution of
the catalytic site Cysteine to a Serine (PDB ID 1fpz) to model the structure of Cyclin-dependent
kinase inhibitor CDKN3 The BVDU structure was taken from Crystal Structure of Thymidine
Kinase from Herpes Simplex Virus Type I (PDB ID 1ki8). For the Kinesin family member 20
A (KIF20A) Crystal structures of mutants reveal a signalling pathway for activation of the ki-
nesin motor ATPase (PDB ID 1f9v) and Nicotinamide N-Methytransferase(NNMT) Crystal
structure of human pnmt complexed with skf 29661 and adohcy(SAH)(PDB ID 1hnn).
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Gene Description PDAC Gemcitabine/BVDU
1 AK3L2 adenylate kinase 3 up down

2 AQP3
Aquaporin 3 is a water channel
protein

down up

3 AZGP1
zinc-alpha2-glycoprotein
precursor

down up

4 CASP1
Interleukin 1-beta converting
enzyme isoformdelta

up down

5 CHN1 Chimerin (chimaerin) up down
6 DUSP5 protein tyrosine phosphatase) up down
7 EPB41L4B down up

8 FGFR1
fibroblast growth factor recep-
tor

down up

9 FHL1 four and a half LIM domains 1r down up
10 FOXF1 forkhead box F1 up down
11 HIST1H2AD Histone 1, H2ad up down
12 IL6 interleukin 6 receptor down up
13 IRS1 insulin receptor substrate 1 up down

14 KIF20A
RAB6 interacting, kinesin-like
(rabkinesin6)

up down

15 KLF4
Kruppel-like factor 4 (gut), may
act as a transcriptional activator

up down

16 LHFP lipoma HMGIC fusion partner down up
17 MAOB monoamine oxidase B down up
18 MT1L metallothionein 1L down up

19 NNMT
nicotinamide N-
methyltransferase

up down

20 TNS3
tensin-like SH2 domain con-
taining 1

up down

21 PCSK6
paired basic amino acid cleav-
ing system 4

up down

22 PDK4
pyruvate dehydrogenase kinase,
isoenzyme 4

up down

23 PSG3
Pregnancy specific beta-1-
glycoprotein 3

up down

24 PTAFR
platelet-activating factor recep-
tor

up down

25 RBP1
retinol-binding protein 1, cellu-
lar

down up

26 SCD stearoyl-CoA desaturase up down

27 SLC1A4
Solute carrier family 1 (gluta-
mate/neutral amino acid trans-
porter), member 4

down up

28 SMPD1 acid sphingomyelinase down up

29 SOD2
Superoxide dismutase 2, mito-
chondrial

down up

30 SRPX
sushi-repeat-containing pro-
tein, X chromosome

down up

31 TPM4 Tropomyosin 4 up down

32 TMPRSS4
Transmembrane serine protease
4

down up

Table 4.2: The overlap between the genes of the two datasets before and after treatment, where
only the genes that changed expression after the combined treatment Gemcitabine/BVDU are
considered.
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Protein 1 Description
up/
down

Interface
con-
served

Complex
PDBID

Protein 2 Description
up/
down

Interface
con-
served

1 TFPI2 Tissue factor pathway
inhibitor 2

up 62% 1brc KLKB1 plasma kallikrein B1
precursor

up 66%

2 CCNL1 cyclin L ania-6a down 50% 1h1s STK17B serinethreonine kinase
17b(apoptosis-inducing)

up 50%

3 ARHGDIB Rho GDP dissociation
inhibitor (GDI) beta

down 71% 1cc0 RHOB Rho-related GTP-
binding protein RhoB
precursor (H6)

down 100%

4 SERPINB4 serine (or cysteine)
proteinase inhibitor,
cladeB (ovalbumin),
member 3

up 52% 1k9o ST14 suppression of tumori-
genicity 14 (coloncar-
cinoma, matriptase,
epithin)

up 63%

5 CCNL1 cyclin L ania-6a down 50% 1h1s TXK TXK tyrosine kinase down 50%
6 TFPI2 Tissue factor pathway

inhibitor 2
up 61% 1c07 ST14 suppression of tumori-

genicity 14 (coloncar-
cinoma, matriptase,
epithin)

up 63%

7 CCNL1 cyclin L ania-6a down 50% 1h1s KIAA0536 KIAA0536 protein down 50%
8 MICB MHC class I

polypeptide-related
sequence B

up 50% 1mck LFA-3 LFA-3(delta D2) up 50%

9 SERPINB4 serine (or cysteine)
proteinase inhibitor,
cladeB (ovalbumin),
member 3

up 52% 1k9o KLKB1 plasma kallikrein B1
precursor

up 53%

10 CCNL1 cyclin L ania-6a down 50% 1h1s CDK6 cyclin-dependent kinase
6

up 50%

11 KLKB1 plasma kallikrein B1
precursor

up 50% 1ezx SERPINA7 serine (or cysteine) pro-
teinase inhibitor, cladeA
(alpha-1 antiproteinase,
antitrypsin), member 7

down 57%

12 CCNL1 cyclin L ania-6a down 50% 1h1s SNK serum-inducible kinase down 50%
13 ST14 suppression of tumori-

genicity 14 (coloncar-
cinoma, matriptase,
epithin)

up 71% 1ezx SERPINA7 serine (or cysteine) pro-
teinase inhibitor, cladeA
(alpha-1 antiproteinase,
antitrypsin), member 7

down 50%

14 CCNL1 cyclin L ania-6a down 50% 1h1s PFTK1 PFTAIRE protein kinase
1

down 50%

15 CCNL1 cyclin L ania-6a down 50% 1h1s TESK1 testis-specific protein
kinase 1

up 50%

16 NTRK3 Neurotrophic tyrosine
kinase, receptor, type 3

up 67% 1dgt VEGF Vascular endothelial
growth factor

down 100%

17 TFPI2 Tissue factor pathway
inhibitor 2

up 61% 1brc TMPRSS4 Transmembrane pro-
tease, serine 4

up 63%

Table 4.3: Predicted protein-protein interactions among the proteins that changed expression
after treatment with BVDU alone or in combination Gemcitabine/BVDU
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Gene Name Function Expression
1 FOXF1 Forkhead box F1 Probable transcription acti-

vator for a number of lung-
specific genesdown

down

2 FHL1 4 and half Lim1 pro-
tein

may be involved in mus-
cle development or hyper-
trophy, tumor suppressor,
transcriptional regulation

up

3 IFI44L interferon induced
protein 44 like

Aggregates to form macro-
tublar structurs (by similar-
ity)

up

4 KIF20A Kinesin family mem-
ber 20 A

Transport of Golgi mem-
brane

down

5 NNMT Nicotinamide
Methyltransferase

Catalyzes the N-methylation
of nicotinamide and other
pyridines to form pyri-
dinium ions. This activity
is important for biotransfor-
mation of many drugs and
xenobiotic compounds

6 PCSK5 proprotein conver-
tase subtilisin/kexin
type 5

Represent an endoprotease
activity within the constitu-
tive secretory pathway, with
unique restricted distribu-
tion in both neuroendocrine
and non-neuroendocrine

down

7 TMPRSS4 Transmembrane ser-
ine protease 4

Seems to be capable of
activating epithelial sodium
channel (ENaC)

up

Table 4.4: The selected genes that were of interest due to an intensive literature search that identified them as
potential therapeutic markers. The respective proteins of those genes were docked using PatchDock

Gene1 Gene2 Gene name Comment

1 KLK10 TFPI2
Tissue factor pathway in-
hibitor 2

novel

2 SERPINI2 Protease inhibitor 14 novel

3 KLK6 SERPINC1
Antithrombin-III precur-
sor(AT III)

Known

4 SERPINF2
Pigment epithelium-
derived factor(PEDF)

Known

5 SNCA Synuclein Known
6 SERPINA3 alpha-1 antiproteinase Known

Table 4.5: Known and potential interaction partners of KLK10 and KLK6
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Protein 1
pdb
protein1

IF Sim-
ilarity
protein
1

GS pro-
tein1

Scoppi
template
protein2

protein
2

pdb
pro-
tein2

IF
Similarity-
pro-
tein2

GS pro-
tein2

TRAF2 1czy 100 99.3 1f3v TRADD 1f3v 100 100
TRAF2 1czy 100 99.3 1f3v TRADD 1f3v 100 100
TRAF1 1czy 100 82.3 1f3v TRADD 1f3v 100 100
IRAK2 1muo 66.7 32 1bi7 P16INK4 1bd8 37.5 39
IRAK2 1muo 44.4 48.1 1blx IKBA 1ikn 40.9 38.4
IRAK2 1muo 81.5 54.4 1blx P16INK4 1bd8 40.9 38.4
IRAK3 2phk 66.7 32 1bi7 P16INK4 1bd8 62.5 42.4
IRAK3 2phk 44.4 48.1 1blx IKBA 1ikn 45.5 42.3
IRAK3 2phk 81.5 54.4 1blx P16INK4 1bd8 45.5 42.3
APOLLON 1bk5 41 39.3 1qbk ARTS 1pui 42 43.9
CAPNS1 1alv 100 99.7 1kfu CAPN2 1df0 100 100
NIK 1f3m 44.4 36.2 1blx P16INK4 1bd8 45.5 41
NIK 1f3m 44.4 48.1 1blx IKBA 1ikn 45.5 41
NIK 1f3m 81.5 54.4 1blx P16INK4 1bd8 45.5 41
IKK1 1muo 66.7 32 1bi7 P16INK4 1bd8 37.5 46.8
IKK1 1muo 44.4 48.1 1blx IKBA 1ikn 40.9 42.6
IKK1 1muo 81.5 54.4 1blx P16INK4 1bd8 40.9 42.6
CHUK 1muo 66.7 32 1bi7 P16INK4 1bd8 75 47
CHUK 1muo 34.6 47.1 1g3n IKBA 1ikn 30.4 49.8
CHUK 1muo 77.4 52.6 1bi8 P16INK4 1bd8 33.3 51.5
JNK 2phk 66.7 32 1bi7 P16INK4 1bd8 37.5 56.9
JNK 2phk 44.4 48.1 1blx IKBA 1ikn 40.9 52.5
JNK 2phk 81.5 54.4 1blx P16INK4 1bd8 40.9 52.5
JNKK 1f3m 66.7 32 1bi7 P16INK4 1bd8 37.5 48.3
JNKK 1f3m 44.4 48.1 1blx IKBA 1ikn 40.9 46.9
JNKK 1f3m 81.5 54.4 1blx P16INK4 1bd8 40.9 46.9
ERK 1a06 66.7 32 1bi7 P16INK4 1bd8 50 56.5
ERK 1a06 36 47.1 1g3n IKBA 1ikn 33.3 54.9
ERK 1a06 77.4 52.6 1bi8 P16INK4 1bd8 41.7 57.6
ERK2 1f3m 66.7 32 1bi7 P16INK4 1bd8 50 58.7
ERK2 1f3m 44.4 48.1 1blx IKBA 1ikn 36.4 54.8
ERK2 1f3m 81.5 54.4 1blx P16INK4 1bd8 36.4 54.8
P53 1tup 50 45.4 1ycs IKBA 1ikn 100 100
P53 1tup 33.3 42.3 1ycs P16INK4A1bd8 100 100
CASP8 1pau 50 30.3 1i3o CIAP1 1g3f 77.8 66.7
CASP8 1pau 50 30.3 1i3o CIAP2 1g3f 55.6 63.4
CASP8 1pau 50 30.3 1i3o XIAP 1g3f 100 97.8
CASP8 1pau 50 30.3 1i3o Survivin 1f3h 44.4 40.9
CASP8 1pau 50 30.3 1i3o LIVIN 1c9q 66.7 65.6
CASP9 1apa 75.9 64.8 1nw9 CIAP1 1g3f 100 100
CASP9 1apa 72.4 63.7 1nw9 CIAP2 1g3f 100 100
CASP9 1apa 100 100 1nw9 XIAP 1g3f 100 100
CASP9 1apa 44.8 50.5 1nw9 Survivin 1f3h 100 100
CASP9 1apa 41.4 49.5 1nw9 Survivin 1f3h 100 100
CASP9 1apa 75.9 62.6 1nw9 LIVIN 1c9q 100 100
CASP10 1pau 75.9 64.8 1nw9 CIAP1 1g3f 31 50
CASP10 1pau 72.4 63.7 1nw9 CIAP2 1g3f 31 50
CASP10 1pau 100 100 1nw9 XIAP 1g3f 31 50
CASP10 1pau 44.8 50.5 1nw9 Survivin 1f3h 31 50
CASP10 1pau 41.4 49.5 1nw9 Survivin 1f3h 31 50
CASP10 1pau 75.9 62.6 1nw9 LIVIN 1c9q 31 50

Table 4.6: Predicted interactions among the apoptosis data set genes, where interface conser-
vation is listed in the IF similarity protein 1/2 column and the global sequence similarity in the
GS protein 1/2 column
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Chapter 5

Modelling and reasoning over
molecular networks: BioRevise

Designing models that demonstrate particular biological behaviours is a research field with a
growing importance. These computational models aim to define the underlying theories that
explain the complex manner of a biological system. A typical output of such models is an
explanation of observations or abnormal behaviour of these systems [Deville et al., 2003].

Molecular networks such as metabolic pathways are complex networks that provide energy
for the processes of life and synthesise new cellular material. Disorders due to defect, depletion
or increase of some building blocks of these pathways can occur, leading to human diseases
where the accumulated substrate may be toxic to humans or the deficiency of the product may
handicap our ability to survive and function.

There is a need for identification of metabolic pathways associated with cancers that may
have advantages for cancer control. Individuals who are at high risk because of pancreatic
metabolism, may be candidates for dietary modification or prophylactic chemotherapy. The
main idea is to remove key building blocks that cancer cells need to function instead of killing
cells as with typical chemotherapy. For example tumours are known to have a common metabolic
profile -high rate of Glucose uptake and macromolecule synthesis- that may confer a common
selective advantage [Guffanti, 2002].

Modelling the behaviour of these networks is a challenging yet a very important task. In this
research a high level representation of inhibition of enzymatic genes in metabolic pathways is
presented. The model helps to identify reactions that are affected by metabolic disorders which
are either genetic or acquired as a result of diet, toxins, or infections.

Our research hypothesis is that gene expression data from cancer tissues can be interpreted
in terms of the metabolic pathways in which some of the co-regulated genes are involved in.

To exemplify the idea, consider that we have a network of all metabolic reactions and that
this network is provided with Glucose. From the Glycolysis pathway where Glucose is con-
verted to Pyruvate, we can infer that enzyme Hexokinase can convert Glucose into Glucose-6-
phosphate, enzyme Phosphoglucose isomerase can convert Glucose-6-phosphate to Fructose-
6-phosphate and Aldolase converts Fructose-1,6-bisphosphate to Dihydroxyacetone phosphate
and Glyceraldehyde-3-phosphate and so on till Pyruvate is produced. A simplified Glycolysis
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Glucose

Hexokinase

Glucose-6-phosphate

Phosphoglucose isomerase

Fructose-6-phosphate 

Fructose-1,6-bisphosphate

Phosphofructokinase

Pyruvate

Glyceroaldehyde-3-phosphate

Aldolase

Dihydroxyacetone phosphate 
Triose phosphate isomerase

1.

2.

2.

2nd observation

1st observation

Figure 5.1: A simplified Glucose metabolic pathway where the production of Pyruvate was
observed to be occurring although an intermediate metabolite (labelled with green) was not
produced anymore. The picture illustrates the use of revising previous assumption to accom-
modate new observations while keeping the knowledge about the model consistent. The figure
shows an example where a low concentration of metabolite Dihydroxyacetone phosphate, one
explanation would be that the reaction producing the metabolite is inhibited which is indicated
with a red line (solution number 1). A second observation that Pyruvate is still produced entails
that solution 1 can not explain the two observations any more. When considerings the whole
network we could show that (solution number 2) explains the low concentration of Dihydroxy-
acetone phosphate and is consistent withe other observation

pathway is sketched in Figure 5.1.
Ultimately, the network infers that the metabolite Dihydroxyacetone phosphate is produced.

However, there is evidence that Dihydroxyacetone phosphate is not produced which implies that
some enzymes on the path of producing this metabolite could have malfunctioned. One expla-
nation would be that enzyme Aldolase is inhibited (depicted by the number 1. in Figure. 5.1
), this explains that Dihydroxyacetone phosphate is not produced, but since Glyceraldehyde-3-
phosphate which is also produced through the same reaction is catalysed by Aldolase and it is
also necessary for the production of Pyruvate which is still present, enzyme Aldolase cannot be
inhibited.

A systematic exploitation of the whole networks finally shows that inhibition of Triose
phosphate isomerase and not Dihydroxyacetone phosphate (depicted by the number 2. in Fig-
ure. 5.1 ) explains the missing Dihydroxyacetone phosphate and is consistent with all other
observed metabolites.
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5.1. INTRODUCTION

BioRevise a belief revision system implements the above reasoning and applies it systemati-
cally to the whole of KEGG reactions. To overcome the problem of complicated and condensed
representation of the metabolic pathway maps, BioRevise provides a user friendly and inter-
active visualisation. BioRevise employs the Model-View- Controller, a commonly used and
powerful architecture for GUIs. It makes it easier to modify either the visual appearance of the
application or the underlying model rules without affecting the other.

In this chapter, BioRevise, where the inhibition of enzyme-catalysed reactions is modelled
using extended logic programing, is presented. The system provides possible explanations to
justify the abnormal levels of observed metabolite concentrations or dysregulation of cancer
genes. These explanations are lists of the enzymes that are affected and therefore might cause
certain inhibition of reactions in the metabolic pathways. The KEGG pathway database is used
as the knowledge base that contains the present state of knowledge of metabolic pathways.

5.1 Introduction

Chemical reactions that take place in the cell tend to equilibrium, they are accelerated or catal-
ysed by specialised enzymes. Enzymes are proteins that catalyse most reactions taking place in
living organisms. They are considered as the main activators of different parts of the metabolic
networks. Enzyme-catalysed reactions are usually connected in series, so that the product of one
reaction becomes the substrate for the next. These connections of linear reactions constitutes
pathways that are in turn linked to one another, forming a maze of interconnected reactions.
These interconnected reactions enable the cell to survive, grow and reproduce, constituting
metabolism [Alberts et al., 1998]. The inhibition of crucial enzymes can imply the interruption
of a synthesis pathway and thus, to the lack of products or it can lead to the accumulation of
an intermediate that is toxic when present in high concentration. If an enzyme gets inhibited,
affected metabolic pathways will lead to equilibrium loss and therefore the concentration of the
metabolites changes.

Pancreatic cancer is frequently associated with metabolic disorders characterised by dia-
betes. For example, Ariapart et al. found out that the expression of the TNF-alpha gene is
upregulated in patients with pancreatic cancer and that it is involved in metabolic disorders
associated with pancreatic cancer. In [Bowles et al., 2008], the authors represented a unique
approach to cancer treatment in that it is one of the first to identify a metabolic pathway that can
be leveraged to interrupt cancer growth. In their study Bowles et al. [2008] found that exposing
the pancreatic cancer cell lines to the modified arginine deiminase enzyme inhibited cancer-cell
proliferation by 50 percent. Coleman et al. hypothesised that inhibition of glucose metabolism
in pancreatic cancer cells would increase cell killing via oxidative stress resulting in profound
disruptions in ethiol metabolism.

This research work is motivated by the necessity to identify possible inhibited reactions
caused by metabolic disorders which are either genetic or acquired as a result of introduction of
toxins into the system. For this purpose we utilise a belief revision system REVISE [Damásio
et al., 1997] to model inhibition of reactions in metabolic pathways. In general standard logic
programs such as Prolog showed unsatisfactory treatment of negation as finite failure. In order
to be able to model real biological systems two types of negations should be considered - default
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and explicit negations.
In default negation it is assumed in the absence of sufficient evidence that e.g. an enzyme

is not malfunctioning and hence carries out the corresponding reaction. Explicit negation in the
other hand states that there is evidence that e.g. an enzyme is malfunctioning, this could be
a result of knocking out the enzyme. REVISE is built on top of SLX (a top-down derivation
procedure) for Well Founded Semantics with eXplicit negation (WFSX) that implement these
two types of negations. The top-down characterisation of WFSX relies on the construction of
two types of AND trees (T and TU-trees), whose nodes are either assigned the status successful
or failed. T-trees compute whether a literal is true; TU-trees whether it is true or undefined. A
successful (resp. failed) tree is one whose root is successful (resp. failed). If a literal L has a
successful T-tree rooted in it then it belongs to the paraconsistent well-founded model of the
program (WFMp); otherwise, i.e. if all T-trees for L are failed, L does not belong to the WFMp.
Accordingly, failure does not mean falsity, but simply failure to prove verity.

The KEGG PATHWAY database is a collection of manually drawn pathway maps represent-
ing the up to date knowledge on the molecular interaction and reaction networks for metabolism
and other biological processes [Kanehisa et al., 2007]. We extract the reactions topology knowl-
edge from the XML representation of the KEGG Pathway database and use it as part of the
background knowledge (background predicates) for our belief revision model.

Modelling metabolic pathways is a nontrivial task. Besides the obvious complexity arising
from the amount of data to be processed, metabolism exhibits some complex mechanisms such
as negative feed back where the end product(s) of a pathway are often inhibitors of the com-
mitted step enzymes thus regulating the amount of end product made by the pathways. For a
selection of current efforts in modelling metabolic networks see Table. 2.5.

We aim to analyse and model metabolic pathways in general and those associated with
pancreas cancer to be able to answer queries such as “Find compounds whose concentration is
directly or indirectly affected by the up/down regulation of a gene” or “Show which pathways
may be affected when one or more proteins are turned off or missing”.

In this approach, we present a system that uses belief revision along with a high level rep-
resentation of inhibition to reason over metabolic networks. BioRevise does not depend on
kinetic information which is not available for all known metabolic reactions. BioRevise can
help scientists to limit their search space of related genes to a certain observation when working
with complex networks, by suggesting a concise set of affected enzymes to be checked as a
result of a metabolic disorder or gene mutation effect.

5.2 Material and Methods

In the following, I will introduce some of the terminology used in the rest of the chapter.

5.2.1 Belief Revision

A belief revision occurs when a new piece of information that is inconsistent with the present
belief system is added to that system in such a way that the result is a new consistent belief
system.
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5.2.2 Extended Logic Programming

Extended Logic Programming extends logic programming by integrity constraints and two
types of negation: default negation represented by“not L” and explicit negation represented
by “¬ L”. Where default negation gives a way of expressing a kind of negation, based on a lack
of knowledge about a fact ( not L is not known to be true)
Example 1: To express the assumption that the system works correctly by default we use nega-
tion by default

In a pathway P we expect that the end metabolite M is produced with a certain quantity
Q. Therefore as long as M is produced with the quantity Q we can assume by default that P is
normal

produced(M,P,Q)← quantity(M,Q), not abnormal(P )

Explicit negation, on the other hand, allows to explicitly assert the falsity of a fact (¬ L is
known to be false).

5.2.3 Integrity Constraints

Integrity constraints are used to ensure the consistency of the model e.g the model should not
entail that the concentration of any metabolite is at the same time down and up.

An integrity constraint has the form

⊥ ← L1, ..., Lm, notLm+1, ..., notLn (0 ≤ m ≤ n)

where each Li is an objective literal (0 ≤ i ≤ n), and ⊥ stands for false. Syntactically, the only
difference between the program rules and the integrity constraints is the head. A rule’s head is
an objective literal, whereas the constraint’s head is ⊥, the symbol for false. Semantically the
difference is that program rules open the solution space, whereas integrity constraints limit it,
as indicated in Figure 5.2 Damásio et al. [1997]).

Figure 5.2: Integrity constraints closing the solution space of the program P.
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Communication and Control

Diagnosis Agent

Inference Engine

Knowledge Base

REVISE Strategies

StrategiesSystem
Description

Plans

Figure 5.3: The REVISE system consists of three layers: Communication and control, a knowl-
edge base, and an inference layer. Revise is the core of the inference machine which removes
contradictions from extended Logic Programs. The strategy component employs diagnosis
strategies and computes diagnosis in a process.

5.3 Resources

5.3.1 The REVISE system

REVISE is a non-monotonic reasoning system that uses belief revision to revise and remove
contradictions from extended logic programs. We consider a definition of the belief revision
problem that removes a contradiction from an extended logic program by modifying the truth
value of a selected set of literals called revisables. The program contains as well clauses with
false (⊥) in the head, representing integrity constraints. Any model of the program must ensure
that the body of integrity constraints be false for the program to be non-contradictory. Contra-
diction may also arise in an extended logic program when both a literal L and its opposite ¬
L are obtainable in the model of the program [Lamma et al., 2001]. It is based on a top down
evaluation of Well Founded Semantics with eXplicit negation (WFSX) on logic programming
with explicit negation and integrity constraints. It provides two-valued revision assumptions
to remove contradictions from the knowledge base. The system is embedded into an architec-
ture for a diagnosis agent consisting of tree layers: a knowledge base, an inference layer, and
on top a component for communication and control as shown in Figure 5.3. The core of the
inference machine is the REVISE system, which removes contradictions from extended logic
programs with integrity constraints. Additionally, there is a strategy component to employ diag-
nosis strategies and compute diagnosis in a process. REVISE is described in detail in [Damásio
et al., 1997].
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5.3.2 KEGG analysis

5.3.3 Metabolic Pathways

Pathway databases hold data on biochemical pathways and their components. Figure. 2.2 lists
a number of metabolic pathways databases with specific focuses.

Metabolism has been described as modules that are divisible into relatively autonomous
subunits such as the citric acid cycle or glycolysis. Metabolic pathways can be isolated from
the whole cell metabolism based on specific functions. But although they might seem modular,
they are interconnected, some more than the others. The highly interconnected subnetworks are
called hubs, such as cell cycle, amino acid metabolism, protein synthesis, sugar metabolism,
DNA metabolism, glycolysis, and tyrosine and tryptamine metabolism are good examples of
hubs from KEGG [Huss and Holme, 2006].

In this work we use KEGG, a database resource for understanding higher-order functions
and utilities of the biological system, such as the cell or the organism, from genomic and molec-
ular information [Kanehisa et al., 2006]. The KEGG pathway database contains a collection of
pathway maps each corresponding to a known network of functional significance [Kanehisa
et al., 2004]. We extract all enzyme-catalysed reactions that are organised as connected net-
works. This logical representation of the network is used as the background predicates which
are needed to perform the belief revision.

As of February 2009, KEGG contains 204 Homo Sapiens pathways, 111 of which are
metabolic pathways containing around 2000 enzymes. Enzymes are important actors in metabolism.
Most of these enzymes are very specific, they recognise and accept the mediating of only those
substrates involved in one single reaction. But many other enzymes are known to be multi-
functional, which means that different substrates might be bound in one or more than one active
sites. In Table 5.1. an analysis of the most frequently used enzymes (enzyme families) in the
KEGG metabolic pathways is presented. The table also shows the related PDAC deregulated
genes and their respective KEGG pathways. KEGG provides its metabolic overviews as map
illustrations and can be easier to use for the visually-oriented user.

Reactions EC Enzyme name KEGG
maps

Deregulated
PDAC/EXP

KEGG MAPS
of PDAC genes

40 1.14.13.- Oxireductases,With NADH or
NADPH as one donor, and in-
corporation of one atom of oxy-
gen

17 COQ6/Up hsa00130

31 2.4.1.- Hexosyltransferases 9
24 4.2.1.17 Enoyl-CoA hydratase 11 HSD17B4/Down hsa00150
23 4.2.1.- Hydro-lyases 11
22 2.3.1.- Transferring groups other than

amino-acyl groups
14
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18 1.2.1.3 aldehyde dehydrogenase
(NAD+)

16 ALDH1A2/Down,
ALDH1A1/Down

hsa00010
hsa00053
hsa00071
hsa00120
hsa00280
hsa00310
hsa00330
hsa00340
hsa00380
hsa00410
hsa00561
hsa00620
hsa00640
hsa00650
hsa00903

18 4.1.1.- Carboxy-Layases 15
17 2.3.1.16 acetyl-CoA C-acyltransferase 5
16 1.14.-.- Acting on paired donors, with

incorporation or reduction of
molecular oxygen

7

15 2.7.1.69 protein-Npi-phosphohistidine-
sugar phosphotransferase

5

14 1.13.11.- Oxidoreductases,With incorpo-
ration of two atoms of oxygen

8

13 2.3.1.85 fatty-acid synthase 2
13 2.1.1.- Methyltransferases 8 HRMT1L2/Up hsa00150

hsa00340
hsa00350
hsa00380
hsa00440
hsa00450
hsa00626

12 1.2.1.- Oxidoreductases,With NAD+
or NADP+ as acceptor

8

12 1.1.1.35 3-hydroxyacyl-CoA dehydro-
genase

7

12 3.1.3.5 5’-nucleotidase 3 NT5E/Up hsa00230
hsa00240
hsa00760

12 2.4.99.- Transferring other glycosyl
groups

2

12 1.1.1.- Oxireductases,With NAD+ or
NADP+ as acceptor

12

11 2.4.1.17 glucuronosyltransferase 4 UGT2B28/Down hsa00040
hsa00150
hsa00500
hsa00860

11 3.2.1.22 a-galactosidase 4
11 2.7.4.6 nucleoside-diphosphate kinase 2 NME1/Up hsa00230

hsa00240
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11 1.4.3.4 amine oxidase (flavin-
containing)

5 MAOB/Down hsa00260
hsa00330
hsa00340
hsa00350
hsa00360
hsa00380

11 4.2.1.80 2-oxopent-4-enoate hydratase 9
11 1.1.-.- Acting on the CH-OH group of

donors
6

10 1.1.1.50 3alpha-hydroxysteroid dehy-
drogenase

3

9 6.2.1.- Acid-Thiol Ligases 5
8 1.2.1.5 aldehyde dehydrogenase

[NAD(P)+]
4

8 2.4.1.69 galactoside 2-a-L-
fucosyltransferase

3

7 5.3.3.1 steroid DELTA-isomerase 2
6 1.2.1.18 malonate-semialdehyde dehy-

drogenase (acetylating)
4

Table 5.1: An analysis of the most frequently occurring enzymes in KEGG. The
larger/smaller the number of KEGG pathways those enzymes act on, the more
general/specific these enzymes are. Relative PDAC enzymes with their respective
expression are shown along with the KEGG pathways they are associated to.

5.3.4 BioRevise architecture: Model-View-Controller

The Model View Controller paradigm is a classic design pattern that has been pursued for a clear
design which separates objects within an interactive application into one of three categories
models for maintaining data, views for displaying all or a portion of the data, and controllers
for handling events that affect the model or view(s).

A model in this paradigm is a class which originates in a specific domain. It is an abstraction
of a domain specific entity and has no knowledge about the graphic user interface (GUI). The
representation of the model as GUI element is called view. A view can be seen as a wrapper
around the model, which is capable of displaying a subset of the data that is encapsulated in
the model. Each view has an associated controller. A controller is responsible for all possible
actions that are defined in the view concerning the associated model. A model can have multiple
views [Veit and Herrmann, 2003]. The model does not only captures the state of the system,
but also how the system works. The model view controller separates the user interface from the
core application data and functionality. With this separation one of the components can change
without requiring changes in the others components. This is an alternative to the traditional
(input, processing, output) applications. In the model view controller perspective the keyboard
and mouse inputs are handled by the controller that makes the proper connection with the other
two components, the view and the model. The model is able to change state, answer about its
state and manage the needed data structures. Presenting the data related to the state or changes
in the model is the role of the view component in the model view controller.
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User

Controller View

Model

REVISE

KEGG
wrapper

MVC

BioRevise

Figure 5.4: BioRevise system work flow. The connections between the main components of the
BioRevise system.

5.4 BioRevise prototype work flow

The starting point of the BioRevise system is the extraction of the background predicates from
the KEGG database. The background knowledge consists of the background predicates and the
metabolites concentrations observed (observable predicates). It is used by the model to write
the system input files. These observations are marked in the maps of the metabolic pathways
shown by the view.

BioRevise takes as input the extracted background knowledge and then uses it to revise the
inhibition model, and as output it produces lists of possible inhibited enzyme-catalysed reac-
tions that explain the abnormal levels of the observed metabolites concentration or deregulated
enzymes. The background knowledge, program (definitional knowledge), and integrity con-
straints representing the metabolism are modelled using Extended Logic Programs while the
visualisation is implemented using Java. The view shows the corresponding enzyme-catalysed
reactions in the maps using the extracted coordinates of the enzymes. Through the controller the
user is also able to zoom in from the maps of the different metabolic families to the metabolic
pathways maps with the inhibited reaction. Figure 5.4 shows the connection between the dif-
ferent components of the system.
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E2E1

Met1 Met2
Inhibited

E2E1

Met1
Inhibited

If the enzyme E1 catalyzing the reaction 
producing  Met1 is inhibited then Met1 will 
have a low concentration.

Change in concentration  due to indirect 
effects

If the enzyme E1 catalyzing the reaction 
consuming  Met1 is inhibited then Met1
will have a high concentration

Not produced

E1 E2

Not consumed

Figure 5.5: The knowledge modelling: The first step is used to represents the fact that if the
reaction that produces a product Prod is inhibited, this will cause a decrease in the concentra-
tion of the product Prod. The second step represents the changes on the concentration caused
through indirect effects, where a metabolite Prod can have down/up concentration due to the
fact that some other substrate metabolite Sub, that produces Prod has a decrease/increase of
concentration respectively (even when the reaction is apparently not inhibited). The third step
is used when an enzyme catalysing a reaction that consumes a substrate Sub, this will cause an
increase of Sub.

5.4.1 REVISE

REVISE is the core of the BioRevise system. It is used to perform belief revision over the
knowledge representation of the metabolic pathways, it is integrated in the model component
of the model view controller. REVISE uses three input files, the first file consisting of the
observables (metabolite concentration levels) provided by the user, the second file contains
the network topology rules and the third file contains the knowledge modelling describing the
inhibition behaviour and the integrity constraints.

5.4.2 Knowledge Modelling

The knowledge modelling is the computational representation of the metabolism. By capturing
the knowledge and behaviour of the components of the metabolism system, some inferences
can be made about changes in the state of the BioRevise system based on the new states due to
abnormal observations obtained by the system. In this work we concentrate in modelling of in-
hibition. The modelling presented here is based on a previous work developed by [Tamaddoni-
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Nezhad et al., 2004]. The model of the metabolism can separate two disjoint sets of predicates:
the observable predicates and the abducible predicates. The model can be incomplete in its
description. To complete the description, the new information given by the observation can be
used. The basic assumption is that all the incompleteness of the model can be isolated in its
abducible predicates. The background predicates are auxiliary relations linking observable and
abducible information. For this purpose a logic program is required which models how the con-
centration of metabolites is related to inhibition of enzymes [Tamaddoni-Nezhad et al., 2004].
To represent the changes on the metabolites concentration, the observable predicate obs/2 is
used:

obs(Metabolite, Concentration)

e.g.

obs(′Pyruvate′, up)

This predicate encodes the observations made by the user, where variable Concentration can be
either up or down. The relational representation of metabolic networks that form the metabolism
is represented by the background predicates reaction/4:

reaction(Sub,Enz, Prod).

representing the fact that the enzyme-catalysed reaction occurs in a direct path from one
node to the other, where Sub is a set of substrates and Prod is the product they produce. The
product of one reaction becomes the substrate of another. For example the predicate:

reaction([′Acetate′],′ 6.2.1.1′,′Acetyl − CoA′).

represents the enzyme-catalysed reaction between Acetate and Acetyl-CoA catalysed by the
enzyme Acetate-CoA ligase (EC:6.2.1.1) in the ”Glycolysis/Gluconeogenesis” pathway.

The incompleteness of the model resides in the lack of knowledge of which metabolic re-
actions are adversely affected in the event of a metabolic disorder Tamaddoni-Nezhad et al.
[2004].

To predict the inhibition of one reaction and complete the model, the abducible predicate
inhibited predicate is used:

inhibited(Enz, Sub, Prod)

encoding the fact that the enzyme-catalysed reaction producing the product Prod from the
substrate Sub is inhibited because of the inhibition of the enzyme Enz, due to a metabolic dis-
order of the system. For example:

inhibited(′6.2.1.1′,′Acetyl − CoA′,′Acetate′)

88



5.4. BIOREVISE PROTOTYPE WORK FLOW

which captures the hypothesis that the reaction from Acetyl-CoA to Acetate that is normally
catalysed by the enzyme 6.2.1.1 is inhibited due to a certain defect in this enzyme.

For describing the behaviour of the system due to inhibition of a certain reaction, the fol-
lowing rules are used:

concentration(Met, down)← (5.1)

reaction(Sub,Enz, Prod),
member(Met, Prod),
inhibited(Enz, Sub, Prod).

concentration(Met, up)← (5.2)

reaction(Sub,Enz, Prod),
member(Met, Sub),
inhibited(Enz, Sub, Prod).

concentration(Met, down)← (5.3)

reaction(Sub,Enz, Prod),
member(Met, Prod),
not inhibited(Enz, Sub, prod),
concentrationsOne(Sub, down).

concentration(Met, up)← (5.4)

reaction(Sub,Enz, Prod),
member(Met, Prod),
not inhibited(Enz, Sub, prod),
concentration all(Sub, up).

We consider all substrates that are used as substrates, but not a product of any reaction as
“input” metabolites.

input(Sub)←
reaction(Sub,Enz, Pro),
not reaction( , , Sub).
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We then assign the concentration “up” to all “input” substrates.

concentration(Sub, up)←
not concentration(Sub, down),
input(S).

These rules describe the model in a simplified way, considering the fact that some metabolic
disorders can change the concentration of metabolites by the inhibition of enzymes catalysing
enzyme-catalysed reactions. An illustrative description of the rules is shown in Figure 5.5.
The first rule (5.1) is used to represents the fact that if the reaction that produces a product
Prod is inhibited, this will cause a decrease in the concentration of the product Prod. The
second rule (5.2) is used when an enzyme catalysing a reaction that consumes a substrate Sub,
this will cause an increase of Sub. The third and fourth rules (5.3 and 5.4) represents the
changes on the concentration caused through indirect effects, where a metabolite Prod can have
down/up concentration due to the fact that some other substrate metabolite Sub, that produces
Prod has a decrease/increase of concentration respectively (even when the reaction is apparently
not inhibited). The auxiliary rules for member, concentrationOne and concentrationall deals
with sets operations. concentrationOne ensures that for a product to be down, at least one of
the members of the substrates set producing this product is down and concentrationall ensures
that for a product to be up, all members of the substrates producing this product has to be up.

The integrity constraints of the model captures several validity requirements that must be
satisfied by the abducible information of inhibited/3. In our model to express the fact that the
concentration of a metabolite can not be up and down at the same time the following integrity
constraints are used:

← concentration(Metabolite, up), concentration(Metabolite, down).

5.5 Implementation

The model view controller model is implemented jointly with Vasco Pedro which was part of
his master thesis work under my supervision.

5.5.1 Model

The data structures populated by the KEGG extractor with the knowledge base of the BioRevise
system are used by the model to write the REVISE observables input file. The file contains
the observations marked by the user corresponding to the new concentration of metabolites.
The concentration observed are either up or down. The REVISE system is then used to read
the other input files and generate the output file containing the possible explanations. These
explanations are the possible inhibited enzyme-catalysed reactions caused by the modification
in the concentration of the metabolites. Using these results the model updates the inhibition state
of the enzymes in the data structures from not inhibited to inhibited, in order to also display it
in the view.
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Figure 5.6: The three abstraction levels of the KEGG maps.

5.5.2 Visualisation

Due to the complex representation of metabolic networks (e.g. Boehringer map), finding en-
zymes that are affected as a side effect of an inhibition of certain reaction is like searching for
a needle in a hey sack. The metabolic pathway maps are build in three different levels of ab-
straction. The first level is the map representation of all the metabolism network, the second is
the collection of maps within the different groups of metabolism, and the third level contains
the maps of the metabolic pathways, which are the most detailed maps also representing the
pathway reactions and their components shown in Figure 5.6. To perform the visualisation of
the metabolic pathway networks and to simplify finding the enzyme catalysed-reactions, the
maps from KEGG are used.

The first picture of the metabolism is composed of the maps that represent the different
groups of metabolism, biosynthesis and biodegradation in KEGG. The generated picture is
outlined by putting together the maps according to the coordinates from the xml files. The
coordinates of the xml files were manually built to present all maps in the same picture. By
clicking on any of the metabolic pathways in the first picture, it is possible to see the most
detailed maps from KEGG. These maps contain the representation of the enzyme-catalysed
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(1) Initial user interface showing all KEGG Metabolic Pathways

(2) Assigning concentration levels to Enzymes/Metabolites (red for up and green for down)

Figure 5.7: (1) First window showing maps of the different groups of metabolism, biosynthesis
and biodegradation in KEGG. (2) The concentration or regulation levels of the metabolites and
enzymes are marked using different colours, green for down and red for up.
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(3) The red squares indicating the reactions affected as a result for the abnormal regulation
levels of the input Enzymes/Metabolites

(4) Highlighted inhibited reactions with the enzymes that catalyse the reactions.

Figure 5.8: (3) The visualisation of the inhibited reactions, the effected reactions are marked in
the first window in the region that corresponds to a metabolic pathway. (4) Inhibited reactions
with the enzymes that catalyse the reaction are highlighted with a red, blue, green or pink
rectangles, corresponding to the first, second, third or fourth solution respectively at the second
window.
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reactions that constitute the metabolism. In the first two windows see Figure 5.6 the user can
perform the operations of zooming in and out, as well as translate the picture by moving it up or
down. It is also possible to mark the observations made by the user in this second window. This
corresponds to the change of the metabolites concentration to up and down. The concentration
of the metabolites is marked using different colours, green for down and red for up as illustrated
in Figure 5.7. For the visualisation of the inhibited reactions, the affected reactions are marked
in the first window in the region that corresponds to a metabolic pathway, shown in Figure 5.8.
At this stage, the user is able to see all the inhibited reactions in the metabolism. The user
can then visualise the maps of the metabolic pathways in the second window to see each of
the enzyme-catalysed reactions which are inhibited. To show these inhibitions on the second
window, the enzymes that catalyse the reaction are highlighted with red, blue, green or pink
rectangles, corresponding to the first, second, third or fourth solutions respectively.

5.5.3 Controller

The controller performs the connection between the model and the view, by reacting to the
mouse and keyboard events. For each event the controller performs the corresponding data
update in the data structures, used by the model or the view. Other data related to the zoom and
translation operations made in the maps, is also updated.

5.6 Results and Discussion

We provide a system that uses belief revision to model reaction inhibition in metabolic path-
ways. Given abnormal concentration levels of metabolites, the system will reason over the
KEGG network to show all reactions and pathways affected due to the metabolic disorder that
caused the metabolites levels to behave abnormally. The system used a high level representa-
tion of inhibition, which makes it independent of detailed kinetic information of metabolism
modelling.

We demonstrate the use of the BioRevise system by applying it to the two examples pre-
sented in section 5.6.1 and 5.6.2.

5.6.1 Metabolic disorder example: Glycogen storage disease

Enzyme EC Number Disease Metabolites
Glucose-6-
phosphatase.

3.1.3.9 Glycogen storage disease I lactic acid and Glycogen levels in-
crease, glucose decrease

Polyribonucleotide
nucleotidyltrans-
ferase (PNPase)

2.7.7.8 Lymphopenia and ISCD serum urate

Glucose-6-
phosphatase(G6Pase)

3.1.3.9 Glycogen Storage Disease uric acid level increase, glycogen
level decrease

Xanthine
oxidoreduc-
tase(XOR)

1.16.3.1 Xanthinuria uric acid level decrease and xan-
thine level increase

Phenylketonuria 1.14.16.1 Phenylalanine hydroxylase phenylalanine level increase.
Alkaptonuria 1.13.11.5 homogentisic acid oxidase homogentisic acid level increase
Ochronosis phenylalanine or tyrosinelevel in-

crease .
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Tyrosinemia I 3.7.1.2 enzyme fumarylacetoacetate hydro-
lase

amino acid tyrosine can not be bro-
ken down

Histidinemia histidase histidine levels increasee in blood
and urocanic acid in blood, urine,
and skin cells

Maple syrup
urine disease

1.2.4.4 branched-chain alpha-keto acid de-
hydrogenase

leucine, isoleucine, and valine lev-
els increase

Propionic
acidemia

6.4.1.3 propionyl-CoA carboxylase propionyl-CoA level increase

Methylmalonic
acidemia

methylmalonyl-CoA mutase defect in the conversion of
methylmalonyl-coenzyme A
(CoA) to succinyl-CoA

Isovaleric
acidemia,3

1.3.99.10 isovaleric acid-CoA dehydrogenase isovaleric acid level increase

Methylcrotonyl-
CoA carboxylase
deficiency

3-methylcrotonyl-CoA carboxy-
lase.

leucine level increase

Table 5.2: A number of known enzymes deficiency disorders and the enzymes responsible
for the disease.

For metabolic diseases there are 666 entries from OMIM, 43 in BRENDA, and 110 collected
in Wikipedia. Table 5.2. lists a number or known enzyme deficiency disorders. The EC col-
umn contains the enzymes responsible for the disease and the metabolites column contains the
observed change of metabolite concentration levels.

Glycogen storage disease type I (GSD I) is a metabolic disorder that is caused by the de-
ficiency in the glucose-6-phosphatase enzyme. This deficiency impairs the ability of the liver
to produce free glucose from Glycogen and from Gluconeogenesis. Glycogen and Gluconeo-
genesis are the two principal metabolic mechanisms by which the liver supplies Glucose to the
rest of the body during periods of fasting. Reduced Glycogen breakdown results in increased
Glycogen storage in liver and kidneys, causing enlargement of both. An obvious symptom of
the GSD type I is the inability to maintain adequate blood glucose levels during fasting which
results from the combined impairment of both Glycogenolysis and Gluconeogenesis. Accord-
ing to the BioRevise model, there are many possible hypothesise that can explain the abnormal
concentration levels of the observed metabolites. However the system provides only the most
comprehensive and short explanations. We used the observed values of the metabolites caused
by the GSD I (the Glucose down, Pyruvate lactate up) as input for the BioRevise system.

BioRevise could identify that the inhibition of the enzyme glucose-6-phosphatase (EC:3.1.3.9)
as a possible explanation for the abnormal levels of concentration of Glucose, which according
to literature is known to be the main reason for this disease. This example is a proof of concept
and shows the usability of the BioRevise system.

5.6.2 Reasoning over pancreatic cancer associated metabolic disorders

Rapidly growing cancer cells typically have higher glycolysis rate than those of their normal
tissues of origin. One way to explain this phenomenon is by following the hypothesis of Otto
Warburg (1930), which claims that cancer is primarily caused by dysfunctionality in mitochon-
drial metabolism, rather than because of uncontrolled growth of cell.
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Figure 5.9: KEGG Glycolysis/Gluconeogenesis reference map, showing in green the involved
human enzymes



5.6. RESULTS AND DISCUSSION

KEGG provides two Glucose metabolism pathways: the main one is the Glycolysis / Glu-
coneogenesis pathway shown in Figure 5.9 and an alternative pathways Pentose phosphate
pathway. Glycolysis is the process of converting glucose into Pyruvate and generating small
amounts of ATP (energy) and NADH (reducing power). We used BioRevise to generate possi-
ble explanations of the effect of inhibiting the Glucose pathway along with taking into account
the change of regulation of the Glucose pathway enzymes in the PDAC data. For this step we
propagate the level of regulation of PDAC enzymes associated with the Glycolysis / Gluconeo-
genesis pathway to the metabolites produced by the reaction catalysed by these enzymes. As an
example, if in the reaction reaction([′Acetate′],′ 6.2.1.1′,′Acetyl − CoA′) and we know that
the enzyme 6.2.1.1 is down regulated we assume that the product Acetyl-CoA has low concen-
tration.

As input we provide the system with the observations that the genes coding for the enzyme
Fructose-bisphosphate aldolase (ALDOB) (EC:4.1.2.13) is down regualted and for the enzyme
glucose-6-phosphate isomerase (GPI) (EC:5.3.1.9) is up regulated from the PDAC data set. The
BioRevise provides the following solutions as explanations

Solution1=[[inhibited(’2.7.1.11’,
[’beta-D-Fructose 6-phosphate’],
[’beta-D-Fructose 1,6-bisphosphate’])], []] ;

Solution2=[[inhibited(’4.1.2.13’,
[’beta-D-Fructose 1,6-bisphosphate’],
[’(2R)-2-Hydroxy-3-(phosphonooxy)-propanal’]),
inhibited(’4.1.2.13’,
[’beta-D-Fructose 1,6-bisphosphate’],
[’Glycerone phosphate’])], []] ;

The explanation provided by solution one is an inhibition of an upstream reaction of the
path to the reaction catalysed by (ALDOB). This solution explains the two observations men-
tioned above. The second solution shows that the reaction producing Glycerone phosphate and
(2R)-2-Hydroxy-3-(phosphonooxy)-propanal, has to be inhibited also to explain the observa-
tions. This kind of information is instructive to future experiments where concentration levels
of some metabolites can be tested in order to validate or refute the second solution. The use of
the BioRevise GUI make is easy to points out inhibition of reactions that are not in the same
pathway but uses the same enzyme or produce the same metabolite. In this way BioRevise
can provide explanation that might guide us to understand the mechanism of action of complex
diseases by studying the pathways that are mainly affected by cancer.

5.6.3 Limitations

The current version of BioRevise can not handle the whole KEGG metabolic pathway network.
One reason is due to the possible loops that can be produced by negative and positive feed
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back mechanisms, where for example the end product(s) of a pathway are often inhibitors of
the first reaction enzymes thus regulating the amount of end product made by the pathways.
This could be handled by eliminating unimportant loops by reducing the KEGG pathways into
simpler reference maps that does not contain such loops. Another limitation is that the enzyme-
catalysed reactions from the metabolic pathways can be reversible, in order to compensate the
variation of concentration in one of the metabolites. However the current prototype does not
consider the possibility of the reversed enzyme-catalysed reactions that can occur to compensate
the changes in the metabolites concentrations.
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Chapter 6

Summary and discussion

6.1 Open research problems revisited

6.1.1 Open problem: Can the use of protein-protein interaction data enhance
knowledge discovery from gene expression data analysis to reveal potential
markers and therapeutic targets for Pancreatic cancer

.
To provide solutions to this problem, we developed a method that enables gene expres-

sion analysis within the biological context of protein-protein interactions and pathways. High
throughput methods such as microarray enabled large scale analysis of gene expression data
that produces thousand of genes. However, analysing of such data for reaching a functional
understanding of ongoing processes is a major challenge, in particular when thinking in terms
of a systems biology driven analysis. Further investigations of such data is hampered by the
fact that except for the sequence rather little is known about those genes. Structure recogni-
tion is still lagging behind the out put of proteins sequence data. Protein interactions provide
an important context for understanding proteins functions. In ∼ 60% of protein-protein in-
teractions the two interacting proteins share functional similarity, therefore identifying protein
interactions is an important component of functional annotation. To overcome the gap between
the known genes sequences and structures, we use GTD, a database that applies threading to
predict the structure of all proteins with unknown structures. Furthermore, the protein-protein
interaction prediction method builds on a number of relevant databases such as SCOPPI, PDB,
GO, NetPro aiming to produce a comprehensive protein-protein interaction map staring from a
set gene expression data. The key idea is using a sophisticated way of integrating this databased
to help produce a high quality interaction network that helps uncovering some of the unknown
behaviours of biological systems. The main contribution of this work is the use of interaction
inference from known structures to predict novel protein-protein structures. First, the Genomic
Threading Database (GTD) as fold recognition method to assign SCOP structural families to
the proteins in our data sets is used. For the assigned SCOP domains, SCOPPI is used to iden-
tify interacting domain pairs. In this step, two proteins are considered as interacting if each
contains a domain where there is structural evidence for such a domain–domain interaction ac-
cording to SCOPPI. The evidence interaction then serves as a structural template to model the
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predicted interaction. For the resulting predicted interactions we further perform a refinement of
predicted protein-protein interactions using interface conservation evaluation, considering only
hetero-inter interactions and using protein localisation to filter out proteins in different cellular
locations(GO). As a complimentary step we apply a pathway analysis approach, where the aim
is to construct a cancer related pathway network that resembles the regulatory circuits which
are disrupted in the cell.

Although the method can be used to analyse a wide range of high throughput data, it was
mainly developed to analyse a set of PDAC gene expression data. The data set was obtained
by integrating various analyses of the gene expression profiles of PDAC from Affymetrix
GeneChip experiments such as microdissection, systematic isolation of genes and the meta-
analysis of PDAC gene expression profiles from publicly available data

Taking into consideration the different aspects of how cancer behaves the method revealed
interesting results that mainly short-list a huge number of genes into more interesting and rel-
evant ones for cancer researchers where they can be tested in the lab. The results bellow are
examples where our work was able to provide a positive answer to the open question number
one that protein-protein interaction data indeed enhance knowledge discovery from gene ex-
pression data analysis to reveal potential markers and therapeutic targets for Pancreatic cancer.
The protein-protein prediction method was programmed using Python.

1. A novel pancreatic cancer network of known and predicted protein-protein interactions
By linking the pathway approach, known interactions and structure-based interaction predic-

tions, we produce a detailed PDAC cell map. The map highlighted some clusters of interacting
proteins that were further investigated. An interesting example is for a predicted interaction
between transmembrane protease, serine 4 (TMPRSS4) and tissue factor pathway inhibitor 2
(TFPI2). We hypothesise that TFPI2 acts as a natural inhibitor of TMPRSS4. Since TFPI2 is
downregulated, the upregulated TMPRSS4 is no longer inhibited and might facilitate tissue in-
vasion. Another example that was revealed by this analysis is an interesting interaction between
CDKN3 and CDC2L1. The interactions may prove valuable to improve our understanding of
the regulatory mechanisms underlying the development of pancreatic cancer. Furthermore, our
results indicate that in pancreatic cancer the calcium signalling pathway is affected.

2. Potential therapeutic targets for the treatment of PDAC using a novel drug (BVDU)
We performed docking experiments using a docking technique based on Based on Shape Com-
plementarity Principles. The results indicate that BVDU is able to bind to the active site of
TMPRSS4, KIF20A and NNMT. The three genes were among the predicted protein-protein in-
teractions of the proteins that changed expression after treatment with BVDU alone or in com-
bination (Gemcitabine/BVDU). Although small molecule docking might produce some false
positives, such analysis provide potential candidates that still needs to be tested experimentally.
The docking results is an indication that these proteins may play a role as targets of BVDU.

3. Highlights the importance of the Co-expression of KLK6 and KLK10 as prognostic
factor for survival in pancreatic ductal adenocarcinoma KLK10 and KLK6 are among the
most highly and specifically overexpressed genes in pancreatic cancer compared with normal
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and benign pancreas tissues. The network of known and predicted interactions of KLK10 and
KLK6 implies that it might have a role in the pathophysiology of PDAC.

4. Pancreatic cancer related apoptosis pathway We used our interaction prediction method
to aid the construction of a dynamic map of apoptosis where the predicted interactions cans shed
light on alternative ways of the effect of simultaneous gene silencing to examine its effects on
apoptosis pathway.

6.1.2 Open problem 2: Does reasoning over molecular networks facilitate the
analysis of gene expression data?

In chapter 4 we were aiming to provide an answer to the second open question. We devel-
oped BioRevise a belief revision that uses a high level representation of inhibition of enzyme-
catalysed reactions, to reason over metabolic networks. We evaluated the BioRevise system
with two cases. First a metabolic disorder example where BioRevise successfully identified the
inhibition of the enzyme glucose-6-phosphatase (EC:3.1.3.9) as responsible for the Glycogen
storage disease type I, which according to literature is known to be the main reason for this
disease. The second example is the effect of the PDAC deregulated genes on the pancreas as-
sociated pathway “Glycolysis / Gluconeogenesis”. We could show that gene expression data
from cancer tissues can be interpreted in terms of the metabolic pathways in which some of the
co-regulated genes are involved in. For the knowledge modelling code of the Biorevise system
we used extended logic program formalism and the user interface was coded in Java.
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